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Abstract
This thesis focuses on developing Pareto-optimal reinsurance policy which considers the inter-
ests of both the insurer and the reinsurer. The optimal insurance/reinsurance design has been
extensively studied in actuarial science literature, while in early years most studies were con-
centrated on optimizing the insurer’s interests. However, as early as 1960s, Borch argued that
“an agreement which is quite attractive to one party may not be acceptable to its counterparty”
and he pioneered the study on “fair” risk sharing between the insurer and the reinsurer. Quite
recently, the question of how to strike a balance in risk sharing between an insurer and a rein-
surer has drawn considerable attention. This thesis contributes to the existing study in terms
of the following aspects: first, we derive the set of Pareto-optimal reinsurance policies within
risk mimization framework; second, we obtain the set of Pareto-optimal reinsurance policies
within expected utility maximization framework. In addition, we uniquely identify the policy
according to classical bargaining models; third, we blend risk minimization criterion and ex-
pected utility maximization criterion and study the so called Pareto-optimal reinsurance policy
with maximal synergy.

The thesis is structured as follows. Chapter 1 introduces the problem and reviews the
most recent advances on related topics. Chapter 2 applies a geometric approach to derive the
Pareto-optimal reinsurance policy under Value-at-Risk minimization criterion. The geometric
approach visualize the process of seeking the solution which greatly simplifies the mathemat-
ical proof. As a natural extention, Chapter 3 studies the design of Pareto-optimal reinsurance
policy by assuming that distortion risk measures are employed to measure the risks of the
insurer and the reinsurer. The optimal reinsurance policy is derived through three methods:
Lagrange dual method, generalized Neyman-Pearson lemma and dynamic control approach.
Chapter 4 studies the problem through maximizing the weighted expected utility and applies
the results from classical bargaining models to identify the “best” policy on the Pareto efficient
frontier. Chapter 5 revisits the problem by considering a mixture of risk minimization and
expected utility maximization criteria. Chapter 6 gives potential directions for future research.

Keywords: Pareto-optimal reinsurance policy, risk mimization, expected utlity maximiza-
tion, bargaining model, Lagrange dual method
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Summary for Lay Audience
A decision is made to maximize the decision-maker’s interests. In a reinsurance setting, the
insurer is always treated as the decision-maker in most past actuarial literature. It is under-
standable a reinsurance treaty may be reached if the reinsurer’s interests are totally out of
consideration. This thesis proposed several models to address this concern.
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Chapter 1

Introduction

1.1 Literature review
Reinsurance policy is an agreement between an insurer and a reinsurer in which the insurer
pays the reinsurer a premium in exchange of indemnity for unpredictable large loss. Optimal
insurance/reinsurance design is one of the core problems in actuarial science. On one hand, it
addresses how to efficiently transfer the risk to improve the insurer’s capacity to bear risk; on
the other hand, it provides the reinsurer opportunities to make profit. Figure 1.1 illustrates how
the reinsurance mechanism works.

Let Ω be the sample space and X : Ω → [0,M] be the initial loss faced by the insurer.
Let I(X) denote the ceded loss and P denote the premium charged by the reinsurer. After the
reinsurance transcation the insurer’s total loss is

CI = X − I(X) + P

and the reinsurer’s total loss is
RI = I(X) − P.

Some commonly used ceded functions are

• stop-loss or excess-of-loss function

I(x) = (x − d)+

where d ≥ 0 is the deductible point and y+ = max{0, y};

• quota-share function
I(x) = ax

where a ∈ [0, 1];

• limited stop-loss function
I(x) = d1 ∧ (x − d2)+

where d1 ≥ 0 is the limit, d2 ≥ 0 is the deductible point and x ∧ y = min{x, y}.

Some commonly used principles for determining the premium P are

1



2 Chapter 1. Introduction

• expectation principle
P = (1 + θ)E[I(X)]

where θ ≥ 0 is called the safety loading and E[·] denotes the expectation;

• distortion principle

P = Hg(I(X)) =

∫ M

0
g
(
S I(X)(x)

)
dx

where g(·) is called the distortion function and S I(X)(·) denotes the survival function of
I(X), i.e., S I(X)(x) = P(I(X) > x);

• mean-variance principle

P = (1 + θ1)E[I(X)] + θ2V[I(X)]

where θ1, θ2 ≥ 0 and V[·] denotes the variance.

The aforementioned premium principles can reflect the reinsurer’s aversion towards the insol-
vency, tail risk and uncertainty.

Figure 1.1: The reinsurance agreement.

In the actuarial science literature, the reinsurance policy is designed to optimize the deci-
sion maker’s interests. Two commonly adopted optimality criteria are risk minimization and
expected utility (EU) maximization. For risk minimization, Borch (1960a) showed that the
stop-loss ceded function minimized the variance of the insurer’s total loss under the expecta-
tion premium principle. By restricting the ceded function to be increasing and convex, Cai
et al. (2008) showed that the stop-loss function minimized the Value-at-Risk (VaR) of the in-
surer’s total loss. The result in Cai et al. (2008) was later reexamined by Cheung (2010) but
using a much simpler geometric method. To prevent ex post moral hazard, Chi and Tan (2011)
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confined themselves to the set of 1-Lipschitz continuous ceded functions and proved that the
limited stop-loss function minimized the VaR of the insurer’s total loss. With respect to other
popular risk measures, such as expectile, distortion risk measure (DRM) and coherent risk
measure, we refer interested readers to Cai and Weng (2014); Zhuang et al. (2016); Cheung
et al. (2017) and the references therein.

The optimal reinsurance policy design under EU maximization was pioneered by Arrow
(1963). It was shown that stop-loss ceded function maximized the insurer’s expected utility
under the expectation premium principle. Dana and Scarsini (2007) studied the optimal rein-
surance problem in the presence of a background risk. Assuming that the background risk
is stochastically increasing with respect to the initial loss and under some regularity condi-
tions, they showed that the optimal ceded function could be of stop-loss form, generalized
deductible form and quota-share form. Bernard and Ludkovski (2012) investigated the impact
of the counterparty’s default risk on the optimal ceded function and showed that more reinsur-
ance coverage is required by the insurer if the reinsurer’s average recovery rate is lower. The
aforementioned works assume that both the insurer and the reinsurer share the same informa-
tion regarding the loss distribution. Ghossoub (2017) explored the optimal reinsurance policy
when the insurer and the reinsurer had heterogeneous beliefs and proved that the optimal ceded
function took the variable deductible form.

1.2 The model of interest
As early as 1960s, Borch already realized that “a contract which is quite attractive to one party
may not be acceptable by its counterparty” and thereafter pioneered the study of “fair” risk
sharing among the insurers and reinsurers. In Borch (1960b) a set of ceded functions was first
identified by minimizing the sum of the variances, then the optimal ceded function was deter-
mined by maximizing the product of the EU gains according to the Nash bargaining model.
The Pareto-optimal reinsurance policy was first studied by Raviv (1979) in which the insurer’s
EU was maximized subject to the reinsurer’s EU constraint, the optimal ceded function was
characterized by a differential equation and a boundary condition. Golubin (2006b) revisited
Raviv’s problem and solved it using calculus of variation approach, which was verified to be
quite efficient to make the original infinite dimensional optimization problem tractable.

One branch of extentions of the above bilateral problem is called optimal risk sharing,
in which the interests of all the parties are taken into account simultaneously. For results in
this area, see for example, see Borch (1960c); Aase (2002); Ludkovski and Young (2009);
Asimit et al. (2013), and the references therein. Another branch of extentions studies optimal
reinsurance design in a setting which involves one insurer and multiple reinsurers or multiple
insurers and one reinsurer. For results in this area, we refer to Asimit et al. (2017); Asimit and
Boonen (2018) and the references therein.

In this thesis, we investigate the Pareto-optimal reinsurance policy within both risk min-
imization and EU maximization framework. we first explore the Pareto-optimal reinsurance
policy when both the insurer and the reinsurer apply VaR to measure their risks. The VaR based
model is then naturally extended to DRM based model, in which we further impose some indi-
vidual risk constraints and investigate the geometric interpretations of our results. Our results
generalize those in the literature which only consider the interests of the insurer. Within EU
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maximization framework, we follow the idea in Golubin (2006b) but apply a different approach
which makes the solution much easier to derive. In addition, we impose rationality conditions
in our model and identify the “best” solution according to the Nash bargaining model and the
Kalai-Smorodinsky model. At last, we present a model which balances the EUs of the insurer
and the reinsurer under the constraint that the sum of their risks reaches the minimum. This
way, we mix the two criteria – risk minimization and EU maximization into one model and
make the derived reinsurance policy more reasonable.



Chapter 2

Pareto-optimal Reinsurance Policies
under Value-at-Risk

2.1 Introduction

Reinsurance is a transaction whereby one insurance company (the reinsurer) agrees to indem-
nify another insurance company (the reinsured, cedent or primary company) against all or part
of the loss that the latter sustains under a policy or policies that it has issued. For this service,
the ceding company pays the reinsurer a premium, and there are many premium calculation
principles (e.g., Denuit et al. (2006); Young (2004); see also Furman and Zitikis (2008, 2009)).

Mathematically, let X be the loss for an insurer from a policy or a group of policies. As-
sume that under a reinsurance treaty, a reinsurer covers the ceded part of the loss, say f (X),
where 0 ≤ f (X) ≤ X, for a premium P f . The primary insurer’s retained loss is denoted by
I f (X) = X − f (X). Commonly-used forms of reinsurance treaties are the excess-of-loss treaty,
where f (X) = (X−d)+ with deductible level (attaching point) d > 0; and the quota-share treaty,
where f (X) = aX with a constant (share) 0 ≤ a ≤ 1.

Optimal forms of reinsurance have been studied extensively in the literature. Most of the
results obtained are from the cedent’s point of view. That is, the question asked is: for a given
premium principle, what is the optimal functional form and/or parameter values of the ceded
function f , such that the cedent’s expected utility is maximized or its risk is minimized? For
example, by maximizing the cedent’s expected utility, Arrow (1973) concluded that “given a
range of alternative possible reinsurance contracts, the reinsured would prefer a policy offering
complete coverage beyond a deductible.” Borch (1960b) showed that for a fixed premium and
expected reinsurance payments, the variance of the cedent’s losses is minimized by the excess-
of-loss reinsurance policy. In recent years, various solutions to the optimal reinsurance problem
have been obtained where the value-at-risk (VaR) and the tail-value-at-risk (TVaR) have been
used to measure the cedent’s risk level (e.g., Asimit et al. (2013); Assa (2015); Bernard and
Tian (2009); Cai and Tan (2007); Cai et al. (2008); Cheung (2010); Chi and Tan (2011) and the
references therein).

Borch (1969) argues that “there are two parties to a reinsurance contract, and that an ar-
rangement which is very attractive to one party may be quite unacceptable to the other.” How-
ever, as pointed out by Hürlimann (2011), optimal forms of ceded functions considering both

5
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the cedent and the reinsurer had scarcely been discussed until quite recently. For example,
Ignatov et al. (2004) study the optimal reinsurance contracts under which the finite horizon
joint survival probability of the two parties is maximized. Kaishev and Dimitrova (2006) de-
rive explicit expressions for the probability of joint survival up to a finite time of the cedent
and the reinsurer, under an excess of loss reinsurance contract with a limiting and a retention
level. Golubin (2006b) studies the problem of designing the Pareto-optimal reinsurance policy
by maximizing a weighted average of the expected utility of the insurer and the reinsurer. Dim-
itrova and Kaishev (2010) introduce an efficient frontier type approach to setting the limiting
and the retention levels, based on the probability of joint survival. Cai et al. (2013) analyse the
optimal reinsurance policies that maximize the joint survival probability and the joint profitable
probability of the two parties and derive sufficient conditions for optimal reinsurance contracts
within a wide class of reinsurance policies and under a general reinsurance premium principle.
Using the results of Cai et al. (2013), Fang and Qu (2014) derive optimal retentions of com-
bined quota-share and excess-of-loss reinsurance that maximize the joint survival probability
of the two parties. Cai et al. (2015) study the optimal forms of reinsurance policies that min-
imize the convex combination of the VaRs of the cedent and the reinsurer under two types of
constraints that describe the interests of the two parties. For the determination of the optimal
excess of loss contract considering the dependency between the losses of the insurer and the
reinsurer, we refer to Castañer and Claramunt Bielsa (2016) and the references therein.

A closely-related problem to optimal reinsurance is the so-called optimal transfer of risks
among partners, where everybody’s interests are considered simultaneously. The usual ap-
proach is to identify Pareto-optimal treaties, whereby no agent can be made better off without
making another agent worse off. For results in this area, we refer to, e.g., Aase (2002); Asimit
et al. (2013); Borch (1960b); Ludkovski and Young (2009) and the references therein.

In this paper, we determine Pareto-optimal reinsurance policies under which one party’s
risk, measured by its VaR, cannot be reduced without increasing that of the other party in the
reinsurance contract. We consider two classes of ceded functions:

C1 :=
{
f : f is convex, non-decreasing and 0 ≤ f (x) ≤ x for all x

}
and:

C2 :=
{
f : f and I f are non-decreasing and 0 ≤ f (x) ≤ x for all x

}
.

Note the inclusion C1 ⊂ C2, which has been verified by Chi and Tan (2011). Furthermore,
for every f ∈ C2, both f and I f are Lipschitz continuous, and they are comonotonic.

The requirements that the ceded function f is non-decreasing and that the bounds 0 ≤
f (x) ≤ x hold for all x are needed in C1 and C2 to avoid the moral hazard problem in rein-
surance. The additional requirement of the convexity of f in C1 essentially requires that f (x)
approaches infinity linearly when x → ∞ and thus disallows the popular layered reinsurance
policies. Nevertheless, this class includes the important quota-share and the excess-of-loss
reinsurance policies. Note also that both classes are of interest in the more general context of
economic theory with two agents having conflicting interests. Optimal reinsurance problems
with admissible classes C1 and C2 have been studied extensively in the literature, and we refer
to Chi and Tan (2011) for an informative review.

For simplicity of discussion, we assume that the reinsurance premiums are determined by
the expected premium principle:



2.2. Preliminaries 7

P f = (1 + θ)E[ f (X)] (2.1)

where θ > 0 is the safety loading. Hence, the cedent’s total loss becomes:

C f = X − f (X) + (1 + θ)E[ f (X)],

and the reinsurer’s total loss under the reinsurance contract is:

R f = f (X) − (1 + θ)E[ f (X)].

In this paper, we use VaR to measure the insurer’s and reinsurer’s risk level. A natural
starting point for measuring the (joint) risk of the cedent and the reinsurer is a bivariate risk
measure, such as the bivariate VaR (Embrechts and Puccetti (2006)) of the pair C f and R f .
However, since the ceded loss f (X) and the retained loss I f (X) are comonotonic (see Dhaene
et al. (2002b,c) for a very detailed discussion of the concept of comonotonicity with appli-
cations), the set of values of the bivariate VaRs of C f and R f is determined by values of the
univariate VaR of C f and R f . Therefore, the Pareto-optimal reinsurance policies could be de-
termined by minimizing a linear combination of the univariate VaRs of C f and R f . We note in
this regard that the optimization criterion of minimizing linear combinations of the risks of the
cedent and the reinsurer was adopted by Asimit et al. (2013); Cai et al. (2015). Our arguments
provide an additional economic meaning to such criteria.

Although VaR is not sub-additive in general, it was shown that it is sub-additive in the deep
right tail in many cases of interest (Danı́elsson et al., 2013). General results related to optimal
forms of reinsurance (risk exchanges) using the so-called distortion risk measures exist in the
literature, and we refer to Asimit et al. (2013); Assa (2015); Ludkovski and Young (2009). The
distortion risk measures are very general and include VaR, TVaR and proportional hazards
transforms as special cases. The feature of the current paper is that we extend the geometric
approach of Cheung (2010) to our optimization problem that considers the interests of the two
parties. The geometric proofs facilitate intuition and enable us to avoid lengthy and complex
mathematical arguments. We derive closed-form and user-friendly formulas for the optimal
reinsurance policies and thus provide a convenient route for practical implementation of our
results.

The rest of the paper is organized as follows. Section 2.2 provides preliminaries and shows
(Ludkovski and Young, 2009) that the form of Pareto-optimal reinsurance policies can be deter-
mined by minimizing linear combinations of the cedent’s and the reinsurer’s risks. In Sections
2.3 and 2.4, we determine optimal reinsurance forms and derive the corresponding optimal pa-
rameters when the feasible classes of ceded functions are C1 and C2, respectively. There, we
also provide illustrative numerical examples. Section 2.5 provides further insights regarding
the results of our numerical examples. Section 2.6 concludes the paper.

2.2 Preliminaries
Let FX and S X denote the cumulative distribution function (c.d.f.) and the survival function
of X, respectively. Furthermore, let FC f and FR f denote the c.d.f.’s of C f and R f , respectively.
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Then, the individual VaRs of the cedent and the reinsurer under the reinsurance contract are:

VaRα(C f ) = inf{x : FC f (x) ≥ α}

and:

VaRα(R f ) = inf{x : FR f (x) ≥ α},

respectively. To consider the risk of both the cedent and the reinsurer, we propose to use the
bivariate lower orthant VaR introduced by Embrechts and Puccetti (2006), which is:

VaRα(C f ,R f ) = ∂{(y, z) ∈ R2 : FC f ,R f (y, z) ≥ α}.

For any ceded function f ∈ C2, the random variables C f and R f are comonotonic, and so:

VaRα(C f ,R f ) = ∂{(y, z) ∈ R2 : min{FC f (y), FR f (z)} ≥ α}

= ∂{(y, z) ∈ R2 : FC f (y) ≥ α, FR f (z) ≥ α}.

Therefore, when the “joint” risk of the cedent and the reinsurer is measured by their bivari-
ate lower orthant VaR, one could work with the marginal VaRs of C f and R f , instead of the
much more complicated joint VaR.

In the following, we assume that the probability levels in the VaRs used by the cedent and
the reinsurer are possibly different, say αc and αr, respectively, and then determine the Pareto-
optimal reinsurance policies (ceded functions f ) in the sense that one party’s risk, measured
by its VaR, cannot be reduced without increasing the other party’s VaR. Mathematically, let f ∗

denote a ceded function in an admissible set C, such as C1 or C2. Let the corresponding cedent’s
and reinsurer’s total losses under the ceded function f ∗ be denoted by C f ∗ and R f ∗ , respectively.
Then, f ∗ is a Pareto-optimal reinsurance policy if there is no ceded function f , f ∗ belonging
to the admissible set C, such that:

VaRαc(C f ) ≤ VaRαc(C f ∗)

and:

VaRαr (R f ) ≤ VaRαr (R f ∗),

with at least one of the inequalities being strict. To find the Pareto-optimal reinsurance policies,
we utilize the following proposition.

Proposition 2.2.1 All Pareto-optimal reinsurance policies f in Ci, i ∈ {1, 2}, can be deter-
mined by solving the problem:

min
f∈Ci

{
βVaRαc(C f ) + (1 − β)VaRαr (R f )

}
, (2.2)

where 0 ≤ β ≤ 1.
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Proof Similar to the discussion on page 90 of Gerber (1979), one method to find Pareto-
optimal decisions is to choose two positive constants k1, k2 and find:

min
f∈Ci

{
k1VaRαc(C f ) + k2VaRαr (R f )

}
.

Without loss of generality, we set k1 = β and k2 = 1 − β with 0 ≤ β ≤ 1. In more detail, let
g be a function belonging to Ci and minimizing (2.2), then there cannot exist in Ci any function
f , g such that VaRαc(C f ) ≤ VaRαc(Cg) and VaRαr (R f ) ≤ VaRαr (Rg) with at least one of the
inequalities being strict, because otherwise, we would have:

βVaRαc(C f ) + (1 − β)VaRαr (R f ) < βVaRαc(Cg) + (1 − β)VaRαr (Rg).

This is a contradiction to the assumed property of function g.
Furthermore, for any two ceded functions f1, f2 ∈ C

i, the family { fγ, 0 ≤ γ ≤ 1} of ceded
functions defined by fγ(x) = γ f1(x) + (1 − γ) f2(x), is a subset of Ci and satisfies:

VaRαc(C fγ) = γVaRαc(C f1) + (1 − γ)VaRαc(C f2) (2.3)

and:
VaRαr (R fγ) = γVaRαr (R f1) + (1 − γ)VaRαr (R f2). (2.4)

Equation (2.3) is satisfied because:

VaRαc(C fγ) = VaRαc(I fγ(X) + P fγ)
= VaRαc(γC f1 + (1 − γ)C f2)
= γVaRαc(C f1) + (1 − γ)VaRαc(C f2),

where the last equality is due to the fact that C f1 and C f2 are non-decreasing functions of the
same random variable X and therefore comonotonic. Similarly, Equation (2.4) is satisfied.
Therefore, Condition C on page 90 of Gerber (1979) is satisfied, and we conclude that all
Pareto-optimal reinsurance policies in Ci can be found by solving Problem (2.2).

In view of Proposition 2.2.1, throughout the rest of this paper, we seek optimal reinsurance
policies by solving the optimization problem:

min
f∈Ci

{
βVaRαc(C f ) + (1 − β)VaRαr (R f )

}
for i ∈ {1, 2}, which is equivalent to minimizing:

H( f ) = βVaRαc

(
− f (X) + P f

)
+ (1 − β)VaRαr

(
f (X) − P f

)
. (2.5)

As shown by Chi and Tan (2011), we have C1 ⊂ C2, and every function f ∈ C2 is Lipschitz-
continuous and, hence, continuous. Consequently (e.g., Dhaene et al. (2002b)), for every f ∈
C2, we have VaRα

(
f (X)

)
= f

(
VaRα(X)

)
, and thus, with ac = VaRαc(X) and ar = VaRαr (X), the

optimization problem becomes:

min
f∈Ci
H( f ) = min

f∈Ci

{
− β · f (ac) + (1 − β) · f (ar) + (2β − 1)(1 + θ)E[ f (X)]

}
, i = 1, 2. (2.6)

Since we allow S X(0) < 1, the relationships between the probability levels αc and αr, as
well as S X(0) need to be discussed. Namely, we have the following observations:
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1. If 1 − αc ≥ S X(0) and 1 − αr ≥ S X(0), then ac = ar = 0. Thus,

• when β > 1/2, the solution to Problem (2.6) is f ∗(x) = 0 for all x;

• when β < 1/2, the solution is f ∗(x) = x;

• when β = 1/2, the objective function is always zero.

2. If 1 − αc < S X(0) and 1 − αr ≥ S X(0), then ac > 0 and ar = 0. Thus,

• when β < 1/2, the optimal ceded function is f ∗(x) = x;

• when β > 1/2, the form of the optimal ceded function is similar to the case when
β = 1, with only the risk and the profit of the cedent considered (the solution for the
latter case can be found in Case 2 of Sections 2.3.2 and 2.4.2 below);

• when β = 1/2, the optimal ceded function is f ∗(x) = x.

3. If 1 − αc ≥ S X(0) and 1 − αr < S X(0), then ac = 0 and ar > 0. Thus,

• when β > 1/2, the solution to Problem (2.6) is f ∗(x) = 0 for all x;

• when β < 1/2, the form of the optimal ceded function is similar to the case when
β = 0, with only the risk and the profit of the reinsurer being considered (the solution
for the latter case can be found in Case 3 of Sections 2.3.2 and 2.4.2 below).

• when β = 1/2, the optimal ceded function is f ∗(x) = 0 for all x.

Throughout the rest of this paper, we only consider the optimal forms of reinsurance poli-
cies under the conditions 1 − αc < S X(0) and 1 − αr < S X(0).

Now, we are ready to determine the forms of the Pareto-optimal reinsurance policy under
VaR, the task that makes up the contents of the following two sections. Namely, in Section 2.3,
we consider the case when the admissible set of ceded functions is C1 and in Section 2.4 when
the admissible set is C2. As noted earlier, both classes are of interest in the broad context of
economic theory, with the class C2 being more relevant to reinsurance policies. Nevertheless,
the class C1 includes the important quota share and excess-of-loss reinsurance policies that
provide natural reference points for analysing the optimal reinsurance policies in C2.

2.3 Optimal Reinsurance Policies When f is convex

In this section, we determine optimal insurance policies under the condition that f ∈ C1,
which means that f is convex and non-decreasing and the retained loss function I f (x) = x− f (x)
is non-decreasing. These conditions are also assumed by Cai et al. (2008); Cheung (2010),
where they in fact require that f is Lipschitz-continuous (cf., e.g., Section 2 of Chi and Tan
(2011)) and that f (x) linearly tends to infinity when x→ ∞.
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2.3.1 Functional Form of the Ceded Function
Here, we determine the functional form of the solution to the minimization problem:

min
f∈C1
H( f ) = min

f∈C1

{
− β · f (ac) + (1 − β) · f (ar) + (2β − 1)(1 + θ)E[ f (X)]

}
. (2.7)

We subdivide our following analysis into three cases.

Case 1: β > 1/2

In this case, the coefficients in front of f (ar) and E[ f (X)] on the right-hand side of Equation
(2.7) are positive, and the coefficient in front of f (ac) is negative. Thus, for any ceded function
f , we determine the functional form of a ceded function f ∗, such that f ∗(ac) = f (ac) and:

(1 − β) f ∗(ar) + (2β − 1)P f ∗ ≤ (1 − β) f (ar) + (2β − 1)P f .

This requires f ∗(ar) and also the entire function f ∗ to be as small as possible.
As we see from Figure 2.1, the convexity of f implies that the above requirements are

satisfied by the ceded function:

f ∗(x) = c(x − d)+, (2.8)

where c ∈ ( f ′(ac−), f ′(ac+)) and d ∈ [0, ac] are any constants. Since the slope of f should not
exceed one, we must have c ∈ [0, 1].

0

f(x)

f∗(x)

d ac ar

(a) ac < ar

0

f(x)

f∗(x)

d acar

(b) ar < ac

Figure 2.1: Optimal ceded functions in C1: Case 1.

Remark It is clear from the above proof that the result for the optimal form of reinsurance
policy is valid as long as P f1 ≤ P f2 whenever f1(x) ≤ f2(x) for all x. Obviously, this condition
is satisfied by the distortion premium calculation principle (e.g., Young (2004)), which has
been assumed in, for example, Assa (2015); Ludkovski and Young (2009), among others. For
a discussion of the validity of this condition in the case of the weighted premium calculation
principle, we refer to Furman and Zitikis (2008). In the current paper, we adopt the simplest
expectation premium principle (Equation (2.1)) for the simplicity of presentation.
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Case 2: β < 1/2

In this case, the coefficient in front of f (ar) on the right-hand side of Equation (2.7) is positive,
and those in front of f (ac) and E[ f (X)] are negative. Therefore, to solve Problem (2.7), for any
ceded function f , we search for a function f ∗, such that f ∗(ar) = f (ar) and:

β f ∗(ac) + (1 − 2β)P f ∗ ≥ β f (ac) + (1 − 2β)P f ,

which requires f ∗(ac) and also the entire function f ∗ to be as large as possible.
As we see from Figure 2.2, the convexity of f implies that the above requirements are

satisfied by the ceded function:

f ∗(x) =

{
ηx when 0 ≤ x < ar,
x − (1 − η)ar when x ≥ ar,

(2.9)

where η ∈ [0, 1] can be any constant.

0

f(x)

f∗(x)

ac ar

(a) ac < ar

0

f(x)

f∗(x)

acar

(b) ar < ac

Figure 2.2: Optimal ceded functions in C1: Case 2.

Case 3: β = 1/2

In this case, Problem (2.7) simplifies to:

min
f∈C1
{ f (ar) − f (ac)} . (2.10)

Since f is non-decreasing, we have that when αc < αr, then Problem (2.10) is solved by
any ceded function f ∗, which is constant on the interval [ac, ar]. Since f ∗ has to be convex, this
in turn requires f ∗ to be constant on [0, ac]. Since f ∗(0) = 0, we conclude that any function f ∗

in C1 with f ∗(x) = 0 on [0, ar] is Pareto-optimal.
When αc > αr, then because the slope of the ceded function is no more than one, Problem

(2.10) is solved by f ∗, which increases at the rate of one in the interval [ar, ac], which in turn
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requires f ∗ to increase at the rate of one for all x > ac because of the convexity assumption. In
summary, any function f ∗ in C1 with f ∗′(x) = 1 on [ar,∞) is Pareto-optimal.

When αc = αr, the objective function is constant.

2.3.2 Parameter Values of the Optimal Ceded Function

When β > 1/2, then the optimal ceded function f ∗ is given by Equation (2.8) for which the
parameters c and d need to be determined. When β < 1/2, then the optimal ceded function
is given by Equation (2.9) for which the parameter η needs to be determined. We accomplish
these tasks below by subdividing our considerations into four cases.

Case 1: β > 1/2 and αc < αr

In this case, the optimal ceded function is given by Equation (2.8) with d < ac < ar, and opti-
mization Problem (2.7) becomes:

min
(c,d)∈[0,1]×[0,ac]

g1(c, d),

where:

g1(c, d) = c
(
−β(ac − d) + (1 − β)(ar − d) + (2β − 1)(1 + θ)

∫ ∞

d
S X(t)dt

)
.

Following Cai et al. (2008); Cheung (2010), we use the notations:

θ∗ =
1

1 + θ
,

d∗ = S −1
X (θ∗),

Q(β, ac, ar) =
βac − (1 − β)ar

2β − 1
,

U(x) = S −1
X (x) + (1 + θ)

∫ ∞

S −1
X (x)

S X(t)dt.

Theorem 2.3.1 Under the conditions β > 1/2 and αc < αr, the optimal ceded function is
f ∗(x) = c(x − d)+ with the following parameters:

1. c = 1 and d = d∗ when θ∗ < S X(0) and U(θ∗) < Q(β, ac, ar);

2. c ∈ [0, 1] is any constant and d = d∗ when θ∗ < S X(0) and U(θ∗) = Q(β, ac, ar);

3. c = 1 and d = 0 when θ∗ ≥ S X(0) and (1 + θ)E[X] < Q(β, ac, ar);

4. c ∈ [0, 1] is any constant and d = 0 when θ∗ ≥ S X(0) and (1 + θ)E[X] = Q(β, ac, ar).

If none of the above conditions are satisfied, then f ∗(x) = 0 for all x.
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Proof We only prove Part (1) because the proofs of the other parts are similar. To minimize
function g1(c, d) over (c, d) ∈ [0, 1]× [0, ac], we first take the derivative of g1(c, d) with respect
to d and have:

∂g1(c, d)
∂d

= c(2β − 1)
(
1 − (1 + θ)S X(d)

)
,

which is an increasing function in d. Consequently, the function g1(c, d) is convex in d.
Since θ∗ < S X(0), the derivative ∂g1(c, d)/∂d is negative at d = 0 and is equal to zero at
d∗. It is easy to show that ac < ar if and only if ac > Q(β, ac, ar). Then, the condition
U(θ∗) < Q(β, ac, ar) indicates that d∗ < U(θ∗) < ac, and so, the deductible level d∗ minimizes
the function g1(c, d) when c > 0.

Next, setting d = d∗, we have:

g1(c, d∗) = c(2β − 1)
(
U(θ∗) − Q(β, ac, ar)

)
< 0. (2.11)

Because U(θ∗) < Q(β, ac, ar) by assumption, g1(c, d∗) is minimized at c = 1. Overall,
assuming c > 0, function g1(c, d) is minimized at (c, d) = (1, d∗). Noting that g1(0, d) = 0 >
g1(1, d∗), we obtain the desired result.

Remark We have the following observations:

• When β = 1, then only the cedent is considered. In this case, Q(β, ac, ar) = ac and f ∗(x) =

(x − d∗)+ when U(θ∗) < ac. Therefore, when U(θ∗) > ac, then f ∗(x) = 0 for all x, and the
primary insurance company will not purchase any reinsurance policy. This result agrees
with those derived by Cai et al. (2008); Cheung (2010).

• When β ↘ 1/2, then Q(β, ac, ar) ∼ (ac − ar)/(4β − 2) < 0, and the optimal value of c is
zero. Therefore, f ∗(x) = 0 for all x.

• The value of d∗ in the excess-of-loss reinsurance policy does not depend on the choice of β
whenever U(θ∗) ≤ Q(β, ac, ar).

Case 2: β > 1/2 and αc > αr

In this case, the optimal ceded function is given by Equation (2.8) with d < αc. The order
between d and ar is not, however, determined. Therefore, the optimization problem is:

min
(c,d)∈[0,1]×[0,ac]

g2(c, d),

where:

g2(c, d) = c
(
−β(ac − d) + (1 − β)(ar − d)+ + (2β − 1)(1 + θ)

∫ ∞

d
S X(t)dt

)
,

which is a continuous function in c and d. Note, however, that the left-hand derivative ∂g2(c, d)/∂d|d=ar−

is not equal to the right-hand derivative ∂g2(c, d)/∂d|d=ar+. With the additional notations:

θ∗β =
β

(2β − 1)(1 + θ)
,

d∗β = S −1
X (θ∗β),

Uβ(x) = S −1
X (x) +

1
θ∗β

∫ ∞

S −1
X (x)

S X(t)dt,
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we have the following theorem.

Theorem 2.3.2 Under the conditions β > 1/2 and αc > αr, the optimal ceded function is
f ∗(x) = c(x − d)+ with the following parameters:

1. c = 1 and d = d∗ when 1 − αr < θ
∗ < S X(0) and Q(β, ac, ar) > U(θ∗);

2. c ∈ [0, 1] is any constant and d = d∗ when 1 − αr < θ
∗ < S X(0) and Q(β, ac, ar) = U(θ∗);

3. c = 1 and d = ar when θ∗ < 1 − αr < θ
∗
β, and ac > Uβ(1 − αr);

4. c ∈ [0, 1] is any constant and d = ar when θ∗ < 1 − αr < θ
∗
β, and ac = Uβ(1 − αr);

5. c = 1 and d = d∗β when 1 − αc < θ
∗
β < 1 − αr and ac > Uβ(θ∗β);

6. c ∈ [0, 1] is any constant and d = d∗β when 1 − αc < θ
∗
β < 1 − αr and ac = Uβ(θ∗β);

7. c = 1 and d = 0 when θ∗ ≥ S X(0) and Q(β, ac, ar) > (1 + θ)E[X];

8. c ∈ [0, 1] is any constant and d = 0 when θ∗ ≥ S X(0) and Q(β, ac, ar) = (1 + θ)E[X].

If none of the conditions above are satisfied, then f ∗(x) = 0 for all x.

Proof We prove Parts (1), (3) and (5) only, because the proofs of the other parts are similar.

Part (1): The derivative of g2(c, d) with respect to d is given by:

∂g2(c, d)
∂d

=

 c(2β − 1)
(
1 − (1 + θ)S X(d)

)
when d < ar,

c(2β − 1)
(

β

2β−1 − (1 + θ)S X(d)
)

when d > ar.

Assuming c > 0, we have that ∂g2(c, d)/∂d is increasing in d > 0. The condition 1 − αr <
θ∗ < S X(0) ensures that ∂g2(c, d)/∂d is negative at d = 0, increases to zero at d∗ = S −1

X (θ∗) < ar

and becomes positive for d > d∗. Therefore, the objective function is minimized at d = d∗.
At d = d∗, the derivative ∂g2(c, d)/∂c is given by Formula (2.11). Therefore, as in the proof
of Theorem 2.3.1, the condition U(θ∗) < Q(β, ac, ar) ensures that g2(c, d) is minimized at
(c, d) = (1, d∗).

Part (3): When θ∗ < 1−αr < θ
∗
β, the derivative ∂g2(c, d)/∂d is negative for d < ar and positive

for d > ar. Therefore, the function g2(c, d) is minimized at d = ar, assuming c > 0. Next, since:

g2(c, ar) = cβ
(
Uβ(1 − αr) − ac

)
and Uβ(1 − αr) < ac by assumption, the function g2(c, d) is minimized at (c, d) = (1, ar) with
g2(1, ar) < 0. Noting that g2(0, ar) = 0 > g2(1, ar), the desired result follows.
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Part (5): Since θ∗ < θ∗β, the assumption θ∗β < 1 − αr implies θ∗ < 1 − αr. Therefore, the
derivative ∂g2(c, d)/∂d is negative for d < ar, equal to zero at d = d∗β ∈ (ar, ac) and positive
afterwards. Therefore, the objective function is minimized at d = d∗β. Note that the condition
ac > Uβ(θ∗β) implies d∗β < ac. Furthermore, since:

g2(c, d∗β) = c

−β(ac − d∗β) + (2β − 1)(1 + θ)
∫ ∞

d∗β

S X(t)dt


= cβ

(
Uβ(θ∗β) − ac

)
and Uβ(θ∗β) < ac by assumption, the objective function g2(c, d) is minimized at (c, d) = (1, d∗β)
when c > 0. Noting that g2(0, d) = 0 > g2(1, d∗β), the desired result follows.

Remark We have the following observations:

• When β = 1, then θ∗β = θ∗ and Uβ(x) = U(x). Thus, the result is exactly the same as in the
first bullet at the end of Case 1 above. The value of αr makes no difference here because
only the cedent’s risk is considered when β = 1.

• When β ↘ 1/2, then Q(β, ac, ar) ∼ (ac − ar)/(4β − 2) ↗ ∞, θ∗β ↗ ∞ and Uβ(θ∗β) = 0.
Therefore, Parts (1) and (3) of Theorem 2.3.2 apply. We have:

f ∗(x) =

{
(x − d∗)+ when θ∗ > 1 − αr,
(x − ar)+ when θ∗ < 1 − αr.

Case 3: β < 1/2 and αc < αr

With the optimal ceded function f ∗ given by Equation (2.9), Problem (2.7) reduces to:

min
η∈[0,1]

g3(η),

where:

g3(η) = −βηac + (1 − β)ηar + (2β − 1)(1 + θ)
(
η

∫ ar

0
xdFX(x) +

∫ ∞

ar

(x − ar + ηar)dFX(x)
)
.

Taking the derivative of g3(η) with respect to η, we have:

g′3(η) = −βac + (1 − β)ar + (2β − 1)(1 + θ)
( ∫ ar

0
xdFX(x) + arS X(ar)

)
= (1 − 2β) (Q(β, ac, ar) − (1 + θ)E[X ∧ ar]) ,

(2.12)

where X ∧ ar = min{X, ar}. Therefore, g3(η) achieves its minimum at η = 1 when the quantity
on the right-hand side of Equation (2.12) is negative. Otherwise, the minimum is at η = 0.
Consequently, we have the following theorem.
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Theorem 2.3.3 Under the conditions β < 1/2 and αc < αr, the optimal ceded function is:

f ∗(x) =

{
ηx when 0 ≤ x < ar,
x − (1 − η)ar when x ≥ ar,

with the parameter:

η =


1 when (1 + θ)E[X ∧ ar] > Q(β, ac, ar),
0 when (1 + θ)E[X ∧ ar] < Q(β, ac, ar),
any constant ∈ [0, 1] when (1 + θ)E[X ∧ ar] = Q(β, ac, ar).

Remark A few observations follow:

• When β ↗ 1/2, then g′3(η) → (ar − ac)/2 > 0. In this case, η∗ = 0 and the optimal
reinsurance policy is f ∗(x) = (x − ar)+.

• When β = 0 and only the reinsurer’s risk is considered, Theorem 2.3.3 holds with Q(β, ac, ar) =

ar.

Case 4: β < 1/2 and αc > αr

With the optimal reinsurance function f ∗ given by Equation (2.9), Problem (2.7) becomes:

min
η∈[0,1]

g4(η),

where

g4(η) = −β(ac − ar + ηar) + (1 − β)ηar

+(2β − 1)(1 + θ)
(
η

∫ ar

0
xdFX(x) +

∫ ∞

ar

(x − ar + ηar)dFX(x)
)
.

Taking the derivative of g4(η) with respect to η, we get:

g′4(η) = (1 − 2β)
(
ar − (1 + θ)E[X ∧ ar]

)
,

which yields the following theorem.

Theorem 2.3.4 Under the conditions β < 1/2 and αc > αr, the optimal ceded function is:

f ∗(x) =

{
ηx when 0 ≤ x < ar,
x − (1 − η)ar when x ≥ ar,

with the parameter:

η =


1 when (1 + θ)E[X ∧ ar] > ar,
0 when (1 + θ)E[X ∧ ar] < ar,
any constant ∈ [0, 1] when (1 + θ)E[X ∧ ar] = ar.

Note that Theorems 2.3.3 and 2.3.4 are quite similar, with the role of Q(β, ac, ar) in the
former theorem played by ar in the latter one.
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2.3.3 An illustrative Example
In this section, we construct a numerical example to illustrate the Pareto optimality of the
reinsurance policies that we derived above. Specifically, we assume that the loss variable X
follows the exponential distribution with the survival function S X(x) = e−0.001x for x ≥ 0. Let
the safety loading parameter be θ = 0.2. Then, θ∗ = 1/(1 + θ) = 0.833, d∗ = S −1

X (θ∗) = 182.3
and U(θ∗) = 1182.3. We discuss two scenarios.

Scenario A: αc = 0.95 and αr = 0.99

In this case, ac = 2995.7 and ar = 4605.2. Applying Theorems 2.3.1 and 2.3.3, we have:

f ∗1A(x) =


(x − 4605.2)+ when β ∈ [0, 0.5),
0 when β ∈ (0.5, 0.654),
(x − 182.3)+ when β ∈ (0.654, 1].

When β = 0.5, then:

f ∗1A(x) =

{
0 when x ≤ 4605.2,
unspecified when x > 4605.2.

When β = 0.654, then:

f ∗1A(x) = c(x − 182.3)+

for any constant c ∈ [0, 1]. The values of VaR(C f ∗1A
) versus VaR(R f ∗1A

) are reported in Table 2.1.

VaRαc(C f∗
1A

) VaRαr(R f∗
1A

)

β ∈ [0, 0.5) 3005.73 −10
β = 0.5 between 2995.73 and 3005.73 between −10 and 0
β ∈ (0.5, 0.654) 2995.73 0
β = 0.654 between 1182.32 and 2995.73 between 0 and 3422.85
β ∈ (0.654, 1] 1182.32 3422.85

Table 2.1: VaRs of the cedent and the reinsurer when f ∈ C1.

We have the following observations:

• For β ∈ (0.654, 1], the insurer is “more important”. As a result, it retains the “good” risk
in the layer of losses (0, S −1

X (θ∗)) and cedes the rest. For β ∈ [0, 0.5), the reinsurer is “more
important”, and it assumes the risk above ar. As a result, the chance of a payment is so
small that its VaR does not increase; it actually reduces to −10 because of the collected
premium. For β ∈ (0.5, 0.654), no agreement is reached between the two parties.

• From Table 2.1, we see that when β gets larger and the cedent becomes increasingly impor-
tant, then VaRαc(C f ∗1A

) decreases, whereas VaRαr (R f ∗1A
) increases.
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• When β = 0.5 and β = 0.654, the optimal ceded functions are only partially specified,
and the risk of the two parties varies in some range. For example, when β = 0.5, then
VaRαc(C f ∗1A

) is maximized by choosing f ∗1A(x) = (x−4605.2)+ because the cedent is choosing
a maximal ceded function and paying a maximal reinsurance premium (within the partially-
specified optimal ceded functions). However, its VaR does not reduce with such a high
deductible value. On the other hand, VaRαc(C f ∗1A

) is minimized with f ∗1A(x) = 0, within the
partially-specified optimal ceded functions.

Scenario B: αc = 0.99 and αr = 0.95

In this case, we have ac = 4605.2 and ar = 2995.7. Applying Theorems 2.3.2 and 2.3.4, we
have:

f ∗1B(x) =

{
(x − 2995.7)+ when β ∈ [0, 0.5),
(x − 182.3)+ when β ∈ (0.5, 1]. (2.13)

When β = 0.5,

f ∗1B(x) =

{
x − d when x ≥ 2995.7,
unspecified when x < 2995.7, (2.14)

where d ∈ [0, 2995.7] can be any constant. The values of VaR(C f ∗1B
) versus VaR(R f ∗1B

) are
reported in Table 2.2.

VaRαc(C f∗
1B

) VaRαr(R f∗
1B

)

β ∈ [0, 0.5) 3055.73 −60
β = 0.5 between 1182.32 and 3055.73 between −60 and 1813.41
β ∈ (0.5, 1] 1182.32 1813.41

Table 2.2: VaRs of the cedent and the reinsurer when f ∈ C1.

2.4 Optimal Reinsurance Policy When both f and R f are
non-decreasing

In this section, we determine optimal reinsurance policies when f ∈ C2, that is when both f
and the retained loss function I f are non-decreasing. Comparing this situation with the earlier
f ∈ C1, we can now deal with non-convex ceded functions, such as f (x) = min{x, l} for any
retention level l > 0. Mathematically, the problem becomes:

min
f∈C2
H( f ) = min

f∈C2

{
− β · f (ac) + (1 − β) · f (ar) + (2β − 1)(1 + θ)E[ f (X)]

}
. (2.15)

As pointed out in Section 2.1, solutions to similar problems exist in the literature, and we
refer to Asimit et al. (2013); Assa (2015); Ludkovski and Young (2009). for details and further
references. Our contribution in this paper is to generalize the geometric arguments of Cheung
(2010) to the situation when the interests of both the cedent and the reinsurer are taken into
account, and we do so in such a way that allows us to avoid lengthy mathematical arguments
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and consequently helps us to gain useful intuition. In addition, for all scenarios considered, we
are able to provide explicit recipes for determining optimal reinsurance policies.

In Section 2.4.1 below, we derive optimal forms of ceded functions, and in Section 2.4.2,
we determine parameter values of the optimal functions. Section 4.3 contains an illustrative
numerical example, which is a continuation of that of Section 3.3. Throughout the rest of this
section, we assume 1 − αc < S X(0) and 1 − αr < S X(0).

2.4.1 Functional Form of the Ceded Function
We have subdivided our considerations into three cases.

Case 1: β > 1/2

Similarly to Case 1 of Section 2.3.1, we determine the functional form of the ceded function
f ∗ in the following manner. For any f ∈ C2, we seek f ∗, such that f ∗(ac) = f (ac) and:

(1 − β) f ∗(ar) + (2β − 1)P f ∗ ≤ (1 − β) f (ar) + (2β − 1)P f .

This requires f ∗(ar), as well as the entire function f ∗ to be as small as possible for a fixed
value of f ∗(ac).

As we see from Figure 2.3, because f is non-decreasing with a slope not exceeding one,
the aforementioned requirements are satisfied by the function:

f ∗(x) = min{(x − d)+, ac − d}

=


0 when x ≤ d,
x − d when d < x < ac,
ac − d when x ≥ ac,

(2.16)

where d ∈ [0, ac] can be any constant. The optimal value of d will be determined in Section
2.4.2 below. In reinsurance jargon, the above specified optimal form of the reinsurance policy
is for the reinsurer to provide coverage over the layer (d, ac).

Case 2: β < 1/2

Similarly to Case 2 of Section 2.3.1, since the coefficients in front of f (ac) and P f in objective
Function (2.15) are negative, the optimal reinsurance policy is found by seeking f ∗, such that
f ∗(ar) = f (ar) and:

β f ∗(ac) + (1 − 2β)P f ∗ ≥ β f (ac) + (1 − 2β)P f .

As we see from Figure 2.4, these requirements are satisfied by the function:

f ∗(x) = min{x, d}1{x≤ar} + (x − ar + d)1{x>ar}

=


x when 0 ≤ x ≤ d,
d when d < x ≤ ar,
x − ar + d when x > ar,

(2.17)

where d ∈ [0, ar] can be any constant. Hence, the optimal form of the reinsurance policy is
for the reinsurer to provide a coverage except for the layer (d, ar). In other words, the insurer
retains losses in the layer (d, ar).
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Figure 2.3: Optimal ceded functions in C1: Case 1.
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Figure 2.4: Optimal ceded functions in C1: Case 2.

Case 3: β = 1/2

In this case, the minimization problem (2.15) simplifies to:

min
f∈C2
{ f (ar) − f (ac)} .

When αc < αr, because the ceded function is non-decreasing, this requires f ∗ to be constant
on the interval (ac, ar). Therefore, any function f ∗ in C2 with f ∗(x) = c on (ac, ar), where
c ∈ [0, ac] is a constant, is Pareto-optimal.

When αc > αr, because the slope of the ceded function cannot exceed one, the function
f ∗ increases at the rate of one on the interval (ar, ac). Therefore, any function f ∗ in C2 with
f ∗′(x) = 1 on (ar, ac) is Pareto-optimal.

Finally, when αc = αr, then the objective function is always constant.
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2.4.2 Parameter Values of the Optimal Ceded Function
In this section, we obtain parameter values of the optimal ceded functions that we derived in
Section 2.4.1. Four cases are considered separately.

Case 1: β > 1/2 and αc < αr

Let:
θ∗ =

1
1 + θ

and:
d∗ = S −1

X (θ∗).

Theorem 2.4.1 Under the conditions β > 1/2 and αc < αr, the optimal ceded function is
f ∗(x) = min{(x − d)+, ac − d} with the parameter:

1. d = d∗ when 1 − αc < θ
∗ < S X(0);

2. d = 0 when θ∗ ≥ S X(0).

In addition, when θ∗ ≤ 1 − αc, then f ∗(x) = 0 for all x.

Proof With the function f ∗ given by Equation (2.16), optimization Problem (2.15) becomes:

min
d∈[0,ac]

g5(d),

where:

g5(d) = (2β − 1)
(
(1 + θ)

∫ ac

d
S X(x)dx − ac + d

)
.

The derivative:

g′5(d) = (2β − 1)(1 − (1 + θ)S X(d))

is increasing in d. Therefore, when 1−αc < θ
∗ < S X(0), then g5(d) is minimized at 0 < d∗ < ac.

When θ∗ > S X(0), then g5(d) is minimized at d = 0. Finally, when θ∗ < 1 − αc, then g5(d) is
minimized at d = ac, and so, f ∗(x) = 0.

Case 2: β > 1/2 and αc > αr

With the function f ∗ given by Equation (2.16), optimization problem (2.15) reduces to:

min
d∈[0,ac]

g6(d),

where:

g6(d) = −β(ac − d) + (1 − β)(ar − d)+ + (2β − 1)(1 + θ)
∫ ac

d
S X(x)dx.
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Let:
θ∗β =

β

(2β − 1)(1 + θ)

and
d∗β = S −1

X (θ∗β).

We calculate the derivative:

g′6(d) =

{
(2β − 1)(1 + θ)(θ∗ − S X(d)) when d < ar,
(2β − 1)(1 + θ)(θ∗β − S X(d)) when d > ar,

which is an increasing function in d, and so, we have the following theorem.

Theorem 2.4.2 Under the conditions β > 1/2 and αc > αr, the optimal ceded function is
f ∗(x) = min{(x − d)+, ac − d} with the parameter:

1. d = d∗ when 1 − αr < θ
∗ < S X(0);

2. d = ar when θ∗ < 1 − αr < θ
∗
β;

3. d = d∗β when θ∗ < 1 − αr and 1 − αc < θ
∗
β < 1 − αr;

4. d = 0 when θ∗ ≥ S X(0).

If none of the above conditions are satisfied, then f ∗(x) = 0 for all x.

Proof We use similar arguments to those in Theorem 2.3.2. We illustrate them here by proving
Part (1) only. When 1 − αr < θ∗ < S X(0), the derivative g′6(d) reaches zero at d∗ = S −1

X (θ∗) ∈
(0, ar) and then remains positive for d > d∗. Therefore, g6(d) reaches its minimum at d∗ =

S −1
X (θ∗). With this, we conclude the proof of Theorem 2.4.2.

Case 3: β < 1/2 and αc < αr

With the function f ∗ given by Equation (2.17), optimization Problem (2.15) reduces to:

min
d∈[0,ar]

g7(d),

where the objective function is:

g7(d) =


−βd + (1 − β)d + (2β − 1)(1 + θ)

(∫ d

0
S X(x)dx +

∫ ∞
ar

S X(x)dx
)

when d < ac,

−βac + (1 − β)d + (2β − 1)(1 + θ)
(∫ d

0
S X(x)dx +

∫ ∞
ar

S X(x)dx
)

when d > ac.

Thus:

g′7(d) =

{
(1 − 2β)(1 + θ)(θ∗ − S X(d)) when d < ac,
(1 − 2β)(1 + θ)(θ∗β − S X(d)) when d > ac,

which leads us to the following theorem, whose proof is similar to that of Theorem 2.3.3 and
thus omitted.
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Theorem 2.4.3 Under the conditions β < 1/2 and αc < αr, the optimal ceded function is:

f ∗(x) = min{x, d}1{x≤ar} + (x − ar + d)1{x>ar}

with the parameter:

1. d = d∗ when 1 − αc < θ
∗ < S X(0);

2. d = ac when θ∗ < 1 − αc < θ
∗
β;

3. d = d∗β when θ∗ < 1 − αc and 1 − αr < θ
∗
β < 1 − αc;

4. d = ar when θ∗ < 1 − αc and θ∗β < 1 − αr;

5. d = 0 when θ∗ ≥ S X(0).

If none of the above conditions are satisfied, then f ∗(x) = 0 for all x.

Case 4: β < 1/2 and αc > αr

With the function f ∗ given by Equation (2.17), optimization Problem (2.15) reduces to:

min
d∈[0,ar]

g8(d),

where:

g8(d) = −β(ac − ar + d) + (1 − β)d + (2β − 1)(1 + θ)
(∫ d

0
S X(x)dx +

∫ ∞

ar

S X(x)dx
)
.

Thus,

g′8(d) = (1 − 2β)(1 + θ)(θ∗ − S X(d)),

which gives us the following theorem.

Theorem 2.4.4 Under the conditions β < 1/2 and αc > αr, the optimal ceded function is:

f ∗(x) = min{x, d}1{x≤ar} + (x − ar + d)1{x>ar}

with the parameter:

1. d = d∗ when 1 − αr < θ
∗ < S X(0);

2. d = ar when θ∗ < 1 − αr < S X(0);

3. d = 0 when θ∗ ≥ S X(0).

If none of the above conditions are satisfied, then f ∗(x) = 0 for all x.

2.4.3 The illustrative Example Continued
In this subsection, we continue the illustrative example of Section 2.3.3, but now assume that
the admissible class of ceded functions is C2
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Scenario A: αc = 0.95 and αr = 0.99

Applying Theorems 2.4.1 and 2.4.3, we have:

f ∗2A(x) =

{
min

{
x, 182.3

}
1{x≤4605.2} + (x − 4422.9)1{x>4605.2} when β ∈ [0, 0.5),

min
{
(x − 182.3)+, 2813.4

}
when β ∈ (0.5, 1].

When β = 0.5, then:

f ∗2A(x) =

{
d when 2995.7 ≤ x ≤ 4605.2,
unspecified otherwise,

where d ∈ [0, 2995.7] can be any constant.
The values of VaR(C f ∗2A

) versus VaR(R f ∗2A
) are reported in Table 2.3.

VaRαc(C f∗
2A

) VaRαr(R f∗
2A

)

β ∈ [0, 0.5) 3025.41 −29.68
β = 0.5 between 1122.32 and 3025.41 between −29.68 and 1873.41
β ∈ (0.5, 1] 1122.32 1873.41

Table 2.3: VaRs of the cedent and the reinsurer when f ∈ C2.

We have the following observations:

• Since the cedent and the reinsurer have more choices when f ∈ C2, their VaRs under
the optimal reinsurance policy f ∗2A are lower than the corresponding ones under f ∗1A. In
particular, the reinsurer’s risk is reduced significantly even when β = 1.

• For β ∈ [0, 0.5), the reinsurer assumes the “good” risk in the layer (0, S −1
X (θ∗)), as well as

losses greater than 4422.9. The former layer creates profit, and the latter layer does not
contribute to its VaR because the chance of penetration is too small compared with the
probability level αr used in its VaR.

• For β ∈ (0.5, 1), the insurer retains the “good” risk in the layer (0, S −1
X (θ∗)), as well as the

losses greater than 2813.4. The former layer creates profit, and the latter layer does not
contribute to its VaR because the chance of penetration is too small compared with the
probability level αc used in its VaR.

Scenario B: αc = 0.99 and αr = 0.95

Applying Theorems 2.4.2 and 2.4.4, we have:

f ∗2B(x) =

{
min

{
x, 182.3

}
1{x≤2995.7} + (x − 2813.4)1{x>2995.7} when β ∈ [0, 0.5),

min
{
(x − 182.3)+, 4422.85

}
when β ∈ (0.5, 1].

When β = 0.5,

f ∗2B(x) =

{
x − d when x ∈ [2995.7, 4605.2],
unspecified when x ∈ [0, 2995.7) ∪ (4605.7,∞), (2.18)

where d ∈ [0, 2995.7] can be any constant. The values of VaR(C f ∗2B
) versus VaR(R f ∗2B

) are
reported in Table 2.4.
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VaRαc(C f∗
2B

) VaRαr(R f∗
2B

)

β ∈ [0, 0.5) 3073.43 −77.67
β = 0.5 between 1170.33 and 3073.43 between −77.67 and 1825.38
β ∈ (0.5, 1] 1170.33 1825.38

Table 2.4: VaRs of the cedent and the reinsurer when f ∈ C2.

2.5 A Numerical Comparison of the Optimal Reinsurance
Policies in different classes

In Sections 2.3.3 and 2.4.3, we derived the Pareto-optimal reinsurance policies in C1 and C2,
respectively. In this section, we compare the two cases.

In Figure 2.5, we depict f ∗1A and f ∗2A obtained for Scenario A with the proportional reinsur-
ance f1(x) = ax when a varies from zero to one and also with the excess-of-loss reinsurance
f2(x) = (x − d)+ when the deductible level d varies from zero to 4605.2 = max{ac, ar}. The
following can be concluded from the figure.

Figure 2.5: VaRs of the cedent and the reinsurer under different policies: Scenario A.

• The efficient frontier for the VaRs of the two parties with f ∈ C1 is represented by the path
from A = (1182.32, 3422.85) to B = (2995.72, 0) and then to C = (3005.73,−10). Note
that the points between A and B represent the VaRs of the two parties resulting from the
optimal policies obtained with β = 0.5. The points between B and C represent the VaRs of
the two parties resulting from the optimal policies obtained with β = 0.654.
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• The efficient frontier for the VaRs of the two parties when f ∈ C2 is represented by the
path from D = (1122.32, 1873.41) to E = (3025.41,−29.68).

• For the quota-share reinsurance with f1(x) = ax where a ranges from zero to one, the
VaRs of the two parties go from B to F = (1200, 3405.2). When f ∈ C1, the quota-share
reinsurance policy is quite close to the efficient frontier.

• For the excess-of-loss reinsurance f2(x) = (x − d)+ with d ranging from zero to ar =

4605.2, the VaRs of the two parties go along the path F → A → G → C with G =

(3055.47, 1545.43).

From Figure 2.5, we conclude that if the reinsurer worries about the right-hand tail more
than the primary insurer (αc < αr), then the difference between the efficient frontiers obtained
for f ∈ C1 and f ∈ C2 is significant. This means that the convexity requirement in the definition
of C1 is quite restrictive to the reinsurer, and the coverage with an upper limit (which is not
allowed in C1) is valuable. In the case when the convexity of the ceded function must be
required, quota-share policies are quite efficient.

In Figure 2.6, we compare f ∗1B and f ∗2B obtained for Scenario B with the quota-share rein-
surance policies f1(x) = ax when a ranges from zero to one and the excess-of-loss reinsurance
policies f2(x) = (x − d)+ when the deductible d ranges from zero to 4605.2 = max{ac, ar}.

Figure 2.6: VaRs of the cedent and the reinsurer under different policies: Scenario B.

In particular, we observe the following:

• The efficient frontier for the VaRs of the two parties with f ∈ C1 is represented by the path
from A = (1182.32, 1813.41) to B = (3055.73,−60).
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• The efficient frontier for the VaRs of the two parties when f ∈ C2 is represented by the
path from C = (1170.33, 1825.38) to D = (3073.43,−77.67). In fact, it can algebraically
be shown that the path from B to A is actually a part of the path from D to C. That is, by
allowing f ∈ C2, the efficient frontier is extended from the path B→ A to the path D→ C.

• For the quota-share reinsurance with the parameter a ranging from zero to one, the VaRs
of the two parties are represented by the path from E = (4605.7, 0) to F = (1200, 1795.7).
We see that when αc > αr, the quota-share reinsurance policies are not efficient.

• For the excess-of-loss reinsurance with the parameter d ranging from zero to ac = 4605.2,
the VaRs of the two parties change along the path F → A → B → E. We see that setting
d ∈ (0, ar) is quite efficient, whereas setting d ∈ (ar, ac) is not.

From Figure 2.6, we conclude that if the primary insurer worries about the right-hand tail
more than the reinsurer (αc > αr), then the excess-of-loss policies with the deductible level
ranging from S −1

X (θ∗) to ar provide a good part of the efficient frontier. The quota-share policies
are in general inefficient.

2.6 Conclusions
In this paper, we have extended the geometric approach of Cheung (2010) to obtain the optimal
reinsurance policies accommodating both the cedent’s and the reinsurer’s interests. Specif-
ically, we have derived the forms of optimal reinsurance functions and also specified their
parameter values within two classical sets of admissible ceded functions. We have adopted
the same value-at-risk measure for assessing risks of the two parties, but at possibly differ-
ent probability levels. Illustrative numerical examples have been constructed to illuminate our
theoretical findings and their practical implications.



Chapter 3

On Pareto-Optimal Reinsurance With
Constraints Under Distortion Risk
Measures

3.1 Introduction

Reinsurance is an agreement between an insurance company (insurer, cedent) and a reinsurance
company (reinsurer), whereby the reinsurer agrees to pay a share of the losses incurred by the
insurer for a premium. Particularly, let the losses of the insurer in a time period be denoted
by a non-negative variable X, the ceded part of losses be f (X), and the retained part of losses
be I f (X) = X − f (X). Let the reinsurance premium be P f = H( f (X)), where H is a premium
principle, which maps a random variable to a real number. Under such setting, the total losses
of the insurer and the reinsurer are C f = X − f (X) + P f and R f = f (X) − P f , respectively.
Commonly used forms of reinsurance treaties are the excess-of-loss treaty, where f (X) = (X −
d)+ with d > 0 being the deductible level (attaching point); and the quota-share treaty, where
f (X) = aX with 0 ≤ a ≤ 1 being the share that the reinsurer assumes.

Optimal forms of reinsurance have been extensively studied in actuarial science and risk
management literature. Borch (1960a) showed that with P f = (1 + θ)E[ f (X)], where θ > 0
is a risk loading factor, the variance of the insurer’s losses is minimized by an excess-of-
loss reinsurance treaty. Arrow (1963) proved that a risk-aversive insurer’s expected utility
is maximized by an excess-of-loss reinsurance treaty. Cai and Tan (2007) proposed to measure
the insurer’s risk by Value at Risk (VaR) and Tail Value at Risk (TVaR) in designing optimal
reinsurance treaties. Many results in this aspect have been obtained thereafter. See for example,
Cai et al. (2008), Bernard and Tian (2009), Cheung (2010), Chi and Tan (2011) and references
therein. Optimal reinsurance treaties considering other objective functions, such as minimizing
the risk-adjusted value of insurer’s liabilities, maximizing the survival probability, minimizing
the insurer’s risk quantified by distortion risks measures or expectile, are discussed recently
in Chi (2012), Assa (2015), Cai and Weng (2014), Zheng et al. (2015) and Weng and Zhuang
(2016). Strikingly, in most cases, the optimal form of the ceded function f (x) is piecewise
linear, as was noted in Assa (2015).

The above mentioned studies focused on designing optimal reinsurance policies from the

29
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insurer’s point of views, either maximizing its expected utility or minimized its risk. Borch
(1960b) proposed to consider the interests of both parties in the reinsurance treaty, and he sug-
gested that one type of such optimal reinsurance treaties could be designed to reduce the vari-
ance of both parties. Consequently, the covariance between the ceded losses and the retained
losses should be maximized, which indicates that pro-rata reinsurance policies are optimal.
Raviv (1979) assumed that both the insurer and the reinsurer are risk aversive and studied the
Pareto-optimal reinsurance policies whereby one party’s expected utility cannot be increased
without decreasing that of the other party. Golubin (2006b) extended the results in Raviv
(1979) by assuming that the reinsurance premiums are based on the actuarial value of ceded
losses. Ignatov et al. (2004) studied the optimal reinsurance treaties maximizing the finite hori-
zon joint survival probability of the two parties. Hürlimann (2011) proposed minimizing the
sum of variances of the two parties. Cai et al. (2015) studied the optimal forms of reinsurance
policies that minimize the convex combinations of the VaRs of the cedent and the reinsurer
under two types of constraints that describe the interests of the two parties.

A closely related problem to optimal reinsurance is the so–called optimal risk sharing
among partners, where each partner’s interests are considered simultaneously. For results in
this area, see for example, Borch (1960c), Aase (2002), Ludkovski and Young (2009), Asimit
et al. (2013), and the references therein.

In this paper, we consider the interests of both the insurer and the reinsurer and study the
Pareto-optimal insurance treaties under the constraints that risks of the insurer and the reinsurer
cannot exceed some limits. This model generalizes that of Assa (2015) and Zhuang et al. (2016)
because of the presence of the constraints regarding the risks of the insurer and the reinsurer.
Our model is somewhat similar to that of Ludkovski and Young (2009), however, we show that
the constrained optimization problem may be solved equivalently by the Lagrange multiplier
method, which was used in Ludkovski and Young (2009); the generalized Neyman-Pearson
method, which was used in Golubin (2006b) and Lo (2017); as well as the optimal control
theory, which was used by Raviv (1979). To illustrate the practical applications of our main
results, we derive explicit Pareto-optimal ceded functions when the risks are quantified by VaR
and TVaR. Numerical examples are given. In particular, to illustrate the applicability of our
main result, a numerical example where Range Value-at-Risk (RVaR) is used as risk measures
of the insurer and the reinsurer is provided.

The rest of the paper is organized as follows. In Section 2, we describe the model and derive
the optimal reinsurance policies using the Neyman-Pearson, the Lagrange multiplier, and the
dynamic control methods. In Section 3, we apply the results to the scenarios when the risks
of the insurer and the reinsurer are measured by the Value at Risk (VaR) and the Tail Value at
Risk (TVaR). Section 4 provides numerical examples.

3.2 The Model

We begin by providing a very brief description of distortion risk measures.
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3.2.1 Distortion risk measure
The distortion risk measure of a non-negative random variable X with survival function S X is
defined by Hg(X) =

∫ ∞
0

g(S X(t))dt, where the distortion function g : [0, 1] → [0, 1] is non-
decreasing and satisfies g(0) = 0 and g(1) = 1 (see for example, Denuit et al. (2006), Balbás
et al. (2009) and references therein). An important property of distortion risk measures is
the additivity for comonotonic risks. That is, for any distortion function g and comonotonic
random variables X and Y ,

Hg(X + Y) = Hg(X) + Hg(Y). (3.1)

For detailed discussions of comonotonic random variables and the distortion risk measures, see
for example, Dhaene et al. (2002b,c), and the references therein.

3.2.2 Model setup
We assume that the admissible set of ceded functions is given by

C :=
{
f : f and I f are non–decreasing and 0 ≤ f (x) ≤ x for all x

}
. (3.2)

This means that the reinsurer’s payments to the insurer cannot exceed the insurer’s losses, and
that the ceded and retained loss functions are non-decreasing. These conditions are required to
reduce moral hazards in reinsurance transactions. It was shown in Chi and Tan (2011) that all
functions f ∈ C are Lipschitz continuous and consequently differentiable almost everywhere.

Assume that the reinsurance premiums are calculated by P f = cHgp( f (X)), where gp(·) is a
distortion function and c ≥ 1 is a risk loading factor. Assume that the risks of the insurer and
the reinsurer are quantified by distortion risk measures characterized by distortion functions
g1(·) and g2(·), respectively.

Before we proceed, we state a property of the obtainable set of the risks of the insurer and
the reinsurer.

Proposition 3.2.1 LetW = {(Hg1(C f ),Hg2(R f ))} denote the obtainable set of the risks of the
insurer and the reinsurer with all admissible ceded functions f ∈ C. Then the setW is convex.

Proof For any two points in the setW, say O1 = (Hg1(C f1),Hg2(R f1)) and O2 = (Hg1(C f2),Hg2(R f2)),
let O = αO1 + (1 − α)O2, where α ∈ [0, 1], is a point on the line connecting O1 and O2. Then
using the commonotonic linearity of the distortion risk measures,

O = (Hg1(Cα f1+(1−α) f2),Hg2(Rα f1+(1−α) f2)). (3.3)

Since α f1 + (1 − α) f2 ∈ C, we must have that O ∈ W. Therefore the setW is convex.

The main goal of this paper is to seek Pareto-optimal reinsurance policies, under which one
party’s risk cannot be further reduced without increasing that of the other party. Mathemat-
ically, this means that f ∗ is a Pareto-optimal ceded function if and only if there is no ceded
function f (x) , f ∗(x) belonging to the admissible set C such that

Hg1(C f ) ≤ Hg1(C f ∗) and Hg2(R f ) ≤ Hg2(R f ∗) (3.4)

are satisfied with at least one of the inequality being strict.
A general approach to identify Pareto optimal reinsurance policies is to solve the following

problem (see for example, Gerber (1979) and Cai et al. (2017)):
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Problem 3.2.2 (Unconstrained Problem)

min
f∈C

βHg1(C f ) + (1 − β)Hg2(R f ), β ∈ [0, 1]. (3.5)

Since the setW is convex, applying the result on page 90 of Gerber (1979), we conclude
that all Pareto optimal reinsurance policies may be obtain by solving Problem 3.2.2.

In addition, we assume that the companies’ management and/or government regulators
require that risk levels of the insurer and the reinsurer cannot exceed some monetary levels L1

and L2 respectively. More precisely, every admissible ceded function f (x) has to satisfy the
risk constraints of the insurer and the reinsurer:

Hg1(C f ) ≤ L1 and Hg2(R f ) ≤ L2. (3.6)

Therefore, in the following we consider the optimization problem with constraints:

Problem 3.2.3 (Main Problem)

min
f∈C

βHg1(C f ) + (1 − β)Hg2(R f ), β ∈ [0, 1],

s.t Hg1(C f ) ≤ L1

Hg2(R f ) ≤ L2

(3.7)

Remark 3.2.1 Let f̃ be any of the optimal solution of the unconstrained problem 3.2.2. If
Hg1(C f̃ ) > L1 and Hg2(R f̃ ) > L2, then problem 3.2.3 has no solution because there exists no
admissible ceded function f (x) such that Hg1(C f ) ≤ Hg1(C f̃ ) and Hg2(R f ) ≤ Hg2(R f̃ ).

Due to the comonotonic additivity of distortion risk measure, Problem 3.2.3 may be written
as

min
f∈C

− βHg1( f (X)) + (1 − β)Hg2( f (X)) + (2β − 1)cHgp( f (X)), β ∈ [0, 1],

s.t − Hg1( f (X)) + cHgp( f (X)) ≤ L1 − Hg1(X),
Hg2( f (X)) − cHgp( f (X)) ≤ L2.

(3.8)

Furthermore, as proved in Lemma 2.1 of Cheung and Lo (2017) as well as in Lemma 2.2 of Lo
(2017), for any distortion function g,

Hg( f (X)) =

∫ ∞

0
g
[
S X(t)

]
d f (t). (3.9)

Consequently, Problem (3.8) can be expressed as

Problem 3.2.4 (Another form of Problem 3.2.3)

min
f∈C

∫ ∞
0

h0(t) f ′(t)dt, (3.10)

s.t.
∫ ∞

0
h1(t) f ′(t)dt ≤ L1 − Hg1(X) = L∗1,∫ ∞

0
h2(t) f ′(t)dt ≤ L2,
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where
h0(t) = −βg1(S X(t)) + (1 − β)g2(S X(t)) + (2β − 1)cgp(S X(t)), (3.11)

h1(t) = cgp(S X(t)) − g1(S X(t)), (3.12)

and
h2(t) = g2(S X(t)) − cgp(S X(t)), (3.13)

In the following two subsections, we solve Problem 3.2.4 by applying the generalized
Neyman-Pearson Lemma, the Lagrange multiplier method, and the optimal control theory.

3.2.3 The generalized Neyman-Pearson Lemma and the Lagrange Mul-
tiplier Method

Problem 3.2.4 reminds us of the generalized Neyman-Pearson (or the Dantzig-Wald) problem
(eg. Lehmann and Romano (2006), Rustagi (2014)):

V(φ) = min
φ∈Φ

∫
fm+1(t)φ(t)dt,

s.t
∫

fi(t)φ(t)dt ≤ αi, i = 1, 2, . . . ,m,
(3.14)

where f1, f2 . . . , fm, fm+1 are real-valued integrable functions and the set Φ = {φ : 0 ≤ φ(x) ≤
1 for all x} contains all admissible functions.

According to the generalized Neyman-Pearson Lemma (page 77 of Lehmann and Romano
(2006)), let λ = (λ1, . . . , λm) ∈ Rm+, the solution to Problem (3.14) is given in the following
form:

φλ(t) =


1 when fm+1(t) +

∑m
i=1 λi fi(t) < 0,

ζ(t) when fm+1(t) +
∑m

i=1 λi fi(t) = 0,
0 when fm+1(t) +

∑m
i=1 λi fi(t) > 0,

(3.15)

where ζ(t) is any function such that φλ(t) ∈ Φ and that all the constraints in the problem (3.14)
are satisfied.

On the other hand, the Lagrange dual problem of (3.14) is

W(φ, λ) = min
φ∈Φ,λ∈Rm

∫
fm+1(t)φ(t)dt +

m∑
i=1

λi

(∫
fi(t)φ(t)dt − αi

)
. (3.16)

Since
∫

fi(t)φ(t)dt − αi ≤ 0 for i = 1, . . . ,m, in order to minimize (3.16), we must have that
λ ∈ Rm+.

Furthermore, (3.16) can be rearranged as

W(φ, λ) = min
φ∈Φ,λ∈Rm+

∫  fm+1(t) +

m∑
i=1

λi fi(t)

 φ(t)dt −
m∑

i=1

λiαi, (3.17)

from which it can be seen that the optimal solution for φ takes the form (3.15).
The detailed discussion of the generalized Neyman-Pearson problem (3.14) and its dual

(3.16) can be found in Luenberger (1969) and Meeks and Francis (1973), but in more abstract
settings. Particularly, directly applying Property (2.5) of Meeks and Francis (1973) yields the
following Lemma.
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Lemma 3.2.5 Let φλ(t) be defined in (3.15). If there exists a λ∗ ∈ Rm+ such that the constraints∫
fi(t)φλ∗(t)dt ≤ αi, i = 1, 2, . . . ,m, (3.18)

and the complementary slackness conditions

λ∗i
( ∫

fi(t)φλ∗(t)dt − αi
)

= 0, i = 1, 2, · · · ,m (3.19)

are satisfied, then φλ∗(t) is the solution to (3.14) and (φλ∗(t), λ∗) is the solution to (3.16). In
addition, V(φ∗) = W(φ∗, λ∗).

We note that the generalized Neyman-Pearson Lemma was also applied in Lo (2017) to
solve an optimal reinsurance problem considering the insurer’s budget constraint and the pres-
ence of the reinsurer’s risk constraint.

3.2.4 Perspective of Optimal Control Theory
Following Raviv (1979), the generalized Neyman-Pearson problem may be analyzed using
optimal control theory. Particularly, assumes that the limits of the integrals in problem (3.14)
is [0,T ], where T is fixed but arbitrarily large, we consider the problem:

V(φ) = min
φ∈Φ

∫ T

0
fm+1(t)φ(t)dt,

s.t
∫ T

0
fi(t)φ(t)dt ≤ αi, i = 1, 2, . . . ,m,

(3.20)

Let φ(t) be control variable and

z(t) =
(
z1(t), . . . , zm(t)

)
=

(∫ t

0
f1(s)φ(s)ds, . . . ,

∫ t

0
fm(s)φ(s)ds

)
(3.21)

be the set of state variables, the above problem can be rewritten as the following finite horizon
dynammic optimization problem

V(φ) = min
φ∈Φ

∫ T

0
fm+1(t)φ(t)dt,

z′i(t) = fi(t)φ(t), i = 1, . . . ,m,
zi(0) = 0, i = 1, . . . ,m,
zi(T ) ≤ αi, i = 1, . . . ,m.

(3.22)

With the adjoint variables λ(t) = (λ1(t), . . . , λm(t)), the Hamiltonian of the problem (3.22) is
given by

H(z, φ, λ, t) = fm+1(t)φ(t) +

m∑
i=1

λi(t) fi(t)φ(t). (3.23)
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Since the Hamiltonian doesn’t contain the state variables, the adjoint equations becomes

−λ′i(t) =
∂H(z, φ, λ, t)

∂zi
= 0, i = 1, . . . ,m. (3.24)

Therefore, adjoint variables λ(t) are constant on [0,T ]. Then we may write λ(t) = λ =

(λ1, . . . , λm). By the Pontryagin’s minimum principle (Kamien and Schwartz, 2012), a nec-
essary condition for φ∗(t) to be an optimal solution is that

H(z∗, φ∗, λ, t) ≤ H(z∗, φ, λ, t) for any φ ∈ Φ, (3.25)

where z∗ is the optimal state variables of problem (3.22). Noticing that the Hamiltonian (3.23)
is exactly the same as the integrand in (3.17), we immediately conclude that φ∗(t) is given
by (3.15). At last, the slackness conditions in Theorem 3.2.5 are given by the transversality
conditions in Pontryagin’s minimum principle: λi ≥ 0 and λi

(
z∗i (T )−αi

)
= 0, for i = 1, 2, . . . ,m.

Remark 3.2.2 Pontryagin’s minimum principle only provides a necessary condition to find
the optimal control variable φ(t). However, as shown in Seierstad and Sydsaeter (1977), if the
Hamiltonian H(z, φ, λ, t) is concave in z, then it is also the sufficient condition. In our case,
as the Hamiltonian doesn’t contain the state variable z(t), the concavity condition is satisfied
trivially. Therefore, the sufficiency and necessity of the conditions in theorem 3.2.5 is verified
from the perspective of optimal control theory.

Replacing the φ(t) in problem (3.14) by the derivative of the ceded function, f ′(t), we arrive
at the following theorem:

Theorem 3.2.6 Let h(t) = h0(t) + λ∗1h1(t) + λ∗2h2(t), where the functions h0(t), h1(t), and h2(t)
were defined in (3.11), (3.12), (3.13) respectively. Then a solution to Problem 3.2.4 is given by
a function f ∗λ∗(t) characterized by

f ∗′λ∗(t) =


1 when h(t) < 0,
ζ(t) when h(t) = 0,
0 when h(t) > 0,

(3.26)

where and ζ(t) ∈ [0, 1] is a function such that f ∗λ∗ ∈ C and that all the constraints in Problem
3.2.4 are satisfied. The Lagrange constants λ∗ = (λ∗1, λ

∗
2) are nonnegative and determined by

the slackness conditions

λ∗1

(∫
h1(t) f ∗′λ∗(t)dt − L∗1

)
= 0 (3.27)

and

λ∗2

(∫
h2(t) f ∗′λ∗(t)dt − L2

)
= 0. (3.28)

If the solution f ∗λ∗(t) violates constraints (3.7), then no solution exists for Problem 3.2.4.

Remark 3.2.3 The above methodologies apply to problems with constraints that are more
general than those in Problem 3.2.4. For example, when the amount spent on reinsurance
is limited, one may require P f = cHgp( f (X)) ≤ L3, as in Zhuang et al. (2016).
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3.2.5 Geometric interpretations
This subsection provides geometric interpretations to the analytical result obtained in Section
5.1 and 3.2.4.

Let B denote the Pareto-optimal set (or efficient frontier) of W, that is, for any b =

(Hg1(C fb),Hg2(R fb)) ∈ B, then there does not exist a w = (Hg1(C fw),Hg2(R fw)) ∈ W, such
that Hg1(C fw) ≤ Hg1(C fb) and Hg2(R fw) ≤ Hg2(R fb). Since the set W is convex, the efficient
frontier B may be found by minimizing linear combinations of the risks,

βHg1(C f ) + (1 − β)Hg2(R f ), (3.29)

for all f ∈ C and 0 ≤ β ≤ 1. Geometrically, as in Figure 3.1, let x denote the risk of the
insurer and y the risk of the reinsurer, then, as in Linear Programming problems, the point on
the efficient frontier corresponding to a specific value of β may be determined by moving the
line u = βx + (1 − β)y (increasing the value of u) until it first reachesW. Changing the value
of β in [0, 1] yields all solutions to Problem 3.2.2 (whole efficient frontier).

Now we consider Problem 3.2.3, which has constraints on the insurer and the reinsurer’s
risk levels. Let S = {(x, y) : 0 ≤ x ≤ L1, 0 ≤ y ≤ L2, } be the feasible region of the insurer and
the reinsurer’s risk levels. Consider a point A = (Hg1(C f̃ ),Hg2(R f̃ )) on the efficient frontier B
that corresponds to a specific value of β, the following scenarios are possible:

1. If Hg1(C f̃ ) > L1 and Hg2(R f̃ ) > L2, then as shown in Figure 3.1, the obtainable set W
and the feasible set S do not overlap. Thus Problem 3.2.3 has no solution. This verifies
Remark 3.2.1.

2. If Hg1(C f̃ ) ≤ L1 and Hg2(R f̃ ) ≤ L2, then both risk constraints are satisfied and f̃ is a
solution to the problem (3.2.3). This situation is shown in Figure 3.2.

Figure 3.1: Efficient frontier of the risks of the insurer and the reinsurer and the risk constraints:
both constraints are violated at point A.

3. If the point A = (Hg1(C f̃ ),Hg2(R f̃ )) only satisfies one constraint, for example, Hg1(C f̃ ) ≤
L1 and Hg2(R f̃ ) > L2 as shown in Figure 3.3. Then one may move the line u = βx+(1−β)y



3.2. TheModel 37

Figure 3.2: Efficient frontier of the risks of the insurer and the reinsurer and the risk constraints:
both constraints are satisfied at point A.

(increasing the value of u) until the intersection of the efficient frontier B and the line
y = L2 (point B), where the reinsurer takes less risks and the insurers assumes more.
Note that this procedure corresponds to selecting a Langrange multiplier λ2 > 0, such
that the slackness condition (3.28) is satisfied. In addition, one has to check whether
the risk constraints of the insurer is satisfied at point B. If yes, then the ceded function
corresponding to point B is the optimal solution to Problem 3.2.3 (see Figure 3.3a). If
no, then the problem has no solution (see Figure 3.3b).

(a) Both constraints are satisfied at point
B

(b) Constraint on reinsurer’s risk violated
at point B–no solution exist.

Figure 3.3: Efficient frontier of the risks of the insurer and the reinsurer and the risk constraints:
Risk constraint of the insurer is violated at point A.

In the following section, we illustrate the applications of Theorem 3.2.6 by assuming that
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the risks of the insurer and the reinsurer are measured by VaR and TVaR. Due to the importance
of the function h(t), we refer to it as the “key function” in the subsequent discussions.

3.3 Special Cases
In this section, we derive the solution to Problem (3.2.3) when the risks of the insurer and the
reinsurer are determined by the Value-at-Risk (VaR) and the Tail Value-at-Risk (TVaR). To
simplify algebraic calculations, we employ the expectation premium principle in the following
discussions. However, we note that results obtained in the previous sections apply when the
premium is determined by any distortion risk measure.

Value at Risk
Let X be a random variable with distribution function FX(·) and survival function S X(·). The
VaR of X at confidence level α is defined as

VaRα(X) = F−1
X (α) = inf{x : FX(x) ≥ α}. (3.30)

Note that VaRα(·) belongs to the family of distortion risk measure with distortion function

gV,α(x) =

{
0, 0 ≤ x < 1 − α,
1, 1 − α ≤ x ≤ 1.

(3.31)

Suppose that the insurer and the reinsurer apply confidence levels αc and αr respectively in
their VaR evaluations. Then the corresponding distortion function are given by gV,αc and gV,αr .
To simplify discussions, we assume that αc > αr, which means the insurer is more concerned
about the tail of the risk than the reinsurer. The derivation for the case αc < αr is similar and
therefore omitted in this paper.

Let P f = cE[ f (X)] = cHgp( f (X)) with the distortion function given by gp(x) = x. Assume
that 1 ≤ c < 1

1−αr
, which means that the risk loading factor is not extremely high, since the

confidence level αr is usually close to one.
With the above setup, denoting x = S X(t), the key function h(t) becomes

hV(t) ≡ w(x) = −(β + λ1)gαc(x) + (1 − β + λ2)gαr (x) + (2β − 1 + λ1 − λ2)cgp(x)

=


(2β − 1 + λ1 − λ2)cx, x ∈ [0, 1 − αc),
(2β − 1 + λ1 − λ2)cx − (β + λ1), x ∈ [1 − αc, 1 − αr),
(2β − 1 + λ1 − λ2)(cx − 1), x ∈ [1 − αr, 1],

(3.32)

which has two non-zero roots x1 = 1
c ·

β+λ1
2β−1+λ1−λ2

and x2 = 1
c .

In the following discussions, we assume that S X(·) is strictly decreasing and introduce the
following notation:

ac = S −1
X (1 − αc) = VaRαc(X),

ar = S −1
X (1 − αr) = VaRαr (X),
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ξ = S −1
X (x1),

and
η = S −1

X (x2).

The relative locations of the roots x1 and x2 and the jump points 1−αc and 1−αr determine
the sign of w(x) (thus hV(t)). Accordingly, our analysis is divided into the following three cases.

Case A: (2β − 1) + λ1 − λ2 > 0
In this case, as shown in in Figure 3.4, w(x) is piecewise linearly increasing, with a down-

ward jump point at x = 1 − αc and an upward jump at x = 1 − αr. Because of the assumption
1 ≤ c < 1

1−αr
, we have that 1 − αr < x2 < x1.

w(x) = hV(t)

x = S X(t)1 − αc 1 − αr 1

x2 x1

Figure 3.4: The key function hV(t) when 2β − 1 + λ1 − λ2 > 0

Let f ∗V1
(t) denote the optimal ceded function for this case. Then according to Figure 3.4,

it must satisfy that d
dt f ∗V1

(t) = 1 for S X(t) ∈ (1 − αc, x2), or equivalently when t ∈ [η, ac), and
d
dt f ∗V1

(t) = 0 otherwise. Thus, the optimal ceded function is

f ∗V1
(t) = min

{
(t − η)+, ac − η

}
. (3.33)

Applying f ∗V1
(t) to the risk constraints of the insurer and the reinsurer yields

c
∫ ac

η

S X(t)dt + η ≤ L1, (3.34)

and
ar − η − c

∫ ac

η

S X(t)dt ≤ L2. (3.35)

When both constraints are satisfied, λ1 = λ2 = 0. Then the condition (2β− 1) + λ1 − λ2 > 0
means that β > 1/2, implying that the insurer has more power in the negotiation. Therefore,
we conclude that if β > 1/2 and the two constraints (3.34) and (3.35) are satisfied, then f ∗V1

(t)
is the optimal ceded function.

If the constraint (3.34) is satisfied but (3.35) is not, then we may set λ1 = 0 and λ2 > 0 such
that (2β− 1) + λ1 − λ2 ≤ 0. Then the optimal ceded function could be sought in Case B or Case
C.
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If the constraints (3.35) is satisfied but (3.34) is not, (this is the unrealistic case when the
limit L1 is extremely low), then the problem has no solution, because setting λ1 > 0 still results
in (2β − 1) + λ1 − λ2 > 0 and the f ∗V1

(t) is the only option, with which (3.34) is violated.
If neither of the constraints (3.34) and (3.35) is satified, then the problem has no solution,

due to Remark 3.2.1.

Case B: (2β − 1) + λ1 − λ2 < 0

For this case, as shown in Figure 3.5, hV(t) = w(x) decreases piecewisely with a downward
jump at x = 1 − αc and an upward jump at 1 − αr. In addition, hV(t) < 0 for S X(t) ∈ [0, 1 −
αr) ∪ (x2, 1] and hV(t) > 0 otherwise.

w(x) = hV(t)

x = S X(t)1 − αc 1 − αr 1

x2

Figure 3.5: The key function hV(t) when 2β − 1 + λ1 − λ2 < 0.

Therefore, the optimal ceded function is given by

f ∗V2
(t) = min{t, η}1t<ar + (t − ar + η)+1t≥ar . (3.36)

Applying f ∗V2
(t) to the risk constraints of the insurer and the reinsurer yields:

c
{∫ η

0
S X(t)dt +

∫ ac

ar

S X(t)dt
}
− η + ar ≤ L1, (3.37)

and

η − c
{∫ η

0
S X(t)dt +

∫ ac

ar

S X(t)dt
}
≤ L2. (3.38)

If both constraints are satisfied, then λ1 = λ2 = 0, and we conclude that if β < 1/2 and the
constraints (3.37) and (3.38) are satisfied, then f ∗V2

(t) is the optimal ceded function.
When either of the constraints is not satisfied, the discussions are similar to those in Case

A. Therefore they are omitted.

Case C: 2β − 1 + λ1 − λ2 = 0

Figure 3.6 illustrate the shape of hV(t) for this case, from which it is seen that the optimal
ceded function f ∗V3

(t) has the form
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w(x) = hV(t)

x = S X(t)1 − αc 1 − αr 1

Figure 3.6: The key function hV(t) when 2β − 1 + λ1 − λ2 = 0.

f ∗V3
(t) =


f ∗V3,1(t), t ∈ [0, ar],

t − a, t ∈ [ar, ac],
f ∗V3,2(t), t ∈ [ac,∞),

(3.39)

where a ∈ [0, ar], f ∗V3,1
(t) and f ∗V3,2

(t) are any functions so that f ∗V3
(t) is in C. Note that smallest

possible f ∗V3
(t) is f ∗V3,min(t) = min

{
(t−ar)+, ac−ar

}
and the largest possible f ∗V3

(t) is f ∗V3,max(t) = t.
This result shows that when β = 1/2, the insurer and the reinsurer only care about the risk

transfer but not the premium transfer (see equation (3.8)), then the two parties could negotiate
any ceded function of the form f ∗V3

(t) as long as the risk constraints on the insurer and the rein-
surer are satisfied. Intuitively, because of the properties of the VaR risk measure, the reinsurer
disregards losses above ar and the insurer disregards losses above ac. Then it is optimal for the
reinsurer to cover the losses in the layer (ar, ac).

More importantly, this case also includes the scenario when β , 1/2 but one of the risk
constraints is not satisfied. For example, in Case A, if constraint (3.35) is not satisfied, then
one can choose λ∗2 = 2β − 1. Consequently, the optimal ceded function could be any function
with the form f ∗V3

(t) such that Hg2(R f ∗V3
) = L2. In fact, one can set the ceded function to

f ∗V3,a∗(t) = min{(t − a∗)+, ac − a∗}, (3.40)

where a∗ ∈ (η, ar] satisfies

ar − a∗ − c
∫ ac

a∗
S X(t)dt = L2. (3.41)

Remark 3.3.1 The ceded function (3.40) is a continuation of (3.33). Since β > 1/2, it would
be optimal for the insurer if the reinsurer to cover the layer (η, ac). However, because of the
risk constraint of the reinsurer, it cannot provide such a coverage. However, the reinsurer could
still provide as much coverage as possible. That is, it covers the layer (a∗, ac) with a∗ > η and
satisfies (3.41).

Remark 3.3.2 When no risk constraints are imposed, the optimal ceded functions may be
obtained by using the results in this section by setting λ1 = λ2 = 0. Particularly, we conclude
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that when β > 1/2, the optimal ceded function is given by f ∗V1
defined in (3.33); when β < 1/2,

the optimal ceded function is given by f ∗V2
defined in (3.36); when β = 1/2, the optimal ceded

function is f ∗V3
defined in (3.39).

The case of β = 1/2 deserves more discussion. For this case, the objective function in (3.8)
reduces to

1
2

(VaRαr ( f (X)) − VaRαc( f (X))) =
1
2

( f (ar) − f (ac)), (3.42)

which is trivially minimized by f ∗V3
. In fact, the minimized objective function is given by 1

2 (ar −

ac). Consequently,
1
2

(VaRαc(C f ∗V3
) + VaRαr (R f ∗V3

)) =
1
2

ar. (3.43)

This is, with the optimal reinsurance policy, the total risk of the insurer and the reinsurer is ar!
This makes sense because without reinsurance, the total risk of the loss X is ac > ar (by the
assumption of Section 3), and it is impossible to reduce the total risk level below ar.

Remark 3.3.3 In practical situations, since αr and αc are usually taken to be close to 1, the
condition 1 < c < 1

1−αr
is satisfied for most commonly used safety loading factor c. If c is

beyond this range, our methodology still applies. However, understandably, different optimal
reinsurance policies will be obtained. For the completeness of our discussion, an example is
provided in which assuming c > 1

1−αc
. In this case, referring to equation (3.32), we see that

x2 < 1 − αc. If

x1 =
β + λ1

2β − 1 + λ1 − λ2
·

1
c
< 1 − αc, (3.44)

then as shown in Figure (3.7), the key function hV(t) (or w(x)) is always greater than zero. As
a result, the optimal ceded function is

f ∗V4(t) = 0. (3.45)

In particular, if the risk constraints of the insurer and the reinsurer are satisfied, then λ1 = λ2 =

0, and we conclude that if

x1 =
β

2β − 1
·

1
c
< 1 − αc, (3.46)

then the optimal ceded function is given by f ∗V4. Notice that Equation (3.46) implies that

β >
c(1 − αc)

2c(1 − αc) − 1
>

1
2

because c(1 − αc) > 1. Intuitively, if the insurer is more important than the reinsurer in
the negotiation but the premium rate is very large, then the insurer will not purchase any
reinsurance coverage, unless its original risk is greater than the risk constraint (imposed by
the regulators).

Remark 3.3.4 In Section 4.3 of Lo (2017), a Pareto-optimal reinsurance problem is studied
under the VaR setting. It was shown that the “exact offsetting” property of the VaR enables
one to reduce the two-constraint problem to a one-constraint problem. In our case, if writing
c = 1 + θ, then the assumptions 1 < c < 1

1−αr
and αr < αc lead to θ

1+θ
< αr < αc, which agrees
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w(x) = hV(t)

x = S X(t)1 − αc 1 − αr 1

x2x1

Figure 3.7: The key function hV(t) when 2β − 1 + λ1 − λ2 > 0 and x2 < x1 < 1 − αc

with the conditions of the Proposition 4.3 in Lo (2017). Under the assumption that S X is strictly
decreasing (or FX is strictly increasing), our results are consistent with those in Lo (2017). In
particular, when β > 1/2, our equations (3.33) and (3.39), for the cases when both constraints
are satisfied and when the risk constraint of the reinsurer is violated respectively, agree with
Part (a) and (b) of Proposition 4.3 in Lo (2017); when β < 1/2, our equations (3.36) and (3.39)
agree with part (a) and (b) of Corollary 4.5 in Lo (2017); when β = 1/2, our equation (3.39)
agrees with the Proposition 4.6 (b) in Lo (2017) when both constraints are satisfied.

Tail Value at Risk
The TVaR of a random variable X with given a confidence level α is defined as

TVaRα(X) = E[X | X ≥ VaRα(X)]. (3.47)

The corresponding distortion function is

gT,α(x) =


x

1 − α
, 0 ≤ x ≤ 1 − α,

1, 1 − α ≤ x ≤ 1.
(3.48)

Suppose that the insurer and the reinsurer apply confidence levels αc and αr respectively
in their TVaR evaluations. Then the corresponding distortion functions are given by gT,αc and
gT,αr . As in the VaR case, we assume the expectation premium principle so that P f = cE[ f (X)]
with 1 ≤ c < 1

1−αr
, in addition, αr < αc.

With the above setup, denoting x = S X(t), the key function h(t) becomes

hT (t) ≡ wT (x) = −(β + λ1)gT,αc(x) + (1 − β + λ2)gT,αr (x) + (2β − 1 + λ1 − λ2)cgp(x)

=


wT,1(x), x ∈ [0, 1 − αc],
wT,2(x), x ∈, [1 − αc, 1 − αr],
wT,3(x), x ∈ [1 − αr, 1],

(3.49)

where
wT,1(x) = (2β − 1 + λ1 − λ2)cx −

β + λ1

1 − αc
x +

1 − β + λ2

1 − αr
x,
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wT,2(x) = (2β − 1 + λ1 − λ2)cx − (β + λ1) +
1 − β + λ2

1 − αr
x

and
wT,3(x) = (2β − 1 + λ1 − λ2)cx − (β + λ1) + (1 − β + λ2).

The function wT (x) is piecewise linear, continuous and has two roots:

x1 =
β + λ1

(1 − β + λ2)(1/(1 − αr) − c) + (β + λ1)c

and x2 = 1
c . Thus its sign is determined by three quantities: wT (1−αc), wT (1−αr) and wT (1). It

is easy to verify that the slope of wT,2 is greater than those of wT,1 and wT,3, and that wT,3(1−αr)
and wT,3(1) have different signs if 2β− 1 + λ1 − λ2 , 0 (wT,3 crosses the horizontal line). In the
following, as in the VaR case, we divide our analysis into the following cases.

Case A: 2β − 1 + λ1 − λ2 > 0
In this case, as shown in Figure 3.8(a), wT (1 − αc) < 0, wT (1 − αr) < 0 and wT (1) > 0. In

addition, wT (x) < 0 for 0 < x < x2 and wT (x) > 0 otherwise. Thus, the optimal ceded function
f ∗T,1(t) is given by

f ∗T1
(t) = (t − η)+. (3.50)

Applying f ∗T1
to the risk constraints of the insurer and the reinsurer yields

cE[(X − η)+] + η ≤ L1, (3.51)

and
TVaRαr (X) − η − cE[(X − η)+] ≤ L2. (3.52)

If both constraints are satisfied, then λ1 = λ2 = 0 and the condition 2β − 1 + λ1 − λ2 > 0
becomes β > 1/2. So we conclude that when β > 1/2 and the two constraints (3.51) and (3.52)
are satisfied, the optimal ceded function is f ∗T1

.
If constraint (3.51) is satisfied but (3.52) is not, then we may set λ1 = 0 and λ2 > 0 such

that (2β− 1) + λ1 − λ2 ≤ 0. Then the optimal ceded function could be sought in Case B or Case
C.

If the constraint (3.52) is satisfied but (3.51) is not, (this is the unrealistic case when the
limit L1 is extremely low), then the problem has no solution, because setting λ1 > 0 still results
in (2β − 1) + λ1 − λ2 > 0 and the resulting optimal ceded function f ∗V1

(t) violate the constraint
(3.51).

If neither of the constraints (3.51) and (3.52) is satified, then the problem has no solution,
due to Remark 3.2.1.

Case B: 2β − 1 + λ1 − λ2 = 0
In this case, wT (1 − αc) < 0, wT (1 − αr) = 0, and wT (1) = 0. The shape of the key function

hT (t) is shown in Figure 3.8(b), based on which it is seen that the optimal ceded function f ∗T2
(t)

is given by

f ∗T2
(t) =

{
f ∗T2,1(t), t ∈ [0, ar],
t − ar + a, t ∈ [ar,∞),

(3.53)

where f ∗T2,1
(t) is such that f ∗T2

(t) ∈ C and a is an arbitrary constant in (0, ar).
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wT (x) = hT (t)

x = S X(t)1 − αc 1 − αr 1

x1 x2

(a) 2β − 1 + λ1 − λ2 > 0

wT (x) = hT (t)

x = S X(t)1 − αc 1 − αr 1

(b) 2β − 1 + λ1 − λ2 = 0

wT (x) = hT (t)

x = S X(t)1 − αc 1 − αr 1

x1 x2

(c) 2β−1+λ1−λ2 < 0 and wT (1−αc) > 0

wT (x) = hT (t)

x = S X(t)1 − αc 1 − αr 1

x2

(d) 2β−1+λ1−λ2 < 0 and wT (1−αc) = 0

wT (x) = hT (t)

x = S X(t)1 − αc 1 − αr

x1 x2

(e) 2β−1+λ1−λ2 < 0 and wT (1−αc) < 0

Figure 3.8: The key function hT (t) in the TVaR case.

The result shows that when β = 1/2, the insurer and the reinsurer could negotiate any ceded
function of the form f ∗T2

(t) as long as the constraints on risks of the insurer and the reinsurer
are satisfied.

More importantly, this case also include the scenarios when β , 1/2 but one of the con-
straints are active. For example, in Case A, if constraint (3.52) is not satisfied, the one can
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choose λ∗2 = 2β − 1, then the optimal ceded function could be any function of form f ∗T2
(t) such

that Hg2(R f ∗T2
) = L2. In fact, one can set the ceded function to

f ∗T2,a∗(t) = (t − a∗)+, (3.54)

where a∗ ∈ (η, ar] satisfies

TVaRαr (X) − a∗ − cE[(X − a∗)+] = L2. (3.55)

Remark 3.3.5 Analogue to Remark 3.3.1, the ceded function (3.54) is a continuation of (3.50).
When β > 1/2, it would be optimal for the insurer if the reinsurer was to cover the layer (η,∞).
However, because of the risk constraint of the reinsurer, it cannot provide such coverage. As
a result, the reinsurer could provide as much coverage as possible. As a result, it covers the
layer (a∗,∞) with a∗ satisfies (3.55).

Case C: 2β − 1 + λ1 − λ2 < 0
In this case, wT (1 − αr) > 0 and wT (1) < 0. However, the sign of wT (1 − αc) is not fixed.

Therefore, we further divide the analysis into the following three sub-cases.

Case C.1: 2β − 1 + λ1 − λ2 < 0 and wT (1 − αc) > 0
Note that the condition wT (1 − αc) > 0 can be rewritten more explicitly as

β + λ1

1 − β + λ2
<

1
1−αr
− c

1
1−αc
− c

, (3.56)

which in fact implies 2β − 1 + λ1 − λ2 < 0, because we assumed that αr < αc.
The shape of the function hT (t) in this case is shown in Figure 3.8(c), according to which

the optimal ceded function f ∗T3
is given by

f ∗T3
(t) = min{t, η}. (3.57)

Applying f ∗T3
to the risk constraints of the insurer and the reinsurer yields

c
∫ η

0
S X(t)dt − η ≤ L1 − TVaRαc(X), (3.58)

and

η − c
∫ η

0
S X(t)dt ≤ L2. (3.59)

If the two constraints are satisfied then λ1 = λ2 = 0. We conclude that when

β

1 − β
<

1
1−αr
− c

1
1−αc
− c

, (3.60)

and the constraints (3.58) and (3.59) are satisfied, f ∗T3
is the optimal ceded function. When at

least one of the constraints is not satisfied, the analysis is similar to that in Case A and therefore
omitted.
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Note that in reasonable situations, the constraint (3.59) should be satisfied. In addition,
when β = 0, only the reinsurer is considered, then the condition (3.60) is automatically satis-
fied. So f ∗T3

is the optimal ceded function as long as (3.58) and (3.59) are satisfied.

Case C.2: 2β − 1 + λ1 − λ2 < 0 and wT (1 − αc) = 0
Notice that the condition wT (1 − αc) = 0 can be rewritten more explicitly as

β + λ1

1 − β + λ2
=

1
1−αr
− c

1
1−αc
− c

. (3.61)

The shape of hT (t) is shown in Figure 3.8(d), according to which the optimal ceded function
is given by

f ∗T4
(t) =


t, t ∈ [0, η],
η, t ∈ [η, ac],
f ∗T4,2(t), t ∈ [ac,∞),

(3.62)

where f ∗T4,2
(t) is such that f ∗T4

(t) ∈ C. Notice that f ∗T4
(t) ≥ f ∗T3

(t) for all t ≥ 0.
This case includes the scenario when the constraint (3.58) is not satisfied in Case C.1. Then

the reinsurer is required to assume more risk, resulting in f ∗T4
(t).

Case C.3: 2β − 1 + λ1 − λ2 < 0 and wT (1 − αc) < 0
The two conditions for this case can be written as

1 >
β + λ1

1 − β + λ2
>

1
1−αr
− c

1
1−αc
− c

, (3.63)

which implies that the insurer has more negotiation power than in Case C.1. The shape of hT (t)
for this case is shown in Figure 3.8(e), based on which the optimal ceded function is given by

f ∗T,5(t) =


t, t ∈ [0, η],
η, t ∈ [η, ξ],
t − ξ + η, t ∈ [ξ,∞),

(3.64)

where ξ ∈ (ar, ac). Notice that f ∗T5
(t) ≥ f ∗T4

(t) for all t ≥ 0.
Applying f ∗T5

(t) to the two constraints yields

κI(ξ) = ξ + cE[(X − ξ)+] − η + c
∫ η

0
S X(t)dt ≤ L1, (3.65)

and
κR(ξ) =

( 1
1 − αr

− c
)
E[(X − ξ)+] + η − c

∫ η

0
S X(t)dt ≤ L2, (3.66)

The value of the parameter ξ is determined in the following manner:

• If λ1 = λ2 = 0, the first root of the function WT becomes

x1 = x1,0 =
1

1−β
β

( 1
1−αr
− c) + c

.
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Then we conclude that ξ = ξ0 = S −1
X

(
x1,0

)
if the constraints (3.65) and (3.66) are both

satisfied.

Notice that when β increases and the insurer becomes more important, ξ0 decreases and
the reinsurer has to cover more losses in the right tail.

• If the constraint (3.66) is satisfied but (3.65) is not with ξ = ξ0, then one seeks ξ1 ∈ (ar, ac)
such that κI(ξ1) = L1 and κR(ξ1) ≤ L2. If no such ξ1 exists, then one needs to select λ1 so
large that β+λ1

1−β+λ2
≥ 1. Consequently, the optimal ceded function may be found in cases A

or B.

• The constraint (3.66) should be satisfied if L2 is reasonably big. In case it is violated but
(3.65) satisfied, then one seeks ξ2 ∈ (ar, ac) such that κI(ξ2) ≤ L1 and κR(ξ1) = L2. If no

such ξ2 exists, one should increase λ2 such that β+λ1
1−β+λ2

≤
1

1−αr
−c

1
1−αc
−c

and the optimal ceded
function may be found in the Case C.1 and Case C.2.

• If both constraints (3.65) and (3.66) are violated with ξ = ξ0, then the problem has no
solution.

Remark 3.3.6 Under a similar setting when risks are measured by TVaR, Cai et al. (2017)
derived the optimal ceded functions for all possible values of c, αc and αr, however without
considering risk constraints, in their Theorem 3.2. Our results in this section generalizes the
results by considering the risk constraints. For presentational simplicity, we imposed the addi-
tional reasonable assumption of c < 1

1−αr
< 1

1−αc
. If this assumption is not satisfied, the optimal

ceded functions can still be derived by using the general result in Theorem 3.2.6. Detailed
analysis is omitted here.

Remark 3.3.7 If no constraint is imposed, for the case of β > 1/2, our equation (3.50) agrees
with Theorem 3.2 (xii) of Cai et al. (2017); for the case of β = 1/2, our equation (3.53) agrees
with their Theorem 3.2 (ix); for the case of β < 1/2; our equations (3.57), (3.62) and (3.64)
agree with their Theorem 3.2 (iv), (v) and (vi).

Remark 3.3.8 A concept of the best Pareto-optimal reinsurance contract is introduced in Cai
et al. (2017), in which the insurer and reinsurer need to reduce their risks to certain lev-
els and the reinsurer need to keep certain expected net profit margin. Specifically, in a best
Pareto-optimal reinsurance contract, the following three criterion (with the notations used in
the current paper) should be satisfied.

TVaRαc

(
C f

)
≤ γTVaRαc(X), (3.67)

TVaRαr

(
R f

)
≤ κTVaRαr (X) (3.68)

and
P f ≥ (1 + σ)E[ f (X)]. (3.69)

It can be seen that the constraints (3.67) and (3.68) are similar to the risk constraints
in Problem 3.2.3 of the current paper and the constraint (3.69) become c ≥ 1 + σ with our
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notation. Therefore, the method developed in the current paper can be applied to calculate the
best Pareto-optimal reinsurance contract problem introduced in Cai et al. (2017).

Remark 3.3.9 The methodology introduced in this paper can be used to study the Pareto-
optimal reinsurance when the risks of the insurer and the reinsurer are measured by other
distortion risk measures. For example, one may use the RVaR, which was proposed by Cont
et al. (2010) and generalizes VaR and TVaR as its two extreme cases. Particularly, the RVaR
with two parameters 0 < α < ω < 1 for a random variable X is defined by

RVaRα,ω(X) =
1

ω − α

∫ ω

α

VaRu(X)du =
1 − α
ω − α

TVaRα(X) −
1 − ω
ω − α

TVaRω(X). (3.70)

RVaR belong the family of distortion risk measures with the corresponding distortion function

gR,α,ω(x) =
x − 1 + ω

ω − α
1{x∈(1−ω,1−α]} + 1{x∈(1−α,1]}. (3.71)

Therefore, when the risks of the insurer and the reinsurer are measured by RVaR, one may
apply the above distortion function to obtain the key function h(t) defined in Theorem 3.2.6,
determine its shape and then the optimal reinsurance policies. We will not pursue the detailed
solutions here to avoid lengthy discussions. Nevertheless we will present a numerical example
in Section 3.4.

3.4 Numerical Examples
This section provides two numerical examples illustrating the applications of the results ob-
tained in previous sections. The first example deals with the case when both the insurer and the
reinsurer use VaR as their risk measures. The second example discusses the case when TVaR
is used.

3.4.1 Value at Risk
Suppose that the loss random variable X under consideration follows an exponential distribu-
tion with mean 1000. Assume that the risk of the insurer and the reinsurer are measured by
VaR with probability levels αc = 0.99, αr = 0.95 respectively. Let the reinsurance premium be
determined by P f = cE[ f (X)] where c = 1.2. With the setup, we have that ac = VaRαc(X) =

4605.2, ar = VaRαr (X) = 2995.7 and η = S −1
X ( 1

c ) = 182.4.
Let’s start by constructing the efficient frontier of the risks of the insurer and the reinsurer

when the risk constraints are not imposed. As pointed out in Remark 3.3.2, for β > 1/2, the
optimal ceded function is

f ∗V1
(t) = min{(t − η)+, ac − η} = min{(t − 182.4)+, 4422.8} (3.72)

and the resulting risks are VaRαc(C f ∗V1
) = 1170.3 and VaRαr (R f ∗V1

) = 1825.4 (point O1 in Figure
3.9). For β < 1/2, the optimal ceded function is

f ∗V2
(t) = min{t, η}1t<ar + (t − ar + η)+1t≥ar (3.73)
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and the resulting risks are VaRαc(C f ∗V2
) = 3073.4 and VaRαr (R f ∗V2

) = −77.7 (point O2 in Figure
3.9). For β = 1/2, the optimal ceded functions can be any function having the form f ∗V3

(t)
defined by (3.39), and the resulting risks are such that

VaRαc(C f ∗V3
) + VaRαr (R f ∗V3

) = ar. (3.74)

This actually results in a -45 degree line connecting point O1 and Point O2.
Overall, the efficient frontier is given by the straight line O1O2 shown in Figure 3.9 when

no risk constraints are imposed.
When the risk constraints are present, the optimal ceded function for a particular value of

β can be determined by applying the following steps. Let’s arbitrarily set β = 0.6.

• Since β > 1/2, the optimal ceded function is f ∗V1
(t) and the resulting risks is represented

by point O1 if there is no constraints. Therefore, if point O1 is located inside the feasible
region S, that is, if L1 > 1170.3 and L2 > 1825.4, then f ∗V1

is the optimal ceded function.
This situation is illustrated in Figure 3.10.

Figure 3.9: The efficient frontier of the risks of the insurer and the reinsurer

• If L1 < 1170.3, then the problem has no solution, as discussed in Case A of Section 3.3.
This situation is illustrated in Figure 3.11.

• If L1 > 1170.3 but L2 < 1825.4, more discussions are needed. Essentially, one needs to
change the value of λ2, such that the corresponding optimal ceded function f ∗V,λ2

satisfies
VaRαc(C f ∗V,λ2

) ≤ L1 and VaRαr (R f ∗V,λ2
) = L2. For example, suppose that L2 = 1800, then

according to the discussions in Case C of Section 3.3, one may choose λ2 = 2β−1 = 0.2,
then the optimal ceded function is given by f ∗V∗a (t) = min{(t − a∗)+, ac − a∗}, where a∗ is
such that VaRαr (R f ∗

V∗a
) = 1800. This results in a∗ = 416.5. Since VaRαc(C f ∗

V∗a
) = 1195.7,

we conclude that if L1 > 1195.7 and L2 = 1800, then f ∗V∗a (t) = min{(t − 416.5)+, 4188.7}
is the optimal ceded function (see the left panel of Figure 3.12). if L1 < 1195.7 and
L2 = 1800, then no optimal solution exists (see the right panel of Figure 3.12).
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Figure 3.10: Both the insurer and reinsurer’s risk constraints are satisfied

Figure 3.11: The insurer’s risk constraint is violated

3.4.2 Tail Value at Risk

In this example, we use the same setup as in Section 3.4.1, however we now assume that the risk
of the insurer and the reinsurer are measured by TVaR with probability levels αc = 0.99, αr =

0.95 respectively. The optimal ceded function can be determined by applying the following
steps. Further, we assume that β = 0.6.

• Since β > 1/2, applying the results in Case A of Section 3.3, the optimal ceded function
is f ∗T1

(t) = (t − η)+ if the risk constraints (3.51) and (3.52) are satisfied simultaneously.
Since TVaRαc(C f ∗T1

) = 1182.3 and TVaRαr (R f ∗T1
) = 2813.4, we conclude that if L1 >

1182.3 and L2 > 2813.4, then f ∗T1
is the optimal ceded function.

• If L1 < 1182.32, then the problem has no solution, as discussed in Case A of Section 3.3.
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Figure 3.12: The reinsurer’s risk constraint is violated

• If L1 > 1182.3 but L2 < 2813.4, more discussions are needed. Again, one needs to
change the value of λ2, such that the corresponding optimal ceded function f ∗T,λ2

satisfies
TVaRαc(C f ∗T,λ2

) ≤ L1 and TVaRαr (R f ∗T,λ2
) = L2. For example, suppose that L2 = 2800,

then according to the discussions in Case B of Section 3.3, one can choose f ∗T ∗a (t) =

(t − a∗)+, where a∗ is such that TVaRαr (R fT∗a
) = 2800. By applying (3.55), this results

in a∗ = 350.7. Since TVaRαc(C fT∗a
) = 1195.7, we conclude that when L1 > 1195.7 and

L2 = 2800, then the optimal ceded function is f ∗T ∗a (t) = (t − 350.7)+; when L1 < 1195.7
and L2 = 2800, the problem has no solution. Essentially, more capital (either from the
insurer or the reinsurer) is needed support the underlying losses.

3.4.3 Range Value at Risk

In this section, we use the same setup as in Section 3.4.2, however we now assume that the
risks of the insurer and the reinsurer are measured by RVaR with probability levels αc = 0.99,
αr = 0.95 respectively and ωc = ωr = 0.995.

Applying the distortion function in (3.71) and noting that αr < αc < ωc = ωr, the key
function w(x) = h(t), where x = S X(t) becomes

w(x) =



(2β − 1 + λ1 − λ2)cx, x ∈ [0, 1 − ωc],

(1 − β + λ2)
( x − 1 + ωc

ωc − αr
− cx

)
− (β + λ1)

( x − 1 + ωc

ωc − αc
− cx

)
, x ∈ (1 − ωc, 1 − αc],

(1 − β + λ2)
( x − 1 + ωc

ωc − αr
− cx

)
− (β + λ1)

(
1 − cx

)
, x ∈ (1 − αc, 1 − αr],

(2β − 1 + λ1 − λ2)(cx − 1), x ∈ (1 − αr, 1].
(3.75)

If the two risk constraints are satisfied at the same time, then λ1 = λ2 = 0 and w(x) above
has two roots: x1 ≈ 0.005 and x2 = 1

c = 0.8333. In addition, w(x) > 0 for x ∈ (0, x1)∪(x2, 1) and
w(x) ≤ 0 otherwise. Therefore, let t1 = S −1

X (0.005) = 5298.3 and t2 = S −1
X (0.8333) = 182.4,
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then the optimal ceded function is given by

f ∗R(t) = min
{
(t − 182.4)+, 5298.3

}
. (3.76)

With this ceded function, the RVaR of the risks of the insurer and the reinsurer are given by
RVaRαc,ωc(C f ∗R ) = 1176.4 and RVaRαr ,ωr (R f ∗R ) = 2563.6 respectively.

With the above calculations, we conclude that:

• If L1 ≥ 1176.4 and L2 ≥ 2563.6, then f ∗R is the optimal ceded function.

• If L1 < 1176.4 and L2 < 2563.6, the problem has no solution, due to Remark 3.2.1.

• If L1 < 1176.4 and L2 ≥ 2563.6, the problem has no solution. This is because if there ex-
ists a solution to this problem when L1-constraint is violated, then according to Theorem
3.2.6, λ∗2 = 0 and there exists a λ∗1 > 0, such that resultant optimal ceded function fR,λ∗

satisfies RVaRαc,ωc(C fR,λ∗ ) = L1. However, with the parameter values for this example,
for all λ1 > 0 and λ2 = 0, the roots of the key function w(x) are at x2 = 0.8333 and

x1(λ1) =
0.556 + λ1

110.87 + 198.8λ1
, (3.77)

from which it can be seen that x1 is greater than but very close to 0.005. Therefore
RVaRαc,ωc(C fR,λ1

) ≥ 1176.4 > L1 for all λ1 > 0. Consequently, the problem has no
solution.

• If L1 ≥ 1176.4 and L2 < 2563.6, more discussions are needed. To be specific, let
L2 = 2500. In this case, one needs to set λ∗1 = 0 and find λ∗2 > 0 such that resultant
optimal ceded function fR,λ∗ satisfies RVaRαr ,ωr (R fR,λ∗ ) = L2. With the parameter values
for this example, one may set λ∗2 = 0.2. Then 2β − 1 + λ∗1 − λ

∗
2 = 0. With this, one

can verify that w(x) = 0 on [0, 0.005] ∪ (0.05, 1] and w(x) < 0 otherwise. Then, since
S −1

X (0.005) = 5298.3 and S −1
X (0.05) = 2995.7, the optimal ceded function is given by

f ∗R,λ∗(t) =


f ∗R,λ∗,1(t), t ∈ [0, 2995.7],
t − a, t ∈ [2995.7, 5298.3],
f ∗R,λ∗,2(t), t ∈ [5298.3,∞),

(3.78)

where a ∈ [0, 2995.7], f ∗R,λ∗,1(t) and f ∗R,λ∗,2(t) are any functions such that f ∗R,λ∗(t) ∈ C.
For example, one can choose f ∗R,λ∗(t) = (t − a∗)+ where a∗ ∈ [0, 2995.7]. Solving the
equation RVaRαr ,ωr (R f ∗R,λ∗

) = 2500 results in a∗ = 542. In addition, it can be verified that
RVaRαc,ωc(C f ∗R,λ∗

) = 1240. Therefore, we conclude that: when L1 ≥ 1240 and L2 = 2500
then the optimal ceded function is given by f ∗R,λ∗ = (x − 542)+; when L1 < 1240 and
L2 = 2500, the problem has no solution.

3.4.4 Conclusions drawn from the numerical examples
In Sections 3.4.1, 3.4.2 and 3.4.3 we analyze the solution to the Problem 3.2.3 using different
risk measures. We next compare the resultant optimal ceded functions. For simplicity, we
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consider the case when the risk constraints of the insurer and reinsurer are satisfied. Under
the same model assumptions: X ∼ exp(1000), c = 1.2, β = 0.6, αc = 0.99, αr = 0.95, and
ωc = ωr = 0.995, we have that S −1

X (1/c) = 182.4, S −1
X (1−αc) = 4422.8, S −1

X (1−ωc) = 5298.3.
The optimal ceded functions are summarized as follows.

VaR : f ∗V = min
{
(t − 182.4)+, 4422.8

}
,

RVaR : f ∗R = min
{
(t − 182.4)+, 5298.3

}
,

TVaR : f ∗T = (t − 182.4)+.

(3.79)

The results indicate that for all three risk measures, S −1
X (1/c) = 182.4 provides an optimal

reinsurance attaching point for the insurer (β > 0.5 so that insurer is more important in the
setting).

With VaR, the insurer does not consider the risk above S −1
X (1 − αc) = 4422.8, therefore it

does not purchase coverage above it. With RVaR, the insurer does not consider the risk above
S −1

X (1−ωc) = 5298.3, therefore it does not purchase coverage above it. With TVaR, the insurer
considers all layers of losses, therefore it purchases coverage for all losses above the optimal
attaching point S −1

X (1/c) = 182.4.



Chapter 4

On optimal reinsurance treaties in
cooperative game under heterogeneous
beliefs

4.1 Introduction

Many insurance companies use reinsurance to control their risk levels and the costs of risk
capital. As stated in Patrik (2001) and Clark (2014), a reinsurance contract is often a manuscript
contract setting forth the unique agreement between the two parties. Each contract must be
individually priced to meet the particular needs and risk level of the reinsured. If the two
companies conclude a treaty, the treaty must be such that both companies consider themselves
better off than without the treaty.

With the above considerations, it is natural to model a reinsurance contract as the result of a
two-person bargaining game, in which the two individuals have the opportunity to collaborate
for mutual benefit in more than one way (Nash (1950)).

Borch (1960c) was the first to study optimal reinsurance contracts within the context of
bargaining games, in which he first derived the set of Pareto-optimal contracts and then iden-
tified the one corresponding to the Nash bargaining solution. Borch (1962) generalized Borch
(1960c) by considering the reinsurance market as the result of a n-player bargaining game and
studied its equilibrium. There are many subsequent important developments in applications of
game theory to insurance problems in economics, insurance, and risk theory literature. For ex-
ample, assuming that the insurer is risk neutral, Kihlstrom and Roth (1982a) studied the effect
of the insureds’ risk aversion levels on the bargaining results using the Nash bargaining model;
Lemaire (1991) gave a comprehensive review of theories of cooperative games and illustrated
their applications in reinsurance problems. Aase (2009) characterized a competitive equilib-
rium as well as a game-theoretical equilibrium in a risk sharing setting. More recently, Boonen
(2015) characterized the optimal risk sharing in a competitive equilibrium under the distortion
risk measures; Boonen et al. (2016) assumed that the negotiating insurance companies have
comonotonic additive utility functions and derived optimal reinsurance contract corresponding
to the Nash bargaining solution.

In negotiating a reinsurance contract, the insurer and the reinsurer may have different be-

55
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liefs regarding the probability distribution of the underlying losses. This difference can result
from different subjective beliefs or different analytical models used to evaluate the underlying
losses. In this aspect, Wilson (1968) presented detailed analysis and some general results on
risk sharing when involved parties have heterogeneous beliefs. Marshall (1992) derived the
optimal form of reinsurance policies when the reinsurer is risk neutral and the insurer assigns
higher probability to the zero-loss event than the reinsurer. Under a much more general set-
ting of heterogeneous beliefs, Ghossoub (2017) showed that if the decision maker is strictly
risk-averse, then optimal indemnity schedules are nondecreasing with respect to the loss. Boo-
nen (2016b) assumed that the premium is determined by the reinsurer using Wang’s premium
principle and studied the optimal reinsurance contract that maximizes the insurer’s dual utility.
Boonen et al. (2017) focused on how heterogeneous beliefs between pension funds and insur-
ers regarding mortality rates affect optimal redistribution of longevity risk. They showed that
the participants can all benefit by shifting the risk associated with a scenario to the participant
who assigns the lowest probability to that scenario. Most recently, Chi (2018) found that full
reinsurance above a constant deductible is always optimal for a risk-averse insurer if and only
if the reinsurer is more optimistic about the loss distribution than the insurer in the sense of
monotone hazard rate order.

In this paper, we study the problem of Pareto-optimal reinsurance as the result of a cooper-
ative game. Similar to the setting in Boonen et al. (2017), we assume that the insurer and the
reinsurer “agree to disagree” on the probability distribution of the underlying losses when ne-
gotiating the reinsurance policy. We first derive the Pareto-optimal reinsurance contracts, then
we specify the optimal reinsurance contract corresponding to the Nash bargaining solution as
well as that corresponding to the Kalai-Smorodinsky bargaining solution.

We analyze two scenarios. In the first one, the reinsurance premium is fully negotiable
(as in Raviv (1979)); in the second one, the premium is determined by the reinsurer using
the actuarial premium principle (as in Golubin (2006b)). Our results for the first scenario
generalize those in Borch (1962) for a risk sharing setting. Our results for the second scenario
generalize those in Golubin (2006a,b). A very important application of the results for the
second situation is that it allows us to identify the Pareto-optimal reinsurance policies when
the premium is determined by the Esscher transform principle (Young (2004)).

The rest parts of the paper are organized as follows. Section 2 presents the mathematical
setting of the model. Section 3 studies the optimal policies when the premium is fully nego-
tiable. Section 4 analyzes the optimal policies when the premium is determined by the reinsurer
using the actuarial premium principle. Section 5 concludes.

4.2 The model
Let random variable X be the insurer’s loss under consideration for reinsurance coverage. As-
sume that X can take values in the interval [0,M] where M ∈ [0,+∞]. Let the insurer’s
subjective probability measure of the loss X be P1 with the corresponding distribution function
(CDF), probability density function (PDF) and expectation operator being denoted by F1, f1

and E1 respectively. Let the reinsurer’s subjective probability measure of the loss X be P2 with
the corresponding CDF, PDF and the expectation operator being denoted by F2, f2 and E2 re-
spectively. Assume that f1(x) > 0 for x ∈ [0,M] so that the likelihood ratio f2(x)/ f1(x) is well
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defined on [0,M].
Let the utility functions of the insurer and the reinsurer be given by u(·) and v(·) with domain

Du and Dv respectively. Assume thatu′(x) > 0
u′′(x) < 0

and

v′(x) > 0
v′′(x) < 0

, (4.1)

for all x in their domains. That is, both the insurer and the reinsurer are risk averse. In addition,
it is assumed that

lim
x→xu

u′(x) = lim
x→xv

v′(x) = 0, (4.2)

where xu and xv are the right end points of Du and Dv respectively.
Let the insurer and the reinsurer’s initial wealth be w1 and w2 respectively. Then without

the reinsurance treaty, the expected utilities of the insurer and the reinsurer are E1 [u(w1 − X)]
and v(w2), respectively. The point (E1 [u(w1 − X)] , v(w2)) is referred to as the disagreement
point, following the game theory terminology of Nash (1953) and Lemaire (1991).

A reinsurance treaty is characterized by a ceded loss function I(x), which specifies the
amount the reinsurer agrees to pay when the size of the loss is x, and the premium P that the
insurer agrees to pay for the loss coverage.

In this paper, we assume that the set of admissible ceded functions is given by

C :=
{
I : [0,M]→ [0,M]

∣∣∣ I is continuous, I(0) = 0, 0 ≤ I(x) ≤ x for all x ≥ 0
}
.

Note that if a ceded function I belongs to setC, the corresponding retained loss function RI(x) =

x− I(x) also belongs to C. Furthermore, for I1, I2 ∈ C, it is easy to verify that λI1 + (1−λ)I2 ∈ C

for λ ∈ [0, 1], therefore C is a convex set.
We assume that there is a maximal amount P the insurer is willing to spend on reinsurance

contract. Since the insurer is risk averse, we have that P > E1[X].
Since a reinsurance treaty can be reached only if both parties in the transaction are better

off from it, we require that all reinsurance contract to satisfy the rationality constraintsE1[u(w1 − X + I(X) − P)] ≥ E1 [u(w1 − X)]
E2[v(w2 − I(X) + P)] ≥ v(w2)

. (4.3)

A reinsurance policy (I∗, P∗) is Pareto-optimal if there is no admissible policy (I, P) ,
(I∗, P∗) that satisfies

E1 [u(w1 − X + I(X) − P)] ≥ E1 [u(w1 − X + I∗(X) − P∗)]

and
E2 [v(w2 − I(X) + P)] ≥ E2 [v(w2 − I∗(X) + P∗)] ,

with at least one inequality holds strict.
The main objective of this paper is to derive the set of Pareto-optimal reinsurance treaties

that satisfy the rationality constraints. Section 4.3 considers the scenario where the premiums
are fully negotiated; Section 4.4 studies the case when the premiums are determined by the
reinsurer using the expected value premium principle.
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4.3 Optimal reinsurance with negotiable premiums
When the premium is negotiated, the Pareto-optimal policies can be determined by considering
the following problem (Borch, 1960b; Gerber, 1979; Gerber and Pafumi, 1998).

Problem 4.3.1 For k ≥ 0,

max
I∈C,P∈[0,P]

J(I, P) = E1[u(w1 − X + I(X) − P)] + kE2[v(w2 − I(X) + P)], (4.4)

subject to the rationality constraints in (4.3).

In the above equation, the parameter k ∈ [0,∞) represents the reinsurer’s relative negoti-
ating power. When k → 0, the reinsurer has no negotiation power and its interests are totally
ignored; whereas when k → ∞, the insurer’s interests are ignored.

To solve Problem 4.3.1, we first disregard the constraints (4.3), and obtain the whole set of
Pareto-optimal (Pareto efficient) reinsurance policies, which we denote by O, by solving (4.4)
for k ∈ [0,∞).

Further, let the set of reinsurance policies that satisfy the rationality constraints (4.3) by

M :=
{

(I, P) ∈ C ⊗ [0, P]

∣∣∣∣∣∣ E1[u(w1 − X + I(X) − P)] ≥ E1 [u(w1 − X)]
and E2[v(w2 − I(X) + P)] ≥ v(w2)

}
.

Then the solution to Problem 4.3.1 is given by O ∩M. If the sets O andM are disajoint, then
Problem 4.3.1 has no solution.

Before solving Problem 4.3.1, we present a preliminary result.

Proposition 4.3.2 For arbitrary I1, I2 ∈ C, the function J(λI1 + (1 − λ)I2, P) is concave with
respect to λ ∈ [0, 1].

Proof Replacing the I(x) in equation (4.4) by λI1(x) + (1 − λ)I2(x), and then taking partial
derivative, one can verify that ∂2 J(λI1(x)+(1−λ)I2(x),P)

∂λ2 < 0 for all x > 0 and λ ∈ [0, 1].

4.3.1 Main results
We are now ready to present the main results for this section, The following notations are
introduced. Let LR(x) = f2(x)/ f1(x) denote the likelihood ratio of the reinsurer and insurer’s

belief about the loss X. Let Ru(x) = −
u′′(x)
u′(x)

and Rv(x) = −
v′′(x)
v′(x)

denote the indices of absolute

risk aversion of the insurer and reinsurer respectively.
A Pareto-optimal policy corresponding to a particular value of k is identified in the follow-

ing two steps. First we solve

Problem 4.3.2a For a fixed premium level P ∈ [0, P] and a weight parameter k ≥ 0,

max
I∈C

J(I, P) = E1[u(w1 − X + I(X) − P)] + kE2[v(w2 − I(X) + P)].

Secondly, let I∗P be the solution to Problem 4.3.2a, we identify P∗ that solves:
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Problem 4.3.2b
max

P∈[0,P̄]
J(I∗P, P).

The solution I∗P to Probelm 4.3.2a is given by the following theorem.

Theorem 4.3.3 For a fixed premium level P and a weight parameter k ≥ 0, let

K(y, x) = u′(w1 − x + y − P) − kv′(w2 − y + P)LR(x),

and
d(P) := inf {x ≥ 0 : K(0, x) ≥ 0} ,

with the understanding that d(P) = ∞ if the set is empty. Then Problem 4.3.2a is solved by:

I∗P(x) = 0 for x < d(P)

and
I∗P(x) = min {x,max {0, yP(x)}} for x ≥ d(P) (4.5)

where yP(x) satisfies K(yp(x), x) = 0. Equivalently, yP(x) satisfies the ordinary differential
equation (ODE)

y′P(x) =
Ru(w1 − P − x + yP(x)) −

[
log (LR(x))

]′
Ru(w1 − P − x + yP(x)) + Rv(w2 + P − yP(x))

(4.6)

with the initial condition yP (d(P)) = 0.

The proof of this theorem is given in the appendix A.

Remark 4.3.1 Theorem 4.3.3 indicates that the optimal reinsurance policy for a fixed premium
level P has a stop-loss form, where the point d(P) can be regarded as the attaching point of the
ceded function, above which an amount of min{x, yP(x)} is paid by the reinsurer.

Remark 4.3.2 If LR(x) = 1, which means the insurer and the reinsurer agree on the distribu-
tion of the underlying loss, the optimal ceded function obtained in Theorem 4.3.3 reduces to the
results in Raviv (1979) and Gerber and Pafumi (1998). In particular, for this case, equation
(4.6) indicates that 0 ≤ I∗P

′(x) ≤ 1. This means that for an additional dollar of underlying
losses, the reinsurance recovery I∗P(x) does not exceed a dollar, which is a desirable property
because it prevents moral hazards of the insurer.

Remark 4.3.3 When the moment generating function of f1 exists, Esscher transform provides
a convenient way to specify f2, the PDF of the underlying losses according to the reinsurer.
Specifically, we let

f2(x) =
ehx f1(x)
M1(h)

,

where M1(h) =
∫ ∞

0
ehx f1(x)dx.
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With h > 0, the reinsurer’s belief of the distribution of the underlying loss is more adverse
than that of the insurer; with h < 0, the opposite is true; with h = 0, the beliefs are the same of
course.

For this case, the term
[
log (LR(x))

]′ in equation (4.6) equals to a constant h. From equa-
tion (4.6), it is seen that, comparing with the case of h = 0, a positive h leads to smaller ceded
functions. This is reasonable because h > 0 indicates that the reinsurer’s belief about the dis-
tribution of the unerlying losses is more adverse, and the room for cooperation is smaller. On
the contrary, when h < 0, the reinsurer’s belief is more favorable and the benefit of cooperation
is larger. This leads to a larger ceded function.

Remark 4.3.4 As in Ghossoub (2017), Problem 4.3.2a can be written as

max
I∈C

∫ M

0
(u(w1 − x + I(x) − P) + kv(w2 − I(x) + P)LR(x)) dF1(x),

Then a sufficient condition for a ceded function I∗P to be optimal is that it pointwisely maximizes
the integrand for each x ∈ [0,M]. That is, for each x ∈ [0,M], I∗P(x) solves

max
y∈[0,x]

u (w1 − x + y − P) + kv(w2 − y + P)LR(x).

The pointwise maximization method is applied in Section 4.4.

Having obtained the optimal ceded function I∗P for a fixed premium P, we next seek the op-
timal premium level P∗ by considering problem 4.3.2b. Since the functional form of the ceded
function I∗P depends on P, analytical expression of P∗ is difficult to obtain in general. However,
explicit expressions exist for special cases and numerical solutions are always obtainable. This
point is shown in examples in the following section.

Having derived the Pareto-optimal reinsurance policy (I∗P∗ , P
∗) corresponding to a weight

parameter k, we can obtain the whole Pareto efficient frontier of the reinsurance policies by
varying the weight parameter k. Those policies on the frontier that satisfy the constraints
(4.3) are solutions to Problem 4.3.1. Note that whether a Pareto-optimal policy satisfies the
constraints (4.3) can be easily checked by direct substitution.

After all Pareto-optimal reinsurance policies have been identified, we next identify the
policy in the set of Pareto-optimal reinsurance policies such that the benefits of cooperation
are fairly shared by the two parties. To this end, we apply the theory of Nash bargaining model
(Nash, 1950) as well as the Kalai-Smorodinsky bargaining model (Kalai and Smorodinsky,
1975).

In particular, based on a set of simple and reasonable axioms, i.e., scale invariance, sym-
metry, Pareto efficiency, and independence of irrelevant alternatives (IIA), Nash (1950) derived
that the unique solution to a two-person bargaining problem is obtained by maximizing the
product of utility gains of the two parties. In our context, this means that the unique optimal
reinsurance policy in the Nash bargaining model can be obtained by solving

max
(I,P)∈M

{E1 [u(w1 − X + I(X) − P)] − E1 [u(w1 − X)]} {E2 [v(w2 − I(X) + P)] − v(w2)} . (4.7)

Note that in order to guarantee that both the insurer and the reinsurer act rationally, the
reinsurance policy should belong to the setM and thus satisfy the rationality constrains. This
point also applies when determining the Kalai-Smorodinsky bargaining solution.
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The IIA assumption in the Nash bargaining model stipulates that adding another option or
changing the characteristics of a third option does not affect the relative odds between the two
options considered. However, this assumption has been criticized to be unrealistic in some
situations. As such, in the Kalai-Smorodinsky bargaining model (Kalai and Smorodinsky,
1975), the IIA assumption is replaced by the monotonicity assumption, which states that a
player with better options should get a weakly better agreement. Consequently, they proposed
that the bargaining solution is the point on the efficient frontier that maintains the ratio of
maximal gains. In our context, this says that the optimal reinsurance policy in the Kalai-
Smorodinsky bargaining model, denoted by (IKS , PKS ), solves

DKS :=
E2 [v(w2 − IKS (X) + PKS )] − v(w2)

E1 [u(w1 − X + IKS (X) − PKS )] − E1 [u(w1 − X)]
−

vmax − v(w2)
umax − E1 [u(w1 − X)]

= 0, (4.8)

where umax is the maximal utility the insurer may possibly get from the treaty and vmax is that
for the reinsurer. In our case, umax = u(w1), which is the case when the insurer cedes all the
losses but pays no premium; vmax = v(w2 + P), which is case when the reinsurer covers no
losses but gets the maximal premium.

We note that the theory of Nash bargaining model and Kalai-Smorodinsky bargaining
model are widely used in the economics and finance literature for determining “fair” con-
tracts, as well as the “fair” prices, when standardized contracts do not exist and market prices
are not available. For a few examples, one is referred to McElroy and Horney (1981), Neslin
and Greenhalgh (1983), and more recently Zhou et al. (2015) and Boonen et al. (2017) and
references therein.

As stated in the beginning of Section 4.1, reinsurance policies are usually unique and are
results of negotiation of an insurer and a reinsurer. Therefore, the application of the bargaining
solutions is particularly suitable. In addition, both the IIA assumption of Nash bargaining
model and the monotonicity assumption of Kalai-Smorodinsky bargaining model seem to be
reasonable in the reinsurance negotiating context. In fact, our numerical examples in Sections
4.3.3 and 4.4.3 show that the optimal reinsurance contracts corresponding to the two kinds of
bargaining solutions are very close.

It is known that both the Nash bargaining solution and the Kalai-Smorodinsky bargaining
solution locate on the Pareto efficient frontier. Therefore, they may be identified by checking
which Pareto-optimal policy (corresponding to the specified value of k) solves (4.7) or (4.8).
In the numerical illustrations in the next subsection, we compute and compare the optimal
reinsurance policies in the two bargaining models.

4.3.2 Some examples with specific utility functions
We start by assuming that the utility functions of the insurer and the reinsurer are both quadratic.

Optimal reinsurance with quadratic utility functions

Let
u(x) = −

1
2
β1x2 + x, β1 > 0, x ≤

1
β1

(4.9)
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and
v(x) = −

1
2
β2x2 + x, β2 > 0, x ≤

1
β2
. (4.10)

The up-bounds 1/β1 and 1/β2 can be regarded as saturation points beyond which utility will
not increase with additional amount of monetary gains (Gerber and Pafumi, 1998). In practice,
they are set to be sufficient large so that the problems are well defined. In the setting of this
paper, it is required that 1

β1
> w1 and 1

β2
> w2 + P̄.

With the utility functions (4.9) and (4.10), we have

K(0, x) = β1x + β1(P − w1) + 1 − k
(
1 − β2(w2 + P)

)
LR(x).

Thus the reinsurance attachment point is given by

d(P) = inf
{
x ≥ 0 : β1x + β1(P − w1) + 1 = k

{
1 − β2(w2 + P)

}
LR(x)

}
. (4.11)

The equation K(yP(x), x) = 0 in Theorem 4.3.3 becomes

−β1 (w1 − x + yP(x) − P) + 1 = k (−β2 (w1 − yP(x) + P) + 1) LR(x),

from which we obtain

yP(x) =
β1x + k(β2w2 + β2P − 1)LR(x) + β1(P − w1) + 1

β1 + kβ2LR(x)
. (4.12)

The optimal reinsurance policy is then given by I∗P(x) = min{x,max{0, yP(x)}}.
We note the following observations:

• with LR(x) = 1,

yP(x) =
β1

β1 + kβ2
· x +

k(β2w2 + β2P − 1) + β1(P − w1) + 1
β1 + kβ2

, (4.13)

which shows that the optimal policy is proportional with a deductible. This result agrees
with equation (84) in Gerber and Pafumi (1998). The optimal premium P∗ is computed
by solving Problem 4.3.2b, which yields

P∗ = min
{

P̄,max
{

0,
k(1 − β2w2) + β1w1 − 1

β1 + kβ2

}}
. (4.14)

• Since 1/β2 > w2 + P, the largest amount of wealth the reinsurer may obtain, we see
from (4.13) that yP(x) is decreasing in k. This suggests that more negotiation power
the reinsurer has, the less coverage it will provide for the same amount of premium P.
When k ↗ ∞, yP(x) < 0 and therefore I∗P(x) = 0, indicating that the reinsurer receives
the premium P and does not pay claims. In addition, we have P∗ = P̄. This is of
course optimal for the reinsurer! On the contrary, when k ↘ 0, yP(x) > x and therefore
I∗P(x) = x for all P and x. In addition the optimal premium is P∗ = 0. This indicates a
situation when the insurer cedes all losses without paying premium P, which is ideal for
the insurer. These extreme situations will result in expected utilities of the two parties
violating the rationality constraints (4.3). Such contracts will not be reached although
they are Pareto-optimal. The situations are different when premium is determined by the
actuarial premium principle, as will be discussed in Section 4.4.2.

The optimal reinsurance policies (I∗P∗ , P
∗) corresponding to different values of k give us

all Pareto-optimal policies, among which those satisfying the constraints (4.3) are solutions to
Problem 4.3.1. The procedure is shown in the numerical examples in Section 4.3.3.
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Optimal reinsurance with exponential utility functions

Let
u(x) =

1
λ1

(
1 − e−λ1 x

)
, λ1 ≥ 0, −∞ < x < ∞ (4.15)

and
v(x) =

1
λ2

(
1 − e−λ2 x

)
, λ1 ≥ 0, −∞ < x < ∞. (4.16)

For this case,
K(0, x) = e−λ1(w1−x−P) − k · e−λ1(w1+P)LR(x)

and the reinsurance attaching point is determined by

d(P) = inf
{
x ≥ 0 : e−λ1(w1−x−P) = k · e−λ1(w1+P)LR(x)

}
The equation K(yP(x), x) = 0 in Theorem 4.3.3 becomes

e−λ1(w1−x+yP(x)−P) = k · e−λ2(w2−yP(x)+P)LR(x), (4.17)

from which we obtain

yP(x) =
λ1x − ln LR(x) − λ1(w1 − P) + λ2(w2 + P) − ln k

λ1 + λ2
,

and the optimal reinsurance policy is given by I∗P(x) = min{x,max{0, yP(x)}}.
We note the followings:

• if LR(x) = 1,

yP(x) =
λ1

λ1 + λ2
· x +

λ2(w2 + P) − λ1(w1 − P) − ln k
λ1 + λ2

,

which shows that the optimal policy is proportional with a deductible. This result agrees
with equation (74) of Gerber and Pafumi (1998). The optimal premium P∗ is computed
by solving Problem 4.3.2b, which yields P∗ = max

{
0, λ1w1−λ2w2+ln k

λ1+λ2

}
.

• Similar to the case of the quadratic utility function, we observe that yP(x) is decreasing in
k. In addition, when k ↗ ∞, we have for finite value of x, yP(x) < 0 and thus I∗P(x) = 0.
On the contrary, when k ↘ 0, I∗P(x) = x.

4.3.3 Numerical illustration
This section illustrates our results by carrying out the calculations in details when the utility
functions of the both parties are quadratic.

Following the setup in Section 4.3.2, we let w1 = 10, 000 and w2 = 30, 000; β1 = 0.00002
and β2 = 0.000015, so that the insurer is more risk aversive than the reinsurer. According to the
insurer’s belief, the underlying loss X follows an exponential distribution with p.d.f. f1(x) =

θ1e−θ1 x, x > 0, where θ1 = 0.0005. According to the reinsurer’s belief, the underlying loss X
follows an exponential distribution with paramter θ2. To illustrate how the reinsurer’s belief
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affects the optimal reinsurance policies, we consider three scenarios: (1) the reinsurer is more
optimistic (θ2 = 0.00051); (2) the reinsurer shares the same belief as the insurer (θ2 = 0.0005);
(3) the reinsurer is less optimistic (θ2 = 0.000498).

applying the results in Section 4.3.2, given a premium level P and a weight parameter k,
we have

yp(x) =
β1x + k(β2w2 + β2P − 1)e(θ1−θ2)xθ2/θ1 + β1(P − w1) + 1

β1 + kβ2e(θ1−θ2)xθ2/θ1
, (4.18)

and the optimal ceded function is I∗P(x) = min {x,max {0, yP(x)}}. The optimal premium P∗ can
be found by numerically solving Problem (4.3.2b).

Pareto efficient frontier

Figure 4.1 shows the Pareto efficient frontier with the relative negotiation power parameter k
ranging from 1.51 to 1.54. Please note that utilities have no unit of practical meaning and their
numerical values are only used to indicate the order of preferences. The ranges of the values of
k with the corresponding reinsurance policies satisfying the rationality constraints (4.3) in the
three different scenarios are:

• θ1 = 0.0005 and θ2 = 0.00051, k ∈ [1.528, 1.531],

• θ1 = θ2 = 0.0005, k ∈ [1.528, 1.53],

• θ1 = 0.0005 and θ2 = 0.000498, k ∈ [1.528, 1.53].

Figure 4.1: The Pareto efficient frontiers.

We observe the followings:

• The ranges of the values of k such that the rationality constraints (4.3) is satisfied are
quite narrow in all three cases. Intuitively, the negotiation powers of the two parties have
to be “balanced” to reach a reinsurance contract that benefit both parties.
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• When the reinsurer is more optimistic than the insurer (θ1 < θ2), there is more room for
cooperation, which results in a higher Pareto efficient frontier. On the other hand, when
the reinsurer is less optimistic (θ1 > θ2), a lower Pareto efficient frontier is obtained. It
could be foreseen that when θ2 is much smaller than θ1 and the reinsurer is much more
pessimistic than the insurer, no policies on the Pareto efficient frontier will satisfy the
constraints (4.3) and thus no reinsurance treaty will be reached.

In the next two subsections, we identify the reinsurance policy corresponding to the Nash
bargaining solution and that to the Kalai-Smorodinsky bargaining solution.

The Nash bargaining solution

Since the Nash bargaining solution locates on the efficient frontier, it may be identified by
checking which Pareo-optimal policy (corresponding to specified value of k) maximizes the
product in (4.7). The utility products are plotted again a range of values of k in the left panel
of Figure 4.2. The right panel exhibits the reinsurance policies corresponding to the Nash
bargaining solutions for three cases.

Figure 4.2: The optimal reinsurance policies corresponding to the Nash bargaining solutions

More specifically, the Nash bargaining solutions for the three cases are given by the fol-
lowing:

• for θ1 = 0.0005 and θ2 = 0.00051, k = 1.53,

IN(x) = min

x,max

0,
2 × 10−5x − 0.83e−10−5 x + 0.83
2 × 10−5 + 2.3 × 10−5e−10−5 x


 (4.19)

and PN = 1311. Notice that for non-extreme values of the loss x relative to the mean
loss of 2000, Equation (4.19) can be approximated quite accurately by its first-order
approximation:

IN(x) ≈ 0.66x.
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• for θ1 = θ2 = 0.0005, k = 1.529,
IN(x) = 0.47x

and PN = 936;

• for θ1 = 0.0005 and θ2 = 0.000498, k = 1.529,

IN(x) = min

x,max{0,
2 × 10−5x − 0.82e2×10−6 x + 0.82
2 × 10−5 + 2.29 × 10−5e2×10−6 x

}

 , (4.20)

which can be approximated by
IN(x) ≈ 0.43x

and PN = 886.

From the above expressions for the optimal ceded functions, it is clear that when the rein-
surer is more optimistic than the insurer, more reinsurance coverages are agreed upon, and vise
versa.

Remark 4.3.5 Examining equation (4.19) carefully, one observes that for non-extreme values
of x, the optimal ceded function is linear with a slope of less than one. However, limx→∞ IN(x) =

x, which means that all large losses are ceded. This seems reasonable because the reinsurer is
more optimistic about the distribution of the losses. However, there are some range of losses
where the slope of the ceded function (the marginal rate of indemnity) is greater than one,
which would encourage moral hazards. One possible remedy for such problem is to simply
choose the proportional policy. That is, replacing (4.19) by its linear approximate IN(x) =

0.66x. The effect of such modification is small because the ceded function (4.19) deviates from
its linear approximation IN(x) = 0.66x only when x is very large. In fact, we argue that this
simple linear ceded function is preferable to the more complicated (4.19) because it not only
prevents moral hazard but also reduces costs related to the handled claims.

Remark 4.3.6 The ceded function in (4.20) has an opposite problem. For non-extreme values
of x, the optimal ceded function is linear with a slope of less than one. However, limx→∞ IN(x) =

0, which again seems reasonable because the reinsurer is more pessimistic about the distribu-
tion of the losses and less willing to provide coverages (especially for large losses). However,
when x > 5.64 × 105, the slope of the ceded function (the marginal rate of indemnity) is neg-
ative, which again would encourage moral hazards. One possible remedy for such problem is
simply to level out the ceded function for x > 5.64 × 105. This results in a ceded function of
IN(x) = 0.43×min{x, 5.64×105}. The effect of such modification is small because the probabil-
ity of a loss of greater than 5.64 × 105 is extremely small under the insurer’s or the reinsurer’s
belief. Again, we argue that the simpler ceded function is preferable to the more complicated
one.

Kalai-Smorodinsky bargaining model

Since the Kalai-Smorodinsky bargaining solution also locates on the Pareto efficient frontier, it
may be identified by checking which Pareo-optimal policy satisfies (4.8).
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Figure 4.3: The optimal reinsurance policies corresponding to the Kalai-Smorodinsky bargain-
ing solutions.

The values of DKS for different k are plotted in the left panel of Figure 4.3. The reinsurance
policies corresponding to the Kalai-Smorodinsky solution in all three cases are shown in the
right panel.

The explicit reinsurance policies are:

• for θ1 = 0.0005 and θ2 = 0.00051, k = 1.531

IKS (x) = min

x,max{0,
2 × 10−5x − 0.83e−10−5 x + 0.83
2 × 10−5 + 2.3 × 10−5e−10−5 x

}

 ,
which can be approximated by

IKS (x) ≈ 0.66x

and PKS = 1311;

• for θ1 = θ2 = 0.0005, k = 1.5295

IKS (x) = 0.47x

and PKS = 936;

• for θ1 = 0.0005 and θ2 = 0.000498, k = 1.529

IKS (x) = min

x,max{0,
2 × 10−5x − 0.82e2×10−6 x + 0.82
2 × 10−5 + 2.29 × 10−5e2×10−6 x

}

 ,
which can be approximated by

IKS (x) ≈ 0.43x,

and PKS = 886.



68Chapter 4. On optimal reinsurance treaties in cooperative game under heterogeneous beliefs

One can see that values of k corresponding to the Nash bargaining solution and the Kalai-
Smorodinsky bargaining solution are very close, which leads to the same optimal reinsurance
policies. It is comforting to see this agreement because both the IIA assumption of Nash
(1950) and the monotonicity assumption of Kalai and Smorodinsky (1975) are reasonable in
our application.

4.4 Optimal reinsurance with actuarial premiums
In this section, we obtain the Pareto-optimal reinsurance policies assuming the premium P is
set by the reinsurer according to the expected value premium principle. To this end, we solve

Problem 4.4.1 For k ≥ 0,

max
I∈C,P∈[0,Pm]

J(I, P) = E1[u(w1 − X + I(X) − P)] + kE2[v(w2 − I(X) + P)], (4.21)

s.t. (1 + θ) E2 [I(X)] = P, θ ≥ 0 (4.22)

where Pm = (1 + θ)E2 [X] is the the maximum possible premium and θ is a non-negative safety
loading for the reinsurer.

Note that when f2 is the Esscher transform of f1, our problem becomes finding Pareto-
optimal reinsurance policy with premium determined by the Esscher transform principle, which
the authors believe that has not been studied in the literature.

To solve Problem 4.4.1, we again utilize a two-step optimization procedure. First, we
identify the analytical form of the optimal ceded function Ĩ∗P when the premium P is fixed.
This is, we solves

Problem 4.4.1a For a fixed premium level P and a weight parameter k ≥ 0,

max
I∈C

J(I, P) = E1[u(w1 − X + I(X) − P)] + kE2[v(w2 − I(X) + P)],

s.t. (1 + θ) E2 [I(X)] = P, θ ≥ 0.

Second, we search for a P∗, in its reasonable range (0, Pm) that solves

Problem 4.4.1b
max

P∈[0,Pm]
J(Ĩ∗P, P). (4.23)

Note that once all Pareto-optimal reinsurance policies are identified, those satisfy the ratio-
nality constraints (4.3) can easily be determined.

4.4.1 Main results
We now solve Problem 4.4.1a by applying a point-wise maximization method proposed in
Ghossoub (2017).
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Denote the term under the expectation operators in Problem 4.4.1a by

M(x, I(x), P) := u(w1 − x + I(x) − P) + kv(w2 − I(x) + P)LR(x), (4.24)

and the corresponding Lagrange augmented object by

N(x, I(x), P, λ) := M(x, I(x), P) + λ [(1 + θ)I(x)LR(x) − P] . (4.25)

Then we have

Lemma 4.4.2 A ceded function Ĩ∗P ∈ C solves Problem 4.4.1a if there exists a λP ∈ R such that
the following two conditions are satisfied

1. For all I ∈ C that satisfies (4.22), N
(
x, Ĩ∗P(x), P, λP

)
≥ N (x, I(x), P, λP) for all x ∈ [0,M].

2.
(1 + θ) E2

[
Ĩ∗P(X)

]
= P. (4.26)

The proof is given in the appendix A.
Lemma 4.4.2 in fact states that Problem 4.4.1a can be solved pointwisely by maximizing

the integrands of the objective function (terms under the expectation operators) augmented by
a Langrange multiplier.

To identify Ĩ∗P(x), we next consider the problem

max
y∈[0,x]

N (x, y, P, λ) (4.27)

for a fixed x and an arbitrary λ. We use the notation N2(·, ·, ·, ·) and N22(·, ·, ·, ·) for the first and
second partial derivative of N with respective to its second argument respectively, and so forth.

Due to the concavities of utility functions u(·) and v(·), we have

N22 (x, y, P, λ) = u′′(w1 − x + y − P) + kv′′(w2 − y + P)LR(x) < 0.

Thus N (x, y, P, λ) is strictly concave in y and (4.27) must have a unique solution, which is
denoted as I∗(x; λ).

The follow two lemmas identify I∗(x; λ). Their proofs are given in the appendix A.

Lemma 4.4.3 The solution to problem (4.27) is given by

I∗(x; λ) := min {x,max {0, y(x, λ)}} , (4.28)

where y(x, λ) is the solution to the first-order condition

N2 (x, y, P, λ) = 0. (4.29)

Lemma 4.4.4 For any P ∈ (0, (1 + θ)E2(X)), there exists a λP ∈ R such that

(1 + θ) E2 [I∗(X, λP)] = P.

Combining Lemmas 4.4.2, 4.4.3 and 4.4.4, we have proved our main result of this Section:
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Theorem 4.4.5 The solution to Problem 4.4.1a is given by

Ĩ∗P(x) = I∗(x; λP) = min
{
x,max{0, y(x, λP)}

}
,

where λP is determined by (1 + θ)E2 [I∗(x; λP)] = P.

Having obtained the optimal ceded function Ĩ∗P for a fixed premium P, we next seek the
optimal premium level P∗ by considering Problem 4.4.1b. As in Section 4.4.1, since the func-
tional form of the ceded function Ĩ∗P depends on P, analytical expression of P∗ is difficult to
obtain in general. However, numerical solutions are always obtainable. This is shown in the
examples presented in Section 4.4.3.

Now that we have obtained the Pareto-optimal policy (Ĩ∗P∗ , P
∗) corresponding to any nego-

tiation weight parameter k ≥ 0, we can obtain the whole Pareto efficient frontier of reinsurance
policies. Note that whether a Pareto-optimal policy satisfies the rationality constraints (4.3)
can be easily checked by direct substitution.

4.4.2 Some examples with specific utility functions
Optimal reinsurance with quadratic utility functions

Let the utility functions of the insurer and the reinsurer be quadratic and given by (4.9) and
(4.10) respectively.Then equation (4.29) becomes

−β1(w1 − x + y(x, λ) − P) + 1 =
[
−kβ2(w2 − y(x, λ) + P) + k − λ(1 + θ)

]
LR(x),

which leads to

y(x, λ) =
β1x +

(
kβ2(w2 + P) − k + λ(1 + θ)

)
LR(x) + 1 − β1(w1 − P)

β1 + kβ2LR(x)
. (4.30)

Then the optimal ceded function can be obtained by applying Theorem 4.4.5.
Several observations from (4.30) are noted:

• With LR(x) = 1, the optimal ceded function is a proportional reinsurance policy with
a deductible, where the ceded proportion is β1

β1+kβ2
. In fact, comparing this with Equa-

tion (4.13), we see that the ceded proportion is the same as that when premium level is
negotiated rather than determined by a premium principle.

• When k = 0 and the reinsurer’s interests are not considered,

y(x, λ) = x − w1 + P +
1
β1

(λ(1 + θ)LR(x)) .

and the optimal ceded function takes the variable deductible form

I∗(x; λP) = min {x,max {0, x − d(x, λP)}} ,

where d(x, λP) = w1−P− 1
β1

(λP(1 + θ)LR(x)) and λP is determined by (1+θ)E2[I∗(x; λP)] =

P. The result agrees with Theorem 4.6 in (Ghossoub, 2017).
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• when k ↗ ∞, it is difficult to determine the form of y(x, λ) because λ is also a function
of k. However, the numerical example in Section 4.4.3 indicates that in this case, the
reinsurer in fact prefer to cover small losses. This result is in contrast with the one in
Section 4.3.2, where the premiums are negotiated.

• If the reinsurer is risk neutral, i.e., β2 → 0, then

y(x, λ) = x − w1 + P +
1
β1

((λ(1 + θ) − k)LR(x) + 1) .

The optimal ceded function is again a variable deductible.

Optimal reinsurance with exponential utility functions

Let the utility functions of the insurer and the reinsurer be given by (4.15) and (4.16) respec-
tively. Then, equation (4.29) becomes

e−λ1(w1−x+y(x,λ)−P) =
[
ke−λ2(w2−y(x,λ)+P) + λ(1 + θ)

]
LR(x).

In general, there is no analytical solution exists for the above equation, even with LR(x) = 1.
However, we notice that

• For k = 0,

y(x, λ) = x − w1 + P −
1
λ1

ln (λ(1 + θ)LR(x))

and the optimal policy is of variable deductible type.

• If the reinsurer is risk neutral (i.e., λ2 → 0 in reinsurer’s exponential utility function),
then

y(x, λ) = x − w1 + P −
1
λ1

ln ((k − λ(1 + θ))LR(x)) ,

and the optimal policy is of variable deductible type.

4.4.3 Numerical illustration
In this Section, we apply the exact same setting as in Section 4.3.3, except that the premium is
determined by

P = (1 + θ)E2 [I(X)] ,

where the safety loading θ = 0.05. For this case, applying Theorem 4.4.5 yields

I∗(x; λP) = min {x,max {0, y(x; λP)}} ,

where

y(x, λP) =
β1x + (kβ2(w2 + P) − k + λP(1 + θ)) e(θ1−θ2)xθ2/θ1 + 1 − β1(w1 − P)

β1 + kβ2e(θ1−θ2)xθ2/θ1

and λP is determined by E2 [I∗(X; λP)] = P
1+θ

.
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Pareto efficient frontier

Figure 4.4 exhibits the Pareto efficient frontier with the negotiation weight parameter k ranging
from 0 to 99. For comparison purpose, the Pareto efficient frontiers for the case when the
premiums are completely negotiable are also shown with dashed lines. The ranges of k such
that the rationality constraints (4.3) are satisfied are given by

• θ1 = 0.005, θ2 = 0.0051, k ∈ [0.4, 1.6],

• θ1 = θ2 = 0.005, k ∈ [0, 1.4],

• θ1 = 0.005, θ2 = 0.00498, k ∈ [0, 1.3].

Figure 4.4: The Pareto efficient frontiers.

The following conclusions can be drawn from Figure 4.4:

• The Pareto efficient frontiers obtained when the premiums are fully negotiable dominate
those when the premium are determined by the actuarial premium principle.

• Similar to Section 4.3.3, when the reinsurer is more optimistic, there are more rooms for
negotiation and a higher Pareto efficient frontier is obtained, and vice versa.

Two special cases

It is interesting to observe the optimal policy when only one party’s interest is considered.
Particularly, when k = 0, only the interests of the insurer are considered, we have

• For θ1 = 0.0005 and θ2 = 0.00051:

I∗(x) = min
{
x,max{0, x − 44960e−10−5 x + 40635}

}
,

which can be approximated by

I∗(x) ≈ min {x,max{0, 1.45x − 4325}} .
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• For θ1 = θ2 = 0.0005:
I∗(x) = max {0, x − 3813.9} .

• For θ1 = 0.0005 and θ2 = 0.000498:

I∗(x) = min
{
x,max{0, x − 43932e2×10−6 x + 40258}

}
,

which can be approximated by

I∗(x) ≈ max{0, 0.91x − 3674}.

Remark 4.4.1 In all cases, the optimal policies include a sizable deductible. When the parties
have homogeneous belief ( θ1 = θ2 = 0.0005), the reinsurer provide full coverage after the
deductible. This result agrees with the classical result in Arrow (1973). When the reinsurer
is more optimistic about the loss distribution, it provides more than full coverage after the
deductible (marginal indemnity rate greater than one), which might make sense with the “agree
to disagree” assumption. However, this policy will encourage moral hazards of the insurer. On
the contrary, When the reinsurer is less optimistic about the loss distribution, it will cover less
than full coverage after the deductible.

When k → ∞, only the interests of the reinsurer are considered. For this case, the resultant
ceded functions are identical for the three values of θ2. It is given by

I∗(x) = min {x, 3472.3} ,

indicating that the reinsurer would cover small losses if it overpowers the insurer in the nego-
tiation.

Figure 4.5: The optimal reinsurance policies corresponding to k = 0 and k = ∞.

Remark 4.4.2 The optimal reinsurance policies corresponding to k ↘ 0 and k ↗ ∞ obtained
in this section are rather different from those in Section 4.3.2, where the premiums are nego-
tiated. They seem to be more reasonable, however, such policies still violate the rationality
constraints (4.3) and would not be agreed upon in practice.
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Nash bargaining model

The reinsurance policy corresponding to the Nash bargaining solution may be identified by
evaluating which Pareo-optimal policy maximizes the product in (4.7).

For different values of k, the product of expected utility gains (4.7) is shown in the left
panel of Figure 4.6. The corresponding ceded functions are shown in the right panel.

Figure 4.6: The optimal reinsurance policies corresponding to the Nash bargaining solutions

In particular, the explicit reinsurance policies are given by:

• for θ1 = 0.0005 and θ2 = 0.00051, k = 1.39,

IN(x) = min

x,max{0,
2 × 10−5x − 0.84e−10−5 x + 0.82
2 × 10−5 + 2.14 × 10−5e−10−5 x

}

 , (4.31)

which can be approximated by

IN(x) ≈ max {0, 0.69x − 483} , (4.32)

and PN = 979;

• for θ1 = θ2 = 0.0005, k = 1.11,

IN(x) = max{0, 0.57x − 1127}

and PN = 418;

• for θ1 = 0.0005 and θ2 = 0.000498, k = 1.11,

IN(x) = min

x,max{0,
2 × 10−5x − 0.85e2×10−6 x + 0.81
2 × 10−5 + 1.53 × 10−5e2×10−6 x

}

 , (4.33)

which can be approximated by

IN(x) ≈ max {0, 0.52x − 1050} (4.34)

and PN = 398.
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Remark 4.4.3 Similar to Section 4.3.3, we observe that more coverage is provided when the
reinsurer is more optimistic, and vice versa.

Remark 4.4.4 It is seen from (4.31) and (4.33), for certain range of extreme values of loss x,
the marginal indemnity rate is greater than one when the reinsurer is more optimistic; and it is
negative when the reinsurer is more pessimistic. Both situations may encourage moral hazards.
For such situations, similar to remarks 4.3.5 and 4.3.6, we propose that the ceded functions in
(4.31) and (4.33) should be replaced by the much simpler versions in (4.32) and (4.34).

Kalai-Smorodinsky bargaining model

Similar to Section 4.3.3, the reinsurance policy corresponding to the Kalai-Smorodinsky bar-
gaining solution may be identified by evaluating which Pareo-optimal policy satisfies (4.8).
Different from Section 4.3.3, the maximal utility gains umax and vmax are obtained by solving
Problem 4.4.1 with k = 0 and k = ∞ respectively. The values of DKS for different k are plot-
ted in left panel of Figure 4.7. The reinsurance policies corresponding to the KS bargaining
solutions are plotted in the right panel.

Figure 4.7: The optimal reinsurance policies corresponding to the Kalai-Smorodinsky bargain-
ing solutions

The explicit expressions for the reinsurance policies are:

• for θ1 = 0.0005 and θ2 = 0.00051, k = 1.41,

IKS (x) = min

x,max{0,
2 × 10−5x − 0.84e−10−5 x + 0.82
2 × 10−5 + 2.17 × 10−5e−10−5 x

}

 ,
which can be approximated by

IKS ≈ max {0, 0.68x − 456} ,

and PKS = 973;
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• for θ1 = θ2 = 0.0005, k = 1.31,

IKS (x) = max{0, 0.51x − 665}

and PKS = 534;

• for θ1 = 0.0005 and θ2 = 0.000498, k = 1.31,

IN(x) = min

x,max{0,
2 × 10−5x − 0.83e2×10−6 x + 0.81
2 × 10−5 + 1.95 × 10−5e2×10−6 x

}

 ,
which can be approximated by

IKS ≈ max {0, 0.46x − 608} ,

and PN = 512.

Remark 4.4.5 It is observed from the numerical examples that the reinsurance policies corre-
sponding to the the Nash and Kalai-Smorodinsky bargaining solutions are rather similar.

Remark 4.4.6 From figures 4.2, 4.3, 4.6 and 4.7, it can be seen that the Nash bargaining solu-
tion and the Kalai-Smorodinsky solution are unique. In fact, the set of of attainable utility levels
resulting from all possible reinsurance policies are likely to be convex, which would guarantee
the uniqueness of both solutions. However, the proof of the convexity of the attainable utility
levels of the two parties is out of the main focus of the paper and therefore not pursued.

Comparison of the ceded functions: negotiated premiums vs. actuarial premiums

Analytical comparison of the optimal ceded functions when the premiums are negotiated vs.
when the premiums are determined by a preset actuarial principle are difficult. However, our
numerical results in Sections 4.3.3 and 4.4.3 seem to indicate that when the premiums are nego-
tiated, the optimal policy form is proportional with no deductible, whereas when the premiums
are determined by the expectation premium principle with preset risk loading, the optimal pol-
icy form is proportional after sizable deductibles.

4.5 Conclusions
We considered the optimal reinsurance policies as the result of a two-person cooperative game
when the two negotiating parties have different beliefs about the distribution of the underlying
losses. We first derive all Pareto-optimal reinsurance policies and then identify the reinsurance
contract corresponding to the Nash bargaining solution as well as that corresponding to the
Kalai-Smorodinsky bargaining solution. In addition, we provide explicit solutions for the opti-
mal policies in our numerical examples, which complements many deep theoretical treatments
of this topic in the economics and insurance literature.

We have assumed that the negotiation parties “agree to disagree” on the distribution of the
underlying losses. In practice, neither party can be certain about the loss distribution. There-
fore, it is important to consider model and parameter uncertainties in contract negotiations.
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Decision making under uncertainty is a huge research area and many results exist in the eco-
nomics literature (Klibanoff et al., 2005; Alary et al., 2013; Gollier, 2014). In the context of
optimal reinsurance, Asimit et al. (2017) suggested that one could seek robust Pareto-optimal
reinsurance policies when there are the model and parameter uncertainties; Asimit and Boonen
(2018) studied the set of Pareto-optimal insurance contracts and the core of an insurance game
with multiple insurers when there exist model uncertainties and the insurers have divergent
beliefs about the model uncertainties. In future research, it would be very interesting to study
the reinsurance negotiation equilibriums under model and parameter uncertainties.



Chapter 5

Reinsurance Policies with Maximal
Synergy

5.1 Introduction

A reinsurerace contract is a mechanism for redistributing risks between an insurer and a rein-
surer. It is characterized by a pair (P, I(X)), where P is the reinsurance premium and I(X) is the
ceded function specifying the amount the insurer will get indemnified when it suffers a loss of
size X covered by the reinsurance contract.

Extensive results exist for the “optimal” reinsurance policy in the ecomomics and insurance
literature. Two types of optimality criteria are commonly used: maximizing the expected utility
(EU) or minimizing risks. Classical results on policies that maximize the insurer’s expected
utility can be found in Borch (1962), Arrow (1963), Arrow (1974) and Raviv (1979). Results
on policies that minimize the insurer’s risks, measured by variance, the Value ar Risk (VaR), the
Tail Value at Risk (TVaR) and general distortion risk measure, are available in Borch (1960a);
Aase (2002); Cai and Tan (2007); Assa (2015); Zhuang et al. (2016), and the references therein.
Policies that maximize EU under the VaR contraint was studied by Bernard and Tian (2010).

When negotiating a reinsurance contract, the interests of both the insurer and the reinsurer
are considered. Therefore, the optimal policies should live in the set of Pareto-optimal reinsur-
ance policies, where one party’s expected utility (risk) cannot be increased (reduced) further
without reducing (increasing) that of the other party. Results on Pareto-optimal policies that
maximize EU can be found in, for example, Borch (1962); Raviv (1979); Gerber and Pafumi
(1998); Golubin (2006b); Aase (2009); Results on Pareto-optimal policies that minimize risks
can be found in, for example, Cai and Tan (2007); Cai et al. (2017); Jiang et al. (2017, 2018);
Asimit and Boonen (2018).

To identify an unique policy from the set of Pareto-optimal policies, one could consider the
competitive equilibrium or some bargaining solution in the context of game theory. The optimal
policy corresponding to the competitive equilibrium is a policy in the Pareto-optimal set, where
the price is determined by the market such that the demand and supply of reinsurance are equal
(market is clear). For results about optimal reinsurance in the competitive equilibrium within
the framework of EU maximization, see for example, Borch (1962) and Gerber and Pafumi
(1998). In the risk minimizing framework, see Embrechts et al. (2018), which identified an

78
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Arrow-Debreu competitive equilibrium when the risks are measured by the so-called Range-
Value-at-Risk (RVaR).

The optimal policy corresponding to a bargaining solution is a policy in the Pareto-optimal
set, where the benefits of cooperation is distributed among the negotiating parties in accor-
dance to some rationality axioms. For example, Borch (1960c) first identified the set of Pareto-
optimal reinsurance policies that maximize the EU of both parties, then an unique policy is
determined by making use of Nash’s solution for bargaining games. That is, the axioms of
“invariant to affine transformations”, “independence of irrelevant alternatives”, and “symme-
try” are assumed. Kihlstrom and Roth (1982b) studied the effects of the insurance buyer’s risk
aversion on the bargaining outcomes. Much more recently Boonen (2016a) studied the Nash
bargaining solution for insurance risk redistribution by assuming the set of admissible poli-
cies are regulated so that both parties can benefit from the reinsurance transaction. For results
about optimal reinsurance in the bargaining solution within the framework of risk minimiza-
tion, see for example Asimit and Boonen (2018). An insightful and comprehensive review of
reinsurance policy in competitive equilibrium versus bargaining solution was given by Aase
(2009).

The optimal reinsurance policy obtained through maximizing the EU and that obtained
through minimizing risks are in general different. In practice, insurance companies are likely
to consider both EU and risk constraints when negotiating reinsurance policies. One approach
to consider both is to maximize EU under some risk constraints, as was done in Bernard and
Tian (2010). An alternative approach was in fact used in Borch (1960b), which assumed that
the admissible reinsurance policies (in maximizing EU) should be such that the total risk is
minimized (the reduction in risk through the reinsurance transaction is maximized). It is further
assumed that both the insurer and the reinsurer use variance as their risk measure, therefore, to
minimize the total risk, the covariance of the payments of the two parties should be maximized,
which necessitate quota share treaties. Among the admissible quote share policies, the set of
Pareto-optimal policies that maximize the EU of the two parties are determined. Lastly the
Pareto-optimal policy corresponding to the Nash bargaining solution is identified. We note that
the criterion of minimizing was further discussed in Hürlimann (2011).

In this paper, we follow the approach in Borch (1960b). However, we assume that the two
parties apply distortion risk measures instead of the variance. Both the criteria based on total
variance and on total distortion risk measures intend to minimize the total risk in the system.
However, the former focuses on the unexpected fluctuations of losses, the later focuses on the
solvency issue. Minimizing the total risk in the system is important from the societal point
of view, it is also essential in designing “internal reinsurance”, where the total distortion risk
measure (e.g. VaR or TVaR) determines the solvency capital that should be reserved by the
firm before splitted between the fronting company and the reinsurance captive.

In our analysis, we first identify a set of reinsurance policies that minimize the total risk
shared by the two parties, then we take this set of policies as admissible and determine the
Pareto-optimal policies that maximize the EU of the two parties. Our approach is also some-
what similar to that in Boonen (2016a), where Nash bargaining solutions are determined in
some prior-determined set of feasible policies. This approach is also related to the maximal
synergy risk sharing (Section 9 in Gerber and Pafumi (1998)), in the sense that we only consider
policies that minimize the total risk (synergy maximizing) when maximizing EU. From now
on, we refer to the reinsurance policies that minimize the total risk as the synergy-maximizing
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reinsurance policies.
The remainder of this paper is organized as follows. Section 5.2 reviews the basic con-

cepts of distortion risk measure and describes the objective function of this study. Section
5.3 determines the set of synergy-maximizing reinsurance policies. Section 5.4 identifies the
set of Pareto-optimal policies that maximize the EU of the two parties assuming that only the
synergy-maximizing policies are admissible. In addition, the policy corresponding to the Nash
bargaining solution is determined. Section 5.5 considers the optimal policies when additional
risk constraints are imposed. Section 5.6 provides numerical examples. Section 5.7 concludes.

5.2 Background and model formulation
Since this paper assumes that the insurer and and the reinsurer measure their risks by distor-
tion risk measures, we begin by introducing some definitions and notions of distortion risk
measures.

5.2.1 Distortion risk measures
The distortion risk measure of a non-negative loss random variable X with distribution func-
tion FX and survival function S X is defined as Hg(X) =

∫ ∞
0

g (S X(x)) dx, where the distortion
function g : [0, 1] → [0, 1] is non-decreasing and satisfies g(0) = 0 and g(1) = 1 (Denuit
et al., 2006). A distortion risk measure has the properties of translation invariance, positive
homogeneity, monotonicity and comonotonic additivity (Wang et al., 1997). In addition, it is
coherent if and only if the distortion function is concave (Wirch and Hardy, 2001). For detailed
discussions of comonotonic random variables and distortion risk measures, see, for example,
Dhaene et al. (2002a,b); Balbás et al. (2009) and the references therein.

Two widely used distortion risk measures are Value-at-Risk (VaR) and Tail Value-at-Risk
(TVaR). The VaR of X at confidence level α is defined as

VaRα(X) = F−1
X (α) = inf {x : FX(x) ≥ α} , (5.1)

where the corresponding distortion function is given by

gV,α(x) =

{
0, 0 ≤ x < 1 − α,
1, 1 − α ≤ x ≤ 1.

(5.2)

The TVaR of X at confidence level α is defined by

TVaRα(X) =
1

1 − α

∫ 1

α

VaRt(X)dt (5.3)

with the corresponding distortion function

gT,α(x) =


x

1 − α
, 0 ≤ x < 1 − α,

1, 1 − α ≤ x ≤ 1.
(5.4)

We next describe the objective of this paper.
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5.2.2 The Objective function
Let the insurer and the reinsurer have initial wealth w1 and w2 and adopt distortion risk mea-
sures with distortion functions g1 and g2 respectively. Let the underlying loss random variable
that is being considered for a reinsurance contract be denoted by X with support [0,M], where
M ≤ ∞. Let the ceded function be denoted by I(x) and the premium be determined by

P = (1 + θ)E[I(X)]. (5.5)

Then with a reinsurance contract characterized by the pair (P, I(x)) the insurer’s total loss is
LI = X − I(X) + P and the reinsurer’s total loss is LR = I(X) − P.

We assume that the set of admissible reinsurance policies is given by

C :=
{

I : [0,M]→ [0,M]

∣∣∣∣∣∣ 0 ≤ I(x) ≤ x for all x ≥ 0,
0 ≤ I(x1) − I(x2) ≤ x1 − x2 if 0 ≤ x2 ≤ x1

}
.

With I ∈ C, both the ceded loss I(X) and the retained loss X − I(X) are non-decreasing with
respect to X, so they are comonotonic. The functions belonging to C are 1-Lipschitz continuous
and therefore differentiable almost everywhere (Chi and Tan, 2011). These properties make the
set of functions a reasonable choice for the admissible set because they satisfy the principle of
insurance indemnity and prevent moral hazard.

By the comonotonic additivity of distortion risk measures (Dhaene et al., 2002a), we have
for a distortion function g (Ludkovski and Young, 2009; Cheung and Lo, 2017),

Hg(X) = Hg(I(X)) + Hg(X − I(X))

and

Hg(I(X)) =

∫ ∞

0
g(S X(x))dI(x). (5.6)

Inspired by Borch (1960b), the goal of this paper is to seek Pareto-optimal reinsurance
contracts that maximize the EU of the two parties within the admitted set of ceded functions:

Cg =: arg min
I∈C

Hg1(LI) + Hg2(LR). (5.7)

Denote the utility functions of the insurer and reinsurer by u and v respectively. Assume
that they are non-decreasing and concave. In addition, assume that

lim
x→∞

u′(x) = lim
x→∞

v′(x) = 0 (5.8)

and
lim

x→−∞
u′(x) = lim

x→−∞
v′(x) = ∞ (5.9)

Since a reinsurance treaty can be reached only if both parties in the transaction are better off

from it, we require that the EU of the two parties do not decrease because of the reinsurance
contract. This is, the optimal policies should satisfy the the rationality constraintsE1[u(w1 − X + I(X) − P)] ≥ E1 [u(w1 − X)]

E2[v(w2 − I(X) + P)] ≥ v(w2)
. (5.10)
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Note that the point (E[u(w1 − X)], v(w2)) corresponding to the two parties’ utilities without
reinsurance contract is referred to as the disagreement point in game theory literature (Nash,
1953; Lemaire, 1991).

It is known that in order to determine the Pareto-optimal policies that maximize the EU
of the two parties, one could maximize the weighted average of the EU. Therefore, our main
problem becomes

Problem 5.2.1 (Main problem)

max
I∈Cg

E [u(w1 − X + I(X) − P)] + kE [v(w2 − I(X) + P)] , (5.11)

s.t. rationality constraints (5.10).

Note that the parameter k in the objective function can be interpreted as the relative negotiation
power of the reinsurer.

In next section, we characterize the reinsurance contracts in set Cg when both parties apply
VaR or TVaR as their risk measures.

5.3 The set of synergy-maximizing policies

Value-at-Risk

Suppose that the insurer and the reinsurer adopt VaR with probability level αc and αr respec-
tively to measure their risks. Then the set of synergy-maximizing policies is given by

arg min
I∈C

VaRαc (LI) + VaRαr (LR)

= arg min
I∈C

VaRαc(X − I(X) + P) + VaRαr (I(X) − P).

Because of the translation invariance property of the distortion risk measures, the above set is
equivalent to

arg min
I∈C

VaRαc(X − I(X)) + VaRαr (I(X)).

In addition,
VaRαc(X − I(X)) = VaRαc(X) − VaRαc(I(X)).

Further, because I(x) is nondecreasing, VaRα(I(X)) = I (VaRα(X)). Therefore, the above set
simplifies to

arg min
I∈C

I(ar) − I(ac), (5.12)

where ac = VaRαc(X) and ar = VaRαr (X).
The solution to Problem (5.12) is discussed in the following.

Case 1: αc > αr
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Because 0 ≤ I(x) ≤ x, a ceded function, denoted by IV1(x), solves (5.12) if and only if it
has a slope of one in [ar, ac]. That is,

I′V1
(x) =

{
1, x ∈ [ar, ac],
η(x), x < [ar, ac],

(5.13)

where η(x) ∈ [0, 1] is any function such that IV1(x) ∈ C. Intuitively, when αc ≥ αr, the
losses in layer [ar, ac] contribute to the insurer’s VaR, but not to that of the reinsurer. So
they should be ceded.

Let the set of functions that satisfy (5.13) be denoted by CV1 . Then CV1 is the solution
to Problem (5.12). Further, let the set of functions in CV1 that satisfies IV1(ar) = b1 for
some constant b1 ∈ [0, ar] be denoted by CV1,b1 . Then upper and lower bounds of CV1,b1 ,
denoted by IV1,b1(x) and IV1,b1

(x) respectively, are given by the following.

• IV1,b1(x) = {x ∧ b1} + (x − ar)+.

• IV1,b1
(x) = (x − (ar − b1))+ ∧ (b1 + ac − ar).

A graphical illustration is given in figure 5.1.

Case 2: αc < αr

Because 0 ≤ I(x) ≤ x, The solutions for (5.12), IV2(x), has slope zero in [ac, ar]. There-
fore, we have

I′V2
(x) =

{
0, x ∈ [ac, ar],
η(x), x < [ac, ar],

(5.14)

where η(x) ∈ [0, 1] is any function such that IV2(x) ∈ C.

Intuitively, when αc ≤ αr, the losses in the layer [ac, ar] contribute to the reinsurer’s
VaR, but not to the insurer’s. Therefore, losses in the layer should be retained.

In this case, the set of functions that satisfy (5.14), denoted by CV2 constitutes the
solution to Problem (5.12). Further, let the set of functions in CV2 that satisfies IV2(ac) =

b2 for some constant b2 ∈ [0, ac] be denoted by CV2,b2 . Then upper and lower bounds of
CV2,b2 , denoted by IV2,b2(x) and IV2,b2

(x) respectively, are given by the following.

• IV2,b2(x) = {x ∧ b2} + (x − ar)+.

• IV2,b2
(x) = (x − (ac − b2))+ ∧ b2.

Case 3: αc = αr

In this case, the reduction in total risk due to the reinsurance policy is always zero for
every ceded function in C.
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Figure 5.1: An illustration of the upper and lower bounds of CV1,b1 .

Tail Value-at-Risk
Suppose that the insurer and the reinsurer adopt TVaR, with probability levels with αc and αr

respectively, to measure their risks. Then the set of synergy-maximizing policies are deter-
mined by

arg minI∈C TVaRαc(LI) + TVaRαr (LR),
= arg minI∈C TVaRαr (I(X)) − TVaRαc(I(X)), (5.15)

due to the comonotonic additivity property of TVaR.
By (5.6),

minI∈C TVaRαr (I(X)) − TVaRαc(I(X))
= minI∈C

∫ ∞
0

(gT,αr (S X(x)) − gT,αc(S X(x)))dI(x), (5.16)

whose solutions are obtained in the following.

Case 1: αc > αr

From (5.4), it is easy to see that

gT,αr (S X(x)) < gT,αc(S X(x)) for x > ar

and

gT,αr (S X(x)) = gT,αc(S X(x)) for x ≤ ar

Thus the solution to Problem (5.16), denoted by IT1(x), satisfy

I′T1
(x) =

{
1, x ∈ [ar,∞),
η(x), x ∈ [0, ar],

(5.17)
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where η(x) ∈ [0, 1] is any function such that IT1(x) ∈ C.

Let the set of functions that satisfy (5.17) be denoted by CT1 . Then it is the solution
to Problem (5.15). Further, let the set of functions in CT1 that satisfies IT1(ar) = b1 for
some constant b1 ∈ [0, ar] be denoted by CT1,b1 . Then upper and lower bounds of CT1,b1 ,
denoted by IT1,b1(x) and IT1,b1

(x) respectively, are given by the following.

• Upper bound: IT1,b1(x) = (x ∧ b1) + (x − ar)+.

• Lower bound: IT1,b1
(x) = (x − (ar − b1))+.

A graphical illustration is given in Figure 5.2.

Case 2: αc < αr

In this case, gT,αr (S X(x)) > gT,αc(S X(x)) for x > ac and gT,αr (S X(x)) = gT,αc(S X(x))
otherwise. Thus, the solutions to Problem (5.15), denoted by IT2(x) is given by

I′T2
(x) =

{
0, x ∈ [ac,∞),
η(x), x ∈ [0, ac],

(5.18)

where η(x) ∈ [0, 1] is any function such that IT2(x) ∈ C.

The set of functions that satisfy (5.18), denoted by CT2 , constitute the solution to problem
(5.15). Further, let the set of functions in CT2 that satisfies IT2(ar) = b2 for some constant
b2 ∈ [0, ac] be denoted by CT2,b2 . Then upper and lower bounds of CT2,b2 , denoted by
IT2,b2(x) and IT2,b2

(x) respectively, are given by the following.

• Upper bound: IT2,b2(x) = x ∧ b2.

• Lower bound: IT2,b2
(x) = (x − (ac − b2))+ ∧ b2.

Case 3: αc = αr

In this case, the reduction in total risk due to the reinsurance policy is always zero for
every ceded function in C.

Remark 5.3.1 It can be easily verified that CT1 ⊂ CV1 and CT2 ⊂ CV2 . This means that the
TVaR synergy-maximizing policies are also VaR synergy-maximizing. In other words, the TVaR
requirement is more stringent than the VaR requirement.

Remark 5.3.2 Note that αc > αr means that the insurer is more risk averse than the reinsurer,
which is more common in the reinsurance negotiation setting. Therefore, to simplify presenta-
tion, this will be assumed in the following discussions.
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Figure 5.2: Illustrative upper bound and lower bound for αc ≥ αr under TVaR.

5.4 Pareto-optimal policies
In this section we derive the optimal reinsurance policy that solves Problem 5.2.1 when the
risk measures are VaR or TVaR.

As stated in Remark 5.3.2, we will assume that αc > αr, so that insurer is more risk averse
than the reinsurer. The analysis for the case of αc < αr is similar and so omitted in the paper.
Within this scenario and considering the results in Section 3, we next solve Problem 5.2.1 with
Cg replaced by CV1 for the VaR case and by CT1 for the TVaR case.

The methods to solve the above two problems are very similar, so our presentation will
focus on the VaR case.

Our strategy to solve the problem is to first fix the premium P and I(ar) = b and determine
the functional form of ceded function in [0, ar] and [ac,∞]. Then we search for the best P and
b.

Specifically, we first derive the solution I∗b,P to

Problem 5.4.0a (VaR synergy-maximizing policy with fixed b and P)

max
I∈CV1 ,b

E [u(w1 − X + I(X) − P)] + kE [v(w2 − I(X) + P)] ,

where the ceded function also satisfies P = (1 + θ)E[I(X)].

Then we seek (b∗, P∗) that solves

Problem 5.4.0b (Optimal parameters)

max
P,b

E
[
u(w1 − X + I∗b,P(X) − P)

]
+ kE

[
v(w2 − I∗b,P(X) + P)

]
,

s.t. rationality constraints (5.10),
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where b ∈ [0, ar] and P ∈ [PV1,b
, PV1,b] with

PV1,b
= (1 + θ)E[IV1,b

(X)]

and
PV1,b = (1 + θ)E[IV1,b(X)]

being the minimum and maximum possible premiums in this scenario.

Theorem 5.4.1 The solution to Problem 5.4.0a is given by

I∗b,P(x) = IV1,b(x) ∧
{
IV1,b

(x) ∨ y(x, λ)
}
, (5.19)

where y(x, λ) is the solution to

u′(w1 − x + y(x, λ) − P) = k · v′(w2 − y(x, λ) + P) − λ(1 + θ), (5.20)

and the Lagrange multiplier coefficient λ is such that (1 + θ)E
[
I∗b,P(x)

]
= P.

The proof of Theorem 5.4.1 is given in the appendix B.

Remark 5.4.1 If TVaR is the risk measure, the optimal solution can be obtain by modifying
Theorem 5.4.1 slightly by replacing IV1,b and IV1,b

with IT1,b and IT1,b
respectively. The search

range for Problem 5.4.0b changes accordingly to [PT1,b
, PT1,b], where

PT1,b
= (1 + θ)E[IT1,b

(X)]

and
PT1,b = (1 + θ)E[IT1,b(X)].

Remark 5.4.2 Taking derivative with respective to x on both sides of the equation (5.20), one
gets

y′(x, λ) =
u′′(w1 − x + y(x, λ) − P)

u′′(w1 − x + y(x, λ) − P) + kv′′(w2 − y(x, λ) + P)
, (5.21)

which is the same as the equation (6) in Golubin (2006a). In addition, from (5.21), it is seen
that the slope of the ceded function is between 0 and 1.

Without the synergy-maximizing requirement, or equivalently when the admissible set of
ceded function is C with the upper bound I

∗

C(x) = x and the lower bound I∗
C
(x) = 0. Then the

optimal reinsurance takes the form

I∗(x, λ) = x ∧ {0 ∨ y(x, λ)} ,

where y(x, λ) is the solution of equation (5.20).

Remark 5.4.3 For k = 0,

y(x, λ) = x − w1 + P + [u′]−1(λ(1 + θ)),

where [u′]−1(·) is the inverse function of u′(·). Therefore,

I∗b,P(x) = IV1,b(x) ∧
{
IV1,b

(x), x − w1 + P + [u′]−1(λ(1 + θ))
}
.

One can see that the optimal ceded function in this case is piecewise linear.
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Having determined the optimal form of ceded function by making use of Theorem 5.4.1,
one can next seek the optimal parameter values b∗ and P∗ by solving Problem 5.4.0b. Since
the functional form of the ceded function implicitly depends on P and b, analytical expressions
are difficult to obtain in general. However, numerical solutions may be obtained because it
is a maximization problem over two real parameters. We will illustrate this in the numerical
example provided in Section 5.6.

Having derived the Pareto-optimal reinsurance policy I∗b∗,P∗(x) corresponding to a weight
parameter k, we can obtain the whole Pareto efficient frontier of the reinsurance policies by
varying the weight parameter k. Those policies on the frontier that satisfy the constraints
(5.10) are solutions to Problem 5.2.1. Note that whether a Pareto-optimal policy satisfies the
constraints (5.10) can be easily checked by direct substitution.

5.4.1 Optimal policies as the Nash bargaining solutions
In many situations, it is desirable to identify an “optimal” reinsurance policy from a set of
Pareto-optimal policies. Therefore, we next identify the policy such that the benefits of coop-
eration are “fairly” shared by the two parties. To this end, we apply the Nash bargaining model
(Nash, 1950).

Based on a set of simple and reasonable axioms: scale invariance, symmetry, Pareto ef-
ficiency, and independence of irrelevant alternatives, Nash (1950) proposed that the unique
solution to a two-person bargaining problem is obtained by maximizing the product of utility
gains of the two parties. In our context, this means that the unique optimal reinsurance policy
in the Nash bargaining model can be obtained by solving

max
I∈Cg
{E1 [u(w1 − X + I(X) − P)] − E1 [u(w1 − X)]} {E2 [v(w2 − I(X) + P)] − v(w2)} . (5.22)

It is known that the Nash bargaining solution locates on the Pareto efficient frontier. There-
fore, it may be identified by checking which Pareto-optimal policy (corresponding to different
values of k) solves (5.22). A numerical example is presented in Section 5.6.

5.5 Optimal policies with additional risk constraints
In this section, we study the optimal reinsurance policies when the following additional risk
constraints are imposed on the two parties:

Hg1(LI) ≤ L1, Hg2(LR) ≤ L2. (5.23)

We derive the results for the cases when VaR and TVaR are risk measures in the following.

Value-at-Risk
Because the ceded functions I ∈ C are 1-Lipschitz continuous and VaR satisfies the properties
of translation invariance and the commonotonic additivity, we have

VaRαc(X − I(X) + P) ≤ L1

⇐⇒ P ≤ L1 + I(ac) − ac,
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and

VaRαr (I(X) − P) ≤ L2

⇐⇒ P ≥ I(ar) − L2.

Recall that for I ∈ CV1,b, I(ar) = b and I(ac) − I(ar) = ac − ar. The above two inequalities
become

P ∈ [b − L2, b + L1 − ar]. (5.24)

Consequently, the optimal ceded function with the new VaR constraints can be obtained by
using the results in Section 4 with very slight modification. That is, we change the search range
for P (in Problem 5.4.0b) from [PV1,b

, PV1,b] to

[PV1,b
, PV1,b] ∩ [b − L2, b + L1 − ar],

with the understanding that the problem has no viable solution if the above set is empty.

Tail Value-at-Risk

In this case, let tc = TVaRαc(X), tr = TVaRαr (X) and as = VaRs(X) for 0 ≤ s ≤ 1. Then

TVaRαc(X − I(X) + P) ≤ L1

⇐⇒ P ≤ L1 + 1
1−αc

∫ 1

αc
I(as)ds − tc,

and

TVaRαr (I(X) − P) ≤ L2

⇐⇒ P ≥ 1
1−αr

∫ 1

αr
I(as)ds − L2.

Recall that for I ∈ CT1,b, I(ar) = b and I(x) = b + x − ar for x > ar. Therefore, the above two
inequalities become

P ∈ [b − L2 + tr − ar, b + L1 − ar]. (5.25)

Analogue to the VaR case, the optimal ceded function with the additional TVaR risk constraints
can be obtained by changing the search range for P (in Problem 5.4.0b) from [PT1,b

, PT1,b] to

[PT1,b
, PT1,b] ∩ [b − L2 + tr − ar, b + L1 − ar].

Remark 5.5.1 Comparing (5.24) and (5.25), we observe that the allowable range of P is nar-
rower in the TVaR case than in the VaR case. This verifies that the TVaR constraints are more
stringent than the VaR constraints.
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5.6 Numerical examples
Suppose that the utility functions of the insurer and the reinsurer are given by

u(x) = −
1
2
β1x2 + x, x ≤

1
β1
,

and

v(x) = −
1
2
β2x2 + x, x ≤

1
β2
.

Then solving equation (5.20) yields

y(x, λ) =
β1x + kβ2(w2 + P) − k + λ(1 + θ) + 1 − β1(w1 − P)

β1 + kβ2
,

and the optimal reinsurance policy is given by (5.19). One see that the optimal ceded function
is piecewise linear, with slope being either one, zero, or β1

β1+kβ2
.

More specifically, we next provide numerical solutions to the problem with the following
assumptions.

• The insurer and the reinsurer have initial wealth w1 = $10000 and w2 = $30000.

• The parameters for quadratic utility functions are β1 = 0.00002 and β2 = 0.000015, so
that the insurer is more risk averse than the reinsurer.

• The insurer and the reinsurer apply VaR (TVaR) as risk measures with probability level
αc = 0.95 and αr = 0.9 respectively.

• The underlying loss X follows an exponential distribution with mean $2000. Then ac =

VaRαc(X) = $5991.5 and ar = VaRαr (X) = $4605.2.

5.6.1 Pareto efficient frontier

We solve Problem 5.2.1 with the admissible ceded functions given by the sets C, CV1 and CT1

and obtain the optimal policies, denoted by I∗, I∗V , I∗T respectively, corresponding to the three
levels of synergy-maximizing: no constraint, VaR constraint and TVaR constraint. These were
done for a range of values of negotiation weight parameter k, thus the Pareto efficient frontiers
are obtained. The resultant Pareto efficient frontiers are shown in Figure 5.3. The following
observations are noted:

• The Pareto efficient frontier becomes lower and lower in the order of none, VaR, and
TVaR synergy-maximizing requirement. This is not surprising because the admissible
sets have the relationship C ⊃ CV1 ⊃ CT1 . Intuitively, TVaR synergy-maximizing re-
quirement restrict the form of ceded function quite significantly and this sacrifices the
two parties’ EU. Understandably, increasing (quadratic) EU and minimizing risk (VaR,
TVaR) can be contradictory objectives and one has to strike a balance.
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• the range of values of k so that the rationality constraints (5.10) are satisfied is approx-
imately [0, 1.4] in all three cases. Paticularly, k = 0 corresponds to the case where the
reinsurer has no negotiation power, which results in the EU of the two parties be at the
lower right corner of the plot.

To illustrate the effects of synergy-maximizing constraints on the level of risks, the total
risk (in terms of VaR and TVaR respectively) of the two parties corresponding to the optimal
policies I∗, I∗V , I∗T are shown in Figures 5.4 and 5.5. Two observations are noted:

• TVaR synergy-maximizing policies are also VaR synergy-maximizing. This is reason-
able because CV1 ⊃ CT1 .

• Without the synergy-maximizing requirement, the total risk increase with the reinsurer’s
negotiation power k. This is because we have assumed the reinsurer is more risk tolerant
(αr < αc), maximizing its EU will increase the total risk in the system.

Figure 5.3: EU Pareto efficient frontier.

5.6.2 Nash bargaining solution

To identify an unique “optimal” policy among the Pareto-optimal policies, we adopt the Nash
bargaining solution (5.22). Because the Nash solution is on the efficient frontier, it can be
numerically determined by seeking the best parameter k so that (5.22) is maximized.

Specifically, the optimal policies are as follows:

• No constraint: k = 1.1, P∗ = $496.08, I∗(x) = 0.55(x − 1682.9)+.
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Figure 5.4: The total VaR of the insurer and the reinsurer

Figure 5.5: The total TVaR of the insurer and the reinsurer

• VaR constraint: k = 1.1, P∗ = $474.98,

I∗V(x) =


0.55(x − 1770.9)+ ∧ 1305.9, x ∈ [0, 4605.2],
x − 3299.3, x ∈ [4605.2, 5991.5],
0.55(x − 1770.9)+ ∨ 2692.2, x ∈ [5991.5,∞).

(5.26)

• TVaR constraint: k = 1.3, P∗ = $575.83,

I∗T (x) =

{
0.51(x − 1216.1)+ ∧ 1012, x ∈ [0, 4605.2],
x − 3585.2, x ∈ [4605.2,∞).

(5.27)
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Figure 5.6: Pareto-optimal reinsurance policies corresponding to the Nash bargaining solutions

The ceded functions are plotted in Figure 5.6. We note the following observations:

• Under VaR constraint, the obtained optimal reinsurance policies are quite close to the
one obtained without constraint. This happens when the values of αc and αr are close. In
fact, as commented at the end of Section 3.1, with αc = αr, no reinsurance policy in the
set C can reduce the total risk in the system, in which case CV1 = C.

• The TVaR synergy-maximizing constraint (for αc > αr, even when the values are very
close) requires that all the losses greater than ar are ceded (see Eq. (5.17)). This deviates
rather significantly from the policy for EU maximization without constraint (or when
αc = αr), which requires that about 55% of losses are ceded after a deductible of about
1682.9. This results in lower Pareto efficient frontier, as shown in Figure 5.3.

5.6.3 Optimal policies under additional risk constraints
Additional VaR constraint

We assume that an additional risk constraint is imposed on the insurer such that

VaRαc(X − I(X) + P) ≤ L1,

where L1 is 0.6 × VaRαc(X) = $3594.9 for illustrative purpose. The optimal policy (5.26)
derived in Section 5.6.2 results in VaRαc(X− I∗V(X)+ P) = $3774.3, which violates the imposed
risk constraint. Therefore, we adjust the search range for premium as discussed in Section 5.5
and obtain the optimal policy as follows:

I∗Va
(x) =


0.55(x − 1770.9)+ ∧ 1512.4, x ∈ [0, 4605.2],
x − 3092.8, x ∈ [4605.2, 5991.5],
0.55(x − 1770.9)+ ∨ 2898.7, x ∈ [5991.5,∞).

(5.28)
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The premium for this policy is $497.21. The ceded function I∗Va
(x) is compared with I∗V(x)

in (5.26) in Figure 5.7. It is seen that I∗Va
(x) provides more coverage for losses around the layer

[ar, ac], resulting in lower VaR of the insurer. Of course, the premium increases from $475 for
I∗V(x) to $497 for I∗Va

(x).

Figure 5.7: Pareto-optimal reinsurance policy corresponding to the Nash bargaining solution
with additional VaR constraint of the insurer.

Additional TVaR constraint

Now assume that an additional risk constraint is imposed on the insurer such that TVaRαc(X −
I(X) + P) ≤ L1, where L1 is again set to be 0.6 × VaRαc(X) = $3594.9. The optimal policy
I∗T in (5.27) results in TVaRαc(X − I(X) + P) = $4161.1. Thus the additional risk constraint is
violated. Therefore, we adjust the search range for premium as discussed in Section 5.5 and
obtain the optimal policy as follows:

I∗Ta
(x) =

{
0.53(x − 1484.8)+ ∧ 1632.7, x ∈ [0, 4605.2],
x − 2972.5, x ∈ [4605.2,∞).

(5.29)

The premium for this policy is $622.39. The two policies are shown in Figure 5.8. As expected,
the policy I∗Ta

in (5.29) covers more losses in the right tail than I∗T in (5.27).

5.7 Conclusions
In this paper, we study the Pareto-optimal reinsurance design considering two optimality crite-
ria: EU maximization and risk minimization. We first identify a set of reinsurance policies that
minimize the total risk shared by the two parties, then we take this set of policies as admissible
and determine the Pareto-optimal policies that maximize the EU of the two parties. The policy
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Figure 5.8: Pareto-optimal reinsurance policy corresponding to the Nash bargaining solution
with additional TVaR constraint of the insurer.

corresponding to the Nash bargaining solution is identified. In addition, we characterize the
optimal policy when additional risk constraints are imposed to the two parties.



Chapter 6

Summary and future research

6.1 Summary
In this thesis, we studied the design of Pareto-optimal reinsurance policy within risk mini-
mization and EU maximization framework. First, a simple model constructed under VaR was
studied by applying a geometric approach. Second, considering that VaR belongs to the family
of distortion risk measure, we studied a new model under general distortion risk measures to-
gether with some additional individual risk constraints. The model solution could be obtained
by using Lagrange dual method or generalized Neyman-Pearson lemma or dynamic program-
ming approach. Third, we studied a model by maximizing the weighted average of the EUs
under heterogeneous beliefs, which complements the early works done within risk minimiza-
tion framework. Finally, we blend the risk minimization and EU maximization to study a new
reinsurance policy which is named synergy-maximizing policy.

This thesis comprises the following major research contributions: (i) the second chapter
extends the existing geometric approach to a game-theoretical setting and shows the effective-
ness of this approach in solving such problem if quantile-based risk measures are involved in
the model; (ii) the third chapter solves the problem when a much more general risk measure
is being applied; (iii) the fourth chapter provides implicit solutions to EU-based problem and
identifies the “best” solution located on the Pareto efficient frontier; (iv) the fifth chapter blends
different criteria and derives the reinsurance policy which takes care of different aspects in a
decision-making process.

6.2 Future research
A natural extention is following the works done by Asimit et al. (2017); Asimit and Boonen
(2018) to design the optimal reinsurance policy in a setting which involves multiple insurers or
multiple reinsurers.

Another extention is to adjust the admissible set of ceded functions. So far, the most popular
admissible set is the set of 1-Lipschitz continuous functions and most scholars believe that if
the ceded function belongs to this set the insurer has no incentive to overreport or underreport
the loss. However, it is understandable that there exist other ways to eliminate the ex post
moral hazard, such as adding a state-verification cost. The state-verifiation cost is a cost shared

96



6.2. Future research 97

between the insurer and the reinsurer in some manner such that the actual loss of the insurer
is verified by a third party. If adopting such assumption, more ceded functions can be taken
into consideration, which may greatly simplify the process to seek the solution. Besides, other
assumption such as Vajda condition could be made to reflect the spirit of the reinsurance, which
means more proportion should be shared by the reinsurer if the actual loss is larger. All these
assumptions can influence the final solution to different extents.

Moreover, quite recently the model ambiguity or model uncertainty has drawn consider-
able attention. Traditionally, people apply the worst case analysis to derive the so called robust
reinsurance policy. In this way, the decision maker is treated as extremely ambiguity averse.
However, different decision makers may have different levels of aversion towards the model
ambiguity. A novel model (KMM model) of quantifying the ambiguity aversion was proposed
by Klibanoff et al. (2005) and got applied in many insurance related areas (Alary et al., 2013;
Gollier, 2014; Robert and Therond, 2014). This model can split the ambigutiy aversion and the
risk aversion and thus could provide more interpretations for the obtained results. The KMM
model can serve as a new frame within which new reinsurance policies can be designed to re-
flect the decision maker’s ambiguity aversion and risk aversion seperately and simultaneously.
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Appendix A

Proofs of Theorems in Chapter 4

Proof of Theorem 4.3.3: Following (Golubin, 2006a,b), we solve Problem 4.3.2a by applying
the calculus of variations. Suppose that I∗P ∈ C is the solution to Problem 4.3.2a and I ∈ C is
arbitrary admissible ceded function, then since the set C is convex, any convex combination
of these two ceded functions λI∗P + (1 − λ)I, where λ ∈ [0, 1], belongs to C. Moreover, the
function J(λI∗P + (1 − λ)I, P) is maximized at λ = 1. With Proposition 4.3.2, this indicates that
a sufficient and necessary condition for I∗P ∈ C to solve Problem 4.3.2a is

∂J(λI∗P + (1 − λ)I, P)
∂λ

∣∣∣∣∣
λ=1
≥ 0,

which leads to ∫ M

0
K(I∗P(x), x)I∗P(x)dF1(x) ≥

∫ M

0
K(I∗P(x), x)I(x)dF1(x). (A.1)

In order for (A.1) to be satisfied for all I ∈ C, we must have that

I∗P(x) =

0, if K(I∗P(x), x) < 0
x, if K(I∗P(x), x) > 0.

(A.2)

Hence if 0 < d(P) < ∞, then I∗P(x) = 0 for all x < d(P). Otherwise, if d(P) = ∞, then
I∗P(x) ≡ 0 for all x ≥ 0, implying that no reinsurance agreement is reached.

In addition, for x > d(P), let yP(x) be such that K(yP(x), x) = 0 and 0 ≤ yP(x) ≤ x, then
I∗P(x) = yP(x).

Therefore, we construct the optimal solution to Problem 4.3.2a as

I∗P(x) =


0, yP(x) < 0
yP(x), 0 ≤ yP(x) ≤ x
x, yP(x) > x

. (A.3)

To ensure that (A.3) agrees with (A.2), we next verify that{
x : x > d(P),K(I∗P(x), x) > 0

}
= {x : x > d(P), yP(x) > x} , (A.4)
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and {
x : x > d(P),K(I∗P(x), x) < 0

}
= {x : x > d(P), yP(x) < 0} . (A.5)

Firstly, If there exists x0 > d(P) such that yP(x0) > x0, then by (A.3) we have I∗P(x0) = x0

and thus

K(I∗P(x0), x0) = u′(w1 − P) − kv′(w2 − x0 + P)LR(x0)
> u′(w1 − x0 + yP(x0) − P) − kv′(w2 − yP(x0) + P)LR(x0)
= 0.

Secondly, if there exists x′0 > d(P) such that K(I∗P(x′0), x′0) > 0, then we must have that
I∗P(x′0) < yP(x′0) because K(yP(x′0), x′0) = 0 and the function K is decreasing in its first argument.
Since I∗P(x′0) = x′0 by (A.2), we have x′0 < yp(x′0).

Therefore, (A.4) is proved. Equation (A.5) can be proved similarly. Consequently, we
conclude that the optimal ceded function is given by (A.3), or equivalently, (4.5).

Lastly, differentiate both sides of K(yP(x), x) = 0 with respective to x yields (4.6). The
initial condition is due to the assumed continuity of the ceded function. This completes the
proof.

Proof of Lemma 4.4.2: If N
(
x, Ĩ∗P(x), P, λP

)
≥ N (x, I(x), P, λP) for arbitrary feasible solution

I ∈ C that satisfies (4.22), then we have for all x ≥ 0

M
(
x, Ĩ∗P(x), P

)
− M (x, I(x), P) ≥ λ(1 + θ)LR(x)

(
Ĩ∗P(x) − I(x)

)
.

Thus

J(Ĩ∗P, P) − J(I, P) =

∫ M

0

(
M

(
x, Ĩ∗P(x), P

)
− M (x, I(x), P)

)
dF1(x)

≥ λ(1 + θ)
[
E2[Ĩ∗P(X)] − E2[I(X)]

]
= 0.

This completes the proof.

Proof of Lemma 4.4.3: Firstly, notice that

N2 (x, y, P, λ) = u′(w1 − x + y − P) − kv′(w2 − y + P)LR(x) + λ(1 + θ)LR(x).

It is continuous in y and satisfies

lim
y→∞

N2 (x, y, P, λ) = u′(∞) − kv′(−∞) ≤ 0

and
lim

y→−∞
N2 (x, y, P, λ) = u′(−∞) − kv′(∞) ≥ 0,

by condition (4.2) of the utility functions. Therefore, the solution to (4.29) always exists in
(−∞,∞), which we denote by y(x, λ).

If
N2 (x, y, P, λ) |y=0 = u′(w1 − x − P) −

[
kv′(w2 + P) − λ(1 + θ)

]
LR(x) < 0,
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then y(x, λ) < 0 and the solution to problem 4.27 is I∗(x, λ) = max(0, y(x, λ)) = 0.
On the other hand, if

N2 (x, y, P, λ) |y=x = u′(w1 − P) −
[
kv′(w2 − x + P) − λ(1 + θ)

]
LR(x) > 0

then y(x, λ) > x and I∗(x, λ) = min(x, y(x, λ)) = x.
If y(x, λ) ∈ [0, x] then I∗(x, λ) = y(x, λ). This ends the proof.

Proof of Lemma 4.4.4: For an arbitrary λ, let

φ(λ) := E2 [I∗(X; λ)] .

We prove the Lemma by showing that φ(λ) is continuous and nondecreasing with respect to λ.
In addition,

lim
λ→−∞

φ(λ) = 0, lim
λ→∞

φ(λ) = E2 [X] . (A.6)

Firstly, for any x, I∗(x; λ) is continuous in λ. By definition, |I∗(x; λ)| ≤ x, so by Lebesgue
Dominated Convergence Theorem, φ(λ) = E2[I∗(x; λ)] is continuous with respect to λ.

Secondly, we show that φ(λ) is nondecreasing by showing that I∗(x; λ) is nondecreasing in λ
for every x. since I∗(x; λ) = min

{
x,max{0, y(x, λ)}

}
, it suffices to prove y(x, λ) is nondecreasing

in λ. To this end, taking derivative on both sides of equation (4.29) with respect to λ gives

∂y(x, λ)
∂λ

= −
(1 + θ)LR(x)

u′′(w1 − x + y(x, λ) − P) + k · v′′(w2 − y(x, λ) + P) · LR(x)
≥ 0.

Finally, it is easy to see that when λ → −∞, N2 (x, y, P, λ) < 0 and then I∗(x,−∞) = 0 for
any x; when λ → ∞, N2 (x, y, P, λ) > 0 and then I∗(x,∞) = x for any x. Therefore, (A.6) is
true. This ends the proof.
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Proofs of Theorems in Chapter 5

Proof of Theorem 5.4.1: Denote terms under the expectation operators in the objective func-
tion of Problem 5.4.0a by

M(x, I(x), P) := u(w1 − x + I(x) − P) + k · v(w2 − I(x) + P), (B.1)

and let
N(x, I(x), P, λ) := M(x, I(x), P) + λ [(1 + θ)I(x) − P] (B.2)

be the Langrange augmented function. We first have the following verification lemma.

Lemma B.0.1 A ceded function I∗(x, λ∗) ∈ CV1,b solves Problem 5.4.0a if there exists a con-
stant λ∗ ∈ R such that the following two conditions are satisfied:

Condition 1: For all I ∈ CV1,b that satisfies (1 + θ)E[I(X)] = P,

N (x, I∗(x, λ∗), P, λ∗) ≥ N (x, I(x), P, λ∗) , x ∈ [0,M].

Condition 2:
(1 + θ) E [I∗(X, λ∗)] = P, (B.3)

where the ceded function I∗ includes a second argument λ to emphasize its dependence on the
Langrange coefficient λ.

Proof Since N (x, I∗(x, λ∗), P, λ∗) ≥ N (x, I(x), P, λ∗) for arbitrary feasible solution I ∈ C, we
have for all x ≥ 0

M (x, I∗(x, λ∗), P) − M (x, I(x), P) ≥ λ(1 + θ) (I∗(x, λ∗) − I(x)) .

Thus

E [u(w1 − X + I(X) − P)] + kE [v(w2 − I(X) + P)]

=

∫ M

0
(M (x, I∗(x, λ∗), P) − M (x, I(x), P)) dF(x)

≥ λ(1 + θ)
[
E[I∗(X, λ∗)] − E[I(X)]

]
= 0,

which completes the proof.
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Lemma B.0.1 in fact states that Problem 5.4.0a can be solved pointwisely by identifying
I∗(x, λ∗) that maximizes the Lagrange augmented function .

We next consider the problem

max
y∈[IV1 ,b

(x),IV1 ,b(x)]
N (x, y, P, λ) , (B.4)

for fixed x, b and λ. We will use the notation N1(·, ·, ·, ·) for the first partial derivative of N with
respective to the first argument and N11(·, ·, ·, ·) for the second derivative and so on.

Due to the concavities of u(·) and v(·), we have

N22 (x, y, P, λ) = u′′(w1 − x + y − P) + kv′′(w2 − y + P) < 0.

Thus N (x, y, P, λ) is strictly concave in y and there must exist a solution to (4.27), which we
denote as I∗(x; λ) and determine its form in the next lemma.

Lemma B.0.2 The solution to problem 4.27 is given by

I∗(x; λ) := IV1,b(x) ∧
{
IV1,b

(x) ∨ y(x, λ)
}
, (B.5)

where y(x, λ) be the solution to the first-order condition

N2 (x, y, P, λ) = 0. (B.6)

Proof Firstly, notice that

N2 (x, y, P, λ) = u′(w1 − x + y − P) − kv′(w2 − y + P) + λ(1 + θ)

is continuous and nonincreasing in y. Second, because of the assumptions (5.8) and (5.9),
N2 (x,−∞, P, λ) > 0 and N2 (x,∞, P, λ) < 0. Therefore, a solution, y(x, λ), to (B.6) always
exists in [−∞,∞].

If

N2 (x, y, P, λ) |y=IV1 ,b
(x) = u′(w1 − x + IV1,b

(x) − P) − k · v′(w2 − IV1,b
(x) + P) + λ(1 + θ) < 0

then y(x, λ) < IV1,b
(x) and the solution to problem 4.27 is I∗(x, λ) = IV1,b

(x).
On the other hand, if

N2 (x, y, P, λ) |y=IV1 ,b(x) = u′(w1 − x + IV1,b(x) − P) − k · v′(w2 − IV1,b(x) + P) + λ(1 + θ) > 0

then y(x, λ) > IV1,b(x) and I∗(x, λ) = IV1,b(x).
Finally, if y(x, λ) ∈ [IV1,b

(x), IV1,b(x)] then I∗(x, λ) = y(x, λ). This ends the proof.

Lemma B.0.3 For any P ∈
(
PV1,b

, PV1,b

)
, there exists a λ∗ such that

(1 + θ) E [I∗(X, λ∗)] = P.
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Proof Let
φ(λ) := E [I∗(X; λ)]

where I∗(x; λ) is given by Lemma B.0.2. We first show that φ(λ) is continuous non-decreasing
with respect to λ and that

lim
λ→−∞

φ(λ) = E[IV1,b
(X)] = PV1,b

, lim
λ→∞

φ(λ) = E
[
IV1,b(X)

]
= PV1,b.

Since I∗(x; λ) = IV1,b(x) ∧
{
IV1,b

(x) ∨ y(x, λ)
}
, it suffices to prove y(x, λ) is non-decreasing

in λ. Note that y(x, λ) is the unique solution to equation (B.6), taking derivative on both sides
of equation (B.6) with respect to λ gives

∂y(x, λ)
∂λ

= −
(1 + θ)

u′′(w1 − x + y(x, λ) − P) + k · v′′(w2 − y(x, λ) + P)
≥ 0.

For each value of x, I∗(x; λ) is continuous in λ. By its characterization, |I∗(x; λ)| ≤ IV1,b(x), so
by Lebesgue Dominated Convergence Theorem, φ(λ) = E[I∗(x; λ)] is continuous with respect
to λ.

It is easy to see that when λ → −∞, N2 (x, y, P, λ) < 0 and then I∗(x,−∞) = IV1,b
(x); when

λ→ ∞, N2 (x, y, P, λ) > 0 and then I∗(x,∞) = IV1,b(x). This ends the proof.

Combining Lemmas B.0.1, B.0.2 and B.0.3, Theorem 5.4.1 is proved.
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