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ABSTRACT

In this thesis, two applications are presented. The first one is the polyphonic
pitch estimation algorithm based on a previous peer’s work. The algorithm is an
iterative multiple-step approach. The input signals are first transformed to a time-
frequency representation using Instantaneous Fourier Decomposition. Then a Com-
putational Auditory Scene Analysis based method extracts notes from the time-
frequency representation. The modifications are presented and compared with previ-
ous work, results on MIDI music are presented and discussed.

The other application is the frequency tracking algorithm based on adaptive inter-
nal model theory, being able to capture the initial part of a monophonic signal with
multiple harmonics. By running an adaptive internal model based closed loop system
two times: the first time forwards-in-time, and the second time backwards-in-time
with correct initial values for the state variables calculated using the result in the
first run, perfect tracking in the whole period of the signals is achieved. Results on

synthesized signals are presented and discussed.
Keywords: Polyphonic Pitch Estimation; Instantaneous Fourier Decomposi-

tion; Computational Auditory Scene Analysis;Adaptive Internal Model Theory; Fre-

quency Tracking
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Chapter 1

Introduction

1.1 Music Background

In western music system, sounds with different frequencies is named by notes. For ex-
ample, tone with fundamental frequency of 440]-[ z is named A, and with fundamental
frquency of 261.63H z is named C. In total, there are 12 notes names: A, A#, B, C,
C+#, D, D#, E, F, F#, G and G#, where normally A# = Bb, C# = Db, D# = Eb,
F# = Gb and G# = Ab. The suffix "#” and ”b” denote sharp and flat respectively.
One interesting phenomenon of human brains in processing musical signal is that, if
the frequency of one note is doubled, human brains can tell the pitch is higher but
perceive the sound similar to the original one, while perceive all sounds with frequen-
cies in between differently[1]. Due to this phenomenon, notes are assigned the same
name if frequency distance is integer multiple of a certain frequency, but following
with a different number. For example, A4 is 440H z, A3 is 220Hz and A5 is 880H z.
The distance between the frequency of two sounds, called interval, is measured by
dividing the frequency of one over the other. The notes in ideal western music sys-

tem are logarithmic evenly distributed with the interval between any two adjacent
1



2

notes is 21/12 ~ 1.05946. Such an interval is called a semitone. An octave is any
interval between two frequencies when one is twice the other. An octave equals to 12

semitones.

1.2 Objectives

The purpose of this thesis is to develop new methods and algorithm for the task of
polyphonic pitch estimation based on one previous student’s work(2], and to propose
a new method to track the beginnings of signal in a system to track predictable signals
with uncertain frequency[4, 15]. The term polyphonic pitch estimation refers to the
estimation of possible pitches in the polyphonic music signal that several music notes

may occur simultaneously.

1.3 Motivations

Compared with speech signals, music signals are more complex, not only because it
has a wider frequency range(almost the same with the frequency range of sounds that
human ear can perceive, from 20H z to 20k H z) than the speech signals(the frequency
range is narrowed from 50Hz to 4kHz[3]), but also because some characteristics of
music signals, such as timbre, make it difficult to be analyzed. In music signal pro-
cessing, polyphonic pitch extraction plays an essential role so that it can be employed

for the detection of melody(sequences of notes over time, or music score) and har-
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mony (the relationship between concurrent notes). Polyphonic pitch estimation can
also be utilized for various music application, including content-based music retrieval,

interactive music system, low bit rate compression coding for music signal, and so on.

1.4 Main Contributions of the Thesis

The main contributions of this thesis can be summarized as follows:

1. Proposed advanced note extraction module based on previous work.
Multiple changes compared with previous work have been made to identify
music with multiple fundamental frequency(up to 4 concurrent notes), including
the matching probability functions, the peak picking criteria, the algorithm flow,

and the post-processing criteria.
2. Proposed evaluation criteria to evaluate the performance of the system.

3. Current system is able to identify music with multiple pitches played by various

instruments, including violin, viola, cello, clarinet, oboe, and flute.

4. Proposed a brand-new unknown frequency tracking algorithm able to track the

beginning of notes with minimal information.



1.5 Organization of the Thesis

This thesis is organized as follows. Chapter 2 is literature review summarizing the
theory we are using in the thesis, existing time-frequency analysis methods and poly-
phonic pitch estimation methods in music transcription, and analyzing their advan-
tages and problems. Chapter 3 reviews the recursive CASA based note extraction
module for violin music in previous work, and presents a modified recursive multi-
ple fundamental frequency estimation system based on CASA. Chapter 4 presents a
method able to recover the information at the beginning of each segment of periodic
signals with uncertain frequency. Chapter 5 concludes the thesis and discusses the

future work.




Chapter 2

Literature Review

2.1 Internal Model Principles

The Internal Model Principle is first proposed by B.A.Francis and W.M.Wonham in
1976[6]. It was originally to eliminate periodié disturbances when designing control
systems. They stated that perfect cancelation will be achieved if a suitably redupli-
cated model of the disturbance or reference signals is incorporated in the feedback
loop. For an input sinusoidal disturbance or reference signals, this means that the
controller should have a pair of poles on the jw-axis in the s-plane at a location corre-
sponding to the frequency of the input signals[4]. The characteristic of internal model
is that it supplies closed loop zeros which cancel the unstable poles of the disturbance
or reference signals.

The basic block diagram of a control system with an IM is shown in Fig.2.1, in
which L(s) represents the process to be controlled, possibly combined with a stan-
dard controller. Here, the algorithm has been modified to be a signal processing
algorithm by replacing the process to be controlled with a tuning function. L(s) can

be selected to optimize the behavior of the algorithm. The input disturbance signal
5
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d = Acos(wgt + @), with the frequency to be identified is wg, the initial phase is ¢,
the output feedback error serving as the input to IM is e, the estimated frequency of
d is w, the two states of IM are 1 and z9, and the output of the IM identical to the
. : . . s

input d is 9. The transfer function from e to z9 is oL The state space form of

IM is given by

_ ; - ar - - -
1 0 w 1 0
= + e
9 —W OJ 9 1J
-4t AR (2.1)
I
Y= { 0 1 }
%,

In steady state, we have

r1(t) = Asin{wgt + @)
z9(t) = Acos(wgt + @) (2.2)

e(t) = Aesin(wgt + @)

The difference Aw between estimate frequency w and the actual frequency wy

can be expressed as a non-linear function:

€T
2 2

Aw=w—wyg ~

(2.3)

A simple integral controller could be utilized to force Aw converge to zero as follows:

dw exry
— = K Aw = K
dt ’ eﬂ?%—f—m%Jre

(2.4)
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Figure 2.1: The basic block diagram of internal model for periodic disturbance can-
celation

where K, is the adaptation gain, and ¢ is a very small constant to guarantee no zero

division problem. The stability and convergence of the algorithm are proven in [15].

2.2 Time-Frequency Analysis

Tine-Frequency Analysis is a generalization and refinement of Fourier analysis. The
classic Fourier Transform is only applicable to stationary signals that maintain the
same frequency with infinite duration. However, musical signals are non-stationary
and time-varying. Its frequency components change with time. Also, according to
uncertainty principle, it is impossible for a time-frequency analysis to have both best
time resolution and frequency resolution at the same time. A piano has 88 keys with
fundamental frequencies ranging from A0(27.5Hz2) to C8(4186Hz). The frequency

resolution should be relatively high in order to tell apart the lowest two piano notes
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A0(27.5Hz) and Ah0(29.14H z), which means a relatively poor time resolution. But
for some high frequency notes and fast paced music signals, the time frequency anal-
ysis requires a relative high time resolution. Therefore, there must be a tradeoft

between frequency resolution and time resolution.

2.2.1 Short-Time Fourier Transform

Since classic Fourier Transform is not suitable to process non-stationary musical sig-
nals, an extension of the Fourier Transform, the Short-Time Fourier Transform is
applied for musical signals. In order to obtain a joint time-frequency analysis, STFT
cuts the signals into different frames or snapshot with possible overlap between adja-
cent frames. The STFT and its power spectrum named spectrogram, can be defined

as below:

STFT(t,w) = /__OO F(Dw(r —t)e ¥ dr (2.5)
SPECTROGRAM(t,w) = |STFT(t,w)[* (2.6)

The STFT at time t is the Fourier Transform of a segmented local signal, obtained
by multiplication of the signal f(¢) and a short window function w(7 —t) centered at
time ¢. The shape of window function is one key factor of the STFT characteristics.
The default window is the rectangle window, causing frequency leakage problem due
to the signal’s discontinuity at the edge of the window. Many other windows have

been utilized to reduce the spectral leakage when processing music signals, such as



9

the Hanning[17] or the Hamming|[18] window. By moving the window along the time
axis, we can calculate the STFT at different time instants, and obtain a joint time-
frequency analysis. Another important factor is the length of the window, or frame.
The longer the frame, the better the frequency resolution, but with a poorer temporal
resolution according to the uncertainty principle. As defined in Equation 2.5 , the
window function of STFT is independent of the frequency w, therefore, the temporal
and frequency resolutions of STFT are the same in the time-frequency domain. This
is one main drawback of STFT in music signal processing, since in music signal
processing, it is usually required to have better time resolution at high frequency and
better frequency resolution at low frequency. Multiple resolution Fourier Transform

was investigated to solve this problem|[20] [19].

2.2.2 Wavelet Transform

In compare with STFT, the Wavelet Transform provides a varying time-frequency
resolution in the time-frequency domain. The Wavelet Transform(WT), or commonly

named Continuous Wavelet Transform(CWT), can be defined as below:

WI(s,t) = [ ()=

Ydr (2.7)

In order to make the reverse transform, the admission condition must be met:

Co= | * RWE,, o (2.8)

—o0  |wl
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where ®(w) is the Fourier Transform of the wavelet function ¢(7):

b(w) = / * b(r)e I dr (2.9)

When the condition 2.8 is met, the signal f(7) can be reconstructed by the inverse

transform of CWT[21]:

flr) = /()+OO _@f e WT(t,s)Pts(T)dt (2.10)

82 —0O0

The CWT decomposes the signal into a time-frequency domain according to a contin-
uously varying scale and translation and represents the signal with high redundancy;,
enabling us to performs an adaptive time-frequency analysis according to the mu-
sic signal content. We can flexibly select a time-frequency resolution for different
frequency bands, thus fulfilling the requirement of high temporal resolution at low

frequency and high frequency resolution at high frequency in music signal processing.

2.2.3 Constant-Q Transform

Constant-Q Transform is related to the Fourier Transform. The Discrete Short-Time

Fourier Transform is defined as follows:

X[k] = Nz_l W[n]m[n]ei%rﬁé (2.11)

n=0
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Given a data series, sampled at fs = %, with 7" being the sampling period of the

data. For each frequency bin, we can define following:

e Filter width, 0 f;

e (), the "Quality Factor”, defined as follows:

Tk

“T o

(2.12)

with 4 < 1. The quality factor can be seen as the integer number of cycles

processed at a center frequency f.

e Window length for the k-th bin is a function of the bin number

Js A Ts

Nk =57 = 9%,

(2.13)

where fs is the sampling frequency, and f;. is the center frequency of k-th bin.

Then, the Constant-Q) Transform can be defined as follows:

1 NS -
XcooTlK] :—; Z winy, [n n]e"]%k”’/Nk) (2.14)
=0

Where winy, is a window function of length N.. Since the Constant-() Transform
can geometrically space the center frequency, and the time resolution increase with

frequency increasing, it has been explored on analyzing musical signal[30, 31]. How-
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ever, following its definition in Equation 2.14, constant Q transform is relatively time
consuming in calculation. An efficient calculation algorithm has been proposed by
Brown and Puckette to solve this problem|[32]. The algorithm is based on Fast Fourier
Transform, and through calculating a sparse spectral kernel matrix, the number of

multiplication greatly decreases, but its computational complexity is still higher than

FFT.

2.2.4 Instantaneous Fourier Decomposition

The Instantaneous Fourier Decomposition approach was first introduced by Malhotra
in [7], and developed by Sun [8], and Yan [2]. Like the Hilbert-Huang Transform(HHT)[13,
14], IFD decomposes the input signal into a sum of narrowband signals and applies
the Hilbert Transform. As represented in Equation 2.2, at steady state, the two state

variables of the internal model, 1 and x9 are sinusoidal and orthogonal. The in-

stantaneous frequencies could be calculated. A complex analytic signal, z(t) can be

represented as:

2(t) = zo(t) + izq (t) = a(t)e?V (2.15)

Where

a(t) = \/3(t) + £2(t) (2.16)
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is the instantaneous amplitude of 2(¢), and

1(t)
2(t)

=

f(t) = arctan( ) (2.17)

8

is the instantaneous phase of z(t). Then the instantaneous frequency w(t) can be
calculated as:
do(t)

w(t) = 0 (2.18)

As shown in Fig. 2.1 in section 2.1, the system with one basic internal model can
only deal with a pure sinusoid signal. Unfortupately, in signal processing areas, most
signals are not pure sinusoids. Take music signal processing for example, the input
music signal may have multiple tones and multiple harmonics. Since any arbitrary
periodic signal can be approximately represented by a Fourier series with finite terms,
Sun[8] proposed employing multiple IMs in parallel in the feedback loop in order to
track all the frequency component and decompose the input signal into a sum of sine
and cosine pairs. The block diagram of IFD is shown in Fig.2.2 , where L is a tuning

plant, and S is an arbitrary periodic signal which could be represented in the form of

S(t) = Zn: S;sin{w;t + ¢;) (2.19)

1=1

Where w; and ¢; are the frequency and initial phase of the i"(i = 1,2,...,n) fre-

quency component in the signal S(t).
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Figure 2.2: Block Diagram of Instantaneous Fourier Decomposition for an arbitrary

periodic signal

Each IM can be represented in state space form as

T4 0 Wy 0
= X,,; -+ e

| 22 —w; 0 1

Ui = [ Ky KQ@}XZ'

Then in steady state, similar to Equation.2.2, we have

11;(t) = |z;(t)|sin(w;(t) + ¢;)

19i(t) = |zi(t)|cos(w;(t) + i)

where

|z; (t)| = \/x%z(t) + 73.(t), ¢;(t) = arctan (wh’(t)) — w;t

z9;(t)

(2.20)

(2.21)

(2.22)

With the parameters w; and [Kj, Ko, ... , K] properly chosen such that the closed
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loop system is stable, we can decompose the input complex signal using a finite num-
ber of IMs in parallel in the feedback loop. The feedback signal u(t) is a summation

of the output of each IM, with a form given by

n n

u(t) = i ui(t) = Y (K1z1i(t) + Kojzoi(t)) = ) | Kjllz;lcos(¢;) (2.23)
i=1

where | K;||z;| is the instantaneous amplitude of the input signal, and

K1;
Ko;

x1i(t)
z9i(1)

) (2.24)

¢; = arctan( ) — arctan(

is the instantaneous phase of the input signal. Then instantaneous frequency could
be calculated according to Equation2.18, and instantaneous Fourier decomposition is
achieved. In order to get rid of the DC component and frequency component at higher
frequency, Sun[8] proposed to incorporate a bandpass filter into the system. Thus,
the desired system behaves as a bandpass filter with multiple notches, dealing with a
small number of narrow-band signals, and being able to reject noise and isolate usetul
signals. Sun|8] applied the IFD algorithm to analyze real time experimental weld
voltage data collected from a welding machine. In the application, at most 4 internal
models are incorporated in parallel in the feedback loop to track the 4 frequency
components(60Hz,180Hz,300Hz, and 420Hz) of the test signal. The algorithm is able
to identify the input signals, eliminate the induced noise, and realize the Fourier

decomposition of the input multi-tone signal. Sun[8] also states that, with more IMs
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incorporated in the feedback loop, the more accurate the result will be. But in her
test data, the power spectral energy is usually significantly decreased at higher order
harmonics, thus only finite necessary IMs are incorporated. Also, the number of

internal models is limited by the increasing difficulty of designing L.

2.3 Polyphonic Pitch Estimation

2.3.1 Introduction

Pitch is the perceptual and subject attribute of sounds, allowing them to be ordered
from low to high on a frequency-related scale. Pitch plays a very important role
in human understanding of music, since the auditory system tries to assign a pitch
frequency to almost all kinds of acoustic signals.

Polyphonic pitch estimation, which can also be called multipitch estimation [9], or
multiple fundamental frequencies estimation, is defined as ”the task of estimating the
fundamental frequencies of several concurrent sounds” [10]. This topic attracted a
lot of research attention, and many methods have been proposed varying from tradi-
tional signal processing to machine learning, and integration of both. The following
paragraph will first introduce the main problem in polyphonic pitch estimation, and

then will discuss several most common existing methods.
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2.3.2 Problems in Polyphonic Pitch Estimation

Polyphonic pitch estimation is very difficult and challenging because the spectrum of
music signal spans in a wide range, and the spectral structure of different instrument
varies a lot. The spectral structure is defined as the energy distribution on the
fundamental frequency and all the harmonics of a music note. Different instruments
may have totally different. spectral structure. For example, music played by violin has
the predominant energy on its fundamental frequency, while music played by piano,

4" harmonic.

the highest energy may range from the fundamental frequency to the
Another problem in polyphonic pitch estimation is called inharmonicity. For ideal
harmonic sound, the ratio of harmonic component to fundamental frequency should
be integer. But for some instrument, such as piano, the ratio is not strictly integer.

For music signal played by piano, the harmonic component could be expressed as

follows:

fn= nF\/l + B(n2 -1)

Harmonic sharing is another problem in polyphonic pitch estimation. Consider for the
most severe case, where two music notes with fundamental frequencies f; = nfo, and
n is an integer. The harmonic components of music note fi is completely overlapped
by those of music note fo, such as, the k'™ harmonic of music note f1 is the same

with the (nk)!* harmonic of music note fo. For a general case, if two music note with
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their fundamental frequencies having the following relation:
n
fo=f1—
m

where n and m are both integers. Then the p?(p = nk) harmonic of music note fj is
the same with the ¢‘?(¢ = mk) harmonic of music note fo. Taken the above case for
example, consider there is a harmonic component in the mixture with the frequency
f = pf1 = qf9, harmonic sharing problem makes it complicated to decide the energy
distribution of this harmonic component on the two notes f1 and f9. Klapuri[24] pro-
posed a method based on spectral smooth principle to solve the problem of harmonic

sharing.

2.3.3 Auditory Model of Pitch Perception

Modern psychoacoustic research tries to build a human pitch perception model based
on some known physiological and psychoacoustic knowledge. The two main theories
include: the temporal theory and the spectral theory. The temporal theory uses
temporal processing to detect the periodicity in different channels. In this theory,
the acoustical signal is first processed by a frequency analyzer, and then the period-
icity is detected by analyzing the time-domain envelop of the output signal in each
channel. Unlike the temporal theory, the spectral theory transforms the pitch per-
ception into pattern recognition processing of acoustic signals. In human auditory

system, cochlear is an important portion of inner ear, acting as a frequency analyzer.
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Sinusoid frequency components are picked by the spectral peaks in the spectrum.
The positions of the relative spectral peaks form a position pattern which could be
recognized by pattern recognition processing. Goldstein [11] proposed an optimum
processor theory. In this theory, a central frequency analyzer is utilized to recognize
the spectral pattern. A maximum likelihood statistical estimator determines which

pitch best matches the spectral pattern of the acoustical signal.

2.3.4 Machine Learning Methods

Machine learning methods are introduced into polyphonic pitch estimation because
recognizing a note from note mixture is a typical pattern recognition problem, and
machine learning methods work well solving pattern recognition problems. Marolt
introduced neural networks to build a polyphonic transcription system for piano sys-
tem. In his system, the acoustic signal is first processed by a gammatone filter bank
with 200 logarithmically-spaced frequency channels. In order to detect the periodic-
ity, the output of the filter bank is further processed by adaptive oscillators to track
the partial in each frequency channel. Thus, the network of the adaptive oscillators
is used to track a group of harmonically relative partials. Finally, a combination of
oscillator’s network output and amplitude envelope of each channel is input into the
neural network to recognize note. The system is tested with synthesis signals and
real piano music. It is reported that the system performs better on synthesis signal

than on real piano music.
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2.3.5 Estimation Using Instrument Model

Yin proposed a music transcription system based on instrument model. The instru-
ment model is defined as the harmonic structure of different instruments. In this
system, FFT is first used in the front-end time-frequency analysis to generate ampli-
tude spectrum. Then the amplitude spectrum is separated into 88 semitone bands
with the spectrum from A0 to C8 (from 27.5Hz to 4.196kHz), covering the whole fre-
quency spectrum of modern piano. The amplitude spectrum bins in each frequency
band are then combined to generate the band energy spectrum Z[i|, i = 1,2,..., 88,
where the index ¢ corresponds to the MIDI(Musical Instrument Digital Interface, an
industrial standard protocol for electronic music) note number of a western music
note. For each music note i, Z[i] denotes the energy of the fundamental, and the en-
ergy of the lowest 16 harmonics partials lie in the Z[i|, Z[i+12], Z[i+19), ..., Z[i +48].
A 49 number vector of Z[i, ..., 71+ 48] is considered as the instrument model of a music
note at pitch 7. It is assumed that the harmonic structure of an instrument is the
same, regardless of the pitch and the transient. Based on this assumption, only one
49 number vector could completely signify the harmonic structure of music note for
a certain instrument. For a music note with volume a and MIDI number p, the note

spectrum could be generated as:

4

a-1(i —p) i€ [p,....p+48]
F(I,a,p) =«

0 otherw:ise
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Then, for an acoustic signal with band energy spectrum Zjs, the polyphonic pitch

estimation is converted to resolve the following minimization problem:

£
Minimizing | Zy — Z F(I,a;,p;)y;
1=1

where n is the total number of estimated notes. The algorithm is evaluated by limited
MIDI files and compared with the system proposed by Klapuri. It is believed that the

performance could be improved if the acoustic signals have stable harmonic structure.

2.3.6 Iterative Methods

Klapuri[10] proposed a polyphonic pitch estimation algorithm based on the itera-
tive method. In this method, the predominant pitch of concurrent musical signal is
estimated, then all harmonics corresponding to it is removed from the musical sig-
nal. The process is repeated iteratively on the residual signal until all the harmonic
sounds have been detected. The input acoustic signal is first preprocessed to suppress
the noise by a magnitude warping method. The suppressed spectrum is then input
to the predominant pitch estimation module. To find the predominant pitch, the
spectrum is first separated into 18 different frequency bands logarithmically spaced
between 50Hz — 6kHz. In each frequency band, a corresponding weight vector is
calculated to represent the likelihood of a certain pitch. Then, the bandwise likeli-
hood weight vectors are combined to globally estimate the predominant pitch across

the all frequency bands. As the predominant pitch is estimated, all its harmonics
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will be subtracted from the input acoustic signal according to spectrum smoothness
principle. The pitch estimation and subtraction procedure will be repeated on the
residue signal until all the harmonics have been detected. This algorithm has been

tested on polyphonic acoustic signals with multiple timbres, and performs well.

2.3.7 Computational Auditory Scene Analysis

Bregman first discussed Auditory Scene Analysis in his book [23]. He described
the mechanisms that how human auditory system perceiving and recognizing sound
sources from a complex sound mixture. He also states that it is important for sound
separation, since after each sound source is separated, one could use conventional
fundamental frequency estimation method to identify all the pitches for each group.
The sound separation procedure include two stages, first is to decompose the acoustic
signal to time-frequency spectrogram, then to group all the time-frequency compo-
nents from each sound source based on the grouping principles, including proximity
in frequency and time, periodicity/harmonic frequency relationship, continuous or
smooth transition, onset and offset, amplitude and frequency modulation, rhythm
and common spatial location/same direction of arrival[22]. Computational Auditory
Scene Analysis(CASA) has many applications in music signal processing, previous
works includes those by Mellinger|25], Kashino etc[26, 27|, Godsmark and Brown|2§],

Sterian|29].
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2.3.8 Recursive CASA based Note Extraction

Yan|2| propsed a recursive approach based on CASA for multiple fundamental fre-
quency estimation for music played by solo violin. In her algorithm, the original
music signal is first transformed to a time-frequency magnitude spectrogram, using a
method called Instantaneous Fourier Transcription proposed by Malhotra in 2005(7]
and developed by Sun in 2006[8]. The input music signal is separated as monaural
music frames at a sampling rate of 44.1kHz. Each frame has length of 10ms. The
magnitude spectrogram is also averaged for every 10ms frame, and then used as the
input for note extraction. Note extraction is done recursively. First magnitude spec-
trogram is transformed to peaks for peak picking. Only the local maxima above given
threshold are selected as peaks among the magnitude spectrogram. Those selected
_peaks are all normalized having a magnitude of 1, and the rest having a magnitude
of 0. Then, a group of instrument dependent probability functions called Matching
Probability Functions are utilized to extract notes from this frame level peak repre-
sentation. The Matching Probability Functions quantize the probability of any notes
presented in the music signal. The value ranges from 0 to 1. The higher the value,
the higher the probability note presented at this music frame. During the first re-
cursive loop, silent segment, single note fractions with a probability higher than 99%
and Glissandi note with a probability higher than 95% are identified. The residual
signal frames are repeatedly processed, with the identification thresholds, including

continuous fraction length threshold contLTH (initially 70ms), and matching proba-
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bility threshold matchProbTH (initially 70%), adjusted to lower standard. contLTH
will decrease to 50ms, and matchProbTH will decrease to 30%. The whole process
will not stop until all the music frames are identified, or the residual signal is too
complex to analyze. At the end, a postprocessing method is applied on the result
to remove apparent errors and connect glissandi notes. This algorithm is tested on
synthesized signals, midi music, and real recording of violin music. The experiment
result is demonstrated as note number versus time for the estimated result. However,
she does not proposed a proper evaluation method to evaluate the accuracy, error
rate. Also, this algorithm deal with solo violin, meaning it can not handle music

signals with more than 2 concurrent notes.

2.3.9 Modified Multiple Fundamental Frequency

Estimation based on Recursive CASA

This work is using the major framework of Yan|[2]’s system. In order to process music
signal with more than 2 concurrent notes and improve the system performance, the
algorithm is modified from the original algorithm. Also, we proposed a proper evalu-
ation criteria to evaluate the performance of the system. The details of the Modified
Multiple Fundamental Frequency Estimation based on Recursive CASA is organized
as follows. In Section 3.2.1, we will discuss how we use Instantaneous Fourier De-
composition to transform original music signal into magnitude spectrogram, a form

of time-frequency representation of desired resolution. In Section 3.2.2, the main
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changes on Note Extraction will be illustrated, and the performance before and af-
ter the change will be demonstrated. In Section 3.2.3, a proper evaluation will be
proposed to evaluate the performance of the result. In the final Section 3.2.4, the
algorithm is tested on a group of MIDI music signals played by various instruments,

and evaluated using the criteria proposed in Section 3.2.3.



Chapter 3

Polyphonic Pitch Estimation

3.1 Introduction

Polyphonic pitch estimation, which can also be called multipitch estimation [9], or
multiple fundamental frequencies estimation, is defined as ”the task of estimating the
fundamental frequencies of several concurrent sounds” [10]. In some cases, polyphonic
pitch estimation is simplified to note recognition [12], the recognition of musical notes
present in the music sound. The existing proposed methods have been discussed in
Section2.3. Since this work is based on Y. Ma’s work|[2], with several modification
to improve the system performance, the following will mainly discuss the difference

from this work to Y. Ma’s work, and how much the system performance is improved.

3.1.1 Recursive CASA based Note Extraction

Y. Mal2] proposed a recursive approach based on CASA for multiple fundamental
frequency estimation for music played by solo violin. In her algorithm, the original

music signal is first transformed to a time-frequency magnitude spectrogram, using a
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method called Instantaneous Fourier Transcription proposed by Malhotra in 2005{7]
and developed by Sun in 2006[8]. The input music signal is separated into monaural
music frames. Each frame is represented by a single point in time by averaging over
all time points in the frame, and then used as the input for note extraction. Note
extraction is done recursively. First magnitude spectrogram is transformed to peaks
for peak picking. Those selected peaks are all normalized having a magnitude of 1, and
the rest having a magnitude of 0. Then, a group of instrument dependent probability
functions called Matching Probability Functions are utilized to extract notes from this
frame level peak representation. The Matching Probability Functions quantize the
probability of any notes presented in the music signal. The value ranges from 0 to 1.
The higher the value, the higher the probability of the note being present at this music
frame. During the first recursive loop, silent segments, single note fractions with a
probability higher than 99% and Slur note with a probability higher than 95% are
identified. The residual signal frames are repeatedly processed, with the identification
thresholds, including continuous fraction length threshold contLTH (initially 70ms),
and matching probability threshold matchProbTH (initially 70%), adjusted to lower
standard. contLTH will decrease to 50ms, and matchProbTH will decrease to 30%.
The whole process will not stop until all the music frames are identified, or the residual
signal is too complex to analyze. At the end, a postprocessing method is applied on
the result to remove apparent errors and connect Slur notes.

This algorithm is tested on synthesized signals, midi music, and real recordings. The
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experiment result is demonstrated as note number against time for the estimated
result. However, she does not proposed a proper evaluation method to evaluate the
accuracy, error rate of her algorithm. Also, this algorithm dealt only with solo violin,

which allowed it to assume no more than two notes could be played simultaneously.

3.2 Modified Multiple Fundamental Frequency

Estimation based on Recursive CASA

This work is using the major framework of Y. Ma|2]|’s system. In order to process
music signal with more than 2 concurrent notes and improve the system performance,
the algorithm is modified significantly from the original algorithm. Also, this paper
proposed a proper evaluation criteria to evaluate the performance of the system. The
details of the Modified Multiple Fundamental Frequency Estimation based on Recur-
sive CASA is organized as follows. In 3.2.1, we will discuss how we use Instantaneous
Fourier Decomposition to transform original music signal into magnitude spectro-
gram, a form of time-frequency representation with desired resolution. In 3.2.2, the
main modification on Note Extraction will be illustrated, and the performance before
and after the change will be demonstrated; also a proper evaluation will be proposed
to evaluate the performance of the result; finally the algorithm is tested on a group

of MIDI music signals, and evaluated using the proposed criteria.
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Figure 3.1: Block Diagram of Instantaneous Fourier Decomposition

3.2.1 Time-Frequency Analysis

The Time-Frequency Analysis is performed using Instantaneous Fourier Transform
to transform the input signal into a magnitude spectrogram. As illustrated in Figure
3.1, the discrete-time(sampling time is normalized to 1 in practise) state-space form

of IFD is as follow:

cos(w;)  sin(w;) 0
X;(T+1)= X;(T) + e(T) (3.1)
_ —sin(w;) cos{w;) J 1
() = | Ky Ky | XD 32
where
T

(3.3)
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Bode Diagram

Magnitude (dB)

Frequency (rad/sec)

Figure 3.2: Bode diagram of the theoretical IFD system, with normalized digital
frequency {1073, 7]

Corresponding to Equation 2.23, its instantaneous magnitude is as follows

M;(T) = |Ki||X;| = VK2 + K3 - /22, + 22, (3.4)

As mentioned in 2.2.4, the desired IFD system behaves like a band-pass filter with
multiple notches, with signal s as the input, and error signal e as the output. The
bode diagram of the theoretical system is illustrated in Figure 3.2. This bode dia-
gram is plotted in MATrix LABoratory(MATLAB) version 7.0.4, since the sampling
frequency is 44.1kHz, the normalized digital frequency 7 is corresponding to the
frequency 22.05kHz. We set the number of the notches to be 72, with the central
frequencies of the notches spanning from 116.54Hz(A#2) to 7.04kHz, and the cut

off frequency set as 2/3 of the frequency of the first notch(116.54 x 2/3 = 77.69H z)
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Figure 3.3: The zero-pole location of the system in z-domain

and 3/2 of the frequency of the last notch(7.04 x 3/2 = 10.56kHz). Due to poor
numeric properties of difference equations and precision limitation of MATLAB in
drawing the diagram, the notches are shallow with largest only —20dB, while they
are in reality —oo.
The poles and zeros position of the desired system is shown in Figure 3.3. All the
poles are within the unit circle, thus the system is stable. However, although the
system is stable, the poles are still close to unit circle. The radius of the furthest pole
i1s 0.9977, rendering the system responses very slow. This will be discussed in next
section.

By properly setting the parameters of the plant L and the gains Ky; and Ky; for
each IM;, the band-pass filter with multiple notches is realized by a closed-loop sys-

tem with the plant L as the control panel, and paralleled IMs as the feedback. The
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Figure 3.5: Bode diagram of IFD system from r to e

detailed designing method could be found in Appendix A of Y. Ma’s paper|2].

The system block diagram illustrated in Figure 3..4, and the bode diagram for the
actual system is shown in Figure 3.5.  The output of each IM has the form of
u; = Ky;x1; + Kojx9;, representing a replicated model of the frequency component
of the input signal. As long as the frequency range of the group of IMs covers the

spectrum of the input signal, the output of the input signal subtracting the output



33

bode diagram for Tru

T

o0 AR e sa o MM T

=g

©

=

E

c

) Do il SRR
s
= Aok TS S SN SETERE F1

4450 b i i

360 T T
—
81 13':'!_ ....................................................................
°
e
@ 0
©
ol
v
5 -1&0
E
g s Do Wl e e S
= SABO R L e e M m mieme e e e e e
Y] N T I R R I T SO SR I T ETT ORI DS OF S T AT A Y O R Y 1T AR I R
” 3 -2 - g !
10 10 10 1 10 10

Frequency (rad/s) (radisec)

Figure 3.6: Previous bode diagram of IFD of r — u

of the group of IMs should converge to zero.

This system is designed using the method in Y. Ma’s paper, and it has one obvious
drawback: it may lead to a considerable positive gain at frequencies where noise is
present. As mentioned above, the error of the system should be the output of the
input signal subtracting the sum of the feedback output. The bode diagram from the
input signal to the error is illustrated in Figure 3.6. From Figure 3.6, the gain in the
pass band has a gain at most —20d B, which means the pass band will not introduce
noise since it always has a negative gain; however, at the shoulders of the passing
band, the gain has a considerable positive gain(at most 18dB). If the signal has a
frequency component beyond the spectrum of the system, it will be present in the
error signal with about 8 times amplified. This will introduce a lot of noise in the

error signal, making it hard to analyze.
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Figure 3.7: Modified system bode diagram of r — u with Chebyshev II filter

To overcome this drawback, we modified the band-pass filter design. Instead of using
the Chebyshev type I bandpass filter, a Chebyshev type II bandpass filter was em-
ployed. The main difference of these two types is that, Chebyshev Il filter does not
roll off as fast as Chebyshev type I filter, and has no ripples in the pass band but
has ripples in the stop band. By changing Chebyshev type I filter into Chebyshev
type II filter, we want to depress the gain at the shoulders of the passing band since
Chebyshev type II filter has more slow varying shoulders with ripples. The modified
system bode diagram is illustrated in Figure 3.7. As shown in Figure 3.7, the gain
at the shoulders of the passing band is quite small(at most 5dB at high frequency)
compared with the previous one(around 18dB) in Figure 3.6. Therefore, by changing
the original Chebeyshev type I bandpass filter into Chebeyshev type II bandpass fil-

ter, the modified system has a better performance with the ability of rejecting more
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WOODWIND
Flute 250Hz — 2.5kHz
Oboe 200Hz — 1.5kHz
Clarinet | 125Hz — 2kHz

BRASS

Trumpet | 170Hz — 1kHz
STRINGS

Violin 200Hz — 3.5kHz

Viola 125Hz — 1kHz

Table 3.1: Spectrum of instruments processed in the algorithm

noises.

3.2.1.1 Experimental Result on MIDI Music

Instantaneous Fourier Decomposition is applied‘on a piece of MIDI music to demon-
strate the effect. MIDI stands for Musical Instrument Digital Interface, which is a
industrial-standard protocol for electronic music defined in 1982 [33]. The spectrum
of most woodwind, brass, and string instrument is illustrated in Table 3.2.1.1.

The system parameters are set in accordance with the characteristics of these
instruments. The whole spectrum is in range from 116.54H 2(A#?2) to 7.04kHz, a
total of 72 notes (6 octaves). Theoretically, the more the number of the notches or
notes, the wider spectrum the system can cover. For example, to cover the whole
spectrum of piano, the spectrum should span from 27.5Hz to at least 4.186kH z(the
fundamental frequency of the highest note), which covers 88 semitones, more than
7 octaves. Due to the relatively poor numerical properties of difference equations,

continuous time implementations can be used with greater IM’s at the expense of
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substantially higher computational burden.

Compared with Y. Ma’s work|2], which only deals with violin, and its spectrum has
a total of 60 notes(5 octaves), spanning from 196 Hz to 5.92kH 2, this system has a
wider spectrum range, enabling it to analyze more instruments which have a wider
spectrum, and more harmonics for some notes, especially for high frequency notes.
For example, the highest fundamental frequency of violin is 3.5kHz, Y. Ma’s work
can only include the fundamental frequency, while this system can analyze its 2nd
harmonic.

The central frequencies of each IM is set as the theoretical frequency of musical
note, thus each note has an individual IM to track the energy change on its channel.
The ratio of notch width to its central frequency is 0.1; compared with the distance
between adjacent notes 2(1 /12) — 2 = 0.0595, there will be some overlap between
adjacent notches.

We test the time frequency representation on a piece of midi music, with a length
about 8sec and played by flute. The time frequency representation is shown with

grey scale magnitude in Figure 3.8.

3.2.2 Modified Note Extraction
3.2.2.1 Simplification and Condition

In music signal processing, based on common sense and spectral smoothness prin-

ciple, it is not necessary to estimate FOs at each sampling moment. The signal is
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Figure 3.8: Time frequency representation with grey scale magnitude

normally segmented to small fractions, or frames. The signal is assumed to be sta-
tionary and treated as one entity for each fraction. The length of each fraction is set
10ms because it is believed human ears can not separate any two transients with less
distance[34]. Thus we transform the time frequency magnitude spectrogram into a
fraction-semitone band representation of the music signal.

We also assume that if we can decide which semitone band contains the fundamental
frequency component, the corresponding note is present at that fraction. Combined
with Matching Probability Function which will be discussed below, this simplification
enables us to ignore note pitch error and overcome inharmonicity in most cases.
The goal of this method is to find FO/FOs at each fraction of the signal. Silent frac-

tion in music is regarded as no FO present. To simplify the estimation, we assume
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the first 5 fractions and the last 5 fraction of the music signal are silent segments.
To guarantee all music signals we are dealing with fulfill this simplification, we add
a b0ms zero segment to the start and the end of the original music signal. In the
evaluating process, these two segments are remove to make sure the actual notes and

the estimated notes have the same length.

3.2.2.2 Algorithm Description

The system diagram of our note extraction algorithm is shown in Figure 3.9. A
group of instrument dependent probability functions, called Matching Probability
Functions, are designed to quantize the probability Iof any note/notes present in any
fraction. The functions are designed to guarantee that, for any note/notes and any
fraction, its value ranges from 0 to 1. The higher the value, the higher probability
the note/notes present at this fraction.

This algorithm is applied on the result of time-frequency analysis — the magnitude
semitone band spectrogram. The algorithm starts with Peak Picking (Section 3.2.2.3
to extract useful data from the fraction-level magnitude-semitone band representa-
tion. The initial step before the loop is to identify the silent fractions, note/notes frac-
tions with 100% matching probability. These identified fractions are marked as identi-
fied by setting a variable /textsldone in the program from —1(the default value, in the
initial, all fractions are marked as unidentified) to 1 for note/notes fractions, or from

—1 to 0 for silent fraction, while other fractions remain un-identified(done = —1). An
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iterative loop then begins to process those un-identified fractions. These un-identified
fractions are grouped into continuous 5-fraction length segments. If we have less than
5 continuous un-identified fractions, they will not be grouped into a segment, and
will be processed in the post-processing step at the end of the algorithm. If we have
continuous un-identified fractions with a length which is not the integer multiple of 5,
we will increase the length of the segment for the last un-grouped fractions. For ex-
ample, if we have 18 continuous un-identified fractions, 2 segments will be formed by
picking the first 10 un-identified fractions, and the last segment will have a length of
8 fractions to include the last 3 fractions. The initial matching probability threshold
matchProbTH is set as 70%. If no process has been made after a loop, the matching
probability threshold will be decreased gradually until they reach the lower limit of
30%. The identification process continues until all fractions are identified or the un-
identified segments are too complex to analyze. At the end, a post-processing method
is applied on the result to remove apparent errors, and to deal with those continuous

un-identified fractions with length less than 5.

3.2.2.3 Peak Picking

Peak picking helps remove possible noise from the fraction-semitone band represen-
tation and leaves only those segments with high enough energy to be noticed. Peaks
are those local maximum segments with energy above given thresholds. The rest are

deemed as zero. Two thresholds are used to determine the presence of a peak. A
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peak is deemed to present in a music fraction only if the energy at its semitone band
is higher than both thresholds.

The first threshold is call semitone band median. Generally, for any fraction, all
major harmonics(fundamental to 10th harmonics, as explained in Section3.2.2.4) of
cocurrent notes will cover only a small pa,rt of the semitone bands. For example,
in single note music segment, the major harmonics cover no more than 10 semitone
bands; in two notes music segment, the major harmonics cover no more than 20 semi-
tone bands; while the total number of semitone bands is 72. Thus, the majority of
the 72 semitone bands contain only noise, and their energy is normally lower than
those contained in major harmonics of the present notes. If we use the median of all
semitone bands magnitude at this time fraction as a threshold, it is safe to assume
the component at a semitone band with energy lower than the semitone band median
1S noise.

In Y. Ma’s paper, another threshold she proposed is global median, which is the me-
dian of the magnitude in the fraction-semitone band representation at all time. In
implementation, twice of the global median is used as the second threshold. However,
since most music signal is not energy constant signal, each note having a transient
period including a rising part when energy rise from 0 to stable state, and a falling
part when energy drops back to 0, choosing the global median is not a good choice
because it will sometimes fail to pick up those peaks with energy near 0 at transient

period.
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To overcome this drawback, this paper proposed a method to use the Moving Global
Median(MGM) as the second threshold. A moving window is sliding along the time
axis to select the time fractions, which will be used to calculated the MGM for a
certain time fraction. The window is set as 5 — fraction length, since we assume that
each note should last at least 50ms. At each time traction, the moving global median
is calculated as the median of the magnitudes of the previous 2 time fractions, the
current time fraction, and the next 2 time fractions. Since we add 5 zero segment at
the beginning and the end of the signal separately, the moving global median for the
first 5 fractions and the last 5 fractions are all 0.

The result of peak picking for a single note flute midi music is shown in Figure 3.10.
It is seen from this figure that, there are misidentified peaks around the time of 3.5s,
7.0s, 7.17s, 7.59s and 8.0s. These identified peaks do not belong to the real signal.
It is also noticed that some peaks belong to higher harmonics are lost in this process.
These kind of mistakes will be corrected in following steps.

In order to compare the performance of global median and moving global median,
two more experiments are carried out as shown in Figure 3.11 and 3.12. With all the
parameters set the same, only the second threshold is different, one set as the global
median, and the other set as the moving global median with the moving window
length set as 5. As shown in the amplified figure 3.12, the actual note starts from the
time of 2.65s to 3.44s. The result using global median as the 2nd threshold estimates

the note starting from the time of 2.68s to 3.35s, missing 12 notes, while the result
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midi note number

0

Figure 3.10: Peak pick result of flute midi music

using moving global median as the 2nd threshold estimates the note starting from
the time of 2.67s to 3.44s, missing only 1note. Generally, for fast energy changing
music signal, using moving global median as the 2nd threshold could identify about
5 more time fractions(2 — 3 at the beginning, and 2 — 3 at the end) than the one
using global median as the 2nd threshold in one single note duration. This improve-
ment is very important because in fast-pacing music, notes are usually short and
fast-changing. Missing about 50ms for each note will dramatically deteriorate the
system performance by decreasing the Recall Rate(this is the evaluation method and

will be discussed in Section 3.2.3) with so many True Negative notes.
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Figure 3.11: Note extraction result with different 2nd threshold in peak picking

harmonic | semitone number ratio
0 n 20/12 _ 1
9 n+12 212/12 — 9
3 n+19 919/12 ~ 3 00
4 n+24 924/12 — 4
5 n+28 - 928/12 . 5 04
6 n+31 9231/12 ~ 5 99
7 n+34 934/12 ~ 7,13
8 n+36 236/12 — g
9 n+38 238/12 ~ 8 98
10 n+40 240/12 ~, 10.08

Table 3.2: The relation of harmonics and notes position
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Figure 3.12: Note extraction result with different 2nd threshold in peak picking:
amplified version -
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3.2.2.4 Matching Probability Function

As explained in Section 1.1 and in Table 3.2, the first 10 major harmonics of any
ideal note either match another musical note, or are so close to a real one that they
can be considered one. And the magnitude semitone-band spectrogram gives us the
energy change on each narrow band of the 72 music notes. We will assume that, for
a certain note, the energy of the narrow band covering its harmonics is the energy of
the harmonics itself.

In Y. Ma’s paper{2], she proposed a method call ”Matching Probability Function”
to decide if certain note/notes is present in the music at a certain time, from the
energy distribution in the magnitude semitone-band spectrogram. The function is the
multiple of two independent probability functions. The first one is named ”Matching
Peak Function”. Consider the example illustrated in Figure 3.13, the circles 'o’ mark
all the peaks, which are the semitone bands with energy high enough to be put into
consideration. They are defined as set PK. The triangulares 'y’ mark all the semitone
bands corresponding to 