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ABSTRACT
In this thesis, two applications are presented. The first one is the polyphonie 

pitch estimation algorithm based on a previous peer’s work. The algorithm is an 

iterative multiple-step approach. The input signals are first transformed to a time­

frequency representation using Instantaneous Fourier Decomposition. Then a Com­

putational Auditory Scene Analysis based method extracts notes from the time­

frequency representation. The modifications are presented and compared with previ­

ous work, results on MIDI music are presented and discussed.

The other application is the frequency tracking algorithm based on adaptive inter­

nal model theory, being able to capture the initial part of a monophonie signal with 

multiple harmonies. By running an adaptive internal model based closed loop system 

two times: the first time forwards-in-time, and the second time backwards-in-time 

with correct initial values for the state variables calculated using the result in the 

first run, perfect tracking in the whole period of the signals is achieved. Results on 

synthesized signals are presented and discussed.

Keywords: Polyphonie Pitch Estimation; Instantaneous Fourier Decomposi­

tion; Computational Auditory Scene Analysis;Adaptive Internal Model Theory; Fre­

quency Tracking
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Chapter!

Introduction

1.1 Music Background

In western music system, sounds with different frequencies is named by notes. For ex­

ample, tone with fundamental frequency of 440Hz is named A, and with fundamental 

frquency of 261.63Hz is named C. In total, there are 12 notes names: A, A+, B, C, 

C+, D, D+, E, F, F+, G and G+, where normally A# = Bb, C# = Db, D# = Eb, 

F+ = Gb and G+ = Ab. The suffix "#" and ”b” denote sharp and flat respectively.

One interesting phenomenon of human brains in processing musical signal is that, if 

the frequency of one note is doubled, human brains can tell the pitch is higher but 

perceive the sound similar to the original one, while perceive all sounds with frequen­

cies in between differently[1]. Due to this phenomenon, notes are assigned the same 

name if frequency distance is integer multiple of a certain frequency, but following 

with a different number. For example, A4 is 440Hz, A3 is 220Hz and A5 is 880Hz. 

The distance between the frequency of two sounds, called interval, is measured by 

dividing the frequency of one over the other. The notes in ideal western music sys-

I
tem are logarithmic evenly distributed with the interval between any two adjacent 

1
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notes is 21/12 ~ 1.05946. Such an interval is called a semitone. An octave is any 

interval between two frequencies when one is twice the other. An octave equals to 12 

semitones.

1.2 Objectives

The purpose of this thesis is to develop new methods and algorithm for the task of 

polyphonie pitch estimation based on one previous student’s work[2], and to propose 

a new method to track the beginnings of signal in a system to track predictable signals 

with uncertain frequency[4, 15]. The term polyphonic pitch estimation refers to the 

estimation of possible pitches in the polyphonie music signal that several music notes 

may occur simultaneously.

1.3 Motivations

Compared with speech signals, music signals are more complex, not only because it 

has a wider frequency range(almost the same with the frequency range of sounds that 

human ear can perceive, from 20Hz to 20kHz) than the speech signals(the frequency 

range is narrowed from 50Hz to 4k Hz[3]), but also because some characteristics of 

music signals, such as timbre, make it difficult to be analyzed. In music signal pro­

cessing, polyphonie pitch extraction plays an essential role so that it can be employed 

for the detection of melody (sequences of notes over time, or music score) and har­
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mony(the relationship between concurrent notes). Polyphonie pitch estimation can 

also be utilized for various music application, including content-based music retrieval, 

interactive music system, low bit rate compression coding for music signal, and so on.

1.4 Main Contributions of the Thesis

The main contributions of this thesis can be summarized as follows:

1. Proposed advanced note extraction module based on previous work.

Multiple changes compared with previous work have been made to identify 

music with multiple fundamental frequency(up to 4 concurrent notes), including 

the matching probability functions, the peak picking criteria, the algorithm flow, 

and the post-processing criteria.

2. Proposed evaluation criteria to evaluate the performance of the system.

3. Current system is able to identify music with multiple pitches played by various 

instruments, including violin, viola, cello, clarinet, oboe, and flute.

4. Proposed a brand-new unknown frequency tracking algorithm able to track the 

beginning of notes with minimal information.
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1.5 Organization of the Thesis

This thesis is organized as follows. Chapter 2 is literature review summarizing the 

theory we are using in the thesis, existing time-frequency analysis methods and poly­

phonic pitch estimation methods in music transcription, and analyzing their advan­

tages and problems. Chapter 3 reviews the recursive CASA based note extraction 

module for violin music in previous work, and presents a modified recursive multi­

ple fundamental frequency estimation system based on CASA. Chapter 4 presents a 

method able to recover the information at the beginning of each segment of periodic 

signals with uncertain frequency. Chapter 5 concludes the thesis and discusses the

future work.



Chapter 2

Literature Review

2.1 Internal Model Principles

The Internal Model Principle is first proposed by B.A.Francis and W.M.Wonham in 

1976[6]. It was originally to eliminate periodic disturbances when designing control 

systems. They stated that perfect cancelation will be achieved if a suitably redupli­

cated model of the disturbance or reference signals is incorporated in the feedback 

loop. For an input sinusoidal disturbance or reference signals, this means that the 

controller should have a pair of poles on the jw-axis in the s-plane at a location corre­

sponding to the frequency of the input signals[4]. The characteristic of internal model 

is that it supplies closed loop zeros which cancel the unstable poles of the disturbance 

or reference signals.

The basic block diagram of a control system with an IM is shown in Fig.2.1, in 

which L(s) represents the process to be controlled, possibly combined with a stan­

dard controller. Here, the algorithm has been modified to be a signal processing 

algorithm by replacing the process to be controlled with a tuning function. L(s) can 

be selected to optimize the behavior of the algorithm. The input disturbance signal 
5
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d = Acos(wat + p), with the frequency to be identified is Wd, the initial phase is φ, 

the output feedback error serving as the input to IM is e, the estimated frequency of 

d is W, the two states of IM are 31 and 32, and the output of the IM identical to the 

input d is X2- The transfer function from e to X2 is ,2 1032- The state space form of

IM is given by

(2.1)

In steady state, we have

K1(t) = Asin(wat + Q)

K2(t) = Acos(wat + () (2.2)

e{t) = Aesin(wat + Q)

The difference Aw between estimate frequency w and the actual frequency ω^

can be expressed as a non-linear function:

Δω =W-Wde
ex1

x1 -t- X2
(2.3)

A simple integral controller could be utilized to force Aw converge to zero as follows:

dw — . ex1— = KeAw ≈ Ke -K- 2dt - c-
(2.4)
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Figure 2.1: The basic block diagram of internal model for periodic disturbance can­
celation

where Ke is the adaptation gain, and ε is a very small constant to guarantee no zero 

division problem. The stability and convergence of the algorithm are proven in [15].

2.2 Time-Frequency Analysis

Tine-Frequency Analysis is a generalization and refinement of Fourier analysis. The 

classic Fourier Transform is only applicable to stationary signals that maintain the 

same frequency with infinite duration. However, musical signals are non-stationary 

and time-varying. Its frequency components change with time. Also, according to 

uncertainty principle, it is impossible for a time-frequency analysis to have both best 

time resolution and frequency resolution at the same time. A piano has 88 keys with 

fundamental frequencies ranging from A0(27.5Hz) to C8(4186Hz). The frequency 

resolution should be relatively high in order to tell apart the lowest two piano notes 
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A0(27.5Hz) and Ab0(29.14Hz), which means a relatively poor time resolution. But 

for some high frequency notes and fast paced music signals, the time frequency anal­

ysis requires a relative high time resolution. Therefore, there must be a tradeoff 

between frequency resolution and time resolution.

2.2.1 Short-Time Fourier Transform

Since classic Fourier Transform is not suitable to process non-stationary musical sig­

nals, an extension of the Fourier Transform, the Short-Time Fourier Transform is 

applied for musical signals. In order to obtain a joint time-frequency analysis, STFT 

cuts the signals into different frames or snapshot with possible overlap between adja­

cent frames. The STFT and its power spectrum named spectrogram, can be defined 

as below:
AC .

STFT(t,w) = f(T)w(T - t)eJ"Tdr (2.5) Joo

SPECTROGRAM(t, w) = |STFT(t, w)/2 (2.6)

The STFT at time t is the Fourier Transform of a segmented local signal, obtained 

by multiplication of the signal f(t) and a short window function w(r — t) centered at 

time t. The shape of window function is one key factor of the STFT characteristics. 

The default window is the rectangle window, causing frequency leakage problem due 

to the signal’s discontinuity at the edge of the window. Many other windows have 

been utilized to reduce the spectral leakage when processing music signals, such as



the Hanning[17] or the Hamming[18] window. By moving the window along the time 

axis, we can calculate the STFT at different time instants, and obtain a joint time­

frequency analysis. Another important factor is the length of the window, or frame. 

The longer the frame, the better the frequency resolution, but with a poorer temporal 

resolution according to the uncertainty principle. As defined in Equation 2.5 , the 

window function of STFT is independent of the frequency ω, therefore, the temporal 

and frequency resolutions of STFT are the same in the time-frequency domain. This 

is one main drawback of STFT in music signal processing, since in music signal 

processing, it is usually required to have better time resolution at high frequency and 

better frequency resolution at low frequency. Multiple resolution Fourier Transform 

was investigated to solve this problem[20] [19].

2.2.2 Wavelet Transform

In compare with STFT, the Wavelet Transform provides a varying time-frequency 

resolution in the time-frequency domain. The Wavelet Transform(WT), or commonly 

named Continuous Wavelet Transform(CWT), can be defined as below:

In order to make the reverse transform, the admission condition must be met:

(2.7)
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where H(w) is the Fourier Transform of the wavelet function O(r):

roo .
H(w) = ∕ o(T)e JWTdr

J-OQ (2.9)

When the condition 2.8 is met, the signal f(T) can be reconstructed by the inverse

transform of CWT[21]:

. ∖ r+co ds r+O - , f(T) = L -2 / WT(t, s)Mt,s(T)dt (2.10)

The CWT decomposes the signal into a time-frequency domain according to a contin­

uously varying scale and translation and represents the signal with high redundancy, 

enabling us to performs an adaptive time-frequency analysis according to the mu­

sic signal content. We can flexibly select a time-frequency resolution for different 

frequency bands, thus fulfilling the requirement of high temporal resolution at low 

frequency and high frequency resolution at high frequency in music signal processing.

2.2.3 Constant-Q Transform

Constant-Q Transform is related to the Fourier Transform. The Discrete Short-Time

Fourier Transform is defined as follows:

N1 -j2*kn
X[k] = 2 W[n]x[n]e N

n=0
(2.11)



Given a data series, sampled at fs = T, with T being the sampling period of the 

data. For each frequency bin, we can define following:

• Filter width, Sfk

• Q, the ’’Quality Factor”, defined as follows:

(2.12)

with 8 < 1. The quality factor can be seen as the integer number of cycles 

processed at a center frequency fk.

• Window length for the k-th bin is a function of the bin number

N[k = fs _ofs 
SfxYfr (2.13)

where fs is the sampling frequency, and fk is the center frequency of k-th bin.

Then, the Constant-Q Transform can be defined as follows:

Nk-1
(2.14)

Where winN, is a window function of length Nk. Since the Constant-Q Transform 

can geometrically space the center frequency, and the time resolution increase with 

frequency increasing, it has been explored on analyzing musical signal[30, 31]. How- 
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ever, following its definition in Equation 2.14, constant Q transform is relatively time 

consuming in calculation. An efficient calculation algorithm has been proposed by 

Brown and Puckette to solve this problem[32]. The algorithm is based on Fast Fourier 

Transform, and through calculating a sparse spectral kernel matrix, the number of 

multiplication greatly decreases, but its computational complexity is still higher than 

FFT.

2.2.4 Instantaneous Fourier Decomposition

The Instantaneous Fourier Decomposition approach was first introduced by Malhotra 

in [7], and developed by Sun [8], and Yan [2]. Like the Hilbert-Huang Transform(HHT)[13, 

14], IFD decomposes the input signal into a sum of narrowband signals and applies 

the Hilbert Transform. As represented in Equation 2.2, at steady state, the two state 

variables of the internal model, 1 and 2 are sinusoidal and orthogonal. The in­

stantaneous frequencies could be calculated. A complex analytic signal, z(t) can be 

represented as: 

z(t) = *2(t)+iti(t) = a(t)e'e(t) (2.15)

Where

a(t) = V3(t)+*R(t) (2.16)
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is the instantaneous amplitude of z(t), and

(2.17)

is the instantaneous phase of z(t). Then the instantaneous frequency w(t) can be 

calculated as:

de(t)
w(t) = —,— 7 dt

(2.18)

As shown in Fig. 2.1 in section 2.1, the system with one basic internal model can 

only deal with a pure sinusoid signal. Unfortunately, in signal processing areas, most 

signals are not pure sinusoids. Take music signal processing for example, the input 

music signal may have multiple tones and multiple harmonics. Since any arbitrary 

periodic signal can be approximately represented by a Fourier series with finite terms, 

Sun[8] proposed employing multiple IMs in parallel in the feedback loop in order to 

track all the frequency component and decompose the input signal into a sum of sine 

and cosine pairs. The block diagram of IFD is shown in Fig.2.2 , where L is a tuning 

plant, and S is an arbitrary periodic signal which could be represented in the form of

(2.19)
i—1

Where wi and Pi are the frequency and initial phase of the ith(i = 1,2,...,n) fre­

quency component in the signal S(t).
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periodic signal

I/
H

Figure 2.2: Block Diagram of Instantaneous Fourier Decomposition for an arbitrary

Each IM can be represented in state space form as

(2.20)

Then in steady state, similar to Equation.2.2, we have

KCli(t) = xi(t)sin(wi(t) + Çi)
(2.21)

x2i(t) = xi(t)cos(wi(t) + Çi)

where

xi(t)l = Va2 (t) + 2.(t), pi(t) = arctan ( Tli(t) ) 
x2i(t)) (2.22)

With the parameters wi and [K1, K2, ..., Kn] properly chosen such that the closed
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loop system is stable, we can decompose the input complex signal using a finite num­

ber of IMs in parallel in the feedback loop. The feedback signal u(t) is a summation 

of the output of each IM, with a form given by

nn n
u(t) = 2 ui(t) = >(KliTli(t) + K2jX2i(t)) = 2 Killxicos(i) (2.23)

i=1 i=1 1=1

where Kildi is the instantaneous amplitude of the input signal, and

Qi = arctan( ji(t),
X2i(t)'

— arctan( (2.24)

is the instantaneous phase of the input signal. Then instantaneous frequency could 

be calculated according to Equation2.18, and instantaneous Fourier decomposition is 

achieved. In order to get rid of the DC component and frequency component at higher 

frequency, Sun[8] proposed to incorporate a bandpass filter into the system. Thus, 

the desired system behaves as a bandpass filter with multiple notches, dealing with a 

small number of narrow-band signals, and being able to reject noise and isolate useful 

signals. Sun[8] applied the IFD algorithm to analyze real time experimental weld 

voltage data collected from a welding machine. In the application, at most 4 internal 

models are incorporated in parallel in the feedback loop to track the 4 frequency 

components(60Hz,180Hz,300Hz, and 420Hz) of the test signal. The algorithm is able 

to identify the input signals, eliminate the induced noise, and realize the Fourier 

decomposition of the input multi-tone signal. Sun[8] also states that, with more IMs 
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incorporated in the feedback loop, the more accurate the result will be. But in her 

test data, the power spectral energy is usually significantly decreased at higher order 

harmonies, thus only finite necessary IMs are incorporated. Also, the number of 

internal models is limited by the increasing difficulty of designing L.

2.3 Polyphonie Pitch Estimation

2.3.1 Introduction

Pitch is the perceptual and subject attribute of sounds, allowing them to be ordered 

from low to high on a frequency-related scale. Pitch plays a very important role 

in human understanding of music, since the auditory system tries to assign a pitch 

frequency to almost all kinds of acoustic signals.

Polyphonie pitch estimation, which can also be called multipitch estimation [9], or 

multiple fundamental frequencies estimation, is defined as ”the task of estimating the 

fundamental frequencies of several concurrent sounds” [10]. This topic attracted a 

lot of research attention, and many methods have been proposed varying from tradi­

tional signal processing to machine learning, and integration of both. The following 

paragraph will first introduce the main problem in polyphonie pitch estimation, and 

then will discuss several most common existing methods.
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2.3.2 Problems in Polyphonie Pitch Estimation

Polyphonic pitch estimation is very difficult and challenging because the spectrum of 

music signal spans in a wide range, and the spectral structure of different instrument 

varies a lot. The spectral structure is defined as the energy distribution on the 

fundamental frequency and all the harmonics of a music note. Different instruments 

may have totally different spectral structure. For example, music played by violin has 

the predominant energy on its fundamental frequency, while music played by piano, 

the highest energy may range from the fundamental frequency to the 4th harmonic. 

Another problem in polyphonie pitch estimation is called inharmonicity. For ideal 

harmonic sound, the ratio of harmonic component to fundamental frequency should 

be integer. But for some instrument, such as piano, the ratio is not strictly integer. 

For music signal played by piano, the harmonic component could be expressed as 

follows:

fn = nFV1+ B(n2 -1)

Harmonic sharing is another problem in polyphonie pitch estimation. Consider for the 

most severe case, where two music notes with fundamental frequencies f1 = n f2, and 

n is an integer. The harmonic components of music note fa is completely overlapped 

by those of music note /2, such as, the kth harmonic of music note fa is the same 

with the (nk)th harmonic of music note f2. For a general case, if two music note with
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their fundamental frequencies having the following relation:

52=5in 
m

where n and m are both integers. Then the pth(p = nk) harmonic of music note fa is 

the same with the qth(q = mk) harmonic of music note fa. Taken the above case for 

example, consider there is a harmonic component in the mixture with the frequency 

f = Pfa = qf2, harmonic sharing problem makes it complicated to decide the energy 

distribution of this harmonic component on the two notes fa and fa. Klapuri[24] pro­

posed a method based on spectral smooth principle to solve the problem of harmonic 

sharing.

2.3.3 Auditory Model of Pitch Perception

Modern psychoacoustic research tries to build a human pitch perception model based 

on some known physiological and psychoacoustic knowledge. The two main theories 

include: the temporal theory and the spectral theory. The temporal theory uses 

temporal processing to detect the periodicity in different channels. In this theory, 

the acoustical signal is first processed by a frequency analyzer, and then the period­

icity is detected by analyzing the time-domain envelop of the output signal in each 

channel. Unlike the temporal theory, the spectral theory transforms the pitch per­

ception into pattern recognition processing of acoustic signals. In human auditory 

system, cochlear is an important portion of inner ear, acting as a frequency analyzer. 
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Sinusoid frequency components are picked by the spectral peaks in the spectrum. 

The positions of the relative spectral peaks form a position pattern which could be 

recognized by pattern recognition processing. Goldstein [11] proposed an optimum 

processor theory. In this theory, a central frequency analyzer is utilized to recognize 

the spectral pattern. A maximum likelihood statistical estimator determines which 

pitch best matches the spectral pattern of the acoustical signal.

2.3.4 Machine Learning Methods

Machine learning methods are introduced into polyphonie pitch estimation because 

recognizing a note from note mixture is a typical pattern recognition problem, and 

machine learning methods work well solving pattern recognition problems. Marolt 

introduced neural networks to build a polyphonie transcription system for piano sys­

tem. In his system, the acoustic signal is first processed by a gammatone filter bank 

with 200 logarithmically-spaced frequency channels. In order to detect the periodic­

ity, the output of the filter bank is further processed by adaptive oscillators to track 

the partial in each frequency channel. Thus, the network of the adaptive oscillators 

is used to track a group of harmonically relative partials. Finally, a combination of 

oscillator’s network output and amplitude envelope of each channel is input into the 

neural network to recognize note. The system is tested with synthesis signals and 

real piano music. It is reported that the system performs better on synthesis signal 

than on real piano music.
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2.3.5 Estimation Using Instrument Model

Yin proposed a music transcription system based on instrument model. The instru­

ment model is defined as the harmonic structure of different instruments. In this 

system, FFT is first used in the front-end time-frequency analysis to generate ampli­

tude spectrum. Then the amplitude spectrum is separated into 88 semitone bands 

with the spectrum from AO to C8 (from 27.5Hz to 4.196kHz), covering the whole fre­

quency spectrum of modern piano. The amplitude spectrum bins in each frequency 

band are then combined to generate the band energy spectrum Z[i], i = 1,2,...,88, 

where the index i corresponds to the MIDI(Musical Instrument Digital Interface, an 

industrial standard protocol for electronic music) note number of a western music 

note. For each music note i, Z[i] denotes the energy of the fundamental, and the en­

ergy of the lowest 16 harmonies partials lie in the Z[i], Z[i + 12], Z[i +19], ..., Z[i + 48 . 

A 49 number vector of Z[i, ..,+48] is considered as the instrument model of a music 

note at pitch i. It is assumed that the harmonic structure of an instrument is the 

same, regardless of the pitch and the transient. Based on this assumption, only one 

49 number vector could completely signify the harmonic structure of music note for 

a certain instrument. For a music note with volume a and MIDI number p, the note 

spectrum could be generated as:

0 otherwise
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Then, for an acoustic signal with band energy spectrum ZM, the polyphonie pitch 

estimation is converted to resolve the following minimization problem:

Minimizing

where n is the total number of estimated notes. The algorithm is evaluated by limited 

MIDI files and compared with the system proposed by Klapuri. It is believed that the 

performance could be improved if the acoustic signals have stable harmonie structure.

2.3.6 Iterative Methods

Klapuri[10] proposed a polyphonie pitch estimation algorithm based on the itera­

tive method. In this method, the predominant pitch of concurrent musical signal is 

estimated, then all harmonics corresponding to it is removed from the musical sig­

nal. The process is repeated iteratively on the residual signal until all the harmonic 

sounds have been detected. The input acoustic signal is first preprocessed to suppress 

the noise by a magnitude warping method. The suppressed spectrum is then input 

to the predominant pitch estimation module. To find the predominant pitch, the 

spectrum is first separated into 18 different frequency bands logarithmically spaced 

between 50Hz — 6kHz. In each frequency band, a corresponding weight vector is 

calculated to represent the likelihood of a certain pitch. Then, the bandwise likeli­

hood weight vectors are combined to globally estimate the predominant pitch across

the all frequency bands. As the predominant pitch is estimated, all its harmonics
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will be subtracted from the input acoustic signal according to spectrum smoothness 

principle. The pitch estimation and subtraction procedure will be repeated on the 

residue signal until all the harmonics have been detected. This algorithm has been 

tested on polyphonie acoustic signals with multiple timbres, and performs well.

2.3.7 Computational Auditory Scene Analysis

Bregman first discussed Auditory Scene Analysis in his book [23]. He described 

the mechanisms that how human auditory system perceiving and recognizing sound 

sources from a complex sound mixture. He also states that it is important for sound 

separation, since after each sound source is separated, one could use conventional 

fundamental frequency estimation method to identify all the pitches for each group. 

The sound separation procedure include two stages, first is to decompose the acoustic 

signal to time-frequency spectrogram, then to group all the time-frequency compo­

nents from each sound source based on the grouping principles, including proximity 

in frequency and time, periodicity/harmonic frequency relationship, continuous or 

smooth transition, onset and offset, amplitude and frequency modulation, rhythm 

and common spatial location/same direction of arrival[22]. Computational Auditory 

Scene Analysis(CASA) has many applications in music signal processing, previous 

works includes those by Mellinger [25], Kashino etc[26, 27], Godsmark and Brown[28], 

Sterian[29 .
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2.3.8 Recursive CASA based Note Extraction

Yan[2] propsed a recursive approach based on CASA for multiple fundamental fre­

quency estimation for music played by solo violin. In her algorithm, the original 

music signal is first transformed to a time-frequency magnitude spectrogram, using a 

method called Instantaneous Fourier Transcription proposed by Malhotra in 2005[7 

and developed by Sun in 2006[8]. The input music signal is separated as monaural 

music frames at a sampling rate of 44.1k Hz. Each frame has length of 10ms. The 

magnitude spectrogram is also averaged for every 10ms frame, and then used as the 

input for note extraction. Note extraction is done recursively. First magnitude spec­

trogram is transformed to peaks for peak picking. Only the local maxima above given 

threshold are selected as peaks among the magnitude spectrogram. Those selected 

peaks are all normalized having a magnitude of 1, and the rest having a magnitude 

of O. Then, a group of instrument dependent probability functions called Matching 

Probability Functions are utilized to extract notes from this frame level peak repre­

sentation. The Matching Probability Functions quantize the probability of any notes 

presented in the music signal. The value ranges from 0 to 1. The higher the value, 

the higher the probability note presented at this music frame. During the first re­

cursive loop, silent segment, single note fractions with a probability higher than 99% 

and Glissandi note with a probability higher than 95% are identified. The residual 

signal frames are repeatedly processed, with the identification thresholds, including 

continuous fraction length threshold contLTH (initially 70ms), and matching proba­
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bility threshold matchProbTH (initially 70%), adjusted to lower standard. contLTH 

will decrease to 50ms, and matchProbTH will decrease to 30%. The whole process 

will not stop until all the music frames are identified, or the residual signal is too 

complex to analyze. At the end, a postprocessing method is applied on the result 

to remove apparent errors and connect glissandi notes. This algorithm is tested on 

synthesized signals, midi music, and real recording of violin music. The experiment 

result is demonstrated as note number versus time for the estimated result. However, 

she does not proposed a proper evaluation method to evaluate the accuracy, error 

rate. Also, this algorithm deal with solo violin, meaning it can not handle music 

signals with more than 2 concurrent notes.

2.3.9 Modified Multiple Fundamental Frequency

Estimation based on Recursive CASA

This work is using the major framework of Yan[2]’s system. In order to process music 

signal with more than 2 concurrent notes and improve the system performance, the 

algorithm is modified from the original algorithm. Also, we proposed a proper evalu­

ation criteria to evaluate the performance of the system. The details of the Modified 

Multiple Fundamental Frequency Estimation based on Recursive CASA is organized 

as follows. In Section 3.2.1, we will discuss how we use Instantaneous Fourier De­

composition to transform original music signal into magnitude spectrogram, a form 

of time-frequency representation of desired resolution. In Section 3.2.2, the main
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changes on Note Extraction will be illustrated, and the performance before and af­

ter the change will be demonstrated. In Section 3.2.3, a proper evaluation will be 

proposed to evaluate the performance of the result. In the final Section 3.2.4, the 

algorithm is tested on a group of MIDI music signals played by various instruments, 

and evaluated using the criteria proposed in Section 3.2.3.



Chapter 3

Polyphonie Pitch Estimation

3.1 Introduction

Polyphonic pitch estimation, which can also be called multipitch estimation [9], or 

multiple fundamental frequencies estimation, is defined as ”the task of estimating the 

fundamental frequencies of several concurrent sounds” [10]. In some cases, polyphonie 

pitch estimation is simplified to note recognition [12], the recognition of musical notes 

present in the music sound. The existing proposed methods have been discussed in 

Section2.3. Since this work is based on Y. Ma’s work[2], with several modification 

to improve the system performance, the following will mainly discuss the difference 

from this work to Y. Ma’s work, and how much the system performance is improved.

3.1.1 Recursive CASA based Note Extraction

Y. Ma[2] proposed a recursive approach based on CASA for multiple fundamental 

frequency estimation for music played by solo violin. In her algorithm, the original 

music signal is first transformed to a time-frequency magnitude spectrogram, using a 

26



27

method called Instantaneous Fourier Transcription proposed by Malhotra in 2005[7 

and developed by Sun in 2006[8]. The input music signal is separated into monaural 

music frames. Each frame is represented by a single point in time by averaging over 

all time points in the frame, and then used as the input for note extraction. Note 

extraction is done recursively. First magnitude spectrogram is transformed to peaks 

for peak picking. Those selected peaks are all normalized having a magnitude of 1, and 

the rest having a magnitude of 0. Then, a group of instrument dependent probability 

functions called Matching Probability Functions are utilized to extract notes from this 

frame level peak representation. The Matching Probability Functions quantize the 

probability of any notes presented in the music signal. The value ranges from 0 to 1. 

The higher the value, the higher the probability of the note being present at this music 

frame. During the first recursive loop, silent segments, single note fractions with a 

probability higher than 99% and Slur note with a probability higher than 95% are 

identified. The residual signal frames are repeatedly processed, with the identification 

thresholds, including continuous fraction length threshold contLTH (initially 70ms), 

and matching probability threshold matchProbTH (initially 70%), adjusted to lower 

standard. contLTH will decrease to 50ms, and matchProbTH will decrease to 30%. 

The whole process will not stop until all the music frames are identified, or the residual 

signal is too complex to analyze. At the end, a postprocessing method is applied on 

the result to remove apparent errors and connect Slur notes.

This algorithm is tested on synthesized signals, midi music, and real recordings. The 
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experiment result is demonstrated as note number against time for the estimated 

result. However, she does not proposed a proper evaluation method to evaluate the 

accuracy, error rate of her algorithm. Also, this algorithm dealt only with solo violin, 

which allowed it to assume no more than two notes could be played simultaneously.

3.2 Modified Multiple Fundamental Frequency

Estimation based on Recursive CASA

This work is using the major framework of Y. Ma[2],s system. In order to process 

music signal with more than 2 concurrent notes and improve the system performance, 

the algorithm is modified significantly from the original algorithm. Also, this paper 

proposed a proper evaluation criteria to evaluate the performance of the system. The 

details of the Modified Multiple Fundamental Frequency Estimation based on Recur­

sive CASA is organized as follows. In 3.2.1, we will discuss how we use Instantaneous 

Fourier Decomposition to transform original music signal into magnitude spectro­

gram, a form of time-frequency representation with desired resolution. In 3.2.2, the 

main modification on Note Extraction will be illustrated, and the performance before 

and after the change will be demonstrated; also a proper evaluation will be proposed 

to evaluate the performance of the result; finally the algorithm is tested on a group 

of MIDI music signals, and evaluated using the proposed criteria.
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Figure 3.1: Block Diagram of Instantaneous Fourier Decomposition
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3.2.1 Time-Frequency Analysis

The Time-Frequency Analysis is performed using Instantaneous Fourier Transform 

to transform the input signal into a magnitude spectrogram. As illustrated in Figure

3.1, the discrete-time(sampling time is normalized to 1 in practise) state-space form

of IFD is as follow:

0
Xi(T+1) =

cos(ωi) sin(wi)
Xi(T') + e(T) (3.1)

—sin(wi) cos(wi) 1

U(T) = Kli K2; X(T) (3.2)

where

x,(T) = (T) 2p(T) (3.3)
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Corresponding to Equation 2.23, its instantaneous magnitude is as follows

M;(T)=IKillXi = VK2+K2, ■ ⅛4 (3.4)

As mentioned in 2.2.4, the desired IFD system behaves like a band-pass filter with 

multiple notches, with signal s as the input, and error signal e as the output. The 

bode diagram of the theoretical system is illustrated in Figure 3.2. This bode dia­

gram is plotted in MATrix LABoratory(MATLAB) version 7.0.4, since the sampling 

frequency is 44.1kHz, the normalized digital frequency R is corresponding to the 

frequency 22.05kHz. We set the number of the notches to be 72, with the central 

frequencies of the notches spanning from 116.54Hz(A#2) to 7.04k Hz, and the cut 

off frequency set as 2/3 of the frequency of the first notch(116.54 * 2/3 = 77.69Hz)
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real

Figure 3.3: The zero-pole location of the system in z-domain

0

E

and 3/2 of the frequency of the last notch(7.04 * 3/2 = 10.56k Hz). Due to poor 

numeric properties of difference equations and precision limitation of MATLAB in 

drawing the diagram, the notches are shallow with largest only -20dB, while they 

are in reality —∞.

The poles and zeros position of the desired system is shown in Figure 3.3. All the 

poles are within the unit circle, thus the system is stable. However, although the 

system is stable, the poles are still close to unit circle. The radius of the furthest pole 

is 0.9977, rendering the system responses very slow. This will be discussed in next 

section.

By properly setting the parameters of the plant L and the gains Kli and K2i for 

each IM^, the band-pass filter with multiple notches is realized by a closed-loop sys­

tem with the plant L as the control panel, and paralleled IMs as the feedback. The
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detailed designing method could be found in Appendix A of Y. Ma’s paper [2 .

The system block diagram illustrated in Figure 3.4, and the bode diagram for the 

actual system is shown in Figure 3.5. The output of each IM has the form of 

ui = KliCli ÷ K2jX2i, representing a replicated model of the frequency component 

of the input signal. As long as the frequency range of the group of IMs covers the 

spectrum of the input signal, the output of the input signal subtracting the output



33

bode diagram for Tru

-* -3 -2 11
10 10 10 10 10 10

Frequency (rad/s) (rad/sec)

360

O 
• 
3 he 
C
05 
2

05
s -100

Figure 3.6: Previous bode diagram of IFD of r — u

of the group of IMs should converge to zero.

This system is designed using the method in Y. Ma’s paper, and it has one obvious 

drawback: it may lead to a considerable positive gain at frequencies where noise is 

present. As mentioned above, the error of the system should be the output of the 

input signal subtracting the sum of the feedback output. The bode diagram from the 

input signal to the error is illustrated in Figure 3.6. From Figure 3.6, the gain in the 

pass band has a gain at most -20dB, which means the pass band will not introduce 

noise since it always has a negative gain; however, at the shoulders of the passing 

band, the gain has a considerable positive gain(at most 18dB). If the signal has a 

frequency component beyond the spectrum of the system, it will be present in the 

error signal with about 8 times amplified. This will introduce a lot of noise in the 

error signal, making it hard to analyze.
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To overcome this drawback, we modified the band-pass filter design. Instead of using 

the Chebyshev type I bandpass filter, a Chebyshev type II bandpass filter was em­

ployed. The main difference of these two types is that, Chebyshev II filter does not 

roll off as fast as Chebyshev type I filter, and has no ripples in the pass band but 

has ripples in the stop band. By changing Chebyshev type I filter into Chebyshev 

type II filter, we want to depress the gain at the shoulders of the passing band since 

Chebyshev type II filter has more slow varying shoulders with ripples. The modified 

system bode diagram is illustrated in Figure 3.7. As shown in Figure 3.7, the gain 

at the shoulders of the passing band is quite small(at most 5dB at high frequency) 

compared with the previous one(around 18dB) in Figure 3.6. Therefore, by changing 

the original Chebeyshev type I bandpass filter into Chebeyshev type II bandpass fil­

ter, the modified system has a better performance with the ability of rejecting more
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WOODWIND
Flute 
Oboe 
Clarinet
BRASS

Trumpet

250Hz - 2.5kHz
250Hz — 1.5kHz
125Hz - 2kHz

170H% - 1kHz
STRINGS

Violin
Viola

200Hz - 3.5kHz
125Hz — 1kHz

Table 3.1: Spectrum of instruments processed in the algorithm

noises.

3.2.1.1 Experimental Result on MIDI Music

Instantaneous Fourier Decomposition is applied on a piece of MIDI music to demon­

strate the effect. MIDI stands for Musical Instrument Digital Interface, which is a 

industrial-standard protocol for electronic music defined in 1982 [33]. The spectrum 

of most woodwind, brass, and string instrument is illustrated in Table 3.2.1.1.

The system parameters are set in accordance with the characteristics of these 

instruments. The whole spectrum is in range from 116.54Hz(A#2) to 7.04k Hz, a 

total of 72 notes (6 octaves). Theoretically, the more the number of the notches or 

notes, the wider spectrum the system can cover. For example, to cover the whole 

spectrum of piano, the spectrum should span from 27.5Hz to at least 4.186kHz(the 

fundamental frequency of the highest note), which covers 88 semitones, more than 

7 octaves. Due to the relatively poor numerical properties of difference equations, 

continuous time implementations can be used with greater IM’s at the expense of 
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substantially higher computational burden.

Compared with Y. Ma’s work[2], which only deals with violin, and its spectrum has 

a total of 60 notes(5 octaves), spanning from 196Hz to 5.92kHz, this system has a 

wider spectrum range, enabling it to analyze more instruments which have a wider 

spectrum, and more harmonics for some notes, especially for high frequency notes. 

For example, the highest fundamental frequency of violin is 3.5kHz, Y. Ma’s work 

can only include the fundamental frequency, while this system can analyze its 2nd 

harmonic.

The central frequencies of each IM is set as the theoretical frequency of musical 

note, thus each note has an individual IM to track the energy change on its channel. 

The ratio of notch width to its central frequency is 0.1; compared with the distance 

between adjacent notes 2(1/12) — 2 = 0.0595, there will be some overlap between 

adjacent notches.

We test the time frequency representation on a piece of midi music, with a length 

about 8sec and played by flute. The time frequency representation is shown with 

grey scale magnitude in Figure 3.8.

3.2.2 Modified Note Extraction

3.2.2.1 Simplification and Condition

In music signal processing, based on common sense and spectral smoothness prin­

ciple, it is not necessary to estimate FOs at each sampling moment. The signal is 
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Figure 3.8: Time frequency representation with grey scale magnitude

normally segmented to small fractions, or frames. The signal is assumed to be sta­

tionary and treated as one entity for each fraction. The length of each fraction is set 

10ms because it is believed human ears can not separate any two transients with less 

distance[34]. Thus we transform the time frequency magnitude spectrogram into a 

fraction-semitone band representation of the music signal.

We also assume that if we can decide which semitone band contains the fundamental 

frequency component, the corresponding note is present at that fraction. Combined 

with Matching Probability Function which will be discussed below, this simplification 

enables us to ignore note pitch error and overcome inharmonicity in most cases.

The goal of this method is to find FO/FOs at each fraction of the signal. Silent frac­

tion in music is regarded as no FO present. To simplify the estimation, we assume 
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the first 5 fractions and the last 5 fraction of the music signal are silent segments. 

To guarantee all music signals we are dealing with fulfill this simplification, we add 

a 50ms zero segment to the start and the end of the original music signal. In the 

evaluating process, these two segments are remove to make sure the actual notes and 

the estimated notes have the same length.

3.2.2.2 Algorithm Description

The system diagram of our note extraction algorithm is shown in Figure 3.9. A 

group of instrument dependent probability functions, called Matching Probability 

Functions, are designed to quantize the probability of any note/notes present in any 

fraction. The functions are designed to guarantee that, for any note/notes and any 

fraction, its value ranges from 0 to 1. The higher the value, the higher probability 

the note/notes present at this fraction.

This algorithm is applied on the result of time-frequency analysis - the magnitude 

semitone band spectrogram. The algorithm starts with Peak Picking (Section 3.2.2.3 

to extract useful data from the fraction-level magnitude-semitone band representa­

tion. The initial step before the loop is to identify the silent fractions, note/notes frac­

tions with 100% matching probability. These identified fractions are marked as identi­

fied by setting a variable /textsldone in the program from —l(the default value, in the 

initial, all fractions are marked as unidentified) to 1 for note/notes fractions, or from 

— 1 to 0 for silent fraction, while other fractions remain un-identified(done = —1). An
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Figure 3.9: Algorithm diagram of note extraction system
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iterative loop then begins to process those un-identified fractions. These un-identified 

fractions are grouped into continuous 5-fraction length segments. If we have less than 

5 continuous un-identified fractions, they will not be grouped into a segment, and 

will be processed in the post-processing step at the end of the algorithm. If we have 

continuous un-identified fractions with a length which is not the integer multiple of 5, 

we will increase the length of the segment for the last un-grouped fractions. For ex­

ample, if we have 18 continuous un-identified fractions, 2 segments will be formed by 

picking the first 10 un-identified fractions, and the last segment will have a length of 

8 fractions to include the last 3 fractions. The initial matching probability threshold 

πιatchProbTH is set as 70%. If no process has been made after a loop, the matching 

probability threshold will be decreased gradually until they reach the lower limit of 

30%. The identification process continues until all fractions are identified or the un­

identified segments are too complex to analyze. At the end, a post-processing method 

is applied on the result to remove apparent errors, and to deal with those continuous 

un-identified fractions with length less than 5.

3.2.2.3 Peak Picking

Peak picking helps remove possible noise from the fraction-semitone band represen­

tation and leaves only those segments with high enough energy to be noticed. Peaks 

are those local maximum segments with energy above given thresholds. The rest are

deemed as zero. Two thresholds are used to determine the presence of a peak. A
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peak is deemed to present in a music fraction only if the energy at its semitone band 

is higher than both thresholds.

The first threshold is call semitone band median. Generally, for any fraction, all 

major harmonics(fundamental to 10th harmonies, as explained in Section3.2.2.4) of 

cocurrent notes will cover only a small part of the semitone bands. For example, 

in single note music segment, the major harmonics cover no more than 10 semitone 

bands; in two notes music segment, the major harmonics cover no more than 20 semi­

tone bands; while the total number of semitone bands is 72. Thus, the majority of 

the 72 semitone bands contain only noise, and their energy is normally lower than 

those contained in major harmonics of the present notes. If we use the median of all 

semitone bands magnitude at this time fraction as a threshold, it is safe to assume 

the component at a semitone band with energy lower than the semitone band median 

is noise.

In Y. Ma’s paper, another threshold she proposed is global median, which is the me­

dian of the magnitude in the fraction-semitone band representation at all time. In 

implementation, twice of the global median is used as the second threshold. However, 

since most music signal is not energy constant signal, each note having a transient 

period including a rising part when energy rise from 0 to stable state, and a falling 

part when energy drops back to 0, choosing the global median is not a good choice 

because it will sometimes fail to pick up those peaks with energy near 0 at transient 

period.
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To overcome this drawback, this paper proposed a method to use the Moving Global 

Median(MGM) as the second threshold. A moving window is sliding along the time 

axis to select the time fractions, which will be used to calculated the MGM for a 

certain time fraction. The window is set as 5 — fraction length, since we assume that 

each note should last at least 50ms. At each time fraction, the moving global median 

is calculated as the median of the magnitudes of the previous 2 time fractions, the 

current time fraction, and the next 2 time fractions. Since we add 5 zero segment at 

the beginning and the end of the signal separately, the moving global median for the 

first 5 fractions and the last 5 fractions are all 0.

The result of peak picking for a single note flute midi music is shown in Figure 3.10. 

It is seen from this figure that, there are misidentified peaks around the time of 3.5s, 

7.0s, 7.17s, 7.59s and 8.Os. These identified peaks do not belong to the real signal. 

It is also noticed that some peaks belong to higher harmonics are lost in this process. 

These kind of mistakes will be corrected in following steps.

In order to compare the performance of global median and moving global median, 

two more experiments are carried out as shown in Figure 3.11 and 3.12. With all the 

parameters set the same, only the second threshold is different, one set as the global 

median, and the other set as the moving global median with the moving window 

length set as 5. As shown in the amplified figure 3.12, the actual note starts from the 

time of 2.65s to 3.44s. The result using global median as the 2nd threshold estimates 

the note starting from the time of 2.68s to 3.35s, missing 12 notes, while the result
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Figure 3.10: Peak pick result of flute midi music

using moving global median as the 2nd threshold estimates the note starting from 

the time of 2.67s to 3.44s, missing only lnote. Generally, for fast energy changing 

music signal, using moving global median as the 2nd threshold could identify about 

5 more time fractions(2 — 3 at the beginning, and 2 — 3 at the end) than the one 

using global median as the 2nd threshold in one single note duration. This improve­

ment is very important because in fast-pacing music, notes are usually short and 

fast-changing. Missing about 50ms for each note will dramatically deteriorate the

system performance by decreasing the Recall Rate(this is the evaluation method and 

will be discussed in Section 3.2.3) with so many True Negative notes.
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Figure 3.11: Note extraction result with different 2nd threshold in peak picking

Table 3.2: The relation of harmonics and notes position

harmonie semitone number ratio
0 n 2°∕12 = 1
2 n+12 212∕12 = 2

3 n+19 219/12 ~ 3.00

4 n+24 224/12 = 4
5 n+28 228/12 ~ 5.04

6 n+31 231/12 ~ 5.99

7 n+34 234/12 ~ 7.13

8 n+36 236∕12 = 8

9 n+38 238/12 ~ 8.98

10 n+40 240/12 ~ 10.08
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3.2.2.4 Matching Probability Function

As explained in Section 1.1 and in Table 3.2, the first 10 major harmonics of any 

ideal note either match another musical note, or are so close to a real one that they 

can be considered one. And the magnitude semitone-band spectrogram gives us the 

energy change on each narrow band of the 72 music notes. We will assume that, for 

a certain note, the energy of the narrow band covering its harmonics is the energy of 

the harmonics itself.

In Y. Ma’s paper[2], she proposed a method call "Matching Probability Function” 

to decide if certain note/notes is present in the music at a certain time, from the 

energy distribution in the magnitude semitone-band spectrogram. The function is the 

multiple of two independent probability functions. The first one is named ” Matching 

Peak Function”. Consider the example illustrated in Figure 3.13, the circles ’o’ mark 

all the peaks, which are the semitone bands with energy high enough to be put into 

consideration. They are defined as set PK. The triangulares 'V' mark all the semitone 

bands corresponding to the fundamental and harmonics (only the first 10 harmonics 

are considered) of a note(number 17, the frequency is 493.88Hz). They are defined 

as set H. The Matching Peak Function is the weighted energy sum of semitone bands 

belong to both PK and H over the weighted energy sum of semitone bands belong to 

PK. Any semitone bands cannot be explained by given note/notes will decrease the 

value

„ ESEPKRH Wp(s)-M(s) 5 
peak- CsEPK Wp(s). M(s) 1 ,
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where s is a semitone band, M(s) is the magnitude on this semitone band, which 

could be regarded as the energy over this band, and Wp(s) is the weight of each peak 

in proportion to the reciprocal of its position in PK

(3∙6) 

with sn is the semitone number of the nth peak.

The second independent probability function is named Matching Harmonic Function, 

which is the weighted sum of semitone bands belong to both PK and H over the 

weighted sum of semitone bands belonging to H

ZsePKOH Wh(s) 
EseH

where s is a semitone band, and Wh(s) is the weight of each harmonic in proportion 

to the reciprocal of its position in the harmonic structure

Wh(sm) = (3.8)m

with sm is the semitone number of the mth harmonic.

The selection of the two relative weight functions Wp(s) and Wh(s) is based on the 

knowledge that the energy of violin signals are mainly on the first several harmonies

since Y. Ma is only dealing with violin music signal. She states that in order to work
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on other musical instruments, these weight function need to be modified by searching 

the library of music produced by the instruments. Also, the harmonies set H only 

include the first 10 harmonics in both probability functions. It is chosen to be 10, 

partly because the closeness of a certain musical note harmonics to other integer note 

is not satisfied after the 11th harmonic(241/12 ~ 10.6787, 242/12 ~ 11.3137), partly 

because the energy on higher harmonics are normally much lower than the first 10 

harmonics for violin music that it could be omitted as zero

The matching probability function is defined as

Prob Ppeak ' Pharm (3.9)

Since both the matching peak function and the matching harmonic function are guar­

anteed to range from 0 to l(when H E PK, the value is 1, otherwise the value is less 

than 1), their multiple is also guaranteed to the range of [0,1 .

The two matching probability functions are modified in order to identify musical 

signals with multiple concurrent notes. The matching peak function is modified as:

Ppeak(t, C(H(nm))) 2sePK(t)A(H(ni)U-UH(nm)) Wp(t, s)-M(t, S)
EsEPK(t) Wp(t, s) • M(t, s)

(3.10)

where t is the fraction number, PK(t) is the set of peaks for fraction t, Wp(t, s) is 

the weight function following Equation3.6, H(ni) is the harmonics structure of note 

ni - the set of all semitone bands corresponding to the major harmonics of note ∏i, 
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C(H(nm)) is the combination of possible notes harmonic structures at fraction t with 

their number m restricted to no more than 4 in practical experiment.

And the matching harmonic function is modified as:

‰⅛C(H⅛1)) - n EcPK(OAHC) WA(N:9) (U1) 

\k=1 2seH(nk) Wh(nkis)

where Wh(nk, s) is the weight function following Equation3.8 on note nk at fraction 

t.

The matching probability function is then defined as the product of the modified 

matching peak function and the modified matching harmonic function

Prob(t, C(H(nm) = Ppeak(t, C(H(nm)) • Pharm(t, C(H(nm) (3.12)

These modified matching probability functions defined by Equation 3.10,3.11, and 

3.12 are used at the stages of identifying continuous un-identified fractions. For each 

fraction in the continuous un-identified fraction segments, all possible present notes 

combination will be rated by these functions. The one with the highest score will be 

considered as the correct one. The system will estimate that, the notes combination 

with the highest score is present at that time. Our current experiments restrict the 

number of notes m in the combination to be no more than 4. Musical signal with 

more than 4 simultaneous notes is a possible topic for future work.

Figure 3.14 illustrates an example of two concurrent notes at certain fraction. Figure
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Figure 3.14: An example of two concurrent notes

3.15 illustrates an example of three concurrent notes at certain fraction.

3.2. 2.5 Post-processing

A post-processing method is applied on the result to remove possible octave errors 

in the transient stage of some notes. Another task of post-processing is to deal with 

continuous un-identified fractions with a length less than 5. Similar to the post­

processing method in [35], we assume silent segment should have a duration no less 

than 50ms and note/notes segment should have a duration longer than 50ms, that
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means silent segment should have at least 5 fractions, each note should have more 

than 5 fractions. Three cases need to put into consideration. The first one is, both 

sides of un-identified fractions with a length less than 5 are already identified as silent 

fractions. In this case, these fraction will be identified as silent fractions based on our 

assumption. The second case is that the un-identified fractions have one side identified 

having note/notes, and the other side identified as silent fractions. In this case, these 

un-identified fractions will be identified having note/notes which is the same with the 

adjacent identified fractions. The third case is that the un-identified fractions have 

both sides identified having note/notes. In this case, these un-identified fractions will 

be identified having note/notes in both sides. This setting tries to identify as many 

as fractions as note/notes, but it will introduce some error and decrease the precision 

by increase the number of falsePositive. However, since our current experiment shows 

that the recall rate is relative low, and the above setting will increase the recall rate, 

this setting is more proper. Afterall, for this case, there is a tradeoff to balance the 

recall rate and the precision.

3.2.3 Evaluation Method

To evaluate the performance of a system and to compare the performance between 

different systems, an effective evaluation method is needed to be established. Several 

evaluation methods had been proposed in previous researches. Dixon [36] proposed a

frame-level version named Overall Accuracy to measure the general accuracy of the
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system. Poliner[37], on the other hand, proposed a group of error measure functions 

to measure the errors. He discriminates the errors into three categories: substitution 

errors(mislabeling note/notes), ”miss” errors(when note/notes is/are present in the 

fractions but missed in the estimated transcript result), and ”false alarm” errors(when 

note/notes is/are reported without any underlying source). He states this three-way 

decomposition avoids the problem of ’double-counting’ errors.

In previous Y. Ma’s work[2], she did not propose a proper method to evaluate the 

result. She compared the result of estimated score to the real score by plotting them 

together with the same axes setting. By observing the amount of overlap, people can 

generally tell if the system is doing good.

In this thesis, we proposed an evaluation method which is widely used in the realm of 

machine learning. We believe this method is effective and comprehensive, evaluating 

not only the general accuracy of the system, but also its error rate.

Some notions are used in the evaluation method. TP("true positive”) is the number 

of correctly identified notes, FN (” false negatives” ) is the number of notes which are 

present in the music but failed to be identified, and FP(" false positive” ) is the number 

of notes which are identified by the system but is actually not present in the music. 

The first evaluation function is Recall rate, defined by

D 77 Zt TP(t)Kecall = ----------------- --------Et(TP(t) + FN(t))
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The recall rate is the ratio of the number of correctly identified notes to the number of 

total reference notes(the number of notes present in the music) at fraction t, reflecting 

the ability of the system to pick up notes. The higher the value, the more capable 

the system is to pick up notes from the mixture.

The second one is Precision, which is defined as

. 2t TP(t)Precision = ------------------ -Et(TP(t) + FP(t)) (3.14)

The precision is the ratio of the number of correctly identified notes to the number 

of total estimated notes(the number of notes estimated by the system) at fraction t, 

reflecting the system’s accuracy in identification [35]. The higher the value, the more 

accurate the system will be.

The third one is total error rate, defined as

Et max(TP(t) + FN(t), TP(t) + FP(t)) - TP(t) 
TP(t) + FN(t)

(3.15)

The total error rate counts all possible errors in the system, and compares them to 

the number of notes actually present in the fraction at that time.
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Table 3.3: Data set of the midi music in the experiment

music instrument length(s) concurrent notes
A-Major violin 41.6 1

Arpeggion clarient 23
Child and Star flute 11.6 1

Angels two violins 30 2
God Rest two clarinet 20.1 2

Mozart K.487,No.l two oboe 47.2 2
Sonata F Major,Op. 1,No. 1 two violin and cello 55.8 3

God Rest Ye Merry choir (soprano, alto, tenor and bass) 33.5 4
Childful clarinets, oboe, flute and violin 82 4

string quartet 2 violins, viola and cello 39.2 4

3.2.4 Experiment and Results

The experiment is carried out under MATLAB version 7.0.4. The data set we choose 

are all midi music samples. The reason we choose synthesized music over real music 

is that, we know exactly the reference score of the synthesized music. Actually we 

also implement our algorithm for real music, but since we could not find the ground­

truth pitch score for music played by the instrument we are interested at. We cannot 

determine the performance of our system.

We test our algorithm on 9 pieces of midi music with a total length of 384 seconds as 

illustrated in Table 3.3, including 3 pieces of solo music, 3 pieces of music played by 

two of the same instruments or two different instruments, 1 piece of trio music, and 3 

pieces of quartet music. Those music are played by a group of instrument including 

violin, flute, clarinet, and oboe, with their frequency spectrum within the spectrum 

coverage of the system.

The identification results are shown in two ways. The first is to plot the estimated
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notes and the reference notes together to get a general impression of the system 

performance. The second is to use the evaluation method proposed in Section 3.2.3 

to get more accurate evaluation of the system performance.

Figure 3.16, 3.17, 3.18, and 3.19 illustrate the results of plotting the estimated 

results and the actual notes together for solo, duo(with at most two concurrent notes), 

trio(with at most three concurrent notes), and quartet(with at most four concurrent 

notes) music. We can see from the plot that, the main error of the system is octave 

error(two concurrent notes n and n + 12 identified by the system to be one note n). 

The main reason for this is that, the harmonic structures for two notes with one 

octave distance are highly overlapped so that when the fractions are rated by the 

matching probability functions, the probability of one note is higher than that of two
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notes. This situation happens more frequently when one note in the music has several 

lower harmonics missing in the harmonies structure.

Table 3.4 shows the final results of the whole data set using the evaluation methods 

proposed in this paper. It shows that, as the number of concurrent notes increases, the 

recall rate drops dramatically, from 96.1% for solo music to 68.4% for quartet music. 

This is understandable because for our system, as the number of concurrent notes 

increase, the peak-semitone band representation is increasingly complex. Also since 

our system can not pick two adjacent peaks, some real harmonics of the combination 

of notes in the music can not be picked, thus rendering the matching probability 

score for that combination decreases so that the correct combination does not have 

the highest score. The table also shows that, although the recall rate drops fast when
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Table 3.4: Result using proposed evaluation method

type solo duo trio quartet
Recall 96.1% 86.6% 73.2% 68.4%

Precision 98.2% 95.8% 94.8% 92.2%
Error total 6.9% 13.1% 22.3% 30.7%

the number of concurrent notes increase, the precision remains stable(from 98.2% for

solo music to 92.2%) and stays above 90% for all cases. This shows the ability of the

system to exclude possible FPs.



Chapter 4

Modification of Frequency Tracking based 

on Adaptive Internal Model Control

Theory

4.1 Introduction

Active suppression of noise is an interesting and challenging problem, and many 

different approaches have beed used to cancel disturbances, such as adaptive control 

techniques[38], Kalman filter based approaches[39], least-mean-square(LMS) gradient 

approximation approach[40], and recursive least square(RLS) based approach[41]. An 

overview of these approaches can be found in [42]. Another approach, called Internal 

Model Principle[6], was proposed by Francis and Wonham in 1976. It states that, 

perfect disturbance rejection is achieved if a replicate model of the disturbance is 

contained in the stable closed-loop system(the detail is discussed in 2.1). However, 

in most cases the disturbance model is not a known prior, and the disturbance prop­

erties are not constant over time. To overcome this limitation, an adaptive version 

61
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of the internal model controller(IMC) was proposed by L.J. Brown and Q. Zhang in 

4, 15] for cancelation of periodic signals with uncertain frequency. They developed 

a function to map the time-varying states of the internal model to the time-invariant 

frequency of the disturbance signals. An integral controller is implemented to update 

the parameter of the internal model such that the controller can converge to the ac­

tual frequencies present in the signal. The convergence and stability of this adaptive 

control system is verified by singular perturbation theory and averaging theory. Jin 

43] extended the algorithm for canceling a disturbance composed of a sum exponen­

tially damped sinusoidal signals. Zhao [44] implemented the algorithm to extract the 

pitch from synthesized monophonie signals, realizing excellent temporal resolution 

to discriminate rapid musical passages. Sun [8] proposed a time-frequency analysis 

theory: Instantaneous Fourier Decomposition based on this theory, and applied it 

to analyze experimental weld signals having at most 3 harmonies. Yan [2] further 

developed an iterative system based on IFD for violin music decomposition, capable 

to deal with at most 2 concurrent pitches.

One problem of the adaptive internal model theory is that, its exponential conver­

gence means that it cannot estimate the signals properties during the initial transient. 

Further, due to robustness and numerical stability issues, the greater the number of 

internal models, the slower the algorithm’s convergence. For several applications such 

as the welding examples conducted by Sun, this initial information is crucial. In the 

welding problem, the goal is to measure the energy supplied to the weld by an AC 



63 

power supply controlled using silicon control rectifier (SCR) technology. The problem 

is the voltage cannot be directly measured as a result of the large magnetic fields pro­

duced by the 10 — 20 KA AC currents used for welding. When measurement wires are 

connected to the weld electrodes, the quantity measured is a sum of the weld voltage 

and a term proportional to the derivative of the current. Further, SCR controlled 

power signals are not pure sinusoids but contain high levels of the odd harmonics. the 

real power supplied to the weld will be the part of the voltage signal in phase with the 

current. Thus by decomposing the voltage and current into phaser representations as 

the IFD does, it is possible to calculate the energy supplied to a weld after the initial 

convergence of the algorithm. Unfortunately, the maximum variance in the process 

occurs during this convergence period. Further since welds are typically only 10 — 15 

cycles in duration, it is imperative, that this initial energy be calculated as quickly 

as possible. Another example where the initial information is crucial is in identifying 

and modeling the attack characteristics of a musical instrument.

In this thesis, we proposed a method of running the adaptive internal model theory 

based algorithm twice, with the first time as normal, and the second time backwards- 

in-time. In the second time running, the input signal is reversed to backwards-in- 

time. With proper initialized value of the system’s parameters, perfect tracking with 

no transition in the signal will be achieved. Also, in order to analyze signals with 

multiple harmonics, multiple Internal Models are incorporated in parallel in the feed­

back loop, with each IM tracks one harmonic contained in the signal. The algorithm



Figure 4.1: Block diagram of the frequency tracking system
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diagram is illustrated in Figure 4.1. With this approach, the system is able to ana­

lyze monophonie signals with multiple harmonies, or polyphonie signals with multiple 

harmonies. Our ultimate goal is to implement the algorithm to analyze real music. 

As illustrated in Figure 4.2, real music normally has transition periods[45], the energy 

in which rises from zero to a sustained value at the beginning of a certain pitch and 

falls to zero at the end of the pitch. The transition period, especially the rising part 

of the signal(the attack period in figure4.2), is very difficult to analyze because the 

period is usually very short but with a considerably large energy change. Since our 

algorithm is able to track the initial period of a signal, thus we can use it for transient 

modeling of the music signal.
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Figure 4.2: The transient period in an ideal case of single pitch

4.2 Full-length Frequency Tracking based on

Adaptive Internal Model Control Theory

As discussed in 2.2.4, Instantaneous Fourier Decomposition transform the input signal 

into a magnitude semitone channel spectrogram. The desired feedback control system 

behaves like a band-pass filter with multiple notches. The advantage of this method 

is that, the number of the notches is configurable (as much as 72 channel). However, 

since IFD is inadaptive and treats the energy in the semitone channel as the energy 

of the central frequency of that channel, we can not tell the exact frequency of the 

signal at that moment. Also, the speed of convergence in IFD is not controllable,

and sometimes the transient time is longer than the whole duration of the signal,
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rendering the system unable to identify the frequency.

In this thesis, we proposed a method of designing the pole locations of the system 

directly. By placing the poles of the closed loop system near the origin in the z — 

domain, we can control the convergence speed, making it relatively faster than IFD.

4.2.1 Design of the Plant L

The plant L in the diagram is chosen as a simple low-pass filter with its transfer 

function in the z — domain as L(z) = 3xE. One variant b in the denominator is 

decided by matching the coefficients of the actual system to the desired closed-loop 

system that will be explained in the next section.

4.2.2 Design of Pole Location

The method in this thesis is to place the closed-loop poles in an arch within the unit 

circle in ^ — domain. Given the plant transfer function L(x) = *+6, the closed-loop 

poles should be in an arch in the right semicircle of the unit circle, with one pole in 

the real axis, and others are pairs symmetric about the real axis. Figure 4.3 shows 

the poles location of a 7 — order system with 3 paralleled IMs. The radius of all the 

desired poles are the same value of r = 0.8341. In fact, since the pole location in 

our method is totally configurable, the desired poles can be placed anywhere within 

the unit circle. However, in order to increase the convergence speed and to provide a 

sufficiently large frequency variation range for the adaptation, the 7 poles are placed
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Figure 4.3: Desired poles location of a 7-order system

in an arch with the root locus(pole location versus the frequency w) illustrated in 

Figure 4.4. Randomly placed poles will drive the lines in the root locus easily going 

out of the unit circle, rendering the system unstable.

The adaptive internal model principle uses an internal controller to force the estimated 

frequency w to the actual frequency of the signal. As w changes in the adaptation 

process, the poles location of the closed-loop system varies as well. To guarantee the 

system is always stable, we need a sufficiently large range of w so that the closed 

loop poles of the system remain in the unit circle in z — domain. The root locus in 

our example 4.4 has a frequency range [220Hz, 660Hz], which is sufficiently large for 

current adaptation speed.
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The continuous-time state space form of the internal model in the system dia­

gram 2.2 is as follows

(4.1)

(4.2)

with the transfer function from e to Ui

Te->u; = bus + kliw
(4.3)S2 + 202
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By mapping the state space equations from continuous-time to discrete-time, the 

discrete-time state space form of the internal model is as follows

Tui(T + 1)

X2(T + 1)

cos(wj)

— sin(wi)

sin(wj)

cos(wj)

T1(T)

C2(T)
(4.4)

ui(T) — k1i
T(T)

22(T)
(4.5)

The feedback signal u(t) is the summation of the output of each internal model

n n
u(t) = 2 ui(t) = 2(klidli(t) + k2i2i(t))

i=1 i=1
(U)

where n is the number of internal model(3 in our case). The transfer function from e

to U; is

TK2i+Kliz sin(Wi) - KZizcos(Wi) 
e-ta 22 - 2cos(w;)z+1

(4.7)

with the 7 desired poles placed in the z-domain, the denominator for the 7-order

desired closed loop system is

DENdesired ~ II(z Pi(z))
2=1

(U)

where n is the number of paralleled internal models. With the transfer function of 

the plant is L(z) = 2+5, the denominator of the actual system is
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Table 4.1: The parameters in a 7-order closed-loop system

b K11 k21 K12 k22 k13 k23

-0.3179 0.7906 1.2497 1.5937 0.1710 0.2472 -1.0062

∏
DENactual =^-^∙ D(z) +(z+b) II(2 - 2cos(wi)z + 1) (4.9)

i=1

with D(z) = 2=1((k2iz + kli sin(wi) - k2i cos(wp))IZL. n(22 - 2cos(wj)z + 1)).

By matching the coefficients of the two equations 4.8 and 4.9, we can set the feedback 

gain (kli,k2i)(i = 1,..,n) for each IM and the unknown coefficient b of the plant 

L(z). The value of these parameters in our experiment are given in Table 4.2.2.

4.2.3 Setting of Initial Values in Backwards-In-Time

Running

The state variables in the system state-space equation include the state variables Tli 

and K2i(i = 1,..,n) and the estimated frequency w. We obtain the final value of 

these state variables in the first time normal forwards-in-time running. Based on the 

methods discussed below, the correct initial values of these state variables are set, 

and the algorithm is run second time backwards-in-time, with the original reference 

signal reversed as the input. The following section will discuss how to calculate the 

correct initial values of the state variables.

Consider the plant L has a transfer function L(s) = §+, following Equation 4.1, 4.3,



the transfer functions from the reference signal r to Cli and 2i are

1 + L(s)Te-yu;(s) 
Tye • Tex1

TFs^x2i

1 + L(s)Te—>u;(s)

w(s+1)
(s + a)(s2 + w2) (s + 1)(k2iS + kiiw) (4.10)

_ _ _ _ Tyx2_ _ _ _
1 + L(s)Te-ui(s) 
_Tye
1 + L(s)Te-u;(s)

S+as+u2
1 I s+-1 k2is+kljw

s+a s2+w2
s(s + 1)

(s + a)(s2 + w2) + (s + 1)(k2is + kliw) (4.11)

Substituting S = jw into the above equations, we have

TF,-1(3=ju) = Hjt
(4.12)
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(4.13)

where

1 
V*+k

Assuming the reference signal is a pure sinusoid s = scos(wct + Ps), with the mag­

nitude s is a constant. In the steady state, the the two state variables Ti(ts) and

T2(ts) are given as follow

C1s = 1(ts) = xcos(wcts + x)

where ts is the time in steady state.

C2s = T2(ts) = xc coS(wcts +P-

(4.15)

(4.16)

Following Equation 4.12, the extra phase from Os to Px is given by

(4.17)

In the second time running the algorithm backwards in time, the reference signal 

is reversed Sb = S cos(-wct + wcts + φs), and the two state variables are given by 
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T1b(t) = x cos(-wct+Wcts+0s—8) = x cos(wct+(Wcts+Px)-2(ps—)) (4.18)

X2b(t) = acos(-wct+wcts+ps-8-5) = xcos(wct+(wcts+Yx)-2(s-Qa)-5) 

(4-19)

Substituting Equation 4.15, 4.16 and 4.17 into the above two equations, and 

setting t = 0, we have the correct initial values of the two state variables in the

backwards-in-time running

X1B(0) = x cos(cos Y1s ) - 28) (4.20)
x

32B(0) = IxI cos(cos 1(x1s) -26-“)
x 2

(4.21)

4.2.4 Experiment and Results

The algorithm is implemented in MATLAB Simulink version 6.2. The reference signal 

is a synthesized signal with three harmonies, one is the fundamental frequency, the 

other two are the second and third harmonies:

s(t) = mi cos(2i / wi(t)dt+41)+m2 cos(2r / w2(t)dt+402)+m3 cos(2π j ws(t)dt+403)+n

(4.22)
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Figure 4.5: Diagram of a 7 order system in Simulink

where the three initial phase P1, (2, P3 are set the same value of 0.5, the magnitudes 

of three harmonics are set three different constant m1 = 1, m2 = 0.5, m3 = 0.25, 

the frequencies of the three harmonics are time-varying wi(t) = 220 + 160t, w2(t) = 

440 + 320t, and w3(t) = 660 + 480t, and ∏ is a Guassian white noise with PSD 0.001. 

In order to track the three harmonics of the reference signal, the number of paralleled 

IMs is set 3, and the adaptation gain Ke is set 0.06. Since the signal is a monophonie 

signal, by tracking the fundamental frequency, the second and third harmonics will 

also be tracked by multiplying the fundamental frequency by 2 and 3, thus the adap­

tation is only applied for the fundamental frequency. The system diagram in Simulink 

is illustrated in 4.5. The results for the first time forwards-in-time running is shown 

in Figure 4.6. As seen from the figure, the adaptive internal model based closed-loop 

system could track each harmonic with time-varying frequency but with delays. The 

delay is 0.04s for wi(t) = 220 + 160t, about 9(0.04/(1/220) ~ 8.8) cycles of the
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Figure 4.6: Estimated frequency for Wi(t) = 220 + 160t

T11(0) X21(0) 12(0) ¾(θ) 313(0) ≈21(θ)

-0.2913 -0.5967 0.2966 -0.1167 -0.1342 -0.2225

Table 4.2: Initial values of state variables in backwards-in-time running

signal. This delay is inevitable, since signals going through any linear system would 

generate delay. The transition period for the adaptation is about 0.058s (12.5 cycles 

of the signal). In the second time backwards-in-time running, the initial values of 

the state variables are calculated according to the methods discussed in Section 4.2.3 

and illustrated in Table4.2. The initial value of the adaptation frequency is set as 

frequency at the ending state Wbackwards(0) = Wforwards(end). The results for the 

second time backwards-in-time running is shown in Figure 4.7. In the backwards-in- 

time running, the fundamental frequency component should be wib(t) = 380 — 160t. 

As seen from the figure, with correct initial value setting, the system is able to track
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the time-varying frequency from the beginning of the signal with no transition. The 

delay is about 3 cycles of the signal.



Chapter 5

Conclusions and Future Work

Two applications have been presented. The first one is a modified multiple funda­

mental frequency estimation method based on recursive CASA. The second one is a 

frequency tracking system able to capture the initial part of a monophonie signal with 

multiple harmonics. Experiments and simulations are conducted under MATLAB and 

SIMULINK environment for algorithm validation.

5.1 Conclusions

A Modified Multiple Fundamental Frequency Estimation Method based on Recur­

sive CASA is proposed in Chapter 3. The algorithm is based on a previous peer 

Yan’s work. In order to process music signal with more than 2 concurrent notes 

and to improve the system performance, multiple modifications are made. For Time­

Frequency analysis, the Chebyshev type I band-pass filter is changed to Chebyshev 

type II filter in order to reject possible noise in other frequency bands. For Note 

Extraction procedure, the modified Matching Probability Functions are proposed to 

process polyphonie signals, the flow-chart for the note extraction is also modified. A 
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proper evaluation criteria based on machine learning is also proposed to evaluate the 

performance of the system. Experiments are carried out and the results are evaluated 

using the proposed criteria. The system achieved an averaged 68.4% recall rate for 

signals with 4 concurrent notes, 73.2% for trio music, 86.6% for duo music, and 96.1% 

for solo music, and the precision above 90%.

A Modified Frequency Tracking system based on Adaptive Internal Model Control 

Theory is presented in Chapter 4. In order to track the whole period of a monophonie 

signal, the algorithm is run two times, with the first time forwards-in-time as normal, 

and the second time backwards-in-time with the reversed reference signal as input. 

By properly setting of the initial state variables in the second time running, perfect 

tracking through the whole period of the signal is achieved. Experiments are carried 

out on synthesized monophonie signal with 3 harmonies. The results show that the 

system could track the whole period of the signal in the backwards-in-time running 

with a slight delay.

5.2 Future Work

For modified multiple-fO estimation algorithm, the following work is needed to be 

performed in future

• The frequency range of signals the algorithm is able to process is needed to 

extend.

Current algorithm is able to process signal with frequency range from 116.54Hz 
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to 7.04kHz(72 semitone channels), while for real music, the frequency range is 

from 27.5Hz to 20k Hz(120 semitone channels). In order to analyze music 

played by other instruments, more channels need to be added into the system. 

However, when the number of channels is increased to 80, division by zero 

error would happen in MATLAB. To solve this problem, the parameter setting 

strategy needs to be modified.

• The current experiments are only conducted for synthesized MIDI music signals 

because we lack the ground-truth score of real music samples. The future work 

is to process real music signals, and evaluate the result with the ground-truth 

score.

For the frequency tracking system based on adaptive internal model theory, 

current work is just a start. Much more work needs to be done.

• Current algorithm sets the magnitude of each harmonic to be constant, while 

for real world signal, such like music signal, the magnitude is time-varying. 

Current system will fail to track when the energy of the harmonic is small, thus 

rendering the system unable to track the parts of signal with small energy.

• Current algorithm is only able to track monophonie signal with multiple har­

monics. For polyphonie signals with multiple harmonies, the adaptive internal 

model theory needs to be modified. Another problem is that current algorithm 

tracks only the fundament frequency of the signal, multiplying the fundamental
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frequency with integers to track other harmonics. But real world signals have 

more complex harmonic structure. For example, the fundamental frequency in 

music may not exist, and harmonics may not be integer multiple of the funda­

mental frequency.
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