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ABSTRACT 

Neurogenic Orthostatic Hypotension (NOH) is a cardinal feature of autonomic failure. Patients 

with NOH experience a persistent and consistent drop in blood pressure when standing due to 

failure of the autonomic nervous system to reflexively increase sympathetic outflow. NOH 

affects individuals worldwide, presenting as both a primary feature (i.e. Multiple Systems 

Atrophy, Pure Autonomic Failure) and secondary to several common disorders including 

diabetes and Parkinson’s Disease. However, there are still several gaps in our overall 

understanding and assessment of patients with NOH. Therefore, the six studies presented in this 

thesis aimed to address some of these gaps in our current knowledge. 

Study 1 and 2 aimed to investigate activity within the central autonomic network (CAN) both at 

rest and during standardized autonomic challenges to determine whether patients have reduced 

activity relative to healthy controls. In this study we found patients had reduced activation in 

several CAN structures including the cingulate cortices, thalamus, hippocampus and cerebellum. 

Based on study 1 and 2 results, study 3 and 4 aimed to determine whether patients also had 

reduced functional connectivity in two structures involved in postural blood pressure regulation: 

the brainstem and cerebellum. We found patients had significantly less connectivity between the 

brainstem and several CAN structures including the cerebellum, insula and cingulate cortices. 

Additionally, patients had significantly less intracerebellar connectivity, less cerebellar-

brainstem connectivity and reduced connectivity to CAN structures including the insula, anterior 

cingulate, hippocampus, thalamus and putamen. 

Finally, symptoms associated with NOH include postural light-headedness, dizziness and 

syncope. Proper diagnosis rests in the ability to accurately distinguish these non-specific 

symptoms as either orthostatic (postural) or non-orthostatic (non-postural). The purposes of 

studies 5 and 6 were to create a simple instrument capable of making this distinction, 

demonstrate its validity and reliability, sensitivity and specificity, and to test its ability to assess 

individuals based on symptomatology. In these studies, I found our questionnaire was valid, 

reliable and capable of positively predicting individuals with orthostatic intolerance related to 

autonomic dysfunction. 
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Overall, this thesis greatly expands our understanding of NOH pathophysiology and provides a 

new tool for assessing orthostatic symptomatology related to autonomic dysfunction.  
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SUMMARY FOR LAY AUDIENCE 

The autonomic nervous system (ANS) is a branch of the nervous system that regulates processes 

that occur without conscious effort, including: heart rate, breathing, blood pressure, sweating, 

digestion, sexual function, respiration, urination and defecation. The ANS has two major 

divisions: the sympathetic nervous system, primarily active during the “fight-or-flight” response, 

and the parasympathetic nervous system, primarily active during “rest-and-digest”.   

When we stand up, the ANS ensures gravity does not pull our blood into our legs. However, 

when the ANS fails, this function is lost and as a result, individuals experience a significant drop 

in blood pressure when standing. ANS failure affects individuals worldwide, presenting as both a 

primary disorder (i.e. Pure Autonomic Failure) and secondary to several common disorders 

including diabetes and Parkinson’s Disease. However, there are still several gaps in our overall 

understanding and assessment of patients with autonomic failure. This thesis aimed to address 

these gaps. 

The first half of the thesis focused to improve our understanding of autonomic failure by 

investigating brain activity in structures known to contribute to proper autonomic control. In 

addition, I investigated how these brain regions may be functionally connected to help regulate 

heart rate and blood pressure. I found patients with autonomic failure showed reduced activity in 

several brain structures involved in blood pressure regulation and these structures showed 

reduced functional connectivity among each other. 

The second half of the thesis aimed to improve the assessment of patients with ANS failure. 

When patients experience a significant blood pressure drop while standing, common symptoms 

include light-headedness and dizziness. Proper diagnosis rests in the ability to accurately 

distinguish these non-specific symptoms as either postural or non-postural. To identify and 

assess patients, we created a questionnaire capable of making this distinction. I evaluated several 

important parameters and found the questionnaire to be valid, reliable and capable of positively 

predicting individuals with autonomic dysfunction based on a symptom assessment. 

This thesis greatly expands our understanding of autonomic failure and provides a new tool for 

assessing symptomatology related to autonomic dysfunction.      
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CHAPTER 1 

1 General Introduction 

The idea that the body exists as two distinct systems, an “animal” (somatic) and an 

“organic” (autonomic) originated with the ancient Greeks1. However, it would be Galen and 

Vesalius who would be among the first to probe into the true nature of this division. In an 

attempt to understand and characterize the complex neural network that is the Autonomic 

Nervous System (ANS), the next several hundred years would see the rise and fall of theories 

and descriptions put forth by Willis, Whytt, Bichat and others throughout the 17th, 18th, and 

19th centuries1. Finally, in the 19th C Gaskell would develop the term “involuntary nervous 

system” and, along with J.N. Langley, discern that two sets of fibers, with opposite effects, 

supply each tissue. Eventually, Langley coined the term "autonomic" nervous system and 

classified this system into “sympathetic” and “parasympathetic” divisions2.  

Despite the enormous contributions that have brought us to our current understanding of 

autonomic anatomy and physiology, many aspects of this complex system remain to be fully 

elucidated. Among the current gaps in our knowledge is that regarding the causes and 

consequences of autonomic failure. It is without question that a deeper understanding of diseases 

of the ANS could lead to improved diagnostic evaluations, treatments and management and 

improved understanding of basic pathophysiology contributing to ANS impairments.  

1.1 The Autonomic Nervous System 

The Autonomic Nervous System (ANS) is highly integrated with virtually all organs and systems 

of the human body. The ANS functions autonomously i.e. without conscious effort, to regulate 

many internal processes including, but not limited to, heart rate, breathing, blood pressure, 

sweating, digestion, sexual function, respiration, urination and defecation. The ANS has two 

major complementary subdivisions; the sympathetic nervous system is primarily active during 

the “fight-or-flight” response, while the parasympathetic (vagal) nervous system is primarily 

active during periods of “rest-and-digest”.   
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1.2 The Brainstem  

The arterial baroreflex provides beat-to-beat control of arterial blood pressure at rest and 

especially in response to postural changes. The brainstem contains clusters of nuclei that 

maintain reflex control of blood pressure, total peripheral resistance and cardiac output. These 

regions include the periaqueductal gray (PAG) in the midbrain, the parabrachial nucleus (PBN) 

in the pons and several medullary sites such as the nucleus tractus solitarius (NTS) and 

caudal/rostral portions of the ventrolateral medulla (CVLM and RVLM, respectively). A 

considerable amount of work has established these brainstem regions and their associated 

circuitry in cardiovascular autonomic control of the arterial baroreflex. The PBN serves as a 

major relay center for afferent information to subcortical sites, including the hypothalamus, 

thalamus and amygdala. The NTS is the primary site to receive afferent information, which is 

then relayed, either directly or indirectly, through the PBN to rostral brainstem sites or forebrain 

regions. Additionally, the NTS is the primary relay for medullary reflexes such as the arterial 

baroreflex, chemoreflex and mechanoreflexes. The RVLM is integral for blood pressure 

regulation. The RVLM provides tonic sympatho-excitation to sympathetic preganglionic neurons 

in the intermediolateral cell column, which synapse with post-ganglionic axons to provide 

peripheral sympathetic innervation to the heart and blood vessels to increase cardiac output and 

total peripheral resistance3,4. The RVLM also receives modulatory inputs from brainstem nuclei 

including inhibitory baroreceptor signals from the NTS and CVLM, as well as forebrain 

regions5, such as the hypothalamus. The CVLM maintains tonic gamma aminobutyric acid 

(GABA)-ergic inhibition of the RVLM and relays the arterial baroreflex sympatho-inhibitory 

inputs from the NTS. 

1.3 Peripheral Network 

Peripheral control of autonomic responses is primarily regulated by the sympathetic and 

parasympathetic systems. Both branches consist of preganglionic neurons located in the 

brainstem or spinal cord that synapse with autonomic ganglia prior to innervating target organs. 
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1.3.1 Sympathetic Nervous System 

Most pre-ganglionic neurons of the sympathetic nervous system occupy the intermediolateral 

cell (IML) column expanding the thoracolumbar spine from T1-L3. Short preganglionic 

sympathetic axons enter the paravertebral ganglia (sympathetic chain ganglia) found on either 

side of the spinal cord. Pre-ganglionic fibers can either stay at the same level or travel up or 

down the chain. They synapse with post-ganglionic cell bodies and leave as long post-ganglionic 

sympathetic fibers to their target tissue. Sympathetic chain ganglia innervate all organs and 

tissues, except those of the abdomen, pelvis and perineum. Alternatively, some pre-ganglionic 

fibers synapse in the prevertebral ganglia, which provides innervation to all viscera and blood 

vessels of the abdomen and pelvis. The celiac and superior mesenteric ganglia receive inputs 

from T5-T11, which provides innervation to abdominal viscera along with mesenteric and renal 

vessels. Sympathetic innervation to pelvic organs originates from T11-L3. Pre-ganglionic axons 

synapse with inferior mesenteric ganglia, which give rise to post-ganglionic neurons6. 

1.3.2 Parasympathetic Nervous System 

The most important cranial preganglionic axon of the parasympathetic nervous system is carried 

by the vagus nerve. The vagus nerve innervates the heart, respiratory tract, gastrointestinal tract, 

liver, pancreas and gallbladder6. Parasympathetic pre-ganglionic axons are long, release 

acetylcholine (ACh) and synapse with ganglia close to the target tissue. Most vagal pre-

ganglionic axons originate from neurons within the dorsal motor nucleus of the vagus within the 

medulla. These axons innervate the respiratory tract, esophagus, stomach and intestines. Pre-

ganglionic innervation to the heart primarily originates from the nucleus ambiguus in the 

medulla6. Alternatively, sacral parasympathetic outflow originates from the sacral 

parasympathetic nucleus of the spinal cord (S2-S4). Sacral parasympathetic outflow controls 

defecation, micturition and sexual organ function6. 

Together, the parasympathetic and sympathetic systems, along with arterial baroreceptor nuclei 

within the brainstem facilitate a coordinated response to ensure autonomic homeostasis. Even a 

task as simple as standing results in remarkably coordinated and intricate responses to maintain 

postural normotension. 
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1.4 Maintenance of Postural Normotension 

When we stand up the pull of gravity causes an estimated 500-1000 mL redistribution of blood to 

the lower extremities7. In healthy adults, ~50% of this shift occurs within the first 10 seconds and 

is almost complete within 3-5 minutes of an orthostatic stress. Most of the pooled blood is 

contained within the deep veins of the legs and splanchnic capacitance beds. Blood pooling plus 

reduced plasma volume results in decreased venous return, reduced stroke volume and a 

subsequent fall in cardiac output (~20%). Despite a reduction in cardiac output, a drop in arterial 

blood pressure is prevented by compensatory vasoconstriction of the resistance and capacitance 

vessels in the splanchnic, musculo-cutaneous and renal vascular beds. Mechanistically, when 

there is a transient reduction in arterial blood pressure, reduced afferent inputs to cardiovascular 

segments within the caudal NTS results in disinhibition of the RVLM, which in turn, results in a 

reflexive increase in sympathetic efferent activity to the heart and vasculature to increase cardiac 

output and total peripheral resistance, respectively. In contrast, during hypertension, increased 

baroreceptor firing sends afferent information to the NTS. This information is relayed to the 

nucleus ambiguus and/or the dorsal motor nucleus of the vagus to elicit direct parasympathetic 

outflow. Additionally, afferent baroreceptor information is relayed to the CVLM, to facilitate 

inhibitory modulation of the RVLM. 

1.5 The Central Autonomic Network 

In addition to afferent inputs, baroreceptor brainstem nuclei receive efferent signals from cortical 

and subcortical structures. Benarroch (1993) was the first to propose an integrated model of 

cortical, subcortical and brainstem structures involved in regulating autonomic function, known 

as the central autonomic network (CAN)8. The concept of a central autonomic network has been 

further corroborated through recent advances in neuroimaging, specifically, functional magnetic 

resonance imaging (fMRI). As a result, several cortical and subcortical regions such as the 

cingulate cortex, insula, hypothalamus, thalamus and cerebellum, have been highly implicated in 

autonomic regulation. Although there are several important cortical and subcortical structures 

that make up the CAN, here I will further discuss the insula (Figure 1.1), cingulate (Figure 1.2) 

and cerebellum (Figure 1.3) as they are highly prevalent in autonomic literature. 
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1.5.1 Insular Cortex 

Anatomically, the insula has reciprocal projections to brainstem autonomic nuclei3,9, which 

provides an anatomical basis for autonomic regulation. Functionally, the insula is extremely 

complex. The insula can be structurally and functionally partitioned into anterior and posterior 

portions as well as lateralized into left and right. For example, stimulation of the rostral posterior 

insula in rats induced tachycardia while bradycardia was elicited via caudal stimulation10. 

Furthermore, Zhang et al., (1998) demonstrated that damage to the left insula increased cardiac 

baroreceptor gain with no effect on heart rate or blood pressure, while right insular lesions 

caused increased baseline heart rate and blood pressure with no effect on gain11. Finally, 

neuroimaging studies involving humans support insular activation in response to sympatho-

excitatory tasks such as Valsalva, handgrip, maximal inspirations and lower-body negative 

pressure12–14 (Figure 1.1). fMRI with simultaneous peripheral sympathetic recordings also 

showed increased anterior insular activity corresponded with increase muscle sympathetic nerve 

activity14,15. 

 

 

Figure 1.1. Insula Cortex 
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1.5.2 Cingulate Cortex 

Similar to the insula cortex, the cingulate cortex is often parcellated into posterior and anterior 

segments (Figure 1.2) with both contributing to autonomic regulation, specifically modulations 

of heart rate and blood pressure12,16,17. The anterior cingulate cortex (ACC) is interconnected 

with the anterior insula18, and therefore it is not surprising that the ACC is also commonly 

activated during maneuvers that elicit an increase in sympathetic activity such as the Valsalva 

maneuver, maximal inspiratory apneas and lower-body negative pressure19. Furthermore, like the 

anterior insular cortex, increased ACC activation has been coupled with direct recordings of 

sympathetic nerve activity14,15. In contrast, sub-motor somatosensory stimulation of small Type 

III and IV muscle afferents, along with corresponding changes in parasympathetic indicators (i.e. 

high frequency heart rate variability) have produced posterior cingulate activation20. 

 

 

Figure 1.2. Anterior (ACC) and Posterior (PCC) Cingulate Cortices 
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1.5.3 Cerebellum 

Dating back to the 17th C, in an attempt to understand the ANS, Thomas Willis found that some 

neural pathways appeared to take place without cerebral involvement. He postulated that the 

cerebrum controlled voluntary movement, whereas the cerebellum (Figure 1.3) was the 

originating point for involuntary movement. This theory regarding sympathetic control stemming 

from the brainstem and cerebellum was later altered by Robert Whytt1. This three-century-old 

idea would only be superficially discussed until nearly 80 years ago when Giuseppe Moruzzi 

showed that electrical stimulation of the cerebellum could affect various autonomic reflexes, 

including vasomotor, respiratory and carotid sinus reflexes21.  Since then, research regarding 

cerebellar influences on autonomic processes has grown considerably. Yet, in 2016 the 

recommendations of a consensus panel still identified the contributions of the human cerebellum 

to autonomic control as an area deserving more attention and further investigation22.   

Anatomically, the cerebellum is connected to the brainstem via three cerebellar (inferior, middle 

and superior) peduncles. Furthermore, tracing studies have revealed the structural network of 

neurons projecting from the cerebellum to the NTS, RVLM, PBN and NA23–25. These anatomical 

networks support a functional role for the cerebellum in cardiovascular autonomic regulation. 

Functionally, the cerebellum integrates vestibular and somatosensory information regarding 

movement and postural adjustment. More specifically, the cerebellum integrates positional 

changes related to head-up tilt and upright posture. In response to postural changes to an upright 

position, the cerebellum integrates vestibular information and facilitates an early increase in 

efferent sympathetic outflow26. The integration of both vestibular and autonomic signals, 

together, establishes the vestibulo-sympathetic reflex (VSR). Cerebellar involvement in the VSR 

has been established in both animal and human models. For example, cerebellar stimulation in 

animal models produces significant cardiovascular responses including increased cerebral blood 

flow, tachycardia and arterial pressor responses with measurable increases in muscle, splanchnic 

and renal sympathetic nerve activity26–31. In healthy individuals, neuroimaging studies have 

demonstrated cerebellum and deep cerebellar nuclei activation during challenges involving 

increased sympathetic activity such as the Valsalva maneuver, inspiratory capacity apnea and 

lower-body negative pressure14,15,32. Furthermore, increase activity in the cerebellum/deep 

cerebellar nuclei was demonstrated to occur with concomitant increases in muscle sympathetic 
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nerve activity14. Finally, damage to the cerebellum has been shown to result in long-term 

impairment of cardiovascular responses including orthostatic hypotension and autonomic 

dysregulation33–35.  

 

 

 

 

 

 

 

 

 

1.6 Evaluation of autonomic function: clinically validated tests  

Due to the widespread nature of the autonomic network and its complex integration within a 

 

Figure 1.3. Cerebellum 
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number of organs and systems, the impact of autonomic dysfunction or failure can be extremely 

disabling. Therefore, reliable and validated methods of evaluation are of utmost importance. The 

Autonomic Reflex Screen (ARS) is a battery of non-invasive, standardized autonomic tests to 

evaluate the presence, severity and distribution of autonomic dysfunction. The ARS is comprised 

of four evaluations including: 1) Quantitative sudomotor axon reflex test (QSART), 2) heart rate 

responses to deep breathing (HRDB), 3) heart rate and blood pressure responses to Valsalva 

maneuver (VM) and 4) heart rate and blood pressure responses to head-up tilt (HUT)36,37.  

1.6.1 Quantitative Sudomotor Axon Reflex Test (QSART) 

Quantitative Sudomotor Axon Reflex Test (QSART) evaluates the integrity of postganglionic 

sympathetic axons by means of transdermal iontophoresis of acetylcholine (ACh) for 5 minutes 

with a constant current generator set to 2 mA. The neural pathway consists of an axon reflex 

mediated by the postganglionic sympathetic sudomotor axon. The axon terminal is activated by 

ACh, creating an antidromic impulse that travels to a branch point. Subsequently, an orthodromic 

impulse travels to a secondary nerve terminal whereby ACh is released. ACh released from the 

secondary axon terminal binds to muscarinic receptors on eccrine sweat glands to evoke a 

reflexive sweat response. Following stimulation, an additional 5-minutes of recording provides a 

measurable residual sweat response. QSART is performed at four standard sites, the forearm, 

proximal leg, distal leg and foot, to provide a measure of axon integrity of the ulnar, peroneal, 

saphenous and sural, respectively. Total sweat volumes are measured by a sudorometer and 

calculated based on an integrated area under the curve of the entire 10-minutes. Reduced or 

absent sweat responses can be indicative of impaired postganglionic sympathetic axon integrity 

(Figure 1.4)36,37.  
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Figure 1.4 Quantitative Sudomotor Axon Reflex Test (QSART). 
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1.6.2 Heart Rate Response to Deep Breathing (HRDB) 

Breathing naturally causes a pattern of discharge from the vagus nerve, and the rate of discharge 

can be influenced by the rate and depth of respiration. The vagal innervation to the heart contains 

both the afferent and efferent pathways for this reflex arc, and therefore the maneuver is regarded 

as a measure of cardiovagal function. To produce the maximal variation between breaths, 

individuals are asked to complete eight breathing cycles at a rate of 6 breaths/minute38. During 

analysis, the five highest consecutive peak-to-trough heart rate differences are calculated and 

averaged to provide an average heart rate response to deep breathing. A healthy cardiovagal 

response will show HR fluctuations in response to the maneuver (Figure 1.5A), whereas reduced 

heart rate responses are indicative of cardiovagal impairment (Figure 1.5B). 
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Figure 1.5 Heart Rate Responses to Deep Breathing (HRDB). 

Normal (A) and severely reduced (B) heart rate responses to deep breathing. (B) represents 

cardiovagal impairment 
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1.6.3 Valsalva Maneuver (VM) 

Valsalva maneuver (VM) is a simple and non-invasive clinical test ideal for providing important 

information regarding both sympathetic and cardiovagal functioning. The maneuver reflex is 

mediated by the baroreflex and changes in intra-thoracic pressures. In practice, participants are 

asked to exhale at an expiratory pressure of 40 mmHg held for 15 seconds. In doing so, a classic 

quadri-phasic change in blood pressure is produced in healthy individuals to provide insight into 

adrenergic function (Figure 1.6A).  

 

Phase I: Phase I is mechanical in nature, upon inhalation there is a large increase in intra-thoracic 

pressure that causes compression of the aorta and a subsequent small increase in systolic blood 

pressure (SBP). 

Phase II_Early: In early phase II there is a transient decline in SBP due to a reduced stroke 

volume and consequently a reduction in cardiac output (Q). 

Phase II_Late: Within approximately 4 seconds, the drop in SBP is arrested, and starts to 

increase again. This occurs as a result of increased plasma concentration of norepinephrine (NE) 

and increased sympathetic discharge, which together results in an increase in total peripheral 

resistance (TPR). 

Phase III: Phase III, similar to Phase I, is mechanically mediated. Upon release of the maneuver 

there is a drop in intra-thoracic pressure that results in a rapid drop in SBP for about 1-2 seconds.  

Phase IV: As a result of the sudden drop in SBP in Phase III, there is a burst in sympathetic 

activity that increases Q. Increased Q in conjunction with the increased TPR from Phase II_Late, 

results in a large SBP overshoot above baseline levels. In contrast, reduced or absent adrenergic 

phases (late phase II and phase IV) provide evidence of adrenergic failure (Figure 1.6B). 

 

An additional measure of cardiovagal functioning can be derived from the heart rate response to 

the VM. The Valsalva ratio (VR) is calculated from the highest heart rate generated from the 

maneuver divided by the lowest heart rate achieved following maneuver release. Physiologically, 

this occurs as there is a progressive compensatory tachycardia due to the decrease in SBP 

starting from Phase II_Early. Subsequently, the Phase IV SBP overshoot is accompanied by a 

transient bradycardia following release of the maneuver. 
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A 

 
B 

 

Figure 1.6. Heart rate and blood pressure responses to Valsalva maneuver 

(A) Healthy individuals show reproducible quadri-phasic blood pressure responses to Valsalva 

and large tachycardic response. (B) Patients with autonomic failure will have absent late phase 

II and phase IV blood pressure responses, along with impaired heart rate responses. 

Abbreviations: HR, Heart rate; bpm, beats per minute; SBP, systolic blood pressure; mmHg, 

millimeters of mercury; II_E, Phase II_Early; II_L, Phase II_Late 
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1.6.4 Head-up Tilt (HUT): 

In response to an orthostatic challenge such as a passive head-up tilt (HUT), there are natural 

mechanisms to counteract the effects of gravity to maintain adequate blood pressure at the head 

and heart level. HUT is commonly the last test of the ARS as individuals should remain supine 

for a minimum of 20 minutes prior to tilt to allow for equal redistribution of intravascular 

volume, stable basal sympathetic nerve output and to maximize the degree of orthostatic stress. 

Following baseline, individuals are slowly (~10 seconds) and passively tilted to 70° from the 

horizontal. (Note: The 70° angle was found to produce a maximal orthostatic stress while 

minimizing the effects of muscular contraction.) Within the first 30 seconds of HUT it is 

common for healthy individuals to experience a transient and modest (<10 mmHg, mean BP) 

decline in systolic, diastolic and mean blood pressures followed by recovery within the first 

minute (Figure 1.7A). This recovery is mediated by sympathetic activation resulting in reflexive 

tachycardia, increased release of norepinephrine and increased TPR via vasoconstriction. 

Therefore, measuring the changes in HR and SBP in response to HUT provides a measure of 

sympathetic function. The duration of HUT is variable depending on the clinical investigation. 

For example, the clinical criterion for diagnosing postural orthostatic tachycardia syndrome is 

minimum tilt duration of 10 minutes. In contrast, individuals with evidence of neurogenic 

orthostatic hypotension (Figure 1.7B) may only last 1-2 minutes before tilt needs to be aborted 

due rapid and severe orthostatic hypotension. 
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A 

 

B 

 

Figure 1.7 Hemodynamic response to Head-up Tilt (HUT). 

(A) Healthy individuals show transient decline in systolic blood pressure at onset of head-up 

tilt (HUT). This is accompanied by an appropriate compensatory postural tachycardia (black 

line) and subsequent BP recovery. (B) Clear evidence of Neurogenic Orthostatic Hypotension 

with no compensatory postural tachycardia. 
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1.6.5 Composite Autonomic Severity Score  

The composite autonomic severity score (CASS) is derived from the autonomic reflex screen and 

is normalized for age and sex39. The CASS is a validated score used to quantify autonomic 

dysfunction and provide a measure of the severity and distribution of autonomic failure40. The 

11-point CASS (0-10) is divided into three indices: Sudomotor Index (0–3), Cardiovagal Index 

(0–3), and Adrenergic Index (0–4). Patients with a composite score ranging from 1-3 are 

considered to have mild autonomic dysfunction, 4-6 are considered moderate, and 7-10 have 

severe autonomic failure. A score of 0 would indicate no autonomic dysfunction.  

1.7 Patient Self-report Instruments 

In addition, there are a number of self-report questionnaires that have been validated for clinical 

autonomic populations. Two common questionnaires include the Autonomic Symptom Profile 

and the Orthostatic Hypotension Questionnaire.  

1.7.1 Autonomic Symptom Profile 

The autonomic symptom profile (ASP) is a validated self-report instrument designed to provide 

an index of autonomic symptom severity41. The ASP is comprised of 169 questions to yield a 

Composite Autonomic Symptom Scale (COMPASS) reflecting overall severity of autonomic 

symptoms. There are 10 subscale scores (11 for men) that assess severity of symptoms within the 

following domains: orthostatic intolerance, bladder dysfunction, diarrhea, gastroparesis, 

secretomotor dysfunction, syncope, sleep disorder, constipation, vasomotor symptoms, and 

pupillomotor symptoms and sexual dysfunction for men. The highest possible overall score for 

men is 200 and 170 for women, with higher scores indicating more autonomic symptomatology. 

Newer and briefer versions of the COMPASS (COMPASS 31) are currently available42. 

1.7.2 Orthostatic Hypotension Questionnaire  

The Orthostatic Hypotension Questionnaires (OHQ) is a 10 question self-report questionnaire to 

assess symptoms related to a low blood pressure problem. The OHQ yields the following two 

sub-scores: Part I: the orthostatic hypotension symptoms assessment (OHSA), and Part II: the 

orthostatic hypotension daily activity scale (OHDAS). The OHSA consists of six questions to 
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measure the presence and severity of orthostatic symptoms, while the OHDAS consists of four 

questions to assess the impact of orthostatic symptoms on daily activities43. Each item is scored 

on an 11-point scale from 0–10, with 0 indicating no symptoms/no interference and 10 indicating 

the worst symptoms/complete interference. Included in the questionnaire is an additional option 

of “cannot do for other reasons”.  

1.8 Evaluation of autonomic function: additional tests  

1.8.1 Lower Body Negative Pressure (LBNP): 

Lower body negative pressure (LBNP) investigates the effects of blood volume displacement to 

reliably activate the baroreflex through baroreceptor unloading. In the supine position, 

individuals are sealed from the waist down in an airtight container connected to a vacuum. 

Negative pressure applied to the lower half of the body redistributes blood from the upper to the 

lower extremities resulting in relative central hypovolemia. The level of suction (i.e. negative 

pressure) can be precisely monitored using a manometer and rapidly controlled through valves 

that open to room pressure. When applied at lower levels (< 15 mmHg), LBNP reduces central 

blood volume and increases peripheral sympathetic activity primarily by unloading 

cardiopulmonary baroreceptors. At higher levels of suction (>30 mmHg), there is additional 

arterial baroreceptor unloading, to cause further reductions in CBV, accompanied by reduced 

cardiac filling and stroke volume. As a result, these changes produce reflex tachycardia and even 

greater levels of peripheral sympathetic activity44–46.  LBNP provides a technique, especially for 

patients with limited mobility and functional imaging studies, as the testing can be executed 

entirely in the supine position. Clinically, LBNP provides an orthostatic stress equivalent to that 

of head-up tilt (Figure 1.8).  
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Figure 1.8 Lower Body Negative Pressure (LBNP) in patient with autonomic failure. 

 

Abbreviations: HR, Heart rate; bpm, beats per minute; SBP, systolic blood pressure; mmHg, 

millimeters of mercury; LBNP, lower body negative pressure. 
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1.8.2 Functional Magnetic Resonance Imaging (fMRI) 

Functional magnetic resonance imaging (fMRI) provides a non-invasive modality for mapping 

patterns of brain activation and therefore has emerged as a leading tool in both clinical and 

research settings. In brief, the blood-oxygen-level-dependent (BOLD) response, generally 

measured by means of a T2*-weighted sequence, takes advantage of the tight coupling between 

neural activity, cerebral blood flow and the change in magnetic properties as hemoglobin shifts 

from oxygenated (Hb) to deoxygenated (dHb). The MR signal intensity is distorted by the 

magnetic properties of dHb. Therefore, a relative change in dHb produces a change in MR 

signal. The BOLD response to a short stimulus shows the following three phases: 1) Fast 

response/early dip, 2) Main BOLD response and, 3) Post-stimulus undershoot (Figure 1.9). 

 

 

Adapted from Norris D. (2006) Principles of magnetic resonance assessment of brain 

function. Journal of Magnetic Resonance Imaging. 23(6): 794-807. 

 

The BOLD contrast is influenced by three physiological parameters: the rate of oxygen 

consumption, regional cerebral blood flow (rCBF) and regional cerebral blood volume (rCBV). 

 

Figure 1.9 Blood Oxygen Level Dependent (BOLD) response to a stimulus 
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The initial negative dip in signal intensity following a stimulus is due to increased oxygen 

consumption (i.e. increase in dHb) without any appreciable changes to rCBF and rCBV. The 

main BOLD response reflects an increase in rCBF and rCBV causing a reduction in the amount 

of dHb, and subsequent large MR signal. Finally, post-stimulus undershoot is thought to be due 

to a maintained rate of oxygen consumption once blood flow has returned to baseline. Overall, 

the BOLD response provides an indirect measure of brain activity, as an increase in neural 

activity will increase all three parameters facilitating a measurable BOLD response47–49. 

Since the emergence of functional imaging, brain mapping has focused largely on localizing 

brain functions. However, in the last decade the neurosciences has seen a shift from functional 

segregation to functional integration. fMRI data has been analyzed to greater depths to reveal 

how neural systems may be coupled to perform specific functions. The organization and 

integration of different brain regions is commonly referred to as “functional connectivity”: an 

attempt to look at the functional architecture of the brain. Functional connectivity attempts to 

quantify the interactions of distinct brain regions that are simultaneously engaged during a 

specific task using correlations or covariances of activity derived from the BOLD data.  

1.9 Autonomic Failure 

Orthostatic hypotension (OH) is present in 5-30% of persons ≥65 years50,51. Neurogenic OH 

(NOH) can be differentiated from other causes of OH, such as hypotension due to endocrine 

issues, generalized low blood pressure, low blood volume, etc., in that NOH is associated with 

impairment of the sympathetic nervous system52–54. NOH is clinically defined as a sustained 

reduction in systolic blood pressure (SBP) ≥20 mmHg or diastolic blood pressure of ≥10 mmHg 

within 3 minutes of standing or head-up tilt without an appropriate compensatory tachycardia55 

(Figure 1.7B). To improve the false positive detection rate from 5% to 1%, and in patients with 

autonomic failure plus supine hypertension, a SBP reduction ≥30 mmHg or a diastolic drop ≥15 

mmHg is recommended54,56. NOH is a cardinal feature of autonomic failure. The term 

“autonomic failure” represents a broad description of generalized pan-dysautonomia that can 

occur independently or accompany a number of disorders. Generally, clinical classifications of 

NOH secondary to autonomic failure can be made based on where failure of the sympathetic 

efferent signaling pathway occurs i.e. before or after the autonomic ganglia. For example, NOH 

occurs in disorders of the central nervous system /pre-ganglionic lesions including: Multiple 
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System Atrophy (MSA) and Lewy Body Dementia (LBD). In contrast, clinical populations such 

as Parkinson’s Disease (PD) with autonomic failure, Pure Autonomic Failure (PAF), Diabetic 

Autonomic Neuropathies, etc., the lesion site is considered to be “post-ganglionic”/peripheral. 

1.9.1 Pre-ganglionic Disorders  

Multiple System Atrophy: Multiple system atrophy (MSA) is a sporadic neurodegenerative 

disorder involving progressive deterioration of three specific regions of the brain and 

preganglionic nerves. Degeneration of the basal ganglia, cerebellum and pons give MSA a 

clinical triad of symptomatology resembling Parkinson’s Disease, cerebellar ataxia and 

autonomic failure. MSA is considered pre-ganglionic and as such patients will typically have 

intact post-ganglionic sympathetic nerves. However, as the disease progresses some patients can 

acquire post-ganglionic denervation resulting in more widespread autonomic failure affecting 

blood pressure regulation, bowel and bladder dysfunction, respiration, sleep, etc. The prognosis 

of MSA is poor relative to other forms of autonomic dysfunction, with life expectancy ranging 

from 7-10 years following symptoms onset57. Particularly, following the development of severe 

autonomic failure, including NOH, survival is reduced by 2.3 years58.  

 

Lewy Body Dementia: Lewy Body Disorders (LBD) are identified by an accumulation of a 

protein called alpha-synuclein, also known as Lewy bodies, around the neuronal cell body and 

synaptic terminals53. Clinical features vary depending on the location of accumulation; however, 

autonomic failure and NOH are prominent in most Lewy body disorders. Unlike MSA, dementia, 

cognitive impairment and visual hallucinations are more prominent in LBD due to Lewy body 

accumulation in the basal forebrain and cerebral cortex. 

1.9.2 Post-ganglionic Disorders  

Pure Autonomic Failure: Pure Autonomic Failure (PAF) is a sporadic and chronic peripheral 

degenerative disorder characterized by autonomic failure without any other neurological deficits, 

including central degeneration, motor and sensory deficits. A clinical diagnosis of PAF is based 

on widespread and persistent sympathetic and parasympathetic dysfunction without any evidence 

of other pathology for an extended period of time. Despite significantly autonomic dysfunction, 
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PAF patients typically have normal life expectancies. Autonomic issues include: neurogenic 

orthostatic hypotension, erectile dysfunction, impaired sweating, bowel and bladder dysfunction 

and dry mouth. 

 

Parkinson’s Disease plus Autonomic Failure: NOH and autonomic dysfunction is present in 

approximately 30% of patients with Parkinson’s disease (PD)59. Despite neuronal death within 

the substantia nigra, which accounts for many Parkinsonian symptoms, clinical literature 

provides robust evidence that supports PD plus Autonomic failure as a post-ganglionic disorder. 

Studies involving various testing of post-ganglionic sympathetic nerve integrity, including 

neuroimaging, pharmacological and neurochemical, have repeated revealed post-ganglionic 

sympathetic denervation in PD plus autonomic failure patients52,60–62. The most common 

autonomic problems include, neurogenic orthostatic hypotension, bowel and bladder 

dysfunction, gastrointestinal dysmotility and sexual dysfunction63.  

 

Idiopathic NOH: Approximately 1/3 of patients with NOH have no identifiable underlying cause 

for dysfunction64 and as such NOH can occur as an independent entity, or the course of their 

disease has not become clear. Patients diagnosed with idiopathic NOH typically have 

considerable orthostatic hypotension, along with gastrointestinal issues or other questionable 

phenomenon such as olfactory impairment, but do not meeting criteria for other alpha-

synucleinopathies. Patients with idiopathic NOH may develop a clearer diagnose over time. 

1.10 Neurogenic Orthostatic Hypotension  

Neurogenic Orthostatic Hypotension (NOH) is a disorder affecting individuals globally, but 

arguably has received considerably less attention than its counterpart, hypertension. Presently, 

there are several gaps in our overall understanding and assessment of patients with NOH related 

to autonomic failure. 

 

First, regardless of the underlying etiology (i.e. pre- versus post-ganglionic), impairment of 

higher cortical and subcortical regions has not been investigated in the pathophysiology of NOH. 

Specific areas of the brain such as the cingulate cortex, insula, hippocampus and cerebellum, 

which have all been highlighted as key cortical structures in autonomic regulation. Importantly, 



24 

 

 

 

these structures have been shown to contribute to the proper regulation of basic autonomic 

functions such as heart rate and blood pressure; the same key autonomic functions that fail in 

patients with NOH12,20,32,65,66. 

 

Second, NOH is a debilitating condition associated with reduced quality of life, impaired 

function and is an independent predictor of mortality67–69. Common symptoms include: fatigue, 

weakness, head and neck pain, dizziness, lightheadedness, pre-syncope, and in some cases, full 

syncope55. Unfortunately, these symptoms are typically regarded as ‘constitutional’ or non-

specific, that is, symptoms that can be related to many different systems and the results of a 

plethora of underlying causes. For this reason, a proper diagnosis of NOH can be challenging, 

especially for clinicians without significant experience in disorders of the ANS. Furthermore, 

roughly 50% of patients with NOH also have supine hypertension, which can distract 

practitioners who may then fail to obtain upright blood pressure measurements. Accurate 

identification of autonomic dysfunction lies in the ability to appropriately discern these 

symptoms on the basis of position. Autonomic symptomatology is posturally-related; patients 

can be extremely symptomatic in the upright position, but these can often be completely relieved 

by resuming a seated or lying position. Therefore, clinicians must identify these symptoms as 

being either orthostatic or non-orthostatic to help guide them towards a proper diagnosis of 

NOH. Unfortunately, clinicians do not have available to them a simple, non-invasive tool that 

they can administer to help make this distinction. Therefore, under these circumstances, more 

common syndromes and disorders associated with light-headedness, dizziness, etc., such as inner 

ear or vestibular issues, vertigo, migraines, hypoglycemia, anemia and even certain medication 

side effects, may be considered as differential diagnoses prior to orthostatic intolerance that 

accompanies NOH.  
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1.11 Purposes and Hypotheses 

Therefore, the primary purpose of the studies described herein (Chapters 2-7) was to improve our 

assessment and understanding of Neurogenic Orthostatic Hypotension. More specific objectives 

and hypotheses are as follows: 

 

Study 1 Objective: Evaluate brain activation patterns in NOH patients using functional 

MRI during standard tests of autonomic functioning. 

Hypothesis: Relative to healthy controls, patients with NOH will demonstrate reduced 

activity in central autonomic structures during autonomic maneuvers. 

 

Study 2 Objective: Evaluate functional connectivity between the brainstem and central 

autonomic structures at rest and during autonomic challenges in NOH patients. 

Hypothesis: NOH patients will demonstrate reduced brainstem connectivity relative to 

their healthy counterparts 

 

Study 3 Objective: Based on the results of study 1, we aimed to investigate cerebellar 

functional connectivity in NOH patients at rest and during autonomic maneuvers. 

Hypothesis: Patients with NOH will demonstrate reduced cerebellar connectivity to key 

central autonomic structures. 

 

Study 4 Objective: Create a self-report questionnaire to identify and assess patients with 

autonomic dysfunction based on symptomatology; evaluate validity and reliability. 

 Hypothesis: The questionnaire will demonstrate preliminary validity and reliability 

within a sample population of patients with orthostatic intolerance associated with autonomic 

dysfunction. 

 

 Study 5 Objective: Assess sensitivity and specificity of the questionnaire, inter-item 

reliability and the ability to positively predict patients with orthostatic dysfunction secondary to 

autonomic dysfunction. 

Hypothesis: The questionnaire will produce symptom scores that are sensitive and 

specific and will be capable of positively identifying patients with orthostatic symptoms related 

to autonomic dysfunction.  
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CHAPTER 2 

2 Impaired cortical autonomic responses during sympathetic activation in Neurogenic 

Orthostatic Hypotension characterized by post-ganglionic autonomic dysfunction1 

2.1 Introduction 

Neurogenic orthostatic hypotension (NOH) is a debilitating condition associated with 

reduced quality of life, impaired function and is also an independent predictor of mortality1–3. 

NOH is clinically defined as a sustained reduction in systolic blood pressure (SBP) ≥20 mmHg 

or diastolic blood pressure of ≥10 mmHg within 3 minutes of standing or head-up tilt performed 

at 60° without an appropriate compensatory postural tachycardia4. However, to improve the false 

positive detection rate from 5% to 1%, in patients with autonomic failure, a SBP reduction ≥30 

mmHg or a diastolic drop ≥15 mmHg is recommended5,6. Specifically, neurogenic OH can be 

differentiated from other causes of orthostatic hypotension, such as hypotension due to endocrine 

issues, generalized low blood pressure and low blood volume, in that a lesion is present in a 

specific region of the nervous system, known as the autonomic nervous system. Specifically, 

dysfunction of reflexive responses mediated by the sympathetic nervous system7,8. Autonomic 

dysfunction can be further defined as either central or peripheral. For example, in Multiple 

System Atrophy, atrophy of the pons results in significant autonomic failure9. In contrast, 

peripheral autonomic disorders such as, pure autonomic failure, Parkinson’s Disease with 

autonomic failure and idiopathic NOH are characterized by lesions in the post-ganglionic 

sympathetic fibres8. Regardless of the underlying etiology, both central and peripheral autonomic 

lesions result in a significant drop in blood pressure as patients move from sitting to standing, 

which can lead to inadequate cerebral blood flow and reduced cerebral perfusion pressure in 

various cortical regions10. As cerebral blood flow and perfusion pressure are crucial factors in 

normal brain function, failure to adequately control these variables may significantly impact the 

 

1 A version of this chapter has been published. Used with permission from Elsevier, Inc. 

Baker J, Paturel J and Kimpinski K. (2018). Impaired cortical autonomic responses during sympathetic activation in 

neurogenic orthostatic hypotension characterized by post-ganglionic autonomic dysfunction. J. Appl. Physiol. 125: 

1210-1217 
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functionality of cortical networks. Recent advances in neuroimaging, specifically, functional 

magnetic resonance imaging (fMRI), has facilitated research mapping brain activation patterns 

by exploiting the relationship between neural activity, energy metabolism and cerebral blood 

flow. As a result, specific areas of the brain such as the cingulate cortex, insula, hippocampus 

and other cortical regions have been implicated in autonomic regulation. Furthermore, these 

structures have extensive cortical-cortical and cortical-subcortical projections to structures that 

regulate autonomic responses11, and in animal and human studies alike, have been shown to 

influence autonomic parameters including heart rate and blood pressure12–16. Finally, in a clinical 

context, damage to these areas due to stroke or lesion has been shown to disrupt regular 

autonomic functioning17–19. Together these areas make up part of the central autonomic 

network11,13,14.  

Given the clinical context of autonomic failure, and the prominent feature of NOH leading to 

alterations in cerebral blood flow and perfusion pressure, the objective of this study was to 

evaluate brain activation patterns of NOH patients in response to standard tests of autonomic 

function. Patient blood oxygen-level dependent activation patterns were compared against 

healthy age-matched participants to investigate whether impairment of central autonomic 

structures is involved in the pathophysiology of NOH. 

2.2 Methods 

2.2.1 Study participants 

The current study included 15 healthy, age-matched controls (63±13 years) and 15 patients 

diagnosed with Neurogenic Orthostatic Hypotension (NOH) (67±6 years) (p=0.12) related to a 

peripheral autonomic lesion. Patients were recruited from the Autonomic Disorders Laboratory 

in the Department of Clinical Neurological Sciences, London Health Sciences Centre, London, 

Ontario, Canada. Patients with evidence of central autonomic dysfunction were excluding to 

remove potentially confounding variables that would directly affect specific regions within the 

Central Autonomic Network (CAN). Prior to testing, all diagnoses were clinically confirmed by 

a Neurologist with specialty training in autonomic dysfunction (KK). Patients were clinically 

evaluated as having peripheral forms of autonomic failure based on neurological examination, 
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patient history (i.e. no evidence of REM sleep behaviour disorder, olfactory dysfunction, etc.) 

and diagnostic work-up (i.e. blood work, brain MRIs, and responsiveness to treatment). The 

NOH patient cohort was comprised of patients with evidence of peripheral autonomic 

denervation (pure autonomic failure, n=3; Parkinson’s Disease + NOH, n=7; idiopathic NOH, 

n=5). Patients were excluded if there was evidence of any peripheral nerve injury unrelated to 

their diagnosis of autonomic dysfunction including diabetic neuropathies in any form. The 

patient cohort reported an average symptom duration of 7±5 years. Healthy participants were 

also examined to confirm the absence of any neurological conditions including autonomic 

dysfunction. Healthy participants were recruited from the general population, including 

recruitment from aging activity centers in London, Ontario. In addition, healthy participants were 

excluded if they fell under any one of the following categories: i) clinically significant coronary 

artery disease, ii) concomitant therapy with anticholinergic, alpha- and beta-adrenergic 

antagonists or other medications which could interfere with autonomic functioning, and iii) 

failure of other organ systems or systemic illness that could affect autonomic function or 

participants’ ability to cooperate. All laboratory data were collected in the Autonomic Disorders 

Laboratory at University Hospital, London, Ontario. All functional imaging data were collected 

at Robart’s Research Institute Centre for Functional and Metabolic Imaging at The University of 

Western Ontario. Ethical approval was obtained from the Health Science Research Ethics Board 

at Western University, and informed consent was obtained from all participants prior to any and 

all testing. 

2.2.2 Autonomic testing 

All participants underwent a battery of standardized and validated tests of autonomic function, 

namely the autonomic reflex screen (ARS)20,21. In brief, quantitative sudomotor axon reflex test 

(QSART) provided an assessment of post-ganglionic sympathetic function from four standard 

sites (forearm, proximal leg, distal leg and foot). Adrenergic function was assessed by the beat-

to-beat blood pressure (BP) and heart rate (HR) responses to head-up tilt (HUT) performed at 

70° from the horizontal for a maximum of 5 minutes and the Valsalva maneuver (VM) 

performed at an expiratory pressure of 40 mmHg for 15 seconds. Cardiovagal function was 

evaluated by the Valsalva ratio, and the HR responses to deep breathing. The composite 
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autonomic scoring scale (CASS) was derived as a quantitative measure of the ARS22. In the lab, 

beat-to-beat BP and HR responses were measured using a BMEYE Nexfin device (Amsterdam, 

The Netherlands) and an electrocardiography (ECG) device (Model 3000 Cardiac Trigger 

Monitor, IVY Biomedical Systems, Inc., Branford, CT) with ECG electrodes (Ambu® Blue 

Sensor SP, Glen Burnie, MD), respectively. All recordings were made using WR TestWorksTM 

software (WR Medical Electronics Co., Stillwater, MN). Participants repeated deep breathing 

and Valsalva during a functional MRI with the same aforementioned parameters. However, as 

opposed to only performing two trials of each task, participants were instructed to perform four 

deep breathing exercises and three VMs. 

2.2.3 Neuroimaging data acquisition 

All imaging data were collected using a whole body 3T imaging system (Magnetom Primsa, 

Siemens Medical Solutions, Erlangen, Germany) with a 32-channel head coil. A high-resolution 

T1-weighted structural volume was acquired with a 3D MPRAGE sequence at the beginning of 

the scanning session (sagittal, matrix 256x240 mm, voxel resolution 1.0x1.0x1.0 mm, 1 mm slice 

thickness, no gap, flip angle 9 degree, TE: 2.98 ms, TI: 900 ms, TR: 2300 ms). Blood oxygen 

level-dependent (BOLD) signals were acquired to provide an indirect measure of brain 

activation. Due to the paramagnetic properties of deoxygenated haemoglobin (dHb), there is 

distortion of the acquired magnetic signal that is related to changes in the amount of dHb present 

in the tissue. Therefore, changes in the magnetic signal as a result of changes in the amount of 

oxygenated Hb versus dHb provide an indirect measure of tissue oxygen extraction and thus 

activation23. BOLD signals were acquired using a T2- weighted gradient echo-echo planar 

imaging pulse sequence with the following parameters: TE: 3 0ms; FOV: 240x240 mm; flip 

angle: 40 degrees; multiband acceleration factor: 4. Forty-eight interleaved axial slices (3.0x3.0 

mm in-plane voxel resolution, TR: 1000 ms) were acquired in each volume.  

2.2.4 MRI experimental paradigm 

Participants completed 4 deep breathing exercises (120 seconds each) with 60 seconds of rest in 

between each trial (620 volumes) and 3 VMs (15 seconds each) with a 60-second baseline and 

120 seconds of rest in between each trial (465 volumes). The first 2 volumes of each test were 
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discarded from analysis to allow for an equilibrated MRI signal. To minimize head movement, 

each participant’s head was placed in a cradle packed with foam padding. In addition, all 

participants practiced the protocol prior to scanning to help minimize head movements during 

each experimental protocol and were instructed to avoid head movements as much as possible. 

Beat-to-beat heart rate was recorded from the continuous signal derived from an MRI-compatible 

pulse oximeter (Nonin Medical, 8600FO MRI, Plymouth, MN) attached to the index finger of 

each participant’s left hand when possible. In the presence of a significant tremor i.e. in 

PD+NOH patients, pulse oximetry was obtained from the hand with less potential for movement. 

All hemodynamic recordings were collected using WR TestWorks™ software (WR Medical 

Electronics Co., Stillwater, MN). 

2.2.5 Neuroimaging data analysis 

Raw fMRI data were analyzed using SPM12 (Wellcome Department of Imaging Neuroscience, 

London, UK). All functional images were realigned using a rigid body transformation to correct 

for head motion using the mean functional image. All images were co-registered with the T1-

weighted scan, normalized to standard stereotaxic space (Montreal Neurological Institute; MNI) 

and smoothed with a 6mm FWHM Gaussian kernel. To reduce low frequency noise, a high pass 

filter with 128s cut-off was applied. 

 

Two levels of analysis were performed. First, individual design matrices were constructed for 

each experimental protocol (HRDB and VM) modeled by a box-car and convolved with a 

canonical hemodynamic response function. The General Linear Model was used to create a 

statistical parametric map on a voxel-by-voxel basis24. Second, the average contrast image from 

each individual, for each experiment protocol [VM and HRDB] was entered into a 2-sample 

independent t-test. Significant changes in signal intensity from rest were determined for each 

paradigm (DB and VM). An additional contrast of phase IV of VM (10 seconds following 

release of the maneuver) was compared against rest. In contrast to the entire VM that 

incorporates both parasympathetic and sympathetic components of the ANS, 10-seconds 

following the immediate release of the maneuver was chosen to capture a phase that is primarily 

adrenergically-mediated25. Signal intensity differences between controls and patients were 
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compared using subtraction analysis. These contrasts included: Control VM>Patient VM [1, -1], 

Patient VM>Control VM [1, -1], Control VM Phase IV>Patient VM Phase IV [1, -1], Patient 

VM Phase IV> Control VM Phase IV [1, -1], Control HRDB>Patient HRDB [1, -1] and Patient 

HRDB>Control HRBD [1, -1]. Comparisons of the BOLD responses were corrected for multiple 

comparisons (family-wise error (FWE) <0.05) with a cluster threshold of 10 voxels. In some 

cases, a more lenient threshold of p<0.001, uncorrected was used. 

2.2.6 Regions-of-Interest analysis 

Regions of interest (ROI) were determined based on previous work highlighting regions of the 

central autonomic network. These a priori ROI included the bilateral insula, bilateral anterior and 

posterior cingulate, bilateral hippocampus and bilateral thalamus. All ROI masks were created 

using WFU_Pick Atlas toolbox version 1.226,27. 

2.2.7 Statistical analysis 

Physiological data are presented as mean ± standard deviation. Autonomic parameters between 

NOH patients and age-matched controls were compared using an independent t-test. All tests 

were 2-tailed with a p-value <0.05 to denote significance. All statistical analyses were performed 

using SPSS statistical software, Version 22.0. Manufactured by International Business 

Management (IBM) Corporation (SPSS Inc. Chicago, IL). 

2.3 Results 

2.3.1 Hemodynamic responses 

Quantitative Sudomotor Axon Reflex Test: There was evidence of significantly smaller sweat 

volumes at the proximal and distal leg, and a trend toward smaller sweat volumes at the forearm 

(p=0.07) in patient with NOH. The foot showed no significant sweat volume differences between 

patients and controls. Even though the sweat response at the foot was not significantly different 

from the control group, these values were still considered reduced relative to normative data, 

suggesting impairment in the sweat response at this site8 (Table 2.1). Overall, these data are still 

in keeping with autonomic dysfunction related to peripheral (post-ganglionic) autonomic 

impairment. Cardiovagal Index: Compared to controls, patients had significantly smaller heart 
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rate (HR) responses to deep breathing and Valsalva ratios (p<0.001). This was evident in both 

the lab and MRI protocols. Adrenergic Index: Patients had significantly larger SBP drops during 

HUT with significantly smaller compensatory tachycardias (p<0.001) (Table 2.1). Qualitative 

analysis of the VM demonstrated that patients with NOH had absent adrenergic phases in 

response to the maneuver, resulting in a significantly larger Adrenergic Index as evaluated by the 

CASS (Table 2.1). The Cardiovagal Index of the CASS showed a similar significant difference 

between controls and patients (Table 2.1). Hemodynamic changes to autonomic maneuvers 

showed no significant differences between the lab and MRI testing. The hemodynamic responses 

to standard autonomic testing clearly support pan-dysautonomia with NOH, related to a 

peripheral autonomic lesion. 

2.3.2 Functional imaging 

Cardiovagal Index: Healthy individuals demonstrated significant reductions in brain activity 

relative to rest in the bilateral thalamus, bilateral insula, left posterior cingulate cortex (PCC), 

and right parahippocampus (Table 2.2; Figure 2.1). Similarly, patients with NOH had significant 

reductions in cortical activity relative to rest in the (PCC), right anterior CC and bilateral insula 

(Table 2.2; Figure 2.1). Figure 5.2 provides a 3D render to better visualize insular deactivation in 

both controls and patients during the parasympathetically mediated maneuver, deep breathing 

(Figure 2.2). Furthermore, there was evidence of deactivation within the bilateral thalamus; 

however, these regions did not reach significance. A subtraction analysis [controls>patients; 1, -

1] [patients>controls, 1, -1] revealed no significant differences between controls and patients in 

response to deep breathing.  

Adrenergic Index: In contrast to cardiovagal function, the Valsalva maneuver revealed 

significant differences between healthy controls and patients. A subtraction analysis 

[controls>patients, 1, -1] revealed that controls had significantly greater activation during VM, 

relative to rest, in the bilateral thalamus, left PCC, right ACC and right hippocampus. 

Furthermore, during phase IV of the VM, the right hippocampus remained significantly more 

activated in healthy controls relative to rest compared to NOH patients (Table 2.3; Figure 2.3). 

Patients showed no significant activation during VM or Phase IV when the analysis was reversed 

[patients>controls, 1, -1]. 
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Table 2.1. Anthropometric data and autonomic testing results  

Anthropometric Control (n=15) 

Mean ± SD 

Patient (n=15) 

Mean ± SD 

p-value 

Age (years) 61±14 67±6 =0.2 

Range (years) 48-79 59-77  

Sex M: F 7:8 9:6  

BMI 26.3±3.4 25.5±5.1 =0.6 

    

Autonomic Testing: 

QSART    

Forearm 1.31±0.72 0.81±0.69 0.07 

Proximal Leg 1.23±0.93 0.47±0.47 0.009 

Distal Leg 1.23±0.86 0.44±0.40 0.004 

Foot 0.91±0.68 0.65±0.50 0.24 

    

Lab Deep Breathing (bpm) 15.2±8.3 3.7±2.0 <0.001 

MRI Deep Breathing (bpm) 15.3±9.6 5.7±2.1 =0.002 

    

Lab Valsalva Maneuver 1.9±0.4 1.21±0.17 <0.001 

MRI Valsalva Maneuver 2.1±0.47 1.22±0.11 <0.001 

    

Head-up Tilt    

Resting Heart Rate (bpm) 62±9.7 70.5±11.3 0.03 

∆Heart Rate 19.4±8.6 8.9±6.7 0.002 

Resting SBP (mmHg) 117.1±14.9 146.3±25.2 0.001 

∆SBP (mmHg) -18.1±5.9 -79.7±25 <0.001 

∆HR/∆SBP ratio during 

HUT 

1.1±0.5 0.15±0.2 <0.001 

CASS    

Sudomotor Index 0.2±0.7 0.87±1.1 =0.06 

Cardiovagal Index 0.1±0.4 1.7±1.0 <0.001 

Adrenergic Index 0.0±0.0 4.0±0.0 <0.001 

Total 0.3±1.0 6.5±1.8 <0.001 

Abbreviations: BMI; body mass index; QSART, quantitative sudomotor axon reflex test; 

SBP, systolic blood pressure; ∆, change; MRI, magnetic resonance imaging; HR, heart rate; 

∆HR, heart rate change; SD, standard deviation; CASS, Composite autonomic scoring scale 
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Table 2.2. Brain regions of deactivation in response to deep breathing in healthy controls and 

patients with NOH  

Control Group Deep breathing Deactivation 

Region Side Coordinates Voxel # T-score p-value   
x y z 

   

Thalamus L -18 -22 8 165 8.34 p<0.05  

Thalamus R 15 -19 8 149 7.19 p<0.05  

PCC L -3 -37 38 681 7.31 p<0.05  

Parahippocampus R 30 -25 -19 59 6.72 p<0.05 

Insula L -30 23 -4 218 6.39 p<0.05  

Insula R 39 -19 2 195 6.29 p<0.05 

        

Patient Group        

PCC  0 -37 35 365 8.5 p<0.05 

ACC R 6 35 26 173 6.89 p<0.05 

Insula L -42 -16 2 50 6.91 p=0.007* 

Insula R 39 -19 5 55 6.81 p<0.05 

*p-values uncorrected. Abbreviations: NOH, Neurogenic Orthostatic Hypotension; PCC, 

posterior cingulate cortex; ACC anterior cingulate cortex; L, left; R, right. 

 

 

Table 2.3 Brain regions of activation in response to Valsalva maneuver [controls-patients]. 

Valsalva Activation Control - Patient 

Region Side Coordinates Voxel # T-score p-value   
x y z 

   

ACC R 15 50 14 57 4.29 p<0.009* 

Hippocampus R 42 -16 -16 11 8.03 p<0.05 

PCC L -6 -46 26 19 7.6 p<0.05 

Thalamus L -15 -10 11 46 8.45 p<0.05 

Thalamus R 15 -10 11 45 7.41 p<0.05 

        

Valsalva Phase IV Activation Control - Patient 

Hippocampus R 24 -19 -16 48 5.78 p<0.05 

*p-values uncorrected. Abbreviations: ACC, anterior cingulate cortex; PCC, posterior 

cingulate cortex; R, right; L, left 
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Figure 2.1 Cortical deactivation during deep breathing. 

Cortical deactivation patterns relative to rest in healthy controls (n=15) and patients with NOH 

(n=15) during Deep breathing. Abbreviation: PCC, posterior cingulate cortex; BOLD, blood-

oxygen-level-dependent. 
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Figure 2.2 3D visualization of insular deactivation 

Insular deactivation in healthy controls (n=15) and NOH patients (n=15) during deep 

breathing. 
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Figure 2.3 Cortical and subcortical activation during Valsalva maneuver 

Controls had significantly more brain activation relative to rest during the Valsalva maneuver and 

during Phase IV following subtraction analysis [controls-patients]. Abbreviations: PCC, posterior 

cingulate cortex; BOLD, blood oxygen level dependent. 
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2.4 Discussion 

Neurogenic orthostatic hypotension (NOH) is a cardinal feature of autonomic failure that results 

from dysfunction of the reflexive regulation mediated by the sympathetic nervous system. As a 

result, patients experience a considerable blood pressure reduction in the upright position. 

Furthermore, an abundance of literature has highlighted specific autonomic brain regions in what 

is commonly referred to as the central autonomic network (CAN). Our results reveal that patients 

with NOH demonstrate similar cortical activation patterns in response to deep breathing - a test 

of cardiovagal functioning. However, in response to Valsalva - an adrenergic indicator in its later 

phase – patients with NOH are more profoundly affected with considerably less cortical 

activation relative to healthy controls. These data further support dysfunction of the sympathetic 

nervous system in the pathophysiology of NOH. However, they also add to the current 

understanding by revealing additional impairment of the central autonomic network. The 

relationship between NOH and changes in cortical autonomic regions during an adrenergic 

maneuver such as the Valsalva may be due to impairment of cortical autonomic regions involved 

in sympathetic/ baroreflex mediated pathways and reduced autonomic afferent signaling. 

2.4.1 Impaired sympathetic/baroreflex mediated pathways 

In autonomic failure, regardless of central or peripheral autonomic lesions, both clinical 

populations demonstrate loss of baroreflex restraint/baroreflex buffering. In a study of primary 

autonomic dysfunction, patients demonstrated significant baroreflex-adrenergic dysfunction 

relative to healthy controls28. Our results go on to further suggest that cortical autonomic regions 

associated with sympathetic and baroreflex activation may also be significantly affected in NOH 

patients. Our results reveal that healthy controls have significantly more activation in the 

thalamus, cingulate (bilateral PCC and right ACC) and hippocampus in response to VM relative 

to patients. Functional imaging research has highlighted similar cortical and subcortical regions 

to be involved in sympathetic and baroreflex mediated responses. For example, increased 

activation of the hippocampus29 and thalamus16 have been demonstrated in response to Valsalva 

in healthy individuals. Furthermore, right anterior cingulate activation has been well established 

in the context of sympathetic activation, stress and tasks that facilitate a tachycardic 

response12,30,31. In the context of clinical populations, Critchley et al., tested patients with focal 
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damage involving the ACC and revealed that each patient had abnormal autonomic 

cardiovascular responses with blunted autonomic arousal31. In the study by Critchley et al., the 

level of cortical activity and morphology in the cingulate cortices also appeared to be affected in 

patients with pure autonomic failure32. Moreover, in the current study, during the blood pressure 

overshoot of phase IV of the Valsalva (an adrenergic phase of the maneuver), the hippocampus 

remained significantly more activated in healthy controls relative to NOH patients. Interestingly, 

in another study, regional cerebral blood flow as measured by MRI arterial spin labelling also 

highlighted a significant role of the hippocampus during phase IV. The results revealed that 

regional cerebral perfusion of the hippocampus was significantly correlated with baroreflex 

sensitivity in that impaired baroreflex sensitivity was related to brain hypoperfusion33. Overall, 

the data in the current study support current literature highlighting a role of the cingulate, 

thalamus and hippocampus in autonomic regulation, and go on to further suggest impairment of 

these regions in autonomic failure.   

2.4.2 Altered autonomic afferent signals 

Reduced functional cortical activation in these patients may be evidence of reduced autonomic 

afferent information to structures involved in autonomic control. Representation of afferent 

information within the central autonomic network has been established in both animal and 

human research. In animals, the use of axonal radiotracers such as horseradish peroxidase has 

revealed direct and extensive brainstem-cortical and cortical-cortical projections between 

structures intricately related to autonomic regulation34–37. Furthermore, in humans, 

somatosensory stimulation of forearm muscle afferents revealed afferent representation within 

the anterior and posterior cingulate cortices, and bilateral posterior insula12. In the current study, 

altered sympathetic afferent information in patients with peripheral autonomic lesions may result 

in reduced central representation of those signals. Though the suggestion of reduced afferent 

inputs within the central autonomic network is speculation, as this was not measured, the 

possibility is strengthened by a lack of significant thalamic activation during Valsalva and deep 

breathing. As a primary relay center in the brain, impaired activation of the thalamus may be 

evidence of reduced afferent input in autonomic dysfunction, which in turn could further disrupt 

thalamocortical projections to other cortical autonomic effector sites. The possibility of altered 
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autonomic afferent signaling has also been posited in other studies involving individuals with 

pure autonomic failure (PAF); a clinical population with selective peripheral denervation (i.e. 

post-ganglionic) of the autonomic nervous system. Analysis of voxel-based morphology in PAF 

patients identified regional reductions in grey matter volume in autonomic cortices relative to 

controls32. This potential mechanism may be supported because despite the considerable level of 

morbidity, these patients in general still have normal life expectancies. Therefore, as a direct 

result of long-term peripheral autonomic denervation, patients with peripheral autonomic 

denervation may experience cortical reorganization secondary to prolonged deafferentation, 

similar to that previously reported38. 

Overall, in the current study there is evidence to suggest that even in peripheral autonomic 

disorders, there is also impairment of higher central autonomic networks specifically related to 

sympathetic regulation. Conversely parasympathetic regulation did not produce any specific 

differences in the controls versus the NOH group with respect to the functioning of the CAN. In 

itself these data would argue that this is an important pathophysiological finding in patients with 

NOH. Issues such as compensation or de-compensation within the very complex CAN would be 

one important reason for our differential findings. For example, it may be that compensation 

from a presumed normal CAN with respect to parasympathetic innervation to cardiovascular 

structures is less profound than that of sympathetic function. In these patients the importance of 

adrenergic function to attempt to maintain postural normotension is an important factor 

especially from a clinical perspective as orthostatic blood pressure reduction has severe clinical 

consequences (i.e. syncope). Finally, these data are significant as these patients are an important 

clinical group with severe neurological impairment in the ANS. Such studies will be important to 

inform this clinical situation potentially from both a prognostic and diagnostic standpoint. 

Ultimately these data provide important insight into our understanding of the pathophysiology of 

NOH in peripheral autonomic disorders. 
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CHAPTER 3 

3 Cerebellar impairment during an orthostatic challenge in patients with neurogenic 

orthostatic hypotension2  

3.1 Introduction 

Neurogenic Orthostatic Hypotension (NOH) is a cardinal feature of autonomic 

dysfunction. NOH is clinically defined as a sustained reduction in systolic blood pressure (SBP) 

≥30 mmHg or diastolic blood pressure of ≥15 mmHg within 3 minutes of standing or head-up tilt 

performed at 60° without an appropriate compensatory postural tachycardia1. NOH is unique in 

that the orthostatic component relates to an excessive BP drop associated with an upright or 

standing position and the neurogenic component highlights a failure of the autonomic nervous 

system to reflexively increase sympathetic outflow to counteract the BP drop. Regulation of 

arterial BP has been well established. In brief, blood pressure is mediated through an intricate 

arterial baroreflex-mediated circuit initiated through baroreceptor stretch receptors primarily 

located in the carotid sinus and aortic arch. During a state of hypotension, reduced afferent 

signaling to the nucleus tractus solitarius in the brainstem facilitates a cascade of inhibitory and 

excitatory signals, which ultimately increase sympathetic vasoconstrictor tone and tachycardia to 

help maintain blood pressure 2. In addition to feedback mechanisms, feedforward or “central 

command” mechanisms also contribute to long- and short-term regulation of the cardiovascular 

system3. Specifically, the central autonomic network (CAN) includes a network of cortical, 

subcortical and brainstem regions that have been implicated in neurovascular control. Regions 

such as the cingulate cortices, insula, hippocampus, cerebellum and medial prefrontal have all 

demonstrated significant contributions to the cardiovascular changes that occur in response to 

various stressors4,5.  

 

 

 

2 A version of this chapter has been published. Used with permission from Elsevier, Inc. 

Baker J, Paturel J and Kimpinski K. (2019). Cerebellar impairment during an orthostatic challenge in patients with 

neurogenic orthostatic hypotension. Clin Neurophysiol. 130(1):189-195 
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Additionally, in clinical models such as stroke and lesion studies, damage to these areas results 

in autonomic dysfunction6–8. Finally, a number of cortical and subcortical regions within the 

CAN have specifically been implicated in baroreflex functioning. For example, clusters of 

baroreceptor cells have been identified in the insula of rats9 and monkeys10, and posterior insular 

lesions result in altered baroreceptor gain11. In humans, CAN regions such as the insula, 

cingulate cortices, thalamus and cerebellum have also been evident during an orthostatic 

challenge elicited through lower-body negative pressure12. Therefore, the purpose of the current 

study was to compare activation patterns within the CAN in patients with NOH versus healthy 

age-matched controls during an orthostatic challenge.  

3.2 Methods 

3.2.1 Patient and control groups 

Fifteen healthy, age-matched controls (61±14 years; females: 8) and 15 patients diagnosed with 

Neurogenic Orthostatic Hypotension (NOH) (67±6 years; females: 6) (p=0.12) completed the 

following study. NOH was defined as a reduction in SBP ≥30 mmHg within 3 minutes of head-

up tilt (HUT) without an appropriate compensatory postural tachycardia as determined by the 

∆HR/∆SBP ratio13. As an additional assessment of autonomic dysfunction, all patients also had 

absent adrenergic phases (late phase II and phase IV) in response to the Valsalva maneuver. Prior 

to testing, all diagnoses were clinically confirmed by a Neurologist with specialty training in 

autonomic dysfunction (KK). Patients with central autonomic neurodegenerative disorders were 

not included in the present study to eliminate any potentially confounding variables associated 

with such central pathologies. Therefore, the NOH cohort was comprised of patients with 

evidence of peripheral autonomic denervation only (pure autonomic failure, n=3; Parkinson’s 

Disease + NOH, n=7; idiopathic NOH, n=5). In the current study, patients were categorized as 

idiopathic NOH if there was considerable orthostatic hypotension, along with gastrointestinal 

issues or other questionable phenomenon such as olfactory impairment, while not meeting 

criteria for other alpha-synucleinopathies. As such, the latter diagnosis over time may be clearer 

as the patient can develop a more specific diagnosis. In contrast, those diagnosed with PAF have 

maintained a purely peripheral autonomic failure without any evidence of other pathology for an 

extended period of time. Quantitative sudomotor axon reflex testing was performed on all 
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patients to provide clinical evidence of peripheral denervation. Patients were excluded if there 

was evidence of any peripheral nerve injury unrelated to their diagnosis of autonomic 

dysfunction including diabetic neuropathies in any form. Healthy participants were examined to 

confirm the absence of any neurological conditions including any autonomic dysfunction. 

Healthy participants were also excluded if they fell under any one of the following categories: i) 

pregnant or lactating females, ii) clinically significant coronary artery disease, iii) concomitant 

therapy with anticholinergic, alpha- and beta-adrenergic antagonists or other medications which 

could interfere with autonomic functioning, and iv) failure of other organ systems or systemic 

illness that could affect autonomic function or participants’ ability to cooperate. All laboratory 

data were collected in the Autonomic Disorders Laboratory at University Hospital, London, 

Ontario. All functional imaging data were collected at Robart’s Research Institute Centre for 

Functional and Metabolic Imaging at The University of Western Ontario. Ethical approval was 

obtained from the Health Science Research Ethics Board at Western University, and informed 

consent was obtained from all participants prior to any and all testing. 

3.2.2 Autonomic testing 

All participants underwent a battery of standardized and validated tests of autonomic function, 

namely the autonomic reflex screen (ARS)14,15. Quantitative sudomotor axon reflex test 

(QSART): QSART provided an assessment of post-ganglionic sympathetic function from four 

standard sites (forearm, proximal leg, distal leg and foot). Beat-to-beat blood pressure and heart 

rate responses to Valsalva and head-up tilt provided an assessment of adrenergic function. In 

addition, all participants underwent Lower-body negative pressure (LBNP) as an additional 

orthostatic challenge. Following a minimum baseline period of 15 minutes in the supine position, 

LBNP was conducted at a pressure of -35 mmHg for 5 minutes, followed by a 5-minute recovery 

period. All healthy participants completed 5-minutes of LBNP at -35 mmHg. In contrast, due to 

the nature of the disease and the marked blood pressure drops in the patient group, in some cases 

the negative pressure needed to be reduced to ensure blood pressure did not drop below a certain 

threshold. On average, patients with NOH completed 5-minutes of LBNP at a negative pressure 

of 27 mmHg. All patient started at -35mmHg, however if SBP dropped <65 mmHg, negative 

pressure was reduced to ensure BP would plateau and not continue to drop. In the lab, beat-to-
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beat blood pressure (BP) and heart rate (HR) responses during all tests were continuously 

measured and recorded using a BMEYE Nexfin device (Amsterdam, The Netherlands) and an 

electrocardiography (ECG) device (Model 3000 Cardiac Trigger Monitor, IVY Biomedical 

Systems, Inc., Branford, CT) with ECG electrodes (Ambu® Blue Sensor SP, Glen Burnie, MD), 

respectively. All recordings were made using WR TestWorksTM software (WR Medical 

Electronics Co., Stillwater, MN). Participants repeated the LBNP and VM protocol during a 

functional MRI.  

3.2.3 Neuroimaging data acquisition 

All imaging data were collected using a whole body 3T imaging system with a 32-channel head 

coil (Magnetom Primsa, Siemens Medical Solutions, Erlangen, Germany). A 3D MPRAGE 

sequence was used to acquire a high-resolution T1-weighted structural at the beginning of the 

scanning session (sagittal, matrix 256x240 mm, voxel resolution 1.0x1.0x1.0 mm, 1 mm slice 

thickness, no gap, flip angle 9 degree, TE: 2.98 ms, TI: 900 ms, TR: 2300 ms). Blood oxygen 

level-dependent (BOLD) signals were acquired using a T2- weighted gradient echo-echo planar 

imaging pulse sequence with the following parameters: TE: 30ms; FOV: 240x240 mm; flip 

angle: 40 degrees; multiband acceleration factor: 4. Forty-eight interleaved axial slices (3.0x3.0 

mm in-plane voxel resolution, TR: 1000 ms) were acquired in each volume. Participant 

completed one round of LBNP and 3 Valsalva maneuvers (VM) during a functional scan of their 

brain. LBNP: Following a 60 second baseline, LBNP was initiated for 5-minutes following by a 

5-minute period with LBNP off (660 volumes). Valsalva maneuver: Following a 60-second 

baseline, participants completed 3 VM’s (15 seconds each), with 120 seconds of rest in between 

each trial (465 volumes). The first 2 volumes of each test were discarded from analysis to allow 

for an equilibrated MRI signal. To minimize head movement, each participant’s head was placed 

in a cradle packed with foam padding. In addition, all participants practiced stabilizing 

themselves on the foot plates within the lower-body negative pressure box, to minimize 

movement when negative pressure was manipulated. Finally, all participants practiced 

performing the VM while being supervised to ensure minimal head movement during the 

maneuver. Beat-to-beat heart rate was recorded from a continuous signal derived from an MRI-

compatible pulse oximeter (Nonin Medical, 8600FO MRI, Plymouth, MN) attached to the index 
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finger of each participant’s left hand when possible. In the presence of a significant tremor (i.e. 

in PD+NOH patients), pulse oximetry was obtained from the hand with less potential for 

movement. All hemodynamic recordings were collected using WR TestWorks™ software (WR 

Medical Electronics Co., Stillwater, MN). 

3.2.4 Neuroimaging data analysis 

Raw fMRI data were analyzed using SPM12 (Wellcome Department of Imaging Neuroscience, 

London, UK). All functional images were realigned using a rigid body transformation to correct 

for head motion using the mean functional image. All images were co-registered with the T1-

weighted scan, normalized to Montreal Neurological Institute (MNI) space and smoothed with a 

Gaussian kernel (FWHM=6 mm). A high pass filter with 128-second cut-off was applied to 

reduce low frequency noise.  

 

Two levels of analysis were performed. In the first level of analysis, individual design matrices 

of each protocol (LBNP and VM) were constructed modelled by a box-car and combined with a 

canonical hemodynamic response function. A statistical parametric map was created on a voxel-

by-voxel basis using the General Linear Model 16. The LBNP protocol was broken down into 

periods of rest, LBNP and recovery. Rest periods included the first minute prior to LBNP and the 

last minute of the protocol. Brain activation patterns during LBNP were assessed during the final 

60 seconds, when sympathetic activation should be the greatest. Finally, the first 30-seconds 

following LBNP were analyzed as a recovery phase. Similarly, the VM protocol was assessed as 

periods of rest and VM. All contrasts (VM, LBNP and LBNP-recovery) were compared against 

their respective rest periods. In a second-level analysis, each individual’s contrast for each 

protocol was entered into a 2-sample independent t-test to compare differences between patients 

and controls. Comparisons of the BOLD responses were corrected for multiple comparisons 

(family-wise error (FWE) <0.05). In some cases, a more lenient threshold of p<0.001, 

uncorrected was used with a cluster threshold of 10 voxels. 

3.2.5 Regions-of-Interest analysis 

Regions of interest (ROI) were determined based on previous work highlighting regions of the 

central autonomic network. These a priori ROI included the bilateral insula, bilateral anterior and 
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posterior cingulate, bilateral hippocampus, bilateral thalamus and bilateral cerebellum. All ROI 

masks were created using WFU_Pick Atlas toolbox version 1.217,18. 

3.2.6 Statistical analysis 

Physiological data are presented as mean ± standard deviation. Autonomic parameters between 

patients and age-matched controls were compared using an independent t-test. All tests were 2-

tailed with a p-value <0.05 to denote significance. All statistical analyses were performed using 

SPSS statistical software, Version 22.0. Manufactured by International Business Management 

(IBM) Corporation (SPSS Inc. Chicago, IL).  

3.3 Results 

3.3.1 QSART and hemodynamic findings 

Compared to healthy controls, patients had significantly lower average sweat volumes at the 

proximal (1.23±0.93 µL vs. 0.47±0.47 µL, respectively) and distal leg (1.23±0.86 µL vs. 

0.44±0.40 µL, respectively) (p<0.01), and a trend toward lower sweat volumes at the forearm 

(1.31±0.72 µL vs. 0.81±0.69 µL, respectively) (p=0.07). Sweat volumes at the foot were not 

significantly different (0.91±0.68 µL vs. 0.65±0.50 µL, respectively) (p=0.24). During both HUT 

and LBNP in the lab session, patients with NOH had significantly larger blood pressure drops 

with significantly smaller compensatory tachycardias versus healthy controls (Table 3.1) 

(p<0.01). LBNP during the functional imaging session revealed similar significantly different 

HR responses. Hemodynamic changes in response to the LBNP between LAB and MRI sessions 

revealed no significant differences (Table 3.1).  

3.3.2 Functional BOLD responses 

During LBNP, healthy controls showed significant activation relative to rest in the bilateral 

insula (Figure 3.1), bilateral thalamus, anterior cingulate cortex, and bilateral cerebellum (Table 

3.2) (p<0.05). Similarly, patients with NOH had significant activation in the bilateral insula 

(Figure 3.1) and left thalamus (Table 3.2) (p<0.05). During LBNP, controls had significantly 

greater activation in the bilateral cerebellum compared to patients (Table 3.2; Figure 3.2) 

(p<0.05). To investigate the role of the cerebellum in a different test of baroreflex regulation, 
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both groups completed a series of VM. Similar to LBNP, controls also had significantly greater 

activation in the bilateral cerebellum in response to Valsalva maneuver (Figure 3.2) (p<0.05).  

Finally, during the recovery phase of LBNP, both controls and patients had significant activation 

in the bilateral insula and right cerebellum (Table 3.3; Figure 3.3) (p<0.05). Patients also had 

significant activation in the right anterior and midline posterior cingulate cortices (Table 3.3). No 

significant differences were found between controls and patients during the LBNP-recovery 

phase.  

 

Table 3.1 Laboratory and MRI autonomic testing. 

Orthostatic Testing: Control (n=15) 

Mean ± SD 

Patient (n=15) 

Mean ± SD 

p-value 

LAB Head-up Tilt    

Resting Heart Rate (bpm) 61.6±9.7 70.5±11.3 0.03 

∆Heart Rate 20.2±7.9 8.9±6.7 0.002 

Resting SBP (mmHg) 117.1±14.9 146.3±25.2 0.001 

∆SBP (mmHg) -21.0±8.2 -79.7±25 <0.001 

∆HR/∆SBP ratio during 

HUT 

1.1±0.5 0.14±0.2 <0.001 

    

LAB LBNP    

Resting Heart Rate (bpm) 65.9±8.8 73.6±9.1 =0.1 

∆Heart Rate 19.3±8.5 7.0±4.3 <0.001 

Resting SBP (mmHg) 105.3±11.7 148.4±27.8 =0.003 

∆SBP (mmHg) -23±6 -57.7±22.6 <0.001 

∆HR/∆SBP ratio during 

HUT 

0.87±0.4 0.14±0.14 <0.001 

    

MRI LBNP    

Resting Heart Rate (bpm) 69.9±11.6 74.8±8.4 =0.228 

∆Heart Rate 17.6±8.9 7.1±3.2 <0.001 

Abbreviations: SBP, systolic blood pressure; LBNP, lower-body negative pressure; MRI, 

magnetic resonance imaging; ∆, change; QSART, quantitative sudomotor axon reflex test; SD, 

standard deviation 
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Table 3.2 Brain regions activated during LBNP in healthy controls and NOH patients. 

Controls had significantly greater activation in the cerebellum relative to patients. 

Controls LBNP 

Region Side Voxel # T-score p-value 

     

Thalamus L 85 11.55 P<0.05 

 R 126 8.74 P<0.05 

Insula L 163 9.36 P<0.05 

 R 141 5.81 P<0.05 

ACC R 153 6.27 P<0.05 

Cerebellum Midline  

235 

7.33 P<0.05 

 R 6.78 P<0.05 

 L 6.67 P<0.05 

Patient LBNP 

Insula L 81 6.83 P<0.05 

 R 73 5.51 P<0.05 

Thalamus L 64 7.20 P<0.05 

 

Controls activation>Patients activation during LBNP 

Cerebellum L 65 4.58 P<0.05 

 R 65 4.53 P<0.05 

 

Controls activation>Patients activation during VM 

Cerebellum L 49 8.37 P<0.05 

Cerebellum R 186 8.28 P<0.05 

Cerebellum L 80 8.74 P<0.05 

Abbreviations: LBNP, Lower body negative pressure; NOH, Neurogenic Orthostatic 

Hypotension; VM, Valsalva Maneuver; L, Left; R, Right. 
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Table 3.3 Brain regions of activation post-LBNP during recovery phase in healthy controls 

and NOH patients. No significant differences between controls and patients were found. 

Controls – LBNP recovery 

Region Side Voxel # T-score p-value 

     

Insula R 82 6.48 P<0.05 

 L 78 6.22 P<0.05 

Cerebellum R 131 6.66 P<0.05 

     

Patients – LBNP recovery 

Insula L 125 6.40 P<0.05 

 R 101 5.81 P<0.05 

ACC R 228 6.73 P<0.05 

PCC Midline 63 5.40 P<0.05 

Cerebellum R 193 6.80 P<0.05 

Abbreviations: LBNP, Lower body negative pressure; NOH, Neurogenic Orthostatic 

Hypotension; L, Left; R, Right. 

 

 

 

 

 

 

 



58 

 

 

 

 

Figure 3.1 Cortical activation patterns during LBNP. 

No significant differences between controls and patients during LBNP. Both groups had 

similar activation in the bilateral insula. Abbreviations: LBNP, Lower body negative pressure; BOLD, 

blood oxygen level dependent. 
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Figure 3.2 Comparison of cerebellar changes during VM and LBNP. 

Controls had greater activation in the cerebellum during LBNP and VM relative to patients. 

Abbreviations: LBNP, Lower body negative pressure; BOLD, blood oxygen level dependent; VM, Valsalva 

maneuver. 
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Figure 3.3 Brain activation during post-LBNP recovery phase. 

During the post-LBNP recovery no significant differences were found between healthy 

controls and patients. Both controls and patients had activation in the bilateral insula and 

cerebellum. Abbreviations: LBNP, Lower body negative pressure; BOLD, blood oxygen level dependent. 
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3.4 Discussion 

Neurogenic orthostatic hypotension (NOH) is a cardinal feature of autonomic failure. During an 

orthostatic challenge such as head-up tilt or lower-body negative pressure (LBNP), patients 

experience a significant and persistent blood pressure drop without evidence of an appropriate 

compensatory sympathetic response to counter the blood pressure fall. During an orthostatic 

stressor such as LBNP, regions within the central autonomic network (CAN) such as the insula 

and cerebellum have been largely implicated for their involvement in mediating cardiovascular 

responses. Our results reveal three important findings in the context of NOH and CAN 

activation: 1) Central activation patterns in healthy older controls are consistent with previous 

literature highlighting a role of the insula and cerebellum during an orthostatic challenge such as 

LBNP. 2) Interestingly, patients with autonomic dysfunction revealed similar insular activation 

patterns; however, there was significantly less cerebellar activation during LBNP. 3) To 

investigate the role of the cerebellum in a different test of baroreflex regulation, both groups 

completed a series of Valsalva maneuvers. Similar to LBNP, patients had significantly less 

cerebellar activation during VM compared to healthy controls. 

 

The role of the cerebellum in movement coordination and balance/vestibular regulation has been 

well established. However, in the context of the central autonomic network, the cerebellum has 

arguably received less attention than cortical sites. In human and animal studies alike, a growing 

body of literature has emerged highlighting a number of autonomic functions that appear to 

involve pathways through the cerebellum19, including postural control of blood pressure and 

heart rate20. In the present study, the cerebellum along with the insular cortex and thalamus were 

significantly activated in healthy individuals during a LBNP. These finding corroborate much of 

the previous work that has highlighted these same areas during both an orthostatic challenge12,21 

and during other mental and physical stressors that facilitate blood pressure changes. For 

example, in an exercise of mental and physical stress (hand-grip), increased regional cerebral 

blood flow (rCBF) in the cerebellum, right anterior cingulate and right insula covaried with mean 

arterial pressure. Similarly, rCBF in the pons, cerebellum and right insula covaried with heart 

rate22. Interestingly, cerebellar activation was not evident in patients with NOH during the same 

orthostatic challenge. The cerebellum and vestibular system are important to maintaining a stable 
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blood pressure and respiration during postural changes. The cerebellum projects to several 

brainstem structures, including the nucleus tractus solitarius (NTS), parabrachial nucleus 23 and 

rostral ventrolateral medulla (RVLM)24, in addition to, the rostral portion of the inferior and 

medial vestibular nuclei25,26. Together, these brainstem sites integrate vestibular information and 

modulate sympathetic reflexes, which in turn regulate postural control of blood pressure.  

The properties of the vestibulo-sympathetic reflex have been studied in several animal models. 

For example, electrical and chemical stimulation of cerebellar regions that process vestibular 

signals, including the fastigial nucleus27,28 and posterior cerebellar cortex29,30 elicit marked 

cardiovascular responses via direct or indirect connections with the aforementioned brainstem 

structures. Furthermore, during a postural change following removal of vestibular inputs, animals 

with cerebellar lesions experienced more severe orthostatic hypotension than cerebellum-intact 

animals31. Despite the severe blood pressure drops that patients with NOH experience, 

paradoxically, approximately 50% of patients also have supine hypertension32. The fastigial 

nuclei (FN) and cerebellar areas, play an important role in limiting blood pressure extremes such 

as that seen in hypo- and hypertension, and damage to these areas results in hypotension 33. 

Furthermore, in evaluating the FN neural activity during blood pressure alterations via the 

modified oxford method, FN neural activity increases during hypotension34. These findings 

suggest that the FN may play an important compensatory role during large blood pressure 

changes by sympatho-excitatory and inhibitory processes. Given the propensity of the extreme 

blood pressures seen in NOH patients, the lack of significant cerebellar activation and the 

evidence supporting a role of cerebellar structures in attenuating such blood pressure extremes, it 

remains plausible that sympatho-excitatory reflexes facilitated by the cerebellum during a 

postural change may be absent or disrupted in NOH. Together, these data may provide some 

insight and evidence for this region and its involvement in the pathophysiology of NOH. 

Finally, to investigate the role of the cerebellum in a different test of blood pressure regulation, 

both groups completed a series of Valsalva maneuvers. Similar to an orthostatic challenge, 

during the VM there is a precipitous drop in blood pressure that would normally be arrested via 

reflexive sympathetic vasoconstriction and tachycardia. In patients with NOH, the 

adrenergically-mediated phases of the maneuver are absent. As a result, patients demonstrate a 
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blood pressure profile that reveals a similar precipitous and persistent drop in blood pressure to 

that of Head-up Tilt, until the maneuver is completed. Similar to LBNP, patients had 

significantly less cerebellar activation during VM as compared to healthy controls. Overall, these 

data further support a role of the cerebellum in mediated important sympatho-excitatory 

processes during significant blood pressure perturbations. 

3.4.1 Study limitations 

Our results reveal important findings regarding the role of the cerebellum in the pathophysiology 

of NOH. Despite these unique findings, the current study contains the following limitations: 1) 

Due to the nature of blood pressure dysfunction seen in this clinical group, in some cases the 

negative pressure that was used during LBNP was less than that in healthy controls. Despite a 

reduced negative pressure, patients still showed activation within the insula and thalamus, similar 

to that of healthy controls. Furthermore, despite the lower negative pressure in some cases, all 

patients still demonstrated a significant blood pressure drop even at a reduced pressure. 2) Blood 

pressure was not measured during the MRI session. MRI compatible blood pressure monitoring 

typically involves invasive techniques such as insertion of an arterial line. Due to the invasive 

nature of this technique we opted to use heart rate changes as a surrogate indicator of the 

autonomic changes. Heart rate changes in response to LBNP and Valsalva were not significantly 

different between lab and MRI recording sessions. Furthermore, all study participants 

experienced the same negative pressure during the MRI as was performed during the lab. 

Therefore, despite the lack of a direct blood pressure measure in the MRI, we assume the 

cardiovascular and autonomic changes were similar. 3) In previous studies, LBNP is typically 

applied in several repeated bouts ranging from 30-45 seconds. In the current study, we applied a 

single-epoch design to replicate the head-up tilt protocol that has been validated and standardized 

in clinical autonomic disorders. Even though, multiple epochs are typically used, single-epoch 

studies have been previously used with certain protocols that cannot use repeated stimuli, such as 

pain studies 35. Furthermore, single-epoch fMRI has been previously validated against multiple 

epochs of stimulation, with results that yield similar activation patterns36. 4) The sweat responses 

to QSART did not reveal a significant difference between patients and controls at the foot. 

However, these values are still considered reduced relative to normative data, and thus these data 
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support the presence of post-ganglionic sympathetic denervation in the pathophysiology of NOH. 

5) Other more direct measures of cerebral circulation (i.e. transcranial doppler, regional cerebral 

blood flow, etc.) were not implemented in the current study. Certainly, these additional 

measurements would have been helpful to address questions pertaining to changes in brain blood 

flow and perfusion and could be considered in future studies. 

3.5 Conclusion 

The purpose of the current study was to compare activation patterns within the CAN in patients 

with Neurogenic Orthostatic Hypotension versus healthy age-matched controls during an 

orthostatic challenge. Our results reveal that patients with NOH have significantly less activation 

in the cerebellum during an orthostatic challenge compared to healthy controls. Furthermore, 

patients also had significantly less cerebellar activation during VM, which also involves 

baroreflex-mediated increases in sympathetic tone. Therefore, the results suggest that regions of 

the cerebellum that modulate vestibulo-sympathetic reflexes, which are important in blood 

pressure adjustments during postural alterations, as well as baroreflex mediated influences on 

sympathetic activation may be disrupted in patients with NOH. 
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CHAPTER 4 

4 Reduced brainstem functional connectivity in patients with peripheral autonomic 

failure3 

4.1 Introduction 

Neurogenic Orthostatic Hypotension (NOH) is a cardinal feature of autonomic failure. NOH 

is clinically defined as a sustained reduction in blood pressure ≥30 mmHg during an orthostatic 

challenge such as standing from a lying or seated position or during head-up tilt performed at a 

minimum 60° angle from the horizontal without an appropriate compensatory postural 

tachycardia1. NOH occurs due to a failure of the sympathetic reflexes that would normally 

counteract blood pressure perturbations through reflexive tachycardia and vasoconstriction. 

General classifications of NOH are made based on where failure of the sympathetic efferent 

signaling pathway occurs i.e. before or after the autonomic ganglia. For example, in Parkinson’s 

Disease (PD) with autonomic failure, Pure Autonomic Failure (PAF) and diabetic autonomic 

neuropathies, the lesion site is considered to be post-ganglionic. 

Autonomic homeostasis is dependent upon several brainstem nuclei, including the nucleus 

tractus solitarius (NTS) and rostral and caudal portions of the ventrolateral medulla. For 

example, the NTS receives afferent input and through a cascade of excitatory and inhibitory 

signaling makes beat-to-beat adjustments to efferent autonomic outflow. Moreover, various 

autonomic brainstem nuclei have been shown to project to both cortical and subcortical regions 

and have also been shown to receive input from higher cortical structures 2–4. Through 

advancements in neuroimaging, several cortical and subcortical structures including the insula, 

hippocampus, cerebellum, thalamus and cingulate cortices, have been well established as 

components of the central autonomic network (CAN) 5–8.  

 

 

3 A version of this chapter is currently under review for publication.  

Baker J and Kimpinski K (2019). Reduced brainstem functional connectivity in patients with peripheral autonomic 

failure. NeuroImage: Clinical (under second review) 
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Importantly, studies have not only tested different modalities, but have also correlated brain 

activation patterns to hemodynamic responses and direct measures of sympathetic activity. 

Together, these studies have identified structures of the CAN that contribute specifically to 

sympathetic and parasympathetic regulation. 

Based on the aforementioned pre- versus post-ganglionic classification of autonomic failure, it 

could be thought that brainstem nuclei and structures of the CAN would remain functionally 

intact. However, our laboratory recently demonstrated that despite post-ganglionic pathology, 

patients with NOH show evidence of reduced activation in regions of the CAN during autonomic 

maneuvers9,10.  

Despite the brainstem being the main region for central integration of baro- and chemoreceptor 

afferents, brainstem-to-brain connectomes have not been fully investigated. Specifically, the 

evaluation of functional connectivity between the brainstem and regions of the CAN in 

individuals with autonomic failure has yet to be studied. Therefore, the aim was to investigate 

whether functional connectivity from the brainstem to cortical and subcortical structures differs 

in patients with NOH secondary to autonomic failure as compared to their healthy counterparts. 

4.2 Methods 

4.2.1 Patient and control groups 

The current study was comprised of fifteen healthy, age-matched controls (61±14 years; females: 

8) and 15 patients diagnosed with NOH (67±6 years; females: 6; p=0.12). The NOH cohort 

consisted of patients with evidence of peripheral autonomic denervation only (PAF, n=4; PD 

with autonomic failure, n=6; idiopathic NOH, n=5). All patients underwent a standard head-up 

tilt (HUT) test and met the clinical criteria for NOH. On average patients had a resting heart rate 

(HR) and systolic blood pressure (SBP) of 71±11 bpm and 146±25 mmHg, respectively. On 

average, SBP dropped by 80±25 mmHg during HUT with an average HR change of 9±7 bpm. As 

an additional assessment of autonomic dysfunction, all patients demonstrated absent adrenergic 

phases (late phase II and phase IV) in response to the Valsalva maneuver and cardiovagal 

impairment evidenced by a reduced Valsalva ratio (1.2±0.1). Furthermore, to provide clinical 

evidence of post-ganglionic impairment, all patients underwent quantitative sudomotor axon 
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reflex testing (QSART) from four standard sites (forearm, proximal leg, distal leg and foot). 

Sudomotor dysfunction was scored as follows: 1= reduced sweat response at a single site, 

2=absent response at a single site, 3=absent response at 2 or more sites. The composite 

autonomic scoring scale (CASS) was used to quantify the severity and distribution of autonomic 

failure across three domains: sudomotor (0-3), cardiovagal (0-3) and adrenergic (0-4)11. On 

average patients scored a 2/3, 2/3 and 4/4, respectively, resulting in a total CASS of 8/10 

indicative of severe and widespread autonomic dysfunction. 

Patients with neurodegenerative disorders related to a central autonomic pathology (i.e. Multiple 

System Atrophy) were excluded from the present study to eliminate any potentially confounding 

variables associated with such central pathologies (i.e. brain atrophy). Moreover, patients were 

excluded if there was evidence of any peripheral nerve injury unrelated to their diagnosis of 

autonomic dysfunction including diabetic neuropathies in any form. In the current study, Pure 

autonomic failure (PAF) was characterized by orthostatic hypotension along with more 

widespread autonomic failure, including sympathetic and parasympathetic dysfunction. In 

addition, PAF patients showed no clear identifiable underlying cause, no other neurological 

features present and no features to suggest central involvement. PAF patients had maintained a 

purely peripheral autonomic failure without any evidence of other pathology for an extended 

period of time. In contrast, a diagnosis of idiopathic NOH was given if, again, there was 

evidence of orthostatic hypotension, along with gastrointestinal issues or other questionable 

phenomenon such as olfactory impairment, but not meeting criteria for other alpha-

synucleinopathies. A Neurologist (KK) with specialty training in autonomic dysfunction 

clinically confirmed all testing and made the final diagnoses.  

All healthy participants were examined to confirm the absence of any neurological conditions 

including autonomic dysfunction. Additional exclusion criteria including the following 

categories: i) pregnant or lactating females, ii) clinically significant coronary artery disease, iii) 

concomitant therapy with anticholinergic, alpha- and beta-adrenergic antagonists or other 

medications which could interfere with autonomic functioning, and iv) failure of other organ 

systems or systemic illness that could affect autonomic function or participants’ ability to 

cooperate. 
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All laboratory data were collected in the Autonomic Disorders Laboratory at University 

Hospital, London, Ontario. All functional imaging data were collected at Robart’s Research 

Institute Centre for Functional and Metabolic Imaging at The University of Western Ontario. 

Ethical approval was obtained from the Health Science Research Ethics Board at Western 

University, and informed consent was obtained from all participants prior to testing. 

4.2.2 Neuroimaging data acquisition 

All imaging data were collected using a whole body 3T imaging system with a 32-channel head 

coil (Magnetom Primsa, Siemens Medical Solutions, Erlangen, Germany). At the beginning of 

the scanning session, a 3D MPRAGE sequence was used to acquire a high-resolution T1-

weighted structural (sagittal, matrix 256x240 mm, voxel resolution 1.0x1.0x1.0 mm, 1 mm slice 

thickness, no gap, flip angle 9°, TE: 2.98 ms, TI: 900 ms, TR: 2300 ms). Blood oxygen level-

dependent (BOLD) signals were acquired using a T2- weighted gradient echo-echo planar 

imaging pulse sequence with the following parameters: TE: 30 ms; FOV: 240x240 mm; flip 

angle: 40 degrees; multiband acceleration factor: 4. Forty-eight interleaved axial slices (3.0x3.0 

mm in-plane voxel resolution, TR: 1000 ms) were acquired in each volume. To help minimize 

head movement each participant’s head was placed in a cradle packed with foam padding. 

4.2.3 Neuroimaging protocol 

Participants completed 5 minutes of rest followed by three Valsalva maneuvers (VM) during a 

functional scan of their brain. Rest: For all participants, the resting period consisted of 5 minutes 

during which, all participants were instructed to remain still with their eyes closed, but not to fall 

asleep. Valsalva maneuver: The Valsalva session was modeled as a blocked design switching 

between periods of rest and the maneuver. Following a 1-min baseline, participants were 

instructed to take a deep breath in, followed immediately by an exhalation to be maintained at an 

expiratory pressure of 40 mmHg, held for 15-seconds. The maneuver was repeated three times 

separated by a 2-min (120 sec) rest in between trials. The first 10 seconds immediately following 

release of the maneuver was recorded as a recovery period. The remaining 110 seconds were 

recorded as a rest period to allow for hemodynamics to return to baseline prior to performing 

another Valsalva. Together, the Valsalva scanning duration was 465 seconds. All participants 
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were provided real-time visual feedback of their expiratory pressure to ensure the maneuver was 

performed correctly. To further minimize head movement during VM, all participants practiced 

the maneuver prior to scanning while being supervised. In addition, during the scanning session, 

an MRI technician provided feedback if there was excessive movement, in which case the 

maneuvers were repeated. Beat-to-beat heart rate was recorded from a continuous signal derived 

from an MRI-compatible pulse oximeter (Nonin Medical, 8600FO MRI, Plymouth, MN). All 

hemodynamic recordings were collected using WR TestWorks™ software (WR Medical 

Electronics Co., Stillwater, MN). 

4.2.4 Neuroimaging analysis 

All imaging data were analyzed using the Conn functional connectivity toolbox (v18a) available 

through SPM12 (Wellcome Department of Imaging Neuroscience, London, UK) using a 

MATLAB R2016b interface (Mathworks, Natick, MA). Preprocessing steps included 

realignment, unwarping and slice-time correction. All structural and functional images were 

segmented in grey matter, white matter and cerebral spinal fluid, normalized to Montreal 

Neurological Institute (MNI) space and smoothed with a Gaussian kernel (Full-Width Half-

Max=6 mm). In addition to realignment, the ART-based scrubbing method was further used to 

detect outlier volumes with high motion (ART parameters: 2-mm subject motion threshold and a 

global signal threshold set at Z=9). Nuisance variables including: 6 realignment parameters, first 

5 principle components from the white matter and CSF and the outlier volumes from the 

scrubbing procedure were then regressed out of the signal. The data were linearly detrended and 

a band-pass filter of 0.008 to 0.09Hz was applied. A brainstem mask was used as the brainstem 

seed source, and all areas for connectivity were defined on a regions-of-interest (ROI) basis 

using an ROI-to-ROI approach at rest and during Valsalva maneuver. Cortical (91 ROIs) and 

subcortical (15 ROIs) atlases from the Harvard-Oxford Atlas and cerebellum parcellation (26 

ROIs) atlas from AAL atlas were used in the ROI analysis. In the first level analysis, ROI-to-

ROI maps were generated for each individual during the predefined conditions. Individual 

connectivity maps were created using the General Linear Model convolved with a canonical 

hemodynamic response function. In the second-level analysis, a between-subjects contrast 

(controls>patients [1, -1]; patients>controls [-1, 1]) was performed on the basis of a random-
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effects General Linear Model, with a seed-level correction for multiple comparisons (false-

discovery rate: p<0.05). 

4.3 Results 

4.3.1 ROI-to-ROI functional connectivity 

Rest: Compared to patients with NOH, at rest controls had significantly greater brainstem 

connectivity to the anterior cingulate cortex (ACC) (T-value: 4.29; p-FDR<0.001), left anterior 

insula (T-value: 3.31; p-FDR<0.001), left putamen (T-value: 3.31; p-FDR<0.005) and bilateral 

thalamus (TR-value: 3.83; TL-value: 4.25; p-FDR<0.001) (Figure 4.1). The effect sizes for the 

aforementioned brainstem-to-ROI connectivities ranged from small to moderate (Figure 4.1). 

 

Valsalva (VM): During VM, controls also showed significantly more connectivity between the 

brainstem and both the left anterior (cerebellum 4/5) and bilateral posterior cerebellum 

(cerebellar 9 and left cerebellar 6). Other cerebellar regions included brainstem-to-vermis 

(Vermis 4/5, 6, 8, 9 and 10). Other brainstem-to-cortical and subcortical regions included: 

bilateral putamen, posterior cingulate cortex, amygdala and medial prefrontal cortex (Figure 4.2). 

The effect sizes were moderate-to-strong for each brainstem-to-ROI (Table 4.1). Moreover, there 

was a significant negative correlation between the brainstem-cerebellar connectivity and the total 

CASS (Table 4.2). 

 

Valsalva recovery: During the recovery phase of the VM, controls had greater brainstem 

connectivity to the left thalamus (4.17; p-FDR=0.02); PCC (3.32; p-FDR<0.05); right putamen 

(3.28; p-FDR<0.05); right paracingulate gyrus (3.25; p-FDR<0.05) and left posterior cerebellum 

(C9: 3.21; p-FDR<0.05). Similar to VM, the effect sizes for each brainstem-to-ROI was 

moderate-strong (Figure 4.3).  
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Table 4.1 Targets with greater brainstem functional connectivity during VM in healthy 

controls 

Brainstem Target Side T-value P-FDR corrected Effect Size 

Cerebellum Lobule 9 R 5.29 <0.005 0.75 

Cerebellum Lobule 6 L 4.82 <0.005 0.90 

Cerebellum Lobule 9 L 4.53 <0.005 0.74 

Vermis Lobule 4/5  4.31 <0.01 0.76 

Cerebellum Lobule 4/5 L 3.97 <0.01 0.82 

Vermis Lobule 6  3.88 <0.01 0.72 

Vermis Lobule 8  3.86 <0.01 0.74 

Putamen L 3.78 <0.01 0.63 

PCC  3.70 <0.01 0.68 

Putamen R 3.42 <0.01 0.59 

Vermis Lobule 9  3.15 <0.05 0.64 

Vermis Lobule 10  2.95 <0.05 0.47 

Amygdala L 2.91 <0.05 0.60 

MPFC  2.82 <0.05 0.54 

Abbrev. VM, Valsalva maneuver; L/R, left/right; PCC, posterior cingulate cortex 

 

 

Table 4.2. Brainstem-cerebellar connectivity during VM correlates negatively with total 

CASS. 

 C9-R C9-L C6-L C4/5-L V4/5 V6 V8 V9 V10 

Total 

CASS* 

-0.725 -0.674 -0.738 -0.592 -0.626 -0.559 -0.589 -0.529 -0.594 

P-value <0.001 =0.001 <0.001 =0.006 =0.003 =0.01 =0.006 =0.016 =0.006 

* values represent r values 

Abbrev: VM, Valsalva maneuver; CASS, composite autonomic scoring scale; C, Cerebellum; 

V, Vermis;  
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Brainstem 

Target 

Effect Size 

(L) Putamen 0.26 

(L) Thalamus 0.41 

(R) Thalamus 0.34 

ACC 0.36 

(L) Ant. Insula 0.26 

Figure 4.1. Brainstem functional connectivity at rest [controls>patients]. 

At rest, controls had significantly greater brainstem connectivity compared to patients with NOH. 

Strength of connectivity is represented across a colour spectrum with red representing larger T-values 

and stronger connectivity. Abbrev. L/R, left/right; ACC, anterior cingulate cortex; Ant, anterior; Thal, 

Thalamus; ROI, region of interest 
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Figure 4.2. Brainstem functional connectivity during Valsalva maneuver [controls>patients]. 

During Valsalva maneuver, controls had significantly more brainstem connectivity to the amygdala, 

bilateral putamen, PCC, MPFC and cerebellum compared to patients. Strength of connectivity is 

represented across a colour spectrum with red representing larger T-values and stronger connectivity. 

Abbrev. L/R, left/right; PCC, posterior cingulate cortex; ROI, region of interest; MPFC, medial 

prefrontal cortex 
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Brainstem 

Target 

Effect Size 

(R) Putamen 0.58 

(L) Thalamus 0.68 

PCC 0.63 

(R) PaCiG 0.34 

(L) Cerebellum 9 0.57 

Figure 4.3. Brainstem functional connectivity during recovery phase of Valsalva maneuver 

[controls>patients]. 

Controls had significantly more brainstem functional connectivity during the recovery phase of 

Valsalva. Strength of connectivity is represented across a colour spectrum with red representing 

larger T-values and stronger connectivity. Abbrev. L/R, left/right; PaCiG, paracingulate gyrus; 

PCC, posterior cingulate cortex; ROI, region of interest 
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4.4 Discussion 

In the current study we compared functional connectivity measures between patients with 

autonomic failure and age-matched controls at rest and during an autonomic challenge. Using the 

brainstem as a seed source we found the following significant findings: 1) Patients with 

autonomic failure showed significantly less brainstem connectivity to structures of the central 

autonomic network throughout a state of rest and in response to a Valsalva maneuver. 2) 

Brainstem-to-cerebellum connectivity was negatively correlated with the total CASS suggesting 

individuals with more severe and widespread autonomic dysfunction have reduced brainstem-

cerebellar connectivity. 

The cortical and subcortical structures found functionally linked to the brainstem represent well 

recognized findings from neuroimaging and autonomic literature. In the current study, patients 

had significantly less brainstem connectivity to key autonomic structures including the 

cerebellum, thalamus, cingulate cortices, medial prefrontal and insula. These regions have all 

been highly implicated in autonomic regulation both in animals and humans, and in health and 

disease5,12. The thalamus plays a pivotal role as the primary relay site for information and has an 

abundance of anatomical projections to cortical, subcortical and brainstem structures12,13. 

Moreover, both the posterior and anterior cingulate cortices are key contributors to autonomic 

regulation, specifically modulations of heart rate and blood pressure5,14,15. For example, the 

anterior cingulate is commonly activated during maneuvers that elicit an increase in sympathetic 

activity such as the Valsalva maneuver, maximal inspiratory apneas and lower-body negative 

pressure. Furthermore, increased ACC activation has also been coupled with direct recordings of 

sympathetic nerve activity16. This is important, as improper regulation of heart rate, blood 

pressure and efferent sympathetic activity are cardinal features of autonomic failure. Moreover, 

the insula cortex (IC) has been highly investigated in autonomic regulation. Anatomically, the 

insula is reciprocally linked to brainstem autonomic nuclei4,17, which provides an anatomical 

basis for autonomic influence. Functionally, the IC is extremely complicated. The IC has been 

partitioned into anterior/posterior portions as well as lateralized into left and right, each 

contributing separately to autonomic regulation. For example, stimulation of the rostral posterior 

IC in rats induced tachycardia while bradycardia was elicited via caudal stimulation18 . 
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Furthermore, Zhang et al., (1998) demonstrated that damage to the left IC increased cardiac 

baroreceptor gain with no effect on heart rate or blood pressure, while right IC lesions resulted in 

increased baseline heart rate and blood pressure with no effect on gain19. Despite the complicated 

nature of the IC it is nevertheless involved in autonomic regulation. Finally, the current results 

extend beyond functional imaging studies, and coincides with existing functional connectivity 

literature in healthy controls, which also report significant brainstem connectivity with the ACC, 

thalamus, putamen and cerebellum20. 

A second key finding highlighted significantly less functional connectivity between the 

brainstem and the cerebellum/vermis during VM in patients with autonomic failure. The 

cerebellum is a key central structure that is commonly seen in functional imaging studies 

particularly studies involving blood pressure perturbations. Moreover, there is a growing amount 

of evidence to support a key role for the cerebellum in regulating blood pressure and limiting 

blood pressure extremes21,22. Therefore, the cerebellum may play a key role during the VM 

where there are large blood pressure fluctuations, and absent compensatory responses in 

autonomic failure. For example, patients demonstrate large blood pressure reductions during 

early phase II of the maneuver without an appropriate sympathetically mediated late phase II 

response. Similarly, following release of the maneuver, an additional burst of sympathetic 

activation acts to increase blood pressure back to, or above baseline levels – a response that is 

also absent in autonomic failure. Both responses require increased sympathetic activation to alter 

blood pressure and this becomes important as the cerebellum is involved, in part, with 

sympathetic activation through direct projections with brainstem nuclei, including the NTS and 

RVLM23,24. Evidence of reduced brainstem connectivity to the cingulate, insula and cerebellum 

coincide with imaging studies with concurrent recordings of sympathetic nerve activity that have 

correlated these regions to increased sympathetic activity16. 

Despite a patient sample consisting of autonomic failure involving post-ganglionic impairment, 

the current results also suggest impaired functional connectivity between the brainstem and 

autonomic brain structures. Recent advances in network sensitive neuroimaging techniques have 

begun to identify distinct patterns of functional connectivity in various diseases25,26. As a result, 

various hypotheses have emerged to explain the role neuronal networks may play in clinical 
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progression of various diseases. Two disease-mechanism models have been hypothesized, which 

may help explain the current results: 1. The Nodal stress model, and 2. Transneuronal spread. 

The nodal stress model postulates that certain regions, or “nodes” within the brain that are 

subject to heavy network trafficking may be more vulnerable to activity-related “wear and 

tear”25,27. The brainstem is the primary site for afferent input and as such sends and receives 

efferent and afferent information on a continuous basis to ensure proper neurovascular function. 

In addition to afferent feedback, efferent signals from higher cortical and sub-cortical structures 

also contribute to proper autonomic regulation through direct and indirect projections to the 

brainstem13. Together the brainstem is a critical hub for autonomic inputs, and the abundance of 

intra-network information may influence regional neurodegeneration that is activity-dependent. 

In a disease that fails to properly regulate autonomic responses such as blood pressure, various 

afferent and efferent inputs may overload brainstem networks in an attempt to rectify the failed 

responses. However, even if the appropriate efferent signals can be sent, the post-ganglionic 

lesion would interrupt the signal leading to more feedback, ultimately resulting in a viscous cycle 

of chronic elevated activity and possibly an eventual pathological state.  

The mechanism of transneuronal spread suggests that neurodegeneration between cortical 

networks progresses via axonal connections28. Seeley et al., further suggest that disease 

progression starts at a primary network (i.e. the brainstem) and is more likely to extend into 

networks with stronger functional relationships29. This is important for two primary reasons. 

First, the results demonstrate that the cortical regions that showed significant differences 

between patients and controls were structures of the central autonomic network, and would 

therefore have a strong functional and structural relationship with the brainstem. Second, this 

model predicts that networks with shorter functional paths to the epicenter will be more 

vulnerable once the disease is present30. Anatomically, the cerebellum not only has direct 

projections with the brainstem but also demonstrates a relatively short functional pathway, and 

the strength of the brainstem-cerebellum connectivity was negatively correlated with autonomic 

severity and distribution.  
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4.4.1 Study limitations 

Despite the promising contributions that these data may add to our understanding of autonomic 

failure, the current study contains the following limitations. 1) The current study applied a 

brainstem mask that covered the whole brainstem. Certainly, there are a number of brainstem 

nuclei that have different contributions to autonomic control. In the current study, we did not 

focus on whether the brainstem shows increased or decreased activity, simply that there was 

reduced connectivity to key cortical and subcortical sites. The authors believe the next logical 

step will be to assess functional connectivity related to specific brainstem nuclei. 2) The two 

proposed mechanistic models have been primarily investigated in neurodegenerative disorders 

such as Alzheimer’s Disease, PD, Huntington’s disease and Amyotrophic Lateral Sclerosis. Even 

though there are neurodegenerative diseases associated with autonomic failure, this work has yet 

to include these patient groups. Further studies are needed to investigate these models in 

autonomic failure. 3) Blood pressure data was not directly measured during the MRI session as 

this often involves the invasive insertion of an arterial line. Therefore, in the current study the 

heart rate change during the MRI session was compared with the heart rate changes that occurred 

in the laboratory during the Valsalva maneuver. Additionally, the expiratory pressure during the 

maneuver was monitored to ensure compliance. If there was a similar heart rate response, it was 

assumed that the corresponding blood pressure changes in response to the maneuver were 

similar. 4) The current study had a heterogeneous patient sample, including patients diagnosed 

with PD plus autonomic failure. To test whether the current results were related to autonomic 

failure and not PD, a sub-analysis of the patient group was performed. No significant differences 

between our autonomic failure patients with and without PD were found, suggesting the current 

results are related to the presence of autonomic failure and not PD pathology. 

4.5 Conclusion 

In the current study, patients with peripheral autonomic failure had significantly less functional 

connectivity between the brainstem and key central autonomic structures both at rest and during 

an autonomic maneuver. Patients showed reduced coupling between brainstem and regions of the 

central autonomic network, including the cerebellum, insula, thalamus and cingulate cortices. 
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These results may be attributed to two mechanistic models, including nodal stress and 

transneuronal spread, which may contribute, in part, to the pathophysiology of autonomic failure.  
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CHAPTER 5 

5 Evidence of impaired cerebellar connectivity at rest and during autonomic 

maneuvers in patients with autonomic failure4  

5.1 Introduction  

Neurogenic Orthostatic Hypotension (NOH) is a cardinal feature of autonomic failure. NOH 

is defined as a persistent and consistent drop in systolic blood pressure ≥30 mmHg upon 

standing, without an appropriate compensatory postural tachycardia1. Proper regulation of 

autonomic responses is mediated through several brainstem nuclei, including the nucleus tractus 

solitarius (NTS), rostral and caudal ventrolateral medulla (RVLM, CVLM, respectively), 

parabrachial nucleus (PBN), etc., that serve as regulatory sites for autonomic control. These 

brainstem nuclei together are part of an integrated autonomic network involved in mediating the 

beat-to-beat adjustments to heart rate (HR) and blood pressure (BP). For example, during a state 

of hypotension, reduced baroreceptor afferents to the NTS, result in disinhibition of premotor 

sympathetic nuclei within the RVLM. Disinhibition of the RVLM, by the CVLM, results in 

increased efferent signals to the intermediolateral cell column to increase efferent sympathetic 

outflow with subsequent vasoconstriction and tachycardia2. NOH occurs due to failure of the 

reflexive increase in efferent sympathetic outflow that would normally counteract blood pressure 

changes associated with standing.  

In addition to afferent inputs, efferent signals from cortical and subcortical structures also 

converge at the level of the brainstem to further regulate autonomic responses3. Many studies, 

incorporating different experimental modalities (i.e. electrical and chemical stimulation, 

functional imaging, etc.), have uncovered a network of cortical and subcortical structures 

involved in autonomic regulation. Structures such as the insular cortex, cingulate cortex, 

hippocampus, prefrontal cortex, hypothalamus, thalamus and cerebellum, together with 

brainstem nuclei make up key components of the central autonomic network (CAN)3–6.  

 

4 A version of this chapter is currently under review for publication.  

Baker J and Kimpinski K (2019). Evidence of impaired cerebellar connectivity at rest and during autonomic 

maneuvers in patients with autonomic failure. The Cerebellum. (under review) 
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Despite its consistent presence in the literature and significant contributions to cardiovascular 

modulation, the cerebellum has arguably received less attention as part of the CAN, and is not 

commonly recognized as a significant contributor to cardiovascular and autonomic control7. 

Anatomically, autoradiography along with retrograde and anterograde tracing studies, have 

revealed the structural network of neurons projecting from the cerebellum to the NTS, RVLM, 

PBN and Nucleus Ambiguus8–10. Functionally, cerebellar stimulation produces significant 

cardiovascular responses including increased cerebral blood flow, tachycardia and arterial 

pressor responses with measurable increases in muscle, splanchnic and renal sympathetic nerve 

activity11–16. Cerebellar lesions result in remarkable dysfunction in the compensatory responses 

to hypotension, suggesting an essential role in cardiovascular compensation during large blood 

pressure perturbations7,17,18. Finally, neuroimaging studies involving awake humans have 

demonstrated cerebellar activation in response to lower-body negative pressure19 and cerebellar 

and deep cerebellar nuclei activation with concomitant increased muscle sympathetic nerve 

activity20.   

Our laboratory recently investigated functional central network activity in patients with NOH 

during standard autonomic challenges. In this study, we found that patients with NOH as a result 

of autonomic failure had significantly reduced cerebellar activation in response to autonomic 

challenge that perturbs heart rate and blood pressure (Valsalva maneuver and lower-body 

negative pressure)21. Therefore, in the current study, we sought to determine whether NOH 

patients also have impaired functional connectivity between the cerebellum and CAN structures. 

5.2 Methods 

5.2.1 Study participants 

In total, 15 patients meeting the criteria for NOH participated in the current study (67±6 years). 

All patients underwent standard tests for detecting severity and distribution of autonomic failure, 

namely the Autonomic Reflex Screen22. All patients met the criteria for NOH demonstrating an 

average blood pressure reduction of 80±25 mmHg with only an average compensatory 

tachycardia of 9±7 bpm during Head-up Tilt. Additionally, all patients further demonstrated 

evidence of adrenergic failure based on qualitative evaluation of the Valsalva maneuver, which 
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revealed absent adrenergic phases (late phase II and phase IV).  A Neurologist (KK) with 

specialty training in autonomic dysfunction confirmed all testing and made the final diagnoses. 

The composite autonomic scoring scale (CASS) was used to quantify the severity and 

distribution of autonomic failure based on the ARS. The CASS provides a score across three 

domains: sudomotor (0-3), cardiovagal (0-3) and adrenergic (0-4)23. On average patients scored a 

2/3, 2/3 and 4/4, respectively, resulting in a total CASS of 8/10 indicative of severe and 

widespread autonomic dysfunction. The patient cohort was comprised of the following 

diagnoses: Pure Autonomic Failure, n=4; Parkinson’s Disease with autonomic failure, n=6; 

idiopathic NOH, n=5.  

 

Patient data were compared against fifteen healthy, age-matched controls (61±14 years; p=0.12). 

Healthy participants were examined to confirm the absence of any neurological conditions 

including autonomic dysfunction. Healthy participants were also excluded if they fell under any 

one of the following categories: i) pregnant or lactating females, ii) clinically significant 

coronary artery disease, iii) concomitant therapy with anticholinergic, alpha- and beta-adrenergic 

antagonists or other medications which could interfere with autonomic functioning, and iv) 

failure of other organ systems or systemic illness that could affect autonomic function or 

participants’ ability to cooperate. All laboratory data were collected in the Autonomic Disorders 

Laboratory at University Hospital, London, Ontario. All imaging data were collected at Robart’s 

Research Institute Centre for Functional and Metabolic Imaging at The University of Western 

Ontario. Ethical approval was obtained from the Health Science Research Ethics Board at 

Western University, and informed consent was obtained from all participants prior to testing. 

5.2.2 Neuroimaging data acquisition 

All imaging data were collected using a 3T imaging system with a 32-channel head coil 

(Magnetom Primsa, Siemens Medical Solutions, Erlangen, Germany). A high-resolution T1-

weighted structural was acquired at the beginning of the scanning session (sagittal, matrix 

256x240 mm, voxel resolution 1.0x1.0x1.0 mm, 1 mm slice thickness, no gap, flip angle 9 

degree, TE: 2.98 ms, TI: 900 ms, TR: 2300 ms). Blood oxygen level-dependent (BOLD) signals 

were acquired using a T2- weighted gradient echo-echo planar imaging pulse sequence with the 
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following parameters: TE: 30 ms; FOV: 240x240 mm; flip angle: 40 degrees; multiband 

acceleration factor: 4. Forty-eight interleaved axial slices (3.0x3.0 mm in-plane voxel resolution, 

TR: 1000 ms) were acquired in each volume. Following the structural scan, functional brain 

imaging was performed during the following: Rest: The rest period consisted of 5 minutes of 

functional scanning during which, all participants were instructed to remain still with their eyes 

closed, but not to fall asleep. Lower-body negative pressure (LBNP): Following a minimum 15-

minute baseline, suction was applied at -35 mmHg for 5 minutes, followed by a 5-minute rest 

period. All healthy participants completed LBNP at -35 mmHg. However, due to the nature of 

the disease and the marked blood pressure drops in the patient group, in some cases the negative 

pressure was lowered. On average, LBNP was completed at a suction pressure of -27 mmHg in 

our patient group. To help minimize head movement, all participants underwent LBNP in the lab 

prior to the MRI session. In addition, all participants were secured to foot plates within the box 

to help with stabilization during suction. Valsalva maneuver: All participants completed three 

Valsalva maneuvers. The Valsalva session was modeled as a blocked design switching between 

periods of rest and the maneuver. Following a 1-min baseline, participants were instructed to 

perform a Valsalva for 15-seconds, held at an expiratory pressure of 40mmHg. Real-time visual 

feedback regarding the expiratory pressure was provided. Each maneuver was separated by a 2-

min rest in between trials. The first 10 seconds immediately following release of the maneuver 

was recorded as a recovery period. The remaining 110 seconds were recorded as a rest period to 

ensure hemodynamics returned to baseline. To minimize head movement each participant’s head 

was placed in a cradle packed with foam padding. To minimize head movement during VM, all 

participants practiced performing the VM prior to scanning while being supervised. In addition, 

feedback from an MRI technician was provided if there was excessive movement, in which case 

trials were repeated. Beat-to-beat heart rate was recorded from a continuous signal derived from 

an MRI-compatible pulse oximeter (Nonin Medical, 8600FO MRI, Plymouth, MN) attached to 

the index finger of each participant’s left hand when possible. In the presence of a significant 

tremor (i.e. in PD+NOH patients), pulse oximetry was obtained from the hand with less potential 

for movement. All hemodynamic recordings were collected using WR TestWorks™ software 

(WR Medical Electronics Co., Stillwater, MN). 
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5.2.3 Neuroimaging analysis 

All imaging data were analyzed using the Conn toolbox (v18a) available through SPM12 

(Wellcome Department of Imaging Neuroscience, London, UK). Preprocessing steps included 

realignment, unwarping and slice-time correction. All structural and functional images were 

segmented in grey matter, white matter and cerebral spinal fluid, normalized to Montreal 

Neurological Institute (MNI) space and smoothed with a Gaussian kernel (Full-Width Half-

Max=6 mm). To detect outlier volumes with high motion, the ART-based scrubbing method was 

used (ART parameters: 2-mm subject motion threshold and a global signal threshold set at Z=9). 

Nuisance variables including: 6 realignment parameters, first 5 principle components from the 

white matter and CSF and the outlier volumes from the scrubbing procedure were then regressed 

out of the signal. The data were linearly detrended and band-pass filtered (0.008 to 0.09 Hz). 

Cerebellar functional connectivity was tested with an ROI-to-ROI approach during rest, LBNP 

and VM. All areas for connectivity were defined on a regions-of-interest (ROI) basis using the 

following atlases: The cerebellum was parcellated into 26 ROIs from the AAL atlas. Cortical (91 

ROIs) and subcortical (15 ROIs) atlases were derived from the Harvard-Oxford Atlas. 

In the first level analysis, ROI-to-ROI maps were generated for each individual during the 

predefined conditions. Individual connectivity maps were created using the General Linear 

Model convolved with a canonical hemodynamic response function. In the second-level analysis, 

a between-subjects contrast (controls>patients [1, -1; patients>controls [-1, 1]) was performed on 

the basis of a random-effects general linear model, with a seed-level correction for multiple 

comparisons (false-discovery rate: p<0.05). 

5.3 Results  

Rest: Controls had significantly more posterior cerebellar connectivity to various key cortical 

and subcortical autonomic structures, including: bilateral anterior insula, anterior cingulate 

cortex, bilateral putamen and bilateral thalamus. In addition, controls had significantly more 

intra-cerebellar connectivity, including connectivity between posterior cerebellum lobule 9 to: 

bilateral cerebellum lobule 6, right cerebellum lobule 7, right anterior cerebellum lobule 2 and 

the vermis 6. In addition, there was significant bidirectional connectivity between right 
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cerebellum lobule 2 and right cerebellum lobule 6 and vermis 9 with left cerebellum lobule 9 

(Figure 5.1). The effect sizes at rest were small to moderate (Table 5.1). 

 

Valsalva maneuver (VM): During VM, controls had significantly greater functional connectivity 

between structures of the central autonomic network and cerebellar seed sources. The left 

anterior cerebellum (lobule 4/5) had significant connectivity with the vermis 3, brainstem, 

posterior cingulate cortex and the right insular cortex and the right cerebellar lobule 4/5 (Figure 

5.2A). The anterior vermis (region 4/5) showed significant connectivity with the brainstem, 

while vermis region 3 was significantly connected to the right anterior parahippocampus and 

PCC. Additionally, the anterior vermis (region 3) showed greater connectivity with other 

cerebellar regions including: posterior vermis (region 8) and right cerebellum lobule 6 and 

bilateral cerebellar lobule 4/5. (Figure 5.2B). Finally, the posterior cerebellum (lobule 6) had 

significantly greater connectivity to the brainstem and right hippocampus, and the bilateral 

posterior cerebellum (lobule 9) was significantly connected to the brainstem (Figure 5.2C). The 

effect sizes for the connectivities during VM were moderate to strong (Table 5.2). 

 

LBNP: In response to an orthostatic challenge, controls showed significantly greater connectivity 

between the left posterior cerebellum (lobule 9) and the bilateral thalamus as well as the right 

posterior cerebellum (lobule 9) and the bilateral thalamus and left putamen (Figure 5.3). The 

effect sizes for the connectivity during LBNP were modest (Table 5.3). 
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Table 5.1 Regions of greater cerebellar connectivity at rest in healthy controls versus NOH 

patients. 

 Side Effect Size T-value p-FDR value 

Anterior Cerebellum     

(R) Cerebellum Lobule 2 - 

Cerebellum Lobule 6 

R 0.34 3.91 0.03 

     

Posterior Cerebellum     

(R) Cerebellum Lobule 6 - 

Cerebellum Lobule 2 

R 0.34 3.91 0.03 

Vermis Lobule 6 – 

Cerebellum Lobule 9 

L 0.31 3.80 0.04 

     

(L) Cerebellum Lobule 9 -      

Vermis Lobule 6  0.31 3.80 <0.05 

Cerebellum Lobule 7 R 0.23 3.17 <0.05 

Thalamus L 0.33 3.15 <0.05 

Putamen L 0.28 3.03 <0.05 

Thalamus R 0.28 2.92 <0.05 

Cerebellum Lobule 6 R 0.23 2.92 <0.05 

Cerebellum Lobule 2 R 0.25 2.89 <0.05 

Anterior Insula R 0.26 2.82 <0.05 

Cerebellum Lobule 6 L 0.23 2.79 <0.05 

     

(R) Cerebellum Lobule 9 -      

Anterior Insula R 0.34 4.84 <0.005 

Anterior Insula L 0.31 4.51 <0.005 

Thalamus L 0.38 4.51 <0.005 

Putamen L 0.30 4.34 <0.005 

Putamen R 0.32 4.26 <0.005 

Thalamus R 0.35 3.95 <0.005 

Anterior Cingulate Cortex  0.29 3.41 <0.05 

Vermis Lobule 6  0.24 2.86 <0.05 

Abbreviations: R, right; L, left 
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Table 5.2 Regions of greater cerebellar connectivity in healthy controls versus NOH patients 

during Valsalva maneuver. 

 Side Effect Size T-value p-FDR value 

Anterior Cerebellum     

Vermis Lobule 4/5 - Brainstem  0.76 4.31 0.02 

     

(L) Cerebellum Lobule 4/5 to:      

Vermis Lobule 3   0.79 4.39 0.012 

Insula R 0.76 4.21 0.012 

Brainstem  0.82 3.97 0.014 

Posterior cingulate cortex  0.65 3.76 0.017 

Cerebellum Lobule 4/5 R 0.56 3.59 0.00 

     

Vermis Lobule 3 to:      

Anterior Para-hippocampus R 0.53 4.63 0.008 

Cerebellum Lobule 4/5 L 0.79 4.39 0.008 

Posterior cingulate cortex  0.61 4.18 0.009 

Cerebellum Lobule 4/5 R 0.63 3.88 0.013 

Vermis Lobule 8  0.58 3.29 0.03 

Cerebellum Lobule 6 R 0.57 3.28 0.03 

     

Posterior Cerebellum     

(L) Cerebellum Lobule 6 to:      

Brainstem  0.9 4.82 0.006 

Hippocampus R 0.6 3.87 0.03 

     

(L) Cerebellum Lobule 9 - 

Brainstem  

 0.74 4.53 0.012 

(R) Cerebellum Lobule 9 - 

Brainstem 

 0.75 5.29 0.002 

Abbreviations: R, right; L, left 
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Table 5.3 Greater posterior cerebellar connectivity in healthy controls versus NOH patients 

during lower-body negative pressure. 

 Side Effect Size T-value p-FDR value 

Posterior Cerebellum     

(L) Cerebellum Lobule 9 to:     

Thalamus L 0.34 4.1 0.02 

Thalamus R 0.32 3.76 0.02 

     

(R) Cerebellum Lobule 9 to:     

Putamen L 0.3 4.17 0.02 

Thalamus L 0.3 3.44 0.04 

Thalamus R 0.28 3.43 0.04 

Abbreviations: R, right; L, left 
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Figure 5.1. Cerebellar connectome at rest [Controls>Patients]. 

At rest, controls showed significantly greater intra-cerebellar connectivity, and greater 

cerebellar connectivity to the bilateral insula, bilateral putamen, bilateral thalamus and anterior 

cingulate cortex (ACC). Strength of connectivity is represented across a colour spectrum with 

red representing larger T-values and stronger connectivity. 
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Figure 5.2 Cerebellar connectome during Valsalva maneuver [Controls>Patients]. 

Anterior (A), Vermis (B) and Posterior (C) cerebellar connectome during Valsalva maneuver [Controls>Patients]. Controls had 

significantly greater intra-cerebellar, cerebellum-cortical and cerebellar-brainstem connectivity during the Valsalva maneuver 

compared to NOH patients. Strength of connectivity is represented across a colour spectrum with red representing larger T-values and 

stronger connectivity.
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Figure 5.3. Cerebellar connectome during lower-body negative pressure [Controls>Patients]. 

Controls showed significantly greater connectivity between the posterior cerebellum lobule 9 

and the thalamus and putamen during lower-body negative pressure. Strength of connectivity 

is represented across a colour spectrum with red representing larger T-values and stronger 

connectivity. 
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5.4 Discussion 

Previously, we found that patients with NOH had significantly reduced cerebellar activation in 

response to autonomic challenges21. In the current study, we explored these findings further by 

assessing cerebellar functional connectivity and found the following three findings: 1. Patients 

had significantly less functional connectivity in cerebellar regions that have been highly 

implicated in cardiovascular autonomic control. 2. Patients had significantly less connectivity 

between cerebellar regions and the brainstem. 3. Patients had significantly less functional 

connectivity between the cerebellum and other structures of the central autonomic network. 

Patients with NOH experience a significant drop in blood pressure related to upright posture. 

This occurs due to a failure of the autonomic nervous system to reflexively increase sympathetic 

nerve activity. The cerebellum is involved in the integration of vestibular information regarding 

postural changes to facilitate an early compensatory increase in sympathetic nerve activity via 

the brainstem to help maintain blood pressure upon standing. In the current study patients 

showed significantly less connectivity between the cerebellum, including the vermis and lobule 

9, and the brainstem. Structural and functional experimental data in animal and human subjects 

support two major pathways between the cerebellum and brainstem through which 

cardiovascular autonomic reflexes are regulated. The first operates through the vestibular nucleus 

complex (VNC) to mediate the vestibulosympathetic reflex (VSR)24,25 and the second through 

the baroreflex arc11. These pathways converge on several brainstem autonomic nuclei, including 

at the level of the RVLM. Moreover, the fastigial nucleus (FN), vermis and lobule 9 of the 

posterior cerebellum are key cerebellar structures involved in both pathways. Together, these 

structures form a cerebellar-brainstem network for cardiovascular autonomic control that may be 

impaired in patients with NOH.  

5.4.1 Cerebellum and the baroreflex 

Anatomically, regions of the cerebellum project to important brainstem nuclei involved in 

baroreflex control, including the NTS, PBN and RVLM9,11,15. Functionally, rostral FN 

stimulation results in a pronounced increase in renal sympathetic nerve activity, vasoconstriction 

and concomitant pressor responses in several species12–14,16. Following sympathectomy/Alpha 
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blocker, this pressor response is abolished, suggesting the response pathway is sympathetically-

mediated26,27. Further evidence to support the FN in baroreflex control was provided by Lisander 

and Martner who demonstrated that FN stimulation produced similar BP, HR and blood flow 

patterns to that caused by carotid baroreceptor unloading26. Furthermore, studies reveal altered 

baroreflex, decreased heart rate and redistribution of cardiac output following cerebellar 

lesions/cerebellectomies28,29. The anterior vermis (AV) also has direct projections to the PBN 

and studies have shown that PBN stimulation also activates the anterior vermis, suggesting a 

vermis-PBN complex30. Functionally, AV stimulation inhibits sympathetic nerve activity, 

subsequently producing a depressor effect. In addition, when the AV is stimulated prior to FN 

stimulation, it effectively depresses the pressor response normally elicited by FN stimulation, 

suggesting an inhibitory/modulatory role of the AV11. Overall, the AV may mediate sympatho-

inhibition that, together with the FN, provides a regulatory micro-complex for cardiovascular and 

baroreflex control. Finally, stimulation of lobule 9 of the posterior cerebellum induces a large 

increase in renal sympathetic nerve activity, with an accompanying tachycardia and pressor 

response. This response can be effectively abolished following sympathetic ganglion blockade, 

suggesting it too is sympathetically-mediated11. Furthermore, Paton and colleagues found that 

when arterial baroreceptors were activated with concomitant lobule 9 stimulation, the subsequent 

reflexive changes in HR and BP associated with baroreceptor activation failed to occur. The 

authors found that lobule 9 stimulation effectively decreased or abolished the activity of baro-

sensitive neurons within the NTS, suggesting the posterior cerebellum facilitates changes in HR 

and BP by inhibiting baroreceptor input at the level of the NTS31.  

5.4.2 Vestibulo-sympathetic reflex 

In addition to baroreflex nuclei, vestibular nuclei within the brainstem also contribute to proper 

cardiovascular autonomic regulation. Considerable experimental evidence shows an important 

role of the vestibular system in regulating sympathetic nerve activity. Together, the integration of 

vestibular information to generate a sympathetic response forms the physiological basis for the 

vestibulo-sympathetic reflex (VSR). Evidence has accumulated, which has conclusively 

demonstrated the contribution of the cerebellum and the vestibular system to facilitate an early 

burst in sympathetic nerve activity to help maintain postural control of blood pressure.  
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The vestibular nucleus complex (VNC) is located on either side of the brainstem in the region of 

the pons and medulla, and is comprised of four nuclei: the superior, inferior, medial and lateral. 

Each nucleus has projections to autonomic regulatory nuclei in the brainstem, including the 

RVLM, CVLM and NTS24,32. Similar to the baroreflex, the RVLM serves as the primary 

premotor region for mediating the sympathetic response association with the VSR. Studies to 

support this have shown that neurons of the RVLM not only respond to vestibular nerve 

stimulation25,33, but also that the VSR is abolished following lesions to the RVLM. Furthermore, 

Kerman and Yates (1998) demonstrated that stimulation of the baroreceptors via a pressor 

response resulted in an attenuation of the VSR34. As both vestibular and baroreceptor inputs 

converge at the level of the RVLM, this may highlight a major site for modulation. The VNC 

also receive a wide array of input signals from the cerebellum and higher-order brain structures, 

thus making the VNC a prime candidate for information integration to facilitate autonomic 

responses. 

The cerebellum projects heavily to the VNC, which, as previously discussed, sends direct inputs 

to the NTS, RVLM and CVLM. Together, these structures form a cerebellar vestibulo-

sympathetic complex capable of integrating vestibular and cardiovascular signals to regulate 

autonomic responses. Similar to the cerebellum-baroreflex pathway, the cerebellar inputs to the 

vestibular nuclei are largely mediated through extensive projections from the fastigial nucleus 

and lobule 9 of the posterior cerebellum. A number of studies have demonstrated extensive 

bilateral projections between the FN and the VNC11,24,32. These fastigio-vestibular fibers appear 

to have excitatory actions, which may provide an additional framework for the VSR. Moreover, 

lobule 9 projections to the VNC have also been well described in a number of species. 

Specifically, projections from the lateral nodulus-uvula were observed to terminate in the lateral, 

superior and medial vestibular nuclei along with the PBN11. Purkinje cells in the uvula of lobule 

9 provide monosynaptic input to the superior and medial VN, which mediated the VSR, and 

disynaptic inputs to the NTS24. Thus, lobule 9 of the posterior cerebellum appears to have the 

anatomical framework to support a role in regulating both the VSR and baroreflex.  
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5.4.3 Cerebellar-cerebral connectivity: 

Finally, in the current study, patients with NOH had significantly less functional connectivity 

between the cerebellum and a number of higher-order structures including the insula, cingulate 

cortices, thalamus and hippocampus. Structures of the CAN including those previously 

mentioned, have been highly implicated in autonomic control. For example, the insula projects 

directly to a number of cortical and subcortical sites known to facilitate autonomic responses 

such as the hypothalamus, PBN and NTS 35–37. However, studies have also shown direct cortico-

vestibular projections suggesting an additional pathway for cortical autonomic regulation, 

through the VNC. In cats, retrograde tracers in the vestibular nuclei show widespread cerebral 

labeling38, while studies involving non-human primates have demonstrated direct projection 

from a number of higher cortical structures to vestibular nuclei, including the insula and anterior 

cingulate cortex39.  

As most postural changes are the result of voluntary, and as such, planned and executed 

movements, it seems appropriate that higher brain structures would be involved to proactively 

regulate brainstem neurons to increase sympathetic activity. This idea of a “central command” 

network to facilitate autonomic responses is not new and is conclusively supported. For example, 

individuals who are paralyzed can elicit graded heart rate and blood pressure responses to 

imagined exercise40. Central command also contributes to adjustments to baroreflex gain and it 

has been suggested that higher brain regions may also adjust VSR gain, such that the response is 

appropriate for the ensuing postural change24. However, more work is needed to better 

understand where (i.e. VNC, RVLM, CVLM, NTS) the adjustment occurs. 

5.5 Conclusion 

Overall, the combination of anatomical and functional studies in animal and humans substantiate 

a significant role for the cerebellum in cardiovascular autonomic control. Specifically, a number 

of CAN structures including the cerebellum, brainstem and higher cortical structures form a 

complex network capable of integrating vestibular and cardiovascular information to facilitate 

appropriate autonomic adjustments during postural changes. In the current study, patients with 

neurogenic orthostatic hypotension show evidence of reduced cerebellar-brainstem and 
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cerebellar-cortical connectivity. Evidence of impaired cerebellar connectivity may contribute to 

the inability to properly regulate blood pressure during postural changes and perhaps provide 

further understanding of the pathophysiology of NOH. 
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CHAPTER 6 

6 Initial validation of symptom scores derived from the Orthostatic Discriminant and 

Severity Scale5 

6.1 Introduction 

Orthostatic symptoms occur when one changes position from lying or sitting to standing. 

Orthostatic Intolerance (OI) is associated with numerous forms of autonomic dysfunction, 

ranging from severe autonomic disorders (i.e. Pure Autonomic Failure, Multiple System 

Atrophy, Neurogenic Orthostatic Hypotension) to milder syndromes (i.e. Postural Tachycardia 

Syndrome, Syncope, Orthostatic Intolerance)1–4. Symptoms associated with OI such as 

lightheadedness, dizziness, faintness and heart palpitation leading to possible syncope5 are the 

primary cause of morbidity in patients with dysautonomia. Additionally, these symptoms are 

often worsened by specific stressors including, but not limited to, exertion, high ambient 

temperatures, hot showers and baths, consumption of large meals and prolonged standing, 

making orthostatic symptoms particularly disabling and burdensome to activities of daily living3. 

However, due to the non-specific nature of orthostatic symptoms, such as lightheadedness and 

dizziness, other more common etiologies are often considered prior to OI and autonomic 

dysfunction. To add to this problem, OI can also have numerous accompanying constitutional 

symptoms such as: fatigue, generalized weakness and shoulder and neck pain6. In such cases, 

clinicians may focus on these symptoms, without associating them with OI. Therefore, accurate 

identification and distinction between orthostatic versus non-orthostatic symptomatology is 

important for accurate diagnoses and treatment management.  

 

 

 

 

5 A version of this chapter has been published. Used with permission from Springer Nature 

Baker J, Paturel J, Sletten DM, Low PA and Kimpinski K (2019). Initial validation of symptom scores derived from 

the orthostatic discriminant and severity scale. Clin Auton Res. 29(1): 105-112. 
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Currently, there is no simple instrument, easily accessible to clinicians to help make this 

distinction and to discriminate symptoms as being orthostatic or non-orthostatic. Current 

validated questionnaires focused on orthostatic symptoms include: 1. Autonomic Symptom 

Profile (ASP), and 2. Orthostatic Hypotension Question (OHQ). The ASP is a comprehensive 

questionnaire (169 questions) with a focus on all aspects of autonomic dysfunction, with OI 

being a small portion of this assessment7. In contrast, the OHQ is short and the calculated results 

are easily obtainable and restricted to the assessment of the severity of orthostatic symptoms and 

the effects on daily living. However, the OHQ focuses on symptoms related to low blood 

pressure problems as opposed to generalized OI8. While these instruments provide important 

information on orthostatic symptoms, they do not address how orthostatic symptoms are 

differentiated from non-orthostatic symptoms.  

Therefore, we developed the Orthostatic Discriminant and Severity Scale (ODSS) to help 

discriminate symptoms as being either orthostatic or non-orthostatic in nature. The ODSS is a 

short, 33-question, self-report questionnaire that provides an orthostatic score and non-orthostatic 

score. The ODSS implements clinical questions routinely used in practice by clinicians to 

identify symptoms as being either orthostatic or non-orthostatic. The objectives of the current 

study were to analyze the orthostatic scores and non- orthostatic symptom scores derived from 

the ODSS with respect to: 1. Convergent validity, 2. Clinical validity and 3. Test-retest 

reliability. 

6.2 Methods 

6.2.1 Study participants 

This was a prospective study evaluating validity and reliability of the ODSS in persons with 

orthostatic intolerance against asymptomatic healthy controls. Patients were recruited from the 

Autonomic Disorder Laboratory within the Department of Clinical Neurological Sciences, 

University Hospital, London, Canada. All patients were seen by a neurologist to confirm the 

presence of orthostatic intolerance. In addition, all healthy participants were examined to confirm 

the absence of any neurological condition including autonomic dysfunction and symptoms 

related to OI. In addition, healthy participants were excluded if they fell under any one of the 
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following categories: i) pregnant or lactating females, ii) clinically significant coronary artery 

disease, iii) concomitant therapy with anticholinergic, alpha- and beta-adrenergic antagonists or 

other medications which could interfere with autonomic functioning, and iv) failure of other 

organ systems or systemic illness that could affect autonomic function or participants’ ability to 

cooperate. All study participants completed the Autonomic Reflex Screen (ARS) and 3 self-

report questionnaires (Autonomic Symptom Profile, Orthostatic Hypotension Questionnaire, 

Orthostatic Discriminant and Severity Scale). Study participants were asked to repeat the ODSS 

two weeks later to calculate test-retest reliability. Ethical approval for this study was obtained 

from the Health Sciences Research Ethics Board at Western University and written informed 

consent was obtained from each participant prior to study commencement. 

6.2.2 Clinical Evaluation  

6.2.2.1 Autonomic reflex screen 

Standardized autonomic testing was performed as previously described9,10. In brief, Quantitative 

Sudomotor Axon Reflex Test (QSART) was used to evaluate post-ganglionic sympathetic axon 

integrity using a QSWEAT device (WR Medical Electronics Co., Stillwater, MN) and multi-

compartmental sweat capsules. Adrenergic function was assessed using beat-to-beat blood 

pressure and heart rate responses to Valsalva maneuver (VM) and Head-up Tilt (HUT). 

Cardiovagal function was assessed using heart rate response to deep breathing (HRDB) and 

Valsalva ratio (VR) calculated from the VM. Heart rate and blood pressure were continuously 

recorded using an electrocardiograph (ECG) (Model 3000 Cardiac Trigger Monitor, IVY 

Biomedical Systems, Inc., Branford, CT) and Nexfin hemodynamic monitoring system (BMEYE 

Cardiovascular, Amsterdam, Netherlands), respectively. All data were recorded and analyzed 

using WR Testworks™ software. The composite autonomic scoring scale (CASS) was derived 

from the ARS as previously described11.  The CASS provides a quantitative measure of the 

severity and distribution of autonomic dysfunction. The 10-point CASS is divided into the 

following 3 indices: Cardiovagal Index (0-3), Adrenergic Index (0-4) and Sudomotor Index (0-

3). Qualitative assessment of the adrenergic phases associated with the Valsalva maneuver (late 

phase II and phase IV) were used when providing an adrenergic score. A score of 1-3 is 

indicative of mild autonomic dysfunction, 4-6 as moderate, and 7-10 as severe autonomic 
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dysfunction. An additional score of 0 was used to indicate no autonomic dysfunction. Therefore, 

in the context of the current study with the use of healthy control participants, an 11-point CASS 

was used (0-10). 

6.2.2.2 Questionnaires 

Orthostatic Discriminant and Severity Scale (ODSS): The ODSS was developed by clinicians 

experienced in autonomic dysfunction and specific orthostatic disorders, an epidemiologist with 

experience in questionnaire development and administration, by reviewing other validated 

questionnaires, and by extensive interactions with patients with orthostatic intolerance to identify 

symptom commonalities. The ODSS is a self-report questionnaire comprised of 33 questions. 

The questions are used routinely in practice to identify orthostatic intolerance, and include 

symptom frequency, severity, duration and recovery in addition to specific orthostatic stressors 

such as, prolonged standing, meal consumption and heat stress. Non-orthostatic symptoms were 

comprised of questions related to constitutional symptoms including, generalized weakness, 

fatigue and pain. In addition, symptoms of lightheadedness and dizziness unrelated to upright 

posture and unrelated to a change in position were included. The questions are preceded by 

instructions to rate each item by selecting the response that best described the symptoms one 

experiences on an average basis. The recall period was over the past year. This timeframe was 

chosen to ensure: 1. Symptoms were persistent and consistent, 2. Patients had sufficient time to 

experience a variety of circumstances in which their symptoms could have been affected (i.e. hot 

weather), 3. Symptoms that have since passed and are no longer present were not being recorded. 

The primary items were scored on a dichotomous scale as either “yes” or “no” questions 

followed by conditional questions pertaining to frequency, severity, duration, and symptom 

recovery. Conditional questions were used to save time for patients with few or no symptoms. 

Access to the questionnaire can be found in the appendix and at: 

https://www.surveymonkey.com/r/guestODSS 

Scoring: The ODSS provides an Orthostatic Symptoms Score and a Non-Orthostatic Symptoms 

Score”. The Orthostatic symptoms score is calculated as the sum of 22 questions related to 

orthostatic intolerance, while the non-orthostatic symptoms score is calculated as the sum of 11 

questions pertaining to more generalized symptoms. There were ten conditional questions 

https://www.surveymonkey.com/r/guestODSS
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requiring a ‘yes’ or ‘no’ response. Conditional questions were given a weighted value of either 0 

or 1. Questions indicative of orthostatic intolerance were given a value of 1, whereas generalized 

symptoms and symptoms unrelated to the upright position were given a value of 0. The 

following is a sample question indicative of orthostatic intolerance: “In the past year, have you 

experienced symptoms of faintness, dizziness, and/or lightheadedness soon after standing up 

from a sitting or lying position?” A positive response would be given a value of 1, whereas a 

negative response would receive a value of 0. In the event of a positive response, follow-up 

questions would ensue. Follow-up questions were assessed using a 7-point Likert scale. A 7-

point Likert scale was chosen to offer more points of discrimination. Answers indicative of 

orthostatic intolerance were weighted more heavily. The following is an example of a follow-up 

question in the event the previous question had a positive response: “Please rate the amount of 

relief of your symptoms of faintness, dizziness and/or lightheadedness upon lying/sitting back 

down”. A response of ‘No relief at all’ would receive a weighted score of 0, whereas ‘Complete 

relief’ would receive a weighted score of 6. Similarly, if the answer for a conditional question for 

non-orthostatic symptoms is "No", this would warrant a score of 1, as higher scores are 

indicative of orthostatic intolerance. The lowest attainable Orthostatic and Non-Orthostatic 

scores are both a score of 0. The highest attainable Orthostatic symptoms score is 87 and 61 for a 

Non-Orthostatic symptoms score. In addition to the ODSS, all participants completed two other 

previously validated questionnaires. Additional questionnaire assessment included: the 

Autonomic Symptom Profile (ASP) 7 and the Orthostatic Hypotension Questionnaire (OHQ)8. A 

composite OHQ score was generated by averaging the orthostatic hypotension symptoms 

assessment (OHSA) and orthostatic hypotension daily activity scale (OHDAS). 

6.2.3 Statistical analysis 

Descriptive statistics are presented as mean ± standard deviation. All measures among persons 

with and without orthostatic intolerance were compared using an independent t-test. Statistical 

correlations were performed using Spearman’s correlation coefficient. An alpha level of 0.05 

was used to denote significance. All statistical analyses were performed using SPSS® statistical 

software version 21 for Windows (SPSS, Inc., Chicago, IL).    
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6.2.3.1 Validity 

Convergent validity was assessed by correlating the results of the ODSS with the Orthostatic 

Index of the ASP and the average OHDAS and OHSA scores calculated from the OHQ. Clinical 

validity was evaluated by assessing the relationship between the ODSS and a clinically validated 

orthostatic challenge (Head-up Tilt test), and the total CASS derived from all components of the 

ARS. 

6.2.3.2 Reliability  

Test-retest reliability was calculated using a Model 3 (two-way mixed, consistency) single 

measure intra-class correlation coefficient between week 1 and week 2 ODSS scores. Cronbach’s 

alpha was determined as a measure of internal consistency for both the orthostatic and non-

orthostatic symptoms scores. All items were included in the calculation of internal consistency.  

6.3 Results 

6.3.1 Participants 

A total of 77 persons without orthostatic intolerance (age: 54±20 years) and 67 participants with 

confirmed orthostatic intolerance (47 Neurogenic Orthostatic Hypotension (NOH); 12 Postural 

Tachycardia Syndrome (POTS); 8 syncope) (age: 57±19 years) (p=0.45) completed the study. 

All diagnoses were confirmed by a Neurologist trained in autonomic dysfunction (KK). NOH 

was clinically defined as a sustained reduction in systolic blood pressure ≥30 mmHg within 3 

minutes of head-up tilt (HUT) without an appropriate compensatory tachycardia 5. The NOH 

cohort consisted of idiopathic NOH (n=21), Parkinson’s Disease +NOH (n=12), Diabetic 

autonomic neuropathy (n=7), multiple system atrophy (n=4), pure autonomic failure (n=1) and 

autoimmune autonomic ganglionopathy (n=2). POTS was clinically defined by a heart rate 

increment ≥30 beats/minute within 5 minutes of HUT in the absence of orthostatic hypotension, 

along with orthostatic symptoms5,12,13. Syncope was defined as a transient loss of consciousness 

preceded by prodromal symptoms including, but not limited to, pallor, diaphoresis, nausea, 

lightheadedness, dizziness, weakness, visual disturbances etc. 14. Table 6.1 shows the results 

obtained from the autonomic reflex screen. Persons with orthostatic intolerance had reduced 

sweat volumes at the proximal leg, distal leg and foot relative to the persons without orthostatic 
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intolerance. Cardiovagal tests (HRDB and VR) were also significantly lower in persons with 

orthostatic intolerance (p<0.001). Resting HR and SBP were significantly higher in the 

orthostatic group (p<0.001). Meanwhile, the absolute drop in SBP on head-up tilt was 

significantly larger (p<0.001), with a non-significant peak compensatory tachycardia (p<0.06). 

In response to Valsalva, all patients with NOH had absent adrenergic phases, which contributed 

to a higher adrenergic index associated with the Composite autonomic scoring scale (CASS). 

Lastly, the total CASS was significantly higher in the orthostatic group (4.4±3.5) versus the non-

orthostatic group (0.37±0.83; p<0.001). 

6.3.2 Questionnaires 

Non-orthostatic participants had significantly lower OHDAS (0.07±0.26; p<0.001) and OHSA 

(0.20±0.54; p<0.001) scores calculated from the OHQ, resulting in a significantly lower 

composite OHQ score (0.14±0.31) and significantly lower Orthostatic Indices derived from the 

ASP (4.0±5.8) compared to participants with orthostatic intolerance (OHDAS: 4.87±3.05; 

OHSA: 4.63±2.77; Composite OHQ: 4.75±2.70; ASP: 28.25±8.8; p<0.001). Convergent 

Validity: Orthostatic (OS) and Non-orthostatic (NS) scores were significantly correlated with the 

Orthostatic Index derived from the ASP (OS: r=0.903; NS: r=0.651; p<0.001) (Figure 6.1A), and 

the Composite Score of the OHQ: (OS: r=0.800; NS: r=0.574; p<0.001) (Figure 6.1B). Clinical 

Validity: Persons with orthostatic intolerance obtained significantly higher orthostatic scores 

compared to study participants without orthostatic intolerance (66.5±18.1 vs. 17.4±12.9, 

respectively; p<0.001) (Figure 6.2A). Additionally, persons with orthostatic intolerance scored 

higher on the non-orthostatic symptom score compared to non-orthostatic participants (19.9±11.3 

vs. 10.2±6.8, respectively; p<0.001) (Figure 6.2A). Orthostatic and non-orthostatic scores were 

significantly correlated with the total CASS score derived from the Autonomic Reflex Screen 

(OS: r=0.458; NS: r=0.315; p<0.001), and both had a significant negative correlation with the 

drop in systolic blood pressure on head-up tilt (OS: r=-0.445; NS: r=-0.354; p<0.001) (Figure 

6.2B). Test-retest reliability: Test-retest reliability for orthostatic scores was strong (r=0.96; 

p<0.001), with an internal consistency of 0.98. The test-retest reliability for non-orthostatic 

scores was moderate (r=0.57; p<0.001) with an internal consistency of 0.73. On average, the 
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non-orthostatic study cohort completed the second ODSS 18±6 days later, and the orthostatic 

cohort 19±6 days later (p=0.65).  

 

 

 

 

 

 

 

 

 

 

Table 6.1 Autonomic reflex screen in persons with and without orthostatic intolerance 

 Orthostatic 

Intolerance 

Non-Orthostatic 

Intolerance 

 

QSART (µL±SD) Mean ± SD Mean ± SD p-value 

Forearm  0.90±0.90 1.09±1.10 =0.30 

Proximal Leg  0.69±0.91 1.18±1.20* =0.01 

Distal Leg  0.51±0.55 1.17±1.31* <0.001 

Foot 0.54±0.48 0.99±0.88* =0.02 

Deep Breathing (bpm) 10.3±11.7 17.±9.4* <0.001 

Valsalva Ratio 1.5±0.5 1.9±0.4* <0.001 

Head-Up Tilt    

Resting HR (bpm) 72.7±11.9 63.9±11.8* <0.001 

ΔHR (bpm) 18.5±15.7 23.0±11.7 =0.06 

Resting SBP (mmHg) 146.2±29.3 126.7±19.9* <0.001 

ΔSBP (mmHg) -61.9±36.5 -20.1±10.5* <0.001 
a Abbreviations: QSART, quantitative sudomotor axon reflex test; HR, heart rate; SBP, 

systolic blood pressure; Δ change from rest * - indicated significantly different values 
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Figure 6.1 Convergent validity 

Correlations between Orthostatic (OS) (solid line) and Non-Orthostatic (NS) (hashed line) Symptom 

scores derived from the Orthostatic Discriminant and Severity Scale and previously validated tools 

demonstrate strong convergent validity. A. Symptom Scores were significantly correlated with the 

Orthostatic Index of the Autonomic Symptom Profile (OS: r=0.903; NS: r=0.651; p<0.001). B. Symptom 

Scores were significantly correlated with the composite score of the Orthostatic Hypotension 

Questionnaire (OHQ) (OS: r=0.800; NS: r=0.574; p<0.001). 
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Figure 6.2 Clinical validity 

A. Persons with orthostatic intolerance demonstrate significantly larger Orthostatic and Non-Orthostatic 

Symptom Scores compared to persons without orthostatic intolerance (*p<0.001). B. Orthostatic (r=-0.445; 

p<0.001) (solid line) and Non-Orthostatic (r=-0.354; p<0.001) (hashed line) Symptom Scores demonstrate a 

significant negative correlation with the change in systolic blood pressure in response to Head-up Tilt of the 

autonomic reflex screen. 
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6.4 Discussion 

The objective of the present study was to demonstrate preliminary validity and reliability of the 

Orthostatic and Non-Orthostatic Symptom Scores derived from the Orthostatic Discriminant and 

Severity Score (ODSS). Our results reveal three major findings. First, the Orthostatic and Non-

Orthostatic Symptom Scores demonstrated strong convergent validity as evidenced by the strong 

positive correlations with previously validated tools (ASP and OHQ). Second, the Orthostatic 

and Non-Orthostatic Symptom Scores demonstrate strong clinical validity as evidenced by: i) 

significant correlations with the blood pressure drop in response to an orthostatic challenge 

(Head-up Tilt), ii) significant correlations with the total CASS derived from tests of the ARS 

which are reproducible and standardized11, and iii) patients diagnosed orthostatic intolerance 

produced significantly higher Orthostatic and Non-Orthostatic Symptom Scores compared to 

participants without orthostatic intolerance. Third, both Orthostatic and Non-Orthostatic 

Symptom Scores were reproducible as indicated by strong test-retest reliabilities. 

Orthostatic Intolerance (OI) can produce a wide array of symptoms including lightheadedness, 

dizziness, and faintness. OI is important to detect because 1) it may be associated with increased 

morbidity, mortality, and more progressive forms of autonomic dysfunction, 2) symptoms can be 

improved with treatment, 3) it may reduce unnecessary tests and treatments that could further 

complicate a patient’s orthostatic symptoms. The overall aim of the ODSS is that it will be able 

to address all of these important issues related to orthostatic intolerance associated with 

autonomic dysfunction. 

The presence of OI can be indicative of more serious and progressive forms of autonomic 

dysfunction. Included in this group are patients with neurogenic orthostatic hypotension (NOH), 

pure autonomic failure, multiple system atrophy, autoimmune autonomic ganglionopathy, 

general neuropathies and Lewy body disorders. Typically, patients are referred to specialists for 

treatment and management of these diseases. However, it is not unusual for patients to 

experience symptoms for years prior to accurate identification of such symptoms as being related 

to a disorder involving orthostatic/autonomic dysfunction. Therefore, earlier symptoms 

assessment could lead to earlier diagnosis, more focused tests and specialized treatments. 
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Orthostatic symptoms can also produce non-specific symptoms such as headache, muscle and 

non-specific neck pain, fatigue or generalized weakness6,15. In such cases, patients’ complaints 

may be dismissed due to the non-specific nature of the symptoms, or they can misguide 

clinicians in making a proper diagnosis. More common syndromes and disorders related to 

lightheadedness and dizziness, such as inner ear/vestibular issues, benign positional vertigo, 

migraines, hypoglycemia, anemia and even certain medications may be considered prior to 

autonomic dysfunction. Therefore, early and accurate identification of OI can reduce the need for 

unnecessary tests and avoid the use of incorrect treatments that could further complicate 

symptoms. For example, NOH is a form of OI characterized by a drop in systolic blood pressure 

≥30mmHg upon standing5. However, approximately 50% of NOH patients have associated 

supine hypertension16. Traditional use of anti-hypertensives to treat hypertension greatly 

exacerbates the blood pressure drop upon standing, which in turn exacerbates the level of OI 

experienced by these patients and increases the potential for falls and more acute adverse events. 

Therefore, proper identification of OI helps reduce unnecessary testing and helps to focus 

treatment approaches 

The overall aim of the ODSS is not only to identify and quantify orthostatic symptoms, but to 

discriminate true orthostatic intolerance from other syndromes and disorders that may present 

with similar symptomatology. However, prior to evaluating the ability of the ODSS in making 

this distinction, assessment of initial validity and reliability of the symptom score was necessary. 

In the current study, we demonstrated preliminary evidence that the ODSS is capable of 

producing scores that are both valid and reliable. 

6.4.1 Study limitations 

The ODSS has demonstrated preliminary evidence that it provides scores of orthostatic and non-

orthostatic symptoms that are both valid and reliable. Furthermore, the ODSS is capable of 

accurately identifying orthostatic symptoms in patients with OI. In addition, studies including 

other clinical populations are ongoing with the aim of demonstrating its ability to discriminate 

between orthostatic and non-orthostatic symptomatology. Despite the promising results, the 

current study contains the following limitations: 1) The current study aimed to validate the 

symptom scores of the ODSS in a group of patients with known orthostatic intolerance, and 2) 
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the sensitivity and specificity were not assessed. To address these limitations, the next steps are 

to continue with recruitment of patients with and without orthostatic intolerance prior to any 

autonomic testing. This aspect of the study will be done in a single-blinded fashion with the 

researchers blinded to the results of the autonomic testing and final clinical diagnoses. In 

addition, we aim to describe the severity of orthostatic intolerance based on the calculated 

orthostatic and non-orthostatic scores. Following completion of the second part of the study, we 

plan to make the ODSS publicly available so clinicians have easy and global access to the scale. 

6.5 Conclusions 

The current study demonstrates the ability of the Orthostatic Discriminant and Severity Scale to 

produce Orthostatic and Non-Orthostatic Symptom Scores that are both valid and reliable. 

Orthostatic and Non-Orthostatic Symptom Scores were significantly larger in persons with 

orthostatic intolerance versus persons without, these scores demonstrated strong correlations 

with existing instruments, and were significantly correlated with the results of standard clinical 

autonomic testing, including an orthostatic challenge. 
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CHAPTER 7 

7 The Orthostatic Discriminant and Severity Scale (ODSS) – an assessment of 

orthostatic intolerance6 

7.1 Introduction 

Accurate identification and distinction between orthostatic (postural) versus non-orthostatic 

(non-postural) symptomatology is important for accurate diagnoses and treatment management 

for disorders of the autonomic nervous system. To help make the distinction and to discriminate 

symptoms as being either orthostatic or non-orthostatic, we developed the Orthostatic 

Discriminant and Severity Scale (ODSS). Previously, we presented initial validation and 

reliability of the symptom scores derived from the ODSS7. These previous data showed that the 

ODSS produced orthostatic and non-orthostatic symptom scores that are highly correlated with 

previously validated tools for assessing autonomic dysfunction and symptom severity, as well 

correlated highly with standard tests of autonomic function. In the current study, our objective 

was to evaluate specificity, sensitivity and inter-item reliability of the symptom scores derived 

from the ODSS. Additionally, we aimed to assess predictive power of the symptom scores in a 

group of patients referred for queries of autonomic dysfunction. 

 

 

 

 

 

  

 

6 A version of this chapter has been published. Used with permission from Springer Nature 

Baker J, Paturel J, Sletten DM, Low PA and Kimpinski K (2019). The Orthostatic Discriminant and Severity Scale 

(ODSS): an assessment of orthostatic intolerance. Clin Auton Res. [Epub ahead of print] 
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7.2  Methods 

7.2.1 Participants 

All healthy participants were recruited from the general population via poster and newspaper 

advertisements, as well as in person from activity centers for aging populations, to ensure a 

representative sample size that would age-match with the older patient cohort (i.e. Parkinson’s + 

NOH; Pure Autonomic Failure, etc.). All healthy participants were examined to confirm the 

absence of any neurological conditions including autonomic dysfunction and symptoms related 

to orthostatic intolerance. Additionally, due to the potential influence on the autonomic nervous 

system, healthy participants were excluded if they fell under any one of the following categories: 

i) pregnant or lactating females, ii) clinically significant coronary artery disease, iii) concomitant 

therapy with anticholinergic, alpha- and beta-adrenergic antagonists or other medications which 

could interfere with autonomic functioning, and iv) failure of other organ systems or systemic 

illness that could affect autonomic function or participants’ ability to cooperate. The patient 

cohort was comprised of patients referred to the Autonomic Disorder Laboratory (Department of 

Clinical Neurological Science, University Hospital, LHSC, London, Canada) for consultation 

regarding autonomic dysfunction and/or orthostatic intolerance between September 1, 2016, 

through April 30, 2018. Additional exclusion criteria for completion of the questionnaires 

included individuals with communication difficulties, including those who require translation, 

are illiterate, have trouble understanding and/or producing speech. To have a representative 

sample size and thus improve the generalizability of the symptom scores, we collected data in a 

total of 132 patients and 73 healthy controls. All study participants underwent standard 

autonomic testing and completed three questionnaires. In addition, patients had a neurological 

examination and medical history interview. Assessments were performed by a neurologist (KK) 

who independently evaluated the presence or absence of orthostatic symptoms. Based on a 

comprehensive clinical evaluation, each patient was categorized as either “Orthostatic 

Intolerance” (OI) or “Non-orthostatic Intolerance” (Non-OI). Ethical approval for this study was 

obtained from the Health Sciences Research Ethics Board at Western University and written 

informed consent was obtained from all study participants. 
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7.2.2 Clinical and questionnaire evaluation 

All study participants underwent standard tests of autonomic function (Autonomic Reflex Screen 

[ARS]) as previously described8. In brief, quantitative sudomotor axon reflex testing was 

performed to provide an assessment of post-ganglionic sympathetic fiber integrity using a 

QSWEAT device (WR Medical Electronics Co., Stillwater, MN). Adrenergic function was 

assessed using beat-to-beat blood pressure and heart rate responses to Valsalva maneuver (VM) 

performed to 40 mmHg, held for 15 seconds and Head-up Tilt (HUT) performed to 70° from the 

horizontal. Prior to HUT, all individuals were supine for a minimum of 20 minutes. Following 

baseline, participants were tilted for a maximum of 5 minutes, with a subsequent minimum 5-

minute recovery back in the supine position. Cardiovagal function was assessed using heart rate 

responses to deep breathing (HRDB) at a pace of 6 cycles/min and Valsalva ratio (VR) 

calculated from the VM. The composite autonomic scoring scale (CASS) was derived from the 

ARS as previously described9. A total CASS score of 0 indicates no autonomic dysfunction, 

whereas 1-3, 4-6 and 7-10 indicates mild, moderate and severe autonomic dysfunction, 

respectively. Heart rate and blood pressure were continuously recorded using an 

electrocardiography (ECG) device (Model 3000 Cardiac Trigger Monitor, IVY Biomedical 

Systems, Inc., Branford, CT) and Nexfin hemodynamic monitoring system (BMEYE 

Cardiovascular, Amsterdam, Netherlands), respectively. All data were recorded and analyzed 

using WR Testworks™ software. Finally, all participants completed the ODSS7, Autonomic 

Symptom Profile (ASP)10 and the Orthostatic Hypotension Questionnaire (OHQ)11.  An 

Orthostatic (sum of 22 questions) and Non-Orthostatic (sum of 11 questions) Symptom Score 

was generated from the ODSS. Conditional ‘Yes/No’ questions were given a weighted value of 

“1” or “0” so that an individual with no symptoms would generate a score of “0”, whereas higher 

values would be indicative of more orthostatic and/or non-orthostatic symptomatology. The ASP 

was analyzed using a computer algorithm to produce a subscale score related to Orthostatic 

Intolerance10. Finally, a composite OHQ score was calculated as the average of the orthostatic 

hypotension symptoms assessment (6 questions) and the orthostatic hypotension daily activity 

scale (4 questions)11.     
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7.2.3 Blinding protocol 

To assess the accuracy of the ODSS in identifying patients with and without orthostatic 

symptoms, and to reduce any potential for bias, all clinical and questionnaire data obtained from 

the patient cohort were collected in a single-blinded fashion. Medical histories, neurological 

exams and clinical evaluation of each patient were assessed independently by a neurologist 

(KK). A separate researcher (JB) facilitated the completion and evaluation of each questionnaire 

by the patients. The two members of the research team (KK and JB) were blinded to the 

opposing assessment (i.e. the researcher assessing the questionnaire data was blinded to the 

neurologist’s clinical evaluation, symptoms assessment, etc. and vice versa). The neurologist 

grouped each individual patient as either ‘orthostatic’ [OI] or ‘non-orthostatic’ [Non-OI] based 

on a comprehensive and multi-faceted patient evaluation. Clinical evaluation included symptom 

assessment during an orthostatic challenge (head-up tilt) as well as information gathered via 

thorough medical histories. For example, patient classification was determined based specifically 

on symptoms that were always related to a change in position, without any associated supine 

symptomatology. The other member of the research team (JB) performed a receiver operating 

characteristic (ROC) curve analysis to assess sensitivity and specificity and to determine cut-off 

scores. Based on a sensitivity and specificity of 80% and 86%, respectively, an orthostatic 

symptom score of 33.5 was denoted as the cut-off score for orthostatic symptoms. Therefore, if a 

patient received a score greater than 33.5, this was marked with a “1” denoting the presence of 

orthostatic symptoms and if patients scored less than 33.5 this was marked with a “0” denoting 

no orthostatic symptoms. 

7.2.4 Statistical analysis 

Descriptive statistics are presented as mean ± standard deviation. An ANOVA was used to 

compare all measures obtained from patients with and without orthostatic symptoms and healthy 

controls with a Bonferroni correction to correct for multiple comparisons. A paired t-test was 

used to compare differences between standing and lying.  Statistical correlations were performed 

using a Spearman’s correlation coefficient. Sensitivity and specificity were evaluated using a 

ROC curve analysis to provide an area under the curve and standard errors. Inter-item reliability 

was assessed using Cronbach’s alpha. The positive and negative predictive power of the ODSS 
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to identify orthostatic versus non-orthostatic symptomatology was assessed using a chi-square 

crosstabulation [ODSS scores assessment X neurologist symptom assessment]. An alpha level of 

0.05 was used to denote significance. All statistical analyses were performed using SPSS® 

statistical software version 21 for Windows (SPSS, Inc., Chicago, IL). 

7.3 Results 

Participant characteristics, ARS and questionnaire data in healthy controls, OI patients and Non-

OI patients are presented in Table 7.1 and 7.2. Furthermore, Table 7.3 presents a breakdown of 

the diagnoses and male to female ratio in the OI group. In the current study, patients were 

categorized as idiopathic NOH if there was considerable orthostatic hypotension without an 

appropriate compensatory postural tachycardia, along with evidence of other questionable 

phenomenon (i.e. gastrointestinal issues, olfactory impairment, etc.), while not meeting criteria 

for other alpha-synucleinopathies. As such, the latter diagnosis may be clearer over time as 

patients can develop a more specific diagnosis. In contrast, patients were categorized as PAF if 

they had maintained a purely peripheral autonomic failure without any evidence of other 

pathologies for an extended period of time. A diagnosis of OI was given provided the patient had 

clear and specific postural symptomatology without meeting criteria for the other categories 

described. As is the case with idiopathic NOH, a more specific diagnosis may develop over time. 

7.3.1 Autonomic reflex screen 

Controls had significantly higher heart rate responses to deep breathing compared to patients 

with OI (p<0.001) and significantly larger Valsalva ratios compared to both OI (p<0.001) and 

Non-OI (p=0.02) patients. Similarly, controls had significantly lower resting heart rates 

compared to both patient groups (OI: p<0.001; Non-OI: p=0.002) and significantly lower resting 

systolic blood pressures compared to OI patients (p=0.004). On head-up tilt, both controls and 

Non-OI patients had significantly smaller blood pressure drops compared to patients with OI 

(p<0.001). Overall, OI patients scored significantly higher on all three indices of the CASS 

compared to both control and Non-OI patients (p<0.001) (Table 7.1). 
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7.3.2 Questionnaire data  

All three groups produced significantly different scores on the ODSS – Orthostatic score, the 

composite OHQ score and the Orthostatic Index of the ASP. The general trend across all three 

questionnaires was that patients with OI scored the highest, followed by patients without OI, 

followed by healthy controls scoring the lowest. In contrast, for the ODSS – Non-orthostatic 

score, patients with and without orthostatic intolerance scored significantly higher than healthy 

controls; however, there were no significant differences between the two patient groups (Table 

7.2). However, there were significant differences when the symptoms were broken down into 

“standing” versus “lying”. In the standing position, fatigue and weakness were significantly 

different across all three groups (p<0.001), whereas pain in the standing position was not 

different between patient groups. Furthermore, in the lying position, there were no significant 

differences between orthostatic and non-orthostatic patients (pain, p=0.5; fatigue, p=1.00; 

weakness, p=0.7). Controls scored significantly lower in all three symptoms in both the lying and 

standing position (p<0.001). Subsequent paired analysis comparing symptoms in the lying versus 

standing position revealed that in the orthostatic intolerance group, patient reports of pain, 

fatigue and weakness significantly decreased from standing to lying (p<0.001). In the non-

orthostatic patient group, fatigue and weakness showed similar significant reductions with 

position change (p<0.001). However, there were no significant change in reported pain (p=0.8). 

Controls showed no significant symptom changes associated with position (Figure 7.2). Finally, 

total CASS correlated significantly with both the Orthostatic (r=0.395; p<0.001) and Non-

Orthostatic (r=0.311; p<0.001) symptom scores of the ODSS.  

7.3.3 Sensitivity and specificity  

The ROC curve analysis of the ODSS – Orthostatic symptom score showed an equivalent 

sensitivity and specificity to that of the ASP and the OHQ (Figure 7.1). The area under the curve 

(AUC) for the ODSS – Orthostatic score, Non-Orthostatic score, OHQ and ASP were: 0.89, 

0.79, 0.88, and 0.91, respectively. As previously describes, a cut-off score was determined based 

on the data produced from the ROC curve. Based on the ANOVA data, only an orthostatic 

symptom score was used as a cut-off, as the non-orthostatic symptom score was not significantly 
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different between OI and Non-OI patients. An Orthostatic cut-off score of 33.5 was used in the 

sub-analysis based on a predicted yield of 80% sensitivity and 86% specificity.  

7.3.4 Evaluation of predictive power 

Based on the ROC curve analysis, the cut-off score of 33.5 was applied to a subset of 100 

patients to calculate the positive and negative predictive powers. A subset of 100 patients was 

used in the blinded analysis based on the minimum recommended number for obtaining a sample 

size with a normal distribution. A chi-square crosstabulation between ODSS assessment and 

clinical outcome revealed a positive predictive power of 73% (n=43/59) and a negative 

predictive power of 81% (n=33/41). Additionally, there were n=16 false positives and n=8 false 

negative (Total patients: 100). Combined, the ODSS appropriately identified those patients with 

and without orthostatic symptoms with a 76% accuracy. 

7.3.5 Inter-item reliability  

A reliability assessment of all dichotomous (Yes/No) questions pertaining to the orthostatic and 

non-orthostatic symptom scores was assessed using Cronbach’s alpha. Cronbach’s alpha for the 

orthostatic and non-orthostatic symptom scores were 0.85 and 0.85, respectively. For the 

orthostatic score, it was determined that question pertaining to, Q: “morning symptoms” and Q: 

“prolonged standing” correlated the highest to the overall questionnaire score, whereas Q: “post-

prandial symptoms” correlated the least. However, in an inter-item reliability assessment, all 

items appeared worthy of retention, resulting in a decreased alpha if deleted. For the non-

orthostatic symptom score, Q: “fatigue while standing” correlated the strongest with the 

symptom score and Q: “light-headedness and dizziness while lying” correlated the least. 

However, similar to the orthostatic score, all items appeared worthy of retention, resulting in a 

decreased alpha if deleted. When all items were considered together the test yielded a 

Cronbach’s alpha of 0.88, indicative of strong internal consistency. Further evaluation revealed 

that all items appeared worthy of retention, resulting in a decreased alpha if deleted. 
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Table 7.1 Participant questionnaire data 

 Control 

mean±SD 

Orthostatic 

Intolerance 

mean±SD 

Non-Orthostatic 

Intolerance 

mean±SD 

ODSS    

Orthostatic Score 7.8±9.7*† 47.2±17.1 25.0±21.5* 

95% Confidence 

Interval 

5.5-10.1 43.6-50.9 18.6-31.4 

Non-Orthostatic Score 1.2±2.6*† 11.7±8.5 10.4±10.7 

95% Confidence 

Interval 

0.6-1.8 9.8-13.5 7.2-13.6 

ASP – Orthostatic 

Index 

3.9±5.4*† 27.8±9.6 14.0±12.1* 

95% Confidence 

Interval 

2.6-5.1 25.7-29.8 10.2-17.8 

Composite OHQ score 0.13±3.0*† 4.5±2.8 1.9±2.4* 

95% Confidence 

Interval 

0.06-0.2 3.9-5.1 1.1-2.6 

*significantly different from OI patients (p<0.001); † significantly different from Non-OI 

patients (p<0.001). Abbreviations: ODSS, orthostatic discriminant and severity score; ASP, 

autonomic symptom profile; OHQ, orthostatic hypotension questionnaire 
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Table 7.2 Summary of participant characteristics and autonomic reflex screening data 

 Control 

mean±SD 

Orthostatic 

Intolerance 

mean±SD 

Non-Orthostatic 

Intolerance 

mean±SD 

P-value 

 N=73 N=83 N=49  

Age (years) 54±21 57±19 55±18 NS 

Range (years) 13-88 18-88 17-88  

Sex Ratio (Male: 

Female) 

34:39 42:41 24:25  

Autonomic Reflex 

Screen 

    

QSART (µL)     

Forearm 1.04±1.07 1.02±0.94 1.23±1.06 NS 

Proximal Leg 1.19±1.21* 0.79±.91 0.91±0.73 *0.048 

Distal Leg 1.17±1.32* 0.60±0.57 0.91±0.94 *0.001 

Foot 0.99±0.88* 0.67±0.60 0.86±0.74 *0.027 

Heart rate to Deep 

Breathing (bpm) 

17.4±9.2* 10.8±11.5 13.6±8.8 *<0.001 

Valsalva Ratio 1.9±0.4*† 1.5±0.5 1.6±0.4 *<0.001 

 †0.02 

Head-up Tilt     

Resting Heart Rate 

(bpm) 

63.1±9.0*† 74.0±12.5 70.6±12.6 *<0.001 

†0.002 

∆Heart rate (bpm) 23.1±11.8 18.1±15.0 17.2±12.5 NS 

Resting SBP 

(mmHg) 

126.8±20.2* 140.2±30.9 132.7±23.2 *0.004 

∆SBP (mmHg) -20.0±10.6* -54.8±37.5 -16.9±14.3* *<0.001 

CASS     

Sudomotor Index 0.28±0.76* 0.87±1.16† 0.43±0.82 *0.001 

†0.046 

Cardiovagal Index 0.08±0.58* 1.17±1.05 0.38±0.66* *<0.001 

Adrenergic Index 0.14±0.12* 2.5±1.90 0.4±1.16* *<0.001 

Total CASS 0.36±0.83* 1.45±3.36 1.24±1.96* *<0.001 

*significantly different from OI patients; † significantly different from Non-OI patients. 

Abbreviations: QSART, quantitative sudomotor axon reflex test; µL, microliters; bpm, beats 

per minute; mmHg, millimeters of mercury; SBP, systolic blood pressure; CASS; Composite 

autonomic scoring scale; NS, non-significant 
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Table 7.3 Breakdown of Orthostatic Intolerance patient group 

Diagnosis MSA PAF PD+NOH Idiopathic 

NOH 

DAN AAG POTS Syncope OI 

Sample 

Size 

6 3 16 21 10 2 16 4 5 

M:F ratio 5:1 1:2 9:7 14:7 7:3 1:1 2:14 1:3 2:3 
 

Abbreviations: MSA, Multiple system atrophy; PAF, Pure autonomic failure; PD+NOH, 

Parkinson’s Disease + Neurogenic orthostatic hypotension; NOH, Neurogenic orthostatic 

hypotension; DAN, Diabetic autonomic neuropathy; AAG, Autoimmune autonomic 

ganglionopathy; POTS, Postural orthostatic tachycardia syndrome; OI, Orthostatic Intolerance; 

M, Male; F, Female. 
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A) B) C) 

   

Figure 7.1 Comparison of constitutional symptoms in controls and patients, lying and standing 

Pain (A), fatigue (B) and weakness (C) standing and lying in patients with and without orthostatic intolerance and healthy controls. Patients with 

orthostatic intolerance show a significant reduction in reported symptoms from standing to lying. Patients without orthostatic intolerance show a 

significant reduction in reported fatigue and weakness (p<0.001), but not pain (p=0.8). Controls show no significant changes relative to position. 

*significant difference between standing and lying (p<0.001). 
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A) ODSS ROC Curve B) OHQ ROC curve C) ASP ROC Curve 

 

  

AUC: 

Orthostatic Curve: 0.90 

SE: 0.02; 95% CI: 0.85-0.94 

Non-Orthostatic Curve: 0.80 

SE: 0.03; 95% CI: 0.73-0.86 

AUC: 0.88 

SE: 0.03; 95% CI: 0.82-0.93 

AUC: 0.91 

SE 0.02; 95% CI: 0.87-0.95 

Figure 7.2 Receiver operating characteristic (ROC) curves for the symptom scores 

ROC curves for A) Orthostatic Discriminant and Severity Score (ODSS) show strong and comparable sensitivity 

and specificity measures to that of the B) Composite Orthostatic Hypotension Questionnaire (OHQ), and C) 

Autonomic Symptoms Profile (ASP) – Orthostatic Index. Abbreviations: AUC, area under the curve; SE, standard error; 

CI, confidence interval. 
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7.4 Discussion 

The primary objective of the current study was to assess the ability of the Orthostatic 

Discriminant and Severity Scale (ODSS) to distinguish symptoms of orthostatic intolerance from 

non-orthostatic symptoms. Our results reveal four major findings: 1) An Orthostatic cut-off score 

of 33.5 provided a strong positive and negative predictive value for accurately identifying 

orthostatic symptoms. 2) Both Orthostatic and Non-orthostatic symptom scores were capable of 

distinguishing the patient cohorts. 3) Evaluation of the AUC for the ODSS – Orthostatic 

symptom scores yielded results similar to that of previously validated tools for symptom 

assessment. 4) Cronbach’s alpha for the questionnaire demonstrated strong internal consistency 

and an inter-item reliability assessment showed that all dichotomous questions were worthy of 

retention.  

Several questionnaires focused on diverse patient populations such as Diabetic Autonomic 

Neuropathies, Multiple System Atrophy, Parkinson’s Disease and generalized autonomic failure 

do exist12–14. However, the majority of these questionnaires target the presence of symptoms 

and/or assessment of symptom burden. Additionally, few questionnaires address the non-specific 

symptoms, such as fatigue, weakness and pain, and most relevant, none discriminate these 

symptoms as being either orthostatic or non-orthostatic. The ODSS is unique in that it was 

designed to help identify and discriminate non-specific symptoms such as lightheadedness, 

dizziness, weakness, fatigue, etc., as being either orthostatic or non-orthostatic. In clinical 

settings, these symptoms can often overlap with other non-specific etiologies, and therefore 

accurate identification can be difficult. There was a significant difference in the orthostatic 

scores between healthy controls, patients assessed as having orthostatic symptoms and patients 

assessed as having non-orthostatic symptoms by a neurologist. This indicates the ODSS – 

orthostatic symptom score has the ability to distinguish between these three groups. Furthermore, 

the results of the single-blinded assessment found the ODSS – orthostatic symptom score was 

capable of identifying patients with orthostatic symptoms with 73% accuracy, and appropriately 

identified patients without orthostatic symptoms with an 81% accuracy rating.  

In contrast, the assessment of non-orthostatic symptoms such as pain, fatigue and weakness did 

not significantly differ between patients with and without orthostatic symptoms, but rather 
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between patient groups and healthy controls. However, this result is not surprising as patient 

symptoms are not reliably distinguishable, and often have considerable overlap. For example, in 

the current study we evaluated pain as a non-specific, non-orthostatic symptom. However, 

certain types of pain (i.e. coat-hanger pain) can be orthostatically-mediated. Therefore, when 

evaluated separately on the basis of position, two interesting results were identified. First, all 

three groups were significantly different when symptoms of fatigue and weakness were assessed 

in the standing position. Second, patients with orthostatic intolerance reported significant 

symptom reduction across all three symptoms when there was a change in position from standing 

to lying. In contrast, in the non-orthostatic patient group, reports of pain did not significantly 

change with position. Finally, total CASS was significantly correlated with both orthostatic and 

non-orthostatic symptom scores, suggesting the presence of orthostatic and non-orthostatic 

symptomatology correlate with severity and distribution of autonomic dysfunction. However, 

these correlations are beginning to show evidence of divergence, and it will be of interest to see 

how these relationships evolve with the recruitment of additional clinical populations, as well 

when evaluated within discrete homogenous patient groups. Nonetheless, at present these 

findings, combined with the results of the orthostatic symptom score, may help to reliably 

distinguish patients with and without orthostatic intolerance.    

Accurately identifying and distinguishing patients with and without orthostatic intolerance has 

many important clinical implications, some of which include, earlier access to specialized care, 

reduced risk for potential serious injury related to falls, and proper adjustments to treatments for 

symptom management.  

Orthostatic symptoms are the primary cause of morbidity in patients with generalized autonomic 

dysfunction. However, application of both conservative and pharmacological measures has been 

shown to effectively reduce orthostatic symptoms and disease burden15,16. Therefore, the ability 

to accurately identify patients with orthostatic symptomatology would not only help to improve 

the streamlining of patients but would also facilitate the process by which symptom management 

techniques can be acquired sooner. 

Additionally, accurate identification of symptoms can help reduce fall risks associated with 

concomitant medications. For example, patients with Neurogenic Orthostatic Hypotension 
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secondary to autonomic failure can also have profound hypertension while seated and/or lying 

flat6. As office blood pressure measurements are commonly not taken while a patient is standing, 

these results often lead to a prescribed anti-hypertensive agent that will severely exacerbate their 

blood pressure drop upon standing, and increase the likelihood of syncope. Therefore, accurately 

identifying orthostatic symptoms has the potential to expose an underlying condition related to 

autonomic failure and, in turn, help reduce the risk for potential serious injury related to falls. 

Finally, in treating patients with orthostatic and autonomic dysfunction, treatments are often 

titrated to individual symptoms. For example, in patients with NOH, the use of standard anti-

hypotensive agents often includes supine hypertension as a side effect. If a patient’s symptoms 

show improvement, it is important to appropriately titrate dosages and/or schedules to reduce the 

risks associated with supine hypertension. Access to a simple instrument such as the ODSS 

provides a symptom assessment to help gauge symptoms. 

7.4.1 Future studies  

Overall, given the large patient sample size and the methods taken to obtain a diverse and 

unbiased sample, we believe the current study is representative of the patient cohort that is 

typically referred to a specialist clinic for questions of autonomic dysfunction. However, further 

investigation is warranted. In future studies we aim to collect data in another 100 patients to re-

assess the positive and negative predictive powers within a larger sample size. Second, we aim to 

combine all data to quartile the scores to formulate a scale of symptom severity, including: No 

symptoms, mild, moderate and severe symptoms. Third, in a longitudinal study, we are currently 

collecting data to measure how symptoms change over time, and how these symptoms correlate 

with standard measures of autonomic function. Fourth, we aim to separate different patient 

groups to assess the sensitivity and specificity within smaller homogenous patient groups. This 

fourth aim will also include patient groups who may be more likely to have higher degrees of 

non-orthostatic symptoms such as chronic fatigue syndrome or fibromyalgia. Finally, with larger 

sample sizes, we will also be able to re-evaluate the reliability and internal consistency of each 

question within discrete patient cohorts, which will enable us to pars out which questions are 

worthy of retention within individual clinical populations. Our ultimate goal is to make the 

ODSS easily available in an online format with immediate score generation.  
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7.4.2 Study limitations  

The ODSS has demonstrated a strong ability to identify patients with and without orthostatic 

intolerance with a relatively high accuracy. Additionally, the items of the questionnaire have 

yielded strong inter-item reliability and the ODSS – orthostatic score showed strong sensitivity 

and specificity similar to that of other validated tools. Despite these promising results the current 

study contains the following limitations: 1) Orthostatic intolerance as a result of autonomic 

dysfunction can encompass a large and diverse group of patients. In the present study, we 

enrolled new patients referred to the clinic without prior knowledge of the reason for referral. 

Due to the methodological approach, the patient sample was extremely diverse. In future 

assessments we aim to investigate the sensitivity of the ODSS in discrete patient cohorts. 2) In 

the present study, the sensitivity of the ODSS to track patients’ symptoms over time and with 

treatment was not evaluated. Therefore, longitudinal studies, as well as implementation within a 

clinical trial need to be done to address this aspect of the ODSS.  

7.5 Conclusion 

In the current study, the ODSS demonstrated a strong ability to distinguish between patients with 

and without orthostatic intolerance based not only on the absolute orthostatic symptom score, but 

also in a blinded assessment, which yielded strong positive and negative predictive power values. 

Furthermore, the symptom scores of the ODSS demonstrated a sensitivity and specificity 

equivalent to that of other standardized measures. Finally, a reliability analysis yielded a 

Cronbach’s alpha that showed the ODSS reached an acceptable reliability, and all items were 

deemed worthy of retention. Overall, the ODSS produces symptom scores that are both reliable 

and useful for both research and clinical practice to aid in the distinction of orthostatic versus 

non-orthostatic symptomatology. 
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CHAPTER 8 

8 General Discussion and Summary 

8.1 General Discussion  

In these studies, I aimed to improve our understanding and assessment of neurogenic 

orthostatic hypotension (NOH) related to autonomic failure. This thesis provided novel and 

unique findings related to this overall objective. The first portion of this thesis was designed to 

improve our understanding of the pathophysiology contributing to NOH. Specifically, whether 

patients demonstrated altered activation within the central autonomic network during autonomic 

challenges. The first set of results (Chapters 2 & 4) support this hypothesis as the results 

revealed, 1) patients had reduced cortical and sub-cortical autonomic network activation during 

sympathetically-mediated challenges and 2) patients had reduced brainstem functional 

connectivity both at rest and during autonomic maneuvers. Of interest, patients also 

demonstrated reduced cerebellar activity and reduced cerebellar connectivity (Chapters 3 & 5). 

This was of particular interest as the cerebellum integrates vestibular, spinal and brainstem 

afferents in response to postural changes and subsequently influences descending inputs to 

vestibulosympathetic pathways. For example, in response to standing and/or head-up tilt the 

cerebellum is involved in mediating an early sympathetic reflex to facilitate vasoconstriction, 

which contributes to postural control of blood pressure in the upright position. This is relevant to 

the clinical population as the inability to maintain adequate blood pressure in the standing 

position is the definition of NOH. Furthermore, studies have shown that cerebellar 

dysfunction/insult not only results in orthostatic hypotension but also affects postural symptoms 

such as lightheadedness and dizziness.  

Therefore, the second part of this thesis focused to improve our ability to identify and to assess 

patients on the basis of orthostatic symptomatology, which can be indicative of autonomic 

dysfunction. Symptoms such as dizziness and lightheadedness are some of the most common 

clinical descriptions and remain an independent predictor of increased mortality after adjusting 

for factors such as age, race, ethnicity, sex and disease1,2. These symptoms can be very 

generalized, but they can also be very specific to postural adjustments as one changes position 

from lying or sitting to standing. When these symptoms are not properly assessed, accurate 
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identification and diagnosis can be challenging. Therefore, we devised a self-report questionnaire 

(the Orthostatic Discriminant and Severity Scale [ODSS]) capable of identifying and 

discriminating orthostatically mediated symptoms. I found that patients reported significant 

orthostatic symptomatology that correlated with autonomic dysfunction and orthostatic blood 

pressures (Chapter 6). I also found the ODSS is capable of identifying and discriminating 

patients with and without orthostatic symptomatology related to autonomic dysfunction (Chapter 

7). 

These findings (1) build upon the current understanding of the central autonomic network and 

the human cerebellum and how they contribute to proper autonomic control; (2) provide 

evidence of cerebellar impairment in autonomic failure, which may indicate a new mechanism 

underlying both impaired orthostatic blood pressure regulation and orthostatic symptomatology, 

including postural lightheadedness and dizziness and (3) provide a new validated tool for 

assessing postural symptomatology related to autonomic dysfunction. 

The concept of a central autonomic network (CAN) involving cortical, subcortical and brainstem 

structures has been well established3. Certainly, an abundance of research has investigated 

regions of the human CAN and delineated specific structures to various functions. For example, 

in healthy individuals functional imaging studies have identified discrete neurocircuitry 

associated with reflex cardiovascular control during sympathetically-mediated challenges (i.e. 

Valsalva maneuver, handgrip, lower body negative pressure), including the insular cortex, 

thalamus, anterior cingulate cortex, cerebellum, amygdala and hippocampus4–9. 

Macefield and Henderson extended this work by using concurrent microneurography recordings 

of sympathetic nerve activity and functional imaging. This work revealed that increased activity 

in the anterior insular cortex, anterior cingulate cortex and cerebellum corresponded with 

increased sympathetic activity10,11. Studies have also used clinical models such as localized 

strokes to investigate the effect of cortical lesions on autonomic responses12. The results of 

Chapter 2 are novel in that they provide a unique clinical model of sympathetic failure that 

corroborates the current literature regarding functional contributions of CAN structures. In this 

chapter I found that patients with sympathetic dysfunction or failure have reduced activity in the 
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same central sites implicated in sympathetic outflow including the anterior cingulate cortex, 

hippocampus, thalamus and cerebellum. 

Beyond basic autonomic physiology, the results contained within the first half of this thesis 

(Chapters 2-5) also offer new insights into the understanding of the pathophysiology of 

autonomic failure. The results suggest additional pathophysiology in NOH that extends beyond 

efferent sympathetic dysfunction. The results of Chapter 2 implicate higher forebrain 

involvement; meanwhile the results contained within Chapter 4 show evidence of reduced 

connectivity between the brainstem and cortical/subcortical structures in autonomic failure 

patients. 

As previously discussed, several important brainstem nuclei facilitate beat-to-beat control of 

arterial blood pressure (BP) through the arterial baroreflex13. Anatomical connections between 

brainstem nuclei and cortical/subcortical networks have been well established, and functionally, 

these cortical and subcortical structures (already described herein) contribute feed-forward 

signals for additional regulation of cardiovascular and autonomic reflexes. Evidence of reduced 

functional connectivity between these two fundamental autonomic networks contributes novel 

information to clinical autonomic research.  

Importantly, Chapters 3 & 5 build upon and provide additional support regarding an important 

role for the human cerebellum in autonomic functioning. While this concept is not new, the 

current results are novel and interesting in the context of the patient group because 1) damage to 

the cerebellum results in impaired postural control of blood pressure14–16 – the same dysfunction 

experienced by patients with NOH, and 2) cerebellar dysfunction contributes to postural 

lightheadedness, dizziness and orthostatic intolerance2,17 – the same symptomatology 

experienced by these patients. 

Regions of the cerebellum, namely the vermis, posterior lobule 9 and the deep cerebellar nuclei, 

demonstrate significant functional overlap in both baroreceptor and vestibular sympathetic 

reflexes18–20. In response to postural adjustments to an upright position, both reflexes send 

afferent projections that converge at the level of the RVLM, with measurable increases to 
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peripheral sympathetic nerve activity18,19,21–24. Together, both reflexes facilitate vasoconstriction, 

blood redistribution and ultimately help maintain blood pressure while upright.  

Importantly, Chapter 3 revealed that patients with NOH showed significantly reduced activation 

within the cerebellum during blood pressure perturbations facilitated by VM and LBNP. To 

extend these findings, I investigated functional connectivity specifically within the cerebellum 

(Chapter 5). The findings revealed that patients with NOH had reduced functional connectivity in 

the same regions shown to contribute to increased sympathetic outflow, including the vermis and 

posterior lobule 9. Interestingly, cerebellar connectivity was reduced to several important regions 

including the brainstem and central autonomic structures and this was evident both at rest and 

during an autonomic challenge (LBNP and VM).  

 

Finally, the second half of this thesis focused on symptomatology related to NOH and autonomic 

dysfunction. NOH patients can often present with various orthostatic symptoms such as postural 

lightheadedness, dizziness, faintness, etc. These symptoms are a major cause of morbidity, 

reduce the ability to live independently and can greatly decrease quality of life1,25,26. Recognizing 

and appropriately discriminating the postural component of these symptoms is imperative for 

proper diagnosis and treatment. The Orthostatic Discriminant and Severity Scale (ODSS) was 

designed to help make this important distinction to identify and assess patients on the basis of 

their symptoms. Chapter 6 provides promising preliminary evaluation of the ODSS in the context 

of validity and reliability. The results of Chapter 7 showed strong sensitivity and specificity of 

the ODSS and importantly, demonstrated that the ODSS was capable of accurately identifying 

patients with and without autonomic dysfunction solely based upon a symptom assessment.  

 

Given the degree of widespread impairment that can accompany autonomic dysfunction and the 

availability of both pharmacological and conservative measures to help mitigate orthostatic 

symptoms, early diagnosis will be pivotal to improve quality of life, extend independent living 

and reduce risk of falls.  
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8.1.1 Overall study limitations 

fMRI is a widely used and accepted technique in the field of autonomic research to discern 

functional contributions of central structures to autonomic control. However, it is important to 

acknowledge that the use of functional imaging as a modality for understanding brain 

mechanisms is primarily limited to the underlying assumption that BOLD signal changes 

represent neural changes. It is important to note that the BOLD signal does not isolate nor 

directly measure neuronal activity. The BOLD signal is a surrogate signal for brain function 

reflecting changes in the ratio between oxygenated and deoxygenated hemoglobin. 

Despite this assumption, the findings and the brain regions reported in the current set of studies 

are consistent with existing autonomic literature3,6,27. Importantly, the regions discussed 

including the cerebellum, cingulate, insula, hippocampus, etc. are strongly supported in 

autonomic and functional imaging literature, as well by studies that have used different 

modalities other than imaging including, clinical models (i.e. stroke), electrical and chemical 

stimulation, ablation, etc.  

In the connectivity analysis, the use of cortical and subcortical atlases can be limiting. 

Specifically, application of a brainstem mask covering the whole brainstem cannot isolate 

discrete nuclei. Structurally and functionally, the brainstem is extremely diverse and therefore 

the current results would be improved if individual nuclei could be isolated. Unfortunately, the 

current program used to analyze the connectivity data set this limitation. The functional 

connectivity program currently available for a regions-of-interest analysis uses a whole 

brainstem mask to determine brainstem connectivity. Further investigation into discrete 

brainstem nuclei is certainly warranted. Despite this limitation the current results are still unique 

revealing that patients with autonomic failure have reduced brainstem connectivity, and 

importantly reduced connectivity to regions strongly supported in autonomic control.  

Despite the aforementioned limitations surrounding functional imaging and functional 

connectivity, I remain confident in the current findings pertaining to activation of autonomic 

structures and their functional connections to other structures that make up the central autonomic 

network. 
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The primary limitation of the results contained in the second half of this thesis pertains to the 

heterogeneous sample of patients used in the early stages of developing the ODSS. This 

approach was primarily chosen based on methodological considerations. For example, during the 

blinded study all patients needed to be included as opposed to specific clinical groups (i.e. NOH) 

otherwise, there would in essence be no blinding. Moving forward, I believe the ODSS will be 

most suitable and accurate for clinical groups with NOH. However, until there is sufficient data 

to support this conclusion, we continue to recruit all patient groups with orthostatic intolerance 

related to autonomic dysfunction.  

8.1.2 Future studies 

The current thesis provides the foundation for a number of important and interesting directions 

for future research. Future studies may continue to build upon the cross-link between the 

cerebellum and autonomic dysfunction and the cerebellum in postural symptomatology.  

 

An important consideration when evaluating orthostatic symptoms is that it can be quite common 

for patients to report no symptoms even when there is clear clinical evidence of severe OH. In a 

study of 105 Parkinson’s patients who met the clinical criteria for NOH, only 13% reported to be 

symptomatic28. Some efforts have been made to determine which factors contribute to postural 

symptoms. For example, does symptomatology depend on absolute blood pressure changes or 

how low blood pressure goes?28 Another hypothesis is that some disorders related to autonomic 

failure can progress very slowly, and as such, patients become acclimated to blood pressure falls 

over time. The current thesis may lend support for an alternative hypothesis regarding autonomic 

dysfunction and postural symptomatology related to differences in cerebellar impairment (Figure 

8.1). For example, do patients with NOH and autonomic failure with evidence of cerebellar 

impairment report more profound postural symptoms? 

 

In a 2016 consensus statement regarding the signs and symptoms of cerebellar dysfunction, brief 

occurrences (seconds-minutes) of cerebellar dizziness induced by positional changes were 

evident in cerebellar lesions affecting the posterior cerebellum and vermis29. Furthermore, one 

study found that 31% of patients with acute cerebellar infarctions revealed adrenergic 

sympathetic dysfunction evidenced by orthostatic hypotension on head-up tilt (-37mmHg drop), 
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absent adrenergic phases in response to Valsalva maneuver and 28% reported orthostatic 

dizziness on standing17. Furthermore, evidence shows that patients with autonomic failure have 

impaired baroreflex functioning. Additionally, the cerebellum has direct and indirect projections 

that feed into both the baroreflex and vestibulo-sympathetic reflex pathways. Therefore, an 

interesting avenue of future research would be to further investigate cerebellar and vestibulo-

sympathetic reflexes in patients with NOH (Figure 8.1). This could be accomplished using direct 

transcranial magnetic stimulation (TMS) of the cerebellum or through galvanic vestibular 

stimulation (GVS). Either TMS or GVS could be applied at rest and during an orthostatic 

challenge while measuring autonomic/hemodynamic responses. Furthermore, cerebellar 

stimulation and/or activation of cerebellar reflexes with concurrent functional imaging would 

build upon the current findings. This, in conjunction with investigation into discrete brainstem 

nuclei including baroreceptor nuclei and vestibular nuclei in autonomic failure would be an 

interesting area for future research. 

 

Regarding the ODSS, there are plenty of additional studies that would continue to improve and 

develop this tool. First, any questionnaire devised for clinical use, or otherwise, requires large 

samples sizes and continuous monitoring and adjustments to optimize its potential. Therefore, 

ongoing recruitment and evaluation of the ODSS to continue to assess and improve the 

sensitivity and specificity should be an area of future research. Moreover, the sensitivity and 

specificity of the ODSS should be tested within discrete clinical groups to better understand 

where this tool may be best applied (i.e. autonomic failure, postural tachycardia, syncope, etc.). 

Second, to evaluate the ability of the ODSS to detect changes in symptoms, a longitudinal study 

of patients with autonomic dysfunction is required. For example, patients could be monitored 

over time to assess changes in reported symptoms and whether or not these changes are 

associated with any physiological parameter (i.e. blood pressure, distribution of autonomic 

dysfunction, heart rate, etc.). Additionally, longitudinal symptom assessment could be applied to 

monitor responsiveness to medication. This information would be extremely helpful when 

determining medication dosages and scheduling to best target orthostatic symptoms. 

Alternatively, the ODSS could be used within a clinical trial where symptoms can be assessed in 

response to pharmacological intervention. 
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Ideally, all autonomic and ODSS data obtained from various clinical cohorts, along with healthy 

normative individuals should be combined to generate a database containing a range of symptom 

severities from no orthostatic symptoms (obtained from normative database) to severe 

orthostasis, possibly indicative of autonomic dysfunction (obtained from clinical samples). 

Finally, the overall goal of the ODSS should be to have it available to clinicians to help 

discriminate non-specific symptoms. 

8.2 Summary 

The results contained in the first half of this thesis build upon the foundation of knowledge 

surrounding the current understanding of the central autonomic network and the contributions of 

discrete cortical and subcortical structures in autonomic functioning. The novelty of the current 

thesis lies in its potential clinical impact regarding the understanding and assessment of NOH 

related to autonomic failure. Specifically, reduced activation in central autonomic structures 

along with reduced functional connectivity between the brainstem and central autonomic 

structures have not been previously investigated in patients with NOH related to autonomic 

failure. These findings add to the current understanding of pathophysiological mechanisms 

contributing to autonomic dysfunction and NOH. In addition, the findings surrounding reduced 

cerebellar activation and reduced cerebellar connectivity to the brainstem and central autonomic 

structures provide novel insight into the potential role of the human cerebellum in autonomic 

dysfunction (Chapters 3 & 5). The latter half of this thesis (Chapters 6 & 7) will have a direct 

clinical contribution to early identification of patients with NOH related to autonomic 

dysfunction based on symptom assessment. Overall, these studies build upon current autonomic 

research and provide a foundation that may help direct future research geared toward improving 

clinical assessment and understanding of NOH related to autonomic dysfunction. 
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Figure 8.1 Proposed model of cerebellar integration in autonomic control, autonomic failure 

and postural symptomatology. 

The cerebellum is established as a central component of both the vestibulo-sympathetic reflex 

and postural symptomatology. Therefore, future studies should investigate: 1) Whether 

patients with NOH and autonomic failure show impaired vestibulo-sympathetic reflexes, 

which may further contribute to reduced sympathetic responses while upright. 2) Whether 

cerebellar impairments in NOH patients correlate with the presence and/or severity of postural 

symptoms. 

 

Cerebellum graphic: https://icm-institute.org/en/actualite/channels-strike-again-a-common-

battle-for-axatias-and-epilepsy/ 

https://icm-institute.org/en/actualite/channels-strike-again-a-common-battle-for-axatias-and-epilepsy/
https://icm-institute.org/en/actualite/channels-strike-again-a-common-battle-for-axatias-and-epilepsy/
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