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Abstract 

A stable nest environment is necessary for incubation and development of 

offspring. Birds vary behaviour to regulate temperature for successful hatchlings. I used a 

hidden Markov model (HMM) to test how environmental conditions affect incubation 

behaviour. I examined nest temperatures and behaviours collected from Zebra finches 

that incubated at 30 °C or 14 °C, then incubated in the same or opposite condition for a 

second clutch. Data loggers and cameras recorded nest temperature and number of 

parents on nest. The HMM inferred behaviour from recorded behaviours and 

temperatures. Temperature and offspring success affected incubation duration. Birds that 

had successful offspring incubated at higher temperatures than unsuccessful birds. The 

HMM could not accurately predict number of birds from the temperature data because 

birds maintained nest temperature irrespective of behaviour. This study shows that birds 

can change behaviour in relation to the environment. Previous offspring success and 

ambient temperature are drivers of change in incubation behaviour.     

Keywords 

Zebra finch, Hidden Markov model, avian incubation, temperature, temperature 

regulation, behavioural flexibility, animal behaviour 
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Summary for lay audience 

 Birds sit on nests to develop the embryos within the eggs they laid. However, the 

environment is not always good for embryo growth. One aspect of the environment 

which is important for embryo growth is the surrounding temperature. The birds have to 

change the way they sit on the nest because of the surrounding temperature. If the 

surrounding temperature is too warm or too cold, then the embryos may die or not 

develop correctly. I look at what birds do in these situations where the surrounding 

temperature is either cool or warm. I use a computer program I built to see if I can use a 

small sample of bird behaviour and nest temperature to predict how many birds are on the 

nest, given only the nest temperature. Zebra finches, birds that are native to Australia, 

laid eggs and sat on them in either 14 °C or 30 °C. The zebra finches then stayed in the 

same surrounding temperature or switched to the alternative for a second laying and 

sitting on eggs.  

 Birds need to consider the surrounding temperature, and their breeding experience 

at that temperature so that their chicks survive. I thought that if birds made mistakes in 

the first try in one of the surrounding temperature conditions, the second try in the same 

condition they would have more eggs hatched. If they were in a different condition for 

the second try, then they would not be as successful hatching eggs than if they were in the 

same condition.  The surrounding temperature, and if the birds had hatched eggs had an 

effect on how long the birds needed to hatch an egg. Birds that had previously been 

successful hatching an egg had higher nest temperatures than unsuccessful pairs. My 

model was not able to predict behaviour from nest temperature. Birds can change how 

they sit on eggs to the surrounding temperature.  
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Chapter 1: Introduction 

1 Avian incubation and mathematical models 

Incubation is the period during avian reproduction when birds sit on the eggs to 

keep a stable temperature until the eggs hatch. It is during this time that the embryo 

inside the egg develops into a chick. Fluctuating environmental conditions (i.e., 

temperature, precipitation, and wind) can put pressure on birds to change how they 

incubate to maintain a stable temperature and microclimate for their eggs (Love, 

Gilchrist, & Semeniuk, 2010; Ninnes et al., 2011).  

Avian incubation is how birds can maintain the nest environment for suitable 

embryo development. Birds achieve the ideal nest environment by careful control of 

temperature, humidity, and gas exchange. As with most physiological processes, embryo 

development requires a narrow range of temperatures (35 °C -38 °C) for successful 

hatching. The bird maintains this nest temperature by sitting on the eggs, however the 

length of time sitting on the nest and how the nest is built are factors that lead to 

successful offspring (Deeming, 2002). If the nest temperature becomes too cool (less than 

30 °C), birds have been observed shivering and feather raising or fluffing up; whereas if 

the nest temperature becomes too warm (greater than 40 °C) the birds open their mouths 

to release heat (gular fluttering) (Deeming, 2002).  

As one or both parent birds are required to be on the nest to maintain a 

satisfactory temperature, the other tasks such as foraging for food and grooming each 

other must be modified. To achieve this, most birds have both parents incubating like the 

zebra finch (Taeniopygia guttata). There are exceptions though, with some species 

having only one bird incubate, whether it is the female such as in the Allen’s 

hummingbird (Selasphorus sasin) or the male. The amount of time spent on the nest 

varies widely across species whether it is constant sitting on the nest or sporadic 

incubation sessions. Nest temperature and number of birds on the nest are part of the 

equation that can lead to successful offspring. The next section (1.1) will delve into how 

birds cope when environmental conditions are challenging.  
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1.1 The effect of environmental cues on avian incubation 

Environmental variables such as precipitation, wind, temperature and elevation 

are challenges for birds during reproduction (Heenan, Goodman, & White, 2015). Yet, as 

birds are found from the rainforest to the Antarctic, they have evolved diverse 

behavioural mechanisms to adapt to seemingly inadequate reproductive environments. A 

general mechanism that birds use is to time their reproduction to food availability (Love, 

Gilchrist, & Semeniuk, 2010; Ninnes et al., 2011; Stouffer, Johnson, & Bierregaard Jr., 

2013). Near the equator, birds generally breed throughout the year with some relation 

with rainfall, as food is plentiful. In the temperate regions, birds generally breed in 

conjunction with the seasons, as food resources are scarce during the winter (Stouffer, 

Johnson, & Bierregaard Jr., 2013). This example of birds adapting to environmental 

conditions is a gross difference between the temperate and equatorial regions. Can birds 

show similar changes to behaviour when environmental conditions change rapidly?   

The Adélie penguin (Pygoscelis adeliae) has been seen to exhibit rapid 

behavioural change in line with the ice sheets receding.  Adelie penguins modulate their 

incubation duration due to the amount of ice sheet still present to allow for the best 

chance of chick survival from one year to the next. The differences between incubation 

duration is observed not only from year to year, but also compared to different colonies, 

where ice melt differs (Ninnes et al., 2011). Shortening the incubation period to coincide 

with food availability is one method of behavioural change to adapt to environmental 

conditions (Ninnes et al., 2011). 

The common eider (Somateria mollissima) takes a slightly different approach 

when faced with changing environmental conditions. Instead of changing its number of 

days during incubation, the common eider changes its lay date, but maintains the same 

number of days for incubation. The behavioural change is correlated with both the 

ambient temperature and ice melt, to time hatching with the receding ice and increased 

food availability (Love, Gilchrist, & Semeniuk, 2010). Changing lay date and incubation 

duration are two mechanisms birds have employed to synchronize reproduction to 

changing environmental conditions, and thus food availability. 
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Not all birds, however, show this relationship between environmental change, and 

subsequent reproductive behavioural change. Rhinoceros auklets (Cerorhinca 

monocerata) were observed under variable field conditions for four years, with no 

significant change in incubation following environmental fluctuation and widely variable 

breeding success (Hipfner, Mcfarlane-tranquilla, & Addison, 2008). The success of 

offspring did not influence the next reproductive attempt. Another example of a bird 

species unable to change their reproductive behaviour to changing environmental 

conditions is the great tit (Parus major), who after 23 years of study has not changed its 

lay date to accommodate the increased ambient temperature. The great tit is at a 

disadvantage as it is missing potential food resources before its clutch has hatched 

(Visser, Noordwijk, & Tinbergen, 1998).  

The research into how birds can change their incubation behaviour to react to 

changing environmental conditions has shown potential mechanisms, from changing 

incubation duration to changing the lay date of the eggs to coincide with available food 

resources. All the included studies have taken place in the field, so the ecological validity 

of the findings is high. An understanding of which environmental conditions are cuing 

these behavioural changes is difficult to establish. My project aims to recreate 

reproductive conditions while in the lab. The lab allows for a higher number and 

precision of measurements. Investigating incubation within a controlled lab setting will 

provide an opportunity to look at a single environmental variable and its effect on 

incubation. 

1.2 Nest-building and incubation behaviour, two methods to cope 

with the physiological limits of egg development 

Incubation duration and egg lay date need to align with food availability, but also 

the physiological requirements needed for embryo development. Eggs require a narrow 

range of temperatures to reach hatching with proper development. Approximately 35 °C 

must be maintained for egg viability. Any consistent temperatures below the 35 °C 

threshold will halt development of the embryo, or lead to lower rates of survival as the 

offspring matures (Berntsen & Bech, 2015; Durant, Hepp, Moore, Hopkins, & Hopkins, 

2010; Durant, Hopkins, Hepp, & Walters, 2013; Wada et al., 2015; White & Kinney, 
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1974). For example, Wada et al., (2015) found that even 1 °C change from the ideal 

temperature can lead to poorer offspring development and survival.  

There are two potential methods to maintain 35 °C, either: 1) the birds can 

construct a nest that will keep heat from interspersed incubation bouts, or 2) incubate for 

an amount of time that maintains the required temperature with the nest retaining little 

heat. It is possible that birds use some combination of both (Deeming, 2002).  

In theory, the more insulation a nest has, the less the parents must incubate to 

achieve the ideal incubating temperature. However, previous literature has found little 

evidence to support the theory that more insulation is used to offset incubation duration.  

When researchers studied the structural and thermal components of cup-shaped nests, 

they found that nest shape was for structural support of the eggs and parents rather than 

for insulation (Heenan & Seymour, 2011).  

An example illustrating that modulating nesting material may not be the method 

used to control nest temperature is arctic birds. One would assume an extreme amount of 

nest insulation would be needed, however, nests did not have a higher amount of 

insulation—if any—than would be expected for the climate (Irving & Krog, 1956). 

Because of these studies, it can be concluded that modulating nesting material may not be 

a strong method for maintaining nest temperature.  

Instead of changing nest shape for insulation, birds can alter incubation duration 

as a fine scale adjustment of the nest microclimate (Deeming, 2002).  A pair could 

incubate in 15 minute increments with two birds on the nest always, then after 15 minutes 

both birds leave the nest; whereas another pair may have one bird incubating constantly, 

presuming the birds switch off seamlessly. Incubation duration will likely influence the 

amount of time required to hatch, as seen in the Adelie penguin example (section 1.1).  

Birds can change how long they sit on the nest to regulate temperature, but also 

can adjust the heat output they produce. Previous research has shown that if the number 

of eggs is increased, female zebra finches (Taeniopygia guttata) will increase their heat 

output (Hill, Lindström, Mccafferty, & Nager, 2014). As well, at more variable 

temperatures, the male plover (Charadrius spp.), increases his incubation temperature 

output (Alrashidi et al., 2016). The female zebra finch and male plover are both able to 

modulate their heat output to keep their eggs at the right temperature. 
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Changing incubation behaviour is a response to the environmental conditions. The 

more experience a bird has in the environment, the more it will learn what modifications 

are required during reproduction for successful offspring. Birds have been shown to 

integrate previous experience into their preferences during reproduction. Experience with 

nesting material or environmental factors have been shown to elicit rapid plastic 

behavioural responses in birds. For example, experience can lead to sensitivity to colour, 

rigidity of material, precipitation or wind direction, and birds will change their nest-

building behaviour to withstand these environmental pressures (Muth, Steele, & Healy, 

2013; Muth & Healy, 2011; Bailey, Morgan, Bertin, Meddle, & Healy, 2014; Heenan, 

2013). Taken what is known about birds’ ability to modulate nest temperature and their 

behavioural flexibility, I aim to delve further into when and how birds change their 

incubation behaviour.  

In both section 1.1, and the current section 1.2, numerous examples of birds 

adapting to environmental cues have been put forward. These studies use manual data 

collection where there is a possibility for subjective and erroneous recordings. My project 

improved the previous research by recording data in a controlled lab environment to look 

at one environmental cue— temperature— and by automating a part of data collection to 

increase objectivity, while decreasing human error.  

This MSc project investigated when and what kind of changes in incubation 

behaviour occur. I examined a large data set consisting of automatically recorded nest 

temperatures and video recordings of parental nest attentiveness that I had previously 

collaborated in collecting as part of a large-scale project on nest building behaviour in 

zebra finches. In this thesis, I examine the effect of ambient temperature and previous 

incubation experience on nesting success in zebra finches. I develop a Hidden Markov 

model (HMM) and apply it to the time series of recorded nest temperatures and parental 

nest attentiveness by zebra finches, and also apply this model to another smaller dataset 

of Allen’s hummingbird incubation behaviour obtained by thermal imaging.  

  1.3 Zebra finch incubation 

Zebra finches (Taeniopygia guttata) were chosen to study when and what kinds of 

changes in incubation behaviour occur with ambient temperature change. They are 
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opportunistic breeders and thus breed throughout the year. Therefore, their ability to 

change behaviour according to differing environmental temperatures should be evident. 

Zebra finches are extensively studied; their incubation behaviour and physiology are well 

described (Nord, Sandell, & Nilsson, 2010; Salvante, Walzem, & Williams, 2007; Zann 

& Rossetto, 2014).  

To understand how zebra finches change their incubation behaviour, the typical 

reproductive behaviours are first described. In zebra finches, the breeding cycle begins 

with the male and female completing a courtship routine, with the male singing. The male 

then builds a nest.  A typical zebra finch nest is constructed in a dome shape. The dome 

shape can include a roof, though not all zebra finch nests do. The female contributes little 

to building of the nest. After internal insemination, a clutch of eggs is laid (Morris, 1954). 

The female takes on the primary role of incubating the eggs, though the male will aid in 

incubation (Gorman & Nager, 2003; Hill, Lindström, Mccafferty, & Nager, 2014; Zann 

& Rossetto, 2014). The average percent of total time spent on the nest during incubation 

is 91.1% +/- 10.8% for Passeriformes who share incubation of altricial young, which 

zebra finches fall into (Deeming, 2002). Each clutch consists of approximately 4-6 eggs, 

with the female only able to lay one egg each day (Griffiths & Gilby, 2013). The nest-

building takes roughly 10 days, followed by an incubation of 14 days and then fledging 

for another 14 days. After the hatchlings have fledged from the nest, they can live 

independent from their parents (Morris, 1954). 

1.4 Hummingbird incubation 

As small birds, hummingbirds face an even greater challenge of keeping an 

optimal thermal climate in the nest as compared to other birds. However, Calder (1971) 

observed Calliope hummingbirds (Stellula calliope) that reproduce at high elevation 

throughout the Cascade, Sierra and Rocky Mountains and when compared to Anna’s 

hummingbirds (Calypte anna) that breed at lower elevations, found no difference in the 

number of days taken to incubate. Calder’s finding that high elevation hummingbirds 

need no more time than low elevation hummingbirds illustrates that the high elevation 

hummingbirds must be using one or more of the adaptive mechanisms detailed before—
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whether it is optimizing the type of nest, proportion of the days sitting on the nest, or the 

heat output that the hummingbird is expelling.  

As hummingbirds do exhibit behavioural changes to environmental stimuli, they 

will be used as a comparison to the zebra finches, as only the female hummingbird 

incubates the eggs, thus creating an even more challenging situation in terms of energy 

expenditure and offspring survival. For my project, I was able to use a data set collected 

by Erich Eberts of the Allen’s hummingbird (Selasphorus sasin). The Allen’s 

hummingbird female creates a nest using downy materials for the interior and grass and 

leaves for the exterior, spider webs are used as an adhesive. The clutch size is two eggs, 

with the second egg being laid two days after the first. Multiple clutches are laid 

throughout the breeding season. Only the female incubates for 15 days, with the 

attendance increasing after the laying of the second egg. The female is on the nest 

constantly, save for feeding. Females will change their position on the nest to change nest 

temperature (Clark & Mitchell, 2013). Having only one parent possible to be on the nest 

at one time allows for a simpler data set to test the model on.  

1.5 Hidden Markov models 

1.5.1 Basic components of a hidden Markov model (HMM) 

Hidden Markov models are used to analyze time series data consisting of states 

and observations. Let us consider the example of a diligent graduate student working in a 

windowless lab. She would like to know what the weather is outside. In this example, the 

weather can only be sunny or rainy. An assumption of the HMM is that only the previous 

day influences today’s weather.  These states follow the Markov property, of being 

dependent on just the previous state (Equation 1). The current state is required to make 

predictions about the next state, but the rest of the past states are completely irrelevant. 
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Pr(𝐶𝑡+1| 𝐶𝑡 …𝐶1) = Pr⁡(𝐶𝑡+1|⁡𝐶𝑡) 

Equation 1. The Markov property. The history of state C from the initial state C1, to the 

present state Ct predicts the next state Ct+1 with the same probability as using the most 

recent value of Ct. That is, the next state depends only on the current state.   

In this example, the weather is the state, and there are only two possible states that 

follow one after the other: sunny or rainy. There is an initial or starting probability of it 

raining or being sunny. As days go past, the weather has the possibility of changing from 

sunny to rainy, rainy to sunny or for it to remain sunny or rainy. These transitions from 

one weather state to the next have associated probabilities—transition probabilities—of 

the likelihood that one weather state would follow the previous one. This is visualized in 

the top portion of Figure 1 (Zucchini & MacDonald, 2009).  

However, as the name suggests, these states are hidden in this hidden Markov 

model. The only method to discern the weather is from the shoes of people passing by the 

lab, because the lab has no windows. The weather state is the cause of the footwear 

observations, but the studious graduate student cannot directly see the weather. In this 

lab, people generally wear rain boots when it is raining, running shoes when it is sunny 

and cowboy boots irrespective of weather conditions. However, fashion trends have 

created a world that it is not a certainty that all people wearing rainboots means it is 

raining outside, as shown in Figure 1. The relationship between footwear and weather 

can be used to determine the weather, as knowing that most people wore rain boots and 

cowboy boots would mean it is most likely raining. Thus, even though the state is hidden, 

it can be inferred from direct observations. 

In my project, the states are the number of birds on the nest: 0,1, or 2 birds on the 

nest. The observations are nest temperature. As nest temperature is related to the number 

of birds on the nest, the hypothesis that I am testing with the HMM is that by knowing 

what the temperature is at a given point, it is possible to determine the number of birds on 

the nest at that point. 
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Figure 1. Example of a HMM application. The states of rainy and sunny have a starting 

probability of .6 and .4 respectively. Given that it is rainy, there is a .3 chance it will 

become sunny and a .7 chance it will continue raining. Given that it is sunny, there is a .4 

chance that it will start to rain, and a .6 chance that it will continue to be sunny. There is a 

relationship with footwear worn by individuals and the weather, where given that it is 

rainy there is a .1 chance people will wear running shoes, .4 chance people will wear 

cowboy boots and a .5 chance people will wear rain boots. The same can be done for 

when it is sunny, there is a .6 chance of people wearing running shoes, .3 chance people 

are wearing cowboy boots, and .1 chance people are wearing rain boots. This relationship 

between footwear and weather can be used to predict the weather, given the footwear is 

known.  
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1.5.2 Decoding states from observations 

The HMM takes a subset of recorded behaviour states and temperatures, creates 

starting and transition probabilities from that training set of known states and 

temperatures, and applies those starting and transition probabilities to a new set called the 

test set of temperatures only, where the model predicts the most likely state given the 

temperature. The training set is the subset of behaviour states and temperatures that the 

HMM generates probabilities from, and bases all behaviour predictions upon. Therefore, 

the training set should be a representative sample of the data set, otherwise probabilities 

and predictions would not be accurate. How I generate a training set is included in section 

2.2. The values for temperature that occur in the test set list of temperatures must be 

values that occur in the training set, as only temperatures present in the training set will 

have probabilities associated with them. For example, if the case that 32 °C as an 

observation does not occur in the training set, but does occur in the test set, there will be 

no associated prediction as to the state at that temperature. Although all the values for 

temperature in the test set must be present in the training set, no particular sequence of 

temperatures has to be, as the HMM only relies on the previous state to generate 

predictions.  

The rest of this section delves into how the transition and starting probabilities are 

generated.  

This section follows Zucchini and MacDonald (2009), primarily their section 

5.3.1. The main problem that the HMM aims to address for the current project is the 

ability to inform the researcher for any given temperature in the training set, what is the 

most likely behavioural state. To be able to calculate the most likely state from 

temperatures, forward and backward probabilities are required. The forward probability is 

calculated by taking the first observations in the sequence and finding the likelihood of 

being in a specific state. The backward probabilities instead assume a state and calculate 

the probability of obtaining future observations. The forward and backward probabilities 

can be used in conjunction to predict any state for any specific time, however, they 

cannot predict the most likely sequence of states (Equation 2). 
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𝛼𝑡(i)𝛽𝑡(i) = ⁡Pr( 𝑋(𝑇) = 𝑥(𝑇), 𝐶𝑡 = 𝑖).⁡ 

Equation 2. Forwards (α) and backwards (β) probabilities for each of the possible states 

i, is equal to the probability of one observation for the most recent time point (x(T)) being 

equal to one out of the possible observations X(T) , given that the state is one (Ct) out of 

the possible i.  

For every time point (t), one can predict the most likely state Ct , given the 

observations x(T). For the current problem, global decoding is required as the sequence of 

behaviour states c1,c2,c3…cT is sought. As forward and backwards probabilities can only 

give the most likely state at a given time, and the sequence of most likely states is 

required, the Viterbi algorithm is used (Viterbi, 1967; Forney, 1973; see Zucchini & 

MacDonald, 2009 for the proof).   

1.6 HMMs in animal behavior  

For my project, I used a HMM to infer behaviour states from nest temperatures. 

Previous work has shown how successful HMMs can be at discerning “hidden” states 

from observations. Past uses have included human speech recognition, transmembrane 

protein topology, and brain imaging (Krogh, Larsson, Heijne, & Sonnhammer, 2001; 

Rabiner, 1989; Zhang, Brady, & Smith, 2001). Within ecology, a similar approach to 

what I have taken has been abundant: an animal behaviour that is not directly observable 

is inferred from collected data. Dean et al. (2012) used a HMM to understand behavioural 

differences between two colonies of seabirds (Puffinus puffinus). The researchers used 

ground speed from GPS recordings and saltwater immersion to train the HMM to predict 

which of the three states, foraging, flying and sitting the seabirds were most likely in. The 

HMM was then trained, and able to use just the GPS recording and saltwater immersion 

data to accurately predict which behavioural state the seabirds were in. The result from 

the model was that the two colonies of birds foraged in two generally exclusive areas, 

with one small area where both colonies foraged together.  
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Franke, Caelli and Hudson (2004) used a HMM to validate previously collected 

caribou (Rangifer tarandus) movement data. The three states of interest were bedding, 

feeding, and relocating. The observations to infer these states were distance between 

locations and turning angle, from GPS collars. The HMM trained on the GPS data was 

able to accurately predict which behavioural state the caribou were in. Those HMM state 

predictions were then compared to auto-regressive model predictions, with the former 

being more accurate (Franke, Caelli, & Hudson, 2004).  

Schliehe-Diecks, Kappeler, and Langrock (2012) used a slightly more 

sophisticated HMM to address individual differences. The HMM was used to infer 

motivational states, specifically hungry or satiated in grey mouse lemurs (Microcebus 

murinus). The observations were sex, body mass and time of night. The observations 

were used to infer motivational states (hungry/satiated), however there were extensive 

individual differences between the grey mouse lemurs. These differences were 

encapsulated by adding random effects—akin to random effects in a regression model—

to their HMM.  These random effects controlled for individual differences. The HMM 

with random effects allowed for insightful conclusions about grey lemur appetitive states, 

such that they change states much more often than the authors hypothesized in 

conjunction with time of night (Schliehe-Diecks, Kappeler, & Langrock, 2012).  

HMMs have been used to understand complex systems when measured in the 

field, as illustrated here. For each of these examples, the behavioural states have discrete 

and mutually exclusive signatures within time and space—like in the caribou example the 

caribou cannot be both moving and sleeping, and the GPS data has a specific signature 

that defines moving from sleeping. In the current project, incubation posed a challenge to 

the HMM as detecting one or two birds on the nest may be a state change not as closely 

linked to the observations than the previous literature shown here.  

1.7 Hypothesis and predictions 

I hypothesized that ambient temperature, and the birds’ experiences at that 

ambient temperature affect how birds incubate. I predicted that at a low ambient 

temperature, parents spend more time incubating to maintain the 35°C necessary for 
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development. This is accomplished by an increase in continuous incubation or shorter 

trips away from the nest. The opposite would be expected at a high ambient temperature. 

I also predict that birds with more experience at a certain temperature will use their 

experience to inform the subsequent breeding attempt by either doing the same 

incubation behaviour if they were successful, or adjusting their incubation duration to be 

different than before.  

To test this hypothesis, I observed 36 pairs of zebra finches at different 

temperatures at the known ambient temperature limit of the breeding range. I collected 

nest temperature recordings from time the first egg was laid to the first hatchling hatched. 

18 pairs were then either kept in the same ambient temperature condition for a second 

breeding cycle while 18 pairs were switched to the alternate ambient temperature 

condition, to address the aspect in my hypothesis about temperature-related experience. 

The same nest temperature was recorded for Trial 2, along with behavioural video 

recordings. The duration of incubation in days, hatchling success, and number of eggs 

was recorded for Trial 1 and 2. A subset of behaviours during incubation in Trial 2 were 

encoded, along with the respective nest temperatures. The subset of behaviour and nest 

temperature was used to train the HMM.  The HMM predicted behaviour states from nest 

temperatures, which allowed for detailed analyses of incubation behaviour, and the 

differences that arose between ambient temperature conditions. Further method detail can 

be found in Chapter 2. 

In Chapter 3 I present results on number of eggs and successful hatchlings per 

ambient temperature condition. The differences in incubation duration per ambient 

temperature and breeding experience are shown.  The distributions of nest temperatures 

for 30 °C and 14 °C are compared, along with how the distributions shift when 

comparing successful and unsuccessful pairs. Accuracy of HMM for predicting 

behaviour from temperature is calculated for both the zebra finch and hummingbird data 

set. 
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Chapter 2: Methods 

2.1   Zebra finch incubation 

2.1.1 Subjects and husbandry 

Thirty-six male-female pairs of sexually mature zebra finches were used in this 

study. All zebra finches were purchased from pet stores. The zebra finches were all given 

one breeding attempt prior to the start of the experience to ensure all pairs had at least 

one breeding experience to partially factor out lack of breeding experience. This breeding 

attempt was halted before egg hatching so no one pair had successful breeding that others 

did not. Throughout the study, birds had ad libitum access to water, mixed seeds, 

cuttlebone, and oyster shell grit, along with two tablespoons per pair of eggmix per day.  

Eggmix contained boiled egg with shell, corn meal and bread, blended using a food 

processor. Birds were given water dishes for bathing on a weekly basis.  

Pairs were housed in individual cages (46 cm x 47 cm x 46 cm). Isolation walls 

that obstructed the pair’s view of the neighbouring pairs were affixed to the cage with 

zip-ties. These isolation walls were composed of white Bristol board and cut to fit the 

three sides of each individual cage. Cages were arranged in the room to prevent pairs 

from viewing other pairs. For the second trial, black Bristol board was used on the back 

wall for added contrast when viewing the video recordings. Each cage contained a food 

cup, grit cup, water bottle, cuttle bone and a nest cup which was a plastic tray generally 

used under small plant pots (89 mm in diameter) The tray was hot glued to a U-shaped 

bolt affixed to the cage. 

Two climate-controlled chambers were used to house the two ambient 

temperature conditions separately. Each chamber was temperature controlled (± 0.1 °C) 

while providing approximately 15 air exchanges per hour (15 % fresh air, 85% 

recirculated HEPA filtered air). The chambers were 2.8 m wide x 2.85 m long x 2.3 m 

high. 

Both conditions were on a 14:10 hr light: dark schedule, with full spectrum 

lighting and initial temperature range of 19-22 °C, 50-70 % humidity. Temperature was 

adjusted by 1.5 °C every 12 hrs, until the desired temperature 14 or 30 °C, was reached.   
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Plastic nest cups were supplied to each pair along with naturally uncoloured 

Everlasto flexible cotton string, with a diameter for 2.5 mm (James Lever & Sons Ropes 

& Twines, England, UK). Each pair started with 300 pieces of string (15 cm in length). 

Once the pair had used the original 300 pieces, they were given an additional 100 pieces. 

This continued until they did not use the string or four days went by, whichever came 

first.  Four days was used as a standard nest-building period and the number of days 

where string was provided was not increased as to discourage nest rebuilding.  

2.1.2 Procedure 

Both Trial 1 and Trial 2 were completed as part of my undergraduate thesis 

project, where only the nest-building phase of reproduction was of interest. For my 

Masters degree data regarding the incubation phase of reproduction was used.  

                                        2.1.2.1 First breeding trial 

This experiment investigated how zebra finch pairs adapted their incubation 

behaviour to different temperatures. The pairs were randomly assigned to either the 14 °C 

or 30 °C condition. Each condition contained 18 pairs. Maxim iButtons DS1925 +/- 0.5 

°C temperature loggers, were used to measure temperature in the nest. An iButton was 

placed beside the first egg laid and set to record temperature every five minutes. This was 

done only for pairs that had kept their egg in the nest for 24 hrs. Pairs were monitored 

every other day to reduce intrusion on the nest. Number of eggs laid was recorded as well 

as if any eggs were discarded by the pair. Eggs laid outside of the nest cup were 

discarded by the experimenter, unless three successive eggs were laid outside the nest 

cup, then the next eggs would be left. The iButton logged data until the parents were 

taken out of the condition, along with any hatchlings. For the purpose of this experiment, 

only the period between the laying and hatching of the first egg was considered, to avoid 

temperature interference from the hatchlings.  

2.1.2.2    Second breeding trial  

To examine the effect of temperature-related experience on incubation behaviour, 

a second breeding trial was completed. After the first breeding trial, temperatures were 

systematically changed by 1.5 °C every 6 hrs until 22 °C for both conditions was reached. 
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The pairs had at minimum one week between breeding trials at 22 °C.  This week was in 

a separate room than the environmental chambers to control for any noise effects in the 

chambers. Then at the start of the second breeding trial, the birds were placed in the 

appropriate environmental chamber and temperatures were decreased or increased by 1.5 

°C every 12 hrs in the same method as Trial 1.  

The same zebra finch pairs were used for the second trial, half of the pairs from 

the 14 °C chamber in the first trial were switched to the 30 °C chamber, and half from the 

30 °C condition were switched to the 14 °C chamber. The other half of the pairs in each 

temperature remained in the same temperature condition for the second trial. Breeding 

success in Trial 1 was counter-balanced across conditions for Trial 2. As there were five 

pairs in each of the original 14 and 30 °C conditions that successfully raised hatchlings to 

fledge, those 10 pairs were spread randomly across each of the four conditions in Trial 2. 

This counter-balancing ensured there was no unequal distribution of previous hatchling 

success across the Trial 2 conditions.  

There were 9 pairs in each of the four second trial conditions: 14 °C to 14 °C, 14 

°C to 30 °C, 30 °C to 30 °C and 30 °C to 14 °C. Once the pairs were given string for 

nesting material, video cameras were set up to record the top two rows of the three rows 

of cages in each cage rack. Six out of the 17 cages for the 30 °C condition, eight of the 15 

for the 14 °C were not manually encoded due to the constraints of the video cameras 

used. One pair in the 30 °C, and two pairs in the 14 °C were not used as one of the 

individuals in the pair had died prior to the start of Trial 2. The videos made it possible to 

view each nest, and whether there was a male or female zebra finch on the nest. Video 

records were collected until the pairs and hatchlings were removed from the conditions, 

at approximately four weeks. IButtons were placed as per the first breeding trial. Pairs 

were monitored every day for number of eggs laid and any eggs that were discarded by 

the pair. If the pair laid eggs in anything other the nest cup, the eggs were discarded by 

the experimenter, if three successive eggs were laid in anything other than the nest cup, 

they were left. After the iButtons were collected from the nests, the data were analyzed 

with Python 3.6., R programming language, and Microsoft Excel.  
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2.2 HMM implementation 

2.2.1 Extracting data from iButton and inputting into HMM 

The purpose of the HMM was to derive incubation behaviour from the iButton 

temperature data. Three pairs per condition were picked that had the best video quality. 

One day of behavioural states, male (M), female (F), both (B) or neither (N) bird on the 

nest, was manually encoded into Microsoft Excel. These behavioural states were 

synchronized with their respective iButton temperature recordings. The synchronization 

was performed by matching the iButton serial number associated with a pair to the pair’s 

video recording. Then, the time stamp on the iButton was compared to the video 

recording, so that the behavioural states matched the exact time the iButton recorded 

temperatures. I later discarded the sex categorization as the model was unable to account 

for the differences between sex, and simplified the states to 0,1,or 2 birds on the nest.  

I then had a 483 x 2 matrix of behavioural states and temperatures for the 30 °C 

condition, and a 429 x 2 matrix of behavioural states and temperatures for the 14 °C 

condition. The different rows between conditions was due to randomization of start time, 

as some start times for manually encoding behaviour included time when the cage was 

dark. The rows in the matrices (483 for 30 °C, 429 for 14 °C) were each time point; the 

first column was the nest temperature and the second column was the behaviour state. I 

ran an auto-regressive moving average (ARMA) regression with condition for trial 2 (30 

°C or 14 °C) and behaviour (M,F,B,N) as independent variables, with pair as a random 

effect, and temperature as a dependent variable. I ran the regression to investigate 

whether there were any differences between pairs in the same ambient temperature 

condition. As the only significant term was ambient temperature condition (t108 = 9.7, p < 

.001), I increased the length of the time series by concatenating pairs into one long time 

series for each ambient temperature condition.  

The first record for the second pair followed the last point of the first pair and, the 

first time point for the third pair followed the last time point of the second pair, separately 

for ambient temperature condition. These two matrices were used as training sets for the 

HMM, the number of behaviours per pair are shown in Figure 2. As detailed in section 
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1.5.2, the training set is used to generate the starting distribution and transition 

probabilities for the HMM. 

I input either the 14 °C or 30 °C training set, with a test set of nest temperature 

data only. The HMM outputs a string of states that it predicts are the most probable, 

given the training set, the previous state, and the temperature at the current and previous 

time.  

To validate these predictions, I manually encoded a validation set for each 

condition. A validation set consisted of one hour of manually encoded behavioural states 

per pair. For pairs that were included in the training set, an hour that was not included in 

the training set was encoded. These validation sets were 141 x 2 and 83 x 2 matrices of 

temperature and behaviour for 30 °C and 14 °C, respectively. The different row numbers 

for each condition are due to less cages in the 14 °C condition having video clear enough 

to manually encode (11 pairs used for 30 °C and 7 for 14 °C validation sets). Only the 

column containing temperature was input into the HMM as a test set. The resulting 

predictions were compared to the manually encoded behaviours and given a score of 0 or 

1, 0 being incorrect prediction, 1 being correct prediction. The scores were tallied and the 

proportion of correct predictions to total predictions was calculated. 
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Figure 2. Number of behaviour states for the training set. Pairs 1 to 3 were from the 30°C 

condition, pairs 4 to 6 were in the 14°C condition. M in blue are male, F in green are 

female, N in purple are neither on nest, B in red are both on nest. Pairs were concatenated 

together (where the end of pair 1 is directly followed by the start of pair 2, and so on) to 

generate a suitably long sequence of both behaviour and temperature data for three pairs.  
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2.2.2 Data analysis 

The success of pairs in each ambient temperature condition was compared to see 

if ambient temperature influenced the number of days required for incubation, and the 

proportion of successful pairs. All statistics were completed with an alpha value of .05. A 

Mann-Whitney test was used to assess number of days as the data was not normal, and a 

chi-square test of proportions was used to assess the proportion of pairs in each 

developmental stage (no eggs/eggs/hatchlings). This was completed separately for Trial 1 

and Trial 2. To test the effect of temperature-related experience (Trial 1 temperature and 

Trial 2 temperature) along with the effect of breeding success in Trial 1 together on the 

number of days required to hatch was combined in a 2x2x2 ANOVA. 

To understand the differences between successful and unsuccessful pairs I plotted 

the distributions of nest temperatures separately for successful and unsuccessful pairs, 

and observed the differences. I did the same for the two ambient temperature conditions. I 

evaluated the HMM behaviour predictions using accuracy scores generated from the 

validation sets, as detailed in the last paragraph of section 2.2.1. I compared the 

behaviour state proportions between the training and test sets, as well as during different 

times in incubation. I used the hummingbird dataset for further testing of the HMM 

accuracy using the same method as the zebra finch dataset. 
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Figure 3. Cumulative number of eggs recorded per condition for all pairs in Trial 1, 30 

°C shown in red with a sample of 16 pairs, 14 °C shown in blue with a sample of 12 pairs. 

Days as recorded by first egg laid, the same day for both conditions. The number of eggs 

recorded are only shown prior to first hatchling. The 14 °C condition hatched earlier than 

the 30 °C, which is why the red bars continue further than the blue. The total number of 

pairs with successful hatchlings was significantly higher in the 30 °C condition than the 

14 °C condition (χ2
1 = 4.2, p = .04). 
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Chapter 3: Results 

                                          3.1 Zebra finch incubation  

3.1.1 Trial 1 

Eight pairs out of 34 had no eggs, (2 out of 17 in 30 °C condition), 14 pairs 

produced eggs without hatchlings (6 in 30 °C condition), and 14 (10 in 30 °C condition) 

produced hatchlings during the experiment (Table 1). I did not run statistical tests on 

absolute number of eggs laid, as some nests were difficult to enter without disturbing the 

pair. Figure 3 shows the cumulative number of eggs laid and should be taken as an 

approximation of absolute eggs laid. The cumulative number of eggs was calculated by 

adding eggs recorded to a tally per pair. This led to egg counts always increasing or 

plateauing as time went on, even if the absolute number of eggs decreased. The 

cumulative tally was then summed with the rest of the pairs in each respective ambient 

temperature condition. The cumulative number of eggs laid between the two ambient 

temperature condition is similar (Figure 3). The 30 °C condition had significantly more 

hatchlings than the 14 °C condition, as tested by a chi-square test of proportions (χ2
1 = 

4.2, p = .04). The 30 °C condition incubated significantly longer than the 14 °C 

condition, as tested with a Mann-Whitney test (Figure 4, first column) (z = -3.41, p = 

.0003). Including only pairs that successfully hatched eggs, the trend of the pairs in the 30 

°C condition taking more days to incubate persists (Figure 4). There were significantly 

more pairs in the 30 °C condition with hatchlings than the 14 °C condition, and those 

pairs needed significantly more time to incubate in Trial 1.  

3.1.2 Trial 2 

Two pairs had no eggs, (two in 30 °C condition), nine pairs produced eggs 

without hatchlings (two in 30°C condition), and 23 (13 in 30 °C condition) produced 

hatchlings during the experiment. No difference in number of successful hatchlings was 

found between the two ambient temperature conditions for Trial 2, as tested by a chi-

square test of proportions (χ21 = 1.2, p = .27) see Table 1.  
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Trial 2 had significantly more pairs that had successful hatchlings, as tested by a 

chi-square test of proportions (χ21 = 5.8, p = .02). The number of incubation days to 

hatch in Trial 2 showed the reverse trend that Trial 1 showed, with 14 °C pairs taking 

significantly longer than 30 °C pairs to hatch an egg, as tested by a Mann-Whitney test 

(Figure 4, second column, Figure 5) (z = -1.61, p = .05).  

To test the effects of ambient temperature and breeding experience on hatching 

success, I ran an 2x2x2 ANOVA with Trial 1condition (30 °C or 14 °C), Trial 2 (30 °C or 

14 °C), and hatchling success in Trial 1 (yes or no) as fixed effects, with an interaction 

between temperature condition in Trial 1 and temperature condition in Trial 2 included. 

The dependent variable I was interested in was the incubation duration, the number of 

days from first egg laid to first egg hatched. The results of the ANOVA were that Trial 1 

hatchling success and Trial 2 temperature condition had significant effects; F(1,27), p = 

.0056, F(1,27), p = .03. Successful pairs in Trial 1 had shorter incubation durations in 

Trial 2 than birds that were unsuccessful in Trial 1 (see Figure 6). Birds that incubated at 

30°C in Trial 2 had shorter incubation durations than birds that incubated at 14°C (See 

Figure 4).  Ambient temperature condition 1 trended towards a significant main effect; 

F(1,27), p = .07. The interaction between Trial 1 and Trial 2 was not significant; F(1,27) 

p = .69. There should be some caution taken when interpreting these results, as some 

groups have a small sample size of less than five pairs. 
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Reproductive success per trial and condition 

Trial 

Number 

Condition Number of 

pairs with no 

eggs 

Number of 

pairs with 

only eggs 

Number of 

pairs with 

hatchlings 

Total 

number of 

pairs 

Trial 1 30 °C 2 6 10 18 * 

14 °C 6 8 4 18 * 

Trial 2 30 °C: 30 °C  1 8 9 

30 °C: 14 °C  2 6 8 

14 °C: 30 °C 2 1 5 8 

14 °C: 14 °C  4 3 7 

Total 

numbers for 

Trial 2 

30 °C 2 2 13 17 * 

14 °C 0 7 10 15 * 

Table 1: Developmental stages that pairs arrived at by the end of each trial.  * One pair 

from Trial 1 in the 30 °C and three pairs from Trial 1 in the 14 °C condition were 

excluded from analyses as one individual of the pair died, and therefore the pair could not 

continue into Trial 2.   
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Figure 4. Incubation duration in days for each temperature condition.  Trial 1 first 

column; Trial 2 second column. Bottom row is solely successful pairs.  In Trial 1, pairs 

incubated significantly longer in the 30 °C condition as compared to the 14 ° C condition 

(z = -3.41, p = .0003).  In Trial 2 they incubated longer in the 14 °C condition (z = -1.61, 

p = .05). The successful pairs show the same trend as the rest of the pairs.   
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Figure 5. Cumulative number of eggs laid for Trial 2. Red shows eggs laid for the 30 °C 

condition, blue shows eggs laid in the 14 °C condition, both have a sample of 17 pairs per 

condition. The 14 °C condition laid earlier and more than the 30 °C condition. The 30 °C 

condition hatched prior to the 14 °C condition, which is why the blue bars continue 

further than the red bars. The hatch date was later in the 14 °C condition than the 30 °C.  

 

 

 

 

 



 

27 

 

To determine how Trial 1 hatchling success might have reduced Trial 2 

incubation duration, I calculated mean nest temperature in Trial 2 at each time point 

throughout the day for each pair for all days of incubation for unsuccessful pairs and 

successful pairs for Trial 2. I did this separately for ambient temperature condition. The 

result was that birds successful in Trial 1, incubated at higher temperatures in Trial 2 than 

the unsuccessful pairs in Trial 1, irrespective of ambient temperature condition in Trial 2 

as seen in an example of a representative incubation day (Figure 7). 

As the nest temperature dataset was large, (~ 50,000 data points per ambient 

temperature condition), I used the whole distribution to see trends. The distributions of 

nest temperatures in Trial 2 for successful and unsuccessful birds from Trial 1 within the 

same temperature condition look quite different, with the unsuccessful birds having a 

peak in temperature around ambient temperature, whereas the successful birds have no 

such peak (Figure 8). The spread of nest temperatures is much higher in the 14 °C 

condition than the 30 °C (Figure 9). For nest temperature distributions for Trial 1 nest 

temperatures and separated by the success in Trial 1; and nest temperatures for Trial 2 

and separated by the success in Trial 2 (as compared to Figure 8 where the success in 

Trial 1 is compared to the nest temperatures in Trial 2), see Appendix C.  
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Figure 6. Mean values of incubation duration in Trial 2 for each of the ambient 

temperature groups, separated by previous hatchling success in Trial 1. The prediction 

was that pairs that had experience in the same ambient temperature condition, would need 

the same or less time to incubate and hatch offspring. Translating the prediction to the 

graph, I would expect the blue and red bars to be shorter than the green and orange bars, 

respectively. Although the 30 °C:30 °C and 30 °C:14 °C follow this pattern, the 14 °C:14 

°C does not. The lack of significant effect in the ANOVA furthers the conclusion that at 

this sample size, there is likely not an experience effect. Hatchling success and ambient 

temperature condition in Trial 2 both had significant main effects on incubation duration 

for Trial 2. Error bars are standard deviation.  
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Figure 7. Mean incubation temperature as measured by the iButton for every pair and 

time point, for a representative incubation day. The temperatures for the whole incubation 

period is visualized in Figure 8,9. Pairs that were successful are shown in dark red and 

dark blue, with unsuccessful shown in light red and light blue (30 °C, and 14 °C, 

respectively). Successful pairs from Trial 1 maintain a higher temperature in the nest in 

Trial 2 than unsuccessful pairs. Error bars are standard error of the mean.  
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Figure 8. Nest temperature distributions for 30 °C and 14 °C for Trial 2, successful and 

unsuccessful from Trial 1 (top successful, bottom unsuccessful). Unsuccessful pairs have 

distributions with a large peak around ambient temperature. Density plots can be thought 

of as smoothed histograms. See Appendix C for successful and unsuccessful pairs from 

Trial 1 and the effect of success of Trial 2. Density plots have the number, in this case 

temperature value on the x-axis, and the y-axis has the probability density function of the 

kernel density estimation (Koehrsen, 2018). For more information, see 

https://towardsdatascience.com/histograms-and-density-plots-in-python-f6bda88f5ac0. 
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Figure 9. Distributions of temperature recordings for all pairs per condition, 30 °C in red, 

14 °C in blue. Both distributions are significantly not normal (Anderson-Darling value of 

573) and are visually quite different from each other, with the 30 °C nest temperature 

recordings having a narrow range of temperatures recorded, whereas the 14 °C is more 

dispersed. See Appendix C for a comparison of Trial 1 and Trial 2 complete temperature 

distributions.  
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3.2 HMM results 

3.2.1 Descriptive results of the distribution 

The normality of the distributions of the 30 °C and 14 °C nest temperature 

recordings for the total incubation period for all pairs were tested using the Anderson-

Darling test statistic for normality.  The critical value was 0.787, with the null hypothesis 

being that the data came from a normal distribution and the alternate hypothesis being the 

data does not come from a normal distribution. As the critical value was surpassed at 573, 

the null hypothesis was rejected, the data do not come from a normal distribution.  

3.2.2 Training set creation 

For the HMM to be successful, an accurate training set needs to be supplied to the 

HMM, to generate the transitional and starting probabilities that will lead to state 

predictions. I used three days of manually encoded behaviour for the training set. The 

larger the training set, the more information it has, however there is a tradeoff between 

manually encoding the data and the potential information gained. Therefore, three days of 

manual encoding was completed for three pairs in each condition (30 °C and 14 °C) for 

Trial 2. The pairs were tested using an ARMA regression to see if there were any 

individual differences in behavior, and as there were no significant differences between 

pairs in terms of behavior, the three pairs in each condition were pooled together to create 

two training sets: one for 14°C condition and the other for the 30°C condition (see Figure 

3 for behaviour state breakdowns between pairs). The purpose of the three pairs in the 

training set is to represent the population of temperature values for each behaviour state: 

one or two birds on the nest or neither. If one pair had a higher representation of one of 

the behaviour states, that still holds true; it is only if pairs have different temperatures for 

the same behaviour state where discrepancies from the pair to the population lie.  

When manually encoding the behaviours, I synchronized the time recorded by the 

iButton to the time recorded by the video camera, so that the five-minute temperature 

sample the iButton recorded aligned with the behavior seen on the video. Initially, the 

behaviours were recorded with reference to the sex of the bird on the nest, however this 

proved not possible to predict using the model, so the training set was simplified to only 
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the number of birds on the nest. The three pairs were chosen with the best video 

resolution. I was blind to whether the pairs were successful previously in Trial 1 when 

encoding, and only recorded number of birds on the nest. The video resolution was 

insufficient to see whether the birds were sitting on the eggs or simply on the nest.  

3.2.3 Temperature thresholds 

In the initial implementation of the HMM, I used the nest temperatures, as 

recorded by the iButtons for both the training set and the test sequence. As nest 

temperature is a continuous variable (though measured discretely by the iButton to the 

nearest 0.5 °C), there was an insufficient number of recordings for each temperature point 

for the HMM to make adequate probabilities. As well, the probability distribution for all 

the unique temperature values did not appear to be the best way to encapsulate the data.  

For these reasons, I used the mean to binarize the temperatures: 0 indicating at or 

below the mean, 1 indicating above the mean temperature of the training set. This gave 

the model more information to generate probabilities. However, there is a reduced 

resolution as the training temperatures are simplified to the point where fine resolution of 

temperature change is not possible, as seen in Figure 10. The quartiles and median were 

tested as potential thresholds, with no increase in sensitivity of the model to behavioural 

changes. Although the distributions were not normal, the mean was kept as a threshold as 

no better threshold was found.  

3.2.4 HMM results 

To test the accuracy of the HMM for predicting behavior from temperature 

recordings, I manually encoded one hour of incubation behavior for every possible pair in 

both ambient temperature conditions (seven pairs in 14 °C condition, nine pairs in 30 °C 

condition). The temperatures for the one hour segments were concatenated into two 

validation sets (one for each ambient temperature condition) of behavior and matching 

nest temperatures. The nest temperatures were fed into the HMM, and the predicted 

behaviours were compared to the manually recorded behaviours to assess how accurately 

the HMM could predict behaviour compared to manual encoding. The HMM predicted 
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one bird on the nest 100 % of the time for the 30 °C condition, and 98 % of the time for 

the 14 °C condition (see Figure 11). Comparing the predicted behaviours to the manually 

encoded behaviours led to 58 % and 66 % accuracy for the 30 °C and 14 °C conditions, 

respectively.  

3.2.5 Allen’s hummingbird methods and data 

There is the possibility that the size of the training set is insufficient to create 

probabilities adequate to predict behaviours. I therefore used a data set of hummingbird 

incubation, courtesy of Erich Eberts, to test this possibility. The hummingbird training set 

was approximately 1000 data points collected from a thermal-imaging camera at a 

sampling rate of approximately 1 minute, a magnitude higher than the zebra finch 

training set as well as increased accuracy and precision. The hummingbird training set 

was also only of one female hummingbird, posing a simpler system of either 0 or 1 bird 

on the nest, as well as less individual differences as only one individual was analyzed. I 

used the same methodology to test the HMM behaviour predictions for the hummingbird 

data set as I did with the zebra finch data set, with a training set that was exclusive of a 

validation set, and where the validation set had known behaviours that the HMM was not 

privy to. The results shown in Figure 14 illustrate that although the HMM was more 

accurate (92 %), the HMM still was unable to switch behavioural states akin to what was 

seen in the manual encoding of behaviour. 
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Figure 10. Recorded temperature for the training data set compared to binarized 

temperature shown below. Recorded temperatures are shown in the left panels with the 

temperature scale on the right side of each panel.  Binarized temperatures are shown in 

the right panels with a binarized temperature scale. 30 °C training set shown in dark red 

(above), 14 °C training set shown in cyan (below). Grey lines indicate behaviour states, 

with number of birds on the left side of each panel. Black lines separate data for the three 

training data set pairs. For each pair, the record for one day randomly picked during the 

incubation period is shown. The binarized temperatures create a simpler model, but 

without the resolution of the absolute temperatures.  
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Figure 11. HMM predicted behavior (dashed orange) as compared to manually encoded 

behaviours (purple) and associated temperatures shown in red and cyan for the separate 

ambient temperature conditions. The HMM was unable to effectively capture the 

variation of behaviours.  
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Figure 12. Comparing iButton recordings at random points during incubation (left) and 

at start of incubation (right). Model predictions remained constant, even as behavior 

changed. There was a decrease in accuracy of predicting behavior from temperature 

during the first few days. This was likely to more variable behavior that the model could 

not account for. 
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Figure 13. Proportion of behaviour for 30 °C (top two pie charts) and 14 °C conditions 

for the training set (left) and validation set (right). The training set is quite different in the 

30 °C condition, however is similar in the 14 °C training set, with no associated increase 

in accuracy.  
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Figure 14. Hummingbird incubation, model predicted behaviour (dashed orange) still 

predicting one bird on the nest almost all the time, whereas the manually encoded 

behaviour (purple) shows instances of the hummingbird off the nest, with respective 

temperature variation (red). Even with an increased sample size, the HMM fails to 

encapsulate minute changes in behaviour.  
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Figure 15. Distributions of whole temperature data set for each behaviour state, for each 

ambient temperature condition. There is an insufficient amount of data for zero birds on 

the nest to draw conclusions, and there is considerable overlap between 1 and 2 birds on 

the nest, which would make accurate prediction of behaviour using temperature not 

possible. Mann-Whitney tests with Bonferroni correction for multiple comparisons were 

done to see if there was a relationship between the behaviour (0,1, or 2 birds on nest) 

with the nest temperature distributions (14 °C 0 birds: 1 bird z = -0.78, p = 1, 1:2 z = -

0.398, p = 1, 0:2 z = 0.763, p = 1; 30 °C 0:1 z = -1, *** p < .001, 1:2 z = -4.19, *** p < 

.001,  0:2 z = -3.09, *** p < .001 ). 
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Chapter 4: Discussion 

4.1 Specific interpretations of results 

4.1.1 Interpretation of breeding results 

I hypothesized that birds would adapt incubation behaviour to ambient 

temperature conditions and their previous temperature-related experience. One prediction 

was that as 30 °C was close to 35 °C—the ideal temperature to incubate—that the 

incubation duration would be shorter for the 30 °C condition as compared to the 14 °C 

condition, this prediction has been supported by previous literature showing the lower the 

temperature, the longer the incubation duration (Carter, Hopkins, Moore, & Durant, 

2014). The results were counterintuitive, the first trial birds in the 30 °C condition took 

more days to incubate than the 14 °C condition. Then the trend reversed for the second 

trial, with the 30 °C condition taking less days than the 14 °C condition. Even when 

selecting only pairs that were successful, the trend remained in both trials. Both 

conditions had the same breeding and temperature experience, and for the second trial 

breeding success was counterbalanced as to not be disproportionately affecting the 

interpretation of one ambient temperature condition as shorter than the other solely due to 

previous breeding success. The main effects on incubation duration were previous 

success and current ambient temperature condition, even when an interaction was 

expected. The condition the pair was in for Trial 1 had no significant effect on incubation 

duration for Trial 2, however the effect of previous temperature-related experience could 

still be present, but yet the effect may not have been strong enough to be significant. 

Replication and a larger sample size may yield significant results.  

A possible interpretation of this result is that incubation duration is an indirect 

measure of nest attentiveness, the shorter number of days required to incubate, the more 

the parents sat on the nest, which is related to attentiveness (Weathers & Sullivan, 1989). 

As 30 °C is close to 35 °C the cost of being inattentive to the nest, cost being chance the 

eggs will die, is low and therefore to conserve energy the birds did not sit on the nest to 

the extent expected. In the 14 °C condition, leaving the nest had a higher chance of 
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cooling the eggs to the point of failure, therefore sitting on the nest is much more crucial. 

Although, this is not what was reported for Trial 1, with the 30 °C condition taking more 

days to hatch an egg than the 14 °C condition. For Trial 2, all pairs had more breeding 

experience than Trial 1 and may have responded to the lower cost of sitting too much on 

the nest compared to the cost of sitting too infrequently.  

Successful pairs could maintain temperatures consistently higher than 

unsuccessful pairs, irrespective of ambient temperature condition and temperature-related 

experience. This result can be attributed to a combination of items, whether it was the 

type of nest the successful birds built was more insulative, or the successful birds were 

able to translate more of the skills learnt in Trial 1 to Trial 2.  This can best be seen in the 

density plots of the distributions of ambient temperatures recorded by the successful and 

unsuccessful pairs (Figure 8), as the successful pairs’ nests are rarely recorded at 

temperatures near the ambient temperature, whereas unsuccessful pairs have a large peak 

at ambient. Two variables that also affect the success of the birds have been shown to be 

quality of the female, as demonstrated with the number of eggs she lays, and the clutch 

size (Hanssen, Erikstad, Johnsen, & Bustnes, 2003). Successful pairs may have had 

females that harmonized the number of eggs laid with the feasible number of eggs the 

parents could take care of, in terms of energy expenditure.  

4.1.2 Exploring why the HMM was unsuccessful at predicting behavior 

accurately 

There are many reasons the HMM may have been inaccurate.  When artificial 

data sets that I constructed with known probability distributions were fed into the HMM, 

the HMM performed as expected. When only one state was used in an artificial data set, 

the HMM was 100% accurate. When alternating between two states with a known 

probability of 50% (akin to flipping a coin), the HMM predicted the alternating behaviour 

states as expected. However, when using an artificial data set that had three behavioural 

states and only two observations paired with the three states (as was the case for the 

binarized temperature data), the third state was never predicted. This led to testing a 2-

state HMM of only 1 bird on the nest or 0 birds on the nest, the same result of 1 bird on 

the nest 100% of the time was still found.  
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The inaccuracy of the HMM model could be due to a software error. Two 

different HMM programs, one from GitHub (https://github.com/jason2506/PythonHMM) 

and the other using the seqlearn package, set up by Dr. M. Daley (attached to Appendix 

A), were created using different functions and packages to see if the behavior predictions 

were due to the method in which different functions calculate probabilities. Both, 

however, produced identical results. It was unlikely that a software error was what was 

leading to the inaccurate predictions. 

The iButtons could have recorded temperatures that were more constant than 

actual nest temperature. As the iButton was placed once the first egg was laid and seldom 

moved, the iButton could have slowly been enveloped by the nest or buried by the birds. 

The farther the iButton is from the clutch of eggs, the less accurate the temperature 

recording would be. To test this scenario, I manually encoded a subsequent validation set 

of either the first or second day of incubation. The first days of incubation would be the 

highest accuracy of the iButton as it was just recently placed in the nest. These first few 

days are also rife with activity as the birds have not laid their whole clutch and are not 

incubating as consistently as seen further along in incubation. If the inaccuracy of the 

iButton reading was the cause of the inaccuracy of the HMM predictions, there would be 

an increase in accuracy during these first few days. Instead, there was a minor decrease in 

accuracy from 66 % to 58 %, as seen in Figure 12. iButton inaccuracy may have added a 

small amount of error to the temperature readings as they were not guaranteed to be right 

beside the eggs, however they likely were not a large contribution to why the HMM was 

not successful at predicting behavior. 

As the transition and the starting distribution relied on the training set to be an 

accurate representation of the data, it is possible that if the training set was not 

generalizable to the full data set, it would have led to erroneous behavior predictions.  I 

first compared the proportions of behaviours seen in the training set and the validation 

sets and saw there was an undersampling of certain behaviours in the 30 °C condition 

(Figure 13). However, the training set and validation set for the 14 °C condition were 

similar, and yet the HMM was no more successful at predicting behaviours for the 14 °C 

validation set.  

https://github.com/jason2506/PythonHMM
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As the HMM assumes that in the training set each transition from state and 

temperature to the next state and temperature is the same interval apart and from the same 

individual, even though the pairs are more or less the same there is the transition from 

one pair to the next pair that is an erroneous transition. The method to fix the erroneous 

transition would be to treat each pair separately, however the training set is not large 

enough to accomplish accurate probabilities without concatenating the pairs. There are 

only two transitions from one pair to the next, and are unlikely to be causing the 

unsuccessful prediction of behaviour.  

As detailed in the Temperature threshold section (3.2.3), there may be a more 

appropriate threshold to use as the binary above and below mean loses the detail of the 

absolute temperature-- potentially to the detriment of predicting behaviours. Quartiles 

and medians were also used, but with no increase in prediction accuracy.   

My conclusion is that the assumption of a near fidelity between temperature and 

behaviour is false for zebra finch incubation, although other research has shown an 

extensive relationship between nest temperature and incubation behaviour (Coe, Beck, 

Chin, Jachowski, & Hopkins, 2015). I assumed that when the bird left the nest, shortly 

after the temperature would drop; when the bird comes back, the temperature would 

begin to rise. If my assumption were true, then there would be distinct distributions of 

temperatures that aligned with 0,1, and 2 birds being on the nest. However, if the birds 

are able to maintain a near constant temperature, while changing their behaviour, the 

HMM would not be able to handle this discrepancy. As with the successfully applied 

HMM detailed in section 1.6, each had a distinct behaviour and associated separate 

response variable. I tested to see if the mutually exclusive behaviour states and respective 

temperatures were present in the zebra finch data set. The nest temperature was not 

mutually exclusive to the behaviour state (see Figure 15).  Although the 30 °C condition 

did show significant exclusivity between behaviour states, the range of the distribution is 

still too overlapping between the behaviour states for accurate predictions using 

temperature to be possible, as tested by Mann-Whitney tests with Bonferroni correction 

for multiple comparisons (14 °C 0 birds: 1 bird z = -0.78, p = 1, 1:2 z = -0.398, p = 1, 0:2 
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z = 0.763, p = 1; 30 °C 0:1 z = -1, p < .001, 1:2 z = -4.19, p < .001,  0:2 z = -3.09, p < 

.001 ).  

4.1.3 Ramifications of HMM results 

The HMM predicted one bird on the nest constantly. This is most likely due to the 

distribution of temperatures within the training set so that the HMM generated transition 

probabilities that once one bird was on the nest the probability to stay in the state was so 

high and to change to any other state was so low that one bird on the nest became a loop 

of predicted behaviour states. In general, birds rarely get off the nest, and when they do it 

seems to be with an insufficient amount of time to warrant a temperature change 

sufficient to have a discrete behaviour, as shown in Figure 15. This relationship between 

state and observation is integral for the HMM to be successful, as the examples where 

HMMs have been successful have discrete and mutually exclusive behaviours that have 

corresponding observations (see section 1.6).  The insulation properties of the nest may 

have meant that the time birds spent off the nest had little effect on nest temperature 

which would explain why the temperatures did not correspond directly to behaviours.  

A HMM was chosen as it is a relatively simple model, and if a simple model can 

encapsulate the phenomenon of interest, then there is no need to use a complex model. 

However, I have shown here that a HMM is insufficient to encapsulate the minute, and 

subtle behaviours that occur with little to no temperature change. As the quote generally 

paraphrased from George Box (1976) says: All models are wrong, but some are useful. 

Useful models to try in the future would use the full known incubation temperature and 

update the probabilities at each time point. As well using known factors like nest shape, 

and clutch size would better inform the model for more accurate predictions. 

                                       4.2 Future directions 

There are branches that these results can be expanded upon. Similar to the 

hummingbird data set, replicating zebra finch incubation with a more precise instrument 

such as a thermal-imaging camera or thermocouple (nestled in a dummy egg) that records 

temperature continuously would allow for visualization of the heat gradient coming off 
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the nest. A thermocouple would also help test whether the birds are changing their heat 

output during incubation (see section 1.2) 

Zebra finches were chosen as they are opportunistic breeders, and would have been 

most likely to exhibit behavioural changes. Now that we know these changes are possible 

over a short period of time, replicating this study with a species that is from a region with 

more stable temperatures, and thus less likely to exhibit behavioural changes with such 

ease would be worthwhile. This would help address whether these behavioural changes 

are a function of flexibility that zebra finches and other species such as the Adelie 

penguin and common eider have been selected for over time in more extreme climates, or 

are representative of conserved flexibility found homogenously throughout a broad range 

of birds.  

The current study is a lab study and was able to show that only one cue, temperature, 

was sufficient to elicit behavioural change. It would be interesting to go back to field 

studies and do analyses to see what is the necessary cues for behavioural change. As well, 

these birds have been raised in captivity, therefore their ability to create nests and 

reproduce may be different than the wildtype. Comparing the reproduction of the captive 

compared to the wildtype would aid in understanding what traits have been conserved in 

regard to nest-building and incubation.  

                                       4.3 General conclusions 

Many avian species are able to modulate incubation behaviour to be successful at the 

range of temperatures they naturally experienced. Adelie penguins, zebra finches and 

others have been shown to adjust the number of days required for incubation in concert 

with the temperature. The length of time required for the 30 °C condition in Trial 1 is 

puzzling, as I expected that the 30 °C condition, being so close to the ideal of 

approximately 35 °C would require fewer days to hatch and egg than the 14 °C condition. 

There is a stark difference between the successful pairs and the unsuccessful pairs in 

their ability to maintain a higher temperature irrespective of ambient temperature 

condition. The combination of nest shape, breeding experience, incubation behaviour and 
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body morphology likely gives rise to this difference. In all, what can be taken at face 

value of a hard physiological limit—the amount of time required to hatch a chick – is 

much more malleable to the parents’ behaviour than once thought.  

The HMM, although shown here not to be the appropriate model for this data set, has 

yielded an interesting and nuanced conclusion about avian incubation. Birds have a 

mechanism to maintain constant nest temperature, while not necessarily sitting on the 

nest, whether that is the duration of incubation periods or how the nest was built. The 

time spent away the nest is a function of the heat output by the bird and the heat retained 

by the nest, nonetheless the birds must have a method to discern when to come back to 

the nest when predation is not a factor. In general, the use of models in animal behaviour 

allow for an extensive amount of data collection and in-depth analysis. There is a need 

for an understandable model that can take input from a variety of data collection devices 

and output understandable metrics. That way, fine scale animal behaviour data can be 

collected in a systematic and objective manner, which will yield to more robust findings.  
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Appendices 

Appendix A: Two HMM codes, one adapted from Github link, the other from the 

seqlearn package, as set up by Dr. M. Daley 

Github code 

 

from hmm import Model 

from hmm import train 

import matplotlib.pyplot as plt 

import numpy as np 

import csv 

from scipy.stats import anderson 

# import data as arrays 

 

# Training data 

myData = np.array(list(csv.reader(open('MANOVA-edit5.csv', 'r')))) 

Temp = myData[:, 2].astype(float) 

Behaviour = myData[:, 3].astype(str) 

 

''' 

# statistics on distribution 

num_bins = 40 

a = anderson(all_temp, dist = 'norm') 

print a 

 

fig4 = plt.figure() 

ax4 = fig4.add_subplot(1, 1, 1) 

n, bins, patches = ax4.hist(all_temp, num_bins) 

ax4.set_xlabel('All temp') 

ax4.set_ylabel('Frequency') 

''' 

# potential thresholding values 

all_temp_mean = np.mean(all_temp) 

all_temp_median = np.median(all_temp) 

all_temp_1st = np.percentile(all_temp, 25) 

all_temp_3rd = np.percentile(all_temp, 75) 

 

# Test data 

myData = np.array(list(csv.reader(open('iH17.csv', 'r')))) 

Temp_Test = myData[:3570, 2].astype(float) 

#test_hist = plt.hist(Temp_Test) 

 

# Sort data into different pairs 

# states 

hot_behaviour_1 = Behaviour[0:147] 

hot_behaviour_2 = Behaviour[147:315] 

hot_behaviour_3 = Behaviour[315:483] 

cold_behaviour_1 = Behaviour[483:605] 

cold_behaviour_2 = Behaviour[605:755] 

cold_behaviour_3 = Behaviour[755:912] 

hot_behaviour = Behaviour[0:483] 

cold_behaviour = Behaviour[483:912] 

# symbols 

hot = [] 

hot_1 = [] 

hot_2 = [] 

hot_3 = [] 
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test_sequence_h = [] 

hot_temp_1 = Temp[0:147] 

hot_temp_2 = Temp[147:315] 

hot_temp_3 = Temp[315:483] 

''' 

# binarize, can probably nest these guys all together 

for i in hot_temp_1: 

    if i <= all_temp_1st: 

        hot_1.append(0) 

    else: 

        hot_1.append(1) 

 

for i in hot_temp_2: 

    if i <= all_temp_1st: 

        hot_2.append(0) 

    else: 

        hot_2.append(1) 

 

for i in hot_temp_3: 

    if i <= all_temp_1st: 

        hot_3.append(0) 

    else: 

        hot_3.append(1) 

''' 

# binarize test sequence 

for i in Temp_Test: 

    if i <= all_temp_median: 

        test_sequence_h.append(0) 

    else: 

        test_sequence_h.append(1) 

 

# binarize training without pair distinction 

for i in Temp: 

    if i < all_temp_median: 

        hot.append(0) 

    else: 

        hot.append(1) 

 

sequence_h = [hot_behaviour,hot] 

print sequence_h 

 

sequence_c = [ 

    (cold_behaviour_1, cold_temp_1), 

    (cold_behaviour_2, cold_temp_2), 

    (cold_behaviour_3, cold_temp_3) 

] 

 

# train model on pairs data 

model_h = train(sequence_h, smoothing =1) 

 

#model_c = train(sequence_c) 

 

#test_sequence_h = 

    

#[38,37,36.5,36.5,36.5,37,37,37,38,38,37.5,37.5,37.5,37.5,37.5,37.5,37.5,38,38,

38.5,38.5,38.5,38.5,38, 

     #              

38,38,38,23.5,38,38,38,23.5,23.5,23.5,23.5,37.5,37.5,37.5,37.5,37.5,37.5,37.5,3

7.5,37,37,36.5,37.5,37.5,37] 

#test_sequence_c = [0,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1,1] 

 

#Create probability matrix 

prediction_h = model_h.decode(test_sequence_h) 
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print model_h 

print model_h.evaluate(test_sequence_h) 

print prediction_h 

print len(sequence_h) 

 

time_H3 = range(0,len(test_sequence_h)) 

''' 

plot = plt.plot(time_H3, test_sequence_h) 

 

#print prediction_h 

for time_H3, prediction_h in enumerate(prediction_h): #code fixed by Philip 

Todd Coppola. 

    if prediction_h == 'B': 

        plt.vlines([time_H3], 10, 50, alpha=.7) 

#plt.show() 

''' 

seqlearn code 
# -*- coding: utf-8 -*- 

""" 

Created on Thu Oct 18 10:07:58 2018 

 

@author: Daley 

""" 

import numpy as np 

import seqlearn.hmm 

import csv 

import numpy as np 

 

# import data 

myData = np.array(list(csv.reader(open('cold.csv', 'r')))) 

testData = np.array(list(csv.reader(open('validation_cold.csv', 'r')))) 

# all cold temperatures extracted 

cold_Temp = myData[:, 2].astype(float) 

# test temperatures 

testTemp = testData[:, 1].astype(float) #don't have any test temperatures yet 

 

# all behaviours 

cold_behaviour = myData[:, 3].astype(str) 

test_Behaviour = testData[:, 2].astype(str) 

 

# initialize what will become categorical numerical behaviours 

num_beh = [] 

 

# change behaviours from char --> num 

for i in cold_behaviour: 

    if i == 'B': 

        num_beh.append(1) 

    elif i == 'M': 

        num_beh.append(1) 

    elif i == 'F': 

        num_beh.append(1) 

    else: 

        num_beh.append(0) 

 

# change continuous temp --> binary 

binary_h = [] 

binary_c = [] 

temp_mean = np.mean(cold_Temp) # using mean for now, can change to different 

threshold 

temp_1st = np.percentile(cold_Temp, 25) 
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temp_3rd = np.percentile(cold_Temp, 75) 

temp_med = np.median(cold_Temp) 

for i in cold_Temp: 

    if i <= temp_mean: 

        binary_h.append(0) 

    else: 

        binary_h.append(1) 

 

# create inverse hot 

binary_c = [1 - x for x in binary_h] 

 

''' 

for i in binary_h: 

    if i == 0: 

        binary_c.append(3) 

    elif i == 1: 

        binary_c.append(2) 

    elif i == 2: 

        binary_c.append(1) 

    else: 

        binary_c.append(0) 

 

''' 

# change continuous temp --> binary 

test_h = [] 

test_c = [] 

 

for i in testTemp: 

    if i <= temp_mean: 

        test_h.append(0) 

    else: 

        test_h.append(1) 

''' 

for i in testTemp: 

    if i <= temp_1st: 

        test_h.append(0) 

    elif i <= temp_med: 

        test_h.append(1) 

    elif i <= temp_3rd: 

        test_h.append(2) 

    else: 

        test_h.append(3) 

''' 

# create inverse hot 

test_c = [1 - x for x in test_h] 

''' 

for i in test_h: 

    if i == 0: 

        test_c.append(3) 

    elif i == 1: 

        test_c.append(2) 

    elif i == 2: 

        test_c.append(1) 

    else: 

        test_c.append(0) 

''' 

#  put together in one matrix 

bin_temp = (np.vstack([binary_h,binary_c])).T 

bin_test = (np.vstack([test_h,test_c])).T 

# set parameters for HMM 

hmm = seqlearn.hmm.MultinomialHMM(decode='viterbi', alpha=0.01) # try these?? 

Should be good 
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# fit with data, train?? 

hmm.fit(bin_temp,num_beh,bin_temp.shape[0]) 

 

# test sequence 

test_birds = hmm.predict(bin_test) 

 

print(test_birds) 

np.savetxt("testbirds.csv", test_birds, delimiter=",") 

''' 

# Let's assume we have two temperatures: 'cold' and 'hot' 

# We're going to use 'one hot' encoding which means that we will have three 

# seperate arrays... one for each temperature level... and at each time point 

# only *one* array will have '1' (because you can't be hot and cold at the same 

time!) 

 

# Like this (I'm just making this data up, of course) 

hot = 

np.array([1,1,1,1,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,0,0,0,0,0,1,1,1,1,1,0,0,0,0]) 

 

# and since we know that whenever it's not hot, it has to be cold, I can 

generate the 'cold' array without more typing 

cold = 1-hot 

 

# Now we combine this into our input matrix of format (n_samples, n_features) 

temp = (np.vstack([hot,cold])).T 

 

# And, finally, since this is *supervised* learning, we need the observations 

of the 

# hidden states. Let's make the observation the number of birds on the nest. 

 

num_birds_on_nest = np.array([2, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 

2, 1, 1, 0, 0, 0, 0, 0, 1, 2, 2, 1, 0, 0, 0, 0, 0]) 

 

# (I'm totally making this data up, of course) 

 

# Now let's initialize our HMM 

 

hmm = seqlearn.hmm.MultinomialHMM(decode='viterbi', alpha=0.01) 

 

# And train it! 

 

hmm.fit(temp,num_birds_on_nest,temp.shape[0]) 

 

# and now lets ask for a prediction based on the training data (which is an 

absolute sin... but I'm doing it here just to show this works) 

 

num_birds=hmm.predict(temp) 

''' 

# TODO 

# - Get your temp data into one-hot format 

# - Plug your real data and observations into this code 

# - sanity check results! 
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Appendix B: Animal use protocol for zebra finches 
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Appendix C: Trial 1 and post-Trial 2 nest temperature distributions for all pairs 

and separated by hatchling success 
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