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Abstract

Let G be a finite group. The ring RK(G) of virtual characters of G over

the field K is a λ-ring; as such, it is equipped with the so-called Γ-filtration,

first defined by Grothendieck. In the first half of this thesis, we explore the

properties of the associated graded ring R∗K(G), and present a set of tools to

compute it through detailed examples. In particular, we use the functoriality

of R∗K(−), and the topological properties of the Γ-filtration, to explicitly de-

termine the graded character ring over the complex numbers of every group of

order at most 8, as well as that of dihedral groups of order 2p for p prime.

In the second half, we study the interplay between the graded character

ring of a group and those of its subgroups: while restriction of representations

gives rise to a well-defined graded ring homomorphism, induction does not

preserve the Γ-filtration, thus R∗K(−) is not a Mackey functor. We introduce a

modified filtration that remedies this, and explore ways to compute the asso-

ciated graded ring. We then turn to tensor induction of representations, and

show that in the case of complex characters of abelian groups, both inductions

preserve the filtration. Therefore, the restriction of R∗C(−) to abelian groups

is a Tambara functor.

Keywords: Virtual characters, finite groups, λ-rings, Grothendieck filtra-

tion, Mackey functors, Tambara functors
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Chapter 1

Introduction

1.1 Motivation

Let G be a finite group and K a field of characteristic zero. Let RK(G) be

the ring of virtual characters (or character ring) of G, generated by the ir-

reducible characters of G over K, which has a ring structure coming from

the tensor product of representations. The ring RK(G), with the operations

{λn : RK(G) → RK(G)} induced by exterior powers of representations, to-

gether satisfy the axioms of a λ-ring.

Grothendieck used the theory of λ-rings in the late 1950s to provide a

categorical framework for the Riemann-Roch theorem (see [Ber71]). With each

λ-ring R, he associated a filtration (hereafter the Grothendieck filtration, or Γ-

filtration); the associated graded ring gr∗R is equipped with so-called algebraic

Chern classes, which satisfy the properties of the eponymous construction in

algebraic topology. To underline the importance of this construction, let us

mention that, when X is a smooth algebraic variety (say, over the complex

1



CHAPTER 1. INTRODUCTION 2

numbers), there is an isomorphism

gr∗K(X)⊗Q ∼= CH∗X ⊗Q,

where CH∗X is the Chow ring of X and K(X) is the Grothendieck group

of algebraic vector bundles over X (see for example [Ful98, Ex. 15.2.16]). If

X is a reasonable topological space and K(X) is, this time, its topological

K-theory, then

gr∗K(X)⊗Q ∼= H2∗(X,Q),

where H2∗(X,Q) is the even part of the singular cohomology of X (see [Ati89,

Prop. 3.2.7]). Both of these isomorphisms are compatible with Chern classes.

Character rings are natural examples of λ-rings; despite this, examples of

graded character rings in the literature are few and far between. In the sequel,

we write R∗K(G) for gr∗(RK(G)). The first mention of an explicit computa-

tion appears in a 2001 preprint by Beauville ([Bea01]), and states that for a

complex connected reductive group G, the graded ring R∗C(G) ⊗ Q is simply

described in terms of a maximal torus and its Weyl group.

As in all of the above results, the graded ring is tensored with Q; but in

[GM14], Guillot and Mináč showed that when G is a finite group, the ring

R∗K(G)⊗Q is zero in positive degree. Determining R∗K(G) in this case is hard,

as few tools have been developed to do so; but it is not hopeless, and [GM14]

contains computations of R∗C(G)⊗F2 for some 2-groups using elementary tools.

Another successful approach is offered in [Yag15]: using the isomorphism be-

tween the character ring R(G) of a group and the topological K-theory of its

classifying space K(BG), Yagita computes some well-chosen examples of the

graded character ring R∗(G) via the Atiyah-Hirzebruch spectral sequence (see
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[Ati61]), which converges to the Grothendieck filtration of the character ring

in these (but not all) cases. This is a powerful method; however, the elemen-

tary approach in [GM14] presents the advantage of being easily checkable, and

yielding explicit results in terms of characters of the group.

This thesis presents results obtained in an attempt to better understand

graded character rings of finite groups, through a two-sided approach: first, by

considering explicit examples (What do graded character rings look like?), and

second, by focusing on their general structure (How do they behave?). The

first question is treated in Chapter 2, where we develop several elementary

computation techniques to explicitly determine R∗K(G), using functorial and

topological properties of R∗K(−). The body of examples thus obtained will

grant us the necessary intuition to take a deep dive into the general theory in

Chapter 3, where we take a closer look at the interplay between R∗K(G) and

R∗K(H) for subgroups H of G.

The theory of graded character rings is rich and intricate, and full of sur-

prising results. We hope the work presented here will encourage the reader to

explore it further.

1.2 The concrete side: computing graded

character rings

Determining R∗K(G) explicitly is an arduous but fascinating endeavour, as even

the most "innocent" groups lead to remarkable results; throughout Chapter 2,

we build a toolbox of computation tricks and techniques, while gaining insight

into the bigger picture. For example, the following computation (presented be-

low as Proposition 2.3.3) shows that there is no "Künneth formula" for R∗C(G):
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Theorem 1.2.1. Let Cp be a cyclic group of prime order p. Then:

R∗C(Ck
p ) = Z[x1, · · · , xk]

(pxi, xixpj − x
p
ixj)

, with |xi| = 1.

In fact, there is no known general formula for the graded character ring of a

product of two groups; this makes determining graded character rings of some

"easy" groups surprisingly difficult, a consequence that is in turn illustrated by

the rather sophisticated computation of R∗C(C4 × C4), the very last one that

we present in Chapter 2. A Künneth formula does hold, however, for products

of groups of coprime order (see Corollary 2.3.2); then the ring R∗C(G × H)

can be expressed as the tensor product R∗C(G) ⊗ R∗C(H). This means that

the computation of (complex) graded character rings of abelian groups, for

instance, is reduced to that of R∗C(−) on abelian p-groups.

Even under this restriction, the structures appearing are strikingly com-

plex. For example, the main theorem of [Qui68] can be adapted to show that

for an abelian group G and for each prime p, there is an explicit, surjective

morphism:

R∗C(G)⊗ Fp → gr•FpG,

where gr•FpG is the graded ring associated to the filtration by powers of

the augmentation ideal of FpG. In particular, the following result is a direct

corollary of Theorem 2.4.3:

Theorem 1.2.2. Let G be an abelian p-group of the form Cpi1 × · · · × Cpin .

Then R∗C(G) is generated by elements x1, . . . , xn of degree 1 such that any

monomial in any relation between these in R∗C(G)⊗Fp features some xp
ik

k , for

some index k.

This result is illustrated by Theorem 1.2.1 above, and again by the example
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of C4 × C4:

Proposition 1.2.3.

R∗C(C4 × C4) = Z[x, y]
(4x, 4y, 2x2y + 2xy2, x4y2 − x2y4)

with |x| = |y| = 1, therefore

R∗C(C4 × C4)⊗ F2 = F2[x, y]
(x4y2 + x2y4) .

(This is Proposition 2.6.2 in the text.) Notice how relations modulo 2

involve either x4 or y4 in each monomial. The computation of R∗C(C4 × C4)

uses every technique and tool presented in Chapter 2: relations are found

via algebraic manipulation of virtual characters in RC(G), and by studying

the restriction of characters of C4 × C4 to various subgroups. To conclude

the computation, we resort to the topological properties of the Grothendieck

filtration, presented in detail in Section 2.5.

Theorem 1.2.4. Let G be a p-group. Then for each g ∈ G, the evaluation

morphism evg : RC(G)→ Z[µm], where µm is an appropriate choice of root of

unity, is continuous with respect to the topology induced by the Grothendieck

filtration and the p-adic topology, respectively.

This means that if for some largeM , a virtual character χ is in ΓM(G), the

M -th ideal in the Grothendieck filtration of G, then evg(χ) must be divisible

by a large power of p; we use this fact to solve questions of order and nilpotency

in R∗C(G).

Of course, the abovementioned techniques can be applied to computing

graded character rings of non-abelian groups. In fact, Chapter 2 contains
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computations of R∗C(G) for every group G of order less than 16, as well as

for all dihedral groups of order 2p, for p prime. Two particularly interesting

examples among them are those of the dihedral group D4 of order 8, and the

quaternion group Q8: because it takes λ-operations into account, the graded

character ring is able to distinguish non-isomorphic groups with the same

character tables, as shown by comparing the results of Proposition 2.3.5 and

Theorem 2.5.4.

Proposition 1.2.5.

R∗C(D4) = Z [x, y, b]
(2x, 2y, 4b, xy, xb− yb)

with |x| = |y| = 1 and |b| = 2, and

R∗C(Q8) = Z[x, y, u]
(2x, 2y, 8u, x2, y2, xy − 4u)

where |x| = |y| = 1 and |u| = 2.

Thus graded representation rings not only benefit from a complicated and

mysterious theory, they are also a rather fine invariant of groups.

Finally, let us briefly address the matter of the base field: all computations

mentioned so far pertain to complex representations. Over other fields, the

situation can become much more complicated; we do claim one intriguing

result over the rationals:

Proposition 1.2.6.

R∗Q(Z/pZ) = Z[x]
(px)

with |x| = p− 1.
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Note that R∗Q(Cp) is concentrated in degrees multiple of (p−1); this is actu-

ally true of every p-group over the rationals (see Proposition 2.2.2). Strikingly,

even R∗Q(CN) for composite N is not known.

The general behaviour of graded character rings of finite groups can be

glimpsed through the cracks of Chapter 2. It is the subject of Chapter 3.

1.3 The abstract side: Mackey functors and

Tambara functors

Regarding the general structure and behavior of graded character rings, much

of the work presented in Chapter 3 boils down to the following question: for

each H ≤ G, the restriction and induction maps going between RK(G) and

RK(H) turn RK(−) into a Mackey functor, a particularly widespread type of

algebraic structure (group cohomology and algebraic K-theory are examples

of Mackey functors). Is R∗K(−) also a Mackey functor?

The answer is, unfortunately, negative: while graded character rings are

functorial, and thus restriction induces a well-defined ring homomorphism on

R∗K(−), the induction map does not preserve the Grothendieck filtration. An

analogue to Cartan and Eilenberg’s result on stable elements in cohomology

([CE99, Th. XII.10.1]) states that, if S is any Mackey functor, the following

result applies:

Proposition 1.3.1. If H := Sylp(G) is abelian, then

ResGH : S(G)(p) −→ S(H)NG(H)

is an isomorphism.
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Here Sylp(G) denotes a p-Sylow of G, and S(H)NG(H) is the set of ele-

ments of S(H) that are invariant under the action of the normalizer of H in

G. In the example of the alternating group A4 of order 12, the surjectivity

condition fails when restricting to the 2-Sylow C4 × C4, and thus the graded

character ring functor R∗C(−) is not a Mackey functor. This is Lemma 3.2.4

and Theorem 3.2.5 in the text.

It is possible to "Mackeyfy" graded character rings by modifying the

Grothendieck filtration. We define in Section 3.3 the saturated filtration

{F n(G)}n≥0 as the minimal filtration that is preserved by induction of

characters and contains the Grothendieck filtration, that is:

F n(G) =
∑
H≤G

IndGH(Γn(H)),

where Γn(H) is the n-th ideal in the Grothendieck filtration of H. We call

its associated graded ring the saturated ring of G and denote it by R∗K(G)

(as opposed to R∗K(G) for the usual graded ring). Fortunately, restriction of

representations also preserves this filtration, and thus:

Theorem 1.3.2. The saturated graded ring:

R∗K(−) :=
⊕
n≥0

F n(−)/F n+1(−)

is a Mackey functor.

(See Theorem 3.3.2). At a first glance, there is no guarantee that R∗K(−)

is not trivial in some way or other: a lot of the information contained in the

Grothendieck filtration could be lost through this modification. The following

corollary to [Ati61, Th. 6.1] reassuringly states that some of the information
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remains: the generators of the saturated graded ringR∗(−) are also topological

generators for RK(G).

Theorem 1.3.3. The filtrations {F n}n and {Γn}n induce the same topology

on RK(G) as the I-adic filtration, where I = ker(ε) is the kernel of the degree

map.

This means, in particular, that induction is continuous with respect to the

I-adic topology, and extends to a map ÎndGH : R̂(H) → R̂(G) on completed

rings. This, combined with the stable element result, gives us Theorem 3.3.10,

an analogue to Artin’s theorem:

Theorem 1.3.4. Let X be a family of subgroups of a finite group G. Let

Înd :
⊕
H∈X

R̂(H)→ R̂(G)

be the morphism defined on each R̂(H) by ÎndGH . If X contains a p-Sylow

subgroup of G for every prime p, then Înd is surjective.

What information is gained? Subgroups of G feature prominently in the

definition of the saturated filtration, so that the ring R∗(G) might remember

some of the subgroup structure of G, and it might distinguish groups with the

same character table and power maps.

There are many examples of groups G such that the two filtrations coincide,

and the natural map R∗K(G)→ R∗K(G) is an isomorphism (these two facts are

actually equivalent, as we show in Corollary 3.3.4); we call them saturated

groups. The following result combines Proposition 3.4.1, Proposition 3.4.4,

and Proposition 3.4.6:
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Theorem 1.3.5. Groups of order less than 12, as well as abelian groups,

and dihedral groups of order 2p for p prime, are saturated. In particular, the

restriction of R∗C(−) to abelian groups is a Mackey functor.

The saturated filtration would be of little use if one could only compute the

saturated rings of saturated groups. This is where the stable elements method

comes into play; it allows us to deduce the graded ring of a group from those

of its Sylow subgroups, as we do in Theorem 3.4.7:

Proposition 1.3.6. Let G = PSL(2, p) be the projective special linear group

over Fp, where p is an odd prime such that p ≡ 3, 5(mod 8). Write:

|G| = 4 · p · li11 · · · linn · r
j1
1 · · · rjmm , with lk|(p− 1), rk|(p+ 1).

Then:

R∗(G) ∼=
Z[x1, · · · , xn, y1, · · · ym, z, t, u]
(likk xk, r

jk
k yk, 2z, 2t, pu, z3 − t2)

with |xk| = |yk| = |z| = 2, |t| = 3, |u| = (p− 1)/2.

Remarkably, the above result is obtained without using any information

about the character table of PSL(2, p). Saturated rings are thus particularly

interesting from an inverse problem point of view: knowing R∗K(G), what can

we deduce about RK(G)?

The last problem we treat in Chapter 3 is that of tensor induction, a multi-

plicative map RK(H)→ RK(G). Mackey functors equipped with such a multi-

plicative map (and satisfying certain axioms) are called Tambara functors. In

group cohomology, this role is played by the Evens norm, wich, applied to the

subgroup inclusion G ↪→ G×Cp (for p prime), can be used to define Steenrod

operations. The (ungraded) character ring RK(G) with tensor induction is also

Tambara functor, as we prove in Section 3.5.
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Section 3.6 explores the interaction between tensor induction and the Gro-

thendieck filtration; to this effect, one needs to understand how the tensor

induction map (hereafter "norm map") can be extended to virtual characters.

This is a remarkably complex problem, as there is no known formula for the

norm of the sum of two characters, even when those come from actual rep-

resentations. We follow Tambara’s account and, restricting first to normal

subgroups of prime index, then to abelian groups, we obtain such a formula.

This is the key to prove Corollary 3.6.10:

Theorem 1.3.7. The restriction of R∗C(−) to finite abelian groups is a Tam-

bara functor.

As an application, we propose in Section 3.7 to compute, for any abelian

group G, the norm of any degree-one Chern class from R∗C(G) to R∗C(G ×

Cp). This brings us one step closer to defining Steenrod operations on graded

character rings.

More general cases, as that of R∗K(−) for abelian groups and general K, or

that of R∗K(−) for general groups, remain open.



Chapter 2

Computing graded character

rings

We start our study of graded character rings with a practical, computational

approach. The main definitions are introduced in Section 2.1; each of sections

3 to 6 is focused on a different computational tool. We show in Section 2.2

two elementary computations, concerning cyclic groups over any algebraically

closed K (after [GM14]), and over the rationals, and we will then restrict our-

selves to the case K = C. In Section 2.3, we put the cyclic group example

to good use: we show that restriction of characters is a well-defined homo-

morphism and apply it to elementary abelian groups as well as some dihedral

groups. In Section 2.4, using a result of Quillen in [Qui68], we construct the

aforementioned morphism R∗C(G) ⊗ Fp → gr•FpG. In Section 2.5, we look at

the continuity of evaluation of characters with respect to the topology induced

by the Grothendieck filtration, and the p-adic topology. We apply our results

to graded character rings of p-groups: first in Section 2.5 for the quaternion

group of order 8, and second in Section 2.6 to some abelian 2-groups.

12



CHAPTER 2. COMPUTING GRADED CHARACTER RINGS 13

2.1 Definitions and first properties

We recall some facts about the Grothendieck filtration on λ-rings, in the con-

text of character rings. A concise treatment of the basic facts about λ-rings

can be found in [AT69]. Let G be a finite group, and let K be a field of

characteristic zero. The ring of virtual characters (or character ring) RK(G)

of G is the augmented ring generated by irreducible characters of G over K;

the augmentation ε : RK(G) → Z is the degree map. Note that, since K

has characteristic zero, representations up to isomorphism are determined by

their characters. Thus RK(G) is also the Grothendieck ring on the category

of KG-modules, and we use the terms "character" and "representation" inter-

changeably when there is no risk of confusion. For instance, if χ is a character

of G, by "the n-th exterior power λn(χ) of χ", we mean "the character associ-

ated to the n-th exterior power of the representation affording χ". The maps

{λn}n satisfy for all characters χ, τ :

(i) λ0(χ) = 1

(ii) λ1(χ) = χ

(iii) λk(χ+ τ) = ∑
i+j=k λ

i(χ)λj(τ)

The addition formula above allows us to extend λn to RK(G), by defining each

λn(−χ) by the equation λn(χ + (−χ)) = 0 for n > 0. We say that RK(G),

together with the maps {λn}, is a pre-λ-ring. Since the λ-operations also

satisfy axioms [AT69, §1 (12)-(14)], we see that RK(G) is a λ-ring. We define:

λT :


R(G) → 1 + T ·R(G)[[T ]]

ρ 7→ 1 +∑∞
i=1 λ

i(ρ)T i
.
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Call x a line element if λT (x) = 1 + xT . Alternatively, x is a line element

whenever it is a one-dimensional representation of G.

Remark. In the terminology of [AT69], a ring with λ-operations satisfying the

first three axioms above is called a λ-ring, and the additional axioms make it

a special λ-ring. These extra axioms describe in particular how λ-operations

interact with the ring multiplication. As it turns out, they are equivalent to

the so-called "splitting principle", stated below as Proposition 2.1.3, and to

which we refer in practice for calculations.

For x ∈ RK(G) and n ∈ N, put

γn(x) = λn(x+ n− 1) = (−1)n
n∑
i=0

(−1)iλi(x+ n),

the n-th gamma operation. Let I = ker ε be the augmentation ideal, and note

that if x ∈ I then γn(x) ∈ I. Let Γn be the additive subgroup of RK(G)

generated by the monomials

γi1(x1)γi2(x2) · · · γik(xk), xi ∈ I,
k∑
j=1

ij ≥ n.

One can show that Γ0 = R(G), Γ1 = I, and that each Γn is a λ-ideal (see

[AT69, Prop. 4.1]). Moreover, the Γ-filtration contains the I-adic filtration on

RK(G), that is, Γn ⊇ In for each n. These two filtrations contain the same

topological information:

Proposition 2.1.1 ([Ati61, Cor. 12.3]). The topology induced by the Grothen-

dieck filtration coincides with the I-adic topology.
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Define the graded character ring of G (with coefficients in K) as:

R∗K(G) =
⊕
i≥0

Γi/Γi+1.

The definitions readily imply that Γm · Γn ⊂ Γm+n, so this is indeed a graded

ring. In the sequel, we simply write R∗(G) whenever K is clear from the

context. Our aim is to compute examples of the graded ring R∗(G) for some

finite groups.

Determining generators for R∗(G) is a completely straightforward process.

For any ρ ∈ R(G), let Cn(ρ) = γn(ρ−ε(ρ)); we define the n-th algebraic Chern

class cn(ρ) of ρ as the image of Cn(ρ) by the quotient map Γn(G) → Rn(G).

Define

cT :


R(G) → 1 + T ·R∗(G)[[T ]]

ρ 7→ 1 +∑∞
i=1 ci(ρ)T i

.

We call cT (ρ) the total Chern class of ρ. Note that if x is a line element, then

cT (x) = 1 + c1(x)T .

Proposition 2.1.2 ([FL85, III.§2]). The total Chern class satisfies the axioms

of a Chern class homomorphism as detailed in [FL85, I.§3]. In particular,

(i) If ρ is the character of a representation of degree n, then ck(ρ) = 0 for

k > n.

(ii) Whenever ρ and σ are line elements, we have c1(ρσ) = c1(ρ) + c1(σ).

(iii) The map cT is a homomorphism, that is cT (x + y) = cT (x)cT (y). In

particular, for all n ≥ 0:

cn(ρ+ σ) =
n∑
i=0

ci(ρ)cn−i(σ).



CHAPTER 2. COMPUTING GRADED CHARACTER RINGS 16

Note that (ii) is seen by remarking that

γ1(ρσ − 1)−
(
γ1(ρ− 1) + γ1(σ − 1)

)
= γ1(ρ− 1)γ1(σ − 1) ∈ Γ2.

Much as it is the case for λ-operations, whenever we need to compute the

Chern class of a product, we rely on the splitting principle below.

Proposition 2.1.3 ([FL85, III.§1]). Given representations ρ1, · · · , ρk of G

dimensions d1, · · · , dk respectively, there exists a λ-ring extension R′ of R(G)

such that ΓnR′ ∩R(G) = ΓnR(G) and each ρi = xi,1 + · · ·+ xi,di is the sum of

di line elements in R′.

Thus for a character ρ of degree n, by (iii) above, ve have in the graded

ring gr∗R′:

cT (ρ) = cT (x1 + · · ·+ xn) =
n∏
i=1

cT (xi) =
n∏
i=1

(1 + c1(xi)T ).

The graded ring R∗(G) appears as a subring of gr∗R′, and we can recover

ck(ρ) as the coefficient of T k in the above polynomial, that is, the symmetric

polynomial of degree k in the n variables c1(x1), · · · , c1(xn).

As a first practical example of the splitting principle, consider the following

computation. Recall that the determinant of a representation ρ of G of degree

n is defined as det(ρ) = λn(ρ). In particular, by the splitting principle, if we

write ρ = x1 + · · ·+ xn then we have det ρ = ∏
xi.

Lemma 2.1.4. For a representation ρ of G, we have c1(ρ) = c1(det ρ).

Proof. Let R′ be an extension of R(G) as in Proposition 2.1.3. The ring R′ is a

λ-ring, and (ii) and (iii) of Proposition 2.1.2 do apply in full generality. In R′,
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write ρ = x1+· · ·+xn as a sum of line elements. Then, by Proposition 2.1.2(iii):

cT (ρ) = cT (x1 + · · ·+ xn) =
n∏
i=1

(1 + c1(xi)T ).

The coefficient of T is c1(ρ) = ∑n
i=1 c1(xi). On the other hand, by Proposi-

tion 2.1.2(ii):

c1(det ρ) = c1

(
n∏
i=1

xi

)
=

n∑
i=1

c1(xi) = c1(ρ).

Moreover, the splitting principle, together with property (ii) in Proposi-

tion 2.1.2, imply that ck(στ) is a polynomial in the Chern classes of σ and τ .

As a direct consequence, we have:

Lemma 2.1.5. Let χ1, · · · , χn be characters of representations of G of degrees

d1, · · · , dn respectively. If the χi generate R(G) as a ring, then the classes

ck(χi) for 1 ≤ k ≤ di generate R∗(G) as a ring.

Proof. By definition, each Γn is generated by products of Chern classes of

virtual characters of G. The result follows from the above discussion.

We conclude this section with the following improvement on [GM14, Lem.

3.2]:

Proposition 2.1.6. The graded piece Rn(G) is |G|-torsion for n > 0.

Proof. Consider the regular representation KG of G, with character χ, and let

ρ be any character of G. For any g ∈ G,

χ · ρ(g) = (ε(ρ) · |G|)δ1G,g.
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Pick a virtual character ρ ∈ Γn for n > 0, and write ρ = ρ+ − ρ− with ρ+,

ρ− ∈ R+(G) and ε(ρ+) = ε(ρ−). Then χ · ρ+ = χ · ρ− and thus χ · ρ = 0.

Looking modulo Γn+1, we obtain:

0 = χ · ρ = (χ− |G|)ρ+ |G| · ρ = |G| · ρ (mod Γn+1),

since χ− |G| ∈ I = Γ1.

2.2 Computing from the definition: cyclic

groups

As introductory examples, we determine the graded character rings of some

cyclic groups. In Proposition 2.2.1, we consider cyclic groups over an alge-

braically closed field: their graded character ring was computed in [GM14]

and many of our subsequent examples will rely on it. For the sake of com-

pleteness, we reproduce here the calculation of Guillot and Mináč, which is an

exercise in the definitions.

In Proposition 2.2.2, we prove a surprising general result about graded

character rings of p-groups over the rationals: the classical interplay between

Adams operations and rationality (see [Ser77, Th. 13.29]), translates to a

condition on the generators of R∗Q(G). We illustrate this statement in Corol-

lary 2.2.3 with the computation of R∗Q(Cp), where Cp is a cyclic group of prime

order. This constitutes our only incursion outside the field of complex num-

bers; even the computation for cyclic groups of arbitrary order remains wide

open over a general field.

Proposition 2.2.1 ([GM14, Prop. 3.4]). Let CN be the cyclic group of order
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N . Whenever K is an algebraically closed field of characteristic prime to N ,

R∗K(CN) = Z [x]
(Nx)

with x = c1(ρ) for a one-dimensional representation ρ of CN that generates

RK(CN).

Proof. Let ρ be a generating character for R(G). By Lemma 2.1.5, its first

chern class x = c1(ρ) generates R∗(G), and by Proposition 2.1.6 we have

Nx = 0. It remains to show that there is no additional relation in R∗(G), so

suppose that dxn = 0 for some d; that is, d(ρ− 1)n ∈ Γn+1(G). We show that

necessarily N divides d. Note that since G is cyclic, the augmentation ideal is

I = (ρ−1) and the Grothendieck filtration coincides with the I-adic filtration.

Let X = C1(ρ), then the relation dxn = 0 lifts to dXn = Xn+1P (X) in R(G)

for some polynomial P ∈ Z[X]; we can then lift this relation to Z[X] as:

dXn = P (X)Xn+1 +Q(X)
(
(X + 1)N − 1

)
,

for some polynomial Q(X). If n > 1, by considering the terms of degree 1

on each side, we conclude that Q(0) = 0. We can then divide by X and get

a similar equation, with dXn−1 on the left. We repeat this process until we

reach an equation of the form

dX = P (X)X2 +Q(X)
(
(X + 1)N − 1

)
.

By looking again at terms of degree 1, we see that d = NQ(0), which is what

we wanted.

Before we move on to more involved computations, here is a rather nice
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application of Proposition 2.1.6 to graded character rings over the rationals.

The proof of the following requires the use of Adams operations; they are λ-

homomorphisms that exist on any λ-ring, whose precise definition and main

properties are outlined in [AT69, §5]. For our purposes, it suffices to know that

for a character of G, the k-th Adams operation is defined as ψk(χ(g)) = χ(gk).

Proposition 2.2.2. Let G be a p-group. Then R∗Q(G) is concentrated in de-

grees multiple of (p− 1).

Proof. By [AT69, Prop. 5.3], for x ∈ Γn, we have ψk(x) = knx (mod Γn+1).

Moreover, by [Ser77, Th. 13.29], over the rationals, ψk(x) = x whenever

(|G|, k) = 1. In particular, picking any k ∈ (Z/pZ)× we have (kn−1)x ∈ Γn+1.

Since x is |G|-torsion, we conclude that x = 0 whenever (kn− 1) 6= 0 (mod p),

that is, whenever n is not a multiple of (p− 1).

A straightforward application of this result is the computation of R∗Q(G)

for G cyclic of prime order p.

Corollary 2.2.3.

R∗Q(Z/pZ) = Z[x]
(px)

with x = cp−1(χ) where χ is the character of Q[Z/pZ].

Proof. Let G = Z/pZ. By [Ser77, Prop. 13.30 and Ex. 13.1], the ring RQ(G)

is generated by the characters of permutation representations of the subgroups

of G. The only two subgroups of G are the trivial group {0} and G itself, so

RQ(G) is generated by χ, the regular representation. So R∗Q(G) is in turn

generated by ci(χ) for 1 ≤ i ≤ p; by Proposition 2.2.2, it is generated by

cp−1(χ). It remains to show that this generator has additive order p and is

non-nilpotent. Consider the natural map RQ(G) → RC(G); it sends χ to
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1 + ρ + · · · + ρp−1, with ρ a generating character of RC(G). The total Chern

class of 1 + ρ+ · · ·+ ρp−1 is

ct

p−1∑
i=0

ρi

 =
p−1∏
i=0

ct(ρi) =
p−1∏
i=0

(1 + ic1(ρ)),

so cp−1(ρ) = (p−1)! ·c1(ρ), which proves our claim using Proposition 2.2.1.

The graded ring of a general cyclic group over the rationals is not known.

In the sequel, unless mentioned otherwise, all graded character rings will be

computed over the complex numbers.

2.3 The restriction homomorphism

Graded character rings are computed in two steps: first, we identify a minimal

set of generators for R∗(G) using general information on the representation

theory of G, and we determine relations in higher degree via Chern class alge-

bra. The second step consists in showing that there are no extra relations in

R∗(G), and is usually much less straightforward. In the case of cyclic groups

(see Proposition 2.2.1), we used an ad hoc method for this step; in this section

we rely on the functoriality of R∗(−) to look at restrictions of representations

to subgroups of G. We rely on this technique, and on Proposition 2.2.1, to

compute the graded character rings of elementary abelian groups in Propo-

sition 2.3.3. We then turn to the dihedral groups Dp for odd primes p in

Proposition 2.3.4, and to D4 in Proposition 2.3.5. In passing, we prove a

Künneth formula for groups of coprime order.

Lemma 2.3.1. The graded character ring R∗(−) is functorial in G: a group

homomorphism φ : G → H induces a well-defined ring map φ∗ : R∗(H) →
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R∗(G), which sends each generator cn(ρ) to cn(ρ ◦ φ).

In particular, if H is a subgroup of G, the restriction of representation

ResGH : R(G) → R(H) induces a well-defined homomorphism of graded char-

acter rings, also denoted ResGH : R∗(G)→ R∗(H), with

ResGH cn(x) = cn(ResGH(x))

for all x ∈ R(G), n ∈ N.

Proof. This is clear.

A powerful consequence of Lemma 2.3.1 is to reduce the computation of

graded character rings of abelian groups to that of R∗(G) for p-groups:

Corollary 2.3.2. Let G and H be groups with coprime order. Then

R∗C(G×H) = R∗C(G)⊗Z R
∗
C(H)

Proof. Let πG, πH : G × H → G,H be the projection maps. By [Ser77, Th.

3.10], for any complex irreducible character ρ of G×H, there are irreducible

characters σG, σH of G,H respectively such that ρ = (σG ◦πG) · (σH ◦πH). Let

ρG = σG ◦ πG and ρH = σH ◦ πH , then R∗C(G ×H) is generated by classes of

the form cn(ρG ·ρH), which can be written as polynomials in the Chern classes

of ρG, ρH . In other words, the projection maps πG, πH induce a surjective

homomorphism

π∗G ⊗ π∗H : R∗C(G)⊗R∗C(H)→ R∗C(G×H).

Moreover, applying Proposition 2.1.6 to the case where |G|, |H| are coprime,
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we have that ⊕
i+j=n

(
Ri(G)⊗Rj(H)

) ∼= Rn
C(G)⊕Rn

C(H)

for any n ≥ 1. In particular, the surjection above decomposes as ⊕(π∗G)n ⊗

(π∗H)n : Rn
C(G)⊕Rn

C(H)→ R∗C(G×H). The inclusions ιG, ιH : G,H → G×H

induce a two-sided inverse (ι∗G, ι∗H) = ⊕
n(ιnG, ιnH) : Rn

C(G × H) → Rn
C(G) ⊕

Rn
C(H) to this surjection.

We now use Lemma 2.3.1 to compute of the graded character rings of

elementary abelian groups. Let p be a prime number, and let Cp be the cyclic

group of order p, with a choice of generator g. Recall that we fixed K = C.

Proposition 2.3.3. Let G = Ck
p . Then

R∗(G) = Z[x1, · · · , xk]
(pxi, xpixj − xix

p
j)
.

with xi = c1(ρi) where ρi restricts to a nontrivial one-dimensional representa-

tion of the i-th factor Cp.

Proof. Denote by gi the element (1, · · · , 1, g, 1, · · · , 1) with g in i-th position,

so that G is generated by g1, · · · , gk. Let ω = exp2iπ/p, and let ρi be the

representation of G defined by ρi : gj 7→ ωδij . The ρi’s generate R(G), so the

elements xi := c1(ρi) generate R∗(G). Note that ρpi = 1 for all i, so pxi = 0 by

Proposition 2.1.2(ii).

The relation xpixj = xix
p
j is obtained as follows: let Xi be the standard lift

ρi − 1 of xi to R(G). Then (Xi + 1)p = 1, so that

Xp
i = −

p−1∑
l=1

(
p

l

)
X l
i = Xi

− p−2∑
l=0

(
p

l + 1

)
X l
i


= pXi(−1 + φ(Xi)),



CHAPTER 2. COMPUTING GRADED CHARACTER RINGS 24

where φ(T ) ∈ Z[T ] has no constant term. For any i, j, write

Xp
iXj (−1 + φ(Xj)) = pXiXj (−1 + φ(Xi)) (−1 + φ(Xj))

= XiX
p
j (−1 + φ(Xi)) .

In Rp+1(G), this is:

xpixj = xix
p
j ,

and the generators of R∗(G) satisfy all the required relations.

Let us show that there are no extra relations: the graded piece of rank l is

generated by monomials of the form:

xs1
1 · · ·x

sk
k ,

k∑
i=1

si = l.

Let Sl ⊂ Zk≥0 be the set of multi-indices (s1, · · · , sk) such that ∑ si = l and

only the first nonzero coordinate of each s ∈ Sl is (possibly) greater than p−1.

We must show that the monomials xs = xs1
1 · · ·xskk are linearly independent.

Consider a zero linear combination:

∑
s∈Sl

asx
s = 0 (2.3.1)

and let ψ : R∗(Ck
p )→ R∗(Cp) be the restriction to the cyclic group generated

by the product gt11 · · · gtkk for some 0 ≤ tj ≤ p− 1. Then ψ(xj) = tj · z, where z

is the standard one-degree generator of R∗(Cp), and Equation (2.3.1) becomes:

∑
s∈Sl

ast
s1
1 · · · t

sk
k z

l = 0,
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that is, ∑
s∈Sl

ast
s1
1 · · · t

sk
k = 0 ∈ Fp, (2.3.2)

for all possible strings (t1, · · · , tk) with 0 ≤ tj ≤ p− 1. In particular, grouping

terms by powers of tk in Equation (2.3.2), we get:


a(0,··· ,0,l)t

l
k = 0 when t1 = · · · = tk−1 = 0

p−1∑
t=0

 ∑
s∈Sl−i

bst
s1
1 · · · t

sk−1
k−1

 tik = 0 otherwise.
(2.3.3)

This implies that the coefficient of xlk in Equation (2.3.1) is zero; more gener-

ally, the second equation must be true for all values of tk, from 0 to p− 1. In

other words, the
(∑

bst
s1
1 · · · t

sk−1
k−1

)
are the entries of a vector in the kernel of

the Vandermonde matrix (tik)
i=1,··· ,p−1
tk=1,··· ,p−1, which is invertible in Fp. Therefore

∑
s∈Sl−i

bst
s1
1 · · · t

sk−1
k−1 = 0

for all combinations (t1, · · · , tk−1). An immediate induction shows that we

must have each as = 0, so the monomials {xs}s∈Sl are linearly independent.

Note that the relations between the generators of R∗((Cp)k) appear in

degree p+ 1, so the degree of relations goes to∞ as p→∞. In Section 2.4 we

shed light on this phenomenon, via a general result about the minimal degree

of relations in a p-group.

We now turn to our first non-abelian group, for which the computation

combines the restriction map with some basic Chern class algebra. Let p be

an odd prime and consider the dihedral group:

Dp =
〈
τ, σ|τ 2 = σp = 1, τστ = σ−1

〉
.
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There are (p+ 1)/2 irreducible representations of Dp:

• Two representations of degree 1, the trivial representation 1 and the

signature ε which sends elements of the form σj to 1, and elements of

the form τσj to -1.

• And (p− 1)/2 representations χ1, · · ·χ(p−1)/2 of degree 2:

χk(σj) =

e
2ikjπ
p 0

0 e−
2ikjπ
p



χk(τ) =

0 1

1 0


.

The characters of these generate the ring R(Dp). For convenience, define

χ0 = 1 + ε; we have the following relations:

ε2 = 1 (2.3.4)

ε · χk = χk (2.3.5)

χk · χl = χk+l + χk−l. (2.3.6)

Proposition 2.3.4. Let x = c1(χ1) and y = c2(χ1), then

R∗(Dp) = Z [x, y]
(2x, py, xy) .

Proof. Let x and y be as above; note that Lemma 2.1.4 implies that x =

c1(χ1) = c1(χk) = c1(det χk) = c1(ε) for any k, and 0 = c1(ε2) = 2c1(ε) = 2x.

For the other relations, we use Equation (2.3.6) above and apply the total
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Chern class ct to both sides:

ct(χkχl) = ct(χk+l)ct(χk−l). (2.3.7)

Let yi = c2(χi). Expand the right-hand side:

ct(χk+l)ct(χk−l) =(1 + xT + yk+lT
2)(1 + xT + yk−lT

2)

=1 + 2xT + (x2 + yk+l + yk−l)T 2

+ (xyk+l + xyk−l)T 3 + yk+lyk−lT
4. (2.3.8)

For the left-hand side, we use the splitting principle (Proposition 2.1.3): in

some extension of R(Dp), we can write χk = ρ1 + ρ2 and χl = η1 + η2 with ρi,

ηi of dimension 1, in a way that is compatible with the Γ-filtration. Then:

ct(χkχl) =ct ((ρ1 + ρ2)(η1 + η2))

=ct(ρ1η1)ct(ρ1η2)ct(ρ2η1)ct(ρ2η2)

=(1 + (c1(ρ1) + c1(η1))T ) · (1 + (c1(ρ1) + c1(η2))T )

· (1 + (c1(ρ2) + c1(η1))T ) · (1 + (c1(ρ2) + c1(η2))T ).

Now, let s1, s2 (resp. t1, t2) be the first and second symmetric polynomials in

(ρ1, ρ2) (resp. (η1, η2)). Then ci(χk) = si and ci(χl) = ti. The last equality

can be rewritten:

ct(χkχl) =1 + 2(s1 + t1)T + (t21 + s2
1 + 3s1t1 + 2t2 + 2s2)T 2

+ (s2
1t1 + s1t

2
1 + 2s1s2 + 2t1t2 + 2s1t2 + 2s2t1)T 3

+ (t22 + s2
2 + s1s2t1 + s1t1t2 + s2

1t2 + s2t
2
1 − 2s2t2)T 4.
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We replace s1 = t1 = x and eliminate all occurrences of 2x to obtain

ct(χkχl) = 1 + (x2 + 2yk + 2yl)T 2 + (yk − yl)2T 4. (2.3.9)

Comparing coefficients in Equation (2.3.8) and Equation (2.3.9), we obtain:

yk+l + yk−l = 2(yk + yl) (2.3.10)

xyk+l + xyk−l = 0 (2.3.11)

yk+lyk−l = (yk − yl)2. (2.3.12)

First look at Equation (2.3.11) with k = l. Note that y0 = c2(1 + ε) = 0,

and thus Equation (2.3.11) yields x · y2k = 0 for all k, which is equivalent to

x · yk = 0 for all k since indices are understood modulo the odd prime p.

We then show that pyk = 0 for all k. Recall that R∗(Dp) is 2p-torsion, and

consider Equation (2.3.10) with k = l. Multiplying by p, we obtain py2k = 0

for all k. Again, this implies that pyk = 0 for all k.

Finally, consider Equation (2.3.10) with l = k and l = k + 1. This gives:

y2k = 4yk

y2k+1 = 2(yk + yk+1)− y1.

Together, these two relations imply that all yk’s are multiples of y1 =: y.

It remains to show that these are the only relations in R∗(Dp), that is, x and

y are not nilpotent, and there is no extra dependency relation between them.

Restricting x to C2 and y to Cp shows none of the generators are nilpotent,

while restricting both x and y to C2 eliminates any extra possible relation.

A similar argument gives R∗(D4), where D4 is the dihedral group D4 of
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order 8. Note that R∗(D4)⊗F2 is already known and was computed in [GM14,

Prop. 3.12]. It has four nontrivial irreducible representations:

• In degree 1, the representations ρ : r 7→ −1, s 7→ 1 and η : r 7→ 1, s 7→

−1 and their product ρη,

• And in degree 2, the representation ∆, which sends s to

1 0

0 −1

 and

r to

0 −1

1 0

,
with relations:

ρ2 = η2 = 1 (2.3.13)

ρ∆ = η∆ = ∆ (2.3.14)

∆2 = 1 + ρ+ η + ρη. (2.3.15)

Proposition 2.3.5. Let c1(ρ) = x; c1(η) = y and c2(∆) = b. Then

R∗(D4) = Z [x, y, b]
(2x, 2y, 4b, xy, xb− yb) .

Proof. Note that c1(ρη) = x+y and c1(∆) = c1(det ∆) = c1(ρη). So the graded

ring is indeed generated by x, y, b. We have 2x = 2y = 0 from the relations

above; and, letting X, Y,B being the standard lifts C1(ρ), C1(η), C2(∆) of x, y

and b to R(D4), we compute that XB = Y B = XY . So XY ∈ Γ3, thus xy = 0

and xb = yb. Finally, applying the total Chern class to Equation (2.3.15) yields

the equation:

5c1(∆)2 + 4b = x2 + 3xy + y2 = x2 + y2 = (x+ y)2
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and since c1(∆) = x+ y, we obtain 4b = 0.

To see these are the only relations, we use the computation of R∗(D4) ⊗

F2 = Z[x,y,b]
(xy,xb−yb) from [GM14]: tensoring with F2 shows that none of x, y, b

is nilpotent and that there are no extra relations between the genrerators.

Finally, restriction to C4 = 〈r〉 shows that any power bi of b has additive order

4.

2.4 Universal enveloping algebras

The aim of this section is to construct, for any abelian p-group G, a map:

R∗(G)⊗ Fp → gr•(FpG),

where gr•FpG is the graded ring associated to the filtration of the group ring

FpG by powers of its augmentation ideal. To this effect, we apply the main

result of [Qui68]: fix a prime p, and let {Gn} denote the lower central series

of G, defined by G1 = G and Gn+1 = (Gn, G). Consider the sequence {Dn},

where Dn is the n-th mod p dimension subgroup of G:

Dn :=
∏
ips≥n

Gps

i .

Then {Dn} is a p-filtration of G, that is, it satisfies:

• (Dr, Ds) ⊆ Dr+s

• x ∈ Dr =⇒ xp ∈ Dpr for all r.

Moreover, {Dn} is the fastest descending p-filtration of G (see [DdSMS99,

§11.1]). Set L•(G) = ⊕
Dn/Dn+1, then L•(G) is a p-restricted graded Lie
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algebra over Fp. On the other hand, if I denotes the augmentation ideal of

the group ring FpG, then

Fn := {x ∈ G | x− 1 ∈ In}

is also a p-filtration of G, thus Fn ⊃ Dn and there is a map of Lie algebras:

ψ :


L•(G) → gr•(FpG)

g (mod F n) 7→ (g − 1) (mod In).

Theorem 2.4.1 ([Qui68, §1]). The homomorphism ψ̂ from gr•(FpG) to the

universal enveloping algebra U(L•(G)) induced by ψ is an isomorphism.

Now suppose G is an abelian p-group of the form Cpi1 × · · · × Cpim . Then

Dn = Gpi for pi the smallest power of p such that pi ≥ n. Thus

Ln(G) ∼=


{1}, n 6= pi

Cp × · · · × Cp, n = pi.

Lemma 2.4.2. If G is abelian then R(G)⊗Fp ∼= FpG through an isomorphism

that sends the Grothendieck filtration {Γnp}n induced on R(G)⊗Fp to the I-adic

filtration on FpG.

Proof. Write G as a product of cyclic groups. The isomorphism that sends

each cyclic group generator g to the character ρg : g 7→ e2πi/|g|, sends I ⊂ Fp
to Γ1

p. Since every irreducible character of G has dimension 1, the filtration

{Γnp}n coincides with the Γ1
p-adic filtration.
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So gr•(R(G)⊗ Fp) ∼= gr•(FpG) ∼= U(L•(G)) with universal map

h :


L•(G) → gr•(R(G)⊗ Fp)

g 7→ C1(ρg) (mod Γ2
p)
,

and there is a map φ of algebras induced by L•(G)→ gr•(FpG):

φ : gr•(R(G)⊗ Fp)→ gr•(FpG).

On the other hand, the map R(G)→ R(G)⊗Fp preserves the Γ-filtration and

induces a maps R∗(G) → gr•(R(G) ⊗ Fp), and thus a map R∗(G) ⊗ Fp →

gr•(R(G)⊗ Fp). Composing this latter map with φ, we obtain a map

R∗(G)⊗ Fp → gr•(FpG)

satisfying φ(c1(ρg)) = g − 1.

A straightforward corollary of this is the following:

Theorem 2.4.3. Let G = Cpi1 × · · · × Cpin , and let ρk be the generating

character of R(Cpik ) sending a generator gk of Cpik to e2iπ/pik . Then there is

a well-defined homomorphism:

R∗(G)⊗ Fp →
Fp[u1, · · · , un]
(upi11 , · · · , upinn )

sending c1(ρk) to uk.

Although we do not directly refer to it in the sequel, Theorem 2.4.3 proves

useful when "guessing" relations in R∗(G), as illustrated by the graded char-
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acter rings of abelian 2-groups: in Proposition 2.6.2, we show that

R∗(C4 × C4) = Z[x, y]
(4x, 4y, 2x2y + 2xy2, x4y2 − x2y4)

with x = c1(ρ(1,0)), y = c1(ρ(0,1)). By Theorem 2.4.3, modulo 2, nontrivial

relations must involve x4 or y4. Since one can easily rule out relations of the

form x4, y4 = 0 by restriction to C4, we know that any extra relation will occur

in degree 5 or more. Here, it occurs in degree 6. Again, in Proposition 2.6.1,

we show

R∗(C4 × C2) = Z[x, y]
(4x, 2y, xy3 + x2y2)

with x = c1(ρ(1,0)), y = c1(ρ(0,1)). We know by Theorem 2.4.3 that any non-

trivial relation modulo 2 must involve x2 or y4.

2.5 Continuity of characters

In the sequel, we view R(G) as a topological ring, with the topology induced

by the filtration {Γn}; that is, a subset U ⊆ R(G) is open if for any x ∈ U

there is a t such that x + Γt ⊆ U . If G has exponent m, then each conjugacy

class representative g ∈ G gives rise to a ring morphism:

φg :


R(G)→ Z[µm]

ρ 7→ χρ(g)
,

where µm is a choice of primitive m-th root of unity. We are interested in

continuity and density questions with respect to p-adic topologies on Z. Note

that, to make any kind of rigorous statement, we need to fix an extension of

the p-adic valuation to Z[µm]. However, we are primarily interested in the
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case where m is a power of p; in that case, as is well-known, there is only

one such extension. In particular, Proposition 2.5.3 states that whever G is

a p-group, all evaluation morphisms are continuous. We apply this result in

Theorem 2.5.4 to the computation of R∗(Q8).

Suppose we are given additive groups Γ̃n ⊆ Γn (n ≥ 1) such that:

A. Γ̃n+1 ⊆ Γ̃n

B. Γn = Γ̃n + Γn+1

(think of Γ̃n as an approximation of Γn). Then by an immediate induction:

Lemma 2.5.1. For all k ∈ N,

Γn = Γ̃n + Γn+k

Call {Γ̃n}n an admissible approximation for {Γn}n if it satisfies conditions

(A) and (B).

Remark. Whenever {Γ̃n} is an admissible approximation, each Γ̃n is dense in

Γn for the Γ-topology.

Proposition 2.5.2. Let p be a prime number, and suppose the evaluation

morphisms

φ1, · · ·φk : R(G) 7→ Z[µm]

are continuous with respect to the topology induced by the filtration {Γn} on

R(G), and the p-adic topology on Z[µm]. Then for all x ∈ Γn, and for all
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M > 0, there is an element x̃ ∈ Γ̃n such that for all i = 1, · · · , k:


vp(φi(x̃)) = vp(φi(x)) whenever vp(φi(x)) < +∞

vp(φi(x̃)) > M whenever φi(x) = +∞

Proof. Let x ∈ Γn, M > 0. Since all the φi are continuous with respect to the

p-adic topology, there exists N such that for all j and for all y ∈ ΓN we have

vp(φj(y)) > max
(

max
vp(φi(x))<∞

vp(φi(x)), M
)
.

We can then write x = x̃+ r with x̃ ∈ Γ̃n and r ∈ ΓN .

Proposition 2.5.3. Let G be a p-group. Then the morphisms φg, for g ∈ G,

are all continuous with respect to the p-adic topology on Z[µm].

Proof. Fix an element g ∈ G and let |G| =: pn. By Proposition 2.1.1, it suffices

to show that φg is continuous with respect to the I-adic topology on the left.

We show that for any irreducible character ρ of G,

vp (φg (ρ− ε (ρ))) > 0,

which implies continuity. Since G is a p-group, every character is a sum of

pn-th roots of unity, so

φg(ρ− ε(ρ)) = ρ(g)− ε(ρ)

=
ε(ρ)∑
l=1

(µilpn − 1),

and each (µilpn − 1) has positive p-valuation.



CHAPTER 2. COMPUTING GRADED CHARACTER RINGS 36

The continuity method allows us to solve questions of torsion and nilpo-

tency in R∗(G): if some element x ∈ R(G) is contained in ΓM with M large,

then φg(x) must be divisible by a large power of p. Here is a concrete example:

let G = Q8 = 〈 i, j, k | i2 = j2 = k2 = ijk 〉 be the quaternion group of order

8.

Theorem 2.5.4.

R∗(Q8) = Z[x, y, u]
(2x, 2y, 8u, x2, y2, xy − 4u)

where |x| = |y| = 1 and |u| = 2, with explicit generators as described in

Lemma 2.5.5.

We first show that the generators of R∗(Q8) do satisfy the relations above;

we then prove that these are the only relations in the graded rings. For the

second step, we use continuity of characters to show that the additive order of

u is 8 .

The group Q8 has 5 conjugacy classes: {1}, {−1}, {±i}, {±j}, {±k} so 5

irreducible representations on C. They are as follows:

• In dimension 1, the trivial representation, and the characters

ρ1 :


i 7→ 1

j 7→ −1
, ρ2 = −ρ1 and ρ3 = ρ1ρ2,

• and in dimension 2, the representation ∆:

∆(i) =

i 0

0 −i

 , ∆(j) =

0 −1

1 0

 , ∆(k) =

 0 −i

−i 0


.
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These representations satisfy the relations

ρ2
i = 1 (2.5.1)

ρ3 = ρ1ρ2 (2.5.2)

∆ρi = ∆ (2.5.3)

∆2 = 1 + ρ1 + ρ2 + ρ3. (2.5.4)

Let us first take a look at the generators and relations of Q8:

Lemma 2.5.5. The graded ring R∗(Q8) is generated by the elements

x := c1(ρ1), y := c1(ρ2), u := c2(∆),

which satisfy the relations in Theorem 2.5.4, that is:

2x = 2y = 8u = 0, x2 = y2 = 0, xy = 4u.

Proof. First, we eliminate the redundant generators: c1(ρ3) = c1(ρ1ρ2) =

c1(ρ1) + c1(ρ2), and c1(∆) = c1(det(∆)) = c1(1) = 0. So R∗(Q8) is indeed

generated by x, y and u.

Now since ρ2
1 = ρ2

2 = 1, we have 2x = 2y = 0, and the order of Q8 kills R∗(Q8)

so 8u = 0. For the relations in degree 2, we apply the total Chern class to

Equation (2.5.3), splitting the 2-dimensional representation ∆ into σ1 + σ2.

On the left-hand side we have:

ct(∆ρi) =ct(σ1ρi)ct(σ2ρi)

=1 + [c1(σ1) + c1(σ2) + 2c1(ρi)]T

+
[
c1(σ1)c1(σ2) + c1(σ1)c1(ρi) + c1(σ2)c1(ρi) + c1(ρi)2

]
T 2
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While on the right-hand side:

ct(∆) = 1 + [c1(σ1) + c1(σ2)]T + [c1(σ1)c1(σ2)]T 2.

In degree 2, this yields the relation:

c1(ρi)(c1(σ1) + c1(σ2)) + c1(ρi)2 = 0.

Bearing in mind that c1(σ1)+c1(σ2) = c1(∆) = 0, we obtain x2 = y2 = 0. The

relation xy = 4u is obtained by applying ct to the relation ∆2 = 1+ρ1+ρ2+ρ1ρ2

and identifying the terms in degree 2, which yields

5c1(∆)2 + 4u = x2 + y2 + 3xy,

that is, 4u = xy.

In order to prove Theorem 2.5.4, we now only need to show that these are

the only relations satisfied by the generators; thus we want to check that we

have no extra nilpotency or torsion conditions on u, and that the products

xui and yui are nonzero for any i. For this, we look at the 2-valuation of

the characters of Q8: we define an admissible approximation (Γ̃n) that only

takes into accounts some generators. This allows us to restrict ourselves when

we compute the 2-valuations of our evaluation morphisms, which we use to

extract information about torsion in R∗(G).

Let X, Y, U be standard lifts of x, y, u. We consider the approximation

{Γ̃n}, where Γ̃n is the additive subgroup of (R(G),+) generated by

Xε1Y ε2Uk, with 2k + ε1 + ε2 ≥ n and 0 ≤ ε1 + ε2 ≤ 1. (2.5.5)
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Lemma 2.5.6. The approximation (Γ̃n) is admissible.

Proof. Obviously we have Γ̃n+1 ⊂ Γ̃n, so (Γ̃n) satisfies condition (A). To check

(B), let Z = ρ3 − 1 and T = ∆− 2 be lifts of c1(ρ3), c1(∆), respectively. Let

α be an additive generator for Γn. We know that Γn is generated by products

of Chern classes of the generating characters of R(G), hence α is of the form:

α = Xε1Y ε2Zε3UkT l ∈ Γn, 2k + l + ε1 + ε2 + ε3 ≥ n.

If ε1 ≥ 2, then α contains a factor X2, but the relation x2 = 0 implies that

X2 ∈ Γ3, so in that case α ∈ Γn+1. The same goes for ε2, so we can restrict

ourselves to monomials such that ε1 + ε2 ≤ 1. Similarly, since c1(∆) = 0 we

have T ∈ Γ2, which means that l 6= 0 forces α ∈ Γn+1. We proceed similarly

for all factors and obtain

Γn = Γ̃n + Γn+1,

so (Γ̃n) satisfies condition (B).

There are 4 nontrivial evaluation morphisms on RC(Q8):

• φ−1 : ρi 7→ 1,∆ 7→ −2,

• φi : ρ1 7→ 1, ρ2, ρ3 7→ −1, ∆ 7→ 0,

• φj : ρ2 7→ 1, ρ1, ρ3 7→ −1, ∆ 7→ 0,

• φk : ρ3 7→ 1, ρ1, ρ2 7→ −1, ∆ 7→ 0.

We apply those to our X, Y, T, U and obtain:

• φ−1 : X, Y 7→ 0, T 7→ −4, U 7→ 4,

• φi : X 7→ 0, Y, T 7→ −2, U 7→ 2,
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• φj : X,T 7→ −2, Y 7→ 0, T 7→ 2,

• φk : X, Y, T 7→ −2, T 7→ 2.

It is easy to check that, as stated in Proposition 2.5.3, these morphisms

are all continuous with respect to the 2-adic topology. We can now wrap up

the computation:

Proof of Theorem 2.5.4. We want to show that R2n(G) = 〈un〉 = Z/8Z, and

R2n+1(G) = 〈xun, yun〉 = (Z/2Z)2.

We first look at R2n(G), where we need to show that 4un 6= 0, that is, 4Un /∈

Γ2n+1. We have φg(4Un) = 2n+2, for any g = i, j, k. Suppose that 4Un ∈ Γ2n+1;

then by Proposition 2.5.2 there is an element X̃ ∈ Γ̃2n+1 satisfying

n+ 2 = v2(φg(4Un)) = v2(φg(X̃)).

Write

X̃ =a1U
n+1 + a2XU

n + a3Y U
n

+ Un+2P (X, Y, U) +XUn+1Q(X, Y, U) + Y Un+1S(X, Y, U)

where the ai’s are integers and P,Q, S are polynomials with integer coefficients.

Apply φg for g = i, j, k to this equation, divide each equation by 2n+1 and

consider the result mod 2. We obtain a system of three equations:

0 = a1 + a3

0 = a1 + a2

0 = a1 + a2 + a3
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which has no nontrivial solution. But if am = 0(mod 2) for m = 1, 2, 3 then

v2(φg(x̃)) > n+ 2, which is impossible. Thus 4Un cannot be in Γ2n+1, and the

additive order of um is indeed 8 for all m.

The same process shows that xun, yun and xun + yun are nonzero elements of

R2n+1(Q8) for all n.

2.6 Abelian 2-groups

Abelian 2-groups are a rich source of examples; we present below the compu-

tations of R∗C(C4×C2) and R∗C(C4×C4). To determine the graded rings in this

section, we used all of the tools presented in this chapter. Theorem 2.4.3 gives

us a starting point to guess relations in the graded character rings, which we

then determine precisely using basic virtual character algebra. Once we have

a good candidate for R∗(G), we discard as many extra relations as possible

by restricting to various subgroups, and get rid of the last ones by looking at

continuity of characters.

Remark. In the sequel, we denote the evaluation of a virtual character X at

g ∈ G by X|g rather than φg(X). Besides, it will be convenient to use an

additive notation throughout, so we denote the cyclic groups by Z/4 and Z/2.

Proposition 2.6.1.

R∗(Z/4× Z/2) = Z[x, y]
(4x, 2y, xy3 + x2y2)

with |x| = |y| = 1.

Proof. Let ρ be the generating character of R(Z/4) sending 1 to i, and σ the

nontrivial representation of Z/2. Then R∗(G) is generated by c1(ρ) =: x and
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c1(σ) =: y. By restriction to cyclic subgroups, we see that x has additive order

4 and y, additive order 2. Now consider X = ρ− 1 and Y = σ − 1. Then by

expanding (X + 1)4 = 1 we get

4X = −(6X2 + 4X3 +X4)

On the other hand, Y n = (−2)n−1Y , so

XY 3 = 4XY = −X4Y − 4X3Y − 6X2Y = −X4Y −X3Y 3 + 3X2Y 2.

Modulo Γ5, this is xy3 = x2y2. The only other possible extra relations (that

cannot be ruled out by restrictions to various subgroups) are: xn−1y = 0,

xn−2y2 = 0 or xn−1y = xn−2y2 for some n. We use the continuity method to

disprove all of these. Let Γ̃n = 〈Xn, Y n, Xn−1Y,Xn−2Y 2〉, then {Γ̃n}n is an

admissible approximation for {Γn}n.

First suppose that xn−1y = 0 for some n, that is Xn−1Y ∈ Γn+1. Then

for N arbitrarily large, there exists Z̃ ∈ Γ̃n+1 such that Xn−1Y = Z̃ +R with

R ∈ ΓN ; in particular, by Proposition 2.5.2, for any M > 0, there is an N

such that:


v2
(
Z̃|(k,`)

)
= v2

(
Xn−1Y |(k,`)

)
whenever v2

(
Xn−1Y |(k,`)

)
<∞

v2
(
Z̃|(k,`)

)
> M whenever v2

(
Xn−2Y 2|(k,`)

)
=∞

,

for all (k, `) ∈ Z/4× Z/2.
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Write:

Z̃ =a ·Xn+1 + b ·XnY + c ·Xn−1Y 2 + d · Y n+1

+ P ·Xn+2 +Q ·Xn+1Y + S ·XnY 2 + T · Y n+2

where a, b, c, d ∈ Z and P,Q, S, T ∈ Z[X, Y ]. Evaluatin at (2, 1) gives X|(2,1) =

Y |(2,1) = −2. Then the 2-valuation of Xn−1Y is n while the 2-valuation of Z̃ is

at least n+ 1. This shows that such a Z̃ cannot exist, and thus xn−1y cannot

be zero. A similar argument shows that xn−2y2 6= 0.

The only possible remaining relation is xn−1y = xn−2y2. Let Z = Xn−1Y +

Xn−2Y 2, and suppose Z ∈ Γn+1. Fix a large number M > n + 2, and let

Z̃ ∈ Γ̃n+1 and R ∈ ΓN satisfy Z = Z̃ + R with the usual conditions on the

valuation of X̃. Then:

Z̃|(2,0) = a · (−2)n+1 + P · (−2)n+2

while Z|(2,0) = 0, so v2(Z|(2,0)) = +∞. In this case, we have v2(Z̃) > M > n+2.

This means in particular that a = 0 (mod 2), hence a = 2a′ for some a′.

We now evaluate at (1, 1):

Z|(1,1) = (i− 1)n−2 · 4 + (i− 1)n−1 · (−2).

thus v2(Z|(1,1)) = (n+ 1)/2. On the other hand:

Z̃|(1,1) = a′ · 2 · (i− 1)n+1 + b · (i− 1)n(−2) + c · (i− 1)n−14 + d · (−2)n+1 + R̃

where v2(R̃) ≥ n+2
2 . We see that v2(Z̃|(1,1)) ≥ (n + 2)/2, so we cannot have

v2(Z̃|(1,1)) = Z̃|(1,1), in contradiction with our assumption. This means that
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Z /∈ Γn+1, and thus xn−1y 6= xn−2y2. This completes the proof.

Remark. Let G = Z/2n × Z/2. Then one can show, as above, that there is in

R∗(G) a relation of the form xyn+1 + x2yn = 0. For n = 3, it is possible to

adapt the argument above and show that R∗(G) = Z[x,y]
(8x,2y,xy4+x2y3) . Is it true in

general that

R∗(Z/2n × Z/2) = Z[x, y]
(2nx, 2y, xyn+1 + x2yn)? (2.6.1)

Proposition 2.6.2.

R∗(Z/4× Z/4) = Z[x, y]
(4x, 4y, 2x2y + 2xy2, x4y2 − x2y4)

with |x| = |y| = 1

Proof. Existence of relations: let X, Y be the usual lifts of x, y. We use that

(X + 1)4 = 1, that is,

X4 = −4X − 6X2 − 4X3 (2.6.2)

Then:

X4Y = (−4X − 6X2 − 4X3)Y = −4XY − 6X2Y − 4X3Y

= X(6Y 2 + 4Y 3 + Y 4)− 6X2Y − 4X3Y

6XY 2 − 6X2Y = X4Y −XY 4 + 4X3Y − 4XY 3 (2.6.3)

0 = 2XY 2 + 2X2Y (mod Γ4)

so 2x2y = 2xy2. By repeatedly applying Equation (2.6.2) to X6Y −XY 6, one
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obtains:

X6Y −XY 6 = 14X2Y 3 − 14X3Y 2 + 11X2Y 4 − 11X4Y 2 + 5X3Y 4 − 5X4Y 3.

The expression 14X2Y 3−14X3Y 2 is the sum of 8X2Y 3−8X3Y 2 which belongs

to Γ7, and 6X2Y 3−6X3Y 2 which is simply Equation (2.6.3) multiplied byXY ,

and thus also belongs to Γ7. Thus x4y2 = x2y4.

To show there are no extra relations, let a0, · · · an ∈ Z, n ≥ 2 satisfy:

z = a0x
n + a1x

n−1y + a2x
n−2y2 + a3x

n−3y3 + an−1xy
n−1 + any

n = 0

or in other words,

Z := a0X
n + a1X

n−1Y + a2X
n−2Y 2 + a3X

n−3Y 3 + an−1XY
n−1 + anY

n

=
n+1∑
k=0

bkX
n+1−kY k +

n+2∑
k=0

Pk(X, Y )Xn+2−kY k ∈ Γn+1. (2.6.4)

Suppose, without loss of generality, that a0, a1, an, b0, b1, bn ∈ {0, 1, 2, 3} and

a2, a3, an−1, b2, · · · , bn−1 ∈ {0, 1} while Pk(X, Y ) ∈ Z[X, Y ]. Let Z̃ be the right

hand side of the equation, and consider the restriction of Equation (2.6.4) to

the following subgroups:

• To Z/4 × 1: then Equation (2.6.4) becomes a0X
n = b0X

n+1 +

P0(X, 0)Xn+2 ∈ Γn+1. This implies that a0 = b0 = 0(mod 4), and since

we had assumed that a0, b0 ∈ {0, 1, 2, 3} we have a0 = b0 = 0.

• To 1× Z/4: similarly we obtain an = bn = 0.

• To 〈(1, 1)〉 ∼= Z/4: the generators X and Y both restrict to the generator
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T and we obtain ∑ akT
n = 0(mod Γn+1), so

a1 + a2 + a3 + an−1 = 0(mod 4). (2.6.5)

Evaluating at (1, 2) yields:

v2(φ(1,2)(Z)) ≥ min
(v2(a`) + n+ `

2

)
`=1,2,3

, v2(an−1) + 2n− 1
2

 (2.6.6)

v2(φ(1,2)(Z̃)) ≥ n+ 2
2

with equality if there is a strict minimum in Equation (2.6.6), so we must have

v2(a1) ≥ 1, that is a1 = 0 or a1 = 2. By evaluating at (2, 1) instead, one shows

that v2(an−1) ≥ 1 and thus an−1 = 0, since we had assumed an−1 ∈ {0, 1}. Our

equation becomes a1+a2+a3 = 0(mod 4). If a1 = 0 then a2 = a3 = 0, so we can

assume a1 = 2, and then a2 = a3 = 1. Thus Z = 2Xn−1Y +Xn−2Y 2+Xn−3Y 3.

To rule out this last possibility, consider the automorphism τ ofG, which leaves

(1, 0) invariant and sends (0, 1) to (0, 3). This induces a well-defined map τ ∗

of graded rings, which maps y to −y. Then

τ ∗z = −2xn−1y + xn−2y2 − xn−3y3

and summing z + τ ∗z we obtain 2xn−2y = 0, which is impossible since all

monomials in R∗(G) have additive order 4. Thus the assumption a0 = 2 is

wrong, and this concludes the proof.



Chapter 3

Mackey functors and Tambara

functors

This chapter focuses on the general properties of graded character rings: in

Section 3.1, we introduce the necessary notation to consider representation

rings from the point of view of equivariant K-theory. In Section 3.2, we show

that graded character rings are not Mackey functors, through the example

of the alternating group A4; Section 3.3 introduces the saturated filtration

and explores its properties, which we apply in Section 3.4 to compute the

saturated ring of, among others, the projective special linear group PSL(2, p)

for some primes p. We then move on to Tambara functors in Section 3.5,

where we present a proof that equivariant K-theory is a Tambara functor. In

Section 3.6, we study the norm of the sum of two characters, and determine a

formula which shows that graded character rings of abelian groups are Tambara

functors; we conlude in Section 3.7 by a straightforward application of these

result to norms in abelian groups of the form G× Cp.

47
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3.1 Definitions and notations

As in Chapter 2, we fix a field K of characteristic zero and G a finite group.

The ring RK(G) is the ring of virtual characters of G over K, and R∗K(G)

denotes the correponding graded rings.

The definitions of Mackey and Tambara functors, to be given in later sec-

tions, are greatly simplified by looking at character rings from the point of

view of G-equivariant K-theory. We view a G-set X as a category with an

object for each point, and an arrow between two objects (g, x) : x → y for

each g ∈ G such that g · x = y. A vector bundle is then defined as a functor

V between X and the category of K-vector spaces and linear maps; that is, it

associates to each x ∈ X a vector space Vx, and to each g ∈ G linear maps

V(g,x) : Vx → Vg·x. For an element e ∈ Vx, we write g · e ∈ Vg·x for V(g,x)e. A

functor V then corresponds to the data of each Vx and g · e. Let K+
G(X) be

the semigroup of isomorphism classes of vector bundles over X under direct

sum. In the sequel, we restrict ourselves to finite G-sets.

Lemma 3.1.1. Let X be a transitive G-set with a distinguished point x ∈ X,

and let H = Stab(x). Then there is an isomorphism (depending on x) between

K+
G(X) and the semiring of representations R+(H).

Proof. LetW be a representation ofH and consider the induced representation

V = IndGH = K[G]⊗K[H] W . Define a vector bundle on X as follows: for each

y ∈ X, write y = g · x and let (V )y = g ·W = g ⊗W ⊂ V . This depends only

on y and the action of g takes Vx to Vgx, so this is a vector bundle. Conversely,

if V is a vector bundle on X, define W = Vx. This is a well-defined H-module

(since it is stable by H), so W is a representation. These two constructions

are mutually inverse.
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Remark. (i) The isomorphism above depends on x; choosing the point y =

g · x as a basepoint instead, one obtains the isomorphic representation

of gHg−1 which is given by precomposing the action of H on Vx by

conjugation with g.

(ii) As a direct corollary, the Grothendieck group KG(X) of vector bundles

and the ring R(G) are isomorphic.

(iii) Since every finite G-set can be written as a disjoint union of transitive G-

set, this gives us a way to prove general facts aboutK+
G(X) by restricting

to representation rings.

This vocabulary allows us to generalize the notions of restriction, transfer

and tensor induction of representations. Let f : X → Y be a map of G-sets,

given by a functor between the categories X and Y as described above. We

define:

(i) The restriction f ∗ : K+
G(Y ) → K+

G(X), as the composition of f and V .

In other words:

(f ∗V )x := Vf(x),

(f ∗V )(g,x) := V(g,f(x)).

Note that with the shorthand notation mentioned above, for e ∈ Vf(x),

we have (f ∗V )(g,x)e = g · e, which corresponds to the same element in

f ∗(V ) as in V , only understood in a different fibre. This is particularly

intuitive in the case where f : G/H → G/K corresponds to the inclusion

of a subgroup H ↪→ K.
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(ii) The induction (or transfer) f∗ : K+
G(X)→ K+

G(Y ),

f∗(V )y :=
⊕

x∈f−1(y)
(Vx),

f∗(V )(g,y) :=
⊕

x∈f−1(y)
V(g,x).

In shorthand notation we have g · (⊕x ex) = ⊕
x g · eg−1x.

(iii) The norm (or tensor induction) f : K+
G(X)→ K+

G(Y ),

f](V )y :=
⊗

x∈f−1(y)
Vx,

f]V(g,y) :=
⊗

x∈f−1(y)
V(g,x).

With g · (⊗x ex) = ⊗
x g · eg−1x.

Note that although we use its vocabulary and definitions, the full extent of

equivariant K-theory is beyond our scope. Thus we will mostly assume that

X, Y are of the form G/K for some subgroup K ≤ G, and more often than

not we will have Y = G/G = {∗}.

Remark. (i) Equivalently,

f∗(V )y ∼=
⊕

x∈f−1(y)/ Stab(y)
IndStab(y)

Stab(x) Vx.

(ii) One can check that applying the norm formula to the case of X = G/H

and Y = {∗} yields the usual tensor induction, as defined eg. in [CR90,

§13A]

The restriction and induction maps can be extended to KG in a straight-

forward way. By [Tam93, Th. 6.1], so can the tensor induction map. We
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explore in Section 3.6 how to determine a formula for the tensor induction of

virtual characters.

3.2 Graded character rings are not Mackey

functors

Graded character rings are functorial (see Lemma 2.3.1); in particular, ifH is a

subgroup of G, restricting representations from G to H induces a well-defined

homomorphism R∗(G) → R∗(H). Naturally, one wonders whether induction

of representations from a subgroup H of G also preserves the Grothendieck

filtration, and thus gives rise to a well-defined, additive induction map from

R∗(H) to R∗(G). If so, then R∗(−) satisfies the axioms of a cohomological

Mackey functor (which we define below). In particular, an analogue to Cartan

and Eilenberg’s result on stable elements in cohomology ([CE99, Th. XII.10.1])

states that each p-primary component R∗(G)p of R∗(G) is isomorphic to some

subring of the graded character ring of its p-Sylow subgroup. This is not the

case, and we produce below an example where this property fails. Thus R∗(−)

cannot be a Mackey functor.

A thorough treatment of the theory of Mackey functors is given in [Web];

let us start with the definition. Let R be a commutative ring and G a group,

and let Gset be the category of finite G-sets. A Mackey functor is a pair

(S∗, S∗) of functors from Gset to R−mod, where S∗ is contravariant and S∗ is

covariant, and S∗(−) and S∗(−) are equal on objects. Additionally, we require

the following axioms be satisfied:
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(i) If

Ω1
α //

β
��

Ω2

γ

��
Ω3 δ

// Ω4

is a pullback diagram of G-sets, then S∗(δ)S∗(γ) = S∗(β)S∗(α).

(ii) For every pair Ω,Ψ of finite G-sets, the morphism S(Ω)⊕S(Ψ)→ S(Ωt

Ψ) obtained by applying S∗ to Ω→ Ω tΨ← Ψ, is an isomorphism.

Remark. Alternatively, a Mackey functor S can be viewed a a function from

the subgroups of G to R−mod, with, for any two subgroups H ≤ K and g ∈ G,

maps ResHK : S(H) → S(K), IndHK : S(K) → S(H) and cg : S(H) → S(gH).

The maps are required to satisfy the usual axioms governing conjugation,

induction and restriction of representations, as detailed in [Web, §2]. If, ad-

ditionally, the induction and restriction satisfy ResHK(IndHK(x)) = [K : H] · x

then S(−) is called a cohomological Mackey functor.

This second definition makes it easy to check that the (ungraded) character

ring R(−) is a Mackey functor. Thus, if induction preserves the filtration, then

R∗(−) is also a Mackey functor. The following general result should then be

valid for R∗(−).

Proposition 3.2.1 (Cartan-Eilenberg). Let H ≥ G be any subgroup, and

suppose S is a Mackey functor. Call an element x ∈ S(H) stable if

ResgHgH∩H(cg(x)) = ResHgH∩H(x)

for all g ∈ G. If G ≥ H ≥ Sylp(G) where Sylp(G) is a p-Sylow of G, and
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S(G)(p) denotes the p-primary component of S(G), then:

ResGH : S(G)(p) −→ S(H)(p)

is injective, and its image consists of the stable elements in S(H)(p).

This result is a consequence of [Web, Cor. 3.7 and Prop. 7.2]; a more

elementary proof, in the case of cohomology, can be found in [AM69, Th.

6.6]. In the case of the alternating group A4 of order 12, we use the following

corollary:

Corollary 3.2.2. If H := Sylp(G) is abelian, then

ResGH : R∗(G)(p) −→ R∗(H)NG(H)

is an isomorphism.

We show that the condition of surjectivity on stable elements fails. Note

that the following computation relies heavily on the techniques developed in

Chapter 2, to which we refer the reader for any details. We also use the

following corollary to Proposition 2.3.3:

Lemma 3.2.3. Let C2 be the cyclic group of order 2, and let ρ1, ρ2 be the

generating representations for RC(C2 × 1), RC(1× C2) respectively. Then,

R∗C(C2 × C2) = Z[t1, t2]
(2t1, 2t2, t21t2 − t1t22)

where ti = c1(ρi).

Let A4 be generated by the permutations (12)(34) and (123). There are 4

irreducible complex representations of A4:
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• Of dimension 1: the trivial representation 1, and the representations ρ

(resp. ρ̄) that send (123) to e2iπ/3 (resp. e−2iπ/3) and (12)(34) to 1.

• Of dimension 3: the standard representation θ, which is the quotient of

the representation θ̄ acting on C4 by permutation of the basis vectors,

by the trivial representation. The character of θ sends 3-cycles to 0 and

(12)(34) to −1.

There are the following relations between the representations:

ρ2 = ρ̄ (3.2.1)

ρθ = θ (3.2.2)

θ2 = 1 + ρ+ ρ̄+ 2θ (3.2.3)

Additionally λ2(θ) = θ (by a direct calculation of the exterior power) and

det(θ) = 1.

Lemma 3.2.4. Let x = c1(ρ) and y = c2(θ), then

R∗C(A4) = Z[x, y]
(3x, 12y, 4y + x2) .

Proof. The graded character ring R∗C(A4) is generated by all Chern classes

of irreducible characters of A4; we start by ridding ourselves of redundant

generators. Let x = c1(ρ) and y = c2(θ). Then x = c1(ρ) = −c1(ρ̄) and

3x = 0. Moreover c1(θ) = c1(detθ) = c1(1) = 0, so x generates R1(A4), and

y, x2 generate R2(A4). As for the degree 3 generator c3(θ), we have:

C3(θ) = γ3(θ − 3) = λ3(θ − 1) = −1 + θ − λ2(θ) + 1 = 0,

so there is no additional generator in degree 3 and R∗(A4) is generated by x, y.
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We have 3x = 0 by the above, and 12y = 0 since the order of A4 kills R∗(A4)

(see Proposition 2.1.6). We now turn to the relation 4y + x2 = 0: applying

the total Chern class cT to both sides of (3.2.3) yields:

cT (θ2) = cT (1 + ρ+ ρ̄+ 2θ)

= cT (ρ)cT (ρ̄)cT (θ)2

= (1 + xT )(1− xT )(1 + yT 2)2

= 1 + (2y − x2)T 2 + (y2 − 2yx2)T 4 + zy2T 6. (3.2.4)

On the left-hand side, use the splitting principle (Proposition 2.1.3): we write

the character θ as a sum θ1 +θ2 +θ3 of linear characters. Looking only at even

terms of degree ≤ 6 and keeping in mind that c1(θ) = c3(θ) = 0, we get:

cT (θ2) = cT ((σ1 + σ2 + σ3)2)

= 1 + 6yT 2 + 9y2T 4 + 4y3T 6 (3.2.5)

Equating 3.2.4 and 3.2.5 yields 4y = −x2. In particular this means that

the order of y is a multiple of 3. To obtain more information, we can use

the restriction ResA4
C2×C2 : R∗(A4) → R∗(C2 × C2) y to H := C2 × C2. By

Lemma 3.2.3 :

R∗(Z/2× Z/2) = Z[t1, t2]
(2t1, 2t2, t21t2 − t1t22) .

We have ResH(y) = t21 + t1t2 + t22, which has order 2. So the order of yi is a

multiple of 2, that is, it is either 6 or 12. To conclude, we use the continuity

method from Section 2.5. Let X = C1(ρ) = ρ− 1 and Y = C2(θ) = 3− θ, and
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let

Γ̃n =


〈Y n/2〉 n even

〈XY (n−1)/2〉 n odd
.

Then Γ̃n is an admissible approximation for Γ. The evaluation φ(12)(34) sends

X to 0 and Y to −4, and thus is continuous with respect to the 2-adic topology

on Z. Suppose, for a contradiction, that 6Y k ∈ Γ2k+1 = Γ̃2k+1 + ΓM for some

large M . Since 2k + 1 is odd, Γ̃2k+1 is generated by XY k, which evaluates

to zero. Thus we must have v2(6Y k) ≥ 2k + 2, but v2(6Y k) = 2k + 1. So

Y k has additive order 12. Finally, restricting x to the subgroup generated by

(123), and yx to that generated by (12)(34), shows that there are no additional

relations.

Theorem 3.2.5. R∗(−) is not a Mackey functor.

Proof. Let G = A4, and consider its normal, abelian 2-Sylow H = C2 × C2.

Since ResGH(x) = 0, the image of R∗C(G) under the restriction map

ResGH : R∗C(G) −→ R∗C(H)

is generated by powers of ResGH(y) = t21 + t1t2 + t22. On the other hand, G acts

on R∗C(H) by cyclic permutations of the elements t1, t2, t1 + t2. The element

z = t31 + t32 + t21t2 is invariant under this action. But z is not a combination of

powers of t21 + t1t2 + t22 since it has odd degree, and thus does not belong to

the image of the restriction map. Therefore:

Im(ResGH) ( R∗C(H)NG(H)

which means that R∗(−) is not a Mackey functor.



CHAPTER 3. MACKEY FUNCTORS AND TAMBARA FUNCTORS 57

3.3 Saturated rings

Theorem 3.2.5 tells us that induction of representations is not compatible with

the Grothendieck filtration. This prompts us to define a modified filtration,

taking into account all images of Chern classes of subgroups of G under the

induction map. This new filtration retains much of the information of the

Grothendieck filtration: in fact, both induce the same topology on R(G). In

the sequel, let H,K denote two arbitrary subgroups of G. On the λ-ring R(G),

define the saturated filtration {F n}n as follows:

F n(G) =
∑
H≤G

IndGH(Γn(H)).

This means that F n(G) is generated by elements of the form:

x = IndGH(γi1(ρ1) · · · γim(ρm)), i1 + · · ·+ im ≥ n

with each ρ` an irreducible representation of H. By definition, induction of

representations preserves the filtration F .

Remark. In [Rit70], J. Ritter defines admissible filtrations on the complex

character ring as filtrations which, among other properties, are preserved by

induction of representations; he then proves some general results about their

topology, and the torsion of the associated graded ring. In this terminology,

the saturated filtration is the smallest admissible filtration that contains the

Grothendieck filtration.

Lemma 3.3.1. Let I = ker ε be the augmentation ideal.

(i) Induction and restriction of characters preserve the filtration F .

(ii) F i(G) · F j(G) ⊆ F i+j(G).
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(iii) F 0(G) = R(G), F 1(G) = I.

Proof. (i) We only need to check that restriction does preserve the filtration.

Let x ∈ F i(G); we prove that if x = IndGH(y) with y ∈ Γi(H) then

ResGH(x) ∈ F i(K) for all K ≤ G. We use the Mackey double coset

formula ([Ser77, Prop. 7.3.22]): let S be a set of (H,K)-double coset

representatives of G. For s ∈ S, let

sH = sHs−1 ∩K ≤ K

and let

ys(g) = y(s−1gs), for all g ∈ sH.

Then ys is a representation of sH and

ResGK IndGH(y) =
∑

s∈K\G/H
IndK

sH(ys)

Note that each ys is in Γi(sH) by functoriality of R∗(−). Thus ResGK(x) ∈

F i(K).

(ii) It is sufficient to prove that if x̃ = IndGH(x) and ỹ = IndGK(y) with

x ∈ Γi(H) and y ∈ Γj(K) then x̃ · ỹ ∈ F i+j(G). We proceed by induction

on the order of G. Suppose H < G is a proper subgroup. By the

projection formula ([Ser77, §7.2]):

x̃ · ỹ = IndGH(x) IndGK(y) = IndGH(x · ResGH IndGK(y)).

Since restriction preserves the filtration and IndGK(y) ∈ F j(G), we have
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ResGH IndGK(y) ∈ F j(H), so:

x · ResGH IndGK(y) ∈ F i(H)F j(H) ⊆ F i+j(H).

where the inclusion is true by induction. In conclusion:

x̃ · ỹ = IndGH(x · ResGH IndGK(y)) ∈ F i+j(G).

(iii) The fact that F 0(G) = R(G) comes from the fact that Γ0(G) = R(G).

For F 1(G), simply observe that, since ε(IndGH(ρ)) = [G : H]ε(ρ):

F 1(G) =
∑
H≤G

IndGH(ker(ε|H)) = ker(ε) = I.

Lemma 3.3.1 lets us define the saturated graded ring associated to G as:

R∗(G) =
⊕
i≥0

F i(G)/F i+1(G).

Note that, as representation rings are of the form KG(X) for some transitive

G-set X, we can extend the definition of this filtration to KG(X) for a general

finite G-set X. Then the above discussion means that for every map of finite

G-sets f : X → Y , the maps f∗ and f ∗ defined in Section 3.1 are compatible

with the saturated filtration.

Theorem 3.3.2. The saturated graded ring R∗(−) : Gset → Z − mod is a

Mackey functor.

Proof. This follows from the above.
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Note that R∗ is actually a Green functor, that is, a Mackey functor with an

R-algebra structure compatible with restriction and satisfying the projection

formula. We still need to ensure we do not lose too much information by

modifying the filtration: after all, we could end up with trivial graded rings. It

is not the case, and in fact both filtrations induce the same topology on R(−).

Recall that by Proposition 2.1.1, the topology induced by the Grothendieck

filtration coincides with the I-adic topology.

Theorem 3.3.3. The filtrations (F n)n and (Γn)n induce the same topology on

R(G).

Proof. Let U ⊆ R(G) be open for the F -topology, that is, for any x ∈ U

there is an integer N such that x + FN ⊆ U . Since ΓN ⊆ FN , we also have

x+ ΓN ⊆ U , so U is also open for the Γ-topology.

To prove that a set U open in the Γ-topology is also open in the F -topology,

we need to show that for each N , there is an M such that FM ⊆ ΓN . Let

H ≤ G, and recall that R(H) can be viewed as an R(G)-module via the

restriction homomorphism. Then, by [Ati61, Th. 6.1], the I(H)-adic topology

is equal to the topology on R(H) induced by the I(G)-adic topology. By

Proposition 2.1.1, these topologies are also equal to the Γ-topology on H. In

particular, for our fixed N , there are some k, m satisfying:

ΓN(H) ⊃ I(G)k ·R(H) ⊃ Γm(H).

Pick k (and thus m) large enough that we also have I(G)k ⊂ ΓN(G). Then

IndGH(Γm(H)) ⊂ IndGH(I(G)k ·R(H)) ⊂ I(G)k ⊂ ΓN(G).
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Now let

M = max
H≤G

{
min {m | IndGH(Γm(H)) ⊂ ΓN(G)}

}
,

then FM(G) = ∑
H≤G IndGH(ΓM(H)) ⊂ ΓN(G), which completes the proof.

Since Γn ⊆ F n for all n ≥ 0, there is a natural map of graded rings:

η : R∗(G) −→ R∗(G)

induced by the identity. Here is a neat consequence of Theorem 3.3.3:

Corollary 3.3.4. If the natural map η : R∗(G) → R∗(G) is surjective, then

it is an isomorphism and the filtrations (F n) and (Γn) are equal.

Proof. If η is surjective, then R∗(G) is generated by Chern classes of elements

of R(G). Let Pw denote a polynomial in the Cl(ρk) of weight w, then any

x ∈ F n(G) can be written as:

x = Pn(Ci1(ρ1), · · · , Cik(ρk)) + yn+1

where the ρj’s are irreducible representations of G and yn ∈ F n+1. Then we

also have:

x = Pn(Ci1(ρ1), · · · , Cik(ρk)) + Pn+1(Ci1(ρ1), · · · , Cik(ρk)) + yn+2

=
m∑
l=1

Pn+l(Ci1(ρ1), · · · , Cik(ρk)) + ym+1,

for any positive m. So x is in Γn(G) + Fm(G) for all m, that is, x is in

the topological closure Γn(G) of Γn(G). But Γn(G) is closed in R(G), thus

x ∈ Γn(G).
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We say that R∗(G) is saturated if the natural map η is an isomorphism.

A group G is saturated (over K) if R∗K(G) is saturated. For H ≤ G, if the

induction i∗ : R(H)→ R(G) is compatible with the filtration (Γn), then H is

said to be Γ-compatible with G.

Lemma 3.3.5. If the restriction maps i∗ : R(G) → R(H) are surjective for

all H ≤ G, then G is saturated.

Proof. First note that if i∗ is surjective then each i∗ΓM : ΓM(G) → ΓM(H) is

surjective: a monomial in the γl(ρk), with ρk ∈ R(H) is just the image by i∗

of γl(σk), with σi ∈ R(G) satisfying i∗(σk) = ρk. So let ρ ∈ ΓM(H) and pick

some σ ∈ ΓM(G) such that ρ = i∗(σ). Then:

i∗(ρ) = i∗i
∗(σ) = i∗(1)σ ∈ ΓM(G).

So all virtual characters in F n(G) (which are induced from subgroups of G)

are also in Γn(G), and thus R∗(G) = R∗(G).

Remark. (i) In Section 3.3, we use Lemma 3.3.5 to show that Abelian groups

are saturated. So R∗(−) is a Mackey functor when restricted to abelian

groups.

(ii) We show in Proposition 3.4.6 that the converse of Lemma 3.3.5 is not

true: the dihedral group of orderDp for p odd is saturated, but restriction

of representations to Cp is not surjective.

The following result implies that the saturated graded ring of G is com-

pletely determined by that of its Sylow subgroups. It is a consequence of [Web,

Cor. 3.7 and Prop. 7.2]; for a more concrete proof, see for example [AM69,

Th. 6.6].
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Theorem 3.3.6. Let G ≥ H ≥ Sylp(G) where Sylp(G) is a p-Sylow of G and

let R∗(G)(p) denote the p-primary component of R∗(G). Then:

ResGH : R∗(G)(p) −→ R∗(H)(p)

is injective, and its image consists of the stable elements in R∗(H)(p)

A similar result to that due to Swan in cohomology (see [Swa60]) can be

obtained as a straightforward application of Theorem 3.3.6.

Corollary 3.3.7 (Swan’s Lemma). If H EG is a normal subgroup such that

H ⊇ Sylp(G), then

R∗(G)(p) ∼= Im(ResGH) = R∗(H)G/H(p)

Proof. If H is normal, the stability condition becomes cg(x) = x, that is, x is

invariant by the action of G/H.

Corollary 3.3.8. If H := Sylp(G) is abelian, then

ResGH : R∗(G)(p) −→ R∗(H)NG(H)

is an isomorphism.

Proof. See [AM69, Th 6.8].

Corollary 3.3.9. Let H = Sylp(G) be a p-Sylow subgroup. Then the induction

map

IndGH : R∗(H)→ R∗(G)(p)

is surjective.
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Proof. First note that since R∗(H) is p-torsion, the image of IndGH is indeed

contained in R∗(G)(p). Pick an element x ∈ R∗(G)(p), then IndGH ResGH(x) =

[G : H]x, and [G : H] is invertible in R∗(G)(p).

Note that since the induction map preserves the F -filtration, it is continu-

ous with respect to the topology induced by it (and thus with respect to the Γ

and I-adic topologies). In particular, induction extends to a well-defined map

of completed rings

ÎndGH : R̂(H)→ R̂(G)

and by Corollary 3.3.9 the characters induced from Sylow subgroups of G

form a dense subset of the completed ring R̂(G). In other words, we have the

following variant of Artin’s theorem (see [Ser77, Th. II.9.17]):

Theorem 3.3.10. Let X be a family of subgroups of a finite group G. Let

Înd :
⊕
H∈X

R̂(H)→ R̂(G)

be the morphism defined on each R̂(H) by ÎndGH . If X contains a p-Sylow of

G for all p, then the map Înd is surjective.

Proof. By Corollary 3.3.9, the characters induced from Hp form a dense subset

of R̂(G)(p) for the F -topology, so if X contains a p-Sylow of G for every p then

Înd is surjective.

3.4 Computing saturated rings

We now apply Section 3.3 by trying our hand at some computations; a num-

ber of the groups mentioned in Chapter 2 (including all abelian groups) are
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saturated, as we show below. In general, it is much more difficult to compute

saturated rings than usual graded character rings, due to the complexity of

the saturated filtration. This is where Corollary 3.3.8 comes into play, as we

show with the example of the projective special linear group PSL(2, q). For

convenience, when the groups H ≤ G are clear from the context, we denote the

induction IndGH : R(H)→ R(G) by i∗ and the restriction ResGH : R(G)→ R(H)

by i∗. For the rest of this section, we fix K = C.

3.4.1 Saturated groups

Abelian groups, dihedral groups of order 2p and the quaternion group of order

8 are all saturated (over C).

Proposition 3.4.1. Abelian groups are saturated over C.

Proof. Let G be an abelian group and define Ĝ := Hom(G,C∗). Then any

abelian group homomorphism φ : G → H induces a map φ̂ : Ĥ → Ĝ, which

is injective if and only if φ is surjective. Additionally, there is a natural iso-

morphism between G and its double dual ̂̂G given by associating to g the

evaluation at g.

Now if H ≤ G, then the injection H → G induces a map φ̂ : Ĝ→ Ĥ, and also

a map ̂̂φ : ̂̂H → ̂̂
G. The latter is injective, which means by the above that φ̂ is

surjective. Thus the characters of H all come from restrictions of characters

of G, and G is saturated.

We now turn to the quaternion group Q8 == 〈i, j, k | i2 = j2 = k2 = ijk〉.

The group Q8 has 5 conjugacy classes: {1}, {−1}, {±i}, {±j}, {±k} so 5

irreducible representations on C. They are as follows:
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(i) In dimension 1, the trivial representation, and the characters

ρ1 :


i 7→ 1

j 7→ −1
, ρ2 = −ρ1 and ρ3 = ρ1ρ2,

(ii) and in dimension 2, the representation ∆:

∆(i) =

i 0

0 −i

 , ∆(j) =

0 −1

1 0

 , ∆(k) =

 0 −i

−i 0


.

Let us recall Theorem 2.5.4:

Lemma 3.4.2. Let ρ1 be the character of Q8 defined by ρ1(i) = 1, ρ1(j) = −1,

let ρ2 = −ρ1, and let ∆ be irreducible character of degree 2 of Q8 sending i, j, k

to 0. Then

R∗(Q8) = Z[x1, x2, y]
(2xi, 8y, x2

i , x1x2 − 4y) ,

where x = c1(ρ1), y = c1(ρ2) and y = c2(∆).

We also need a result from [GM14]:

Lemma 3.4.3 ([GM14, Prop 3.4]). Let CN be the cyclic group of order N and

ρ a generating representation for R(CN). Then

R∗(CN) = Z[t]
(Nt) ,

where t = c1(ρ).

Proposition 3.4.4. The quaternion group Q8 is saturated.

Proof. The quaternion group contains one subgroup isomorphic to C2, which

is generated by −1, and three subgroups isomorphic to C4, which all contain

−1 and are generated respectively by i, j and k. Since all these groups are
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saturated, we only need to check that the maximal saturated subgroup H =

〈k〉 ∼= C4 is Γ-compatible with Q8, which we do by showing that, if ρ is the

generating representation of R(C4), then each induced character IndQ8
C4 (C1(ρ)n)

is in Γn(Q8). Note first that IndQ8
C4 (C1(ρ)) ∈ Γ1(Q8) = IQ8 . Moreover, the

representation ∆ restricts on C4 to ρ+ ρ−1, and so

ResQ8
C4 (y) = c2(ρ+ ρ

−1) = −c1(ρ)2 = −t2.

Therefore C1(ρ)2 = Res(−C2(∆)), and so

i∗(C1(ρ)2) = i∗(i∗(−C2(∆))) = −C[Q8/C4]⊗ C2(∆) ∈ Γ2(Q8).

Thus, for any n = 2m+ l with l = 0, 1:

i∗(C1(ρ)n) = i∗(C1(ρ)2m+l) = i∗ (C1(ρ)) · i∗(−C2(∆))m)

= i∗(C1(ρ)) · (−C2(∆))m,

which is an element of Γl · Γ2m. This means that C4 is Γ-compatible with Q8,

and therefore Q8 is saturated.

With a similar method, we can prove that dihedral groups are saturated.

By Proposition 2.3.4:

Lemma 3.4.5. Let p be an odd prime, and let Dp = 〈σ, τ | τ 2 = σp = 1, τστ =

σ−1〉 be the dihedral group of order p. Let χ be the irreducible character of Dp

of degree 2, sending τ to 0 and σ to 2cos(2π
p

), then

R∗(Dp) = Z [x, y]
(2x, py, xy) ,
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where x = c1(χ) and y = c2(χ).

Proposition 3.4.6. Let p be an odd prime, then the dihedral group Dp of

order 2p is saturated.

Proof. Since Dp = Cp o C2 and Cp, C2 are abelian, these are the maximal

saturated subgroups of Dp. The signature ε of Dp restricts on C2 to the rep-

resentation ρ, which generates R(C2). Thus C2 is Γ-compatible with Dp, and

we only need to look at Cp.

Since Res(Y ) = −C1(ρ)2 the same argument as in the proof of Proposi-

tion 3.4.4 applies.

3.4.2 Projective linear groups

We compute the saturated character ring of G = PSL(2, p), the projective

special linear group over Fp, where p is an odd prime such that p ≡ 3, 5(mod 8).

Note that we do not use any information about the character table of G: we

only need to know those of its Sylow subgroups, which are all abelian. For

each prime l dividing |G| = p(p+1)(p−1)
2 , let Hl = Syll(G) and Nl = NG(Hl).

For each l, we determine the l-Sylow of G and the action of its normalizer,

then deduce the stable element subring. There are 4 possible cases:

(i) l = p. ThenHp
∼= Cp is generated by the matrix

1 1

0 1

. The normalizer

of Hp is the group:

Np =


a b

0 a−1

 ∈ PSL(2, p)

 ,
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with action
a b

0 a−1

 ·
1 n

0 1

 ·
a−1 −b

0 a

 =

1 a2n

0 1

 ,

inducing ρ 7→ ρa
2 for a generator ρ of R(Cp). On R∗(Cp) ∼= Z[x]

(px) , this

induces x 7→ a2x. The subring generated by x p−1
2 is stable by this action,

and conversely if a is an element of multiplicative order (p − 1), then a

monomial xm being stable by the action x 7→ a2x implies that m is a

multiple of p−1
2 . Thus

R∗(Hp)Np ∼=
Z[u]
(pu) , |u| = p− 1

2 . (3.4.1)

(ii) l is an odd prime dividing (p − 1). Then Hl
∼= Cli for some integer i,

generated by

n 0

0 n−1

 for some n of order li in F×p . A straightforward

computation gives that Nl is generated by diagonal matrices (which com-

mute with the elements of Hl) together with the matrix

 0 1

−1 0

 which

sends an element h ∈ Hl to its inverse. The induced action on the rep-

resentation ring is ρ 7→ ρ−1, which translates as x 7→ −x in the graded

ring. Thus

R∗(Hl)Nl ∼=
Z[x]
(lix) , |x| = 2. (3.4.2)

(iii) l = r is an odd prime dividing p + 1. We prove that Hr is cyclic. Note

that the r-Sylow of G is isomorphic to that of G′ := PSL(2, p2) since the

index of G in G′ is coprime to r. Let α ∈ F×p2 have multiplicative order

ri. The matrix A′ =

α 0

0 α−1

 generates a cyclic group H ′r of order ri
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in G′, which is thus an r-Sylow subgroup. We have α /∈ F×p , however

any matrix of G similar to A generates an isomorphic group in G. One

can take for example A =

0 −1

1 α + α−1

, the companion matrix to the

minimal polynomial of α.

The normalizer N ′r of C ′ri in G′ is a dihedral group of order p2 − 1,

generated by all diagonal matrices together with the matrix

 0 1

−1 0


which sends A to its inverse. The change of basis sending A to A′ allows

us to view Nr as a subgroup of N ′r, and thus the elements of Nr act either

trivially or by inversion on Hr.

It remains to show that there exists a matrix S ∈ G such that S−1AS =

A−1. Let a = α + α−1. By a direct calculation, one shows that any

matrix of the form

 −x y

ax+ y x

 in GL(2, p) satisfies this property, thus

S ∈ PSL(2, p) exists if and only if there is a pair (x, y) ∈ F2
p such that

−x2 − axy − y2 = 1. This equation is equivalent to X2 + 1 = bY 2,

with X = x + a2

4 y, Y = y and b = a2

4 − 1. There are (p + 1)/2 squares

in Fp (including 0), so there are (p + 1)/2 elements of the form X2 + 1,

and, if b 6= 0 then there are also (p + 1)/2 elements of the form bY 2.

Thus whenever b 6= 0, the set of elements of the form X2 + 1 and the set

of elements of the form bY 2 have nontrivial intersection, and there is a

solution to x2 +axy+ y2 = −1. Now, b = 0 if and only if a2 = 4, that is,

a = ±2(mod p). But then α is a solution of t2± 2t+ 1, that is, α = α−1

has multiplicative order 2, in contradiction with our assumption. Thus

b is always nonzero, which completes the proof.



CHAPTER 3. MACKEY FUNCTORS AND TAMBARA FUNCTORS 71

We have:

R∗(Hr)Nr ∼=
Z[y]
(riy) , |y| = 2. (3.4.3)

(iv) l = 2. Since p ≡ 3, 5(mod 8), the 2-Sylow subgroup of G has order 4.

There are two cases:

• if p ≡ 5(mod 8), then −1 is a quadratic residue, so let a satisfy

a2 ≡ −1(mod p). Then

H2 =
〈
h1 :=

a 0

0 −a

 , h2 :=

0 a

a 0

〉 .

We show that N2 ∼= A4. First, we have CG(h1) ∩ NG(H2) = {Id},

as a direct calculation shows, and similarly for h2 and h1h2 =: h3.

Therefore, if N ∈ N2 acts nontrivially on H2, it must permute

all 3 nontrivial elements. If T =

x −ax
x ax

, with x2 = 1
2a , then

Th1T
−1 = h2 and Th2T

−1 = h3. Both 2 and a are nonresidues

mod p since p ≡ 5(mod 8) and if a were a residue, then PSL(2, p)

would contain an element of order 4, contradicting H2 ∼= C2 × C2.

Thus there is an x satisfying x2 = 1/2a. Moreover T is unique up

to multiplication by an element of CG(H2) = H2, which shows that

N2 = 〈T,H2〉 ∼= A4.

• if p ≡ 3(mod 8), then −2 is a residue, so let b satisfy

b2 ≡ −2(mod p). Then

H2 =
〈0 −1

1 0

 ,
b 1

1 −b

〉
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Again, we have N2 ∼= A4 acting by cyclic permutations, generated

by H2 together with the matrix T =

 1
b

1
b

− b+2
2

b−2
2

.

In both cases the normalizer acts as cyclic permutations on the nontrivial

elements of H2, and thus:

R∗(H2)N2 ∼=
Z[z, t]

(2z, 2t, z3 − t2) , |z| = 2, |t| = 3. (3.4.4)

Putting all of this together, we get:

Theorem 3.4.7. Let G = PSL(2, p) be the projective special linear group over

Fp, where p is an odd prime such that p ≡ 3, 5(mod 8). Write:

|G| = 4 · p · li11 · · · linn · r
j1
1 · · · rjmm , with lk|(p− 1), rk|(p+ 1).

Then:

R∗(G) ∼=
Z[x1, · · · , xn, y1, · · · ym, z, t, u]
(likk xk, r

jk
k yk, 2z, 2t, pu, z3 − t2)

(3.4.5)

with |xk| = |yk| = |z| = 2, |t| = 3, |u| = (p− 1)/2, and:

(i) xk = IndGHlk (x2
k), yk = IndGHrk (y2

k) where xk (resp. yk) is a generating

class of the ring R∗C(C
l
ik
k

) (resp. RC(C
r
jk
k

)).

(ii) u = IndGHp(u)(p−1)/2) where

(iii) z = IndGH2(t21 + t1t2 + t22) and t = IndGH2(t31 + t21t2 + t32)

Remark. For p = 3, this is the saturated ring R∗(A4).
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3.5 Tambara functors, the ungraded case

After discussing whether the graded character ring functor is Mackey, it seems

natural to turn to the theory of Tambara functors, which was introduced by

Tambara in [Tam93]; they can be understood as Mackey functors S(−) that

are equipped, for each subgroup H ≤ G, with a multiplicative transfer map

S(H) → S(G). In cohomology, this is the Evens norm map (see for example

[CTVEZ03, Ch. 6]). In the case of graded character rings, tensor induction of

representations is a natural candidate for the role of the multiplicative transfer.

We must begin, however, with the ungraded situation: the fact that the mul-

tiplicative transfer turns KG(X) into a Tambara functor is mentioned without

proof in both [Str12] and [Tam93], and we propose here a proof for the sake

of completeness.

To define Tambara functors, we need the notion of exponential diagrams.

Let Gset/X,Gset/Y be the categories of G-sets over X, Y respectively, and

let an equivariant map f : X → Y be given. The pullback functor Gset/Y →

Gset/X has a right adjoint Πf : Gset/X → Gset/Y , which we now describe.

Let p : A→ X be a set over X. We construct q : ΠfA→ Y as follows:

ΠfA =
⊔
y∈Y

secp(f−1(y), A),

where we write secp(U,A), given a subset U ⊂ X, for the set of all sections of

p over U , that is, maps s : U → A such that p ◦ s(u) = u for all u ∈ U .

Then ΠfA is a G-set if we define gs : f−1(gy)→ A, x 7→ g · s(g−1 · x), and

of course there is an obvious map ΠfA→ Y . The adjointness property means
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that, as is easily established,

HomGset/X(P (B), A) ∼= HomGset/Y (B,ΠfA)

for all appropriate A,B, where P is the pullback functor. In particular for

B = ΠfA, there is an element e ∈ HomGset/X(P (ΠfA), A) corresponding to

the identity of B. It is involved in the following commutative diagram:

X ×Y ΠfA

f ′

��

e // A
p // X

f

��
ΠfA q

// Y

.

Seeing the pullback as pairs (x, s) with x ∈ X, and s ∈ secp(f−1f(x), A) such

that f(x) = q(s), the map f ′ is just a projection on the second coordinate. A

diagram isomorphic to the one above is called an exponential diagram.

Definition ([Tam93, §2]). Let X, Y be G-sets and f : X → Y a G-set map.

A semi-Tambara functor is a function S(−) associating to X, Y , (semi)-rings

S(X), S(Y ) and to f three maps f ∗ : S(Y ) → S(X), f∗, f] : S(X) → S(Y )

such that the following conditions are satisfied:

(i) f ∗, f∗, f] are homomorphism of rings, additive monoids, multiplicative

monoids respectively.

(ii) The triples (S, f ∗, f∗) and (S, f ∗, f]) form semi-Mackey functors.

(iii) If

X ′

f ′

��

e // Z
p // X

f
��

Y ′ q
// Y
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is an exponential diagram, then the corresponding diagram

S(X ′)
f ′]
��

S(Z)e∗oo p∗ // S(X)
f]
��

S(Y ′) q∗
// S(Y )

commutes.

If additionally, S associates a ring to a G-set, and f∗ is a homomorphism of

additive groups, then S is a Tambara functor.

Theorem 3.5.1. The functor K+
G(−) with the restriction, induction and ten-

sor inducion maps described in Section 2.1, is a semi-Tambara functor.

Proof. Since (K+
G(−), f ∗, f∗) is a Mackey functor, so we only concern ourselves

with the properties of f].

(i) The fact that f] is a homomorphism of multiplicative monoids follows

from the properties of the tensor product.

(ii) To show that (S, f ∗, f]) is a Mackey functor, we check both axioms from

the definition in Section 3.2. Let

Ω1
α //

β
��

Ω2

γ

��
Ω3 δ

// Ω4

be a pullback diagram of G-sets, then we want to check that δ∗γ] = β]α
∗.

Note that because any G-set can be expressed as a disjoint union of

orbits, it is sufficient to check this axiom on pullback diagrams of the
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form:

Ω α //

β

��

G/K

γ

��
G/H

δ
// G/J

for H,K ≤ J ≤ G. Let W be a vector bundle over G/K and let

V = δ∗γ](W ), then for x ∈ G/H, we have:

Vx = (δ∗γ](W ))x =
⊗

t∈G/K
Wt,

where the tensor product is taken over all of the tK ∈ G/K such that

γ(tK) = δ(xH). The action of g takes Vx to Vg·x and can be written

g ·⊗tK∈G/K vtK = ⊗
tK∈G/K g · vg−1tK . The vector bundle E := β]α

∗(W )

is defined by

Ex = (β]α∗(W ))x =
⊗

s∈G/K
Ws,

where the tensor product is taken over all s such that (sK, xH) ∈ Ω,

which is equivalent to requiring γ(tK) = δ(xH). The action of G is given

by g ·⊗s∈G/K es = ⊗
s∈G/K g · eg−1·s, and thus E and V are isomorphic

vector bundles.

For the second axiom, consider two finite G-sets Ω,Ψ and the cor-

responding inclusion maps iΩ, iΨ : Ω,Ψ → Ω t Ψ. Then the map

f] : K+
G(Ω) ⊕ K+

G(Ψ) → K+
G(Ω t Ψ) whose components are given by

iΩ,], iΨ,] should be an isomorphism. This is obviously the case.

(iii) Again, we can assume without loss of generality that A = G/K,X =

G/H, Y = G/J where K ≤ H ≤ J . We denote by πHK : G/K → G/H

the map sending a coset tK to the corresponding coset tH in G/H, and
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similarly for πJK , πJH . Then the set ΠπJH
G/K above G/J is the set of

sections s : πJH
−1(yJ) → G/K such that for any tK ∈ G/K satisfying

tJ = yJ , we have s(tH) = tK. Consider the diagram:

ΠπJH
G/K×G/J

G/K

f

��

e // G/K
πHK // G/H

πJH
��

ΠπJH
G/K q

// G/J

where e, f are projections and q is the map sending a section

s : πJH
−1(yJ) → G/K to yJ . The third axiom for Tambara functors

says that the corresponding diagram:

K+
G

(
ΠπJH

G/K×G/J
G/K

)
f]
��

K+
G (G/K)e∗oo

πHK∗ // K+
G (G/H)

πJH]
��

K+
G

(
ΠπJH

G/K
)

q∗
// K+

G (G/J)

should commute. For convenience, let X = ΠπJH
G/K×G/J

G/K. Con-

sider W ∈ K+
G (G/K), then on the one hand:

VyJ :=
(
πJH]π

H
K ∗(W )

)
yJ

=
⊗

xH⊆yJ

 ⊕
tK⊆xH

WtK


and on the other hand:

EyJ := (q∗f]e∗(W ))yJ =
⊕

s∈q−1(y)

 ⊗
(s,tK)∈X

WtK

 .
The fact that VyJ ∼= EyJ as vector spaces comes from the distributiv-

ity property of the tensor product with respect to the direct sum, as
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well as the definition of the exponential functor ΠπJH
: Gset/(G/H) →

Gset/(G/J). To construct each term of the sum in EyJ , we pick a sec-

tion s : πJH
−1(yJ) → G/K. Each term is then a product of all spaces

of the form WtK with tK = s(xH) for xH ∈ πJH
−1(yJ). Summing over

all possible such sections s, we get all possible combinations of factors in

VyJ . So EyJ is just a rewriting of VyJ . The action of g ∈ G is given by

g ·

 ⊗
xH⊆yJ

 ⊕
tK⊆xH

wtK

 7→ ⊗
xH⊆yJ

 ⊕
tK⊆xH

g · wg−1·tK

 .
On the other hand, the action of G on ΠπJH

G/K is given by g · s =

πJH
−1(gyJ) → G/K, gxH 7→ g · s(g−1(gxH)), that is, g · s maps g · xH

to g · s(xH). This means that the permutation of the factors induced by

the action of g on E is the same as the one on V .

The following result by Tambara shows that, in fact, KG(X) is a Tambara

functor. For an abelian monoid M , let γM be the universal abelian group

with monoid map kM : M → γM , and generators kM(m) for m ∈ M and

relations kM(m+m′) = kM(m) + kM(m′) for m,m′ ∈M . If M is a semi-ring,

then γM has a unique ring structure such that kM is a semi-ring map.

Theorem 3.5.2 ([Tam93, Th. 6.1]). Let S be a semi-Tambara functor. Then

the function which assigns the set γS(X) to each G-set X has a unique struc-

ture of a Tambara functor such that the maps kS(X) form a morphism of semi-

Tambara functors.

Corollary 3.5.3. The functor KG(−) has the structure of a Tambara functor.
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3.6 The addition formula

A formula for the norm of the sum of two characters would enable us to com-

pute the value of the norm map on negative virtual characters, a necessary

step in determining whether the norm map preserves the Grothendieck filtra-

tion. Strikingly, there is no known general formula for the tensor induction

of a sum of characters, or its cohomological equivalent, the Evens norm of a

sum of classes. Below, we first establish a formula for the sum of two positive

characters after [Tam93, §4]; we then use this formula to determine NG
H (−ρ)

for ρ ∈ R+(H), in the case of a normal subgroup H of prime index in G, which

gives us an explicit expression for the norm of a virtual character in this case.

We then prove that in the case of abelian groups, the norm map preserves

the Grothendieck filtration, and thus R∗(G) is a Tambara functor on abelian

groups.

3.6.1 A general formula for positive representations

The following is an application of [Tam93, §4], where Tambara gives a general

addition formula for the norm. Let X, Y be G-sets and let f : X → Y be a

G-map. As usual, we assume X = G/H, Y = G/K with H ≤ K ≤ G, and

f = πHK . Moreover, we can restrict ourselves to K = G. So Y = G/G = •, the

one point set. Let:

V = {C | C ⊂ G/H} =: P(G/H)

U = {(xH,C) | xH ∈ C,C ⊂ G/H}
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Then we have a commutative diagram

U
r //

t
��

G/H

f

��
V s

// •

where r, t are projection maps. Let

χ := t]r
∗ : K+

G(G/H)→ K+
G(V ),

then for a vector bundle W ∈ K+
G(G/H), the vector bundle χ(W ) ∈ K+

G(V )

associates to each C = {x1, · · · , xn} the vector space Wx1⊗· · ·⊗Wxn
∼= W⊗n,

and to each g ∈ G the linear map given by:

g ·

⊗
xi∈C

wxi

 =
⊗
xi∈C

(g · wg−1·xi) .

So the reader must bear in mind that, in our current notation, for a repre-

sentation ρ of H corresponding to some vector bundle x ∈ K+
G(G/H), we

have:

f](x) = NG
H (x) = χ(x)G/H (3.6.1)

Note that, since it involves the map t], the morphism χ is only defined on

K+
G(G/H) for now. Throughout this section, we determine how to extend χ

to vector bundles with (all) negative coefficients, then to all virtual bundles.

We define a ring operation ∨ on the group KG(V ) as follows: let V (2) be

the G-set of pairs (C1, C2) of disjoint subsets of G/H. Let p1, p2,m be the G-

maps taking (C1, C2) to C1, C2, C1 tC2, respectively. Then for z, t ∈ KG(V ),
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we let:

(z ∨ t) = m∗(p∗1(z) · p∗2(t)).

This operation does not involve multiplicative norms (that is, it does not

involve f] for some map f), thus it is well-defined on the whole ring KG(V ),

and not just the semi-ring K+
G(V ).

Each fiber in a vector bundle is a representation of the stabilizer of the

point above which it sits; for purposes of intuition, we point out that, as a

representation of Stab(C), we have

(z ∨ t)C =
⊕

IndStab(C)
Stab(C1,C2)(zC1 ⊗ tC2), (3.6.2)

where the direct sum is taken over all orbit representatives under Stab(C)

of pairs (C1, C2) such that C1 t C2 = C. Since this operation only involves

restrictions and inductions, it is defined for virtual characters.

By [Tam93, Prop. 4.4], the map χ is is a morphism from the monoid

(K+
G(G/H),+) to (KG(V ),∨). In particular, for τ, σ ∈ K+

G(G/H), we have:

f](σ + τ) = χ(σ + τ)G/H = (χ (σ) ∨ χ (τ)){G/H} . (3.6.3)

We now assume that H is a normal subgroup of G. In terms of represen-

tations, we introduce the following notation for purposes of intuition: for a

representation ρ ∈ R+(H) and C ⊂ G/H, write

ρ⊗C := χ(ρ)C . (3.6.4)

This is meant to remind us of the following description. Pick a transversal set

T = {t1, · · · tn} for G/H and let C ⊂ G/H. Then, as a StabC-module, we
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have:

ρ⊗C =
⊗
ti

ρti ,

where ρti is the representation ρ conjugated by ti ∈ G, and the sum is over

those ti, whose image in G/H is in C; the action of StabC is obvious. Note

that, because H is normal in G, the representation ρ⊗C does not depend on the

choice of transversal set T , since a different coset representative t′i of tiH would

be thi for some h ∈ H, and ρ is invariant under conjugation by an element of

H.

As we recall below, one can extend χ to virtual characters. However, we

shall refrain from using the notation ρ⊗C when ρ is not known to be an actual

representation, as it can be misleading. For example, if ρ ∈ R+(H), and

one writes (−ρ)⊗C for χ(−ρ)C , then one is tempted to guess that χ(−ρ)C =

±χ(ρ)C ; while Proposition 3.6.2 establishes just that when H has odd, prime

index in G, Proposition 3.6.3 shows that it is erroneous in general.

Putting eqs. (3.6.1) to (3.6.4) together yields:

Proposition 3.6.1. Let σ, τ ∈ R+(H), where H E G. Then:

NG
H (τ + σ) =

∑
C∈O(V )

IndGStabC

(
τ⊗Cσ⊗C

′)

where C ′ denotes the complement of C in G/H, and O(V ) is a complete set

of orbit representatives of V under the action of G.

Again, this formula does not depend on the choice of orbit representatives,

since choosing different representatives boils down to conjugating τ⊗Cσ⊗C′ by

some g ∈ G, under which induction of representations is invariant. Note that,

so far, the formula in Proposition 3.6.1 is only valid on R+(H).

Let us point out that, if G is abelian, then ρ⊗C = ρ⊗|C| as an H-module;
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there results a simplified formula for NG
H (σ + τ) in this case, especially when

H has prime index in G. What we establish in the sequel is that this simplified

formula holds even when σ and τ are virtual. This will be Lemma 3.6.6.

A key argument of the proof of [Tam93, Th 6.1], is that the image of χ

lies in a subset of KG(V ) that is a group for ∨. Thus, defining χ(−τ) as the

element b ∈ KG(V ) such that χ(τ) ∨ b = 1, extends χ to virtual characters

in a way compatible with the addition formula. With b thus defined, one has

NG
H (−τ) = b{G/H}, and the equation NG

H (σ− τ) = χ(σ)∨χ(−τ) is an explicit

formula for the norm of any virtual character. Unfortunately, this formula is

quite unpractical to apply, as the example below shows.

3.6.2 The prime normal case

We first extend the norm map to negative bundles, which allows us to de-

termine an addition formula in the case where H is a normal subgroup of G

of prime index p. We denote (slightly abusively) the extention of χ to neg-

ative (and generally, all virtual) characters, by χ as well. Throughout, we

use the fact that a vector bundle above a G-set X is entirely determined by

its fibre above each point x and the action of Stabx on it; any equality of

vector spaces above a point x is to be understood as a canonical isomorphism

of Stabx-modules. We start with the case where p is odd:

Proposition 3.6.2. Let H E G with |G : H| = p an odd prime and let

W ∈ K+
G(G/H). Then for any C ⊆ G/H:

χ(−W )C = (−1)|C|χ(W )C .
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In particular, for C = G/H:

f](−W ) = −f](W ).

Proof. Let a = χ(W ) ∈ KG(V ). Let b ∈ KG(V ) satisfy a ∨ b = 1, that is,

(a ∨ b)C = 0 for any C 6= ∅. We proceed by induction on the cardinality of C.

Note that, because H is normal of prime index in G, for any C ( G/H we have

Stab(C) = H; thus, the vector space χ(W )C := ⊗c∈CWc, is an H-module (but

not a G-module). When C = G/H, the vector space χ(W )C is a G-module.

We first treat the case C 6= G/H.

Because it is normal in G, the subgroup H stabilizes each c ∈ C individu-

ally, and thus for any C1 tC2 = C we have aC1 ⊗ aC2
∼= aC as H-modules. To

declutter notation, we write eg. axy for a{x,y}. Let us explicitly state the first

few steps of the induction, assuming in each case that C ( G/H. Throughout,

we use Equation (3.6.2) repeatedly:

• If C = ∅ then (a ∨ b)C = 1.

• If |C| = 1 and (say) C = {x} then:

(a ∨ b)C = IndHStabx(ax ⊗ 1) + IndHStabx(1⊗ bx) = IndHH(ax) + IndHH(bx)

and so bx = −ax as H-modules.

• If |C| = 2, say C = {x, y}, then (omitting tensor product signs for

simplicity of notation):

(a ∨ b)C = IndHH(axy) + IndHH(axby) + IndHH(aybx) + IndHH(bxy)

= bxy + axy − axay − ayax,
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Since axy ∼= axay as H-modules, we have

bxy = axay = axy.

• If |C| = 3, say C = {x, y, z}, then axyz = axyaz = axayz as H-modules,

and:

bxyz = IndHH(−axyz) + IndHH(axayz) + IndHH(ayaxz) + IndHH(azaxy)

+ IndHH(axyaz) + IndHH(−axzay) + IndHH(−ayzax)

=− axyz.

• Suppose bC = (−1)|C|aC for |C| < n and take |C| = n < |G : H|. Then

(a ∨ b)C =
∑
D⊂C

IndStabC
Stab(C\D,D)(aC\DbD) = bC +

∑
D(C

IndHH((−1)|D|aC\DaD)

= bC +
n−1∑
i=0

(−1)i
(
n

i

)
aC

= bC + (−1)n+1aC ,

and thus bC = (−1)naC .

The induction is complete.

We can now treat the case C = G/H. Then Stab(C) = G, and aD ⊗ aC\D
is not a G-module for any D ( C. Let O(V ) be a set of orbit representatives
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for the action of G on V , then, as G-modules, we have:

(a ∨ b)C = aC + bC +
∑

D∈O(V )
IndGH

(
(−1)|D|aD ⊗ aC\D

)

= aC + bC + IndGH

 ∑
D∈O(V )

(−1)|D|aD ⊗ aC\D

 .
One can pair the summands (−1)|D|(aD ⊗ aC\D) and (−1)|C\D|(aC\D ⊗ aD),

which are isomorphic and of opposite sign (since p is odd). Hence the terms

of the sum cancel and we have bC = −aC , that is

f](−W ) = −f](W ).

Note that the first step of the proof shows:

Proposition 3.6.3. Let H ≤ G be a subgroup of index 2 and W ∈ K+
G(G/H).

Let t be a representative for the non-trivial coset in G/H. Then, in KG(•),

f](−W ) = −f](W ) + f∗(W ⊗Wt)

Proof. In this case, the orbit representatives of ordered pairs of disjoint sets

of cosets of H in G are ({1}, {t}), ({1, t}, ∅) and (∅, {1, t}). Using notation as

in the above proof of Proposition 3.6.2, we have

(a ∨ b)G/H = IndGStab({1,t},∅)(a1,t) + IndGStab({1},{t})(a1 ⊗ bt) + IndGStab(∅,{1,t}) b1,t.

Since Stab({1, t}, ∅) = Stab(∅, {1, t}) = G and Stab({1}, {t}) = H, this be-
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comes

b1,t = −a1,t + IndGH(a1 ⊗ at).

The above yields a formula for differences of characters, as follows:

Corollary 3.6.4. Let ρ, σ ∈ R+(H) for any finite group H, and suppose H/G

with |G : H| = p prime. Then

NG
H (σ−τ) =


NG
H (σ)−NG

H (τ) +∑
C∈O(V )(−1)p−|C| IndGH(σ⊗Cτ⊗C′) if p is odd

NG
H (σ)−NG

H (τ) + IndGH(τ ⊗ τ t)− IndGH(σ ⊗ τ t) if p = 2,

where t is a representative for the non-trivial coset in G/H when p = 2.

Proof. When p is odd, by Proposition 3.6.2, we have χ(−τ)C = (−1)|C|χ(τ)C
for C ⊆ G/H. Thus

NG
H (σ − τ) = (χ(σ) ∨ χ(−τ))G/H

= NG
H (σ)−NG

H (τ) + IndGH

 ∑
C∈O(V )

(−1)p−|C|χ(σ)C ⊗ χ(τ)C′


= NG
H (σ)−NG

H (τ) +
∑

C∈O(V )
(−1)p−|C|IndGH(σ⊗Cτ⊗C′).

If p = 2:

NG
H (σ − τ) = (χ(σ) ∨ χ(−τ))G/H

= NG
H (σ)−NG

H (τ) + IndGH(τ ⊗ τ t)− IndGH(σ ⊗ τ t).
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3.6.3 The abelian case

The next step in our derivation is to simplify expressions of the type x⊗C ,

which are a priori defined in the case of actual characters but not for virtual

ones. In the abelian case however, the group action of G on H is trivial, and

the notation x⊗C can be extended to cover any virtual character x.

Proposition 3.6.5. Let H ≤ G be abelian groups with |G : H| = p a prime

number. Let x ∈ R(H) be any virtual character, then for any C ( G/H:

χ (x)C =
⊗
t∈C

xt = x|C| as (virtual) H-modules.

Recall that the morphism χ was originally only defined for actual charac-

ters, then extended to negative characters. Proposition 3.6.5 says that in the

abelian prime case, the naive extension of χ to all virtual characters is the

right one.

Proof. First note that the statement is trivial when p = 2. For p odd, write

x = x+ − x− with x+, x− ∈ R+(H). Let C ⊂ G/H, and for any D ⊂ C let

D′ be the complement of D in C. Recall that by Proposition 3.6.2, for any

ρ ∈ R+(H), we have χ(−ρ)C = (−1)|C|χ(ρ)C . Thus:

χ(x)C = (χ(x+) ∨ χ(−x−))C

=
⊕
D⊂C

χ(x+)D ⊗ χ(−x−)D′

=
⊕
D⊂C

(x+)|C| ⊗ (−1)|D′|(x−)|D′|

=
|C|⊕
i=0

(
p

i

)
(x+)i(−x−)|C|−i

= x|C|
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which proves the statement.

Thus we can extend the addition formula to all virtual characters:

Lemma 3.6.6. Let x, y ∈ R(H) be virtual characters and suppose |G : H| = p

is prime. Then:

NG
H (x+ y) = NG

H (x) +NG
H (y) +

p−1∑
i=1

IndGH(xiyp−i).

Proof. Recall that NG
H (x+ y) = (χ(x+ y))G/H . So:

NG
H (x+ y) = (χ(x) ∨ χ(y))G/H

= NG
H (x) +NG

H (y) +
∑

C∈O(V )
IndGH(x|C|y|C′|)

= NG
H (x) +NG

H (y) +
p−1∑
i=1

IndGH(xiyp−i).

Note that this formula is also valid for p = 2.

Lemma 3.6.7. Let H ≤ G be finite abelian groups with [G : H] = n, and

let ρ ∈ R+(H) be a representation of degree 1. If ρ ∈ R+(G) satisfies ρ =

ResGH(ρ), then:

NG
H (ρ) = ρn.

Proof. Recall that NG
H (ρ) = ρ⊗G/H , viewed as a representation of G. Since

H,G are abelian groups, we have ρg = ρ for any g ∈ G, so that NG
H (ρ) is

given by ρn on H. If g /∈ H, then since |G : H| = n we have gn ∈ H and

NG
H (ρ)(g) = ρ(gn). Here we use, crucially, the fact that ρ has dimension

1. Thus NG
H ρ is determined by its values on H, and if ResGH(ρ) = ρ then

ρn = NG
H (ρ).
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Let us now restrict to the case K = C. Then the irreducible characters of

G are one-dimensional and we can apply the above result.

Corollary 3.6.8. Let H ≤ G be abelian groups and |G : H| = p be a prime.

Let σ, τ ∈ R+
C (H) be one-dimensional representations, and let σ̄ (resp. τ̄)

satisfy ResGH σ̄ = σ (resp. ResGH τ̄ = τ). Then, if p is odd:

NG
H (σ + τ) = σ̄p + τ̄ p + C[G/H]

p−1∑
i=1

1
p

(
p

i

)
σ̄iτ̄ p−i,

NG
H (σ − τ) = σ̄p − τ̄ p + C[G/H]

p−1∑
i=1

1
p

(
p

i

)
(−1)p−iσ̄iτ̄ p−i.

If p = 2:

NG
H (σ + τ) = σ̄2 + τ̄ 2 − C[G/H]σ̄τ̄ ,

NG
H (σ − τ) = σ̄2 − τ̄ 2 + C[G/H]τ̄ 2 − C[G/H]σ̄τ̄ .

Proof. If G is abelian then the action of G on H is trivial and σ⊗C = σ|C|

as StabC-modules for all C ⊂ G/H, trivially when C is proper, and by

Lemma 3.6.7 otherwise. The number of subsets C of G/H of size i is
(
p
i

)
which we divide by p to sum over orbits. Moreover, the induced representa-

tion IndGH(ρ) is C[G/H]ρ̄, for any ρ̄ such that ResGH ρ̄ = ρ.

3.6.4 Norm and Grothendieck filtration

We can now show our main theorem:

Theorem 3.6.9. Let H ≤ G be abelian with [G : H] = p a prime number. If

x ∈ Γn(H) then NG
H (x) ∈ Γnp(G).

Proof. Recall that Γn(H) is generated by elements of the form (ρ1 −
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1)i1 · · · (ρk − 1)ik for ρi irreducible characters of H and ∑ ik ≥ n. Note that,

in our case, each ρi is one-dimensional.

As a first step, we prove that if ρ is any irreducible character of H, then

NG
H (ρ − 1) ∈ Γp(G). First, assume p = 2. In the notation of Corollary 3.6.8,

we have:

NG
H (ρ− 1) = ρ̄2 − 1 + C[G/H]− C[G/H]ρ̄

= (ρ̄− 1)2 + 2(ρ̄− 1)− C[G/H](ρ̄− 1)

= (ρ̄− 1)2 − (C[G/H]− 2)(ρ̄− 1) ∈ Γ2(G).

If p is odd:

NG
H (ρ− 1) = (ρ̄)p − 1 + C[G/H]

p∑
i=1

1
p

(
p

i

)
(−1)p−i(ρ̄)i.

Consider the permutation representation C[G/H] and recall that C[G/H] =

1 + σ + · · ·+ σp−1 for some linear representation σ of G. Let Y = σ − 1, then

Y i ∈ Γi(G) and:

C[G/H] =
p−1∑
i=0

(Y + 1)i =
p−1∑
i=0

(
p

i+ 1

)
Y i.

Note that (Y + 1)p − 1 = 0, and thus

pY = −
p∑
i=2

(
p

i

)
Y i ∈ Γ2(G).

Thus we can substitute every instance of pY in the right-hand-side of the

equation by −∑p
i=2

(
p
i

)
Y i. Iterating, we obtain that pY ∈ Γp(G), and thus:

C[G/H] ≡ p (mod Γp(G)).
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Therefore

NG
H (ρ− 1) = (ρ̄)p − 1 + C[G/H]

p∑
i=1

1
p

(
p

i

)
(−1)p−i(ρ̄)i

≡ (ρ̄)p − 1 +
p∑
i=1

(
p

i

)
(−1)p−i(ρ̄)i (mod Γp(G))

≡ (ρ̄− 1)p (mod Γp(G))

≡ 0 (mod Γp(G)),

Which completes the first step.

Since the norm map is multiplicative, we have, for any prime p,

NG
H

(
(ρ1 − 1)i1 · · · (ρk − 1)ik

)
∈ Γpn(G)

whenever ∑ ik ≥ n.

Finally, let x, y ∈ R(H) be generators of Γn(H) of the form

(ρ1 − 1)i1 · · · (ρk − 1)ik , as above. Then by Lemma 3.6.6, we have:

NG
H (x+ y) = NG

H (x) +NG
H (y) +

p−1∑
i=1

IndGH(xiyp−i).

The terms NG
H (x),NG

H (y) are both in Γnp(G) as shown above. Each term

xiyp−i is a product of n elements in Γn(H) and therefore in Γnp(H), and since

induction preserves the Grothendieck filtration in the case of abelian groups,

we have IndGH(xiyp−i) ∈ Γnp(G) for all i; this concludes the proof.

Thus, on the complex field C, tensor induction preserves the Grothendieck

filtration. Since it satisfies the compatibility axioms of a Tambara functor

on RC(−), it satisfies them at the graded level, and we have the following

corollary:
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Corollary 3.6.10. The restriction of R∗C(−) to abelian groups is a Tambara

functor.

3.7 Application: norms in graded character

rings of abelian groups

In group cohomology Steenrod operations can be defined via the Evens norm

corresponding to the inclusion G ↪→ G× Cp (see eg. [CTVEZ03, Ch. 7]). We

propose here to compute that norm in the case of degree 1 classes in abelian

groups. Let G be abelian, and σ a one-dimensional representation of G, with

x := c1(σ).

Recall that RC(Cp) is generated by one character ρ and that

RC(G× Cp) ∼= RC(G)⊗RC(Cp).

In RC(G×Cp), let ρ = 1⊗ ρ and σ = σ⊗ 1. In R∗C(G×Cp), let y = c1(ρ) and

z = c1(σ).

Proposition 3.7.1. With notation as above:

NG×Cp
G (x) = zp − zyp−1.

Proof. Let X = ρ− 1 ∈ RC(G) and Y = ρ− 1, Z = σ − 1 ∈ RC(G× Cp). We

compute NG×Cp
G (X) in the cases p = 2 and p odd.



CHAPTER 3. MACKEY FUNCTORS AND TAMBARA FUNCTORS 94

• Case p = 2. By Corollary 3.6.8:

NG×C2
G (X) = NG×C2

G (ρ− 1) = ρ2 − 12 + C[G× C2/G]− C[G× C2/G] · ρ

= (ρ− 1)2 + 2(ρ− 1)− C[G× C2/G](ρ− 1)

= (ρ− 1)2 − (σ + 1− 2)(ρ− 1) since C[G× C2/G] = σ + 1

= (ρ− 1)2 − (σ − 1)(ρ− 1)

= Z2 − ZY.

In the graded ring R∗C(G× C2), this yields

NG×C2
G (x) = z2 − zy.

• Case p odd. Let K = G× Cp, then, again by Corollary 3.6.8:

NK
G (X) = NK

G (ρ− 1)

= NK
G (ρ) +NK

G (−1) + C[K/G]
p−1∑
i=1

1
p

(
p

i

)
ρi(−1)p−i

= ρp − 1 + (C[K/G]− p)
p−1∑
i=1

1
p

(
p

i

)
ρi(−1)p−i

+
p−1∑
i=1

(
p

i

)
ρi(−1)p−i.

Recall that ρ = Z + 1 and that:

C[K/G] = 1 + σ + · · ·+ σp−1

=
p−1∑
i=0

(Y + 1)i.
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thus

NK
G (X) =(Z + 1)p − 1 +

p−1∑
i=1

(
p

i

)
(Z + 1)i(−1)p−i

+
p−1∑
i=0

(Y + 1)i − p
1

p

p−1∑
i=1

(
p

i

)
(Z + 1)i(−1)p−i


=(Z + 1− 1)p + 1

p

p−1∑
j=0

p−1∑
i=j

(
i

j

)
Y j

− p
 ·
p−1∑
i=1

(
p

i

)
(Z + 1)i(−1)p−i

 .
A straightforward induction shows that

p−1∑
i=j

(
i

j

)
=
(

p

j + 1

)
,

so that:

NK
G (X) =Zp + 1

p

 p∑
j=0

(
p

j + 1

)
Y j − p

 · [(Z + 1− 1)p − (Z + 1)p + 1]

=Zp + 1
p

 p∑
j=1

(
p

j + 1

)
Y j

 ·
− p−1∑

i=1

(
p

i

)
Zi

 .
Now recall from the proof of Theorem 3.6.9 that pY, pZ ∈ Γp(G × Cp).

Thus:

NG×Cp
G (X) ≡ Zp − ZY p−1(mod Γp+1),

which concludes the proof.



Chapter 4

Conclusion

In light of the results presented in this thesis, the dearth of previous work on

graded character rings seems quite surprising: they are fine invariant of groups

that can be computed explicitly; their structure appears complex enough to be

challenging, yet mysterious enough to warrant further investigation. Thanks

to this apparent lack of interest, however, there are multiple paths left to

explore.

On the computational side, the more straightforward path would be to

extend the work in Chapter 2 to larger families of groups. Abelian groups are

of particular interest, of course, since R∗C(−) is a Tambara functor on them;

as previously mentioned, the Künneth formula reduces the problem to that of

computing R∗C(−) on abelian p-groups. One obstacle to proving the conjecture

mentioned in Equation (2.6.1) is that the valuation method is not conclusive

when applied to terms whose valuations are too different (eg. a character

coming from C2n for n large will typically have a 2-valuation much smaller

than that of a character from C2). Until more properties are uncovered, a

solution seems, as of yet, out of reach. A perhaps more promising problem,

96



CHAPTER 4. CONCLUSION 97

for a start, is that of computing R∗C(Ck
4 ) for arbitrary k. A combination of the

proof of Proposition 2.3.3 with the valuation method might prove fruitful.

Due to time constraints, the subject of changing base fields had to remain

barely touched. The example of R∗Q(Cp) (Corollary 2.2.3) should however be

enough to encourage further investigation. The computation could be ex-

tended to cyclic groups of composite orders, which might give insight into a

possible Künneth formula for groups of coprime order over the rationals. Char-

acters over extensions of the rationals, and real characters, are also intriguing

candidates.

On the theoretical side, the properties of Mackey and Tambara functors

have been extensively studied and will no doubt provide further insight into

the behavior of saturated rings. Despite the strikingly straightforward compu-

tations of Section 3.7, norms for abelian groups may yet prove full of surprises.

In particular, it would be interesting to study properties of the Evens norm in

cohomology and how they translate in terms of tensor-induction.

And while R∗K(−) is, in general, not even a Mackey functor, the question of

whether the norm preserves the saturated filtration (that is, whether R∗C(−) is

a Tambara functor) is still open. In fact, even the proof that R∗C(−) is Mackey

on abelian groups relies on the properties of the complex field; it is unclear

whether this result extends to R∗K(−) for arbitrary K.

Thus graded character rings are surprising and mysterious; it is our hope

that the work presented here was advertisement enough for the study of a

theory that has not revealed the last of its secrets.
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