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Abstract 

The standard of care treatment for end-stage osteoarthritis of the knee joint is a total knee 

arthroplasty (TKA). As we move towards a younger TKA patient cohort, implant longevity is 

of increasing concern. Porous hydroxyapatite coated uncemented implants provide a 

promising alternative to cemented fixation methods. Currently, a lack of consensus exists 

regarding which surgical technique is best suited to the uncemented TKA procedure. This 

thesis sought to examine the impact of surgical technique on tibial and femoral component 

migration. Additionally, we investigated the impact of technique on post-operative 

kinematics and functional recovery. The results of this thesis indicate no significant effect of 

surgical technique on one year migration of the tibial and femoral components or on post-

operative kinematics, condylar liftoff, and function. In conclusion, this thesis provides 

support for the use of a single-radius cruciate-retaining porous hydroxyapatite coated 

uncemented implant as a viable alternative to cemented TKA.    
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Chapter 1  

1 Introduction  

1.1 Osteoarthritis 

1.1.1 Etiology 

Osteoarthritis (OA) is a chronic degenerative disease of the articular synovial joint.1,2 

Under healthy conditions, cartilage provides a smooth lubricated surface for articulating 

movement and facilitates the proper transmission of load throughout the joint.2 Healthy 

cartilage can tolerate enormous amounts of repetitive physical loads.1 OA arises when the 

dynamic equilibrium between the breakdown and regeneration of joint tissues becomes 

unbalanced, shifting in favour of catabolic processes.1 Over time, the joint experiences 

extensive deterioration of the articular cartilage and subsequent structural and functional 

changes to the joint space which can involve subchondral bone remodelling, osteophyte 

formation, and synovial inflammation.1 As debilitating symptoms are often what prompts 

patients to seek assistance from a medical professional, diagnosis is often made in the 

later stages of disease. Using plain film radiography, hallmarks of end-stage disease such 

as cartilage degradation, narrowing of the joint space, osteophyte formation, and 

subchondral sclerosis can be identified.1  

Insight into OA development is provided from large population based longitudinal 

studies.1 The disease is known to have a multifactorial pathophysiology involving 

genetic, biomechanical, and environmental components.1,2 Major risk factors previously 

identified include female biological sex, age, obesity, and the presence of cardiovascular 

disease, Type II diabetes, or metabolic disease.2 Abnormal biomechanical load 

transmission within a susceptible joint can place additional stress on that joint resulting in 

further destabilization. Load transmission is impacted by anatomical and functional 

factors, such as tibial and femoral bone morphology, quadricep strength, lower limb 

alignment, and leg length discrepancy.2 Thus, a heightened risk can result from the 

interaction between atypical joint biomechanics and genetic, systemic, and environmental 
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factors. The complexity of OA has resulted in a lack of complete understanding of the 

disease etiology which only adds to the burden of this disease.  

1.1.2 Burden of Disease  

In the province of Ontario, musculoskeletal (MSK) conditions represent 40% of all 

chronic conditions and 54% of all long term disability.3 The most common MSK disease 

worldwide is OA.4 More prevalent in females than males and in older individuals, the 

World Health Organization estimates that 10% of males and 18% of females over the age 

of 60 report having symptomatic OA.5 The level of disability that accompanies OA is 

highly individualized. Detrimental physical and psychological problems and 

socioeconomic effects are observed for the affected individual, their families, and 

society.6 This burden is expected to rise dramatically as we have both a greater number of 

older people and a continual trend towards the adoption of more sedentary lifestyles, 

secondary to obesity.3  

Specifically, with respect to OA, physical impairments can contribute to large declines in 

patient functioning. Patients often experience immense pain and joint stiffness in their 

large weightbearing joints resulting in significant levels of disability.3,6 In turn, the 

performance of self-care and instrumental activities of daily living, such as walking, 

standing, lifting, stair ascension and descension, and getting up and down, become very 

taxing. Affected individuals often must rely on caregivers for assistance, which places 

further limitations on their independence.7 While OA does not result in mortality, the 

health-related quality of life (HRQOL) impact of the disease on older individuals is 

considered comparable to patients with advanced cancer.8,9  

The link between physical impairment as a result of pain and poor functioning and 

psychological well-being amongst OA patients is well established.10 Physical limitations 

are often found to be the mediator between physical pain and a more depressed affect.10 

Furthermore, due to physical restrictions patients report reduced participation in social 

activities, such as visiting friends and shopping, which in turn, contributes to a greater 

likelihood of exhibiting depressive symptomology.10 Under these assumptions, the 
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physical disability one experiences, secondary to OA, also becomes a social disability 

and restricts their performance of customary and valued social activities.10  

As a result of the widespread physical and psychological burden of OA on both a national 

and global level, the disease subsequently has a substantial economic burden. Healthcare 

resource utilization is the primary contributor to the direct costs of OA. In Canada, it is 

projected that by 2031 the direct cost of OA will increase to $7.6 billion.11 Of this $5.8 

billion will be spent on hospitalization, outpatient services, prescription drugs, and 

rehabilitation (all monetary values presented in Canadian Dollars).11 The economic 

implications of OA are further intensified indirectly by the productivity costs of work lost 

(PCWL). PCWL associated with OA include, for example, long-term sick leave, 

disability, or early retirement for OA related disability.12 As both the working population 

and OA prevalence continues to grow, this cost is expected to substantially rise. Current 

projections estimate that by 2031 the PCWL associated with OA will rise to $17.5 billion 

dollars, with almost 30% of the labour force reporting symptomatic OA by the year 

2040.12,13  

1.1.3 Treatment Options  

Once a diagnosis of OA is made there are various non-surgical and surgical treatment 

options available. Unfortunately, because of the complex multi-factorial etiology of OA, 

no disease modifying osteoarthritic drugs exist. Even if pharmaceutical agents capable of 

preventing OA progression are developed, it will be years before the efficacy of these 

agents can be established and developed for public use.2  

Conservative non-surgical treatment options involve lifestyle modifications, such as 

weight loss management through diet and exercise, pain management, intra-articular 

injections, and bracing.14 While the full benefit of lifestyle modifications needs to be 

better elucidated, weight loss and improvements in muscle strength and aerobic capacity 

have shown to improve OA symptomology while benefiting cardiovascular health and 

all-cause mortality.4,14 Pharmaceutical pain management is centred around non-steroid 

anti-inflammatory agents which are used to reduce joint inflammation.4,14 Intra-articular 
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injections involving corticosteroids or growth factors have been shown to improve 

symptoms but do not contribute to any structural modification within the joint space.2  

In most cases, non-surgical treatment options do not provide long-term effective relief of 

OA symptomology. For patients who have exhausted all non-operative options, several 

surgical options exist and include: a high tibial osteotomy, a unicompartmental knee 

arthroplasty, and a total knee arthroplastsy.15,16 Nonetheless, the gold standard treatment 

for end-stage knee OA is a total knee arthroplasty (TKA).15  

1.2 Total Knee Arthroplasty  

1.2.1 Basic Knee Anatomy  

In order to better understand the goals and principles of the TKA procedure, a basic 

understanding of knee anatomy is required. The knee joint combines bone, cartilage, 

menisci, ligaments, tendons, synovium, a joint capsule, and synovial fluid to create an 

articular surface between the upper and lower leg.17 More specifically, the knee is 

comprised of a condylar joint between the femoral condyles and tibia and a saddle joint 

between the posterior surface of the patella and the anterior articular surface of the distal 

femur.17  Therefore, conceptually, the knee is comprised of two joints, a tibiofemoral 

joint and a patellofemoral joint.18 Together, the knee acts as a modified hinge joint, 

allowing for flexion, extension, translation, and slight internal and external rotation. Knee 

joint anatomy is depicted in Figure 1.  
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The tibiofemoral joint is the primary joint of the knee. The dynamic and static stability of 

the tibiofemoral joint results from a complex interplay of various structures within and 

around the joint.18 Dynamically, muscles acting on or across the joint, such as the 

quadriceps and hamstrings, provide dynamic stability to the anterior cruciate ligament 

(ACL) and posterior cruciate ligament (PCL).17,18 The ACL originates from the lateral 

femoral condyle and inserts on the medial and anterior aspect of the tibial plateau.19 The 

ACL resists anterior displacement of the tibia relative to the femur.18 The PCL originates 

from the antero-lateral aspect of the medial femoral condyle in the area of the 

intercondylar notch and inserts over the back of the tibial plateau.19 The PCL resists 

posterior displacement of the tibia relative to the femur.18 Soft tissue anatomy is depicted 

in Figure 2. Muscles are also involved in the stability of the joint, in addition to the 

medial and lateral collateral ligaments and the two menisci.18,19  

 

 

 

Figure 1: Bone anatomy of the knee (A) anterior, (B) lateral, and (C) posterior 

views. 

Femur 

A.                                       B.                      C.   
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The medial meniscus is broader and more c-shaped than its lateral counterpart, however, 

and it is thinner throughout the body and anchored firmly to the anterior surface of the 

tibia, medial collateral ligament, and joint capsule.18 The lateral meniscus is more circular 

than the medial meniscus and covers a greater portion of the lateral articular surface. 

Unlike the medial meniscus, the lateral meniscus does not attach onto the lateral 

collateral ligament and attaches less firmly to the joint capsule. This makes the lateral 

meniscus more mobile than the medial meniscus and less likely to tear.17,18 Both meniscal 

structures are made of fibrocartilaginous tissue and have a number of biomechanical 

funtions.18 The meniscal structures primarily act to absorb load and deepen the shallow 

elliptical cavities of the tibial condyles which provides stability and helps facilitate 

articular movement within the joint.18  

The extracapsular ligaments are the medial collateral ligament (MCL) and the lateral 

collateral ligament (LCL) which further stabilize the joint by resisting varus and valgus 

Figure 2: Soft tissue anatomy of the knee. Reproduced 

with permission from Dr. Kevin Perry.19 
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rotation.19 The MCL is composed of both a deep (dMCL) and superficial (sMCL) 

component. The dMCL is responsible for providing passive rotational stability to the 

joint in a position of extension and early flexion.20. The sMCL is acknowledged as a 

primary stabilizer of the knee and is responsible for minimizing any anterior translation 

of the medial tibia.20,21 Together, the dMCL and sMCL act antagonistically to any applied 

valgus force.20 The responsibilities of the LCL are twofold: primarily, it is responsible for 

providing restraint to any applied varus forces and secondarily, limiting anterior-posterior 

translation of the tibia.19    

The muscles surrounding the knee are the final structures relevant to understanding the 

functionality of the articulating joint. The quadriceps, located on the anterior aspect of the 

thigh or upper leg, are responsible for extension of the tibia.18 The hamstrings, located on 

the posterior aspect of the thigh or upper leg, are responsible for facilitating knee 

flexion.18  

The knee joint is a very complex system that relies on proper functioning components in 

order to facilitate the wide variety of movement the joint is capable of performing. 

Consequently, this complexity makes joint replacement an extremely difficult task.  

1.2.2 Principles of Total Knee Arthroplasty  

A TKA, or the surgical reconstruction of the knee joint through the implantation of 

artificial components, is the standard of care treatment for end-stage OA of the knee.22 

For patients, a TKA is reserved as the final step to restore their quality of life and joint 

function and is a viable option when conservative non-operative treatments have failed to 

mitigate their symptoms.11  

In general, the procedure involves replacing the diseased distal femur and proximal tibia, 

and occasionally the patella, with artificial components.23 Thus, the prosthesis is 

comprised of both a metal femoral and tibial component. The femoral component has two 

spheroidal condylar bearing surfaces, mimicking the natural anatomy of the medial and 

lateral femoral condyles.24 The tibial component includes a flat tibial platform.24 Placed 

in between the metal femoral condylar bearing surface and tibial platform is an ultra high 
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molecular weight polyethylene insert. Depending on the design of the prosthetic 

components, the polyethylene insert is either free floating (mobile) or fixed to the tibial 

component.25 The polyethylene acts to reduce the frictional force between the two 

components and aids in establishing smooth articulation between the implanted prosthesis 

(Figure 3).25,26 In situations where the patella is replaced, a dome-shaped polyethylene 

cap is also implanted.24 

 

 

 

 

 

 

 

 

While many nuances of the TKA procedure are disputed between arthroplasty surgeons, 

there is a basic set of procedure goals that are widely accepted amongst them. Firstly, 

adequate visualization of the entire joint is required for successful implantation of the 

prosthesis.27,28 The medial parapatellar incisional approach is the most commonly used 

incisional approach for TKA, primarily for its simplicity and excellent exposure of all 

three joint compartments.29  

Another widely held assumption amongst arthroplasty surgeons is that following TKA 

the mechanical axis of the lower limb should be realigned to a neutral position. This 

involves correcting any pre-operative deformities (either a varus or valgus alignment) to a 

neutral position. Common variations in lower limb alignment are demonstrated in Figure 

4. When the knee is in a neutral position the load applied across the joint is equally 

Figure 3: Total knee arthroplasty prosthesis components. 
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distributed between the medial and lateral articulating surfaces. Malalignment post-TKA 

has been linked to increased polyethylene wear rates, decreased function, and early 

implant failure, and therefore a neutral position is desired.30–32 Neutral alignment is 

achieved through a combination of both bone resection and soft tissue release.  

 

 

 

 

 

 

 

 

 

 

 

Accordingly, balancing the soft tissues around the knee joint is a goal of TKA surgery.33 

Additionally, surgeons aim to achieve balanced gaps within the joint space with the limb 

in a position of flexion and extension. This involves establishing equal symmetrical gaps 

between the femur and tibia in both the medial and lateral compartments of the knee. 

When the tissues are balanced correctly, the knee is said to be in a stable position. 

Balance assessment by the surgeon is subjective and the sequence of releases varies 

based on personal preference. Nevertheless, surgeons aim to achieve symmetrical 

balanced gaps in the joint space in order to improve implant longevity and patient 

outcomes.34 

Figure 4: Demonstrating valgus, neutral, and varus alignment 

of the lower limb. Reproduced with permission from Dr. 

Kevin Perry.19 
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Consequently, the standard of care intraoperative objectives for a TKA are to: achieve a 

neutral limb alignment, restore and maintain the joint line, obtain well positioned stable 

femoral and tibial components, and achieve proper soft tissue balancing.  

1.3 Surgical Technique  

1.3.1 Controversy in TKA  

A TKA is a very popular procedure with successful outcomes for most patients.35 

Nevertheless, dissatisfaction remains post-operatively in one in every five patients.22 As a 

result, surgeons have sought improvements in their surgical technique. Improvements are 

typically centred around improving either soft-tissue balancing, component positioning, 

or both.36,37  

In order to achieve the standard of care objectives of a TKA, two modern surgical 

approaches have been developed: gap balancing (GB) and measured resection (MR). 

Since their introduction, these techniques have become effective and reproducible means 

for performing a TKA. A number of studies have directly compared the two surgical 

approaches.38–40 Nevertheless, neither technique has been shown to produce superior 

outcomes across a number of domains.   

1.3.2 Gap Balancing 

Historically, very few anteroposterior femoral component sizes were available for use. In 

order to utilize the available sizes, surgeons often made larger posterior femoral condyle 

bone resections. A consequence of these resections was that gap differences were often 

observed between a position of flexion and extension, leading to long term instability of 

the knee joint. In order to address this instability, the GB surgical technique was 

introduced in the 1980’s by Drs. Michael Freeman and John Insall.41  

In modern times, whether the flexion or extension space is balanced first is left up to 

surgeon discretion. Proponents of GB suggest that by setting femoral component rotation 

based off of the proximal tibia resection, as opposed to a predetermined anatomical 

landmark, offers greater coronal plane stability.35  
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1.3.2.1 Technique  

Central to the GB surgical technique is that ligamentous releases are conducted prior to 

bone resection.42 As previously mentioned, surgeons may elect to balance either the 

flexion or extension gap first. The most common strategy is to balance the knee first in a 

position of extension, followed by flexion. This allows surgeons to achieve symmetrical 

tension on ligamentous structures in extension, then set femoral implant rotation to 

ensure a symmetrical flexion gap. In this case, balance of the extension gap is first 

established by resection of the proximal tibial and distal femur articular surfaces.43 The 

proximal tibial resection is conducted at 90° to the longitudinal tibial axis.42 The posterior 

slope of the tibial resection is dependent upon implant design. The distal femoral 

resection is made with the achievement of a neutral mechanical axis in mind.42 The 

thickness of each resection varies between patients. Appropriate cutting guides, such as 

intramedullary instrumentation, are utilized for the resections.  

Once the resections of the proximal tibial and distal femoral surfaces have been made, all 

femoral and tibial osteophytes must be removed.42 It is imperative osteophyte removal 

occurs prior to any soft-tissue releases as their presence can alter soft tissue tension, thus 

affecting implant positioning and extension-flexion gap symmetry. Once removed, soft-

tissue releases are conducted to achieve a neutral limb alignment and a symmetric or 

balanced extension gap.42  
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The next step is to create a flexion gap with the same dimensions as the extension gap. 

First, the knee is positioned to be in a position of 90° of flexion. Next, surgeons utilize 

implant-specific tensioners or laminar spreaders to tension the collateral ligaments of the 

joint. With the tensioners in place, the flexion gap is compared to the extension gap. Once 

confirmed to be rectangular and of the same magnitude of the extension space, the 

posterior femoral condyles can be resected. An anteroposterior cutting block is placed for 

the resection. This cutting block is depicted in Figure 5. The rotation of the femoral 

component is set based on the proximal tibial resection made previously. If no more 

osteophytes are removed and no more soft-tissues are released, flexion-extension gap 

symmetry can be ensured.  

Alternatively, if surgeons elect to balance the joint space in a position of flexion prior to a 

position of extension, the implant-specific tensioners are used immediately following the 

resection of the proximal tibia. After flexion balancing, the limb is brought to a position 

of extension. Tensioners are once again used to help balance the joint space. The distal 

femur resection is made in order to match the balanced flexion gap.  

Figure 5: Placement of the anteroposterior femoral cutting 

block. Reproduced with permission from Dr. Kevin Perry.19 
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1.3.2.2 Advantages and Disadvantages  

Proponents of GB suggest that the approach results in improved flexion gap stability and 

flexion-extension gap symmetry.43 An in vivo study analyzing flexion-extension gap 

symmetry found that among 84 TKAs completed with a GB approach, no knees had a 

flexion extension gap mismatch of greater than 3 mm.44 Furthermore, supporters of the 

GB approach suggest the technique results in greater coronal plane stability as observed 

by a smaller likelihood and magnitude of femoral condylar liftoff.40  

A limitation of the GB approach is that occasionally joint line preservation and anatomic 

femoral rotation are foregone in order to achieve symmetrical and balanced flexion and 

extension gaps.42 This change in joint line has been shown to result in instability in the 

midrange of flexion and cause complications with patellofemoral mechanics.45 

Additionally, nonanatomic femoral rotation, specifically internal rotation, has been 

associated with the GB approach if collateral ligament tension is abnormal or 

asymmetric.42 Abnormal tension can result from residual femoral or tibial osteophytes.  

1.3.3 Measured Resection  

The MR technique was introduced in 1980 by Drs. Robert Kenna, Kenneth Krackow, and 

David Hungerford.46 There are two main principles that govern the MR technique. 

Firstly, the amount of bone resected should be equivalent to the thickness of the 

prosthesis being implanted.42 Secondly, femoral component position is determined based 

on three predetermined anatomical landmarks: the transepicondylar axis (TEA), the 

anterior-posterior axis (APA), and the posterior condylar axis (PCA).42 Anatomical 

landmarks used for MR are depicted in Figure 6. The TEA connects the bony prominence 

of the lateral epicondyle with the sulcus of the medial epicondyle.42 These bone 

landmarks are also the origin of the lateral and medial collateral ligaments on the femur. 

The APA, also known as Whiteside’s line, begins from the trochlear sulcus on the 

anterior portion of the femur, and ends posteriorly at the intercondylar notch. In the 

majority of cases, the APA lies 90° to the TEA. The PCA connects the most posterior 

part of the medial and lateral femoral condyles. As the posterior condyles of the femur 

are easy to identify, most femoral instrumentation relies on this landmark.  
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1.3.3.1 Technique  

In modern day, the MR technique includes a tibial resection in either a neutral position or 

in 90° of flexion.42 Historically in the majority of patients, more bone is resected from the 

lateral side of the tibia compared to the medial due to the varus geometry of the proximal 

tibia. This was thought to permit a greater degree of rotational freedom on the lateral 

side.42  

The MR approach involves performing bone resections before ligamentous balancing. As 

the tibial and femoral resections are done independently, the order of resection is up to 

the discretion of the surgeon.42 The tibial resection is made perpendicular to the 

anatomical and mechanical axis of the tibia. Resection of the distal femur is done to 

achieve a neutral mechanical alignment, which often requires a position of approximately 

5° to 7° of valgus alignment.42 Following appropriate sizing of the femoral component, 

AP femoral resection is performed parallel to the TEA and perpendicular to the APA.42 

This allows proper and accurate femoral rotation to be determined. Common practice 

Figure 6: Measured resection anatomical landmarks. 

Reproduced with permission from Dr. Kevin Perry.19 
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involves utilizing instrumentation that references the PCA to make the AP femoral 

resection. It is crucial that effort is made to match the thickness of the prosthesis being 

implanted to the amount of bone resection performed.   

In order to ensure a rectangular flexion gap, the femoral component often must be 

externally rotated in relation to the TEA.42 Following bone resections, all femoral and 

tibial osteophytes are removed, trial prosthesis components are placed and tested 

throughout an entire range of motion (ROM).42  

1.3.3.2 Advantages and Disadvantages  

Proponents of MR suggest the technique’s preservation of joint line position as one of its 

main advantages.35 Furthermore, the approach respects the native anatomy of the knee 

and multiple anatomical landmarks provide a number of ways to assess femoral 

component rotation.47  

Technical pitfalls of the MR technique derive from the use of anatomical landmarks to set 

femoral component rotation. Femoral anatomy varies significantly from one patient to 

another, making accurate identification of anatomical landmarks a difficult task. This 

results in considerable variability in femoral component rotation between patients.42 

While the TEA is suggested as the standard landmark, critics of the MR technique 

suggest it be used with caution. A study analyzing interindividual reproducibility in the 

identification of the TEA between eight arthroplasty trained surgeons found a high 

interindividual discrepancy in defining the TEA.48 The maximal distance between 

locations marked on the lateral and medical epicondyles were 13.8mm and 22.3mm 

respectively. As improper femoral component malalignment is a major cause of persistent 

post-operative anterior knee pain, this variance must be considered.48 Critics of the MR 

technique also believe that the MR approach is associated with a greater likelihood of 

coronal plane instability. A study comparing the incidence and magnitude of femoral 

condylar liftoff, a measure of coronal plane instability, found that when compared to the 

GB approach the MR technique showed greater liftoff at 0º, 30°, 60°, and 90° of 

flexion.40  
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1.4 Implant Design 

1.4.1 Fixation Method 

TKA implant components may be fixated to host bone through either cemented,  

uncemented, or hybrid (cementless femur with a cemented tibia) fixation methods.49 With 

the advancements in prosthetic design and instrumentation seen over the past decade, 

optimal fixation for primary TKA has become an increasingly common debate amongst 

arthroplasty surgeons.50 As the TKA procedure gains popularity with a younger patient 

demographic and younger patients expect to achieve greater post-operative activity 

levels, the goal of long-term implant survivorship is being pushed to the forefront. The 

demands of this patient population could potentially predispose them to more mechanical 

complications and needs for revision surgery. Thus, uncemented implant systems may 

provide an appealing alternative to cemented systems. 

1.4.1.1 Cemented Fixation 

Cemented TKA has historically been the gold standard method for fixation in primary 

TKA cases.51 Cemented TKAs have been associated with excellent post-operative 

clinical outcomes.52 While capable of providing strong initial levels of fixation, questions 

have been raised about long-term cement durability.49 TKA failure after 5 years is 

becoming more common, especially among younger, more active, and heavier patient 

populations.51 Aseptic loosening is cited as one of the primary reasons.52 Often in this 

case, osteolysis at the bone-cement interface is observed.53 Aseptic loosening is an 

indication for revision surgery which can be complicated by the removal of cement. 

Additionally, cement has been shown to degrade over time and deform which imparts a 

weakened resistance to loads applied to the implant, such as tension and shear forces, 

leading to further need for revision surgery.49,54,55 These methods of failure will continue 

to challenge arthroplasty surgeons as the largest growth in prospective TKA patients is 

amongst a patient population under the age of 65 years.51 It is projected that patients 

under the age of 65 years will comprise over 50% of the primary TKA burden between 

2010 and 2030.56 This coupled with a rise in life expectancy creates a greater interest in 

long-term implant fixation, such as rates seen in uncemented total hip arthroplasty.57  
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1.4.1.2 Uncemented Fixation   

Proponents of uncemented prostheses suggest that the ease of revision surgery, 

preservation of bone stock, shorter operative times, avoidance of cement complications, 

and potential for greater long-term durability and thus, increased implant survivorship as 

benefits of the implant fixation method.58 Historically, studies examining uncemented 

TKA have reported inferior levels of fixation compared to cemented implants for a 

multitude of reasons, including poor patch porous coating and tibial locking 

mechanisms.51 With an understanding of these failure mechanisms and advances in 

biomaterials and additive manufacturing, previous design flaws have been changed.51 

These changes have led to improved rates of implant survivorship amongst uncemented 

implant systems.59 The tibial component is often the component of concern when 

loosening is observed within an uncemented implant system.60 Current uncemented 

implants use a porous metal with a biological material, such as hydroxyapatite, as the 

tibial fixation surface.50 This surface is designed to morphologically and mechanically 

resemble native trabecular bone. The porous surface supports bone ingrowth and has 

been shown to be effective in supplementing the osseointegration of the implant to host 

bone.60 Variations in pore size and coating thickness have been shown to impact the 

process of osseointegration.60 Some uncemented tibial components have pegs or provide 

the opportunity for additional screw fixation. A pegged tibial design increases the surface 

area available for bone fixation.60 A pegged implant with a porous tibial underside can be 

seen in Figure 7. The addition of screws is to help provide immediate stability to the 

implanted component. However, uncemented implants without screw fixation have been 

shown to perform equivalently to uncemented implants with screw fixation.59  
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1.4.2 Ligament Retention or Sacrifice  

Another controversy that is prominent in joint replacement operations is whether or not to 

retain or sacrifice the PCL.61  Available literature does not suggest that either ligament 

retention or sacrifice results in superior clinical outcomes post-operatively.61 As such, 

whether or not a patient receives a posterior cruciate retaining (CR) or posterior cruciate 

sacrificing also known as a posterior stabilized (PS) implant depends largely on surgeon 

preference. A CR implant is displayed in Figure 3.     

1.4.2.1 Cruciate Retaining  

Proper knee kinematics and joint stability throughout various positions of flexion and 

extension are requirements for the clinical post-operative success of a TKA. The PCL 

plays a very important role in determining knee stability, specifically in the 

anteroposterior or coronal plane and in ensuring femoral rollback.62 Additionally, CR 

designs are thought to correlate with better post-operative knee proprioception and 

kinesthesia.63 While it is desirable to reproduce the natural kinematics of the knee, critics 

of CR designs suggest the implant style leads to a reduced ROM post-operatively.63 

Furthermore, balancing the PCL can be a very complicated task and consequently can 

take more time, thus resulting in a longer and more technically demanding surgical 

procedure.62 If balanced improperly patients have a greater likelihood of joint instability, 

pain, and increased wear rates.64,65 Nevertheless, when compared to alternative implant 

Figure 7: Cementless, highly porous pegged tibial baseplate. 
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designs, no significant difference in knee scores, ROM, radiographic kinematics, and 

complication rates are consistently observed.63  

1.5 Radiostereometric Analysis 

With a number of different surgical techniques and implant systems available, it is 

important to measure in vivo implant performance. The gold standard way of measuring 

implant performance is through a stereo x-ray technique called radiostereometric analysis 

(RSA). Since its introduction in 1974 by Selvik, RSA has become the gold standard 

method for the assessment of orthopaedic implants.66,67 The RSA imaging technique 

allows for the highly accurate assessment of three-dimensional movement between an 

implanted prosthesis and host bone by using biological and component landmarks.66   

RSA uses two mobile x-ray tubes simultaneously to create a three-dimensional image. In 

RSA a single object is imaged on two films which include all the necessary information 

required to determine the location of the implant in space. This is possible as we know 

where both the sources and detectors are relative to one another. Tracing a line between 

the projected images back to their source will provide the location of the object in three 

dimensional space as the intersection of the lines.68 This can be visualized in Figure 8. 

Figure 8: Three-dimensional object location determination using two stereo x-ray 

projections. Reproduced with permission from Maxwell Perelgut.68 
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RSA can use a biplanar technique to examine the migration of TKAs. In a biplanar set up, 

the two film cassettes or digital x-ray detectors are placed at a 90° relative to one 

another.66 This allows for an anterior-posterior and lateral-medial view of the prosthesis 

to be obtained. Rather than having a set distance between the x-ray sources and film 

cassettes or detectors, modern day RSA techniques involve the use of a calibration cage. 

The calibration cage has both control and fiducial markers which helps to define the 

position and orientation of the mobile x-ray tubes and allows for the creation of a three-

dimensional global coordinate system. Figure 9 details a biplanar RSA arrangement.  

 

 

 

 

 

 

 

 

 

 

 

Alternatively, a uniplanar technique can be utilized in which the recording media are 

placed side by side.66 A calibration cage with control and fiducial markers is once again 

used to determine source location and identify the position and orientation of the global 

coordinate system. Figure 10 demonstrates a uniplanar RSA set up.  

Figure 9: Biplanar RSA set up (red arrows demonstrating 

direction of x-ray projections). 
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Figure 10: A uniplanar RSA arrangement. Reproduced with 

permission from Maxwell Perelgut.68 

 

 

   

 

 

 

 

 

 

The RSA technique relies upon the assumption that the components of the implant and 

their immediate environment are made up of rigid bodies. A rigid body is a solid body 

with no or negligible deformity. We can therefore assume that the distance between two 

points on a rigid body are constant over time. RSA allows us to measure changes in 

position of rigid bodies. Under our circumstances one rigid body is assigned to the 

implanted prosthesis and another to the host bone. To create well-defined landmarks 

within the bone, surgeons intraoperatively implant spherical tantalum markers into the 

bone surrounding the prosthesis.66 These markers appear radiopaque on x-ray. When the 

beads are implanted into the surrounding bone, the position of the prosthesis is 

determined by matching the radiographic projections of the prosthesis to a virtual 

projection of a three-dimensional model of the prosthesis.69 When assessing the 

movement of the prosthesis over time, the spherical markers are used as reference points.  

In order to use the host bone as a rigid body, three non-colinear beads are required.66,67 

Unfortunately, the tantalum beads are not always visible. For example, in an AP 

projection of the knee joint, the femoral component often blocks the beads, making them 

undetectable. To overcome this, approximately eight beads are inserted into the bone to 
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form the rigid body. It is important to not only have a minimum of three non-colinear 

beads but to have a large distance between the beads.66,67 The more linear the beads are 

inserted into the bone and the smaller number of beads visible, the less accurate the 

measurement will be.66,67 Figure 11 illustrates the tantalum bead placement following 

uncemented TKA. 

 

 

 

 

 

 

 

 

 

 

 

Historically, tantalum markers were also attached to the prosthesis itself, but several 

developments have been made in order to avoid this, such as model-based RSA 

techniques. Model-based RSA utilizes a three-dimensional model of the implant, created 

using special model-based RSA software, where the implant model is matched to the 

actual radiographic projections of the prosthesis (RSAcore, Leiden, the Netherlands). 

This can be visualized in Figure 12. 

Figure 11: An anterior-posterior x-ray illustrating 

tantalum bead placement around a left uncemented TKA 

(red arrows pointing to beads). 



23 

 

 

Figure 12: Model-based RSA software demonstrating the implant’s position 

in three-dimensional space (RSAcore, Leiden, the Netherlands). A virtual 

surface model of the prosthesis is matched to contour projections from the 

actual radiographic images. 

The strength of the RSA imaging technique lies in its accuracy. Reported standard 

deviations for any translations and rotations are 0.19 mm and 0.52°, respectively.69 

Obtaining RSA images at multiple post-operative time points allows for the tracking of 

implant migration, specifically translations and rotations. The level of accuracy of the 

RSA modality allows for the detection of migration before clinical manifestation of 

symptoms.66 Established RSA thresholds can then be used to predict implant loosening.70 
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1.5.1 RSA Analysis of Joint Kinematics 

In addition to assessing implant motion, RSA can be utilized to assess in vivo 

tibiofemoral contact kinematics of patients who have undergone TKA. Native knee 

contact kinematics provide a normative model for TKA implants to strive towards 

replicating. In order for a normal knee to go from a position of extension to deep flexion, 

internal rotation of the tibia around a medial pivot point and posterior femoral rollback 

are observed. While both condyles experience some amount of rollback, the lateral 

condyle experiences much larger amounts. This asymmetry helps to create the medial 

pivot point.71  

 It is well documented in the literature that the tibiofemoral contact kinematics following 

TKA do not replicate those of a native knee joint.35,72–74 A common issue with TKA 

knees is their inability to prevent paradoxical anterior translation. Meaning, as the knee 

undergoes active flexion, the contact position between the femur and tibia move to a 

more anterior position. This action translates the flexion axis of the joint anteriorly and 

can result in a reduced ROM post-operatively. Understanding how articular contact 

kinematics following TKA are related to implant migration, function, and polyethylene 

wear is important in understanding the mechanisms of TKA component failure.75  

To analyze contact kinematics using RSA in a research setting, a weight-bearing quasi-

static imaging protocol can be followed. A quasi-static protocol consists of image 

acquisition at 0º, 20º, 40º, 60º, 80º, 100º, and 120º of knee flexion. At each position the 

patient is required to hold the position for approximately five seconds. Dual x-ray images 

are acquired from a posteroanterior oblique view at 0º to 60º of knee flexion and a 

mediolateral oblique view from 80º-120º of knee flexion. The angle between the x-ray 

sources is approximately 40º. Kinematic evaluation still utilizes control and fiducial 

beads, however, a uniplanar calibration cage is required (RSA Biomedical, Umea, 

Sweden). This is displayed in Figure 10. Following acquisition, model-based software is 

once again utilized. The images are registered to the manufacturer’s computer-aided 

design models for both the tibial and femoral components using a model-based RSA 

software called RSAcore (Leiden University Medical Centre, the Netherlands). After the 

position and orientations are obtained for the femoral and tibia components, a model of 
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the implanted polyethylene liner is attached to the tibial component. An in-house 

software program is then used to find the point of shortest distance between the articular 

surfaces for both the medial and lateral condyles. The magnitude of this distance and 

contact area of the components are recorded. A difference in tibiofemoral distance 

between the condyles of 0.5 mm is set as the threshold of condylar liftoff, matching 

previous studies where RSA was used to acquire kinematic data following TKA.35         

1.6 Functional Assessment Methods 

1.6.1 Clinician Assessment  

Arthroplasty surgeons carefully assess the TKA patient pre- and post-operatively. This 

can include an assessment of wound healing, functionality, and overall patient 

experience. Tasks could involve reviewing x-rays, taking a detailed past medical history, 

or physical joint examination.76 Surgeon to surgeon assessment of the same patient can 

vary to a great extent and is inherently biased.77 As a result, evaluation of patient 

outcomes should be comprehensive and holistic; clinician assessment as well as patient 

perspective must be included in the evaluation.     

1.6.2 Patient Reported Outcome Measures  

Patient reported outcome measures (PROMs) are administered to patients in the form of 

questionnaires and aim to quantify their quality of life, pain, functional status, and 

satisfaction level. In the setting of a TKA, PROMs are used both pre- and post-

operatively to assess patients across these domains. The Short Form 12 (SF-12), the 

Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), and the 

Knee Society Score (KSS) are three such questionnaires that can be administered to 

assess these outcomes. The SF-12 is a generic assessment of a patients general health, 

encompassing both a physical and mental well-being component.78 The WOMAC is a 

disease specific questionnaire which measures symptoms and physical disability resulting 

from OA.79 The questionnaire has three subscales for pain, stiffness, and physical 

function, as well as an overall score. The KSS is a joint-specific questionnaire that 

includes a patient and physician derived component.80 Together, the patient and physician 

generate subscores to represent the patient’s symptoms, satisfaction, expectations, 
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functionality, and objective knee indicators.80 The SF-12, WOMAC, and KSS are 

validated measures and can be used across different sexes, ages, activity levels, and 

implant designs.78–81  

While PROMs are a simple, cost, resource, and time efficient method for quantifying a 

number of TKA domains of interest, they have limitations.81 One disadvantage of 

PROMs is how they are prone to floor and ceiling effects.82 This means that when 

participants select the lowest or highest scores available, it is very difficult to detect 

subtle differences between them. Additionally, PROM answers are categorical and 

therefore clump patients together who may indeed have very different levels of function. 

These small undetectable distinctions could be important in predicting the long-term 

success of the TKA procedure. Additionally, the subjective nature of PROMs means that 

they are greatly influenced by pain, which reduces the functional content validity of the 

questionnaires.83         

1.6.3 Functional Performance Tests  

Functional performance tests are a very common method of assessment used in research. 

Physical function relates to one’s ability to move around and perform activities of daily 

living.84,85 In contrast to PROMs, performance-based tests evaluate what individuals can 

do, rather than what they think they can do.85 It is suggested that performance-based 

assessments may be better suited to distinguish subtle differences in pain and function 

than PROMs.86  However, it is important to see PROMs and functional performance tests 

as complementary assessment methods when evaluating the functional outcomes of the 

TKA procedure for OA patients.84 While the inclusion of functional performance-based 

tests is well supported, there is no clear consensus regarding which types of tests best 

assess the physical function of OA patients.84  

1.6.3.1 The Timed-up-and-go Test 

The Timed-up-and-go test (TUG) has been previously used to assess the physical 

performance level of TKA patients pre- and post-operatively.87 The TUG test is a simple, 

time and resource efficient test that can easily be implemented into the clinical workflow. 

The test requires patients to start from a seated position, stand up, walk 3 metres towards 
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a goal, turn around, walk back to the chair, and assume a seated position once again.83 

Patients are allowed to use the armrests of the chair, wear their desired footwear, and use 

any mobility aid during test administration. As the test is less physically demanding than 

other functional performance assessments, such as the 6-minute walk test and 

ascending/descending stair assessment, patients can complete the assessment earlier on in 

the post-operative timeline. The components of the TUG test assess the basic motor 

activities considered to be important in the successful completion of a variety of activities 

of daily living.87,88 Furthermore, pre-operatively, many TKA patients cite the most 

important areas they wish to see improvements post-operatively are in their pain and 

walking capacity.89 Thus, administering the TUG test allows us to objectively assess 

domains important for patient satisfaction and expectations, while quantifying functional 

mobility in a way that is useful for following clinical change over time.87 The TUG test 

has high test-retest reliability with a change of at least 2.27 seconds indicating a “real” 

clinical change in a TKA patient’s functional status.87 The TUG test has previously been 

used to discern between healthy and OA populations and provides a global, yet basic, 

assessment of functional mobility.87        

1.6.4 Wearable Motion-Based Sensors  

Typically, human motion analysis or gait analysis is done using complex, high-speed, 

optical tracking systems.90 To successfully track the movement patterns of different body 

parts and dynamically analyze different physical behaviours, one requires a large amount 

of space, a great deal of money, and a wealth of experience in human motion analysis. 

Thus, this standard method of analysis is limited to laboratory research and is extremely 

difficult to apply in real life environments.  

Wearable sensors systems are an emerging concept that provides an appealing alternative 

to optical tracking systems. Wearables are a more cost- and user-friendly way to track 

and analyze human movement outside of a controlled laboratory environment.91 Inertial 

sensors, a type of wearable sensors, are becoming increasingly more common.92 Inertial 

measurement units (IMUs) are comprised of three systems: a gyroscope, a magnetometer, 

and an accelerometer. Together the data retrieved from IMUs such as linear accelerations, 

angular velocities, and stride length can be used to determine a range of patient-specific 
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spatiotemporal and kinematics metrics.93 Additionally, if subjects wear IMUs on the 

lower and upper legs, calibration procedures which take into consideration joint 

constraints can be applied in order to determine quantitative joint angle data.94 In fact, 

previous in-house laboratory studies have proposed and validated a method of deriving 

novel functional metrics as a subject performs the TUG test using wearable sensor 

technology.95,96 Validation involved evaluating the measurement repeatability of IMU 

derived joint angles of a robotic leg phantom and comparison of said data to angular data 

collected using both a three-dimensional motion capture system and electro-goniometer.96 

The study determined the system had acceptable repeatability levels in addition to 

determining optimal sensor placement. These measurements of knee joint flexion and 

extension angles can be calculated during dynamic activities, such as walking and 

running, or the basic motor activities, such as rising from a chair, performed during the 

TUG test. While the orientation data collected from the IMUs is a relative assessment 

compared to the absolute assessment one would get from an optical motion analysis 

system, the correlation coefficient between data obtained from optical tracking systems 

and data obtained from wearable IMUs approaches 0.9.90,97  

1.7 Thesis Objectives and Hypothesis  

The primary objectives of this thesis are to determine how a GB or MR surgical 

technique may impact the (1) migration patterns of the tibial and femoral components, 

and (2) post-operative in vivo tibiofemoral contact kinematics of a cruciate-retaining 

uncemented TKA design. Our secondary objective was to implement the TUG test with 

wearable sensor technology in a population of TKA patients pre- and post-operatively to 

assess the relationship between novel sensor derived metrics and clinically meaningful 

improvements in functionality.  

We hypothesize that the majority of implant migration will occur in the early post-

operative period as the biological fixation between the host bone and implanted 

prosthesis develops. Therefore, we expect that the magnitude of migration throughout the 

first six months of the follow up period to be greater than the magnitude expected during 

this time period for cemented prostheses. We hypothesize that there will be larger overall 

amounts of migration for those patients who had their TKA completed using an MR 
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technique as there may be greater medial-lateral imbalance in joint forces in TKA 

performed with the MR technique. Additionally, we hypothesize that there will be 

differences in the in vivo tibiofemoral contact kinematics, specifically condylar liftoff, 

between the MR and GB surgical approach groups. Lastly, we hypothesize that the novel 

joint-specific wearable sensor-derived metrics will provide more insight into patient 

functional restoration than that currently provided by total time to complete the test alone.   
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Chapter 2  

2  The impact of surgical technique on implant migration 
for an uncemented total knee arthroplasty  

2.1 Introduction  

Total knee arthroplasty (TKA) is becoming more popular with a 15.5% increase in the 

total number of procedures over the past five years in Canada, totaling over 67,000 in the 

2016-2017 year.1 With a rising number of individuals undergoing TKA’s annually, it is 

imperative that surgical technique and implant design be examined in order to optimize 

the treatment provided to the TKA patient population and to ensure long-term procedure 

success. The main goals of the TKA procedure are to achieve a neutral lower limb 

alignment, to restore and maintain the joint line, to obtain well positioned femoral and 

tibial components, and to balance the joint’s soft tissues. While these goals are not 

disputed amongst arthroplasty surgeons, what remains controversial is the surgical 

technique employed to achieve said goals. Most commonly, arthroplasty surgeons utilize 

either a gap balancing (GB) or measured resection (MR) surgical approach. In a GB 

surgical approach, surgeons conduct ligamentous releases prior to making bone 

resections.2 Surgeons balance ligament tension in both a position of flexion and extension 

and utilize this balancing to guide their final bone resections.3 Whereas, in a MR surgical 

approach, surgeons first make bone resections according to pre-determined anatomical 

landmarks and conduct soft tissue releases afterwards.2 The amount of bone resected is 

equal to the distal and posterior thickness of the femoral component.3 Supporters of the 

GB technique suggest that the technique results in superior coronal plane stability.2,4,5 

However, commonly cited disadvantages include elevation of the joint line and greater 

femoral component rotation variability. Supporters of the MR technique suggest that the 

techniques emphasis on the natural anatomy of the knee contributes to its superiority.2,6 

Depending on patient presentation, it may be exceedingly difficult to accurately 

determine the location of the pre-determined anatomical landmarks used for bone 

resection, as such, the technique is criticized for issues with precision.2,6 Still debated is 
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whether or not the GB or MR surgical approach is best suited to achieving the standard of 

care objectives for the TKA procedure.  

Historically, cemented fixation has been the most common method used to fixate the 

implanted tibial and femoral components to the host bone.7 While cemented fixation has 

shown to have excellent survivorship outcomes, studies report bone resorption, 

osteolysis, and aseptic loosening at the bone-cement interface, especially in younger 

patient cohorts.7–11  However, a Cochrane Review concluded that while cemented tibial 

components had a lower risk of initial migration, uncemented tibial components were less 

likely to experience aseptic loosening in the future.12,13  With an increasingly younger 

cohort requiring TKA alongside advances in prosthetic design the durability of cemented 

fixation and the subsequent impact on implant longevity have been brought into question. 

An uncemented implant system provides a promising alternative to the cemented TKA 

approach and may be better suited to a younger patient cohort with greater demands for 

post-op function. Porous and hydroxyapatite coated implants can theoretically assist host 

bone in osseous ingrowth, ultimately providing a stronger more durable bonded interface 

between the implanted component and host bone.   

It is important to understand the impact of a GB or MR surgical approach on the implant 

migration of an uncemented TKA system as early migration thresholds can be used for 

predictions of successful fixation between the host bone and implanted components. 

While clinical x-rays can be used for this task, the amount of migration that must occur 

for detection is greater than 1.0 mm.14,15 Rather, a stereo x-ray technique called 

radiostereometric analysis (RSA) is the gold standard for assessing in-vivo migration. 

RSA may detect translational motion between 0.05 and 0.5 mm and rotations between 

0.15º and 1.15º and is thus a much more accurate way to assess this type of motion.16,17 

The predictive ability of early migration values, such as migration one year post-

operatively is well documented within the literature.13 Established thresholds for 

cemented implants indicate that one year maximum total point motion greater than 0.5 

mm indicates an implant is “at risk” for failure and values greater than 1.6 mm indicate 

“unacceptable” migration levels.13,18 Higher one year migration values are expected with 

uncemented implant systems as osseointegration occurs. Additionally, it has been 
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suggested six month migration values can be used with uncemented implants instead due 

to the minimal amount of migration that is expected to occur once osseointegration is 

established.13,19   

The objective of this study was to compare the amount of implant migration of an 

uncemented implant system when a GB or MR surgical approach is utilized for a primary 

TKA. We hypothesize that the majority of implant migration will occur in the early post-

operative period as osseointegration develops. Additionally, we hypothesize that the MR 

surgical approach will experience more implant migration than a GB approach as there is 

a greater likelihood of medial-lateral imbalance in joint force distribution in TKAs 

performed with a MR approach.   

2.2 Methods  

2.2.1 Study Design  

Research ethics board approval was obtained from the institutional review ethics board 

(The University of Western Ontario Research Ethics Board for Health Sciences Research 

Involving Human Subjects, File No. 109486). All patients provided written informed 

consent prior to study participation. Patients scheduled for a primary unilateral TKA were 

recruited pre-operatively between September 2017 – May 2018. Prospectively collected 

baseline data was collected at time of pre-admission appointment which was within one 

month of patients’ surgical dates. Surgical and clinical follow-up appointments were 

completed at the Rorabeck Bourne Joint Replacement Clinic at London Health Sciences 

Centre, University Campus. Imaging follows up were completed at Robarts Research 

Institute, Western University. Participant flow through study is illustrated in Figure 13.  

2.2.2 Eligibility Requirements  

Thirty-nine patients (n=39) were recruited for the study and were randomly assigned on 

referral to either a surgeon who performs TKA with a GB or MR surgical approach. 

Patients were excluded if their surgery was not being performed by one of the two 

participating surgeons in this study. The primary inclusion criteria were a diagnosis of 

end-stage OA requiring a primary unilateral TKA and a minimum age of 18 years. 
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Exclusion criteria included a diagnosis of inflammatory arthritis, prior knee surgery, if 

the patient was pregnant or planning on becoming pregnant, cognitive impairment, a 

neuromuscular disorder preventing the completion of a walking test, an inability to 

understand English, a history of alcoholism (defined as more than 15 standard drinks per 

week for males and 8 for females), or age greater than 75 years. Patient demographics are 

listed in  

Table 1. There was no significant difference in age, height, body mass index, sex, or 

operative side between the two surgical approach groups; however, patients in the MR 

group were significantly heavier (p=0.035).   
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Figure 13: Participant flow through study. 
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Table 1: Patient demographics, presented as mean ± standard deviation. 

 
Gap Balancing Measured Resection  p-value 

Age, y   62.0 ± 7.4   62.9 ± 6.6 0.70 
Height, cm 167.0 ± 7.8 170.0 ± 7.8 0.39 
Weight, kg   92.4 ± 19.5 107.0 ± 19.6 0.03 
BMI, kg/m2   33.0 ± 6.4   37.3 ± 6.8 0.06 
Sex 7 males: 10 females 10 males: 10 females 0.74 
Side   9 right: 8 left   10 right: 10 left  0.99 

BMI, body mass index  

2.2.3 Intervention  

All patients received a standard midline incision followed by a medial parapatellar 

arthrotomy. The surgeon who utilized a MR approach sets femoral rotation to 3º of 

external rotation relative to the posterior condylar axis of the femur before making bone 

resections. Following bone resection, soft tissue releases are conducted to balance the 

joint space in a position of flexion and extension. The surgeon who utilized a GB 

approach conducts soft tissue releases after resecting the bone of the proximal tibia and 

distal femur, balancing the extension space. Following osteophyte removal, bone cuts are 

made with the knee in flexion to match the flexion space to the extension space. 

Additionally, all patients received an identical fixed-bearing, cruciate-retaining beaded 

peri-apatite coated uncemented femoral component and a highly porous uncemented 

tibial baseplate (Triathlon, Stryker, Mahwah, NJ). The same post-operative protocol was 

followed for all patients. Furthermore, a standardized rehabilitation protocol was used. 

Post-operative follow up visits were scheduled at two weeks, six weeks, three months, six 

months, and one year post-operatively.  

2.2.4 Image Analysis Follow-Up 

In order to complete RSA analysis post-operatively, a minimum of eight 1.0 mm 

diameter tantalum beads were implanted intraoperatively into both the distal femur and 

proximal tibia. Baseline RSA exams were conducted two weeks post-operatively, with 

additional follow up visits at six weeks, three months, six months, and one year post-

TKA. All RSA exams were conducted with the patient in a standardized supine position 

with their knee within a biplanar calibration cage (RSA Biomedical, Umea, Sweden). 
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This standardized position is depicted in Figure 14. The RSA images were analyzed using 

a commercial model-based RSA software (RSAcore, Leiden, the Netherlands). The mean 

error of rigid body fitting for the tibial and femoral components of all patients at all time 

points was less than the 0.35 mm threshold proposed by Valstar et al.20 Additionally, the 

condition number, which indicates the distribution of the tantalum beads, for all 

measurements was less than the upper limit of 150 also suggested by Valstar et al., 

indicating that our measurements are reliable and sufficient for determination of implant 

migration.20   

 

 

 

 

 

 

 

 

 

 

 

Maximum total point motion (MTPM) was calculated at each time point and compared to 

the baseline position. Individual segment translations and rotations were also calculated. 

Positive translations were defined as lateral in the axial (x) plane, superior in the coronal 

(y) plane, and anterior in the sagittal (z) plane. Positive rotations were defined as anterior 

tilt about the axial (x) plane, external rotation about the coronal (y) plane, and valgus 

Figure 14: Supine patient exam positioning. 
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rotation about the sagittal (z) plane. Figure 15 details positive translation and rotation 

directions of the tibial component.  

 

 

 

 

 

 

 

 

 

2.2.5 Patient Reported Outcome Measures  

All patients completed a standardized set of patient reported outcome measures (PROMs) 

in the form of a series of questionnaires. The Short Form 12 (SF-12) assessed general 

health and well-being. The disease specific Western Ontario and McMaster Universities 

Osteoarthritis Index (WOMAC) assessed pain, stiffness, and physical function. The Knee 

Society Score (KSS) is a joint specific questionnaire which assessed symptoms, 

satisfaction, expectations, function, and objective knee indicators. The University of 

California, Los Angeles activity score (UCLA) asked patients to rate their activity levels 

in the 24 hours prior to clinical evaluation.   

2.2.6 Statistical Analysis  

All data were assessed for normality using the D’Agostino and Pearson omnibus 

normality test. Depending on normality, demographics and baseline PROMs were 

compared between groups using either an unpaired t-test (parametric) or using a Mann-

Figure 15: Indicating positive direction axial translations and 

rotations. 

Ty – Superior translation 

 

Tx – Lateral translation 

Tz – Anterior translation 

 

Ry – External rotation  

Rx – Anterior tilt 

Rz – Valgus tilt 
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Whitney test (non-parametric), whereas the ratio of males:females and right:left knee 

were compared between groups using a Fisher exact test. A paired t-test (parametric) or 

Wilcoxon matched pairs signed rank test (non-parametric) was used to compare baseline 

and one year PROMs within groups. RSA migrations are provided as medians and range. 

RSA migration was compared between groups using an unpaired t-test (parametric) or 

Mann-Whitney test (non-parametric) depending on normality. MTPM at six months and 

one year was compared between groups and within groups using a mixed effects model 

for repeated measures data. Level of significance was set at p<0.05. All statistical tests 

were conducted using GraphPad Prism v8.0 (GraphPad Software, La Jolla, CA). 

2.3 Results  

2.3.1 Patient Reported Outcome Measures 

There were no differences pre-operatively or one year post-operatively in SF-12, 

WOMAC, KSS, or UCLA Activity Score (Table 2) between the MR and GB cohorts.  

Table 2: Patient reported outcome measures, presented as mean ± standard 
deviation.  

 
Gap Balancing Measured Resection  p-value 

SF-12 MCS    
Pre-Operation   50.0 ± 10.6   53.5 ± 11.4 0.350 
1 Year    50.3 ± 11.3   53.9 ± 10.6 0.343 

SF-12 PCS    
Pre-Operation   35.2 ± 8.6   29.9 ± 7.5 0.054 
1 Year    44.0 ± 8.4    46.1 ± 10.0 0.559 

WOMAC    
Pre-Operation   43.3 ± 16.5   43.3 ± 18.7 0.870 
1 Year   80.2 ± 20.2    81.0 ± 15.6 0.894 

KSS      
Pre-Operation 114.0 ± 35.3  104.0 ± 30.7   0.428 
1 Year 136.0 ± 34.2 137.0 ± 29.6 0.952 

UCLA     
Pre-Operation     4.5 ± 2.1     4.5 ± 2.5   0.970 
1 Year     6.2 ± 0.84     6.2 ± 1.6 0.981 

SF-12, short form 12; MCS, mental component score; PCS, physical component score; WOMAC, Western 
and McMaster Universities Osteoarthritis Index, KSS, knee society score; UCLA, University California, 
Los Angeles activity score  

In the GB group, there was significant improvements pre- to post-operatively in the SF12 

PCS (p=0.0006), WOMAC (p=0.0007), and UCLA (p=0.006). No significant 
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improvement in the SF12 MCS (p=0.66) or KSS (p=0.13) was observed. In the MR 

group, significant improvements were observed with respect to SF12 PCS (p<0.0001), 

WOMAC (p<0.0001), KSS (p=0.04), UCLA (p=0.037). No significant improvement in 

the SF12 MCS (p=0.90) was observed.   

2.3.2 Migration 

There was no significant difference in tibial component translation in the x, y or z axial 

directions at any time point between the two cohorts. Additionally, no significant 

difference was observed in rotation around the y or z axis at any time point. There was a 

significant difference (p=0.01) in rotation around the x axis at the six month follow up 

with the MR group reporting more posterior tilt than the GB cohort. However, this 

difference was not observed at one year follow up visit. Median tibial translation and 

rotations for each group can be found in  

Table 3. Furthermore, no significant difference was observed at any time point between 

the groups in terms of their MTPM (Figure 16).   

 

 

 

 

 

 

 

 

 

 

Figure 16: Maximum total point motion of the tibial component. 
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Table 3: Migration of the tibial component (median and range presented). 

 
Gap Balancing Measured Resection  p-value 

X Translation (mm)    
6 weeks -0.04 (-0.37 to 0.12) -.006 (-0.28 to 0.27) 0.82 
3 months -0.04 (-0.61 to 0.06) -0.03 (-0.22 to 0.22) 0.49 
6 months -0.02 (-0.69 to 0.15)  0.01 (-0.18 to 0.51)  0.38 
1 year  -0.07 (-1.02 to 0.15)  0.02 (-0.27 to 0.76) 0.09 

Y Translation (mm)    
6 weeks  0.03 (-0.10 to 0.28)  0.02 (-0.21 to 0.35) 0.61 
3 months  0.05 (-0.28 to 0.23)  0.02 (-0.29 to 0.30) 0.90 
6 months  0.05 (-0.49 to 0.37) -0.02 (-0.20 to 0.38)  0.19 
1 year  0.13 (-0.95 to 0.30)  0.11 (-0.38 to 0.57) 0.99 

Z Translation (mm)    
6 weeks -0.03 (-0.18 to 0.10)  0.02 (-0.42 to 0.45) 0.34 
3 months  0.07 (-0.18 to 0.36)  0.19 (-0.41 to 0.57) 0.56 
6 months   0.02 (-0.18 to 0.37)  0.06 (-0.63 to 0.57) 0.30 
1 year  0.11 (-0.21 to 0.26)   0.03 (-1.04 to 0.46) 0.51 

X Rotation (º)     
6 weeks -0.02 (-1.60 to 0.84) -0.04 (-0.85 to 0.68) 0.38 
3 months -0.05 (-1.14 to 1.20) -0.30 (-1.78 to 1.59) 0.06 
6 months  0.13 (-0.46 to 1.04) -0.32 (-1.83 to 0.78) 0.01* 
1 year  0.57 (-0.51 to 0.74)    0.08 (-1.72 to 1.50) 0.17 

Y Rotation (º)     
6 weeks  0.30 (-1.69 to 1.38) -0.06 (-0.90 to 1.74) 0.29 
3 months  0.52 (-0.51 to 1.31)  0.56 (-0.85 to 1.79)  0.78 
6 months  0.11 (-0.86 to 1.22) -0.32 (-1.83 to 0.78) 0.35 
1 year -0.16 (-1.29 to 1.01)  0.16 (-2.40 to 1.49) 0.79 

Z Rotation (º)    
6 weeks -0.11 (-0.65 to 0.52)  0.04 (-0.45 to 1.04) 0.50 
3 months -0.08 (-0.63 to 0.37) -0.15 (-1.26 to 0.72) 0.86 
6 months -0.21 (-1.30 to 0.68) -0.16 (-1.28 to 0.58) 0.86 
1 year -0.08 (-1.32 to 0.76)  -0.17 (-1.05 to 1.20) 0.72 

MTPM     
6 weeks  0.57 (0.20 to 1.69)  0.71 (0.15 to 1.30) 0.60 
3 months  0.69 (0.16 to 1.28)  0.77 (0.32 to 1.73)  0.24 
6 months  0.68 (0.20 to 1.45)  0.81 (0.38 to 1.95)  0.24 
1 year  0.77 (0.40 to 1.70)  1.00 (0.32 to 2.82)  0.38 

MTPM; maximum total point motion; * denotes significance  

 

No significant difference was found with respect to the change in tibial MTPM from the 

six month to the one year follow up between the GB (mean difference: 0.08mm, p=0.71) 

or MR (mean difference: 0.12mm, p=0.56) cohorts. This plateau can be visualized in 

Figure 16.  

There was no significant difference (p>0.05) in femoral component x, y, and z 

translations and x and y rotations between the two surgical approach groups. There was a 
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significant difference in the amount of rotation in the z plane between surgical approach 

groups at the three month (p=0.04) and six month (p=0.003) follow up visits. This was 

trending towards significance one year (p=0.14) post-op. Median femoral translation and 

rotations for each group can be found in Table 4. No difference was found in femoral 

MTPM between the groups at six weeks, three months, six months, or one year post-

operatively (Figure 17).   

Table 4: Migration of the femoral component (median and range presented). 

 
Gap Balancing Measured Resection  p-value 

X Translation (mm)    
6 weeks  0.05 (-0.10-0.23)  0.05 (-0.16-0.22) 0.71 
3 months  0.17 (-0.35-0.27)  0.11 (-0.16-0.28) 0.98 
6 months  0.11 (-0.13-0.52)  0.07 (-0.66-0.17) 0.17 
1 year   0.13 (-0.05-0.92)  0.08 (-0.14-0.41) 0.31 

Y Translation (mm)    
6 weeks -0.02 (-0.15-0.11) -0.0005 (-0.11-0.09) 0.60 
3 months -0.05 (-0.16-0.32)  0.002 (-0.21-0.65) 0.85 
6 months -0.05 (-0.23-0.30) -0.05 (-0.19-0.06) 0.38 
1 year -0.009 (-0.11-0.37) -0.02 (-0.33-0.14) 0.78 

Z Translation (mm)    
6 weeks -0.05 (-0.57-0.23)  0.02 (-0.24-0.49) 0.19 
3 months -0.003 (-0.43-0.40)  0.002 (-0.21-0.65) 0.61 
6 months  -0.02 (-0.43-0.48)  0.06 (-0.29-1.07) 0.21 
1 year -0.09 (-0.50-0.28)  0.12 (-0.46-0.52) 0.29 

X Rotation (º)     
6 weeks  0.01 (-0.55-0.25) -0.01 (-0.27-0.32) 0.34 
3 months -0.15 (-0.55-0.50)  0.01 (-0.68-0.47) 0.42 
6 months  0.05 (-0.37-0.64)  0.09 (-1.33-0.32) 0.97 
1 year -0.05 (-0.42-0.63)  0.04 (-0.37-0.32) 0.77 

Y Rotation (º)     
6 weeks  0.01 (-0.59-0.64) -0.02 (-1.03-0.57) 0.56 
3 months  0.14 (-0.69-0.96) -0.11 (-1.50-0.51) 0.48 
6 months  0.08 (-0.90-0.93) -0.34 (-1.39-0.40) 0.28 
1 year  0.07 (-0.44-0.58) -0.31 (-1.30-0.90) 0.22 

Z Rotation (º)    
6 weeks  0.12 (-0.30-0.36) -0.03 (-0.29-0.22) 0.18 
3 months  0.07 (-0.20-0.64)  0.03 (-0.40-0.15) 0.04* 
6 months  0.22 (-0.11-0.67) -0.13 (-0.57-0.07) 0.003* 
1 year  0.17 (-0.24-0.99)  -0.005 (-0.22-0.19) 0.14 

MTPM     
6 weeks 0.41 (0.25-1.1) 0.44 (0.07-1.18) 0.71 
3 months 0.53 (0.35-1.34) 0.51 (0.18-1.68) 0.69 
6 months 0.55 (0.33-1.49) 0.60 (0.28-1.72) 0.57 
1 year 0.49 (0.19-1.80) 0.84 (0.23-1.43) 0.51 

MTPM; maximum total point motion; * denotes significance 
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No significant difference was found in the amount of MTPM from 6 months to one year 

post-operatively between the GB (mean difference: 0.016mm, p=0.46) or MR (mean 

difference: 0.029mm, p=0.70) cohorts. 

 

 

 

 

 

 

 

 

 

 

2.4 Discussion  

In the last decade we have seen a substantial rise in the number of patients under the age 

of 60 undergoing TKA.21,22  A higher risk of revision surgery has been observed in 

patients of this age demographic.23 This cohort tends to have higher functional demands 

and therefore applies more stress on their prosthesis.21 Besides polyethylene wear, aseptic 

loosening is the major cause of revision surgery in these patients. While cemented 

fixation methods provide strong initial stability, over time the cement may degrade and 

result in implant loosening at either the cement-bone or cement-implant interfaces.21 In 

older patient populations not concerned about the potential of revision surgery this may 

not be of issue, but with younger patients the presence of cement can make revision 

surgery more difficult. Uncemented fixation methods provide a promising alternative. 

Figure 17: Maximum total point motion of the femoral component. 
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Implants with uncemented fixation are vulnerable during the early post-operative period 

but may be better suited to providing good long-term stability to younger patient cohorts.  

We have demonstrated in this study that for an uncemented single-radius cruciate-

retaining highly porous tibial component and beaded peri-apatite coated femoral 

component, TKA surgical technique has no significant impact on the MTPM observed 

within the first post-operative year. In a study conducted by Laende et al., examining one 

and two year post-operative stabilization of uncemented tibial components an average 

MTPM of 0.85 mm was observed at one year with a predecessor implant to the one used 

in our study.13 This is comparable to the amount of MTPM observed within our cohort at 

one year. The study also reported a median MTPM of 0.5 mm (range 0.11-4.17 mm). 

While we reported higher median levels of MTPM of 0.77 mm in the GB cohort and 1.00 

mm in the MR cohort, the range of our MTPM calculations was smaller within both the 

GB (0.40 – 1.70 mm) and MR cohort (0.32 – 2.82 mm). Furthermore, a meta-analysis 

conducted by Pijls et al., examined one year MTPM values for a range of hydroxyapatite 

(HA) coated, trabecular metal, porous coated, and uncoated uncemented tibial 

components.24 Our study uses a 3D printed porous tibial component. Pijls et al. reported 

mean one year MTPM values with porous tibial components of 1.13 mm (CI: 0.87-1.38 

mm) which is higher than what we observed in our cohort.  

While aseptic loosening of the femoral component occurs much less frequently than 

loosening of the tibial component, it is still important to consider the magnitude and 

pattern of migration of uncemented femoral components.21 There was no significant 

difference between surgical approach groups in any axial translation observed and in 

rotation about the x and y directions. However, there was a significant difference in the 

rotation about the z axis at three months (p=0.04) and six months (p=0.003) post-

operatively. Not all patients have returned for their one year post-op exams affecting our 

ability to detect significance at the one year mark. Nevertheless, the difference in varus-

valgus rotation at one year is trending towards significant. A study conducted by 

Uvehammer et al., used RSA to compare rotation of the femoral component over the 

early post-operative period. One of the implants examined was an HA coated uncemented 

femoral component similar as ours. Two years post-operatively they observed a median 
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rotation of -0.16º (range: -2.57-2.86). One year post-operatively we observed a median 

rotation of -0.005º (range: -0.24-1.0) in the GB cohort and 0.17º (range: -0.22-0.19) in the 

MR cohort. While a time point difference of a year exists, uncemented implants are 

proposed to be stable during the one and two year post-operative period. Thus, we 

presume the position of our implant at one year is comparable to the position we will 

observe two years post-operatively. Furthermore, we observed less variability in varus-

valgus rotation than did Uvehammer et al., who reported no significant impact of femoral 

component rotation on long term femoral component fixation.25 No difference in MTPM 

at any time point existed between the GB and MR cohorts. Gao et al., conducted a 

comparison of MTPM of cemented and uncemented CR-TKA without HA coating with a 

maximum of two year follow up.21 They observed a median one year MTPM of 0.87 mm 

(range: 0.47-1.10 mm). We observed 0.49 mm (range: 0.19-1.80 mm) in the GB cohort 

and 0.84 mm (0.23-1.43 mm) in the MR cohort. Well documented within the literature is 

the stability benefits of HA coatings.26 It is hypothesized that we observed lower median 

levels of femoral MTPM at one year due to the presence of a peri-apatite coating on our 

femoral component.   

Migration of the tibial component appears to plateau at approximately three months post-

operatively. Whereas, the femoral component appears to continue to migrate between the 

three month and six-month follow ups, becoming stable and plateauing at approximately 

six months post-op. The similarity observed between the six month MTPM and one year 

MPTM provides further support to previous suggestions in the literature to use 6 month 

MTPM values as opposed to one year MPTM values for RSA testing thresholds of 

implant fixation with uncemented implant designs.24 Pijls et al. further indicates that if 

six month MTPM is used for RSA testing thresholds, migration thresholds currently used 

for one to two year stability can be applied to observed migrations between six months 

and one year.24 However, they suggest this be used with caution and reiterate that the 

observed migration between one year and two years should be used as an extra safeguard 

assessment for long term stability.   

Historically, MTPM migration values have been used to identify implants at higher risk 

for revision at the five year mark. Pijls et al. concluded in a meta-analysis that MTPM 
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migration at one year less than 0.5 mm was considered “acceptable” and greater than 1.6 

mm was representative of “unacceptable” future risk for revision.27 Implants that fell 

between 0.5 mm and 1.6 mm would be considered “at risk” for revision. These thresholds 

however were determined based off of TKAs with cemented fixation. Laende et al., has 

previously indicated that these thresholds are not applicable to uncemented TKAs.13 

Higher one year MTPM values are expected for uncemented implants as there is a 

“settling” period before bone growth begins to occur.13 Once osseointegration has 

occurred between the host bone and implanted prosthesis, long term fixation of 

uncemented components is good, whereas with cemented components we must be 

concerned about cement-related durability concerns.28 According to the guidelines set by 

Pijls et al., 60% of our cohort would be considered “at risk” or “unacceptable”. These 

results would be concerning and illustrative of poor fixation. However, in the study 

conducted by Laende et al., of the 32 implants analyzed which were similar to our study 

implant, zero migrated above the threshold amount 0.2 mm between one year to two 

years despite having an average one year MTPM of 0.85 mm.13 Thus, we feel it is not 

acceptable to infer revision risk from the RSA thresholds determined with cemented 

TKAs to our uncemented CR-TKA cohort.  

No significant difference was found at any time point between groups in terms of 

PROMs. All patients, regardless of approach, saw improvement in PROMs from pre-

operatively to one-year post-op.  

This study is not without limitations. Firstly, there is a significant difference in weight 

between the two cohorts but there is no statistically significant difference in their BMIs. 

It is unlikely that differences in weight over 90kg and BMI greater than 30 has substantial 

clinical relevance as the patient population is already considered obese. Additionally, we 

studied a single implant design (with a single radius femoral component). This may 

prevent our results from being applicable to other implant designs but was required in 

order to isolate the impact of surgical technique. While the size of our study population is 

consistent with typical RSA studies, we examined a small number of people (37 knees 

included in analysis). Nevertheless, there is nothing that suggests we would have 

observed different results if we had examined a larger number of patients. Furthermore, 
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we have yet to have all patients complete the one year follow up exam and no patients 

have reached the two year post-operative time point. While this is an important time point 

for established RSA thresholds of future revision risk, the long-term stability of this 

implant design can only be confirmed with a longer follow up period. Lastly, we 

experienced a great deal of difficulty with femoral bead occlusion. We were only able to 

visualize enough beads to calculate component translations, rotations, and MTPM in 10 

patients from the GB group and 14 patients from the MR group at the one year time 

point. While RSA studies in the literature have reported cohorts of this size being able to 

determine these values for all study patients would add strength to our results. A strength 

of this study is the high-resolution imaging technique utilized which adds to the 

reliability of our results.  

In conclusion, there was no significant difference in the magnitude of migration or 

pattern of migration with a single-radius uncemented CR-TKA design between a GB and 

MR surgical approach. We observed higher levels of migration during the early post-

operative period of both the tibial and femoral component as osseointegration developed 

between the host bone and implant components. Migration of both components plateaued 

by six months post-operatively indicating that the process of osseointegration had 

occurred. The similarity between six month and one year MTPM values supports the use 

of established RSA migration thresholds six months following uncemented TKA. The 

RSA findings suggest that an uncemented single-radius cruciate-retaining highly porous 

tibial baseplate and beaded peri-apatite coated femoral component are stable constructs as 

demonstrated in this patient cohort.  
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Chapter 3  

3 The impact of surgical technique on contact kinematics 
for an uncemented cruciate-retaining total knee 
arthroplasty.  

3.1 Introduction  

Success of the total knee arthroplasty (TKA) procedure can be measured through a 

variety of functional and durability parameters determined by patient-, surgeon-, and 

implant-related factors.1 One surgeon-related variable is TKA surgical technique. As a 

result of dissatisfaction rates (reported by up to 20% of patients post-operatively2,3) 

surgeons have sought improvements in surgical technique, most often centred around 

component alignment, balance of the joint space, and intraoperative soft tissue releases.3,4 

Two TKA surgical approaches, gap balancing (GB) and measured resection (MR), are 

commonly used to achieve the goals of the TKA procedure and optimize component 

position, joint balance, and treatment of joint soft tissues. In a GB approach, soft tissue 

releases are first conducted to ensure neutral alignment of the limb. Afterwards bone 

resection enables the creation of symmetrical balanced rectangular joint spaces with the 

limb in a position of flexion and extension.3 In a MR approach, bone resections are first 

made based on predetermined anatomical landmarks.3 Subsequent soft tissue releases are 

conducted to balance the joint space. Neither technique has consistently shown 

superiority across a number of clinical outcomes of interest.3,5  

Irrespective of surgical technique surgeons, aim to achieve precise rotational alignment of 

the femoral component.6 The technique best suited to optimize component alignment is a 

commonly held debate amongst arthroplasty surgeons. Improper femoral component 

rotation has been associated with a number of undesirable outcomes such as anterior knee 

pain, condylar liftoff, and altered joint kinematics.6,7 Fluoroscopic studies can be used to 

assess condylar liftoff following TKA. It is hypothesized that condylar liftoff is a result 

of instability within the coronal plane and improper femoral component rotation.6,8,9 

When condylar liftoff is present unequal load distribution is observed across the medial 

and lateral compartments of the joint. This increase in applied stress can result in greater 



60 

 

rates of polyethylene wear in one of the aforementioned compartments, ultimately 

leading to an increased risk for revision surgery.8–10 Previous studies have shown greater 

rates of condylar liftoff in TKA’s performed using a MR technique when compared to a 

GB technique.6,11 Additionally, rates of condylar liftoff tend to be higher when a cruciate-

retaining TKA is performed compared to a posterior-stabilized TKA.6,12  

Fluoroscopy can also be utilized to assess a joint's tibiofemoral contact kinematics post-

TKA. When a normal knee is in a position of extension, the lateral femoral condyle tends 

to sit slightly more anteriorly on the tibia compared to the medial femoral condyle.12 

During active flexion a healthy knee experiences posterior femoral rollback and slight 

internal rotation of the tibia around a medial pivot point. Implant design and surgical 

technique have been observed to impact tibiofemoral contact kinematics.12 Ligamentous 

structures within the joint are responsible for facilitating natural knee joint kinematics. In 

a cruciate-retaining implant design, native structures remain responsible for joint 

kinematics. There is potential for these ligamentous structures to be damaged within end-

stage disease states. Thus, abnormal tibiofemoral kinematics can be observed when 

relying on their continued function.12  

The objective of this study was to compare: 1) the location and pattern of tibiofemoral 

contact from a position of extension to deep flexion and 2) the frequency of condylar 

liftoff between patients undergoing a TKA using either a GB or MR surgical approach 

with an uncemented, cruciate-retaining design.  

3.2 Methods 

3.2.1 Study Design  

Ethics approval was obtained from The University of Western Ontario Ethics Board for 

Health Services Research Involving Human Subjects (REB#109486). Prior to 

participation written informed consent was obtained from all study participants. All 

patients scheduled for a primary unilateral TKA between September 2017 and May 2018 

were screened for inclusion and exclusion criteria. Surgical follow up appointments were 

completed at the Rorabeck Bourne Joint Replacement Clinic at London Health Sciences 

Centre, University Campus. Radiographic images required to assess tibiofemoral contact 



61 

 

kinematics and condylar liftoff were taken at the Robarts Research Institute, Western 

University. Figure 18 shows participant flow through study. The patient cohort evaluated 

is the same as in Chapter 2. 
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Figure 18: Participant flow through study. 
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3.2.2 Eligibility Requirements  

To be eligible patients had to be a minimum of 18 years old and had to have received a 

diagnosis of OA. Exclusion criteria were: prior knee surgery, a diagnosis of inflammatory 

arthritis, age greater than 75 years, if the patient was pregnant or trying to become 

pregnant, cognitive impairment, neuromuscular impairment causing an inability to 

complete a walking test, language barrier preventing completion of questionnaires, a 

history of alcoholism, or if the patient was undergoing a simultaneous, bilateral TKA.  

Thirty-nine patients were recruited to participate in the study. Patients were assigned to 

either a GB or MR surgical approach based on referral to a surgeon who performed one 

of the prescribed techniques. Patient demographics are listed in Table 5. No significant 

differences were found between groups in terms of age, height, weight, body mass index, 

sex, or operative limb.  

Table 5: Patient demographics, presented at mean ± standard deviation. 

 
Gap Balancing Measured Resection  p-value 

Age, y 61.7 ± 7.7 62.2 ± 6.18 0.84 
Height, cm 168.0 ± 8.1 170.0 ± 6.4 0.52 
Weight, kg 95.4 ± 19.5 109.0 ± 21.3 0.072 
BMI, kg/m2 34.0 ± 6.9 37.9 ± 7.3 0.13 
Sex 6 males: 10 females 8 males: 8 females 0.72 
Side 9 right: 7 left 8 right: 8 left 0.99 

BMI; body mass index  

3.2.3 Surgical Intervention  

All patients had their surgery performed by a fellowship trained arthroplasty surgeon and 

received an identical fixed-bearing, cruciate-retaining TKA (Triathlon, Stryker, Mahwah, 

NJ) with uncemented fixation. The Triathlon single-radius femoral component has short 

external condyles to enable deep flexion of up to 150º. Both patient cohorts had a 

standard midline incision with a medial parapatellar arthrotomy. In the MR cohort, 

femoral component rotation was based off of the posterior condylar axis at 3º of external 

rotation. All patients received the same post-operative protocol and standard of care 

rehabilitation. 
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3.2.4 Imaging Protocol   

Image acquisition occurred one-year post-operatively. Each patient underwent a weight-

bearing stereo x-ray examination with two mobile x-ray sources. The sources were 

positioned to acquire posteroanterior projections with approximately a 40º angle between 

them at 0º, 20º, 40º, and 60º of flexion. The two mobile tubes were positioned to acquire 

mediolateral oblique views at 80º, 100º, and 120º of flexion. All quasi-static 

radiostereometric analysis (RSA) exams used a uniplanar calibration cage (RSA 

Biomedical, Umea, Sweden). Imaging set up can be visualized in Figure 19. A model-

based RSA software was used to register CAD models for the femoral and tibial 

components to the pair of x-rays taken at each 20º angle increment (RSACore, Leiden, 

the Netherlands). The accuracy of the model-based software is well documented, with 

translational errors of  0.19 mm and rotational errors of 0.52º.13 Using the position and 

orientation data obtained from the CAD model registration, a model of the polyethylene 

liner of the implanted thickness was attached to the tibial component. Afterwards, the 

shortest distance between the femoral and the tibial component with poly was computed 

for both the medial and lateral compartments using an in house software. This is 

considered to be the contact point(s) of the weight-bearing surfaces. The magnitude of 

distance between the surfaces at the identified point was also considered in order to 

measure condylar liftoff. A difference in distance greater than 0.5 mm was considered to 

be condylar liftoff. Within the literature, values of liftoff are often considered between 

0.5 mm and 1.0 mm.3,14 Due to the high accuracy of the RSA imaging modality, the 

lower end of this range was found to be more appropriate, with higher ranges being more 

acceptable for single plane fluoroscopic studies.    
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3.2.5 Statistical Analysis  
All data were assessed for normality using the D’Agostino and Pearson omnibus 

normality test. To compare baseline demographics between groups either an unpaired t 

test or Mann-Whitney was used. However, the ratios of male:female and right:left were 

compared using a Fisher exact test. The frequency of condylar liftoff between the groups 

was also compared using a Fisher exact test. At each degree of flexion, an anterior-

posterior (AP) contact point was calculated. AP excursion, or the amount of AP 

translation, was calculated by finding the range between the minimum and maximum AP 

positions. Medial and lateral AP excursion was compared within groups using either a 

paired t-test or a Wilcoxon matched pairs test depending on if the data was normalized or 

not. AP excursion was compared between groups using an unpaired t-test or a Mann-

Whitney test. Level of significance was set at p<0.05. All statistical tests were conducted 

using GraphPad Prism v8.0 (GraphPad Software, La Jolla, CA).  

Figure 19: Patient positioning for image acquisition of (A) 0º to 60º projections 

and (B) 80º to 120º projections 
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3.3 Results  

3.3.1 Tibiofemoral Contact Kinematics  
On the medial condyle, at 0º the GB group displayed a more anterior contact location 

than the MR group (mean difference: 2.48 mm), however the locations did not differ 

significantly between groups (p=0.20). The AP position for the GB group moved 4.79 

mm posteriorly from 0º to 20º, whereas the MR group experienced only 1.14 mm of 

posterior translation. From a position of 40º to 100º of flexion, both the MR and GB 

groups showed similar AP contact position (p<0.05). The MR group had a slightly more 

anterior contact position on the medial condyle than the GB group. The average 

magnitude of this difference ranged from 1.10 mm at 40º to 2.96 mm at 100º Figure 

20A). In both groups, the medial contact position moved anteriorly from 20º to 80º before 

shifting posteriorly from 80º to 100º.  

 

Figure 20: AP translation (mean ± standard deviation) on the medial condyle (A) 

and lateral condyle (B) between the MR and GB groups throughout flexion from 0º 

to 100º. 

 

On the lateral condyle, at 0º the MR group displayed a significantly more anterior contact 

location than the GB group (mean difference: 6.90 mm, p=0.02). Both groups 

experienced a posterior shift in contact location from 0º to 20º, with the magnitude of 

difference for the MR group being 8.40 mm and 1.90 mm for the GB group. No 

significant difference in contact position was observed from 20º through 60º or at 100º of 

flexion between the groups (p>0.05). At 80º of flexion, the contact position of the MR 

group was more anteriorly located than the GB group (mean difference: 2.70 mm, 
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p=0.03). The MR group had a slightly more anterior contact position on the lateral 

condyle compared to the GB group. The average magnitude of this difference ranged 

from 0.40 mm at 20º to 2.70 mm at 80º (Figure 20B). The contact position of both groups 

moved posteriorly from 0º to 40º. From 40º to 60º the contact position of both groups 

moved anteriorly. This anterior translation continued for the MR group until 80º of 

flexion, whereas for the GB group from 60º to 80º of flexion posterior translation was 

observed.   From 80º to 100º the MR group displayed posterior translation in contact 

location. The GB group displayed anterior translation from 80º to 100º of flexion. 

Contact kinematic patterns are displayed in Figure 21 for both the GB (A) and MR (B) 

cohorts.   

 

 

 

 

 

 

 

 

 

 

There was no significant difference (p=0.80) in the average amount of medial excursion 

between the GB group (11.11 ± 3.75 mm) and MR group (10.75 ± 4.14 mm). 

Additionally, there was no significant difference (p=0.21) in the average amount of 

lateral excursion between the GB group (7.86 ± 5.83 mm) and MR group (10.82 ± 7.75 

mm). There was no difference in the magnitude of excursion medially vs. laterally for the 

0º  20º  40º  60º  80º  100º

Medial Lateral Medial Lateral 

B. A. 

Figure 21: Contact kinematic maps for the GB(A) and MR(B) cohorts. 
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MR group (p=0.98) or the GB group (p=0.13). Amount of AP excursion displayed in 

Figure 22.  

 

 

 

 

 

 

 

 

3.3.2 Condylar Liftoff  

The incidence of coronal instability (femoral condylar liftoff) occurring at any flexion 

interval analyzed (0º, 20º, 40º, 60º, 80º, or 100º) was comparable between groups 

(p>0.999). With a threshold of 0.5 mm, 13 of 16 (81.3%) in the GB group and 13 of 16 

(81.3%) in the MR group recorded condylar liftoff. In the GB group, five patients had 

lateral liftoff, two had medial, and six had both lateral and medial. In the MR group, 

seven had lateral liftoff, two had medial, and four had both. Femoral condylar liftoff 

greater than 1.0 mm was also comparable between groups (p=0.65). It was observed 

within two patients in the GB group and four patients in the MR group. In the GB group, 

one patient had lateral liftoff and one medial. In the MR group, three patients had lateral 

liftoff and one medial.  

3.4 Discussion  

The primary goal of the TKA procedure is to reduce pain and restore joint function. In 

order to achieve this, it is imperative that the tibiofemoral joint be stable throughout its 

Figure 22: AP excursion of the medial and lateral 

condyles between the GB and MR surgical approach 

groups. 
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full range of motion.15 Additionally, obtaining satisfactory stability in the coronal plane is 

crucial to the long term success of a TKA. Past research has shown that the post-

operative kinematics of the knee are influenced by the patient’s condition, surgical 

technique employed, and design features inherent to the implant used.16  

It is well documented within the literature that there are a number of differences that exist 

between pre-operative and post-operative TKA knee kinematics. Native knee kinematics 

describe an asymmetrical rollback of the femur during flexion, predominantly of the 

lateral femoral condyle, giving way to a medial pivot point and tibial internal rotation.17 

Common phenomena described of TKA knees include posterior femoral rollback, 

paradoxical anterior translation of the femur, and condylar liftoff.18 Posterior femoral 

rollback occurs when the posterior contact position between the tibial surface and femoral 

condyles translates posteriorly.19 It is often associated with a greater range of motion as 

the rollback delays the impingement of the femur on the tibia, a movement that normally 

limits flexion capabilities.19 On the other hand, paradoxical anterior translation occurs 

when the flexion axis of the joint translates anteriorly. This translocation reduces the 

range of motion of the joint. Condylar liftoff or condylar separation between the femoral 

component and the polyethylene insert indicates laxity or an unbalanced gap in the joint 

space. It has been suggested that the joint kinematics following TKA may be partially 

responsible for the dissatisfaction reported in approximately 20% of patients post-

operatively.2  Additionally, a correlation between abnormal tibiofemoral contact 

kinematics and the amount of tibial component migration has been observed, where 

patient’s recording more atypical movement tended to have greater amounts of 

component migration.20 Thus, abnormal kinematics are thought to play a role in long-

term implant loosening. 

Previously documented in the literature is the difficulty of CR implants to replicate 

normal joint kinematics during the early post-operative period. The results from this 

study echo this observation, irrespective of surgical technique. We believe this is a result 

of the contact pattern being primarily driven by implant design as opposed to whether a 

GB or MR approach was utilized. Regardless of flexion degree, the tibiofemoral contact 

position was anteriorly located. A CR implant relies on the preserved PCL to prevent 
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anterior positioning of the femur. It has been suggested previously, that in a diseased OA 

knee the PCLs functional capability may be suboptimal. From a position of 20º to 60º of 

flexion we observed anterior translation medially and maintained position laterally. Thus, 

both groups demonstrated paradoxical anterior translation during mid flexion. Stiehl et 

al., compared normal knees to CR-TKAs with fluoroscopy and also reported anterior 

translation of the condylar contact location with flexion.21 A multi-centre in vivo study 

conducted by Dennis et al., examining CR- and PS-TKA, reported paradoxical anterior 

translation in the majority of patients who received a CR implant.22 A study conducted by 

Okamoto et al., using a similar implant system to the one used in this study, reported the 

same contact pattern within their cohort.23 However, the contact location observed by 

Okamoto et al., was consistently more posterior than that observed in our study. It is 

important to note however that the study cohort from Okamoto et al., was comprised of 

10 knees, 8 CR-TKAs and 2 PS-TKAs, with cemented fixation. It is possible that the 

posterior contact location observed by Okamoto was driven by the PS-TKAs analyzed. It 

is well documented in the literature that PS-TKAs tend to have more posterior contact 

locations than CR-TKAs. Okamoto et al., did not report the differences between the PS-

TKAs and CR-TKAs included in the study. Rather they reported them as one cohort with 

a single-radius femoral component compared to 10 CR-TKAs with a multi-radius femoral 

component. An uncemented CR-TKA is less forgiving than a cemented TKA in terms of 

any minor residual imbalance in soft tissues. With an uncemented TKA, residual 

imbalance could impact the position of the implant and thus contact location before 

osseointegration develops, potentially resulting in a more anterior contact location.  

There was no significant difference within our surgical groups in terms of the amount of 

AP excursion observed or in the magnitude of medial or lateral excursion between the 

two groups. It has been reported previously in the literature that a kinematically normal 

knee will experience approximately 6.9 mm and 27.4 mm of posterior translation on the 

medial and lateral condyles, respectively.24 The difference in posterior femoral rollback 

between the medial and lateral condyles gives way to a medial pivot point. Other studies 

have also reported similar amounts of posterior rollback on the lateral condyle and even 

less on the medial.25 Thus, by analyzing the amount of AP excursion we can infer if we 

observed posterior femoral rollback or anterior femoral rollforward. Our study found that 



71 

 

those who received a CR-TKA with a GB approach had medial and lateral excursion of 

11.1 and 7.9 mm, respectively, whereas those who received a CR-TKA with an MR 

approach had 10.8 mm of medial excursion and 10.8 mm of lateral excursion. The AP 

excursion was in the anterior direction, indicating anterior femoral rollforward. 

Additionally, the results of our study do not support a medial pivot point. Rather, with 

deep knee flexion our results indicate a lateral pivot point. This observation is not 

uncharacteristic for CR-TKAs. In a study conducted by Stiehl et al., a lateral pivot point 

was also identified in most cases.26 Fitz and colleagues compared the kinematic 

differences between 9 patients who underwent a CR-TKA with a traditional GB 

approach, comparable to the one used in our study, and 10 patients who underwent a CR-

TKA with a modified GB approach.12 The modified approach aimed to address the 

absence of a medial pivot point often seen within CR-TKAs by completing a more 

anatomical reconstruction of the medial femoral condyle. The traditional approach 

involves bone resection which results in symmetrical medial and lateral femoral 

condyles. In a natural knee, the condyles are asymmetrical. The larger medial condyle 

bears more weight and facilitates rotation of the smaller lateral condyle, thus resulting in 

a medial pivot point. The results of this study found that patients who received a 

traditional symmetrical CR-TKA were more likely to experience a lateral pivot point than 

those who underwent the modified GB approach.12 As the implant we used had 

symmetrical femoral condyles the observable lateral pivot point may be inherent to the 

implant’s design.  

When examining the tibiofemoral contact maps of both the GB and MR cohorts, the 

screw home mechanistic phenomenon is much easier to visualize within the MR group. 

At 0º of flexion, the contact location of the medial condyle is more posteriorly located 

compared to the lateral contact location. As flexion occurs, the medial contact location 

becomes more anteriorly located than the lateral contact position, indicating that the 

femur has indeed experienced external rotation. Constraint of rotational movement in 

TKA is well documented in the literature as a cause of early implant failure.27 It has been 

previously suggested that the flexion axis of the joint and the PCL play a vital role in 

maintaining this kinematic observation.28 A reduced prominence of this rotational 

mechanism has been observed following TKA.29 Furthermore, a lateral axis of rotation, 
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paradoxical femoral condylar roll-forward, and absence of the screw home mechanism 

have been reported in CR-TKA.30 Within both cohorts we observed an anterior contact 

location, a lateral pivot point, and paradoxical anterior translation of the femur with joint 

flexion.  

When examining the rates of coronal plane instability, determined by the presence of 

condylar liftoff between the two surgical approach groups, no significant difference was 

observed. The majority of the cohort experienced separation between the femoral 

component and polyethylene liner of greater than 0.5 mm. With this threshold, we had an 

81.25% rate of condylar liftoff. Dennis et al. examined the rates of coronal instability or 

femoral condylar liftoff between patients who received a CR-TKA and a PS-TKA. 

Within their cohort, 80% of patients with CR-TKAs experienced liftoff greater than 

0.75 mm and 70% greater than 1.0 mm.6 With a 1.0 mm threshold however, we saw 

separation in only six patients (18.8%). It should be noted that Dennis et al. used an 

alternate method to calculate liftoff than we did, using the femoral component and tibial 

tray, as opposed to the polyethylene liner. However, the implant used in both Dennis et 

al., and our current study are symmetrical. Thus, it is unlikely this is the cause of the 

discrepancy. When examining liftoff location, our results follow the same trend as Dennis 

et al.6 High variability was observed in liftoff location within the cohort with some 

patients reporting medial liftoff, some lateral, and some both depending on the angle of 

flexion. While there were no significant differences in liftoff location, lateral liftoff 

tended to be more common than medial liftoff. We hypothesize that this is due to the fact 

that the PCL originates from the lateral origin of the medial femoral condyle. When 

comparing the instances of lateral liftoff with a 0.5 mm threshold to the migration 

patterns observed in Chapter 2, it is interesting to note that there were more instances of 

lateral liftoff in the MR cohort who reported significantly more varus tilt (negative tilt in 

the sagittal plane) of the tibial component than the GB cohort. Varus tilt would lend itself 

to lateral liftoff. On the contrary, medial liftoff was more common in the GB cohort who 

reported significantly more valgus tilt (positive tilt in the sagittal plane) of the tibial 

component than the MR cohort. Valgus tilt would lend itself to medial liftoff.  
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It is important to note the limitations of this study. All images were taken using a quasi-

static protocol rather than under dynamic conditions. Nevertheless, the similarity between 

static and dynamic study protocols is well documented in the literature. The slight 

variations one may see in results does not contribute to any meaningful differences in 

functional outcomes.31,32 Variations have been reported between the two modalities with 

respect to differences in foot position, however, standardizing our imaging set up and 

patient position has helped to minimize this. Therefore, we feel the clinical relevance of 

quasi-static exams is high and our results can be compared to weight-bearing studies 

using dynamic imaging protocols. Additionally, the imaging set up switched from 

posteroanterior images at 0º, 20º, 40º, and 60º to mediolateral oblique views at 80º, 100º, 

and 120º of flexion. The positioning change was made to help accommodate deep knee 

flexion. While this switch may impact the generalizability of our results to alternate 

studies, it would not influence our ability to detect kinematic differences between the 

surgical approach groups examined in this study. Furthermore, the CR-TKA surgery is a 

technically demanding operation. Our surgeons are fellowship trained and have very high 

yield surgical practices. Thus, we cannot conclude if the same kinematic results would be 

achieved following CR-TKA with less experienced surgeons. Lastly, only one implant 

design system was used. This prevents the results from being able to be generalized to the 

CR-TKA procedure. However, in order to minimize the bias imparted by implant design 

and focus solely on the impact of surgical technique, it was imperative only one implant 

system was used.  

In conclusion, we found no difference in the frequency of condylar liftoff between single 

radius, cruciate-retaining uncemented TKA performed using a GB or MR surgical 

technique. The pattern of motion of the contact location during flexion was similar 

between groups as we hypothesize this is driven by implant design. The only difference 

in contact location was found to be at 0º and 80º of flexion on the lateral condyle, with 

the MR group reporting a more anterior contact position. The contact location on both 

condyles throughout the entire range of deep flexion was anterior to the mid sagittal plane 

of the tibial component. Both the MR and GB cohort reported improvements in clinical 

outcome scores from the pre-operative to one year post-operative time point. Therefore, 
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for this particular implant design system, the GB and MR surgical techniques appear to 

produce similar in vivo kinematics.  
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Chapter 4  

4 Novel joint-specific metrics derived from instrumented 
Timed-up-and-go test allows for better characterization 
of patient functional status pre- and post-TKA  

4.1 Introduction  

One in five patients report dissatisfaction with their total knee arthroplasty (TKA) for 

reasons such as, limited functional improvement and persistent disability.1,2 As the 

commonality of the TKA procedure is on the rise, it is imperative that we develop a 

better understanding of what is at the root of this dissatisfaction. Patient satisfaction is 

determined by a multitude of factors.3 Clinical results and satisfaction are currently 

assessed using a range of objective and subjective measures.4  

Patient reported outcome measures (PROMs) are an important tool for measuring patient 

outcomes and TKA effectiveness as they consider the most prominent participant in the 

TKA procedure, the patient. In general, PROMs aim to assess patient pain, function, and 

satisfaction. PROMs have become a popular way to assess these qualities as they are easy 

to administer, inexpensive, and convenient to use in longitudinal follow up.5 

Unfortunately, they are not without their disadvantages. PROMs are subject to biases and 

ceiling and floor effects, as functional differences are often masked by patient pain.5,6 

While pain management is a very important outcome from the perspective of the patient, 

pain is a subjective measure and has been shown to be influenced by socioeconomic and 

psychosocial factors.5,7 PROMs are administered in the form of questionnaires. The 

categorical outcomes group patients together despite potentially having different 

symptoms and responses to treatment.8,9 The trend of the TKA patient demographic is 

moving towards patients who are younger and often interested in higher levels of post-

operative function. Thus, function is becoming an increasingly important outcome to 

accurately and effectively measure due to higher expectations and a greater demand for 

post-op function. As PROMs are unable to fully capture the functional abilities of 

relevance to the TKA patient population, additional measures must be included in the 

assessment of function.5  
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Performance based outcome measures are an objective way to assess function. Physical 

performance tests focus on what a patient can actually do, rather than on what they 

perceive they can do.6 While both PROMs and performance-based measures aim to 

assess function, only low to moderate correlations with one another have been 

observed.5,10 The absence of a strong correlation suggests that each measure provides 

distinct but potentially supplementary information about patient function. Therefore, 

including functional performance-based assessments in the clinical environment allows 

for better characterization of functional capability. Physical performance tests are simple 

to implement, require minimal resources and staff, and can be completed quickly. The 

timed-up-and-go (TUG) test has been shown to demonstrate reliable functional 

improvements post-operatively amongst TKA populations.11–13 The TUG test requires 

patients to start in a seated position, stand up, walk three metres, turn around, walk back 

to the chair, and assume the seated position once again. Historically, measurements have 

been solely focused on the overall time to complete the TUG test. While this singular 

temporal parameter does relate to patient function, it is unable to capture subtle 

differences in functionality besides completing the test at a quicker rate.  

The use of wearable sensors to measure complex joint kinematics has become 

increasingly popular over the last few years.14 These sensors systems are economically 

feasible, portable, user friendly, and easily allow for the assessment of three-dimensional 

motion. An easy and popular way to collect joint kinematic data is through the use of 

inertial measurement units (IMUs). Using a gyroscope, accelerometer, and magnetometer 

joint angles can be calculated with good accuracy.14,15 IMUs have been used to obtain 

biomechanical data in healthy, OA, and TKA populations.9,16,17 IMUs can be used to 

collect acceleration, velocity, and orientation data at much less cost than with traditional 

motion capture systems. These sensors have a very small physical size which makes 

positioning them on the body during the completion of physical activity uncomplicated. 

Research studies have begun to implement wearable sensors into the TUG functional 

performance test for younger and older adults, as well as patients with Parkinson’s 

disease.18–21  
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In prior work, our research group has identified links between wearable sensor derived 

TUG test metrics and satisfaction.22,23 Additionally, using these metrics we have 

identified links between pre-operative function and functional capacity at three months 

post-op within a TKA population.24 The purpose of this study is to implement IMUs into 

the TUG performance test amongst a cohort of patients undergoing a primary unilateral 

TKA through either a GB or MR surgical approach. By instrumenting the TUG test pre- 

and post-operatively amongst this cohort we aim to identify how sensor-derived metrics 

change from pre- to post-TKA and identify any relationship between early and late 

functional performance following TKA. We hypothesize that over the duration of the 

follow up period we will see significant improvements in overall time to complete the 

TUG and the temporal segments of the test. Additionally, we hypothesize that the 

previously identified sensor metrics important for satisfaction and function will improve 

over the follow up period and that correlations will exist between pre-operative levels and 

future performance. The novel sensor derived metrics will provide a deeper 

understanding of patient functional capacity and allow for more detailed assessment of 

movement patterns than total TUG time alone.  

4.2 Methods 

4.2.1 Study Design 

Institutional ethics approval was obtained from The University of Western Ontario Ethics 

Board for Health Services Research Involving Human Subjects (REB#109486). Prior to 

participation in the study, written and informed consent was obtained from all 

participating patients. Patients scheduled for a primary unilateral TKA between 

September 2017 and May 2018 were screened for inclusion and exclusion criteria. 

Surgical and research related follow up visits were completed in the Rorabeck Bourne 

Joint Replacement Clinic at London Health Sciences Centre, University Hospital. Figure 

23 details participant flow through study. The patient cohort evaluated is the same as in 

Chapters 2 and 3. 
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4.2.2 Eligibility Requirements  

Patient eligibility required that they be over the age of 18, had received a diagnosis of 

osteoarthritis, and be scheduled for a primary unilateral TKA. Patients were excluded if 

their surgery was not to be performed by one of the two participating surgeons. 

Additionally, patients were excluded if they were over the age of 75 years, received a 

diagnosis of inflammatory arthritis, had a cognitive impairment or language barrier 

preventing competition of PROMs, a neuromuscular impairment causing an inability to 

complete the TUG test, were pregnant or trying to become pregnant, had a history of 

alcoholism, or if the patient was undergoing simultaneous bilateral TKA. Patient 

demographics are listed in Table 6. No significant difference in terms of age, height, 

BMI, sex, or operative side. There was a significant difference between groups with 

respect to weight (p=0.04).  

4.2.3 Intervention  

All patients received a midline incision with a medial parapatellar arthrotomy. All 

surgeries were performed by a fellowship trained arthroplasty surgeon. Patients received 

fixed-bearing, cruciate-retaining implant systems (Triathlon, Stryker, Mahwah, NJ) with 

uncemented fixation. Study related visits occurred pre-operatively (within one month of 

surgery), two weeks, six weeks, three months, six months, and one year post-op. At all 

study visits patients completed three trials of the instrumented TUG test while wearing 

IMUs. For the TUG test, patients were instructed to start in a seated position, stand up, 

walk three meters, turn around, walk back, and assume a seated position once again. They 

were instructed to complete the test at a comfortable pace and to stand up/sit down 

without the use of arm rests, whenever possible. Participants were allowed to use any gait 

aids used pre- or post-operatively (cane, crutch, walker, etc.) while completing the test 

trials. The chair used during the TUG test was standardized and used for all trials, at all 

follow ups, for all patients. At the pre-operative, six week, three month, six month, and 

one year visits patients completed patient-reported outcome measures in the form of a 

series of questionnaires. The questionnaires included the SF-12, WOMAC, the KSS, and 

the UCLA Activity score.  
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Table 6: Patient demographics, presented as mean ± standard deviation. 

 
Gap Balancing Measured Resection  p-value 

Age, y 62.3 ± 7.4 62.9 ± 6.7 0.78 
Height, cm 167.4 ± 8.0 170.1 ± 7.8 0.42 
Weight, kg 93.6 ± 18.9  107.1 ± 7.8 0.04 
BMI, kg/m2 33.4 ± 6.5 37.3 ± 6.8 0.08 
Sex 7 males: 12 females 10 males: 10 females 0.53 
Side 11 right: 8 left 10 right: 10 left 0.75 

BMI; body mass index  
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Figure 23: Participant flow through study. 
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4.2.4 Sensor Setup  

Four wearable sensors were used during the instrumented TUG test. IMUs were affixed 

to the anterior side of both the operative and non-operative limb both above and below 

the knee joint. This is displayed in Figure 24.  

 

 

 

 

 

 

 

 

 

 

Each wearable sensor consists of an IMU development board (MetaMotionR, 

MBientLab, San Francisco, CA) and a rechargeable lithium-polymer battery. Both were 

housed in a custom plastic 3D printed case with the approximate dimensions of 1.2 cm x 

3.0 cm x 4.0 cm. In order to affix the sensor to the patient, two wings were constructed on 

either side of the sensor with slots for an elastic strap. The 3D printed case was concave 

in shape to help with placement on the anterior side of the lower limb and to decrease 

motion artifacts. The size of the sensor case is depicted in Figure 25.  

 

 

Figure 24: Wearable 

sensor placement. 
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The sensors were programmed to transfer data via Bluetooth to an Apple iPod touch at 

the end of each TUG test trial. The iPod was configured to store raw data without a 

persistent connection to a wireless network. Custom software was developed to use raw 

sensor data (orientations) and calculate joint angles. This occurred at a sampling rate of 

approximately 25 Hz.22  

4.2.5 Sensor-derived Metrics  

Novel sensor-derived metrics of function previously identified, tested, and validated 

through other in-house studies were collected from instrumented TUG test 

performance.22,23 Temporal metrics included Total TUG time, Sit-to-Stand time, Walk-to-

Goal time, Turning-at-Goal time, Walk-to-Chair time, and Turn-to-Sit time. Other 

spatiotemporal metrics included step counts for the operative (SCOP) and non-operative 

(SCNON) limbs and total step count (SCTOT). Angular metrics included specific angles and 

angle ranges for both the operative and non-operative limbs, such as Start-TUG and End-

TUG flexion and extension angles and their asymmetry, and average step maximum 

flexion angle and flexion range. Velocity and acceleration metrics were calculated for the 

average step of the operative and non-operative limb and included flexion and extension 

velocity and acceleration.  

Figure 25: Custom 3D printed case for wearable sensors, quarter for scaling 

purposes. Reproduced with permission from Riley Bloomfield.  
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Metrics specific to the sensors used in this study were determined using orientation data 

and were based on values of flexion/extension, internal/external rotation, and 

varus/valgus rotation. Additionally, metrics representing movement in all three axial 

directions of each individual sensor (i.e. upper and lower sensors) on the operative and 

non-operative limbs were determined. An Additive Angular Displacement (ADD) value 

was calculated by summing the differences in angles from one sampling time to another 

sampling time over a given sampling period. In the case of this study, the sampling 

period is either one gait cycle (one step) or the entire TUG test. Patients with greater 

motion over the sample period will have higher ADD values. All sensor derived metrics 

are listed and described in Table 7.   

Table 7: List of sensor metrics and descriptions. 

Sensor Metrics Description 

Spatiotemporal   

Total TUG Time Total time (s) taken to complete one trial of the TUG 
test 

Sit-to-Stand Time (s) taken to go from a seated to standing position  

Walk-to-Goal  Time (s) taken to walk from starting chair to goal, 
distance 3 metres  

Turn-at-Goal  Time (s) taken to turn at goal  

Walk-to-Chair Time (s) taken to walk from the turnaround point back 
to the chair, distance 3 metres  

Turn-to-Sit  Time (s) taken from the start of the turn to a seated 
position  

Step Count (SCOP, SCNON, SCTOT) Number of steps (gait cycles) taken during TUG test 

Angular 
 

Start-TUG Flexion Angle (OP and NON) 
Knee joint angle (º) of operative or nonoperative limb 
in seated position at start of TUG test 

End-TUG Flexion Angle (OP and NON) Knee joint angle (º) of operative or nonoperative limb 
in seated position at end of TUG test 

Average Step Max. Flexion Angle Average maximum flexion angle (º) of the knee during 
TUG test for the operative or nonoperative limb  
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Average Step Flexion Range 
Average difference between the minimum and 
maximum flexion angles (º) of the knee during the 
TUG test of the operative and nonoperative limb.  

Velocity  
 

Average Step Flexion Velocity (OP and NON)  
Average flexion angular velocity (º/s) of all steps taken 
during TUG test of operative or nonoperative limb  

Average Step Extension Velocity (OP and NON) 
Average extension angular velocity (º/s) of all steps 
taken during the TUG test of operative or nonoperative 
limb 

Acceleration  

Average Step Flexion Acceleration (OP and 
NON) 

Average flexion angular acceleration (º/s2) of all steps 
taken during the TUG test of operative or nonoperative 
limb 

Average Step Extension Acceleration (OP and 
NON) 

Average extension angular acceleration (º/s2) of all 
steps taken during the TUG test of operative or 
nonoperative limb 

Additive Angular Displacement   

Total Flexion-Extension Additive Angular 
Displacement (TAADOPF/E and NONF/E)   

General motion (º) of the knee joint in the flexion-
extension axis over the entire TUG test of the 
operative or nonoperative limb  

Total Internal-External Additive Angular 
Displacement (TAADOPI/E and NONI/E)  

General motion (º) of the knee joint in the 
internal/external rotation axis over the entire TUG test 
of the operative or nonoperative limb  

Total Varus-Valgus Additive Angular 
Displacement (TAADOPV/V and NONV/V) 

General motion (º) of the knee joint in the varus-valgus 
axis over the entire TUG test of the operative or 
nonoperative limb 

Sensor Specific Total Additive Angular 
Displacement (TAADOPLOW, OPHIGH, NONLOW 

and NONHIGH).  

General motion (º) of the shank (LOW) and thigh (HIGH) 
over the entire TUG test of the operative or 
nonoperative limb  

Step Flexion-Extension Additive Angular 
Displacement (SAADOPF/E and NONF/E)   

General motion (º) of the knee joint in the flexion-
extension axis of an average step of the operative or 
nonoperative limb  

Step Internal-External Additive Angular 
Displacement (SAADOPI/E and NONI/E)  

General motion (º) of the knee joint in the 
internal/external rotation axis of an average step of the 
operative or nonoperative limb  

Step Varus-Valgus Additive Angular 
Displacement (SAADOPV/V and NONV/V) 

General motion (º) of the knee joint in the varus-valgus 
axis of an average step of the operative or 
nonoperative limb 
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Sensor Specific Step Additive Angular 
Displacement (SAADOPLOW, OPHIGH, NONLOW 

and NONHIGH).  

General motion (º) of the shank (LOW) and thigh (HIGH) 
of an average step of the operative or nonoperative 
limb  

  

Previous studies by our research group have identified metrics important for post-

operative function and satisfaction levels.22,23 Specifically: total TUG time, sit-to-stand 

time, walk-to-goal time, walk-to-chair time, operative limb step count, average step 

flexion range of the operative limb, SAADOPF/E, SAADOPLow, SAADNONLow, SAADOPHigh, 

SAADNONHigh. Special attention in the analyses will be brought to these previously 

identified metrics and their improvement over time.  

4.2.6 Statistical Analysis  
Baseline demographics and PROMs were tested for normality using the D’Agostino and 

Pearson omnibus normality test. One year PROMs were compared to baseline levels 

using a paired t test or Wilcoxon matched pairs signed rank test depending on normality. 

Sensor metrics were compared at different time points using an ANOVA with mixed 

effects analysis. A Tukey post-hoc test was used to correct for multiple comparisons. 

Correlations between metrics at different follow up times were calculated using Pearson’s 

correlation coefficient (r). Correlations were then classified as being either weak (|0.20| – 

|0.39|), moderate (|0.40| – |0.79|), or strong (|0.80|-|1.00|). Level of significance was set at 

p<0.05. All statistical tests were conducted using GraphPad Prism v8.0 (GraphPad 

Software, La Jolla, CA).    

4.3 Results  

No significant differences were found between GB and MR surgical techniques in terms 

of PROMs or sensor-derived metrics; thus, GB and MR patients were combined and 

results are presented as one cohort. Significant improvements in the SF-12 PCS 

(p<0.0001), WOMAC (p<0.0001), KSS (p<0.0001), and UCLA Activity Score 

(p=0.0002) were observed one year post-operatively from baseline values. No 

improvement in SF-12 MCS was observed (p=0.72). Means and standard deviations for 
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all questionnaires at the pre-operative and one year follow up visit can be found in Table 

8.  

Table 8: Patient reported outcome measures, presented as mean ± standard 

deviation. 

 
Pre-Op 1 year  p-value 

SF-12 MCS 51.7 ± 11.3 52.2 ± 10.6 0.72 
SF-12 PCS 32.0 ± 8.3 45.3 ± 8.8 0.0001 
WOMAC 43.6 ± 17.2 80.7 ± 17.0 0.0001 
KSS   108.5 ± 32.4 203.7 ± 31.1 0.0001 
UCLA  4.5 ± 2.2 6.0 ± 1.4 0.0002 

SF-12, short form 12; MCS, mental component score; PCS, physical component score; WOMAC, Western 
and McMaster Universities Osteoarthritis Index, KSS, knee society score; UCLA, University California, 
Los Angeles activity score  

A significant effect of time (p<0.001) was observed when examining total TUG 

performance time and temporally segmented components of the TUG test over the 

duration of the study. This is demonstrated in Figure 26. A significant increase in pre-

operative total TUG time was observed at the two week assessment (mean difference: 

7.90s, p=0.02). Total TUG performance time at six weeks was comparable to pre-

operative levels (mean difference: -1.25s, p=0.64). By three months post-operatively, 

total TUG performance time was significantly faster than pre-operative performance 

(mean difference: -3.41s, p=0.0031). No further significant improvements in total TUG 

performance time were observed between three and six months (mean difference: -0.42s, 

p=0.78) or six months and one year (mean difference: 0.20s, p=0.90). Total TUG 

Figure 26: Average total TUG performance time. 
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performance time remained significantly faster than pre-operative performance at six 

months (mean difference: -3.83s, p=0.0003) and one year (mean difference: -3.63s, 

p=0.004).  

The same effect of time was observed for temporally segmented TUG times of walk-to-

goal, walk-to-chair, and stand-to-sit (p<0.0001). The mean differences in walk-to-goal, 

walk-to-chair, and stand-to-sit times between the pre-operative time point and three 

month time point were -1.19s (p<0.0001), -1.18s (p=0.02), and -0.45s (p=0.03), 

respectively. No significant improvement in these components was observed between 

three months and six months or six months and one year (p>0.05). Sit-to-stand time saw 

significant improvement from pre-operative levels at one year (mean difference: -0.51s, 

p=0.03). Turn-at-goal time saw significant improvements from pre-operative levels at six 

months (mean difference: -0.51s, p=0.01).  

No significant effect of time was observed with respect to the number of steps taken with 

the operative limb during a trial performance of the TUG. A significant effect of time was 

observed in the mean step flexion range of the operative limb (p=0.0002). The earliest 

time point to demonstrate significant improvement from pre-operative levels was six 

months post-op (mean difference: 8.27º, p=0.0006). At one year post-op the mean 

improvement in flexion range of the operative knee was 9.33º, representing a 25% 

increase in pre-op mean step flexion range.   

A significant effect of time (p<0.05) was also observed in a number of step additive 

angular displacement metrics: SAADOPF/E, SAADOPLow, SAADNONLow, SAADOPHigh, and 

SAADNONHigh. Mean difference in SAADOPF/E from pre-op to six months was 18.55º 

(p=0.0001). No significant difference was observed from six months to one year 

(p=0.69). All additive sensor metrics representing movement in three planes of the lower 

or upper leg segments followed the same trend of improvement. SAADOPLow, 

SAADNONLow, SAADOPHigh, and SAADNONHigh saw improvement at three months from 

pre-operative levels with mean differences of 14.12 (p=0.005), 12.68 (p=0.02), 9.86 

(p=0.02), and 10.84 (p=0.005) respectively. No further significant improvement was 

observed in SAADOPLow, SAADNONLow, SAADOPHigh, and SAADNONHigh at six months 
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from three months (p=0.69, p=0.20, p=0.71, and p=0.14) or at one year from six months 

(p=0.99, p=0.94, p=0.99, and p=0.94). Mean, standard deviation, minimums and 

maximums of metrics previously identified as important to patient satisfaction are 

displayed in Table 9.  
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Table 9: Means, standard deviations, and ranges for metrics identified from previous laboratory studies.  
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Total TUG time (s) 

 
14.92 ± 5.13  
(8.35-32.20) 

 
22.81 ± 13.91 
(9.11-81.95) 

 
13.66 ± 3.08 
(8.34-37.79) 

 
11.51 ± 3.08 
(7.65-24.97) 

 
11.09 ± 2.24 
(7.71-18.70) 

 
11.29 ± 2.57 
(7.15-20.15) 

 
 
<0.0001 

Sit-to-Stand (s) 1.38 ± 0.84  
(0.61-5.29) 

1.91 ± 1.50 
(0.65-8.60) 

1.37 ± 0.99 
(0.56-5.21) 

0.96 ± 0.32 
(0.61-2.45) 

0.91 ± 0.29 
(0.58-1.97) 

0.88 ± 0.25 
(0.56-1.88)  

 
<0.0001 

Walk-to-Goal (s) 4.55 ± 4.57 
(2.48-9.42) 

7.14 ± 0.84  
(2.82-28.95) 

4.01 ± 1.28 
(2.23-8.60) 

3.35 ± 0.98  
(2.25-7.98) 

3.23 ± 0.78 
(2.05-6.20) 

3.41 ± 0.92 
(1.82-6.34) 

 
<0.0001 

Walk-to-Chair (s) 5.56 ± 1.99 
(2.81-12.90) 

8.59 ± 4.98 
(3.77-26.51) 

5.16 ± 1.65  
(2.62-10.71) 

4.38 ± 1.29 
(2.40-9.25) 

4.17 ± 1.022 
(2.45-7.36) 

4.21 ± 1.11 
(2.37-7.89) 

 
<0.0001 

Op. Step Count 5.80 ± 1.92 
(4.00-9.00) 

5.64 ± 2.32 
(1.50-9.67) 

5.34 ±1.50 
(1.33-8.00) 

5.38 ± 1.25  
(3.00-9.00) 

5.12 ± 1.22 
(1.67-7.67) 

5.38 ± 1.52 
(2.00-9.00) 

 
0.06 

Op. Step Flexion 
Range (º) 

37.66 ± 9.31 
(21.32-62.08) 

31.00 ± 7.62 
(21.57-44.79)  

37.46 ± 7.79 
(21.11-52.90) 

40.46 ± 6.83  
(22.52-55.82) 

45.93 ± 9.43  
(25.08-72.44) 

46.99 ± 23.05 
(24.17-166.30) 

 
0.0002 

SAADOPF/E 77.88 ± 18.03 
(45.96-126.30) 

62.20 ± 14.50 
(43.12-90.57) 

75.64 ± 14.77 
(43.16-98.90) 

83.13 ± 14.96 
(42.77-118.90) 

96.43 ± 18.54 
(56.11-163.10) 

91.40 ± 14.50 
(57.23-120.50) 

 
<0.0001 

SAADOPLow 117.50 ± 20.80 
(69.90-154.00) 

94.69 ± 16.78 
(69.62-134.70) 

116.0 ± 17.92 
(74.42-157.70) 

131.60 ± 17.93 
(78.64-182.30) 

135.30 ± 24.42 
(64.54-148.20) 

136.20 ± 6.73 
(89.21-183.20) 

 
<0.0001 

SAADNONLow 120.80 ± 20.78 
(77.06-158.30) 

105.00 ± 19.97 
(48.50-148.20) 

126.30 ± 18.64 
(84.47-172.20) 

133.50 ± 15.61 
(88.24-164.50) 

137.70 ± 19.20 
(8693-171.70) 

136.10 ± 16.63 
(89.75-167.50) 

 
<0.0001 

SAADOPHigh 85.39 ± 19.41 
(28.69-124.60) 

66.98 ± 14.08 
(46.97-98.57) 

84.36 ± 15.87 
(3.26-112.20) 

95.24 ± 15.65 
(52.75-132.40) 

98.32 ± 17.90 
(46.01-130.60) 

97.83 ± 15.96 
(57.97-131.10) 

 
<0.0001 

SAADNONHigh 84.34 ± 17.74 
(59.26-124.20) 

71.04 ± 16.00 
(29.15-109.20) 

88.97 ± 16.11 
(57.95-127.20) 

95.18 ± 14.78 
(60.03-128.50) 

99.37 ± 14.71 
(66.20-131.0) 

97.84 ± 16.15 
(61.14-135.30) 

 
<0.0001 
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Correlations over time were examined for the metrics from Table 9 with a significant effect 

of time.  

Weak to moderate yet significant correlations were found between pre-operative total TUG 

performance time and performance time at all follow up time points. Strong, significant 

correlations were observed between two week total TUG performance and six week 

(p=0.002), three month (p=0.0005), six month (p=0.01), and one year (p=0.007) 

performance. As follow up time progressed, stronger correlations between performance time 

at subsequent visits were generally observed. Pearson correlation matrix displayed in Table 

10.  

Table 10: Pearson correlation matrix of total TUG performance times, all correlations 

listed have a p<0.05. 

 

 

 

 

 

 

 

All metrics from Table 9 showed at least one significant correlation between performance at 

a given time point and future performance. Sit-to-stand, mean flexion range of the operative 

joint, SAADOPF/E, and SAADOPHigh showed only weak to moderate correlations over time, but 

walk-to-goal, walk-to-chair, SAADOPLow, SAADNONLow, and SAADNONHigh metrics 

demonstrated strong correlations over time and those are shown in Tables 11-15.  
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 0.30 0.42 0.36 0.36 0.32 Pre-op 

  0.76 0.79 0.64 0.73 2 Week 

   0.83 0.75 0.73 6 Week 

    0.77 0.74 3 Month 

     0.90 6 Month 
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Table 11: Pearson correlation matrix of walk-to-goal time, all correlations listed have a 

p<0.05. 

 

 

 

 

 

 

 

 

Table 12: Pearson correlation matrix of walk-to-chair time, all correlations listed have 

a p<0.05.  
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 0.42 0.53 0.56 0.58 0.53 Pre-op 

  0.60 0.77 0.68 0.68 2 Week 

   0.77 0.64 0.65 6 Week 

    0.79 0.77 3 Month 

     0.90 6 Month 
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      Pre-op 

  0.67 0.65 0.54 0.60 2 Week 

   0.80 0.68 0.64 6 Week 

    0.74 0.72 3 Month 

     0.86 6 Month 
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Table 13: Pearson correlation matrix of SAADOPLow, all correlations listed have a 

p<0.05. 

 

 

 

 

 

 

 

 

Table 14: Pearson correlation matrix of SAADNONLow, all correlations listed have a 

p<0.05. 
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   0.66 0.61 0.66 6 Week 

    0.79 0.81 3 Month 

     0.71 6 Month 
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 0.34 0.44    Pre-op 

  0.80 0.73 0.65 0.71 2 Week 

   0.83 0.74 0.63 6 Week 

    0.82 0.74 3 Month 

     0.82 6 Month 
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Table 15: Pearson correlation matrix of SAADNONHigh, all correlations listed have a 

p<0.05. 

 

 

4.4 Discussion  
Through the instrumentation of the TUG performance test with wearable sensors amongst a 

primary TKA population, novel spatiotemporal, velocity, acceleration, and angular metrics 

related to functional performance were examined. The absence of strong correlations 

between PROMs and physical performance outcomes provides further support to the 

differences which exist between subjective and objective function and the inability of 

PROMs to paint a complete picture of patient function.9 By including the TUG test in clinical 

follow up, we are able to gather important information about post-operative function and thus 

develop a better understanding of the TKA recovery process.  

The Osteoarthritis Research Society International has recommended a core set of three 

performance based outcome measures for use in OA research and clinical practice.25 They 

are the 30s chair stand, 40m fast-paced walk, and a stair-climb test. The TUG test and six 

minute walk test are indicated to be complementary, yet supplementary performance based 

outcome measures because of the redundancy of activity themes if all are performed. It can 

be difficult under some circumstances however to complete all of these functional 

performance tests and completing the 30s chair stand, 40m fast-paced walk, or stair-climb 

test alone risks providing a superficial understanding of patient function. As the stair-climb 

test was not feasible to administer within our clinical environment and the 40m fast-paced 
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  0.77 0.69 0.69 0.54 2 Week 

   0.80 0.6 0.50 6 Week 

    0.77 0.60 3 Month 

     0.81 6 Month 
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walk test can be difficult for TKA patients to complete comfortably at early post-operative 

time points, the TUG test was selected as our functional outcome measure due to the overlap 

of activity themes (i.e. involves chair stand and walking components).25,26 Only a surface 

level understanding of patient function would be obtained from using performance based 

assessment(s) that do not evaluate a number of basic motor activities important for activities 

of daily living, such as walking ability and the ability to rise from a chair.     

Significant changes over time were observed with respect to total TUG time and all temporal 

segments of the TUG test. The significant increase in total TUG performance time at the two 

week follow up period is understandable as the early post-operative period is a time of acute 

pain and swelling. As this subsides and physical rehabilitation becomes a more prominent 

part of daily patient life, function begins to be restored with performance equivalent to pre-

operative levels being observed at the six week follow up period. The mean magnitude of 

performance improvement in total TUG time over the duration of the follow up period was 

3.83s. This improvement is greater than the minimal clinically important difference of 2.27s 

previously described in the literature and thus, represents a “real” clinical change in patient 

function.12 As current clinical practice suggests that total TUG time can be used as a 

predictor of fall risk within elderly community dwelling populations this improvement is 

important to note.27 Furthermore, Greene et al., analyzed fall risk using the TUG test and 

found patients that have fallen to have a mean time of 15.6s ± 6.5s and non-fallers 12.4s 

±5.1s.27 With respect to our cohort, pre-operatively patients had total TUG times more 

similar to that of fallers (14.92s ± 5.1s). whereas post-operative performance was quicker 

paced than the non-faller group (11.09s ± 2.2s). As the economic burden of falls is 

substantial, the functional improvement observed within our cohort benefits both the patient 

themselves and the Canadian healthcare system.  

A particular strength of this study is that patients were assessed at multiple time points, 

allowing for more detailed analysis of functional behaviour and recovery. Well documented 

within the literature is the relationship between pre-operative functional ability and post-

operative function.28 Fortin et al., examined patients presenting for either hip or knee 

arthroplasty with low pre-operative functional ability and high pain scores.29 They observed 

that patients who presented with low pre-operative function had a lower magnitude of 

functional improvement six months post-operatively than patients who presented with higher 
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levels of baseline function.29 This effect persisted one year following surgery. While we did 

observe a significant correlation between pre-operative, six month, and one year performance 

levels, the correlation was weak. Other studies previously completed in our laboratory with 

larger cohorts of patients, have identified specific TUG related metrics (total TUG time, sit-

to-stand, walk-to-goal, walk-to-chair, step count of the operative limb, mean operative step 

flexion range, SAADOPF/E, SAADOPLow, SAADNONLow, SAADOPHigh, and SAADNONHigh) that 

can be used to discern high function patients from low function patients at three months and 

satisfied from dissatisfied patients at one year.9,24 Once again, only weak to moderate 

correlations were observed between these novel metrics pre-operatively and function post-

operatively. All identified metrics besides step count of the operative limb saw significant 

improvement over the duration of the study to more favourable values. Thus, objective 

functional outcomes do improve following TKA demonstrating an improvement in patient 

functional capacity.  

Interestingly, however, were the strong significant correlations between two week TUG 

performance and performance levels at six months and one year post-op. This pattern was 

observed for total TUG time, temporal TUG test segments, and the novel additive angular 

displacement metrics of the upper and lower sensors. The importance of patient function at 

two weeks post-operation is not well documented within the literature or well supported by 

current clinical practice. Many tertiary care centres, such as ours, service a large geographical 

area and as such patients often do not report to our fellowship trained arthroplasty surgeons 

at the two week time point and rather for convenience report to their local general 

practitioners. Historically, the reasoning behind the acute two week visit is for staple removal 

and to check for signs of surgical site infection or evidence of a thromboembolic event. The 

results of our study suggest that more attention should be paid to patient functional ability at 

the two week time point. It is unclear if it would be feasible for general practitioners to 

administer functional testing at this point in time and if so, if they would be able to interpret 

the outcome parameters in a way that supports further clinical decision making. Nonetheless, 

this relationship indicates that the two week post-operative visit provides a favourable time 

for functional assessment and potentially subsequent intervention, such as personalized 

physical therapy programming, to prevent poor long term functional outcomes.  
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The information provided by instrumenting the TUG test with inertial based sensors is 

crucial for providing a deeper level of functional understanding than time alone. While time 

represents general function, solely it is unable to capture detailed disease-specific 

mechanisms impairing function.5 For example, two people may complete the TUG test with 

equivalent performance times, however one of them may have an abnormal gait cycle or an 

asymmetric limping pattern. Power-related metrics such as velocity and acceleration and 

movement-related metrics such as ROM or additive angular displacement, would 

differentiate between these two individuals and capture their specific functional disabilities.5 

Capturing these specific metrics pre- and post-operatively has allowed us to visualize gait 

improvements over the course of recovery as we observe more symmetrical movement-

related parameters. This reiterates the importance of assessing not only the speed, but the 

quality of movement as well. In the future these specific metrics could be used within clinical 

practice to identify patients who are at risk for post-operative dissatisfaction as a result of 

poor functional ability. While total TUG time calculated using a stop watch could be used to 

accomplish this, novel sensor-derived metrics, such as mean step additive angular 

displacement, will identify at-risk patients with greater specificity.  

While TKA improvements can be observed up to two years post-operatively, the early post-

op phase is important from a health economic perspective. As we are expecting to observe a 

rise in the total number of joint replacements performed annually, arthroplasty has become a 

target of payment reform efforts.30 In the United States under Model 2 of Medicare’s 

Bundled Payments for Care Improvement Program, hospitals are fiscally responsible for 

complications, readmissions, and any costs incurred above the procedures target bundle price 

from the time of hospitalization for TKA until 90 days following TKA.31 Under this model, 

hospitals are reimbursed for costs saved from patients who will require less frequent care or 

who utilize less resources, for example shorter length of stay in hospital or those discharged 

home rather than to respite care. The lack of significant difference observed between three 

month performance levels and one year performance levels add credence to bundled care 

programs and the importance of early functional improvement.   

This study has some limitations that should be noted when interpreting the results presented. 

Firstly, these observations were made within a small cohort of patients. The number of 

patients included may have impacted the strength of correlations observed. Additionally, the 
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patients included are from a single tertiary care centre. Patients included were also a part of 

an imaging study which required ample time investment, potentially biasing the subject 

population to patients who are more likely to be well educated on the TKA procedure and 

post-operative expectations and are therefore more knowledgeable about the importance of 

physical rehabilitation and more satisfied with their outcomes. Thus, the results may not be 

generalizable to larger populations. Lastly, a few patients only completed part of the booklet 

of questionnaires administered at a given follow up visit rendering some data incomplete. 

This is likely a result of the significant time and effort required to fully complete a number of 

PROMs. However, we believe that there was no systematic nature to the non-responders that 

would bias our results. Nevertheless, this study is prospective in nature and uses a 

standardized performance-based assessment method to assess validated and reliable novel 

outcome parameters from wearable IMUs to gather a more detailed understanding of post-

operative TKA functional restoration.   

In conclusion, both PROMs and the TUG performance test were responsive to functional 

improvements following TKA, regardless of surgical approach group. However, the 

responsiveness differed considerably depending on outcome measure. This study provides 

further support to the idea that only a superficial understanding of functional ability can be 

obtained from PROM administration alone. Furthermore, our study echoes the importance of 

including both self-reported and performance-based measures in the assessment of TKA 

patient function. Additionally, the results indicate that objective functional assessment should 

occur pre-operatively as well as post-operatively at a number of time points during the 

recovery process. For the GB and MR patients examined in this study, the acute post-

operative time may provide an opportunity to intervene and prevent poor long-term function. 

Future work will stress the importance of routinely evaluating the effect of TKA intervention 

on functional recovery in order to optimize both the recovery process and long term 

satisfaction and function.   
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Chapter 5  

5 Conclusions and Future Directions  

5.1 Overview of Objectives  
Over the past decade we have observed a change in the TKA patient population to include 

younger patients. This cohort places unique demands on their implanted prosthesis, such as 

the application of greater loads, the requirement of more long-term fixation, and an interest in 

higher levels of post-operative function. Historically, cemented fixation methods have been 

utilized in TKA and have been shown to provide strong initial stability. What is worrisome is 

the potential of bone resorption over time at the cement-bone interface, thus resulting in 

aseptic loosening and the need for revision surgery. Uncemented implant systems provide a 

promising alternative to cemented fixation methods as an osteoconductive component surface 

promotes bony ingrowth between the host bone and implanted component. It is currently 

unknown what TKA surgical technique may be best suited to an uncemented implant system 

in terms of minimizing implant migration and optimizing tibiofemoral contact kinematics 

and patient function. Thus, the specific objectives of this thesis were to examine the impact 

of total knee arthroplasty surgical technique with an uncemented implant on implant 

migration, in vivo kinematics, and functional restoration.   

5.2 Summary of Results  
In Chapter 2 of this thesis, the implant migration patterns for a single-radius fixed-bearing 

cruciate-retaining uncemented TKA performed with either a GB or MR surgical technique 

were assessed. Translations and rotations of both the tibial and femoral components were 

measured using radiostereometric analysis (RSA) at six weeks, three months, six months, and 

one year post-operatively using a baseline two week exam. The maximum total point motion 

was also calculated at each time point. It was concluded that surgical technique had no 

impact on the amount of migration observed over the first post-operative year. The majority 

of migration observed occurred during the first six months of the follow up period as 

osseointegration developed. Once osseointegration was established between the host bone 

and implanted component migration plateaued, indicating that this process had occurred. 

Comparing the amount of migration within the first year to well established RSA thresholds 

for implant migration indicated 60% of our cohort to be at heightened risk for future revision 
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surgery. These guidelines, established through observation of primarily cemented implant 

systems, may be inappropriate comparisons for uncemented implant systems. The negligible 

level of migration that occurred during the six month to one year period can potentially be 

used as a surrogate measure to illustrate adequate levels of fixation between the uncemented 

prothesis and host bone.  

In Chapter 3, the impact of uncemented TKA surgical technique on tibiofemoral contact 

kinematics was examined by conducting a quasi-static RSA exam one year post-operatively. 

This study demonstrated that similar contact patterns are observed throughout flexion on both 

the medial and lateral condyles regardless of surgical technique. Contact locations between 

the approach groups were comparable on the medial condyle. However, on the lateral 

condyle, the MR group reported a more anterior contact location than the GB cohort at a 

position of full extension and 80º of flexion. The amount of anterior-posterior excursion 

between the medial and lateral condyles, between groups and within groups, was 

comparable. Regardless of flexion degree and surgical approach, the tibiofemoral contact 

location was located anterior to the midline of the sagittal plane. Coronal plane stability was 

inferred from the amount of condylar liftoff. Both groups had comparable levels of condylar 

liftoff and observed liftoff of both medial and lateral femoral condyles. Both cohorts 

demonstrated paradoxical anterior translation of the femur, coronal plane laxity, and a lateral 

pivot point during deep flexion.  

In Chapter 4, novel temporal and joint specific metrics were examined from the information 

obtained from wearable sensor technology during the TUG functional performance test. This 

experiment demonstrated weak to moderate correlations between objective measures of 

function pre- and post-operatively. However, strong correlations between functional 

performance levels two weeks post-operatively and functional ability six months and one 

year following TKA were observed for total time to complete the TUG test and other, novel 

metrics. This observation demonstrates the importance of functional assessment two weeks 

post-operation to identify those at risk for poor long term functional outcomes. Furthermore, 

we examined the recovery of angular metrics previously identified to be important in the 

determination of patient satisfaction and function and how these metrics change over time. 

The inclusion of the instrumented TUG test could help clinicians provide patients with more 
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realistic procedure expectations, help identify those at risk for poor function long-term, and 

lead to greater rates of post-operative patient satisfaction. 

5.3 Future Directions  
This Master’s thesis examined implant migration, tibiofemoral contact kinematics, and 

functional restoration for patients undergoing an uncemented TKA using either a gap 

balancing or measured resection surgical approach. While this thesis provides important 

insight into implant behavior during the early post-operative period, a longer follow up 

duration is required to best understand the long term stability of this implant system. More 

long term data will allow for the establishment of implant migration thresholds better suited to 

predicting the risk of future revision when uncemented implant systems are used. Additionally, 

it would be of interest to compare the results we observed with those observed within a cohort 

of smaller body mass index. People of larger body mass tend to place larger amounts of stress 

on their joints, potentially imparting differences in migration and kinematic patterns. Further 

work may also include conducting the instrumented TUG test on larger cohorts of patients and 

patients with different implant styles. This will provide the information on the impact this 

implant fixation style and surgical approach has on long term implant stability and long term 

recovery.  

5.4 Conclusions  
This thesis set out to examine the impact of surgical technique for uncemented total knee 

arthroplasty on implant migration, tibiofemoral contact kinematics, and functional restoration. 

The results indicate that surgical approach has no impact on one year migration levels, 

articular contact kinematics, or functional capacity assessed through the timed-up-and-go 

physical performance assessment. Additionally, the results provide preliminary support for the 

use of uncemented total knee arthroplasty as a viable alternative to cemented fixation methods. 

This thesis provides evidence of a strong relationship between acute post-operative function 

and long-term functionality. Incorporating the findings of this thesis into care planning will 

assist us in optimizing the TKA procedure in ways which result in meaningful differences for 

our patients.
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Letter of Information and Consent Form 
 

The impact of total knee arthroplasty surgical technique with cementless implants 
on coronal plane motion. 

 
Principal Investigator: 
Dr. Brent Lanting  

 
Co-Investigators: 
Dr. James Howard  
Dr. Matthew Teeter  

 

Study Coordinators: 
Harley Williams 519-685-8500 x32245 
Jordan Broberg 519-685-8500 x32245 

 
Maxwell Perelgut 519-685-8500 x32245 
Bryn Zomar 519-685-8500 x34269 

 
 

You are being invited to participate in a research study designed for patients who will 
receive a primary total knee replacement under Dr. Brent Lanting’s or Dr. James 
Howard’s care. This letter of information describes the research study and your role as a 
participant. The purpose of this letter is to provide you with the information you require 
to make an informed decision about participating in this research. Please read this form 
carefully. 

 

 

  
 

Study Purpose 
How stable a total knee replacement (TKR) is depends on the correct and precise rotation 
of the femoral component. Abnormal femoral component rotation has been associated 

Anatomy of the Knee Total Knee Replacement Implant 

Appendix B: Letter of Information and Consent  
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with numerous adverse conditions including knee instability, knee pain, scar tissue, and 
abnormal knee motion. Controversy exists, however, regarding the most favorable 
surgical technique to determine accurate femoral component rotation. Some doctors 
prefer a measured resection technique in which landmarks on the femur bone are used to 
determine where to place the femoral component. Others recommend a gap-balancing 
technique in which the femoral component is positioned by balancing the ligaments of 
the knee and placing it in the position where each ligament is equally strained. 

 
The purpose of this study is to examine the impact of the measured resection and gap- 
balancing surgical techniques, used with cementless implants, on how the total knee 
replacement moves and patient knee outcome scores. Knee outcome scores are assessed 
from the responses given by patients to questions about outcomes associated with total 
knee replacement related to pain, symptoms, activities of daily living, sport and 
recreational function, and knee-related quality of life. We aim to include a total of 48 
participants in this study, 24 in each group. 

 
Procedure 
If you decide to participate in this study you will be operated on using the surgical 
technique used routinely by your surgeon. You will have the same knee replacement 
parts implanted regardless of what surgical technique is used by your surgeon. During 
your surgery you will have tantalum beads inserted into the end of your femur, top of 
your tibia and patella. These beads are the size of the head of a pin and will have no 
impact on how your knee will function after the surgery. The tantalum beads will be used 
as markers to assess for any microscopic movement of the implant. To measure this 
movement, we will ask you to have a special kind of x-ray called radiostereometric 
analysis (RSA) taken after surgery at 2 weeks, 6 weeks, 3 months, 6 months and 2 years. 
At your 1 year follow-up we will perform a series of RSA x-rays at multiple degrees of 
knee flexion to measure the position of your implant components relative to each other. A 
member of the study team will escort you to Robarts Research Institute (attached to 
University Hospital) where the x-rays will be taken, and a wheelchair will be provided 
for you if needed. The x-ray will take less than 15 minutes to complete. 

 
You will be asked to complete questionnaires that will assess your functional ability and 
quality of life. The questionnaires will be collected at your preadmission visit, 2 weeks, 6 
weeks, 3 months, 6 months, 1 year and 2 years after surgery. These questionnaires will 
take approximately 15 minutes to complete. 

 
You will also be asked to perform the Timed Up and Go (TUG) at each visit. Any gait 
aids (such as a cane, crutches or walker) that are normally used will be permitted during 
the TUG. The TUG involves getting up from a chair, walking 3 metres to a point marked 
on the floor, turning around and returning to sitting in the chair. During the TUG we will 
have you wear sensors that will measure speed, step length, stride length, etc. 
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Risk 
There is always a slight chance of cancer from excessive exposure to radiation. However, 

special care is taken during x-ray examinations to use the lowest radiation dose possible 

while producing the best images for evaluation. 

The scientific unit of measurement for radiation dose is the millisevert (mSv). People are 

exposed to radiation from natural sources all the time. The average person receives an 

effective dose of about 3 mSv per year from naturally occurring radioactive materials and 

cosmic radiation from outer space. Each RSA examination of the knee will expose the 

patient to 0.001 mSv (or 1 uSv) of ionizing radiation, or 0.033% of the background 

radiation we are all exposed to yearly. The RSA exam at 1-year post-operation requires a 

maximum of 8 images (0°, 20°, 40°, 60°, 80°, 100°, 120°, and 140° of flexion). 

Therefore, the sum total of radiation exposure across the 14 RSA images possibly 

required for the study is 0.014 mSv (14 uSv), equivalent to approximately 0.46% of 

yearly background radiation exposure. 

There is also a small risk of falling as the x-rays are taken in weight-bearing positions and 

the TUG test involves walking and sitting. This risk is minimized by providing a handrail 

to be used as a support during imaging. 

Data from your medical record will be gathered for this study. There is a risk for 

breaching confidentiality of this information; however procedures are set in place to 

minimize this risk (see below). 

 

Benefits 
Participation in this study will provide no known benefit to you. Information learned 

from this study may help lead to improvements TKR procedures in the future. 

 

Compensation 
There will be no compensation for your participation in this study. 

 
Voluntary Participation 
Your participation in this study is voluntary. You may refuse to participate or discontinue 

your participation at any time without affecting the care being provided to you. Should 

you choose to withdraw, no further information will be collected. The data you have 

contributed to that point will be used to help answer our research question. 

 
Confidentiality 
All information will be kept confidential to the best of our ability. All RSA image data 

and TUG data will be stored on a password protected computer in a secure facility 

(Robarts Research Institute and Sandy Kirkley Centre for Musculoskeletal Health 

Research, respectively) and will contain only your unique identifying number and no 

personal identifiers. Even with this high level of security, there is always a remote chance 

that your information could be breached by someone without permission to your 
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information. The chance that this information will be accidentally released is minimal. In 
any publication, presentation or report, all results will be de-identified and any 
information that would reveal your identity will not be published. 

 
You will be given a copy of this letter of information and consent form once it has been 
signed. You do not waive any legal rights by signing the consent form. Representatives of 
The University of Western Ontario Health Sciences Research Ethics Board may contact 
you or require access to your study-related records to monitor the conduct of the research. 

 
Qualified representatives of the Lawson Quality Assurance Education Program may look 
at your medical/clinical study records at the site where these records are held, for quality 
assurance (to check that the information collected for the study is correct and follows 
proper laws and guidelines). 

 
If you have any questions about your rights as a research participant or the conduct of the 
study you may contact the Patient Experience Office at LHSC at (519) 685-8500 ext. 
52036 or access the online form at: 

 

If you have any questions about your surgery, please contact your orthopaedic surgeon. If 
you have any questions about this research, please contact the research coordinator 
Harley Williams at 519-685-8500 x32245, or the principal investigator Dr. Brent Lanting 
at 519-663-3335 or Brent.Lanting@lhsc.on.ca. 

 
 

Sincerely, 
 

Dr. Brent Lanting, MD, FRCSC 
Dr. James Howard, MD, FRCSC 
Dr. Matthew Teeter, PhD 
Bryn Zomar, MSc, PhD(c) 
Harley Williams, Master’s Student 
Maxwell Perelgut, Master’s Student 
Jordan Broberg, Master’s Student 
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The impact of total knee arthroplasty surgical technique with cementless implants 
on coronal plane motion. 

 
Principal Investigator: Dr. Brent Lanting 

 

Informed Consent Form 
 
 

Agreement of Participant 
 

I have read the accompanying letter of information regarding this study and give my 
informed consent to participate. All questions have been answered to my satisfaction. 

 
 
 
 
 
 

Print Participant’s Full Name 
 
 
 
 
 

Participant’s Signature Date 
 
 
 
 
 

Name of Person Obtaining Consent 
 
 
 
 
 

Signature of Person Obtaining Consent Date 
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  Study ID: ___________ 

  Date: _______________ 

Version: 22-Jun-2017 

SF-12 
INSTRUCTIONS: This survey asks for your views about your health. This information will help keep track of how 

you feel and how well you are able to do your usual activities. Answer every question by marking the answer as 

indicated. If you are unsure about how to answer a question, please give the best answer you can. 

1. In general, would you say your health is: Excellent 

(1) 

Very Good 

(2) 

Good 

(3) 

Fair 

(4) 

Poor 

(5) 

The following items are about activities you might do during a typical day. Does your health now limit you in these 

activities? If so, how much: 

 Yes, Limited 

A Lot 

Yes, Limited 

A Little 

No, Not 

Limited At All 

2. Moderate activities, such as moving a table, pushing a vacuum 

cleaner, bowling, or playing golf. 

1 2 3 

3. Climbing several flights of stairs. 1 2 3 

During the past 4 weeks have you had any of the following problems with your work or other regular daily activities 

as a result of your physical health? 

 YES NO 

4. Accomplished less than you would like. 1 2 

5. Were limited in the kind of work or other activities. 1 2 

During the past 4 weeks, have you had any of the following problems with your work or other regular daily activities 

as a result of any emotional problems (such as feeling depressed or anxious)? 

 YES NO 

6. Accomplished less than you would like. 1 2 

7. Didn’t do work or other activities as carefully as usual. 1 2 

8. During the past 4 weeks, how much did pain interfere with your normal work (including both work outside the 

home and housework)? 

Not at All 

(1) 

A little bit 

(2) 

Moderately 

(3) 

Quite a bit 

(4) 

Extremely 

(5) 

These questions are about how you feel and how things have been with you during the past 4 weeks. For each 

question, please give the one answer that comes closest to the way you have been feeling. How much of the time 

during the past 4 weeks? 

 All of the 

time 

Most of 

the time 

A good bit 

of the time 

Some of 

the time 

A little of 

the time 

None of 

the time 

9. Have you felt calm and peaceful? 1 2 3 4 5 6 

10.  Did you have a lot of energy? 1 2 3 4 5 6 

11.  Have you felt downhearted and blue? 1 2 3 4 5 6 

12. During the past 4 weeks, how much of the time has your physical health or emotional problems interfered with 

your social activities (like visiting with friends, relatives, etc)? 

All of the time 

(1) 

Most of the time 

(2) 

Some of the time 

(3) 

A little of the time 

(4) 

None of the time 

(5) 

 

Appendix C: Short Form 12 (SF-12) 
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  Study ID: ___________ 

  Date: _______________ 

Version 22-Jun-2017 

 
WOMAC 

 
A. Think about the pain you felt in your hip/knee during the last 48 hours. 

Question: How much pain do you have? None Mild Moderate Severe Extreme 
1. Walking on a flat surface 0 1 2 3 4 
2. Going up or down stairs 0 1 2 3 4 
3. At night while in bed, pain disturbs your 

sleep 
0 1 2 3 4 

4. Sitting or lying 0 1 2 3 4 
5. Standing upright 0 1 2 3 4 
 

B. Think about the stiffness (not pain) you felt in your hip/knee during the last 48 hours. Stiffness is a 
sensation of decreased ease in moving your joint. 

 None Mild Moderate Severe Extreme 
6. How severe is your stiffness after first 

awakening in the morning? 
0 1 2 3 4 

7. How severe is your stiffness after sitting, 
lying, or resting later in the day? 

0 1 2 3 4 

 
C. Think about the difficulty you had in doing the following daily physical activities dues to your 

hip/knee during the last 48 hours. By this we mean your ability to move around and look after 
yourself. 

Question: What degree of difficulty do you 
have? 

None Mild Moderate Severe Extreme 

8. Descending stairs 0 1 2 3 4 
9. Ascending stairs 0 1 2 3 4 
10. Rising from sitting 0 1 2 3 4 
11. Standing 0 1 2 3 4 
12. Bending to the floor 0 1 2 3 4 
13. Walking on a flat surface 0 1 2 3 4 
14. Getting in and out of a car, or on or off a 

bus 
0 1 2 3 4 

15. Going shopping 0 1 2 3 4 
16. Putting on your socks or stockings 0 1 2 3 4 
17. Rising from bed 0 1 2 3 4 
18. Taking off your socks or stockings 0 1 2 3 4 
19. Lying in bed 0 1 2 3 4 
20. Getting in or out of the bath 0 1 2 3 4 
21. Sitting 0 1 2 3 4 
22. Getting on or off the toilet 0 1 2 3 4 
23. Performing heavy domestic duties 0 1 2 3 4 
24. Performing light domestic duties 0 1 2 3 4 
 

Appendix D: Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) 
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Appendix E: Knee Society Score (patient portion) 
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 Appendix F: Knee Society Score (clinician portion) 
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  Study ID: ___________ 

  Date: _______________ 

Version: 22-Jun-2017 

 
UCLA Activity Score 

 
Check one box that best describes current activity level. 
 
 
⃝ 1: Wholly Inactive, dependent on others, and can not leave residence 

⃝ 2: Mostly Inactive or restricted to minimum activities of daily living 

⃝ 3: Sometimes participates in mild activities, such as walking, limited housework and limited shopping 

⃝ 4: Regularly Participates in mild activities 

⃝ 5: Sometimes participates in moderate activities such as swimming or could do unlimited housework or shopping 

⃝ 6: Regularly participates in moderate activities 

⃝ 7: Regularly participates in active events such as bicycling 

⃝ 8: Regularly participates in active events, such as golf or bowling 

⃝ 9: Sometimes participates in impact sports such as jogging, tennis, skiing, acrobatics, ballet, heavy labor or backpacking 

⃝ 10: Regularly participates in impact sports 

Appendix G: University of California, Los Angeles (UCLA) Activity Score 
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