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Abstract

X-ray imaging for early cancer detection, such as screening mammography, requires

images with high signal-to-noise ratio (SNR) using low levels of radiation exposure. Con-

ventional detectors consist of a matrix of sensor elements, producing images where each

pixel corresponds to a single sensor element. This imposes a fundamental limitation on

image contrast and SNR for imaging fine detail for a given exposure. The work presented

here reconsiders x-ray image formation using a new x-ray detector design that synthe-

sizes image pixels from a large number of very small sensor elements with the goal of

optimizing contrast and SNR.

Our new detector design, called apodized-aperture pixel (AAP), makes use of recent

technology developments of complementary metal-oxide semiconductor (CMOS) sensors

with directly deposited selenium to produce images with a desired pixel size of 50 - 100µm

from sensor elements of 5 – 25µm. The “over-sampled” sensor signal is used to synthesize

image pixels while suppressing both signal and noise aliasing to improve the modulation

transfer function (MTF) and detective quantum efficiency (DQE).

Signal and noise performance of the AAP approach is described theoretically using a

cascaded-systems analysis. This approach preserves the MTF of the small sensor elements

up to the image sampling cut-off frequency where the MTF is increased by up to 53%.

Frequencies above the cut-off are suppressed, eliminating both signal and noise aliasing

artifacts and corresponding to a high-frequency DQE increase by 2.5×. X-ray interactions

in a scintillator introduce signal and noise correlations, including x-ray reabsorption and

converter blur, resulting in reduced aliasing and decreased improvement in DQE. Best

results with the AAP design were obtained using a high-resolution converter, such as

selenium (Se), with little impact from reabsorption.

Implementation on a Se/CMOS micro-sensor prototype with 7.8µm element size with

image pixel size approximately 50µm showed a flat DQE curve (ideal) up to 10cycles/mm.

AAP images of resolution test patterns, mammography phantoms, and specimen imaging
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of micro-calcifications from biopsies showed the expected improvements in SNR and

visibility of fine-detail.

It is concluded that synthesizing image pixels from small physical sensor elements can

increase MTF and DQE, and eliminate aliasing artifacts, for a desired image pixel size.

The resulting increase in SNR may benefit all forms of radiography, and in particular

mammography, where accurate visualization of fine detail is important for early cancer

detection.

Keywords: Apodized aperture pixel (AAP), x-ray detector design, detective quan-

tum efficiency (DQE), noise aliasing, high frequency, signal to noise ratio, cascaded sys-

tem analysis
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Chapter 1

Introduction

1.1 Thesis motivation

This thesis is motivated by the ubiquity of x-ray imaging in medicine and the im-

portance of producing high quality images while using an acceptable level of radiation.

The crux of the problem is that striking the desired balance between image quality and

x-ray exposure is a difficult challenge. Ultimately, it is limited by the performance of

the x-ray detector design. Unfortunately, while many x-ray detectors used at present

are very effective at producing high-quality images using low levels of radiation exposure

that show large structures such as masses and bones, they are less effective at produc-

ing images showing fine details such as small lesions and calcifications. We describe a

new x-ray detector design that overcomes some limitations of conventional detectors to

increase image quality of fine detail without increasing radiation exposure with the im-

plication being that this will result in improved detection of cancer. The proposed x-ray

detector may be useful for many imaging applications, although we think the most direct

and greatest impact will be in mammography screening because high dose-efficiency and

image quality of fine-detail is crucial for early cancer detection.

Since implementation of screening mammography in mid-1980s, breast cancer mor-
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Figure 1.1: Image regions from a mammogram acquired with a clinical detector (Ho-
logic Inc., 70µm pixel size) of a mass (top) and a calcification cluster (bottom) at a
standard dose (left) and ∼10× lower dose (right). At low dose, visibility of the mass
slightly decreases and the calcifications are almost completely undetectable. Modified
from Bluekens et. al., BJR, 88 (1047), 2015. Permission to reproduce for PhD disserta-
tion provided in Appendix.

tality rates have been reduced by 40-50% and attributed to improved treatment following

earlier detection[1, 2]. However, early cancer detection depends on x-ray image quality

in terms of signal-to-noise ratio (SNR).[3, 4] Image quality is low for low exposures be-

cause image SNR depends on the number of quanta incident on the detector, as was

first shown by Rose in optical imaging.[5, 6] Figure 1.1 shows mammograms containing a

mass and calcifications acquired an x-ray exposure giving 4mGy average glandular dose

and reduced dose by ∼15×. This image has inverted pixel values, meaning that bright

areas correspond to higher x-ray attenuation. Between standard and low doses, there are

differences in SNR of the mass and even greater differences for calcifications − they are

easily missed in the low-dose image. This is due to current x-ray detectors having low

“dose efficiency” at producing high SNR of small structures and fine detail.[7, 8] Low
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Figure 1.2: An example of signal aliasing in an x-ray image of a star-pattern acquired with
a clinical mammography system. At the center of the image where spacing between bars
is less than the pixel size, a distinct Moire pattern is caused by aliasing. Additionally,
there are aliasing artifacts producing steps along the spoke edges caused. The x-ray
image of the star pattern was provided courtesy of Dr. Jan Linsdström.

exposures are important to minimize radiation risk when screening a large asymptomatic

population and obtaining high SNR of fine-detail (such as micro-calcifications) is crucial

for early detection. One aim of the work in this thesis is to develop an x-ray detector de-

sign with improved x-ray detector “dose efficiency” when imaging fine-detail structures.

The resolution capabilities of a mammography system can be measured using a bar-

pattern, as shown in Figure 1.2, by testing the ability to discern closely spaced high-

contrast features. Dark pixel values in this image correspond to higher x-ray attenuation

(opposite of Figure 1.1). X-ray images acquired using conventional detectors, where one

pixel represents the output from one detector element, are prone to an image artifact

called aliasing. Aliasing is a misrepresentation of fine-detail and it is further described in

Section 1.6. An example using a clinical mammography system is shown in Figure 1.2,
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where aliasing misrepresents the test object as having ripples between bars and sometimes

contrast inversion. This is concerning because health related decisions are made assuming

that x-ray images provide an accurate representation of the object being imaged. Another

aim of the work in this thesis is to design a detector design that is insensitive to aliasing

and ensures accurate representation of objects in x-ray images.

The overarching goal of this thesis is to reconsider x-ray image formation and overcome

limitations of conventional x-ray detectors which suffer from poor “dose efficiency” of

fine-detail and aliasing artifacts. Such an approach could improve cancer detection in

mammography screening where high performing x-ray detectors and identification of

certain hard-to-see details of microcalcification morphology is important for improved

patient outcomes.[9, 10, 11]

1.2 Burden of breast cancer

The Canadian Cancer Society estimated that 1 in 8 Canadian women will develop

breast cancer during their lifetime and 1 in 31 will die from it.[12] In men, the disease

is less common with the occurrence rate being approximately 1% of all cases.[12] The

economic burden attributable to breast cancer is on average $30,000 per patient, and

total yearly cost of treatment is estimated to be $450 million in Canada.[13, 14] These

statistics are alarming and depict the burden that breast cancer has on both our society

and individuals.

1.2.1 Incidence, prevalence and risk factors

Within the global female population, breast cancer is the most commonly diagnosed

cancer and the leading cause of cancer death at 11.6%.[15] In 2018, it was estimated there

would be 2.1 million newly diagnosed female breast cancer cases, accounting for almost

1 in 4 of all (male and female) cancer cases world-wide.[15] In the Canadian population,
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New cancer cases (2017)
(Canadian Cancer Society)

Cancer deaths (2017)
(Canadian Cancer Society)

Figure 1.3: In 2017, an estimate 26,300 Canadian women were diagnosed with breast
cancer (25% of all new cancer cases in women) and 5,000 women died from breast cancer
(13% of all cancer deaths in women). This figure was adapted from the Canadian Cancer
Society (2018).[12]

similar trends were observed in 2017 at 13% of all cancer deaths in Canadian women, as

shown in Figure 1.3.[12] Over the last decades, incidence rates of breast cancer have been

rising for most low-income countries due to a combination of demographic, social and

economic factors (including postponement of childbearing, having fewer children, greater

levels of obesity and physical inactivity).[15] In contrast, several high-income countries

(ie. United States, Canada, United Kingdom, France and Australia) have observed a

decrease in incidence since the early 2000s, partly attributable to declines in the use of

postmenopausal hormonal treatment and increases in mammographic screening.[15, 16]

Much of the worldwide increase in breast cancer has been linked to the increasing

prevalence of a number of breast cancer risk factors. Almost 1% of women are estimated

to be at high risk (up to 85%) for developing breast cancer, compared to the 10-12% risk

for the general population of women.[12] Survival varies with stage of the disease, as 5-year

net survival is 87% but late-stage is 22%.[12, 17] This highlights the importance of early

detection and effective treatments. Risk factors associated with the etiology of breast

cancer can be classified as hereditary and non-hereditary. Hereditary and genetic factors

account for 5-10% of breast cancer cases. These factors include personal and family
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history of breast or ovarian cancer; inherited mutations (ie. BRCA1, BRCA2, HER2) and

epigenetics.[18] Non-hereditary factors are: menstruation (early age at menarche, later

age at menopause), reproduction (nulliparity, late age at first birth, and fewer children),

exogenous hormone intake (via oral contraceptive use and hormone replacement therapy),

lifestyle and nutrition (alcohol intake), and anthropometry (greater weight, weight gain

during adulthood, and body fat distribution).[15, 19] Non-hereditary factors are the

major drivers of breast cancer incidence rates.[15] Prevention of breast cancer remains

a challenge and recommendations include management of obesity, alcohol consumption,

and encouragement to breastfeed (or increase duration of breastfeeding).[15, 16]

1.2.2 Breast anatomy and disease

In order to accurately identify the pathological state of disease in imaging studies,

it is important to understand normal breast anatomy and disease. The human breast

is a cutaneous exocrine gland that consists of subcutaneous tissue, breast parenchyma

(ducts, lobules, and supporting fibrous tissue), and supporting stroma, including fat

interposed in a complex network of ligaments, nerves, blood and lymph vessels.[20, 21]

Figure 1.4 illustrates female breast anatomy and its major components. Each breast

extends from the second rib superiorly to the 6th rib inferiorly, with the sternum medially

and the midaxillary line laterally.[21] Approximately two-thirds of the breast lies over

the pectoralis major muscle superiorly, and the remainder contacts the serratus anterior

muscle laterally and upper abdominal oblique muscles inferiorly.[21, 22]. The female

breast is usually larger than the male breast and contains a larger volume of fibro-

glandular tissue, whereas the male breast is almost entirely composed of fat.[21] The

breast consists of two fascial layers: (i) superficial fascia that lies deep to the dermis and

where the breast tissue can be found and (ii) the deep fascia that lies anterior to the

pectoralis major muscle fascia.[22] Breast tissue is attached to skin by the ligaments of

Cooper (fibrous connective tissue). It consists of epithelial parenchymal elements (10-
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Figure 1.4: Breast anatomy showing glandular tissue with calcification deposits form-
ing in the mammary ducts and lobules. Typically, round or punctate shaped calcifica-
tions develop in benign cancer and form in the lobules (top-right), where pleomorphic or
branching shaped calcifications develop in malignant cancer and are found in the ducts
(bottom-right).

15% of the volume) and stroma. The breast parenchyma consists of ducts and lobules.

Terminal ductal lobules are where milk is formed and drains into a major lactiferous duct

which carries the milk from the lobules into a sinus beneath the areola and then open

through the nipple. Deposits of minerals (such as calcium) can crystallize and harden

into microcalcifications as illustrated in Figure 1.4. Each breast has 15-20 lobules, which

further branch out into 20-40 lobules, and the space between the lobules is filled with

adipose tissue.[22]

Breast disease can be classified into benign and malignant (predominantly carcino-

mas). Three subtypes of benign breast disease include: non-proliferative lesions, pro-
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liferative lesions without atypia (excessive growth of normal-looking cells) and atypical

hyperplasia (excessive growth of abnormal cells).[23, 24] Non-proliferative lesions include

cysts, papillary apocrine change, epithelial-related calcifications, mild epithelial hyper-

plasia, as well as ductal ectasia, nonsclerosing adenosis, and periductal fibrosis. Prolif-

erative lesions without atypia include moderate or florid ductal hyperplasia of the usual

type, sclerosing adenosis, radial scar, and intraductal papilloma or papillomatosis. Pro-

liferative lesions with atypia include atypical ductal and lobular hyperplasia.[24] Benign

breast disease is diagnosed following abnormal imaging or palpable lesions felt during a

physical exam. Although benign, they are considered an important risk factor for the

development of breast cancer later on, having strongest association with the proliferative

subtypes with atypical hyperplasia.[23, 25]

Two common types of breast carcinoma are: non-invasive (or in situ) and invasive

breast carcinoma.[26] Two major carcinomas in situ, which are both precursors of the

invasive counterpart, have been identified: ductal carcinoma and lobular carcinoma in

situ.[26, 27] The most common presentation of invasive breast carcinoma, accounting

for the 70-75% of cases, is ductal carcinoma.[26] Lobular carcinoma is associated to a

lower risk of recurrence compared to ductal carcinoma in the first 6 years after diagnosis

but confers a significantly higher risk after.[28] In addition to carcinomas, non-epithelial

tumours (including sarcoma), which originate from the connective and fat tissue sur-

rounding the breast gland, while significantly less prevalent (accounting for fewer than

5% of all breast neoplasms), can also occur.[29]

Common abnormalities associated with breast disease are masses and microcalcifica-

tions. Large masses are often palpable and one goal of screening mammography is to

detect small masses and early disease. Another goal of sceening mammography is to

determine shape and distribtion morphology of microcalcifications which are important

indicators of aggressive cancers (see Fig. 1.4).[30, 31, 11]
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1.2.3 Importance of early detection

The decline in breast cancer death rate since the mid-1980s likely reflects the impact

of screening and improvements in adjuvant therapies for breast cancer.[2] This is impor-

tant because generally there are better outcomes when cancer is diagnosed earlier, with

the 5-year survival rate of early-stage cancer being close to 100%.[12] According to the

Canadian Cancer Society report (June 2018), more than 80% of female breast cancers

were diagnosed early (stage 1 or 2). This is believed to be attributed to early detection

through organized breast cancer screening programs. Less than 5% of the cases were

diagnosed at late stage (stage 4).[12]

1.3 Early detection with breast imaging

Mammography screening is the main tool shown to be effective for early breast cancer

detection.[12] According to the Canadian Task Force on Preventive Health Care and the

Ontario Breast Screening Program, it is recommended for women over 50 years old (and

that are not at increased risk of cancer) to participate in mammography screening.[32,

17] Although, there is strong evidence showing that starting screening at 40 years old

would be more beneficial.[33] In addition to mammography, other imaging modalities are

useful for breast cancer detection (such as tomosynthesis, ultrasound, magnetic resonance

imaging and contrast-enhanced methods) as they provide additional information that

may be advantageous. Below is a summary of common imaging modalities used to detect

cancer and Table 1.1 lists some advantages and disadvantages for each modality.

1.3.1 Breast imaging

a. Mammography

A mammography system, as shown in Figure 1.5, consists of an x-ray tube, compres-

sion paddle and an x-ray detector that acquires x-ray images that are interpreted by a
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Figure 1.5: An illustration showing a mammography system with a patient, and labeled
is the x-ray tube (source for x-rays), compression paddel (for immoblization) and x-ray
detector that acquires an image. Case courtesy of Dr Alexandra Stanislavsky, Radiope-
dia.org, rID: 33698.

radiologist.[34] The x-ray tube outputs x-rays, and the transmitted x-rays through breast

tissue are detected for acquiring an image. The compression paddle is used to immobilize

and spread breast tissue to reduce overlap that might obstruct visibility in an x-ray pro-

jection. Other attachments are used: a spot-compression paddle compresses the breast

at a local area and is used to acquire a magnified view,[35] and a anti-scatter grid is used

to reduce detection of scattered radiation and improve tissue contrast from the primary

x-rays.[36, 37] X-rays that are transmitted through the breast and interact in the x-ray

detector contribute to detector output and final image.

A routine mammography screening comprises of 4 images at two different views ac-

quired at different projection angles, called medio-lateral oblique (MLO) and craniocau-
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dal (CC), for left and right breasts.[38] Breast positioning is a key factor for assuring

optimum image quality and conclusive mammographic results.[39] Optimal MLO and

CC projections should show pectoralis major muscle on the posterior edge of the breast

followed anteriorally by the retromammary space, corpus mammae, subcutaneous space

and nipple-areolar complex.

Most radiologists use a standardized method of reporting mammograms, as estab-

lished by the American College of Radiology called the Breast Imaging Reporting and

Data System (BIRADS).[40] This BIRADS system provides a lexicon and assessment cat-

egories for risk stratification. Mammography lexicon includes breast composition based

on overall density, mass descriptors (shape, margin and density), asymmetry, architec-

tural distortion, calcifications (morphology and distribution) and associated features.

b. Digital breast tomosynthesis (DBT)

Tomosynthesis as a methodology has been around since the 1970s, but recent advance-

ment of digital x-ray detectors has brought it into mammography clinics with the first

digital breast tomosynthesis (DBT) device receiving FDA clearance in 2011.[41] To better

visualize breast features that may be blocked by overlapping tissue, multiple low-dose

projections (typically 10-25) over a limited angular range (typically 10-35 degrees) are

acquired in DBT. Using these projections, a 3D volume is reconstructed consisting of an

asymmetric “volume slab” with z thickness and x-y resolution along the detector plane

having the same pixel size as mammography. Therefore, multiple low-dose projections

are used to reconstruct a DBT volume with approximately the same total exposure as a

single mammography image.[42]

Tomosynthesis has been included in clinical studies as a screening tool in combination

with mammography. The combination of both modalities was found to out perform just

mammography alone by improving detection of masses and architectural distortion in

dense breast thereby reducing false positive rates.[43]

c. Ultrasound
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Ultrasound (US) imaging consists of a transducer array that generates and receives pres-

sure waves to acquire images showing acoustic properties of tissue. Typical clinical setting

use pressure waves with frequency 5-15 MHz. Image contrast based on acoustic prop-

erties of tissue allow for better soft-tissue visibility because their interfaces are visible.

Ultrasound images are frequently used in breast imaging as an augmentation to mam-

mography for verifying the presence of a previously detected mass and ensuring that it is

not a benign fluid-filled cyst.[44] US has been shown to reduce false-positive rates when

supplementing screening mammography.[45]

Important advantages of US imaging are that it: provides good soft-tissue contrast;

can be used for real-time imaging for biopsy guidance; is widely available due to rel-

atively low cost compared to other imaging modalities; and is safe as it does not use

ionizing radiation (acoustic intensity is also monitored to not cause tissue damage).[46]

Disadvantages include: higher false positive rates when used for screening (although it

is effective at separating masses from cysts); poor visibility of microcalcifications; poor

detection of deep-seated tumours because sound waves are less penetrating than x-rays;

and skill level of the operator greatly impacts ultrasound image quality.[47, 48, 49]

d. Magnetic resonance imaging

Magnetic resonance imaging (MRI) uses a strong magnetic field, magnetic field gradi-

ents, and radiofrequency pulses to acquire an image showing contrast from relaxation of

perturbed magnetic moment of nuclei (usually hydrogen).[50] Breast MRI provides good

soft-tissue information that is useful for diagnosis. As a supplement to mammography,

MRI is used to screen high-risk patients who have family history of cancer and is useful to

determine the aggressiveness of cancer by imaging metabolism/vascularization.[51] For

patients with dense breast or implants, MRI helps visualize cancers that are difficult to

see in mammography and US.

The advantages of MRI imaging are that it provides contrast of soft-tissue, it can

help identify aggressive cancers and angiogenesis which is helpful in assessing treatment
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response.[52, 53] The disadvantages are that MRI is not widely available and early indi-

cations of breast cancer, such as microcalcifications, are not visible.[54, 55]

e. Contrast-enhanced imaging

Contrast enhanced imaging with various modalities (mammography, US, MRI) are typ-

ically acquired using an intravenous injection of a contrast agent. The most common

contrast agents used are: gadolinium or iodine for mammography, micro-bubbles for

US, and gadolinium for MRI. These agents are manufactured to be safe for patients in

low-doses, having minimal side-effects. Contrast agents are commonly used to evaluate

cancer vascularization as an indication of aggressiveness.[56, 57]

Contrast imaging provides high sensitivity for detecting hard to see cancers based

on functional tissue information. It can enhance visualization of hard-to-see aggressive

tumours, but may be limited for patients with pre-existing renal toxicity or very dense

breast.[58]

1.3.2 Impact of mammography screening

Mammography is the main screening tool for detecting breast cancer early and it is

recommended that women older than 50 years participate in regular screening programs.[59,

17] The Ontario Breast Screening Program (OBSP) provides high-quality breast cancer

screening to Ontarians and it recommends biannual screening for women ages 50 to 74

years old and annual screening for women ages 30 to 69 who are confirmed to be at high

risk of developing breast cancer.[60] The reduction of breast cancer mortality has been

largely attributed to early detection that leads to improved treatment.[1]

The OBSP found 30% greater cancer detection rates in centers that used higher

performing x-ray detectors (producing higher image SNR) than centers that used lower

performing systems.[3] As a result of this study, lower performing systems were recalled

and replaced.[61] This is an example of the importance of high performing x-ray detectors

required to provide effective early detection of breast cancer.
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Advantage Disadvantage

Mammography
- High-resolution imaging

(0.07-0.1 mm pixel size)
- Fast imaging for screening

large populations

- Limited by 2D projection and
overlapping tissue

- Patient discomfort due to
compression of the breast

DBT
- Reduces obstruction of

overlapping tissue
- Similar dose and equipment as

mammography

- Poor resolution in the z
direction causes artifacts

- Longer radiologist reading
time and workflow

Ultrasound
- Real-time imaging
- Good soft-tissue contrast that

allows for differentiation
between a cyst and a mass

- User-dependent due to hand-
held transducer

- Long imaging sessions (20min)
makes screening difficult

MRI
- Good soft-tissue contrast
- Able to identify aggressive

tumours and screen young
women who are at high-risk

- Expensive and therefore not
widely available

- Poor spatial resolution for
early detection of calcifications

Contrast-
enhanced
imaging

- Can be added to current
imaging using contrast loader

- Able to identify aggressive
tumours

- Some patients are intolerant
to exogenous agents

- Requires additional time,
making sessions long

Table 1.1: Summary of advantages and disadvantages of common breast imaging modal-
ities. DBT = digital breast tomosynthesis; MRI = magnetic resonance imaging.

1.3.3 Importance of x-ray detector performance

Image SNR in mammography depends on x-ray dose, detector efficiency, scattered

radiation emerging from the patient and artifacts.[62] Detector performance and image

SNR is further defined in Section 1.4.2. A standard entrance skin air-KERMA (ESAK)
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in mammography is approximately 10mGy with 100µGy air-KERMA incident on the

detector. Approximately 3 - 5% of incident exposure is transmitted, and the average

absorbed glandular dose is approximately 1 mGy.[63] Since only a small percentage of

the incident x-rays are transmitted through the breast, the detector needs to be very

high-performing to keep patient dose at a minimum while acquiring a high SNR image.

1.4 X-ray detector performance

Image SNR and detector performance are intimately connected. An absolute scale

of image quality is quantified by the noise equivalent quanta (NEQ) which gives the

number of Poisson-distributed quanta that would produce the same SNR given an ideal

detector.[64, 65] For a given number of quanta q̄o incident on the detector per unit area, a

measure of system performance as a function of spatial frequency is given by the detective

quantum efficiency (DQE) where DQE = NEQ/q̄o.[65]

To understand x-ray detector performance, one must consider the physics involved in

x-ray production, interactions and detection.

1.4.1 X-ray physics

a. X-ray production

The x-rays produced from an x-ray tube are polyenergetic and x-ray spectrum depends

on the tube settings, as shown in Figure 1.6. X-rays are created by accelerating electrons

(current setting mA) to a peak energy ranging 25-35 keV (kilovoltage setting kV) towards

a high-Z target (typically molybdenum or tungsten) producing Bremsstrahlung radiation

and characteristic x-rays. Filter material attenuate the x-ray beam and remove low-

energy x-rays, which are are less likely to be transmitted through the patient and therefore

not contribute to the image. The tube output air-KERMA is controlled by changing mA
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Figure 1.6: Mammography x-ray spectra from molybdenum (left) and tungsten (right)
x-ray tubes.

and kV settings to ensure that a satisfactory image is obtained and is dependent on

factors such as breast thickness.

b. X-ray interactions

X-rays transfer their energy by interacting with orbital electrons in matter. X-ray

interactions are important because differences between x-ray interactions in tissues pro-

duce image contrast. An x-ray passing through matter can either be absorbed (an x-ray

interacts and transfers all of its energy locally), scattered (an x-ray interacts but does not

transfer all of its energy locally) or transmitted (does not interact). Figure 1.7 shows the

x-ray spectra incident on breast tissue (A), incident on the detector (B) and absorbed

in the detector (C). There is a change in y-axis scale between (A) and (B) because

approximately only 3 - 5 % of the x-rays are transmitted through the breast.

At diagnostic energies, x-rays undergo either photoelectric, coherent or incoherent

(Compton) interactions.[66] During photoelectric interactions, an x-ray transfers all its

energy to an inner-shell electron that is ejected from the atom. The vacancy created is

filled by a higher shell electron producing a characteristic photon. The energy of the

characteristic photon depends on the binding energy of the levels in the absorbing mate-

rial. Photoelectric interaction in the patient is important for medical imaging because it

produces the desirable contrast in images. During coherent interaction, an x-ray inter-
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(A)

(B)

(C)

Figure 1.7: X-ray spectra at different stages in mammography. Incident x-rays on the
breast tissue (A) that are transmitted fall incident on the detector (B) and are absorbed
in the x-ray converter layer (C).
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Figure 1.8: Linear x-ray coefficients (left) for iodine, calcium carbonate and breast tissue
(ICRU-44). Quantum efficiency (right) of different x-ray converters in mammography:
caesium iodide (CsI), gadolinium oxysulfide (Gd2O2S) and selenium (Se).

acts with an outershell electron and does not deposit energy while it changes direction.

Coherent scatter is forward-peaked, leads to x-ray diffraction effects and has a higher

probability of occurring at lower keV. During incoherent interaction, the incident x-ray

changes direction, energy and ejects an electron. Incoherent and coherent scatter from

surrounding tissue in the patient is usually not desirable because it reduces contrast of

features in an image.[67]

X-ray transmission through an attenuator is described by energy-dependent interac-

tion coefficients, µ(E) = µPE(E)+µCOH(E)+µINC(E). Transmission of a spectrum qo(E)

through a material having uniform linear attenuation coefficient µ(E) and thickness x

results in the transmitted spectrum q(E) where

q(E) = qo(E)e−µ(E)x.

Linear attenuation coefficients of some materials are shown in Figure 1.8 (left) with

discontinuities at absorption edges.

c. X-ray detection
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Quantum efficiency of a detector α is given by

α(E) = 1− e−[µPE(E)+µINC(E)]xd

where xd is the thickness of the detector converter material. Figure 1.8 (right) shows

quantum efficiency of some x-ray converter material with 0.2mm thicknesses. Modern

digital x-ray detectors typically function in three steps: 1) conversion of x-ray energy

into secondary quanta using a conversion layer, such as phosphor or photoconductor; 2)

liberation of secondary quanta such as optical photons or electrical charges; 3) collection

of secondary quanta using a sensor array that measures the number of liberated secon-

daries. Figure 1.9 shows a cross-section of an x-ray detector with a converter layer and

sensor array.

The detector’s converter layer is where x-ray energy is detected by either an indirect

or direct converter. In an indirect converter (such as caesium iodide, CsI), x-rays deposit

energy in the converter that liberates optical photons that must be detected by the

detector.[68] In a direct converter (such as amorphous selenium, a-Se), x-rays liberate

electron/hole pairs and they are detected electronically in the same material.[69, 70]

The choice of converter material type depends on the imaging application to provide the

greatest quantum efficiency of x-rays with the greatest resolution (ie. minimal blurring).

The detector’s sensor array collect secondary quanta liberated in the converter re-

sulting in the electronic readout of the detector. Large-area flat-panel detectors can be

manufactured using various sensor technology. Charge-coupled devices (CCD) detect

focused optical photons from a scintillator with low readout noise and high resolution.

Active-matrix flat-panel imagers, based on thin-film transistor (TFT) electronics us-

ing amorphous silicon, consist of a charge-collection electrode and storage capacitors

for electronic readout of detector elements. Complimentary-metal-oxide semiconductors

(CMOS) sensors have direct readout of each element and wafers can be tiled into an array
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Figure 1.9: A cross-sectional view of an x-ray detector showing x-ray interactions (red ar-
rows), secondary quanta liberation (green arrows) and electronic charge collection (yellow
dots in the sensor apartures).

for a large area detector.[70, 71] Polycrystalline silicon and CMOS can be used to create

sensors with extremely low readout noise, very high bandwidth performance and small

element size (microns).[70, 72] CMOS wafers are maximum 6-inches in size which poses

challenges for large area manufacturing (with high yield rates), but small area prototypes

have been manufactured and new applications are being developed. [73, 74, 75]

In this thesis, we aim to take advantage of recent advancements of low readout noise

and small element size x-ray sensor technology (such as CMOS) to improve x-ray detector

performance.

1.4.2 Detector performance metrics

X-ray detector performance is commonly characterized in terms of Fourier-based met-

rics that are spatial-frequency dependent.[76] Signal transfer is quantified in terms of the

modulation transfer function (MTF) that describes the change in amplitude of a sinu-

soidal input to a system output. Noise is quantified by the Wiener noise power spectrum

(NPS) which is a spectral-decomposition of the variance. It can be intuitively useful to
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think of noise “transfer” describing the change in amplitude variations of a sinusoidal in-

put to a system output. Similarly, SNR “transfer” is quantified by the detective quantum

efficiency (DQE) as illustrated in Figure 1.10.

Fourier-based metrics of digital systems assume that a system is linear and shift-

invariant (LSI) and that noise processes are wide-sense stationary (WSS).[65] A system

that satisfies LSI conditions has an output that is proportional to the input and the

same impulse-response function regardless of image position. Noise in an imaging system

that is WSS has mean, auto-covariance and second-order statistics that are stationary in

image space. These theoretical model properties are useful tools for quantifying theoret-

ical detector performance and understanding experimental measurements, even if these

assumptions are not always true.[77]

The point-spread function (PSF) describes the 2D response of a system in the spatial

domain. It is the output function of a LSI system when the input is an impulse function

(δ-function). For a 1D analysis response of the system, the line-spread function (LSF)

describes the response of the system to a “line” of δ-functions normalized to unity.[65]

The LSF in one direction averages out the details of the detector response in the orthog-

onal direction. In the frequency domain, the 1D MTF is the magnitude of the Fourier

transform of the LSF. By definition since the LSF has unity area, the zero-frequency

MTF value is unity. The Wiener NPS of a WSS random variable (fluctuations in pixel

about its mean) is the Fourier transform of the autocovariance function of the random

variable. Therefore, according to the Wiener-Khinchin theorem, the NPS and autoco-

variance function are Fourier pairs. A normalized NPS (NNPS) can be defined as the

NPS normalized to the mean number of quanta incident on the detector.

The DQE can be measured and modeled based on the MTF, T(u), the NNPS, W(n)(u),

and is given by,

21



Signal transfer

Noise

SNR ”transfer”

Figure 1.10: An illustration of signal, noise and SNR in an x-ray detector as quantified
by the T(u) (modulation transfer function), W(u) (Wiener noise power spectrum) and
DQE(u) (detective quantum efficiency). The quotes in SNR “transfer” are used because
this is a transfer only for a special case of uncorrelated Poisson input x-ray quanta.
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DQE(u) = |T(u)|2

W(n)(u) .

The International Electrotechnical Commission (IEC) has standardized techniques for

MTF, NPS and DQE measurement of x-ray detectors.[78, 79]

1.4.3 Modeling x-ray detector design

Models of x-ray detector designs are useful for predicting theoretical performance

metrics (MTF, NPS and DQE) for complex imaging systems. While models usually do

not perfectly describe real detectors, they provide a deep and intuitive understanding

of overall performance and limiting cases that may be of interest. These models are

useful tools for imaging physicists because they allow for optimization of x-ray detector

parameters to achieve the maximum possible performance.

a. Elementary processes

At the most fundamental level, all quantum-based imaging systems (not just x-rays) deal

with the discrete nature of quanta. This can be described theoretically using stochas-

tic point-process theory.[80] However, these processes can quickly become complicated

even for simple imaging systems. Fortunately, a useful approximation can be taken by

assuming a system has LSI response under conditions of WSS noise properties.[76, 81]

Furthermore, it has been shown that imaging systems can be broken-down to a lin-

ear cascade of elementary processes that describe signal and noise transfer with simple

expressions.[80, 82]

Elementary processes used to describe point-processes and physics in x-ray detectors

are: quantum gain, quantum selection, quantum scatter, deterministic blur, sampling

and additive noise.[80, 83]
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1. Quantum gain describes the process of converting each input quanta into a random

number of secondary quanta at the same location, resulting in a gain from mean

input number quanta to output.[84] Random variable g̃ describes the process with

mean ḡ and variance σ2
ḡ . An example of this process is conversion deposited x-ray

energy into secondary quanta (optical light photons or electron/hole pairs) in the

detector converter layer.

2. Quantum selection describes the process of randomly selecting whether each input

quantum contributes (or not) to the output quanta distribution with probability

β. This is a special case of quantum gain when the gain value is either 0 or 1, with

mean value β. An example of this process is the selection of secondary quanta that

interact in the sensor array.

3. Quantum scatter describes the stochastic process of relocating an input quanta

from its initial location to its output location.[85] The relocation process is char-

acterized by a normalized scatter point-spread function, s(x), as a redistribution

of probabilities represented by the operator ∗s.[86] The Fourier transform of s(x)

is given by Ts(u), describing the quantum scatter transfer function. Examples of

this process include relocation of x-rays after scatter and relocation of secondary

quanta from their point of release to interaction in the sensor array.

4. Deterministic blur describes image blur that can be expressed as a convolution, ∗,

of the input with a point-spread function. The input can be a quantum distribution

or continuous function, but the output can only be a continuous signal. Examples

of this process include spatial integration of interacting quanta in a sensor array.

5. Sampling describes the process of selecting discrete values at discrete locations of

an input continuous signal. An example of this process includes obtaining discrete

output signals, that represent a digital image, from each detector element from a

sensor array. In imaging, where sampling occurs at fixed spacings apart, sampling
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Process Mean
signal

transfer

Noise transfer

Quantum gain
g̃, ḡ, σ2

ḡ

q̄out = ḡq̄in Wout(u) = ḡ2Win(u) + σ2
ḡ q̄in

Quantum selection
β

q̄out = βq̄in Wout(u) = β2 [Win(u)− q̄in] + βq̄in

Quantum scatter
s(x), T2

s (u)
q̄out = q̄in Wout(u) = [Win(u)− q̄in] |Ts(u)|2 + q̄in

Deterministic blur
b(x), T2

b(u)
q̄out = q̄in Wout(u) = Win(u) |Tb(u)|2

Sampling
at spacings xa

q̄out = 1
xa
q̄in Wout(u) = 1

xa
Win(u) + 1

xa

∑∞
j=1 Win(u± j

xa
)

Additive noise
ñ(x), σ2

ñ

q̄out = q̄in Wout(u) = Win(u) + σ2
ñ

Table 1.2: Summary of mean signal and noise transfer through each elementary process.

is often described as the input multiplied by a train of Dirac-delta functions equally

spaced apart.

6. Additive noise describes the process of additional noise added to an input. An

example of this process includes read-out noise during the discretization of the

output signal, such as in sampling.

Equations describing transfer of signal and noise through each process have been devel-

oped previously using point-process theory and are summarized in Table 1.2 in terms of

the average number of quanta q̄ and Wiener noise power spectrum W(u).[87]

Elementary processes have been used to describe signal and noise transfer through

various systems. An important complex process for x-ray imaging is the interaction of x-

rays in a detector’s converter layer that deposits energy and liberates quanta. A cascade

of processes can be used to model x-ray interactions.

b. Generalized x-ray interaction model

A generalized “simple-atom” model having only one atomic transition (K edge) can be

used to describe photoelectric, coherent and incoherent interactions.[88, 89] The model
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consists of three paths: 1) describes generation of secondary quanta when no emit-

ted/scattered photon is released, resulting in all energy deposited locally; 2) describes

the case when emitted/scattered photons are released but they are absorbed locally too;

and 3) describes the case when emitted/scattered photons are reabsorbed at a different

location from the initial interaction location. Each path is a linear cascade of simple

processes and the sum of all three paths in parallel is considered a parallel process.[82]

The generalized x-ray interaction model utilizing parallel-cascades and the simple-

atom model has been shown to describe MTF and DQE, including effects from x-

ray reabsorption and achieve agreement within 2% with more complex Monte Carlo

models.[89, 83]

1.5 Conventional x-ray detector design

In addition to understanding the elementary processes as described in the previous

section, it is often necessary to determine signal and noise transfer through a combination

of processes. X-ray detector performance in terms of MTF, NPS and DQE can be

accurately predicted by cascaded system analysis.

1.5.1 Cascaded system analysis

An x-ray detector is modeled as a cascade of six linear stages, as illustrated in Fig-

ure 1.11. The input is a uniform distribution of x-ray quanta represented as q̃0(x). Stage

1 is a quantum selection elementary process of x-ray quanta that will undergo a given

interaction type. Stage 2 is a generalized x-ray interaction process for each interaction

type that results in the total liberated secondary quanta distribution q̃r(x). Stage 3 is a

quantum scattering elementary process of secondary quanta being relocated from point

of liberation to point of interaction. Stage 4 is a quantum selection elementary process

of secondary quanta interacting in the sensor array resulting in the interacting secondary
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1. Quantum
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3. Quantum

scatter

4. Quantum
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6. Additive noise
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Figure 1.11: CSA model of a conventional detector design. Incident x-ray distribution
q̃o(x) undergoes: (1) quantum selection in the converter layer, (2) x-ray interactions, (3)
quantum scatter, (4) quantum selection in the sensor array, (5) deterministic blur by the
sensor aparture, and (6) additive noise and sampling.

quanta distribution q̃s(x). Stage 5 is a deterministic blur elementary process of spatial

integration of interacting quanta by sensor elements resulting in continuous signal d̃a(x).

Stage 6 is a combination of sampling and additive noise elementary processes resulting

in an output of discrete values d̃†a(x).

1.5.2 Causes of DQE loss

The DQE of an x-ray detector can be reduced by lack of initial interaction quantum

efficiency, x-ray reabsorption, converter blur and secondary quantum sinks.[90] It is im-

portant to have high DQE across all spatial-frequencies that pertain to a certain imaging

task. Reasons for DQE loss are shown in Figure 1.12 that include non-unity quantum

efficiency, Swank noise,[91, 92] x-ray reabsorption[88] converter blur,[92, 87] secondary

quantum sinks[7] and noise aliasing.[93] Cascaded systems can be used to model the ef-

fects of each factor (solid line) and show good agreement with experiment (data points).
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Figure 1.12: DQE loss caused by different factors showing the compounding effects with
each curve. At high frequencies, the primary cause loss is noise aliasing for a high
resolution detector. Theoretical DQE curves (solid line) were modeled using CSA having
good agreement with experiment (data points) for a clinical mammography detector.
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1.5.3 Methods of improving performance

New x-ray detector designs have been developed to overcome some limitations of

conventional detectors.[94] For example, a high gain avalanche rushing photoconductor

(HARP) has been developed for low-dose x-ray imaging when a conventional detector

might not produce enough secondary quanta and have quantum sinks.[95] Another exam-

ple of a new x-ray detector design is a pixelated (or partially pixelated) scintillator which

can improve MTF at high-frequencies but at the expense of reduced DQE.[96] These

designs provide improvement by addressing issues such as secondary quantum sinks or

MTF loss at high-frequencies. However, there is still no solution for noise aliasing which

is the main cause of DQE loss at high frequencies with a high resolution converter layer.

Previous methods of reducing noise aliasing were studied when selenium was first

being developed as a converter layer for digital x-ray imaging.[97] Some of these methods

removed aliasing by attenuating frequencies below the image cut-off frequency using

a post-processing filtering or adding an insulating layer between a-Se and the sensor

array.[98, 99, 100] Although these methods may reduce aliasing in an image, they achieve

this by attenuating both signal and noise that does not result in improved DQE. In

addition, these methods reduce presampling MTF below the image cut-off frequency

which is typically undesirable.

1.6 Aliasing

In digital imaging, a continuous function (representing the object being imaged) is

evaluated at uniform spacings as shown in Figure 1.13. Nyquist showed that the maxi-

mum frequency in a discrete signal with spacings a is 1/2a − this is known as the Nyquist

cut-off frequency uc = 1/2a.[101] The Fourier transform of the presampling signal d̃a is

given by D̃a and if it has frequencies above uc this will result in aliasing. The sampled

signal d̃†a will have frequency power above uc “folded” into lower frequencies as shown by
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−uc uc

−uc uc

Figure 1.13: A continuous signal d̃a that has frequencies D̃a past the image sampling
cut-off frequency uc will result in aliasing. The sampled signal d̃†a has frequencies D̃a†

that are a summation of the fundamental (solid line) and aliased frequencies (dashed
lines).

the dashed line in Figure 1.13 for D̃a† . We classify aliasing into two types: signal and

noise aliasing.

Signal aliasing may result in image artifacts and degradation because it misrepresents

the object being imaged.[102] Since signal aliasing is not linear or shift-invariant, it is not

included in MTF calculations or modeling.[65] To overcome this issue, the presampling

MTF which does not include aliasing is used to quantify system signal transfer. However,

we are careful when describing performance of digital systems because there could be

aliasing present.

Noise aliasing occurs when noise components are folded into image frequencies. Noise

aliasing can be modeled with CSA for noise properties that are wide-sense cyclo-stationary

(WSCS).[65] Cyclo-stationary processes exhibit periodic behaviour but have statistical

properties that are invariant to shifts of any multiple of that period. Stationary noise

properties are often satisfied in imaging tasks of low-contrast features. Noise aliasing has
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the greatest impact on frequencies near the cut-off frequency and results in degradation

of low-contrast fine-detail features.[93] For high-resolution imagers, where resolution is

limited by pixel size and not converter blur, quantum noise is uncorrelated and noise

aliasing has a large effect on DQE at high-frequencies.

1.7 Thesis overview

1.7.1 Research problem

While much effort has been invested in improving DQE of x-ray detectors, DQE

values at high-frequencies are still much lower than at low-frequencies. We have identified

that noise aliasing reduces high-frequency DQE by as much as 60% when using a high-

resolution converter layer and a conventional detector design. This indicates that low

DQE values at high-frequencies are a design limitation of high-resolution conventional

detectors.

These issues lead to the following research questions:

1. Can we design a new x-ray detector approach that eliminates (signal and noise)

aliasing and results in increased high-frequency DQE?

2. How will x-ray detector physics affect the performance of this new x-ray detector,

and how will different detector conditions affect DQE improvement?

3. Can we implement the new detector design on a small-area prototype and show

MTF and DQE improvements with image pixels similar in size to mammography.

These questions are important because once answered we will know if we can overcome

a current limitation of conventional designs, making it possible to achieve a “perfect”

detector in terms of MTF and DQE. Answering these questions requires a thorough un-

derstanding of image formation in x-ray detectors and how detector design modifications

may affect detector performance and x-ray image quality.
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1.7.2 Research hypothesis

The overarching hypothesis of this thesis is that image SNR can be improved through

MTF and DQE at high-frequency using a new detector design that has a sensor array

with physical elements much smaller than the desired image pixel size. We refer to

this new design as apodized-aperture pixel (AAP) because of the apodization in the

frequency response. An anti-aliasing filter can be applied to the “over-sampled” sensor

output to eliminate aliasing and an image can be created by resampling to synthesize

desired pixel size. This approach takes advantage of new technology by using very small

sensor elements (7.8 µm in our lab prototype) without the associated large image files

(one 24×30 cm mammography image would be 2.3 GB) where such file sizes would be

too large to handle and display with a busy conventional PACS system, or where there

may be negligible diagnostic value gained from higher resolution.

1.7.3 Research objectives

The objectives of this thesis are:

1. Design an x-ray detector that uses smaller element size and develop a method to

synthesize pixels which suppress aliasing for improved MTF and DQE at high-

frequencies.

2. Determine the impact of x-ray detector physics on the new x-ray detector design.

3. Demonstrate implementation of the AAP design using a small-area prototype and

show improvements in fine-feature visualization.

4. Determine optimum AAP anti-aliasing filter shape that reduces artifacts while

maintaining AAP benefit in MTF and DQE.
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1.7.4 Outline

The goal of this thesis is addressed in a series of 4 manuscripts (Chapter 2 to 5),

where each chapter corresponds to a specific thesis objective.

Chapter 2: MTF and DQE Enhancements using an apodized-aperture pixel

(AAP) x-ray detector design

While DQE values at low frequencies can be as high as 0.8 for high-performing detectors,

high-frequency DQE values remain much lower and therein lies the most potential for

improvement. Current high-performing x-ray detectors with high-resolution converter

layers have reduced DQE values by 60% due to noise aliasing. We propose developing a

new x-ray detector design, called apodized-aperture pixel (AAP), that eliminates noise

aliasing by using sensor elements smaller than desired pixel size.

Chapter 2 describes the AAP approach using a simple cascaded model of an x-ray

detector with an ideal converter. MTF and DQE comparisons are made between conven-

tional and AAP designs using proof-of-concept experiments. It is shown that the AAP

approach preserves the MTF of the small sensor elements and attenuates frequencies

above the image sampling cut-off frequency. This has the double benefit of improving

the MTF while reducing both signal and noise aliasing, resulting in a DQE increase at

high spatial frequencies.

[This chapter was published in Medical Physics: Tomi F. Nano, Terenz Escartin,

Elina Ismailova, Jan Linström, Karim K. Karim, Ho Kyung Kim and Ian A. Cun-

ningham, “MTF and DQE enhancements with an apodized-aperture pixel x-ray detector

design”, Medical Physics, 44(9), 2017]

Chapter 3: Impact of x-ray reabsorption and converter blur MTF and DQE

improvements using an apodized-aperture pixel (AAP) x-ray detector design

Chapter 2 showed a proof-of-concept demonstration of the AAP design with improvement
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high-frequency MTF and DQE, and image SNR of fine detail using the same patient ex-

posure. However, analysis of the AAP approach was done using an ideal detector model

and therefore did not consider x-ray physics in a general converter layer. We devel-

oped a cascaded system analysis using a simple-atom model of x-ray interactions that

includes effects of stochastic energy-deposition, x-ray reabsorption, quantum scattering

and quantum selection in the detector converter layer.

Chapter 3 describes the impact of x-ray physics on MTF and DQE using cascaded-

systems analysis (CSA) on conventional and AAP x-ray detector designs. X-ray re-

absorption and converter blur were identified as important factors to consider because

they may affect aliasing, and it is shown that reabsorption has negligible effect on the

AAP whereas converter blur reduces the AAP benefit depending on the amount of blur.

Therefore, the AAP design should be implemented with a high-resolution converter.

This chapter was submitted to Physics in Medicine and Biology: Tomi F. Nano,

Karim S. Karim and Ian A. Cunningham, “Impact of x-ray reabsorption and converter

blur MTF and DQE improvements using an apodized-aperture pixel (AAP) x-ray detector

design”.

Chapter 4: Performance evaluation of a Se/CMOS prototype x-ray detec-

tor with the apodized-aperture x-ray detector design

Chapter 3 investigated the x-ray physics effects on the AAP design and showed that

a high-resolution converter layer with little blur provides the most improvement with the

AAP approach, such as a high-resolution converter layer like selenium deposited directly

on a complementary metal-oxide semiconductor (CMOS) sensor. We implemented the

AAP design on a small-area prototype and developed a cascaded system analysis using

a simple-atom model of x-ray interactions that includes effects of stochastic energy-

deposition, x-ray reabsorption, quantum scattering and quantum selection in the detector

converter layer.
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Chapter 4 describes implementation of the AAP approach on a Se/CMOS prototype

with 7.8 µm element size and compare AAP and conventional (binned) images with

47 µm pixel size. It is shown that the AAP design has 1.5× greater MTF near the image

cut-off frequency (uc = 10.6 cyc/mm) than conventional design and 2.5× greater DQE.

In addition, the AAP approach removes signal aliasing that causes partial volume effects

that cause inconsistent visibility of small structures (such as breast calcifications).

This chapter is being submitted to Journal of Medical Imaging: Tomi F. Nano, Chris

C. Scott, Yunzhe Li, Celon Con, Jan Linström, Karim K. Karim and Ian A. Cunning-

ham, “An x-ray detector prototype using Se/CMOS and the apodized-aperture pixel (AAP)

design to reduce aliasing”.

Chapter 5: Anti-aliasing filter with minimal Gibbs ringing using an apodized-

aperture pixel (AAP) x-ray detector design

Chapter 4 investigated performance of the AAP approach on a Se/CMOS prototype

and showed that the AAP design has 1.5× greater MTF near the image cut-off fre-

quency (uc = 10.6 cyc/mm) than conventional design and 2.5× greater DQE. Addition-

ally, inconsistent visualization of specs in mammography phantoms is eliminated with

the AAP approach by eliminating signal aliasing that cause partial volume artifacts.

However, elimination of signal aliasing requires application of a low-pass filter in the

spatial-frequency domain that may cause Gibbs ringing (an undesired image artifact) in

the spatial domain. We investigated the impact of Gibbs ringing on image quality with

the AAP design using an anti-aliasing filter that is implemented directly on the detector

and improvements on MTF and DQE.

Chapter 5 describes how AAP anti-aliasing filter shape affects Gibbs ringing and

benefits with the AAP design. We define conditions when Gibbs ringing is visible and

describe AAP filter shapes that reduce Gibbs ringing.

This chapter is in preparation to be submitted to Physics in Medicine and Biology:
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Tomi F. Nano and Ian A. Cunningham, “Anti-aliasing filter with minimal Gibbs ringing

using an apodized-aperture pixel (AAP) x-ray detector design”.

Chapter 6: Conclusions and future work

An overview and summary of conclusions and important findings of Chapter 2-5 is pro-

vided. Study limitations are discussed and preliminary direction of future work as shown.

Future work 1: Observer performance of AAP vs conventional image frequencies

Future work 2: Ultrahigh-resolution imaging of microcalcifications in mammography

Future work 3: Impact of the AAP design tomosynthesis and computed tomography
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Chapter 2

MTF and DQE Enhancement using

an Apodized-Aperture X-Ray

Detector Design

We describe a novel apodized-aperture pixel (AAP) design which makes a separation of

physical sensor elements from image pixels by using very small sensor elements (e.g. 0.010-

0.025 mm) to synthesize desired larger image pixels (e.g. 0.1-0.2 mm). It is shown that

the AAP approach preserves the MTF of the small sensor elements and attenuates fre-

quencies above the image sampling cut-off frequency. This has the double benefit of

improving the MTF while reducing both signal and noise aliasing, resulting in an in-

crease of the DQE at high spatial frequencies.

This chapter is based on a manuscript published in Medical Physics: TF Nano, T Es-

cartin, E Ismailova, KS Karim, J Lindstrom, HK Kim, and IA Cunningham, Medical

Physics, 44(9), 2017. Permission to reproduce this article is included in the Appendix.
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2.1 Introduction

The need to produce high-quality medical images while minimizing risks associated

with radiation exposure [1, 2] is a key motivator for the development of new x-ray detec-

tor technologies. Two critical detector-performance metrics are the modulation transfer

function (MTF) and detective quantum efficiency (DQE), expressed as a function of spa-

tial frequency. The MTF describes spatial resolution and the appearance of high contrast

and high signal-to-noise ratio (SNR) structures. The DQE describes image SNR for a

given number of x-ray quanta incident on the detector with an ideal photon-counting

detector having unity DQE.[3, 4, 5]

Not all systems are able to produce equivalent image quality and SNR for a given expo-

sure, due to differences in DQE.[6] For example, DQE can be reduced by: i) reabsorption

and escape of characteristic and scatter photons from photoelectric and Compton interac-

tions; ii) inadequate number of secondary quanta collected (optical photons in a phosphor

or charges in a photoconductor); iii) scatter of secondary quanta (optical scatter or charge

migration); iv) noise aliasing; and v) electronic read-out noise.[7, 8, 9, 10, 11, 12] When

read-out noise is sufficiently small, noise aliasing is the primary cause of DQE degradation

relative to the zero-frequency value in a-Se detectors.[13, 8, 14]

Several investigators have studied methods of reducing signal and noise aliasing. For

example, aliasing artifacts can be minimized by preferentially suppressing frequencies

where aliasing may be expected. The “effective presampling filter” described by Ji et

al.[15] is a linear filter that suppresses both signal and noise, resulting in reduced aliasing

artifacts but no improvement in the DQE. Rowlands described a method of charge sharing

between elements in a sensor array to reduce aliasing.[16, 17] This approach reduced the

MTF slightly, but increased the DQE at frequencies where noise is reduced more than

the squared MTF.

We describe a method of suppressing both signal and noise aliasing while improving

the MTF and DQE at high frequencies.[18, 19] The method requires a detector consisting
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Figure 2.1: Input to the cascaded model is q̃o(x), a random point process consisting of
δ-functions representing x-ray quanta incident on the detector. The output is d̃†(x), a
uniformly-spaced sequence of δ-functions scaled by associated discrete image pixel values.

of an array of sensor elements that are smaller than the desired image pixel size. This

provides an “over-sampled” image signal that is used to synthesize image pixels while

maximizing the MTF and suppressing aliasing. The goal is to develop an approach of

improving the DQE by taking advantage of new technologies (e.g. CMOS) that can be

used to manufacture sensor elements so small they may have no clinical importance as

image pixels directly, or result in image files too large for modern PACS and display

systems. The result is a detector with an apodized aperture pixel (AAP) design in which

pixels have a weighted and overlapping aperture response rather than conventional non-

overlapping pixel apertures. The converter layer must also be very high resolution, such

as amorphous selenium deposited on a CMOS sensor array.[20, 21, 22] In this article

we present a theoretical description of the AAP design and describe improvements in

detector performance in terms of the MTF and DQE. Results are validated with a simple

Monte Carlo simulation and experimental proof-of-concept studies.
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2.2 Theory

The SNR performance of the AAP design is described using a cascaded systems

analysis (CSA) that quantifies signal and noise properties of quantum-based imaging

systems using a linear-systems approach.[5, 14, 12] It describes propagation of image

signal and noise in the spatial frequency domain through a cascade of simple physical

processes.

Input to the CSA model is a random point process[23] describing a spatial distribution

of x-ray quanta q̃o(x) incident on the detector as illustrated in Fig. 2.1, consisting of the

superposition of a Dirac δ-function for each incident x-ray photon. The overhead tilde (˜)

is used to indicate a random variable (RV) or function, and overhead bar ( ¯ ) indicates

an expectation value. We use one-dimensional illustrations for simplicity but results are

easily generalized to two-dimensional space. The model output is d̃†(x), a sequence of

uniformly-spaced δ-functions scaled by associated discrete numerical values representing

image pixel data where the superscript † is used to indicate a sampled function.

Cascaded models of both a simple conventional detector and an AAP detector are

compared in Fig. 2.2. For each, the three columns represent: i) image signal in the

spatial domain; ii) image signal in the spatial frequency domain (magnitude only); and

iii) Wiener noise power spectrum. The letter q is used to indicate a random point process

describing a spatial distribution of quanta (δ functions), d a detector numerical value,

and n an additive detector readout noise term. In the frequency domain, dashed lines

indicate aliased terms whereas solid lines indicate fundamental components (in the 2nd

column) and sum of harmonics (in the 3rd column).

The input to step 1 is q̃o(x) representing x-ray quanta incident on the detector:[24]

q̃o(x) =
Ño∑
n=1

δ(x− x̃n), (2.1)

where x̃n is a vector RV describing the coordinate of the nth of Ño photons. In practice,
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Wf (u) = Wǫñ†(u)|F(u)|2

WC†(u) = k2q̄o +
1
aσ

2
a

×|F(u)|2

∗ 1
a2

∑
j δ(u− j

a
)

1) 1)

2) 2)

3) 3)

3.1)

3.2)

Conventional Detetor AAP Detetor

Figure 2.2: Graphical illustration of the CSA model comparing signal and noise transfer
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spatial domain signal, Fourier domain signal (magnitude only plotted) and Wiener NPS.
The input at the top consists of a random spatial distribution of x-ray quanta interacting
in each detector. The detector output at the bottom consists of a sequence of δ-functions
scaled by discrete pixel values representing the final digital image. Dashed lines indicate
aliased contributions.
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x̃n is not uniformly distributed to reflect non-uniform x-ray transmission through the

patient, but for Fourier metrics of noise we must assume wide-sense stationary noise

processes, requiring that x̃n be uniformly distributed over an infinite detector that we

represent as having width L in the limit L→∞ and N̄o = q̄oL.

The Fourier transform (FT) of q̃o(x) is Q̃o(u), the superposition of the FT of many

shifted δ-functions. Application of the Fourier shift theorem gives:

Q̃o(u) = F {q̃o(x)} =
Ño∑
n=1

e−i2πx̃nu (2.2)

and |Q̃o(u)| = Ño which is independent of frequency. The Wiener NPS of a Poisson

random distribution[25], q̃o(x), is therefore Wqo(u) = q̄o. It is assumed that all incident

x-ray quanta interact (unity quantum efficiency) in an ideal converter layer such that

each sensor element is an ideal energy-integrating sensor.

2.2.1 Conventional Detector

As illustrated in step 1) of Fig. 2.2, the number of photons interacting in the ith

element of width a of a conventional detector, scaled by constant k representing detector

gain, is given by:

d̃a,i = d̃a(x)
∣∣∣
x=ia

= kq̃o(x) ∗Π
(
x

a

)∣∣∣∣
x=ia

(2.3)

where ∗ represents a convolution operation and d̃a(x) is the detector presampling signal

describing the sensor signal that would be obtained for an element centered at x. The

FT of d̃a(x) is given by:

F
{

d̃a(x)
}

= D̃a(u) = kaQ̃o(u)sinc(au) (2.4)
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where sinc(au) ≡ sin(πau)/πau and the Wiener NPS by

Wa(u) = k2a2q̄osinc2(au). (2.5)

The process of evaluating d̃a(x) to obtain the set of discrete signal values from all

elements is illustrated in step 2):

d̃†a(x) = d̃a(x)
∞∑

i=−∞
δ(x− ia) =

∞∑
i=−∞

d̃a,iδ(x− ia), (2.6)

resulting in a series of δ-functions scaled by values d̃a,i where the δ-functions give posi-

tional significance to the discrete values. The FT of d̃†a(x) is given by

D̃a†(u) = kQ̃o(u)sinc(au) +
∞∑
j=1

kQ̃o(u±
j

a
)sinc(au± j). (2.7)

The Wiener NPS is determined by noting that d̃†a(x) is a wide-sense cyclostationary

random process since the mean and autocovariance are stationary with shifts of ia.[26, 9]

Thus, while signal aliasing is described as a convolution of D̃a(u) with 1
a

∑
j δ(u − j

a
),

noise aliasing is described as a convolution of Wda(u) with 1
a2
∑
j δ(u− j

a
), giving:

Wa†(u) = 1
a2 Wa(u) + 1

a2

∞∑
j=1

Wa(u±
j

a
) (2.8)

= k2q̄o

sinc2(au) +
∞∑
j=1

sinc2(au± j)
 (2.9)

= k2q̄o. (2.10)
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The last result comes from the property that an infinite sequence of sinc2(au) functions,

shifted by integer multiples of a−1, sum to unity.[13]

Detector electronic additive readout noise is represented as the addition of ñ†a(x), a

sequence of δ-functions scaled by a discrete zero-mean Gaussian RV ña,i having variance

σ2
a:

ñ†a(x) =
∞∑

i=−∞
ña,iδ(x− ia). (2.11)

With additive noise, the conventional detector signal is shown at step 3):

d̃†C(x) = d̃†a(x) + ñ†a(x) (2.12)

having NPS given by

WC†(u) = k2q̄o + 1
a
σ2
a. (2.13)

It is convenient to express the NPS as a normalized NPS, W(n)
C† (u) ≡WC†(u)q̄o/

〈
d̃†C(x)

〉2
,

giving:

W(n)
C† (u) = 1 + σ2

a

k2aq̄o
, (2.14)

where the average of scaled δ-functions with spacing a is
〈
d̃†a(x)

〉
= 1

a
d̄a. This form

is helpful for understanding performance characteristics since an ideal detector in this

model has W(n)
C† (u) = 1.

The presampling MTF is determined as the ratio of the output to input mean signal

in the spatial frequency domain, normalized to unity at u = 0:

MTFC(u) =

∣∣∣D̄a(u)
∣∣∣

D̄a(0)
= |sinc(au)| (2.15)

and DQE by
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DQEC(u) = MTF2
C(u)

W(n)
C† (u)

= sinc2(au)
1 + σ2

a

k2aq̄o

. (2.16)

2.2.2 AAP Detector

The AAP detector is represented as an array of sensor elements of size ε, where ε

is smaller than a. With this difference, the cascaded model of the AAP detector in

Fig. 2.2 is similar to that of the conventional detector up to and including step 3). The

synthesis of image pixel values from sensor data is expressed as a discrete convolution

and resampling operation, corresponding to a convolution integral in step 3.1) giving

d̃f(x) = d̃†εñ(x) ∗ f(x) where f(x) is the kernel of the presampling AAP filter, followed by

evaluation of the result at uniform spacings a in step 3.2). Similar to d̃a(x), d̃ε(x) and

d̃f(x) are presampling functions that are not physically accessible. The output from the

AAP detector is therefore given by [mm-1]:

d̃†A(x) =
[
d̃†εñ(x) ∗ f(x)

]
×

∞∑
i=−∞

δ(x− ia) (2.17)

and

D̃A†(u) = 1
a

D̃εñ†(u)F(u)

+ 1
a

∞∑
j=1

D̃εñ†(u±
j

a
)F(u± j

a
) (2.18)

where F(u) is the FT of f(x) and the NPS of d̃f(x) is given by [mm]:

Wf(u) =
[
k2q̄o + 1

ε
σ2
ε

]
× |F(u)|2 . (2.19)

The NPS of the AAP detector is [mm-1]:
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WA†(u) = 1
a2 Wf (u) + 1

a2

∞∑
j=1

Wf (u±
j

a
)

= 1
a2

[
k2q̄o + 1

ε
σ2
ε

]|F(u)|2 +
∞∑
j=1

∣∣∣∣F(u± j

a
)
∣∣∣∣2
 (2.20)

and the corresponding normalized NPS [unitless]:

W(n)
A† (u) = WA†(u)q̄o/

〈
d̃†A(x)

〉2
(2.21)

=
[
1 + σ2

ε

k2εq̄o

] |F(u)|2

F2(0) +
∞∑
j=1

∣∣∣F(u± j
a
)
∣∣∣2

F2(0)


where F(0) is the zero-frequency value of F(u) and F(0) , 0.

The MTF of the AAP detector is therefore given by:

MTFA(u) =

∣∣∣D̄ε(u)F(u)
∣∣∣

D̄ε(0)F(0)
= |F(u)|

F(0) |sinc(εu)| . (2.22)

The DQE is more subtle due to the combined effects of noise aliasing from sampling at

spacings of both a and ε:

DQEA(u) = MTF2
A(u)

W(n)
A† (u)

= |F(u)sinc(εu)|2[
1 + σ2

ε

k2εq̄o

] {
|F(u)|2 +∑∞

j=1

∣∣∣F(u± j
a
)
∣∣∣2}

= |sinc(εu)|2[
1 + σ2

ε

k2εq̄o

] {
1 +

∑∞
j=1|F(u± j

a
)|2

|F(u)|2

} . (2.23)

Inspection of Eq. (2.23) suggests that a good choice for F(u) is a low-pass filter that
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blocks all frequencies above the sampling cut-off frequency uc = 0.5/a. This ensures

image content at frequencies above u = uc (in samples with spacings ε) is not aliased

below the image sampling cut-off frequency uc, and the DQE simplifies to:

DQEA(u) = sinc2(εu)
1 + σ2

ε

k2εq̄o

. (2.24)

2.2.3 MTF and DQE Improvement

The presampling MTF, normalized NPS and DQE curves predicted by the CSA model

for conventional (binned) and AAP detectors (ideal converter-layer with unity quantum

efficiency, rectangular low-pass AAP filter, ε = 0.05 mm and a = 0.2 mm) having the

same pixel size are compared in Fig. 2.3. The conventional presampling MTF follows

the sinc(au) shape given by Eq. (2.15) while the AAP presampling MTF follows sinc(εu)

up to the cut-off frequency uc = 0.5/a and suppresses frequencies above uc as described

by Eq. (2.22). Thus, while the AAP method results in an MTF increase by the factor

sinc(εu)/sinc(au), giving a 53% increase at the cut-off frequency (regardless of converter-

layer blur), it also removes aliasing from the image if present.

Comparison of WC†(u) and WA†(u) at step 3) shows the AAP approach reduces noise

aliasing by suppressing frequencies 0.5/a < u < 0.5/ε. As illustrated in Fig. 2.3, the NPS

is independent of frequency for both conventional and AAP detectors when used with an

ideal (no blur) x-ray converter layer.

Equations (2.23) and (2.24) show the DQE is independent of AAP filter F(u) shape as

long as it describes a low-pass filter with cut-off frequency uc = 0.5/a and readout noise is

negligible. Under these conditions, the DQE-improvement factor is sinc2(εu)/sinc2(au),

equal to a 2.3× increase at the image sampling cut-off frequency. Also, comparison

of Eqs. (2.16) and (2.24) shows the AAP approach will generally be less tolerant of
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Figure 2.3: Theoretical MTF, normalized NPS, and DQE, comparing an AAP detector
with a conventional detector having the same pixel size, assuming negligible read-out
noise and ideal x-ray converter layer with unity quantum efficiency and no spatial blur.
The normalized NPS of conventional and AAP detectors overlap.
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readout noise, requiring σ2
ε = ε

a
σ2
a for the same effect on the DQE, due to the smaller

sensor size. In two-dimensions, the read-out noise requirement scales with the square

of the element-to-pixel size ratio, σ2
ε = ( ε

a
)2σ2

a. Achieving lower readout noise may not

be trivial. Reducing sensor area may decrease the required storage capacitance in each

element, which may reduce noise, but the corresponding reduced signal size and increased

number of sensors on each dataline will place greater demands on the electronics. These

may be difficult to achieve with some technologies.

2.2.4 Simulated Sinusoidal Patterns

The visual impact of the expected MTF and DQE improvements is illustrated with

a simple simulation comparing conventional with AAP images. An oversampled image

(representing micro-elements with ε = 0.05 mm) was created to synthesize both conven-

tional (4 × 4 binned, a = 0.2 mm) and AAP (a = 0.2 mm) images assuming no read-out

noise. The AAP approach was implemented in the frequency domain using a low-pass

filter with unity height up to the sampling cut-off frequency uc = 0.5/a. Other AAP

images (open field, edge, star-pattern and rat leg) where synthesized similarly differing

only in pixel size.

Each image has 15 two-dimensional sinusoidal patterns in three rows of differing

contrast and five columns of differing spatial frequency (1.0, 1.5, 2.0, 2.4 and 3.0 cy-

cles/mm) chosen to be below, just below, and above the sampling cut-off frequency of

2.5 cycles/mm. Patterns in the rows from top to bottom have amplitudes of 60, 100, and

140 pixel values. Gaussian noise (standard deviation of 100) was added to each pixel in

the oversampled image to simulate quantum-noise.
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2.3 Materials and Methods

2.3.1 Experimental Star-Pattern and Biological Images

Proof-of-concept images for the AAP design were obtained using a star-pattern (Tielung,

0.05 mm Pb thickness, 45 mm diameter, with 2◦ angled bars) and clinical mammography

system (Hologic Inc.) having a Se converter layer and 0.07 mm sensor elements. Both

conventional (4 × 4 binning) and AAP images were synthesized to create images with

a = 0.28 mm.

With a similar Hologic detector, an image of a rat leg perfused with a lanthanide-

based vascular contrast agent was acquired in accordance with the protocol (#2015-018)

approved by The University of Western Ontario Council on Animal Care. The raw image

was log-transformed and gray-scale inverted. Conventional and AAP images were synthe-

sized as described above. While this results in relatively low-resolution (0.28 mm pixel)

images, they are used to experimentally demonstrate the relative MTF improvement with

the AAP approach.

2.3.2 Experimental MTF and DQE

Experimental validation of the AAP theory was performed using both lab-based and

clinical imaging systems. The lab system consisted of a CMOS-based panel having

0.05 mm sensor elements (Xmaru, Rayence Co. Ltd., Seoul Korea) with a 0.5-mm CsI

converter layer. Conventional images were generated with 4×4 binning (0.2 mm pixels)

and AAP images were synthesized as described in section IID. The MTF and DQE were

determined using both conventional and AAP images with a detector exposure of 4 µGy

air KERMA and IEC RQA-5 spectrum (70 kV, 21.0 mm added Al, 6.4 mAs, 7.1 mm Al

HVL, 150 cm source-image distance) using a DQE-testing instrument (DQEPro, DQE

Instruments Inc., London Canada) following IEC 62220-1 guidelines [27]. Additive read-

out noise was verified to be negligible relative to x-ray quantum noise.
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The same MTF and DQE comparison was made using a Hologic detector with a Se

converter layer. Images having 0.28 mm pixels were synthesized for both AAP and 4 × 4

binning methods as described above. The MTF and DQE were measured using 90 µGy

air KERMA with an IEC W/Rh spectrum (28 kV, 2 mm added Al, 24 mAs, 0.75 mmAl

HVL, 65 cm source-image distance, no grid).

2.4 Results

2.4.1 Simulated Sinusoidal Patterns

The simulated images in Fig. 2.4 compare the visual appearance of conventional

(binned, upper) and AAP (lower) methods. The first observation is that noise in both

images is indistinguishable. This is expected as they each have a flat NPS and images

are shown with the same display windows. The conventional image shows decreasing

contrast with increasing frequency in the first four columns as expected, and the fifth

column shows a pattern that has been aliased to a lower frequency. In comparison, the

AAP image shows very little loss of contrast with frequency in the first four columns,

consistent with the expected flatter MTF, and the fifth-column pattern has been removed

completely as it contains only frequencies above the sampling cut-off frequency uc. This

observation gives confidence in the ability of the AAP method to suppress both signal

and noise frequencies above uc.

2.4.2 Experimental Star-Pattern and Biological Images

Star-pattern images in Fig. 2.5 show obvious difference between the conventional (left)

and AAP (right) images. The conventional image contains the distinct Moiré pattern

artifact due to interference effects from undersampled signals (aliasing) resulting in a

misrepresentation of the star-pattern with contrast reversal near the image sampling cut-

off frequency (near the circle). The AAP image shows improved contrast, particularly at
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Figure 2.4: Simulated sinusoidal pattern images with frequencies 1.0, 1.5, 2.0 2.4 and
3.0 cycles/mm illustrating the visual difference in conventional (upper) and AAP (lower)
images (ε = 0.05 mm, a = 0.2 mm, uc = 2.5 cycles/mm). Noise has a similar appearance
in conventional and AAP images. The conventional image shows decreasing contrast
with increasing frequency as expected in the first four columns and aliased pattern in the
fifth (which is above the sampling cut-off frequency). The AAP image shows less change
in contrast with increasing frequency in the first four columns and no (aliased) pattern in
the fifth. Images are sinc interpolated (4× oversampling) for display purposes and best
viewed on high-resolution display.
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Figure 2.5: Conventional (left) and AAP (right) images of a star-pattern acquired with
a clinical mammography Se detector. The image pixel size is 4x the detector element
size and the image sampling cut-off frequency is 1.8 cycles/mm (red circle). In the
conventional image there are aliasing artifacts (Moiré pattern) at high frequencies near
the center of the pattern. The AAP image shows suppression of the Moiré pattern and
increased contrast of the bar patterns at higher frequencies.

high frequencies, and removal of aliasing artifacts.

Original Image

✲

✫✪
✬✩

Conventional Image

✲

✫✪
✬✩

AAP Image

✲

✫✪
✬✩

Figure 2.6: Comparison of conventional and AAP images of a contrasted rat leg. The
original image (left) was acquired with a−Se detector and used to synthesize conven-
tional (middle) and AAP (right) images. The AAP image has sharper bone edges (white
arrow), finer detail of vasculature (white circle) and more accurately shows original image
features.
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The AAP image of the biological specimen in Fig. 2.6 shows sharper bone edges (white

arrow) and finer vasculature detail (white circle) than the conventional image. This is due

to improved high-frequency response with the AAP approach. The AAP image preserves

high-frequency content up to the cut-off frequency while the conventional image appears

blurred. Also, the AAP image has no visible ringing. Both conventional and AAP images

were sinc interpolated (4 x oversampling) to ensure all three images have the same number

of pixels in the publication to allow for direct comparison.

2.4.3 Experimental MTF and DQE

2.4.3.1 CMOS/CSI Detector

The experimental presampling MTF, normalized NPS, and DQE curves obtained

with the CMOS/CsI detector are shown in Fig. 2.7, comparing conventional (binned) and

AAP methods. This detector has extremely low readout noise. The measured normalized

readout NPS for both conventional and AAP methods was approximately 0.003 over all

frequencies which is considered negligible compared to the total NPS as shown. Optical

scatter in the CsI converter layer reduces spatial resolution and hence the measured

MTF decreases with frequency more quickly than the theoretical model of Eq. (2.15)

which does not include a converter. The AAP MTF shows a modest improvement only,

still consistent with the expected 53% increase, and the low-pass characteristic of the

AAP method as frequencies above uc = 0.5/a are suppressed. The CsI converter also

suppresses high-frequency noise, and hence there is less noise aliasing than predicted by

the theoretical model. As a consequence, while the DQE is still improved by a factor

of two (from 0.2 to 0.4) near the cut-off frequency, it is less than what is predicted by

Eq. 2.24.
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Figure 2.7: Presampling MTF, normalized NPS and DQE curves obtained with the
CMOS/CsI detector comparing conventional (binned) and AAP approaches. While these
results demonstrate an increase in high spatial frequency DQE, the improvement is not
as great as predicted by the CSA model due to resolution limitations of the CsI.
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Figure 2.8: Measured presampling MTF, normalized NPS, and DQE curves from an
a−Se detector in which 0.28 mm (a) pixels are synthesized from 0.07 mm (ε) sensors,
comparing conventional (binned) pixels of the same size with the AAP approach.
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Figure 2.9: Edge-response function (ERF) and line-spread function (LSF) measured with
a−Se detector comparing conventional and AAP designs. The AAP profiles show the
Gibbs ringing phenomenon due to sharp truncation of frequencies. Oscillations in both
AAP profiles have zero-crossings with exactly one pixel spacing apart (0.28 mm).

2.4.3.2 Se Detector

Results obtained with the Se detector are closer to the theoretical prediction as the

Se converter layer results in very little loss of spatial resolution [28]. Figure 2.8 shows

measured presampling MTF, normalized NPS, and DQE curves comparing conventional

(binned) and AAP methods using the Se detector. The conventional MTF is similar to

the theoretical curve of Eq. (2.15) and the AAP MTF is closer to Eq. (2.22) including the

low-pass cut-off frequency of uc = 0.5/a ≈ 1.8 cycles/mm. Readout noise is negligible

compared to the total image noise as shown and the NPS is relatively flat for both

conventional and AAP images. The DQE near uc is approximately doubled from 0.3 to

0.6, resulting in a DQE that is less dependent of frequency up to the sampling cutoff

frequency.

The AAP response in the spatial domain is shown in the edge-response function

(ERF), and its derivative the line-spread function (LSF), in Fig. 9 for both conventional

and AAP approaches. The AAP curves, particularly the LSF, shows Gibbs ringing due

to our use of a rectangular filter with sharp truncation in the frequency domain.
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2.5 Discussion

The approach described in this work is the first description of how high-frequency

DQE values can be increased by reducing spectral aliasing without simply suppressing

content at frequencies where aliasing may occur. Spectral aliasing can be the primary

cause of DQE degradation at high frequencies for Se-based detectors and for CsI-based

detectors at x-ray energies below the K-edge energies of Cs and I (∼33 keV). The AAP

method improves both the MTF and DQE, but may be less effective when other factors

such as additive detector noise, secondary quantum sinks[7] or scatter reabsorption[11]

are the main cause of SNR degradation. Spatial-resolution limitations of the converter

material explains the underwhelming improvement in DQE of the CMOS/CsI detector

shown here, and illustrates the need for very high resolution converter materials to make

this successful. For example, a Se/CMOS combination may be near optimal [20, 21, 22].

Also, the sharp low-pass filter used in this demonstration results in slight Gibbs ringing

around edges, as shown in the edge-response function and the star-pattern image. This

can likely be reduced with a less-abrupt filter cutoff, but maybe at the expense of a

reduced benefit on the MTF and DQE. Filters with a sharp-cutoff in the frequency domain

result in a detector impulse response that is not “local”, such as off-center oscillations

in the spatial domain as shown in the AAP line-spread function. This could potentially

result in visible ringing artifacts near sharp-edges, but it preserves image contrast and

improves visibility of features in noise-limited low-contrast regions.

Conventional and AAP approaches would have the same DQE if aliasing did not occur,

but images from conventional high-resolution converter layer detectors usually have noise

aliasing. Removing noise aliasing improves high-frequency DQE and provides greater

visibility of high-frequency features present in noise-limited low-contrast regions as shown

in Fig. 2.4. For images that are not noise-limited, modest contrast improvement is

expected from MTF improvement at high-frequencies with the AAP approach as observed

in Fig. 2.6. This proof-of-concept experiment demonstrates sharper edges and finer detail
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in AAP images, even though the image is contrast-limited so we only expect a 50%

improvement at high frequencies. Greater improvement in visibility of high-frequency

content in noise-limited regions is expected.

We view the AAP approach as having a role to play on detectors having substantial

computational ability and where sensor elements can be manufactured smaller than what

might be of practical value for clinical imaging. For example, the high-frequencies avail-

able with full-size detectors having 0.025 mm sensors (20 cycles/mm) may have no direct

clinical value, and the resulting file sizes (≈ 1 TByte) may be too large for practical

display, transmission and storage at present. The AAP method may provide an architec-

tural approach in which image pixels are separated from physical sensor elements. On

CMOS and other new detector designs with very small sensors this may be a way to

improve the DQE at frequencies of practical importance. The synthesis of larger pixel

values could take place in real time, directly on the detector, eliminating the need for

very high data-transfer bandwidths in the readout systems. As illustrated here, the AAP

approach may be useful for CMOS/CsI systems, but would likely have a greater impact

on CMOS/Se or related technologies having very high resolution converter layers that are

currently under development.[20, 22] Development of x-ray sensors with micro-element

sizes for clinical use requires a converter layer that achieves a desirable quantum detec-

tive efficiency without reducing spatial resolution. The low noise performance of CMOS

sensor arrays might best satisfy the read-out noise requirement for AAP implementation

due to reduced signal strength in each sensor and the need for multiple readouts per

image pixel.

2.6 Conclusion

A method is described in which high-frequency MTF and DQE performance of x-ray

detectors can be improved through the use of detectors with physical sensor elements
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that are smaller than the desired image pixels. It is shown theoretically that the method

works by preserving the superior aperture MTF of the smaller physical sensor elements

and reducing noise aliasing by implementing a low-pass filter that eliminates frequencies

above the image sampling cut-off frequency uc = 0.5/a where a is the image pixel size.

This has the additional benefit of removing signal aliasing from the image. The result

is a potential 53% increase in the MTF and more than a doubling of the DQE at the

sampling cut-off frequency when used with a high-resolution converter layer.
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Chapter 3

Impact of x-ray reabsorption and

converter blur on MTF and DQE

improvements using the

apodized-aperture pixel (AAP)

x-ray detector design

We investigate converter blur and x-ray reabsorption with the AAP x-ray detector de-

sign. A ceasium-iodide detector was used to measure DQE of synthesized conventional

and AAP images for cases with and without x-ray reabsorption and converter blur. It

is shown that reabsorption and converter blur do not effect MTF improvement with

the AAP design (1.5× greater MTF near the image cut-off frequency uc) whereas DQE

improvements depend on noise aliasing. Converter blur reduces noise aliasing with the

consequence of also reducing MTF, and therefore reduces the improvement with the AAP

design to 1-2.5× depending on the blur.

79



The contents of this chapter are submitted to the journal of Physics in Medicine and

Biology: TF Nano, KS Karim and IA Cunningham.

3.1 Introduction

The need to produce high-quality images using low radiation exposures motivates the

development of new detector designs that give the best possible image quality for a given

patient exposure. The detective quantum efficiency (DQE) describes image signal-to-

noise ratio (SNR) for a specified number of x-ray quanta incident on the detector,[1, 2] and

is a surrogate for the “dose efficiency” of a detector. High DQE is particularly important

in applications such as mammography screening programs where a large assumed-healthy

population is exposed to radiation and increased image SNR is known to improve cancer

detection rates.[3, 4]

Most detector designs use either a scintillator (eg. CsI or Gd2O2S) or photoconductor

(eg. Se) to convert x-ray energy into optical quanta or liberate charges, coupled to a

sensor array, with each sensor element corresponding to an image pixel. We recently

described an “apodized-aperture pixel” (AAP) design that uses very small sensor elements

to synthesize pixels of a desired size using a weighted combination of signals from these

“micro elements”.[5, 6, 7] With a sufficiently high resolution converter, this approach

preserves the broad spectral shape of the aperture modulation transfer function (MTF)

corresponding to the micro elements while eliminating signal and noise aliasing, resulting

in a ∼40% increase in MTF and more than doubling of DQE values at the image sampling

cut-off frequency.[5, 6, 7] This approach can be implemented using a sensor array such

as CMOS, which can have very low noise and small sensor elements, coupled to a high-

resolution converter layer such as selenium.[8, 9, 10] The AAP design takes advantage of

some benefits of using very small sensor elements (7.8 µm in our lab prototype) without

the associated large image files (one 24×30 cm mammography image would be 2.3 GB)
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Figure 3.1: Illustration of the simple-atom CSA model for conventional and AAP designs.
The model input q̃o is a random point distribution representing x-ray quanta incident on
the detector. Outputs d̃†C and d̃†A consist of uniformly-spaced δ-functions scaled by dis-
crete output signals from conventional and AAP detectors respectively. The distribution
of secondary quanta after reabsorption and converter blur is q̃s and ñ is readout noise in
the output signal.

where such file sizes would be too large to handle and display with a busy conventional

PACS system, or where there may be negligible diagnostic value gained from higher

resolution.

Our previous work[7] assumed an ideal x-ray detector where each element is an ideal

photon-counting sensor. That work is generalized here to accommodate the random pro-

cesses of energy deposition from photoelectric interactions, Compton scatter and coherent

scatter, including the resulting noise correlations and converter blur. We develop, and

experimentally validate, a cascaded systems analysis (CSA) of signal and noise transfer

to determine conditions for which the AAP design will improve the MTF and DQE.

3.2 Methods

3.2.1 CSA model of the AAP design with reabsorption and blur

A cascaded-systems analysis is used to characterize signal and noise transfer in the

conversion of incident x-ray quanta to secondary quanta liberated in a converter layer
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and collected in a sensor array. With reference to Fig. 3.1, the input q̃o(x) is a random

point distribution describing x-ray quanta incident on the detector, with each quantum

represented as a Dirac δ function:[11]

q̃o(x) =
Ñ∑
i=1

δ(x− x̃i), (3.1)

where x̃i is the random location of the ith of Ñ photons. We use one-dimensional ex-

pressions for simplicity but results are easily generalized to two-dimensional space, and

a notation where overhead ˜ indicates a random variable or function.

3.2.1.1 X-ray interactions in converter layer and detector signal

The model consists of five steps. Step 1 describes conversion of incident x-ray quanta

q̃o(x) to secondary quanta q̃r(x) (light quanta generated in a scintillator or charges lib-

erated in a photoconductor) where selection between interaction types is determined by

x-ray interaction coefficients and described as a random branch point[12, 13] with prob-

abilities Px where x indicates interaction type.[14] A single generalized “simple-atom”

model with only one atomic transition (ie. K edge)[12, 15, 14] is used to accommodate

photoelectric, coherent and incoherent interactions including the effect of emission and

scatter photon reabsorption.[16, 17, 18]

Step 2 describes converter blur caused by random relocation of secondary quanta,

such as optical scatter, by the scatter operator ∗s and scatter point spread function

b(x),[19, 20, 21] followed by a random selection with probability β to identify secondary

quanta that are coupled and detected in the sensor array to generate q̃s(x), a distribution

of interacting secondary quanta. Step 3 describes collection of secondary quanta by ideal

sensor elements as a convolution with the (reversed[21]) aperture function for both con-

ventional and AAP detectors, followed by multiplication by a train of Dirac δ functions

at uniform spacings ∐∐(x/xa) or ∐∐(x/xε). Step 4 describes detector additive electronic
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Figure 3.2: Illustration of detector output expressed as d̃†(x), a sequence of scaled δ
functions on spacings xa, in the spatial domain, spatial-frequency domain (solid line
showing fundamental), and corresponding Wiener NPS (solid line showing sum of all
aliases).

noise as addition of a discrete zero-mean Gaussian random variable ña or ñε with variance

σ2
a or σ2

ε . Figure 3.2 illustrates a detector output d†(x) expressed as a sequence of scaled

δ functions on spacings xa in the spatial domain, spatial-frequency domain, and corre-

sponding Wiener noise-power spectrum (NPS). The AAP algorithm in step 5 requires

filtering with the kernel f(x) and sub-sampling on spacings xa to produce an output con-

sisting of a sequence of δ-functions scaled by discrete detector output values. Details of

the AAP method have been described previously.[7] Superscript † indicates a discrete

output consisting of a sequence of scaled δ functions on uniform spacings and subscripts

C and A indicate conventional and AAP detectors. Important signal and noise transfer

properties of the secondary quanta distribution q̃s(x) are summarized in App. 3.7.1 in

terms of the optical transfer function (OTF) Ts(u) and Wiener NPS Ws(u).

3.2.1.2 Conventional detector

The output from the conventional detector is represented as:[7]

d̃†C(x) =
∞∑

i=−∞

[
d̃a,i + ña,i

]
δ(x− ixa) (3.2)

where d̃a,i = d̃a(x)
∣∣∣
x=ixa

= kCq̃s(x) ∗Π(x/a)
∣∣∣
x=ixa

and d̃a(x) is the conventional detector

presampling signal. While the presampling signal is not physical, it is a convenient

construct that, when evaluated at element centers, gives the x-ray contribution to element
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signals (excluding electronic noise in this case). Detector gain kC relates the sensor

element signal to the number of interacting secondary quanta. Mean detector output is

d̄a = kCq̄saTa(0) = kCq̄sa, where Ta(u) = sinc(au) is the aperture OTF of the sensors,

and the detector presampling OTF is therefore TC(u) = Ts(u)Ta(u), where Ts(u) is

the OTF associated with conversion from incident x-ray quanta to interacting secondary

quanta described in App. 3.7.1. The frequency response of the conventional detector is

therefore given by:

TC†(u) = Ts (u) Ta (u)︸             ︷︷             ︸
fundamental

+
∞∑
j=1

Ts

(
u± j

xa

)
Ta

(
u± j

xa

)
︸                                      ︷︷                                      ︸

aliases at spacings 1/xa

(3.3)

and the NPS by:

WC†(u) = k2
C
a2

x2
a

Ws (u) |Ta (u)|2︸                         ︷︷                         ︸
fundamental

+ k2
C
a2

x2
a

∞∑
j=1

Ws

(
u± j

xa

) ∣∣∣∣Ta

(
u± j

xa

)∣∣∣∣2︸                                                   ︷︷                                                   ︸
aliases at spacings 1/xa

+ a

x2
a

σ2
a︸   ︷︷   ︸

readout noise

,(3.4)

where Ws(u) is the secondary quanta NPS described in Appendix 3.7.1.

3.2.1.3 AAP detector

Analogous to above, output from the AAP detector is also discrete on spacings xa:[7]

d̃†A(x) =
∞∑

i=−∞

[
d̃f,i + ñf,i

]
δ(x− ixa) (3.5)

where the discrete values d̃f,i =
{
kA
[
q̃s(x) ∗Π (x/ε)

]
×∑iδ(x− ixε)

}
∗ f(x)

∣∣∣
x=ixa

are

based on micro elements of size ε and spacing xε, filtered with f(x), and resampled on

spacings xa. Readout noise, which is also filtered by f(x), contributes values ñf,i =

{∑iñε,iδ(x− ixε)} ∗ f(x)|x=ixa to the output.

Mean AAP detector output is d̄f = kAq̄s
ε
xε

F(0) where F(u) is the Fourier transform of

f(x). The AAP method produces the same signal as the conventional detector when f(x)
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is chosen to sum micro elements over distance xa. In that case, f(x) is a rectangle with

width xa and unity height, giving F(0) = xa and average output d̄f = kAq̄s
ε
xε
xa. In the

following, the filter is described as F(u) = xaTf(u) where Tf(u) is normalized to unity at

u = 0.

As shown in Sec. 3.7.2, the DQE is optimized when a low-pass filter satisfying Tf(u) =

Tf(u)Π(xau) is used so that frequencies above the sampling cut-off frequency uc = 1/2xa

are suppressed, eliminating noise aliasing and resulting in:

TA†(u) = Ts(u)Tε(u)Tf(u)︸                   ︷︷                   ︸
band−limited fundamental

+
∞∑
j=1

Ts

(
u± j

xε

)
Tε

(
u± j

xε

)
Tf(u)

︸                                              ︷︷                                              ︸
band−limited micro−element aliases at spacings 1/xε

. (3.6)

The NPS of d̃†A is given by:

WA†(u) = k2
A
ε2

x2
ε

Ws(u) |Tε(u)|2 |Tf(u)|2︸                                    ︷︷                                    ︸
band−limited fundamental

+ k2
A
ε2

x2
ε

∞∑
j=1

Ws

(
u± j

xε

) ∣∣∣∣Tε

(
u± j

xε

)∣∣∣∣2 |Tf(u)|2

︸                                                              ︷︷                                                              ︸
band−limited micro−element aliases at spacings 1/xε

+ ε

x2
ε

σ2
ε |Tf(u)|2︸              ︷︷              ︸

band−limited readout noise

.(3.7)

3.2.2 MTF, NPS and DQE

3.2.2.1 Conventional detector

The conventional detector presampling MTF is given by

MTFC(u) = |Ts(u)Ta(u)| (3.8)

and normalized NPS (NNPS), q̄o
d̄2
a
x2
aWC†(u) where W(n)

s (u) = 1
q̄oḡ2

s
Ws(u), by:

W(n)
C† (u) = W(n)

s (u) |Ta(u)|2︸                   ︷︷                   ︸
normalized fundamental

+
∞∑
j=1

W(n)
s

(
u± j

xa

) ∣∣∣∣Ta

(
u± j

xa

)∣∣∣∣2︸                                             ︷︷                                             ︸
normalized aliases at spacings 1/xa

+ 1
q̄oḡ2

sk
2
Ca
σ2
a︸           ︷︷           ︸

normalized readout noise

(3.9)
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where ḡs = q̄s/q̄o is the number of secondary quanta collected in the sensor elements

per incident x-ray photon. This normalization is convenient as the NNPS of an ideal

photon-counting detector is unity and the inverse of the zero-frequency value is therefore

equal to the quantum efficiency. The DQE of a conventional detector, MTF2
C(u)/W(n)

C† (u)

is therefore given by:

DQEC(u) = |Ts(u)Ta(u)|2

W(n)
s (u) |Ta(u)|2 +

∞∑
j=1

W(n)
s
(
u± j

xa

) ∣∣∣Ta

(
u± j

xa

)∣∣∣2 + 1
q̄oḡ2

s k
2
Ca
σ2
a

. (3.10)

3.2.2.2 AAP detector

The presampling MTF of the AAP detector is given by:

MTFA(u) = |Ts(u)Tε(u)Tf(u)| (3.11)

and NNPS by:

W(n)
A (u) = W(n)

s (u) |Tε(u)|2 |Tf(u)|2︸                               ︷︷                               ︸
normalized band−limited fundamental

(3.12)

+
∞∑
j=1

W(n)
s

(
u± j

xε

) ∣∣∣∣Tε

(
u± j

xε

)∣∣∣∣2 |Tf(u)|2

︸                                                           ︷︷                                                           ︸
normalized band−limited micro−element aliases at spacings 1/xa

+ 1
q̄oḡ2

sk
2
Aε
σ2
ε |Tf(u)|2︸                      ︷︷                      ︸

normalized band−limited readout noise

where again Tf(u) = Tf(u)Π(xau) is band-limited to u = 1/2xa. Therefore, the DQE of

the AAP detector is given by:

DQEA(u) = |Ts(u)Tε(u)|2

W(n)
s (u) |Tε(u)|2 +

∞∑
j=1

W(n)
s
(
u± j

xε

) ∣∣∣Tε

(
u± j

xε

)∣∣∣2 + 1
q̄oḡ2

s k
2
Aε
σ2
ε

.(3.13)

Equations (3.10) and (3.13) show that while it is important to have a low-pass AAP filter

that suppresses frequencies |u| > 1
2xa , the shape of the filter in other regards affects the
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shape of the MTF and NPS but not the DQE. Further implications of these results are

discussed below.

3.2.3 MTF and DQE change with AAP approach

Changes in MTF and DQE with the AAP approach is investigated using ratios of

MTF, NPS and DQE relative to conventional. The MTF ratio is given by:

MTFA(u)
MTFC(u) = |Ts(u)Tε(u)Tf(u)|

|Ts(u)Ta(u)| = |Tε(u)|
|Ta(u)| |Tf(u)| , (3.14)

where Ts(u) = Tr(u)Tb(u) is the product of the OTFs associated with liberation and

scatter of secondary quanta (App. 3.7.1), showing the ratio depends only on sensor ele-

ment OTF and AAP filter. This means that relative MTF improvement with the AAP

design is independent of x-ray reabsorption and converter blur. However, absolute im-

provement (MTFA −MTFC) is proportional to Ts(u) and hence is substantial only with

a high-resolution converter where converter blur is less than pixel width a.

The ratio of AAP to conventional NNPS is given by:

W(n)
A (u)

W(n)
C (u)

(3.15)

=
Ws(u) |Tε(u)|2 |Tf(u)|2 +

∞∑
j=1

Ws
(
u± j

xε

) ∣∣∣Tε

(
u± j

xε

)∣∣∣2 |Tf(u)|2 + σ2
ε

k2
Aε
|Tf(u)|2

Ws(u) |Ta(u)|2 +
∞∑
j=1

Ws
(
u± j

xa

) ∣∣∣Ta

(
u± j

xa

)∣∣∣2 + σ2
a

k2
Ca

(3.16)

which depends on, and is therefore affected by, both x-ray reabsorption and converter

blur.

The DQE ratio of AAP to conventional is given by:
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Figure 3.3: Upper limit (top curve) in DQE improvement with AAP occurs with a high-
resolution converter and lower limit (bottom curve) occurs with low resolution converter
than suppresses noise aliasing.

DQEA(u)
DQEC(u) = |Tε(u)|2

|Ta(u)|2

Ws(u) |Ta(u)|2 +
∞∑
j=1

Ws
(
u± j

xa

) ∣∣∣Ta

(
u± j

xa

)∣∣∣2 + σ2
a

k2
Ca

Ws(u) |Tε(u)|2 +
∞∑
j=1

Ws
(
u± j

xε

) ∣∣∣Tε

(
u± j

xε

)∣∣∣2 + σ2
ε

k2
Aε

.(3.17)

As indicated in Eq. (3.17) and shown previously,[7] the AAP approach requires lower

readout noise than conventional to prevent DQE loss, given by σ2
ε = k2

A
k2

C

ε

a
σ2
a. The noise

aliasing term due to micro-element sampling, ∑∞j=1 Ws
(
u± j

xε

) ∣∣∣Tε

(
u± j

xε

)∣∣∣2, degrades

the DQE by less than one percent when xε < xa/4, suggesting there may be little benefit

of using micro-elements that are less than a quarter of the desired pixel size, even with

a high-resolution converter.

For the idealized limiting case of negligible readout noise and detectors with unity fill
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factor, Eq. (3.17) becomes:

DQEA(u)
DQEC(u) ' 1 +

∞∑
j=1

Ws(u± j
a
) |sinc(au± j)|2

Ws(u) |sinc(au)|2
, (3.18)

showing the AAP design improves DQE in proportion to aliased noise power present in a

conventional detector having the same pixel size. Thus, impact of the AAP approach is

determined only by the extent of noise aliasing, and indirectly on the effects of reabsorp-

tion and converter blur on aliasing. The ratio of AAP to conventional DQE in Eq. (3.18)

has a lower (no aliasing) and upper bound (uncorrelated sensor elements) as shown in

Fig. 3.3.

These model results identify noise aliasing as the primary consideration affecting AAP

improvement on DQE. The conditions under which the AAP will impact on performance

are therefore largely determined by converter blur spread function b(x) with mean width

bo, reabsorption spread function r(x) with mean width ro, and image pixel size a, as illus-

trated in Fig. 3.4(a). For example, a low-resolution converter (bo > a) will suppress noise

aliasing giving ∑∞j=1 Ws(u± j
a
) |sinc(au± j)|2 = 0 for |u| ≤ 1/2xa with a unity DQE ratio.

On the other hand, a high-resolution converter (bo < a) resulting in uncorrelated noise

gives ∑∞j=1 Ws(u ± j
a
) |sinc(au± j)|2 = Ws

∑∞
j=1 |sinc(au± j)|2 = Ws(1 − |sinc(au)|2),

and a DQE ratio equal to 1/|sinc(au)|2. Reabsorption of scatter photons introduces cor-

related noise with a corresponding decrease in noise aliasing and slightly reduced DQE

ratio. It is most important at energies just above the K-shell binding energy and only

when the reabsorption distance is substantially greater than pixel size. These conditions

are summarized in Fig. 3.4(b).

3.2.4 Experimental validation

Experimental validation of model predictions was performed by isolating the effects of

scatter reabsorption and converter blur separately as described below using a CsI/CMOS-
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Figure 3.4: (a) Schematic illustration showing converter blur b(x) with average width bo
and reabsorption spread function r(x) with average width ro from an interacting x-ray of
energy E with scatter photon with energy E ′. (b) Summary of limiting cases of converter
blur, scatter reabsorption that impact on AAP performance. Plus signs indicate positive
MTF and DQE improvement (with 5 signs being maximum).

based detector (Xmaru-1215CF, Vatech Inc.) having 0.0495-mm elements. We first

validate the CSA model for this detector using a low and high energy x-ray beam, then we

compare effects of reabsorption and converter blur on conventional and AAP performance.

3.2.4.1 CSA model validation

The CSA model describes the effect of x-ray conversion gain variability from poly-

energetic x-ray spectra, x-ray reabsorption of K characteristic photons and converter blur

of secondary quanta. Spectra and x-ray physics were modeled using an in-house open-

source software library.[24] Known detector properties and fundamental constants are

listed in Table 3.1. Converter blur Tb(u) was determined empirically as the ratio of the

measured OTF using the low-energy beam (no reabsorption) to the theoretical sinc(au)

aperture OTF. Two remaining unknown parameters, effective housing cover material and

thickness (in mm of Al) and secondary quanta coupling efficiency β, were determined
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CsI thickness, density, packing fraction 0.50 mm, 4.51 g/cm3, 0.8
Element size 0.0495 mm
Relative interaction probability in CsI:

Photoelectric
Coherent
Incoherent

at 30 keV
90.5 %
8.4 %
1.1 %

at
40 keV
96.5 %
2.7 %
0.8 %

Probability of characteristic emission, spe 0.726 [22]
Effective work energy (keV), w 0.018 [23]
Probability of reabsorption, rpe(E) App. 3.7.1.
Relocation transfer function of x-ray emission,
RK(u)

App. 3.7.1.

Table 3.1: Detector properties used in CSA model. Average energies of low and high
energy spectra were approximately 30 and 40 keV.
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Figure 3.5: X-ray spectra below and above iodine K-edge energy.
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using a non-linear least-squares fit to NNPS measurements for each spectrum.

3.2.4.2 Reabsorption

Reabsorption was isolated using two narrow x-ray spectra as illustrated in Fig. 3.5,

one above the iodine K-edge energy (33 keV) to include reabsorption, and one below,

corresponding to conditions (ii) and (iv) in Fig. 3.4(b). The high-energy spectrum was a

50 kV beam with 21.0 mm added Al having 4.6 mm Al HVL and 42 keV average energy,

which has 96% of all photon energies above the K-edge energy. The low-energy spectrum

was obtained using 40 kV with a 0.12-cm2/g iodine filter having 1.9mm Al HVL and

30 keV average energy, giving 97% of all photons below the K-edge energy. Incident air

KERMA used was 4.6 µGy for all image acquisitions.

3.2.4.3 Converter-layer blur

Converter blur depends on the width of b(x) relative to pixel size a. We isolated

the effect of blur by adjusting pixel size a by binning to achieve conditions (i) and (ii)

in Fig. 3.4(b). Detector pixels were used directly as micro-elements (ε = 0.0495 mm)

having converter blur, and 3 × 3 binned pixels as micro-elements (ε = 0.148 mm) with

less blur. While this approach uses micro elements with different sizes, it isolates the

effect of converter blur when MTF, NPS and DQE results are expressed as a function

of spatial frequency relative to the sampling frequency. The same low-energy spectrum

from the previous section was used to ensure negligible generation of K-characteristic

emissions. For all cases, conventional images were created using 4 × 4 binned elements

and AAP images synthesized for the same pixel size.

92



Figure 3.6: MTF and DQE results for x-ray spectra below (black) and above (blue) the
converter K-edge energy. Empirically determined CSA model parameters for the case
without reabsorption shows excellent agreement on measurements with reabsorption,
giving confidence in the model.

Figure 3.7: Detector housing thickness and secondary quanta coupling efficiency were
determined using least-squares fit between theoretical model (solid curve) and NNPS
measurement (red points). An effective Al thickness of 0.26 mm and coupling efficiency
of 2.3 % give the best fit. Perturbations of Al thickness (left) affect low frequency values
and high frequencies are affected by changes in β values (right). Poor fitting (dashed
lines) of non-optimum values shows confidence in CSA parameters.
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Below K-edge Energy Above K-edge Energy
Housing, mm Al 0.26 0.26

Secondary quanta coupling, β 0.023 0.023

Table 3.2: Housing thickness (mm Al) and secondary quanta coupling probability (β) as
determined by a non-linear least-squares fit of the CSA NNPS to measured data for the
two spectra.

3.3 Results

3.3.1 CSA model validation

Figure 3.6 shows results of presampling MTF and DQE obtained below and above

the K-edge energy. Close agreement of the fit values for cover Al thickness and sec-

ondary quanta coupling probability β for both spectra gives important confidence on the

accuracy of model results. In particular, Fig. 3.7 as poor fits are obtained for small per-

turbations in these parameters. Detector housing material thickness affects the quantum

efficiency of the detector, and therefore impacts NNPS values over all frequencies, where

as β affects higher frequencies. In all cases, CSA model results closely match experimen-

tal results. This is particularly significant since two different x-ray spectra are used while

conversion gain in each branch of the theoretical model is assumed proportional to ab-

sorbed energy with the same constant of proportionality, and the OTF obtained with the

low-energy spectrum was used for both energies. The close agreement for both spectra

gives confidence in the model accuracy. Reduction in MTF with increasing frequency is

observed with reabsorption as expected, and differences in DQE measurements for both

cases are followed by the model.

3.3.2 Reabsorption

Figure 3.8 illustrates presampling MTF, NNPS and DQE results obtained below and

above the K-edge energy. MTF results (Fig. 3.8 top row) show a 50% increase with

AAP at the cut-off frequency both above and below the K-edge energy; however, this
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Figure 3.8: Theoretical (CSA) and experimental results of presampling MTF, NNPS and
DQE of conventional (binned) and AAP designs under conditions without reabsorption
(left) and with (right). Both cases show approximately the same modest increase in MTF
and DQE near the image cut-off frequency.
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increase is modest due to the low MTF value caused by converter blur. Converter blur

also causes the NNPS to drop substantially with increasing frequency, resulting in very

little noise aliasing and therefore very little change with AAP. Below the K-edge energy,

the conventional DQE decreases near uc due to slight noise aliasing. The AAP increases

high-frequency DQE values by approximately 75%, resulting in a near-flat DQE curve,

although the over-all increase in area under the DQE curve remains modest. Above

the K-edge energy, DQE is greater due to increased quantum efficiency and shows the

characteristic decrease with frequency due to reabsorption. Relative improvement with

AAP is similar for both spectra, indicating that reabsorption has little effect on the AAP

improvement.

3.3.3 Converter-layer blur

Figure 3.9 shows results for cases with less blur (left column) using larger image

pixels and more blur (right column) using smaller image pixels. The MTF of the AAP

design is 1.5× that of the conventional design near the cut-off frequency uc = 0.84 and

uc = 2.5 cycles/mm for large and small pixels respectively. Minimal converter blur

results in a flatter NNPS with large pixels, as expected for less correlated noise, resulting

in approximately 2.5× greater DQE at high frequencies with the AAP design. Converter

blur with smaller pixels reduces MTF and NPS with increasing frequency, therefore

reducing the amount of noise aliasing in conventional images. Less DQE improvement is

observed with the AAP design for the case with converter blur.

3.3.4 Impact of reabsorption and blur on AAP

Figure 3.10 shows results for MTF, NNPS and DQE ratios between conventional and

AAP designs of cases with and without reabsorption in Sec. 3.3.2 (left column) and

converter blur in Sec. 3.3.3 (right column). The MTF ratio is the same for all cases, as

predicted by Eq. 3.14 showing that it does not depend on reabsorption or blur. With
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Figure 3.9: Theoretical and experimental results of presampling MTF, NNPS and DQE
of conventional (binned) and AAP designs using large pixels (0.594mm) and small pixels
(0.198mm). The AAP design shows the same 1.5× relative increase in MTF near uc for
both cases with and without blur, but greater DQE improvement with the AAP approach
is possible without converter blur (left).
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Figure 3.10: Theoretical and experimental results of presampling MTF, NNPS and DQE
of conventional to AAP ratios showing effects of reabsorption (left column) and converter
blur (right column). High-frequency MTF and DQE was improved for all cases with the
AAP approach. Reabsorption did not effect DQE ratio whereas converter blur did, and
greater DQE ratio was observed for the case without converter blur.
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and without reabsorption, NNPS ratio is greater than unity for high frequencies due to

little noise aliasing in conventional images with our detector. DQE ratios for cases with

and without reabsorption are similar indicating that DQE improvement with the AAP

design does not depend on reabsorption. On the right column, NNPS ratio for the case

without blur approaches unity at high frequencies due to the presence of noise aliasing.

The case without converter blur has a greater DQE ratio than with blur, indicating that

DQE improvement with the AAP design depends on converter blur.

3.4 Discussion

The effect of x-ray reabsorption and converter blur on the AAP design were inves-

tigated using a simple-atom CSA model of x-ray interactions that differs by no more

than 2% to a complex-atom model for energies up to 100 keV and elements as heavy

as Pb.[15] Additionally, our model includes polyenergetic x-ray beams to account for

energy-dependent optical gain factors.[25] Experiments comparing cases with and with-

out reabsorption or blur were done using the same x-ray detectors so to allow for direct

comparison. The use of different x-ray beams to investigate reabsorption in Fig. 3.8 may

cause differences in x-ray interaction depths, however these differences have been shown

to not have a significant effect on MTF of columnar CsI.[26, 27, 28] The AAP approach

uses a rectangular low-pass filter because it is optimum at attenuating noise aliasing

contributions without reducing image frequency power. Although other filter without a

sharp cut-off could be used to eliminate aliasing, they would also reduce MTF below the

image cut-off frequency.

Relative improvement (such as 1.5× greater MTF near the image cut-off frequency)

may be independent of reabsorption and blur, absolute improvement is not and the AAP

design does not recover degradation caused by reabsorption or blur in the converter.

Equation 3.18 shows that the AAP approach improves DQE in proportion to aliased
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power in a conventional detector. Reabsorption of characteristic x-rays in CsI has min-

imal impact on noise aliasing, whereas stochastic blur in the converter layer reduces

both MTF and NNPS at high-frequencies, resulting in reduction of aliasing. Detector

1 used in this work has a substantial amount of blur which explains the sub-optimal

improvement in DQE for both cases with and without reabsorption. We expect that a

detector with minimal blur would achieve close to optimal DQE improvement even with

x-ray reabsorption. Detector 2 used for converter blur experiments showed substantial

DQE improvement even when pixels were correlated, indicating that the AAP design can

provide a benefit even when there are some noise correlations.

3.5 Conclusion

The AAP design offers improved high-frequency MTF and DQE over conventional

design by using a micro-element sensor and eliminating noise aliasing. Compared to

conventional design near the image cut-off frequency uc, the AAP design has:

1. Greater MTF by a factor of 1.5× and removal of signal aliasing. If the MTF value

is low, this improvement may not be substantial.

• MTF improvement with the AAP design is not effected by x-ray reabsorption

or converter blur.

• MTF improvement only depends on the AAP filter kernel, micro-element aper-

ture and pixel aperture.

2. Greater presampling NPS below uc due to the high bandpass of the micro-elements,

and elimination of noise aliasing by use of the AAP low-pass filter.

• At conventional pixel sizes, x-ray reabsorption does not effect noise aliasing

and results in the same NPS for conventional and AAP designs.
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• Converter blur reduces the amount of noise aliasing, resulting in greater NPS

with the AAP design.

3. Greater DQE by as much as a factor of 2.5× due to greater MTF and reduction of

noise aliasing.

• DQE improvement is not effected by x-ray reabsorption. With a high resolu-

tion converter layer, 2.5× DQE improvement is achievable.

• DQE improvement is reduced by converter blur, providing up 1-2.5× improve-

ment.

The AAP design improves high-frequency MTF and DQE for applications such as radio-

graphy, mammography and fluoroscopy provided a low-noise micro-sensor array is used

and converter blur is less than pixel size.
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3.7 Appendix

3.7.1 CSA model of x-ray interactions in the converter layer

We have shown previously that signal and noise transfer through photoelectric, co-

herent and incoherent interactions for a specified x-ray energy can be described using a

single generalized x-ray-interaction simple-atom model.[14] Results for a broad spectrum

of x-ray energies are determined as a sum weighted by the spectral shape. The model
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for each interaction consists of three parallel paths describing liberation of secondary

quanta under three conditions: (A) a primary interaction with no subsequent emission

or scatter; (B) an interaction followed by emission or scatter but no reabsorption; and

(C) an interaction with reabsorption of an emission or scatter photon. The probabilities

for each path depend on x-ray energy. For example, below a K-edge energy the proba-

bility of following paths B or C may be zero in a photoelectric interaction. This model

considers only one edge energy over the range of x-ray energies. For high-Z materials

this could be an L shell rather than the K shell. We refer to the characteristic emission

as a scatter photon in a photoelectric interaction.

The number of liberated secondary quanta is given as the sum of all paths for each in-

teraction type. For interaction x where x indicates photoelectric, incoherent or coherent,

the distribution of liberated secondary quanta is given by

q̃x(x) = q̃x,A(x) + q̃x,B(x) + q̃x,C(x). (3.19)

Due to the physics of x-ray interactions, secondary quanta are spatially correlated which

has important implications for signal and noise transfer and detector performance. The

CSA model of this generalized interaction has been described previously[14] and we

summarize only the important relationships here. For example, the mean number of

liberated secondary quanta per unit area q̄x for a given interaction is:

q̄x = q̄oPx
[
(1− sx)ḡx,A + sx

(
〈ḡx,B〉E′ + 〈rxḡx,C〉E′

)]
(3.20)

where Px is the probability of interaction x occurring (depending on interaction coeffi-

cients), sx is the probability the interaction produces a scatter photon, ḡx is the mean

quantum gain (secondary quanta liberated per interaction) for each path, rx is the prob-

ability the scatter photon is reabsorbed (see Fig. 3.11a)[15] and 〈〉E′ indicates an average

weighted by the energy spectrum of scatter photons (important for Compton scatter only
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Parameter PE COH INC
sx PKωK for E > EK ; else 0 1 1
ḡx,A E/w 0 0
ḡx,B (E − EK)/w for E > EK; else 0 0 (E − E ′)/w
ḡx,C EK/w for E > EK; else 0 E/w E ′/w

Table 3.3: Probability of an interaction producing a scatter photon (sx) and average
quantum gain (ḡx) parameters in the generalized x-ray interaction model where E is in-
cident x-ray photon energy, EK is K-edge energy, PK is the K-shell participation fraction,
ωK is fluorescence yield, w is effective work energy required to liberate one secondary
quantum, and E ′ is Compton-scatter photon energy. It is assumed the K characteristic
emission energy is approximately equal to the K-edge energy.
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Figure 3.11: (a) CsI K-characteristic x-ray reabsorption probability rpe and (b) relocation
function RK of a 50 keV x-ray in CsI.[15]

as the scatter photon from photoelectric and coherent interactions have a specific energy

for a stated x-ray energy). Table 3.3 and Fig. 3.11 give parameters used in the general

x-ray interaction model.

The NPS of the liberated secondary-quanta distribution from interaction type x is

given by:[14]

Wx(u) = q̄oPx
{

(1− sx)
(
ḡ2

x,A + σ2
gx,A

)
+ sx

[〈
ḡ2

x,B + σ2
gx,B

〉
E′

+ rx
〈
ḡ2

x,C + σ2
gx,C

〉
E′

]
+2 sx 〈rx ḡx,B ḡx,CRx(u)〉E′

}

where Rx(u) is the Fourier transform of the normalized reabsorption probability density function
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(see Fig. 3.11b)[15] and σ2
gx is the variance of g̃x. Conversion from incident x-ray photons to

liberated secondary quanta has an OTF given by:[14]

Tx(u) =

[
(1− sx)ḡx,A + sx

[
〈ḡx,B〉E′ + 〈rxḡx,CRx(u)〉E′

]]
[
(1− sx)ḡx,A + sx

[
〈ḡx,B〉E′ + 〈rxḡx,C〉E′

]]

The combined liberated secondary-quanta from all x-ray interactions is given by the

summed contributions:

q̃r(x) = q̃pe(x) + q̃coh(x) + q̃inc(x)

q̄r = q̄pe + q̄coh + q̄inc

Tr(u) = 1
q̄r

(
q̄peTpe(u) + q̄cohTcoh(u) + q̄incTinc(u)

)
m(u) = Wpe(u) + Wcoh(u) + Winc(u)

where subscript r indicates liberated secondary quanta.

Converter blur corresponds to a random relocation of secondary quanta, such as the

effect of optical scatter. We represent this blur as a quantum-scatter operator ∗s and

associated spread function b(x)[21, 20] and assume a constant fraction β of liberated sec-

ondary quanta are coupled to the sensor array and interact to contribute to the measured

signal. The distribution of interacting secondary quanta is therefore given by:

q̃s(x) = β [q̃r(x) ∗s b(x)] , (3.21)

and

q̄s = βq̄r, (3.22)

Ts(u) = Tr(u)Tb(u) (3.23)
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Ws(u) = β2 [m(u)− q̄r] |Tb(u)|2 + βq̄r,

where Tb(u) is the OTF of converter blur (Fourier transform of b(x)) and Ts(u) describes

the OTF associated with conversion from incident x-ray quanta to interacting secondary

quanta. These results reflect properties of the converter and are used in Eqs. (3.3),

(3.4), (3.6) and 3.7 to determine the DQE. At the x-ray energies used in this study, the

total number of coherent and incoherent interactions is a few percent of the number of

photoelectric interactions and have negligible impact on the model predictions.

3.7.2 OTF and NPS of the AAP design

The OTF and NPS of the AAP design, given by TA and WA respectively, where the

MTF is equal to the absolute value of the OTF, is determined by extending previous

work[7] to include the effect of the converter layer.

The micro-element signals are represented as d̃†ε in the AAP design, consisting of δ-

functions on spacing xε scaled by individual micro-element signals. The corresponding

OTF, including spectral aliasing, is given by:

Td†ε
(u) = Ts (u) Tε (u) +

∞∑
j=1

Ts

(
u± j

xε

)
Tε

(
u± j

xε

)
(3.24)

where Ts and Tε are OTFs of the converter secondary quanta distribution and micro-

element aperture respectively. Signals d̃†ε are subsequently filtered and evaluated on

spacings xa as described in Sec. 3.2.1.3. The corresponding OTF of the AAP output d̃†A,
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including aliasing, is therefore given by:

TA†(u) = Td†ε
(u)Tf(u) +

∞∑
l=1

Td†ε

(
u± l

xa

)
Tf

(
u± l

xa

)

= Ts(u)Tε(u)Tf(u) +
∞∑
j=1

Ts

(
u± j

xε

)
Tε

(
u± j

xε

)
Tf(u)

+
∞∑
l=1

Ts

(
u± l

xa

)
Tε

(
u± l

xa

)
Tf

(
u± l

xa

)

+
∞∑
l=1

∞∑
j=1

Ts

(
u± j

xε
± l

xa

)
Tε

(
u± j

xε
± l

xa

)
Tf

(
u± l

xa

)
. (3.25)

By specifying a low-pass AAP filter that suppresses frequencies |u| > 1
2xa , satisfying

Tf(u) = Tf(u)Π(xau), lines 3 and 4 are suppressed and the result simplifies to Eq. (3.6).

The NPS of micro-element signals d̃†ε is given by:

Wd†ε
(u) = k2

A
ε2

x2
ε

Ws(u) |Tε(u)|2 + k2
A
ε2

x2
ε

∞∑
j=1

Ws

(
u± j

xε

) ∣∣∣∣Tε

(
u± j

xε

)∣∣∣∣2 + ε

x2
ε

σ2
ε ,(3.26)

and the NPS of the output AAP signal d̃†A with filter F(u) = xaTf(u) is given by:

WA†(u) = Wd†ε
(u) |Tf(u)|2 +

∞∑
l=1

Wd†ε

(
u± l

xa

) ∣∣∣∣∣Tf

(
u± l

xa

)∣∣∣∣∣
2

= k2
A
ε2

x2
ε

Ws(u) |Tε(u)|2 |Tf(u)|2 + k2
A
ε2

x2
ε

∞∑
j=1

Ws

(
u± j

xε

) ∣∣∣∣Tε

(
u± j

xε

)∣∣∣∣2 |Tf(u)|2

+ ε

x2
ε

σ2
ε |Tf(u)|2

+k2
A
ε2

x2
ε

∞∑
j=1

Ws

(
u± l

xa

) ∣∣∣∣∣Tε

(
u± l

xa

)∣∣∣∣∣
2 ∣∣∣∣∣Tf

(
u± l

xa

)∣∣∣∣∣
2

+k2
A
ε2

x2
ε

∞∑
l=1

∞∑
j=1

Ws

(
u± j

xε
± l

xa

) ∣∣∣∣∣Tε

(
u± j

xε
± l

xa

)∣∣∣∣∣
2 ∣∣∣∣∣Tf

(
u± l

xa

)∣∣∣∣∣
2

+ ε

x2
ε

σ2
ε

∞∑
l=1

∣∣∣∣∣Tf

(
u± l

xa

)∣∣∣∣∣
2

. (3.27)

Similar to above, specifying a low-pass filter that suppresses frequencies |u| > 1
2xa sup-

presses the last 3 lines above and simplifies to Eq. 3.7. It also shows that a low-pass filter
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is optimum because it reduces noise terms by eliminating aliasing contribution.
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Chapter 4

Performance evaluation of a

Se/CMOS prototype x-ray detector

with an apodized-aperture x-ray

detector design

We implement that AAP design on a small area prototype sensor (Se/CMOS) with 7.8µm

element size and compare AAP and conventional (binned) images with 47µm pixel size.

Presampling modulation transfer function (MTF), normalized Wiener noise power spec-

trum (NNPS) and DQE were measured using a tungsten micro-focus x-ray tube 60 kV

spectrum and 85µGy air KERMA incident on the detector. At spatial frequencies near

the image sampling cut-off frequency (uc = 10.6cyc/mm), the AAP design has 1.5×

greater MTF and 2.5× greater DQE than conventional designs. Specimen images show

improved visualization of fine detail with the AAP design.

This chapter is based on a manuscript in preparation for submission to Journal of Medical

Imaging: TF Nano, CC Scott, Y Li, C Con, KS Karim and IA Cunningham.
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4.1 Introduction

In digital radiography and mammography, high cancer detection rates while using low

radiation doses in screening programs have been attributed to x-ray detector designs that

are dose-efficient at producing images with high signal-to-noise ratios (SNR).[1, 2, 3] The

ability of an x-ray detector to produce high SNR images for a given exposure is quantified

by the detective quantum efficiency (DQE) as a function of spatial frequency.[4, 5] A

maximum DQE value of unity across all spatial frequencies of interest represents an ideal

system (in terms of SNR and quantum efficiency) that is only limited by the Poisson

statistics of counting x-ray quanta.[6, 7]

Conventional x-ray detector designs have a 1:1 ratio of sensor element size to image

pixel size. High DQE values can be achieved at low frequencies (up to 80%) but DQE

is much lower at high frequencies (less than 40%).[8] For a conventional detector with

a high-resolution converter layer that is only limited by sensor element aperture size,

high-frequency DQE is degraded by 60% due to noise aliasing. Our group has previously

developed a novel x-ray detector design, which we call apodized-aperture pixel (AAP),

that eliminates aliasing by using using a low-noise micro-sensor array having smaller

element size (eg. 5 - 50µm) than pixel size (eg. 50 - 200µm) and applying an anti-

aliasing filter that attenuates frequencies above the image cut-off frequency.[9, 10, 11, 12]

The AAP design could be useful in improving SNR of fine-detail when smaller pixels

do not provide additional clinical benefit[13, 14] or if large image sizes are impractical

for storage and display. Implementation of a full-size clinical AAP detector could be

made possible by manufacturing a large-area sensor having elements of 10-25µm in size

with low-readout noise, such as with complementary metal-oxide semiconductor (CMOS)

technology.[15, 16, 17] A pixel-to-element size ratio of 4 has been found to give most of

the AAP benefit.

The purpose of this work is to implement the AAP design using a selenium (Se) and

CMOS small-area prototype with 7.8µm element size and evaluate MTF and DQE per-
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formance up to 10 cycles/mm. We use a cascaded system analysis (CSA) for theoretical

comparison between conventional and AAP x-ray detector designs.

4.2 Theory

The DQE [unitless] of an x-ray detector expressed as a function of spatial frequency

u [cycles mm−1] is given by:[18, 19]

DQE(u) = MTF(u)2

KQoW(u)/d̄2
= MTF(u)2

Wn(u) (4.1)

where K [µGy] is the corresponding air KERMA, Qo [mm−2µGy−1] is the number of

x-ray quanta per unit area per unit KERMA associated with the spectrum, d̄ is mean

pixel value that scales linearly with incident number of quanta, MTF(u) [unitless] is the

presampling modulation transfer function, W(u) [mm2] is the image Wiener noise power

spectrum associated with uniform exposure K, and Wn(u) = KQoW(u)/d̄2 [unitless]

is the image normalized NPS. All quantities in Eq. 4.1 are measurable, and can be

theoretically modeled using cascaded system analysis (CSA) assuming a linear shift-

invariant system having wide-sense cyclo-stationary noise.[19] Equations are given in

1-dimension but they can be easily generalized to higher orders.

4.2.1 Se/CMOS micro-sensor array

X-ray photons incident on a detector can be described by a random distribution of

points, q̃0(x) [mm-1], with each point represented as a Dirac δ function:[20]

q̃0(x) =
Ñ∑
i=1

δ(x− x̃i), (4.2)

where x̃i is the random location of the ith photon out of Ñ total photons. At diagnostic
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Figure 4.1: Se/CMOS sensor with 7.8µm element size (on the left) has an active area of
approximately 1cm2. The CSA model of the micro-sensor array (on the right) includes x-
ray interactions, reabsorption, converter blur b̃(x), sensor collection efficiency β, quanta
collection in rectangular apertures Πε(x), read-out noise ñε(x) and discrete sampling∐∐

ε(x).

energies, x-rays are most likely to interact in Se via photoelectric interaction that could re-

sult in emission/reabsorption of a 12.6 keV characteristic photon. A CSA model is shown

in Fig. 4.1 that includes a simple-atom model of x-ray interactions,[21] x-ray reabsorp-

tion, and converter blur. Using previously developed descriptions of the quanta distribu-

tion released q̃r(x) during x-ray interactions (including reabsorption),[22] the secondary

quanta distribution interacting in the sensor array is given by: q̃s(x) = β
[
q̃r(x) ∗s b̃(x)

]
,

where β is the sensor collection efficiency, ∗s is the quantum scatter operator, and b̃(x)

is the converter blur caused by relocation of quanta. Appendix 4.7.1 gives a summary of

the CSA results, including expressions for optical transfer function (OTF) of secondary

quanta Ts(u) and Wiener noise power spectrum Ws(u) as previously described by Yun

et. al.[22]

The output of the Se/CMOS micro-sensor array is given by [mm-1]:

d̃†ε(x) =
∞∑

i=−∞

[
d̃ε,i + ñε,i

]
δ(x− iε), (4.3)

where d̃ε,i = kεq̃s(x) ∗Πε(x)
∣∣∣
x=iε

is the presampling signal and ñε,i are readout-noise

sample values with variance σ2
ε . The mean detector signal gain per secondary quanta
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interacting in the element is given by kε, Πε(x) is the sensor element aperture of width ε

and Dirac-δ functions spatially sample the signal at spacings of ε. Mean detector signal

is d̄†ε = kεq̄s, where q̄s is the mean number of secondary quanta interacting in the sensor.

The presampling MTF of micro-sensor array is given by:[unitless]

MTFε(u) = |Ts(u)| |Tε(u)| = |Ts(u)| |sinc(εu)| . (4.4)

where Tε(u) = sinc(εu) is the OTF of the micro-sensor aperture function.

The NPS of the micro-sensor array is given by:[mm-1]

Wε†(u) = k2
εWs (u) |sinc(εu± j)|2 + k2

ε

∞∑
j=1

Ws

(
u± j

ε

)
|sinc(εu± j)|2 + 1

ε
σ2
ε .(4.5)

The DQE of the micro-sensor array, MTF2
ε(u)/ q̄o

d̄2
ε
Wε†(u) is therefore given by:

DQEε(u) = |Ts(u)|2 |sinc(εu)|2

W(n)
s (u) |sinc(εu± j)|2 + k2

ε

∑∞
j=1 W(n)

s
(
u± j

ε

)
|sinc(εu± j)|2 + q̄o

k2
ε q̄

2
s ε
σ2
ε .

(4.6)

where W(n)
s = q̄o

d̄2
ε
Ws is the normalized NPS (NNPS) of the secondary quanta distribution

that equals unity for an ideal photon counting detector.

4.2.2 Conventional and AAP designs

A conventional energy integrating x-ray detector has the same pixel size a as sensor

element size ε. In contrast, the AAP design uses a micro-sensor array (with ε < a) and

a filter kernel to synthesize images of desired pixel size. Shown in Fig. 4.2 are CSA

models that extend the micro-sensor array output to described conventional (left) and

AAP (right) designs. The AAP filter f(x) with an OTF Tf(u) can be implemented on

detector firmware, as illustrated in Fig 4.2, so that AAP readout output has the desired
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Figure 4.2: CSA models and schematic diagrams of conventional (left) and AAP (right)
designs. Enclosed in each detector is a converter layer, sensor array and readout elec-
tronics. The AAP detector has a micro-sensor array that allows for acquisition of an
oversampled output and on-board filtering to synthesize images of desired pixel size.
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Conventional Design AAP Design

MTF(u) |Ts(u)| |sinc(au)| |Ts(u)| |sinc(εu)| |∏ (au)|

Wn(u) ∑∞
j=−∞Ws

(
u± j

a

)
sinc2 (au± j) Ws(u)sinc2(εu) |∏ (au)|2

DQE(u) |Ts(u)|2sinc2(au)∑∞
j=−∞Ws(u± ja)sinc2(au±j)

|Ts(u)|2
Ws(u)

Table 4.1: Theoretical results of presampling MTF, NNPS and DQE for conventional and
AAP designs. A rectangular low-pass filter is used for the AAP with cut-off frequency
±1/2a.

image size. Use of an ideal low-pass filter Tf(u) = ∏ (au) attenuates frequencies past

±1/2a and removes aliasing. Previous proof-of-concept experiments have shown that such

a filter results in 1.5× and 2.5× greater high-frequency MTF and DQE respectively with

the AAP design.[11]

Detector output from a conventional design is given by [mm-1]:

d̃†C(x) =
∞∑

i=−∞

[
d̃†ε(x) ∗Π(ax)

]
δ(x− ia), (4.7)

and detector output from the AAP design is given by [mm-1]:

d̃†A(x) =
∞∑

i=−∞

[
d̃†ε(x) ∗ f(x)

]
δ(x− ia), (4.8)

Table 4.1 summarizes presampling MTF, NNPS and DQE equations for conventional

and AAP designs. Presampling MTF and NNPS functions are band-limited with the

AAP design. DQE of the conventional design includes harmonics of Ws (shown in the

summation term) resulting in reduction due to noise aliasing, while the AAP design
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eliminates aliasing. In that case of a high resolution converter such as selenium, Ts and

Ws are approximately unity for all image frequencies. In that case, the AAP design has

1.5× and 2.5× greater MTF and DQE than a conventional design near the image cut-off

frequency, respectively.

4.3 Methods

4.3.1 Se/CMOS micro-sensor prototype

A Se/CMOS active pixel sensor with 1k x 1k elements having 7.8µm size and approx-

imately 1cm2 sensitive area was used to acquire images. The sensor has a 98µm thick Se

layer, a 50 nm gold top electrode and is digitized using readout electronics with a 16-bit

ADC converter. The x-ray beam used for experiments was generated with a micro-focus

x-ray tungsten tube (9µm focal spot, PXS5-928) at 60kV and 2mm of aluminum filtration

having an HVL of 1.7mm of aluminum. The x-ray sensor was paced 55cm away from

the x-ray focal spot and the DQEPro (DQEInstruments Inc., London, Canada) device’s

back surface was placed 5cm away from the sensor (Fig. 4.3). At these distances, focal

spot blur has a negligible effect on MTF (at most 3-5% near the cut-off frequency). Im-

ages were acquired in dynamic mode with 0.136 mAs tube current and 3 second frame

integration time with an air KERMA of 85µGy per frame. X-ray spectra were calculated

using the Tucker and Barnes model[23] and Fig. 4.3 shows incident and interacting in

the sensor (the peak at 12.6 keV are reabsorptions of Se K-characteristic x-rays). The

incident number of x-rays for simulated spectrum was 18,786 quanta per mm2 per µGy.

A non-standard mammography spectrum was used in this study that resulted in 30%

quantum efficiency of the x-ray sensor. At mammography energies, the sensor would

have an efficiency of 70-80% which is typically of clinical systems.

Images from the prototype micro-sensor array were processed on a lab computer to

synthesize conventional (binned) and AAP images with the same pixel size. On a full-size
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X-rays output of the micro-focus tube
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Figure 4.3: The top panel shows the micro-focus x-ray tube (on the right) and the
DQEPro device (on the left) placed in front of the Se/CMOS sensor. Simulated spectra
are plotted of photons incident on the sensor (right) and interacting in the sensor (left).

detector, it will likely be necessary to implement the AAP algorithms directly on detector

firmware due to the extremely large number of micro-sensor elements and corresponding

large data-transfer requirements.

4.3.2 Conventional and AAP designs

Comparison between AAP and conventional designs was carried out by generating

both conventional and AAP images using the micro-sensor detector output. Conventional

images were generated by binning 6 × 6 pixels, and AAP images of the same pixel size

were synthesized by applying a rectangular low-pass filter that attenuate frequencies

above the image cut-off frequency and resampling at spacings of 47µm (to demonstrate
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performance at an approximate pixel size used in mammography). Detector performance

metrics MTF, NNPS and DQE were measured using conventional and AAP image sets.

4.3.3 Specimen image

An intact dry specimen of a urinary kidney stone was imaged to visually compare

binned and AAP images. The specimen was placed 5 cm from the detector and the

source-to-image distance was 55 cm. X-ray images of the specimen were log-transformed,

inverted and interpolated for display and magnification purposes. Binned and AAP

images were synthesized as described above.

4.4 Results

Fig. 4.4 shows the kidney stone specimen (left) and the x-ray image acquired of it

using the high-resolution sensor. Fine-detail near edges of the stone’s crystalline structure

are clearly visible at high resolution.

4.4.1 MTF, NNPS and DQE of conventional and AAP designs

Fig. 4.5 shows theoretical and experimental results of presampling MTF, NNPS and

DQE for conventional (left) and AAP (right) designs. Near the image cut-off frequency,

uc = 10.6 cyc/mm, MTF of the conventional design is approximately 0.55 and is non-zero

for higher frequencies that are aliased. Whereas MTF of the AAP design is 0.85 at uc

(1.5 × improvement) and frequencies above uc are attenuated due to the AAP low-pass

filter.

Image NNPS measurement are similar for conventional and AAP designs. A flat NPS

curve, with both designs, is indicative of uncorrelated image pixel values showing that

there are minimal effects from noise correlations (that could be caused by x-ray reabsorp-

tion or converter blur) at these frequencies. Electronic readout noise is approximately
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(a) Kidney stone specimen

(b) 7.8µm image pixel size

Figure 4.4: A kidney stone specimen (left) and a high-resolution x-ray image of it acquired
with the Se/CMOS sensor.

1/6th of total image noise in both designs.

Measured DQE(0) value of 0.3 matches quantum efficiency predictions for Se with

the 60kV x-ray spectrum. For conventional design, DQE follows the expected sinc2(au)

response resulting in low DQE at high frequencies. Whereas the AAP design has a flat

DQE curve and maintains the same DQE(0) value up to the image cut-off frequency.

The AAP design has 2.5× greater DQE than conventional design near 10.6 cyc/mm.

4.4.2 Specimen image

Fig. 4.6 shows conventional and AAP x-ray images of a kidney stone specimen. At first

glance, both images might appear very similar due to both conventional and AAP designs

having the same DQE values at low frequencies. Upon closer inspection, differences are

apparent in areas of fine-detail and near edges due to differences in high-frequency DQE

between detector designs. For example, small structures near the top of the stone (white
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Figure 4.5: Presampling MTF, NNPS and DQE results of conventional (left) and AAP
(right) designs showing theoretical CSA and measured results. MTF and DQE of the
AAP design is found to be 1.5 × and 2.5 × greater at high-frequencies than conventional
design. The DQE curve in the conventional design is reduced with frequency due to
noise aliasing, as expected, where as the AAP design has a flat DQE curve across all
frequencies.
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(a) Conventional image (b) AAP image

Figure 4.6: Conventional image (left, binned 6 × 6) and AAP image (right) of a kidney
stone specimen at 47µm pixel size. The AAP image shows greater visibility of fine-detail
(such as in the white box) than conventional. X-ray images have been log transformed,
inverted and sinc interpolated for display and magnification purposes.

box) appear sharper and more visible in the AAP image compared to conventional.

Sharper edges are also visible in other areas of the AAP image.

4.5 Discussion

This is the first implementation of the AAP x-ray detector design with a small-area

micro-sensor array prototype. The AAP design has near-flat MTF and DQE curves up

to 10.6 cyc/mm using images having 47µm pixel size (an approximate pixel size used for

mammography). At this pixel size, our sensor had uncorrelated pixel values (ie. a flat

NPS curve) indicating that there is little effect of converter blur (from charge migration)

or x-ray reabsorption. In this case, SNR in a conventional image is limited by pixel

aperture size and DQE is reduced at high frequencies from noise aliasing.

CSA results for conventional and AAP designs show excellent agreement for all fre-

quencies (Fig. 4.5). MTF of the conventional design follows an ideal-sinc aperture with
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size 47µm, and MTF of the AAP design is flat indicating again negligible effects from con-

verter blur and x-ray reabsorption. With such a converter, more than 2.5× improvement

is observed at high frequency DQE with the AAP design.

Improvements in MTF and DQE with the AAP design are apparent in specimen

images showing high SNR of small structures and fine-detail near edges. Specimen images

with the AAP design more accurately represent high-resolution detail of the object being

imaged.

4.6 Conclusion

The apodized-aperture pixel (AAP) design is a novel x-ray detector design that makes

physical separation between sensor elements and image pixels. Using a micro-sensor array

and an anti-aliasing filter, the AAP design removes signal and noise aliasing in images.

We show the first implementation of the AAP design using a small-area Se/CMOS micro-

sensor array prototype with 7.8µm element size to synthesize images of 47µm pixel size.

The impact of the AAP design was 1.5× and 2.5× greater MTF and DQE respectively

near the image cut-off frequency of 10 cyc/mm. Specimen images show the potential

benefit that the AAP approach could provide at better visualizing fine-detail in images.

4.7 Appendix

4.7.1 CSA equation results summary

Signal and noise properties of secondary quanta released from x-ray interactions in the

converter layer have been previously described using a simple-atom model.[22] The model

uses a generalized x-ray interaction model consisting of three path that describe liberation

of quanta from interactions with: A) no x-ray emission/scatter, B) x-ray emission/scatter

but no reabsorption, and C) reabsorption. Liberated quanta for each type of x-ray
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interaction, q̃x(x), is given as the sum of each path:

q̃x(x) = q̃A(x) + q̃B(x) + q̃C(x), (4.9)

where q̃A(x), q̃B(x) and q̃C(x) are quanta liberated by each path of a particular x-ray

interaction type. The mean number of total liberated quanta is given by:

q̄x = q̄oPx [(1− sx) ḡx,A + sx (ḡx,B + rxḡx,C)]

where Px is the probability of a photoelectric interaction, sx is the probability that an

x-ray will produce an emitted/scattered photon, ḡx is the mean gain for each path (with

variance σ2
ḡ) and rx is the probability the an emitted/scattered photon will be reabsorbed.

For photoelectric interaction, PPE is calculated based on the x-ray probability of

interacting in the converter. The probability of an interaction producing a scattered

photon sPE = PKωK where PK is the K-shell participation fraction and ωK is fluorescence

yield. The reabsorption probability rPE and reabsorption relocation function RK(u) can

be calculated using methods described by Hajdok et. al.[21] The mean gain for each path

is given by: ḡPE,A = E/w, ḡPE,B = (E−EK)/w for E > EK else 0, and ḡPE,C = EK/w for

E > EK else 0; where E is the x-ray energy, EK is the characteristic x-ray energy and w

is the effective work energy required to liberate one secondary quantum. All gain stages

were assumed to have Poisson statistics with σ2
g = ḡ.
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Chapter 5

Signal-to-noise ratio criteria to

suppress Gibbs ringing with the

apodized-aperture x-ray detector

design

We define a criterion for avoiding Gibbs ringing with the AAP design based on image

quantum noise. For contrast-limited features, it is shown that ringing artifacts surpass

image noise and may be be visible. An optimized AAP filter with a smooth cut-off

frequency transition and cut-off frequency is developed to suppress Gibbs ringing while

maintaining 92% of the AAP benefit in MTF and DQE. For noise-limited features, Gibbs

ringing is avoided because ringing artifacts are not visible above image quantum noise.

Therefore, a low-pass filter with an abrupt cut-off can be used to achieve the most AAP

benefit.

This chapter is based on a manuscript in preparation for submission to Medical Physics:

TF Nano and IA Cunningham.
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Figure 5.1: Oversampled edge response with conventional and AAP designs (left), and
a star-pattern x-ray image (right) with the AAP design. Gibbs ringing is a phenomena
that causes artifacts appearing as oscillations emanating from high-contrast edges as a
consequence of a sharp low-pass filter with the AAP approach.

5.1 Introduction

X-ray imaging in medicine should produce images with high signal-to-noise ratio

(SNR) while maintaining low risk from ionizing radiation to provide medical information

for patient benefit. Acquisition of high SNR images while maintaining low x-ray expo-

sures requires high performing x-ray detectors.[1] An x-ray detector’s ability to acquire

high contrast images in low-noise (or high-contrast) cases is quantified by the modula-

tion transfer function (MTF), whereas detector dose-efficiency in noise-limited images

is quantified by the detective quantum efficiency (DQE).[2, 3] Fourier metrics, such as

MTF and DQE that are spatial-frequency dependent, are important because they allow

one to determine image contrast and SNR for an object of any size. An “ideal” x-ray

detector has unity MTF and DQE for all image frequencies and is only limited by the

Poisson statistics of counting photons.[4]
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We previously described an x-ray detector design, called apodized-aperture pixel

(AAP), that uses smaller sensor elements than pixel size to synthesize images where each

pixel value is a weighted combination of “micro-sensor” element output.[5, 6, 7] With a

high-resolution converter layer, this approach results in a 40% increase in high-frequency

MTF and more than double DQE values near the image sampling cut-off frequency uc.

The AAP approach improves MTF and DQE by preserving the micro-element aperture

MTF and avoiding aliasing using a low-pass filter (ie. the AAP filter). Suppression of

aliasing using a low-pass filter with a sharp cut-off that causes discontinuity, such as rect-

angular filter that is unity for frequencies below uc and zero for higher frequencies, can

result in ringing known as Gibbs phenomenon.[8, 9] Figure 5.1 shows damped-oscillations

in the AAP response of a noise-free edge compared to conventional design, and an x-ray

image of a star-patter that has Gibbs ringing near high-contrast edges.

Previous work of the AAP approach used a rectangle low-pass AAP filter to remove

aliasing which could cause Gibbs ringing artifacts near high-contrast edges. The objective

of this study is to determine an AAP filter that avoids Gibbs ringing while also improving

high-frequency MTF and DQE.

5.2 Methods

5.2.0.1 SNR criteria to avoid Gibbs ringing

Gibbs ringing may not be visible in an image if the noise level is greater than the

ringing artifact amplitude. The ringing amplitude is greatest at oscillation near the edge,

and it is approximately 1/10th of the signal difference ∆S at the edge as shown in Fig. 5.1.

Given a mean pixel value d̄ and noise standard deviation σd̄, for Gibbs ringing can be

avoided when,

∆S
11.2 < σd̄. (5.1)
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Setting the threshold criteria value equal to the peak amplitude that is closest to the

edge ensures that all other peaks are not visible. For an x-ray distribution with mean

number of quanta per unit area q̄o over the open-side of the edge, q̄α = (1 − α)q̄o is the

mean number of quanta on the attenuated-side of the edge where α is the attenuation

factor. A Gibbs line artifact of length N elements having area a is avoided when the

under and overshoot are less than the noise standard deviation, σd̄ = k
√
Naq̄, where

k is the detector gain and the number of quanta interacting in a sensor follows Poisson

statistics.[10] The edge signal difference ∆S = (d̄ − d̄0) = kNaαq̄o and we can rewrite

Eq. 5.1 to give,

kNaαq̄o

11.2 < k
√
Naq̄o(1− α) (5.2)

α√
1− α

< 11.2
√
N/aq̄o (5.3)

In the limit of low-attenuating material (as is common in medical imaging), the above

equation simplifies to

C
√
Naq̄ < 11.2 (5.4)

where C is the contrast of the edge.

Equation 5.4 provides an SNR criteria for when Gibbs ringing becomes visible in x-

ray images. It is based on the contrast of an edge and the number of quanta detected

by each detector element of area a. This criteria is similar to the Rose-SNR, given

by C
√
Aq̄,[11, 12] but it differs from it because signal difference is not defined in an

area A over many elements. Since ringing occurs in lines parallel to the edge, a similar

criterion such as Rose-SNR could be used C
√
Naq̄ where N represents the number of

pixels in the line showing ringing. Figure 5.2 shows conventional and AAP edge-response

functions with different noise levels. Gibbs ringing is visible for the lowest noise level
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Figure 5.2: Conventional (dashed) and AAP (solid) edge response functions and sampled
points (markers) with Gaussian noise having standard deviations of 0.05∆S, 0.1∆S and
0.5∆S where ∆S is the edge signal difference. Gibbs ringing is not visible when noise
standard deviation is less than 1/10th of ∆S, as predicted by Eq. 5.4.

and not visible when noise surpasses 1/10th the signal difference of the edge, as predicted

by Eq. 5.4. Therefore, medical images that have low-noise and high contrast, such as

large calcifications in mammography or sharp bones in radiography, may result in visible

Gibbs ringing using the AAP approach.

We validate the criterion for avoiding Gibbs ringing with AAP x-ray images of a star-

pattern (Tielung, 0.05 mm Pb thickness, 45 mm diameter, with 2◦ angled bars) acquired

using a clinical mammography system (Hologic Inc.) having a Se converter layer and

0.07 mm sensor elements. Gaussian noise was added to images with a standard deviation

equal to a set fraction of edge contrast. AAP images were synthesized to create images

with a = 0.28 mm using a rectangular low-pass filter as done previously.[7]

We can consider the Gibbs ringing criteria in Eq. 5.4 for typical contrast levels and ex-

posures in medical imaging. The mean number of x-ray quanta incident on a detector q̄ =

QoX, whereQo is the number of photons per unit area per air-KERMA [quanta/mm2/Gy]

of the x-ray spectrum and X is air-KERMA, making C
√
aq̄ = C

√
aQoX. A mammog-
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Figure 5.3: (a) A plot showing when Gibbs ringing is visible given image contrast C and
number of quanta q̄ interacting in a Gibbs line artifact parallel to an edge of length N
pixels of size a. For lower contrast or low number of quanta (bottom-left of plot), Gibbs
phenomena is not visible. The bold red line is C

√
Naq̄ < 11.2 where contrast levels and

number of quanta above that line show ringing. (b) Visibility of different contrast levels
as a function number of quanta or air-KERMA incident on an x-ray detector. For typical
mammography air-KERMA incident on the detector of 10-50µGy, most image contrast
levels would not show ringing as they are below the SNR visibility criteria (bold red line).

raphy x-ray spectrum from a molybdenum target at 28kV, using a typical skin entrance

air-KERMA of 5mGy,[13] would have an incident air-KERMA of approximately 50µGy

on the detector. At this technique, a large calcification (0.5-1mm) in the breast will have

a contrast of about C = 0.5, a medium sized calcification (0.1-0.2mm) has a contrast of

about C = 0.25, and soft-tissue lesions have contrast of about C = 0.1. Figure 5.3(a)

shows the relationship between contrast and number of quanta interacting in the detec-

tor that could result in visible Gibbs ringing. Figure 5.3(b) shows a plot of the Gibbs

visibility criteria of these three contrast levels as a function of air-KERMA incident on

the detector.

For typical mammography exposures, the Gibbs ringing visibility threshold Eq. 5.4 is

only passed for contrast C > 0.25 as would be achieved for large calcifications. Therefore,

we conclude that most medical image features are noise-limited and do not cause ringing
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artifacts. For higher exposures or non-medical imaging applications with high contrast,

ringing could be undesirable in AAP image that use a low-pass filter with an abrupt

frequency cut-off.

An AAP filter that does not have a sharp cut-off for reduced Gibbs ringing requires

optimization because there is a trade-off between Gibbs reduction and AAP benefit. A

filter that has a less abrupt cut-off by attenuating frequencies below the image cut-off will

reduce MTF benefit with the AAP approach. On the other hand, a filter that has a less

abrupt cut-off by not blocking frequencies above the image cut-off allows some aliasing

and reduces DQE benefit with the AAP approach. This trade-off can be investigated by

modifying two filter parameters: frequency cut-off smoothness and frequency transition

point.

5.2.1 AAP filter with reduced Gibbs ringing

Filter kernels are extensively used for various applications, and as a result, char-

acteristics of common filters (such as side-lobe level, side-lobe fall off, etc.) have been

quantified and their benefits have been previously described.[14, 15] Although these char-

acteristics are useful, it is still unclear how such a filter would impact MTF and DQE

benefit with the AAP. Therefore, we aim to determine a low-pass filter that suppresses

Gibbs phenomena near high-contrast edges while also improving MTF and DQE with

the AAP approach.

We investigate the effects of an arbitrary AAP filter by modifying cut-off smoothness

s and frequency transition point uf . We define a generic AAP filter using the following

expression,

|F(u)| = 1
2

[
erf

(
u+ uf

s

)
− erf

(
u− uf

s

)]
. (5.5)

For the limiting case when s → 0 and uf = uc = 1/2a, Eq. 5.5 becomes the rectangular
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low-pass AAP filter with a sharp cut-off. This AAP filter expression was chosen for

convenience and easy interpretation, but other filter expressions can be used.

5.2.1.1 AAP filter cut-off smoothness

Modification of parameter s in Eq. 5.5 changes the transition slope at cut-off fre-

quency uc. Figure 5.4 shows the AAP filter for different parameters s in the spatial and

frequency domains. As s increases, the cut-off frequency transition becomes smoother in

the frequency domain and side-lobes in the spatial domain decrease.

The edge response function for different filters results in reduced oscillations as pa-

rameter s increases. Figure 5.5 shows edge responses for AAP filters with s parameters

from Fig. 5.4. It is interesting that the first oscillation in the edge-response does not

significantly change, although other side-lobes decrease significantly. We show the effect

of smoother AAP filters on Gibbs ringing on x-ray images of a star-pattern and Ho-

logic detector. AAP images were synthesized to create images with a = 0.28 mm using

different AAP filters of varying smoothness.

5.2.1.2 AAP filter cut-off transition

Modification of parameter uf in Eq. 5.5 changes the location of the filter cut-off fre-

quency (the frequency location where the filter value is 0.5). Figure 5.6 shows the AAP

filter for different parameters uf in the spatial and frequency domains for a given pa-

rameter s with some smoothness. As uf changes the cut-off frequency location in the

frequency domain, the main-peak of f(x) changes in width and the side-lobe amplitude

does not change by much. This is clearly shown in the edge-response functions in Fig-

ure 5.5. We show the effect of different cut-off frequency locations of the AAP filters on

Gibbs ringing on x-ray images of a star-pattern and Hologic detector. AAP images were

synthesized to create images with a = 0.28 mm using different AAP filters.
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Figure 5.4: AAP filter in the spatial domain (top) and frequency domain (bottom)
for different filter cut-off smoothness parameter s. As s increases, the cut-off becomes
smoother in the frequency domain and side-lobes of the filter in the spatial domain
decrease.
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Figure 5.5: Edge-spread function with different AAP filters having increased smoothness
s. As cut-off frequency transition becomes smoother, the amplitude of the side-lobes
away from the edge are reduced, although the 1st side-lobe does not change.
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Figure 5.6: AAP filter in the spatial domain (top) and frequency domain (bottom) for
different filter cut-off location parameters uf for a set smoothness parameter s = 0.4. As
uf changes the cut-off frequency location, the main-lobe of f(x) changes in width and the
side-lobe amplitude is not affected as much.
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Figure 5.7: Edge-spread function with different AAP filters having different frequency
cut-off locations. A change in the frequency cut-off location does not change the under-
and overshoot amplitudes, but it spreads them apart or narrows them together.

5.2.2 MTF and DQE benefit

We evaluate the effect of the AAP filter with different parameters for smoothness (s)

and cut-off frequency location (uf) on the AAP design. MTF and DQE curves are most

useful as a function of spatial frequency as it shows effects and importance of different

frequencies. A way of quantifying frequency-dependent metrics into a single number

could be using the integral under the curve for given image frequencies. We define the

MTF and DQE benefits with the AAP approach as a percentage,

MTFbenefit =

1/2a∫
−1/2a

sinc(εu) |F(u)| du−
1/2a∫

−1/2a

sinc(au) du

1/2a∫
−1/2a

sinc(εu) du−
1/2a∫

−1/2a

sinc(au) du

× 100% (5.6)
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DQEbenefit =

1/2a∫
−1/2a

sinc2(εu)
1 +∑∞

j=1

∣∣∣F(u± j
a
)
∣∣∣2 du−

1/2a∫
−1/2a

sinc2(au) du

1/2a∫
−1/2a

sinc2(εu) du−
1/2a∫

−1/2a

sinc2(au) du

× 100%. (5.7)

These figures-of-merit are essentially the areas between the AAP and conventional curves.

The benefit with the AAP approach for a given filter is 100% when the area under the

MTF and DQE curves is equal to the area with a low-pass rectangular AAP filter. The

benefit is 0% when the area for a given filter is equal to the area of conventional design.

Experimental validation of the AAP approach using a sharp and smooth cut-off filter

was performed using a Se/CMOS active pixel sensor with 1k x 1k elements having 7.8 µm

size and approximately 1cm2 sensitive area was used to acquire images. The sensor has a

98 µm thick Se layer, a 50 nm gold top electrode and is digitized using readout electronics

with a 16-bit ADC converter. The x-ray beam used for experiments was generated with a

micro-focus x-ray source (9 µm focal spot, PXS5-928) with a stationary tungsten target

at 60 kV and 2 mm of aluminum filtration having an HVL of 1.7 mm of aluminum.

Images were acquired in dynamic mode with 0.136 mAs tube current and 3 second frame

integration time with an air KERMA of 85 µGy per frame.

5.3 Results

5.3.1 SNR criteria to avoid Gibbs ringing

Figure 5.8 shows AAP images of a star-pattern having different amount of noise that

are close to the criteria for avoiding Gibbs ringing. When image noise has a standard

deviation σd̄ = 0.05∆S, where ∆S is the signal difference between background and edge,

then Gibbs phenomena is visible as shown in the left panel. This matches with our
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Figure 5.8: Star-pattern x-ray image with simulated Gaussian noise having standard
deviation is 0.05∆S, 0.1∆S and ∆S, where ∆S is the signal difference at the edge. The
left image shows some ringing, whereas in the other images Gibbs phenomenon is not
visible as expected by the Gibbs visibility criteria.

criteria as the ring amplitudes is greater than image noise. When σd̄ = 0.1∆S, ringing is

less visible but it can still be discerned at some locations as shown in the middle panel.

However, when σd̄ = 0.2∆S, ringing is not visible because the ring amplitudes are less

than image noise as is predicted by the avoiding Gibbs ringing criteria.

5.3.2 AAP filter with reduced Gibbs ringing

The AAP anti-aliasing filter cut-off smoothness and cut-off frequency are two param-

eters that can be modified to reduce Gibbs ringing. Below we show the effects on visual

Gibbs ringing and AAP improvement for different filter parameters.

5.3.2.1 Filter cut-off smoothness

Figure 5.9 shows theoretical MTF and DQE curves with the AAP approach (black)

that implements a different low-pass filter having a smooth cut-off transition for com-

parison to conventional design (red). The MTF curve is least affected by filter (1) that

only slightly attenuates frequencies below the image cut-off (uc = 0.5us where us = 1/a is

the sampling frequency at spacings of a), and most affected by filter (6) that results in
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Figure 5.9: MTF and DQE curves with different AAP filter smoothness (black) com-
pared to conventional design (red). Gibbs ringing is reduced with smoother filter cut-off
transition, although MTF and DQE benefit can also be reduced.
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small MTF improvement with the AAP approach. The DQE curves for different AAP

filters are only modestly affected and most of the DQE benefit is lost at a narrow band

frequencies near the image cut-off. This reduction is due to a small amount of noise

aliasing being allowed by smooth transitioning AAP filters.

Figure 5.10 shows the affect that less abrupt AAP filters cut-off has less Gibbs tin-

ing. X-ray images of a star-pattern were synthesized for different filters with increasing

smoothness from (1) which is a rectangular low-pass filter to (6) which attenuates high-

frequencies the most. The AAP benefit is maximum when using a rectangular low-pass

filter, but unfortunately the high-contrast edge of the bar shows severe ringing. Addition-

ally, low-pass filter (6) which shows the least Gibbs ringing would cause a high penalty

in DQE benefit. Therefore, an optimum lies between around filter smoothness parameter

(3) that only shows the 1st or 2nd overshoot without a large penalty in MTF an DQE.

5.3.2.2 Filter cut-off location

Figure 5.11 shows theoretical MTF and DQE curves with the AAP approach (black)

that implements a different low-pass filter having slightly different cut-off transitions. The

MTF curve is largely affected when filter cut-off location is below uc, and the maximum

MTF benefit is obtained when the cut-off is above uc. The DQE curves is least affected

when the filter cut-off is below uc and largely affected at high-frequencies when the filter

cut-off is above uc. The DQE reduction is due to a large amount of noise aliasing being

allowed when the filter cut-off frequency is above the image cut-off frequency uc.

Figure 5.12 shows the affect of a smooth filter having different cut-off frequencies on

Gibbs tining on x-ray images of a star-pattern. Filter (1) is a rectangular low-pass filter

for references. Filter (2) has a cut-off location below uc = 0.5 and filter (6) has a cut-off

location above uc. The DQE benefit is maximum when using filter (1) because it has the

least aliasing, whereas MTF benefit is maximum with filter (6) because it attenuates the

least frequencies below uc. Gibbs ringing is reduced for all filters (2) - (6) because of their
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Figure 5.11: MTF and DQE curves with different AAP cut-off transitions uf in frequency
(black) compared to conventional design (red). MTF benefit is improved with higher uf ,
although it results in some noise aliasing that will reduce DQE benefit at high-frequencies.
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smooth cut-off frequency transition. Therefore, an appropriate filter that reduces Gibbs

ringing while maintaining the highest MTF and DQE benefit with the AAP approach is

filter (4).

5.3.3 MTF and DQE benefit

Figure 5.13 shows results of the measured MTF (left) and DQE (right) for the AAP

design with an abrupt frequency cut-off (rectangular low-pass) and the modified filter

(4) from the previous section. The modified filter has a slightly smoother frequency

transition and slightly greater cut-off than a rectangular low-pass. Similar improvements

are observed in MTF and DQE with both AAP filters compared to conventional. The

AAP approach with the smooth filter has a slightly lower MTF below the image cut-off

frequency and slightly greater above the image cut-off that causes aliasing. The small

amount of aliasing due to the smooth filter only affects a narrow band of DQE values at

the image cut-off frequency.

Figure 5.14 shows the same star-pattern with simulated noise as in Figure 5.8 but

images were synthesized using the modified AAP filter that has a slightly smoother and

higher cut-off frequency. Gibbs ringing is suppressed in all images and there is a slight

“edge-enhancement” effect.

5.4 Discussion

The AAP approach avoids aliasing by band-limiting frequency response to the im-

age cut-off frequency, and this may cause Gibbs ringing near high-contrast edges. We

determined an SNR-based criteria for when Gibbs ringing is not visible in an image:

C
√
aq̄ < 11.2 where C is contrast, a is detector element area and q̄ is the mean number

of x-rays per mm2. This criteria is satisfied in medical images when trying to discern

low-contrast features using an acceptable low amount of radiation. However, the crite-
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Figure 5.13: Measured MTF (left) and DQE (right) for the AAP design with an abrupt
frequency cut-off (rectangular low-pass) and a slightly smooth cut-off (filter 4 from the
previous section) compared to a conventional design. The smooth cut-off filter has a
small affect on MTF and DQE curves with the AAP approach, providing almost the
same improvement at high-frequencies.
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Figure 5.14: The same star-pattern with simulated noise as in Figure 5.8 but images
were synthesized using the modified AAP filter that has a slightly smoother and higher
cut-off frequency. Gibbs ringing is suppressed in all images and there is a slight “edge-
enhancement” effect.

ria for avoiding Gibbs ringing near high-contrast edges is not satisfied. Therefore, we

demonstrate a worst-case scenario of Gibbs ringing in AAP images using star-pattern

images because they have very high contrast and low noise.

For contrast-limited images, the abrupt cut-off of a rectangular low-pass filter with

the AAP approach is not ideal because it would cause Gibbs ringing near sharp edges.

We modified the AAP filter by slightly smoothening the cut-off transition (s = 0.4) to

reduce ringing. However, a smoother filter also reduces the AAP benefit. So we further

modified the AAP filter by slightly increasing the filter cut-off frequency (uf = 0.52)

to achieve 92% of the AAP benefit. This modified AAP filter achieves high MTF and

DQE at high-frequencies without Gibbs ringing in contrast-limited images. The edge

response of the modified AAP filter still shows the 1st under and overshoot, as shown in

Figure 5.15, although this might be desirable as it slightly “edge-enhances” the image.

For noise-limited images, the criteria to avoid Gibbs ringing is satisfied as is shown

by simulations of noise-limited images in Figure 5.8 where Gibbs ringing is not visible.

Therefore, a rectangular low-pass filter should be used to obtain 100% of the AAP bene-
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Figure 5.15: A plot showing when avoiding Gibbs ringing criteria for the modified AAP
filter (right). This plot shows that many rings are not visible and the 1st side-lobe may
not be undesirable as it causes slight “edge-enhancement”. An oversampled edge response
with conventional and AAP designs (left), showing reduction of oscillations.

fits. In noise-limited image regions, DQE is important for determining detectability so it

is important to use an AAP filter that does not cause noise aliasing such as a rectangular

low-pass filter with an abrupt cut-off. Adaptive filtering algorithms that detect noise-

limited and high-contrast regions could be implemented on-board the AAP detector to

select an appropriate filter for a given imaging task, although this would correspond to

non-linear post processing.

5.5 Conclusion

The AAP approach improves high-frequency MTF and DQE by implementing an

anti-aliasing filter using a micro-sensor array with smaller elements than pixel size. If the

AAP anti-aliasing filter has an abrupt cut-off, it result in Gibbs phenomena near high-

contrast edges that appear as under- and overshoot artifacts. We define an SNR criteria
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to avoid Gibbs ringing with the AAP approach, C
√
aq̄ < 11.2 where C is contrast, a

is detector element area and q̄ is the mean number of x-rays per mm2. This criteria

states that Gibbs ringing is not visible for an edge with contrast C when quantum noise

is greater than the amplitude of Gibbs overshoot. For contrast-limited images where

ringing could occur, we describe a modified AAP anti-aliasing filter that achieves high

MTF and DQE at high-frequencies without Gibbs ringing in contrast-limited images.

The edge response of the modified AAP filter still show the 1st under and overshoot,

as shown in Figure 5.15, although this might be desirable as it slightly “edge-enhances”

images. For noise-limited images were ringing is not visible, a rectangular low-pass should

be used to obtain 100% of the AAP benefits.
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Chapter 6

Conclusions and future work

An overview of the important findings from Chapters 2 - 5 is provided and a

summary of conclusions from each section is presented. ‘study in Chapters 2 - 5 and

suggested future work .

6.1 Overview of research

Breast cancer is the most commonly diagnosed cancer and the leading cause of cancer

death world-wide.[1] This disease has an overwhelming financial and social burden on the

healthcare system, the individuals affected, and the community as a whole.[2] Prevention

of breast cancer remains a challenge, especially because of its association with various

genetic and lifestyle-based risk factors. Therefore, detection and treatment is crucial

for relieving disease burden. Improvements in breast cancer treatment can provide high

5-year survival rates when early detection is possible,[3] although early detection and

discerning benign from malignant disease is difficult. Benign disease is an important

indicator of possible future aggressive disease, but it does not necessarily need immediate

treatment. A current challenge for disease management falls on accurately differentiating

warning signs that should be monitored versus aggressive disease that should be treated

immediately.[4] Obtaining such discernment is extremely desirable and motivates further
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development of imaging techniques to improve specificity and sensitivity of early breast

cancer detection.

There are various imaging modalities for the breast that are used clinically and oth-

ers being developed in research. Each modality has advantages and disadvantages while

providing different information that is useful, as summarized in Table 1.1. Screening

mammography is the primary modality used for early breast cancer detection in asymp-

tomatic populations.[5, 6] It has been proven to detect cancer at an early stage and

reduce mortality when followed by proper treatment.[7] Other imaging modalities that

are useful include: tomosynthesis, ultrasound, magnetic resonance imaging, and contrast

enhanced imaging. These various techniques are used to provide additional structural

and functional information, that improves detection following an abnormal finding with

screening mammography. Since mammography is the first line-of-defense against breast

cancer and subsequent imaging and clinical decisions are based of this x-ray imaging

technique, it is vital that we understand how to provide the best quality x-ray images

for a given exposure.

Signal-to-noise ratio (SNR) in mammography mainly depends on x-ray exposure and

x-ray detector performance.[8] A large clinical study conducted by the Ontario Breast

Screening Program found that not all x-ray detectors have the ability to produce high

image SNR for a given exposure.[9, 10] This multi-centre study found that centres us-

ing higher performing detector technology had 30% greater cancer detection rates while

also using lower exposures. Detector performance is quantified by the modulation trans-

fer function (MTF) and detective quantum efficiency (DQE). Thereby, improving these

detector parameters is very important for obtaining high image SNR with the goal of

improving cancer detection.

The overarching objective of this thesis work is to redesign the conventional method by

which x-ray detectors acquire an image by rethinking image formation to overcome SNR

limitations[11] and reduce artifacts that can impede early detection of breast cancer and

159



ultimately patient outcomes. The greatest opportunity for improvement of x-ray detector

performance is at high-frequency MTF and DQE values which can be lower by a factor of

10 than at low-frequencies.[12, 13] High MTF and DQE performance at high-frequency

is important for clear visibility of small structures and fine-detail, critical markers for

early detection. Based on current x-ray detector designs, we identified noise aliasing

as the main source of DQE loss at high-frequencies.[14] Therefore, this work aimed to

address the following research questions: (1) Can we design a new x-ray detector which

eliminates noise aliasing and results in increased high-frequency MTF and DQE? (2)

What are the x-ray detector design requirements for achieving an “ideal” x-ray detector

in terms of image SNR? (3) With new technology enabling new x-ray detector designs,

can we optimize x-ray imaging by improving SNR and providing missing information

to current x-ray imaging? The development of an “ideal” x-ray detector would impact

mammography screening in two main ways: (1) it allows for use of lower x-ray exposures

to obtain the same image SNR as acquired currently, which may make it more feasible

to increase screening frequency or increase use of other x-ray imaging techniques; (2) it

allows for acquisition of high SNR images, in particular at high frequencies, with the goal

of improving cancer detection rates and reducing false positives.

The specific research objectives pertaining to each chapter were: To design an x-

ray detector (apodized-aperture pixel, AAP) that uses smaller element size than desired

image pixel size and develop a method to synthesize pixels which suppress aliasing for

improved MTF and DQE at high-frequencies (Chapter 2); to determine the best imple-

mentation of the AAP design and identify x-ray detector physics that limit performance

(Chapter 3); implement the AAP approach using a small-area prototype and show im-

provement of fine-detail visualization (Chapter 4); to optimize the AAP anti-aliasing

filter avoiding Gibbs ringing (that can occur near high-contrast edges) while maintaining

AAP benefits (Chapter 5).
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6.2 Summary and conclusions

The AAP design is a new x-ray detector design that eliminates noise aliasing by using

a micro-element sensor array and synthesizing smaller pixels of clinically useful size. In

Chapter 2, we described the development of the AAP approach using a simple cas-

caded model (without x-ray interactions) of a detector with an ideal converter layer. We

compared MTF and DQE performance of the AAP design to those of a conventional

detector. It was shown that the AAP approach preserves the MTF of the small sensor

elements and attenuates frequencies above the image sampling cut-off frequency. This

has the double benefit of improving the MTF by 53% at high frequencies while reducing

both signal and noise aliasing, resulting in an increase of DQE by 2.5× at high spatial

frequencies. The theoretical model was validated experimentally using a selenium (Se)

clinical detector as a proof-of-concept demonstration. A Monte Carlo study and x-ray

images of a star-pattern and rat leg showed improved visibility of edges, fine-detail and

removal of aliasing artifacts. This work demonstrated that the AAP approach improves

high-frequency MTF and DQE resulting in improved SNR of fine-detail for a given ex-

posure.

Previous analysis of the AAP approach was done using an ideal detector model and

therefore did not consider x-ray physics in a general converter layer. In Chapter 3, we

developed a cascaded system analysis (CSA) using a simple-atom model of x-ray interac-

tions that includes effects of stochastic energy-deposition, x-ray reabsorption, quantum

scattering and quantum selection in the detector converter layer. We described the im-

pact of x-ray physics on MTF and DQE using cascaded-systems analysis on conventional

and AAP x-ray detector designs. It was shown that x-ray reabsorption and converter

blur were important factors to consider because they may affect aliasing. A cesium-iodide

detector was used to measure DQE of synthesized conventional and AAP images for cases

with and without x-ray reabsorption (above and below converter K-edge) and converter

blur (small and large pixels). Theoretical models of x-ray spectra below and above con-
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verter K-edge show excellent agreement with experiment. We showed that reabsorption

has negligible effect on the AAP design, whereas converter blur reduces the AAP benefit

because it suppresses aliasing. Therefore, this work demonstrated that the AAP design

should be implemented with a high-resolution converter having blurring effects less than

pixel size to achieve the most benefit over conventional design.

Following results from Chapter 3 showing that x-ray reabsorption does not affect

the AAP design and that a high-resolution converter layer with little blur provides the

most improvement with the AAP approach, our next step was to implement the AAP

approach on a prototype with micro-sensor elements. In Chapter 4, we used a high-

resolution converter layer deposited directly on a complementary metal-oxide semicon-

ductor (CMOS) sensor having micro-sized element size. We described implementation

of the AAP approach on a Se/CMOS prototype with 7.8 µm element size and compared

AAP and conventional (binned) images with 47 µm pixel size. MTF and DQE was mea-

sured using a non-standard clinical spectrum (a tungsten micro-focus x-ray tube with a

60 kV spectrum with 2 mm of added aluminum filtration) but similar air-KERMA was

used as in clinical mammography. It was shown that the AAP design has 1.5× greater

MTF near the image cut-off frequency (uc = 10.6 cyc/mm) than conventional design

and 2.5× greater DQE. This work demonstrated the first ever implementation of the

AAP approach on a micro-sensor array showing a flat-DQE curve up to 10 cyc/mm. In

addition, the AAP approach removes signal aliasing which causes partial volume effects

causing inconsistent visibility of small structures (such as breast calcifications).

Implementation of the AAP design using an anti-aliasing filter with an abrupt cut-

off results in Gibbs ringing (an undesired image artifact) near high-contrast edges. In

Chapter 5, we investigated the impact the AAP filter has on Gibbs ringing and im-

provements on MTF and DQE. We defineda SNR criterion to avoid Gibbs ringing with

the AAP approach: C
√
Naq < 11.2 where C is contrast, N is the number of elements

in a ringing artifact, a is the detector element area and q is the mean number of x-ray
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per area. Gibbs ringing is not avoided for contrast-limited image regions, thus we de-

scribed modifying the filter cut-off transition smoothness and frequency cut-off location

to eliminate Gibbs ringing while maintaining 92% of the AAP benefit in MTF and DQE.

Conversely, Gibbs ringing is avoided for noise-limited image regions, therefore the rectan-

gular low-pass filter can be implemented for 100% AAP benefit. This work demonstrated

a fundamental SNR criteria for when Gibbs ringing is visible (applicable to any system

that has a band-limited response) and described how to modify the AAP low-pass filter

to suppress Gibbs ringing for applications when it is not avoidable.

In summary, we provided: 1) proof-of-concept demonstration of the AAP approach

which improves high-frequency MTF and DQE by using a micro-sensor array and anti-

aliasing filter; 2) description of x-ray physics limitations with the AAP design, showing

that the conditions for best improvement with the AAP design requires a high resolution

converter layer and low read-out noise from the sensor; 3) implementation of the AAP

approach on a small-area prototype showing 50% MTF improvement and 2.5 × DQE

improvement at high-frequencies resulting in a flat-DQE curve up to 10 cyc/mm using

a Se/CMOS sensor; and 4) a SNR criteria for avoiding Gibbs ringing and demonstrated

suppression of ringing in the AAP design.

6.3 Study limitations

The significant limitations from Chapter 2-5 are discussed in this section and their

implications are further elucidated for each respective chapter.

The work in this thesis is mainly based on (1) Fourier metrics and (2) demonstration

of the AAP approach using current detector systems. Use of Fourier metrics is not a

limitation, but rather a strength, as they are very useful for providing insight on detector

performance. It should be noted however that these metrics only apply for imaging

systems that are linear and shift-invariant. Although x-ray detectors are engineered to
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respond linearly over the entire detector area, these conditions might not always be true

(such as when there is image processing turned on). Therefore, one must understand a

system’s response when interpreting Fourier metrics. Since we do not yet have a full-

sized AAP detector, we demonstrate the AAP approach using current detectors by using

the full-resolution image as the AAP micro-sensor signal to synthesize larger pixels for

AAP images. This is not a limitation in terms of evaluating MTF and DQE, but it

is a limitation when visually comparing AAP to current detectors because AAP demo

images have larger pixel size (lower resolution) than current clinical images. To make a

fair comparison, we created “conventional images” by binning (summing) full-resolution

images to create conventional detector images with the same pixel size as the AAP

approach. This also has the advantage of comparing two designs using the same detector

hardware, which removes any other differences that could affect performance.

In Chapter 2, we used a theoretical model to describe the AAP approach and proof-

of-concept experiments to demonstrate the potential of the AAP design. This model

provides a good understanding of the improvements with the AAP design compared to

conventional under simplified conditions. The main limitation is that the theoretical

model assumed an “ideal” converter layer without x-ray interactions or blur. This means

that MTF and DQE improvements shown here are only applicable only for very high-

resolution converter layers that do not degrade DQE for any other factors as well. Since

actual detectors rarely behave ideally, one should be aware that the results shown here

provide a limiting case of the best MTF and DQE performance.

In Chapter 3, we used a theoretical model of x-ray interactions utilizing a simple-

atom model that only considers one atomic transition and one interaction per x-ray. This

is an approximation that provides results of signal and noise in an image with up to 2%

uncertainty.[15, 16] Although this model has been thoroughly validated via Monte Carlo

simulations, it is a challenge validating it experimentally. We used a semi-empirical vali-

dation to compare noise properties of our detector below and above the detector converter

164



K-edge. Direct empirical validation is challenging because there are many unknown char-

acteristics/factors about the detector, such as housing material thicknesses and secondary

quanta collection efficiency of the sensor. However, obtaining good agreement for two

different x-ray beams with different x-ray reabsorption gives confidence that the model

is accurate. Our model does not consider Lubberts effects or variations in quantum gain

stages. However, these effects are small for high-resolution direct converters such as

selenium.[17, 18]

In Chapter 4, we implemented the AAP approach on a micro-sensor prototype and

showed MTF and DQE improvements for images with typical mammography pixel size

(0.05 - 0.1 mm). In addition to showing MTF and DQE comparisons between con-

ventional and AAP designs, we demonstrated how signal aliasing causes partial volume

effects that result in inconsistent visualization of specks in mammography phantoms

with the conventional design. A limitation in interpreting our results for mammography

is that we used a non-standard mammography spectrum and setup due to laboratory

constraints. In addition, our x-ray tube has a micro-focus source which is important for

high-resolution imaging. Our calculations show that a typical 0.1 mm focal spot size

with a source-to-image distance of 60 cm only slightly reduces the micro-sensor MTF at

high-frequencies by 5%. A limitation in our demonstration of partial volume artifacts

resulting in speck contrast differences is that we simulated sub-element shifts in the ob-

ject by shifting our sampling grid. This digitally shifts the object, in discrete amounts,

whereas ideally we would like to randomly re-position the object on the detector and

obtain an image. Our demonstration shows an incomplete representation of the full

variability caused by partial volume effects.

In Chapter 5, we defined SNR criteria for avoiding Gibbs ringing with the AAP

approach and describe a method of modifying the AAP filter the reduce Gibbs ringing

while maintaining the benefit of the AAP approach. A limitation of our SNR criteria to

avoid Gibbs ringing is that it describes a worst-case scenario. For example, it does not
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consider detector converter blur, non-uniform noise and anatomical background, all of

which would reduce the visibility of Gibbs ringing. Therefore, we believe Gibbs ringing

would not be an issue in medical imaging yet it could occur in non-medical applications.

A limitation in our optimization of the AAP filter that suppresses Gibbs ringing is that

we started with a fixed analytic expression with 2-degrees of freedom (parameters s ad

uf). Other filter shapes could be found that provide different benefits to MTF or DQE.

Additionally, we only used one object as an example to show the effects of Gibbs ringing

and its suppression.

6.4 Future directions

6.4.1 DQE improvement that results in an observable image

difference

Since the overall goal of my research is to develop a high-DQE detector design, it

is important to understand how much of a DQE improvement is necessary to make an

observable difference in an image. However, it is not known how much DQE improvement

at low or high frequencies results in a noticeable difference in x-ray images. Therefore,

the objective of this proposed future work is to determine what DQE increase is required

to make a noticeable improvement in image quality.

Image quality is object dependent, in addition to depending on x-ray detector per-

formance and x-ray exposure.[19] To isolate the impact of the x-ray detector, we study

image quality of a Rose phantom (having disks of various diameter and contrast) for

a given number of x-ray quanta incident on the detector. A Monte Carlo simulation

was done of Rose phantom images with a uniform background and uncorrelated noise.

Different x-ray detector DQEs were modeled as being flat (frequency independent) but

having different quantum efficiency. A total of 110 images were simulated from detectors

with different DQEs with the same number of x-ray quanta incident. We developed a
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Simulated image from lower DQE Simulated image from higher DQE

Figure 6.1: Two-alternative forced-choice study to determine the minimum DQE im-
provement that would result in an observable difference in SNR. Simulated Rose-phantom
images from x-ray detectors with different DQEs were displayed side-by-side with syn-
chronized window and leveling.

graphical user interface (GUI) in C++ (GCC4.8.2, Qt5.2.1) to simultaneously display

image pairs (left and right) corresponding to two combinations of DQE values, as the

two-alternative forced-choice (2AFC) study shown in Figure 6.1. Ten graduate student

volunteers were asked to select which image had more visible disks. Participants had

the freedom to adjust image window and level, although the GUI was synchronized to

update the window and level in the opposite image for a fair comparison. Images were

randomized, participants were asked to view the images at least 50cm away from the

screen and 110 images were shown to each participant.

For different DQE ratios (right over left), Figure 6.2 shows the relative frequency

in which the right image was selected as the higher quality image. The curve shows an
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Figure 6.2: Fraction of times the right-hand imaging chosen by an observer as having
more visible disks for different DQE ratios of right-to-left imaging systems. The curve
has an approximately sigmoidal response that is similar to the detectability index for an
ideal observer. A 10% DQE improvement was required to make a noticeable difference
in image SNR for observers.

approximately sigmoidal response as would be expected for an ideal observer in a uniform

background.[20, 21] The DQE ratio of 1 means the DQE was the same for left and right,

and since the fraction of times the right side was selected is 0.7 means there is a bias

toward the right image. This bias could be due to most of the participants being right-

handed. The fraction of times the right image was selected is significantly different when

DQE ratio is 0.9 and 1.1, meaning that a DQE increase or decrease of 10% is needed

to change observer performance. The implication is that new detector designs should

improve DQE across all frequencies by at least 10% to provide an observable increase in

image quality.

In conclusion, observer selection of simulated x-ray images corresponding to different

detector performance shows that a 10% DQE improvement (or more) results in a notice-

able difference on image quality. Comparisons of Rose phantom images does not allow

for analysis of spatial-frequency dependent image quality. Future studies could be done

similar to here but DQE differences could be made at either low, mid or high frequencies.

Additionally, other tasks besides the Rose phantom in a uniform background could be

investigated (such as correlated noise, anatomical background and detection of lesions of
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varying sizes) for a better understanding of the detector performance needed to improve

decision making of challenging diagnostic tasks.

6.4.2 Ultrahigh-resolution imaging of microcalcifications in mam-

mography

An additional benefit of having higher resolution in mammography is to provide more

morphological information about microcalcifications. Microcalcification morphology is

an indicator of breast cancer aggressiveness.[22, 23, 24] However, calcifications can be

as small as only a few image pixels in current mammography which makes it extremely

challenging to differentiate between a round smooth shaped calcification versus an ir-

regular shaped calcification. Figure 6.3 shows x-ray film images containing calcifications

from malignant and benign cancer cases at mammographic resolution (left panels) and

at high specimen imaging resolution (right panels).

We propose developing an x-ray detector that has the ability to acquire high SNR

images at ultrahigh resolution (10-25 µm) than current mammography pixel size (50-100

µm). Image SNR is tested clinically using phantoms (such as CDMAM) that allow for de-

tectability scoring of disks in a uniform background. Our objective is to investigate SNR

and detectability scoring in images from conventional and ultrahigh-resolution designs.

An x-ray detector prototype having selenium (Se) directly deposited on a comple-

mentary metal-oxide-semiconductor (CMOS) sensor with 7.8 x 7.8 µm element size was

used to acquire images of phantoms and microcalcification samples from breast biopsies.

A 60 kV x-ray beam from a tungsten tube with 2 mm of aluminum filtration was used

to acquire images at 85 µGy incident air-KERMA on the sensor.

High SNR images of microcalcifications were acquired using a Se/CMOS prototype

with 7.8 µm element size. Figure 6.4 shows better visualization of calcification mor-

phology at ultra-high resolution. At smaller pixel size, the image noise is greater as

there are fewer quanta interacting in each element than with larger pixels. Even though
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Figure 6.3: Micro-calcifications from malignant (top) and benign (bottom) cases acquired
with a mammography system (left) and high-resolution specimen x-ray imaging (right).
Both malignant and benign calcifications were categorized as high-risk (BIRADS 4 or 5)
but high-resolution images show clear morphological differences related to malignancy
(confirmed by histology). Modified from Langen et. al., Rad. Res. Prac., 526293, 2012.
Permission to reproduce provided in Appendix.
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Conventional resolution
(70µm pixel size)

Ultra-high resolution
(7.8µm pixel size)

Figure 6.4: X-ray images of a microcalcification obtained during a breast biopsy shown at
current mammography resolution, 0.07mm pixel size (left), and at 10× higher resolution,
0.007mm pixel size (right). There is poor morphological information in the conventional
image because only a small number of pixels make up the calcification, whereas higher
resolution more clearly shows texture and shape of the calcification.

there is greater quantum noise, it is still possible to clearly visualize calcifications at

high-resolution because the sensor has extremely low readout noise.

We are proposing using detectors with high resolution sensors clinically. When large

file sizes cannot be transfered, displayed or stored, then the AAP approach can be used

to improve visibility of fine-detail and small structures. If one is not limited by those

factors, we propose using ultrahigh resolution where there are microcalcifications. We’ve

demonstrated that CMOS sensors can be used to acquire ultra-high resolution images of

microcalcification with high SNR.

[I’d like acknowledge the help of Kalan Lynn and Dr. Muriel Brackstone for providing

biopsy samples in this preliminary study.]
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6.4.3 Impact of the AAP design tomosynthesis and computed

tomography

Flat-panel detectors are used for cone-beam computed tomography (CBCT) in var-

ious applications, including breast imaging, as there have been much interest in breast

CBCT.[25, 26] The main advantages of CBCT over typical fan-beam CT[27] are quicker

acquisition times and lower radiation dose. However, a main limitation of CBCT is poor

image quality due to large amounts of scattered radiation because x-rays are interacting

in a larger field-of-view in the patient. To overcome this limitation, anti-scatter grids can

be used that allow for primary beam transmission while blocking the scatter radiation.

For applications that use stationary grids which are not fixed to the detector, “grid-lines”

in the image can be difficult to avoid due very small grid motion. These artifacts make

the image unusable, as shown in Figure 6.5 (left), thus they must be removed. Typically

grid-line suppression can be done via different methods,[28] but if the gird-line frequency

is above the image sampling cut-off frequency of the image then the AAP approach can

be used to reduce the artifact.

We used a previously developed 2-dimensional anti-scatter grid manufactured from a

cobalt-chrome alloy using laser melting.[29] The grid has septa spacings of 1.1mm and

septa width of 0.1mm; it was place in front of an x-ray detector (DRX-Plus, Carestream)

having 0.139 pixel size. To demonstrate and compare AAP performance with CBCT, we

created conventional projections that were binned 4 × 4 and AAP projections with the

same size (0.556mm). Figure 6.5 shows phantom objects and grid lines mainly caused

by aliasing of the small grid spacings. Anti-aliasing with the AAP approach drastically

suppresses the grid artifact.
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Conventional projections
have grid-line artifacts

AAP projections
avoid grid-line artifacts

Figure 6.5: A cone-beam CT projection of a phantom with an anti-scattering grid placed
in front of the detector. The image on the left is a conventional image with 0.56mm pixel
size (binned 4 × 4) and the image on the right is an AAP image synthesized with the
same pixel size. The conventional image has a pronounced grid artifact caused mainly
by aliasing of the small grid spacings. Anti-aliasing with the AAP approach drastically
suppresses the grid artifact.

AAP and conventional projections were reconstructed using the same algorithm (Parker

weighted Feldkamp, Davis and Kress (FDK) back-projection algorithm) with isotropic

voxels 0.139mm is size.[30] Figure 6.6 shows reconstructed slice with conventional pro-

jections (left) and AAP projections (right). Ring artifacts with the conventional design

obstruct visibility of all bar-patterns, whereas these artifacts are greatly suppressed with

the AAP approach. The image cut-off frequency for both AAP and conventional images

is 0.9cyc/mm and the fundamental grid frequency is 0.91cyc/mm. Although the funda-

mental frequency is above the Nyquist cut-off and should be aliased, incomplete removal

of the grid-lines with the AAP could be due to the fundamental frequency having some

width (and spectral power) below the image cut-off 0.9cyc/mm. We expect that a slightly

higher frequency grid, or smaller pixels, would completely remove the grid artifact.

We show grid-line reduction as an example of the possible benefits with an AAP de-

tector used for CBCT reconstruction. It would be interesting to investigate image quality
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CBCT slice with conventional
(bright rings are due to grid-lines)

CBCT slice with AAP
(significant suppression of rings)

Figure 6.6: A cone-beam CT reconstructed slice with conventional projections (left,
binned 4 × 4) and AAP projections (right, 4× pixel size) showing resolution bar-patterns.
The CT slice with conventional projections has ring artifacts caused by the grid artifact,
which are suppressed with the AAP approach.

in CBCT using an AAP detector as it could improve image quality for every projection

that could sum to show a large difference in the reconstructed slice. Another 3D imag-

ing application that the AAP detector could provide benefit for is breast imaging using

tomosynthesis. Each projection in tomosynthesis is acquired at a fraction of the dose in

typical mammography, therefore detectors with high DQE are required as each image is

quantum noise-limited. Since the AAP approach improves high-frequency DQE, it could

potentially improve visibility of microcalcifications that are currently more difficult to

visualize in tomosynthesis than mammography.

[I’d like acknowledge the help of Santiago F. Cobos, a PhD candidate in Dr. David

Holdsworth lab, who provided CT data and contributed to image processing.]
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6.5 Significance and impact

The significance of this work is in the improvement of x-ray detector technology to

achieve what has not been possible to date. Much work has gone into developing x-ray

detectors into the impressive devices they are today, having close to ideal dose-efficiency

when it comes to visualizing large structures. However, they can be orders of magnitude

less efficient at producing high SNR images of fine-detail and small-structures. Detection

of fine-detail is crucial for many medical applications, such as mammography, where

micro-calcifications are found in over 90% of cancer detected[31, 32] and their morphology

can bean indication of cancer aggressiveness.[33] Poor image SNR for a given exposure

and the poor image resolution of fine-detail with conventional x-ray systems is due to

detector design. Therefore, it is imperative to redesign the way x-ray detectors acquire

images to improve dose-efficiency for improved cancer detection.

In this thesis, we have developed a new x-ray detector design that we call the apodized-

aperture pixel (AAP). This design is novel over conventional detectors, where one detector

element contributes to only one pixel, by using a micro-sensor array to synthesize image

pixels using a weighted combination of many detector elements. This detector has the

advantage of improving both high-frequency MTF and DQE when used with a high-

resolution converter layer. High-frequency MTF is improved by the micro-sensor array

aperture and high-frequency DQE is improved by implementation of the anti-aliasing

AAP design to avoid noise aliasing. We have shown the design, development and technical

performance of the AAP with the goal of manufacturing a full-sized detector for clinical

use and evaluation of cancer detection improvements. A cancer center that is equipped

with the high performing AAP design has the potential to detect cancer that would be

missed and identify aggressive disease that requires immediate intervention.
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