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Abstract

In this thesis, several deterministic and stochastic attitude filtering solutions on the

special orthogonal group SO(3) are proposed. Firstly, the attitude estimation problem

is approached on the basis of nonlinear deterministic filters on SO (3) with guaranteed

transient and steady-state measures. The second solution to the attitude estimation

problem considers nonlinear stochastic filters on SO (3) with superior convergence

properties with two filters being developed in the sense of Ito, and one in the sense

of Stratonovich. This thesis also presents several deterministic and stochastic pose

filtering solutions developed on the special Euclidean group SE(3). The first solution

includes two nonlinear deterministic pose filters on SE (3) with predefined transient as

well as steady-state performance, while the second one involves a nonlinear stochastic

filter on SE (3) in the sense of Stratonovich. The proposed nonlinear deterministic

filters on SO(3) and SE(3) guarantee that attitude and pose error are trapped to

initially start within a known large set and converge systematically and asymptot-

ically to the equilibrium point from almost any initial condition, respectively. The

proposed stochastic filters ensure that errors of the estimates and attitude or errors

of the estimates and pose are semi-globally uniformly ultimately bounded in mean

square, and they converge to a small neighborhood of the origin from almost any

initial condition. The output performance of the proposed filters is examined and

simulated considering high level of uncertainties in the measurements and large er-

ror in initialization. The above-mentioned consideration makes the proposed filters

a good fit for measurements obtained from low-cost inertial measurement units or

low-cost inertial vision systems.

Keywords: Observer, estimator, estimate, attitude, position, pose, stochastic

differential equations, Ito, Stratonovich, noise, Wong-Zakai, transient error, steady-

state, error, prescribed performance function, special orthogonal group, special Eu-

clidean group, IMUs, SDEs, SO(3), SE(3).
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Summary for Lay Audience

Nowadays, the research of autonomous vehicles is on the rise. In the coming years,

unmanned aerial vehicles, for example, are predicted to become an indispensable part

of our daily life. The applications of such vehicles include mail and food delivery as

well as a multitude of other military and civil applications. However, to make the

wide usage possible the price of the vehicle has to be affordable. Therefore, this work

proposes a set of algorithms which help the vehicle to achieve great performance even

with cheap sensors. The function of the sensors attached to the vehicle is to collect

information about its orientation and position. However, because of their simple

structure the information they collect is noisy. The proposed algorithms allow to

filter out the noise, and therefore successfully control the movement of the vehicle.
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Chapter 1

Introduction

This thesis concerns the problems of nonlinear deterministic and stochastic attitude

and pose filters. The attitude and pose kinematics are naturally nonlinear and their

natural configuration spaces are modelled on the Lie group of the special orthogonal

group SO (3) and the special Euclidean group SE (3), respectively. Accordingly, the

attitude and pose filtering problems are tackled by utilizing nonlinear filters evolved

directly on SO (3) and SE (3), respectively. Attitude and pose estimation are funda-

mental sub-tasks in the majority of automated and semi-automated robotic applica-

tions. Knowledge of attitude or pose of the rigid-body in space is indispensable for

the control process of any robotic application. This information is mandatory such

that the robotic application can attain the designated task accurately and efficiently.

In particular, rigid-bodies such as rotating radars, satellites and fast dynamical sys-

tems such as manoeuvring spacecrafts, underwater vehicles, unmanned aerial vehicles

(UAVs), mobile robots, and others require reliable attitude or pose estimate as de-

picted in Figure 1.1.

Depending on the application, any degradation of attitude or pose estimate

could cause the overall system to go unstable. Thereby, attitude and pose filtering

algorithms accurate and robust with respect to large initialization errors and uncer-

tain measurements are needed to ensure that the overall system meets the desirable

performance characteristics.

The main focus of this thesis is to provide theoretical results for nonlinear deter-

ministic and stochastic attitude and pose filters, which commonly used in a variety of

applications. The theoretical results of nonlinear attitude and pose filters developed

directly on SO (3) and SE (3), respectively. In spite of the purely theoretical nature of

the problem, the proposed filters demonstrate impressive output performance consid-

ering large initialization errors and high level of uncertainties in measurements with

superior convergence properties. In fact, the presented results are strongly motivated

1
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Figure 1.1: Relative applications for attitude and pose.

by many applications in automated robotic systems. In the next section a general

overview of attitude and pose filtering problems is presented. It is followed by an

overview of attitude and pose filtering approaches. Next, the challenges are defined

and discussed. Finally, the problems considered and the results of this thesis as well

as the thesis contributions are further detailed.

1.1 General Overview

Attitude and pose (i.e, attitude and position) estimation are critical elements in the

majority of robotic applications. The orientation of a rigid-body in 3D space is often

referred to as attitude, therefore, in this thesis orientation and attitude will be used

interchangeably. Attitude represents the orientation of a body-fixed frame attached

to a moving object relative to an inertial-fixed frame. The attitude of a rigid-body in

3D space is described by a 3 by 3 orthogonal matrix whose determinant equals 1. In

fact, the attitude matrix consists of three orthogonal unit vectors or, in other words,

the orientation serves as a linear transformation from a set of axes in a coordinate

frame to a set of axes in a rotated coordinate frame. On the other side, the pose
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of a rigid-body consists of two elements: orientation and position and it encodes

the attitude along with the linear translation of the body-fixed frame relative to the

inertial-fixed frame.

Control of automated and semi-automated robotic applications relies on the

knowledge of attitude or pose of the rigid-body in the space. For example, flight

manoeuvres could lead to very fast dynamics of attitude, consequently an accurate

attitude estimate is essential to guarantee that the overall control task has been ac-

complished successfully. Historically, attitude or pose of the rigid-body used to be

obtained from high quality measurement units. Therefore, conventional attitude or

pose filtering methods are efficient only when coupled with high quality measurements

obtained from the above-mentioned filters. However, these units have three main

shortcomings: large size, considerable weight and high cost. On the other side, small

size, light weight and low-cost sensors produce measurements corrupted with high

level of uncertainties. These uncertainties consist of slowly time-varying or constant

bias and a wide-band of random Gaussian noise. Furthermore, the initial value of at-

titude or pose may not be accurately known. These challenges have inspired different

directions of research within the control communityaiming to develop attitude and

pose estimation algorithms that would be robust against high level of uncertainties

in measurements and large error in initialization that would demonstrate superior

convergence properties and produce accurate attitude or pose estimates similar to

those obtained from high quality measurement units. These estimation algorithms

will be developed according to the perceived gap in the existing literature.

1.2 Background of Attitude Filtering Methods

1.2.1 Earliest attitude filtering

As previously mentioned, attitude estimation is an integral component of most robotics

and control applications. The attitude can be constructed from a set of vector mea-

surements made on body-frame and reference-frame as it acts as a linear transforma-

tion from one frame to the other. In general terms, the attitude estimation algorithms

aim to minimize a cost function such as Wahba’s Problem (Wahba (1965)). The ear-

liest work done by Wahba (1965) was purely algebraic. Several alternative methods
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attempted to reconstruct the attitude simply and statically by solving a set of in-

ertial and body-frame measurements known simultaneously, for instance, TRIAD or

QUEST algorithms (Black (1964); Shuster and Oh (1981)) and singular value de-

composition (SVD) (Markley (1988)). However, it is important to note that vector

measurements are subject to significant noise and bias components. Therefore, the

category of static estimation proposed by Black (1964); Markley (1988); Shuster and

Oh (1981) gives poor results in this case, in particular, if the moving body is equipped

with low-cost measurement units. Consequently, the attitude estimation problem

used to be tackled either by Gaussian or nonlinear deterministic filters.

1.2.2 Gaussian attitude filtering

In the last few decades, several Gaussian filters have been developed mainly to obtain

higher estimation performance with noise reduction. Many attitude estimation algo-

rithms are based on optimal stochastic filtering for linear systems known as Kalman

filter (KF) (Kalman (1960)). The linearized version of KF can be modified in a certain

way for nonlinear systems to obtain the extended Kalman filter (EKF) (Anderson and

Moore (1979)). An early survey of attitude observers was presented with the struc-

ture of EKF in Lefferts, Markley, and Shuster (1982) and a more recent overview on

attitude estimation was introduced in Crassidis, Markley, and Cheng (2007). Over

the last three decades, several nonlinear filters have been proposed to estimate the

attitude of spacecrafts. However, EKF and especially the multiplicative extended

Kalman filter (MEKF) is highly recommended and considered as a standard in most

spacecraft applications (Crassidis et al. (2007)). Generally, the covariance of any noise

components introduced in angular velocity measurements is taken into account during

filter design. The family of KFs parameterize the global attitude problem using unit-

quaternion. The unit-quaternion provides a nonsingular attitude parameterization of

attitude matrix (Shuster (1993)). Also, the unit-quaternion kinematics and measure-

ment models of the attitude can be defined by a linear set of equations dependent

on the quaternion state through EKF. This advantage motivated researchers to em-

ploy the unit-quaternion in attitude representation (for example Lefferts et al. (1982);

Markley (2003)). Although EKF is subject to theoretical and practical problems, the

estimated state vector with the approximated covariance matrix gives a reasonable es-

timate of uncertainties in the dynamics. In general, a four-dimensional vector is used
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to describe a three-dimensional one. Since, the covariance matrix associated with the

quaternion vector is 4×4, whereas the noise vector is 3×1, the covariance is assumed

to have rank 3. Generally, the state vector is 7 × 1 as it includes the four quater-

nion elements and the three bias components. One of the earliest detailed derivations

of EKF attitude design was presented in Lefferts et al. (1982). However, the unit-

quaternion kinematics and measurement models can be modified to suit KF with a

linear set of equations (Choukroun, Bar-Itzhack, and Oshman (2006)). The KF in

Choukroun et al. (2006) has the same state dimensions as EKF and to some degree, it

can outperform the EKF. MEKF (Markley (2003)) is the modified version of EKF and

is highly recommended for spacecraft applications. In MEKF, the true attitude state

is the product of reference and estimated error quaternion. The estimated error in

quaternion is parameterized from a three-dimensional vector in the body-frame, and

the error is estimated using EKF. Next, the MEKF is used to multiply the estimated

error and the reference quaternion. The estimated error should be selected in such

a way that it yields identity when multiplied by the reference quaternion. The EKF

can be modified into invariant extended Kalman filter (IEKF), which has two groups

of operations. The right IEKF considers the errors modeled in the inertial-frame and

the left IEKF matches with the MEKF (Bonnable, Martin, and Salaun (2009)). IEKF

has autonomous error and its evolution error does not depend on the system trajec-

tory (Barrau and Bonnabel (2015)). Recently, a group of IEKF has been presented

on Lie groups (Barrau and Bonnabel (2017)). Another recently proposed attitude

filtering solution known as geometric approximate minimum-energy filter (GAMEF)

approach (Zamani, Trumpf, and Mahony (2013)) is based on Mortensen’s determin-

istic minimum-energy filtering (Mortensen (1968)). The minimum-energy attitude

filter is formulated as an optimal control problem and depends on the Hessian of

the value function of the optimal control problem. With the aid of a matrix repre-

sentation of the Hessian, a Riccati equation is obtained to approximate GAMEF by

disregarding the higher order derivatives than two of the value function. Unlike KF,

EKF, IEKF, and MEKF, which are quaternion based, the GAMEF kinematics are

posed directly on SO (3). In addition, KF, EKF, and IEKF are based on first order

optimal minimum-energy which makes them simpler in computation and implemen-

tation. In contrast, MEKF and GAMEF are second order optimal minimum-energy,

and therefore they require more calculation steps and more computational power. The

Unscented Kalman filter (UKF) uses unit-quaternion kinematics, and its structure is
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nearly similar to KF. However, UKF utilizes a set of sigma points to enhance the

probability distribution (Crassidis and Markley (2003); Hashim, Brown, and McIsaac

(2018b); Menegaz, Ishihara, Borges, and Vargas (2015)). The advantages of UKF can

be listed as follows: it requires less theoretical knowledge, it could approximate the

nonlinear equations of the system dynamics by using higher order moments to fit the

unknown probability distribution which in turn allows achieving lower error bounds,

and it demonstrate faster convergence rate than EKF and MEKF. As such, UKF has

the potential to outperform EKF in simulations. However, the main drawbacks of

UKF include more computational power required for the propagation of UKF com-

pared to EKF, while the sigma points could add complexity to the implementation

process (Haykin et al. (2001)). In addition, the measure of how close UKF to the

optimal solution is not known. The family of KF assumes the noise signals to be

Gaussian. Particle filters (PFs), on the contrary, although belonging to the family

of stochastic filters, do not follow the Gaussian assumptions (Arulampalam, Maskell,

Gordon, and Clapp (2002)). The main idea of PFs is the use of Monte-Carlo simula-

tions for the weighted particle approximation of the nonlinear distribution. In fact,

PFs outperform EKF in terms of lower error bounds and faster convergence rate.

However, they have higher computational cost, and they are unsuitable for the small

scale systems (Crassidis et al. (2007); Hashim et al. (2018b)). Moreover, they do not

have a clear measure of how close the solution is to the optimal one. Quaternion

based attitude PF showed a better performance than UKF with higher processing

cost (Cheng and Crassidis (2004)). All the Gaussian filters described above as well

as PFs are based on unit-quaternion, except for GAMEF in Zamani et al. (2013) and

the group of IEKF in Barrau and Bonnabel (2017) which are SO (3) based. The main

advantage of unit-quaternion based filters is non-singularity in attitude parameter-

ization, while the main drawback is non-uniqueness in representation. In addition,

unit-quaternion based filters could require normalization to maintain the property of

unit norm of the quaternion estimate.

1.2.3 Nonlinear deterministic attitude filtering

Nonlinear deterministic filtering is an alternative approach to attitude estimation

which aims to establish convergence bounds with stable performance. Nonlinear de-

terministic filters based on unit-quaternion were introduced in (Salcudean (1991);
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Thienel and Sanner (2003)). Indeed, the development of microelectromenchanical

systems (MEMS) devices has paved the way to propose a range of units, termed

inertial measurement units (IMUs), which have the following three advantages: low-

cost, light weight and small size. Since a wide range of small objects, for instance,

robotic toys and low cost mini-aerial-vehicles, can be fitted with IMUs, IMUs have a

prominent role in enriching the research of attitude estimation. However, the mea-

surements obtained by low-cost IMUs systems are characterized by low-resolution

signals. These signals are subject to high levels of wide-band random noise as well as

slowly time-varying or constant bias. The IMUs output signals and angular velocity

measurements have to be processed to establish an estimate of the attitude. Thus,

the process of attitude reconstruction is vulnerable to the effects of noise and bias

contaminating the body-frame and angular velocity measurements. The merits and

challenges offered by low-cost IMUs devices fostered researchers to propose nonlinear

deterministic complementary filters on SO (3) since these filters can be easily fitted

knowing a rate gyroscope measurement and two or more vector measurements. In

particular, the tracking performance of Gaussian attitude filters coupled with mea-

surements obtained from low-cost IMUs devices is an issue (Crassidis et al. (2007);

Hashim et al. (2018b)). One of the earliest observer design techniques with measure-

ments from low-cost sensors fused through linear complementary filters is proposed

in Baerveldt and Klang (1997). Later the above-mentioned design technique was

modified into a nonlinear complementary filter (Vik and Fossen (2001)). The non-

linear filter is termed nonlinear complementary filter if it recaptures the structure

of a classical complementary filter, (Appendix A Mahony et al. (2008)). Nonlinear

filters with low-cost IMUs devices low-pass sensors has been considered in Rehbinder

and Hu (2000) as well as partial attitude estimation (Rehbinder and Hu (2004)). A

new form of an error function was needed mainly to reduce the error bounds at the

steady-state to lower levels. Accordingly, over the last few years, a group of nonlin-

ear complementary attitude filters developed directly on SO (3) (for example, Grip,

Fossen, Johansen, and Saberi (2012); Hamel and Mahony (2006); Lee (2012); Ma-

hony, Hamel, and Pflimlin (2005); Mahony et al. (2008); Zlotnik and Forbes (2017)).

These filters on SO (3) might need the attitude to be reconstructed in addition to

obtaining angular velocity measurements (Lee (2012); Mahony et al. (2005, 2008)) or

alternatively they can operate using body-frame vector measurements and angular

velocity measurements directly without the need of attitude reconstruction (Mahony
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et al. (2008); Zlotnik and Forbes (2017)). Also, the work done in Mahony et al.

(2008) provides the filter kinematics in quaternion representation. In general, nonlin-

ear deterministic filters achieve almost global asymptotic stability as they disregard

the noise impact in filter derivation. It is worth mentioning that the convergence

behavior of nonlinear attitude filters is primarily attributed to the careful selection

of the error function (Hashim, Brown, and McIsaac (2018a); Hashim et al. (2018b)).

1.2.4 Attitude filtering: Nonlinear deterministic vs

Gaussian

When comparing nonlinear deterministic attitude filters against Gaussian attitude

filters or PFs, it can be noticed that nonlinear deterministic attitude filters have the

following three distinctive advantages over Gaussian attitude filters:

1) Better tracking performance.

2) Less computational power.

3) Simplicity in derivation.

Furthermore, no sensor knowledge is required for nonlinear deterministic filters, due

to the fact that they omit the noise component in filter derivation (Hashim et al.

(2018a, 2018b)). Also, PFs have higher computational cost, and they do not fit small

scale systems. As such, it can be concluded that nonlinear deterministic attitude

filters outperform Gaussian attitude filters and PFs Hashim et al. (2018a, 2018b).

1.3 Background of Pose Filtering Methods

Pose estimation is an essential sub-task in the field of robotics and control applica-

tions of any object rotating and translating in 3D space. These applications include

manipulation and registration (Srivatsan, Rosen, Mohamed, and Choset (2016)), sen-

sor calibration (Keskin, Kirac, Kara, and Akarun (2013); Srivatsan et al. (2016)), and

object tracking (Blanco (2010); Choi and Christensen (2012); Kwon, Choi, Park, and
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Chun (2007)). The pose of a rigid body in 3D space consists of two elements: atti-

tude and position. The pose can be reconstructed from a set of vector measurements

made on body-frame and reference-frame. According to the discussion in Subsection

1.2.1, vector measurements are susceptible to the attached noise and bias components.

Therefore, the category of static attitude reconstruction proposed in Black (1964);

Markley (1988); Shuster and Oh (1981) would lead to poor pose results, especially,

if the moving body is equipped with low-cost measurement units. As a result, the

pose estimation problem used to be tackled either using Gaussian filters or nonlinear

deterministic filters.

1.3.1 Gaussian pose filtering and challenges

In comparison with nonlinear deterministic pose filters, relatively few studies have

been done on Gaussian pose filters and particle pose filters, examples include (Chiuso

and Soatto (2000); Choi and Christensen (2012); Goodarzi and Lee (2016); Kwon et

al. (2007); Srivatsan et al. (2016)). One of the earliest particle pose filter on SE (3)

was presented by Chiuso and Soatto (2000). Later, the problem was generalized to

include object tracking and needle steering in Kwon et al. (2007) which was followed

by an implementation of first order autoregressive state dynamics used to propagate

particles of the filter Choi and Christensen (2012). On the other side, the novel KF

with a linear set of equations for attitude problem in Choukroun et al. (2006) has

been modified to tackle the pose filtering problem in Srivatsan et al. (2016). Since the

pose filter in Srivatsan et al. (2016) is quaternion-based, a modified EKF on SE (3)

has been presented in Goodarzi and Lee (2016).

In spite of the fact that Gaussian pose filters used for the estimation of SE (3)

elements have linear structure, the filter updates are nonlinear and the estimates

are often inaccurate. As such, the pose filter may diverge in particular if the initial

estimation error is significantly high. Also, particle filters require higher processing

cost, and they are not optimal fit for small scale systems (Crassidis et al. (2007);

Hashim et al. (2018a, 2018b)). Since attitude is a fundamental part of the pose

problem and nonlinear deterministic attitude filters outperform Gaussian attitude

filters as given in Subsection 1.2.4, especially, in case when low cost IMUs systems

are used, it is better to address the pose filtering problem using a nonlinear filter
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on SE (3) to accommodate for the nonlinear nature of the pose kinematics on SE (3)

(Hashim, Brown, and McIsaac (2019d)).

1.3.2 Nonlinear deterministic pose filtering

The pose estimation problem relies on filters evolved on SE (3) which require mea-

surements derived from a group velocity vector, vector measurements that could be

provided by low-cost IMUs systems, landmark measurements collected, for example,

by a computer vision system, and an estimate of the bias associated with veloc-

ity measurements (Hashim, Brown, and McIsaac (2019d)). The low-cost IMUs and

an on-board camera measurements could be combined in one unit termed low-cost

inertial vision system (Hashim, Brown, and McIsaac (2019d)). Landmark based nav-

igation estimation is known by a motion estimation using dynamic vision. An early

derivation of a nonlinear pose filter with the implementation of an inertial vision

system was presented by Rehbinder and Ghosh (2003). This work was followed by

an extension of the nonlinear deterministic attitude filter on SO (3) in Hamel and

Mahony (2006); Mahony et al. (2005) to nonlinear deterministic pose filter on SE (3)

in Baldwin, Mahony, Trumpf, Hamel, and Cheviron (2007). The filters in Hamel and

Mahony (2006); Mahony et al. (2005) and Baldwin et al. (2007) were termed passive

complementary filters since they require attitude and pose reconstruction for the im-

plementation, respectively. Nonetheless, the nonlinear filter in Baldwin et al. (2007)

can be modified to function based solely on a set of vector measurements avoid-

ing the need for pose reconstruction (Baldwin, Mahony, and Trumpf (2009); Hua,

Zamani, Trumpf, Mahony, and Hamel (2011); Vasconcelos, Cunha, Silvestre, and

Oliveira (2010)). Also, the pose filtering problem could be formulated as an optimal

control problem which depends on deterministic Riccati observer design framework

(Hua and Allibert (2018)). The nonlinear pose filters in Baldwin et al. (2009, 2007);

Hua et al. (2011); Vasconcelos et al. (2010) have been proven to be almost globally

asymptotically stable.
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1.4 Scope of Thesis: Nonlinear Attitude and

Pose Filtering Design Challenges

Motivating by the above presented survey of attitude and pose filters, the definition

of many challenging problems associated with filtering design will be introduced aim-

ing to fill a perceived gap in the existing literature. Two topics related to nonlinear

attitude filtering are explored in this thesis: nonlinear deterministic attitude filters

on SO (3) with predefined transient and steady-state characteristics and nonlinear

stochastic attitude filters on SO (3). Also, this thesis examines two topics associated

with nonlinear pose filtering: nonlinear deterministic pose filters on SE (3) with pre-

defined transient and steady-state measures and nonlinear stochastic pose filter on

SE (3). In the following subsections, the four topics are discussed and the perceived

gaps and challenges are highlighted.

1.4.1 Nonlinear deterministic attitude filtering challenges

The transient convergence behavior and steady-state performance of nonlinear atti-

tude filters are mainly attributed to the careful selection of the error function. The

selected error function in Mahony et al. (2005) underwent slight modifications in Grip

et al. (2012); Hamel and Mahony (2006); Mahony et al. (2008), overall performance,

however, was not significantly changed. The main problem of the error function in

Grip et al. (2012); Hamel and Mahony (2006); Mahony et al. (2005, 2008) consists in

the slow convergence, especially with large initial attitude error. A new form of the

error function presented in Lee (2012); Zlotnik and Forbes (2017) offered faster error

convergence to the origin. However, no systematic convergence is observed in Lee

(2012); Zlotnik and Forbes (2017). In other words, the transient performance does

not follow a predefined trajectory and the steady-state error cannot be controlled

(Hashim, Brown, and McIsaac (2019a, 2019c)). Thus, the prediction of transient and

steady-state error performance is almost impossible (Hashim, Brown, and McIsaac

(2019a, 2019c); Hashim, El-Ferik, Ayinde, and Abido (2017); Hashim, El-Ferik, and

Lewis (2017)).
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1.4.2 Nonlinear deterministic pose filtering challenges

In spite of the simplicity of the filter design in Baldwin et al. (2009, 2007); Hua et

al. (2011), numerical results show high sensitivity to the uncertain components at-

tached to the measurements. Also, the main concern of the selected error function

in Baldwin et al. (2009, 2007); Hua et al. (2011) consists in the slow convergence,

in particular, if the pose error initiated at a significantly large value. To the best

of our knowledge, no new error function has been proposed to offer faster rate of

error convergence to the origin than the one presented in Baldwin et al. (2009, 2007);

Hua et al. (2011). In addition, no systematic convergence is observed in Baldwin

et al. (2009, 2007); Dominguez (2017); Hua and Allibert (2018); Hua et al. (2011);

Rehbinder and Ghosh (2003); Vasconcelos et al. (2010), such that the tracking error

does not follow a predefined transient and steady-state measures (Hashim, Brown,

and McIsaac (2019c)). Accordingly, successful pose estimation for spacecraft control

applications cannot be achieved without pose filters which are robust against uncer-

tain measurements, demonstrate fast tracking performance, and satisfy a certain level

of transient and steady-state characteristics (Hashim, Brown, and McIsaac (2019c)).

1.4.3 Nonlinear deterministic filters with prescribed

performance

Prescribed performance (Bechlioulis and Rovithakis (2008); Mohamed (2014)) signi-

fies trapping the error to start arbitrarily within a given large set and reduce system-

atically and smoothly to a given small residual set. The convergence of the error is

constrained by a specified range during transient as well as steady-state performance.

The aim of prescribed performance is to relax the constrained error and transform

it to a new unconstrained form termed transformed error through a prescribed per-

formance function (PPF). Accordingly, the new form allows one to keep the error

below the predefined value which could be useful in the estimation and control pro-

cess. Prescribed performance has been implemented successfully in many control

applications such as two degrees of freedom planar robot (Bechlioulis and Rovithakis

(2008); Mohamed (2014)), uncertain dynamics of underwater vehicles (He, Dai, and

Luo (2018)), and robust adaptive control of uncertain multi-agent systems (El-Ferik,

Hashim, and Lewis (2018); Hashim, El-Ferik, and Lewis (2017, 2019)). Attitude and
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pose error functions are essential for the construction of nonlinear attitude and pose

filters, respectively, as the error function is directly related to the convergence behav-

ior of the error trajectory (Hashim, Brown, and McIsaac (2019a, 2019c)). Therefore,

the merits offered by prescribed performance could help in tackling the challenges of

nonlinear deterministic attitude and pose filtering described in Subsection 1.4.1 and

1.4.2, respectively.

1.4.4 Nonlinear stochastic attitude filtering challenges

Two major factors have to be taken into account when designing the attitude es-

timator: 1) the attitude problem of the rigid-body, modeled on the Lie group of

SO (3), is naturally nonlinear; and 2) the true attitude kinematics rely on angular

velocity Hashim et al. (2018b). In spite of the remarkable advantages offered by

nonlinear deterministic attitude filters when compared to Gaussian filters or PFs

(Crassidis et al. (2007); Hashim et al. (2018b)), design of nonlinear deterministic at-

titude filter kinematics takes into account only constant bias disregarding the random

noise attached to angular velocity measurements . However, randomness woth con-

sideration (Eltoukhy, Chan, Chung, Niu, and Wang (2017); Eltoukhy, Wang, Chan,

and Chung (2018); Hashim (2019); Hashim, El-Ferik, Ayinde, and Abido (2017);

Mohamed (2014)), the environment is noisy (Eltoukhy, Chan, and Chung (2017); El-

toukhy, Chan, Chung, and Niu (2018); Eltoukhy, Wang, Chan, and Fu (2019); Hashim

and Abido (2015); Hashim, El-Ferik, and Abido (2015); Hashim, El-Ferik, and Lewis

(2019)) andRemove comment the attitude problem should be considered in its natural

stochastic sense. Therefore, successful attitude estimation can be achieved when non-

linear filter design takes into consideration both noise and bias components (Hashim

et al. (2018b)) to the angular velocity measurements. Likewise, it is essential that

the estimator design considers any noise and/or bias components introduced during

the measurement process.

1.4.5 Nonlinear stochastic pose filtering challenges

Despite the simplicity of the filter design in Baldwin et al. (2009, 2007); Hua et al.

(2011), simulation results illustrated remarkable sensitivity to noise and bias intro-
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duced in the measurements Hashim, Brown, and McIsaac (2019c, 2019d). Moreover,

pose estimators such as Baldwin et al. (2009, 2007); Dominguez (2017); Hua et al.

(2011); Rehbinder and Ghosh (2003); Vasconcelos et al. (2010) disregard the noise

in the filter design assuming only constant bias introduced in the measuring process

Hashim, Brown, and McIsaac (2019d). Therefore, successful spacecraft control ap-

plications cannot be achieved without pose filters being robust against high level of

uncertainties in measurements and large error in initialization Hashim, Brown, and

McIsaac (2019c, 2019d). Consequently, in order to develop successful pose estima-

tor, we need to realize that 1) the pose problem is naturally nonlinear on SE (3);

and 2) the true pose kinematics rely on angular and translational velocity Hashim,

Brown, and McIsaac (2019d). Furthermore, the velocity vector is subject to slowly

time-variant bias and random noise components. As such, it is necessary that the

pose filter design addresses any noise and/or bias components introduced during the

measurement process.

1.5 Statement of Contributions

In this thesis, several contributions to deterministic and stochastic attitude filtering

on SO (3), and deterministic and stochastic pose filtering on SE (3) are presented.

Different filter schemes are formulated to achieve superior convergence properties of

attitude and pose filters. As for attitude filters, nonlinear deterministic and stochastic

attitude filters on SO (3) robust against high level of uncertainties in the measure-

ments and a large initial attitude error are proposed. As for pose filters, robust

nonlinear deterministic and stochastic pose filters on SE (3) are introduced consid-

ering high level of uncertainties in the measurements and a large initial pose error.

The principle of transformed error acting as an auxiliary component to force the error

function to obey dynamically decreasing boundaries is applied to nonlinear determin-

istic filters.

The contributions presented in this thesis are briefly summarized as follows:

1. Two novel nonlinear attitude filters on SO (3) with predefined transient and

steady-state characteristics are presented. These filters provide reliable atti-

tude estimates with remarkable convergence properties when measurements ob-
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tained from low quality sensors such as low-cost inertial measurement units are

being used. In general, successful nonlinear attitude filter could be achieved

via careful selection of the error function. Thus, in this thesis a new attitude

error function is defined in terms of normalized Euclidean distance. The error

function is constrained to initially start within a known large set and reduce

systematically and smoothly to a given small set. In order for the error to

be constrained by dynamically reducing boundaries, the constrained error is

relaxed and transformed to a new unconstrained form, named transformed er-

ror. The transformed error helps to ensure boundedness of the closed loop

error signals with normalized Euclidean distance of attitude error being regu-

lated asymptotically to the origin. Also, transformed error allows the attitude

estimators to ensure faster convergence properties and satisfy prescribed per-

formance. The fast convergence is mainly associated with the dynamic gains of

the estimator.

Unlike nonlinear deterministic attitude filters on SO (3) described in the lit-

erature, the proposed filters design methods allow to handle high level of un-

certainty in angular velocity as well as body-frame vector measurements. In

addition, they allow handling large error in initialization with error function

being constrained by dynamically reducing boundaries and achieving almost

global asymptotic stability results. This remarkable advantage was not offered

in other deterministic attitude filters such as Grip et al. (2012); Hamel and Ma-

hony (2006); Lee (2012); Mahony et al. (2005, 2008); Zlotnik and Forbes (2017).

The above-listed results are detailed in Chapter 3 and published in Hashim,

Brown, and McIsaac (2019a).

2. Due to the fact that attitude kinematics are nonlinear and rely on angular ve-

locity, the attitude estimator kinematics should also be nonlinear and rely on

angular velocity measurements. Hence, it is essential that any noise and/or

bias components introduced during the angular velocity measurement process

are considered in the estimator design. Furthermore, any noise component is

characterized by randomness and irregular behavior which may impair the es-

timation process and cause the estimated attitude to drift away from the true

attitude. Therefore, two nonlinear stochastic complementary filters on SO (3)

based on two different approaches of stochastic integrals are proposed to im-

prove the overall estimation quality. The first nonlinear stochastic filter is driven
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in the sense of Ito (Ito and Rao (1984)) and the second one is developed in the

sense of Stratonovich (Stratonovich (1967)). Superior filtering outcome was

achieved by studying one of the traditional potential functions of nonlinear de-

terministic complimentary filters evolved on SO (3) (for example Crassidis et

al. (2007); Mahony et al. (2008)) and taking into consideration the fact that

angular velocity measurements are corrupted with bias and noise components.

This study established that selecting the potential function in an alternative

way could allow to diminish the noise attached to measurements.

In contrast to nonlinear deterministic attitude filters on SO (3) described in the

literature, the proposed filters are able to 1) steer the error vector towards an

arbitrarily small neighborhood of the origin/(identity) in probability; 2) atten-

uate the noise impact to a very low level for known or unknown bounded co-

variance; and 3) make the error semi-globally/(almost semi-globally) uniformly

ultimately bounded in mean square in case when angular velocity measurement

is contaminated not only with a constant bias but also with a wide-band of ran-

dom Gaussian noise, as far as the Rodriquez vector/(SO (3)) is concerned. A

comparison between the two proposed filters is given. An in-depth description

of the results presented above can be found in Chapter 4 and is published in

Hashim et al. (2018b).

3. The filters outlined in the previous section Chapter 4 demonstrate impres-

sive estimation of the true attitude in case when high level of uncertainties

in measurements and large error in initialization are observed. However, the

above-mentioned filters (Chapter 4) require an online reconstruction of the

uncertain attitude which could add computational complexity. Therefore, the

uncertain behavior in measurements and the added computational cost inspired

the proposal of an explicit nonlinear stochastic attitude filter on SO (3) which

is based on the selection of a new potential function.

This explicit non-linear stochastic attitude filter on SO(3) is able to avoid the

need for online reconstruction of the uncertain attitude and guarantee that,

1) the error is regulated to an arbitrarily small neighborhood of the equilib-

rium point in probability; and 2) the error is semi-globally uniformly ultimately

bounded in mean square in the case where angular velocity measurements are

contaminated with a constant bias and a wide-band of random Gaussian noise.

The results obtained in this section are reported in Chapter 5 and published
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in Hashim et al. (2018a).

4. No nonlinear pose filters described in literature demonstrate systematic con-

vergence, and therefore the tracking error cannot be guaranteed to follow pre-

defined transient and steady-state measures. Moreover, successful nonlinear

pose filters should be characterized by the following features: robust against

uncertain measurements, demonstrate fast tracking performance, and satisfy a

certain level of transient and steady-state characteristics. In order to address

the three aforementioned challenges effectively, two robust nonlinear pose filters

on SE (3) with predefined transient as well as steady-state measures are pro-

posed. These filters provide reliable pose estimates with superior convergence

properties when using measurements obtained from low quality sensors such as

vision systems and low-cost inertial measurement units. The error trajectory is

constrained by a prescribed performance function to satisfy transient as well as

steady-state performance. The main objective is to relax the constrained error

to its unconstrained form, termed transformed error, which allows to keep the

error within the dynamically decaying boundaries.

The main contributions are as follows: 1) The proposed filters guarantee bound-

edness of the closed loop error signals with constrained error and unconstrained

transformed error being proven to be almost globally asymptotically stable such

that the error in the homogeneous transformation matrix is regulated asymp-

totically to the identity from almost any initial condition. 2) The proposed

filters guarantee systematic convergence of the error controlled by the dynami-

cally reducing boundaries forcing the error to initiate within a predefined large

set and decrease systematically and smoothly to a residual small set. As a re-

sult, the transient error is less than predefined value and the steady-state error

does not exceed known small value, unlike (Baldwin et al. (2009, 2007); Hua

et al. (2011); Rehbinder and Ghosh (2003); Vasconcelos et al. (2010)). 3) The

proposed pose filters are more efficient at ensuring fast convergence compared

to similar estimators described in the literature, for instance Baldwin et al.

(2009, 2007); Hua et al. (2011); Rehbinder and Ghosh (2003); Vasconcelos et al.

(2010). The fast convergence is mainly attributed to the dynamic behavior of

the estimator gains. The first filter requires a group of velocity vectors and a set

of measurements to obtain an online algebraic reconstruction of the pose. The

second filter uses a group of velocity vector and a set of vector measurements
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directly, alleviating the need for pose reconstruction. The above-listed results

are given in Chapter 6 and published in Hashim, Brown, and McIsaac (2019b,

2019c).

5. Since the pose kinematics are nonlinear and rely on translational and angu-

lar velocity, the pose estimator kinematics should also be nonlinear and should

rely on translational and angular velocity measurement. However, the velocity

vector is subject to slowly time-variant bias and random noise components. In

addition, the noise components are characterized by uncertain behavior which

could negatively impact the estimation process and deviate the estimated pose

from the true pose. As such, a nonlinear stochastic position and attitude fil-

ter is developed on SE (3) in the sense of Stratonovich (Stratonovich (1967)).

The proposed approach is successfully achieved by studying common potential

functions of nonlinear deterministic pose filters evolved on SE (3) (for instance

Baldwin et al. (2009, 2007); Hua et al. (2011)) and taking into account the

fact that velocity measurements are corrupted with bias and noise components.

Accordingly, the selected potential function has been modified which allows the

noise attached to measurements to be diminished.

The problem is mapped from SE (3) to vector form which includes position and

Rodriquez vector such that X : SE (3) → R6. In the case where the velocity

measurements are corrupted with a constant bias and a wide-band of random

Gaussian noise, the proposed nonlinear stochastic pose filter guarantees that 1)

the error vectors steers towards an arbitrarily small neighborhood of the origin

in probability; 2) the noise impact associated with velocity measurement is at-

tenuated for known or unknown bounded covariance; and 3) the error in X and

estimates is shown to be semi-globally uniformly ultimately bounded (SGUUB)

in mean square. The results obtained in this part are reported in Chapter 7

and published in Hashim, Brown, and McIsaac (2019d).

In summary, the proposed nonlinear deterministic attitude and pose filters comply

with the desired prescribed performance set by the user. In particular, the transient

and steady-state performance truly respect the dynamically reducing boundaries.

Thus, the proposed nonlinear deterministic attitude and pose filters are characterized

with guaranteed performance. In addition, the natural configuration space of the

attitude and pose filters is posed on the Lie group of SO (3) and SE (3), respectively.
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The proposed filters are robust with respect to large initialization and measurement

errors. Another advantage of the proposed nonlinear deterministic attitude and pose

filters with guaranteed performance is that the gains of the estimates and the cor-

rection factors are functions of the transformed error. Also, the transformed error

relies on the error function such that the gains are tuned adaptively and their values

become increasingly aggressive as the error value increases. Their dynamic behavior

is essential for forcing the proposed filters to obey the prescribed performance con-

straints. An additional advantage to note is that no sensor knowledge is required

for nonlinear deterministic filters. Nonetheless, they have a significant shortcoming,

namely, the noise component associated with the angular velocity measurements is

disregarded in filter derivation. The proposed nonlinear stochastic attitude and pose

filters, on the contrary, although structurally similar to nonlinear deterministic atti-

tude and pose filters, account for both constant bias and the wide-band of random

Gaussian noise associated with angular velocity measurements. They have the nat-

ural configuration space of the attitude and pose motion as they are developed on

the Lie group of SO (3) and SE (3), respectively. They are robust with respect to

large initialization and measurement errors. Moreover, the gains of the estimates and

correction factors are dynamic and their values become increasingly aggressive as the

error value increases. Also, no sensor knowledge is required in the proposed nonlinear

stochastic filters.

1.5.1 List of publications

The publications listed below include my papers published in the period between

January 2018 and April 2019 which are summarized in this thesis:

Journal publications:

• Hashim, H. A., Brown, L. J., & McIsaac, K. (2018). Nonlinear Stochastic

Attitude Filters on the Special Orthogonal Group 3: Ito and Stratonovich.

IEEE Transactions on Systems, Man, and Cybernetics: Systems, PP(PP), 1-

13.

• Hashim, H. A., Brown, L. J., & McIsaac, K. (2019). Nonlinear stochastic
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position and attitude filter on the special euclidean group 3. Journal of the

Franklin Institute, 356(7), 4144-4173.

• Hashim, H. A., Brown, L. J., & McIsaac, K. (2019). Guaranteed performance

of nonlinear attitude filters on the special orthogonal group 3. IEEE Access,

7(1), 3731–3745.

• Hashim, H. A., Brown, L. J., & McIsaac, K. (2019). Nonlinear Pose Filters on

the Special Euclidean Group SE(3) with Guaranteed Transient and Steady-state

Performance. IEEE Transactions on Systems, Man, and Cybernetics: Systems,

PP(PP), 1-14.

Refereed conference publications:

• Hashim, H. A., Brown, L. J., & McIsaac, K. (2018). Nonlinear explicit stochas-

tic attitude filter on SO(3). In Proceedings of the 57th IEEE conference on

decision and control (CDC), Miami Beach, FL, USA, 1210-1216.

• Hashim, H. A., Brown, L. J., & McIsaac, K. (2019). Guaranteed performance

of nonlinear pose filter on SE(3). In Proceedings of the american control con-

ference, (ACC), Philadelphia, PA, USA, 1-6.

In addition, the following publications were produced and/or published during the

course of my study at Western University. The topics covered are adaptive and

neuro-adaptive tracking control of nonlinear heterogeneous multi-agent systems and

application of artificial intelligence in the field of communication networks.

Journal Publications:

• Hashim, H. A., El-Ferik, S., & Lewis, F. L. (2019). Neuro-adaptive cooperative

tracking control with prescribed performance of unknown higher-order nonlinear

multi-agent systems. International Journal of Control, 92(2), 445-460(Hashim,

El-Ferik, and Lewis (2019)).

• Hashim, H. A., Abido, M. A. (2019). Location Management in LTE Net-

works using Multi-Objective Particle Swarm Optimization. Computer Net-

works, 157(1), 78-88(Hashim and Abido (2019)).
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• Aqeeli, E., Hashim, H. A., Haque, A., & Shami, A. (2019). Optimal Location

Management in LTE Networks using Evolutionary Techniques. International

Journal of Communication Systems, PP(PP), 1-17(Aqeeli, Hashim, Anwer, and

Shami (2019)).

• Ayinde, B. O., & Hashim, H. A. (2018). Energy-efficient Deployment of Relay

Nodes in Wireless Sensor Networks using Evolutionary Techniques. Interna-

tional Journal of Wireless Information Networks, 25(1), 157-172(Ayinde and

Hashim (2018)).

• El-Ferik, S., Hashim, H. A., & Lewis, F. L. (2017). Neuro-adaptive distributed

control with prescribed performance for the synchronization of unknown nonlin-

ear networked systems. IEEE Transactions on Systems, Man, and Cybernetics:

Systems, 48(12), 2135-2144 (El-Ferik et al. (2018)).

• Hashim, H. A., El-Ferik, S., & Lewis, F. L. (2017). Adaptive synchronisation of

unknown nonlinear networked systems with prescribed performance. Interna-

tional Journal of Systems Science, 48(4), 885-898(Hashim, El-Ferik, and Lewis

(2017)).

• Hashim, H. A., Ayinde, B. O., & Abido, M. A. (2016). Optimal placement

of relay nodes in wireless sensor network using artificial bee colony algorithm.

Journal of Network and Computer Applications, 64, 239-248 (Hashim, Ayinde,

and Abido (2016)).

1.6 Thesis Outline

The rest of the thesis is organized as follows:

Chapter 2 contains the mathematical notation and preliminaries used throughout

the thesis. Also, it presents the special orthogonal group SO (3), the special Euclidean

group SE (3), and some helpful properties associated with SO (3) and SE (3) which

will be used in the subsequent chapters.

Chapter 3 introduces two robust nonlinear deterministic attitude filters on SO (3)
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with predefined transient as well as steady-state characteristics. It presents an al-

ternate attitude error function which is defined in terms of normalized Euclidean

distance. It shows that the introduced error function is forced to be contained within

a predefined large set and reduce systematically and smoothly to a known small

set. It presents the stability analysis and illustrates that the proposed filters en-

sure boundedness of the closed loop error signals with attitude error being regulated

asymptotically to the origin.

Chapter 4 studies one of the traditional potential functions of nonlinear determin-

istic complimentary filters evolved on SO (3) taking into consideration the fact that

angular velocity measurements are corrupted with bias and noise components. It

formulates the attitude kinematics in the stochastic sense and proposes two nonlinear

stochastic complementary filters on SO (3) with one filter being driven in the sense

of Ito, while the second one being developed in the sense of Stratonovich. It presents

the stability results and shows that in case when angular velocity measurement is

contaminated with noise, the proposed filters are able to make the error semi-globally

uniformly ultimately bounded in mean square, as far as the Rodriquez vector is con-

cerned.

Chapter 5 demonstrates the weakness of the explicit nonlinear deterministic com-

plimentary filters on SO (3) for the case when angular velocity measurements are

corrupted with bias and noise components. To avoid the attitude reconstruction

of nonlinear stochastic attitude filter proposed in Chapter 4, an explicit nonlinear

stochastic complementary filter on SO (3) is introduced. The chapter also contains

the stability results and demonstrates that the proposed filter is able to make the

error semi-globally uniformly ultimately bounded in mean square in presence of noise

in the angular velocity measurements, as far as the Rodriquez vector is concerned.

Chapter 6 proposes two robust nonlinear deterministic pose filters on SE (3) with

predefined transient as well as steady-state measures. It shows that the proposed

filters guarantee boundedness of the closed loop error signals such that the error in

the homogeneous transformation matrix is regulated asymptotically to the identity

from almost any initial condition. It presents the stability analysis and shows that

the proposed filters ensure fast systematic convergence of the error controlled by the
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dynamically reducing boundaries which force it to start within a predefined large set

and decrease systematically and smoothly to a residual small set.

Chapter 7 presents a nonlinear stochastic position and attitude filter on SE (3)

in the sense of Stratonovich. The pose problem is mapped from SE (3) to vector

form which includes position and Rodriquez vector such that X : SE (3) → R6. It

demonstrates that when velocity measurements are corrupted with noise, the error

vectors steer towards an arbitrarily small neighborhood of the origin in probability;

and the error of X and estimates is semi-globally uniformly ultimately bounded in

mean square.

Chapter 8 summarizes the thesis and provides concluding remarks on determin-

istic and stochastic attitude filters proposed in this thesis.

Appendix A presents detailed proofs of Lemma 3.1, 5.1, and 6.1 stated in Chapter

3, 5, and 6, respectively.

Appendix B provides an overview of the singular value decomposition algorithm

used for attitude reconstruction.

Appendix C includes detailed proofs of final formulas stated throughout this thesis.



Chapter 2

Preliminaries and Notation

2.1 Math Notation

Throughout this thesis, R+ denotes the set of nonnegative real numbers. Rn is the

real n-dimensional space while Rn×m denotes the real n×m dimensional space. For

x ∈ Rn, the Euclidean norm is defined as ‖x‖ =
√
x>x, where > denotes transpose of

the associated component. Cn denotes the set of functions with continuous nth partial

derivatives. K denotes a set of continuous and strictly increasing functions such that

γ : R+ → R+ and vanishes only at zero. K∞ denotes a set of continuous and strictly

increasing functions which belongs to class K and are unbounded. P {·} denotes

probability, E [·] denotes an expected value, and exp (·) refers to an exponential of

associated component. λ (·) is the set of singular values of the associated matrix with

λ (·) being the minimum value. In denotes identity matrix with dimension n-by-n,

and 0n is a zero vector with n-rows and one column. V denotes a potential function

and for any V (x) we denote Vx = ∂V/∂x and Vxx = ∂2V/∂x2.

2.2 SO (3) and SE (3) Preliminaries

Define GL (3) as a 3-dimensional general linear group which is a Lie group with

smooth multiplication and inversion. The orthogonal group 3, denoted by O (3), is a

subgroup of GL (3) defined by

O (3) =
{
M ∈ R3×3

∣∣∣M>M = MM> = I3

}
with I3 being a 3-by-3 identity matrix. Let SO (3) denote the Special Orthogonal

Group 3 which is a subgroup of O (3). The orientation of a rigid-body in 3D space is

24
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termed attitude, denoted by R, and defined as follows:

SO (3) =
{
R ∈ R3×3

∣∣∣RR> = R>R = I3, det (R) = +1
}

with det (·) being the determinant of the associated matrix. SE (3) stands for the

Special Euclidean Group 3, a subset of the affine group GA (3) = SO (3)×R3 defined

by

SE (3) =
{
T ∈ R4×4

∣∣∣R ∈ SO (3) , P ∈ R3
}

where T ∈ SE (3), termed a homogeneous transformation matrix, represents the pose

of a rigid-body in 3D space with

T =

[
R P

0>3 1

]
∈ SE (3) (2.1)

where P ∈ R3 and R ∈ SO (3) denote position and attitude of a rigid-body in 3D

space, respectively, and 0>3 is a zero row. so (3) is a Lie-algebra related to SO (3)

defined by

so (3) =
{
A ∈ R3×3

∣∣∣A> = −A
}

where A is a skew symmetric matrix. Define the map [·]× : R3 → so (3) as

A = [α]× =

 0 −α3 α2

α3 0 −α1

−α2 α1 0

 ∈ so (3) , α =

 α1

α2

α3


For any α, β ∈ R3, we define [α]× β = α × β with × being the cross product. The

wedge operator is denoted by ∧, and for any Y =
[
y>1 , y

>
2

]>
with y1, y2 ∈ R3 the

wedge map [·]∧ : R6 → se (3) is defined by

[Y ]∧ =

[
[y1]× y2

0>3 0

]
∈ se (3)
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se (3) is a Lie algebra of SE (3) and can be expressed as

se (3) =

{
[Y ]∧ ∈ R4×4

∣∣∣∃y1, y2 ∈ R3 : [Y ]∧ =

[
[y1]× y2

0>3 0

]}

Let the vex operator be the inverse of [·]×, denoted by vex : so (3) → R3 such that

for α ∈ R3 and A = [α]× ∈ so (3) we have

vex (A) = vex
(
[α]×

)
= α ∈ R3

Let Pa denote the anti-symmetric projection operator on the Lie-algebra so (3), de-

fined by Pa : R3×3 → so (3) such that

Pa (M) =
1

2

(
M −M>

)
∈ so (3) , M ∈ R3×3 (2.2)

Let us define Υa (·) as the composition mapping such that Υa = vex ◦Pa. Hence,

Υa (M) can be expressed for M ∈ R3×3 as

Υa (M) = vex (Pa (M)) ∈ R3 (2.3)

Consider P : R4×4 → se (3) denoting the projection operator on the space of the Lie

algebra se (3) such that forM =

[
M mx

m>y mz

]
∈ R4×4 with M ∈ R3×3, mx,my ∈ R3

and mz ∈ R, we have

P (M) = P
([

M mx

m>y mz

])
=

[
Pa (M) mx

0>3 0

]
∈ se (3) (2.4)

For any M∈ R4×4, we define the operator Υ (·) as follows

Υ (M) =

[
Υa (M)

mx

]
∈ R6 (2.5)

The normalized Euclidean distance of a rotation matrix on SO (3) is defined by

‖R‖I =
1

4
Tr {I3 −R} (2.6)
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such that Tr {·} is the trace of the associated matrix, while the normalized Euclidean

distance of R ∈ SO (3) is ‖R‖I ∈ [0, 1]. The orientation of a rigid-body rotating in

a 3D-space can be established according to its angle of rotation α ∈ R and its axis

parameterization u ∈ R3. Such parameterization is termed angle-axis parameteriza-

tion Shuster (1993). Mapping from angle-axis parameterization to SO (3) is given by

Rα : R× R3 → SO (3) such that

Rα (α, u) = I3 + sin (α) [u]× + (1− cos (α)) [u]2× ∈ SO (3) (2.7)

Let us consider the transformation matrix in (2.1) with T ∈ SE (3). The adjoint map

for any T ∈ SE (3) and M∈ se (3) is given by

AdT (M) = TMT−1 ∈ se (3) (2.8)

Let us define another adjoint map for any T ∈ SE (3) by

ĂdT =

[
R 03×3

[P ]×R R

]
∈ R6×6 (2.9)

One can easily verify that the vex operator in (2.5) can be combined with the results

in (2.8) and (2.9) to show (Appendix C)

Υ (AdT (M)) = ĂdTΥ (M) ∈ R6

thus

T [Y ]∧ T
−1 =

[
ĂdTY

]
∧
∈ SE (3) , Y ∈ R6,T ∈ SE (3) (2.10)

which will be useful for the filter derivation and further analysis, for more details

visit Appendix C. For α, β ∈ R3, R ∈ SO (3), A ∈ R3×3 and B = B> ∈ R3×3 the

following mathematical identities

[α× β]× =βα> − αβ> (2.11)

[Rα]× =R [α]×R
> (2.12)

B [α]× + [α]×B =Tr {B} [α]× − [Bα]× (2.13)

[α]2× =− α>αI3 + αα> (2.14)
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Tr
{
B [α]×

}
=0 (2.15)

Tr
{
A [α]×

}
=Tr

{
Pa (A) [α]×

}
= −2vex (Pa (A))> α (2.16)

ĂdT 1T 2
= ĂdT 1

ĂdT 2
, T 1,T 2 ∈ SE (3) (2.17)

ĂdT Ăd
T−1 = Ăd

T−1ĂdT = I6, T ∈ SE (3) (2.18)

will be used in the subsequent derivations. Proof of (2.17) and (2.18) is given in

Appendix C.



Chapter 3

Nonlinear Attitude Filters on SO (3) with

Prescribed Performance

3.1 Introduction

This chapter proposes two novel nonlinear attitude filters evolved directly on the

Special Orthogonal Group SO (3) able to ensure prescribed measures of transient and

steady-state performance. The tracking performance of the normalized Euclidean

distance of attitude error is trapped to initially start within a large set and converge

systematically and asymptotically to the origin. The convergence rate is guaranteed

to be less than the prescribed value and the steady-state error does not exceed a pre-

defined small value. The first filter uses a set of vectorial measurements with the need

for attitude reconstruction. The second filter does not require attitude reconstruc-

tion and instead uses only a rate gyroscope measurement and two or more vectorial

measurements. These filters provide good attitude estimates with superior conver-

gence properties and can be applied to measurements obtained from low cost inertial

measurement units. Simulation results illustrate the robustness and effectiveness of

the proposed attitude filters with guaranteed performance considering high level of

uncertainty in angular velocity along with body-frame vector measurements. The

results of this chapter were first published in Hashim, Brown, and McIsaac (2019a).

The remainder of the chapter is organized as follows: Section 3.2 formulates

the attitude problem, presents the estimator structure and error criteria, and formu-

lates the attitude error in terms of prescribed performance. The two proposed filters

and the associated stability analysis are demonstrated in Section 3.3. Section 3.4

illustrates through simulation the effectiveness and robustness of the proposed filters.

Finally, Section 3.5 summarizes the work with concluded remarks.

29
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3.2 Problem Formulation with Prescribed

Performance

Attitude estimator relies on a collection of inertial-frame and body-frame vectorial

measurements. In this section, the attitude problem is defined, and body-frame and

gyroscope measurements are presented. Next, the attitude error is defined and refor-

mulated to satisfy a desired measure of transient and steady-state performance.

3.2.1 Attitude Kinematics and Measurements

R ∈ SO (3) stands for the rotation matrix, and therefore the orientation of the rigid-

body in the body-frame {B} relative to the inertial-frame {I} can be represented by

the attitude matrix R as illustrated in Figure 3.1.

 

x  

y  

z  

z  

y  

x  

Body-frame    

Inertial-frame    

Yaw 

Pitch 

Roll 

Figure 3.1: The relative orientation between body-frame and inertial-frame of a
rigid-body.

Let the superscripts I and B denote a vector associated with the inertial-frame

and body-frame, respectively. Consider v
I(R)
i ∈ R3 to be a known vector in the

inertial-frame and to be measured in the coordinate system fixed to the rigid-body

such that
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v
B(R)
i = R>v

I(R)
i + b

B(R)
i + ω

B(R)
i (3.1)

where v
B(R)
i ∈ R3 is the ith body-frame measurement associated with v

I(R)
i . b

B(R)
i ∈

R3 stands for the bias component, and ω
B(R)
i ∈ R3 denotes the noise component at-

tached to the ith body-frame measurement for i = 1, 2, . . . , n. Suppose that the

instantaneous set of size n ≥ 2 consisting of known inertial-frame and measured

body-frame vectors is non-collinear. Therefore, the attitude can be established. More-

over, two non-collinear vectors (n = 2) are sufficient for attitude reconstruction, e.g.,

Crassidis et al. (2007); Hashim et al. (2018a, 2018b); Hashim, Brown, and McIsaac

(2019d); Mahony et al. (2008); Shuster and Oh (1981). In case when n = 2, the third

inertial-frame and body-frame vectors can be obtained by the cross product such

that v
I(R)
3 = v

I(R)
1 × v

I(R)
2 and v

B(R)
3 = v

B(R)
1 × v

B(R)
2 , respectively. The inertial-

frame and body-frame vectors can be normalized and their normalized values can be

implemented in the estimation of the attitude in the following manner

υ
I(R)
i =

v
I(R)
i

||vI(R)
i ||

, υ
B(R)
i =

v
B(R)
i

||vB(R)
i ||

(3.2)

Hence, the attitude can be obtained knowing υ
I(R)
i and υ

B(R)
i . For simplicity, it is

considered that the body frame vector (v
B(R)
i ) is noise and bias free in the stability

analysis. The Simulation Section, on the other hand, takes noise and bias associated

with the measurements into account. The angular velocity of the moving body relative

to the inertial-frame is measured by the rate gyros as

Ωm = Ω + b+ ω (3.3)

where Ω ∈ R3 is the true value of angular velocity and b and ω denote the bias and

noise components, respectively, attached to the measurement of angular velocity for

all b, ω ∈ R3. The true rotational kinematics are described by

Ṙ = R [Ω]× (3.4)

where Ω ∈ {B}. Considering the normalized Euclidean distance of R in (2.6) and the

identity in (2.16), the kinematics of the true attitude in (3.4) can be defined in terms
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of normalized Euclidean distance as

d

dt
||R||I = −1

4
Tr
{
Ṙ
}

= −1

4
Tr
{
Pa (R) [Ω]×

}
=

1

2
vex (Pa (R))>Ω (3.5)

For the sake of simplicity, let us neglect the noise attached to angular velocity mea-

surements such that the kinematics of the normalized Euclidean distance in (3.5)

become
d

dt
||R||I =

1

2
vex (Pa (R))> (Ωm − b) (3.6)

Now, we introduce Lemma 3.1 which is going to be applicable in the subsequent filter

derivation.

Lemma 3.1 Let R ∈ SO (3), MB =
(
MB

)>
∈ R3×3, MB be nonsingular, Tr

{
MB

}
=

3, and M̄B = Tr
{
MB

}
I3 − MB, while the minimum singular value of M̄B is

λ := λ
(
M̄B

)
. Then, the following holds:

||vex (Pa (R)) ||2 = 4 (1− ||R||I) ||R||I (3.7)

2

λ

||vex
(
Pa
(
MBR

))
||2

1 + Tr
{(
MB

)−1
MBR

} ≥ ∥∥∥MBR∥∥∥
I

(3.8)

Proof. See Appendix A.

3.2.2 Estimator Structure and Error Criteria

The goal of the attitude estimator in this work is to achieve accurate estimate of the

true attitude satisfying transient as well as steady-state performance characteristics.

In this subsection a general framework of the nonlinear attitude filter on SO (3)

is introduced. Next, the error dynamics are expressed with respect to normalized

Euclidean distance. Let R̂ denote the estimate of the true attitude R and R̃ = R>R̂

denote the attitude error between body-frame and estimator-frame. Consider the
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following nonlinear attitude filter on SO (3)

˙̂
R = R̂

[
Ωm − b̂−W

]
×
, R̂ (0) = R̂0 (3.9)

˙̂
b =

1

2
Kbvex (Pa (Φ)) , b̂ (0) = b̂0 (3.10)

W = 2KWvex (Pa (Φ)) (3.11)

with b̂ being the estimate of the true rate-gyro bias b, Kb being a time-variant gain

associated with b̂, KW being a time-variant gain associated with the correction factor

W , and Φ being a matrix associated with attitude error R̃. Define the unstable set

U ⊆ SO (3) by U :=
{
R̃0

∣∣∣Tr
{
R̃0

}
= −1

}
with R̃0 = R̃ (0). Kb, KW , and Φ will be

defined subsequently. In particular, the dynamic gains Kb and KW will be selected

such that their values become increasingly aggressive as R̃ approaches the unstable

equilibria Tr
{
R̃0

}
→ −1, and reduce significantly as R̃ approaches I3.

Remark 3.1 In the conventional design of nonlinear attitude filters, for example

Crassidis et al. (2007); Grip et al. (2012); Hamel and Mahony (2006); Mahony et al.

(2008), Kb and KW are selected as positive constant gains. However, the weakness of

the conventional design of nonlinear attitude filters is that smaller values of Kb and

KW result in slower transient performance with less oscillatory behavior in the steady-

state. In contrast, higher values of Kb and KW generate faster transient performance

with higher oscillation in the steady-state.

Consider the attitude error defined as

R̃ = R>R̂ (3.12)

Also, define the error in bias estimation by

b̃ = b− b̂ (3.13)

From (3.4) and (3.9) the error dynamics can be found to be

˙̃R = R>R̂
[
Ωm − b̂−W

]
×
− [Ω]×R

>R̂

= R̃
[
b̃−W

]
×

+ R̃ [Ω]× − [Ω]× R̃ (3.14)
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Considering (3.4) and (3.5), the error dynamics in (3.14) are represented with regards

to normalized Euclidean distance

d

dt
||R̃||I =

d

dt

1

4
Tr
{

I3 − R̃
}

= −1

4
Tr

{
R̃
[
b̃−W

]
×

}
− 1

4
Tr
{[
R̃, [Ω]×

]}
=

1

2
vex

(
Pa
(
R̃
))> (

b̃−W
)

(3.15)

where Tr

{
R̃
[
b̃
]
×

}
= −2vex

(
Pa
(
R̃
))>

b̃ as given in (2.16) and Tr
{[
R̃, [Ω]×

]}
=

0 as defined in (2.15).

3.2.3 Prescribed Performance

This subsection aims to reformulate the problem such that the normalized Euclidean

distance of the attitude error ||R̃ (t) ||I satisfies the predefined transient as well as

steady-state measures set by the user. Initially, the error ||R̃ (t) ||I is contained within

a predefined large set and decreases systematically and smoothly to a predefined nar-

row set through a prescribed performance function (PPF) Bechlioulis and Rovithakis

(2008). This is accomplished by first defining a configuration error function Bech-

lioulis and Rovithakis (2008); Hashim, El-Ferik, and Lewis (2017, 2019). Let ξ (t) be

a positive smooth and time-decreasing performance function such that ξ : R+ → R+

and lim
t→∞

ξ (t) = ξ∞ > 0. The general expression of the PPF is as follows

ξ (t) = (ξ0 − ξ∞) exp (−`t) + ξ∞ (3.16)

where ξ0 = ξ (0) is the upper bound of the predefined large set, also known to be

the initial value of the PPF, ξ∞ is the upper bound of the small set such that the

steady-state error is confined by ±ξ∞, while ` is a positive constant controlling the

convergence rate of the set boundaries ξ (t) with respect to time from ξ0 to ξ∞. It

is sufficient to force ||R̃ (t) ||I to obey a predefined transient and steady-state charac-
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teristics, if the following conditions are met:

−δξ (t) < ||R̃ (t) ||I < ξ (t) , if ||R̃ (0) ||I ≥ 0,∀t ≥ 0 (3.17)

−ξ (t) < ||R̃ (t) ||I < δξ (t) , if ||R̃ (0) ||I < 0,∀t ≥ 0 (3.18)

where δ is selected such that 1 ≥ δ ≥ 0. The tracking error ||R̃ (t) ||I , with PPF

decreasing systematically from a known large set to a known small set in accordance

with (3.17) and (3.18) is illustrated in Figure 3.2.

Figure 3.2: A detailed representation of tracking normalized Euclidean distance
error ||R̃ (t) ||I with PPF satisfying (a) Eq. (3.17); (b) Eq. (3.18).

Remark 3.2 As explained in Bechlioulis and Rovithakis (2008); Hashim, El-Ferik,

and Lewis (2017, 2019), knowing the sign of ||R̃ (0) ||I is sufficient to satisfy the

performance constraints and maintain the error convergence within the predefined

dynamically decreasing boundaries for all t > 0. Since ||R̃ (0) ||I ∈ [0, 1], ||R̃ (0) ||I
is guaranteed to be greater than or equal to 0 for any attitude initialization, and

therefore the only possible condition is (3.17). If the condition in (3.17) is met, the

maximum steady-state error will be less than ξ∞, the maximum overshoot will be less

than −δξ (0), and ||R̃ (t) ||I will be confined between ξ (t) and δξ (t) as given in the

upper portion of Figure 3.2.

Let us define

||R̃ (t) ||I = ξ (t)Z (E) (3.19)
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with ξ (t) ∈ R being given in (3.16), E ∈ R being a transformed error, and Z (E)

being a smooth function which satisfies Assumption 3.1:

Assumption 3.1 The smooth function Z (E) must satisfy Bechlioulis and Rovithakis

(2008):

P 1) Z (E) is smooth and strictly increasing.

P 2) Z (E) is bounded between two predefined bounds

−δ < Z (E) < δ̄, for||R̃ (0) ||I ≥ 0

with δ̄ and δ being positive constants and δ ≤ δ̄.

P 3) lim
E→−∞

Z (E) = −δ and lim
E→+∞

Z (E) = δ̄ where

Z (E) =
δ̄ exp (E)− δ exp (−E)

exp (E) + exp (−E)
(3.20)

One could find the transformed error to be

E
(
||R̃ (t) ||I , ξ (t)

)
= Z−1

(
||R̃ (t) ||I
ξ (t)

)
(3.21)

where E ∈ R, Z ∈ R and Z−1 ∈ R are smooth functions. For clarity, let ξ := ξ (t),

||R̃||I := ||R̃ (t) ||I and E := E (·, ·). The transformed error E plays a prominent role

driving the error dynamics from constrained form in either (3.17) or (3.18) to that in

(3.21) which is unconstrained. One can find from (3.20) that the transformed error is

E =
1

2
ln
δ + ||R̃||I/ξ
δ̄ − ||R̃||I/ξ

(3.22)

Remark 3.3 Consider the transformed error in (3.22). If E (t) is guaranteed to be

bounded for all t ≥ 0, the performance function ξ (t) can be used to bound the transient

and steady-state of the tracking error (||R̃||I) allowing it to achieve the prescribed

performance.

Proposition 3.1 Consider the normalized Euclidean distance error ||R̃||I being de-

fined by (2.6) and from (3.19), (3.20), (3.21) let the transformed error be given as in

(3.22) with δ = δ̄. Then the following statements hold.
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(i) The transformed error E > 0∀||R̃||I 6= 0 and E = 0 only at ||R̃||I = 0.

(ii) The critical point of E satisfies ||R̃||I = 0.

(iii) The only critical point of E is R̃ = I3.

Proof. Letting δ = δ̄ with the prescribed performance constraints ||R̃||I ≤ ξ, the

expression
(
δ + ||R̃||I/ξ

)
/
(
δ̄ − ||R̃||I/ξ

)
in (3.22) is always greater than or equal to

1. Accordingly, E > 0∀||R̃||I 6= 0 and E = 0 at ||R̃||I = 0 which proves (i). For (ii)

and (iii), from (2.6), ||R̃||I = 0 if and only if R̃ = I3. Thus, the critical point of E
satisfies R̃ = I3 and, consequently, also satisfies ||R̃||I = 0 which proves (ii) and (iii).

Let us define a new variable µ := µ
(
||R̃||I , ξ

)
such that

µ =
1

2ξ

∂Z−1
(
||R̃||I/ξ

)
∂
(
||R̃||I/ξ

)
=

1

2ξ

(
1

δ + ||R̃||I/ξ
+

1

δ̄ − ||R̃||I/ξ

) (3.23)

Consequently, the derivative of the transformed error is governed by

Ė =
1

2ξ

(
1

δ + ||R̃||I/ξ
+

1

δ̄ − ||R̃||I/ξ

)(
d

dt
||R̃||I −

ξ̇

ξ
||R̃||I

)

= µ

(
1

2
vex

(
Pa
(
R̃
))> (

b̃−W
)
− ξ̇

ξ
||R̃||I

)
(3.24)

with direct substitution of (3.15) in (3.24). The next section presents two nonlinear

attitude filters on SO (3) with prescribed performance which guarantees E ∈ L∞,∀t ≥
0 and, thus, satisfies (3.17) provided that 0 ≤ ||R̃ (0) ||I < ξ (0).

3.3 Nonlinear Complementary Filters On SO (3)

with Prescribed Performance

The primary objective of this section is to propose two nonlinear attitude estimators

on SO (3) with normalized Euclidean distance error satisfying a predefined transient
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as well as steady-state performance given by the user. The constrained error ||R̃||I
is relaxed to unconstrained E . The first filter is termed a semi-direct attitude filter

with prescribed performance because it requires the attitude to be reconstructed via

the set of vectorial measurements as defined in (3.2), in addition to the measurement

of the angular velocity in (3.3). The second filter is called a direct attitude filter

with prescribed performance because it uses the vectorial measurements in (3.2) and

the angular velocity measurement in (3.3) directly without the need for attitude

reconstruction.

3.3.1 Semi-direct Attitude Filter with Prescribed

Performance

Let Ry denote the reconstructed attitude of R. There are many methods to recon-

struct Ry, for instance, TRIAD Black (1964), QUEST Shuster and Oh (1981), or

SVD Markley (1988). Consider the following filter kinematics

˙̂
R = R̂

[
Ωm − b̂−W

]
×
, R̂ (0) = R̂0 (3.25)

˙̂
b =

1

2
γµEvex

(
Pa
(
R̃
))

, b̂ (0) = b̂0, R̃ = R>y R̂ (3.26)

W = 2
kwµE − ξ̇/4ξ

1− ||R̃||I
vex

(
Pa
(
R̃
))

, R̃ = R>y R̂ (3.27)

with E and µ being defined in (3.22) and (3.23), respectively, kw and γ being positive

constants, ||R̃||I = 1
4Tr

{
I3 − R̃

}
being defined in (2.6), ξ being PPF defined in

(3.16), and b̂ being the estimate of b.

Theorem 3.1 Consider the rotation kinematics in (3.4), measurements of angular

velocity in (3.3) with no noise associated with the measurement Ωm = Ω + b, in

addition to two or more non-collinear vector measurements given in (3.1) coupled

with the filter in (3.25), (3.26) and (3.27). Define U ⊆ SO (3)× R3 by

U :=
{(

R̃0, b̃0

)∣∣∣Tr
{
R̃0

}
= −1, b̃0 = 03

}
with R̃0 = R̃ (0) and b̃0 = b̃ (0). For almost any initial condition such that R̃0 /∈ U
and ||R̃(0)||I < ξ(0), then, all signals in the closed loop are bounded, limt→∞ E (t) = 0
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and R̃ asymptotically approaches I3.

Theorem 3.1 guarantees that the observer dynamics in (3.25), (3.26) and (3.27) are

stable with E (t) approaching asymptotically the origin. Since, E (t) is bounded, ||R̃||I
obeys the prescribed transient and steady-state performance introduced in (3.16).

Proof. Let the error in attitude and bias be defined by R̃ = R>R̂ and b̃ = b− b̂
similar to (3.12) and (3.13), respectively. From (3.4) and (3.25), the error dynamics

can be obtained as in (3.14). Also, in view of (3.4) and (3.5), the error dynamics are

analogous to (3.15) in terms of normalized Euclidean distance. Therefore, considering

(3.5) and (3.24), the derivative of the transformed error can be found to be

Ė =µ

(
1

2
vex

(
Pa
(
R̃
))> (

b̃−W
)
− ξ̇

ξ
||R̃||I

)
(3.28)

Consider the following candidate Lyapunov function

V
(
E , b̃
)

=
1

2
E2 +

1

2γ
||b̃||2 (3.29)

Differentiating V in (3.29) and substituting for
˙̂
b and W in (3.26), and (3.27), respec-

tively, one obtains

V̇ =EĖ − 1

γ
b̃> ˙̂
b

=µE

(
1

2
vex

(
Pa
(
R̃
))> (

b̃−W
)
− ξ̇

ξ
||R̃||I

)
− 1

γ
b̃> ˙̂
b

=− Eµ

(
kwµE − ξ̇/4ξ

1− ||R̃||I

∥∥∥vex
(
Pa
(
R̃
))∥∥∥2

+
ξ̇

ξ
||R̃||I

)
(3.30)

Substituting for
∥∥∥vex

(
Pa
(
R̃
))∥∥∥2

= 4
(

1− ||R̃||I
)
||R̃||I as defined in (3.7), the

expression in (3.30) becomes

V̇ =− 4kw||R̃||Iµ2E2 (3.31)

This implies that V (t) ≤ V (0) , ∀t ≥ 0. Given R̃0 /∈ U implies that b̃ remains

bounded for all t ≥ 0, and, therefore, E is bounded and well defined for all t ≥ 0. It
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can be shown that

V̈ =− 4kw

(
2
(
EĖµ2 + E2µµ̇

)
||R̃||I + E2µ2|| ˙̃R||I

)
(3.32)

From (3.23), it can be found that

µ̇ = −1

2

δξ̇ + || ˙̃R||I(
δξ + ||R̃||I

)2
− 1

2

δ̄ξ̇ − || ˙̃R||I(
δ̄ξ − ||R̃||I

)2
(3.33)

where ξ̇ = −`
(
ξ0 − ξ∞

)
exp (−`t). Since || ˙̃R||I is bounded, µ̇ is bounded which

shows that V̈ is bounded for all t ≥ 0. Consequently, V̇ is uniformly continuous, and

according to Barbalat Lemma, V̇ → 0 indicates that one or more of the following

conditions are true

1. ||E|| → 0.

2. ||R̃||I → 0.

3. ||E|| → 0 and ||R̃||I → 0.

as t → ∞. According to property (i) and (ii) of Proposition 3.1, ||E|| → 0 means

||R̃||I → 0 and vice versa. Therefore, V̇ → 0 as t→∞ strictly indicates that ||E|| → 0

and ||R̃||I → 0. As stated by property (iii) of Proposition 3.1, ||E|| → 0 implies

that R̃ asymptotically approaches I3. Hence, V̇ → 0 means that R̃ asymptotically

approaches I3, which completes the proof.

3.3.2 Direct Attitude Filter with Prescribed Performance

Let Ry denote the reconstructed attitude of R obtained through a set of vectorial

measurements in (3.2). Although there are many methods to reconstruct Ry, this

may add computational cost. The filter proposed in the previous Subsection 3.3.1

requires Ry to obtain the attitude error R̃ = R>y R̂, for example (the Appendix in

Hashim et al. (2018b); Hashim, Brown, and McIsaac (2019d)). In this Subsection the

aforementioned weakness is eliminated by proposing a nonlinear filter with prescribed

performance in terms of direct measurements from the inertial and body-frame units.
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Let us recall υ
I(R)
i and υ

B(R)
i from (3.1) and (3.2) for i = 1, . . . , n. Let us define

MI =
(
MI

)>
=

n∑
i=1

siυ
I(R)
i

(
υ
I(R)
i

)>
MB =

(
MB

)>
=

n∑
i=1

siυ
B(R)
i

(
υ
B(R)
i

)>
= R>MIR (3.34)

where si > 0 refers to confidence level of the ith sensor measurements, and in this work

si is selected such that
∑n
i=1 si = 3. According to (3.34), MI and MB are symmetric

matrices. Assume that at least two non-collinear inertial-frame and measured body-

frame vectors are available. If two typical vectors are available for measurements, n =

2, the third vector is obtained by the cross product as mentioned in Subsection 3.2.1.

Thereby, the set of vectors is non-collinear and MB is nonsingular with rank
(
MB

)
=

3. Hence, the three eigenvalues ofMB are greater than zero. Let M̄B = Tr
{
MB

}
I3−

MB ∈ R3×3, provided that rank
(
MB

)
= 3, then, the following three statements hold

(Bullo and Lewis (2004) page. 553):

1. M̄B is a symmetric and positive-definite matrix.

2. The eigenvectors of MB coincide with the eigenvectors of M̄B.

3. Define the three eigenvalues of MB by λ
(
MB

)
= {λ1, λ2, λ3}, then λ

(
M̄B

)
=

{λ3 +λ2, λ3 +λ1, λ2 +λ1} such that the minimum singular value λ
(
M̄B

)
> 0.

In the remainder of this section, we assume that rank
(
MB

)
= 3, and accordingly

the three above-mentioned statements are true. Define

υ̂
B(R)
i = R̂>υI(R)

i (3.35)

Define the error in attitude and bias by R̃ = R>R̂ and b̃ = b− b̂ which is similar to

(3.12) and (3.13), respectively. In order to derive the explicit filter, it is necessary

to present the following equations expressed in terms of vector measurements. From

identity (2.11), one can find
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[
n∑
i=1

si
2
υ̂
B(R)
i × υB(R)

i

]
×

=
n∑
i=1

si
2

(
υ
B(R)
i

(
υ̂
B(R)
i

)>
− υ̂B(R)

i

(
υ
B(R)
i

)>)
=

1

2
R>MIRR̃− 1

2
R̃>R>MIR

= Pa
(
MBR̃

)
such that

vex
(
Pa
(
MBR̃

))
=

n∑
i=1

si
2
υ̂
B(R)
i × υB(R)

i (3.36)

The normalized Euclidean distance of MBR̃ can be found to be

||MBR̃||I =
1

4
Tr
{

I3 −MBR̃
}

=
1

4
Tr

{
I3 −

n∑
i=1

siυ
B(R)
i

(
υ̂
B(R)
i

)>}

=
1

4

n∑
i=1

si

(
1−

(
υ̂
B(R)
i

)>
υ
B(R)
i

)
(3.37)

Let us introduce the following variable

Υ
(
MB, R̃

)
= Tr

{(
MB

)−1
MBR̃

}

= Tr


(

n∑
i=1

siυ
B(R)
i

(
υ
B(R)
i

)>)−1 n∑
i=1

siυ
B(R)
i

(
υ̂
B(R)
i

)> (3.38)

Consequently, any vex
(
Pa
(
MBR̃

))
, ||MBR̃||I and Υ

(
MB, R̃

)
will be obtained

via a set of vectorial measurements as given in (3.36), (3.37), and (3.38), respectively,

in all the subsequent calculations and derivations. Let us define the minimum singular

value of M̄B as λ := λ
(
M̄B

)
, E := E

(
||MBR̃||I , ξ

)
, and µ := µ

(
||MBR̃||I , ξ

)
, and
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consider the following filter kinematics

˙̂
R =R̂

[
Ωm − b̂−W

]
×
, R̂ (0) = R̂0 (3.39)

˙̂
b =

1

2
γµEvex

(
Pa
(
MBR̃

))
, b̂ (0) = b̂0 (3.40)

W =
4

λ

kwµE − ξ̇/ξ

1 + Υ
(
MB, R̃

)vex
(
Pa
(
MBR̃

))
(3.41)

where Υ
(
MB, R̃

)
and vex

(
Pa
(
MBR̃

))
are defined in terms of vectorial mea-

surements in (3.38) and (3.36), respectively, ξ is a PPF defined in (3.16), E and µ

are defined in (3.22) and (3.23), respectively, with every ||R̃||I being replaced by

||MBR̃||I , kw and γ are positive constants, and b̂ is the estimate of b.

Theorem 3.2 Consider the filter in (3.39), (3.40) and (3.41) to be coupled with the

normalized vector measurements in (3.2) and angular velocity measurements in (3.3)

with the assumption that no noise is associated with the measurement Ωm = Ω + b.

Let two or more body-frame non-collinear vectors be available for measurements such

that MB is nonsingular. Define U ⊆ SO (3)× R3 by

U :=
{(

R̃0, b̃0

)∣∣∣Tr
{
R̃0

}
= −1, b̃0 = 03

}
with R̃0 = R̃ (0) and b̃0 = b̃ (0). If R̃0 /∈ U and E (0) ∈ L∞, then, all error signals are

bounded, while E (t) asymptotically approaches 0 and R̃ asymptotically approaches I3.

The observer dynamics in (3.39), (3.40) and (3.41) are guaranteed by Theorem 3.2

to be stable as E (t) approaches the origin asymptotically. It follows that E (t) is

bounded, which in turn causes ||R̃||I to obey the prescribed transient and steady-

state performance as described in (3.16) in consistence with Remark 3.3.

Proof. Consider the error in attitude and bias being defined similar to (3.12)

and (3.13), respectively. From (3.4) and (3.25), the error dynamics can be found to
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be analogous to (3.14). From (3.34), one can find the derivative of MB to be

ṀB = Ṙ>MIR +R>MIṘ

= − [Ω]×R
>MIR +R>MIR [Ω]×

= − [Ω]×M
B +MB [Ω]× (3.42)

Therefore, from (3.14) and (3.42), the derivative of ||MBR̃||I can be expressed as

d

dt
||MBR̃||I =− 1

4
Tr
{
MB ˙̃R + ṀBR̃

}
=− 1

4
Tr

{
MB

([
R̃, [Ω]×

]
+ R̃

[
b̃−W

]
×

)}
− 1

4
Tr
{(
− [Ω]×M

B +MB [Ω]×
)
R̃
}

=− 1

4
Tr

{
MBR̃

[
b̃−W

]
×

}
− 1

4
Tr
{[
MBR̃, [Ω]×

]}
=

1

2
vex

(
Pa
(
MBR̃

))> (
b̃−W

)
(3.43)

where Tr

{
MBR̃

[
b̃
]
×

}
= −2vex

(
Pa
(
MBR̃

))>
b̃ as given in (2.16), and

Tr
{[
MBR̃, [Ω]×

]}
= 0 as defined in (2.15). Thus, in view of (3.5) and (3.24), the

derivative of the transformed error in the sense of (3.15) can be found to be

Ė =
µ

2
vex

(
Pa
(
MBR̃

))> (
b̃−W

)
− µξ̇

ξ
||MBR̃||I (3.44)

Define the following candidate Lyapunov function as

V
(
E , b̃
)

=
1

2
E2 +

1

2γ
||b̃||2 (3.45)

The derivative of V := V
(
E , b̃
)

in (3.45) can be expressed as

V̇ =EĖ − 1

γ
b̃> ˙̂
b

=Eµ

(
1

2
vex

(
Pa
(
MBR̃

))> (
b̃−W

)
− ξ̇

ξ
||MBR̃||I

)
− 1

γ
b̃> ˙̂
b (3.46)
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Directly substituting for
˙̂
b and W in (3.40), and (3.41), respectively, one obtains

V̇ ≤ ξ̇
ξ

2

λ

∥∥∥vex
(
Pa
(
MBR̃

))∥∥∥2

1 + Υ
(
MB, R̃

) −
∥∥∥MBR̃∥∥∥

I

µE

− 2

λ

kwµ
2E2

1 + Υ
(
MB, R̃

) ∥∥∥vex
(
Pa
(
MBR̃

))∥∥∥2
(3.47)

One can also easily find

ξ̇

ξ

2

λ

∥∥∥vex
(
Pa
(
MBR̃

))∥∥∥2

1 + Υ
(
MB, R̃

) −
∥∥∥MBR̃∥∥∥

I

µE ≤ 0 (3.48)

where E > 0∀||MBR̃||I 6= 0 and E = 0 at ||MBR̃||I = 0 as given in (i) Proposition 3.1,

and µ > 0∀t ≥ 0 as given in (3.23). Also, ξ̇ is a negative strictly increasing component

which satisfies ξ̇ → 0 as t → ∞, and ξ : R+ → R+ such that ξ → ξ∞ as t → ∞.

Thus, ξ̇/ξ ≤ 0. In addition, consider (3.8) in Lemma 3.1, the expression in (3.48) is

negative semi-definite. Consequently, the inequality in (3.47) can be expressed as

V̇ ≤− kwµ2E2
∥∥∥MBR̃∥∥∥

I
(3.49)

This implies that V (t) ≤ V (0) ,∀t ≥ 0. Given that R̃0 /∈ U , b̃ is bounded for t ≥ 0,

and E ∈ L∞,∀t ≥ 0. As such, E remains bounded and well-defined for all t ≥ 0. In

order to prove asymptotic convergence of E to the origin and R̃ to the identity for all

R̃0 /∈ U , one obtains the second derivative of (3.45) as

V̈ ≤− 2kw

(
EĖµ2 + E2µµ̇

)
||MBR̃||I − kwE2µ2 d

dt
||MBR̃||I (3.50)

Consider the result in (3.23), as such, it can be shown that

µ̇ = −1

2

δξ̇ + d
dt ||M

BR̃||I(
δξ + ||R̃||I

)2
− 1

2

δ̄ξ̇ − d
dt ||M

BR̃||I(
δ̄ξ − ||R̃||I

)2
(3.51)

with ξ̇ = −`
(
ξ0 − ξ∞

)
exp (−`t). Due to the fact that || ˙̃R||I is bounded, µ̇ is bounded
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and in turn V̈ is bounded for all t ≥ 0. Thus, V̇ is uniformly continuous and in

accordance with Barbalat Lemma, V̇ → 0 implies that either ||E|| → 0 or ||MBR̃||I →
0 or both ||E|| → 0 and ||MBR̃||I → 0 as t → ∞. From property (i) and (ii)

of Proposition 3.1, ||E|| → 0 indicates that ||MBR̃||I → 0 and vice versa. Thus,

V̇ → 0 implies that ||E|| → 0 and ||MBR̃||I → 0, which means that R̃ asymptotically

approaches I3 consistent with property (iii) of Proposition 3.1, which completes the

proof.

It is clear that the gains associated with the vex operator of
˙̂
b and W in (3.26),

and (3.27), or in (3.40), and (3.41), respectively, are dynamic. Their values rely on

µ, E and ||R̃||I or ||MBR̃||I . Their dynamic behavior has the essential role of forcing

the proposed observer to comply with the prescribed performance constraints. Thus,

the proposed filter has a remarkable advantage which is reflected in the dynamic

gains becoming increasingly aggressive as ||R̃||I approaches the unstable equilibria

+1. On the other side, these gains reduce significantly as E → 0. These dynamic

gains directly impact the proposed nonlinear filter forcing it to adhere to the prede-

fined prescribed performance features imposed by the user and thereby satisfying the

predefined measures of transient as well as steady-state measures.

Remark 3.4 (Notes on filter design parameters) δ̄, δ, and ξ0 define the dy-

namic boundaries of the transformed error E. ξ0 and ξ∞ refer to the boundaries

of the large and small sets, respectively. ` controls the convergence rate of the dy-

namic boundaries from large to narrow set. The asymptotic convergence of ||R̃||I or

||MBR̃||I is guaranteed by selecting δ̄ = δ. Also, increasing the value of ` would lead

to faster rate of convergence of ||R̃||I or ||MBR̃||I to the origin. It should be noted

that if the initial value of ||R̃ (0) ||I or ||MBR̃ (0) ||I are unknown, the user could se-

lect δ̄, δ, and ξ0 based on the highest value of ||R̃ (0) ||I , therefore accounting for the

worst possible scenario, since ||R̃ (0) ||I ∈ [0, 1], and thus the prescribed performance

is guaranteed.

The filter design algorithm proposed in Subsection 3.3.2 can be summarized briefly

as

A.1 Select δ̄ = δ > ||MBR̃ (0) ||I , the ultimate bound of the small set of the desired

steady-state error ξ∞ and the desired convergence rate `.
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A.2 Evaluate the vex operator vex
(
Pa
(
MBR̃

))
, the normalized Euclidean dis-

tance error ||MBR̃||I , and Υ
(
MB, R̃

)
from (3.36), (3.37), and (3.38), respec-

tively, in the form of vector measurements.

A.3 Evaluate the prescribed performance function ξ from equation (3.16).

A.4 Evaluate µ
(
||MBR̃||I , ξ

)
and E

(
||MBR̃||I , ξ

)
from equations (3.23) and (3.22),

respectively.

A.5 Evaluate the filter design
˙̂
R,

˙̂
b and W from (3.39), (3.40), and (3.41), respec-

tively.

A.6 Go to A.2.

The same steps can be applied for the filter design in Subsection 3.3.1.

3.4 Simulations

The performance of the two proposed nonlinear attitude filters on SO (3) with pre-

defined measures is presented in this section considering large error initialization and

high level of noise and bias in the measurements. In this regard, consider the set of

measurements given as follows:v
B(R)
i = R>v

I(R)
i + b

B(R)
i + ω

B(R)
i

Ωm = Ω + b+ ω

which exemplifies a set measurements obtained from a low-cost IMUs module, for all

i = 1, 2. Let the rotational matrix R be acquired from attitude dynamics in equation

(3.4) and suppose that the input signal of the angular velocity is given by

Ω =

 sin (0.7t)

0.7sin (0.5t+ π)

0.5sin
(
0.3t+ π

3

)
 (rad/sec)

with R (0) = I3 being the initial attitude. Consider that a wide-band of a zero

mean random noise process vector with standard deviation (STD) of 0.2 (rad/sec)
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and bias b = 0.1 [1,−1, 1]> is contaminating the true angular velocity (Ω) such that

Ωm = Ω + b + ω. Let two non-collinear inertial frame vectors be given by v
I(R)
1 =

1√
3

[1,−1, 1]> and v
I(R)
2 = [0, 0, 1]>, whereas the body-frame vectors v

B(R)
1 and v

B(R)
2

are given by v
B(R)
i = R>v

I(R)
i +b

B(R)
i +ω

B(R)
i for all i = 1, 2. Similarly, suppose that

an additional zero mean Gaussian white noise vector ω
B(R)
i with STD =0.08 corrupts

the body-frame vector measurements with bias components ω
B(R)
1 = 0.1 [−1, 1, 0.5]>

and ω
B(R)
2 = 0.1 [0, 0, 1]>. v

I(R)
i and v

B(R)
i are normalized and the third vector is

extracted by υ
I(R)
3 = υ

I(R)
1 × υ

I(R)
2 and υ

B(R)
3 = υ

B(R)
1 × υ

B(R)
2 . The confidence

level of body-frame measurements was chosen as s1 = 1.4, s2 = 1.4, and s3 = 0.2.

For the semi-direct filter in Subsection 3.3.1, the corrupted reconstructed attitude Ry

is defined using SVD in Appendix B or see the Appendix in Hashim et al. (2018b);

Hashim, Brown, and McIsaac (2019d) where R̃ = R>y R̂.

To illustrate the robustness of the proposed filtering algorithms, a very large ini-

tial attitude error is considered. The initial rotation of the attitude estimate is defined

in accordance with angle-axis parameterization in (2.7) as R̂ (0) = Rα (α, u/||u||) with

α = 178 (deg) and u= [4, 1, 5]>. As such, ||R̃||I ≈ 0.9999 which is very close to the

unstable equilibria. Initial bias estimate is b̂ (0) = [0, 0, 0]>. The design parameters

are chosen as γ = 1, kw = 3, δ̄ = δ = 1.2, ξ0 = 1.2, ξ∞ = 0.05, and ` = 3. The total

time of the simulation is 15 seconds.

The color notation is as follows: green color represents a true value, red depicts

the performance of the nonlinear semi-direct filter on SO (3) derived using a group of

vectorial measurements and reconstructed attitude as described in Subsection 3.3.1,

and blue demonstrates the performance of the direct filter characterized in Subsection

3.3.2 which does not demand attitude reconstruction. Also, magenta describes a

measured value while orange and purple refer to prescribed performance response.

Figure 3.3 and 3.4 illustrate high values of noise and bias components present in

angular velocity and body-frame vector measurements plotted against the true val-

ues. Figure 3.5 illustrates the systematic and smooth convergence of the normalized

Euclidean distance error ||R̃||I . It can be noticed in Figure 3.5 that the error function

for ||R̃||I = 1
4Tr

{
I3 −R>R̂

}
started very near to the unstable equilibria within a

given large set and ended within a given small residual set obeying the PPF. Thus,

Figure 3.5 confirms the stability analysis discussed in the previous section and illus-
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trates the robustness of the proposed filter. The output performance of the proposed

filters in Euler angles representation is shown in Figure 3.6. The three Euler angles

(φ, θ, ψ) in Figure 3.6 show impressive tracking performance with fast convergence

to the true angles. Finally, the boundedness of the estimated bias b̂ is illustrated in

Figure 3.7.

0 5 10 15

-1

0

1

0 5 10 15

-1

0

1

0 5 10 15

-0.5

0

0.5

1

Figure 3.3: True and measured angular velocities.
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Figure 3.4: Body-frame vectorial measurements: true and measured.

Table 3.1 contains a synopsis of statistical details of the mean and the STD of the

error (||R̃||I). These details facilitate the comparison of the steady-state performance
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Figure 3.5: Transient and steady-state performance of normalized Euclidean
distance.
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Figure 3.6: Tracking performance of Euler angles (roll (φ) and pitch (θ), yaw (ψ)).

of the two filters proposed in this paper with respect to ||R̃||I . In spite of the fact

that both filters have extremely small mean of ||R̃||I , the semi-direct attitude filter

with prescribed performance showed a remarkably smaller mean errors and STD

when compared to the direct attitude filter with prescribed performance. Numerical

results outlined in Table 3.1 demonstrate effectiveness and robustness of the proposed

nonlinear attitude filters against large error initialization and uncertainties in sensor
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Figure 3.7: The estimated bias of the proposed filters.

measurements as illustrated in Figure 3.3, 3.4, 3.5, 3.6, and 3.7.

Table 3.1: Statistical analysis of ||R̃||I of the proposed two filters.

Output data of ||R̃||I over the period (1-15 sec)

Filter Semi-direct Direct

Mean 4.2× 10−3 6.9× 10−3

STD 2.5× 10−3 2.1× 10−3

The robustness and the superior convergence properties of the proposed non-

linear attitude filters with guaranteed performance are presented and compared to

a well-known nonlinear attitude complimentary filter termed nonlinear passive com-

plementary filter Mahony et al. (2008) as well as to a standard attitude filter which

belongs to the family of Gaussian attitude filters and is termed multiplicative extended

Kalman filter (MEKF) Markley (2003) in Subsection 3.4.1 and 3.4.2, respectively.

3.4.1 Proposed Filters vs Nonlinear Attitude Filters

To further illustrate the robustness and the superior convergence properties of the

proposed nonlinear attitude filters as opposed to the conventional nonlinear attitude
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filters, a fair comparison is presented. Consider the following nonlinear passive com-

plementary filter given in Mahony et al. (2008)
˙̂
R = R̂

[
Ωm − b̂−W

]
×
, R̂ (0) = R̂0

˙̂
b = k1vex

(
Pa
(
R̃
))

, b̂ (0) = b̂0, R̃ = R>y R̂

W = k1vex
(
Pa
(
R̃
))

, R̃ = R>y R̂

(3.52)

where k1 > 0. A fair comparison between the proposed semi-direct attitude filter

and the nonlinear passive complementary filter in Mahony et al. (2008) is attain-

able due to the shared structure of the filters. Consider initializing the nonlinear

passive complementary filter analogously to the semi-direct attitude filter given at

the beginning of the Simulation Section. To ensure validity of the comparison, three

variations of the design parameter k1 in (3.52) namely, k1 = 1, k1 = 10 and k1 = 100.

In this Subsection, the color notation is as follows: black solid and dashed lines
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Figure 3.8: Transient and steady-state performance of normalized Euclidean
distance: Semi-direct filter vs literature Mahony et al. (2008).

describe the performance of the nonlinear passive complementary filter, blue center

line depicts the proposed semi-direct attitude filter while orange and purple refer

to the prescribed performance response. It can be noticed in the upper portion of

Figure 3.8 that smaller value of k1 results in slower transient performance with less

oscillatory behavior in the steady-state. In contrast, the lower portion of Figure 3.8
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illustrates that higher value of k1 leads to faster transient performance with higher

levels of oscillation in the steady-state. Moreover, Figure 3.8 shows that the prede-

fined measure of transient performance cannot be achieved for low value of k1, since

the transient performance of the passive complementary filter violates the dynamic

reducing boundaries. In the same spirit, the predefined characteristics of steady-state

performance cannot be achieved for high value of k1. These results confirm Remark

3.1.

Therefore, the nonlinear attitude filters given in the literature, for example Grip

et al. (2012); Hamel and Mahony (2006); Lee (2012); Mahony et al. (2005, 2008);

Zlotnik and Forbes (2017) cannot guarantee a predefined measure of convergence

properties. The semi-direct attitude filter, on the other side, obeys the dynamically

reducing boundaries and allows to achieve a desired level of prescribed performance.

Table 3.2 compares the statistical details, namely the mean and the STD of

||R̃||I , of the proposed semi-direct attitude filter and the nonlinear passive comple-

mentary filter. The above-mentioned statistics describe the output performance with

respect to ||R̃||I over the steady-state period of time depicted in Figure 3.8. The

semi-direct attitude filter displays smaller values of mean and STD of ||R̃||I when

compared to the passive complementary filter for all the considered cases of k1 = 1,

k1 = 10 and k1 = 100. Moreover, the numerical results listed in Table 3.2 illustrate

the effectiveness and robustness of the proposed nonlinear attitude filters against

large error initialization and uncertainties in sensor measurements which make them

a good fit for measurements obtained from low-cost IMUs modules.

Table 3.2: Statistical analysis of ||R̃||I of the semi-direct filter vs literature.

Output data of ||R̃||I over the period (7-15 sec)

Filter Semi-direct
Passive Filter Mahony et al. (2008)

k1 = 1 k1 = 10 k1 = 100

Mean 2.7× 10−3 4.5× 10−3 6.9× 10−3 91.9× 10−3

STD 1.4× 10−3 2.9× 10−3 2.7× 10−3 14.2× 10−3
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3.4.2 Proposed Filters vs Gaussian Attitude Filters

In this subsection the effectiveness and the high convergence capabilities of the pro-

posed nonlinear attitude filters are compared to the performance of a Gaussian atti-

tude filter. A comparison between the proposed direct attitude filter and the MEKF

in Appendix C (Hashim, Brown, and McIsaac (2019a)) is presented. Consider the

MEKF in Appendix C (Hashim, Brown, and McIsaac (2019a)) initialized similar to

the direct attitude filter given at the beginning of the Simulation Section. To guar-

antee validity of the comparison, three cases of the design parameters of MEKF have

been detailed in Table 3.3.

Table 3.3: MEKF design parameters.

Case Design Parameters

Case 1 Q̄v(i) = I3 Q̄ω = I3 Q̄b = I3

Case 2 Q̄v(i) = 0.1I3 Q̄ω = 10I3 Q̄b = 10I3

Case 3 Q̄v(i) = 0.01I3 Q̄ω = 100I3 Q̄b = 100I3

In this Subsection, the color notation is as follows: black solid and dashed lines

represent the performance of the MEKF, blue center line refers to the proposed direct

attitude filter while orange and purple depict the prescribed performance response.

It can be noticed in the upper portion of Figure 3.9 that cases 1 and 2 show slower

transient performance with less oscillatory behavior in the steady-state. In contrast,

the lower portion of Figure 3.9 illustrates that case 3 results in faster transient perfor-

mance with higher levels of oscillation in the steady-state. As such, a desired measure

of transient and stead-state error cannot be guaranteed in case of MEKF. The di-

rect attitude filter, on the other side, follows the dynamically reducing boundaries

achieving a desired level of prescribed performance set by the user.

The simulation results presented in this section validate the stable performance

and robustness of the two proposed filters against uncertain measurements and large

initialized errors. The two filters comply with the constraints imposed by the user

indicating guaranteed prescribed performance measures in transient as well as steady-

state performance. This remarkable advantage was not offered in other nonlinear

deterministic attitude filters such as Grip et al. (2012); Hamel and Mahony (2006);
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Figure 3.9: Transient and steady-state performance of normalized Euclidean
distance: Direct filter vs MEKF Markley (2003).

Hashim et al. (2018a, 2018b); Lee (2012); Mahony et al. (2005, 2008) as well as Gaus-

sian attitude filters such as Choukroun et al. (2006); Lefferts et al. (1982); Markley

(2003). Semi-direct attitude filter with prescribed performance requires attitude re-

construction, for instance in our case we employed Singular Value Decomposition

(SVD) Appendix B, or visit (Hashim et al. (2018b)), to obtain R̃ = R>y R̂. This

adds complexity, and therefore the semi-direct attitude filter requires more compu-

tational power in comparison with direct attitude filter with prescribed performance.

However, both proposed filters showed remarkable convergence as detailed in Table

3.1.

3.5 Conclusion

In this chapter, two nonlinear attitude filters with prescribed performance character-

istics have been considered. The filters are evolved directly on SO (3). Attitude error

has been defined in terms of normalized Euclidean distance such that innovation term

has been selected to ensure predefined characteristics of transient and steady-state

performance. Consequently, the proposed filters achieve superior convergence proper-

ties with transient error being less than a predefined dynamic decreasing constrained
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function and steady-state error being confined by a known lower bound. The con-

strained error is transformed to its unconstrained form which is sufficient to solve the

attitude problem in prescribed performance sense. The filters are deterministic while

the stability analysis ensure boundedness of all closed loop signals with asymptotic

convergence of the normalized Euclidean distance of attitude error to the origin. Sim-

ulation example illustrated the robustness of the proposed filters in their response to

the predefined constraints in case when high level of uncertainties is present in the

measurements and a large initial attitude error is observed.



Chapter 4

Nonlinear Stochastic Filters on SO (3): Ito

and Stratonovich

4.1 Introduction

This chapter formulates the attitude filtering problem as a nonlinear stochastic filter

problem evolved directly on the Special Orthogonal Group SO (3). One of the tradi-

tional potential functions for nonlinear deterministic complimentary filters is studied

and examined against angular velocity measurements corrupted with noise. This

work demonstrates that the careful selection of the attitude potential function allows

to attenuate the noise associated with the angular velocity measurements and results

into superior convergence properties of estimator and correction factor. The problem

is formulated as a stochastic problem through mapping SO (3) to Rodriguez vector

parameterization. Two nonlinear stochastic complimentary filters are developed on

SO (3). The first stochastic filter is driven in the sense of Ito and the second one con-

siders Stratonovich. The two proposed filters guarantee that errors in the Rodriguez

vector and estimates are semi-globally uniformly ultimately bounded in mean square,

and they converge to a small neighborhood of the origin. Simulation results are pre-

sented to illustrate the effectiveness of the proposed filters considering high level of

uncertainties in angular velocity as well as body-frame vector measurements. The

results of this chapter were first published in Hashim et al. (2018b).

The rest of the chapter is organized as follows: Attitude estimation dynamic

problem in Rodriguez vector with Gaussian noise vector which satisfies the Brownian

motion process is formulated in Section 4.2. The nonlinear stochastic filters on SO (3)

and the stability analysis are presented in Section 4.3. Section 4.4 shows the output

performance and discusses the simulation results of the proposed filters. Finally,

Section 4.5 draws a conclusion of this work.

57
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4.2 Problem Formulation in Stochastic Sense

Let R ∈ SO (3) denote the attitude (rotational) matrix, which describes the relative

orientation of the body-frame {B} with respect to the inertial-frame {I} as given in

Figure 4.1.

 

x  

y  

z  

z  

y  

x  

Body-frame    

Inertial-frame    

Figure 4.1: The orientation of a 3D rigid-body in body-frame relative to
inertial-frame.

The attitude can be extracted from n-known non-collinear inertial vectors which

are measured in a coordinate system fixed to the rigid body. Let v
B(R)
i ∈ R3 for

i = 1, 2, . . . , n, be vectors measured in the body-fixed frame. Let R ∈ SO (3), the

body fixed-frame vector v
B(R)
i ∈ R3 is defined by

v
B(R)
i = R>v

I(R)
i + b

B(R)
i + ω

B(R)
i (4.1)

where v
I(R)
i ∈ R3 denotes the inertial fixed-frame vector for i = 1, 2, . . . , n. b

B(R)
i

and ω
B(R)
i denote the additive bias and noise components of the associated body-

frame vector, respectively, for all b
B(R)
i , ω

B(R)
i ∈ R3. The assumption that n ≥ 2 is

necessary for instantaneous three-dimensional attitude determination. In case when

n = 2, the cross product of the two measured vectors can be accounted as the third

vector measurement such that v
I(R)
3 = v

I(R)
1 × v

I(R)
2 and v

B(R)
3 = v

B(R)
1 × v

B(R)
2 . It

is common to employ the normalized values of inertial and body-frame vectors in the

process of attitude estimation such as

υ
I(R)
i =

v
I(R)
i∥∥∥v
I(R)
i

∥∥∥ , υ
B(R)
i =

v
B(R)
i∥∥∥v
B(R)
i

∥∥∥ (4.2)
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In this manner, the attitude can be defined knowing υ
I(R)
i and υ

B(R)
i . Gyroscope or

the rate gyros measures the angular velocity vector in the body-frame relative to the

inertial-frame. The measurement vector of angular velocity Ωm ∈ R3 is

Ωm = Ω + b+ ω (4.3)

where Ω ∈ R3 denotes the true value of angular velocity, b denotes an unknown

constant (bias) or slowly time-varying vector, while ω denotes the noise component

associated with angular velocity measurements, for all b, ω ∈ R3. The noise vector ω

is assumed to be Gaussian. The true attitude dynamics and the associated Rodriguez

vector dynamics are given in (4.4) and (4.5), respectively, as

Ṙ = R [Ω]× (4.4)

ρ̇ =
1

2

(
I3 + [ρ]× + ρρ>

)
Ω (4.5)

In general, the measurement of angular velocity vector is subject to additive noise and

bias components. These components are characterized by randomness and unknown

behavior. In view of the fact that any unknown components in angular velocity mea-

surements may impair the estimation process of the true attitude dynamics in (4.4)

or (4.5), it is necessary to assume that the attitude dynamics are excited by a wide-

band of random Gaussian noise process with zero mean. Combining angular velocity

measurement in (4.3) and the attitude dynamics in (4.5), the attitude dynamics can

be expressed as follows

ρ̇ =
1

2

(
I3 + [ρ]× + ρρ>

)
(Ωm − b− ω) (4.6)

where ω ∈ R3 is a bounded continuous Gaussian random noise vector with zero mean.

The fact that derivative of any Gaussian process yields Gaussian process allows us

to write the stochastic attitude dynamics as a function of Brownian motion process

vector dβ/dt ∈ R3 (Jazwinski (2007); Khasminskii (1980)). Let {ω, t ≥ t0} be a

vector process of independent Brownian motion process such that

ω = Qdβ
dt

(4.7)

where Q ∈ R3×3 is an unknown time-variant matrix with only nonzero and nonnega-
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tive bounded components in the diagonal. The covariance component associated with

the noise ω can be defined by Q2 = QQ>. The properties of Brownian motion pro-

cess are defined as (Deng, Krstic, and Williams (2001); Ito and Rao (1984); Jazwinski

(2007))

P {β (0) = 0} = 1, E [dβ/dt] = 0, E [β] = 0

Let the attitude dynamics of Rodriguez vector in (4.5) be defined in the sense of Ito

(Ito and Rao (1984)). Considering the attitude dynamics in (4.6) and substituting

ω by Qdβ/dt as in (4.7), the stochastic differential equation of (4.5) in view of (4.6)

can be expressed by

dρ =f (ρ, b) dt+ g (ρ)Qdβ (4.8)

Similarly, the stochastic dynamics of (4.4) become

dR = R [Ωm − b]× dt−R [Qdβ]× (4.9)

where b was defined in (4.3), g (ρ) := −1
2

(
I3 + [ρ]× + ρρ>

)
and f (ρ, b) := −g (ρ) (Ωm

−b) with g : R3 → R3×3 and f : R3 × R3 → R3. g (ρ) is locally Lipschitz in ρ, and

f (ρ, b) is locally Lipschitz in ρ and b. Accordingly, the dynamic system in (4.8) has a

solution for t ∈ [t0, T ]∀t0 ≤ T <∞ in the mean square sense and for any ρ (t) ∈ R3

such that t 6= t0, ρ − ρ0 is independent of {β (τ) , τ ≥ t} ,∀t ∈ [t0, T ] (Theorem 4.5

Jazwinski (2007)). Now the aim is to achieve adaptive stabilization of an unknown

bias and unknown time-variant covariance matrix. Let σ be the upper bound of Q2

such that

σ =
[
max

{
Q2

1,1

}
,max

{
Q2

2,2

}
,max

{
Q2

3,3

}]>
∈ R3 (4.10)

where max {·} is the maximum value of an element.

Assumption 4.1 (Uniform boundedness of unknown parameters b and σ) Let the

vector b and the nonnegative vector σ belong to a given compact set ∆ where b, σ ∈
∆ ⊂ R3, and b and σ are upper bounded by a scalar Γ such that ‖∆‖ ≤ Γ <∞.

Definition 4.1 Consider the stochastic differential system in (4.8). For a given func-
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tion V (ρ) ∈ C2, the differential operator LV is given by

LV (ρ) = V >ρ f (ρ, b) +
1

2
Tr
{
g (ρ)Q2g> (ρ)Vρρ

}
such that Vρ = ∂V/∂ρ, and Vρρ = ∂2V/∂ρ2.

Definition 4.2 (Ji and Xi (2006)) The trajectory ρ of the stochastic differential

system in (4.8) is said to be semi-globally uniformly ultimately bounded (SGUUB) if

for some compact set Λ ∈ R3 and any ρ0 = ρ (t0), there exists a constant κ > 0, and

a time constant T = T (κ, ρ0) such that E [‖ρ‖] < κ,∀t > t0 + T .

Lemma 4.1 (Deng and Krsti (1997); Deng et al. (2001)) Let the dynamic system

in (4.8) be assigned a potential function V ∈ C2 such that V : R3 → R+, class K∞
function ᾱ1 (·) and ᾱ2 (·), constants c1 > 0 and c2 ≥ 0 and a nonnegative function

Z (‖ρ‖) such that

ᾱ1 (‖ρ‖) ≤ V (ρ) ≤ ᾱ2 (‖ρ‖) (4.11)

LV (ρ) =V >ρ f (ρ, b) +
1

2
Tr
{
g (ρ)Q2g> (ρ)Vρρ

}
≤− c1Z (‖ρ‖) + c2 (4.12)

then for ρ0 ∈ R3, there exists almost a unique strong solution on [0,∞) for the

dynamic system in (4.8), the solution ρ is bounded in probability such that

E [V (ρ)] ≤ V (ρ0) exp (−c1t) +
c2
c1

(4.13)

Furthermore, if the inequality in (4.13) holds, then ρ in (4.8) is SGUUB in the mean

square. In addition, when c2 = 0, f (0, b) = 03, g (0) = 03×3, and Z (‖ρ‖) is contin-

uous, the equilibrium point ρ = 0 is globally asymptotically stable in probability and

the solution of ρ satisfies

P
{

lim
t→∞

Z (‖ρ‖) = 0

}
= 1, ∀ρ0 ∈ R3 (4.14)

The proof of this lemma and existence of a unique solution can be found in Deng

et al. (2001). For a rotation matrix R ∈ SO (3), let us define U ⊆ SO (3) by U :=
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{R|Tr {R} = −1,Pa (R) = 0}. We have −1 ≤ Tr {R} ≤ 3 such that the set U is

forward invariant and unstable for the dynamic system in (4.4) which implies that

ρ = ∞. For almost any initial condition such that R0 /∈ U or ρ0 ∈ R3, we have

−1 < Tr {R0} ≤ 3 and the trajectory of ρ is semi-globally uniformly ultimately

bounded in mean square.

Lemma 4.2 (Young’s inequality) Let x and y be x, y ∈ Rn. Then, for any c > 1 and

d > 1 satisfying (c− 1) (d− 1) = 1 with a small positive constant ε, the following

holds

x>y ≤ (1/c) εc ‖x‖c + (1/d) ε−d ‖y‖d (4.15)

In the next section, the presence of noise will be examined in light of a traditional

form of potential function. The concept of an alternate potential function with specific

characteristics able to attenuate the noise behavior will be carefully elucidated.

4.3 Stochastic Complementary Filters On SO (3)

The main goal of attitude estimation is to derive the attitude estimate R̂→ R. Let’s

define the error in attitude estimate from the body-frame to estimator-frame by

R̃ = R>R̂ (4.16)

Let b̂ and σ̂ be estimates of unknown parameters b and σ, respectively. Define the

error in vector b and σ by

b̃ = b− b̂ (4.17)

σ̃ = σ − σ̂ (4.18)

Thus, driving R̂ → R ensures that R̃ → I3 and ρ̃ → 03 where ρ̃ is Rodriguez error

vector associated with R̃. In this section, two nonlinear stochastic complementary

filters are developed on the Special Orthogonal Group SO (3). These filters in the

sense of Rodriguez vector guarantee that the error vector is SGUUB in mean square

for the case of noise contamination of the angular velocity measurements.
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4.3.1 Nonlinear Deterministic Attitude Filter

In this subsection, we aim to study the behavior of nonlinear deterministic filter on

SO (3) with noise introduced in angular velocity measurements. The attitude R can

be reconstructed through a set of measurements in (4.2) to obtain Ry, for instance

(Black (1964); Markley (1988); Shuster and Oh (1981)). Ry is corrupted with noise

and bias greatly increase the difference between Ry and the true R. The filter design

aims to use the angular velocity measurements and the given Ry to obtain good

estimate of R. Consider the following filter design

˙̂
R = R̂

[
Ωm − b̂−W

]
×
, R̂ (0) = R̂0 (4.19)

˙̂
b = γ1Υa(R̃), b̂ (0) = b̂0, R̃ = R>y R̂ (4.20)

W = k1Υa(R̃), R̃ = R>y R̂ (4.21)

where Ωm is angular velocity measurement, b̂ ∈ R3 is the estimate of the unknown

bias b, and Υa(R̃) = vex
(
Pa(R̃)

)
was given in (A.4). Also, γ1 > 0 is an adaptation

gain and k1 is a positive constant.

Let the error in vector b be defined as in (4.17) and assume that no noise was

introduced to the dynamics (ω = 03). The derivative of attitude error in (4.16) can

be obtained from (4.4) and (4.19) as

˙̃R =R̃
[
Ω− R̃>Ω + b̃−W

]
×

(4.22)

where
[
R̃>Ω

]
×

= R̃> [Ω]× R̃. Hence, in view of (4.9) and (4.8), the error dynamic

in (4.22) can be expressed in Rodriguez error vector dynamic by

˙̃ρ =
1

2

(
I3 + [ρ̃]× + ρ̃ρ̃>

)(
Ω− R̃>Ω + b̃−W

)
(4.23)

From literature, one of traditional potential functions for adaptive filter estimation

is V
(
R̃, b̃

)
= 1

4Tr
{

I3 − R̃
}

+ 1
2γ1

b̃>b̃ (for example (Crassidis et al. (2007); Mahony

et al. (2008))). The equivalent of the aforementioned function in form of Rodriguez
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error is

V
(
ρ̃, b̃
)

=
‖ρ̃‖2

1 + ‖ρ̃‖2
+

1

2γ1
b̃>b̃ (4.24)

let f̃ := 1
2

(
I3 + [ρ̃]× + ρ̃ρ̃>

)(
Ω− R̃>Ω + b̃−W

)
. For V := V

(
ρ̃, b̃
)

, the derivative

of (4.24) is

V̇ = V >ρ̃ f̃ −
1

γ1
b̃> ˙̂
b (4.25)

= Υa(R̃)>
(
b̃−W

)
− 1

γ1
b̃> ˙̂
b

where 1
2V
>
ρ̃

(
I3 + [ρ̃]× + ρ̃ρ̃>

)(
Ω− R̃>Ω

)
= 0, see Appendix C, which was obtained

by substitution of R̃ = Rρ̃ (ρ̃) in (A.1). Substituting for
˙̂
b and W in (4.20) and (4.21),

respectively, yields

V̇ = −k1

∥∥∥Υa(R̃)
∥∥∥2

= −4k1
‖ρ̃‖2(

1 + ‖ρ̃‖2
)2

(4.26)

Lyapunov’s direct method ensures that for Tr
{
R̃0

}
6= −1, Υa(R̃) converges asymp-

totically to zero. As such, (I3,03) is an isolated equilibrium point and
(
R̃, b̃

)
→

(I3,03) for ω = 03 (Mahony et al. (2008)). If angular velocity measurements (Ωm)

are contaminated with noise (ω 6= 03), it is more convenient to represent the differen-

tial operator in (4.25) in the form of Definition 4.1. Hence, the following extra term

will appear

1

2
Tr
{
g̃>Vρ̃ρ̃g̃Q2

}
=

1

4
(

1 + ‖ρ̃‖2
)Tr

{(
I3 − 3ρ̃ρ̃>

)
Q2
}

In this case, the operator LV (0, 0) = 1
4Tr

{
Q2
}

which implies that the significant

impact of covariance matrix Q2 cannot be lessened. One way to attenuate the noise

associated with the angular velocity measurements is to chose a potential function

in the sense of Rodriguez error vector ρ̃ of order higher than two. It is worth men-

tioning that the deterministic filter in (4.19), (4.20) and (4.21) is known as a passive

complementary filter proposed in Mahony et al. (2008).
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4.3.2 Nonlinear Stochastic Attitude Filter in Ito Sense

Generally, the assumption behind nonlinear deterministic filters is that angular veloc-

ity vector measurements are joined with constant or slowly time-variant bias (Cras-

sidis et al. (2007); Mahony et al. (2008)). However, angular velocity vector mea-

surements are typically subject to additive noise components which may weaken the

estimation process of the true attitude dynamics in (4.4). Therefore, we aim to design

a nonlinear stochastic filter in Ito sense taking into consideration that angular veloc-

ity vector measurements are subject to a constant bias and a wide-band of Gaussian

random with zero mean such that E [ω] = 0. Let the true inertial vector v
I(R)
i and

body-frame vector v
B(R)
i be defined as in (4.1). Let the error in attitude estimate be

similar to (4.16).

Consider the nonlinear stochastic filter design

˙̂
R =R̂

[
Ωm − b̂−W

]
×
, R̂ (0) = R̂0 (4.27)

˙̂
b =γ1||R̃||IΥa(R̃)− γ1kbb̂, b̂ (0) = b̂0 (4.28)

˙̂σ =k1γ2||R̃||ID>ΥΥa(R̃)− γ2kσσ̂, σ̂ (0) = σ̂0 (4.29)

W =
k1

ε

2− ||R̃||I
1− ||R̃||I

Υa(R̃) + k2DΥσ̂ (4.30)

where Ωm is angular velocity measurement defined in (4.3), b̂ is the estimate of

the unknown bias b, σ̂ is the estimate of σ which includes the upper bound of Q2

as given in (4.10), R̃ = R>y R̂ with Ry being the reconstructed attitude, Υa(R̃) =

vex
(
Pa(R̃)

)
as given in (A.4), DΥ =

[
Υa(R̃),Υa(R̃),Υa(R̃)

]
, and ||R̃||I is the

Euclidean distance of R̃ as defined in (A.2). Also, γ1 > 0 and γ2 > 0 are adaptation

gains, ε > 0 is a small constant, while kb, kσ, k1 and k2 are positive constants.

Theorem 4.1 Consider the rotation dynamics in (4.9), angular velocity measure-

ments in (4.3) in addition to other given vectorial measurements in (4.2) coupled with

the observer (4.27), (4.28), (4.29), and (4.30). Assume that two or more body-frame

non-collinear vectors are available for measurements and the design parameters γ1 ,

γ2 , ε, kb, kσ, k1, and k2 are chosen appropriately with ε being selected sufficiently

small. Then, for angular velocity measurements contaminated with noise (ω 6= 03),

all the signals in the closed-loop system is semi-globally uniformly ultimately bounded
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in mean square. In addition, the observer errors can be minimized by the appropriate

selection of the design parameters.

Proof: Let the error in vector b be defined as in (4.17). Therefore, the derivative of

attitude error in incremental form of (4.16) can be obtained from (4.8) and (4.27) by

dR̃ =R>R̂
[
Ωm − b̂−W

]
×
dt+ [Ω]>×R

>R̂dt

=

(
R̃ [Ω]× + [Ω]>× R̃ + R̃

[
b̃−W

]
×

)
dt+ R̃ [Qdβ]×

=R̃
[
Ω− R̃>Ω + b̃−W

]
×
dt+ R̃ [Qdβ]× (4.31)

Similar extraction of Rodriguez error vector dynamic in view of (4.9) to (4.8) can be

expressed from (4.31) to (4.32) in Ito’s representation (Ito and Rao (1984)) as

dρ̃ =f̃dt+ g̃Qdβ (4.32)

where ρ̃ is the Rodriguez error vector associated with R̃. Let g̃ = 1
2

(
I3 + [ρ̃]× + ρ̃ρ̃>

)
and f̃ = g̃

(
Ω− R̃>Ω + b̃−W

)
. Consider the following potential function

V
(
ρ̃, b̃, σ̃

)
=

(
‖ρ̃‖2

1 + ‖ρ̃‖2

)2

+
1

2γ1
b̃>b̃+

1

2γ2
σ̃>σ̃ (4.33)

For V := V
(
ρ̃, b̃, σ̃

)
, the differential operator LV in Definition 4.1 for the dynamic

system in (4.32) can be expressed as

LV = V >ρ̃ f̃ +
1

2
Tr
{
g̃>Vρ̃ρ̃g̃Q2

}
− 1

γ1
b̃> ˙̂
b− 1

γ2
σ̃> ˙̂σ (4.34)

where Vρ̃ = ∂V/∂ρ̃ and Vρ̃ρ̃ = ∂V 2/∂2ρ̃. The first and the second partial derivatives



Chapter 4: Nonlinear Stochastic Filters on SO (3): Ito and Stratonovich 67

of (4.33) with respect to ρ̃ can be obtained as follows

Vρ̃ =4
‖ρ̃‖2(

1 + ‖ρ̃‖2
)3
ρ̃ (4.35)

Vρ̃ρ̃ =4

(
1 + ‖ρ̃‖2

)
‖ρ̃‖2 I3 +

(
2− 4 ‖ρ̃‖2

)
ρ̃ρ̃>(

1 + ‖ρ̃‖2
)4

(4.36)

substituting R̃ = Rρ̃ (ρ̃) in (A.1), one can verify that (Appendix C)

1

2
V >ρ̃

(
I3 + [ρ̃]× + ρ̃ρ̃>

)(
Ω− R̃>Ω

)
= 0

Hence, the first part of the differential operator LV in (4.34) can be evaluated by

V >ρ̃ f̃ = 2
‖ρ̃‖2(

1 + ‖ρ̃‖2
)2
ρ̃>
(
b̃−W

)
(4.37)

Keeping in mind the identity in (2.14) and g̃ in (4.32) and combining them with

(4.36), the component Tr
{
g̃>Vρ̃ρ̃g̃Q2

}
can be simplified and expressed as

1

2
Tr
{
g̃>Vρ̃ρ̃g̃Q2

}
=

1

2
(

1 + ‖ρ̃‖2
)3

Tr
{(

1 + ‖ρ̃‖2
)
‖ρ̃‖2Q2

+
(

2− ‖ρ̃‖2 − 3 ‖ρ̃‖4
)
ρ̃ρ̃>Q2

}
(4.38)

Let q̄ =
[
Q1,1,Q2,2,Q3,3

]>
and σ be similar to (4.10). From (4.37) and (4.38), one

can write the operator LV in (4.34) as

LV =2
‖ρ̃‖2 ρ̃>

(
b̃−W

)
(

1 + ‖ρ̃‖2
)2 +

Tr
{(

2− ‖ρ̃‖2 − 3 ‖ρ̃‖4
)
ρ̃ρ̃>Q2

}
2
(

1 + ‖ρ̃‖2
)3 +

Tr
{
‖ρ̃‖2Q2

}
2
(

1 + ‖ρ̃‖2
)2

− 1

γ1
b̃>

˙̂
b− 1

γ2
σ̃> ˙̂σ (4.39)
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Since ‖q̄‖2 = Tr
{
Q2
}

and Tr
{
ρ̃ρ̃>Q2

}
≤ ‖ρ̃‖2 ‖q̄‖2, we have

LV ≤2
‖ρ̃‖2 ρ̃>

(
b̃−W

)
(

1 + ‖ρ̃‖2
)2

+
‖ρ̃‖4 Tr

{
Q2
}

+ 3 ‖ρ̃‖2 ‖q̄‖2

2
(

1 + ‖ρ̃‖2
)3

−

(
1 + 3 ‖ρ̃‖2

)
‖ρ̃‖2 ρ̃>Q2ρ̃

2
(

1 + ‖ρ̃‖2
)3

− 1

γ1
b̃> ˙̂
b− 1

γ2
σ̃> ˙̂σ (4.40)

According to Lemma 4.2, the following equation holds

3 ‖ρ̃‖2 ‖q̄‖2

2
(

1 + ‖ρ̃‖2
)3
≤ 9 ‖ρ̃‖4

8
(

1 + ‖ρ̃‖2
)6
ε

+
ε

2
‖q̄‖4

≤ 9 ‖ρ̃‖4

8
(

1 + ‖ρ̃‖2
)3
ε

+
ε

2

(
3∑
i=1

σi

)2

(4.41)

where ε is a sufficiently small positive constant. Combining (4.41) with (4.40) yields

LV ≤2
‖ρ̃‖2 ρ̃>

(
b̃−W

)
(

1 + ‖ρ̃‖2
)2

+ 2
1
4

∑3
i=1 σi + 9

16ε(
1 + ‖ρ̃‖2

)3
‖ρ̃‖4 − 1

γ1
b̃> ˙̂
b− 1

γ2
σ̃> ˙̂σ

−

(
1 + 3 ‖ρ̃‖2

)
‖ρ̃‖2 ρ̃>Q2ρ̃

2
(

1 + ‖ρ̃‖2
)3

+
ε

2

(
3∑
i=1

σi

)2

(4.42)

Define σ̄ =
∑3
i=1 σi. Substitute

˙̂
b, ˙̂σ, and W from (4.28), (4.29), and (4.30), respec-

tively, in (4.42). Also, ||R̃||I = ‖ρ̃‖2 /
(

1 + ‖ρ̃‖2
)

and Υa(R̃) = 2ρ̃/
(

1 + ‖ρ̃‖2
)

as

defined in (A.2) and (A.4), respectively. Hence, (4.42) yields
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LV ≤− 4

(
8k2 − 1

8
σ̄ +

32k1 − 9

32ε

)
‖ρ̃‖4(

1 + ‖ρ̃‖2
)3
− 4k1

ε

‖ρ̃‖4(
1 + ‖ρ̃‖2

)2

−

(
1 + 3 ‖ρ̃‖2

)
‖ρ̃‖2 ρ̃>Q2ρ̃

2
(

1 + ‖ρ̃‖2
)3

+ kbb̃
>b̂+ kσσ̃

>σ̂ +
ε

2
σ̄2 (4.43)

from (4.43) kbb̃
>b̂ = −kb||b̃||2 + kbb̃

>b and kσσ̃
>σ̂ = −kσ ‖σ̃‖2 + kσσ̃

>σ. Combining

this result with Young’s inequality yields

kbb̃
>b ≤ kb

2
||b̃||2 +

kb
2
‖b‖2

kσσ̃
>σ ≤ kσ

2
‖σ̃‖2 +

kσ
2
‖σ‖2

thereby, the differential operator in (4.43) results in

LV ≤− 4

(
8k2 − 1

8
σ̄ +

32k1 − 9

32ε

)
‖ρ̃‖4(

1 + ‖ρ̃‖2
)3
−

(
1 + 3 ‖ρ̃‖2

)
‖ρ̃‖2 ρ̃>Q2ρ̃

2
(

1 + ‖ρ̃‖2
)3

− 4k1

ε

‖ρ̃‖4(
1 + ‖ρ̃‖2

)2
− kb

2
||b̃||2 − kσ

2
‖σ̃‖2 +

kb
2
‖b‖2 +

kσ
2
‖σ‖2 +

ε

2
σ̄2 (4.44)

such that (4.44) in SO (3) form is equivalent to

LV ≤−
(

8k2 − 1

8
σ̄ +

32k1 − 9

32ε

)
||R̃||I

∥∥∥Υa(R̃)
∥∥∥2

−

(
1

8
+

3

8

||R̃||I
1− ||R̃||I

)
||R̃||IΥa(R̃)>Q2Υa(R̃)

− 4k1

ε
||R̃||2I −

kb
2
||b̃||2 − kσ

2
‖σ̃‖2 +

kb
2
‖b‖2 +

kσ
2
‖σ‖2 +

ε

2
σ̄2 (4.45)

Setting γ1 ≥ 1, γ2 ≥ 1, k1 ≥ 9
32 , k2 ≥ 1

8 , kb > 0, kσ > 0, and the positive constant

ε sufficiently small with Q2 : R+ → R3×3 being bounded, the operator LV in (4.44)

becomes similar to (4.12) in Lemma 4.1. Define c2 =
kb
2 ‖b‖

2 + 1
2 (kσ + ε) σ̄2 which is

governed by the unknown constant bias b and the the upper bound of covariance σ.
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Let X̃ =

[
‖ρ̃‖2

1+‖ρ̃‖2
, 1√

2γ1
b̃>, 1√

2γ2
σ̃>
]>
∈ R7 and

H =

 4k1/ε 0>3 0>3
03 γ1kbI3 03×3

03 03×3 γ2kσI3

 ∈ R7×7

Hence, the differential operator in (4.44) can be expressed as

LV ≤− 4

(
8k2 − 1

8
σ̄ +

32k1 − 9

32ε

)
‖ρ̃‖4(

1 + ‖ρ̃‖2
)3
−

(
1 + 3 ‖ρ̃‖2

)
‖ρ̃‖2 ρ̃>Q2ρ̃

2
(

1 + ‖ρ̃‖2
)3

− X̃>HX̃ + c2 (4.46)

or more simply

LV ≤ −h (‖ρ̃‖)− λ (H)V + c2 (4.47)

such that h (·) is a class K function which includes the first two components in (4.46),

and λ (·) denotes the minimum eigenvalue of a matrix. Based on (4.47), one easily

obtains
d (E [V ])

dt
= E [LV ] ≤ −λ (H)E [V ] + c2 (4.48)

Consider K = E [V (t)]; thus
d(E[V ])
dt ≤ 0 for λ (H) >

c2
K . Hence, V ≤ K is an invariant

set and for E [V (0)] ≤ K there is E [V (t)] ≤ K∀t > 0. Based on Lemma 4.1, the

inequality in (4.48) holds for V (0) ≤ K and for all t > 0 such that

0 ≤ E [V (t)] ≤ V (0) exp (−λ (H) t) +
c2

λ (H)
, ∀t ≥ 0 (4.49)

The above-mentioned inequality implies that E [V (t)] is eventually bounded by c2/λ (H)

indicating that X̃ is SGUUB in the mean square. Let us define Ỹ =
[
ρ̃>, b̃>, σ̃>

]>
∈

R9. Since X̃ is SGUUB, Ỹ is SGUUB in the mean square. For a rotation matrix

R ∈ SO (3), let us define U0 ⊆ SO (3)× R3 × R3 as

U0 =
{(

R̃0, b̃0, σ̃0

)∣∣∣Tr
{
R̃0

}
= −1, b̃0 = 03, σ̃0 = 03

}
The set U0 is forward invariant and unstable for the dynamic system in (4.4). From al-
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most any initial condition such that R̃0 /∈ U0 or, equivalently, ρ̃0 ∈ R3, the trajectory

of X̃ is SGUUB in the mean square.

4.3.3 Nonlinear Stochastic Attitude Filter in Stratonovich

Sense

Stochastic differential equations can be defined and solved in the sense of Ito inte-

gral (Ito and Rao (1984)). Alternatively, Stratonovich integral (Stratonovich (1967))

can be employed for solving stochastic differential equations. The common feature

between Stratonovich and Ito integral is that if the associated function multiplied

by dβ is continuous and Lipschitz, the mean square limit exists. The Ito integral

is defined for functional on {β (τ) , τ ≤ t} which is more natural but does not obey

the chain rule. Conversely, Stratonovich is a well-defined Riemann integral for the

sampled function, it has a continuous partial derivative with respect to β, it obeys the

chain rule and it is more convenient for colored noise (Jazwinski (2007); Stratonovich

(1967)). Hence, the Stratonovich integral is defined for explicit functions of β. In case

when angular velocity measurements are contaminated with a wide-band of random

colored noise process, the solution of (4.6) for ρ (t0) = 0 is defined by

ρ (t) =

t∫
t0

f (ρ (τ) , b (τ)) dτ +

t∫
t0

g (ρ (τ))Qdβ (4.50)

according to subsection 4.3.2, the expected value of (4.50) is

E [ρ] 6=
t∫

t0

E [f (ρ (τ) , b (τ))] dτ

Thus, Stratonovich introduced the Wong-Zakai correction factor which can help in

designing an adaptive estimate for the covariance component. Let us assume that

the attitude dynamic in (4.8) was defined in the sense of Stratonovich (Stratonovich

(1967)), hence, its equivalent Ito (Ito and Rao (1984); Jazwinski (2007); Khasminskii
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(1980)) can be defined by

[dρ]i = [f (ρ, b)]i dt+
3∑

k=1

3∑
j=1

Q2
j,j

2
gkj (ρ)

∂gij (ρ)

∂ρk
dt+ [g (ρ)Qdβ]i (4.51)

where both f (ρ, b) and g (ρ) are defined in (4.8), i, j, k = 1, 2, 3 denote ith, jth and

kth element components of the associate vector or matrix. The term

3∑
k=1

3∑
j=1

Q2
j,j

2
gkj (ρ)

∂gij (ρ)

∂ρk

denotes the Wong-Zakai correction factor of stochastic differential equations (SDEs)

in the sense of Ito’s representations (Wong and Zakai (1965)). Let

Wi (ρ) =
3∑

k=1

3∑
j=1

Q2
j,j

2
gkj (ρ)

∂gij (ρ)

∂ρk

accordingly, one can find that for i = 1

3∑
k=1

3∑
j=1

Q2
j,j

2
gkj (ρ)

∂gij (ρ)

∂ρk
=

1

4

((
1 + ρ2

1

)
ρ1Q2

1,1+

(ρ1ρ2 − ρ3) ρ2Q2
2,2 + (ρ2 + ρ1ρ3) ρ3Q2

3,3

)
see Appendix C. Hence,W (ρ) for i = 1, 2, 3 is

W (ρ) =
1

4

(
I3 + [ρ]× + ρρ>

)
Q2ρ (4.52)

see Appendix C. Manipulating equations (4.51) and (4.52), the stochastic dynamics

of the Rodriguez vector can be expressed as

dρ =F (ρ, b) dt+ g (ρ)Qdβ (4.53)

where g (ρ) := −1
2

(
I3 + [ρ]× + ρρ>

)
and F (ρ, b) := −g (ρ) (Ωm − b)+W (ρ). Define

the error in attitude estimate similar to (4.16). Also, assume that the elements of

covariance matrix Q2 are upper bounded by σ as given in (4.10) such that the bound
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of σ is unknown with nonnegative elements.

Consider the following nonlinear stochastic filter design

˙̂
R =R̂

Ωm − b̂−
1

2

diag
(
Υa(R̃)

)
1− ||R̃||I

σ̂ −W


×

(4.54)

˙̂
b =γ1||R̃||IΥa(R̃)− γ1kbb̂, b̂ (0) = b̂0 (4.55)

˙̂σ =γ2||R̃||I

k1D>Υ +
1

2

diag
(
Υa(R̃)

)
1− ||R̃||I

Υa(R̃)− γ2kσσ̂, σ̂ (0) = σ̂0 (4.56)

W =
k1

ε

2− ||R̃||I
1− ||R̃||I

Υa(R̃) + k2DΥσ̂ (4.57)

where R̂ (0) = R̂0, Ωm is the angular velocity measurement as defined in (4.3), b̂ and

σ̂ are estimates of the unknown parameters b and σ, respectively, R̃ = R>y R̂ with Ry

being the reconstructed attitude, Υa(R̃) = vex
(
Pa(R̃)

)
was given in (A.4), ||R̃||I

is the Euclidean distance of R̃, and DΥ =
[
Υa(R̃),Υa(R̃),Υa(R̃)

]
. γ1 and γ2 are

positive adaptation gains, ε > 0 is a small constant, while kb, kσ, k1 and k2 are

positive constants.

Theorem 4.2 Consider the rotation kinematics in (4.9) with angular velocity mea-

surements and given vector measurements in (4.3) and (4.2), respectively, being cou-

pled with the observer in (4.54), (4.55), (4.56) and (4.57). Assume that two or more

body-frame non-collinear vectors are available for measurements. Then, for angu-

lar velocity measurements contaminated with noise (ω 6= 03),
[
ρ̃>, b̃>, σ̃>

]>
is semi-

globally uniformly ultimately bounded in mean square. Moreover, the observer errors

can be made sufficiently small by choosing the appropriate design parameters.

Proof: Let the error in vector b and σ be defined as in (4.17) and (4.18), respectively.

Hence, the derivative of (4.16) in incremental form can be obtained from (4.8) and

(4.54) by

dR̃ =R̃

[
Ω− R̃>Ω + b̃− 1

2
diag (ρ̃) σ̂ −W

]
×
dt+ R̃ [Qdβ]× (4.58)

Assume that the Rodriguez error vector dynamic of (4.58) is defined in the sense
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of Stratonovich. The extraction of Rodriguez error vector dynamics in view of the

transformation of (4.4) into (4.53) can be expressed from (4.58) to (4.59) in Ito’s

representation (Stratonovich (1967)) as

dρ̃ = F̃dt+ g̃Qdβ (4.59)

where ρ̃ is Rodriguez error vector associated with R̃ with

g̃ =
1

2

(
I3 + [ρ̃]× + ρ̃ρ̃>

)
F̃ = g̃

(
Ω− R̃>Ω + b̃− 1

2
diag (ρ̃) σ̂ −W

)
+W (ρ̃)

W (ρ̃) =
1

4

(
I3 + [ρ̃]× + ρ̃ρ̃>

)
Q2ρ̃

Consider the following potential function

V
(
ρ̃, b̃, σ̃

)
=

(
‖ρ̃‖2

1 + ‖ρ̃‖2

)2

+
1

2γ1
b̃>b̃+

1

2γ2
σ̃>σ̃ (4.60)

For V := V
(
ρ̃, b̃, σ̃

)
, the differential operator LV in Definition 4.1 for the dynamic

system in (4.59) can be written as

LV = V >ρ̃ F̃ +
1

2
Tr
{
g̃>Vρ̃ρ̃g̃Q2

}
− 1

γ1
b̃> ˙̂
b− 1

γ2
σ̃> ˙̂σ (4.61)

The first and the second partial derivatives of (4.60) with respect to ρ̃ are similar to

(4.35) and (4.36), respectively. The first part of differential operator LV in (4.61)

can be evaluated by

V >ρ̃ F̃ =2
‖ρ̃‖2(

1 + ‖ρ̃‖2
)2
ρ̃>
(
b̃− 1

2
diag (ρ̃) σ̂ +

1

2
Q2ρ̃−W

)

≤2
‖ρ̃‖2(

1 + ‖ρ̃‖2
)2
ρ̃>
(
b̃+

1

2
diag (ρ̃) σ̃ −W

)
(4.62)
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where 1
2V
>
ρ̃

(
I3 + [ρ̃]× + ρ̃ρ̃>

)(
Ω− R̃>Ω

)
= 0, see Appendix C. The component

Tr
{
g̃>Vρ̃ρ̃g̃Q2

}
is similar to (4.38). Let q̄ =

[
Q1,1,Q2,2,Q3,3

]>
and σ be similar to

(4.10). The operator LV in (4.60) becomes

LV ≤2
‖ρ̃‖2 ρ̃>

(
b̃−W + 1

2diag (ρ̃) σ̃
)

(
1 + ‖ρ̃‖2

)2
+

Tr
{
‖ρ̃‖2Q2

}
2
(

1 + ‖ρ̃‖2
)2

+
Tr
{(

2− ‖ρ̃‖2 − 3 ‖ρ̃‖4
)
ρ̃ρ̃>Q2

}
2
(

1 + ‖ρ̃‖2
)3

− 1

γ1
b̃> ˙̂
b− 1

γ2
σ̃> ˙̂σ

Since ‖q̄‖2 = Tr
{
Q2
}

and Tr
{
ρ̃ρ̃>Q2

}
≤ ‖ρ̃‖2 ‖q̄‖2, we obtain

LV ≤2
‖ρ̃‖2 ρ̃>

(
b̃−W + 1

2diag (ρ̃) σ̃
)

(
1 + ‖ρ̃‖2

)2
+
‖ρ̃‖4 Tr

{
Q2
}

+ 3 ‖ρ̃‖2 ‖q̄‖2

2
(

1 + ‖ρ̃‖2
)3

− 1

γ1
b̃> ˙̂
b− 1

γ2
σ̃> ˙̂σ −

‖ρ̃‖2
(

1 + 3 ‖ρ̃‖2
)
ρ̃>Q2ρ̃

2
(

1 + ‖ρ̃‖2
)3

(4.63)

From the last result and taking into consideration the inequality in (4.41), according

to Lemma 4.2, and (4.10), equation (4.63) becomes

LV ≤2
‖ρ̃‖2 ρ̃>

(
b̃−W + 1

2diag (ρ̃) σ̃
)

(
1 + ‖ρ̃‖2

)2
+ 2
‖ρ̃‖2 ρ̃>

(
1
4Dρ̃σ + 9

16ε ρ̃
)

(
1 + ‖ρ̃‖2

)3

− 1

γ1
b̃> ˙̂
b− 1

γ2
σ̃> ˙̂σ −

‖ρ̃‖2
(

1 + 3 ‖ρ̃‖2
)
ρ̃>Q2ρ̃

2
(

1 + ‖ρ̃‖2
)3

+
ε

2

(
3∑
i=1

σi

)2

(4.64)

with Dρ̃ = [ρ̃, ρ̃, ρ̃]. From (4.64), we have ρ̃>Dρ̃σ =
(∑3

i=1 σi

)
‖ρ̃‖2. Let us define

σ̄ =
∑3
i=1 σi. Substitute for the differential operators

˙̂
b, ˙̂σ and the correction factor

W from (4.55), (4.56) and (4.57), respectively, with ||R̃||I = ‖ρ̃‖2 /
(

1 + ‖ρ̃‖2
)

and
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Υa(R̃) = 2ρ̃/
(

1 + ‖ρ̃‖2
)

. Hence, the result in (4.64) is equivalent to

LV ≤− 4

(
8k2 − 1

8
σ̄ +

32k1 − 9

32ε

)
‖ρ̃‖4(

1 + ‖ρ̃‖2
)3
−

(
1 + 3 ‖ρ̃‖2

)
‖ρ̃‖2 ρ̃>Q2ρ̃

2
(

1 + ‖ρ̃‖2
)3

− 4k1

ε

‖ρ̃‖4(
1 + ‖ρ̃‖2

)2
− kb||b̃||2 − kσ ‖σ̃‖2 + kbb̃

>b+ kσσ̃
>σ +

ε

2
σ̄2 (4.65)

applying Young’s inequality, one has

kbb̃
>b ≤ kb

2
||b̃||2 +

kb
2
‖b‖2

kσσ̃
>σ ≤ kσ

2
‖σ̃‖2 +

kσ
2
σ̄2

Consequently, (4.65) becomes

LV ≤− 4

(
8k2 − 1

8
σ̄ +

32k1 − 9

32ε

)
‖ρ̃‖4(

1 + ‖ρ̃‖2
)3
−

(
1 + 3 ‖ρ̃‖2

)
‖ρ̃‖2 ρ̃>Q2ρ̃

2
(

1 + ‖ρ̃‖2
)3

− 4k1

ε

‖ρ̃‖4(
1 + ‖ρ̃‖2

)2
− kb

2
||b̃||2 − kσ

2
‖σ̃‖2 +

kb
2
‖b‖2 +

1

2
(kσ + ε) σ̄2 (4.66)

In other words, (4.66) in SO (3) form is equivalent to

LV ≤−

(
1

8
+

3

8

||R̃||I
1− ||R̃||I

)
||R̃||IΥa(R̃)>Q2Υa(R̃)

−
(

8k2 − 1

8
σ̄ +

32k1 − 9

32ε

)
||R̃||I

∥∥∥Υa(R̃)
∥∥∥2 − 4k1

ε
||R̃||2I

− kb
2
||b̃||2 − kσ

2
‖σ̃‖2 +

kb
2
‖b‖2 +

1

2
(kσ + ε) σ̄2 (4.67)

Setting γ1 ≥ 1, γ2 ≥ 1, k1 ≥ 9
32 , k2 ≥ 1

8 , kb > 0, kσ > 0, and the positive constant ε

being sufficiently small, and defining c2 =
kb
2 ‖b‖

2 + 1
2 (kσ + ε) σ̄2, the operator LV

in (4.66) becomes similar to (4.16) in Deng et al. (2001) which is in turn similar to
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(4.12) in Lemma 4.1. Define

X̃ =

[
‖ρ̃‖2

1 + ‖ρ̃‖2
,

1√
2γ1

b̃>,
1√
2γ2

σ̃>
]>
∈ R7,

H =

 4k1/ε 0>3 0>3
03 γ1kbI3 03×3

03 03×3 γ2kσI3

 ∈ R7×7

Thereby, the differential operator in (4.66) is

LV ≤−
(

8k2 − 1

2
σ̄ +

32k1 − 9

8ε

)
‖ρ̃‖4(

1 + ‖ρ̃‖2
)3

−

(
1 + 3 ‖ρ̃‖2

)
‖ρ̃‖2 ρ̃>Q2ρ̃

2
(

1 + ‖ρ̃‖2
)3 − X̃>HX̃ + c2

≤− h (‖ρ̃‖)− λ (H)V + c2 (4.68)

such that h (·) is a class K function which includes the first two components in (4.68).

Based on (4.68), one easily obtains

d (E [V ])

dt
= E [LV ] ≤ −λ (H)E [V ] + c2 (4.69)

Let K = E [V (t)]; then
d(E[V ])
dt ≤ 0 for λ (H) >

c2
K . Thereby, V (t) ≤ K is an

invariant set and for E [V (0)] ≤ K it follows that E [V (t)] ≤ K∀t > 0. Accordingly,

the inequality in (4.69) holds for V (0) ≤ K and for all t > 0 which means that

0 ≤ E [V (t)] ≤ V (0) exp (−λ (H) t) +
c2

λ (H)
, ∀t ≥ 0 (4.70)

The above inequality entails that E [V (t)] is eventually bounded by c2/λ (H) which

implies that X̃ is SGUUB in the mean square. For a rotation matrix R ∈ SO (3), de-

fine U0 ⊆ SO (3)×R3×R3 as U0 =
{(

R̃0, b̃0, σ̃0

)∣∣∣Tr
{
R̃0

}
= −1, b̃0 = 03, σ̃0 = 03

}
.

The set U0 is forward invariant and unstable for the dynamic system in (4.4). There-

fore, for almost any initial condition such that R̃0 /∈ U0 or, equivalently, for any

ρ̃0 ∈ R3, X̃ is SGUUB in the mean square as in Definition 4.2.
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Since, Q2 : R+ → R3×3 is bounded, we have d (E [V ]) /dt < 0 for V > c2/λ (H).

Considering Lemma 4.1 and the design parameters of the stochastic observer in The-

orem 4.1 or 4.2 and combining them with prior knowledge about the covariance upper

bound, allows to make the error signal smaller if the design parameters are chosen

appropriately.

4.3.4 Stochastic Attitude Filters: Ito vs Stratonovich

In this work, the selection of potential functions in (4.33) and (4.60) contributes to

attenuating and controlling the noise level associated with angular velocity measure-

ments. Also, the selection of potential functions in (4.33) and (4.60) produced results

analogous to those (4.47) and (4.68), respectively. This similarity in potential func-

tion selection and final results is critical as it guarantees fair comparison between the

two proposed stochastic filters. The proposed stochastic filters are able to correct the

attitude allowing the user to reduce the noise level associated with angular velocity

measurements through λ (H) by setting the values of ε, k1, kb, kσ, γ1 and γ2 appro-

priately. Nonlinear deterministic attitude filters lack this advantage.

The main features of the nonlinear stochastic attitude filter in the sense of Ito can be

listed as

1) The filter requires less computational power in comparison with the Stratonovich’s

filter.

2) No prior information about the covariance matrix Q2 is required.

3) This filter is applicable to white noise.

Whereas, the main characteristics of the nonlinear stochastic attitude filter in the

sense of Stratonovich are

1) The filter demands more computational power in comparison with the Ito’s

filter.

2) No prior information about the covariance matrix Q2 is required.

3) The filter is applicable for white as well as colored noise.
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4.4 Simulations

This section presents the performance and comparison among the two proposed non-

linear stochastic filters on SO (3). The first nonlinear stochastic filter is driven in the

sense of Ito and the second one considers Stratonovich. Consider the orientation ma-

trix R obtained from attitude dynamics in equation (4.4) with the following angular

velocity input signal

Ω =

 sin (0.7t)

0.7sin (0.5t+ π)

0.5sin
(
0.3t+ π

3

)
 (rad/sec)

while the initial attitude is R (0) = I3. Let the true angular velocity (Ω) be con-

taminated with a wide-band of random noise process with zero mean and stan-

dard deviation (STD) be equal to 0.5 (rad/sec) such that Ωm = Ω + b + ω with

b = 0.1 [1,−1, 1]>, ω = 0.5n (t), where t denotes real time, n (t) = randn (3, 1) where

randn (3, 1) is a MATLABr command, which refers to a normally distributed ran-

dom vector at each time instant. Let non-collinear inertial-frame vectors be given as

v
I(R)
1 = 1√

3
[1,−1, 1]> and v

I(R)
2 = [0, 0, 1]>, while body-frame vectors v

B(R)
1 and

v
B(R)
2 are obtained by v

B(R)
i = R>v

I(R)
i + b

B(R)
i + ω

B(R)
i for i = 1, 2. Also, suppose

that an additional noise vector ω
B(R)
i with zero mean and STD of 0.15 corrupted the

body-frame vector measurements and bias components b
B(R)
1 = 0.1 [−1, 1, 0.5]> and

b
B(R)
2 = 0.1 [0, 0, 1]>. The third vector of inertial-frame and body-frame is extracted

by v
I(R)
3 = v

I(R)
1 × v

I(R)
2 and v

B(R)
3 = v

B(R)
1 × v

B(R)
2 and followed by normalization

of the three vectors at each time instant according to (4.2). From vectorial measure-

ments, the corrupted reconstructed attitude Ry is obtained by SVD (Markley (1988))

with R̃ = R>y R̂, see Appendix B. The total simulation time is 15 seconds.

For a very large initial attitude error, the initial rotation of attitude estimate

is given according to angle-axis parameterization in (2.7) by R̂ (0) = Rα (α, u/ ‖u‖)
with α = 179.9 (deg) and u = [1, 5, 3]> being very close to the unstable equilibria
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such that ||R̃ (0) ||I ≈ 0.99999. The initial conditions are

R (0) =

 1 0 0

0 1 0

0 0 1

 , R̂ (0) =

 −0.9429 0.2848 0.1729

0.2866 0.4286 0.8568

0.1700 0.8574 −0.4857


Initial estimates for both filters are b̂ (0) = [0, 0, 0]> and σ̂ (0) = [0, 0, 0]>. The

same notation is used in derivations of both nonlinear stochastic filters. The design

parameters were chosen as γ1 = 1, γ2 = 1, kb = 0.5, kσ = 0.5, k1 = 0.5, k2 = 0.5 and

ε = 0.5. Additionally, the following color notation is used: green color demonstrates

the true value, red illustrates the performance of Ito’s filter and blue represents the

performance of Stratonovich stochastic filter. Also, magenta refers to a measured

value.

The true angular velocity (Ω) and the high values of noise and bias components

introduced through the measurement process of Ωm plotted against time are depicted

in Figure 4.2. Also, Figure 4.3 presents the true body-frame vectors and their un-

certain measurements. Figure 4.4 shows the tracked Euler angles (φ, θ, ψ) of Ito and

Stratonovich stochastic attitude filters relative to true angles plotted against time.

Figure 4.4 presents impressive tracking performance of the proposed stochastic filters.

The mapping from SO (3) implies that ρ̃→∞ as ||R̃||I → 1. Accordingly, Figure 4.5

demonstrates the convergence of the square error of Rodriguez vector ρ̃2 from large

error initialization to a very small value close to zero. Figure 4.6 confirms all the

previous discussion using normalized Euclidean distance ||R̃||I = 1
4Tr

{
I3 −R>R̂

}
which shows remarkable stable and fast convergence to very small neighborhood of

the origin. However, Ito stochastic filter is characterized by higher oscillatory perfor-

mance compared to Stratonovich stochastic filter.

To further compare the steady-state performance of the proposed filters in terms

of normalized Euclidean distance of the error (||R̃||I), Table 4.1 summarizes statistical

details of the mean and the STD of ||R̃||I . Both filters showed very small mean error

of ||R̃||I with ||R̃||I being regulated to close neighborhood of the origin however,

Stratonovich’s filter showed a remarkable less mean errors and STD in comparison

with Ito’s filter. Numerical results included in Table 4.1 proves that the proposed

nonlinear stochastic filters are robust as illustrated in Figure 4.4, 4.5, and 4.6.
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Figure 4.2: True and measured angular velocities.
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Figure 4.3: True and measured body-frame vectorial measurements.

Table 4.1: Statistical analysis of ||R̃||I of the two proposed filter.

Output data of ||R̃||I over the period (1-15 sec)

Filter Ito Stratonovich

Mean 4.1× 10−3 2.8× 10−3

STD 3× 10−3 1.6× 10−3
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Figure 4.4: Tracking performance of Euler angles.
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Figure 4.5: Rodriguez vector square error ρ̃2.

Finally, Figure 4.7 and 4.8 illustrate the estimates of the stochastic filters plotted

against time. It can be concluded from Figure 4.7 and 4.8 that the estimates of the

proposed filter are stable and smooth.
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Figure 4.6: Tracking performance of normalized Euclidean distance error ||R̃||I .
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Figure 4.7: Estimates of stochastic attitude filters (b̂).

Results show effectiveness and robustness of the two stochastic filters against

bias and noise components contaminating angular velocity measurements, as well as

uncertainty in vectorial measurements and large initial error. Stochastic filters have

proven to be able to correct their attitude in a small amount of time requiring no prior

information about the covariance matrix Q2 in order to obtain impressive estimation

performance. The main advantage of Stratonovich stochastic filter, as mentioned in

Subsection 4.3.4, is that the filter is applicable to white as well as colored noise. In

addition, it had smaller mean square error and STD to Ito’s filter as given in Table

4.1. Nonetheless, Ito stochastic filter requires less computational power.
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Figure 4.8: Estimates of stochastic attitude filters (σ̂).

4.5 Conclusion

Deterministic filters neglect the noise associated with the angular velocity measure-

ments in filter derivation. This can be clearly noticed in the selection of the potential

function. However, an alternate potential function which has not been considered

in the literature is able to significantly attenuate the effects of noise in angular ve-

locities to lower levels. As such, this chapter reformulated the attitude problem to

stochastic sense through Rodriguez vector parameterization. Two different nonlinear

stochastic attitude filters on the Special Orthogonal Group SO (3) have been pro-

posed. The first filter is developed in the sense of Ito and the second filter is driven

in the sense of Stratonovich. The resulting estimators have proven to have fast con-

vergence properties in the presence of high levels of noise in angular velocity and

vectorial measurements.



Chapter 5

Nonlinear Explicit Stochastic Attitude

Filter on SO (3)

5.1 Introduction

This chapter proposes a nonlinear stochastic filter evolved on the Special Orthogonal

Group SO (3) as a solution to the attitude filtering problem. One of the most com-

mon potential functions for nonlinear deterministic attitude observers is studied and

reformulated to address the noise attached to the attitude dynamics. The resultant

estimator and correction factor demonstrate convergence properties and remarkable

ability to attenuate the noise. The stochastic dynamics of the attitude problem are

mapped from SO (3) to Rodriguez vector. The proposed stochastic filter evolved on

SO (3) guarantees that errors in the Rodriguez vector and estimates steer very close

to the neighborhood of the origin and that the errors are semi-globally uniformly

ultimately bounded in mean square. Simulation results illustrate the robustness of

the proposed filter in the presence of high uncertainties in measurements. The results

of this chapter were first published in Hashim et al. (2018a).

The rest of the chapter is organized as follows: gives an overview of mathematical

notation and preliminaries. The problem is formulated in stochastic sense in Section

5.2. The nonlinear stochastic filter on SO (3) is proposed and the stability analysis

is presented in Section 5.3. Section 5.4 demonstrates the numerical results. Finally,

closing notes are provided in Section 5.5.
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5.2 Problem Formulation

The attitude can be extracted from n-known non-collinear inertial vectors measured

in a coordinate system fixed to the rigid body. Consider that the superscripts I and B
refer to the vectors associated with the inertial-frame and body-frame, respectively.

Let v
B(R)
i ∈ R3 be the ith measurement vector in the body-fixed frame for i =

1, 2, . . . , n. Let R ∈ SO (3) denote the rotation matrix from body-fixed frame to a

given inertial-fixed frame such that the body-fixed frame vector is defined by

v
B(R)
i = R>v

I(R)
i + b

B(R)
i + ω

B(R)
i (5.1)

where v
I(R)
i ∈ R3 denotes the inertial-fixed frame vector while b

B(R)
i and ω

B(R)
i

denote the additive bias and noise components of the associated body-frame vector,

respectively, for all b
B(R)
i , ω

B(R)
i ∈ R3 and i = 1, 2, . . . , n. The assumption that

n ≥ 2 is necessary for instantaneous three-dimensional attitude determination. It is

common to employ the normalized values of reference and body-frame vectors in the

process of attitude estimation such as

υ
I(R)
i =

v
I(R)
i∥∥∥v
I(R)
i

∥∥∥ , υ
B(R)
i =

v
B(R)
i∥∥∥v
B(R)
i

∥∥∥ (5.2)

and the attitude can be defined knowing υ
I(R)
i and υ

B(R)
i . For the sake of simplicity,

the body frame vector (v
B(R)
i ) is considered to be noise and bias free in the stability

analysis. In the Simulation Section, on the contrary, noise and bias are present in

the measurements. The true attitude dynamics and the associated Rodriguez vector

dynamics are given in (5.3) and (5.4), respectively, as

Ṙ = R [ω]× (5.3)

ρ̇ =
1

2

(
I3 + [ρ]× + ρρ>

)
Ω (5.4)

where Ω ∈ R3 denotes the true value of angular velocity. Gyroscope or the rate gyros

measures the angular velocity vector in the body-frame relative to the inertial-frame.
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The measurement vector of angular velocity is

Ωm = Ω + b+ ω (5.5)

where b and ω denote the additive bias and noise components, respectively, for all

b, ω ∈ R3. The noise vector ω is assumed to be a Gaussian noise vector such that

E [ω] = 0. The measurement of angular velocity vector is subject to additive noise

and bias, which are characterized by randomness and unknown behavior, impairing

the estimation process of the true attitude dynamics in (5.3) or (5.4). As such, (5.5) is

assumed to be excited by a wide-band of random Gaussian noise process. Derivative

of any Gaussian process yields a Gaussian process allowing the stochastic attitude

dynamics to be written as a function of Brownian motion process vector (Khasminskii

(1980))

ω = Qdβ
dt

where Q ∈ R3×3 is a non-negative unknown time-variant diagonal matrix. In addi-

tion, each parameter of Q in the diagonal is bounded with an unknown bound. The

properties of Brownian motion process can be found in Deng et al. (2001); Hashim et

al. (2018b); Ito and Rao (1984). The covariance component associated with noise ω

can be defined by a diagonal matrix Q2 = QQ>. Considering the attitude dynamics

in (5.4) and replacing ω by Qdβ/dt, the stochastic differential equation in (5.4) can

be expressed by

dρ =f (ρ, b) dt+ g (ρ)Qdβ (5.6)

Similarly, the stochastic dynamics of (5.3) are

dR = R [Ωm − b]× dt−R [Qdβ]× (5.7)

where g (ρ) = −1
2

(
I3 + [ρ]× + ρρ>

)
and f (ρ, b) = −g (ρ) (Ωm − b) with g : R3 →

R3×3 and f : R3 × R3 → R3. g is locally Lipschitz in ρ and f is locally Lipschitz in

ρ and b. Accordingly, the dynamic system in (5.6) has a solution on t ∈ [t0, T ]∀t0 ≤
T <∞ in the mean square sense for any ρ (t) such that t 6= t0, ρ− ρ0 is independent

of {β (τ) , τ ≥ t} ,∀t ∈ [t0, T ] (Deng et al. (2001); Hashim et al. (2018b)). Aiming to

achieve adaptive stabilization of the unknown time-variant covariance matrix, let us
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introduce the following unknown constant

σ =
[
max

{
Q2

1,1

}
,max

{
Q2

2,2

}
,max

{
Q2

3,3

}]>
(5.8)

where max {·} is the maximum value of the associated element. From (5.5), and (5.8),

it can be noticed that b and σ are bounded. It is important to introduce the following

Lemma which will be useful in the subsequent filter derivation.

Lemma 5.1 Let R ∈ SO (3), MR = (MR)> ∈ R3×3, MR be positive-definite, and

Tr {MR} = 3. Define M̄R = Tr {MR} I3−MR and let the minimum singular values

of M̄R be λ := λ
(
M̄R

)
. Then, the following holds:

‖MRR‖I =
1

2

ρ>M̄Rρ

1 + ‖ρ‖2
(5.9)

vex (Pa (MRR)) =

(
I3 + [ρ]×

)>
M̄R

1 + ‖ρ‖2
ρ (5.10)

‖MRR‖I ≤
2

λ

||vex (Pa (MRR)) ||2

1 + Tr
{

(MR)−1 MRR
} (5.11)

Proof. See Appendix A.

Definition 5.1 Ji and Xi (2006) The Rodriguez vector ρ of the stochastic dynamics

in (5.6) is known to be semi-globally uniformly ultimately bounded (SGUUB) if for a

compact set Λ ∈ R3 and any ρ0 = ρ (t0), there exists a constant κ > 0, and a time

constant T = T (κ, ρ0) such that E [‖ρ‖] < κ,∀t > t0 + T .

Definition 5.2 Consider the stochastic dynamics in (5.6). For a given function

V (ρ) ∈ C2, the differential operator LV is defined by

LV (ρ) = V >ρ f (ρ, b) +
1

2
Tr
{
g (ρ)Q2g> (ρ)Vρρ

}
such that Vρ = ∂V/∂ρ, and Vρρ = ∂2V/∂ρ2.

Lemma 5.2 Deng et al. (2001) Let the stochastic dynamics in (5.6) be given a po-

tential function V ∈ C2 such that V : R3 → R+, class K∞ functions ϕ1 (·) and ϕ2 (·),
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constants c1 > 0 and c2 ≥ 0, and a non-negative function Z (‖ρ‖) such that

ϕ1 (‖ρ‖) ≤ V (ρ) ≤ ϕ2 (‖ρ‖) (5.12)

LV (ρ) =V >ρ f (ρ, b) +
1

2
Tr
{
g (ρ)Q2g> (ρ)Vρρ

}
≤− c1Z (‖ρ‖) + c2 (5.13)

then for ρ0 ∈ R3, there exists almost a unique strong solution on [0,∞) for the

dynamic system in (5.6). The solution ρ is bounded in probability such that

E [V (ρ)] ≤ V (ρ0) exp (−c1t) +
c2
c1

(5.14)

Furthermore, if the inequality in (5.14) holds, then ρ in (5.6) is SGUUB in the mean

square.

The proof of Lemma 5.2 can be found in Deng et al. (2001); Ji and Xi (2006). Con-

sider the attitude R ∈ SO (3) and define the unstable set U ⊆ SO (3) by U :=

{R|Tr {R} = −1,Pa (R) = 0} such that the unstable set U is forward invariant for

the stochastic dynamics in (5.3) which implies that ρ =∞. As such, for almost any

initial condition such that R0 /∈ U or ρ0 ∈ R3, one has −1 < Tr {R0} ≤ 3 and the

trajectory of ρ converges to the neighborhood of the equilibrium point.

Lemma 5.3 (Young’s inequality) Let y and x be real values such that y, x ∈ Rn.

Then, for any c > 0 and d > 0 satisfying 1
c + 1

d = 1 with appropriately small positive

constant ε, the following inequality is satisfied

y>x ≤ (1/c) εc ‖y‖c + (1/d) ε−d ‖x‖d (5.15)

5.3 Nonlinear Stochastic Filter on SO (3)

A set of vectorial measurements υIi and υBi in (5.2) can be employed to reconstruct the

uncertain attitude matrix Ry, however, obtaining Ry might be very computationally

complex. Therefore, the objective is to propose a nonlinear stochastic attitude filter
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which uses a set of vectorial measurements directly without the need of attitude

reconstruction. Consider the error from body-frame to estimator-frame defined as

R̃ = RR̂> (5.16)

Also, let the error in b and σ be given by

b̃ = b− b̂ (5.17)

σ̃ = σ − σ̂ (5.18)

Recall υ
I(R)
i and υ

B(R)
i from (5.2) for i = 1, . . . , n. Define

MR = (MR)> =
n∑
i=1

siυ
I(R)
i

(
υ
I(R)
i

)>
MB =

(
MB

)>
=

n∑
i=1

siυ
B(R)
i

(
υ
B(R)
i

)>
= R>MRR (5.19)

with si > 0 being the confidence level of the ith sensor measurement. Each of MR

and MB are symmetric matrices. Consider υ
I(R)
i and υ

B(R)
i from (5.2) for i = 1, . . . , n

and at least two non-collinear vectors available (n ≥ 2). If n = 2, the third vector

is obtained by υ
I(R)
3 = υ

I(R)
1 × υ

I(R)
2 and υ

B(R)
3 = υ

B(R)
1 × υ

B(R)
2 which is non-

collinear with the other two vectors such that rank (MR) = rank
(
MB

)
= 3 full

rank. Consequently, the three eigenvalues of MR and MB are greater than zero.

Let M̄R = Tr {MR} I3 −MR ∈ R3×3, provided that rank (MR) = 3, the following

statements hold (Bullo and Lewis (2004) page. 553):

i. M̄R is a symmetric positive-definite matrix.

ii. Define the three eigenvalues of MR by λ (MR) = {λ1, λ2, λ3}, then λ
(
M̄R

)
=

{λ3 + λ2, λ3 + λ1, λ2 + λ1} such that the minimum singular value λ
(
M̄R

)
> 0.

In all the discussion that follows it is assumed that the above statements hold. Con-

sider
∑n
i=1 si = 3 and define

υ̂
B(R)
i = R̂>υI(R)

i (5.20)
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From the identity in (2.11), one can find

n∑
i=1

si
2

[
υ
B(R)
i × υ̂B(R)

i

]
×

=
n∑
i=1

si
2

(
υ̂
B(R)
i

(
υ
B(R)
i

)>
− υB(R)

i

(
υ̂
B(R)
i

)>)

=
1

2

n∑
i=1

ki

(
R̂>υI(R)

i

(
υ
I(R)
i

)>
R−R>υI(R)

i

(
υ
I(R)
i

)>
R̂

)
=

1

2
R̂>

(
MRR̃− R̃>MR

)
R̂ = R̂>Pa

(
MRR̃

)
R̂

Hence, the following components can be obtained in terms of vector measurements

which will be used in the proposed filter design

vex
(
Pa
(
MRR̃

))
=vex

(
Pa
(
MRR̃

))
= R̂

n∑
i=1

si
2
υ
B(R)
i × υ̂B(R)

i (5.21)

||MRR̃||I =
1

4
Tr
{

MR

(
I3 − R̃

)}
=

3

4
− 1

4
Tr

{
R̂

n∑
i=1

(
siυ̂
B(R)
i

(
υ
B(R)
i

)>)
R̂>
}

(5.22)

Υ
(
MR, R̃

)
=Tr


(

n∑
i=1

siυ
I(R)
i

(
υ
I(R)
i

)>)−1

×R̂
n∑
i=1

(
siυ̂
B(R)
i

(
υ
B(R)
i

)>)
R̂>
}

(5.23)

where
[
R̂
∑n
i=1

si
2 υ
B(R)
i × υ̂B(R)

i

]
×

= R̂
∑n
i=1

si
2

[
υ
B(R)
i × υ̂B(R)

i

]
×
R̂> as in (2.12).

Define λ := λ
(
M̄R

)
, Υ := Υ

(
MR, R̃

)
, and vex

(
Pa
(
MRR̃

))
:= vex

(
Pa
(
MRR̃

))
,
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and consider the following nonlinear filter design on SO (3)

˙̂
R =R̂

[
Ωm − b̂

]
×

+ [W ]× R̂ (5.24)

˙̂
b =− γ||MRR̃||IR̂>vex

(
Pa
(
MRR̃

))
− γkbb̂ (5.25)

˙̂σ =
γ||MRR̃||I

λ

diag
(
R̂>vex

(
Pa
(
MRR̃

)))
1 + Υ

R̂>vex
(
Pa
(
MRR̃

))
− γkσσ̂

(5.26)

W =
kw
ελ

(1 + Υ )2 λ2 + 1

1 + Υ
vex

(
Pa
(
MRR̃

))
+

1

λ

R̂diag
(
R̂>vex

(
Pa
(
MRR̃

)))
1 + Υ

σ̂

(5.27)

where vex
(
Pa
(
MRR̃

))
,
∥∥∥MRR̃

∥∥∥
I
, and Υ

(
MR, R̃

)
are defined in (5.21), (5.22),

and (5.23) in terms of vectorial measurements, respectively, diag (·) is a diagonal of

the associated component, kw, kb, kσ, and γ are positive constants, and b̂ and σ̂ are

the estimate of b and σ, respectively.

Theorem 5.1 Consider the observer in (5.24), (5.25), (5.26) and (5.27) coupled

with angular velocity measurements in (5.5) and the normalized vectors in (5.2). As-

sume that two or more body-frame non-collinear vectors are available for measure-

ments such that MR in (5.19) is nonsingular. Then, for angular velocity measure-

ments contaminated with noise and ρ̃ ∈ R3, ρ̃, b̃ and σ̃ are regulated to an arbitrarily

small neighborhood of the origin in probability; and
[
ρ̃>, b̃>, σ̃>

]>
is SGUUB in mean

square.

Proof: Let the error in attitude be R̃ = RR̂> as given in (5.16) and consider (5.17)

and (5.18). In view of (5.3) and (5.24), the derivative of attitude error in incremental

form becomes

dR̃ =−R
[
Ωm − b̂

]
×
R̂>dt−RR̂> [W ]× dt

+R

[
Ωm − b−Q

dβ

dt

]
×
R̂>dt

=−R [σ̃]× R̂
>dt−RR̂> [W ]× dt−R [Qdβ]× R̂

>

=− R̃
[
R̂b̃+W

]
×
dt− R̃

[
R̂Qdβ

]
×

(5.28)



Chapter 5: Nonlinear Explicit Stochastic Attitude Filter on SO (3) 93

where
[
R̂σ̃
]
×

= R̂ [σ̃]× R̂
> as in (2.12). Recalling the extraction of Rodriguez vector

dynamics from (5.7) to (5.6), the Rodriguez error vector dynamic in (5.28) can be

expressed as

dρ̃ =f̃dt+ g̃R̂Qdβ (5.29)

where ρ̃ is a Rodriguez error vector associated with R̃, g̃ = −1
2

(
I3 + [ρ̃]× + ρ̃ρ̃>

)
,

and f̃ = g̃
(
R̂b̃+W

)
.

Remark 5.1 From literature, one of the traditional potential functions of the adap-

tive filter is similar to Crassidis et al. (2007); Mahony et al. (2008); Zlotnik and

Forbes (2017)

V
(
R̃, b̃

)
=

1

4
Tr
{

MR

(
I3 − R̃

)}
+

1

2γ
b̃>b̃ (5.30)

Given (5.9), the expression in (5.30) is equivalent to (5.31) in Rodriquez vector form

V
(
ρ̃, b̃
)

=
1

2

ρ̃>M̄Rρ̃

1 + ‖ρ̃‖2
+

1

2γ
b̃>b̃ (5.31)

The weakness of the potential function in (5.31) is that the trace component of the

operator LV in Definition 5.2 for the dynamic system in (5.6) at ρ̃ = 0 can be

evaluated by
1

2
Tr
{
R̂>g̃>Vρ̃ρ̃g̃R̂Q2

}∣∣∣∣
ρ̃=0

=
1

8
Tr
{
R̂>M̄RR̂Q2

}
such that the significant impact of Q2 cannot be lessened.

Therefore, consider the following smooth attitude potential function

V
(
ρ̃, b̃, σ̃

)
=

1

4

(
ρ̃>M̄Rρ̃

1 + ‖ρ̃‖2

)2

+
1

2γ
b̃>b̃+

1

2γ
σ̃>σ̃ (5.32)

For V := V
(
ρ̃, b̃, σ̃

)
, the differential operator LV in Definition 5.2 can be written as

LV = V >ρ̃ f̃ +
1

2
Tr
{
R̂>g̃>Vρ̃ρ̃g̃R̂Q2

}
− 1

γ
b̃> ˙̂
b− 1

γ
σ̃> ˙̂σ (5.33)
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Hence, the first and second partial derivatives of (5.32) can be defined respectively,

as follows

Vρ̃ =
ρ̃>M̄Rρ̃(

1 + ‖ρ̃‖2
)3

((
1 + ‖ρ̃‖2

)
I3 − ρ̃ρ̃>

)
M̄Rρ̃ (5.34)

Vρ̃ρ̃ =
ρ̃>M̄Rρ̃(

1 + ‖ρ̃‖2
)2

M̄R + 2
M̄Rρ̃ρ̃

>M̄R(
1 + ‖ρ̃‖2

)2

− 4
ρ̃>M̄Rρ̃(

1 + ‖ρ̃‖2
)3

(
M̄Rρ̃ρ̃

> + ρ̃ρ̃>M̄R

)

+

(
ρ̃>M̄Rρ̃

)2

(
1 + ‖ρ̃‖2

)4

(
6ρ̃ρ̃> −

(
1 + ‖ρ̃‖2

)
I3

)
(5.35)

from (5.29) and (5.34), the first part of (5.33) can be defined by

V >ρ̃ f̃ = −1

2

ρ̃>M̄Rρ̃ρ̃
>M̄R(

1 + ‖ρ̃‖2
)2

(
I3 + [ρ̃]×

) (
R̂b̃+W

)
dt

= −||MRR̃||Ivex
(
Pa
(
MRR̃

))> (
R̂b̃+W

)
dt (5.36)

where ||MRR̃||I and vex
(
Pa
(
MRR̃

))
are defined in (5.9) and (5.10), respectively.

From (5.29) and (5.35), the second part of (5.33) can be obtained by

1

2
Tr
{
R̂>g̃>Vρ̃ρ̃g̃R̂Q2

}
=− 1

4
Tr

1

4

(
ρ̃>M̄Rρ̃

1 + ‖ρ̃‖2

)2

R̂Q2R̂>


+

1

8

ρ̃>M̄Rρ̃(
1 + ‖ρ̃‖2

)2
Tr
{(

I3 + [ρ̃]×
)>

M̄R
(
I3 + [ρ̃]×

)
R̂Q2R̂>

−
(
ρ̃ρ̃>M̄R

(
I3 + [ρ̃]×

)
+
(
I3 + [ρ̃]×

)>
M̄Rρ̃ρ̃

>
)
R̂Q2R̂>

}
+ Tr


(
I3 + [ρ̃]×

)>
M̄Rρ̃ρ̃

>M̄R
(
I3 + [ρ̃]×

)
4
(

1 + ‖ρ̃‖2
)2

R̂Q2R̂>


(5.37)
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from (5.9) and (5.10), one has

1

2
Tr
{
R̂>g̃>Vρ̃ρ̃g̃R̂Q2

}
=

− 1

4
Tr

{
||MRR̃||I

((
I3 + [ρ̃]×

)>
MR

(
I3 + [ρ̃]×

)
1 + ‖ρ̃‖2

+||MRR̃||II3

)
R̂Q2R̂>

}
+

1

4
Tr

{(
vex

(
Pa
(
MRR̃

))
vex

(
Pa
(
MRR̃

))>
+||MRR̃||I

(
3I3 − 2vex

(
Pa
(
MRR̃

))
ρ̃>
))}

R̂Q2R̂> (5.38)

where the first part of (5.38) is negative for all ρ̃ 6= 0 and Q2 6= 0. From Appendix

A, one can easily find that for Υ := Υ
(
MR, R̃

)
1 + ||ρ̃||2 =

1

1− ||R̃||I
=

4

1 + Υ
(5.39)

Accordingly, from Appendix A, vex
(
Pa
(
R̃
))

= 2ρ̃/
(
1 + ||ρ̃||2

)
, and from (5.10)

vex
(
Pa
(
MRR̃

))
=

(
I3 + [ρ̃]×

)>
M̄Rρ̃(

1 + ||ρ̃||2
) (5.40)

In addition to the result in (5.39), one has

λvex
(
Pa
(
MRR̃

))>
R̂Q2R̂>ρ̃

≤ 2
vex

(
Pa
(
MRR̃

))>
R̂diag

(
R̂>vex

(
Pa
(
MRR̃

)))
1 + Υ

σ (5.41)

Define q =
[
Q1,1,Q2,2,Q3,3

]>
, as Tr

{
R̂Q2R̂>

}
= Tr

{
Q2
}

, thereby, the following

inequality holds

Tr

{
vex

(
Pa
(
MRR̃

))
vex

(
Pa
(
MRR̃

))>
R̂Q2R̂>

}
≤ ‖q‖2

∥∥∥vex
(
Pa
(
MRR̃

))∥∥∥2
(5.42)
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Let us combine the results in (5.41) and (5.42) with (5.38). Next, we express the

differential operator in (5.33) in its complete form

LV ≤− ||MRR̃||Ivex
(
Pa
(
MRR̃

))> (
R̂b̃+W

)
− 1

4
Tr

{
||MRR̃||I

((
I3 + [ρ̃]×

)>
MR

(
I3 + [ρ̃]×

)
1 + ‖ρ̃‖2

+ ||MRR̃||II3

)
R̂Q2R̂>

}

+
1

4
Tr

{(∥∥∥vex
(
Pa
(
MRR̃

))∥∥∥2
+ 3||MRR̃||I

)
‖q‖2

}

+
||MRR̃||I

λ
vex

(
Pa
(
MRR̃

))>
R̂

diag
(
R̂>vex

(
Pa
(
MRR̃

)))
1 + Υ

σ

− 1

γ
b̃> ˙̂
b− 1

γ
σ̃> ˙̂σ (5.43)

Considering (5.15) in Lemma 5.3, one obtains

‖q‖2
∥∥∥vex

(
Pa
(
MRR̃

))∥∥∥2
≤ ε

2
‖q‖4 +

1

2ε

∥∥∥vex
(
Pa
(
MRR̃

))∥∥∥4

‖q‖2 ||MRR̃||I ≤
ε

2
‖q‖4 +

1

2ε
||MRR̃||2I (5.44)

since the second term in (5.43) is negative semi-definite, we combine (5.44) with

(5.43). Disregarding the second term in (5.43) and consider the inequality in (5.11)

such that

LV ≤− ||MRR̃||Ivex
(
Pa
(
MRR̃

))> (
R̂b̃+W

)
+

1

λ
||MRR̃||Ivex

(
Pa
(
MRR̃

))>( 1

2ε

(1 + Υ )2 λ2 + 1

1 + Υ
vex

(
Pa
(
MRR̃

))

+
R̂diag

(
R̂>vex

(
Pa
(
MRR̃

)))
1 + Υ

σ


− 1

γ
b̃> ˙̂
b− 1

γ
σ̃> ˙̂σ +

ε

2
σ̄2 (5.45)
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where σ̄ =
∑3
i=1 σi ≥ ‖q‖

2. With direct substitution of
˙̂
b, ˙̂σ and W from (5.25),

(5.26), and (5.27), respectively, one finds

LV ≤− 2kw − 1

2ε

(
λ2 (1 + Υ )2 + 1

)
||MRR̃||2I − kb||b̃||

2

− kσ ‖σ̃‖2 + kbb̃
>b+ kσσ̃

>σ +
ε

2
σ̄2 (5.46)

According to (5.15) in Lemma 5.3, one has

b̃>b ≤ 1

2
||b̃||2 +

1

2
‖b‖2

σ̃>σ ≤ 1

2
‖σ̃‖2 +

1

2
‖σ‖2

Thus, the differential operator in (5.46) becomes

LV ≤− 2kw − 1

2ε
||MRR̃||2I −

kb
2
||b̃||2 − kσ

2
‖σ̃‖2

+
1

2
(kσ + ε) σ̄2 +

1

2
kb ‖b‖2 (5.47)

Define

c2 =
1

2
(kσ + ε) σ̄2 +

1

2
kb ‖b‖2 ∈ R

X̃ =

[
1

2

ρ̃>M̄Rρ̃

1 + ‖ρ̃‖2
,

1√
2γ
b̃>,

1√
2γ
σ̃>
]>
∈ R7

H =


2kw−1

2ε 0>3 0>3
03 γkbI3 03×3

03 03×3 γkσI3

 ∈ R7×7

as such, the differential operator in (5.47) becomes

LV ≤ −X̃>HX̃ + c2 ≤ −λ (H)V + c2 (5.48)

where λ (·) is the minimum singular value of a matrix. Hence, from (5.48), one has

d (E [V ]) /dt = E [LV ] ≤ −λ (H)V + c2 (5.49)
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According to Lemma (5.2), the inequality in (5.49) means

0 ≤ E [V (t)] ≤ V (0) exp (−λ (H) t) +
c2

λ (H)
, ∀t ≥ 0 (5.50)

The inequality in (5.50) means that E [V (t)] is ultimately bounded by c2/λ (H).

Let Ỹ = [ρ̃>, b̃>, σ̃>]>, hence, Ỹ is SGUUB in the mean square. For Ỹ0 ∈ R9,

the trajectory of Ỹ steers to the neighborhood of the origin and c2/λ (H) being the

ultimate upper bound of the neighborhood.

5.4 Simulation

Let R be expressed by the dynamics in (5.3) with

Ω =
[
sin (0.7t) , 0.7sin (0.5t+ π) , 0.5sin

(
0.3t+

π

3

)]>
rad/sec

and initial attitude R (0) = I3. The true angular velocity is considered to be corrupted

by a wide-band of random noise process ω with standard deviation (STD) being

0.2 (rad/sec) and zero mean, and bias b = 0.2 [1,−1, 1]>. Consider two non-collinear

inertial-frame measurements being given by v
I(R)
1 = 1√

3
[1,−1, 1]> and v

I(R)
2 =

[0, 0, 1]> and their body-frame measurements being given by v
B(R)
i = R>v

I(R)
i +

b
B(R)
i +ω

B(R)
i where ω

B(R)
1 and ω

B(R)
2 are Gaussian noise process vectors with STD =

0.2 and zero mean and the associated bias components b
B(R)
1 = 0.1 [−1, 1, 0.5]> and

b
B(R)
2 = 0.1 [0, 0, 1]>. The third vector is obtained by the cross product.

R̂ (0) is given by angle-axis parameterization in (2.7) as R̂ (0) = Rα (α, u/ ‖u‖)
with α = 179 (deg) and u= [1, 5, 3]> such that R̃ approaches the unstable equilibria

||R̃||I ≈ 0.9999

R (0) = I3, R̂ (0) =

 −0.9427 0.2768 0.1862

0.2945 0.4286 0.8541

0.1567 0.8600 −0.4856


Initial estimates are selected as b̂ (0) = 03, σ̂ (0) = 03, and design parameters are as

follows: γ = 1, kb = 0.5, kσ = 0.5, kw = 5 , and ε = 0.5.
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Figure 5.1 presents the true angular velocity (Ω) and true body-frame vectors

as black centerlines and the associated high values of noise and bias components

are represented by colored solid lines. The robustness of the filter against large

initialization error and high values of noise and bias components is demonstrated in

Figure 5.2. The normalized Euclidean distance error ||R̃||I was initiated very close

to the unstable equilibria (+1), eventually reduced to the neighborhood of the origin

in probability as illustrated in Figure 5.2. Figure 5.3 shows an impressive tracking

performance of Euler angles of the proposed filter plotted against the true angles.
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-1

0

1

Figure 5.1: True values and measurements of Ω, υ
B(R)
1 , and υ

B(R)
2 .

5.5 Conclusion

An explicit stochastic nonlinear attitude filter is proposed on SO (3). The proposed fil-

ter shares its structure with previously developed deterministic filters, but in stochas-

tic sense. An alternate attitude potential function which has not been considered in

literature, is introduced in this work. The resulting stochastic filter ensures that

the errors in Rodriguez vector and estimates are semi-globally uniformly ultimately

bounded in mean square. Numerical results show high convergence capabilities when

large error is initialized in the attitude and high levels of noise and bias are observed

in the vector measurements.
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Figure 5.2: Tracking performance of normalized Euclidean distance error.
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Figure 5.3: Tracking performance of Euler angles, proposed filter performance vs
true trajectories.



Chapter 6

Nonlinear Pose Filters on SE (3) with

Prescribed Performance

6.1 Introduction

Two novel nonlinear pose filters developed directly on the Special Euclidean Group

SE (3) able to guarantee prescribed characteristics of transient and steady-state per-

formance are proposed. The position error and normalized Euclidean distance of

attitude error are trapped to arbitrarily start within a given large set and converge

systematically and asymptotically to the origin from almost any initial condition.

The transient error is guaranteed not to exceed a prescribed value while the steady-

state error is bounded by a predefined small value. The first pose filter operates

based on a set of vectorial measurements coupled with a group of velocity vectors

and requires preliminary pose reconstruction. The second filter, on the contrary, is

able to perform its function using a set of vectorial measurements and a group of ve-

locity vectors directly. Both proposed filters provide reasonable pose estimates with

superior convergence properties while being able to use measurements obtained from

low-cost inertial measurement, landmark measurement, and velocity measurement

units. Simulation results demonstrate effectiveness and robustness of the proposed

filters considering large error in initialization and high level of uncertainties in veloc-

ity vectors as well as in the set of vector measurements. The results of this chapter

were first published in Hashim, Brown, and McIsaac (2019b, 2019c).

The remainder of the chapter is organized as follows: The pose problem is for-

mulated, vector measurements are demonstrated and prescribed performance is intro-

duced in Section 6.2. The two proposed filters and the related stability analysis are

presented in Section 6.3. Section 6.4 elaborates on the effectiveness and robustness

of the proposed filters. Finally, Section 6.5 draws a conclusion of this work.

101
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6.2 Problem Formulation with Prescribed

Performance

Pose estimator relies on a set of vectorial measurements made on inertial-frame and

body-frame. This section aims to define the pose problem and present the associ-

ated measurements. Next, the pose error and its reformulation are geared towards

attaining desired characteristics of transient and steady-state performance.

6.2.1 Pose Kinematics and Measurements

The pose of any rigid-body in 3D space consists of two elements: attitude and po-

sition, and this work aims to estimate both elements. The attitude of a rigid-body

is commonly represented by a rotational matrix R ∈ SO (3) defined relative to the

body-frame such that R ∈ {B}. Position of a rigid-body is, on the contrary, defined

by P ∈ R3 with respect to the inertial-frame P ∈ {I}. The pose problem can be

characterized by the homogeneous transformation matrix T ∈ SE (3) as

T =

[
R P

0>3 1

]
(6.1)

The pose estimation problem of a rigid-body in 3D space is depicted in Fig. 6.1.
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Body-frame    

Figure 6.1: Pose estimation problem of a rigid-body in 3D space.
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Let the components associated with body-frame and inertial-frame be assigned

superscripts B and I, respectively. The attitude can be obtained given NR known

non-collinear inertial vectors, available for measurements at a coordinate fixed to the

moving body. IMU exemplify sensors, which could provide those measurements. The

ith body-frame vector measurement is given by[
v
B(R)
i

0

]
= T−1

[
v
I(R)
i

0

]
+

[
b
B(R)
i

0

]
+

[
ω
B(R)
i

0

]

such that

v
B(R)
i = R>v

I(R)
i + b

B(R)
i + ω

B(R)
i (6.2)

with v
I(R)
i being the ith known vector in the inertial-frame, and b

B(R)
i and ω

B(R)
i be-

ing unknown bias and noise components added to the ith measurement, respectively,

for all v
B(R)
i , v

I(R)
i , b

B(R)
i , ω

B(R)
i ∈ R3 and i = 1, 2, . . . , NR. The known inertial vec-

tor v
I(R)
i and the available body-frame measurement v

B(R)
i in (6.2) can be normalized

such that

υ
I(R)
i =

v
I(R)
i∥∥∥v
I(R)
i

∥∥∥ , υ
B(R)
i =

v
B(R)
i∥∥∥v
B(R)
i

∥∥∥ (6.3)

Thus, the attitude of a rigid-body can be extracted using υ
I(R)
i and υ

B(R)
i in (6.3)

rather than v
I(R)
i and v

B(R)
i . Let us introduce the following two sets

υI(R) =
[
υ
I(R)
1 , . . . , υ

I(R)
NR

]
∈ {I}

υB(R) =
[
υ
B(R)
1 , . . . , υ

B(R)
NR

]
∈ {B} (6.4)

where the two sets in (6.4) include the normalized vectors in (6.3) for all υI(R), υB(R) ∈
R3×NR . The position of the moving body can be extracted if its attitudeR has already

been determined and there exist NL known landmarks (feature points) obtained, for

example, by a vision system. The ith body-frame landmark measurement is given by[
v
B(L)
i

1

]
= T−1

[
v
I(L)
i

1

]
+

[
b
B(L)
i

0

]
+

[
ω
B(L)
i

0

]
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such that

v
B(L)
i = R>

(
v
I(L)
i − P

)
+ b
B(L)
i + ω

B(L)
i (6.5)

where v
I(L)
i is the ith known fixed landmark located in the inertial-frame, b

B(L)
i

and ω
B(L)
i are the additive unknown bias and noise vectors of the ith measurement,

respectively, for all v
B(L)
i , v

I(L)
i , b

B(L)
i , ω

B(L)
i ∈ R3 and i = 1, 2, . . . , NL. Define the

set of inertial-frame and body-frame vectors associated with landmarks by

vB(L) =
[
v
B(L)
1 , . . . , v

B(L)
NL

]
∈ {B}

vI(L) =
[
v
I(L)
1 , . . . , v

I(L)
NL

]
∈ {I} (6.6)

In case when more than one landmark is available for measurement, it is common to

obtain a weighted geometric center of all the landmarks, which can be calculated as

follows:

GIc =
1∑NL

i=1 k
L
i

NL∑
i=1

kL
i v
I(L)
i (6.7)

GBc =
1∑NL

i=1 k
L
i

NL∑
i=1

kL
i v
B(L)
i (6.8)

such that kL
i is the confidence level of the ith measurement.

Assumption 6.1 (Rigid-body pose observability) The pose of a rigid-body in 3D space

can be extracted given the availability of at least two non-collinear vectors from the

sets in (6.4) (NR ≥ 2) and at least one feature point from the sets in (6.6) with

NL ≥ 1. In the case when NR = 2, the third vector can be obtained by the means of

cross multiplication: υ
I(R)
3 = υ

I(R)
1 × υI(R)

2 and υ
B(R)
3 = υ

B(R)
1 × υB(R)

2 .

According to Assumption 6.2 a set of vectorial measurement described in (6.4) is

sufficient to have rank 3. Accordingly, the homogeneous transformation matrix T

can be extracted if Assumption 6.2 is met. For simplicity, the body-frame vectors

v
B(R)
i and v

B(L)
i are considered to be noise and bias free in the stability analysis. In

the Simulation Section, on the contrary, the noise and bias corrupting the measure-

ments of v
B(R)
i and v

B(L)
i are taken into consideration. The pose kinematics of the
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homogeneous transformation matrix T in (6.1) are given by[
Ṙ Ṗ

0>3 0

]
=

[
R P

0>3 1

][
[Ω]× V

0>3 0

]

such that

Ṗ = RV

Ṙ = R [Ω]× (6.9)

Ṫ = T [Y ]∧ (6.10)

with Ω ∈ R3 and V ∈ R3 being the true angular and translational velocity of the

moving body, respectively, and Y =
[
Ω>, V >

]>
∈ R6 being the group velocity vector.

The angular velocity can be measured by a gyroscope, for example, and expressed as

follows:

Ωm = Ω + bΩ + ωΩ ∈ {B} (6.11)

where bΩ is an unknown constant or slowly time-varying bias, and ωΩ is an unknown

random noise attached to the measurement, for all bΩ, ωΩ ∈ R3. Likewise, the trans-

lational velocity measurement of a moving body can be obtained using a GPS, for

instance, and defined by

Vm = V + bV + ωV ∈ {B} (6.12)

with bV ∈ R3 denoting an unknown constant or slowly time-varying bias, and ωV ∈
R3 being random noise attached to the translational velocity measurements. The

group of velocity measurements and bias associated with it can be defined by Ym =[
Ω>m, V

>
m

]>
∈ R6 and b =

[
b>Ω , b

>
V

]>
∈ R6, respectively. For the sake of simplicity,

we consider ωΩ = ωV = 03 in the analysis. However, in the implementation it is

used ωΩ 6= 03 and ωV 6= 03. Considering the normalized Euclidean distance of the

rotational matrix R in (2.6) and the identity in (2.16), the true attitude kinematics
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in (6.9) can be expressed in view of (2.6) as

||Ṙ||I = −1

4
Tr{Ṙ}

= −1

4
Tr{Pa (R) [Ω]×}

=
1

2
vex(Pa(R))>Ω (6.13)

Accordingly, the problem of pose dynamics in (6.10) can be reformulated and ex-

pressed in vector form as[
||Ṙ||I
Ṗ

]
=

[
1
2vex(Pa(R))> 0>3

03×3 R

][
Ωm − bΩ
Vm − bV

]
(6.14)

with 03×3 being a zero matrix and ωΩ = ωV = 03. Let the estimate of the homoge-

neous transformation matrix in (6.1), denoted by T̂ , be given by

T̂ =

[
R̂ P̂

0>3 1

]
(6.15)

with R̂ and P̂ being the estimates of R and P , respectively. Let us define the error

in the homogeneous transformation matrix from body-frame to estimator-frame by

T̃ = T̂ T−1 =

[
R̃ P̂ − R̃P
0>3 1

]
=

[
R̃ P̃

0>3 1

]
(6.16)

where R̃ = R̂R> and P̃ are the errors associated with attitude and position, respec-

tively. The aim of this work is to drive T̂ → T which in turn guarantees driving

P̃ → 03, R̃ → I3, and T̃ → I4. Lemma 6.1 presented below will prove useful in the

subsequent filter derivation.

Lemma 6.1 Let R ∈ SO (3), M = M> ∈ R3×3, M have rank 3, Tr {M} = 3, and

M̄ = Tr {M} I3 −M , while the minimum singular value of M̄ is λ := λ(M̄). Then,
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the following holds:

||vex(Pa(R))||2 = 4(1− ||R||I)||R||I (6.17)

2

λ

||vex(Pa(RM))||2

1 + Tr{RMM−1}
≥ ‖RM‖I (6.18)

Proof. See Appendix A.

6.2.2 Prescribed Performance

Considering the error in the homogeneous transformation matrix as in (6.16) and in

view of the pose dynamics in (6.14), let us define the error in vector form by

e = [e1, e2, e3, e4]> =
[
||R̃||I , P̃>

]>
∈ R4 (6.19)

The objective of this subsection is to reformulate the problem such that the error

in (6.19) satisfies transient as well as steady-state measures predefined by the user.

This can be achieved by selecting a large known set which is guaranteed to contain

the initial error vector e and after decaying smoothly and systematically settle within

a predefined small set using prescribed performance function (PPF) Bechlioulis and

Rovithakis (2008); Hashim, El-Ferik, and Lewis (2017, 2019). The PPF is defined by

ξi (t) which is a positive smooth time-decreasing function which satisfies ξi : R+ →
R+ and lim

t→∞
ξi (t) = ξ∞i > 0 and can be expressed by Bechlioulis and Rovithakis

(2008)

ξi (t) =
(
ξ0
i − ξ

∞
i

)
exp (−`it) + ξ∞i (6.20)

with ξi (0) = ξ0
i being the initial value of the PPF and the upper bound of the known

large set, ξ∞i being the upper bound of the narrow set, and `i being a positive constant

controlling the convergence rate of ξ (t) from ξ0
i to ξ∞i for all i = 1, . . . , 4. The error

ei (t) is guaranteed to follow the predefined transient and steady-state boundaries, if

the conditions below are met:

−δξi (t) < ei (t) < ξi (t) , if ei (0) > 0 (6.21)

−ξi (t) < ei (t) < δξi (t) , if ei (0) < 0 (6.22)
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with δ ∈ [0, 1]. For clarity, define ei := ei (t) and ξi := ξi (t). Also, let us

define ξ = [ξ1, ξ2, ξ3, ξ4]>, ` = [`1, `2, `3, `4]>, ξ0 =
[
ξ0
1 , ξ

0
2 , ξ

0
3 , ξ

0
4

]>
, and ξ∞ =[

ξ∞1 , ξ∞2 , ξ∞3 , ξ∞4
]>

for all ξ, `, ξ0, ξ∞ ∈ R4. The systematic convergence of the track-

ing error ei, from a given large set to a given narrow set in accordance with (6.21)

and (6.22) is depicted in Fig. 6.2.

Time(sec)

Figure 6.2: Graphical representation of the systematic convergence of tracking error
ei with PPF satisfying (a) Eq. (6.21); (b) Eq. (6.22).

Remark 6.1 In accordance with the discussion in Bechlioulis and Rovithakis (2008);

Hashim, El-Ferik, and Lewis (2017, 2019), knowing the upper bound and the sign

of ei (0) is sufficient to force the error to satisfy the performance constraints and

maintain the error regulation within predefined dynamically reducing boundaries for

all t > 0. If the condition in (6.21) or (6.22) is met, the maximum overshoot is

sufficient to be bounded by ±δξi, the steady-state error is bounded by ±ξ∞i , and |ei|
is trapped between ξi and δξi as presented in Fig. 6.2.

Define the error ei by

ei = ξiZ(Ei) (6.23)

where ξi ∈ R is defined in (6.20), Ei ∈ R is a relaxed form of the constrained error re-

ferred to as transformed error, and Z(Ei) is a smooth function that behaves according

to Assumption 6.2:
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Assumption 6.2 The smooth function Z(Ei) has the following properties Bechlioulis

and Rovithakis (2008):

1. Z(Ei) is smooth and strictly increasing.

2. Z(Ei) is constrained by the following two bounds

−δi < Z(Ei) < δ̄i, if ei (0) ≥ 0

−δ̄i < Z(Ei) < δi, if ei (0) < 0

with δ̄i and δi being positive constants satisfy δi ≤ δ̄i.

3.

lim
Ei→−∞

Z(Ei) = −δi

lim
Ei→+∞

Z(Ei) = δ̄i

 if ei ≥ 0

lim
Ei→−∞

Z(Ei) = −δ̄i

lim
Ei→+∞

Z(Ei) = δi

 if ei < 0

such that

Z (Ei) =


δ̄i exp(Ei)−δi exp(−Ei)

exp(Ei)+exp(−Ei)
, δ̄i ≥ δi if ei ≥ 0

δ̄i exp(Ei)−δi exp(−Ei)
exp(Ei)+exp(−Ei)

, δi ≥ δ̄i if ei < 0
(6.24)

The transformed error could be extracted through the inverse transformation of

(6.24)

Ei(ei, ξi) = Z−1(ei/ξi) (6.25)

with Ei ∈ R, Z ∈ R and Z−1 ∈ R being smooth functions. For simplicity, let Ei :=

Ei(·, ·), δ̄ = [δ̄1, δ̄2, δ̄3, δ̄4]>, δ = [δ1, δ2, δ3, δ4]>, E =
[
ER, E>P

]>
for all δ̄, δ, E ∈ R4

with ER = E1 ∈ R and EP = [E2, E3, E4]> ∈ R3. In fact, the transformed error Ei
translates ei from the given constrained form in (6.21) or (6.22) to its unconstrained

form as in (6.25). From (6.24), the inverse transformation can be expressed as

Ei =
1

2

ln
δi+ei/ξi
δ̄i−ei/ξi

, δ̄i ≥ δi if ei ≥ 0

ln
δi+ei/ξi
δ̄i−ei/ξi

, δi ≥ δ̄i if ei < 0
(6.26)
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Remark 6.2 Consider the transformed error in (6.26). The transient and steady-

state performance of the tracking error (ei) is bounded by the performance function

ξi, and therefore, the prescribed performance is achieved if and only if Ei is guaranteed

to be bounded for all t ≥ 0.

Proposition 6.1 Consider the error vector in (6.19) with the normalized Euclidean

distance error ||R̃||I being given by (2.6). From (6.23), (6.24), and (6.25) let the

transformed error be expressed as in (6.26) provided that δ = δ̄. Then the following

statements are true.

(i) The only possible representation of E1 is as follows:

E1 =
1

2
ln
δ1 + e1/ξ1
δ̄1 − e1/ξ1

=
1

2
ln
δ1 + ||R̃||I/ξ1
δ̄1 − ||R̃||I/ξ1

(6.27)

(ii) The transformed error E1 > 0∀||R̃||I 6= 0.

(iii) E = 04 only at e = 04 and the critical point of E satisfies e = 04.

(iv) The only critical point of E is T̃ = I4.

Proof. Given that 0 ≤ ||R̃ (t) ||I ≤ 1,∀t ≥ 0 as defined in (2.6), one can find that the

upper part of (6.26) holds ∀t ≥ 0 which proves (i). Since δ = δ̄ with the constraint

||R̃||I ≤ ξ1, the expression in (6.27) is (δ1 + ||R̃||I/ξ1)/(δ̄1−||R̃||I/ξ1) ≥ 1∀||R̃||I 6= 0.

Thus, E1 > 0∀||R̃||I 6= 0 which confirms (ii). Considering δ = δ̄ with the constraint

ei ≤ ξi, it is clear that (δi+ei/ξi)/(δ̄i−ei/ξi) = 1 if and only if ei = 0. Accordingly,

Ei 6= 0∀ei 6= 0 and Ei = 0 only at ei = 0 which proves (iii). For (iv), from (2.6)

and (6.16), ||R̃||I = 0 and P̃ = 0 if and only if T̃ = I4. Thus, the critical point of E
satisfies ||R̃||I = 0 and P̃ = 0 which in turn satisfies T̃ = I4 and proves (iv). Define

µi := µi (ei, ξi) such that

µi =
1

2ξi

∂Z−1 (ei/ξi)

∂ (ei/ξi)
=

1

2ξi

(
1

δi + ei/ξi
+

1

δ̄i − ei/ξi

)
(6.28)
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Hence, one can find that the derivative of Ėi is as follows:

Ėi = µi

(
ėi −

ξ̇i
ξi
ei

)
(6.29)

More simply, the expression in (6.29) is

Ė =

[
ΨR 0>3
03 ΨP

](
ė−

[
ΛR 0>3
03 ΛP

]
e

)
(6.30)

with ΛR =
ξ̇1
ξ1

, ΛP = diag

(
ξ̇2
ξ2
,
ξ̇3
ξ3
,
ξ̇4
ξ4

)
, ΨR = µ1, and ΨP = diag(µ2, µ3, µ4)

for all ΛR,ΨR ∈ R and ΛP ,ΨP ∈ R3×3. The following section introduces two

nonlinear pose filters on SE (3) with prescribed performance characteristics which for

0 ≤ |ei (0)| < ξi (0) guarantee Ei ∈ L∞, ∀t ≥ 0 and, therefore, satisfy (6.21) or (6.22).

6.3 Nonlinear Complementary Pose Filters On

SE (3) with Prescribed Performance

This section aims to provide a comprehensive description of the two nonlinear com-

plementary pose filters evolved on SE (3) with the error vector, introduced in (6.19),

behaving in accordance with the predefined transient as well as steady-state measures

specified by the user. The first proposed filter is named a semi-direct pose filter with

prescribed performance and the second one is termed a direct pose filter with pre-

scribed performance. The difference between the two lies in the fact that while the

semi-direct filter requires both attitude and position to be reconstructed through a set

of vectorial measurements given in (6.4) and (6.6) combined with the measurement

of the group velocity vector as described in (6.11) and (6.12), the direct filter only

utilizes the above-mentioned measurements in the filter design. The structure of the

proposed pose filters described in the two subsequent subsections is nonlinear on the

Lie group of SE (3) and is given by

˙̂
T = T̂ [Ŷ ]∧
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with Ŷ = [Ω̂>, V̂ >] ∈ R6 such that
˙̂
R = R̂[Ω̂]× and

˙̂
P = R̂V̂ .

6.3.1 Semi-direct Pose Filter with Prescribed Performance

Recall the error in (6.19) e =
[
||R̃||I , P̃>

]>
. Define T y =

[
Ry Py

0>3 1

]
as a recon-

structed homogeneous transformation matrix of the true T . Ry corrupted by uncer-

tain measurements can be reconstructed as in Markley (1988); Shuster and Oh (1981)

or for simplicity visit the Appendix in Hashim et al. (2018b); Hashim, Brown, and

McIsaac (2019d). From (6.7) and (6.8) Py is reconstructed in the following manner

Py =
1∑NL

i=1 k
L
i

NL∑
i=1

kL
i

(
v
I(L)
i −Ryv

B(L)
i

)
= GIc −RyGBc (6.31)

Consider the following pose filter design

˙̂
R =R̂

[
Ωm − b̂Ω − R̂>WΩ

]
×

(6.32)

˙̂
P =R̂(Vm − b̂V −WV ) (6.33)

˙̂
bΩ =

γ

2
ΨRERR̂>vex(Pa(R̃)) + γR̂>

[
P̃ − P̂

]
×

ΨPEP (6.34)

˙̂
bV =γR̂>ΨPEP (6.35)

WΩ =2
kwΨRER −ΛR/4

1− ||R̃||I
vex(Pa(R̃)) (6.36)

WV =R̂>
(
kwΨPEP +

[
P̃ − P̂

]
×
WΩ −ΛP P̃

)
(6.37)

with R̃ = R̂R>y , P̃ = P̂ − R̃Py, ER, EP , ΨR and ΨP being defined in (6.28), and

(6.29), respectively, kw and γ being positive constants, and each of b̂Ω and b̂V being

the estimates of bΩ and bV , respectively.

Define the error between the true and the estimated bias by

b̃Ω = bΩ − b̂Ω (6.38)

b̃V = bV − b̂V (6.39)



Chapter 6: Nonlinear Pose Filters on SE (3) with Prescribed Performance 113

where b̃ =
[
b̃>Ω , b̃

>
V

]>
∈ R6 is the group error bias vector.

Theorem 6.1 Consider the pose dynamics in (6.10), the group of noise-free velocity

measurements in (6.11) and (6.12) such that Ωm = Ω + bΩ and Vm = V + bV , in

addition to other vector measurements given in (6.4) and (6.6) coupled with the filter

kinematics in (6.32), (6.33), (6.34), (6.35), (6.36), and (6.37). Let Assumption 6.2

hold. Define U ⊆ SE (3)× R6 by

U :=
{

(T̃ (0) , b̃ (0))
∣∣∣Tr{R̃ (0)} = −1, P̃ (0) = 03, b̃ (0) = 06

}
From almost any initial condition such that Tr{R̃ (0)} /∈ U and E (0) ∈ L∞, all signals

in the closed loop are bounded, limt→∞ E (t) = 0, and T̃ asymptotically approaches

I4.

Theorem 6.1 guarantees that the pose error dynamics in (6.32), (6.33), (6.34), (6.35),

(6.36), and (6.37) are stable with E (t) asymptotically approaching the origin. Since

E (t) is bounded, the error vector e in (6.19) is constrained by the transient and

steady-state boundaries introduced in (6.20).

Proof. Consider the error in the homogeneous transformation matrix from

body-frame to estimator-frame defined as (6.16). From (6.9) and (6.32) the error

dynamics are

˙̃R = R̂
[
b̃Ω − R̂>WΩ

]
×
R> =

[
R̂b̃Ω −WΩ

]
×
R̃ (6.40)

where
[
R̂b̃Ω

]
×

= R̂
[
b̃Ω

]
×
R̂> as given in identity (2.12). In view of (6.9) and (6.13),

one can express the error dynamics in (6.40) in terms of normalized Euclidean distance

as

d

dt
||R̃||I =

d

dt

1

4
Tr{I3 − R̃}

= −1

4
Tr

{[
R̂b̃Ω −WΩ

]
×
Pa(R̃)

}
=

1

2
vex(Pa(R̃))>(R̂b̃Ω −WΩ) (6.41)
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with Tr

{
R̃
[
b̃−W

]
×

}
= −2vex(Pa(R̃))>(b̃ −W ) being defined in (2.16). Since

the position error is given by P̃ = P̂ − R̃P in (6.16), one can find the derivative of P̃

to be

˙̃P =
˙̂
P − ˙̃RP − R̃Ṗ

=
˙̂
P −

[
R̂b̃Ω −WΩ

]
×
R̃P − R̃R(Vm − bV )

= R̂(b̃V −WV ) +
[
P̂ − P̃

]
×

(R̂b̃Ω −WΩ) (6.42)

with
[
R̂b̃Ω

]
×
P̂ = −

[
P̂
]
×
R̂b̃Ω. From (6.41) and (6.42), and in view of (6.14), the

dynamics of the error vector in (6.19) become

[
|| ˙̃R||I

˙̃P

]
=

 1
2vex(Pa(R̃))> 0>3[

P̂ − P̃
]
×

R̂

[ R̂b̃Ω −WΩ

b̃V −WV

]
(6.43)

Accordingly, the derivative of the transformed error in (6.30) can be represented with

direct substitution of e =
[
||R̃||I , P̃>

]>
in addition to the result in (6.43). Now,

consider the following candidate Lyapunov function

V (E , b̃Ω, b̃V ) =
1

2
||E||2 +

1

2γ
||b̃Ω||2 +

1

2γ
||b̃V ||2 (6.44)

Differentiating V := V (E , b̃Ω, b̃V ) in (6.44) results in

V̇ =E>Ė − 1

γ
b̃>Ω

˙̂
bΩ −

1

γ
b̃>V

˙̂
bV

=ERΨR

(
1

2
vex(Pa(R̃))>(R̂b̃Ω −WΩ)−ΛR||R̃||I

)
+ E>P ΨP

(
R̂(b̃V −WV ) +

[
P̂ − P̃

]
×

(R̂b̃Ω −WΩ)

)
− E>P ΨPΛP P̃ −

1

γ
b̃>Ω

˙̂
bΩ −

1

γ
b̃>V

˙̂
bV (6.45)

Consider ||R̃||I = 1
4
||vex(Pa(R̃))||2

1−||R̃||I
as defined in (6.17). Using the result in (6.45)
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and directly substituting
˙̂
bΩ,

˙̂
bV , WΩ and WV with their definitions in (6.34), (6.35),

(6.36), and (6.37), respectively, one obtains

V̇ = −1

4
kwE2

RΨ2
R
||vex(Pa(R̃))||2

1− ||R̃||I
− kwE>P Ψ2

PEP

= −kwE2
RΨ2

R||R̃||I − kwE
>
P Ψ2

PEP (6.46)

The result obtained in (6.46) indicates that V (t) ≤ V (0) ,∀t ≥ 0. Given that

V (t) ≤ V (0) ,∀t ≥ 0, R̃ (0) /∈ U and E (0) ∈ R4, b̃ remains bounded, and E is

bounded and well defined for all t ≥ 0. Consequently, P̃ , ||R̃||I and vex(Pa(R̃)) are

bounded, which in turn signifies that ˙̃P , || ˙̃R||I , ĖR and ĖP are bounded as well. From

the result in (6.46) it follows that

V̈ =− kw
(

2ERΨR(ĖRΨR + ERΨ̇R)||R̃||I + E2
RΨ2

R||
˙̃R||I
)

− 2kwE>P Ψ2
P ĖP − 2kwE>P ΨP Ψ̇PEP (6.47)

Since ΨR = µ1 and ΨP = diag(µ2, µ3, µ4) defined in (6.28), µ̇i can be expressed as

follows for all i = 1, 2, . . . , 4

µ̇i =− 1

2

δiξ̇i + ėi
(δiξi + ei)2

− 1

2

δ̄iξ̇i − ėi
(δ̄iξi − ei)2

(6.48)

with ξ̇i = −`i(ξ0
i − ξ∞i ) exp(−`it). Due to the fact that ėi is bounded for all i =

1, 2, . . . , 4, µ̇i is bounded and V̈ in (6.47) is uniformly bounded for all t ≥ 0. It should

be remarked that E1 > 0 for all ||R̃||I > 0, and E1 → 0 as ||R̃||I → 0 and vice versa

as stated in property (ii) of Proposition 6.1. In addition, Ei 6= 0∀ei 6= 0 and Ei = 0

if and only if ei = 0 as indicated in property (iii) of Proposition 6.1. Therefore, V̇

is uniformly continuous, and in consistence with Barbalat Lemma, V̇ → 0 as t→∞
signifies that Ei → 0 and ei → 0. As mentioned by property (iv) of Proposition 6.1,

E → 0 implies that T̃ asymptotically approaches I4 which completes the proof.

6.3.2 Direct Pose Filter with Prescribed Performance

The reconstructed homogeneous transformation matrix T y defined in Subsection 6.3.1

consists of two elements: Ry and Py. Although, Ry can be statically reconstructed
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applying, for example, QUEST Shuster and Oh (1981), or SVD Markley (1988), the

aforementioned methods of static reconstruction could significantly increase process-

ing cost Hashim et al. (2018a); Hashim, Brown, and McIsaac (2019a, 2019d); Mahony

et al. (2008). Thus, the pose filter proposed in this Subsection avoids the necessity of

attitude reconstruction and instead uses measurements from the inertial and body-

frame units directly. Let us define

MT =

[
MT mv

m>v mc

]
=

NR∑
i=1

kRi

[
υ
I(R)
i

0

][
υ
I(R)
i

0

]>
+

NL∑
j=1

kLj

[
v
I(L)
j

1

][
v
I(L)
j

1

]>
(6.49)

such that MT = MR + ML with

MR =

NR∑
i=1

kR
i υ
I(R)
i

(
υ
I(R)
i

)>
ML =

NL∑
j=1

kL
j v
I(L)
j

(
v
I(L)
j

)>

mv =

NL∑
j=1

kL
j v
I(L)
j

mc =

NL∑
j=1

kL
j (6.50)

where kR
i and kL

j are constant gains of the confidence level of ith and jth sensor

measurements, respectively. Define

KT =

[
KT kv

m>v mc

]
=

NR∑
i=1

kR
i

[
υ
B(R)
i

0

][
υ
I(R)
i

0

]>
+

NL∑
j=1

kL
j

[
v
B(L)
j

1

][
v
I(L)
j

1

]>
(6.51)
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such that mv =
∑NL
j=1 k

L
j v
I(L)
j and mc =

∑NL
j=1 k

L
j as defined in (6.50), and

KT =

NR∑
i=1

kR
i υ
B(R)
i

(
υ
I(R)
i

)>
+

NL∑
j=1

kL
i v
B(L)
j

(
v
I(L)
j

)>

kv =

NL∑
j=1

kL
j v
B(L)
j (6.52)

In this work kR
i is selected such that

∑NR
i=1 k

R
i = 3. It can be easily deduced that

MR is symmetric. Assuming that Assumption 6.2 holds, MR is nonsingular with

rank(MR) = 3. Accordingly, the three eigenvalues of MR are greater than zero.

Define M̄R = Tr{MR}I3 −MR ∈ R3×3, provided that rank(MR) = 3, then, the

following three statements hold (Bullo and Lewis (2004) page. 553):

1. MR is a positive-definite matrix.

2. The eigenvectors of MR coincide with the eigenvectors of M̄R.

3. Assuming that the three eigenvalues of MR are λ(MR) = {λ1, λ2, λ3}, then

λ(M̄R) = {λ3+λ2, λ3+λ1, λ2+λ1} with the minimum singular value λ(M̄R) >

0.

In the remainder of this Subsection, it is considered that rank(MR) = 3 in order to

ensure that the above-mentioned statements are true. Define

υ̂
B(R)
i = R̂>υI(R)

i (6.53)

Defining the error in the homogeneous transformation matrix as in (6.16), the attitude

error can be expressed as R̃ = R̂R> and the position error is defined by P̃ = P̂ − R̃P .

Also, let the bias error be as in (6.38) and (6.39). In order to derive the direct pose

filter, it is necessary to introduce the following series of equations written in terms of
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vectorial measurements. According to identity (2.11) and (2.12), one hasR̂ NR∑
i=1

kR
i

2
υ̂
B(R)
i × υB(R)

i


×

= R̂

NR∑
i=1

kR
i

2
υ̂
B(R)
i × υB(R)

i


×

R̂>

= R̂

NR∑
i=1

kR
i

2

(
υ
B(R)
i

(
υ̂
B(R)
i

)>
− υ̂B(R)

i

(
υ
B(R)
i

)>)
R̂>

=
1

2
R̂R>MR −

1

2
MRRR̂

>

= Pa(R̃MR)

such that

vex(Pa(R̃MR)) = R̂

NR∑
i=1

(
kR
i

2
υ̂
B(R)
i × υB(R)

i

)
(6.54)

Thus, R̃MR is defined in terms of vectorial measurements by

R̃MR = R̂

NR∑
i=1

(
kR
i υ
B(R)
i

(
υ
I(R)
i

)>)
(6.55)

The normalized Euclidean distance of R̃MR is found to be

||R̃MR||I =
1

4
Tr{(I3 − R̃)MR}

=
1

4
Tr

I3 − R̂
NR∑
i=1

(
kR
i υ
B(R)
i

(
υ
I(R)
i

)>)
=

1

4

NR∑
i=1

(
1−

(
υ̂
B(R)
i

)>
υ
B(R)
i

)
(6.56)



Chapter 6: Nonlinear Pose Filters on SE (3) with Prescribed Performance 119

Let us introduce the following variable

Υ(MR, R̃) =Tr
{
R̃MRM−1

R

}
=Tr


NR∑
i=1

kR
i υ
B(R)
i

(
υ
I(R)
i

)> NR∑
i=1

kR
i υ̂
B(R)
i

(
υ
I(R)
i

)>−1

(6.57)

From (6.49) and (6.50), one obtains

T̃MI =

[
R̃MT + P̃m>v R̃mv + mcP̃

m>v mc

]
(6.58)

The above-mentioned result can be additionally expressed as

T̃MI =

[
R̂ P̂

0>3 1

][
KT kv

m>v mc

]
=

[
R̂KT + P̂m>v R̂kv + mcP̂

m>v mc

]
(6.59)

As such, from (6.58) and (6.59), the position error can be reformulated with respect

to vectorial measurements as

P̃ = P̂ +
1

mc

(
R̂kv − R̃MRM−1

R mv

)
(6.60)

with R̃MR being calculated as in (6.55). Consequently, vex(Pa(R̃MR)), R̃MR,

||R̃MR||I , Υ(MR, R̃), and P̃ will be obtained through a set of vectorial measure-

ments as defined in (6.54), (6.55), (6.56), (6.57), and (6.60), respectively, in all the

subsequent derivations and calculations. Let us modify the vector error in (6.19) to

be

e = [e1, e2, e3, e4]> =
[
||R̃MR||I , P̃>

]>
(6.61)

with ||R̃MR||I and P̃ being defined in (6.56) and (6.60), respectively. Thus, all the

discussion in Subsection 6.2.2 is to be reformulated using the error vector in (6.61)

instead of (6.19). Define the minimum eigenvalue of M̄R as λ := λ(M̄R), and consider
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the following filter design

˙̂
R =R̂

[
Ωm − b̂Ω − R̂>WΩ

]
×

(6.62)

˙̂
P =R̂(Vm − b̂V −WV ) (6.63)

˙̂
bΩ =

γ

2
ΨRERR̂>vex(Pa(R̃MR)) + γR̂>

[
P̃ − P̂

]
×

ΨPEP (6.64)

˙̂
bV =γR̂>ΨPEP (6.65)

WΩ =
4

λ

kwΨRER −ΛR

1 + Υ(MR, R̃)
vex(Pa(R̃MR)) (6.66)

WV =R̂>
(
kwΨPEP +

[
P̃ − P̂

]
×
WΩ −ΛP P̃

)
(6.67)

with Υ(MR, R̃) and vex(Pa(R̃MR)) being specified in (6.57) and (6.54), respectively,

E = [ER, E>P ]> = [E1, . . . , E4]>, Ei := Ei(ei, ξi) and µi := µi(ei, ξi) being defined in

(6.27) and (6.28), respectively, while e is as in (6.61), kw and γ are positive constants,

and b̂Ω and b̂V are the estimates of bΩ and bV , respectively.

Theorem 6.2 Consider coupling the pose filter in (6.62), (6.63), (6.64), (6.65),

(6.66), and (6.67) with the set of vector measurements in (6.4) and (6.6), and the

velocity measurements in (6.11) and (6.12) where Ωm = Ω + bΩ and Vm = V + bV .

Let Assumption 6.2 hold. Define U ⊆ SE (3)× R6 by

U :=
{

(T̃ (0) , b̃ (0))
∣∣∣Tr{R̃ (0)} = −1, P̃ (0) = 03, b̃ (0) = 06

}
If R̃ (0) /∈ U and E (0) ∈ L∞, then, all error signals are bounded, E (t) asymptotically

approaches 0, and T̃ asymptotically approaches I4.

Theorem 6.2 guarantees the observer dynamics in (6.62), (6.63), (6.64), (6.65), (6.66),

and (6.67) to be stable. In consistence with Remark 6.2 boundedness of E (t) indicates

that e follows the dynamic decreasing boundaries in (6.20).

Proof. Consider the error in the homogeneous transformation matrix and bias

defined as in (6.16), (6.38) and (6.39), respectively. From (6.9) and (6.62), the error

dynamics of R̃ can be found to be analogous to (6.40). The ith inertial measurements

v
I(R)
i and v

I(L)
i are constant, thus, ṀR = 03×3. Consequently, from (6.40), the
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derivative of ||R̃MR||I is equivalent to

d

dt
||R̃MR||I =− 1

4
Tr

{[
R̂b̃Ω −WΩ

]
×
R̃MR

}
=− 1

4
Tr

{[
R̂b̃Ω −WΩ

]
×
Pa(R̃MR)

}
=

1

2
vex(Pa(R̃MR))>(R̂b̃Ω −WΩ) (6.68)

where Tr
{

[WΩ]× R̃MR

}
= −2vex(Pa(R̃MR))>WΩ as given in (2.16). One could

find that the derivative of P̃ is equivalent to (6.42). From (6.68) and (6.42), and in

view of (6.14), the derivative of e given in (6.61), becomes

ė =

 1
2vex(Pa(R̃MR))> 01×3[

P̂ − P̃
]
×

R̂

[ R̂b̃Ω −WΩ

b̃V −WV

]
(6.69)

The derivative of the transformed error in (6.30) be acquired by direct substitution of

e as in (6.61), in addition to the result in (6.69). Consider the candidate Lyapunov

function

V (E , b̃Ω, b̃V ) =
1

2
||E||2 +

1

2γ
||b̃Ω||2 +

1

2γ
||b̃V ||2 (6.70)

The derivative of V := V (E , b̃Ω, b̃V ) is as follows

V̇ =E>Ė − 1

γ
b̃>Ω

˙̂
bΩ −

1

γ
b̃>V

˙̂
bV

=
1

2
ERΨRvex(Pa(R̃MR))>(R̂b̃Ω −WΩ)

+ E>P ΨP

(
R̂(b̃V −WV ) +

[
P̂ − P̃

]
×

(R̂b̃Ω −WΩ)

)
− ERΨRΛR||R̃MR||I − E>P ΨPΛP P̃ −

1

γ
b̃>Ω

˙̂
bΩ −

1

γ
b̃>V

˙̂
bV (6.71)

Directly substituting for
˙̂
bΩ,

˙̂
bV , WΩ and WV in (6.64), (6.65), (6.66), and (6.67),
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respectively, results in

V̇ ≤ΛR

(
2

λ

||vex(Pa(R̃MR))||2

1 + Υ(MR, R̃)
− ||R̃MR||I

)
ERΨR

− 2

λ

kwE2
RΨ2

R

1 + Υ(MR, R̃)

∥∥∥vex(Pa(R̃MR))
∥∥∥2
− kwE>P Ψ2

PEP (6.72)

It can be easily found that

ΛR

2

λ

∥∥∥vex(Pa(R̃MR))
∥∥∥2

1 + Υ(MR, R̃)
− ||R̃MR||I

 ERΨR ≤ 0 (6.73)

where ER > 0∀||R̃MR||I 6= 0 and ER = 0 at ||R̃MR||I = 0 as presented in (ii)

Proposition 6.1, and ΨR > 0∀t ≥ 0 as given in (6.28). Also, ξ̇i is negative and

strictly increasing that satisfies ξ̇i → 0 as t → ∞, and ξi : R+ → R+ such that

ξi → ξ∞i as t → ∞. Thus, ξ̇i/ξi ≤ 0 which means that ΛR ≤ 0. Considering (6.18)

in Lemma 6.1, thus, the expression in (6.73) is negative semi-definite. As such, the

inequality in (6.72) can be expressed as

V̇ ≤− kwE2
RΨ2

R||R̃MR||I − kwE>P Ψ2
PEP (6.74)

This signifies that V (t) ≤ V (0) ,∀t ≥ 0. From almost any initial conditions such

that Tr
{
R̃ (0)

}
6= −1 and E (0) ∈ R4, E and b̃ are bounded for all t ≥ 0. Thereby,

E is bounded and well-defined for all t ≥ 0. P̃ , ||R̃MR||I , and vex(Pa(R̃MR)) are

also bounded which indicates that ˙̃P , || ˙̃RMR||I , ĖR and ĖP are bounded as well. In

order to prove asymptotic convergence of E to the origin and T̃ to the identity, it is

necessary to show that the second derivative of (6.70) is

V̈ ≤− 2kwERΨR(ĖRΨR + ERΨ̇R)||R̃MR||I − kwE2
RΨ2

R||
˙̃RMR||I

− 2kwE>P ΨP (ΨP ĖP + Ψ̇PEP ) (6.75)

Recall that ΨR = µ1 and ΨP = diag(µ2, µ3, µ4), where µ̇i was defined in (6.48) for

all i = 1, 2, . . . , 4. Since ėi is bounded, µ̇i is bounded as well and V̈ in (6.75) is

bounded for all t ≥ 0. From property (ii) of Proposition 6.1, ||E1|| → 0 indicates

that ||R̃MR||I → 0, while E1 6= 0∀||R̃MR||I 6= 0 and according to property (iii) of
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Proposition 6.1, Ei 6= 0∀ei 6= 0 and Ei = 0 if and only if ei = 0 for all i = 1, . . . , 4.

Therefore, V̇ is uniformly continuous, and on the basis of Barbalat Lemma, V̇ → 0

implies that ||E|| → 0 and ‖e‖ → 0 as t → ∞. This means that T̃ approaches I4

asymptotically in accordance with (iv) of Proposition 6.1, which completes the proof.

The estimates
˙̂
bΩ and

˙̂
bV and the correction factors WΩ and WV are functions

of the transformed error E and the auxiliary component µ. E and µ rely on the

error e such that their values become increasingly aggressive as ||R̃||I approaches the

unstable equilibria ||R̃||I → +1 and P̃ →∞. Their dynamic behavior is essential for

forcing the proposed filters to obey the prescribed performance constraints. On the

other side E → 0 as e → 0. This significant advantage was not offered in literature,

such as Baldwin et al. (2009, 2007); Hashim, Brown, and McIsaac (2019d); Hua et

al. (2011); Rehbinder and Ghosh (2003); Vasconcelos et al. (2010).

Remark 6.3 (Design parameters) The dynamic boundaries of e are described by

δ̄, δ, ξ∞, and ξ0 where ξ0 and ξ∞ define the large and small sets, respectively. The rate

of convergence from the given large set to the small set is controlled by `. The initial

value of e (0) in (6.19) or (6.61) can be easily obtained. When applying semi-direct

pose filter, Ry (0) can be reconstructed, for example, using Markley (1988); Shuster

and Oh (1981), Py (0) can be evaluated by Py (0) = GIc −Ry (0)GBc as in (6.31), and

finally ||R̃ (0) ||I = 1
4Tr{I3 − R̂ (0)R>y (0)} and P̃ (0) = P̂ (0)− R̃ (0)Py (0). In case

when the direct pose filter is used, ||R̃ (0) MR||I can be defined from (6.56) and P̃ (0)

can be easily obtained in the form of a vectorial measurement based on (6.60). Next,

the user can select δ̄, δ, and ξ0 to be greater than e (0).

6.3.3 Simplified steps of the proposed pose filters

The implementation of the proposed nonlinear pose filters on SE (3) with prescribed

performance given in Subsections 6.3.1 and 6.3.2 can be summarized in the following

7 simplified steps:

Step 1 : Select γ, kw > 0, δ̄ = δ > e (0), the desired speed of the convergence

rate `, and the upper bound of the small set ξ∞.

Step 2 : For the case of the semi-direct pose filter, define e =
[
||R̃||I , P̃>

]>
with R̃ = R̂R>y and P̃ = P̂ − R̃Py where Py is given in (6.31) and Ry is reconstructed
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(for example Markley (1988); Shuster and Oh (1981)). For the case of the direct pose

filter, define e =
[
||R̃MR||I , P̃>

]>
with ||R̃MR||I and P̃ being specified as in (6.56)

and (6.60), respectively.

Step 3 : For the case of the semi-direct pose filter, evaluate vex(Pa(R̃)), whereas,

for the case of the direct pose filter, define vex(Pa(MBR̃)) and Υ(MR, R̃) from

(6.54), and (6.57), respectively.

Step 4 : Find the PPF ξ from (6.20).

Step 5 : Evaluate the transformed error E, ΛR, ΨR, ΛP , and ΨP from (6.27)

and (6.28), respectively.

Step 6 : Obtain the filter kinematics
˙̂
R,

˙̂
P ,

˙̂
bΩ,

˙̂
bV , WΩ, and WV from (6.32),

(6.33), (6.34), (6.35), (6.36), and (6.37), respectively, for the semi-direct pose filter,

or from (6.62), (6.63), (6.64), (6.65), (6.66), and (6.67), respectively, for the direct

pose filter.

Step 7 : Go to Step 2 .

6.4 Simulations

This section illustrates the robustness of the proposed pose filters on SE (3) with

prescribed performance against large error in initialization of T̃ (0) and high levels

of bias and noise inherent to the measurement process. Let the dynamics of the

homogeneous transformation matrix T follow (6.10). Define the true angular velocity

(rad/sec) by

Ω =
[
sin (0.5t) , 0.7sin (0.4t+ π) , 0.5sin

(
0.35t+

π

3

)]>
with R (0) = I3. Consider the following true translational velocity (m/sec)

V =
[
0.3sin (0.6t) , 0.18sin

(
0.4t+

π

2

)
, 0.3sin

(
0.1t+

π

4

)]>
and the initial position P (0) = 03. Let the measurements of angular and transla-

tional velocities be Ωm = Ω + bΩ + ωΩ and Vm = V + bV + ωV , respectively, with
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bΩ = 0.1 [1,−1, 1]> and bV = 0.1 [2, 5, 1]>. ωΩ and ωV represent random noise pro-

cess at each time instant with zero mean and standard deviation (STD) equal to

0.15 (rad/sec) and 0.3 (m/sec), respectively. Assume that one landmark is available

for measurement (NL = 1)

v
I(L)
1 =

[
1

2
,
√

2, 1

]>
where the body-frame measurements are defined as (6.5) v

B(L)
1 = R>

(
v
I(L)
1 − P

)
+

b
B(L)
1 + ω

B(L)
1 . The bias vector is b

B(L)
1 = 0.1 [0.3, 0.2,−0.2]> while ω

B(L)
1 is a Gaus-

sian noise vector with zero mean and STD = 0.1. Assume that two non-collinear

inertial-frame vectors (NR = 2) are available with

v
I(R)
1 =

1√
3

[1,−1, 1]> , v
I(R)
2 = [0, 0, 1]>

while the two body-frame vectors are defined as in (6.2) v
B(R)
i = R>v

I(R)
i + b

B(R)
i +

ω
B(R)
i for i = 1, 2 such that b

B(R)
1 = 0.1 [−1, 1, 0.5]> and b

B(R)
2 = 0.1 [0, 0, 1]>. In

addition, ω
B(R)
1 and ω

B(R)
2 are Gaussian noise vectors with zero mean and STD = 0.1.

The third vector is obtained using v
I(R)
3 = v

I(R)
1 ×v

I(R)
2 and v

B(R)
3 = v

B(R)
1 ×v

B(R)
2 .

This step is followed by the normalization of v
B(R)
i and v

I(R)
i to υ

B(R)
i and υ

I(R)
i ,

respectively, for i = 1, 2, 3 as given in (6.3). Thus, Assumption 6.2 holds. For the

semi-direct pose filter with prescribed performance, Ry is obtained by SVD Markley

(1988), or for simplicity visit the Appendix in Hashim et al. (2018b) with R̃ = R̂R>y .

The total simulation time is 30 seconds.

Initial attitude error is set to be considerably large. Initial attitude estimate

is given by R̂ (0) = Rα (α, u/||u||) according to angle-axis parameterization as in

(2.7) with α = 175 (deg) and u= [3, 10, 8]>. It is worth noting that the value of

||R̃||I ≈ 0.999 is fairly close to the unstable equilibria (+1) and the initial position is

P̂ (0) = [4,−3, 5]>. In brief, we have

T (0) = I4, T̂ (0) =


−0.8923 0.2932 0.3432 4

0.3992 0.1577 0.9032 −3

0.2107 0.9430 −0.2577 5

0 0 0 1


The design parameters of the proposed filters are chosen as γ = 1, kw = 5, δ̄ = δ =
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[1.3, 5, 4, 6]>, ξ0 = [1.3, 5,−4, 6]>, ξ∞ = [0.07, 0.3, 0.3, 0.3]>, and ` = [4, 4, 4, 4]>.

The initial bias estimates are b̂Ω (0) = [0, 0, 0]> and b̂V (0) = [0, 0, 0]>.

Color notation used in the plots is: black center-lines and green solid-lines refer

to the true values, red illustrates the performance of the nonlinear semi-direct pose

filter (S-DIR) on SE (3) proposed in Subsection 6.3.1, and blue demonstrates the

performance of the direct filter (DIR) on SE (3) presented in Subsection 6.3.2. Also,

magenta depicts a measured value while orange and black dashed lines refer to the

prescribed performance response.

Fig. 6.3, 6.4 and 6.5 depict high values of noise and bias components attached

to velocity and body-frame vector measurements plotted against the true values. Fig.

6.6 and 6.7 show the output performance of the proposed filters described in terms

of Euler angles (φ, θ, ψ) and the true position in 3D space, respectively. Fig. 6.6

and 6.7 present remarkable tracking performance with fast convergence to the true

Euler angles and xyz-positions 3D space. The systematic and smooth convergence

of the error vector e is depicted in Fig. 6.8. It can be clearly observed how ||R̃||I
in Fig. 6.8 started very near to the unstable equilibria while P̃1, P̃2, and P̃3 started

remarkably far from the origin within the predefined large set and decayed smoothly

and systematically to the predefined small set guided by the dynamic boundaries of

the PPF such that R̃ = R̂R> and P̃ = P̂ − R̃P . Finally, the estimated bias b̂ is

bounded as depicted in Fig. 6.9.
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Figure 6.3: Measured and true values of angular velocities.
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Figure 6.4: Measured and true values of translational velocities.

Figure 6.5: True and measured body-frame vectorial measurements.

The simulation results establish the strong filtering capability of the two pro-

posed pose filters and their robustness against uncertain measurements and large

initialized errors making them perfectly fit for the measurements obtained from low

quality sensors such as IMU. The two filters conform to the dynamic constraints im-

posed by the user referring guaranteed prescribed performance measures in transient

as well as steady-state performance. The pose filters previously proposed in the lit-

erature Baldwin et al. (2009, 2007); Hua et al. (2011); Rehbinder and Ghosh (2003);

Vasconcelos et al. (2010) lack this remarkable quality. Semi-direct pose filter with

prescribed performance demands pose reconstruction, in this case attitude has been
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Figure 6.6: True and estimated Euler angles of the rigid-body.
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Figure 6.7: True and estimated rigid-body positions in 3D space.

extracted using SVD Hashim et al. (2018b); Markley (1988). This adds complexity,

and therefore the semi-direct pose filter requires more computational power in com-

parison with the direct pose filter with prescribed performance. Nevertheless, the two

proposed pose filters are robust and demonstrate impressive convergence capabilities.



Chapter 6: Nonlinear Pose Filters on SE (3) with Prescribed Performance 129

Figure 6.8: Systematic convergence of the error trajectories within the prescribed
performance boundaries.
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Figure 6.9: The estimated bias of the proposed filters.

6.5 Conclusion

Two nonlinear pose filters evolved directly on SE (3) with prescribed performance

characteristics have been considered. Pose error has been defined in terms of position

error and normalized Euclidean distance error, and the innovation term has been

selected to guarantee predefined measures of transient and steady-state performance.

As a result, the proposed filters exhibit superior convergence properties with transient

error being bounded by a predefined dynamically decreasing constrained function
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and steady-state error being less than a predefined lower bound. The proposed pose

filters are deterministic and the stability analysis ensure boundedness of all closed

loop signals with asymptotic convergence of the homogeneous transformation matrix

to the origin. Simulation results established the strong ability of the proposed filters

to impose the predefined constraints on the pose error considering large initial pose

error and high level of uncertainties in the measurements.



Chapter 7

Nonlinear Stochastic Pose Filter on SE (3)

7.1 Introduction

This chapter formulates the pose (attitude and position) estimation problem as non-

linear stochastic filter kinematics evolved directly on the Special Euclidean Group

SE (3). This work proposes an alternate way of potential function selection and han-

dles the problem as a stochastic filtering problem. The problem is mapped from

SE (3) to vector form, using the Rodriguez vector and the position vector, and then

followed by the definition of the pose problem in the sense of Stratonovich. The

proposed filter guarantees that the errors present in position and Rodriguez vector

estimates are semi-globally uniformly ultimately bounded (SGUUB) in mean square,

and that they converge to small neighborhood of the origin in probability. Simula-

tion results show the robustness and effectiveness of the proposed filter in presence of

high levels of noise and bias associated with the velocity vector as well as body-frame

measurements. The results of this chapter were first published in Hashim, Brown,

and McIsaac (2019d).

The rest of the chapter is organized as follows: Pose estimation dynamic problem

in the stochastic sense is presented in Section 7.2. The nonlinear stochastic filter on

SE (3) and the stability analysis are presented in Section 7.3. Section 7.4 demonstrates

numerical results and shows the output performance of the proposed stochastic filter.

Finally, Section 7.5 draws a conclusion of this work.

7.2 Problem Formulation in Stochastic Sense

The orientation of a rigid-body rotating in 3D space R ∈ SO (3) is normally defined

in terms of the body-frame R ∈ {B} relative to the inertial-frame {I}. Let P ∈ R3

131
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be the position of the rigid-body measured on the inertial-frame P ∈ {I}. Thereby,

this work concerns position as well as attitude estimation of a rigid-body moving and

rotating in 3D space. Consider the homogeneous transformation matrix given by

T =

[
R P

0>3 1

]
∈ SE (3) (7.1)

Let Ω ∈ R3 and V ∈ R3 be angular and translational velocity of a moving rigid-body

attached to the body-frame, respectively, for all Ω, V ∈ {B}. Hence, the dynamics of

the homogeneous transformation matrix T are expressed by

Ṗ = RV

Ṙ = R [Ω]× (7.2)

Ṫ = T [Y ]∧ (7.3)

where Y =
[
Ω>, V >

]>
∈ R6 is the group velocity vector expressed relative to

the body-frame. The homogeneous transformation matrix T can be reconstructed

through a set of known vectors in the inertial-frame and their measurements in the

body-frame. Let the superscript B and I denote the associated body-frame and

inertial-frame of the component, respectively. The pose estimation problem is illus-

trated in Figure 7.1.

Assume that there exists a number of feature points or landmarks denoted by

NL such that

v
B(L)
i = R>

(
v
I(L)
i − P

)
+ b
B(L)
i + ω

B(L)
i (7.4)

with v
B(L)
i ∈ R3 being the landmark measurement in the body-frame and v

I(L)
i ∈ R3

being a known constant feature in the inertial-frame for all i = 1, . . . , NL. Also,

b
B(L)
i ∈ R3 and ω

B(L)
i ∈ R3 are unknown bias and noise vectors attached to the

ith measurement for all i = 1, . . . , NL. The position P can be simply constructed if

the attitude matrix R is available. Let us denote the set of vectors associated with



Chapter 7: Nonlinear Stochastic Pose Filter on SE (3) 133

 

x  

y  

z  

Inertial-frame    

z  

y  

x  

Body-frame    

 L

1v  

 L

2v  

Landmark 

 L

2v  

 L

1v  Landmark 

Figure 7.1: Pose estimation problem of a rigid-body moving in 3D space.

landmarks by

vB(L) =
[
v
B(L)
1 , . . . , v

B(L)
NL

]
∈ {B}

vI(L) =
[
v
I(L)
1 , . . . , v

I(L)
NL

]
∈ {I} (7.5)

A weighted geometric center is considered for the case of more than one landmark is

available for measurement. The center is given by

PIc =
1∑NL

i=1 k
L
i

NL∑
i=1

kL
i v
I(L)
i (7.6)

PBc =
1∑NL

i=1 k
L
i

NL∑
i=1

kL
i v
B(L)
i (7.7)

with kL
i refers to the confidence level of the ith measurement. On the other side,

the attitude matrix R can be obtained through a set of NR-known non-collinear

vectors. The NR vectors are measured in the moving frame {B}. Let v
B(R)
i ∈ R3 be

a measured vector in the body-frame such that the ith body-frame vector is given by

v
B(R)
i = R>v

I(R)
i + b

B(R)
i + ω

B(R)
i (7.8)
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where v
I(R)
i refers to the known vector i in the inertial-frame for i = 1, 2, . . . , NR.

b
B(R)
i and ω

B(R)
i represent the unknown bias and noise components attached to the

ith measurement, respectively, for all b
B(R)
i , ω

B(R)
i ∈ R3. Let us denote the set of

vectors associated with attitude reconstruction by

vB(R) =
[
v
B(R)
1 , . . . , v

B(R)
NR

]
∈ {B}

vI(R) =
[
v
I(R)
1 , . . . , v

I(R)
NR

]
∈ {I} (7.9)

Assumption 7.1 At least one feature point is available for measurements (7.4) with

NL ≥ 1, and three non-collinear vectors are available for measurements (7.8) with

NR ≥ 2. In case when NR = 2, the third vector can be obtained by v
I(R)
3 = v

I(R)
1 ×

v
I(R)
2 and v

B(R)
3 = v

B(R)
1 × v

B(R)
2 .

According to Assumption 7.1, NR ≥ 2 means that the set of vectorial measurements

in (7.9) is sufficient to have rank 3. The homogeneous transformation matrix T can

be reconstructed if Assumption 7.1 is satisfied. It is common to obtain the normalized

values of inertial and body-frame measurements in (7.8) such that

υ
I(R)
i =

v
I(R)
i∥∥∥v
I(R)
i

∥∥∥ , υ
B(R)
i =

v
B(R)
i∥∥∥v
B(R)
i

∥∥∥ (7.10)

and the normalized set of (7.10) is

υB(R) =
[
υ
B(R)
1 , . . . , υ

B(R)
NR

]
∈ {B}

υI(R) =
[
υ
I(R)
1 , . . . , υ

I(R)
NR

]
∈ {I} (7.11)

In that case, the attitude can be extracted knowing υ
I(R)
i and υ

B(R)
i instead of v

I(R)
i

and v
B(R)
i . Gyroscope obtains the measurements of angular velocity in the body-

frame {B} and the measurement vector is defined by

Ωm = Ω + bΩ + ωΩ ∈ {B} (7.12)
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with Ω denoting the true value of angular velocity, bΩ ∈ R3 denoting the bias com-

ponent which is unknown constant or slowly time-varying vector, and ωΩ ∈ R3 being

the unknown noise component attached to angular velocity measurements. Also, the

translational velocity is expressed in the body-frame and its measurement is defined

by

Vm = V + bV + ωV ∈ {B} (7.13)

where V denotes the true value of the translational velocity, bV ∈ R3 denotes the

unknown bias component, and ωV ∈ R3 is the unknown noise component attached

to translational velocity measurements. Let the group of velocity measurements,

bias and noise vectors be defined by Ym =
[
Ω>m, V

>
m

]>
, b =

[
b>Ω , b

>
V

]>
and ω =[

ω>Ω , ω
>
V

]>
, respectively, for all Ym, b, ω ∈ R6. The noise vector ω is assumed to be

Gaussian with zero mean. The dynamics of (7.2) can be mapped to Rodriguez vector

and expressed as follows (Shuster (1993))

ρ̇ =
1

2

(
I3 + [ρ]× + ρρ>

)
Ω (7.14)

Therefore, the dynamics of the homogeneous transformation matrix in (7.3) can be

mapped to vector form in the sense of Rodriguez parameters from (7.14) and (A.1)

as [
ρ̇

Ṗ

]
=

 I3+[ρ]×+ρρ>
2 03×3

03×3 Rρ (ρ)

[ Ω

V

]
(7.15)

where Rρ (ρ) = R ∈ SO (3) as given in (A.1). According to (7.12) and (7.13), the

measurements of angular and translational velocities are subject to noise and bias

components. These components are characterized by randomness and uncertainty.

As such, the randomness in measurements could lead to unknown behavior (Hashim,

El-Ferik, Ayinde, and Abido (2017); Hashim, El-Ferik, and Lewis (2017, 2019)) and

impair the whole estimation process. The dynamics of the homogeneous transforma-

tion matrix in (7.3) become

Ṫ = T
[
Ym − b− ω

]
∧

(7.16)

In view of (7.3) and (7.15), the dynamics in (7.16) can be mapped in the same sense
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and represented as[
ρ̇

Ṗ

]
=

 I3+[ρ]×+ρρ>
2 03×3

03×3 Rρ (ρ)

 (Ym − b− ω) (7.17)

where ω is a continuous Gaussian random noise vector with zero mean which is

bounded. The derivative of any Gaussian process yields a Gaussian process (Jazwinski

(2007); Khasminskii (1980)). Hence, the vector ω can be written as a function of

Brownian motion process vector dβ/dt with β ∈ R6 such that

ω = Qdβ
dt

where β =
[
β>Ω , β

>
V

]>
and Q ∈ R6×6 is a diagonal matrix whose diagonal has

unknown time-variant nonnegative components defined by

Q =

[
QΩ 03×3

03×3 QV

]

where QΩ ∈ R3×3 is associated with ωΩ and QV ∈ R3×3 is associated with ωV . In

addition, Q2 = QQ> is a covariance component associated with the noise vector ω.

The properties of Brownian motion process are defined by (Deng et al. (2001); Ito

and Rao (1984); Jazwinski (2007))

P {β (0) = 0} = 1, E [dβ/dt] = 0, E [β] = 0

Let the dynamics of the homogeneous transformation in (7.3) be defined in the sense

of Stratonovich (Stratonovich (1967)) and substitute ω by Qdβ/dt. Accordingly, the

stochastic differential equation of (7.3) can be expressed as

dT = T [Ym − b]∧ dt− T [Qdβ]∧ (7.18)
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in view of (7.16) and (7.17), the stochastic differential equation in (7.18) is given by

[
dρ

dP

]
=

 I3+[ρ]×+ρρ>
2 03×3

03×3 Rρ (ρ)

 ((Ym − b) dt−Qdβ) (7.19)

Let us define

dX = f (ρ, b) dt− G (ρ)Qdβ (7.20)

G (ρ) =

[
gρ 03×3

03×3 gP

]
=

 I3+[ρ]×+ρρ>
2 03×3

03×3 Rρ (ρ)


f (ρ, b) = G (ρ) (Ym − b)

with X =
[
ρ>, P>

]>
∈ R6, G : R3 → R6×6 and f : R3 × R6 → R6. G (ρ) is

locally Lipschitz in ρ and f (ρ, b) is locally Lipschitz in ρ and b. Consequently, the

dynamic system in (7.19) has a solution on t ∈ [t (0) , T ]∀t (0) ≤ T < ∞ in the

mean square sense and for any ρ (t) and P (t) such that t 6= t (0), X − X (0) is

independent of {β (τ) , τ ≥ t} , ∀t ∈ [t (0) , T ] (Theorem 4.5 Jazwinski (2007)). The

aim is to achieve adaptive stabilization of an unknown constant bias and unknown

time-variant covariance matrix. Let σ =
[
σ>Ω , σ

>
V

]>
∈ R6 with σΩ, σV ∈ R3 being

the upper bound of Q2 such that

σ =
[
max

{
Q2

(1,1)

}
,max

{
Q2

(2,2)

}
, . . . ,max

{
Q2

(6,6)

}]>
(7.21)

where max {·} is the maximum value of the associated covariance element.

Assumption 7.2 Both b and σ belong to a given compact set ∆ and are upper

bounded by a scalar Γ such that ‖∆‖ ≤ Γ <∞.

Definition 7.1 (Ji and Xi (2006)) The trajectory X =
[
ρ>, P>

]>
of the stochastic

differential system in (7.19) is said to be semi-globally uniformly ultimately bounded

(SGUUB) if for some compact set Ξ ∈ R6 and any X (0) = X (t (0)), there exists a

constant ϑ > 0, and a time constant T = T (ϑ,X (0)) such that E [‖X‖] < ϑ,∀t >
t (0) + T .
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Definition 7.2 Consider the stochastic differential system in (7.19). For a given

function V (X) ∈ C2 with X =
[
ρ>, P>

]>
the differential operator LV is given by

LV (X) = V >X f (ρ, b) +
1

2
Tr
{
G (ρ)Q2G> (ρ)VXX

}
such that VX = ∂V/∂X, and VXX = ∂2V/∂X2.

Lemma 7.1 (Deng and Krsti (1997); Deng et al. (2001); Ji and Xi (2006)) Consider

the dynamic system in (7.19) with potential function V ∈ C2, such that V : R6 → R+,

class K∞ function ᾱ1 (·) and ᾱ2 (·), constants c1 > 0 and c2 ≥ 0 and a nonnegative

function Z (‖X‖) such that

ᾱ1 (‖X‖) ≤ V ≤ ᾱ2 (‖X‖) (7.22)

LV (X) =V >X f (ρ, b) +
1

2
Tr
{
G (ρ)Q2G> (ρ)VXX

}
≤− c1Z (‖X‖) + c2 (7.23)

then for X (0) ∈ R6, there exists almost a unique strong solution on [0,∞) for the

dynamic system in (7.19). The solution X is bounded in probability such that

E [V (X)] ≤ V (X (0)) exp (−c1t) +
c2
c1

(7.24)

Moreover, if the inequality in (7.24) holds, then X in (7.19) is SGUUB in the mean

square. Also, when c2 = 0, f (0, b) = 0, G (0) = 0, and Z (‖X‖) is continuous, the

equilibrium point X = 0 is globally asymptotically stable in probability and the solution

of X satisfies

P
{

lim
t→∞

Z (‖X‖) = 0

}
= 1, ∀X (0) ∈ R6 (7.25)

The proof of this lemma and the existence of a unique solution can be found in Deng

et al. (2001). For a rotation matrix R ∈ SO (3), let us define U0 ⊆ SO (3) × R3 by

U0 = {(R (0) , P (0))|Tr {R (0)} = −1, P (0) = 03}. The set U0 is forward invariant

and unstable for the dynamic system (7.2) and (7.3), as Tr {R (0)} = −1 implies

ρ (0) =∞ (Hashim et al. (2018b); Shuster (1993)). From almost any initial condition
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such that R (0) /∈ U0 or equivalently ρ (0) ∈ R3, we have −1 < Tr {R (0)} ≤ 3 and

the trajectory of X =
[
ρ>, P>

]>
converges to the neighborhood of the equilibrium

point conditioned on the value of c2 in (7.23).

Lemma 7.2 (Young’s inequality) Let x and y be real values such that x, y ∈ R3.

Then, for any positive real numbers c and d satisfying 1
c + 1

d = 1 with appropriately

small positive constant ε, the following inequality holds

x>y ≤ (1/c) εc ‖x‖c + (1/d) ε−d ‖y‖d (7.26)

7.3 Nonlinear Stochastic Complementary Filter

on SE (3)

Let T̂ be the estimator of the homogeneous transformation matrix T such that

T̂ =

[
R̂ P̂

0>3 1

]
∈ SE (3)

The main purpose of this section is to design a pose estimator to drive T̂ → T . Let

us define the error in the estimation of the homogeneous transformation matrix by

T̃ = T T̂
−1

=

[
RR̂> P −RR̂>P̂
0>3 1

]
=

[
R̃ P̃

0>3 1

]
(7.27)

with R̃ = RR̂> and P̃ = P −R̃P̂ . Driving T̂ → T guarantees that P̃ → 0 and ρ̃→ 0,

where P̃ is the position error associated with T̃ and ρ̃ is the error of Rodriguez vector

associated with R̃ which is in turn associated with T̃ . In this Section, a nonlinear

deterministic filter on SE (3) is presented. This filter is subsequently modified into a

nonlinear stochastic filter evolved directly on SE (3). The nonlinear stochastic filter

is driven in the sense of Stratonovich. For X̃ =
[
ρ̃>, P̃>

]>
∈ R6, the error vector

X̃ is regulated to an arbitrarily small neighborhood of the origin in the case where

velocity vector measurements Ym are contaminated with constant bias and random

noise at each time instant. Let b̂ and σ̂ denote estimates of unknown parameters b,
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and σ, respectively. Let the error in vector b and σ be defined by

b̃ = b− b̂ (7.28)

σ̃ = σ − σ̂ (7.29)

7.3.1 Nonlinear Deterministic Pose Filter

The aim of this subsection is to study the behavior of nonlinear deterministic pose

filter evolved directly on SE (3) in presence of noise in the velocity vector measure-

ments Ym. The attitude can be constructed algebraically given a set of measure-

ments in (7.9) to form Ry, for example (Markley (1988); Wahba (1965)). However,

Ry is uncertain and significantly far from the true R. The given set of measure-

ments in (7.11) helps in finding Ry and for a given landmark(s) we have Py =

1∑NL
i=1 k

L
i

∑NL
i=1 k

L
i

(
v
I(L)
i −Ryv

B(L)
i

)
and T y =

[
Ry Py

0>3 1

]
. Hence, the filter design

aims to use the given measured T y, and the velocity measurements in (7.12), and

(7.13) to obtain a good estimate of the true T . Consider the nonlinear deterministic

pose filter design

˙̂
T = T̂

[
Ym − b̂+ kwW

]
∧
, T̂ (0) ∈ SE (3) (7.30)

˙̂
b = −ΓĂd

>
T̂

 ∥∥∥R̃∥∥∥I I3 03×3

03×3 4R̃>

Υ
(
T̃
)
− kbΓb̂ (7.31)

W = kpĂd
−1

T̂


2−
∥∥∥R̃∥∥∥

I

1−
∥∥∥R̃∥∥∥

I

I3 03×3

03×3 R̃>

Υ
(
T̃
)

(7.32)

where Ym =
[
Ω>m, V

>
m

]>
is a measured vector of angular and translational velocity

defined in (7.12) and (7.13), respectively, with no noise attached to measurements

(ω = 0). b̂ =
[
b̂>Ω , b̂

>
V

]>
∈ R6 is the estimate of the unknown bias vector b, T̃ =

T yT̂
−1

, Υ
(
T̃
)

=
[
Υ>a

(
R̃
)
, P̃>

]>
as in (2.5), Υa

(
R̃
)

= vex
(
Pa
(
R̃
))

, and∥∥∥R̃∥∥∥
I

= 1
4Tr

{
I3 − R̃

}
. Also, Ăd

T̂
=

 R̂ 03×3[
P̂
]
×
R̂ R̂

, Γ =

[
ΓΩ 03×3

03×3 ΓV

]
=
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γI6, is an adaptation gain with ΓΩ,ΓV ∈ R3×3, γ > 0, and kb, kp and kw are positive

constants.

Theorem 7.1 Consider the homogeneous transformation matrix dynamics in (7.3)

with velocity measurements Ym in (7.12) and (7.13). Let Assumption 7.1 hold and

assume that the vector measurements in (7.8) are normalized to (7.10). Let T y be

reconstructed using the vector measurement in (7.4) and (7.10) , and be coupled with

the observer in (7.30), (7.31) and (7.32). In case when velocity vector measure-

ments Ym are subject to constant bias, no noise is introduced to the system (ω = 0),

X̃ (0) =
[
ρ̃ (0)> , P̃ (0)>

]>
∈ R6, and X̃ (0) 6= 06, 1) the error vector X̃ is uni-

formly ultimately bounded for all t ≥ t (0); and 2) consequently
(
T̃ , b̃

)
steers to the

neighborhood of the equilibrium set S =
{(

T̃ , b̃
)
∈ SE (3)× R6 : T̃ = I4, b̃ = 06

}
.

Proof. Let the error in b and T̃ be defined as in (7.28), and (7.27), respectively.

Therefore, the derivative of homogeneous transformation matrix error in (7.27) can

be expressed from (7.16) and (7.30) as

˙̃T = Ṫ T̂
−1

+ T
˙̂
T−1

= T [Ym − b]∧ T̂
−1 − T

[
Ym − b̂+ kwW

]
∧
T̂
−1

= T T̂
−1

T̂
[
−b̃− kwW

]
∧
T̂
−1

= −T̃
[
Ăd

T̂

(
b̃+ kwW

)]
∧

(7.33)

where
˙̂
T−1 = −T̂−1 ˙̂

T T̂
−1

, and b̃ =
[
b̃>Ω , b̃

>
V

]>
. Considering the math identity in

(2.10), we have T̂
[
b̃
]
∧
T̂
−1

=
[
Ăd

T̂
b̃
]
∧

. For X̃ =
[
ρ̃>, P̃>

]>
, and in view of the

transformation of (7.16) into (7.17), one may write (7.33) as

˙̃X = −G (ρ̃) Ăd
T̂

(
b̃+ kwW

)
(7.34)

with

G (ρ̃) =

 I3+[ρ̃]×+ρ̃ρ̃>
2 03×3

03×3 Rρ̃ (ρ̃)


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and Rρ̃ (ρ̃) = R̃ ∈ SO (3) as given in (A.1). Consider the following potential function

V
(
ρ̃, P̃ , b̃

)
=

(
‖ρ̃‖2

1 + ‖ρ̃‖2

)2

+ 2
∥∥∥P̃∥∥∥2

+
1

2
b̃>Γ−1b̃ (7.35)

for V := V
(
ρ̃, P̃ , b̃

)
the derivative of (7.35) is defined by

V̇ = −4X̃>

 ‖ρ̃‖2(
1+‖ρ̃‖2

)3 I3 03×3

03×3 I3

G (ρ̃) Ăd
T̂

(
b̃+ kwW

)
− b̃>Γ−1 ˙̂

b

= −X̃>

 2‖ρ̃‖2(
1+‖ρ̃‖2

)2 I3 03×3

03×3 4R̃

 Ăd
T̂

(
b̃+ kwW

)
− b̃>Γ−1 ˙̂

b (7.36)

substitute for
∥∥∥R̃∥∥∥

I
= ‖ρ̃‖2 /

(
1 + ‖ρ̃‖2

)
and Υa

(
R̃
)

= 2ρ̃/
(

1 + ‖ρ̃‖2
)

from (A.2)

and (A.4), respectively, the result in (7.36) becomes

V̇ = −Υ
(
T̃
)>  ∥∥∥R̃∥∥∥I I3 03×3

03×3 4R̃

 Ăd
T̂

(
b̃+ kwW

)
− b̃>Γ−1 ˙̂

b (7.37)

such that Υ
(
T̃
)

=
[
Υ>a

(
R̃
)
, P̃>

]>
, substituting for

˙̂
b and W from (7.31) and

(7.32), respectively, with
∥∥∥Υa

(
R̃
)∥∥∥2

= 4
(

1−
∥∥∥R̃∥∥∥

I

)∥∥∥R̃∥∥∥
I

= 4
‖ρ̃‖2(

1+‖ρ̃‖2
)2 as in

(A.6) yields

V̇ = −kwkp
∥∥∥R̃∥∥∥

I

∥∥∥Υa

(
T̃
)∥∥∥2
− 4kwkp

(∥∥∥R̃∥∥∥2

I
+
∥∥∥P̃∥∥∥2

)
− kb

∥∥∥b̃∥∥∥2
+ kbb̃

>b

= −4kwkp
‖ρ̃‖4(

1 + ‖ρ̃‖2
)3
− 4kwkp

 ‖ρ̃‖4(
1 + ‖ρ̃‖2

)2
+
∥∥∥P̃∥∥∥2

− kb ∥∥∥b̃∥∥∥2
+ kbb̃

>b

(7.38)
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applying Young’s inequality to kbb̃
>b, one obtains kbb̃

>b ≤ kb
2

∥∥∥b̃∥∥∥2
+
kb
2 ‖b‖

2. Define

Ỹ =

[
‖ρ̃‖2

1 + ‖ρ̃‖2
,
∥∥∥P̃∥∥∥2

,
1√
2γ
b̃>
]>
∈ R8,

H = diag
(

4kpkw, 4kpkw, γkb1
>
6

)
∈ R8×8

therefore, equation (7.38) becomes

V̇ ≤ −4kwkp
‖ρ̃‖4(

1 + ‖ρ̃‖2
)3
− Ỹ >HỸ +

kb
2
‖b‖2

≤ −λ (H)V +
kb
2
‖b‖2 (7.39)

Let c1 = λ (H) and c2 =
kb
2 ‖b‖

2, thus, the result in (7.39) implies that X̂ and b̂ will

eventually converge to the compact set

Ξs =

{
X̂ (t) , b̂ (t)

∣∣∣ lim
t→∞

∥∥∥X̃ (t)
∥∥∥ = µX , lim

t→∞

∥∥∥b̃ (t)
∥∥∥ = µb

}
with

µX =

√
c2
c1
, µb =

√
2c2
c1γ

and

∥∥∥X̃ (t)
∥∥∥ ≤√(V (0)− c2

c1

)
exp (−c1t) +

c2
c1∥∥∥b̃ (t)

∥∥∥ ≤ 1

γ

√(
V (0)− c2

c1

)
exp (−c1t) +

c2
c1

The result obtained in (7.39) is similar to Lemma 1.2 in Ge and Wang (2004) which

confirms the result in Theorem 7.1. Theorem 7.1 is developed for deterministic ob-

servers, assuming absence of noises in the system dynamics. Hence, Lyapunov’s direct

method guarantees that for Tr
{
R̃ (0)

}
6= −1, Υ

(
T̃
)

converges to a small neighbor-

hood of the origin. However, if the velocity vector Ym is contaminated with noise
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such that (ω 6= 0), it would no longer be convenient to express the derivative of (7.35)

similar to (7.36). Therefore, the derivative of (7.35) should be expressed analogously

to the differential operator in Definition 7.2 and consequently, the covariance matrix

Q2 appears there. As a result, one solution is to reformulate the potential function

in (7.35) such that ρ̃ and P̃ are of order higher than two (Deng and Krsti (1997);

Deng et al. (2001)). Clearly, this is not the case in Theorem 7.1 as well as in previous

studies such as Baldwin et al. (2009, 2007); Hua et al. (2011); Rehbinder and Ghosh

(2003); Vasconcelos et al. (2010).

7.3.2 Nonlinear Stochastic Pose Filter in Stratonovich

Sense

Generally, nonlinear deterministic attitude or attitude-position filters assume that

velocity measurements are subject only to constant bias (for example Baldwin et al.

(2009, 2007); Crassidis et al. (2007); Hua et al. (2011); Mahony et al. (2008); Re-

hbinder and Ghosh (2003)). In contrast, the velocity vector Ym is contaminated not

only with bias but also noise components. The added components could impair the

estimation process of the true position and attitude. As such, the aim is to design

a nonlinear stochastic filter evolved directly on SE (3) in the sense of Stratonovich

(Stratonovich (1967)) considering that measurement in the velocity vector Ym is con-

taminated with constant bias and a wide-band of Gaussian random noise with zero

mean. Stochastic differential equations can be defined and solved in the sense of Ito’s

integral (Ito and Rao (1984)). Alternatively, Stratonovich’s integral (Stratonovich

(1967)) can be employed for solving stochastic differential equations. The common

feature between Stratonovich and Ito integral is that if the associated function multi-

plied by dβ is continuous and Lipschitz, the mean square limit exists. The Ito integral

is defined for functional on {β (τ) , τ ≤ t} which is more natural but it does not obey

the chain rule. Conversely, Stratonovich is a well-defined Riemann integral for the

sampled function, it has a continuous partial derivative with respect to β, it obeys the

chain rule, and it is more convenient for colored noise (Jazwinski (2007); Stratonovich

(1967)). Hence, the Stratonovich integral is defined for explicit functions of β. In

case of a wide-band of random colored noise process being attached to the velocity

measurements, for X =
[
ρ>, P>

]>
with X (t0) = 0, the solution of (7.19) is defined
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by

X (t) =

t∫
t0

f (ρ (τ) , b (τ)) dτ +

t∫
t0

G (ρ (τ))Qdβ (7.40)

if the problem has been considered and solved directly in the sense of Ito, the expected

value of (7.40) is

E [X] 6=
t∫

t0

E [f (ρ (τ) , b (τ))] dτ

Hence, Stratonovich came up with the Wong-Zakai correction factor to balance any

colored noise that may be introduced to the system dynamics and to end with

E [X] =
∫ t
t0
E [f (ρ, b)] dτ . A remarkable advantage of Stratonovich is its applica-

bility to white noise as well as colored noise which makes the filter more robust for

real time applications (Jazwinski (2007); Khasminskii (1980); Stratonovich (1967)).

Let us assume that the attitude dynamics in (7.19) were defined in the sense of

Stratonovich Stratonovich (1967). Therefore, the equivalent Ito (Ito and Rao (1984);

Jazwinski (2007); Khasminskii (1980)) can be expressed as

[dX]i = [f (ρ, b)]i dt+
6∑

k=1

6∑
j=1

Q2
j,j

2
Gkj (ρ)

∂Gij (ρ)

∂Xk
dt+ [G (ρ)Qdβ]i (7.41)

where both f (ρ, b) and G (ρ) are defined in (7.19).
∑6
k=1

∑6
j=1

Q2
j,j
2 Gkj (ρ)

∂Gij(ρ)

∂ρk
is

termed the Wong-Zakai correction factor of stochastic differential equations (SDEs)

in the sense of Ito (Wong and Zakai (1965)), and i, j, k = 1, . . . , 6 denote ith, jth

and/or kth elements of the associated vector or matrix. Assume that W (ρ) =[
W>ρ ,W>P

]>
∈ R6. LetWρi =

∑3
k=1

∑3
j=1

Q2
j,j
2 Gkj (ρ)

∂Gij(ρ)

∂ρk
, therefore, for i = 1

Wρi =
1

4

((
1 + ρ2

1

)
ρ1Q2

1,1 + (ρ1ρ2 − ρ3) ρ2Q2
2,2 + (ρ2 + ρ1ρ3) ρ3Q2

3,3

)
see Appendix C. Thus, one can find that for i = 1, 2, 3,Wρ ∈ R3 can be defined after

some steps of calculations as follows

Wρ =
1

4

(
I3 + [ρ]× + ρρ>

)
Q2

Ωρ (7.42)
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see Appendix C. And WPi =
∑6
k=4

∑6
j=4

Q2
j,j
2 Gkj (ρ)

∂Gij(ρ)

∂Pk
= 0, for i = 4, 5, 6,

visit Appendix C. This implies that

WP = 03 ∈ R3 (7.43)

Manipulating equations (7.41), (7.42) and (7.43), the stochastic dynamics of the Ro-

driguez vector can be expressed as

dX = (f (ρ, b) (Ym − b) +W (ρ)) dt− G (ρ)Qdβ (7.44)

Assume that the elements of covariance matrix Q2 are upper bounded by σ as given

in (7.21) such that the bound of σ is unknown for nonnegative elements. Consider

the nonlinear stochastic pose filter design

˙̂
T =T̂

Ym − b̂+ kwW + Ăd
T̂
−1

 1
2

1

1−
∥∥∥R̃∥∥∥

I

I3 03×3

03×3 03×3

 diag
(
Υ
(
T̃
))

σ̂


∧

,

T̂ (0) ∈ SE (3) (7.45)

˙̂
b =− ΓĂd

>
T̂


∥∥∥R̃∥∥∥

I
I3 03×3

03×3 4
∥∥∥P̃∥∥∥2

R̃>

Υ
(
T̃
)
− kbΓb̂ (7.46)

˙̂σ =Π

1

4

∥∥∥R̃∥∥∥
I

1−
∥∥∥R̃∥∥∥

I

diag

([
Υa

(
R̃
)

03

])
+ kwkp

 ∥∥∥R̃∥∥∥I D>Υ 03×3

03×3 03×3

Υ
(
T̃
)

− kσΠσ̂ (7.47)

W =kpĂd
T̂
−1

1

ε


2−
∥∥∥R̃∥∥∥

I

1−
∥∥∥R̃∥∥∥

I

I3 03×3

03×3 R̃>

Υ
(
T̃
)

+

[
DΥ 03×3

03×3 03×3

]
σ̂

 (7.48)

where Ym =
[
Ω>m, V

>
m

]>
denotes the measured vector of angular and translational

velocity defined in (7.12) and (7.13), respectively. b̂ =
[
b̂>Ω , b̂

>
V

]>
∈ R6 and σ̂ =[

σ̂>Ω , σ̂
>
V

]>
∈ R6 are estimates of the unknown parameter b and σ, respectively,

T̃ = T yT̂
−1

, Υ
(
T̃
)

=
[
Υ>a

(
R̃
)
, P̃>

]>
as in (2.5), Υa

(
R̃
)

= vex
(
Pa
(
R̃
))

as
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given in (A.4),
∥∥∥R̃∥∥∥

I
= 1

4Tr
{

I3 − R̃
}

is the Euclidean distance of R̃ as defined in

(A.2), and DΥ =
[
Υa

(
R̃
)
,Υa

(
R̃
)
,Υa

(
R̃
)]

. Also, Ăd
T̂

=

 R̂ 03×3[
P̂
]
×
R̂ R̂

,

Γ =

[
ΓΩ 03×3

03×3 ΓV

]
= γI6, and Π =

[
ΠΩ 03×3

03×3 ΠV

]
= π̄I6 are adaptation gains

with ΓΩ,ΓV ,ΠΩ,ΠV ∈ R3×3 where γ, π̄ > 0, ε > 0 is a small constant, and kb, kσ,

kp and kw are positive constants.

Theorem 7.2 Consider the homogeneous transformation matrix dynamics in (7.3)

with velocity measurements Ym =
[
Ω>m, V

>
m

]>
in (7.12) and (7.13). Let Assump-

tion 7.1 hold and assume that the vector measurements in (7.8) are normalized to

(7.10). Let T y be reconstructed using the vector measurements in (7.4) and (7.10),

and be coupled with the observer in (7.45), (7.46), (7.47) and (7.48). Assume the

design parameters Γ, Π, ε, kb, kσ, kp and kw are chosen appropriately with ε being

selected sufficiently small. When velocity measurements Ym are contaminated with

bias and noise (ω 6= 0), X̃ (0) =
[
ρ̃ (0)> , P̃ (0)>

]>
∈ R6, and X̃ (0) 6= 06, then

1) the errors
(
T̃ , b̃, σ̃

)
are regulated to the neighborhood of the equilibrium set S ={(

T̃ , b̃, σ̃
)
∈ SE (3)× R6 × R6 : T̃ = I4, b̃ = 06, σ̃ = 06

}
; and 2)

[
X̃>, b̃>, σ̃>

]>
is semi-

globally uniformly ultimately bounded in mean square.

Proof: Let the error in the homogeneous transformation matrix T be given as in

(7.27) and the error in vector b be defined as in (7.28). Therefore, the derivative

of homogeneous transformation matrix error T̃ in (7.27) in incremental form can be
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obtained from (7.16) and (7.45) by

dT̃ =dT T̂
−1

+ T dT̂
−1

=T [Ym − b]∧ T̂
−1
dt− T [Qdβ]∧ T̂

−1

− T

Ym − b̂+ kwW + Ăd
T̂

−1

 1
2

1
1−‖R̃‖

I

I3 03×3

03×3 03×3

diag
(
Υ
(
T̃
))

σ̂


∧

T̂
−1
dt

=− T̃ T̂

b̃+ kwW + Ăd
T̂

−1

 1
2

1
1−‖R̃‖

I

I3 03×3

03×3 03×3

diag
(
Υ
(
T̃
))

σ̂


∧

T̂
−1
dt

− T̃ T̂ [Qdβ]∧ T̂
−1

=− T̃

ĂdT̂

(
b̃+ kwW

)
+

 1
2

1
1−‖R̃‖

I

I3 03×3

03×3 03×3

diag
(
Υ
(
T̃
))

σ̂


∧

dt

− T̃
[
ĂdT̂Qdβ

]
∧

(7.49)

where
˙̂
T−1 = −T̂−1 ˙̂

T T̂
−1

, and b̃ =
[
b̃>Ω , b̃

>
V

]>
. Considering the math identity in

(2.10) we have T̂
[
b̃
]
∧
T̂
−1

=
[
Ăd

T̂
b̃
]
∧

, and from the math identity in (2.17) and

(2.18), we have Ăd
T̂

Ăd
T̂
−1 = I6. Similarly to transition from (7.18) to (7.19),

extraction of vector dynamics in (7.49) can be expressed as (7.50) and (7.51) in

Stratonovich’s representation (Stratonovich (1967)) as follows

dX̃ =−

 I3+[ρ̃]×+ρ̃ρ̃>
2 03×3

03×3 Rρ̃ (ρ̃)

( 1
2

1

1−
∥∥∥R̃∥∥∥

I

I3 03×3

03×3 03×3

 diag
(
Υ
(
T̃
))

σ̂

+ Ăd
T̂

(
b̃+ kwW

))
dt−

 I3+[ρ̃]×+ρ̃ρ̃>
2 03×3

03×3 Rρ̃ (ρ̃)

 Ăd
T̂
Qdβ (7.50)

Or more simply as

dX̃ =− f
X̃
dt− G (ρ̃) Ăd

T̂
Qdβ (7.51)
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where

G (ρ̃) =

[
gρ̃ (ρ̃) 03×3

03×3 g
P̃

(ρ̃)

]

gρ̃ (ρ̃) =
I3 + [ρ̃]× + ρ̃ρ̃>

2

g
P̃

(ρ̃) = Rρ̃ (ρ̃)

and

f
X̃

= −G (ρ̃)

Ăd
T̂

(
b̃+ kwW

)
+

 1
2

1

1−
∥∥∥R̃∥∥∥

I

I3 03×3

03×3 03×3

 diag
(
Υ
(
T̃
))

σ̂


One can re-define

ω̄Ω = R̂ωΩ

ω̄V =
[
P̂
]
×
R̂ωΩ + R̂ωV

for all ω̄Ω, ω̄V ∈ R3 such that

ω̄Ω = Q̄Ω
dβ̄Ω

dt
, ω̄V = Q̄V

dβ̄V
dt

with

β̄ =
[
β̄>Ω , β̄

>
V

]>
∈ R6

Q̄ =

[
Q̄Ω 03×3

03×3 Q̄V

]
∈ R6×6

Thus, the dynamics in (7.49) and (7.51) can be re-expressed, respectively, as

dT̃ = −T̃

Ăd
T̂

(
b̃+ kwW

)
+

 1
2

1

1−
∥∥∥R̃∥∥∥

I

I3 03×3

03×3 03×3

 diag
(
Υ
(
T̃
))

σ̂


∧

dt

− T̃
[
Q̄dβ̄

]
∧ (7.52)
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dX̃ =− f
X̃
dt− G (ρ̃) Q̄dβ̄ (7.53)

Hence, in view of (7.41) and (7.44), the error dynamics in (7.53) can be re-expressed

in the sense of Ito (Ito and Rao (1984)) as

dX̃ =− G (ρ̃)

Ăd
T̂

(
b̃+ kwW

)
+

 1
2

1

1−
∥∥∥R̃∥∥∥

I

I3 03×3

03×3 03×3

 diag
(
Υ
(
T̃
))

σ̂

 dt

+

[
W ρ̃

W
P̃

]
dt− G (ρ̃) Q̄dβ̄ (7.54)

withW ρ̃ = 1
4

(
I3 + [ρ̃]× + ρ̃ρ̃>

)
Q̄2

Ωρ̃ andW
P̃

= 03 as defined in (7.42) and (7.43),

respectively, which can be further simplified as shown below

dX̃ =
(
−f

X̃
+W (ρ̃)

)
dt− G (ρ̃) Q̄dβ̄

=Fdt− G (ρ̃) Q̄dβ̄ (7.55)

where F =
[
F>ρ̃ ,F

>
P̃

]>
= −f

X̃
+W (ρ̃). Let us re-define σ as the upper bound of

Q̄2 with σ =
[
σ>Ω , σ

>
V

]>
∈ R6 and σΩ, σV ∈ R3 such that

σ =
[
max

{
Q̄2

(1,1)

}
,max

{
Q̄2

(2,2)

}
, . . . ,max

{
Q̄2

(6,6)

}]>
(7.56)

Let the error in σ be defined similar to (7.29) with σ̃ = σ− σ̂. Consider the following

potential function

V
(
ρ̃, P̃ , b̃, σ̃

)
=

(
‖ρ̃‖2

1 + ‖ρ̃‖2

)2

+
∥∥∥P̃∥∥∥4

+
1

2
b̃>Γ−1b̃+

1

2
σ̃>Π−1σ̃ (7.57)

For V := V
(
ρ̃, P̃ , b̃, σ̃

)
, the differential operator LV in Definition 7.2 can be written

as

LV = V >ρ̃ Fρ̃ +
1

2
Tr
{
g>ρ̃ Vρ̃ρ̃gρ̃Q̄

2
Ω

}
+ V >

P̃
F
P̃

+
1

2
Tr
{
g>
P̃
V
P̃ P̃

g
P̃
Q̄V

2
}

− b̃>Γ−1 ˙̂
b− σ̃>Π−1 ˙̂σ (7.58)
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One can easily show that the first and second partial derivatives of (7.57) in terms of

ρ̃ can be obtained as follows

Vρ̃ =4
‖ρ̃‖2(

1 + ‖ρ̃‖2
)3
ρ̃ (7.59)

Vρ̃ρ̃ =4

(
1 + ‖ρ̃‖2

)
‖ρ̃‖2 I3 +

(
2− 4 ‖ρ̃‖2

)
ρ̃ρ̃>(

1 + ‖ρ̃‖2
)4

(7.60)

Similarly, the first and second partial derivatives of (7.57) in terms of P̃ can be

obtained as follows

V
P̃

= 4
∥∥∥P̃∥∥∥2

P̃ (7.61)

V
P̃ P̃

= 4
∥∥∥P̃∥∥∥2

I3 + 8P̃ P̃> (7.62)

The first part of the differential operator LV in (7.58) can be evaluated by

V >ρ̃ Fρ̃ =− 2
‖ρ̃‖2(

1 + ‖ρ̃‖2
)2
ρ̃>R̂

b̃Ω + kwWΩ + R̂>diag

1

2

Υa

(
R̃
)

1−
∥∥∥R̃∥∥∥

I

 σ̂Ω


+

‖ρ̃‖2(
1 + ‖ρ̃‖2

)2
ρ̃>Q̄2

Ωρ̃

≤− 2
‖ρ̃‖2(

1 + ‖ρ̃‖2
)2
ρ̃>R̂

b̃Ω + kwWΩ − R̂>diag

1

2

Υa

(
R̃
)

1−
∥∥∥R̃∥∥∥

I

 σ̃Ω


(7.63)
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Hence, the differential operator LV in (7.58) can be described by

LV ≤− 4X̃>


‖ρ̃‖2(

1+‖ρ̃‖2
)3 I3 03×3

03×3

∥∥∥P̃∥∥∥2
I3

G (ρ̃)

(
Ăd

T̂

(
b̃+ kwW

)

−

[
1
2I3 03×3

03×3 03×3

]
diag

(
X̃
)
σ̃

)

+ Tr


‖ρ̃‖4 I3 +

(
‖ρ̃‖2 I3 + 2ρ̃ρ̃>

)
2
(

1 + ‖ρ̃‖2
)3

Q̄2
Ω + 2

(∥∥∥P̃∥∥∥2
I3 + 2R̃>P̃ P̃>R̃

)
Q̄2
V


− b̃>Γ−1 ˙̂

b− σ̃>Π−1 ˙̂σ −
‖ρ̃‖2

(
1 + 3 ‖ρ̃‖2

)
ρ̃>Q̄2

Ωρ̃

2
(

1 + ‖ρ̃‖2
)3

(7.64)

where 1
4

Υa

(
R̃
)

1−
∥∥∥R̃∥∥∥

I

= 1
2 ρ̃ as given in (A.2) and (A.4). Now, let us simplify the trace

bracket in (7.64). To simplify the result in (7.64), one has

Tr
{(
‖ρ̃‖2 I3 + 2ρ̃ρ̃>

)
Q̄2

Ω

}
≤ 3 ‖ρ̃‖2 Tr

{
Q̄2

Ω

}
and for

q̄Ω =
[
Q̄Ω(1,1), Q̄Ω(2,2), Q̄Ω(3,3)

]>
we have

‖ρ̃‖2 Tr
{
Q̄2

Ω

}
= 3 ‖ρ̃‖2 ‖q̄Ω‖2

Similarly, one can find

Tr

{(
4
∥∥∥P̃∥∥∥2

I3 + 8R̃>P̃ P̃>R̃
)
Q̄2
V

}
≤ 12

∥∥∥P̃∥∥∥2
Tr
{
Q̄2
V

}
and for

q̄V =
[
Q̄V (1,1), Q̄V (2,2), Q̄V (3,3)

]>
we have

12
∥∥∥P̃∥∥∥2

Tr
{
Q̄2
V

}
= 12

∥∥∥P̃∥∥∥2
‖q̄V ‖2
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Hence, the operator in (7.64) becomes

LV ≤− 4X̃>


‖ρ̃‖2(

1+‖ρ̃‖2
)3 I3 03×3

03×3

∥∥∥P̃∥∥∥2
I3

G (ρ̃)

(
Ăd

T̂

(
b̃+ kwW

)

−

[
1
2I3 03×3

03×3 03×3

]
diag

(
X̃
)
σ̃

)
+
‖ρ̃‖4 Tr

{
Q̄2

Ω

}
+ 3 ‖ρ̃‖2 ‖q̄Ω‖2

2
(

1 + ‖ρ̃‖2
)3

+ 6
∥∥∥P̃∥∥∥2

‖q̄V ‖2 − b̃>Γ−1 ˙̂
b− σ̃>Π−1 ˙̂σ −

‖ρ̃‖2
(

1 + 3 ‖ρ̃‖2
)
ρ̃>Q̄2

Ωρ̃

2
(

1 + ‖ρ̃‖2
)3

(7.65)

According to Lemma 7.2, the following two equations hold

3 ‖ρ̃‖2 ‖qΩ‖2

2
(

1 + ‖ρ̃‖2
)3
≤ 1

2ε

9

4
(

1 + ‖ρ̃‖2
)6
‖ρ̃‖4 +

ε

2
‖q̄Ω‖4

≤ 9

8
(

1 + ‖ρ̃‖2
)3
ε

‖ρ̃‖4 +
ε

2

(
3∑
i=1

σi

)2

(7.66)

6
∥∥∥P̃∥∥∥2

‖qV ‖2 ≤
36

2ε

∥∥∥P̃∥∥∥4
+
ε

2
‖q̄V ‖4

≤ 18

ε

∥∥∥P̃∥∥∥4
+
ε

2

(
6∑
i=4

σi

)2

(7.67)
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Considering the results in (7.66) and (7.67), in addition,
(∑6

i=1 σi

)2
≥
(∑3

i=1 σi

)2
+(∑6

i=4 σi

)2
, hence, the operator in (7.65) can be expressed as

LV ≤− 4X̃>


‖ρ̃‖2(

1+‖ρ̃‖2
)3 I3 03×3

03×3

∥∥∥P̃∥∥∥2
I3

G (ρ̃)

(
Ăd

T̂

(
b̃+ kwW

)

−

[
1
2I3 03×3

03×3 03×3

]
diag

(
X̃
)
σ̃

)
+
‖ρ̃‖4 Tr

{
Q̄2

Ω

}
2
(

1 + ‖ρ̃‖2
)3

+
9 ‖ρ̃‖4

8
(

1 + ‖ρ̃‖2
)3
ε

+
18

ε

∥∥∥P̃∥∥∥4
+
ε

2

(
6∑
i=1

σi

)2

− b̃>Γ−1 ˙̂
b− σ̃>Π−1 ˙̂σ −

‖ρ̃‖2
(

1 + 3 ‖ρ̃‖2
)
ρ̃>Q̄2

Ωρ̃

2
(

1 + ‖ρ̃‖2
)3

(7.68)

The result in (7.68) can be written as

LV ≤− 4X̃>


‖ρ̃‖2(

1+‖ρ̃‖2
)3 I3 03×3

03×3

∥∥∥P̃∥∥∥2
I3

G (ρ̃)

(
Ăd

T̂

(
b̃+ kwW

)

−

[
1
2I3 03×3

03×3 03×3

]
diag

(
X̃
)
σ̃

)

+ X̃>

 2
‖ρ̃‖2(

1+‖ρ̃‖2
)2 I3 03×3

03×3 4
∥∥∥P̃∥∥∥2

I3


( 1

4
Dρ̃

1+‖ρ̃‖2
03×3

03×3 03×3

σ
+

1

ε

 9
16

1

1+‖ρ̃‖2
I3 03×3

03×3 4.5I3

 X̃)

+
ε

2

(
6∑
i=1

σi

)2

− b̃>Γ−1 ˙̂
b− σ̃>Π−1 ˙̂σ −

‖ρ̃‖2
(

1 + 3 ‖ρ̃‖2
)
ρ̃>Q̄2

Ωρ̃

2
(

1 + ‖ρ̃‖2
)3

(7.69)
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According to (A.2) and (A.4), we have
∥∥∥R̃∥∥∥

I
= ‖ρ̃‖2 /

(
1 + ‖ρ̃‖2

)
and Υa

(
R̃
)

=

2ρ̃/
(

1 + ‖ρ̃‖2
)

, while
∥∥∥Υa

(
R̃
)∥∥∥2

= 4
(

1−
∥∥∥R̃∥∥∥

I

)∥∥∥R̃∥∥∥
I

= 4
‖ρ̃‖2(

1+‖ρ̃‖2
)2 as in (A.6).

Substituting for the differential operators
˙̂
b and ˙̂σ and the correction factor W from

(7.46), (7.47) and (7.48), respectively, yields

LV ≤− 4

((
kpkw −

1

8

)( 3∑
i=1

σi

)
+

1

ε

(
kpkw −

9

32

))
‖ρ̃‖4(

1 + ‖ρ̃‖2
)3

−
‖ρ̃‖2

(
1 + 3 ‖ρ̃‖2

)
ρ̃>Q̄2

Ωρ̃

2
(

1 + ‖ρ̃‖2
)3

−
4kpkw
ε

(
‖ρ̃‖2

1 + ‖ρ̃‖2

)2

− 4
(
kpkw − 4.5

) ∥∥∥P̃∥∥∥4

− kb
∥∥∥b̃∥∥∥2

− kσ ‖σ̃‖2 + kbb̃
>b+ kσσ̃

>σ +
ε

2

(
6∑
i=1

σi

)2

(7.70)

applying Young’s inequality to kbb̃
>b and kσσ̃

>σ, respectively, one has

kbb̃
>b ≤ kb

2

∥∥∥b̃∥∥∥2
+
kb
2
‖b‖2

kσσ̃
>σ ≤ kσ

2
‖σ̃‖2 +

kσ
2

(
6∑
i=1

σi

)2

consequently, (7.70) becomes

LV ≤− 4

((
kpkw −

1

8

)( 3∑
i=1

σi

)
+

1

ε

(
kpkw −

9

32

))
‖ρ̃‖4(

1 + ‖ρ̃‖2
)3

−
‖ρ̃‖2

(
1 + 3 ‖ρ̃‖2

)
ρ̃>Q̄2

Ωρ̃

2
(

1 + ‖ρ̃‖2
)3

−
4kpkw
ε

(
‖ρ̃‖2

1 + ‖ρ̃‖2

)2

− 4
(
kpkw − 4.5

) ∥∥∥P̃∥∥∥4

− kb
2

∥∥∥b̃∥∥∥2
− kσ

2
‖σ̃‖2 +

kb
2
‖b‖2 +

1

2
(kσ + ε)

(
6∑
i=1

σi

)2

(7.71)

Setting γ > 0, π̄ > 0, kpkw > 4.5, kb > 0, kσ > 0, and the positive constant ε is

sufficiently small, the operator LV in (7.70) becomes similar to (4.16) in Deng et al.
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(2001) which is in turn similar to (7.23) in Lemma 7.1. In that case, the constant

component c2 in Lemma 7.1 is c2 =
kb
2 ‖b‖

2 + 1
2 (kσ + ε)

(∑6
i=1 σi

)2
. Let us define

c2 =
kb
2
‖b‖2 +

1

2
(kσ + ε)

(
6∑
i=1

σi

)2

Ỹ =

[
‖ρ̃‖2

1 + ‖ρ̃‖2
,
∥∥∥P̃∥∥∥2

,
1√
2γ
b̃>,

1√
2π̄
σ̃>
]>
∈ R14,

H =diag

(
4kpkw
ε

, 4
(
kpkw − 4.5

)
, γkb1

>
6 , π̄kσ1>6

)
∈ R14×14

The differential operator in (7.71) is

LV ≤− 4

((
kpkw −

1

8

)( 3∑
i=1

σi

)
+

1

ε

(
kpkw −

9

32

))
‖ρ̃‖4(

1 + ‖ρ̃‖2
)3

−
‖ρ̃‖2

(
1 + 3 ‖ρ̃‖2

)
ρ̃>Q̄2

Ωρ̃

2
(

1 + ‖ρ̃‖2
)3

− Ỹ >HỸ + c2 (7.72)

and more simply

LV ≤ −h (‖ρ̃‖)− λ (H)V + c2 (7.73)

such that h (·) is a class K function that includes the first two components in (7.72),

and λ (·) denotes the minimum eigenvalue of a matrix. Based on (7.73), one easily

obtains
d (E [V ])

dt
= E [LV ] ≤ −λ (H)V + c2 (7.74)

as such, (7.74) means that

0 ≤ E [V (t)] ≤ V (0) exp (−λ (H) t) +
c2

λ (H)
, ∀t ≥ 0 (7.75)

The inequality in (7.75) implies that E [V (t)] is eventually bounded by c2/λ (H).

Since, Q2 : R+ → R6×6 is bounded, the operator in (7.74) is LV ≤ c2/λ (H). Define

Z̃ =
[
ρ̃>, P̃>, b̃>, σ̃>

]>
∈ R18, Z̃ is SGUUB in mean square as in Definition 7.1.
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Define U0 ⊆ SO (3)× R3 × R6 × R6 by

U0 =
{(

R̃ (0) , P̃ (0) , b̃ (0) , σ̃ (0)
)∣∣∣Tr

{
R̃ (0)

}
= −1, P̃ (0) = 03, b̃ (0) = 06, σ̃ (0) = 06

}
The set U0 is forward invariant and unstable. Therefore, from almost any initial

condition such that R̃ (0) /∈ U0 or equivalently for any ρ̃ (0) ∈ R3, the trajectory of Z̃

converges to the neighborhood of the origin which depends on the value of c2/λ (H)

in (7.75). From Lemma 7.1 and design parameters of the stochastic observer in

Theorem 7.2 in addition if we have prior knowledge about the covariance upper bound

σ, c2/λ (H) can be made smaller if we choose the design parameters appropriately.

Clearly, the minimum singular value of λ (H) can be controlled by kp, kw, γ and π̄.

To conclude our discussion, it should be remarked that solving the problem in the

sense of Stratonovich with the proper selection of potential function as in (7.57) helps

to attenuate or control the noise level associated with the velocity measurements

vector Ym. The proposed nonlinear stochastic filter is able to correct the position as

well as the attitude and reduce the noise level associated with velocity measurements

Ym through the setting of parameters in presence of high level of noise and bias

components. This advantage is not given in nonlinear deterministic SE (3) filters.

The main benefit of the nonlinear stochastic filter in the sense of Stratonovich is that

no prior information about the covariance matrix Q2 is required. Also, the filter

is applicable for white as well as colored noise which offers flexibility in the design

process.

Remark 7.1 Notice that, as kp, kw, γ, π̄ → ∞ and ε → 0, P
{

lim
t→∞

∥∥∥X̃∥∥∥ = 0

}
→

1,∀t ≥ 0 with perfect cancellation of undesirable time-variant components and uncer-

tainties.

7.4 Simulations

This section presents the performance of the proposed nonlinear stochastic filter on

SE (3) considering high levels of bias and noise introduced in the measurement process

combined with the large initial error in the homogeneous transformation matrix T̃ (0).

The performance of the proposed stochastic filter is compared to Hua et al. (2011).

Let us define the dynamics of the homogeneous transformation matrix T as in (7.3).
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Let the angular velocity input signal be

Ω =

 sin (0.3t)

0.7sin (0.25t+ π)

0.5sin
(
0.2t+ π

3

)
 (rad/sec)

with initial attitude being R (0) = I3. Let the translational velocity be

V =

 sin (0.2t)

0.6sin
(
0.15t+ π

2

)
sin
(
0.25t+ π

4

)
 (m/sec)

and the initial position P (0) = 03. Let the angular velocity measurement Ωm =

Ω + bΩ + ωΩ be corrupted with a wide-band of random noise process with zero mean

ωΩ and standard deviation (STD) equal to 0.15 (rad/sec) and bΩ = 0.1 [1,−1, 1]>.

Similarly, let the translational velocity measurement Vm = V + bV + ωV be subject

to a wide-band of random noise process ωV with zero mean and STD = 0.15 (m/sec),

and bV = 0.1 [2, 5, 1]>.

Consider one landmark feature available for measurement (NL = 1)

v
I(L)
1 =

[
1

2
,
√

2, 1

]>
and body-frame measurements obtained by (7.4) such that

v
B(L)
i = R>

(
v
I(L)
i − P

)
+ b
B(L)
i + ω

B(L)
i

where the bias vector is defined as b
B(L)
1 = 0.1 [1.5, 1,−1]> and a Gaussian noise

vector ω
B(L)
1 with zero mean and STD = 0.1 corrupts the body-frame vector mea-

surements associated with the feature point.

Consider that two non-collinear inertial-frame vectors (NR = 2) are given by

v
I(R)
1 =

1√
3

[1,−1, 1]>

v
I(R)
2 = [0, 0, 1]>
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while body-frame vectors v
B(R)
1 and v

B(R)
2 are obtained by (7.8)

v
B(R)
i = R>v

I(R)
i + b

B(R)
i + ω

B(R)
i

for i = 1, 2. The body-frame vector measurements are subject to bias components

b
B(R)
1 = 0.1 [−1, 1, 0.5]> and b

B(R)
2 = 0.1 [0, 0, 1]>. In addition to bias, Gaussian noise

vectors ω
B(R)
1 and ω

B(R)
2 with zero mean and of STD = 0.1 corrupt the measurements.

The third inertial and body-frame vector measurements are obtained by v
I(R)
3 =

v
I(R)
1 × v

I(R)
2 and v

B(R)
3 = v

B(R)
1 × v

B(R)
2 . Next, both body-frame and inertial-frame

vectors are normalized, such that v
B(R)
i and v

I(R)
i are normalized to υ

B(R)
i and υ

I(R)
i ,

respectively, for i = 1, 2, 3 as given in (7.10). Therefore, Assumption 7.1 holds. From

vectorial measurements, the corrupted reconstructed attitude Ry is obtained by SVD

Hashim et al. (2018b); Markley (1988) with R̃ = RyR̂
>, Appendix B. The total

simulation time is 30 seconds.

For large initial attitude error, the initial rotation of attitude estimate is given ac-

cording to the mapping of angle-axis parameterization in (2.7) by R̂ (0) = Rα (α, u/ ‖u‖)
with α = 170 (deg) and u = [3, 10, 8]> such that

∥∥∥R̃ (0)
∥∥∥
I

approaches the un-

stable equilibria +1. Also, the initial position of the estimator is selected to be

P̂ (0) = [2, 3, 1]>. The matrices below summarize the initial conditions:

T (0) =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 , T̂ (0) =


−0.8816 0.2386 0.4074 2

0.4498 0.1625 0.8782 3

0.1433 0.9574 −0.2505 1

0 0 0 1


The initial estimates of b̂ and σ̂ are b̂ (0) = 06 and σ̂ (0) = 06. Design parameters

used in the derivation of the nonlinear stochastic filter are selected as Γ = I6, Π = I6,

kb = 0.1, kσ = 0.1, kp = 2, kw = 3, and ε = 0.5. Additionally, the following color

notation is used: green color refers to the true value, blue represents the performance

of the proposed nonlinear stochastic filter, and red illustrates the performance of

the filter previously proposed in literature. Finally, magenta demonstrates measured

values.

The first three figures present the true values of the velocity vectors and body-
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frame vectors plotted against their measured values. The true angular velocity (Ω)

and the high values of noise and bias components introduced through the measure-

ment process of Ωm plotted against time are depicted in Figure 7.2. Similarly, the

true translational velocity (V ) and the high values of noise and bias components as-

sociated with the measurement process of Vm plotted against time are illustrated in

Figure 7.3. In addition, Figure 7.4 presents the true body-frame vectors and their

uncertain measurements corrupted with noise. High levels of noise and bias inherent

to the measurements can be noticed in all the above-mentioned graphs (Figure 7.2,

7.3 and 7.4).
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Figure 7.2: True and measured angular velocities.
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Figure 7.3: True and measured translational velocities.
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Figure 7.4: True values and vectorial measurements of the body-frame.

The position and attitude tracking performance of the proposed stochastic fil-

ter is demonstrated in Figure 7.5 and 7.6. Figure 7.5 depicts the estimated Euler

angles
(

Roll(φ̂),Pitch(θ̂),Yaw(ψ̂)
)

versus the true values (φ, θ, ψ). Also, Figure 7.6

illustrates the high value of the attitude initial error. The tracking position (x̂, ŷ, ẑ)

of the stochastic estimator in 3D space is compared to the true position (x, y, z)

over time in Figure 7.6. Figure 7.5 and 7.6 show impressive tracking performance

of the proposed stochastic observer in terms of position and attitude in presence of

large initial error between the true and the estimated pose. Also, Figure 7.5 and 7.6

demonstrate remarkable tracking performance in case when high values of bias and

noise corrupt the measurements.
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Figure 7.5: Tracking performance of Euler angles of the stochastic filter.
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Figure 7.6: Tracking performance of x, y and z trajectory of the stochastic filter in
3D space.

A comparison between the proposed stochastic observer in Theorem 7.2 and the

deterministic pose observer in Hua et al. (2011) is presented in Figure 7.7. The up-

per portion of Figure 7.7 illustrates the normalized Euclidean distance ||R̃||I , while

the lower portion presents the Euclidean distance ||P − P̂ || for both observers such

that R̃ = R̂R>. Figure 7.7 shows stable output performance of the stochastic ob-

server with ||R̃||I and ||P − P̂ || being regulated very close to the neighborhood of

the origin confirming the results shown in Figure 7.5 and 7.6. On the other side, the

deterministic filter shows high oscillatory performance before it goes out of stability.
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Figure 7.7: Tracking performance of normalized Euclidean distance error of ||R̃||I
and Euclidean distance ||P − P̂ ||.
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Let v̊
B(L)
1 = R>

(
v
I(L)
1 − P

)
and v̊

B(R)
i = R>v

I(R)
i denote the true body-frame

vectors for i = 1, 2, 3. Consider the error between the true and measured body-frame

vectors ṽ
B(L)
1 = v

B(L)
1 − v̊

B(L)
1 and ṽ

B(R)
i = v

B(R)
i − v̊

B(R)
i . In the same spirit, let

the error between the true and measured velocities be given by Ω̃ = Ωm − Ω and

Ṽ = Vm − V . Table 7.1 provides mean and STD of the input measurements and the

output data. It should be stressed that the mean errors of ||R̃||I and P − P̂ approach

zero while the STD of ||R̃||I is less than its mean, and the STD of P − P̂ ≈ 0.1.

Numerical results outlined in Table 7.1 affirm the robustness of the proposed nonlinear

stochastic filter as demonstrated in Figure 7.5, 7.6, and 7.7.

Table 7.1: Statistical analysis of the noise and bias in input measurements and
output data of the proposed filter.

Input measurements

Index ṽ
B(L)
1 ṽ

B(R)
1 ṽ

B(R)
2 Ω̃ (rad/sec) Ṽ (m/sec)

Mean

 0.15

0.1

−0.1


 −0.1

0.1

0.05


 0

0

0.1


 0.1

−0.1

0.1


 0.2

0.5

0.1


STD 0.1× 13 0.1× 13 0.1× 13 0.15× 13 0.15× 13

Output data over the period (1-30 sec)

Index ||R̃||I P − P̂ (m)

Mean 1.2× 10−3 [−17.7, 2.6,−8.4]> × 10−3

STD 8.5× 10−4 [1.15, 1.07, 1.27]> × 10−1

Simulations presented in this section demonstrate the robustness of the pro-

posed stochastic filter in the sense of Stratonovich against high levels of bias and

noise components introduced in angular velocity, translational velocity and vectorial

measurements. Also, they show that the stochastic filter is capable of correcting its

position and attitude even in presence of large initial error in a small amount of time.

In addition, the stochastic filter is autonomous, and therefore no prior information

about the upper bound of the covariance matrix Q2 is required to achieve impressive

estimation performance.
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7.5 Conclusion

Pose is naturally nonlinear and is modeled on the Special Euclidean Group SE (3).

Pose estimators used to be designed as nonlinear deterministic filters neglecting the

noise inherent to the model dynamics. This is reflected in the nonlinear deterministic

filter design as well as in the potential function selection. In this work, the pose

problem has been formulated as a nonlinear pose problem on SE (3). The problem

is mapped from SE (3) to vector form using Rodriguez vector parameterization and

position. The problem is defined stochastically in the sense of Stratonovich. Next,

a nonlinear stochastic pose filter on SE (3) has been proposed. It has been shown

that errors in position, Rodriguez vector and estimates are semi-globally uniformly

ultimately bounded (SGUUB) in mean square and that they converge to the small

neighborhood of the origin for the case when noise is attached to the pose dynamics.

Simulation results prove fast convergence from large initialized pose error even when

angular and translational velocity vectors as well as body-frame measurements are

subject to high levels of noise and bias.



Chapter 8

Conclusion

In this thesis attitude and pose estimation problems were considered on the Lie groups

of SO (3) and SE (3). The attitude and pose kinematics are naturally nonlinear and

modelled on the Lie group of SO (3) and SE (3). Accordingly, these estimation prob-

lems were approached through nonlinear deterministic and stochastic filtering algo-

rithms developed directly on SO (3) and SE (3). Deterministic attitude and pose

filtering approaches proposed in this thesis allow for guaranteed and systematic con-

vergence of the error which starts arbitrarily within a given large set and reduces

systematically and smoothly to a given small residual set, whereas attitude and pose

filtering methods described in the literature do not have clear measure of the tran-

sient and steady-state performance of the tracking error. Unlike the deterministic

methods that disregard the noise in filter derivation, nonlinear stochastic attitude

and pose filtering approaches allow to diminish the noise attached to angular veloc-

ity measurements such that the error is almost semi-globally uniformly ultimately

bounded in mean square and is regulated to arbitrarily small neighborhood of the

equilibrium point from almost any initial condition. As such, the proposed filters

ensure superior convergence properties. In addition, the proposed nonlinear filters

are autonomous, and therefore no prior information about the sensor uncertainties is

required to achieve impressive estimation performance.

Addressing the inability of nonlinear deterministic attitude filters on SO (3) de-

scribed in the literature to handle large error in initialization and to force the error

function to follow predefined transient and steady-state measures, two different non-

linear deterministic filters on SO (3) have been proposed in Chapter 3. The attitude

error function of the proposed filters is constrained to initially start within a known

large set and reduce systematically and smoothly to a given small set. Trapping the

attitude error within the dynamically reducing boundaries is achieved via an auxil-

iary variable known as transformed error. The transformed error helped to guarantee
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boundedness of the closed loop error signals with the normalized distance of attitude

error being regulated asymptotically to the origin from almost any initial condition.

The first proposed filter required a rate gyroscope measurement and a set of two or

more vectorial measurements to obtain online algebraic reconstruction of the attitude.

The second proposed filter used the rate gyroscope measurement combined with the

vectorial measurements directly avoiding the need for attitude reconstruction.

It is important to note that nonlinear attitude filter kinematics on SO (3) rely

on angular velocity measurements. Therefore, another major shortcoming of the

nonlinear deterministic attitude filters on SO (3) described in the literature is the

assumption that angular velocity measurement is subject only to constant bias. To

account for not only constant bias but also any noise components introduced during

the measurement process two nonlinear stochastic attitude filters on SO (3) which

improve the overall estimation quality have been proposed in Chapter 4. The first

stochastic filter was driven in the sense of Ito and the second one was developed in the

sense of Stratonovich. These filters showed that the error of rigid-body orientation is

steered towards an arbitrarily small neighborhood of the identity in probability with

the error being almost semi-globally uniformly ultimately bounded in mean square

while the noise impact is reduced to a very low level for known or unknown bounded

covariance.

Chapter 5 proposed an explicit nonlinear stochastic complementary filter on

SO (3) driven in the sense of Ito, which, unlike filters introduced in Chapter 4, alle-

viated the need for online algebraic attitude reconstruction which is computationally

expensive. Instead the rate gyroscope measurement and a set of two or more vec-

torial measurements directly are used. The explicit filter ensured that the error in

rigid-body orientation is regulated towards an arbitrarily small neighborhood of the

identity in probability and the error was almost semi-globally uniformly ultimately

bounded in mean square. The attitude filters proposed in Chapter 3, 4 and 5 were

able to provide reliable attitude estimates with remarkable convergence properties

considering measurements obtained from low quality sensors such as low-cost IMUs

devices.

The shortcoming of nonlinear deterministic pose filters on SE (3) described in

the literature is their inability to force the pose error to initiate within a predefined

large set and decay systematically and smoothly to a predefined small residual set.
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To address this deficiency, two robust nonlinear deterministic pose filters on SE (3)

with predefined transient and steady-state measures have been proposed in Chap-

ter 6. The pose error function has been proven to be confined within dynamically

reducing boundaries with the aid of an auxiliary variable termed transformed error.

The proposed filters guaranteed boundedness of the closed loop error signals with

constrained error and unconstrained transformed error being proven to be almost

globally asymptotically stable such that the error in the homogeneous transformation

matrix is regulated asymptotically to the identity from almost any initial condition.

The proposed pose filters demonstrated faster convergence than any of the filters

previously proposed in the literature. The first proposed filter required translational

velocity measurements, rate gyroscope measurements, a set of two or more vectorial

measurements, and one or more landmarks to obtain online algebraic reconstruction

of the pose. The second proposed filter used the aforementioned set of measurements

directly without the need of pose reconstruction.

An important factor to consider is that nonlinear deterministic pose filters on

SE (3) presume that angular and translational velocity measurements are subject only

to constant bias and ignore any noise introduced during the measurement process.

In Chapter 7, a nonlinear stochastic pose filter on SE (3) has been introduced in

the sense of Stratonovich to address the uncertainties present in velocity measure-

ments. It has been shown that the error in the homogeneous transformation matrix

was steered towards an arbitrarily small neighborhood of the identity in probability.

Also, it has been proven that the error in the homogeneous transformation matrix

be almost semi-globally uniformly ultimately bounded in mean square. The filters

proposed in Chapter 6 and 7 were able to provide reliable pose estimates with supe-

rior convergence properties in case when measurements were obtained from low-cost

inertial vision system such as low-cost IMUs systems and on-board cameras.

The simulation results in Chapter 3, 4, 5, 6, and 7 demonstrated the strong

filtering capability of the proposed filters against high levels of bias and noise compo-

nents introduced in velocity and vectorial measurements. Also, they showed that the

proposed filters were capable of correcting attitude or pose estimates even in presence

of large initial error in a short period of time. It should also be remarked that all

gains associated with the filter design are adaptively tuned such that the filter gains

become increasingly aggressive as the attitude or pose error increase.
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8.1 Future Work

The following challenges could be further investigated to achieve even better filter

performance:

1. Nonlinear stochastic filters on SO (3) and SE (3) able to handle large error in

initialization with error function being forced to follow predefined transient and

steady-state measures. These filters should be robust against high levels of bias

and noise components introduced in velocity and vectorial measurements. Also,

they should be able to correct attitude or pose estimates in presence of large

initial error in a short period of time. This issue is still an open problem.

2. Nonlinear stochastic filters on SO (3) and SE (3) robust against angular velocity

measurements and body-frame measurements corrupted with unknown constant

bias and noise components.

3. Nonlinear stochastic filters on SO (3) and SE (3) able to tackle intermittent

measurements.

4. Hybrid global exponential stabilization of nonlinear stochastic attitude filters

on SO (3).

5. Hybrid global exponential stabilization of nonlinear stochastic pose filters on

SE (3).
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Appendix A

Proof of Lemma 3.1, 5.1 and 6.1

The subsequent analysis is done in terms of Rodriquez parameters vector and is used

only for the purpose of proving Lemma 3.1, 5.1 and 6.1. Let R ∈ SO (3) be the

attitude of a rigid-body in 3D space. The attitude could be extracted for a given

Rodriguez parameters vector ρ ∈ R3. The mapping from Rodriguez vector to SO (3)

is defined by Rρ : R3 → SO (3) (Shuster (1993))

Rρ (ρ) =
1

1 + ||ρ||2
((

1− ||ρ||2
)

I3 + 2ρρ> + 2 [ρ]×
)

(A.1)

With direct substitution of (A.1) in (2.6) one easily obtains

||R||I =
||ρ||2

1 + ||ρ||2
(A.2)

Additionally, for Rρ = Rρ (ρ) the anti-symmetric projection operator of the attitude

in (A.1) is equivalent to

Pa (R) =
1

2

(
Rρ −R>ρ

)
=2

1

1 + ||ρ||2
[ρ]× (A.3)

Thus, the vex operator of (A.3) becomes

vex (Pa (R)) = 2
ρ

1 + ||ρ||2
(A.4)

From the result in (A.2) one can obtain

(1− ||R||I) ||R||I =
||ρ||2(

1 + ||ρ||2
)2 (A.5)
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and from (A.4) it is easily shown that

||vex (Pa (R)) ||2 = 4
||ρ||2(

1 + ||ρ||2
)2 (A.6)

Therefore, (A.5) and (A.6) prove

||vex (Pa (R)) ||2 = (1− ||R||I) ||R||I

Since it was assumed that
∑NR
i=1 k

R
i = 3, this indicates that Tr {MR} = 3. Recall

that the normalized Euclidean distance of RMR is ‖RMR‖I = 1
4Tr {(I3 −R) MR}.

From the angle-axis parameterization in (2.7), one finds

‖RMR‖I =
1

4
Tr
{
−
(

sin(θ) [u]× + (1− cos(θ)) [u]2×
)

MR

}
= −1

4
Tr
{

(1− cos(θ)) [u]2×MR

}
(A.7)

where Tr
{

[u]×MR
}

= 0 as in identity (2.15). One has (Murray, Li, Sastry, and

Sastry (1994))

‖R‖I =
1

4
Tr {I3 −R} = sin2 (θ/2) (A.8)

The Rodriguez vector can be expressed in terms of angle-axis parameterization as

(Shuster (1993))

u = cot (θ/2) ρ (A.9)

From identity (2.14) and (A.9), the expression in (A.7) becomes

‖RMR‖I =
1

2
‖R‖I u

>M̄Ru =
1

2
‖R‖I cot2

(
θ

2

)
ρ>M̄Rρ

Also, from (A.8), cos2
(
θ
2

)
= 1− ‖R‖I which implies that

tan2
(
θ

2

)
=
‖R‖I

1− ‖R‖I
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Accordingly, the normalized Euclidean distance of RMR could be formulated in the

sense of Rodriguez vector

‖RMR‖I =
1

2
(1− ‖R‖I) ρ

>M̄Rρ =
1

2

ρ>M̄Rρ

1 + ‖ρ‖2
(A.10)

The anti-symmetric projection operator of RMR can be defined in terms of Rodriquez

vector using identity (2.11) and (2.13) by

Pa (RMR) =
ρρ>MR −MRρρ

> + MR [ρ]× + [ρ]×MR

1 + ‖ρ‖2

=

[(
Tr {MR} I3 −MR − [ρ]×MR

)
ρ
]
×

1 + ‖ρ‖2

Thereby, the vex operator of the above expression is

vex (Pa (RMR)) =

(
I3 + [ρ]×

)
1 + ‖ρ‖2

M̄Rρ (A.11)

Hence, the 2-norm of (A.11) is equivalent to

‖vex (Pa (RMR))‖2 =
ρ>M̄R

(
I3 − [ρ]2×

)
M̄Rρ(

1 + ‖ρ‖2
)2

From the identity in (2.14), [ρ]2× = −||ρ||2I3 + ρρ> such that

‖vex (Pa (RMR))‖2 =
ρ>M̄R

(
I3 − [ρ]2×

)
M̄Rρ(

1 + ‖ρ‖2
)2

=
ρ>
(
M̄R

)2
ρ

1 + ‖ρ‖2
−

(
ρ>M̄Rρ

)2

(
1 + ‖ρ‖2

)2

≥ λ

(
1− ‖ρ‖2

1 + ‖ρ‖2

)
ρ>M̄Rρ

1 + ||ρ||2

≥ 2λ (1− ‖R‖I) ‖RMR‖I (A.12)
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where λ = λ
(
M̄R

)
is the minimum singular value of M̄R and ‖R‖I = ‖ρ‖2 /

(
1 + ‖ρ‖2

)
as in (A.2). One can find

1− ‖R‖I =
1

4

(
1 + Tr

{
RMRM−1

R

})
(A.13)

Hence, from (A.12) and (A.13) the following inequality holds

‖vex (Pa (RMR))‖2 ≥ λ

2

(
1 + Tr

{
RMRM−1

R

})
‖RMR‖I

which completes the proof of Lemma 3.1, 5.1 and 6.1.
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An Overview of Attitude Reconstruction

via SVD

Let R ∈ SO (3) be the true attitude. The attitude can be reconstructed through a

set of vectors given, for example, Chapter 5 equation (5.1). Let si be the confidence

level of measurement i such that for n measurements we have
∑n
i=1 si = 1. In that

case, the corrupted reconstructed attitude Ry can be obtained using Singular Value

Decomposition (SVD) by

J (R) = 1−
∑n
i=1 si

(
υ
B(R)
i

)>
R>υI(R)

i

= 1− Tr
{
R>B>

}
B =

∑n
i=1 siυ

B(R)
i

(
υ
I(R)
i

)>
= USV >

U+ = U


1 0 0

0 1 0

0 0 det (U)



V+ = V


1 0 0

0 1 0

0 0 det (V )


Ry = V+U

>
+

where υ
I(R)
i and υ

B(R)
i are given in Chapter 3, 4, 5, 6 and 7. For more details visit

Hashim et al. (2018b); Markley (1988).
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Detailed proofs

Lemma C.1 Let ρ ∈ R3 be the Rodriguez vector associated with attitude R ∈ SO(3).

Consider the following positive definite potential function

V (ρ̃) =

(
‖ρ‖2

1 + ‖ρ‖2

)2

(C.1)

Thus, for Vρ = ∂V/∂ρ, the following holds

1

2
V >ρ

(
I3 + [ρ]× + ρρ>

)(
I3 −R>

)
Ω = 0 (C.2)

Proof. From equation (C.1), one obtains

Vρ = 4
‖ρ‖2(

1 + ‖ρ‖2
)3
ρ̃ (C.3)

181



Appendix C: Detailed proofs 182

Consider R in Rodriguez vector representation as given in (A.1), as such, one has

2
‖ρ‖2 ρ>(

1 + ‖ρ‖2
)3 ρ> (I3 + [ρ]× + ρρ>

)(
I3 − R̃>

)
Ω

= 2
‖ρ‖2(

1 + ‖ρ‖2
)3
ρ> (I3 + ρρ>

)
−
ρ>
(
I3 + ρρ>

) ((
1− ‖ρ̃‖2

)
I3 + 2ρρ> − 2 [ρ]×

)
1 + ‖ρ̃‖2

Ω

= 2
‖ρ‖2(

1 + ‖ρ‖2
)3
(1 + ‖ρ‖2

)
ρ̃> −

(
1 + ‖ρ‖2

)
ρ>
(
I3 − ‖ρ‖2 I3 + 2ρρ>

)
1 + ‖ρ̃‖2

Ω

= 2
‖ρ‖2(

1 + ‖ρ‖2
)3 ρ̃>

(1 + ‖ρ‖2
)
−

(
1 + ‖ρ‖2

)2
1 + ‖ρ‖2

Ω

= 0

which shows (C.2).

Lemma C.2 Let ρ ∈ R3 be Rodriguez vector and let

g =
1

2

(
I3 + [ρ]× + ρρ>

)
Define Wi (ρ) as follows

Wi (ρ) =
3∑

k=1

3∑
j=1

Q2
j,j

2
gkj (ρ)

∂gij (ρ)

∂ρk
(C.4)

for all i, j, k = 1, 2, 3, also, one can find is W (ρ) to be equivalent to

W (ρ) =
1

4

(
I3 + [ρ]× + ρρ>

)
Q2ρ (C.5)

Proof. It could be shown that
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g (ρ)Q =
1

2

(
I3 + [ρ]× + ρρ>

)
=

 1 + ρ2
1 −ρ3 + ρ1ρ2 ρ2 + ρ1ρ3

ρ3 + ρ1ρ2 1 + ρ2
2 −ρ1 + ρ2ρ3

−ρ2 + ρ1ρ3 ρ1 + ρ2ρ3 1 + ρ2
3

Q

=


(
1 + ρ2

1

)
Q1,1 (−ρ3 + ρ1ρ2)Q2,2 (ρ2 + ρ1ρ3)Q3,3

(ρ3 + ρ1ρ2)Q1,1
(
1 + ρ2

2

)
Q2,2 (−ρ1 + ρ2ρ3)Q3,3

(−ρ2 + ρ1ρ3)Q1,1 (ρ1 + ρ2ρ3)Q2,2
(
1 + ρ2

3

)
Q3,3

 (C.6)

From (C.4) and (C.6), one has for i = 1

3∑
k=1

3∑
j=1

Q2
j,j

2
gkj (ρ)

∂gij (ρ)

∂ρk

=
1

8


(
1 + ρ21

)
Q1,1

(ρ3 + ρ1ρ2)Q1,1

(−ρ2 + ρ1ρ3)Q1,1


>  2ρ1Q1,1

0

0

+
1

8

 (−ρ3 + ρ1ρ2)Q2,2(
1 + ρ22

)
Q2,2

(ρ1 + ρ2ρ3)Q2,2


>  ρ2Q2,2

ρ1Q2,2

−1Q2,2



+
1

8

 (ρ2 + ρ1ρ3)Q3

(−ρ1 + ρ2ρ3)Q3(
1 + ρ23

)
Q3


>  ρ3Q3,3

Q3,3

ρ1Q3,3


=

1

8

(
2ρ1 + 2ρ31

)
Q2

1,1 +
1

8

(
−ρ3ρ2 + ρ1ρ

2
2 + ρ1 + ρ1ρ

2
2 − ρ1 − ρ2ρ3

)
Q2

2,2

+
1

8

(
ρ2ρ3 + ρ1ρ

2
3 − ρ1 + ρ2ρ3 + ρ1 + ρ1ρ

2
3

)
Q2

3,3

=
1

4

((
1 + ρ21

)
ρ1Q2

1,1 + (ρ1ρ2 − ρ3) ρ2Q2
2,2 + (ρ2 + ρ1ρ3) ρ3Q2

3,3

)
(C.7)
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for i = 2

3∑
k=1

3∑
j=1

Q2
j,j

2
gkj (ρ)

∂gij (ρ)

∂ρk

=
1

8


(
1 + ρ21

)
Q1

(ρ3 + ρ1ρ2)Q1

(−ρ2 + ρ1ρ3)Q1


>  ρ2Q1,1

ρ1Q1,1

Q1,1

+
1

8

 (−ρ3 + ρ1ρ2)Q2,2(
1 + ρ22

)
Q2,2

(ρ1 + ρ2ρ3)Q2,2


>  0

2ρ2

0

Q2,2



+
1

8

 (ρ2 + ρ1ρ3)Q3

(−ρ1 + ρ2ρ3)Q3(
1 + ρ23

)
Q3


>  −Q3,3

ρ3Q3,3

ρ2Q3,3


=

1

8

(
ρ2 + ρ21ρ2 + ρ3ρ1 + ρ21ρ2 − ρ2 + ρ1ρ3

)
Q2

1

+
1

8

(
2ρ2 + 2ρ32

)
Q2

2,2 +
1

8

(
−ρ2 − ρ1ρ3 − ρ1ρ3 + ρ2ρ

2
3 + ρ2 + ρ2ρ

2
3

)
Q2

3,3

=
1

4

(
(ρ1ρ2 + ρ3) ρ1Q2

1 +
(
1 + ρ22

)
ρ2Q2

2,2 + (ρ2ρ3 − ρ1) ρ3Q2
3,3

)
(C.8)

for i = 3

3∑
k=1

3∑
j=1

Q2
j,j

2
gkj (ρ)

∂gij (ρ)

∂ρk

=
1

8


(
1 + ρ21

)
Q1,1

(ρ3 + ρ1ρ2)Q1,1

(−ρ2 + ρ1ρ3)Q1,1


>  ρ3Q1,1

−Q1,1

ρ1Q1,1

+
1

8

 (−ρ3 + ρ1ρ2)Q2,2(
1 + ρ22

)
Q2,2

(ρ1 + ρ2ρ3)Q2,2


>  Q2,2

ρ3Q2,2

ρ2Q2,2



+
1

8

 (ρ2 + ρ1ρ3)Q3,3

(−ρ1 + ρ2ρ3)Q3,3(
1 + ρ23

)
Q3,3


>  0

0

2ρ3Q3,3


=

1

4

(
(ρ1ρ3 − ρ2) ρ1Q2

1,1 + (ρ1 + ρ2ρ3) ρ2Q2
2,2 +

(
1 + ρ23

)
ρ3Q2

3,3

)
(C.9)
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Combining the results in (C.7), (C.8) and (C.9) yield

W (ρ) =
1

4


(
1 + ρ2

1

)
ρ1 (ρ1ρ2 − ρ3) ρ2 (ρ2 + ρ1ρ3) ρ3

(ρ1ρ2 + ρ3) ρ1
(
1 + ρ2

2

)
ρ2 (ρ2ρ3 − ρ1) ρ3

(ρ1ρ3 − ρ2) ρ1 (ρ1 + ρ2ρ3) ρ2
(
1 + ρ2

3

)
ρ3



Q2

1,1

Q2
2,2

Q2
3,3



=
1

4

 1 + ρ2
1 ρ1ρ2 − ρ3 ρ2 + ρ1ρ3

ρ1ρ2 + ρ3 1 + ρ2
2 ρ2ρ3 − ρ1

ρ1ρ3 − ρ2 ρ1 + ρ2ρ3 1 + ρ2
3



Q2

1,1 0 0

0 Q2
2,2 0

0 0 Q2
3,3


 ρ1

ρ2

ρ3



=
1

4

(
I3 + [ρ]× + ρρ>

)
Q2

1,1 0 0

0 Q2
2,2 0

0 0 Q2
3,3


 ρ1

ρ2

ρ3


=

1

4

(
I3 + [ρ]× + ρρ>

)
Q2ρ

which shows (C.5).

Lemma C.3 For T ,T 1,T 2 ∈ SE (3) and Y =
[
y>1 , y

>
2

]
∈ R6∀y1, y2 ∈ R3 , the

following identities hold:

T [Y ]∧ T
−1 =

[
ĂdTY

]
∧
, T ∈ SE,Y ∈ R6 (C.10)

Υ (AdT ([Y ]∧)) = ĂdTΥ ([Y ]∧) ∈ R6 (C.11)

ĂdT Ăd
T−1 = Ăd

T−1ĂdT = I6, T ∈ SE (3) (C.12)

Proof. Recall the preliminaries in Chapter

[Y ]∧ =

[
[y1]× y2

0>3 0

]
AdT ([Y ]∧) = T [Y ]∧ T

−1 ∈ se (3)

ĂdT =

[
R 03×3

[P ]×R R

]
∈ R6×6

It is straight forward to show that
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AdT ([Y ]∧) = T [Y ]∧ T
−1

=

[
R P

01×3 1

][
[y1]× y2

0>3 0

][
R> −R>P

01×3 1

]

=

[
R [y1]×R

> Ry2 −R [y1]×R
>P

01×3 0

]

=

[
[Ry1]× Ry2 − [Ry1]× P

01×3 0

]
(C.13)

Similarly, one can verify that

[
ĂdTY

]
∧

=

[[
R 0

[P ]×R R

][
y1

y2

]]
∧

=

[
Ry1

[P ]×Ry1 +Ry2

]
∧

=

[
Ry1

− [Ry1]× P +Ry2

]
∧

=

[
[Ry1]× Ry2 − [Ry1]× P

01×3 0

]
(C.14)

Accordingly, (C.13) and (C.14) show (C.10). From (C.13) one obtains

Υ (AdT ([Y ]∧)) =

[
Ry1

Ry2 − [Ry1]× P

]
(C.15)

From (C.14) one has

ĂdTΥ ([Y ]∧) =

[
R 03×3

[P ]×R R

][
y1

y2

]
=

[
Ry1

Ry2 − [Ry1]× P

]
(C.16)
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Therefore, (C.15) and (C.16) justify (C.11). The last identity

ĂdT Ăd
T−1 =

[
R 03×3

[P ]×R R

] R> 03×3[
−R>P

]
×
R> R>


=

 I3 03×3

[P ]× +R
[
−R>P

]
×
R> I3


= I6

which justifies the result in (C.12).
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