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Abstract 
A driver’s behavior is one of the most significant factors in Advance Driver Assistance Systems. 

One area that has received little study is just how observant drivers are in seeing and recognizing 

traffic signs. 

In this contribution, we present a system considering the location where a driver is looking (points 

of gaze) as a factor to determine that whether the driver has seen a sign. Our system detects and 

classifies traffic signs inside the driver’s attentional visual field to identify whether the driver has 

seen the traffic signs or not. Based on the results obtained from this stage which provides 

quantitative information, our system is able to determine how observant of traffic signs that drivers 

are. We take advantage of the combination of Maximally Stable Extremal Regions algorithm and 

Color information in addition to a binary linear Support Vector Machine classifier and Histogram 

of Oriented Gradients as features detector for detection. In classification stage, we use a multi class 

Support Vector Machine for classifier also Histogram of Oriented Gradients for features. In 

addition to the detection and recognition of traffic signs, our system is capable of determining if 

the sign is inside the attentional visual field of the drivers. It means the driver has kept his gaze on 

traffic signs and sees the sign, while if the sign is not inside this area, the driver did not look at the 

sign and sign has been missed.   
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Chapter 1 

1. Introduction 
 

Due to the increasing number of vehicles and pedestrians, drivers are in need of the safety measures 

to decrease the possible risk of accidents.  Advanced Driver Assistance Systems (ADASs) have 

significantly progressed in many aspects.  By augmenting vehicles with advanced technology and 

informing drivers about highly dangerous circumstances or even taking automatic actions, crashes 

can be prevented. 

As stated in [10], the main reason for accidents is human error. The main purpose of an Intelligent 

Transportations System (ITS) is to generally reduce fatal situations and improve the safety during 

the driving by providing the driver critical information about the roads and automate repetitive 

tasks.  ITSs can be divided into two different views: Independent Systems and Driver Assistance 

Systems. Independent Systems are characterized by autonomous vehicles where there are a lot of 

ongoing research and development.  However, given some of the challenges facing autonomous 

vehicles (including non-technical ones), their wide spread availability and use is still some years 

away.  In contrast, vehicles today already include technology that can assist a driver and so there 

is still substantial effort devoted to these Advanced Driver Assistance Systems (ADASs). Some 

aspects of ADASs have been in use for a long time and are being improved over time.  GPSs 

(Global Positioning Systems) were introduced in the 1990s and have become commonplace in 

many vehicles.  Other types of ADASs have been introduced recently, such as advanced cruise 

control, automatic parking, collision avoidance, automatic braking, and lane departure and warning 

systems.  More recent efforts have begun to look at the use of cameras, lidars, radars and other 

sensing technologies for use in even more sophisticated ADASs.  Some of this work includes 

leverage image analysis technologies for analysis of data from onboard cameras. 

One area that has gained increased interest in both ADASs and autonomous vehicles is that of 

traffic sign detection and recognition. Designing systems for traffic sign detection and recognition 

(TSDRs) is a challenging problem and has been studied over the past 30 years. As mentioned in 

Paclik [11], Japan was the first country where scientists started investigating automated TSDR 

systems. Thereafter, many different TSDR methods and their obstacles have been highlighted by 

researchers. 

The main purpose of designing traffic signs is to control traffic by informing both drivers and 

pedestrians about the restrictions and circumstances of the road.  In particular, signs provide 

drivers with necessary information about the roads and possible traffic conditions and constraints. 

In fact, one of the main roles for TSDR systems is to warn the driver of approaching traffic to 

avoid accidents. 

One area that has received little study is just how observant drivers are in seeing and recognizing 

signs.  One reason for the little work in this area is that in order to actually measure this, one needs 

data on actual driving sequences and data on the gaze of the driver.  The assumption is that if one 
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can determine where a driver is looking (point of gaze) then there is a strong likelihood that the 

driver has at least seen the sign once.  

The research presented in this thesis provides quantitative information to help answer questions 

about just how observant of traffic signs that drivers actually are. 

However, there is no way to know if the driver has actually recognized the sign or not. The driver 

may keep his gaze on a traffic sign, but the sign is not recognized due to his distraction. In fact, 

the main objective of our work is to focus on the objects that the driver has focused on and driver’s 

distraction cannot be measured through our work. 

Data for this research comes from RoadLab [12].  RoadLab is an initiative that provides data for 

the development of Intelligent Advanced Driver Assistant Systems (I-ADAS). The aim is to 

support research for ADASs cognizant of driver behaviour, intent, surrounding traffic and general 

driving conditions. The RoadLab dataset provides a resource for researchers to analyze driver data 

with the hope of reducing the social and economic costs caused by human errors made while 

driving. 

 

RoadLab data is collected by an in-vehicle laboratory instrumented with an on-board diagnostic 

system (OBD-II) using the CANbus protocol. The instrumentation collected video sequences of 

the driving environment in front of the vehicle, the ocular behaviour of the driver such as driver 

gaze, and other information, such as the geographic position of the vehicle via GPS and data 

describing the state of all the vehicle parameters such as brake pedal position, steering wheel 

position, etc.  This information was collected on 16 drivers who drove an instrumented vehicle.  

Each driver followed the same route and each drive took approximately 50 minutes. 

 

1.1 Problem Overview 

Our research problem is to measure aspects of how actual drivers view traffic signs.  Data from 

RoadLab provides driving sequences as well as data on driver gaze. Our overall methodology 

entails four different steps. 

1. The attentional visual field of the driver is obtained by analyzing the combination of a 

front-view stereo imaging system and a non-contact 3D gaze tracker; some of the 

algorithms for this aspect of the work has been done in previous research on the RoadLab 

data [12].  The gaze of the driver on an image, specifically the point of gaze on the image, 

was determined for all driving frame sequences in our data set. 

2. The second stage of the work is to analyze images in the sequences to find and identify 

traffic signs.  This part of the work is analogous to developing a traffic sign detection and 

recognition system (TSDR).  This requires us to analyze each image to detect regions 

within the image that may be traffic signs, then determine if those regions are traffic signs 

and if so what kind of sign. 

3. For each frame, using the point of gaze and the regions corresponding to traffic signs, the 

intersection of the point of gaze with regions is determined.  If there is an intersection with 

a region, then the traffic sign corresponding to that region is deemed to have been “gazed 

upon” by the driver.  This is recorded and for each driver and for each image in the sequence 
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we have a corresponding data entry on signs in the image (as detected) and whether seen 

or not.  

4. Finally, for each driver we analyze the sequence of data on signs detected and those that 

have intersected the driver’s gaze and determine the number of signs, and whether or not 

the driver actually “saw” the sign (as determined by gaze).  This provides information on 

just what the drivers did and did not see during their drives. 

Using this approach, we can find not only the number of signs seen by the driver, but also the 

number of signs missed and the type of the sign. 

 

1.2 Thesis Overview 

A critical component of our work is the development of a TSDR system that can be used to detect 

and recognize traffic signs in the Canadian context.  There has been a substantial amount of work 

in this area and we build on and adapt previous work done in this area.  In Chapter 2, we provide 

an overview of work in this area and approaches taken in previous work.  Then in Chapter 5, we 

outline our approach to traffic sign detection and recognition. 

While there has not been a lot of work done on measuring what drivers see, there has been some 

work on driver behavior.  We provide an overview of work in this area in Chapter 3. 

In Chapter 4 we describe the data that was used for the research.  This includes describing the 

image data that we used for training our methods for sign detection and recognition as well as more 

detail on the RoadLab data. 

In Chapter 6 we present our method for analysis of the sign and gaze data and present the results 

of the analysis of analyzing that data for which signs are seen, not seen, etc. for the drivers in the 

data set. 

Chapter 7 provides a summary of the results and conclusions and identifies further directions. 

 

1.3 Contributions of the Thesis 
We have designed a complete frame work for TSDR based on a North America Data set and used 

driver’s gaze to determine the driver’s vigilance to signs. Our system identifies signs that have 

been recognized or signs missed in actual driving sequences. As far as we know, previous work 

has focused only on traffic sign detection and recognition and have not considered drivers’ gaze 

and actual driving sequences. Our system is the only one to add driver’s gaze as an important factor 

in identifying driver’s inattention. 

 

Our data set comes from our instrumented vehicle and drivers’ gaze is calculated by a front view 

stereo system installed on our vehicle. The combination of Maximally Stable Extremal Regions 

and color information in addition to a binary linear Support Vector Machine (SVM) and Histogram 

of Oriented Gradients (HOG) was used for detection.  A multi Class SVM and HOG feature vectors 
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were combined for recognition part and our intersection method was used for the analysis of 

driver’s gaze.  This leads to our analysis of the number of signs those drivers have or have not 

seen. 
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Chapter 2 

2. Related Work on Traffic Sign 

Detection and Recognition 
 

Traffic Sign Detection and Recognition systems detect and recognize the signs coming from 

sequences of recorded frames by a camera mounted on a vehicle. In most of the TSDR systems, 

cameras are mounted in front of the vehicle, however in recent TSDR systems, there may be one 

more camera at the rear or the side of the vehicle that can record the signs located behind or beside 

the vehicle.  In Figure 2.1, a vehicle equipped by TSDR systems is illustrated. This vehicle contains 

a mounted camera to record the images. 

 

Figure 2. 1 Vehicle with a TSDR system 

 

Although various countries have designed different traffic signs based on their rules and 

regulations, there are similar sets of traffic signs based on their shape and color.  Circular, 

Octagonal, Triangular, Rectangular, Square and Pentagonal are the common shapes. Yellow, red, 

blue, green and white are distinctive colors used to design traffic signs. In spite of the noticeable 

shape and colors used in traffic signs, they are often not noticed, intentionally or unintentionally, 

by drivers.  For example, due to high speeds, a driver may not have enough concentration. 

Due to different designs of traffic signs from one region to another and also different designs based 

on their purpose, most TDSRs narrow their focus down to sign types in a specific country. The 

border between detection and recognition part is not obvious, because some detection parts are 

more practical in providing information for the next stage than others. 

In the detection part, the possible location of the sign is first determined. The system searches over 

the images to find the possible locations of road signs.  In the classification part the exact type of 
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the signs is identified through the evaluation of the regions found by detection stage. In some cases, 

these two tasks can be considered separately.  However, in most cases, the recognition part is 

dependent on the detection part to supply information such as color and shape. 

Traffic signs are different in color, shape and written content. The meaning of each sign is 

expressed by the combination of these features. Hence, these properties constitute the primary core 

of designing TSDRs.  Generally, TSDR systems are studied in four different stages: 

• Image acquisition: The basic stage in designing TSDR systems is to create a reliable data 

set. The data set can be captured by a mounted camera gathering the images of road signs 

during the driving. 

• Segmentation: Segmentation is the initial stage in TSDR systems. In this stage, the 

possible regions of interest in the image are localized by applying different approaches. 

Since traffic signs contain comparatively constant colors (white, red yellow, blue), color 

information is the most appropriate method in this stage. The goal of this stage is to reduce 

the search area for the detection step by finding the possible locations of the signs. 

Segmentation mostly is based on color, though some authors do not utilize this step in their 

work and directly start detection. 

• Detection: Traffic sign detection is the most complicated step in TSDR systems. In this 

stage the existence of the sign in the region of interest is explored. Use of color-based, 

shape-based or combination of both are widely used approaches. 

• Classification: The last step in designing a TSDR system is to determine the exact type of 

the road signs. A fixed set of possible traffic signs is selected and different methods, from 

applying simple template matching to sophisticated machine learning approaches, are 

applied to classify a possible sign. 

 

Due to the effect of a number of factors, the design of TSDR systems can be challenging. Some of 

these factors have been highlighted below: 

• Illumination changes: Time of the day and weather conditions, such as rain, clouds and 

fog, have effects on the illumination of signs (see Figure 2.2). The poorer the illumination 

is, the harder it is to detect and identify signs. 

 

Figure 2.2 Examples of poorly illuminated and foggy weather [1] 
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• Shadow: The shadows of other exterior objects also decreases the visibility of signs. Some 

parts of the sign may not receive enough light to be recognized. 

• Image blur and car vibration: Images taken from a low-quality camera suffer motion 

blur. In addition, due to holes or muddy conditions of roads, cameras are not stable and 

vibration while driving makes the taken images blurry. 

• Defective signs: Colors, patterns, text paint of the sign become blurry due to age, sunlight 

or rain or natural disasters, such as flood or earthquakes, or other damages (see Figure 2.3). 

 

 

Figure 2. 3 Damaged road sign [2] 

 

• Sign occlusion: Traffic signs can be occluded due to exterior objects such as trees, traffic 

lights, buildings, advertisement banners or other signs (Figure 2.4 shows an example of 

occluded signs). 

. 

 

Figure 2.4 Occluded road sign [3] 

 

• Similar object: Other objects which are similar to the road signs in shape and color, may 

confuse the recognition part.  In addition, some signs have the same patterns or shape, 

while they are different in text. These issues can cause misrecognition. 

 

Given these problems, TSDRs need to be robust to the problems mentioned above. During the 

design of TSDR applications, both driver conditions and exterior environmental situations are 

considered.  The following sections explore detection and recognition separately in detail. 
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2.1 Detection methods 

In this section, we go through different methods used for detection of traffic signs. In this stage, 

the main task is to make candidate regions which are probably traffic signs.  Hence, the methods 

need to search over the images and extract regions of interest to make the images ready for the 

following stage (recognition). There is a myriad of methods used for this purpose. In general, 

these methods take advantage of the obvious characteristics of the signs, such as shape and 

colors. Researchers have utilized these two characteristics and there are many kinds of 

approaches based on these two characteristics.  

Generally, the main detection methods can be divided into groups: 

• Color-based detection 

• Shape-based detection 

• Hybrid methods detection (the combination of different methods) 

• Neural network 

• Other approaches 

 

2.1.1  Color-based detection methods 

Undoubtedly, color is one of the most important and popular characteristics for designing TSDR 

systems. Colors used in traffic signs are selected by different countries and mostly include main 

colors (red, blue, white, yellow, green) such that they can be easily noticeable by the drivers. These 

kinds of colors provide information about the features of regions of interest, search based on 

specific color is straightforward. Color-based detection are mostly used to segment various colors 

in images. In fact, they divide the images into subsets of pixels similar in colors and a label is 

assigned to each pixel so that the pixels with the same labels have similar features. Hence, 

distinguishing regions of interest can be done by focusing on different colors. Commonly, by 

thresholding the color space or other methods for segmentation such as neural networks, methods 

can find the regions containing specific colors. In thresholding method, each pixel with a value 

above a threshold is considered with appropriate label. In other words, possible candidate locations 

of traffic signs are separated from background by pixels value [13]. The simplicity is the most 

important advantage of this method. In fact, complicated computational operations are not needed 

to perform color-based methods and is easy and straightforward [14]. 

In thresholding method, the pixels are classified into two classes: traffic sign pixel and non-traffic 

sign pixel or background. A pixel is considered as a traffic sign pixel if its color is close to the 

reference color otherwise it is considered as a background pixel [15]. [16] is an example of using 

color thresholding and shape analysis to detect traffic sign. 

Using the most proper color space is important due to the significant effect on detection stage.  

Different types of color spaces have been used in different methods, e.g., RGB, HSV, YUV, 

YCbCr, CIELab and are discussed in this part [17] [18-25]. 
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2.1.1.1 RGB color space 

RGB is the most commonly used color space. it is based on human color perception and used in 

computer vision and image processing applications. Each pixel is assigned the intensity value from 

0 to 255. There are three color channels, so the value of intensity can be combined and shown as 

16,777,216 colors in total.  

The RGB color space is illustrated in Figure 2.5. 

 

Figure 2.5 RGB color space [4] 

 

RGB color space is a basic color model such that other color spaces are obtained by RGB 

transformation. What is important about RGB color space is the threshold associated with these 

channels. An example of RGB thresholding is shown in Figure 2.6. 
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(𝑎)                                                      (𝑐) 

 

(𝑏)                                              (𝑑) 

Figure 2.6 RGB segmentation. (a), (b): original image, (c)(d): segmented image [5] 

 

There are many applications that use RGB color space segmentations for detection. In [26], red 

color enhancement is used in RGB color space and the threshold was selected empirically. Authors 

in [27] examined segmentation with YUV and RGB color spaces to see which worked better.  They 

selected RGB due to its less computation operation and fewer number of false positives.  In [28] 

the authors proved that the conversion from RGB color space to HSV, is not linear and has high 

computational costs. M.Benallal and J. Meunier [29] explored the behavior of RGB elements in 

different traffic signs from sunrise to sunset. According to their result, there is a little difference 

between RGB components of the traffic signs colors. In [30] the average of both green and red 

components is calculated. Then a G-R histogram is created to show the subtraction the Green value 

from Red value. This histogram expresses the gap between two components and the pixels for each 

gap are counted [31]. However, some information about the color is missed due to the 

transformation from RGB image to a grayscale one. Zadeh [32] studied the nature of variation in 

pixels values for similar colors in the RGB space and created sub-spaces which enclose most of 

the variations of each color. They defined a sub-space as a conical region placed on fairly straight 

lines from RGB (0,0,0) to the combination of primary colors defining each color used in the traffic 

signs. 

In [33] the authors used chromatic and achromatic filter to detect white signs. R, G and B are the 

brightness representation of red, blue and green channels in order. D is the degree of extraction of 

an achromatic color where, R, G, and B represent the brightness of the respective color, and D is 

the degree of extraction of an achromatic color.  

𝑓(𝑅, 𝐺, 𝐵) =  
(|𝑅 − 𝐺| + |𝐺 − 𝐵| + |𝐵 − 𝑅|)

3𝐷
 (2.1) 

 

When 𝑓(𝑅, 𝐺, 𝐵) is less than 1, it represents achromatic color, while if it is greater than 1, it is 

chromatic [33].  During the years, different researchers considered that the RGB color space was 

not a good space for color segmentation. However, after doing many different experiments, the 

overall consensus is that there are not significant benefits for using other color spaces, such as HSI 

(see following sections) over RBG. [34] 



 

11 

 

When objects have similar chromatics properties, standard RGB color space is not useful due to 

the effect of environmental conditions on the segmentation threshold. The authors in [35] 

attempted to enhance RGB color space. They used parameter normalization for RGB. The 

equations of normalization are:  

 

𝑟 =  
𝑅

(𝑅 + 𝐺 + 𝐵)
     (2.2) 

𝑔 = 
𝐺

(𝑅 + 𝐺 + 𝐵)
     (2.3) 

𝑏 =  
𝐵

(𝑅 + 𝐺 + 𝐵)
     (2.4) 

 

Where 𝑟 + 𝑔 + 𝑏 = 1. 

Normalized RGB (NRGB) color space can decrease the effect of illumination variation. They 

applied Look up Tables to remove unwanted colors. In spite of the advantages of NRGB, the color 

saturation is still susceptible to the light. 

In order to reduce the sensitivity to the brightness, some researchers explored alternative color 

spaces. They introduced HSV (Hue, Saturation and Value) or another version of it, HSI (Hue, 

Saturation, Intensity); in the following we review these and some research using these.  To separate 

the luminance and color entirely, the color segmentation process is then carried out on images that 

were initially converted to HSV (Hue or color, Saturation and Value lightness) space; or HSI, 

(Hue, Saturation, Intensity), HSB (Hue, Saturation, Brightness) and HSL (Hue, Saturation, 

Lightness). 

 

2.1.1.2  HSV color space 

HSV color space (see Figure 2.7) is another color space that is used for color segmentation. HSV 

corresponds to intuitive color properties proposed by Sminth [36] and he showed that this color 

space has an important role in segmentation due to its independency to the light. It is represented 

by three variables: 

3. Hue: Hue has an angle scale from 0 to 360 to shows colors. The red color is the beginning 

point and has a 0-60 angle. Green and blue have 120-180 and 240-300 angles respectively. 

Other colors, such as yellow has 60-120, cyan 180-240 and magenta 300-360 angles. 

 

3. Saturation: Saturation describes how white a color is. It has range from 0.0 to 1. For 

example, a pure red has 1 saturation value and white color has 0 saturation value. 

 

3. Value: Value is also called lightness and indicates how dark the color is. The level of 

brightness is between 0 and 1. A value of 0 is black and 1 is white. 
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Figure 2.7 HSV color space [6] 

 

Due to the ability of HSV to model human visual perception and its independency to the light 

variation when compared to RGB color space, many researchers have employed HSV for 

segmentation. In [37] the authors proposed an approach for sign detection and recognition. It is 

called fuzzy color-based method. First, images in RGB color space are taken by a camera mounted 

on a vehicle, then they are converted to HSV color space images. Hue and Saturation are extracted, 

and a fuzzy set of rules based on H and S are set. Images are segmented according to these rules.  

Vitable [38] proposed another approach using a dynamic threshold to collect pixels in HSV color 

space. Using a dynamic threshold is useful since it decreases the dependency of Hue on 

illumination changes. 

HSV transformation from RGB is another approach used in sign detection. RGB channels are 

transformed to HSV by using a set of equations. The advantage of this method is that it can segment 

signs that are badly illuminated.  

The relationship between RGB and HSV (see Figure 2.8 and Figure 2.9) color spaces is expressed 

as follows: 

 

{
 
 

 
 
60 × (𝐺 − 𝐵)

𝑆
                      𝑖𝑓 𝑉 = 𝑅

80 +
(𝐵 − 𝑅)

𝑆
                    𝑖𝑓  𝑉 = 𝐺

240 +
(𝑅 − 𝐺)

𝑆
                 𝑖𝑓 𝑉 = 𝐵

       (2.5) 

 

Where: 
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𝑉 = max (𝑅, 𝐺, 𝐵) (2.6) 

 𝑆 =  
max− 𝑚𝑖𝑛

𝑚𝑎𝑥
 

(2.7) 

 𝑆 =  
max− 𝑚𝑖𝑛

𝑚𝑎𝑥
 

(2.8) 

 

                                               

Figure 2.8 Example of conversion of RGB to HSV 

 

   

Figure 2.9 Example of extraction Hue, Saturation and V component 

 

2.1.1.3 HSI color space 

Hue, Saturation, Intensity (HSI) is another color space. This color space is invariant to illumination 

variation [39]. As most images taken by camera are in RGB color space, they can be transformed 

to the HSI color space. H value represents colorless information and I represents the intensity value 

related to different illumination conditions. In addition, HSI color space is similar to human being 

colors perception [40] [41]. In HSI system color information is coded through breaking up intensity 

value from Hue and Saturation value to make HSI color space resistant to illumination changes.  

The equation to convert RGB to HIS is as follows: 

 

𝐼 =  
𝑅 + 𝐺 + 𝐵

3
 (2.9) 

𝑆 = 1 −
min(𝑅, 𝐺, 𝐵)

𝐼
 (2.10) 
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𝐻 = 𝑎𝑐𝑟𝑜𝑠𝑠 {

1
2
[(𝑅 − 𝐺) + (𝑅 − 𝐵)]

[(𝑅 − 𝐺)2 + (𝑅 − 𝐺)(𝐺 − 𝐵)]
1
2

 (2.11) 

 

This color space was applied in [42]. RGB images are converted to HSI, LUTs are applied for hue 

and saturation values for red, yellow and blue colors. In [43], the authors create a hue-saturation 

histogram for red road signs to obtain the value of the threshold. Then LUTs were used to improve 

the H and S values in HSI color space.  

Authors in [44-47] attempt to find the white signs through augmenting thresholds in the HSI color 

space. But due to the property of white color that can be at any Hue, this color space is not practical 

to detect white signs. Hence, they used achromatic decomposition of an image. Their method is 

similar to the following equation [48]: 

 

 𝑓(𝑅, 𝐺, 𝐵) =  
(|𝑅 − 𝐺| + |𝐺 − 𝐵| + |𝐵 − 𝑅|)

3𝐷
 (2.12) 

 

By setting D to 20, they got the best result. 

Aoyaji [49] showed that due to the dependency of the Hue component on different factors such as 

distances, weather and the age of the sign, the HSI color space is not practical. He concluded that 

the segmentation step is not a sufficiently strong step to reliably detect the sign region. He 

concluded that based on his investigation that the HSI color space is not efficient. 

Region Growing is another method proposed in [50].   This method uses a single pixel and then is 

enlarged to a group of pixels with similar color. This approach is performed in HSI color space. 

However, it has some restrictions due to the dependency on the initial pixel and the ending criteria. 

In the other words, when the first and last criteria are not satisfied, this approach may encounter a 

problem [51]. 

In [52], the authors HSI color space to find the region of interest and then employing a genetic 

algorithm to find the signs in ROI. The advantage of this method is that by applying a genetic 

algorithm, the algorithm works well without considering rotation, occlusion, other objects 

presence and unstable weather conditions. In addition, position, scale and rotation do not need to 

be taken into account. 

 

2.1.1.4 YUV color space 

This color space was defined by the National Television Systems Committee (NTSC) as a 

transmission standard. It is used for color television broadcasting. The Y component represents 

luminance or lightness and U and V represent for color (Chroma); the Y range is between 0 and 1, 

while (U V) ranges are from 0-255. 

The following equation shows how to convert an RGB color space to YUV: 
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(
𝑌
𝑈
𝑉
) = ( 

0.299       0.587         0.114 
−0.147  − 0.289       0.436     
0.615    − 0.515  − 0.100   

) (
𝑅
𝐺
𝐵
)={

𝑌 =  0.299𝑅 +  0.587𝐺 +  0.114𝐵
𝑈 = −0.147𝑅 − 0.289𝐺 +  0.436𝐵
𝑉 =   0.615𝑅 − 0.515𝐺 − 0.100𝐵

    (2.13) 

 

And to convert YUV to RGB: 

 

 (
𝑅
𝐺
𝐵
) = (

1            0     0.114
1  − 0.39 − 0.58
1     − 2.03       0 

) (
𝑌
𝑈
𝑉
) (2.14) 

 

There are a few researchers that have used the YUV color space.  In [53] the authors examined the 

benefits and drawback of using HSV and YUV and the concluded that a combination of these two 

spaces can give better results.in fact they can compensate each other. Hue parameter form HSV 

color space is extracted in order to be combined with two parameters of (U, V) from YUV color 

space. AND operator is applied to get better result. 

 

2.1.1.5 YCbCr color space 

YCbCr or Y’CbCr (sometimes written as YCBCR or Y’CBCR), is a rarely used color space. It is 

applied to digital component video. Y is the illumination component. Cb and Cr are the comparison 

between blue and red component and offset components (see Figure 2.10) 

The following equation shows how to convert an RGB color space to YCbCr: 

 

  {
𝑌 =  0.299𝑅 +  0.587𝐺 +  0.114𝐵 
𝐶𝑏 = 0.564 (𝐵 − 𝑌)                                  
𝐶𝑟 = 0.713 (𝑅 − 𝑌)                                  

 (2.15) 

 

and how to convert a YCbCr to RGB: 

 

{
𝑅 =  𝑌 +  1.402𝐶𝑟                     
𝐺 =  𝑌 − 0.334𝐶𝑏 − 0.714𝑉𝐶𝑟
𝐵 =  𝑌 +  1.772𝐶𝑏                       

 (2.16) 
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Figure 2.10 YCbCR color space [7] 

 

In [54] the authors utilized this color space for road signs with different shapes.  This color space 

is seldom used for color segmentation. 

 

2.1.1.6 Other Color Spaces 

We reviewed the use of the most popular color spaces in the segmentation of images with traffic 

signs.  There are still other color spaces such as CIELAB is useful for localizing traffic signs when 

it is combined by Hue [55]. This method needs parameter adjustments during detection and is 

suitable for traffic sign detection under a simple background. When the environment is complex, 

the ability of algorithm is less to ensure high accuracy. 

In [56] the authors applied CIECAM97 color space for segmentation to explore the color features 

of the sign without considering different conditions in angels and views.  

As it was stated before, the HSI color space is practical in the intensity of illumination changes 

factor, however, it cannot help in changing the color temperature caused by weather conditions. 

Hence, some authors are not satisfied to apply this method. They used Luminosity, Chroma and 

Hue represented by (LCH) thresholding instead [57] [58]. This color space obtained from 

CIECAM97 model. This model can be used for considering the color temperature. 

Color-indexing is another method in which colored objects are compared in two different images 

are compared based on their color histogram, without considering orientation and occlusion. The 

advantages of this approach are its speed, being straightforward and efficient; however, when the 

scenes are a bit complicated it can be time-consuming. 
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2.1.2  Shape-based detection 

Shape is another characteristic that is widely used in traffic sign detection. Generally, traffic signs 

are circular, rectangular, octagonal and triangular.  As it was mentioned in the previous section, 

one of the disadvantages of color-based methods for detection is its instability to illumination 

changes and weather conditions. These factors may cause unsatisfactory results. Hence, 

researchers prefer to use shape-based methods for road sign detection stage. There are many 

different approaches using shape as a feature to detect signs.  

In this section, we review the most popular ones. 

Among different shape-based methods, Hough Transform, Canny edge detection and template 

matching, are more popular than others [59]. Circular and rectangular shapes are detected by these 

methods. In spite of some false positive regions found through these methods, they are still useful 

for the detection stage. 

 

2.1.2.1 Template matching 

Template matching [60, 61] is one of the most common methods in image processing and pattern 

recognition.  This is a machine vision technique to search images pixel by pixel to identify parts 

of an image that match a given pattern [62]. This approach is used in TSDR systems as well. 

Although template matching seems to be simple, it needs a large number of computational 

operations to enhance its robustness. In addition, if the number of templates increase, the pattern 

set becomes larger. Consequently, more computations are needed. The advantage of this 

approach is its high speed. 

In order to avoid some of these issues, some authors proposed more alternative algorithms. In [63] 

the authors proposed a new algorithm based on distance. In spite of its advantages, it still needs a 

large number of templates. 

 

2.1.2.2 Hough Transform 

Hough Transform is a feature extraction technique used in shape-based methods. It can be 

employed for line, circle, and rectangle detection. The Hough transform method was first 

introduced in 1962 to find straight lines. The main benefits of this approach are its resistance to 

noise and rotation, however due to the highly complicated computations, it is not practical for real-

time systems.  In order to remove this drawback, authors in [64] used a Radial Symmetry algorithm 

based on the Hough transform, to find the symmetric edges, based on the symmetrical nature of 

circular or rectangular shapes, to find the most likely centers of the sign in an image [65]. Edge 

gradients in a circle are intersected in the center. A threshold is selected and fixed. The gradient 

value more than this threshold is stored, while points with lower magnitudes are ignored. Each 

remaining gradient element is a vote for a possible circle center and the vote is placed to the nearest 

pixel to this point. 
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The regions which include the most votes have a higher possibility to be the center of the circle. 

By using the Symmetry algorithm, the number of computational operations was reduced, but only 

circular signs can be identified. In [66] the authors used circular Hough transform to detect 

European speed limit signs in addition to the straight-line (rectangular shape Hough transform 

segmentation) Hough Transform for USA rectangular speed limit signs. Although the radial 

symmetry algorithm can be used in natural environment, it is not practical, since a great number 

of symmetrical objects exist in natural environments. 

 

2.1.2.3 Edge detection 

Edge detection is an image processing technique for finding the boundaries of objects within 

images. Edge detection is used for extraction of information and segmentation in computer vision 

and image processing. Canny edge detector is an edge detection operator to segment images and 

extract straight lines. In fact, it is a shape-based detection which can find a wide range of edges in 

an image by a multi-step algorithm. Canny edge detection uses straight line extraction and then 

segments them to find suitable slope and length which are useful for traffic signs.  In [67] the 

authors used contour as a useful feature for shape-detection. Corner detection is another approach 

based on edge detection.  The authors in [68] use corner detection for identifying triangles by 

searching for corners of 60 degrees to find out if there are any other corners to create triangles with 

equal degrees. The same approach is used to find rectangles by considering 90 degrees rather than 

60. This method is rotation invariant. 

In [69] Harris’s corner detector was used to find triangle and rectangle-shape road signs. This 

method was firstly introduced in [70]. Simplicity and rotation invariant are the advantages of this 

approach. 

 

2.1.2.4 Neural network (NN) 

Trained Neural Network to find the color, shape or pictogram of road signs, is another approach 

using for shape-detection. In order to detect triangle signs, in [71] the authors used neural network 

by creating a back-Propagation network. In [72] the authors combined the input layer of neurons 

as edge detector and combine this color information.  

 

2.1.2.5 Extraction through gradient features 

Histogram of Oriented Gradients (HOG) features have attracted much attention during the past 

years. This approach has been successfully used in many contributions [73]. The difference 

between HOG and template matching is that HOG features do not need to know about the goal 

firstly. The first use of HOG features was for pedestrian detection [74] by Dalal and Triggs. They 

segmented the images into sets of blocks and computed the HOG for each block. Since HOG 

features have different parameters, the change over each of them may have effect on the accuracy 

of detection stage. 

https://www.mathworks.com/products/image.html
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HOG features are also used in other contributions such as the detection of road signs [75,76].  Due 

to coarse spatial sampling, scale invariance and local contrast normalization, HOG features have 

been widely used in shape-based method for detection. 

 

2.1.2.6 Other methods 

In [77], template matching was enhanced by employing mathematical morphology to remove the 

noise and extract bones as mathematical morphology features. Since traffic sign have both internal 

and external borders, morphological features can be used to extract the inner shape of traffic signs. 

In [78], the authors used Hierarchical Spatial Feature Matching. This method uses geometrical 

features of shape and they search for these features in an image including traffic signs.  A list of 

similar geometric shapes of road signs are found by the detection algorithm. This technique has 

been used for gray scale images only.  

Similarity detection is another method used in shape-base detection approaches.  A similarity 

factor between a segmented region and a set of samples of binary images for designating the shapes 

of the signs is computed assuming that the sampled and segmented image have same dimensions 

[79]. The researchers in [79] take advantage of color and shape for detection part. Similarity 

detection was applied in shape analysis.  

A template hierarchy is used to take different object shapes by the Distance Transform Matching. 

Although this method can be practical due to accepting a small dissimilarity between templates 

and objects, it may need contour segmentation. 

Maximally Stable External Regions is another approach applied to gain better results in different 

illumination levels. The MSER algorithm utilizes a stable threshold obtained from a normalized 

RGB [80, 81] color space. 

 

2.1.3 Hybrid Methods 

Both color-based and shape-based approaches have their own pros and cons. Color-based methods 

have been defined well in theory and searching a specific color in an image is not complicated and 

needs only a small amount of computation, in fact these kinds of methods are less problematic. 

However, they are highly dependent on illumination, weather changes, age, image noise and sign 

conditions. In addition, using thresholding for this approach is tedious [82]. 

Shape-based approaches are not susceptible to illumination changes, since the shape of the sign is 

always unique, but some parts of the signs may be occluded, or they are confused by other objects 

or even background.  Some authors have tried to develop approaches using the combination of 

both shape and colors. The research in [83, 84, 85] are examples of using color-based detection 

method to create regions of interests and then following up by using a shape- based method. In 

some works, these two methods have been used simultaneously [86-91].  

 



 

20 

 

2.2 Classification Techniques 

The next stage in TSDR systems is to classify the exact type of the sign according to their content 

and identify their category (speed limit, stop, etc.).  There are many approaches that can be used 

based on the output of detection stage. However, we review the most commonly used ones, 

including machine learning, template matching and digit recognition for signs containing digits or 

texts. 

 

2.2.1 Template and Similarity Methods 

One of the most popular methods for similarity measures in traffic sign classification is normalized 

cross-correlation [81]. Gray scale regions of interest are considered, and the method looks for the 

similarity between a given template of road signs and gray scale based on normalized-cross 

correlation [92].  Resistance to illumination changes and simplicity are the benefits of this 

approach. However, it suffers from presence of non-unique pixels due to occlusion. 

Template matching is another technique used for classification.  To implement this approach, a 

huge number of samples are required. In fact, all the shapes of signs to be recognized are stored in 

a database. Then the obtained regions of interest (potential sign) are normalized. These signs are 

compared to every similar template in data set to find the category of the sign. Template matching 

methods is used in [93]. The first one uses 30 triangles and 10 circulars. They reached 85% 

accuracy. However, the latter has 60 circular and 47 triangular samples and obtained 98% 

accuracy. Yves et al. [94] introduced a worth noting template matching encoding that allows 

different templates to be combined according to the embedded color information. With this 

encoding, a template is constructed for an object, and a correlation computation can be defined, 

which serves as a measure for computing matches between the templates. The method is fast and 

can be easily modified to include new classes of signs. It has been implemented successfully in 

the classification phase of [95] and [96]. 

 

2.2.2 Machine Learning Methods 

 Machine learning techniques are often used in the recognition part of TSDR systems. In [97], 

authors employed a neural network and trained it by color and shape from a set of template signs.   

In [98], the authors used a multi-layer perceptron on the Fast Fourier transform of the detected 

sign and a bank of filters. The concluded that neural network achieves better result than the 

template matching. In [99], a multi-layer neural network was used to classify the traffic signs 

where a feed forward neural network was employed as a classifier. In this case, conjugate gradient 

descent optimization was used to obtain better accuracy and achieved an accuracy for the 

classification stage of 91%. In [100] the authors combined the genetic algorithm and neural 

network. The employed genetic algorithm for detection stage and neural network for classification 

stage. In spite of so many advantages of using neural network, they still have some drawbacks 
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such as overfitting, the need of huge number of samples, and significant computational processing 

[101]. 

During the past years, use of support vector machines has been more popular.  A small number of 

samples is needed to train this classifier and it often has better results than neural networks when 

it is applied in the classification stage.  In [102] the authors used Invariant theory in the steps of   

detection and recognition traffic signs. As this method is robust to rotation and different scale. This 

method also can be used to extract feature vectors to SVM for classification of traffic signs. In 

[103] the authors proposed a new technique based on SVM and distance to borders. The patterns 

created by vectors describe the distances to borders of the candidates of traffic signs. The algorithm 

was tested on more than 300 images. The combination of distance to border and distance from 

Center was used in [104] as features to train SVM classifier. An accuracy of 89.98% was achieved 

by this algorithm for triangular signs. It is also invariant to translation, rotation and scale. Another 

method proposed based on SVM is [105] where they used a cascade SVM classifier that was 

trained by HOG features.  The accuracy was 89.2% for white and 92.1% for color traffic signs. 

 

2.2.3 Invariant Based Methods 

Invariants theories have also been employed in TSDR systems. The examples of extracting 

features of signs to be applied in TSDR systems are: SIFT [106], invariant features [107,108], 

Haar Wavelet [109], Discrete Cosine Transform (DCT). These features also can also be used to 

train an SVM to classify the road signs. SIFT was used in [110] to find the invariant features in a 

given image. Then features of the training set are extracted to match the generated features by the 

algorithm. When the training image has the greatest number of matches, it is recognized as a sign. 

To enhance the accuracy, color information and orientation were added to the algorithm.   They 

achieved a 99.3% accuracy over 149 samples.   Speeded-Up Robust Features or SURF are also 

feature descriptors used in [111].  They used 200 images and achieved 92.7% accuracy.  Optical 

Character Recognition [112] was also proposed for sign recognition, however due to not being 

able to recognize the traffic signs without signs, it is not practical to be employed for recognition 

stage. 
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Chapter 3 

3. Related Work on Driver Behavior and 

Attention 

 
Although there are several works on driver assistance systems based on driver’s behavior, very 

little work has been done to consider driver behavior in the traffic sign detection and recognition 

field. In the following part, we review some driver assistance systems that have considered driver 

behavior. 

In spite of the dramatic improvement in roads and vehicles, the total number of car accidents has 

increased. According to the Traffic Safety Administration (NHTSA), 56,000 sleep related road 

accidents happen annually [113]. There is no doubt that human error is at the heart of road 

fatalities. 

 In order to reduce the number of crashes, it is crucial to consider driver behavior while driving 

and alert them when they are in distracted states. Through this, crashes can be reduced 10-20 

percent [114], hence, the role of a reliable driver distraction detection system to decrease the 

dangerous situation is critical. 

Recently, excessive uses of in-vehicle information systems, such as navigation systems and mobile 

phones, induce visual and cognitive distraction.  Distracted drivers do not pay enough attention to 

the roads, so they are not aware of the presence of obstacles or other objects, such as traffic signs. 

In addition, lane variation, slow response to road events such as wandering a pedestrian, turning 

the steering suddenly are other causes of driver distraction. Monitoring the driver’s distraction is 

considered important in the design of a safe monitoring system.  

To determine the drivers’ distraction and inattention, it is crucial to extract information about the 

position of gaze and head [115]. Through the information about the position of the head, we can 

estimate the drivers’ field of view and current focus attention. It is obvious that visual gaze 

direction and head position are connected intrinsically. We can take advantage of this feature when 

the eyes are not visible, the direction of eyes can be estimated by the head pose. In [116] the author 

used the combination of gaze direction and head pose to get the gaze information.  

In [117] the authors proposed an approach to estimate the drivers’ observation within the vehicle. 

They used the integration of eye-gaze tracking and road scene events to validate the driver 

behavior. Other factors, such as speed, fatigue, drunk driving also cause inattention. In order to 

determine driver’s inattention truly, we need an accurate real time and driver-gaze monitoring 

aggregated with road scene states, what has been seen or not seen by the drivers, must be 

identified. 
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 In [118] the author considered the direction of the driver’s gaze on to the road scene; however, 

the features of the road were not determined.  Jabon et al. [119] aggregated a large number of 

facial features in pre-accident intervals as key features to predict accidents. His approach was 

considered as one of the most important studies of driver-safety systems used for preventing the 

accidents.  A similar approach was developed in EPFL university [120] where they analyzed the 

muscle movement and facial states to detect driver distraction. Through this analysis, they could 

identify whether the driver was distracted when facing hazardous situations. 

In [121] a forward warning system was proposed by using information about the driver behavior 

to recognize a driver’s distraction. In addition, they determined whether the driver was looking 

straight ahead or not.  

In [122] the authors found that the position of the head and direction of eyes are useful factors to 

indicate fatigue. The correlation between eye-gaze and curvature of the road was investigated by 

Land and Lee [123]. In [124] the researchers used gaze and lane tracking to find their relation. 

They also figured out that the drivers frequently watch the oncoming traffic. Work reported in 

[125] found some relation between head-gaze direction and driving tasks.  By considering where 

the driver is looking, the safety of the system can be improved by removing dispensable warnings, 

so that if there is no road event, such as pedestrian walking or the presence of traffic signs, no 

action is needed. The driver behavior before and after the road event, is considered an important 

factor in deciding if a warning is necessary.  

 As one way to monitor the drivers’ behavior is the combination of eye-gaze tracking and 

instrumented vehicles, much research has been performed on gaze direction detection with 

different sensors and for a variety of applications.  Research in [126] predetermined an architecture 

to predict path planning which uses a virtual driver model. The behavior and action of drivers are 

considered as inputs for driver assistance system, hence, a safe action is generated by considering 

the performance of the system and compatibility with the driver.  Authors in [127] employed force 

feedback by using a steering wheel as a natural interface between human and machine to keep in 

a lane.  Gentle resistance coming from steering wheel was used to persuade the driver to keep in 

the lane. Although the resistance was not strong, the driver could cancel the force to move faster. 

A similar approach was added to a driver assistance system [128] to control the speed by 

accelerator. When the speed limit is ignored due to the high speed, the accelerator pedal cannot be 

depressed easily. This example describes the feedback of the system to the driver in unobtrusive 

situations.  

In [129] the authors used the combination of driver head pose as an analysis of driver behavior and 

road observation to driver assistance systems. In [130] the authors used the combination of the 

gaze and head position as an important interface between human and machines. The position of 

the head and gaze was accurately achieved. 

Land and Lee [123] consider driving as a tracking task.  This means that the driver interprets the 

road by what he/she sees and then decides what kinds of control signals should be applied to 

correctly keep the vehicle in the proper position. Summala and Nicminen [131] stated that in order 

to keep the vehicle in a lane, peripheral vision is enough. By using peripheral vision, drivers can 

verify the small motions on the road to demonstrate that the vehicle is on track. When the driver 



 

24 

 

misses the right direction, he/she receives an alert. The benefit of using the correlation of the 

driver’s gaze and road scene is that the driver does not always need to concentrate on the road to 

drive safely. However, when a driver departs the lane, they will receive a visual cue to pay attention 

to the position of the road. If the driver is not looking at the road at the time, it reflects the driver’s 

inattention. Land and Lee [123] showed that the location of the road scene where the driver would 

look to have attentive lane tracking is the correlation between the eye gaze and road curvature. 

Land and Lee did research on where a driver looks while entering a curve [123], finding a driver 

looks at the tangent of the road ahead.  Maltz and Shinar [132] found that relying on peripheral 

vision was insufficient due to its inefficiency in detecting dangerous road situations. 

In [133] the system investigated whether speed limit signs had been missed by the drivers or not. 

A road detection system based on vision-based eye was proposed in [134]. 

In [135] a solution which applies heat-maps and optical flow methods for a highly precise attention 

estimation was presented. The vigilance of a driver has been widely studied, as [136] shows how 

driver drowsiness could be measured. In [137] an IR-camera was used to measure eye closing 

duration, as well as eye blinking and nodding frequencies, or in [138] using time-of-flight cameras. 

In [139] the authors designed a system for detecting a driver’s drowsiness and distraction.  These 

two factors cause a large number of accidents. In fact, drivers are less capable of making proper 

decisions and controlling the vehicle when they face hazardous situations. In order to decrease the 

accidents due to these factors, one way is to supervise the drivers during the driving. When they 

are in a drowsy and distracted state, the system can alert them. Another factor that has impact to 

reduce the crashes is being able to predict unsafe driving behavior in advance.  Regarding to these 

issues, the authors discuss different methods to monitor the driver’s behavior to predict unsafe 

behavior. To indicate drowsiness, the authors used methods to extract visual (eye closure, eye 

blinking, yawning, head pose, facial expression) and non-visual features (heart rate, pulse rate and 

brain activity), and driving performance behavior related to the vehicle-based features, 

psychological signals are employed to other methods to find the non-visual features, for vehicle-

based features, they considered and described steering wheel movement. For distraction, the 

position of driver’s head and the direction of drivers’ gaze are taken into account. Finally, they 

proposed prediction methods based on facial expression to predict unsafe driving behavior. 

 [140], the authors conducted another study over traffic sign detection and recognition. They 

considered eye movement as a feature for detection and classification of the traffic signs. They 

considered different effects of conditions, such as age and lighting. They concluded that the more 

the luminance at night increases, the more response time becomes. 

Traffic sign detection and recognition according to the gaze of the driver was firstly proposed in 

[141]. After designing a system to detect the research of interest and classify the types of the sign, 

we applied the point of gaze of the drivers obtained from the calculation in their laboratory to 

identify if the driver has paid attention to the signs or not. 
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Chapter 4 

4. Data Sets 
 

The data from RoadLab have been used in our research; we discuss this in Section 4.1.  Since we 

must detect, recognize and classify traffic signs, we also need data sets containing images of traffic 

signs.  We discuss the traffic sign data sets and our data set in Section 4.2. 

 

4.1 Road Lab Data Set 

RoadLab provides data for the improvement of Intelligent Driver Assistant systems. The goal is to 

provide information such as driver’s behavior and environmental conditions to develop systems to 

help prevent from accidents. 

RoadLab data is collected by using an in-vehicle laboratory instrumented with an on-board 

diagnostic system which uses the CANbus protocol [142] and provides vehicle parameters such as 

brake pedal pressure, steering wheel angle, etc. Video sequences of the driving environment in 

front of the vehicle and other optical behavior such as driver gaze as well as GPS data are collected. 

Our image sequences come from a study of 16 individual drivers who were between 20 and 47 

years old in the city of London, ON, Canada using RoadLab. Each driver used the RoadLab vehicle 

to drive over the same route. Two other observers were also present in the vehicle to both supervise 

the performance of the equipment and guide the driver to correctly navigate the route. More 

information about the environmental conditions and participants have been provided in the table 

(4.1). 

 

 
Figure 4. 1 The RoadLab in-vehicle laboratory: a) (left): on-board computer and   LCD screen b) 

(center): dual stereo front visual sensors, c) (right): side stereo visual sensors [4]. 
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Table 4. 1 Information about Participants and Driving Conditions 

 

As shown in the above table, sequences of images have been recorded under different 

environmental conditions such as light and shadow or cloudy and sunny weather during the 

driving. The RoadLab system encompasses different instruments, including stereo cameras, LCD 

screens and GPS units. It also has cameras that are used for eye tracking to record the gaze of the 

driver (see Figure 4.1). 

The data coming from RoadLab was recorded in real-time and under real environmental 

conditions. Each drive took approximately 60 minutes for each driver; the times differ based on 

the drivers or other road events, such as traffic. In addition, the number of frames can be seen per 

second is 30. 

Our dataset images are recorded with a resolution of 320 by 240 through a front stereo rig mounted 

on the front roof of the vehicle. For 60 minutes of driving, more than 100,000 frames have been 

recorded approximately. Figure 4.2 illustrates some samples of images from our dataset. 
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Figure 4. 2 Examples of Images from the RoadLab Dataset 

 

4.2 Traffic Sign Data 

In order to train and test a detector to find traffic signs, we need access to a large number of samples 

and preferably a data set with images under different environmental situations, such as weather 

conditions, different illumination levels and occlusion and notations.  A number of research groups 

have made data sets available for the community. The most popular open source dataset is the 

German Traffic Sign Data set (GTSD) (see Table 4.2), divided into two parts, for detection and 

recognition. 

Among all the datasets introduced, BTS and GTS have a huge number of samples for both 

classification and detection; the datasets include annotated images. In addition, and BTSD contains 

video tracks; the Steriopolis and Swedish Traffic sign Detection data sets also encompass 
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sequences of images, and hence can be used for tracking.  Every five frames are annotated in 

STSD.  Details on these data sets are summarized in the following table: 

paper Data set Purpose classes Total 

image 

country 

[148] GTSRB Classification 43 50000 German 

[148] GTSDB Detection  900 German 

[149] BTSCB Classification 62 7000 Belgium 

[149] BTSDB Detection  10000 Belgium 

[150] STSD Detection, Classification  20000 Sweden 

[150] FTSD Detection, Classification  3000 Sweden 

[151] Stereopolis Detection, Classification 10 847 France 

Table 4. 2 Examples of Common Data sets 

 

European traffic data sets continue to grow. In addition, due the number of samples in these data 

sets for both detection and recognition, a number of TSDR applications have used this data set 

during the years. However, traffic signs are different between Europe and North America. There 

is no open source data set for North America, certainly Canada. Our system is based on Canada 

traffic signs, so a new data set for our system was needed. There are many differences based on 

both shape and colors between European traffic signs and north American ones that we could not 

use the European data set for our system. Hence, we constructed our own data set. 

For the initial step of detection stage, we used the recorded real sequences coming from the 

RoadLab. For the additional stage of detection stage, we need to train our binary linear Support 

Vector Machine, we also used RoadLab data, cropped the traffic signs in the RoadLab sequences 

and rotated them to have more samples. In addition, we extracted signs from the background with 

different size of the sign under various weather conditions and different sizes of annotation to 

construct a data set.  

We selected 1000 sequences randomly to be cropped so that they could be employed for training. 

As the vehicle is moving during the driving, and the camera mounted on the top is recording the 

images nonstop, we have different sizes of the signs with different margins. These cropped images 

were categorized into 30 different classes to be supplied for multi-class classifier.  

The samples of the extracted signs form background are illustrated in the Figure 4.3  
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Figure 4.3 Examples of extracted traffic signs 

 

As it will be explained in the following parts, we need two different data sets, one for detection 

and one for classification. For the detection part, we need to train a linear binary classifier, hence 

we used a positive data set containing 950 samples and 2500 samples as a negative data set. 

For the classification stage, we have 30 different classes, as our classifier is a multi-class Support 

Vector Machine. We use 50 samples for each class as our positive data set and use 500 negative 

samples as background. The total number of positive samples for the classification stage is 1500 

and the total number of negative samples is 500.  

We used the 80 percentage of the positive and negative samples for training stage and 20 

percentage of the data set for test part.
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Chapter 5 

5. Traffic Sign Detection and Recognition 

Method 
 

In this chapter, we provide details about our methods and introduce other related concepts behind 

our techniques.  For the detection stage we describe how we applied the color information, 

Maximally Stable Extremal region methods and also the combination of a linear binary Support 

Vector Machine and Histogram of Oriented Gradients feature vectors were used for detection and 

recognition.  For the classification we describe our HOG features descriptor and the multi class 

SVM classifier. Our methods are highlighted below: 

1. Creating the attentional area of the driver; 

2. Detection stage using color information and Maximally Stable Extremal Regions in addition 

to the binary Support Vector Machine and Histogram of Oriented Gradients feature descriptor; 

3. Classification stage using Histogram of Oriented Gradients features and a multi-class Support 

Vector Machine classifier; 

4.  Assessment of driver attention. 

 

 

5.1 Creating Attentional Area of the Driver 

Most of the detection and recognition systems have operated on a chain of image sequences. 

However, in [141] the attentional area of the driver was identified as important factor.  In this 

thesis we describe how to determine the attentional field of view of the driver and detect the traffic 

signs inside of this area to identify the number of the signs a driver has seen or missed and also 

analyze the drivers’ behavior during the driving. 

The 3D point of gaze (PoG) of the driver is obtained by relating the 3D line-of gaze (LoG) of the 

driver to the depth map derived of the front camera system. We took advantage of the method that 

was introduced and implemented in our laboratory in [144].  The coordinates of the 3D PoG on 

each frame of reference is derived by the method proposed in [144]. 
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Figure 5. 1 Remote Eye Tracking [144] 

 

Figure 5.1 shows the eye tracking system. In order to obtain the region of interests of the driver 

(see [144]), we consider a plane vertically placed at the 3D point of gaze along the 3D line of gaze. 

A cone in 3D space represents the region of interest; see Figure 5.2. However, when this cone is 

mapped to the imaging plane of stereoscopic image, it becomes a 2D ellipse. In addition, the radius 

of the cone of attentional area of the driver is 13 [144].   By eye position and 3D point of gaze 

obtained through the eye tracker system, the radius of 3D gaze is computed by following formula: 

 

  𝑟 = tan(𝜃)𝑑(𝑒, 𝑔)       (5.1) 

 

Where e= ( 𝑒𝑥, 𝑒𝑦, 𝑒𝑧)  represents the coordinates of eye position and g= (𝑔𝑥, 𝑔𝑦, 𝑔𝑧 ) is the 

coordinates of points of gaze. 

 

Figure 5. 2 Attentional Gaze Cone of the Driver 

 

As it is proposed in [144], the gaze area has the range of 6.5-degree extension for each pitch and 

yaw of direction. So, we assume  𝜃 = 6.5 𝑑𝑒𝑔𝑟𝑒𝑒. 

The Euclidian distance between the eye positions and the 3D points of gaze is obtained by equation 

5.2. 

  𝑑(𝑒, 𝑔) = √(𝑒𝑥 − 𝑔𝑥)2 + (𝑒𝑦 − 𝑔𝑦)2 + (𝑒𝑡 − 𝑔𝑡)2    (5.2) 
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Also, a 3D circle can be parametrically defined as in equation 5.3. 

 

  𝑆 (𝜑) = (𝑋(𝜑), 𝑌(𝜑), 𝑍(𝜑))𝑇 = 𝑔 + 𝑟(cos(𝜑)𝑢 + 𝑟(sin(𝜑) 𝑣) (5.3) 

 

Where 𝑢 =   (𝑢𝑥, 𝑢𝑦, 𝑢𝑧) and 𝑣 = (𝑣𝑥, 𝑣𝑦, 𝑣𝑧) are the coordinates of two perpendicular vectors in 

the plane and  𝜑 is the angles with different values from 0 to 2𝜋. 

Both eye tracker and forward stereoscopic systems have their own aspect. What we need is the 

transformation of the 3D circles which is equal to the attentional area of the driver to the aspect of 

the stereo system of the driver.  The computation of parameters related to the transformation was 

performed earlier in our laboratory by a cross-validation process. This process was applied 

between the eye tracker system and stereoscopic system [145] (see equation 5.4). 

 

  𝑆′(𝜑) =  𝑅𝑇(𝑆(𝜑) − 𝑇)  (5.4) 

 

Where R and T are the rotation and translation matrices respectively. 

After developing the 3D circle, we need to place it on the stereo imaging plane; equation 5.5 is 

used for computation of this stage: 

 

   𝑠′(𝜑) =
1

𝑍′
𝐾𝑆′(𝜑)       (5.5) 

 

where 𝐾 is the intrinsic calibration matrix of the scene stereo system. Finally, we obtain the 

attentional area of the driver which is our region of interest. 

 

5.2 Detection Stage 

Maximally Stable Extremal Region (MSER) is a method of blob detection in computer vision 

detecting regions in images based on brightness. In fact, this algorithm extracts from an image a 

number of co-variant regions called MSERs: an MSER is a stable connected component of some 

gray-levels of the image. In other words, MSER is according to the idea of taking regions which 

are left the same through a wide range of thresholds. Several different regions can be detected by 

this approach. In addition, MSER can be applied to all kinds of images, regardless of the texture 

of the image. 

The MSER algorithm can be performed by sorting all the gray value pixels and then eventually 

adding pixels to each connected component since the threshold is changed. The regions having the 
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minimal variations with respect to the threshold are defined as maximally stable. In other words, 

assume 𝑄 is a region with threshold 𝑡, and 𝑄′ is a region with threshold 𝑡 + 1 such that 𝑄 is not 

significantly larger than 𝑄′, 𝑄 is a maximally stable region. 

As an example, we consider an arbitrary threshold (the threshold must be between 0 to 255), then 

all the pixels bellow a given threshold are white and the others are assumed black, we try a 

sequence of threshold with changing value. As the value is increased the white blobs related to 

white pixels are appeared and grow larger at the same time with the changes of values of 

thresholds. After trying a large number of thresholds, the local regions are stable and show some 

invariance of affine transformation of image intensities and scaling. 

All the pixels in MSER have either higher (bright extremal regions) or lower (dark extremal 

regions) intensity than all pixels on its outer boundary. This operation is performed by storing the 

pixels by pixels to each connected component as the threshold is changed.  

MSER processing: 

The MSER extraction implements the following steps: 

1. Convert an image to gray scale level. 

2. Trying different threshold of intensity to change the luminance intensity of pixels from 

black to white or conversely. 

3. Extract connected components (or extremal regions). 

4. Find the threshold when an extremal region is ‘maximally stable’. 

5. Keep those regions descriptor as features.  

6. Back to step 2 to find more regions. 

 

The goal of the detection stage is to find the regions that are most likely to include traffic signs. 

We utilized the MSER algorithm but with some changes. 

Since we are interested in traffic signs, we are interested in segments of the images as candidate 

regions which include the colors of the sign (such as green, yellow, red, orange, etc.).  Our main 

purpose is to extract these regions of color and then create images with different gray scales for 

analysis by the MSER algorithm.  In addition, a preprocessing operation is employed to the images 

to enhance the color of the images containing the signs. Details on the preprocessing steps are 

covered in Section 5.2.1. 

Other work [146] used similar approach for region of interest extraction for sign detection. The 

approach extracted the regions containing signs with red and blue colors. Other colors, such as 

green, yellow, orange, etc., were not considered.  We use a region detector to find candidates 

regions using several different colors (not only blue and red); this is the main difference between 

our approach and other mentioned technique.  

There are two types of MSER regions. Dark Connected Components on a brighter background 

(MSER +) and a bright one surrounded by a darker background (MSER-). we used the latter one 

since extracting specific color makes us to choose this kind of MSER.  
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In order to find and extract regions containing specific color pixels, colored pixels are converted 

in a way corresponding to one of the main color channels (red, blue, green). By extracting these 

pixels, the image sequence is transferred to gray scale and is ready to be employed by MSER 

region detector. Hence, by extracting these kinds of pixels, we can convert the image into bright 

and dark pixels. Bright pixels are considered as MSER regions.  Then we take advantage of this 

strategy to extract regions of interest.  Again, more details are presented in Section 5.2.1. 

Our overall detection stage consists of the 4 main stages:  

• Preprocessing. 

•  MSER region detection. 

• Feature extraction using a HOG feature extractor. 

• Training an SVM classifier and using hard negative mining. 

 

5.2.1 Implementation Details 

In this part, we explain the methods we used for detection part. The implementation consists of 

four steps: 

1. Preprocessing stages to extract desired pixels of colors 

2. Extract MSER regions and connected components which are extremal regions. 

3. Using Region Properties which measure and analyze the properties of image region 

according to some of features related to these regions. Bounding boxes examples of 

property measurement used to show the location of the image. (we used connected 

components and bounding boxes) 

4. Finding bounding boxes for each region and then merge them to get the correct one. 

 

5.2.1.1 Preprocessing Stages for Different Colors: 

In this step, different pixels of colors are extracted in order to identify the MSER regions. Three 

different functions based on three primary colors are used to acquire the MSER regions and 

connected components. In each function, the desired MSER regions are found for each specific 

color. They all use the median filter and contrast normalization as two different preprocessing 

technique to improve the result of later processing. Median filter is a non-linear digital filtering 

technique which is used to remove noise from an image or signal. Due to preserving the edges 

while removing noise, this technique is widely used. This approach runs through an image entry 

by entry pixel and then replaces each entry with the median of neighboring entries. As we know 

the median is the value separating the higher half from the lower half of a data. The pattern is 

called “window” sliding entry by entry. If the number of entries is odd, then the median is the 

middle number, and for an even number of entries, the median is defined as the mean of the two 

middle numbers. The general equation is 5.6. 
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𝑚𝑒𝑑𝑖𝑎𝑛(𝑎) =   
𝑎 ⌊(#𝑥+1)÷2⌋ 𝑎⌈#(𝑥+1)÷2⌉

2
    (5.6) 

he median filter considers each pixel in the image in turn and looks at its nearby neighbors to decide whether 

or not it is representative of its surroundings. Instead of simply replacing the pixel value with the mean of 

neighboring pixel values, it replaces it with the median of those values. The median is calculated by first 

sorting all the pixel values from the surrounding neighborhood into numerical order and then replacing the 

pixel being considered with the middle pixel value. (If the neighborhood under consideration contains an 

even number of pixels, the average of the two middle pixel values is use. 

Normalization is used to change the range of pixel intensity values to make a better quality of 

image. It is also used to increase the contrast of the image. Normalization transforms a n-

dimensional grayscale image I: {X⊆ 𝑅𝑛} → {Min, Max} into a new image  I𝑁 : {X⊆ 𝑅𝑛} → 

{newMin, …, newMax}.  Gray scale normalization is computing according to equation 5.7.  

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 = (𝐼 −𝑀𝑖𝑛) 
𝑛𝑒𝑤𝑀𝑎𝑥−𝑛𝑒𝑤𝑀𝑖𝑛

𝑀𝑎𝑥−𝑀𝑖𝑛
 + newMin    (5.7) 

 

After removing noise through normalization and median filter, our images are ready for other 

processes. 

The goal of this stage is to find the regions possibly containing the traffic signs. These road signs 

include all the North American traffic signs.  Sequenced images are separated into the R, G and B 

different channels. Since road signs are affected by the illumination changes, we need to enhance 

the images and remove the likely noise; a median filter is applied to individual channel.  The 

contrast normalization is employed on an individual channel and use adjusted pixel intensity to 

regulate the intensity value for each pixel and blur the back ground.  The images are ready to 

extract pixels of interest. 

Processing Red Pixels:  In order to extract red pixels of each image for detection stage, we use 

formula 5.8 [146].  According to this equation, red pixels of an image is obtained by subtracting 

the green and blue channels.  

Red pixels = max (0, Red - Green-Blue)                                                                               (5.8) 

We can extract red pixels from the image and convert them to gray scale; the extracted red pixels 

become white in gray scale and the other pixels are black.  Figure 5.3 illustrates an example of 

extracting red pixels. 



 

36 

 

 

Figure 5. 3 Extracting red pixels. Left original image, right the extracted red pixels image. 

 

The MSER algorithm is used to process these images and the algorithm then identifies white pixels 

as regions of interest.   

Processing Yellow Pixels:  In addition to de-noising operations over the images mentioned in the 

previous section, we do additional preprocessing to extract yellow pixels.  In order to extract 

yellow pixels of an image, we first invert our image. Through this way the yellow pixels become 

blue in the inverted image, and then we subtract the blue channel of the image from grayscale 

image.  Now the yellow pixels are defined. Figure 5.4a shows an image with yellow signs and 

Figure 5.4b shows the inverted image; Figure 5.4c shows the gray scale image. 

                                         

(a)                                                                   (b 
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                                (c) 

Figure 5. 4 Finding yellow pixels, (a) the original image. (b) inverted the original image. (c) the 

gray- scale image. 

 

Processing Green Pixels: We utilize the same strategy for green pixels. After denoising our 

sequenced images by median filter and contrast normalization, one more preprocessing step is 

added.  Green color pixel corresponds to red pixels in inverted images. We repeat the previous 

step and extract the red pixels from the gray scale of original image.  Figure 5.5 illustrates the 

extraction of the gray scale image from an original image using green pixels.   We now have a 

gray scale image for processing via the MSER algorithm to identify regions of interest. 

 

                 

(a)                                                                     (b) 
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                           (c) 

Figure 5. 5 Finding the green pixels. (a) the original image, (b) the inverted image, (c) gray scale 

image. 

 

Processing White Pixels:  For processing white pixels, once the denoising stages are completed, 

white pixels are extracted. Extracting white pixels (traffic signs with white back ground) was 

challenging since a huge number of objects with white pixels are considered as signs. Hence the 

number of false positives was more than for the other colors. However, by using the constraints 

presented in the following subsections, we can remove some of the false positive regions found by 

the algorithm as well as determining the size of bounding boxes. 

 

5.2.1.2 Extracting MSER regions and Connected Components 

After preprocessing operations, our images are ready for the next stage.  We applied MSER as a 

region detector to search and find regions and connected components containing particular colored 

pixels. Regions with high levels of contrast in a grayscale scene are detected by MSER. As 

described above, by extracting specific color pixels, we can make a gray scale image and then use 

the MSER region detector.  The regions with extracted color pixels have the high level of contrast 

in a gray scale image. Regardless of the shape of the regions, connected components remained 

unchangeable after trying different thresholds. 

  

5.2.1.3 Using region props to measure the region properties 

After finding the regions, we measure properties of the regions found in the images; these are the 

connected components and bounding boxes. We stored all constructed bounding boxes for each 

found region.  
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5.2.1.4 Implementation Algorithm 

Firstly, the MSER regions are detected. In order to detect MSER regions, we used 

MSERFeatureDetector from the Matlab toolbox. This function has two important inputs: a 

threshold delta which is used to compute the intensity of the threshold levels. This input range of 

this parameter is between 0.8 to 4. We empirically chose a threshold with value 3. We chose this 

threshold as it can be used for the color Orange as well as Red and so the Red function can cover 

red and orange color pixels. For the other types of colors, such as green and yellow we tried 

different thresholds and finally chose the same as the Red threshold.  This seemed to generate the 

best results for all colors of interest. Through this function we can find the MSER regions and 

MSER connected components.  

 

We repeat this step for all the colors, and the connected components derived from this step for 

each color are stored in a matrix. The matrices are merged together in order to be evaluated in 

region properties measurement stage. After evaluation, the measured regions are combined, and a 

bounding box is placed over each region.  

 

In order to determine whether the bounding boxes encompassing the border of the sign, we 

expanded the values of the edge coordinates of the bounding box. We extract all four coordinates 

of bounding boxes and expand them according an empirically predetermined small value which is 

0.02.  This value is used by the application to expand neighboring bounding boxes [147] and is 

employed for all the found bounding boxes.  Expanding neighboring bounding boxes is a crucial 

step that is done in preparation of the final merge of individual bounding boxes.  This expansion 

is necessary to detect a wide and varied areas of signs. The size of the primary sign region in 

proportion to the rest of the subjects in the image could also contribute to this [147].  We chose 

the expansion amount empirically. 

 Some false positives are eliminated by clipping the bounding boxes. Some images contain 

multiples bounding boxes overlaying on each other. We need them to be merged together to form 

a single bounding box around an individual region. This issue was addressed by setting an overlap 

ratio between all the bounding box pairs. This quantifies the distance between all pairs of sign 

regions so that it is possible to find the groups of neighboring sign regions by looking for non-zero 

overlap ratios.  An overlap ratio is a value between 0 and 1 used between the pairs of bounding 

boxes. The best value is 1 indicating the perfect overlap.  The bounding boxes around each sign is 

prepared to be sent to the recognition part. We used “bboxOverlapRatio” function of MATLAB 

toolbox to compute the pair-wise overlap ratios for all the expanded bounding boxes. The output 

of this function is a matrix by M rows and N columns. Each (I, J) element in this matrix corresponds 

to the overlap ratio between row I in the first bounding box and row J in the other one. The overlap 

ratio is computed according to equation 5.9:   

𝑜𝑣𝑒𝑟𝑙𝑎𝑝 𝑟𝑎𝑡𝑖𝑜 =   
𝐴𝑟𝑒𝑎 (𝐴∩𝐵)

𝐴𝑟𝑒𝑎 (𝐴∪𝐵)
 where A and B are the bounding boxes.   (5.9) 

 

The bounding boxes are merged according to this overlap ratio which is based on the size of the 

bounding boxes.  Even after this merger, there may still be more overlapping bounding boxes.  In 
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order to address this issue, we consider one more constraint. The ratio of the height to the width 

or the width to the height of the bounding boxes is also considered.  If the ratio of the height to the 

width is less 1.3 or if the ratio of the width to the height is less than 1.2, then we merge the bounding 

boxes to determine the bounding box over a sign. 

Although the generated results through the combination of color information and MSER algorithm 

is satisfactory enough for our work, there are some regions wrongly considered as a sign. In order 

to remove this issue, we added one more step to the detection part.  

Given the success of using a Histogram of Oriented Gradients feature detector [74] (see also 

Section 5.3) and Support vector Machine classifier, we used the combination in one more step to 

improve the accuracy.  We constructed a set of positive and negative data (images). The positive 

data set includes the North America Traffic Sign samples. In order to have a satisfying number of 

positive samples, we added flipped, rotated and translated versions of original samples which 

results in better detection performance. We used 950 positive samples and 2500 negative samples.  

We used 80 percentage of our data set for training and 20 parentage of the data set for testing. In 

addition, in order to train our classifier efficiently, we used a method called hard negative mining. 

Each image without a traffic sign is considered as a negative sample. We train the SVM in iterative 

process. When the SVM predicts a negative sample as a positive sample (false positive), we add 

this sample to the SVM for next iteration as a negative sample. We repeat this process for 10 

iterations to make our classifier more powerful and accurate. The steps of the algorithm are 

outlined in Figure 5.6. 

 

Figure 5. 6 Implementation of the Detection Algorithm 
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The images in Figure 5.4 illustrate the process of the detection stage.  Width and height are coming 

from the bounding boxes have been produced from the region properties. 

 

 

Figure 5. 7 The processing during the detection stage. Upper left: the MSER regions are found. Upper 

right: after removing non-sign regions.  Bottom left: found bounding boxes for regions. Bottom right: The 

sign is detected 

 

5.3 Classification stage 

We first introduce the concepts used for the recognition computation, such as the Histogram of 

Oriented of Gradients as features and Support Vector Machine as a classifier. We also describe the 

architecture of system. 

 

5.3.1 HOG Descriptors 

Histogram of Oriented Gradients (HOG) are widely used in the computer vision and image 

processing fields. These features are suitable to acquire the features of objects. HOG features were 
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used in 2005 to detect pedestrians [74] by Dalal and Triggs. They compared HOG features with 

the features were used by others and concluded that HOG features have better performance.  

As it is illustrated in Figure 5.8, the process of HOG implementation is divided into 7 steps. 

 

 

Figure 5. 8 HOG Features Process 

 

5.3.1.1 Input Normalization 

The color of input images is converted to gray scale levels in order to decrease the impact of some 

factors such as illumination variation, shadow, contrast etc. Gamma correction is the method used 

to do this. It also prevents noise from affecting the images.  

5.3.1.2 Computation of Gradients 

The gradients (both horizontal and vertical) for each pixel over the image is computed in this stage.  

This stage reduces the influence of light on the image as well as considering information about the 

contour and texture are the purposes of this stage. In order to determine the horizontal and vertical 

directions, a 1-D gradient operator is used.  𝐺𝑥  is the horizontal gradient and 𝐺𝑦 is the vertical one 

and 𝐻(𝑥, 𝑦) is the gray value of pixel (𝑥, 𝑦).   The gradients of each pixel can be defined as follows: 
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𝐺𝑥 = 𝐻(𝑥 + 1, 𝑦 ) − 𝐻(𝑥 − 1, 𝑦) (5.10) 

𝐺𝑦 = 𝐻(𝑥, 𝑦 + 1) − 𝐻(𝑥, 𝑦 − 1) (5.11) 

 

Gradient magnitude can also be obtained through the following equation: 

 

𝐺𝑥,𝑦 = √𝐺𝑥 (𝑥, 𝑦)2 +   𝐺𝑦 (𝑥, 𝑦)2   (5.12) 

 

5.3.1.3 Orientation Binning 

The goal in this stage is to create the cell histogram of gradient orientation in each image. The 

image is segmented into the pixels with predetermined size. Each pixel in a cell computes a 

weighted vote for a histogram channel which is based on orientation. Each vote has a value to be 

computed based on the magnitude gradients obtained in the previous step. 

The shape of the cell can be either radial or rectangular. The histogram channels are evenly spread 

either 0-180 (unsigned) or 0-360 (signed). In [74] the authors showed that using unsigned gradients 

and 9 histogram channels has the best performance. 

5.3.1.4 Descriptor Blocks 

Due to the light or shadow variation and contrast changes, the range of gradient strength is very 

large. Hence the importance of local normalization of gradient strength to enhance system 

performance is undeniable. In [74] the authors proposed a method for normalization based on the 

combination of the individual cells to make a group of them called blocks and then normalize each 

block separately. Now, the HOG descriptor has become a vector consisting of all cell histograms. 

However, due to the block overlap, the cells may be present in the block in several times. 

Rectangular (R-HOG) and Circular (C-HOG) are the main shapes of blocks. Rectangular HOG, 

consisting of the number of cells per block. Each cell consists of a number of pixels and each 

histogram pixel includes a number of channels. For example, the authors in [74] found that, 

(16× 16) block size, (8 × 8) cell size and 9 for histogram channel are the optimal size of 

parameters for human detection task. 

C-HOG is another block HOG shape. It can be found in a circular center cell or in a central cell 

which has been divided angularly. It also has four parameters: the number of angular and radial 

bins, the radius of the center bin and expansion factor for the radial bin’s radius [74].   

In order to increase the invariance to lighting changes, Dalal and Trigge in [74] considered four 

different normalization methods. 
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𝐿1 − 𝑠𝑞𝑟𝑡: 𝑓 =  √
𝑣

(||𝑣||)
1
+ 𝑒

  (5.13) 

 𝐿1 − 𝑛𝑜𝑟𝑚: 𝑓 =  
𝑣

(||𝑣||)
1
+ 𝑒

  (5.14) 

𝐿2 − 𝑛𝑜𝑟𝑚: 𝑓 =  
𝑣

√||𝑣||
2

2
+ 𝑒2

  
(5.15) 

  𝐿2 − ℎ𝑦𝑠 ∶ 𝑓 =  
𝑣

(||𝑣||)
1
+ 𝑒2

   (𝑣 ≤ 0.2) (5.16) 

 

In this equation, 𝑣 is the original and non-normalized normal vector f and e are feature vector and 

a constant value respectively. 𝐿2 − 𝑛𝑜𝑟𝑚  is computed before the 𝐿2 − ℎ𝑦𝑠 . The result is 

shortened to 0.2. then process is continued by renormalizing the result and using 𝐿2 − 𝑛𝑜𝑟𝑚 to 

obtain the final ones. According to what Dalal and Trigge present in [74], the performance of three 

blocks normalization  𝐿2 − ℎ𝑦𝑠 , 𝐿2 − 𝑛𝑜𝑟𝑚 and  𝐿1 − 𝑠𝑞𝑟𝑡 is the same, while the efficiency of 

𝐿1 − 𝑛𝑜𝑟𝑚 is less than others. Generally, all these block normalizations have excellent influence 

on non-normalized data.  

When the block normalization step is finished, all the histograms are aggregated and combined 

into a single feature vector.  Examples of extracted feature vectors are illustrated in Figure 5.9. 

 In fact, the feature vectors represent the images in a simple way by extracting and keeping the 

useful information and removing the useless information. A feature descriptor converts an image 

with three dimensions into an array. 

 

 

Figure 5. 9 Examples of HOG Features on Images [8] 
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5.3.2 Support Vector Machine: 

Support Vector Machines are one of the most powerful supervised learning algorithms in machine 

learning. In a supervised learning method, prediction is based on desired labeled data. In this 

method, the algorithm searches among the labeled data to find the most proper pattern and then 

uses that one to do the prediction of new examples. 

SVM is a classifier searching for an optimal separating hyperplane, which maximizes the margin 

to classify unseen examples based on labeled training data. Margin is the space is the space 

between the hyperplane and the closet data points on each side to the decision boundary. These 

kinds of points called support vectors. 

A binary SVM separates the data into two different classes through subsets of samples called 

Support Vectors, while, a multi class SVM, categorizes the sample in to different classes. When a 

new test sample goes through the SVM, it is categorized based on its distance to the support vector. 

Dalal and Trigge [73] used the combination of SVM classifier and normalized HOG features in 

pedestrian detection.  

This method is a useful binary classifier to categorize a data set. A binary SVM can be divided to 

one-one classifier or one-all classifier.  An example of one-one classifier is illustrated in Figure 

5.10. Class1 and Class2 are two different samples. Different lines separate these classes, however 

selecting the best line is an issue. The line separating the classes most properly is called a 

hyperplane (in a 3D space). 

 

Figure 5. 10 SVM Classifier [9] 

We have two different sets of samples and want to classify them.  Suppose our k data samples can 

be represented by (𝑥1𝑦1)…. (𝑥𝑘𝑦𝑘), the label of each pair is -1 for negative samples and +1 for 

positive samples. A hyperplane is found and selected as a decision function to separate these two 

classes. A hyperplane is found with the following equation: 

 

𝑤. 𝑥𝑖 + 𝑏 = 0      (5.17) 

 

   b and w are called bias and a normal direction to a hyperplane. 
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As it is obvious in Figure 5.6, the samples have been separated by several planes. Hence, there are 

many possible hyperplanes that could be chosen. We choose two planes defined as follows: 

𝑤. 𝑥𝑖 + 𝑏 = 1     (5.18) 

 

𝑤. 𝑥𝑖 + 𝑏 = −1     (5.19) 

 

 These two hyperplanes are parallel and the distance between them must be as great as possible. 

In fact, we are looking for a hyperplane containing the maximum distance between data points of 

both classes.  The distance between two hyperplanes called margin and is obtained after some 

computational operation as follows: 

2

 ||𝑤||
    (5.20) 

 

In order to maximize the margin, we need to minimize ||w||. In addition, we need to find the optimal 

hyperplane. A hyperplane is optimal if the distance between a point and the hyperplane is larger 

in comparison to other planes. Since a hyperplane is close to a point, it suffers from the noise. 

Hence, an optimal hyperplane has the greatest distance from points. The optimal hyperplane is 

mostly placed in the middle of the two predefined hyperplanes. In fact, margin is maximized by 

an optimal hyperplane. An optimal hyperplane has been depicted in Figure 5.7.  

                                  

Figure 5. 11 Example of a hyper plane  

 

In addition to the above, in order to have an optimal hyperplane, the samples should not fall into 

the margin.  We truncate our states in the following equations and conditions: 

 𝑖𝑓          𝑦𝑖 = +1,            𝑤. 𝑥𝑖 + 𝑏 ≥ 1   (5.21) 

  

𝑖𝑓          𝑦𝑖 = +1,            𝑤. 𝑥𝑖 + 𝑏 ≥ 1   (5.22) 

By the combination of this formula we can find most of the satisfy the following formula: 
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𝑦𝑖( 𝑤. 𝑥𝑖 + 𝑏) ≥ 1 and 𝑖 is the number of samples. 

Now to maximize the margin,  

 max
2

||𝑤||
  𝑤ℎ𝑖𝑙𝑒 𝑦𝑖( 𝑤. 𝑥𝑖 + 𝑏) ≥ 1   (5.23) 

 

Or in the other words, the equivalent to the above equation can be represented as follows by 

quadratic programming:  

 min
1

2
||𝑤2||   𝑤ℎ𝑖𝑙𝑒  𝑦𝑖( 𝑤. 𝑥𝑖 + 𝑏) ≥ 1 (5.24) 

    

The maximum margin classifier works well for the data distributed such that they can be separated 

linearly. When the datasets are not separated linearly, there are some mislabeled examples.  Hence, 

we need to use a modified version of maximum margin. In this way, a slack variable ξ is defined 

to identify how much points are in a wrong side, also allows a certain degree of fault tolerance: 

𝑦𝑖(𝑤. 𝑥𝑖 + 𝑏) ≥ 1 − ξ𝑖              ∀𝑖    (5.25) 

 

The value range of slack is another issue. Since if the value is more than 1, it means that there are 

some points are not classified, while when the value is between 0 and 1, it represents some data 

points are fall into the margin. To guarantee that our classier not to suffer from these problems, we 

need to consider a new term called margin constant C. so our equation has become as the following: 

   

   

 

{min
1

2
||𝑤2|| + 𝐶∑ξ𝑖

𝑛

𝑖=1

}𝑤ℎ𝑖𝑙𝑒 𝑦𝑖(𝑤. 𝑥𝑖 + 𝑏) ≥ 1 − ξ𝑖  ∀𝑖=1…𝑛, ξ𝑖 ≥ 0                                     (5.26) 

 

The constraint of above equation can be solved by introducing a Lagrange theory to transform our 

formula to dual maximization problem: 

𝑤 = ∑𝛼𝑖𝑥𝑖𝑦𝑖
𝑖

    (5.27) 

 

max(w( 𝛼)) = {∑ 𝛼𝑖𝑖 − 
1

2
∑ ∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑗 𝑦𝑗𝐾〈𝑥𝑖𝑥𝑗〉𝑖 }                                                                (5.28)  

 

𝑤ℎ𝑖𝑙𝑒 ∀𝑖 ∑ 𝛼𝑖𝑦𝑖 = 0 , 0 ≤ 𝛼𝑖 ≤ 𝐶  𝑖 (4.23)                                                                                (5.29) 

The solution of the SVM is dependent on the kernel function 𝐾〈𝑥𝑖𝑥𝑗〉 
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5.3.3 Hard Negative Mining 

Hard negative mining is an approach to reduce the false positives in training a classifier. In order 

to train a linear classifier, we need both negative and positive samples. After training the classifier, 

when it runs over the training samples to test the efficiency of the classifier. Sometimes the result 

obtained is not very good. In fact, it throws a bunch of false positives (regions detected, which are 

not actually traffic signs.). Hard negative is when a falsely detected patch is taken and explicitly 

create a negative example out of that patch, this negative is added to the training set. When a 

classifier is retrained, it should perform better with this extra knowledge and not make as many 

false positives. 

 

5.3.4 Implementation Details 

In this part, we classify the different types of the road signs. The advanced learning methods we 

used are introduced here. HOG features and SVM classifier are used to implement this stage. Any 

classification system needs a set of samples to be used in training process. We selected 30 different 

classes each containing 50 samples with different sizes to improve the accuracy.  

The input images are evaluated, and the labels of each class are processed. Then the HOG features 

of each class are extracted to be used as features to train the SVM classifier, hence, all the image 

samples are trained with their own labels. The function used to extract bounding boxes over 

detected sigs are called to provide the detected road signs. The size of the bounding boxes is resized 

to 64× 64 to fit the HOG window size. The HOG features are extracted from each bounding box. 

So as not to miss any small-scale detail, the cell sizes are selected 5 × 5. Also, block sizes are 

selected with 4× 4 .Finally, the test images are fed into the SVM classifier. The label of each sign 

is recognized.   

 

Figure 5. 12 Recognition Process 

 

As we have two different SVM classifiers, the approach of labeling is different. For binary SVM, 

we labeled our positive samples with value 1 and negative samples with value -1, however, in 

multi class SVM, we labeled all of classes with value 1, and by indexing, we can obtain the class 
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name, which is necessary for the prediction of type of traffic signs.  The abstraction of our 

implementation algorithm is depicted in Figure 5.11  

As stated before, for training the classifier, we considered 30 different classes containing 50 

samples of each class. These samples are extracted from our recorded images from the camera 

mounted on the car.  We extracted samples from different distances, annotations and lighting 

conditions to obtain more accurate data (see Section 4.2).  Examples of different recognized traffic 

signs are illustrated in Figure 5.12. 

 

 

 
Figure 5. 13 The samples of recognition stage  

 

5.4 Assessment of Driver Attention based on Gaze 

After detecting the regions of interest and classifying the signs, the last stage is to combine the 

driver’s gaze into our detection system.  This is done using the computed attentional area of the 
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driver (see Section 5.1).  In this section, we provide information about the algorithm used to 

evaluate the driver attention based on gaze.  To do this, we want to determine: 

1. If the detected and recognized sign is in the attentional area of the driver.  In other words, 

if the driver has gazed the sign or not (if he/she has gazed at least once over a traffic sign, 

we conclude that the sign has been seen otherwise, it has been missed). 

2. What is the type of the sign, which is missed or seen. 

 

In order to determine if the driver has seen or missed a sign, we make the assumption that if the 

center of the bounding box of a sign is inside the attentional area of the driver then the driver has 

seen the sign.   The attentional area of the driver is a 2D ellipse. By using the equation of the 2D 

ellipse (see equation 5.14), we can identify whether the sign is inside the attentional area of the 

drive or not. 

 

𝜀 =
((𝑥𝑏𝑏−𝑐𝑥)×cos(𝜃)+(𝑦𝑏𝑏−𝑐𝑦)×sin(𝜃))

2

𝑎2
 +

((𝑥𝑏𝑏−𝑐𝑥)×sin(𝜃)−(𝑦𝑏𝑏−𝑐𝑦)×cos(𝜃))
2

𝑏2
            (5.17) 

 

Where (𝑥𝑏𝑏.𝑦𝑏𝑏) is the center coordinate of the bounding box, (𝑐𝑥,𝑐𝑦) is the center coordinate of 

the gaze, 𝜃 is the gaze angle, (𝑎, 𝑏) are the radiuses of the ellipsoid of the attentional area.  Then a 

sign is seen or not by the driver given equation 5.15. 

 

                              {
𝑖𝑓 𝜀 ≤ 1              𝑠𝑖𝑔𝑛 𝑖𝑠 𝑠𝑒𝑒𝑛    

   𝑒𝑙𝑠𝑒                      𝑠𝑖𝑔𝑛 𝑖𝑠 𝑛𝑜𝑡 𝑠𝑒𝑒𝑛
                                                          (5.18) 

 

The constraint means the sign has been inside the drivers’ attention of area obtained from point of 

gaze in Section 5.1.  This constraint is employed over all the detected and recognized signs inside 

the image frames.  Some examples of the result of this step are shown in Figures 5.13, 5.14 and 

5.15.  
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Figure 5. 14 An example of a seen sign  

 

 

Figure 5. 15 An example of seen sign  
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Figure 5. 16 A sample of missed sign  

 

5.5 Detection and Recognition Results 

We employed our system over more than 328,248 different frames.  The accuracy of the detection 

stage is 80.98% and the accuracy for classification stage is 81.71%; the accuracy of the 

classification stage is based on the signs detected. 
 

We validated the method against the images for driving sequence for one driver (driver number 

14).  The calculation of the number of true positive and false negative was done by hand.  We 

obtained the accuracy rate 80.98%. The total number of frames considered was 87131 (30 frames 

per second) and there was a total of 20505 images of signs in those frames.  Our detection 

algorithm identifies 16606 of these as signs (see Table 5.1). 

 

Number of signs (frames 

containing signs) 

20505 

Number of detected signs                                             16606 

Number of missed signs 3899 

Detection accuracy 80.98% 

Table 5.1. Summary of traffic sign detection results. 

 

The result of our classification (recognition) is summarized in Table 5.2.  Of the 16606 signs 

identified in the detection stage, 13568 were correctly classified. 
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The number of detected signs 16606 

The number of correctly classified signs 13568 

The number of wrongly classified signs 3038 

Accuracy 81.71% 

Table 5.2. Summary of traffic sign classification results. 
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Chapter 6 

6 Analysis of Gaze 
 

In order to show that our method is robust enough, we performed our detection system over more 

than 300,000 frames obtained from cameras mounted on the vehicle; the size of frames is 240 by 

320 pixels. We employed our system over frames acquired from 4 different drivers. These 

sequences were recorded with our RoadLab vehicle. 

After detection and recognition of the traffic signs, we performed one more stage to identify 

whether the sign has been seen by the driver or not, i.e., whether the sign is inside the attentional 

area of the driver or not.  Using these results, we determine the signs seen by our sample of drivers 

and the types.  

 

The driving sequences taken by the drivers have different number of frames. One reason is that 

the camera has not recorded some of the images initially. In addition, the frames with low quality 

have been excluded, also different drivers take different times to finish the driving task. 

 

In order to have a reliable data set, we chose four different driving sequences taken by four 

different drivers with different ages and gender under different environmental conditions such as 

sunny weather, partially sunny, etc.  

 

6.1 Analysis of Gaze Data 
We analyzed the driving sequences of 4 different drivers and collected the data on whether drivers 

gazed at the signs in the images or not.  This information is summarized in Tables 6.1-6.4.  

 

Driver number 4 

Gender: M 

Weather: Sunny 

   

 

Type of the sign 

The total number 

of frames 

containing signs 

The number of 

frames with 

gazed signs  

The number of 

frames with not 

gazed sign  

1. Park not allowed 151 20 131 

2. Stop 185 100 85 

3. Exit only 80 63 17 

4. School crossing 459 457 2 

5. Turn left not allowed  91 32 59 

6. Traffic light 238 234 4 

7. One green sign 93 35 54 

8. No Truck  207 200 7 

9. Yield  200 131 69 

10. Speed 60 142 140 2 
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11. Speed 70 64 45 19 

12. Speed 80 0 0 0 

13. Speed 50 298 187 111 

14. Speed 40 0 0 0 

15. Lane for two-way left turns 0 0 0 

16. Parking 0 0 0 

17. Construction 422 389 33 

18. No enter 22 20 2 

19. Keep to the right of traffic 704 588 116 

20. U turn not allowed  50 48 2 

21. Closed lane 275 194 81 

22. Lane ahead is closed 213 62 151 

23. Truck 0 0 0 

24. Turn right not allowed 0 0 0 

25. Railway crossing ahead 0 0 0 

26. Road work ahead 128 120 8 

27. Traffic travel in one direction 0 0 0 

28. Slight bend on the road 0 0 0 

29. Bicycle 0 0 0 

30. Pedestrian cross over 0 0 0 

Table 6.1.  Frames with Signs Gazed and Not Gazed for Driver 4 

 

Driver number 9 

Gender: female 

Weather condition: Partially 

Sunny 

   

 

Type of the sign 
The total number of 

frames containing 

the signs 

The number 

of frames with 

gazed sign  

The number of 

frames with not 

gazed sign  

1. Park not allowed 605 201 404 

2. Stop 73 62 11 

3. Exit only 0 0 0 

4. School crossing 763 698 65 

5. Turn left not allowed 415 103 312 

6. Traffic light 1342 1280 62 

7. One green sign 64 42 22 

8. No Truck 1012 578 434 

9. Yield 870 412 458 

10. Speed 60 1218 697 521 

11. Speed 70  47 39 8 

12. Speed 80 31 24 7 

13. Speed 50 1862 1693 169 

14. Speed 40 165 143 22 

15. Lane for two-way left turns 108 31 71 

16. Parking 946 334 612 

17. Construction 2710 2238 472 

18. No enter 54 25 29 
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19. Keep to the right of traffic 6728 4925 1803 

20. U turn not allowed 760 610 150 

21. Closed lane 713 621 92 

22. Lane ahead is closed 437 387 50 

23. Truck  34 12 22 

24. Turn right not allowed 236 193 43 

25. Railway crossing ahead 237 98 139 

26. Road work ahead  224 129 95 

27. Traffic travel in one direction 134 65 69 

28. Slight bend on the road 54 12 42 

29. Bicycle  177 23 154 

30. Pedestrian cross over 182 179 3 

Table 6.2. Frames with Signs Gazed and Not Gazed for Driver 9. 

 

Driver 11 

Gender: Female 

Weather conditions: Sunny 

   

 

Type of the sign 

The total number of 

frames containing 

the signs 

The number of 

frames with 

gazed sign  

The number of 

frames with not 

gazed sign  

1. Park not allowed  1221 270 951 

2. Stop 318 211 107 

3. Exit only 127 88 39 

4. School Crossing 821 795 26 

5. Turn left not allowed 359 100 259 

6. Traffic light 873 783 90 

7. One green sign 272 177 95 

8. No truck 55 21 34 

9. Yield  100 87 13 

10. Speed 60 3162 2456 706 

11. Speed 70 229 120 109 

12. Speed 80 0 0 0 

13. Speed 50 618 506 112 

14. Speed 40 157 132 25 

15. Lane for two-way left turns 28 12 16 

16. Parking 1055 327 728 

17. Construction 2644 2531 113 

18. No enter 146 98 48 

19. Keep to the right of the 

traffic 

5263 3147 2116 

20. U turn not allowed 64 41 23 

21. Closed lane 3139 3087 52 

22. Lane ahead is closed 2594 2309 285 

23. Truck  96 24 72 

24. Turn right not allowed 829 234 595 

25. Railway crossing ahead 2082 1743 339 

26. Road work ahead  369 294 75 



 

57 

 

27. Traffic travel in one 

direction 

0 0 0 

28. Slight bend in the road  232 34 198 

29. Bicycle  336 104 232 

30. Pedestrian cross over 0 0 0 

Table 6.3. Frames with Signs Gazed and Not Gazed for Driver 11. 

 

Driver 14  

Gender: Female  

Weather condition: Sunny 

   

 

Type of the sign 
The total number of 

frames containing 

the signs 

The number 

frames with 

sign gazed 

The number of 

frames with sign 

not gazed 
1. Park not allowed  547 244 303 

2. Stop 464 280 184 

3. Exit only 306 108 198 

4. School crossing 964 701 263 

5. Turn left not allowed 2573 1094 1479 

6. Traffic light 944 898 46 

7. One green sign 380 210 170 

8. No truck 64 35 29 

9. Yield  55 18 37 

10. Speed 60 675 581 94 

11. Speed 70 72 34 38 

12. Speed 80 0 0 0 

13. Speed 50 453 201 252 

14. Speed 40 183 111 72 

15. Lane for two-way left turns 166 32 134 

16. Parking 512 231 281 

17. Construction 2121 1621 500 

18. No enter 113 28 85 

19. Keep to the right of the 

traffic 

7151 5892 1259 

20. U turn not allowed 58 21 37 

21. Closed lane 1309 1029 280 

22. Lane ahead is closed 283 208 75 

23. Truck 0 0 0 

24. Turn right not allowed 136 34 102 

25. Railway crossing ahead 184 123 61 

26. Road work ahead  277 196 81 

27. Traffic travel in one 

direction 

0 0 0 

28. Slight bend in the road  179 41 138 

29. Bicycle  336 104 232 

30. Pedestrian cross over 0 0 0 

Table 6. 4. Frames with Signs Gazed and Not Gazed for Driver 14. 
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From Table 6.1-6.4, we see that different drivers have different gaze behavior during driving.  

Some of the signs have been detected more than others, such as different types of speed limits, 

however, other types of sign such as ‘park not allowed’ have been paid less attention.  

 

6.2 Signs Seen and Missed  
In the previous part we calculated whether the driver has gazed at images containing traffic signs 

in frames or not. In this step, we want to calculate the number of actual signs has been detected 

and recognized by the diver. In order to address this problem, we used the following strategy.  If 

the image of a particular type of sign appears in a sequence of frames, we can take advantage of 

the Euclidian distance from the center of these signs.  We used a threshold with value of 3.32 to 

compare the Euclidian Distance between the two centers of two consecutive images of signs.  If 

the distance is less than the threshold, we consider that the two signs are the same, if not, then we 

consider them to be two different signs. Tables 6.5-6.8 illustrate the number of seen or missed 

traffic signs based on this strategy. 
 

Driver number 4    

Type of the sign The number of 

signs seen 

The number of 

missed signs 

1. Park not allowed 3 2 
2. Stop 1 1 

3. Exit only 1 0 
4. School crossing 1 1 
5. Turn left not allowed 2 1 

6. Traffic light 4 1 
7. One green sign 1 0 
8. No Truck  1 0 
9. Yield  1 0 

10. Speed 60 7 1 

11. Speed 70 1 0 

12. Speed 80 0 0 

13. Speed 50 2 1 

14. Speed 40 0 0 

15. Lane for two-way left turns 0 0 

16. Parking 0 0 

17. Construction 2 1 

18. No enter 1 0 

19. Keep to the right of traffic 7 4 

20. U turn not allowed  1 0 

21. Closed lane 3 0 

22. Lane ahead is closed 2 0 

23. Truck 0 0 

24. Turn right not allowed 0 0 

25. Railway crossing ahead 0 0 

26. Road work ahead 1 0 

27. Traffic travel in one direction 0 0 

28. Slight bend on the road 0 0 

29. Bicycle 0 0 
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30. Pedestrian cross over 0 0 

Table 6. 5. The number of individual actual signs seen and missed by Driver 4. 
 

Driver number 9   

Type of the sign The number of 

signs seen 
The number of 

missed signs 
1. Park not allowed 3 7 

2. Stop 1 1 

3. Exit only 0 0 

4. School crossing 6 2 

5. Turn left not allowed 2 3 
6. Traffic light 7 1 

7. One green sign 1 0 
8. No Truck 2 1 
9. Yield 2 1 
10. Speed 60 10 6 

11. Speed 70  1 0 

12. Speed 80 1 0 

13. Speed 50 6 1 

14. Speed 40 1 0 

15. Lane for two-way left turns 1 1 

16. Parking 2 5 

17. Construction 7 1 

18. No enter 1 1 

19. Keep to the right of traffic 15 10 

20. U turn not allowed 3 1 

21. Closed lane 3 1 

22. Lane ahead is closed 5 0 

23. Truck  1 0 

24. Turn right not allowed 2 0 

25. Railway crossing ahead 1 1 

26. Road work ahead  1 0 

27. Traffic travel in one direction 1 1 

28. Slight bend on the road 1 1 

29. Bicycle  1 2 

30. Pedestrian cross over 2 0 

Table 6. 6. The number of individual actual signs seen and missed by Driver 9. 
 

Driver 11   

Type of the sign   The number of 

signs seen 
The number of missed 

signs 
1. Park not allowed  4 9 

2. Stop 1 1 

3. Exit only 1 0 

4. School crossing 6 3 

5. Turn left not allowed 3 3 
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6. Traffic light 7 2 

7. One green sign 1 0 

8. No Truck 1 1 

9. yield  1 1 

10. Speed 60 12 4 

11. Speed 70 1 1 

12. Speed 80 0 0 

13. Speed 50 5 1 

14. Speed 40 2 0 

15. Lane for two-way left turns 1 1 

16. Parking 3 7 

17. Construction 7 0 

18. No enter 1 1 

19. Keep to the right of the traffic 15 13 

20. U turn not allowed 1 0 

21. Closed lane 6 2 

22. Lane ahead is closed 4 1 

23. Truck  1 0 

24. Turn right not allowed 1 1 

25. Railway crossing ahead 2 1 

26. Road work ahead  2 0 

27. Traffic travel in one direction 0 0 

28. Slight bend on the road 0 0 

29. Bicycle  2 4 

30. Pedestrian cross over 0 0 

Table 6.7. The number of individual actual signs seen and missed by Driver 11. 

 

Driver 14    

Type of the sign The number of 

signs seen 
The number of missed 

signs 
1. Park not allowed  1 4 

2. Stop 1 1 

3. Exit only 1 0 

4. School crossing 7 2 

5. Turn left not allowed 3 2 

6. Traffic light 5 0 

7. One green sign 1 0 

8. No truck 1 0 

9. Yield  1 1 

10. Speed 60 8 3 

11. Speed 70 1 0 

12. Speed 80 0 0 

13. Speed 50 4 3 

14. Speed 40 1 1 

15. Lane for two-way left turns 1 0 

16. Parking 4 2 

17. Construction 6 1 

18. No enter 1 3 
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19. Keep to the right of the traffic 17 9 

20. U turn not allowed 1 1 

21. Closed lane 5 0 

22. Lane ahead is closed 4 0 

23. Truck 0 0 

24. Turn right not allowed 1 2 

25. Railway crossing ahead 2 1 

26. Road work ahead  2 0 

27. Traffic travel in one direction 0 0 

28. Slight bend in the road  1 1 

29. Bicycle  1 2 

30. Pedestrian cross over 0 0 

Table 6.8. The number of individual actual signs seen and missed by Driver 14. 

 

Based on the signs seen and not seen in Tables 6.5-6.8, we can see that there are a substantial 

number of signs not seen, at least based on the computation of the point of gaze on the sequence 

of driving images.  Admittedly, the collection of gaze and image sequence information is not 

perfect, and the sign detection and classification methods are not perfect and so the counts 

reported may be subject to some errors.  Regardless, it is clear that there are a substantial 

percentage of signs which drivers likely do not “see”.    A summary of the signs seen and missed 

is presented in Table 6.9. 

 

Driver Signs Seen Signs Missed Percentage Missed 

Driver 4 42 13 30.95% 

Driver 9 90 48 53.33% 

Driver 11 91 57 62.64% 

Driver 14 81 39 48.15% 

Total 304 157 51.64% 

Table 6.9. The result of individual actual signs seen and missed by All Drivers. 

 

All Drivers     

Type of the sign 
The number of 

signs seen 

The number of 

missed signs 

1.   Park not allowed  11 22 

2.    Stop 4 4 

3.    Exit only 3 0 

4.    School crossing 20 8 

5.    Turn left not allowed 10 9 

6.   Traffic light 23 4 

7.    One green sign 4 0 

8.    No truck 5 2 

9.   Yield  5 3 

10.   Speed 60 37 14 
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11.   Speed 70 4 1 

12.   Speed 80 1 0 

13.   Speed 50 17 6 

14.   Speed 40 4 1 

15.   Lane for two-way left turns 3 2 

16.   Parking 9 14 

17.   Construction 22 3 

18.   No enter 4 5 

19.   Keep to the right of the traffic 54 36 

20.   U turn not allowed 6 2 

21.   Closed lane 17 3 

22.   Lane ahead is closed 15 1 

23.   Truck 2 0 

24.   Turn right not allowed 4 3 

25.   Railway crossing ahead 5 3 

26.   Road work ahead  6 0 

27.   Traffic travel in one direction 1 1 

28.   Slight bend in the road  2 2 

29.   Bicycle  4 8 

30.   Pedestrian cross over 2 0 

Table 6.10. The number of individual actual signs seen and missed by All Drivers. 

 

The summary across all drivers for the individual signs is presented in Table 6.10.   The results of 

the table also suggest that some signs may not be as “important” as others.  For example, signs for 

“parking not allowed” may be missed simply because the driver is not interested in parking.  Other 

more critical signs, such as “Road work ahead”, so get noticed since they have an impact on driving 

maneuvers.  On the other hand, “Stop” signs were also missed; perhaps because of driver 

familiarity or because it was obvious that one needed to stop. 
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Chapter 7  

7 Conclusion and Future Work 
 

In this thesis, we analyzed driving data to measure driver visual attention towards traffic signs. To 

do this we first designed a traffic sign detection and recognition system based on the North 

American traffic signs.   The accuracy of the detection and recognition methods were 81% and 

82%, respectively. 

We then analyzed driving sequences that had been collected as part of the RoadLab project.  These 

video sequences provided the actual driving environment for several drivers as well as providing 

gaze data acquired from a gaze tracking system installed in the laboratory vehicle. By computing 

the intersection of bounding boxes for detected signs and the gaze area information, we presented 

a novel analysis to assess the drivers’ behavior during driving by considering their gaze. 

For this initial study, we assumed that a traffic sign was seen if the gaze of the driver fell on the 

image of the traffic sign in one of the frames that had captured the image of the sign.  We were 

able to determine if a sign had been seen or missed by the drivers.   We analyzed the sequences of 

four drivers.in fact, we chose these four drivers in order to have data set with different attributes. 

The driving sequences from these four drivers are different from each other  in terms of the 

environmental condition and gender and the age of the drivers. We were able to count the number 

of frames that contained images of different types of signs and determine the number of those 

frames that intersected the driver’s point of gaze.  We were then able to use this information to 

count the number of signs seen and not seen by drivers.  The main results show that drivers do 

miss some signs, at least based on point of gaze computations.  Though some signs may have been 

missed or incorrectly classified, there are sufficient numbers of signs identified from images to 

have confidence in the estimates of signs seen or not.  Improving the accuracy is an area for future 

work. 

Our main contributions were: 

a) results about drivers’ attention in “seeing” signs from actual driving sequences.  

b) a novel approach to computing this information using image analysis methods. 

c) novel improvements to approaches for traffic sign detection and recognition. 

However, there are some limitation in designing our system. 

• Methods are limited to Canadian signs, as they are color dependent; generalization of 

methods is something to consider. 

• Our system cannot actually measure the cognition. It happens when a driver has kept his 

gaze on an object without recognizing that. Our system is only able to focus on driver’s 

gaze and whether a sign has been seen over a number of frames. 

• The number of frames has used in classification stage as data set is limited. 
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This work is only a first step in analyzing driver attention through automated means.  There are 

several areas where further work can be done in the near term: 

• The methods introduced make use of various thresholds for the different computations; 

some sensitivity analysis around different thresholds would be useful in evaluating the 

robustness of the methods. 

• There are additional driving sequences that have not been analyzed and these would 

enhance the results. 

• With more driving sequences, we can look at differences among different classes of drivers, 

e.g. based on age or gender, to see if any differences appear. 

• While the accuracy of the detection and recognition methods are good, improvements can 

be made; the accuracy of these methods can improve the overall accuracy of the analysis. 

 

The approaches and methods introduced in this thesis can also be used as a starting point for further 

analyses.  For example, with more data about the types of signs seen or not seen, we can look at 

whether certain types of sign are missed more often than others.  With additional data, such as the 

color, shape or location of the sign, we can look at whether there are “better” signs or “better” 

locations of signs. 

Finally, in addition to traffic signs, the approaches can be generalized to consider other objects 

that occur in the driving environment, such as vehicles, bicycles, pedestrians, etc.  These methods 

can be extended to encompass a more general analysis of which objects in the visual space of the 

driver are seen or not seen and under what circumstances.  This can help provide more information 

for driving systems and perhaps provide additional warnings for drivers to further reduce 

accidents. 
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