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Abstract 

Cable-stayed bridges are complex structures with several advantages such as aesthetical 

appeal, economic use of materials, and efficient construction method. Due to these 

advantages and the extensive knowledge gained from projects over the years, longer cable-

stayed bridges are being constructed. As span lengths increase, structures become more 

flexible, which makes the accurate evaluation of wind loads critically important in the 

design of cable-stayed bridges. A large number of variables are involved in the design of 

cable-stayed bridges. Those include overall geometric dimensions, cross-sectional 

dimensions, number of stay-cables and pre-tensioning forces to be applied to the cables. 

Taking all variables into account, and considering the need to conduct multiple moving 

load analyses and to calculate accurately aerodynamic wind forces, a design optimization 

process for such bridges becomes challenging. In this thesis, a numerical model capable of 

achieving this design optimization task is developed. The numerical model uses a structural 

system in which the deck is composite steel-concrete with two I main girder. The developed 

numerical model is based on the Finite Element Method (FEM), the Real Coded Genetic 

Algorithm (RCGA), and the Discrete-Phases Design Approach. The latter classifies 

variables into two categories: (i) main variables: number of stay-cables, I-girder inertia, 

concrete slab thickness, tower cross-section external dimensions, tower height above the 

deck; (ii) secondary variables: I-girder dimensions, stay-cable areas and pre-tensioning 

forces. The main variables are design variables optimized directly by the RCGA, while the 

secondary variables are indirectly optimized by the discrete phases. Buffeting wind loads 

are considered as equivalent static forces, which were validated through a theoretical-

experimental correlation. This powerful tool is used to assess the importance of considering 

truck versus lane loads, as well as wind buffeting loads and various aeroelastic instabilities 

in the design optimization process. Results show that the most critical load combination 

include the wind effect, and that the critical wind velocities of aeroelastic phenomena play 

a significant role for high values of basic wind speeds. 
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Chapter 1  

1 Introduction 

1.1 Cable-stayed bridges 

1.1.1 A brief history 

One of the first projects designed with features that resemble a modern-day cable-stayed 

bridge was dated in 1617 and attributed to Faustus Verantius. The bridge consisted of a 

timber beam deck suspended by inclined eye bars and a suspended cable in the middle as 

shown in Figure 1. 1(a) (Verantius, 1617 apud Svensson, 2012). Over one-hundred and 

fifty years later, the concept of considering only inclined stays in a cable-stayed bridge was 

developed for the first time by the German carpenter Immanuel Löscher in 1784. As shown 

in Figure 1. 1(b), the 44.3m cable-stayed bridge was conceived with all structural members 

– deck, stays and towers - constructed with timber. Although the structural designs for 

these two projects were completed, neither bridge was fully constructed as originally 

planned (Löscher, 1784 apud Svensson, 2012).  

In 1817 two Scottish ironworkers, James Redpath and John Brown, designed the first 

constructed permanent cable-stayed bridge. The Kings Meadow Bridge was constructed as 

a pedestrian walkway over the River Thames with stays made of iron wires (Figure 1. 2), 

and partially collapsed in the winter of 1822/1823 (Stephenson, 1821 apud Svensson, 

2012). It was later repaired by using an additional number of stays but failed again in 1954 

due to flood waters. Also in 1817, John and William Smith constructed the first bridge over 

the Tweed River in Scotland. This bridge had similar geometry to the Kings Meadow 

Bridge and shared the same fate as serious dynamic problems led to its collapse in 1818 

after a thunderstorm (Stephenson, 1821 apud Svensson, 2012). 

The accidents and collapses described previously (and many others) were due to the lack 

of knowledge of the real behavior of cable-stayed bridges and the availability of adequate 

materials to build the structural components. For these reasons, the development of cable-

stayed bridges was slow until the end of World War II when many bridges needed 

reconstruction following the war.  Advances in the technology of steel production made 
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cable-stayed bridges ideal for many of these projects because they have the advantages of 

efficient use of materials and high-speed construction. 

The Strömsund Bridge with central span of 182m, designed by the German engineer Franz 

Dischinger and constructed in Sweden in 1956, is considered by many authors as the first 

modern cable-stayed bridge. Although it contains a concrete roadway, the Strömsund 

Bridge is classified as steel bridge (rather than composite) because the concrete slab only 

distributes local wheel loads and is not integrated with the main steel girders (Figure 1. 3) 

(Wenk, 1954 and Ernst, 1956 apud Svensson, 2012). 

 

        

(a)                                                                    (b) 

Figure 1. 1: First bridges designed, but not constructed, with the concept of cable-

stayed bridge: (a) Bridge designed by Verantius in 1617 (Verantius, 1617 apud 

Svensson, 2012); (b) Bridge designed by Löscher in 1784 (Löscher, 1784 apud 

Svensson, 2012). 

 

 

Figure 1. 2: First proven constructed cables-stayed bridge: Kings Meadow Bridge, 

1817 (Stephenson, 1821 apud Svensson, 2012). 
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Figure 1. 3: First modern cable-stayed bridge: Strömsund, 1956 (Wenk, 1954 and 

Ernst, 1956 apud Svensson, 2012). 

 

1.1.2 Structural system 

In a cable-stayed bridge, the deck is supported at numerous points along its length by pre-

tensioning cables, in a way that the beam spans large distances without the need of 

intermediary rigid supports.  

The flow of forces in a cable-stayed bridge, in the static configuration due to dead loads 

and superimposed loads, is detailed in the Figure 1. 4 and shows that stay cables transfer 

their forces directly to the deck. The horizontal components are introduced to the deck as 

compression forces on the girders achieving maximum value at the position of the tower. 

This is explained by the fact that compression forces in the deck produced by the pre-

tensioned cables in the main and side spans act in opposite directions. The vertical 

components of the stay cable-forces are upward on the deck anchorages and downward on 

the towers anchorage, while the dead, superimposed and live loads act downward. 
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Figure 1. 4: Flow of forces in a cable-stayed bridge (Svensson, 2012). 

1.1.3 Structural components 

When a cable-stayed bridge is chosen to span over an obstacle, there is a vast number of 

possible geometric configurations that must be considered. These include, but are not 

limited to: (i) cable arrangement; (ii) type of deck cross-section; and (iii) shape of towers.  

When these three parameters are defined it is then necessary to determine: (i) number of 

cables, their cross-section areas and pre-tensioning forces; (ii) dimensions of the girder; 

(iii) thickness of the roadway slab; (iv) height of the towers; and (v) cross-section 

dimensions of the tower components. In addition, other parameters must be carefully 

adopted such as proportion between the side span and main span that should be selected in 

accordance with the terrain topography, width of the deck required for number of traffic 

lanes, and the support conditions. 

1.1.3.1 Cable arrangement systems 

Choosing a small number of stay-cables results in greater forces on the cables and 

consequently requires a complex anchorage system and robust beams to span the distance 

between anchorage points. A better and lighter structural system is achieved by increasing 

the number of stay-cables. This provides a uniform distribution of forces along the deck 

and eliminates the need for temporary cables during construction stages (Podolny, 1976). 

There are three basic types of longitudinal cable arrangements for cable-stayed bridges: 

fan systems, harp systems, and semi-fan systems as illustrated in Figure 1. 5. In the fan 

Bridge Beam 

 

Stay Cable 

 

Load 

 

Tower 

 

Tower 

Compression 
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arrangement system, all the cables are attached to a single point at the top of the towers. 

This is not a practical option because damage in one of the cables may destabilize the 

structure. For this reason, all cables should have individual anchorage points and be able 

to withstand additional forces until the problem is solved. In the harp arrangement system, 

cables are parallel and anchored equally spaced to the towers to distribute the forces. 

However, this means that increasing the number of cables requires higher towers to 

accommodate all anchorages. Finally, the semi-fan arrangement is an intermediate system 

between the fan and harp arrangements, that does not present the disadvantages previously 

mentioned. 

 

(a) Fan system 

 

(b) Harp system 

 

(c) Semi-fan system 

Figure 1. 5: Longitudinal cable arrangement systems (Svensson, 2012). 

The transversal cable arrangements can be single-plane or double-plane. In the single plane 

arrangement, cables are anchored under the roadway slab dividing it in the middle. This 

means they do not have transversal component forces and should only be used with box 

girder cross sections. For cross-sections with low torsional rigidity, such as thin concrete 
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beam cross-sections, double-plane arrangements are required to carry additional loads (ex. 

loads generated from asymmetric traffic of vehicles). 

1.1.3.2 Towers 

Given that towers are primarily subjected to compression forces, the most common and 

economic material to be used for their construction is concrete. The type of tower will 

depend mainly on the transversal arrangement systems as illustrated in Figure 1. 6. In 

addition, short and medium spans may have towers with vertical legs connected with cross 

beams, while long spans should have tower legs connected at the top to increase torsional 

rigidity (Podolny, 1976 and Svensson, 2012). 

 

(a) 

 

(b) 

Figure 1. 6: Tower shapes for (a) double-plane and (b) single-plane cable 

arrangements (Svensson, 2012). 
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1.1.3.3 Deck cross-sections 

Deck cross-sections are classified by the type of material used in the construction: concrete, 

steel, and composite steel-concrete (Podolny, 1976).  In addition, deck cross-sections may 

also be classified as a hybrid deck when the main and side spans have different materials. 

In this case, the main span is usually made of steel in order to be lighter in weight, and the 

side spans are in concrete and work as a counterweight to provide stability for the main 

span. Figure 1. 7 to Figure 1. 9 show some deck cross-section geometries that are used 

depending on the type of material. 

Besides the geometry, the value of the cable-stayed bridge main span has a direct relation 

to the type of material. Svensson (2012) compared deck costs for different main span 

lengths and concluded that concrete decks are the most economic for main span under 

400m, composite decks for main spans between 400m and 900m, and steel decks for main 

spans over 900m. Essentially, concrete decks are for short spans, steel decks are for long 

spans and composite steel-concrete are used for intermediate spans. These guidelines are 

exemplified by the record of longest main span of cable-stayed bridges (Table 1. 1) with 

530m, 616m and 1104m for concrete, composite and steel deck cross-sections, 

respectively. 

Considering the example of over 40 cable-stayed bridges constructed in the last 40 years, 

Table 1. 2 shows the relation between type of cross-section and main span size. To develop 

this relation, it was assumed that short and medium main span lengths are under 200m and 

450m, respectively, while long spans are over 450m. Importantly, it is necessary to 

emphasize that Table 1. 2 represents the most common situations observed in the literature 

and so unique cable-stayed bridges would not be covered in these relations.  Details of the 

bridges used in Table 1. 2 are presented in the Appendix A. 

Table 1. 1: Record main spans for cable-stayed bridges (Svensson, 2012; Pedro & 

Reis, 2016). 

Material Bridge Country Year Main Span (m) 

Concrete Skarnsundet Bridge Norway 1991 530 

Composite Erqi Yangtze River Bridge China 2011 616 

Steel Russky Island Bridge Russia 2012 1104 
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                                            (a)                                                    (b) 

 

(c) 

Figure 1. 7: Concrete cross-sections: (a) thin concrete beams (Koppel, 1984 apud 

Svensson, 2012); (b) 2 concrete girders (Leonhardt, 1980 apud Svensson, 2012); (c) 

box girder (Battista, 2011). 

 

 

Figure 1. 8: Composite steel-concrete cross-section: two main plate girders (Battista, 

2013). 

 

  

(a)                                                                    (b) 

Figure 1. 9: Steel cross-section: box girder (You et al., 2008 apud Svensson, 2012); 

two box girders (Morgenthal, 2008 apud Svensson, 2012). 



9 

 

Table 1. 2: Relation between main span length and cross-section material and 

geometry. 

 

 

 

 

 

 

 

1.1.4 Main characteristics 

The main goals in bridge design were listed in the following order of importance by Menn 

(1991): structural integrity and resilience, maintenance, economics, and aesthetics. While 

structural integrity, resilience, and maintenance are vital requisites for the design project, 

the costs and aesthetics are control criteria to define the geometry. In addition, the project 

must also consider the topography, geology, span length, clearance, design codes, and 

planned routes for the roadway or railway. 

After evaluating all the components of a cable-stayed bridge given in Section 1.1.3, as well 

as their structural system behavior provided in Section 1.1.2, one may state the following 

(Nazmy, 1990; Svensson, 2012; Troitsky, 1988; Podolny, 1976): 

 Cable-stayed bridges provide an efficient and economical use of materials because: 

(i) the cables subjected to tension are composed by multi-paralel strands formed by 

5 or 7 helical wires of 5mm diameter made of low relaxation high strength steel; 

(ii) the towers subjected to compression and bending moments are generally 

constructed with reinforced or prestressed concrete; and (iii) there are many 

alternative design solutions for the deck cross-section.  

Material Geometry 
Main Span Length 

Short Medium Long 

Concrete 

Thin concrete beams ✓   

2 concrete girders ✓ ✓  

Box girder  ✓  

Composite 

2 plate girders ✓ ✓ ✓ 

3 plate girders  ✓  

4 plate girders  ✓  

Truss deck  ✓  

2 box girders   ✓ 

Hybrid   ✓ 

Steel 
Box girder  ✓ ✓ 

2 box girders  ✓ ✓ 
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 Cable-stayed bridges result in reduced bending moments on the deck because the 

girders work as a continuous supported beam and due to the flow of loads on the 

deck, bending moments along the girders are minimized. 

 

 Cable-stayed bridges have an efficient construction method. The balanced 

cantilever construction method widely used for cable-stayed bridges eliminates the 

need for temporary supports because the flow of loads is the same during 

construction and in the completed structure. Conversely, temporary supports may 

be needed in construction of long span arch bridges which are not stable during 

erection and also of suspension bridges. 

 

 Cable-stayed bridges have greater stiffness than suspension bridges. This is because 

the main cables of a suspended bridge find equilibrium by small increases in cable 

stress, while cable-stayed bridges always have cables stresses increased 

substantially to support the applied load. Consequently, the frequencies of cable-

stayed bridges tend to be higher than suspension bridges. 

 

 Cable-stayed bridges have an aesthetical appeal due to the variety of cable 

arrangements and towers, slender decks and large spans with reduced number of 

supports. 

Despite all these advantages, the combination of long spans with light and slender decks 

increases the flexibility of cable-stayed bridges. Consequently, these bridges are highly 

susceptible to environmental loads (such as wind and rain) and traffic loads. 
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1.2 Optimization of cable-stayed bridges 

1.2.1 Significance 

As detailed previously in Section 1.1, the construction of cable-stayed bridges involves 

choosing one of many deck cross-section options, towers shapes and cable arrangements. 

In this way, the optimization of cable-stayed bridge is important not only economically, 

but also to exploit new possibilities.  

Regarding the economical perspective, optimization aims to identify the optimum 

geometry to fulfill all the requisites from the Ultimate Limit State and Serviceability Limit 

State as well as to provide the lowest cost. Regarding the new possibilities, optimization 

offers the opportunity to fix certain parameters (ex. ratio between tower and main span, 

ratio between deck depth and main span length, etc.) to check if they result in feasible 

design solutions.  

The optimization of cable-stayed bridges may be classified into three different levels: 

1. Optimization of stay-cable pre-tensioning forces: The optimum distribution of 

cable pre-tensioning forces corresponding to the complete bridge affects the 

structure stiffness and is paramount to a successful project design.  

2. Optimization of some geometries together with cable pre-tensioning forces. At this 

level, general features of the bridge have already been defined, such as span lengths, 

deck material and cross-section type, shape of the towers, cable arrangements, etc. 

The remaining parameters to be optimized are: thickness of slab, dimensions of 

main girders, dimension of tower cross-sections, number of stay cables, stay-cables 

cross-sectional areas, and pre-tensioning forces. 

3. Optimization of all bridge features: (i) number of spans and towers; (ii) constraints; 

(iii) material and type of deck cross-section; (iv) material, shape, and height of 

towers; (v) longitudinal and transversal arrangement of cable system; (vi) number 

of stay-cables; (vii) quantity of strands and pre-tensioning forces of each stay-cable. 
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1.2.2 Literature review 

The main studies found during the literature review for this thesis are presented below 

according to the classifications levels introduced in Section 1.2.1. No example of cable-

stayed bridge level 3 was found in the literature. 

1.2.2.1. Level 1 optimization of cable-stayed bridges 
 

 Shape Finding Procedure / Zero Displacement Method 

Wang et al. (1993) developed a procedure for calculating the pre-tensioning forces of 

cable-stayed bridges that attend deck displacements requirements. In this procedure, two-

dimensional finite element models that consider cable-sag, beam-column, and large 

displacement non-linear effects are were developed. All bridge materials were considered 

to behave linearly. The Newton Raphson Method was chosen to iteratively determine the 

equilibrium configuration of the cable-stayed bridge models under the action of deck dead 

loads and pre-tensioning stay-cable forces. 

In the first step, stay-cables pre-tensioning forces are set equal to zero, which results in 

very large displacements and bending moments values. The second step considers the 

deformed shape and cable pre-tensioning forces obtained in the first step. The deck 

displacements at control points (nodes of stay-cable anchorage at the deck) obtained from 

the second step are compared to the tolerance to check if convergence is achieved (Equation 

1.1). This procedure is repeated until the tolerance (ϵ� is attended. 

9:;<=;>?@AB 3? >AB?CA= DA@B?
ED3B 9 ≤ G                                    (1. 1) 

 

When convergence is achieved, the pre-tensioning forces of stay-cables for the deck self-

weight are determined. The authors showed that the Shape Finding Procedure converted 

monotonously for three cable-stayed bridge examples: (i) unsymmetrical; (ii) symmetric 

harp; and (iii) symmetric radiating.  The Shape Finding Procedure is also called Zero 
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Displacement Method because the objective of the problem is to minimize displacements 

at the control points. 

 

 Force Equilibrium Method 

Instead of minimizing displacements, Chen et al. (2000) minimized the bending moments 

diagram by considering a three-stage method. To establish the target bending moments 

vector HI0J due to dead load, the first stage considers only the deck by substituting the 

tower and cables by rigid supports.  

In the second stage, bending moments vector HI:J due to dead loads are obtained 

considering a model of the deck and tower, whereas the cables are substituted by internal 

forces. The matrix KLM of influence and initial pre-tensioning forces vector HN0J were also 

calculated in this stage: 

HI0J = KLMHN0J + HI:J                                         (1. 2) 

HN0J = KLMQRHI0J − HI:J�                                    (1. 3) 

where HI0J is the target bending moments vector obtained from the first stage; KLM is a 

NxN matrix of T@, coefficients; T@, is the ith control section bending moment due to a 

unit force applied at the jth stay cable; HI:J is the bending moments vector due to dead 

loads from the second stage; HN0J is the initial vector of pre-tensioning forces. 

In the third stage, the same second stage FEM is considered, and the initial estimate of 

cable forces HN0J is used as input to calculate the new deck bending moments vector HIUJ. 

Adjustments of cable forces HVNUJ are calculated as follow: 

HVNUJ = KLMQRHIUJ − HI0J�                                    (1. 4) 

HNUJ = HN0J + HVNUJ                                             (1. 5) 
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where HNUJ is the vector of pre-tensioning forces obtained from the first iteration of the 

third stage. This procedure is repeated until the updated deck bending moments vector 

HIWJ of the kth iteration converge to the target bending moments HI0J by the tolerance X. 

‖HIWJ − HI0J‖ < X                                           (1. 6) 

Chen et al. (2000) evaluated 2D linear-elastic structure behaviour of cable-stayed bridges 

with three different deck vertical profiles and compared to the Zero Displacement Method 

from Wang et al. (1993). The authors demonstrated that for bridge deck with a vertical 

slope the Force Equilibrium Method is preferred. 

 

 Unit Load Method 

Janjic et al. (2003) developed the Unit Load Method with experience acquired in the 

Uddevalla cable-stayed bridge (Sweden) design project. Similar to the Force Equilibrium 

Method presented by Chen et al. (2000), the Unit Load Method also considers bending 

moments as constraints. Janjic et al. (2003) concisely described the method by the equation 

below: 

�[ = �\[ + ∑ � _̂[ . )aBabU                                         (1. 7) 

where �[ is the desired moment distribution at the kth control point; c is the total number 

of control points for which the desired bending moments are known;  �\[ is the bending 

moment due to dead loads at the kth control point;  � _̂[ is the bending moment at the kth 

control point due to a unit load applied to the mth stay-cable; )a is the unknown 

multiplication factor, i. e. the mth stay-cable pre-tensioning force. The �\[ and � _̂[  

variables are calculated through a FEM that includes deck, towers and stay-cables. 
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 Two-step Method 

Lee et al. (2008) applied the Unit Load Method to the Wando cable-stayed bridge (Korea). 

According to the authors, the cable forces and bending moments obtained were not well 

distributed due to the lack of symmetry in the structure. Besides that, the authors obtained 

stay-cables forces that were exceeding maximum working load values. To avoid increasing 

the cable cross-section areas, the authors added a new step to the Unit Load Method. In 

this new step, an additional constraint related to the lower and upper bound of stay-cable 

forces is added and the Unit Load Method becomes the Two-step Method. 

 

 B-spline Method 

Hassan et al. (2012) observed that the distribution of cable pre-tensioning forces along the 

spans, provided by Simões & Negrão (2000), Chen et al.  (2000) and Lee et al. (2008), 

follow an arbitrary polynomial function. According to the authors, B-spline curves were 

chosen for representing the pre-tensioning forces distribution because they are able to 

represent complex curves with low degree polynomials. The pth degree B-spline curve 

were presented in Hassan et al. (2012) work as follow: 

 �d� = ∑ e@,Dd�f@B@b0 ;    0 ≤ d ≤ 1                                      (1. 8) 

e@,0d� = j1 kl d@ ≤ d ≤ d@mU0 n�ℎpqrksp                                              (1. 9) 

e@,Dd� = �Q�t�tuvQ�t e@,DQUd� + �tuvu#Q�
�tuvu#Q�tu# e@mU,DQUd�                          (1. 10) 

- = w0, … ,0yz{
DmU

, dDmU, … , daQDQU, 1, … ,1yz{
DmU

|                                    (1. 11) 

T = c + } + 1                                                    (1. 12) 

where �d� is the B-spline curve; d is the independent variable; c + 1� is the number of 

control points; f@ are the control points; } is the basic function degree; e@,Dd� are the pth 
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degree B-spline basis functions; - is the knot vector with T + 1� elements. The horizontal 

coordinate (~) of the control points represents a deck side span or half of the main span, 

while the vertical coordinate (�) characterizes pre-tensioning forces.  

The optimization of pre-tensioning stay-cable forces was obtained by combining B-spline 

curves, finite element modelling and real coded genetic algorithm. The three-dimensional 

finite element models considered cable sag, the P-V and the large displacements nonlinear 

effects. The optimization of pre-tensioning forces was obtained under the self-weight of 

deck and towers, considering as constraints the vertical deflection of the deck and the 

horizontal deflection of the towers. The authors expressed the objective function by the 

equation below: 


 = �XU� + X�� + ⋯ �:;>W + XU?� + X�?� + ⋯ �?A+;CE                  (1. 13) 

where 
 is the objective function; X@is the vertical deflection of the ith deck node; X,,?is the 

longitudinal deflection of the jth tower node. 

Hassan et al. (2012) considered the optimization of pre-tensioning stay-cables forces for a 

symmetric cable-stayed bridge with composite steel-concrete two I-girder deck, H-shape 

towers, and semi-fan double plane cables arrangement. An example with total number of 

stay-cables equal to 80, being 10 cables in one plane of the side span or half of the main 

span was evaluated. Among other solutions, two cases were compared: (i) optimization 

considering the concept of B-spline curves; (ii) direct optimization of pre-tensioning stay-

cable forces. 

As the bridge is symmetrical, a total of 20 pre-tensioning forces were optimized in the 

second case. For the first case, the authors considered four control points c + 1 = 4�. The 

horizontal coordinate of the first and forth control points that represent the beginning and 

end of the side span or half of the main span are known. Again, considering symmetry, 12 

variables were optimized. Results showed that the first case presented more uniform 

distribution of pre-tensioning forces and exemplified the efficacy of the B-spline curve 

method. The authors also conclude that cable sag effect was the only source of non-linearity 

that slightly contributed to the results. 
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1.2.2.2. Level 2 optimization of cable-stayed bridges  
 

 Entropy Based Optimization Method 

Simões & Negrão (1994) developed a multi-objective optimization method for determining 

sizing and geometric variables of a cable-stayed bridge constituted by a steel box girder 

deck cross-section, H-shape towers with steel box section, and semi-fan cables 

arrangement. The vector of sizing variables (�) included distance between pier and cable 

anchorages and height of the first stay-cable at the tower. The geometric variables vector 

(�) consisted of equivalent plate thickness of tower elements, equivalent plate thickness of 

the upper and bottom flanges of main girder elements, and cross-sectional area of each 

stay-cable. The constraints included stay-cables cost, lower limit of sizing variables, lower 

and upper limit of geometric variables, spacing between cables and strength requirements. 

In comparative analysis performed by the authors, they concluded that the P-V and the 

large displacement nonlinear had less than 1% effect when compared to linear analysis and, 

thereby, they recommended disregarding these effects. The non-linear axial force 

elongation of the cables was expected to be very small and consequently disregarded. The 

material behavior of the structural steel was assumed linear elastic. The modelling of the 

cable-stayed bridges was accomplished through a two-dimensional finite element model. 

Regarding the loads, dead loads were evaluated in the erection stage analysis, while dead 

and uniform live loads were considered in the service stage analysis. 

The method presented by Simões & Negrão (1994) determines the variables (� and � 

vectors) that minimize all goals by using a minimax optimization problem. The minimax 

was solved indirectly by minimizing a continuously differentiable function based on 

entropy. This technique measures the amount of disorder in a system, with a small value 

indicating that the solution is in order. The unconstrained and differentiable equation 

solved by the optimization method is presented below. 

�kc �U
�� �cj∑ p���(�,���,bU,� �                                          (1.14) 
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where � are constraint functions; and � is the control parameter that has to be increased 

through the iterations. As stresses are obtained numerically throughout the analysis, the 

Taylor series is applied for providing explicit algebraic form. Pareto solution was also 

applied for determining the minimum solution that attends both objectives. 

Simões & Negrão (2000) used the Entropy Based Optimization Method for optimizing a 

steel box-girder deck cable-stayed bridge with goals of cost, strength requirements and 

displacements. The three-dimensional finite element model considered plate membrane 

elements for representing the deck. The variables included equivalent thickness of top, 

bottom and side plates of the box-girder in different parts of the bridge, length, width, and 

thickness of towers below and above the deck, cross-sectional area of cables, pre-

tensioning forces of cables, and cable anchorages positioning at deck and towers. The 

completed bridge configuration was evaluated due to dead loads, uniform live loads, and 

uniform lateral wind loads at the deck. The sag effect of the cables was the only source of 

non-linearity considered in the optimization process, through the use of Ernst modulus of 

elasticity.  

 

 Power Search Optimization Methodology 

Neves (1997) applied a multi-objective nonlinear programming optimization method to the 

design procedure of cable-stayed bridges. Power search routines to find optimal Pareto 

solutions were employed within the formulation of the multi-objective problem. A three-

dimensional finite element modelling of the structural system was used within the 

framework to reach an optimized solution for the completed bridge structure as well for 

the construction stages. 

The optimization process considered cable sag, beam column and large displacements 

nonlinear effects and aimed to minimize: (i) displacements, shear and bending moments in 

towers and deck, (ii) stay-cable cross-section areas and stresses in all elements, (iii) 

geometric deviations of deck grade during construction stages, and (iv) overall weight. The 

variables optimized included: (i) stay-cables quantity, cross-section areas, and pre-
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tensioning forces, (ii) I-girder composite deck or box girder deck dimensions, and (iii) 

height of towers and cross-section dimensions. 

 

 Powell’s Direct Search Method 

Long et al. (1999) optimized composite box girder cable-stayed bridges to minimize cost 

of the structure by applying the Powell’s Direct Search Method, which does not make use 

of the functions derivatives. Two-dimensional finite element models considered non-

linearity effects and optimized the final configuration of the structure under the action of 

dead and live loads. Optimized design variables included: (i) thickness of concrete slab, 

(ii) width and thickness of flanges and webs of the steel box girder, (iii) dimensions and 

spacing of stiffeners, (iv) area of stay-cables cross-sections, and (v) towers dimensions. 

 

 Hybrid Genetic Algorithm (GA) and Support-vector Machine (SVM) Method 

Although the GA is very efficient for finding global optimum, it may require a large 

number of analyses. By considering the extra analysis due to the nonlinearities, the 

optimization becomes impractical due to the high computational cost. In order to consider 

the nonlinear effects in the cable-stayed bridge optimization process, and at the same time 

to avoid the massive number of analysis, Lute et al. (1999) proposed a hybrid GA and SVM 

method.  

SVM is a supervised machine learning algorithm that generalizes the input/output relation 

of experiments (also called training set) in order to predict unseen examples. The inputs 

are the side to main span ratio, tower height to bridge length ratio, girder top and bottom 

flange widths, girder overall depth, tower box width and depth, and cables diameter. The 

corresponding outputs are maximum vertical girder deflection, maximum longitudinal 

tower deflection, maximum girder positive and negative bending moments, maximum 

girder compression force, maximum tower moment, and maximum stay-cable force. The 

authors evaluated around 4,000 FEM with different values of input, and the outputs were 
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obtained through ANSYS analyses. The inputs described above are considered design 

variables, while the outputs are used for calculating constraint functions. These functions 

are related to the strength of cables, stiffness of deck and towers, and stability due to critical 

buckling load. The overall objective is to obtain the minimum material cost. 

The framework proposed by Lute et al. (1999) has two main phases. In the first phase, 

training data is generated via ANSYS, and posteriorly SVM is used as a regression 

machine. In the second phase, GA and SVM are used together for the optimization. While 

GA generates random design variables, apply operators and calculate fitness values, the 

SVM predicts outputs based on the same probability distribution as the training data. Two-

dimensional box-girder deck cross-section cables-stayed bridges with fan cable 

arrangement were considered considering total length ranging from 300 and 500m. The 

comparisons between outputs obtained by SVM and ANSYS provided less than 5% error. 

According to the authors, results showed that the hybrid GA and SVM method is efficient 

computationally and can be used for preliminary design of cable-stayed bridges. 

 

 Surrogate function Method 

Hassan et al. (2013a), continuing their work described above as B-spline Method (Hassan 

et al., 2012), developed surrogate polynomial functions for evaluating pre-tensioning 

cable-forces in semi-fan cable-stayed bridges under the action of dead loads. This way, 

during the optimization of bridge geometric variables, the pre-tensioning forces are directly 

estimated through surrogate functions instead of being considered as design variables. 

In order to minimize the deflections at the deck and towers, Hassan et al. (2013a) 

considered that the follow main variables for the optimization of pre-tensioning cable 

forces: the number of stay-cables, main span length, and height of the towers. The authors 

adopted the ordinary least square method (OLS) as the technique of fitting data, responsible 

for determining the regression coefficients that compose the surrogate polynomial function 

of the pre-tensioning stay-cable forces. The vector of stay-cable forces was defined as 

follow: 
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�×U = )�×D�D×U + ��×U                                           (1.15) 

where e is the number of stay-cables, 
�×U is the vector of stay-cable pre-tensioning 

forces, } is the number of constants that compose the surrogate function, )�×D is the matrix 

of constants, �D×U is the vector of unknown parameters to be determined from the 

regression analysis, ��×U is the vector of independent random variables with expectation. 

The constants depend on the following parameters: (�U) the ratio of main span length and 

the total length of bridge, (��) the ratio of the upper strut height of tower and the total 

length of bridge, (��) the total length of the bridge divided by 1000.  

A total of 1800 bridges covering different number of cables and parameters (�U, �� and ��) 

were analyzed in a parametric study performed by the authors. The stay-cable pre-

tensioning forces of each one of these bridges were optimized to minimize deck and towers 

deflections. The adequacy of the surrogate functions was proved by comparing the results 

with pre-tensioning forces obtained through surrogate functions to “exact solutions”. The 

latter solutions were obtained via finite element analysis and RCGA optimization as 

described by the B-spline Method (Hassan et al., 2012). The coefficients obtained through 

the parametric study were stored in a built-in library of the optimization program. 

Hassan et al. (2013b) optimized two I-girder composite cable-stayed bridges with semi-

fan cable arrangements. The considered design variables were: (i) number of stay-cables 

and their diameters, (ii) main span length, (iii) height of the tower upper strut, (iv) thickness 

of concrete slab and I-girder dimensions, (v) depth, width, and thickness of tower cross-

section. The pre-tensioning forces were estimated using the surrogate polynomial functions 

developed by Hassan et al. (2013a). Dead load, uniformly distributed live load, and mean 

wind loads at the deck were applied to the FEM. The structures were optimized using 

RCGA with the objective of minimizing the total cost of the structure. 

1.2.2.3. Optimization of other types of cable-supported bridges 

Studies have also been dedicated to the structural optimization of arch bridges and 

suspended bridges. Lonetti et al. (2014a) proposed a two-step interaction algorithm for the 
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optimization of the cable system of hybrid cable-stayed suspension bridges with the 

objective of minimizing the amount of steel used in the cable system. The first iteration 

considers an initial configuration based in practical rules. In the first step, the FEM is 

assessed under the action of dead loads in order to evaluate the cables cross-sectional areas 

and post-tensioning forces. In the second step, live load analysis is performed and the 

maximum stresses of the cable elements are determined. If the tolerance conditions are not 

satisfied, a new iteration is performed considering the updated stresses. Lonetti et al. 

(2014b) performed a parametric study applying the two-step iteration algorithm verifying 

the convergent behaviour of the method.  

Regarding arch bridges, Bruno et al. (2016) presented a Three-steps algorithm model for 

the optimization of hangers with multiple intersections (network) of arch bridges. The 

hanger post-tensioning forces are calculated in the first step, while in the second step the 

hangers, the arch and girder cross-sections are evaluated. In the third and last step, the 

tolerance conditions are checked. If these tolerances are not satisfied the variables are 

updated and a new iteration is performed. 

 

1.3 Research Objectives 

The subject of this thesis is level 2 (stay-cables pre-tensioning forces and geometric 

variables) optimization of highway composite steel-concrete two I-girder cable-stayed 

bridges considering the action of dead, live and wind loads. 

Similarly to Hassan et al. (2013b), the RCGA is used for the structural optimization of 

cable-stayed bridges. The aim objective is to develop an optimization procedure that 

performs truck moving load and buffeting wind forces evaluation with a reduced number 

of design variables in order to avoid excessive computational effort. The resulting 

procedure called Discrete Phases Approach is based on classifying the variables to be 

optimized into two categories; main and secondary variables. Instead of the secondary 

variables being considered as design variables for the RCGA, they are optimized indirectly 

by the discrete phases. 
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1.3.1 Methodology and Relevance 

Optimization of cable-stayed bridges is a powerful tool for design because it provides the 

optimum solution from the structural and economic points of view. This optimization will 

focus on medium span cable-stayed bridges (rather than long span bridges) because longer 

bridges have challenges that may require unique solutions.  

Considering the background information presented in Section 1.1, composite steel-

concrete cross section is one of the best options for medium span cable-stayed bridges.  

This is because steel girders are lightweight and offer high strength, while the concrete slab 

improves deck resistance to axial loads and provides a proper platform for vehicles or 

trains. The record main span for this type of bridge was established in 2011 by the Erqi 

Yangtze River Bridge in China, which has 616m of main span and two-plate girder cross-

section. According to Pedro et al. (2016), the competitiveness of composite cable-stayed 

bridges is explained by two facts: (i) the cost of the deck per square metre does not show 

great sensitivity to span increases, (ii) none of the bridge’s main components – deck, towers 

or cables – have reached their limit application. Given these facts, the following work is 

focused on a two I-girder composite steel-concrete cable-stayed bridge with semi-fan 

double plane cable configuration and H tower shape.  

In the literature review presented in Section 1.2 for level 2 optimization of cable-stayed 

bridges, one may observe that previous efforts have considered live loads as a simple 

uniform distributed load and wind loads as basic mean wind loads. Given that engineers 

are adopting thinner and lighter decks, a deeper analysis of dynamic loads (specifically live 

and wind loads) is essential for the design and optimization of cable-stayed bridges. 

In this study, live loads, truck and lane loads are evaluated according to the Canadian 

Highway Bridge Design Code. The envelope of displacements and internal forces are 

calculated by considering different configurations of loading on the main and side spans. 

For each configuration, several analyses will be done to consider the five truck axles 

moving along the roadway. 
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For the wind loads, critical wind speeds for aeroelastic phenomena will be investigated. 

Once the structure is considered stable, emphasis is put in the buffeting phenomenon. 

According to Davenport (1966), buffeting loads lead to the estimative of envelope of 

maximum bending moment and shear force, and, consequently have an important role in 

determining the dimensions of structural components in the optimization process. 

A Discrete Phases Approach is developed for performing the design and verification of 

finite element models in this study. The different phases that compose the approach are 

responsible for: (i) calculating deck I-girder dimensions, (ii) determining stray-cable cross-

sectional areas, (iii) calculating pre-tensioning stay-cable forces, (iv) computing live loads, 

(v) performing free vibration analysis, (vi) estimating wind loads acting on the structure, 

(vii) assessing critical wind velocities due to aeroelastic phenomena such as flutter, 

torsional divergence and vortex shedding, (vii) and checking the design criteria to attend 

the Ultimate Limit State and Serviceability Limit State. The considerable advantage of the 

Discrete Phases Approach is the ability of adding new phases in the future for considering 

further effects. 

1.3.2 Organization of the Thesis 

Chapter 2 provides the optimization of composite concrete-steel two I-girder cable-stayed 

bridge considering the action of dead, superimposed and live loads. The structural 

optimizations are performed using RCGA to minimize the deck weight or the material cost 

of deck, towers and stay-cables. In this chapter, the methodology for design and 

verification denominated Discrete Phases Approach is introduced and explained in details. 

The following main design variables are directly optimized through the RCGA: (i) number 

of cables, (ii) deck I-girder inertia, (iii) deck concrete slab thickness, (iv) tower cross-

section external dimensions, and (v) tower height above the deck. The following secondary 

variables are optimized by the discrete phases: (i) deck I-girder dimensions, (ii) stay-cable 

cross-section areas and pre-tensioning forces. The influence of considering truck 

concentrated loads together with lane uniformly distributed loads in the live loads analysis 

is assessed, and parametric studies are performed to evaluate the integrated behavior of 

number of cables, deck inertia, and tower height.  
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Chapter 3 presents a comparison between theoretical and experimental approaches to 

validate the mean and buffeting wind load analysis implemented in the numerical tool. The 

theoretical approach is mainly function of: (i) coefficients obtained from wind tunnel 

sectional model tests, (ii) equivalent static forces due to buffeting loads based on Davenport 

and King (1984) and implemented in the numerical tool, and (iii) a finite element model of 

the cable-stayed bridge. The experimental approach is based on the results from a full 

aeroelastic model, tested in wind tunnel, of the same bridge investigated in the numerical 

approach. The results show a good agreement between the theoretical and experimental 

approaches, allowing the validation of the theoretical approach that is later used in Chapter 

4.  

Chapter 4 provides the optimization of composite concrete-steel two I-girder cable-stayed 

bridge considering the action of dead, superimposed, live, and wind loads. Similar to 

Chapter 2, the structural optimizations are performed based on FEM, RCGA, and on the 

Discrete Phases Design Approach. For considering the action of mean and buffeting wind 

loads, three discrete phases are added to the numerical tool presented in Chapter 2. These 

discrete phases are responsible for: (i) determining the deck modes of vibration and their 

respective frequencies, (ii) performing the theoretical approach, validated in Chapter 3, for 

the calculation of  displacements and internal forces due to the mean and buffeting wind 

loads, (iii) checking the critical wind velocities for aerodynamic phenomena in order to 

assure that the structure is stable. Three different basic wind speeds are considered for 

studying the connected behavior of structural elements. The results show the importance 

of considering not only wind loads, but also of evaluating critical wind velocities in the 

structural optimization process of cable-stayed bridges. 

Chapter 5 summarizes the main analyzes performed in the data chapters and the most 

significant conclusions drawn for the exploration of their results. With the intention of 

continuing and complementing the work presented in this thesis, suggestions for future 

works are presented. 
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Chapter 2  

2 Structural optimization of two I-girder composite cable-
stayed bridges under the action of dead and live loads 

2.1 Introduction 

Cable-stayed bridges have several advantages over comparable designs (Podolny et al. 

1976; Troitsky 1988; Svensson 2012; Pedro and Reis 2016) as they (1) span large distances 

without the need of intermediary supports; (2) have reduced bending moments at the deck 

and superior rigidity compared to suspension bridges; (3) have an aesthetic appeal. In 

addition, their construction can be economical through the use of the free cantilever 

method. In particular, steel-concrete composite cable-stayed bridges offer an efficient use 

of materials. The concrete slab provides a good surface for the roadway and works well in 

resisting the axial compression imposed by the stay-cables, while the steel girders provide 

flexural strength.  

On the other hand, cable-stayed bridges are complex structures due to the distribution of 

forces among the structural elements; deck, stay-cables and towers. The stay-cable pre-

tensioning forces play an important role in the behavior of the bridges. As such, many 

studies have been directed towards to the optimization of the stay-cable pre-tensioning 

forces. Wang et al. (1993) proposed a procedure for finding the initial shape of cable-stayed 

bridge due to dead loads of the deck and pre-tensioning forces of the cables. The procedure 

uses Newton-Raphson iteration method to obtain vertical displacements of deck control 

points that satisfy the convergence tolerance. Chen et al. (2000) proposed the force 

equilibrium method, which considers bending moments as parameters to be controlled 

rather than the displacements. Janjic et al. (2003) proposed the unit load method, which 

also considers bending moments as parameters of control, and the expanded unit load 

method that includes constructions stage analysis and time-dependent material behavior. 

Lee et al. (2008) proposed the two-step approach that is based on the unit load method. 

Beside the displacement constraints of the unit load method, there are also constraints for 

the cables forces to find the optimum pre-tensioning forces for asymmetrical bridges under 

construction. Hassan et al. (2012, 2013a) proposed an approach that combines the finite 
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element method, the B-spline function, and the Real Code Genetic Algorithm to determine 

the optimum distribution of stay-cables forces for the final configuration of the bridge. The 

authors noticed that the stay-cables pre-tensioning forces may be described by a high order 

polynomial function with a large number of coefficients. B-spline function which uses low-

degree polynomials for representing complex functions is then applied to describe the pre-

tensioning forces function (Hassan et al., 2012). The same authors proposed surrogate 

polynomial functions to evaluate stay-cables forces that depend on the bridge geometry 

and the number of stay-cables. They stored those functions as a database in a design 

optimization Software. 

In relation to the optimization of the dimensions of the structural elements, Simões and 

Negrão (1994) and Negrão and Simões (1997) adopted an entropy-based approach to solve 

a multi-objective problem, and to determine optimum variables like distance between 

cables anchorages and deck girder dimensions under dead and lane live load. Hassan et al. 

(2013b, 2014) optimization of composite steel-concrete cable stayed bridges. The 

independent variables considered were: (i) the six dimensions that define the deck I-girder 

geometry, (ii) number of stay-cables, (iii) cross-sectional area of stay-cables, (iv) tower 

height, and (v) tower cross-section dimensions. The pre-tensioning cable forces were 

determined by using surrogate polynomial functions developed by Hassan et al. (2013a). 

Their numerical tool involved the use of the Finite Element Method (FEM) to discretize 

the structure and predict it structural performance and the Real Coded Genetic Algorithm 

(RCGA) technique as the optimization tool. The structural analysis/optimization numerical 

model accounted for the effects of dead load, lane live load, and mean wind load.  

Because of the large number of variables included in the optimization scheme adopted by 

Hassan et al. (2013b), it is almost impossible to consider the moving traffic load as well as 

to conduct dynamic analysis under wind loads using this model. 

In this chapter, a procedure is developed to optimize the design of cable-stayed bridges and 

obtain optimum dimensions and cable pre-tensioning forces. The procedure developed in 

this chapter is also based on the FEM and RCGA methods. The design variables are divided 
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to main and secondary variables and the optimization procedure is accomplished through 

five consecutive phases. 

The chapter starts by introducing the developed Finite Element/optimization procedure 

including a description of the five analysis phases. In order to illustrate the procedure, a 

case study for the design optimization of a cable-stayed bridge is considered under two 

different objective functions. 

The research significance of this study and the main advantages of the 5-Phase approach 

compared to Hassan et al. (2013b) can be stated as follows: 

1. The 5-Phase approach considers dead and live loads in the final configuration of 

the cable-stayed bridge. The way the numerical tool is structured, other phases can 

be easily added by considering construction stages or other loads such as wind and 

earthquake during the optimization process, to become a 6, 7, and/or 8-Phase 

strategy.  

 

2. In Phase-1, the optimization of the steel I-girder is accomplished by using only one 

design variable (inertia about major axis) instead of optimizing all six dimensions 

that define its geometry. This and also the determination of the stay-cables areas in 

Phase-2 reduce considerably the number of design variables, decrease the number 

of samples required to obtain a reliable optimal solution, and substantially reduce 

computational time required to perform the analyzes. 

 

3. In Phases-2 and 3, the unit force method (based on Janjic et al. 2003) can be used 

to determine pre-tensioning forces for both the final configuration and different 

stages of construction (Lee et al. 2008). Although the unit force method requires 

computational time to generate an influence matrix, once the method is 

implemented in the numerical tool, it can be used for any configuration of bridge, 

and there is no need to generate a new database if the bridge characteristics are 

changed. 
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4. A comparison between optimal solutions for the structural optimization considering 

dead plus live loads and dead load only is performed to estimate the significance of 

taking live loads into account in the optimization process of a cable-stayed bridge 

considered as a study case. 

 

5. A correlation between the optimal solutions considering truck plus lane live load, 

and lane live load only is executed to assess the importance of considering the truck 

in the analyses. 

 

6. Two design objective functions are evaluated separately and then compared. 

Objective-1 obtains the lightest deck that attends all design constraints, while 

Objective-2 determines the lowest material cost of all structural elements. 

 

2.2 Description of numerical tool 

The study considers composite steel concrete cable-stayed bridges with two steel I-girders 

deck, H-shaped towers, and intermediate fan-harp system arranged in two outer plans. 

Figure 2. 1 shows all the dimensions that describe the bridge. The dimensions shown in 

bold are those considered as variables in the optimization scheme. The other dimensions 

are kept constant and are defined by the user. Those are the total length of the bridge (L), 

the middle span (L1), the side span (L2), and the tower height below the deck (Hb), which 

are governed  by the topography and navigation conditions. The width of the deck including 

the distance between barriers are also kept constant as they are governed by the traffic 

requirements and the number of lanes. It should be mentioned that the number between 

parentheses in Figure 2. 1 correspond to the values of the fixed dimensions considered in 

the case study example reported later. The cross-section of the tower is assumed to be a 

hollow reinforced concrete box, with the thickness of the section taken as a ratio of the 

outer dimensions as shown in Figure II. 1.c. 

The I-girder area depends on six dimensions (b1, t1, b2, t2, D, w) considered in this study 

as secondary variables. Instead of optimizing the six I-girder dimensions, the I-girder main 

inertia is optimized in order to minimize its area. The other secondary variables are the 
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cables pre-tensioning forces and cross-sectional areas, which are easier to be determined 

when the deck and towers cross-sections are already defined. Otherwise, a great number of 

samples are necessary for obtaining the optimum area and pre-tensioning force for each 

one of the stay-cables. The accurate prediction of those pre-tensioning forces is important 

in order to achieve small displacements and well distributed moments at the deck and 

towers. As such, there are six main variables to be optimized, which are: 

(1) Total number of cables (2x4xN), where N is the number of cables in the side spans 

(or in half of the main span) in one plan of cables; 

(2) Moment of inertia (I) of the deck steel I-girder about its major axis; 

(3) Thickness of concrete slab (tc); 

(4) Height of the tower above the deck level (Ha); 

(5) External dimension of the tower cross-section in the longitudinal direction (TL1); 

(6) External dimension of the tower cross-section in the transverse direction (TL2). 

While (2) and (3) define the deck total area and inertias, (1) and (6) define the towers total 

height that together with (4), (5) determine the towers longitudinal and transversal 

stiffnesses. For example, if the number of cables increases, the tower stiffness is changed 

and the deck inertia may be reduced. The complexity of cable-stayed bridge can be 

attributed to the fact that all these parameters are strongly correlated and have significant 

importance on the final results. The procedure for obtaining the secondary variables from 

the main variables is explained in the next section. 

If the concept of main and secondary variables is not considered, the total number of design 

variables would vary between 23 and 35 variables for number of cables N=6 and N=12, 

respectively, when taking advantage of the bridge symmetry. For longer spans, and 

consequently greater number of stay-cables, the number of design variables is even higher. 

According to Michalewicz et al. (2000), many efforts have been put towards determining 

the proper population size, but this parameter is highly dependent on the particularities of 

the problem to be solved, and is better defined by empirical trials. According to 
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Sivanandam et al. (2008), the population should be large enough to be able to explore the 

whole search space and to avoid bad diversity and consequently difficulties for finding the 

global optimum. This way, it can be established by the considerations above that by 

reducing the number of variables from 23(N=6) or 35(N=12) to 6 the number of samples 

to be analyzed will be significantly reduced.  Compared to Hassan et al. (2013b), the 

number of independent variables has been reduced from 14 to 6, making the process 

feasible to handle moving traffic loads as well as other load cases. Also the process involves 

the evaluation of the proper pre-tensioning forces without relying on surrogate functions. 

The present model can be easily extended to include as a design variable any of the constant 

dimensions. For example, if the topography allows a ratio β of side (L2) and main (L1) 

spans varying between 0.40 and 0.60, the total number of design variables would become 

equal to seven. In this case, the bridge total length L will be fixed, and the ratio β will be 

randomly determined between the lower (0.40) and upper (0.60) bounds with L1=L/(2β +1) 

and L2=(L-L1)/2. In addition, different stay-cables arrangements may be evaluated by 

adding some restrictions to the cable anchorages at the towers. Deck vertical profiles and 

radius of curvature can be considered as input parameters to be considered in the 

calculation of the deck nodes coordinates. 
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Figure 2. 1: Cable-stayed bridge geometry: (a) longitudinal view; (b) tower 

dimensions; (c) tower cross-section; (d) deck cross-section; (e) steel I-girder 

dimensions. Dimensions in meter. 
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2.2.1 Optimization procedure 

The structural optimization is conducted using a numerical model developed in-house and 

codded using the Fortran language. The numerical model is a modification to the Code 

developed by Hassan et al. (2013b). The model combines finite element discretization, the 

Real Coded Genetic Algorithm (RCGA) procedure for optimization, and design criteria 

based on the Canadian Highway Bridge Design Code CAN/CSA-S6-06. The overall 

numerical scheme can be described through the flowchart presented in Figure 2. 2. The 

numerical scheme is controlled by the RCGA. The following two objectives functions are 

considered in the optimization. 

Objective-1 – Lightest deck weight. 

Objective-2 – Lowest material cost for the entire bridge. 

After the selection of random values for the main design variables, I, N, tc, TL1, TL2, and 

Ha, the numerical procedure go through the following five phases described below. If the 

solution is feasible, i. e. attend all the design criteria, the fitness value is equal to the 

objective function value, which is the deck weight or the material cost of the bridge, 

depending on the objective that has been chosen. Otherwise, if any of the design constraints 

is violated, the solution is considered infeasible and the fitness value is calculated based on 

Deb (2000): 


~⃗� = la3� + ∑ �,~⃗�a,bU                                        (2. 1) 

where ~⃗ = He, �, �> , ��U, ���, �3J is the vector of design variables; 
~⃗� is the fitness 

value; m is the total number of design constraints; la3� is the fitness value of the worst 

feasible solution that has been observed; �,~⃗� are the normalized design constraints that 

have been violated. Preliminary tests should be performed for obtaining some of the RCGA 

parameters. For optimizing the six design variables showed in red in Figure 2. 1, the RCGA 

parameters are defined as follows: (i) the total of 90 samples compose the population, (ii) 

20 generations, (iii) 3 samples are saved in each generation, for considering elitism in the 

next one, (iv) 3 crossover operations and 5 mutation operations are applied in each 

generation, and (v) mutation rate is equal to 0.1. 
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Figure 2. 2: Flow chart for the optimization scheme. GEN is the current generation 

of analysis. 
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2.2.1.1 Phase 1 

The purpose of this phase is determine the dimensions of the I-girder that leads to minimum 

value for the cross section area “A” of the girder for a given value of I selected by the 

random generation RCGA process. The cross-section area of the girder is defined by the 

following variable: b1, t1, b2, t2, D, w (see Figure 2. 1.e). Those variables can be reduced 

by relating the flange width to thickness ratio (i.e.  b1 to t1 and b2 to t2) and the web depth 

to thickness ratio (D to w).  For classes 2, 3, 4, the upper limit of classes 1, 2, and 3 are 

used, respectively. By applying those limits, the number of independent variables is 

reduced to 3. A parametric study is conducted by varying the ratio (b1/b2) of the top and 

bottom flanges. It is found for a given value of I, this ratio has a minor effect on the 

minimum value of “A”. As such a value of b1/b2=0.75 is selected as it was found to be used 

in a number of bridges design. This reduces the number of design variables to two (b2, D). 

The cross-sectional area A is found to be reduced by decreasing the ratio b2/D. However it 

was found that the minimum ratio b2/D in real bridges varies between 0.20 and 0.25. As 

such, a limit of b2/D ≥ 0.20 is adopted in this study.  

For a given value of I and assuming a certain class section, this phase determines the 

dimensions of the I-girder cross section (b1, t1, b2, t2, D, w) which lead to a minimum value 

of the cross section area “A”. The I-girder depth (D), bottom flange width (b2) and web 

thickness (w) for width-to-thickness limit ratio of Classes 2 and 3 are presented in 

Appendices B and C, respectively. 

The determination of minimum area for the I-girder is required since the overall objective 

function of the optimization process is either minimum cost or minimum deck weight. 

2.2.1.2 Phase 2 

In this phase the deck is simulated using three-dimensional frame elements. A single spine 

approach, similar to that used by Wilson et al. (1991) is adopted to simulate the slab and 

the girders (Appendix D). Adeli and Zhang (1995) considered full non-linear analysis of a 

steel-concrete composite cable-stayed bridge. The authors concluded that for dead and live 

loads, the geometric nonlinearity had an effect of 4% on the maximum deflection. Given 

the large number of analysis needed for conducting the design optimization, and the minor 
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effect of the geometric nonlinearity, the analysis is conducted linearly. In this phase the 

deck is modelled as a continuous beam with pinned support at each cable-anchorage 

location. The model is analyzed under the effect of dead and superimposed loads. This 

model simulates the intended deflection configuration of the bridge where the pre-

tensioning cable forces tend to counterbalance the effect of dead and superimposed loads. 

The model is used to obtain the reaction at the supports from which the cables pre-

tensioning forces are obtained using the following relation: 

�0,@ = �tE@B�t                                                        (2. 2) 

where �0,@ is the initial pre-tensioning force for the i-th cable; �@ is the reaction of i-th stay-

cable obtained from the continuous beam model; and, �@ is the angle between the i-th stay-

cable direction and longitudinal direction. 

It is assumed that the initial pre-tensioning forces are equal to 25% of the cables breaking 

load. This leads to the evaluation of the cross sectional area of the cables using the 

following relation: 

�@ = � ^ ,t0.�¡×�5,#ɸ£ × �Uɸ                                              (2. 3) 

where �@ is the steel total cross-section area of the i-th cable; 
¤,Uɸ is the steel nominal 

breaking load for 1 strand; and, �Uɸ is the steel nominal cross-section area for 1 strand. 

Also in this phase, the bending moments at the cable anchorages points are recorded and 

are called desired bending moments (�0). 

2.2.1.3 Phase 3 

In this phase, the entire bridge, including deck, towers and cables, is modelled using an 

assembly of finite elements (Figure 2. 3). Three-dimensional frame elements are used to 

model the deck and the towers, while three-dimensional truss elements are used to model 

the cables. Hassan et al. (2012) concluded that the cables sag is a source of nonlinear 

behaviour that affects the response of cable-stayed bridges. The sag effect is taken into 
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account by replacing each cable with a truss element of an equivalent cable stiffeness. The 

equivalent tangent modulus of elasticity (¥;¦) was derived by Ernst (1965) and is given 

by: 

¥;¦ = §¨©
Umª¨©«�$¬¨©#$®¯

                                                 (2. 4) 

where ¥>E is the cable material effective modulus of elasticity; A is the cross-sectional area 

of the cable; � is the horizontal projection of the cable; r>E is the weight per unit length of 

the cable; and � is the tension in the cable. 

This model is used to determine the final values of the pre-tensioning forces based on Janjic 

et al. (2003) and summarized by the following: 

H�0J = H�\J + KTMH)J                                               (2. 5) 

H�J = H�0J + H)J                                                   (2. 6) 

where H�0J is the vector of desired bending moments at control points, or cable-anchorages 

at the deck, obtained in Phase 2; H�\J is a vector of bending moments at the control points 

due to dead and superimposed loads obtained from the cable-stayed bridge complete 3D 

FEM – i.e. deck, towers, and non-tensioned cables; KTM is the influence matrix,  T@,, is the 

bending moment at the i-th control point due to an unit force applied to the j-th cable. The 

influence matrix is obtained employing the same FEM used to obtain H�\J. The vector 

H)J, obtained from Equation 2.5, is added to the vector of initial pre-tensioning force H�0J 

to produce the final vector of pre-tensioning forces H�J. 

 

Figure 2. 3: Finite element model. 
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2.2.1.4 Phase 4 

By this phase, all the cross-sectional dimensions of the bridge are assumed, the dead loads 

are calculated, and the pre-tensioning forces counterbalancing the effects of dead and 

superimposed loads are calculated. This phase considers finite element analysis of the 

entire bridge under the effect of live loads which are determined using the Canadian 

Highway Bridge Design Code (CAN/CSA-S6-14). For the province of Ontario, the CL-

625-ONT Lane Load is composed of a 500kN truck with 5 axles and a 9kN/m uniformly 

distributed load. The number of design lanes is dependent upon the deck width, and a 

modification factor for multi-lane loading is also considered.  

2.2.1.5 Phase 5 

In this final phase, the displacements and internal forces due to dead and superimposed 

loads, and live loads obtained through Phases 3 and 4, respectively, are combined. One 

Ultimate Limit State (ULS) load combination is considered: (DL+SL) + 1.7(LL), with � 

equal to 1.10 for factory produced components, 1.20 for cast-in-place concrete, and 1.50 

for wearing surfaces (CAN/CSA-S6-14). While two Serviceability Limit State (SLS) 

combinations are considered: 1.0(DL+SL) + 0.90(LL), and 0.90(LL). The objective 

function, which can be the lightest deck weight (Objective-1) or the lowest material cost of 

the entire structure (Objective-2) is calculated. If one or more of the design constraints are 

not satisfied, penalties are applied to the objective function value. The design constraint 

functions (gj) at the Serviceability Limit State (SLS) and Ultimate Limit State (ULS) are 

as follow: 

 Displacements at the deck due to dead and superimposed loads (XDL+SL) at SLS: 

�U = ¡000×±²³u´³µ¶·¸ ¹º¸»¼½ − 1.0 ≤ 0                                                  (2. 7) 

 Displacements at the deck due to live  loads (XLL) at SLS (AASHTO 2012): 

         �� = ¾00×±³³µ¶·¸ ¹º¸»¼½ − 1.0 ≤ 0                                                   (2. 8) 

 Displacements at the towers due to dead and superimposed loads (VDL+SL) at SLS: 
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              �� = U¿00×À²³u´³ÁÂ − 1.0 ≤ 0                                                 (2. 9) 

where �? is the total length of tower. 

 Displacements at the towers due to live loads (VLL) at SLS: 

              �Ã = ¡00×À³³ÁÂ − 1.0 ≤ 0                                                 (2. 10) 

where �? is the total length of tower. 

 Combined shear and moment at the deck at ULS: 

�¡ = ÄÅÄÆ − 1.0 ≤ 0                                                         (2. 11) 

�Ç = ÈÅÈÆ − 1.0 ≤ 0                                                        (2. 12) 

�¿ = 0.727 ÈÅÈÆ + 0.455 ÄÅÄÆ < 0                                             (2. 13) 

where Ì<  is the factored shear force at ULS; �<  is the factored bending moment at ULS; ÌC  

is the factored shear resistance; �C  is the factored bending moment resistance. 

 Axial compression and bending at the deck at ULS: 

�¾ = ÍÅÍÆ + Î#ÏÈÅÏÈÆÏ + Î#ÐÈÅÐÈÆÐ − 1.0 ≤ 0                                  (2. 14) 

where �<  is the factored compressive force at ULS; �<�  and �<Ñ  are the factored bending 

moment at ULS about x-axis and y-axis; �C  is the factored compressive resistance; �C� and 

�CÑ  are the factored bending moment resistance about x-axis and y-axis; -U�  and -U� are 

factors to account for moment gradient and second order effects. 

 Control of permanent deflections at the deck at SLS: 

�Ò = È²³Ó + È´³Ó¯Ô + È³³ÓÔ − 0.90
Ñ ≤ 0      (positive moment regions)           (2. 15) 
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�U0 = È²³Ó + È´³mÈ³³Ó' − 0.90
Ñ ≤ 0      (negative moment regions)           (2. 16) 

where �Ö×, �Ó× and �×× are the bending moment at SLS due to dead load, superimposed 

load, and live load; %, %′, %B, %�B are the elastic section modulus of the steel section only, 

the steel section and reinforcement within the effective width of the slab, the steel girder 

and the concrete slab using a modular ratio n and 3n, respectively. 

 Biaxial loading at the towers at ULS: 

�UU = ÈÅÏÈÆÏ + ÈÅÐÈÆÐ − 1.0 ≤ 0                                            (2. 17) 

where �<�  and �<Ñ  are the factored bending moment at ULS about x-axis and y-axis; 

and, �C� and �CÑ  are the factored bending moment resistance about x-axis and y-axis. 

 Stay-cables axial forces at ULS: 

�U� = ^Å,²³u´³m^Å,³³�5 − 0.50 ≤ 0                                            (2. 18) 

where �<,Ö×mÓ×  and �<,××  are the factored axial forces at ULS due to dead and superimposed 

loads, and live loads respectively; and, 
¤  is the breaking force. 

 

2.2.2 Case study 

A cable-stayed bridge is analyzed and optimized using the developed model as a case study. 

The total length (L), mid span (L1) and side span (L2) of the bridge are assumed to be equal 

to 400m, 200m and 100m, respectively. The assumed fixed dimensions for the deck and 

the towers are shown in Figure 2. 1. A cross-beam is placed at the stay-cable anchorages 

coordinates and a maximum distance of 8m between cross-beams is adopted. Three 

different values for the tower height below the deck (Hb) are assumed: 30m, 40m and 50m. 

The bridge is analyzed under dead and live loads using the loads and load combination 

factors defined in the CAN/CSA-S6-14 (2014). The material properties are presented in 

Table 2. 1. 
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The semi-fan configuration is chosen for this case study because it combines the 

advantages of both fan and harp configurations (Svensson, 2012). The fan configuration 

provides higher stay-cable angles of inclination when compared to the harp configuration, 

but having all the cable anchorages at the top of the towers is not practical from 

construction point of view. The harp configuration is aesthetically appealing, but requires 

considerably taller towers than the fan system. Additionally, according to Adeli and Zhang 

(1995) the semi-fan system provides the highest failure load capacity when compared to 

the fan and harp configurations. 

The traffic loads are considered by moving the truck along the bridge at each 18m, which 

corresponds to the truck length. Comparisons with the results provided by the moving load 

from the commercial program SAP2000 demonstrate that moving the truck at each 18m is 

an adequate choice for this case study. 

As described earlier, two objective functions are considered separately for design 

optimization. The first objective function (Objective-1) aims minimizing the mass of the 

deck. The second objective function (Objective-2) targets minimizing the total cost of the 

bridge. In this case study, the optimization of Objective-1 is repeated three times, by 

considering: (i) dead, truck plus lane live load; (ii) dead and lane live load; (iii) dead load 

alone. The optimization of Objective-2 is repeated twice by considering two different 

locations, which reflect different price schemes for the bridge materials. 

For Objective-1, the concrete slab thickness (tc) of the deck is assumed to be 0.25m, which 

is the lower bound for this variable. A parametric study is conduct by considering four 

different towers cross-sections (TL1 x TL2) – 3.0m x 1.5m, 4.0m x 2.0m, 5.0m x 2.5m, and 

6.0m x 3.0m – and, five different tower heights above the deck (Ha) – 10m, 20m, 30m, 

40m, and 50m. Since tc, TL1, TL2, and Ha are assumed fixed values in the parametric study, 

only two design variables are obtained during the optimization process, which are number 

of stay-cables (N) and the steel I-girder inertia (I). For Objective-2, two cities in Canada, 

London, ON and North Bay, ON, with different materials cost are considered. The prices 

of materials are estimated from RSMeans (2013) and from constructor companies (Table 

2. 1). City-specific factors are applied on top of material costs to adjust for differences in 
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price between the two locations. The city-specific factors for concrete and metal materials 

are 1.45 and 1.25 for London-ON, and 1.50 and 1.06 for North Bay-ON, respectively. In 

this design objective all six design variables – N, I, tc, TL1, TL2 and Ha – are determined 

by the optimization process. The lower and upper bound for the design variables are 

presented in Table 2.2. Results of all the optimization analyses are presented below. 

Table 2. 1: Material properties and costs used in the study. 

Elements Material Properties and Costs 

Deck 

Steel 

Modulus of elasticity (Es) 200 GPa 

Unit weight (γs) 77 kN/m3 

Yield strength (Fy) 350 MPa 

Cost (Cs) $3,125/t 

Concrete 

Modulus of elasticity (Ec, slab) 25.6 GPa 

Unit weight (γc, slab) 24 kN/m3 

Compressive strength (f’c, slab) 30 MPa 

Cost (Cc, slab) $1,300/ m3 

Reinforcement 
Yield strength (fy) 500 MPa 

Cost (Cr) $2,400/t 

Towers 

Concrete 

Modulus of elasticity (Ec, tower) 28.4 GPa 

Unit weight (γc, tower) 24 kN/m3 

Compressive strength (f’c, tower) 40 MPa 

Cost (Cc, tower) $1,200/ m3 

Reinforcement 
Yield strength (fy) 500 MPa 

Cost (Cr) $2,400/t 

Cables Steel strands 

Modulus of elasticity (Ecs) 205 GPa 

Unit weight (γcs) 83 kN/m3 

Ultimate tensile strength (Tcs) 1.86 GPa 

Cost (Ccs) $7,650/t 
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Table 2. 2: Lower and upper bounds of the design variables. 

Design Variables Nomenclature 
Lower 
Bound 

Upper 
Bound 

Number of cables N 6 12 

Steel I-girder inertia I (m4) 0.005 0.50 

Concrete thickness tc (m) 0.25 0.30 

Tower cross-section 
dimensions 

TL1 (m) 3.00 6.00 

TL2 (m) 0.30 0.70 

Tower height above deck Ha (m) 10.0 50.0 

 

2.2.3 Numerical results for design Objective-1 considering dead load 
and truck plus lane live load 

Optimizing the number of cables (N) and steel I-girder inertia about the major axis (I) with 

the objective of minimizing the deck mass has revealed observable patterns for dead plus 

live loads (Figures 2.4 and 2.5). In these figures, three graphs are presented for tower 

heights below the deck (Hb) of 30m, 40m and 50m and each curve is related to a specific 

tower cross-section dimension (TL1 x TL2). Each one of the curves has been constructed 

with 5 points. The first point corresponds to Ha=10m (vertical distance between the deck 

level and the tower upper transverse beam, Figure 2. 1.b), and the other points have Ha 

values augmented by 10m, resulting in Ha=50m for the last point. As the total tower height 

(Ht) depends on the number of cables (N), two points on a single curve can present the 

same value of Ht even though they each have distinct values for Ha. 

Curves in the plots for Hb=30m and  Hb=40m have similar trends and three different 

behavioural patterns can be seen. First, when Ha values are small, a higher number of stay-

cables are required to support the deck because angles of inclination (�) values for each 

cable is also reduced. Second, as Ha increases, and consequently the � values, the structure 

stiffness is increased, allowing the reduction of N and I. Third, while the variable N is 

maintained constant, but again with the increase of Ha  and consequently of �, the variable 

I reduces until a point when the stiffness cannot reduce anymore for the same number of 

stay-cables N, resulting in an increase of I value.   
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For Hb=50m, the curves present analogous behaviours and relationships between the design 

variables Ha, N and I as presented for Hb=30m and Hb=40m. However, due to the fact that 

the towers are higher than in the other two analyses, other factors have to be taken into 

account. As mentioned before, the augmentation of Ha values allows the increase of deck 

rigidity, but also might result in the towers becoming excessively flexible depending on 

their cross sections. This fact can explain the cross between the 4mx2m and the 5mx2.5m 

curves. Besides that, for the 4mx2m curve, the number of stay-cables N is reduced twice. 

For each tower cross-section, 15 different cases are performed. For TL1 x TL2 equal to 

3.0m x 1.5m, only 6 of the 15 cases provide feasible solutions that attend all the design 

constraints: (1) Hb=30m; Ha=40m; (2) Hb=30m; Ha=50m; (3) Hb=40m; Ha=40m; (4) 

Hb=40m; Ha=50m; (5) Hb=50m; Ha=40m; and (6) Hb=50m; Ha=50m. Among these 

solutions, case (2) has delivered the lowest deck mass value (5733 tons). The analysis case 

with Hb=30m, Ha=50m, TL1=6.0m, and TL2=3.0m provides the lightest deck mass (5304 

tons) of all examples. Table 2.3 presents the deck mass of 45 cases normalized by the 

minimum obtained deck mass. In this table, it is noted that all the cases for TL1=6.0m and 

TL2=3.0m have lower deck masses than the respective cases with smaller tower cross-

sections. It is also noted that the lightest deck mass is obtained for Ha = 50m.  

 

Table 2. 3: Deck masses obtained for Objective-1 normalized by the minimum mass. 

TL1 x TL2 Hb Ha =10m Ha =20m Ha =30m Ha =40m Ha =50m 

4m x 2m 

30m 1.19 1.14 1.09 1.07 1.06 

40m 1.2 1.15 1.12 1.1 1.07 

50m 1.21 1.17 1.12 1.1 1.09 

5m x 2.5m 

30m 1.14 1.1 1.06 1.04 1.04 

40m 1.17 1.11 1.09 1.06 1.05 

50m 1.2 1.15 1.09 1.07 1.06 

6m x 3m 

30m 1.09 1.04 1.02 1.01 1.00 

40m 1.12 1.07 1.04 1.02 1.02 

50m 1.18 1.1 1.06 1.04 1.02 
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Figure 2. 4: Deck mass due to dead plus live loads as a function of Hb and tower 

dimensions TL1 x TL2.  

 

Figure 2. 5: Steel I-girder inertia about major axis due to dead plus live loads as a 

function of Hb and tower dimensions TL1 x TL2.  
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Figure 2. 6 shows the values for stay-cable masses that have been obtained by the structural 

optimization to achieve  Objective-1. In general, the stay-cable mass curves follow a similar 

trend as the deck mass curves. In the majority of the cases, an increase/decrease of deck 

mass is also followed by a proportional increase/decrease of stay-cable mass. The case of 

analysis with lighest deck mass (Hb=30m; Ha=50m; TL1=6.0m, and TL2=3.0m) provides 

stay-cable mass equal to 128 tons which also presents the minimum stay-cable mass 

obtained among all the cases. 

 

Figure 2. 6: Stay-cables mass as a function of Hb and tower dimensions TL1 x TL2. 

For all cases, the limiting constraint, for the optimization of the number of cables (N) and 

inertia of the deck I-girders (I), is the deck displacements due to live loads (Equation 2.8). 

This means that tower stiffness and deck rigidity relations obtained from these cases may 

be applied to any cable-stayed bridge deck and towers cross-section (and not only to the 

composite steel-concrete two I-girder deck and H-shape towers cable-stayed bridges) as a 

conceptual design tool. Figure 2. 7 presents curves that relate tower total height, tower 

longitudinal bending stiffness, optimized deck rigidity (¥�:;>W) and number of stay-cables. 
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Figure 2. 7: Relation between deck rigidity and tower longitudinal stiffness to obtain 

lightest deck mass. 
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The data is presented as a function of ranges of stayed-cable masses: 115-135 tons; 135-

155 tons; and 175-195 tons. The stay-cable mass range 155-175tons is not considered 

because only one sample, related to the tower total height, has been observed. By analyzing 

Figure 2. 7, it is easily noticed that an increase in tower total height corresponds to a 

decrease in tower stiffness. Besides that, the stay-cables mass range tends to reduce with 

the increase of  tower total height, and the consequent increase of the cables angle of 

inclination (�). 

 

2.2.4 Numerical results for design Objective-1 considering dead load 
and lane live load 

The structural optimization for design Objective-1 considering dead load and lane live load 

is conducted for cases with tower height below deck (Hb) equal to 30m, resulting in 15 case 

analyses (5 different values for Ha and 3 different values for tower cross-section). These 

analyses are performed and the optimal solution results for deck mass, stay-cable mass, 

and steel I-girder inertia, are displayed in Figure 2. 8. 

The case of analysis for Ha=40m, TL1=6.0m, and TL2=3.0m, with N=12 and I=0.007m4 

presents the lightest deck mass (4880 tons) and the lowest mass of stay-cables (123 tons). 

For the equivalent case of analysis that considers truck loads, the optimized values are: N 

= 7, I = 0.036m2, deck mass = 5311, and stay-cables mass = 128 tons. The considerable 

difference of deck steel I-girder inertia demonstrates the importance of considering truck 

loads in the optimization analysis. In terms of deck mass, by considering the truck loads, 

there is an increase of mass that varies from 8 to 12% (Table 2. 4). 
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Figure 2. 8:  Deck mass, stay-cables mass, and steel I-girder inertia due to dead and 

lane live loads as a function of tower dimensions TL1 x TL2. 

 

Table 2. 4: Deck mass ratio (DL + lane LL)/(DL + truck and lane LL) obtained for 

Objective-1. 

TL1 x TL2 Ha =10m Ha =20m Ha =30m Ha =40m Ha =50m 

4m x 2m 0.88 0.88 0.90 0.91 0.92 

5 x 2.5m 0.88 0.89 0.91 0.92 0.92 

6 x 3m 0.92 0.91 0.92 0.92 0.92 

 

2.2.5 Numerical results for design Objective-1 considering dead load 
only 

The structural optimization for design Objective-1 considering dead load only is evaluated 

for cases with tower height below deck Hb=30m. It is observed in Figure 2. 9 that for 

Ha=30m, Ha=40m, and Ha=50m, the I-girder inertia is equal to the lower bound 

(I=0.005m4). The case of analysis for Ha=50m, TL1=5.0m, and TL2=2.5m, with N=7 and 
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I=0.005m4 presents the lightest deck mass (4786 tons) and one of the lowest mass of stay-

cables (120 tons). Comparison of the optimal solutions for dead load only, and for dead 

and truck plus lane live loads, reveals that considering live loads leads to an increase of 

deck mass that varies from 10 to 19% (Table 2. 5). 

 

 

Figure 2. 9:  Deck mass, stay-cables mass, and steel I-girder inertia due to dead load 

as a function of tower dimensions TL1 x TL2. 

 

Table 2. 5: Deck mass ratio (DL)/(DL + truck and lane LL) obtained for Objective-1. 

TL1 x TL2 Ha =10m Ha =20m Ha =30m Ha =40m Ha =50m 

4m x 2m 0.81 0.81 0.83 0.84 0.85 

5 x 2.5m 0.84 0.84 0.86 0.87 0.87 

6 x 3m 0.89 0.87 0.89 0.90 0.90 

 



54 

 

2.2.6 Numerical results for design Objective-2  

The optimal solutions for six cases of analysis – 2 cities (London, ON and North Bay, ON) 

and 3 values of tower height below the deck Hb (30m, 40m, 50m) - with the objective of 

obtaining the lowest cost of materials are evaluated. After comparing material costs (Figure 

2. 10) and design variables obtained through optimization (Table 2. 6), one can observe 

that the lowest total material cost for both cities has been obtained for Hb equal to 30m.  

Although cost factors for London-ON and North Bay-ON are about 15% difference for the 

steel (1.25 and 1.06, respectively), they are very similar for the concrete (1.45 and 1.50, 

respectively). As a result, the total material costs in London - ON are only 5%-9% more 

expensive than in North Bay – ON. With the increase of Hb, material total cost is also 

increased by 10% and 8% for London and North Bay, respectively. For both cities, the 

deck is responsible for 60% (Hb =50m) to 65% (Hb =30m, 40m) of the material cost. 

  

Figure 2. 10: Comparison of material costs for the considered case study. 
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Table 2. 6: Design variables obtained for the considered case study. 

Elements Variables London, ON North Bay, ON 

Towers 

Hb (m) 30 40 50 30 40 50 

Ha (m) 46.0 47.3 45.3 42.0 47.4 46.0 

Ht (m) 93.0 104.3 112.3 89.0 104.4 113.0 

TL1 (m) 3.29 3.21 3.23 3.23 3.00 3.60 

TL2 (m) 1.14 1.14 1.59 1.24 1.27 1.24 

Deck 

I (m4) 0.071 0.075 0.070 0.072 0.096 0.078 

tc (m) 0.28 0.28 0.30 0.28 0.25 0.28 

D (m) 2.50 2.50 2.50 2.50 2.50 2.50 

b1 (m) 0.432 0.454 0.430 0.441 0.556 0.470 

t1 (m) 0.027 0.029 0.027 0.028 0.035 0.030 

b2 (m) 0.577 0.606 0.573 0.588 0.741 0.626 

t2 (m) 0.027 0.029 0.027 0.028 0.035 0.030 

w (m) 0.024 0.024 0.024 0.024 0.024 0.024 

Cables N 7 7 7 7 7 7 

Material Cost ($× 10Ç)  13,8 14,0 15,2 12,9 13,3 14,0 

 

 

Table 2. 7 presents the constraint values for each case of analysis according to the constraint 

Equations 2.7 to 2.18. The constraint values confirm that the structures are properly 

optimized, once both the deck and the towers have their limiting constraint not smaller than 

-0.01 for the deck and -0.014 for the towers. 

Table 2. 7: Constraint values (Equations 2.7 to 2.18) obtained for the considered 

case study. 

Elemen
t 

London, ON North Bay,ON 

Hb=30m Hb =40m Hb =50m Hb =30m Hb =40m Hb =50m 

gi Value gi Value gi Value gi Value gi Value gi Value 

Deck 
g2 -0.008 g2 -0.001 g8 -0.008 g2 -0.004 g2 -0.01 g2 -0.001 

g8 -0.047 g8 -0.089 g2 -0.015 g8 -0.052 g8 -0.261 g8 -0.105 

Tower 

g1

1 
-0.006 g4 -0.010 g4 -0.009 

g1

1 
-0.009 g4 -0.002 g4 -0.014 

g4 -0.091 
g1

1 
-0.015 

g1

1 
-0.084 g4 -0.092 

g1

1 
-0.043 

g1

1 
-0.094 
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The displacements at SLS and internal forces at ULS for the optimal cable-stayed bridge 

solutions for Hb=30m in both cities are presented below. The two bridges have the same 

number of stay-cables (N=7), similar steel I-girder inertia (I=0.071m4 and I=0.072m4) and 

slight difference in Ha (less than 10%). The distribution of displacements and forces of the 

deck (Figures 2.11 and 2.12) and towers (Figures 2.13 and 2.14) are also similar for both 

bridges. 

Small displacements at the towers (Table 2. 8) and deck (Figure 2. 11) show that the pre-

tensioning forces (Figure 2. 15) are well distributed. Ratios between axial forces acting on 

the stay-cables and breaking loads have an average of 0.37 with maximum value equal to 

0.47 for both bridges.  

Table 2. 8: Maximum longitudinal displacements at the top of towers (SLS). 

City DL (cm) LL (cm) 

London, ON 3.1 16.9 

North Bay, ON 2.7 16.1 
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Figure 2. 11: Deflections, axial forces, and vertical bending moments at the deck 

spine due to dead loads for the considered case study. 

 



58 

 

  

Figure 2. 12: Deflections, axial forces and vertical bending moments at the deck 

spine due to dead and live loads for the considered case study. 
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Figure 2. 13: Axial forces and longitudinal bending moments in one of the tower’s 

legs due to dead loads for the considered case study. 

  

Figure 2. 14: Axial forces and longitudinal bending moments in one of the tower’s 

legs due to dead and live loads for the considered case study. 
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Figure 2. 15: Cables areas and pre-tensioning forces for the considered case study. 
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2.2.7 Comparison of costs from Objective-1 and Objective-2 
considering dead load and truck plus lane live load 

The solutions from Objective-1 (i.e. minimum deck mass that attends all design constraints) 

illustrate that cases with tower cross-sections of 6mx3m present the lowest value of deck 

mass for the various values of height below the deck (Hb). Table 2. 9 displays the optimal 

solutions from Objective-1 with their location-specific cost of materials detailed by element 

for London-ON and North Bay-ON.  

The costs of bridge configurations that are presented in Table 2. 9 for Objective-1 are much 

higher than those that have been obtained for Objective-2 (Table 2. 6), and vary between 

32% and 34% for London-ON and 33% and 37% for North Bay-ON respectively. This 

considerable difference can be explained by the fact that Objective-1 solutions have tower 

cross-sections 6mx3m; while the Objective-2 solutions have tower cross-sections of 

3.29x1.14m, 3.21x1.14m, and 3.23x1.59m for London-ON, for example, with Hb equal to 

30m, 40m, and 50m, respectively. 

Table 2. 9: Material costs for the optimal solutions with miminum deck mass 

(TL1=6m and TL2=3m). 

Hb (m) Elements 
Mass 
(ton) 

Objective-1 Material Costs 

London, ON North Bay, ON 

30 

Deck 5304  $         7,216,643   $         6,717,297  

Towers 15326  $       11,946,922   $       12,090,223  

Cables 128  $         1,220,723   $         1,035,173  

Total 20757  $       20,384,288   $       19,842,693  

40 

Deck 5397  $         7,608,790   $         7,049,838  

Towers 15059  $       11,735,716   $       11,877,274  

Cables 132  $         1,261,088   $         1,069,403  

Total 20587  $       20,605,594   $       19,996,514  

50 

Deck 5417  $         7,687,953   $         7,116,968  

Towers 18281  $       14,264,714   $       14,432,545  

Cables 130  $         1,241,114   $         1,052,465  

Total 23828  $       23,193,781   $       22,601,978  
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To accurately compare the costs from Objective-1 and Objective-2, it is necessary to 

consider solutions with similar tower cross-sections. In Tables 2.10 and 2.11, the optimal 

solution obtained with Objective-1 for Hb=30m, TL1=3.0m, and TL2=1.5m is compared 

with the optimal solution from Objective-2 for Hb=30m (Table 2. 6). 

The difference in total material costs is only 0.4% for London-ON and 5% for North Bay-

ON, demonstrating the efficacy of the approach for attending different design objectives. 

 

Table 2. 10: Comparison of material costs for Objective-1(Hb=30m, Ha=50m, 

TL1=3.0m, and TL2=1.5m) and Objective-2 (Hb=30m) optimal solutions in London-

ON. 

Elements 
Objective-1 Objective-2 

Mass (ton) Cost Mass (ton) Cost 

Deck 5733  $         8,897,196  6214  $        8,973,406  

Towers 4528  $         3,632,440  4065  $        3,429,717  

Cables 135  $         1,291,557  143  $        1,366,262  

Total 10395  $       13,821,193  10422  $      13,769,385  

 

Table 2. 11: Comparison of material costs for Objective-1(Hb=30m, Ha=40m, 

TL1=3.0m, and TL2=1.5m) and Objective-2 (Hb=30m) optimal solutions in North 

Bay-ON. 

Elements 
Objective-1 Objective-2 

Mass (ton) Cost Mass (ton) Cost 

Deck 5858  $         8,576,245  6242  $        8,345,242  

Towers 4583  $         3,809,325  4088  $        3,408,941  

Cables 144  $         1,166,617  144  $        1,169,575  

Total 10585  $       13,552,187  10474  $      12,923,758  
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2.3 Validation of the discrete phases design approach 

Comparisons between the optimized solutions provided by Objective-1 (lightest deck 

weight) and Objective-2 (lowest material cost for the entire structure) presented in Tables 

2.10 and 2.11 indicate consistency of the approach proposed in this chapter. Additionally, 

the constraint values presented in Table 2. 7 are very close to the allowable limits to attend 

the SLS and ULS, demonstrating that an optimum solution is obtained. Finally, a case 

example presented by Hassan et al. (2014) is performed considering exactly the same: (i) 

cable-stayed bridge fixed dimensions (total length, deck width, etc.), (ii) material properties 

and cost, (iii) design constraints, (iv) design variables lower and upper bounds and (iv) load 

combinations in order to validate the Discrete Phases Design Approach.  

The cable-stayed bridge considered in the validation is similar to the geometry presented 

in Figure 1, with two I-girder composite deck and hollow reinforced concrete box tower 

cross-section. The concrete slab deck is 14.20m (Bt) wide and includes 2 lanes. The bridge 

total length is L=350m with a main span L1=171.70m and side span L2= 89.15m. For the 

structural steel the material properties are: modulus of elasticity Es=200GPa, specific 

weight γs=77kN/m3, yield stress Fy=350MPa, and cost Cs=12,000$/ton. For the concrete: 

modulus of elasticity Ec=24.87GPa, specific weight γc=24kN/m3, compressive strength 

f’c=30MPa, and cost Cc=4,218 $/m3. For the stay cables: modulus of elasticity Esc=205GPa, 

specific weight γsc=82.40kN/m3, breaking stress Tsc=1.6GPa, and cost Csc=60,000 $/ton.  

The design constraints are equivalent to the ones presented in Item 2.2.1.5, but the 

constraint related to the displacements at the top of towers due to live loads (Equation 2.10) 

is not taken into account in order to have the same conditions as the case optimized by 

Hassan et al. (2014). The design variables and their bounds are as follows: number of 

cables N [4, 15], deck I-girder inertia I [0.005m4, 0.50 m4], concrete thickness tc [0.16m, 

0.40m], tower cross-section dimensions TL1 [1.0m, 6.0m] and TL2 [1.0m, 5.0m], tower 

height above the deck Ha [10.5m, 42.0m]. The dominant ULS load combination is 1.1(DL) 

+ 1.7(LL) and the SLS load combination is 1.0(DL) + 0.9(LL). For the live loads (LL), 

only the uniformly distributed load is considered in the analysis.  
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The optimized design variables and the costs obtained with the Discrete Phases Design 

Approach are compared to the results presented by Hassan et al. (2014) in Table 2. 12. The 

Discrete Phases Approach reduces the I-girder depth from 2.06m to 1.25m when 

comparing to Hassan et al. (2014). That might be explained by the fact that this girder 

depth reduction occurs together with an increase of number of stay-cables and tower 

longitudinal stiffness by almost 29.4%. Overall, the total cost is reduced by 2.0%, allowing 

the validation of the approach presented in this chapter. 

Table 2. 12: Comparison of material costs and design variables for validation of the 

Discrete Phases Design Approach. 

Elements Variables Hassan et al. (2014) Discrete Phases Design Approach 

 Tower 

Ha (m) 32.5 31.3 

TL1 (m) 2.75 3.12 

TL2 (m) 1.00 1.00 

Cost ($) 1,219,385 1,355,493 

Deck 

tc (m) 0.16 0.16 

D (m) 2.06 1.25 

b1 (m) 0.357 0.363 

t1 (m) 0.019 0.023 

b2 (m) 0.438 0.484 

t2 (m) 0.023 0.023 

w (m) 0.012 0.012 

Cost ($) 6,661,027 5,563,805 

Cables 
N 6 7 

Cost ($) 3,076,943 3,819,542 

Total Cost ($)  10,957,355 10,738,840 
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2.4 Conclusions 

In this study, the structural optimization of composite steel-concrete two I-girder cable-

stayed bridges is accomplished by adopting a 5-Phases approach. This approach is based 

on three-dimensional finite element models and the Real Code Genetic Algorithm 

(RCGA). One of the advantages of this approach is that by using the concept of primary 

and secondary variables, the total number of variables to be optimized with the RCGA 

procedure is significantly reduced. Two independent objective functions are considered in 

the optimization process of a cable-stayed bridge with total length L=400m, main span 

L1=200m, and side spans L2=100m. 

The first design objective, Objective-1, aims to obtain the lightest deck mass that attends 

to all design criteria. It is observed that robust tower cross-sections with greater area and 

inertias provide lower values of deck mass. It is also noted that the stay-cables mass tends 

to increase/decrease proportionally with an increase/decrease in deck mass because the 

stay-cable areas are selected to achieve a deck continuous beam type of behaviour. 

Additionally it is noted that for different tower cross-sections, the minimum deck masses 

are obtained for height above the deck Ha equal to 40m or 50m.  

When comparing the optimal solutions of dead load only versus that from dead and truck 

plus lane live loads, the former led to 10% (6mx3m tower cross-section) to 19% (4mx2m 

tower cross-section), increase in the deck mass values. Besides that, when comparing the 

optimal solutions of dead and lane live loads versus dead and truck plus lane live loads, the 

former provides 8% (6mx3m tower cross-section) to 12% (4mx2m tower cross-section) 

higher deck mass values. These results show the importance of not only considering the 

live loads, but also of considering both the truck and the lane loads.  

The data from Objective-1 provides curves that relate deck rigidity, towers stiffness and 

stay-cable mass for cases where the deck steel I-girder and the number of cables are 

optimized for obtaining the lightest deck possible. These curves can be used for any type 

of cable-stayed bridge deck and towers cross-section, once the limiting constraint is the 

displacement at the deck due to truck plus lane live loads. 
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The second design objective, Objective-2, aims to obtain the lowest total material cost that 

attends to all design criteria. The material cost for two cities is considered and shows that 

despite difference in cost, the design variables have similar values for the same 

construction site conditions. As the Objective-1 optimal solution tends to have a more 

slender deck and robust tower cross-sections, the cost of its solutions cannot be directly 

compared to Objective-2 optimal material costs. When Objective-1 and Objective-2 

solutions have analogous tower cross-sections dimensions, their total material cost differs 

by less than 5%. 

Overall, the results from the 5-Phases approach provides small displacement values for the 

deck and towers, and well distributed internal forces. Therefore, the discrete phases 

approach can be successfully used for structural optimization of cable-stayed bridges under 

dead and moving live loads, and for two distinct design objectives – minimum deck weight 

or minimum material cost. 

 

 

 

 

 

 

 

 

 

 



67 

 

References   

AASHTO. 2012. LRFD Bridge Design Specifications, 6th edition, Washington, D.C., 
USA.  

Adeli, H., Zhang, J., 1995. Fully nonlinear analysis of composite girder cable-stayed 
bridges. Computers & structures, 54(2): 267-277. 

CAN/CSA-S6-14, 2014, Canadian Highway Bridge Design Code.  

Chen, D.W., Au, F.T.K., Tham, L.G., and Lee, P.K.K. 2000. Determination of initial cable 
forces in prestressed concrete cable-stayed bridges for given design deck profiles 
using the force equilibrium method. Computers and Structures, 74(1): 1–9.  

Deb, K. 2000. An efficient constraint handling method for genetic algorithms. Computer 
methods in applied mechanics and engineering, 186: 311-338.  

Ernst, J.H. 1965. Der E-Modul von Seilen unter berucksichtigung des Durch- hanges. Der 
Bauingenieur, 40(2): 52–55 (In German). 

Hassan, M.M., Nassef, A.O., and El Damatty, A.A. 2012. Determination of optimum post-
tensioning cable forces of cable-stayed bridges. Engineering Structures, 44: 248–
259.  

Hassan, M.M., Nassef, A.O., and Damatty, A.A. El. 2013a. Surrogate Function of Post-
Tensioning Cable Forces for Cable-Stayed Bridges. Advances in Structural 
Engineering, 16(3): 559–578.  

Hassan, M.M., Nassef, A.O., and Damatty, A.A. El. 2013b. Optimal design of semi-fan 
cable-stayed bridges. Canadian Journal of Civil Engineering, 40(3): 285–297.  

Hassan, M.M., El Damatty, A.A., and Nassef, A.O. 2014. Database for the optimum design 
of semi-fan composite cable-stayed bridges based on genetic algorithms. Structure 
and Infrastructure Engineering, 11(8): 1054–1068.  

Janjic, D., Pircher, M., and Pircher, H. 2003. Optimization of Cable Tensioning in Cable-
Stayed Bridges. Journal of Bridge Engineering, 8(3): 131–137. 

Lee, T.Y., Kim, Y.H., and Kang, S.W. 2008. Optimization of tensioning strategy for 
asymmetric cable-stayed bridge and its effect on construction process. Structural 
and Multidisciplinary Optimization, 35(6): 623–629.  

Michalewicz, Z., Fogel, D.B. 2000. How to solve it: modern heuristics. Springer-Verlag 
Berlin Heidelberg. 

Negrão, J.H.O., and Simões, L.M.C. 1997. Optimization of cable-stayed bridges with 
three-dimensional modelling. Computers & Structures, 64(1–4): 741–758. 



68 

 

Pedro, J.J., and Reis, A.J. 2016. Composite cable-stayed bridges: state of the art. 
Proceedings of the Institution of Civil Engineers - Bridge Engineering, 169(1): 13–
38.  

Podolny JR, W., SCALZI, J.B. 1976. Construction and Design of Cable-Stayed Bridges.  
John Wiley & Sons, Inc. USA. 

Simões, L.M.C., and Negrão, J.H.O. 1994. Sizing and geometry optimization of cable-
stayed bridges. Computers & Structures, 52(2): 309-321.  

Sivanandam, S.N., Deepa, S.N. 2008. Introduction to Genetic Algorithms. Springer. 

Svensson, H.  2012. Cable-Stayed Bridges. 40 Years of Experience Worldwide. 1 ed. Ernst 
&Sohn GmbH & Co.KG. 

Troitsky, M. S. 1988. Cable-Stayed Bridges: Theory and Design. 2 ed. BSP Professional 
Books, Oxford. 

Wang, P H; Tseng, T C; Yang, C.G. 1993. Initial shape of cable-stayed bridges. Computers 
& Structures , 47(I): 111–123.  

Wilson, J.C, and Gravelle, W. 1991. Modelling of a cable-stayed bridge for dynamic 
analysis. Earthquake Engineering and Structural Dynamics, 20(8): 707–721.  

 

 



69 

 

Chapter 3  

3 Comparison between the theoretical and experimental 
wind responses of a full aeroelastic model test of a cable-
stayed bridge 

3.1 Introduction 

Long-span bridges are susceptible to dynamic responses due to buffeting wind loads, even 

if the structure is considered stable in flutter and vortex shedding phenomena. Additionally, 

the action of atmospheric turbulence on bridges significantly contributes to the envelopes 

of internal forces. In other words, the size of the structural elements may be governed by 

the fluctuating wind forces (Davenport, 1966; Holmes, 2015). 

Two of the most usual wind tunnel techniques are exploited on the buffeting analyses: (1) 

the sectional model test, and (2) the full aeroelastic model test of the completed bridge. The 

first test determines the static aerodynamic force and moment coefficients, which are 

measured in both smooth and turbulent flows from a range of angles of wind attack. The 

second test provides information on the accelerations, displacements and moments in the 

sections of the deck and towers. 

While only the external shape of the deck is modelled in the first model test, in the second 

model test all structural members – deck, towers, cables and connections – are modelled. 

Moreover, the geometric properties, masses, and stiffnesses must be scaled to respect the 

mode shapes and the frequencies of the prototype bridge. Thus, the full aeroelastic model 

test is relatively expensive, due to the need of manufacturing a complex scaled model, as 

well as it is time-consuming because even the surrounding topography needs to be 

considered. 

Considering all that, two approaches to evaluate bridge responses under turbulent wind 

action are examined and compared for the case example of the Prospect Verona Bridge, 

Maine (USA). The first approach is theoretical while being fed by experimental data from 

sectional wind tunnel test and is based on: (i) the general procedure of equivalent static 

buffeting wind loads developed by Davenport and King (1984); and (ii) the Finite Element 
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Method (FEM). The equivalent static wind loads equate to an effective load distribution 

that is applied to the bridge deck and should produce the same effects— such as the 

displacements and moments—that are expected from the fluctuating wind loads (Holmes, 

2015). These effective wind loads are a function of: (1) the static aerodynamic force and 

the moment coefficients, which are obtained from the sectional model test; (2) the 

spectrums of the longitudinal and vertical velocities that describe the distribution of the 

turbulence with frequency (ESDU 74031; Holmes, 2015); (3) the aerodynamic admittances 

that reflect the influence of the gust size in relation to the size of the structure (Davenport, 

1966; Davenport, 1977; Matsuda et al., 1999); (4) the joint acceptance function, which 

specifies the capacity of the turbulence to excite each mode of vibration (Davenport, 1966; 

Davenport, 1977; Davenport and King, 1982). Additionally, gust factors are considered 

with respect to the towers in order to reflect the effect of the buffeting loads on these 

elements. Mean and peak wind loads are applied to the finite element model and 

displacements obtained from the theoretical approach are examined.  

The second approach is experimental and is based on testing the full aeroelastic model of 

the cited bridge tested at The Boundary Layer Wind Tunnel Laboratory at Western 

University (King et al., 2005). The displacements at the deck and top of the towers are 

correlated to determine how accurately the first approach (theoretical) can predict results 

compared to the second approach (experimental). 

 

3.2 Wind loads and bridge responses 

The formulation to estimate the equivalent static buffeting loads on the bridge deck follows 

the general approach developed for the study of wind action on the Sunshine Skyway 

Bridge, Florida (Davenport and King, 1984). This approach takes into consideration the 

fact that persistent movement of a long-span bridge in a strong wind is due to its various 

mode shapes, and that this behavior can be simulated by utilizing mode shapes of the first 

symmetric and the first antisymmetric in each of the following movements of the deck: 

lateral bending, vertical bending, and torsional rotation, totalizing mode shapes. In this 

way, other than mean wind loads, peak wind loads that reflect the background and the 
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resonant components of the response are applied to the bridge deck. While the background 

component introduces the influence of the load frequency range that is too low to excite 

the structure, the resonant components reflect the influence of each mode shape of the 

structure that is considered in the response estimation. 

The quasi-steady equations for motion of deck in gusty wind can be expressed according 

to the following equations (Davenport, 1966): 


′��, �� = �-.Ù���d�� +  U
� �-.Ù :ÍÚ�:Û r��                            (3.1.a) 


′��, �� = �-.Ù���d�� + U
� �-.Ù :ÍÚ�:Û r��                             (3.1.b) 

�′��, �� = �-.Ù��È	d�� +  U
� �-.Ù� :ÍÜ	:Û r��                           (3.1.c) 

where �, ), * are the deck longitudinal, transversal, and vertical directions respectively 

(see Figure 3. 1); 
′��, ��, 
′��, �� and �′��, �� are the quasi-steady horizontal force 

(wind direction), vertical force and pitching moment to be applied to the bridge deck due 

to the turbulent wind flow;  ��� , ���  and �È	 are the force coefficients obtained from the 

static sectional model test; 
:ÍÚ�:Û , 

:ÍÚ�:Û  and 
:ÍÜ	:Û  are the slopes of force coefficients at a 

specific angle of attack �; � is the air mass density; -. is the mean wind speed at the deck 

height; Ù is the deck width; d�� and r�� are the horizontal and vertical velocity 

fluctuations. 

The mean-square fluctuating generalized horizontal and vertical forces, and pitching 

moment for the jth mode of vibration are given by: 

�′�,�������� = Ý Ý 
′��U, ��
′���, ��������������������������ɸ,�U�×0×0 ɸ,�����U���                     (3.2.a) 

�′�,�������� = Ý Ý 
′��U, ��
′���, ��������������������������ɸ,�U�×0×0 ɸ,�����U���                     (3.2.b) 

�′�,�������� = Ý Ý 
′��U, ��
′���, ��������������������������ɸ,�U�×0×0 ɸ,�����U���                     (3.2.c) 

where ɸ,�� is the jth mode shape function. 
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Figure 3. 1: Scheme of deck cross-section dimensions, mean and turbulent wind 

speeds, and axis representation. 

The power spectral density of the fluctuating generalized forces in the direction ), * and � 

as a function of the reduced frequency l∗can be expressed by the equations below (adapted 

from Davenport and King, 1984): 

%&'�,(l∗� = �ßàÙ���á�4 �âãÎ. �� Óãã<∗�
âã$ + �àÙ :ÍÚ�:Û �� �âªÎ. �� Óªª<∗�

âª$ £ ä�,l∗, �U, ���ä�
    (3.3.a) 

%&'�,(l∗� = �ßàÙ���á�4 �âãÎ. �� Óãã<∗�
âã$ + �àÙ :ÍÚ�:Û �� �âªÎ. �� Óªª<∗�

âª$ £ ä�,l∗, �U, ���ä�
    (3.3.b) 

%&'	,(l∗� = �ßàÙ���	á�4 �âãÎ. �� Óãã<∗�
âã$ + �àÙ� :ÍÚ	:Û �� �âªÎ. �� Óªª<∗�

âª$ £ ä�,l∗, �U, ���ä�
(3.3.c) 

 

l∗ = <¤
Î.                                                                 (3.4) 

where 4� and 4+ are the standard deviation of longitudinal and vertical wind velocity 

fluctuations; I� = 4dÎ.  and I� = 4rÎ.  are the wind longitudinal and vertical turbulence 

intensity; %��l∗� and %++l∗� are the power spectral density for longitudinal and vertical 

wind velocity, respectively; |�l∗, �U, ���|� is the joint acceptance function. 

To calculate the power spectral density of the fluctuating generalized forces %&' (Eq. 3.3), 

the following parameters are used to describe the wind action:  

1. the variation of the mean wind speed according to the height above the ground is 

calculated using the logarithm profile, which is considered to be the most precise 

expression to simulate the wind speed profile;  
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2. the spectral density function for the longitudinal turbulence %�� was estimated 

using the von Karman spectral equation, which is generally accepted as the best 

analytical representation of isotropic turbulence (ESDU 74031): 

< Óãã<�
âã$ = Ã�Ååãæ. �

�Um¿0.¾�Ååãæ. �$£ç/é                                                 (3.5) 

�� = �¡ê̅ .¯ç
ê  . é¯                                                             (3.6) 

where 4�� is the variance of longitudinal velocity fluctuation; �� is the turbulence length 

scale; and /̅ is the effective height. 

3. the vertical velocity component has different characteristics, and its power spectral 

density function %++ is estimated by adopting the Busch and Panofsky spectral 

equation (Holmes, 2015): 

< Óªª<�
âª$ = �.U¡�Åë�æ. �

UmUU.UÇ�Åë�æ. �ç/¯                                                   (3.7)                   

where 4+�  is the variance of vertical velocity fluctuation. 

In order to estimate the interaction between the gust and the structure, the joint acceptance 

function is employed to consider the ability of the turbulence to excite each one of the 

modes of vibration that are being considered in the analysis (Davenport, 1966; Davenport, 

1977; Davenport and King, 1982). The equation for the joint acceptance function 

|�l∗, �U, ���|� is given by Davenport and King (1984). 

|Jf ∗, ηU, η��|� = 1
N.2 Ý Ý RF′1F′2ßη1, η2, f∗áL0 ɸη1�ɸη1�L0 dη1dη2                 (3.8) 

N. = Ý ɸη��dηó0                                                       (3.9) 

R!"#!"$ηU, η�, f ∗� = eõϒ÷#õ÷$�ø∗
ù                                        (3.10)                                          
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where R�"#�"$ηU, η�, f ∗� is the cross spectrum of forces F′U and F′� at cross sections ηU 

and η� for the frequency f ∗, and ϒ is a constant with values ranging between 5 and 8 that 

defines the effective width of the correlation. 

The power spectral density of displacements in the three considered directions ), * and � 

can be expressed as follow; (adapted from Davenport and King, 1984): 

%�",,l∗� = U
[($ ä�,l∗�ä�|χ�l∗�|�%�′),�l∗�                                (3.11.a) 

%�",,l∗� = U
[($ ä�,l∗�ä�|χ�l∗�|�%�′*,�l∗�                                (3.11.b) 

%�",,l∗� = U
[($ ä�,l∗�ä�|χ�l∗�|�%�′�,�l∗�                                (3.11.c) 

where ú, is the structure stiffness; ä�,l∗�ä�
 is the mechanical admittance; |χ�l∗�|�, 

|χ�l∗�|� and |χ�l∗�|� are the aerodynamic admittances, which reflect the influence of 

the sizes of both, the gust and the structure (Davenport, 1966; Davenport, 1977) on the 

capacity of the gust to affect the structure. According to Matsuda et al. (1999), aerodynamic 

admittance are difficult parameters to be measured in wind tunnel test and are often adopted 

as the Davenport function (Eq. 3.12; Davenport, 1962 apud Matsuda et al., 1999) for 

longitudinal buffeting forces and as Holmes function (Eq. 3.13; Holmes, 1975 apud 

Matsuda et al., 1999) for vertical buffeting forces and pitching buffeting moments. 

|χ��l"�|� = �
W<'�$ ßûl" − 1 + pQW<'á                                     (3.12) 

äχ�,�+ l∗�ä� = U
UmÃ<∗                                                     (3.13) 

where l" = lü/-. is the reduced frequency as a function of the deck height ü; l∗ = lÙ/-. 

is the reduced frequency in function of the deck width Ù; û is the decay factor. 

The mean-square value of fluctuating generalized deflections (4�',,� , 4�',,�  and 4�',,� ) are 

obtained by integrating the power spectral density of displacements over all frequencies:  

4�',,� = Ý U
[($ ä�,l∗�ä�|χ�l∗�|�%&'�,(l∗� Î.

¤ �l∗ý0                          (3.14.a) 
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4�',,� = Ý U
[($ ä�,l∗�ä�|χ�l∗�|�%&'�,(l∗� Î.

¤ �l∗ý0                          (3.14.b) 

4�',,� = Ý U
[($ ä�,l∗�ä�|χ�l∗�|�%&'	,(l∗� Î.

¤ �l∗ý0                          (3.14.c) 

The mean-square value of the equivalent static forces (4�"����,(
� , 4�"����,(

�  and 4�"����,(
� � are then 

obtained from the mean-square deflections as showed below. 

4�"����,(
� = Ý ä�,l∗�ä�|χ�l∗�|�%&'�,(l∗� Î.

¤ �l∗ý0                            (3.15.a) 

4�"����,(
� = Ý ä�,l∗�ä�|χ�l∗�|�%&'�,(l∗� Î.

¤ �l∗ý0                            (3.15.b) 

4�"����,(
� = Ý ä�,l∗�ä�|χ�l∗�|�%&'	,(l∗� Î.

¤ �l∗ý0                            (3.15.c) 

Davenport (1977) divided the area underneath the integrand from Equations 3.15 into two 

parts: the background component and the resonant component. For background part which 

the frequencies are too low to excite the structure, the mechanical admittance |�l∗�|� =
1. For the resonant part, each frequency mode of vibration evaluated is represented by the 

reduced frequency l0∗. The terms |χ�l0∗ �|� and %&'�,(l0∗ � are constant, while the integral 

of the mechanical admittance is found to be equal to 
þ< ∗Ã�  by using the method of poles 

(Crandall and Mark, 1963 apud Holmes, 2015). 

The background mean-square equivalent static forces in ), * and � directions are then 

written as: 

4��'5,�
� l∗� = Ý |χ�l∗�|�%&'�,(l∗� Î.

¤ �l∗ý0                              (3.16.a) 

4��'5,�
� l∗� = Ý |χ�l∗�|�%&'�,(l∗� Î.

¤ �l∗ý0                              (3.16.b) 

4��'5,	
� l∗� = Ý |χ�l∗�|�%&'	,(l∗� Î.

¤ �l∗ý0                              (3.16.c) 

 

And the resonant mean-square equivalent static forces are given by: 
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4��'6,�,(
� l0∗� = |χ�l∗�|�%&'�,(l0∗� þ< ∗Ã� Î.

¤                                  (3.17.a) 

4��'6,�,,� l0∗� = |χ�l∗�|�%&'�,(l0∗� þ< ∗Ã� Î.
¤                                  (3.17.a) 

4��'6,	,(
� l0∗� = |χ�l∗�|�%&'	,(l0∗� þ< ∗Ã� Î.

¤                                  (3.17.a) 

 

where; 2 is the total (structural + aerodynamic) damping. 

The equivalent static buffeting forces (
′. W,,� per unit length for each mode of vibration 

considering the background and resonant components are calculated as follows by g: 

4�"����,( = ��¤ × 4��'5,��� + ��( × 4��'6,�,(��                                   (3.18) 


′. W,, = 4�"����,( × ɸ,η�                                            (3.19) 

g = �2lnνT� + 0.577 �2lnνT�⁄                                    (3.20) 

where û = ), * nq �; 4�"����,(  is the standard deviation of the equivalent static buffeting force 

(longitudinal, vertical or pitching moment) of the jth mode due to the background and 

resonant components; 4��'5,�  and 4��'6,�,( are the standard deviation of the forces due to the 

background (Eq. 3.16) and resonant (Eq. 3.17) contributions, respectively; �¤ and ��( are 

the background and resonant peak factors. The peak factor expression (Eq. 3.20) was 

developed by Davenport (1964). 

Besides mean wind loads at deck, towers and cables, and the deck buffeting peak wind 

loads as described above, tower peak wind loads are also considered in this study. Peak 

wind loads for the towers are calculated only for alongwind direction, by calculating a gust 

factor according to Solari (1987, 1993a, 1993b). 
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3.3 Methodology 

The displacements at the deck and towers of a bridge estimated through a full aeroelastic 

model tested in wind tunnel (experimental approach) are predicted by applying mean and 

peak wind loads due to buffeting in a Finite Element Model (theoretical approach) of the 

same bridge. The methodology for comparing the two approaches is described in Figure 3. 

2. 

 

Figure 3. 2: Flowchart of the comparison between theoretical and experimental 

approaches. 

 

The theoretical approach utilizes the following parameters from sectional model tests: (i) 

aerodynamic force coefficients; (ii) slopes of force coefficients from the static sectional 

model test; and (iii) flutter derivatives from the dynamic sectional model test to calculate 

the aerodynamic damping. In order to be consistent with the comparisons between the two 

approaches, structural damping ratios, turbulence profile, and wind speed profile used to 

calculate the equivalent static forces due to buffeting wind should be the same as those 
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registered in the wind tunnel tests of the full aeroelastic model. Once all six parameters are 

defined, the equivalent static forces due to buffeting wind loads are calculated according 

to the Equations presented in Section 2.  

A finite element model is constructed to achieve the same frequencies and mode shapes as 

the full aeroelastic model. Mean wind loads at the deck, towers, and cables as well as peak 

wind loads at the deck and towers are applied to the finite element model. Geometric non-

linear analysis of the bridge before the free vibration analysis to determine natural 

frequencies and mode shapes is performed and the displacements provided at the deck and 

top of towers for mean and peak wind loads are compared to those provided by the 

experimental approach. 

 

3.4 Case study 

The  Prospect Verona Bridge Maine, USA (King et al, 2005) has been chosen as the case 

study.  The cable-stayed bridge has a main span length of 354 m and two side spans of 146 

m each. Therefore, the total length of the bridge is 646 m as shown in Figure 3. 3.a. One 

of the side spans has the first 34.7 m in a curve, for which the horizontal radius is equal to 

121.8 m. The typical cross-section of the bridge deck consists of a concrete box-girder with 

a width of 17.5 m and a depth of 3.9 m (Figure 3. 3.b).  

Since the box-girder cross-section provides considerable torsional rigidity, the deck 

superstructure is supported by only one plan of stay cables. Forty cables support the main 

span and twenty cables support each side span, totalizing eighty cables in a semi-harp 

arrangement. The two towers are 84.8 m above the deck level and consist of a concrete 

tubular section of variable heights.  

The concrete have a modulus of elasticity E� = 30.442GPa, while the steel of the stay 

cables, have a modulus of elasticity Eµ = 193GPa. The geometric properties of the bridge 

elements are presented in Table 3. 1. 
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(a) Geometry of the bridge (adapted from King et al., 2005). 

 

(b) Cross-section of the side span.         

 

(c) Finite element model. 

Figure 3. 3: Bridge geometry, cross-section of the side span, and finite element 

model of the cable-stayed bridge. 
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Table 3. 1: Geometric properties of the structural elements. 

 

3.4.1 Theoretical approach 

The finite element model was developed using three-dimensional frame elements to 

simulate the deck and towers, and three-dimensional nonlinear truss elements to simulate 

the stay cables, as shown in Figure 3. 1.c. The deck was modelled using a single spine that 

passes through its centre of gravity. The cable anchorages and deck spine were connected 

by massless rigid links to achieve the proper offset of the cables from the centre line of the 

deck. 

In order to conduct a nonlinear analysis under dead loads and pre-tensioning forces, the P-

Δ and the large displacements effects were taken into account by using the following 

equation for the local tangent stiffness matrix: 

KK�M� = KK�M� + KK�M�                                            (3.21) 

where KK�M� and KK�M� are the elastic (Weaver and Gere, 1980) and the geometric (Nazmy 

and Ghaffar, 1990) stiffness matrices for the three-dimensional frame elements, 

respectively. The sag effect on the cables was dealt with by replacing each cable with a 

truss element of an equivalent cable stiffness. The equivalent tangent modulus of elasticity 

(Eeq) is given by (Ernst, 1965): 

Eº� = ���
Um�����$¬����#$�¯

                                               (3.22) 

Element 
Area 
(m2) 

Minor inertia 
(m4) 

Major inertia 
(m4) 

Torsional 
Constant (m4) 

Deck – main span 10.65 22.39 226.46 49.69 

Deck – side span 17.11 34.18 296.37 81.35 

Upper tower 17.39 - 32.80 44.77 – 67.25 110.78 – 379.93 91.10 – 218.71 

Lower tower  16.25 3.63 61.35 6.38 

Cables 0.006 – 0.0108 (2.87 – 9.28)10-6 (2.87 – 9.28)10-6 (0.57 – 1.86)10-5 
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where E�µ is the cable material effective modulus of elasticity; A� is the cross-sectional 

area of the cable; H is the horizontal projection of the cable; w�µ is the weight per unit 

length of the cable; and T is the tension in the cable.  

The frequencies and mode shapes, which are also inputs for the equivalent static forces 

calculation, are determined using the deformed configuration obtained in the static 

nonlinear analysis of the bridge under dead loads and pre-tensioning forces. Table 3. 2 

presents the obtained frequencies associated to the six mode shapes considered in the 

analysis and the corresponding values from the full aeroelastic model (in the prototype 

scale). It can be seen that the theoretical values are well correlated with the experimental 

ones, demonstrating that the finite element model has the proper stiffness and mass 

simulation of the structure.  

The static sectional model test and the full aeroelastic model test of the cable-stayed bridge 

were performed in The Boundary Layer Wind Tunnel Laboratory at Western University 

(King et al., 2005). The aerodynamic force coefficients and their slopes obtained from the 

sectional model test are listed in Table 3. 3 for angle of attack equal to zero. 

Table 3. 2: Frequencies and mode shapes. 

 

 

 

 

 

Table 3. 3: Aerodynamic coefficients and theirs slopes for a wind attack of 0º.  

 

According to King et al. 

(2005), the aeroelastic model was tested with roughness length equal to 0.030m (≈0.1ft). 

Mode Shape 
Frequency (Hz) 

Wind Tunnel FEM 

Drag 
Symmetric 0.242 0.248 

Anti-symmetric 0.782 0.778 

Lift 
Symmetric 0.327 0.340 

Anti-symmetric 0.500 0.510 

Torsion 
Symmetric 1.104 1.238 

Anti-symmetric 2.198 2.490 

Direction Coefficients Slopes 

Drag 0.261 -0.382 

Lift 0.161 0.867 

Torsion 0.129 0.013 
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Despite this fact, the roughness length applied in the theoretical approach has to be adjusted 

to 0.183m (≈0.6ft� in order to achieve matching longitudinal turbulence intensity profile 

and wind speed profile from the full aeroelastic model test at the deck height (46.9m). 

Figure 3. 4 presents the theoretical and experimental profiles describing the wind velocity. 

 

 Figure 3. 4: Longitudinal turbulence intensity profile and mean wind speed profile 

obtained experimentally from the full aeroelastic model test and the ones used in the 

theoretical  approach. 

 

As the vertical turbulence intensity profile was not provided by King et al. (2005), it is 

adopted according to Holmes (2015): 

σ� = 1.375u∗                                                       (3.23) 
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where σ� is the standard deviation of vertical wind speed, and  u∗ is the friction velocity. 

This means that σ� is taken as 0.55σ�. 

The structural damping ratios for vertical movements (0.16%), lateral movements (0.5%) 

and torsion (1.3%) are adopted in accordance with the full aeroelastic model test. The 

alongwind aerodynamic damping is calculated according to Eurocode 1 (Part 1-4, 2005): 

23�l0� = �Í²¤Î.
�a. #                                                     (3.24) 

where 23�l0� is the alongwind aerodynamic damping of the lateral mode of vibration with 

frequency l0; �Ö  is the drag coefficient; T.  is the deck mass per unit of length; and $0 =
2%l0, the angular frequency. 

The crosswind and torsional aerodynamic damping ratios are calculated according to 

Davenport (1982). As a dynamic sectional model test was not performed by King et al. 

(2005) in order to provide the flutter derivatives, the flutter derivative �U∗ is estimated by 

Equation 3.26 (Davenport, 1982). 

23�l0∗� = Q�¤$
a.

Á#∗< ∗�
�                                                    (3.25) 

�U∗l0∗� = QU
Ãþ

Í�'< ∗                                                        (3.26) 

23�l0∗� = Q�¤&
' 

($∗ < ∗�
�                                                    (3.27) 

where 23�l0∗� and 23�l0∗� are the crosswind and torsional aerodynamic damping of the 

vertical and torsional mode of vibrations with reduced frequency l0∗, respectively; �0 is the 

polar moment of inertia; �U∗l0∗� and ��∗ l0∗� are flutter derivatives. In the lack of an 

approximated equation to estimate ��∗ l0∗� , the torsional aerodynamic damping is 

neglected in this case study. 

The mean and buffeting equivalent static forces of each deck mode of vibration are applied 

separately to the FEM model of the cable-stayed bridge. The total deck peak displacements 
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obtained after linear analyses are combined by taking the root-mean-square of 

displacement of the six modes of vibration that are being evaluated. 

3.4.2 Experimental Approach 

The 1:200 scaled aeroelastic model was tested in an open country exposure with roughness 

length equal to 0.03048m (1ft). A detailed topographic model of the hills in the surrounding 

of the prototype was constructed to simulate the features of the terrain. The wind speed 

profile and longitudinal turbulence intensity profile used for the testing are presented in 

Figure 3. 4. 

The results, in terms of displacements, of the full aeroelastic model test were obtained by 

measuring and recording the time histories of non-contacting laser displacement 

transducers located at different positions of the deck, such as at ¼ and at ½ of the main 

span, and at the top of the towers. The mean and the peak values of the displacements were 

recorded for a range of wind speeds. The mean values were obtained by taking the 

arithmetic average of time history over the time of 15 minutes, and corrected to the time of 

60 minutes. While the peak values were obtained by taking the root-mean-square (RMS), 

of the time history, and multiplying it by a statistically-based peak factor of 3.5. The total 

response is equal to the mean value plus or minus the peak value. 

3.4.3 Results 

The comparison between the theoretical and experimental approaches are presented for 

displacements at the middle of main span, one-fourth of main span, and top of one tower.  

The comparisons of mean displacement values are presented in Figure 3. 5 to Figure 3. 8 

as a function of the deck height wind speed. A good correlation for the mean drag 

displacements for the deck for wind speeds up to 40m/s is observed (see Figure 3. 5). For 

wind speeds greater than 40m/s, the theoretical approach tends to predict slightly smaller 

values than the experimental approach. The same good behavior is observed for the mean 

rotations on the deck for wind speeds up to 40m/s as shown in Figure 3. 7, although for 

wind speeds greater than that, the theoretical approach results are slightly greater than the 

experimental approach values. Overall, the mean drag displacements and the mean 
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rotations have a good agreement as well as the mean lateral displacements at the top of the 

first tower. On the other hand, the mean lift displacements comparisons do not show a good 

correlation at the main span. It can be observed that the experimental approach provides 

smooth curves for drag displacements and rotations. However the mean lift curve exhibits 

very small displacements with floating values for wind speed up to 40m/s, and after that a 

more stable increasing response. It is worth noting that the upstream topography simulated 

in the test may have affected the wind flow on the side spans and part of the main span 

imposing small deviation from the 0° angle of attack condition over the sea water (as 

considered in the theoretical approach). 

 

    

(a)                                                                    (b) 

Figure 3. 5: Comparison of mean drag displacements: (a) at ½-point of main span; 

(b) at ¼-point of main span. 
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(a)                                                                    (b) 

Figure 3. 6: Comparison of mean lift displacements: (a) at ½-point of main span; (b) 

at ¼-point of main span. 

  

(a)                                                                    (b) 

Figure 3. 7: Comparison of mean rotations: (a) at ½-point of main span; (b) at ¼-

point of main span. 
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Figure 3. 8: Comparison of mean lateral displacements at the top of the 1st tower. 

The comparisons of peak values between the two approaches are presented in Figure 3. 9 

to Figure 3. 12. A good agreement of peak drag displacements is observed for wind speeds 

up to 40m/s, same behavior that is noticed for the mean drag displacements. The peak lift 

displacements of the deck from the theoretical approach, contrary to the mean lift 

displacements behavior, tend to be smaller than those obtained from the experimental 

approach. The lift displacements at ¼-point at the main span have very good correlation 

for wind speeds above 60m/s. It is necessary to emphasize that the vertical turbulence 

intensity profile applied to the full aeroelastic model was not provided; this way, in the 

theoretical approach the vertical turbulence was adopted from the literature and could not 

be checked experimentally. 

   

 

0

200

400

600

800

1000

1200

1400

1600

1800

0 20 40 60 80

T
o

p
 o

f 
T

o
w

er
: 

L
at

er
al

 D
is

p
la

ce
m

en
ts

 (
m

m
)

Deck Height Wind Speed (m/s)

Theoretical Experimental



88 

 

  

(a)                                                                    (b) 

Figure 3. 9: Comparison of peak drag displacements: (a) at ½-point of main span; 

(b) at ¼-point of main span. 

    

(a)                                                                    (b) 

Figure 3. 10: Comparison of peak lift displacements: (a) at ½-point of main span; (b) 

at ¼-point of main span. 
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(a)                                                                    (b) 

Figure 3. 11: Comparison of peak rotations: (a) at ½-point of main span; (b) at ¼-

point of main span. 

   

Figure 3. 12: Comparison of peak lateral displacements at the top of the 1st tower. 
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The peak rotations shown in Figure 3. 11.(a) for the midpoint of the main span obtained 

through the experimental approach shows a change of slope at the wind speed of 65.9m/s 

that can be explained by the detection of flutter phenomenon. The same behavior cannot 

be perceived in the theoretical approach, once the equivalent static forces applied to the 

finite element model take into account only the buffeting phenomenon. The peak rotations 

at ¼-point of main span present excellent correlation for the whole range of wind speed. 

For the peak lateral displacements at the top of the 1st tower, the experimental approach 

provides greater rotations values for wind speeds above 60m/s. Other than that, the top of 

the tower has a good correlation as shown in Figure 3. 12. 

 

3.5 Conclusions 

A theoretical-experimental comparison has been carried out to estimate how accurately the 

theoretical approach, constituted by a FEM model under equivalent static aerodynamic 

loading  that considers the results from the sectional model test can estimate the results 

provided by the experimental approach, established solely by the full aeroelastic model 

test. The comparisons indicate that the theoretical approach overall can successfully 

estimate the displacements of the experimental approach.  

It is observed an excellent correlation for drag displacements and rotations on the deck for 

wind speeds up to 40m/s, for both peak and mean values. For higher wind speeds the 

numerical results tend to be slightly greater or less than the experimental ones. The lateral 

displacements at the top of the first tower present a very good correlation for the peak 

values for wind speeds up to 60m/s.  

The mean and peak rotations have an overall excellent correlation for the whole range of 

wind speeds. On the other hand, the lift displacements do not present a very good 

correlation between the approaches. Nevertheless, the correlation can be considered 

satisfactory once the lift peak displacements from the experimental approach are able to 

follow the same trends as the ones from the theoretical approach. While at the ½ -point, 
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the numerical peak lift displacements are smaller than the experimental values, at the ¼-

point the displacements have a great correlation for wind speeds above 60m/s. 

The differences between the theoretical and experimental approaches analyses can be 

attributed to uncertainties encountered during the process of obtaining the displacements 

for both approaches. Some of the main uncertainties are: 

1. The experimental approach takes into account the general features of the prototype 

terrain, while the static sectional model test from theoretical approach does not 

consider the influence of the topography. Small deviations of the angle of attack 

from the 0° condition adopted in the theoretical analysis may have influenced the 

responses; 

2. The experimental approach can detect other phenomena like vortex shedding and 

flutter, while the theoretical approach considers only the buffeting phenomenon; 

3. The theoretical approach considers approximated aerodynamic damping ratios, 

once they are function of the flutter derivatives. Dynamic sectional tests were not 

realized for the bridge in study, so the flutter derivatives were estimated according 

to Davenport et al. (1982); 

4. The theoretical approach considers approximated aerodynamic admittance 

functions to describe the effect of the relation between the sizes of the gust and 

structure, which are naturally and more accurately taken into account during the 

experimental approach; 

5. The theoretical approach considers a vertical turbulence intensity profile that could 

not be checked or corrected to attend the one utilized in the experimental approach. 

Considering the magnitude of the differences between the theoretical and experimental 

approaches results as well as the source of uncertainties that cause these differences, one 

can conclude that the theoretical approach provides a satisfactory way of performing 

buffeting wind loads analysis.  
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Chapter 4  

4 Structural optimization of two I-girder composite cable-
stayed bridges under the action of dead, live and wind 
loads 

4.1 Introduction 

Cable-stayed bridges are efficient structures due to their several advantages, and at the 

same time they are challenging structures due to the integrated behaviour of their structural 

components (Podolny, 1976; Troitsky, 1988; Svensson, 2012).  

According to Svensson (2012), the number of cable-stayed bridges has been increasing 

since the 1970s, given the numerous benefits when compared to other type of bridges. As 

span lengths have recently increased significantly, cable-stayed bridges are becoming more 

flexible and consequently more susceptible to dynamic actions, specially from wind loads. 

To simplify and improve the design process of cable-stayed bridges, many studies were 

dedicated to their structural automatization and optimization. In some studies, optimization 

is restricted to the stay cable pre-tensioning forces (Wang et al., 1993; Chen et al., 2000; 

Janjic et al., 2003; Hassan et al., 2012 and 2013a; Martins et al., 2015) in which only dead 

and superimposed loads are considered. While in other studies, the optimization is more 

encompassing by considering the optimization of deck, tower, and stay-cables dimensions 

in addition to stay-cable pre-tensioning forces.   

Long et al. (1999) studied the optimization of a composite box girder cable-stayed bridge. 

Deck, tower and cable dimensions were optimized under dead and live loads using 

Powell’s direct search method with the objective of obtaining minimum cost of the 

superstructure.  

Simões & Negrão (1994, 2000) and Negrão & Simões (1997) have optimized different 

cable-stayed bridges with box-girder decks. Dimensions and geometry were optimized 

under the action of dead and live loads, and erection configurations, with goals related to 

minimum cost and stresses. Entropy based technique and Pareto solution were used for 
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solving the multi-objective problem. Ferreira & Simões (2011) also considered seismic 

loading during the optimization process with the objective of obtaining reduced stresses.  

Hassan et al. (2013b, 2015) optimized main span length, tower height, number of cables, 

deck and tower cross-section dimensions considering the action of dead, lane live loads 

and lateral mean wind loads. The optimization aimed obtaining the minimum design cost 

by using Real Coded Genetic Algorithm (RCGA) and Finite Element Method (FEM). The 

stay-cables pre-tensioning forces were obtained through surrogate functions previously 

developed by Hassan et al. (2013a). 

Considering that engineers are adopting thinner and lighter decks while considering longer 

spans, dynamic analysis becomes an important matter during the design and optimization 

of cable-stayed bridges. The main objective of this study is to evaluate how buffeting wind 

loads affect structural optimization procedures. Primary focus is given to buffeting wind 

loads because they are an inevitable phenomenon (Zhu et al., 2007), and depending on the 

wind magnitude, fluctuating forces may govern the selection of structural component 

dimensions (Davenport, 1966; Holmes, 2015). The critical wind velocity for vortex 

shedding, classical flutter, single mode torsional flutter, torsional divergence and galloping 

are also checked during the optimization process to guarantee that structures are 

aerodynamically stable. This task is accomplished by using a numerical tool developed in-

house that integrates: (i) the Finite Element Method (FEM) for modelling and analyzing 

the structure; (ii) the Real Coded Genetic Algorithm (RCGA) for determining optimum 

design variables that achieve minimum material cost of the structure; and (iii) the Discrete 

Phase Design Approach. The FEM and RCGA were adapted from Hassan’s work (2013b, 

2015), while the Discrete-Phase Design Approach was developed in this study. 

  The variables to be optimized are divided into two categories: main and secondary 

variables. The main variables are the independent design variables and consist of the 

following: number of stay-cables, deck I-girder inertia, concrete slab thickness, tower 

height above the deck, and tower cross-section longitudinal and transverse external 

dimensions. The secondary variables are dependent on the main variables values and are 

determined in Phases 1 to 3 of the Discrete-Phase Design Approach. Phase 1 determines 
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the I-girder dimensions as a function of the I-girder inertia that minimize the girder cross-

sectional area. Phases 2 and 3 determine the stay-cables area and pre-tensioning forces, 

respectively. Phases 4 to 7 involve determining natural frequencies and mode shapes, 

calculating displacements and internal forces due to live loads and buffeting wind loads 

based on the approach described and validated in Chapter 3, and checking the critical wind 

velocity of aerodynamic excitations. The Serviceability Limit State (SLS) and Ultimate 

Limit State (ULS) criteria are checked during Phase 8.  

In this chapter, the structural optimization of cable-stayed bridges described in Chapter 2 

and based on the Discrete-Phase Design Approach, FEM and RCGA methods is extended. 

Three more discrete phases are added to the algorithm in order to: (i) perform free vibration 

analysis; (ii) evaluate critical wind velocities of aerodynamic effects; (iii) determine 

displacements and internal forces due to mean and buffeting wind loads. 

The chapter starts by introducing the design variables, the objective function to be 

minimized and the design constraints to be satisfied. In sequence, the design methodology 

is presented focusing on the three discrete phases that are added for considering the wind 

loads. In order to illustrate the procedure, a case study for the design optimization of a 

cable-stayed bridge is considered under different SLS parameters. 

The research significance of this study is described below: 

1. As described in Chapter 2, one of the main advantages of the Discrete-Phase Design 

Approach is the practicality of adding new phases for considering additional effects 

in the optimization of cable-stayed bridges. This is applied in this chapter by adding 

three new discrete phases to the approach for considering the wind effect. 

 

2. Three different basic wind velocities are considered in the study in order to assess 

the structure geometry and material cost behavior with the increase of the wind 

speeds. 

 

3. Comparisons between four load combinations is assessed for estimating the 

significance of considering the wind loads during the optimization process of cable-
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stayed bridges. The most dominant load combination for different basic wind 

velocities are also assessed. The load combinations considered in these 

comparisons are: (i) dead and live loads; (ii) dead and wind loads; (iii) dead, live 

and wind loads; (iv) the load combinations (i), (ii) and (iii) are simultaneously 

considered. 

 

4. A correlation between the results considering different SLS parameters is 

performed in order to evaluate the influence of these parameters in deck rigidity 

and tower longitudinal stiffness relation as well as in the structure material cost.  

 

5. Structural optimization of cable-stayed bridges are completed with and without the 

consideration of critical wind velocities of aerodynamic effects to estimate the 

influence of these constraints in the optimization process. 

 

4.2 Description of numerical tool 

4.2.1 Design variables 

The vector of design variables )**⃗  includes the main variables: 

)**⃗ = H~U ~� ~� ~Ã ~¡ ~ÇJQU                               (4.1) 

where ~U is the total number of cables (2x4xN), N is the number of cables in half of the 

main span in one plan of cables; ~� is the deck I-girder inertia (I); ~� is the concrete slab 

thickness (tc); ~Ã is the tower height above the deck (Ha); ~¡ and ~Ç are the longitudinal 

(TL1) and the transversal (TL2) external dimensions of the towers cross-section, 

respectively. 

The secondary design variables are dependent on the main variables values. This way, 

instead of being considered as design variables to be optimized directly using RCGA, they 

are optimized by the Discrete Phase Design Approach. This leads to a large reduction in 

computational cost. The secondary variables are: 
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1. I-girder deck dimensions: I-girder depth (D), top flange (b1, t1), bottom flange (b2, 

t2) and web (w) dimensions are calculated as a function of the main variable ~� (I); 

2. Stay-cable areas (Ai; i=1,4xN) which are calculated as a function of the design 

variables ~U(N), ~� (I) and ~� (tc); 

3. Stay-cable pre-tensioning forces (Ti; i=1,4xN) which are calculated as a function 

of the design variables ~U(N), ~� (I) and ~� (tc), and the secondary variables Ai. 

The total length of the bridge (L), the main span (L1), the side spans (L2), the tower height 

below the deck (Hb) and the deck width (B) are determined by the topography and traffic 

conditions, and thereby are considered as constants during the optimization process. Some 

of the main and secondary variables are presented in Figure 4. 1. 

 

Figure 4. 1: Main and secondary variables. 
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4.2.2 Design constraints 

The constraints are defined to satisfy the Serviceability Limit State (SLS) and Ultimate 

Limit State (ULS) based on the Canadian Highway Bridge Design Code (CAN/CSA-S6-

14). Some of the SLS that are not covered by CAN/CSA-S6-14 are specified according to 

the AASHTO (2012) or the designer specifications. The design constraint functions (gj, 

j=1,10) at the Serviceability Limit State (SLS) are as follow: 

 Displacements at the deck due to dead and superimposed loads (XDL+SL) as a 

function of the maximum displacement C1 specified by the designer: 

�U = Í#×±²³u´³µ¶·¸ ¹º¸»¼½ − 1.0 ≤ 0                                                  (4.2) 

 Displacements at the deck due to live loads (XLL) according to the AASHTO (2012): 

         �� = ¾00×±³³µ¶·¸ ¹º¸»¼½ − 1.0 ≤ 0                                                   (4.3) 

 Displacements at the deck due to wind loads (XWL) as a function of the maximum 

displacement C3 specified by the designer: 

         �� = Í¯×±+³µ¶·¸ ¹º¸»¼½ − 1.0 ≤ 0                                                   (4.4) 

 Displacements at the deck due to live (XLL) and wind (XWL) loads as a function of 

the maximum displacement C4 specified by the designer: 

         �Ã = Í&×±³³m±+³�
µ¶·¸ ¹º¸»¼½ − 1.0 ≤ 0                                                (4.5) 

 Control of permanent deflections at the deck according to CAN/CSA-S6-14: 

�¡ = È²³Ó + È´³Ó¯Ô + È³³ÓÔ − 0.90
Ñ ≤ 0      (positive moment regions)            (4.6) 

�Ç = È²³Ó + È´³mÈ³³Ó' − 0.90
Ñ ≤ 0      (negative moment regions)            (4.7) 
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where �Ö×, �Ó× and �×× are the bending moments at SLS due to dead load, superimposed 

load, and live load; %, %′, %B, %�B are the elastic section modulus of the steel section only, 

the steel section and reinforcement within the effective width of the slab, the steel girder 

and the concrete slab using a modular ratio n and 3n, respectively. 

 Displacements at the towers due to dead and superimposed loads (VDL+SL) as a 

function of the maximum displacement C7 specified by the designer: 

              �¿ = Í,×À²³u´³ÁÂ − 1.0 ≤ 0                                                 (4.8) 

where �? is the total length of tower. 

 Displacements at the towers due to dead and superimposed loads (VDL+SL), and live 

loads (VLL) as a function of the maximum displacement C8 specified by the 

designer: 

              �¾ = Í-×À²³u´³mÀ³³�
ÁÂ − 1.0 ≤ 0                                          (4.9) 

 Displacements at the towers due to dead and superimposed loads (VDL+SL), and 

wind loads (VWL) as a function of the maximum displacement C9 specified by the 

designer: 

              �Ò = Í.×À²³u´³mÀ+³�
ÁÂ − 1.0 ≤ 0                                     (4.10) 

 Displacements at the towers due to dead and superimposed loads (VDL+SL), live 

(VLL) and wind (VWL) loads as a function of the maximum displacement C10 

specified by the designer: 

              �U0 = Í# ×À²³mÀ³³mÀ+³�
ÁÂ − 1.0 ≤ 0                               (4.11) 

The design constraint functions (gj; j=11,18)  at the Ultimate Limit State (ULS) are as 

follow: 
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 Combined shear and moment at the deck according to CAN/CSA-S6-14: 

�UU = ÄÅÄÆ − 1.0 ≤ 0                                                        (4.12) 

�U� = ÈÅÈÆ − 1.0 ≤ 0                                                        (4.13) 

�U� = 0.727 ÈÅÈÆ + 0.455 ÄÅÄÆ < 0                                             (4.14) 

where Ì<  is the factored shear force at ULS; �<  is the factored bending moment at ULS; ÌC  

is the factored shear resistance; �C  is the factored bending moment resistance. 

 

 Axial compression and bending at the deck according to CAN/CSA-S6-14: 

�UÃ = ÍÅÍÆ + Î#ÏÈÅÏÈÆÏ + Î#ÐÈÅÐÈÆÐ − 1.0 ≤ 0                                  (4.15) 

where �<  is the factored compressive force at ULS; �<�  and �<Ñ  are the factored bending 

moment at ULS about x-axis and y-axis; �C  is the factored compressive resistance; �C� and 

�CÑ  are the factored bending moment resistance about x-axis and y-axis; -U�  and -UÑ are 

factors to account for moment gradient and second order effects. 

The combined axial force and bending moment are also verified for both deck and towers 

by considering interaction diagrams, providing the constraints �U¡ and �UÇ, respectively. 

More details about the interaction diagram can be obtained in WIGHT & MacGREGOR 

(2009). 

 Biaxial loading at the towers according to CAN/CSA-S6-14: 

U
\ÆÏÐ,Â/ª0Æ = U

\ÆÏ,Â/ª0Æ + U
\ÆÐ,Â/ª0Æ − U

\ ,Â/ª0Æ                                    (4.16) 

�U¿ = ÈÅÏ,Â/ª0ÆÈÆÏ,Â/ª0Æ + ÈÅÐ,Â/ª0ÆÈÆÐ,Â/ª0Æ − 1.0 ≤ 0                                     (4.17) 

where fC�Ñ,?A+;C  is the factored axial resistance in compression with biaxial 

loading; fC�,?A+;C  and fCÑ,?A+;C are the factored axial resistance in compression 
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corresponding to �C�,?A+;C and �CÑ,?A+;C, respectively; f0,?A+;C  is the factored axial 

resistance in pure compression; �<�,?A+;C  and �<Ñ,?A+;C are the factored bending moment 

at ULS about x-axis and y-axis; and, �C�,?A+;C and �CÑ,?A+;C  are the factored bending 

moment resistance about x-axis and y-axis. 

 Stay-cables axial forces: 

�U¾ = ^Å�5 − 0.50 ≤ 0                                            (4.18) 

where �< is the factored axial forces at ULS, and 
¤  is the breaking force. 

The design constraints (gj; j=19,23) related to wind limited amplitudes and 

instability phenomena are as follow: 

 Vortex shedding excitation critical velocity ->C,1AC?;� (CNR-DT 207/2008): 

�UÒ = ->C,1AC?;� − -a,W < 0                                        (4.19) 

->C,1AC?;� = <t¤
ÓÂ                                                  (4.20) 

where -a,W is the mean wind velocity for return period TR=k years; ->C,1AC?;�  is the critical 

velocity for the i-th mode of vibration with frequency l@; and %? is the Strouhal number. 

 

 Single mode torsional flutter limitation: 

��0 = ��∗ ßl�,@á − Ã'_�©,	,t�¤& < 0                                        (4.21) 

where ��∗ ßl�,@á is a function of the torsional frequency mode and of the wind velocity; �a  

is the mass moment of inertia; 2E,�,@   is the structural damping of the i-th torsional mode; � 

is the air mass density. 
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 Classical flutter critical velocity ->C,<=�??;C  given by Selberg equation (Svensson, 

2012): 

��U = ->C,<=�??;C − -a,W < 0                                        (4.22) 

->C,<=�??;C = 2%Ù�′l¤ �1 + �<®<5 − 0.5� �0.¿�aC
þ�¤¯ £                    (4.23) 

where l¤and l̂  are the first bending and the first torsional bending frequencies; �′ is a 

reduction factor function of the ratios l̂ /l¤ and (D+tc)/B (Klöppel, 1967 apud Svensson, 

2012); T is the mass per length; and q is the mass of gyration.  

 

 Galloping critical velocity ->C,�3==AD@B�: 

��� = ->C,�3==AD@B� − -a,W < 0                                        (4.24) 

->C,�3==AD@B� = �<5¤
923ë24 9 %>                                            (4.25) 

where 
:Íë:Û  is the first derivative of vertical force coefficient; and %>  is the Scruton number. 

 Torsional divergence critical velocity ->C,:@1;C�;B>;: 

��� = ->C,:@1;C�;B>; − -a,W < 0                                        (4.26) 

 ->C,:@1;C�;B>; = 5 Q�6�Â
�¤$23	24

                                            (4.27) 

where 
:Í	:Û  is the first derivative of torsion force coefficient; 7 is the shear modulus of the 

material; and �? is the torsional moment of inertia of the cross-section. 

4.2.3 Objective function 

The objective of this optimization is to obtain the minimum material cost of deck, towers 

and stay-cables that attend all the ULS and SLS requirements. The objective function 


)**⃗ � is defined as follow: 
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)**⃗ � = �)**⃗ �:;>W + �)**⃗ �?A+;CE + �)**⃗ �>38=;E                          (4.28) 

where )**⃗  is the design variables vector, �)**⃗ �:;>W, �)**⃗ �?A+;CE and �)**⃗ �>38=;E are the 

material cost of deck, towers and cables for the design variables vector )**⃗ . The material 

costs are obtained from construction companies and RSMeans (2013). The deck costs are: 

$3,125/t of steel; $1,300/m3 of concrete; $2,400/t of reinforcement. For the towers the costs 

are: $1,200/ m3 of concrete and $2,400/t of steel. The stay-cables cost is $7,650/t of strands. 

Coefficients obtained from RSMeans (2013) are also applied to the costs in order to reflect 

the specific costs of the city in which the cable-stayed bridge is located . 

4.2.4 Finite element model 

The finite element model uses three-dimensional frame elements to represent the deck and 

towers, and three-dimensional truss elements to represent the stay-cables. The deck is 

modelled using a single spine simulating the concrete slab and I-girders, similar to the 

approach adopted by Wilson et al.(1991), and later used by Hassan et al. (2012, 2013a, 

2013b). The stay-cable anchorages and deck spine are connected by massless rigid links to 

achieve the proper offset of cables from the centre line of the deck. 

The only source of non-linearity contemplated in this study is the sag effect, which is 

considered substituting the modulus of elasticity of stay-cables by an equivalent tangent 

modul us (Eq. 4.29) established by Ernst (1965). This is justified by: (i) the limited effect 

that was observed by Wilson et al. (1991), Adeli & Zhang (1995) and Hassan et al. (2012) 

when considering fully nonlinear analysis of cable stayed bridges; (ii) the large number of 

analysis to perform the optimization of cable-stayed bridges considering the action of dead, 

live and wind loads; (iii) the fact that this study reproduces the initial design stage. 

¥;¦ = §¨©
Umª¨©«�$¬¨©#$®¯

                                                   (4.29) 

where E�µ is the cable material effective modulus of elasticity; A is the cross-sectional area; 

H is the horizontal projection of the cable; w�µ is the weight per unit length of the cable; 

and T is the tension in the cable. 
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4.2.5 Design methodology 

The design methodology is based on the Discrete Phases Design Approach which is 

responsible for: (i) determining the value of the secondary variables; (ii) calculating the 

loads due to dead, superimposed, live and buffeting wind loads; (iii) checking the ULS and 

SLS requirements, and calculating the objective function values. 

When only dead, superimposed and live loads are evaluated during the optimization 

process, the Discrete Phases Design Approach is composed by five design phases. By 

assessing buffeting wind loads as well, other three design phases are activated as described 

below. 

4.2.5.1 Phases 1 to 4 

Phases 1 to 4 are described in detail in Chapter 2. 

4.2.5.2 Phase 5 

Phase 5 involves solving an eigenvalue/eigenvector problem to obtain the frequencies and 

mode shapes of the bridge. When the live loads are part of the load combination analysis, 

the uniformly distributed live load is converted to linear mass, which is taken into account 

in the mass matrix; otherwise this matrix is formed considering only the mass of deck, 

towers and cables.  

4.2.5.3 Phase 6 

In this work emphasis is given to bridge buffeting excitation and before proceeding to the 

calculation of wind loads due to atmospheric turbulence (see Phase 7) some other 

mechanisms which can generate dynamic response and instability are addressed in this 

phase. Although vortex shedding can induce vibration classified as limited amplitude 

response it can generate sharp resonances causing intolerable stresses or fatigue problems 

on structures if submitted to prolonged time to this type of event. On the other hand, 

galloping and flutter (single mode torsional and classical) are classified as divergent 

amplitude response, in which the self-excited forces lead very rapidly to large amplitude 

values. The torsional divergence is classified as a non-oscillatory divergence that is 
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characterized by a negative aerodynamic torsional stiffness (Simiu & Scanlan, 1996; BD 

49/01-Part 3, 2001). These latter three phenomena cause instability and must be avoided.  

Critical wind speeds related to each of these phenomena are calculated and compared to 

the mean wind velocity at the deck height for return period of TR years (for example, 

TR=500 as prescribed by CNR-DT 207/2008) to guarantee that the structure is 

aerodynamically stable. In the case of vortex shedding this would be a condition to avoid 

the need to further investigate the induced vibration and check for cross wind amplitudes 

but is adopted here as a simplified criterion for aerodynamic stability. 

4.2.5.4 Phase 7 

In Phase 7, equivalent static buffeting wind loads at the deck are calculated according to 

the theoretical equations developed by Davenport & King (1984). Equivalent static wind 

loads are those that provide the same values of peak load effects as the dynamic fluctuating 

wind loads. Mean wind loads at deck, towers and stay-cables; and peak wind loads at deck 

and towers are applied to the complete FEM model in order to obtain the results in terms 

of displacements and internal forces. The peak wind loads at the towers are determined by 

calculating a gust factor (Solari 1987, 1993a, 1993b). 

The cable-stayed bridge behavior due to turbulence induced excitation can be simulated by 

6 modes of vibration Davenport & King (1984): the first symmetric and the first 

antisymmetric lateral, vertical and torsional mode shapes (see Figure 4. 2). Peak wind 

loads, with background and resonant components, are calculated as a function of:  

1. static aerodynamic forces and moment coefficient obtained from a sectional model 

test; 

2. flutter derivatives obtained from a dynamic sectional model test for calculating the 

aerodynamic damping ratios; 

3. spectrums of longitudinal and vertical turbulence velocities; 

4. aerodynamic admittance to relate the size of the gust and the structure; 

5. joint acceptance function to reproduce the capacity of the turbulent flow to excite 

the modes of vibration.  
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The static coefficients and flutter derivatives used in the numerical tool are obtained from 

Lin et al. (2005) in which they provided static force coefficients for four plate girder cross-

sections, with deck width and I-girder depth (B/D) ratios equal to 4.0, 6.7, 10.0, and 13.3. 

Flutter derivatives were also provided as a function of B/D ratio and reduced frequency of 

the mode shape being analyzed. The aerodynamic coefficients and flutter derivatives 

obtained from Lin et al. (2005) are provided in Appendix E. 

The spectrums of longitudinal and vertical velocities are evaluated considering the 

spectrum of Harris (ESDU 74031, 1974) and the spectrum of Busch and Panofsky (Holmes, 

2015), respectively. The aerodynamic admittances are calculated according to Davenport 

(1982) and Matsuda et al. (1999). The joint acceptance is estimated according to Davenport 

(1977 and 1982). 

To validate the equivalent static buffeting loads at the deck implemented in the numerical 

tool, a numerical-experimental correlation has been previously performed for the Prospect 

Verona Bridge in Maine, USA. The results from the cable-stayed bridge full aeroelastic 

model tested in The Boundary Layer Wind Tunnel Laboratory at Western University and 

provided by King et al. (2005) were successfully compared to the results from the 

numerical procedure calculated using the numerical tool, as presented in Chapter 3. 

The background (σ!.'ù,9� f ∗�, σ!.'ù,:� f ∗� and σ!.'ù,;� f ∗�) and resonant (σ!.'<,9� f ∗�, σ!.'<,:� f ∗� 

and σ!.'<,;� f ∗�) mean-square equivalent static forces adapted from Davenport & King 

(1984) and Holmes (2015) are presented as follow: 

4��'5,�
� l∗� = Ý |χ�l∗�|�%&'�,(l∗� Î.

¤ �l∗ý0                              (4.30.a) 

4��'5,�
� l∗� = Ý |χ�l∗�|�%&'�,(l∗� Î.

¤ �l∗ý0                              (4.30.b) 

4��'5,	
� l∗� = Ý |χ�l∗�|�%&'	,(l∗� Î.

¤ �l∗ý0                              (4.30.c) 

 

4��'6,�,(
� l0∗� = |χ�l∗�|�%&'�,(l0∗� þ< ∗Ã� Î.

¤                                  (4.31.a) 

4��'6,�,,� l0∗� = |χ�l∗�|�%&'�,(l0∗� þ< ∗Ã� Î.
¤                                  (4.31.b) 
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4��'6,	,(
� l0∗� = |χ�l∗�|�%&'	,(l0∗� þ< ∗Ã� Î.

¤                                  (4.31.c) 

 

%&'�,(l∗� = �ßàÙ���á�4 �âãÎ. �� Óãã<∗�
âã$ + �àÙ :ÍÚ�:Û �� �âªÎ. �� Óªª<∗�

âª$ £ ä�,l∗, �U, ���ä�
    (4.32.a) 

%&'�,(l∗� = �ßàÙ���á�4 �âãÎ. �� Óãã<∗�
âã$ + �àÙ :ÍÚ�:Û �� �âªÎ. �� Óªª<∗�

âª$ £ ä�,l∗, �U, ���ä�
    (4.32.b) 

%&'	,(l∗� = �ßàÙ���	á�4 �âãÎ. �� Óãã<∗�
âã$ + �àÙ� :ÍÚ	:Û �� �âªÎ. �� Óªª<∗�

âª$ £ ä�,l∗, �U, ���ä�
(4.32.c) 

 

where ) is the along-wind direction; * is the cross-wind direction; � represents the 

torsional movements; l∗ = lÙ/U. is the reduced frequency; U. is the mean wind velocity at 

the deck height;  S?'9,@f ∗�, S?':,@f ∗� and S?';,@f ∗� are the power spectral density of the 

mean square fluctuating generalized forces; |χAf ∗�|�, |χBf ∗�|� and |χCf ∗�|� are the 

aerodynamic admittances; and ξ is the total (structural + aerodynamic) damping; à is the 

dynamic wind pressure; ��� , ��� , ��	, 
:ÍÚ�:Û , 

:ÍÚ�:Û , 
:ÍÚ	:Û  are the aerodynamic coefficients 

and their first derivatives; %��l∗� and  %++l∗� are the spectrums of longitudinal and 

vertical turbulence velocities, respectively; 4� e 4+ are the standard deviation of 

longitudinal and vertical fluctuations, respectively; ä�,l∗, �U, ���ä�
 is the joint acceptance 

function. A detailed presentation of the equations used for calculating the peak wind loads 

due buffeting wind loads is found in Chapter 3. 

4.2.5.5 Phase 8 

Finally, displacements and internal forces due to dead and superimposed loads, live loads, 

mean and buffeting wind loads (obtained from Phases 3, 4 and 7, respectively), are checked 

against the design constraints presented in Equations 4.2 to 4.27. The objective function 

for minimum material cost is calculated, and penalties are applied if one or more 

requirements from SLS or ULS are not attended. 
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Figure 4. 2: Deck mode shapes: (a) 1st symmetric vertical mode; (b) 1st 

antisymmetric vertical mode; (c) 1st symmetric lateral mode; (d) 1st antisymmetric 

lateral mode; (e) 1st symmetric torsional mode; (f) 1st antisymmetric torsional mode. 

 

4.2.6 Optimization technique 

When the number of variables to be optimized are significantly large, the search space 

becomes substantial making it impossible to obtain the optimal solution through direct 

search. In these situations, evolutionary algorithms, like Real Coded Genetic Algorithm 
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(RCGA), are a good option because they are able to find a near optimum solution in a 

relatively short period of time (Rao, 2009; Michalewicz et al., 2000; Jacobson et al., 2015; 

Kramer, 2017). The RCGA is effective for avoiding local optimum if the population is 

large enough so that the algorithm can explore different areas of the search space.  

The RCGA makes use of selection method to pick samples among all the population of 

solutions.  Mutation and crossover operators are applied to these selected samples in order 

to generate new ones along the generations. In the end of each generation, the population 

is ordered according to their objective function values, with the best solution staying at the 

top of the list, while the worst ones are eliminated to keep the total number of samples 

constant. Elitism is also considered by saving a few best solutions to prevent them of being 

lost during the operations and to avoid extra computational time to recover previously 

eliminated solution. Throughout the generations and due to the operators applied, the 

samples start to convert to the same area of the search space where the global optimum is 

located. 

The RCGA finds the design variable vector )**⃗  (Equation 4.1) which minimizes the objective 

function 
)**⃗ � (Equation 4.28) subjected to the design constraints gj (j=1,23) presented in 

Equations 4.2 to 4.27.  

Each sample, from the initial population or obtained throughout the generations, has a 

design variable vector )**⃗  that is evaluated by the eight phases of the Discrete Design 

Approach. In Phase 8 the objective function is calculated as follow: 

1. If the sample solution is feasible, all the design constraints are respected, the 

objective function is equal to Equation 4.28; 

2. If the sample solution is infeasible, at least one of the design constraint is violated, 

the objective function is given by the equation based on Deb (2000): 

 


)**⃗ � = la3� + ∑ �,)**⃗ ���,bU                                            (33) 

where fE·F is the fitness value of the worst feasible solution that has been observed.  
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4.2.7 Cable-stayed bridge optimum design algorithm 

The RCGA procedure for the structural optimization of cable-stayed bridges considering 

dead, live and wind loads are described below: 

Step 1: Define the constant geometry values: bridge total length (L), main span length (L1), 

tower height below the deck (Hb), and deck width (B). Define the lower and upper bounds 

of the design variables.  

Step 2: Define RCGA parameters: number of samples in the population (eGHG); number 

of generations (e��I); fitness value of the worst feasible solution (fE·F); crossover and 

mutation operator parameters; number of samples to be saved for considering elitism 

(eº¹J¼JµE).  

Step 3: Define parameters for buffeting wind loads: basic wind velocity for SLS (-0,Ó×Ó), 

ULS (-0,Î×Ó) and mean wind velocity at the deck height for aerodynamic stability checks 

(-a,W); roughness length (/0); and structural damping (2E). 

Step 4: Define the SLS and ULS load combination factors for dead, superimposed, live 

and wind loads. 

   GEN=0 

Step 5: Initialize the population by generating randomly eGHG samples. For each one of 

the samples, the Discrete Phases Design Approach described in Section III.2.5 is 

performed, and its objective function value is calculated.  

Step 6: Sort the population by ordering  eGHG samples from the lowest to the highest 

objective function values.  

Step 7: Save eº¹J¼JµE fittest candidates to be added to the population of the next generation. 

   GEN=GEN+1 

Step 8: Apply crossover and mutation operators to samples from the previous generation 

to reproduce new samples that will compose the population of the current generation. For 
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each one of the new samples, the Discrete Phases Design Approach described in Section 

III.2.5 is performed, and its objective function value is calculated.  

Step 9: Add the candidates from the previous generation to the new population starting by 

the fittest until this population achieve eGHG samples. 

Step 10: Replace the samples with highest objective function values by the eº¹J¼JµE fittest 

candidates saved in Step 7, if they are no longer part of the new population provided by 

Step 9. 

Step 11: Sort the population by ordering  eGHG samples from the lowest to the highest 

objective function values. The lowest value is the fittest candidate to be the solution so far. 

Step 12: If GEN is equal to e��I, deliver the solution. Go to Step 7, otherwise. 

 

4.3 Case of study 

4.3.1 Cable-stayed bridge optimum design algorithm 

A composite two I-girders cable-stayed bridge is optimized using the design algorithm 

described step by step in Section III.2.7. The bridge has deck width B=17m, with 15m of 

distance between the two main girders. The total length L=400m, main span L1=200m, and 

the two side spans L2=100m each. The tower height below the deck Hb=30m, and the 

distance between cable anchorages at the tower is 2m. The cross-section of the tower is a 

hollow reinforced concrete box, and the thickness of its cross-section is assumed to be 

equal to 20% of the external dimensions. Table 4. 1 presents the upper and lower bounds 

of the design variables. 

In Phase 1 of design described in Section III.2.5.1, three parameters have to be chosen 

according to the designer. This case of study is based on the limit of Class 3 width-to-

thickness ratio of cross-section elements (CAN/CSA-S6-14). A b1/ b2=0.75 is assumed, 

which was observed in a number of real bridges; the maximum ratio b2/ D is assumed to 

be 0.20. The compressive strength of concrete, the yield strength of structural steel and the 
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breaking load of stay-cable strands are assumed to be equal to: 
EW = 1.867fL (¥E =
1957fL),  l′>W = 30�fL (¥> = 25.67fL),and lÑ = 350�fL (¥E = 2007fL), 

respectively. 

Table 4. 1: Design variables: lower and upper bounds. 

Design variable Lower Bound Upper Bound 

N 6 12 

I (m4) 0.005 0.50 

tc (m) 0.25 0.30 

TL1 (m) 3.00 7.00 

TL2/ TL1 0.30 0.70 

Ha/L1(m) 0.05 0.25 

The constants of the design constraints are defined by the user and in this case study are 

assumed as: �U = 5,000 (Eq. 4.2); �¿ = 1,700 (Eq. 4.8); �¾ = �Ò = �U0 = 500 (Eq. 4.9 

to 11). The constants �� (Eq. 4.4) and �Ã (Eq. 4.5) are tested for two different values: (i) 

800 that is the constant value when only live load is evaluated (Eq. 4.3); (ii) and half of 

this value, 400, to assess the sensibility of the optimization to this parameter. 

The hourly mean basic wind velocity adopted for the ULS analysis considers a return 

period of �� = 100 years according to CAN/CSA-S6-14, once there is one span over 

125m. The hourly mean basic wind velocity considered for calculating the critical 

velocities is equivalent to�� = 500 years based on CNR-DT 207/2008. In the lack of a 

more specific guideline for the hourly mean basic wind velocity for SLS analyses, two 

different return periods were evaluated �� = 10 years and �� = 2 years. It should be 

mentioned that when the live loads are considered together with the wind loads, the 

recommended maximum wind velocity to be evaluated at SLS is 23m/s (EN 1991-1-

4:2005+A1:2010). Above this wind velocity, the vehicles may become instable causing 

overturning incidents (Cook, 2007). Approximated values for logarithm decrement are 

obtained from   EN 1991-1-4:2005+A1:2010. 

The cable-stayed bridge is assumed to be constructed in London, ON. Based on the 

RSMeans (2013), the city-specific factors to be applied to the materials costs presented in 

Section III.2.3 are 1.45 and 1.25 for concrete and steel respectively. Although the hourly 
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mean basic wind velocity in London, ON for �� = 100 is -0,U00 = 30.8T/s, two other 

basic wind velocities are considered in the analyses: -0,U00 = 21.9T/s referent to the city 

Clapleau – ON; and -0,U00 = 42.2T/s referent to Cardston – AB. Only one set of material 

costs and three different basic wind velocities (see Table 4. 2) are considered to evaluate 

the effect of increasing wind velocity in the process of structural optimization of cable-

stayed bridges. The effect of considering the critical wind velocity of aerodynamic stability 

checks is also evaluated in this case study. In light of all the considerations mentioned 

above, six main cases of analysis are taken into account as described in Table 4. 3. The 

load combinations factors at ULS (CAN/CSA-S6-14) and SLS used in this case study are 

specified in Table 4. 4. 

Table 4. 2: Hourly mean basic wind velocities adapted from CAN/CSA-S6-14. 

Basic Wind 
Velocity 

(m/s) 

SLS ULS 
Aerodynamic  
Instabilities �� = 2 �� = 10 �� = 100 �� = 500 

V0,1 13.4 17.2 21.9 25.3 

V0,2 18.3 23.0 30.8 35.5 

V0,3 23.0 23.0 42.2 48.1 

 

Table 4. 3: Main cases of analysis. 

Case 
SLS Return Period 

(years) 
�� and �Ã 

(Eq. 4.4 and 4.5) 
Aerodynamic  
Instabilities 

A1 
10 800 

✗ 

A2  ✓ 

B1 
02 800 

✗ 

B2  ✓ 

C1 
02 400 

✗ 

C2  ✓ 
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Table 4. 4: Load factor combinations. 

Load Case 
ULS Factors SLS Factors 

DL LL WL DL LL WL 

DL +LL � 1.70 - 1.00 0.90 - 

DL +WL � - 1.40 1.00 - 1.00 

DL +LL+WL � 1.40 0.45 1.00 0.90 1.00 
Notes: DL=dead and superimposed loads; LL=live loads; WL=wind loads. 

            �: load factor provided by Table 3.3 of CAN/CSA-S6-14 depending on the type of material. 

 

4.3.2 Results and Discussion 

4.3.2.1 Importance of considering different load case configurations 
in the optimization process 

Optimization of cable-stayed bridges are performed for case of analysis A1 (��,Ó×Ó = 10 

years; �� = �Ã = 800) described in Table 4. 3. Three basic wind velocities V0,1, V0,2 and 

V0,3 defined in Table 4. 2 are considered and four load combinations are assessed:  

1. DL+LL case: dead, superimposed and live loads; 

2. DL+WL case: dead, superimposed and wind loads; 

3. DL+LL+WL case: dead, superimposed and live loads; 

4. Three Cases:  DL+LL, DL+WL, DL+LL+WL. 

Figure 4. 3.a summarizes and presents the material cost of the ten optimization analyses 

described above versus the basic wind velocities. The optimization that considers only 

dead, superimposed and live loads (DL+LL) are not dependent on the wind velocities, so 

those results are shown as constant in the graph.  
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 Figure 4. 3: Optimized material cost for distinct load combinations and 

different basic wind velocities. 
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Figure 4. 3.b-d shows that for the lowest wind velocity V0,1, the Three Cases configuration 

presents the same material cost as DL+LL+WL case. For the wind velocity V0,2, DL +WL 

case and DL+LL+WL case represent 96.1% and 95.3% of the Three Cases material cost, 

respectively. And for V0,3, DL +WL case is equivalent to 96.4% of the Three Cases material 

cost. Results show that for lower wind speeds there is more influence of live and wind 

loads combined together (DL+LL+WL case), but the effect of wind loads (DL+WL case) 

on the structure become more pronounced as wind speed increases. For the intermediary 

wind velocity V0,2, both DL+WL case and DL+LL+WL case are equally important for the 

final design. 

Overall, these analyses demonstrate not only the importance of considering the mean and 

buffeting wind loads during the structural optimization process, but also of considering the 

Three Cases load combinations simultaneously. 

4.3.2.2 Influence of evaluating different SLS parameters and deck 
rigidity and tower longitudinal stiffness behavior 

All results from this section are obtained considering the three cases load combinations 

(DL+LL, DL+WL, DL+LL+WL) as it was previously determined in Section III.3.2.1. The 

influence of evaluating different SLS parameters is investigated by optimizing the cases 

A1 (��,Ó×Ó = 10 years; �� = �Ã = 800), B1 (��,Ó×Ó = 2 years; �� = �Ã = 800) and C1 

(��,Ó×Ó = 2 years; �� = �Ã = 400), previously described in Table 4. 3. 

Table 4. 5 presents the deck limiting constraints and the bridge material cost for nine cable-

stayed bridges optimization analyses. The material cost from the most severe (A1) to the 

most bland (C1) case is reduced by 15.3%, 5.15% and 6.79% for the basic wind velocities 

V0,1, V0,2, and V0,3, respectively. For the cases A1 and B1, the limiting design constraint of 

the deck is the vertical displacements due to dead, live and wind loads. For case C1, the 

limiting constraint at the deck is no longer displacements, but constraints related to 

resistance. This is explained by the value of constants �� and �Ã, which are equal to 800 

for cases A1 and B1, and equal to 400 for case C1. 
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Table 4. 5: Deck limiting design constraint and material cost for cases A1, B1 and 

C1. 

Wind  
(m/s) 

A1 B1 C1 �@ Cost ($x106) �@ Cost ($x106) �@ Cost ($x106) 

V0,1 0.029(�Ã) 19.6 0.001(�Ã) 17.4 0.226(�UÃ) 16.6 
V0,2 0.023(�Ã) 23.3 0.021(�Ã) 22.1 0.328(�U¡) 22.1 
V0,3 0.013(�Ã) 28.0 0.001(�Ã) 27.9 0.034(�U¡) 26.1 

Notes: V0,1, V0,2 and V0,3 according to Table 4. 2 

The relationship between deck rigidity and tower longitudinal stiffness for cases A1, B1 

and C1 is presented in Figure 4. 4.(a). For all three cases, by increasing wind velocity from 

V0,1 to V0,2, there is an accentuated augmentation of deck rigidity while a small increase of 

tower longitudinal stiffness is observed. When varying the wind velocity from V0,2 to V0,3 

the opposite behavior is perceived, a considerable increase of tower stiffness accompanied 

by a small increase of deck stiffness.  

In Figure 4. 4.(b-d), the inner circle corresponds to V0,1 while the exterior represents V0,3. 

These graphs show that the optimized solutions for V0,2 present the greater proportion of 

deck cost (≈70% of the total material cost) when compared to the other basic wind 

velocities. These observations can be explained by the connected behavior of deck rigidity 

and tower stiffness displayed in Figure 4. 4.(a). 
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 Figure 4. 4: (a) Relation between deck rigidity and tower longitudinal 

stiffness; (b), (c), (d) proportion of elements material cost for cases of analysis 

(A1), (B1), and (C1). 

4.3.2.3 Influence of evaluating susceptibility to aerodynamic 
excitations 

The results for six cases of analysis described in Table 4. 3, considering (A2, B2, and C2) or 

disregarding the susceptibility to aerodynamic excitations (A1, B1, and C1) are presented in Figure 

4. 5. For basic wind velocity V0,1, the same optimized structure is obtained with or without 

aerodynamic considerations, which infers that these wind speeds are too low to excite aerodynamic 

phenomena.  

 

V0,1 

V0,2 V0,3 
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Figure 4. 5: Material total cost optimized for the six main cases of analysis: A1, B1, 

C1, A2, B2 and C2. 

For basic wind velocity V0,2, the optimized structures delivered for cases A1, B1 and C1 are 

susceptible to vortex shedding excitation. The optimized cable-stayed bridges provided by A2, B2 

and C2 when compared to A1, B1 and C1 have a significant increase of tower longitudinal stiffness, 

varying between 40.4% and 56.7%, which reflects in the frequencies of vertical modes of vibration. 

The increase of material cost is equal to 9.6%, 6.7% and 6.3% for A2, B2 and C2, respectively. 

The geometry and dynamic properties of the optimized cable stayed bridges obtained for V0,2 are 

presented in Table 4. 6. 

For basic wind velocity V0,3, the optimized structures provided by cases A1, B1 and C1 are 

susceptible to classical flutter.  Cases A2, B2 and C2 give the same optimized cable stayed-bridge. 

This is explained by the fact that the limiting constraint is the critical velocity for classical flutter 

(�¡ = 8.1 × 10QÃ, Eq. 4.23), which does not depend on the parameters that differentiate 
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A2, B2 and C2. The increase in material cost varies between 4.30% (A1 to A2) and 10.8% 

(C1 to C2).  

Table 4. 6: Design variables, frequencies and damping ratios for optimized cable-

stayed bridges considering critical wind velocity V0,2. 

Element Variables 
Cases of Analysis for V0,2 

(A1) (A2) (B1) (B2) (C1) (C2) 

Towers 

Ha (m) 23.8 32.2 13.4 13.9 13.4 20.6 

Ht (m) 70.8 77.2 60.4 60.9 60.4 67.6 

TL1 (m) 3.39 4.49 3.20 4.44 3.20 4.74 

TL2 (m) 2.30 2.16 2.15 1.92 2.15 2.15 

Deck 

tc (m) 0.28 0.29 0.25 0.25 0.25 0.25 

D (m) 4.00 4.00 4.00 4.00 4.00 3.75 

b1 (m) 0.691 0.699 0.680 0.710 0.680 0.696 

t1 (m) 0.044 0.044 0.043 0.045 0.043 0.044 

b2 (m) 0.922 0.932 0.906 0.946 0.906 0.928 

t2 (m) 0.044 0.044 0.043 0.045 0.043 0.044 

w (m) 0.039 0.039 0.039 0.038 0.039 0.036 

Cables N 7 6 7 7 7 7 

1st  

lateral 
bending 

mode 

f (Hz) 0.65 0.60 0.62 0.61 0.62 0.67 2E (%) 0.64 0.64 0.64 0.64 0.64 0.64 23 (%) 0.11 0.11 0.12 0.12 0.12 0.11 2? (%) 0.75 0.75 0.76 0.76 0.76 0.75 

1st 

vertical 
bending 

mode 

f (Hz) 0.39 0.42 0.38 0.42 0.38 0.42 2E (%) 0.64 0.64 0.64 0.64 0.64 0.64 23 (%) 3.03 1.92 3.33 2.16 3.33 2.09 2? (%) 3.67 2.56 3.97 2.80 3.97 2.73 

1st 

torsional 
mode 

f (Hz) 0.89 0.92 0.84 0.91 0.84 0.95 2E (%) 0.64 0.64 0.64 0.64 0.64 0.64 23 (%) 0.42 0.69 0.10 0.64 0.10 0.68 2? (%) 1.06 1.33 0.74 1.28 0.74 1.32 

Total Cost 
(x$1,000,000) 

23.337 25.802 22.058 23.644 22.058 23.531 

Notes: 2E: structural damping; 23: aerodynamic damping; 2? = 2E + 23: total damping; V0,1, V0,2 and V0,3 

according to Table 4. 2. 
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4.4 Conclusions 

In this study, the structural optimization of composite steel-concrete two I-girder cable-stayed 

bridges is performed by using a numerical tool that combines a Discrete Phases Design Approach, 

Finite Element Model (FEM) and Real Coded Genetic Algorithm (RCGA). Six main variables – 

number of stay-cables, deck I-girder inertia, thickness of concrete slab, tower height above the 

deck, and tower cross-section external dimension – are optimized via RCGA with the objective of 

obtaining the minimum material cost that attend all the design constraints. Secondary variables that 

are directly dependent on the main variables – deck I-girder dimensions, stay-cables areas and pre-

tensioning forces – are determined throughout the phases that compose the Discrete Phases Design 

Approach.  

The structural optimization considers dead and superimposed loads, live loads, mean and buffeting 

wind loads. The design constraints include SLS and ULS requirements, besides critical wind 

velocities of aerodynamic excitations. Three different hourly mean basic wind velocities are 

evaluated.  

The significance of considering wind loads in the optimization process varies depending on many 

factors: basic wind speed and topography at the construction site; design code load factors; 

restrictions to the maximum displacements applied to the deck and towers specified by the designer; 

etc. Although there is a great number of possible configurations, comparing material cost as well 

as the main design variables for the different cases of analysis, it is observed that the wind loads 

have an important role in the structural optimization. 

Contrasting results for three separated load combinations (DL+LL, DL+WL or DL+LL+WL) and 

for all the combinations simultaneously (Three Cases) shows the importance of considering the 

former during the optimization process. Among the three separated load combinations, 

DL+LL+WL tends to be the most important combination for lower basic wind velocities while 

DL+WL is more significant for higher wind speeds. 

When comparing optimized cable-stayed bridge solutions for different SLS parameters, the cases 

with more severe restrictions provide higher values of material cost as expected. But most 

important, same relations between deck rigidity and tower longitudinal stiffness are observed with 

the increase of basic wind velocity, regardless of the SLS parameters adopted by the designer.  
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The results also show the importance of considering the critical wind velocities of aerodynamic 

stability, especially for higher values of basic wind velocity. A maximum increase in material cost 

of 10.8% is observed when taking into account the aerodynamic design constraints during the 

optimization. 

Overall, the results show that when the structure is optimized without considering the wind loads, 

the structure tends to be more flexible and do not attend all the design requirements. In many cases 

of analyses, especially the ones with higher wind speeds, the final cable-stayed bridge optimized 

structure is obtained by considering not only dead, superimposed, live and wind loads, but also by 

considering restrictions to aerodynamic phenomena. 
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Chapter 5  

5 Conclusions and Recommendations  

The aim of this thesis is to perform structural optimization of two I-girder steel concrete 

composite cable-stayed bridges under permanent and transitory loads, with focus on 

evaluating the influence of considering moving live loads and buffeting wind loads. 

Chapter 1 provided an overview about stay-cable bridges configurations and behavior, and 

literature review related to the optimization of this type of structure. The optimization 

procedure based on FEM, RCGA and Discrete-Phase Design Approach was first 

introduced in Chapter 2, which consider permanent and moving live loads in the 

optimization process. In Chapter 3, a correlation between displacements of theoretical and 

experimental approaches due to mean and buffeting wind loads was performed to validate 

the former approach. The theoretical approach, validated in Chapter 3, was used in Chapter 

4 for considering the structural optimization of cable-stayed bridges under the action of 

permanent loads, moving live loads, mean and buffeting wind loads. Items 5.1 to 5.3 

summarize the main conclusions of each data chapter. 

The structural optimization of cable-stayed bridges presented in this thesis provides a 

preliminary design. In order to perform the final design, some extra analysis and design 

cases, as described in Item 5.4, must be added to the numerical tool. Although the structural 

optimization delivers a preliminary design of cable-stayed bridge, the numerical tool has 

great contribution to the literature due to the inclusion of wind action. The comparisons 

presented in Chapter 4 demonstrate that by disregarding the wind action (mean and 

buffeting wind loads, as well as critical velocities of the aerodynamic phenomena), there 

is great possibility of having a preliminary design that will require significant modification 

when wind tunnel test is performed. 

The material costs of optimum cable-stayed bridge solutions obtained in this thesis could 

not be compared to the material costs of cable-stayed bridges in service, once the former 

consists of a preliminary design as previously explained. Another fact that should be 

mentioned is that the conclusions presented for the structural optimization along the thesis 
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and summarized below depend on the lower and upper bounds adopted for the design 

variables and on the geometric values that were assumed constant. 

 

5.1 Structural optimization of two I-girder composite cable-
stayed bridges under the action of dead and live loads 

Chapter 2 introduces the Discrete-Phases Approach that has two main characteristics. First, 

the variables are divided into two categories: (i) main variables: number of stay-cables, I-

girder inertia, concrete slab thickness, tower cross-section external dimensions; (ii) 

secondary variables: I-girder dimensions, stay-cable areas and pre-tensioning forces. While 

the main variables are considered as design variables to be optimized via RCGA, the 

secondary variables are optimized indirectly by discrete phases. Secondly, the way the 

Discrete-Phases Approach was implemented simplifies the addition of new phases to 

account for other effects.  

For considering the action of permanent and live loads, the Discrete-Phases Approach is 

composed of five phases: (i) Phase 1 determines I-girder dimensions to minimize the cross-

section area; (ii) Phase 2 calculates stay-cables cross-sectional areas; (iii) Phase 3 

determines stay-cables pre-tensioning forces, displacements and internal forces due to dead 

loads; (iv) Phase 4 estimates displacements and internal forces of the bridge under the 

action of live loads; and (v) Phase 5 combines the results from Phases 3 and 4 to check if 

they satisfy the ULS and SLS criteria.  

Two design objectives were tested: (i) lightest deck mass; (ii) lowest material cost. Three 

load cases were considered: (i) dead and truck plus lane live loads; (ii) dead and lane live 

loads; (iii) dead load. The following conclusions can be drawn from this chapter: 

(i) The displacements obtained for the optimal solution in both deck and towers 

had very small values, demonstrating the efficiency of the design performed by 

the Discrete-Phases Design Approach together with RCGA and FEM. 
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(ii) For the lightest deck mass as objective function, the tower cross-section 

dimensions tended to reach their upper bounds in order to provide a very rigid 

tower. The tower height above the deck also tended to reach its upper bound 

value to increase the angle of inclination of stay-cables, and consequently the 

capacity of supporting the deck. 

 

(iii) The displacements of both deck and towers approached the limiting constraints 

of all optimal solutions that considered deck mass as the objective function. 

This allowed the construction of curves that relate deck rigidity, towers stiffness 

and stay-cables mass and can be used for any type of deck and tower cross-

sections. 

 

(iv) Stay-cables mass increase/decrease with an increase/decrease of deck mass, 

once the stay-cable cross-sectional areas were determined using a continuous 

beam FEM model of the deck. 

 

(v) By considering the truck in live load analysis, the deck mass value increased up 

to 12% when compared to optimum solutions that only consider uniformly 

distributed live load. These results demonstrate the importance of considering 

both truck and uniformly distributed live loads in the optimization process. 

 

(vi) When material cost was considered as the objective function, the optimal 

solutions could not be directly compared to the ones for the lightest deck mass. 

Despite this, when the solutions present analogous tower cross-section, their 

material cost differs by less than 5%. 
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5.2 Comparison between the theoretical and experimental 
wind responses of a full aeroelastic model test of a 
cable-stayed bridge 

A comparison between the wind response of a cable-stayed bridge predicted by theoretical 

and experimental approaches was performed. In the theoretical approach, buffeting 

equivalent static forces due to turbulent wind flow were calculated taking into account 

static force coefficients provided by the static sectional model test, and other parameters 

such as gust spectral density, aerodynamic admittance, and joint acceptance function. Wind 

loads were then applied to the finite element model of a cable-stayed bridge case study to 

obtain mean and peak displacements of the deck and towers. These results were compared 

to the corresponding displacements obtained from the experimental approach, i.e. the full 

aeroelastic model test of the same bridge.  

Some sources of uncertainties that can  explain the differences in results between the two 

approaches were identified: (i) the theoretical vertical turbulence intensity profile could not 

be checked against the experimental one; (ii) in the lack of flutter derivatives values 

provided by dynamic sectional model tests, the theoretical approach considered 

approximated aerodynamic damping ratio equations; (iii) the theoretical approach also 

considered approximated aerodynamic admittance functions, which are naturally taken into 

account by the experimental approach; and (iv) unlike the theoretical approach, the 

experimental approach considered the features of the terrain and was able to identify other 

phenomena like vortex shedding and flutter. Despite the uncertainties summarized above, 

the theoretical-experimental correlations presented in Chapter 3 were very good for 

rotations, and more than satisfactory for drag and lift displacements at the deck. The 

correlations showed that the theoretical approach overall can successfully estimate the 

displacements of the experimental approach. 
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5.3 Structural optimization of two I-girder composite cable-
stayed bridges under the action of dead, live and wind 
loads 

As suggested by the bibliography presented in Chapter 1, the objective of Chapter 4 was 

to cover a gap in the literature, which is the consideration of buffeting wind loads during 

the optimization process of cable-stayed bridges. The structural optimization of steel-

concrete composite I-girders cable-stayed bridges under the action of permanent loads, live 

loads, mean and peak buffeting wind loads was performed through the numerical tool used 

in Chapter 2 that is based on FEM, RCGA and Discrete-Phases Approach. In order to 

account for the wind effect, three new phases were added to the Discrete-Phases Approach: 

(i) for performing free vibration analysis; (ii) for determining displacements and internal 

forces due to mean and peak buffeting wind loads; and (iii) for estimating the critical wind 

velocities for aeroelastic phenomena.  

A cable-stayed bridge case of study was optimized for obtaining the lowest material cost 

for the structure. Three basic wind velocities were evaluated, and different SLS parameters 

were assessed. Three load combinations were considered: (i) dead and live loads (DL+LL); 

(ii) dead, mean and buffeting wind loads (DL+WL); (iii) dead, live, mean and buffeting 

wind loads (DL+LL+WL). The conclusions that can be drawn from this chapter are: 

(i) Discrete-Phase Design Approach’s advantage related to the practicality of 

incorporating new phases to account for other effects has been verified. 

 

(ii) The results showed that the load combinations DL+LL+WL and DL+WL tend 

to be the most critical  case for lower and higher wind velocities, respectively. 

This demonstrates the importance of considering wind loads even for the lowest 

value of basic wind speed (V0,1). 

 

(iii) The same relations between deck rigidity and tower longitudinal stiffness were 

observed with the increase of basic wind speed, independently of the SLS 

parameters adopted for the structural optimization process.  
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(iv) The results demonstrated that by considering critical wind velocities of 

aerodynamic phenomena as constraints, the material cost increased up to 

10.8%, demonstrating the relevance of these constraints in the optimization 

process. 

Overall, this thesis contributes by providing a new procedure for structural optimization of 

cable stayed-bridges based on FEM, RCGA, and Discrete-Phases Design Approach. This 

procedure simultaneously reduces the number of design variables, and facilitates future 

implementation of additional load cases. Moreover, this thesis demonstrated the 

significance of considering truck live loads, the importance of evaluating buffeting wind 

loads and assessing critical wind velocities for aeroelastic phenomena. 

 

5.4 Recommendations for future research  

For future research, the following suggestions are made in order to complement this study: 

 Add a new phase to the Discrete-Phase Design Approach to calculate the loads due 

to vortex shedding excitation, instead of considering its critical velocity as a design 

constraint. 

 Add new phases to the Discrete-Phase Design Approach for considering seismic 

analysis and to evaluate construction stages. 

 Add a new phase for performing fatigue analysis. 

 Account for the dynamic interaction vehicle-structure. 

 Account for the fluid-structure interaction. 

 Account for creep and shrinkage of concrete. 

Additionally, other parameters can be included to: 
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 Perform structural optimization for longer spans of cable stayed bridge, with 

different proportions of main and side spans. 

 Consider different number of stay-cables per spans. 

 Consider different tower cross-sections along the height and consider the 

thicknesses of the hollow concrete box cross-section as design variables. 

 Consider different deck I-girder inertia of deck cross-section along the bridge 

length.  

 

 



135 

 

Appendices 

Appendix A: Examples of cable-stayed bridges constructed in the last 40 years. 

Table A. 1: Concrete cross-section cable-stayed bridges (Svensson, 2012). 

Cross-section Bridge Name Country Year  Main span (m) 

Thin concrete 
beams 

Diepoldsau Bridge Switzerland 1985 97 

Evripos Bridge Greece 1993 215 

2 concrete 
girders 

River Leven Bridge Scotland 1995 115.2 

East Huntington Bridge USA 1985 274 

Rosario-Victoria Bridge Argentina 2000 330 

Helgeland Bridge Norway 1991 425 

Box girder 

Brotonne Bridge France 1977 320 

2nd Panama Canal 
Bridge Panama 2004 420 

Barrios de Luna Bridge Spain 1983 440 

Skarnsundet Bridge Norway 1991 530 

 

Table A. 2: Steel cross-section cable-stayed bridges (Svensson, 2012). 

Cross-section Bridge Name Country Year  Main span (m) 

Box girder 

Alamillo Bridge Spain 1992 200 

Rhine River at Ilverich Bridge Germany 2002 287 

Rhine River Wesel Bridge Germany 2009 335 

Sava at Ada Bridge Serbia 2011 376 

 St. Nazaire Bridge France 1975 404 

Tatara Bridge Japan 1999 890 

Sutong Bridge China 2008 1088 

Russki Bridge Russia 2012 1104 

2 box girders Stonecutters Bridge China 2009 1018 
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Table A. 3: Composite steel-concrete cross-section cable-stayed bridges (Svensson, 

2012; Pedro & Reis, 2016) 

Cross-section Bridge Name Country Year Main span (m) 

2 plate girders 

Heinola Bridge Finland 1994 165 

Elbe River Bridge Germany 2008 192 

Burlington Bridge USA 1993 201 

Quincy Bridge USA 1987 274 

Cape-Girardeau Bridge USA 2004 350 

Sunshine Skyway Bridge 
Composite alternative 

USA 1982 366 

Industrial Ring Road Bridges Thailand 2006 398 

Nanpu Bridge China 1991 423 

Second Severn Crossing 
Bridge 

South Wales 1996 456 

Alex Fraser Bridge Canada 1986 465 

Arthur Ravenel Bridge USA 2005 471 

John James Audubon Bridge USA 2011 482.5 

Rion-Antirion Bridge Greece 2005 560 

Erqi Yangtze River Bridge China 2011 616 

3 plate girders Hooghly Bridge India 1992 457 

4 plate girders 
Baytown Bridge USA 1995 381 

Ting Kau Bridge Hong Kong  1998 475 

2 box girders 

Xupu Bridge China 1997 590 

Yangpu Bridge China 1993 602 

Queensferry Crossing Bridge Scotland 2017 650 

Truss deck 

Karnali Bridge Nepal 1993 325 

Mercosur Bridge Venezuela - 360 

Oresund Bridge 
Sweden-
Denmark 

2000 490 

Hybrid  Baluarte Bridge Mexico 2013 520 
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Appendix B: I-girder dimensions for width-to-thickness limit ratio of Class 3 in order 

to minimize the cross-section area. 

 

 

Figure B. 1: I-girder depth as a function of the Class 3 I-girder inertia. 

 

Figure B. 2: Bottom flange width as a function of the Class 3 I-girder inertia. 

 

Figure B. 3: Web thickness as a function of the Class 3 I-girder inertia. 
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Appendix C: I-girder dimensions for width-to-thickness limit ratio of Class 2 in order 

to minimize the cross-section area. 

  

Figure C. 1: I-girder depth as a function of the Class 2 I-girder inertia. 

 

Figure C. 2: Bottom flange width as a function of the Class 2 I-girder inertia. 

 

Figure C. 3: Web thickness as a function of the Class 2 I-girder inertia. 
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Appendix D: Finite element modelling of concrete-steel composite two I-girders deck 

  

Figure D. 1: Finite element modelling of concrete-steel composite two I-girders deck 

according to Wilson et al. (1991). 

The composite steel-concrete deck modelled as a spine is positioned at the concrete slab 

elevation to provide the correct geometry of the model. Two horizontal rigid links, both 

with length equal to the half distance between I-girders, are considered to give the correct 

offset of the stay-cables. In addition, two vertical links with length equal to the distance 

between the shear centre and the centroid are considered in order to provide the proper 

torsional and transversal behavior of the deck (WILSON et al., 1991). The stay-cables 

anchorages at the deck are positioned at the connection of the horizontal and vertical rigid 

links. Translational masses and rotational masses are applied to the model in order to 

calculate the mass matrix to be used in the dynamic analysis. 

Reference 

Wilson, J.C, and Gravelle, W. 1991. Modelling of a cable-stayed bridge for dynamic 
analysis. Earthquake Engineering and Structural Dynamics, 20(8): 707–721.  
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Appendix E: Aerodynamic coefficients and flutter derivatives  

 

Figure E. 1: Geometry of plate girder section model evaluated by Lin et al. (2005). 

 

 

Figure E. 2: Drag coefficients (Lin et al., 2005).  
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Figure E. 3: Lift coefficients (Lin et al., 2005).  

 

 

Figure E. 4: Torsional coefficients (Lin et al., 2005).  
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Figure E. 5: Flutter derivative H1
* (Lin et al., 2005).  

 

 

Figure E. 6: Flutter derivative A2
* (Lin et al., 2005). 

 



143 

 

References   

Lin, Y.Y., Cheng, C.M., Wu, J.C., Lan, T.L., Wu, K.T. 2005. Effects of deck shape and 

oncoming turbulence on bridge aerodynamics. Tamkang Journal of Science and 

Engineering, 8(1): 43–56. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



144 

 

Curriculum Vitae 

 

Name:   Carolina Almeida Novaes dos Santos 
 
Post-Secondary  Federal University of Rio de Janeiro 
Education and  Rio de Janeiro, RJ, Brazil 
Degrees:   March 2006 – February 2011 B.S. Civil Engineering 
 

Federal University of Rio de Janeiro  
Rio de Janeiro, RJ, Brazil  
March 2011 – March 2013 M.Sc. Civil Engineering 

 
Honours and   Academic Dignity Cum Laude Degree 
Awards:   2011 
 

National Council for Scientific and Technological Development (CNPq) 

PhD Scholarship 
March 2015 – February 2017 

 

Related Work  Teaching Assistant 
Experience   The University of Western Ontario 

Fall Term 2016, Fall Term 2017, Winter Term 2018 
 
Civil Engineer 
Controllato – Design, Monitoring and Control of Structures 
Rio de Janeiro, RJ, Brazil  
March 2011 – October 2014 

 

Publications: 

Santos, C.A.N, El Damatty, A.A., Pfeil, M.S., Battista, R.C., 2019. Structural Optimization 
of Two-Girder Composite Cable-Stayed Bridges under Dead and Live Loads. 
Canadian Journal of Civil Engineering. Manuscript revisions in progress. 

 
 


	Structural Optimization of Cable-Stayed Bridges Considering the Action of Permanent and Transitory Loads
	Recommended Citation

	/var/tmp/StampPDF/ib9zCBjSet/tmp.1568041785.pdf.PRLjR

