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Abstract 

In recent years, there is an urban architectural evolution towards significant use of glazing in 

high-rise buildings. Windows play a critical role in moderating the elements of the climate. 

Although good for outdoor viewing and daylighting, glazing has very little ability to control 

heat flow and solar heat gain. As a result, about 20 - 40% of the energy in a building is wasted 

through windows. Finding an optimal configuration of windows is a complex task due to its 

conflicting objectives, such as outdoor view, daylighting, and thermal comfort demands. 

Further buildings interact with the microclimate in a complex manner, the aerodynamics of the 

building as well as the location and shape of the window affect its energy performance 

primarily through convective heat transfer coefficient (CHTC).  Various methods have been 

proposed to calculate CHTC in literature, but with significant differences, which can cause 

errors in energy demand calculations in the order of 20 - 40%. Most CHTCs used by building 

energy simulations (BES) tools are primarily derived from the experimental and numerical 

analysis carried out on low-rise buildings with smooth façade surfaces and are not suitable for 

high-rise buildings with various intricate surface architectural details.  This thesis aims to 

develop a new simulation-based optimization framework of window configuration in a high-

rise building that meets the objective of minimizing energy consumption of heating, cooling, 

and electric lighting.  This framework integrates high resolution computational fluid dynamics 

(CFD) and heat transfer simulations, BES, and numerical optimizer. In this thesis, the effect of 

different building heights, external architectural features, and window configuration on annual 

energy consumption are investigated. A new concept of local-CHTC zoning, a CFD based 

procedure for accurate CHTC-U10 correlations evaluation, and an optimum window 

configuration procedure for high-rise buildings are presented. Overall, the research 

accomplished in this thesis provides an advancement in knowledge of accurate energy 

consumption analysis and optimization of window configuration in buildings, particularly in 

high-rise buildings using a passive strategy that can satisfy the objectives of minimum energy 

consumption and maximum comfort in a sustainable way. 
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Chapter 1  

1 Introduction 

1.1 Background 

Buildings use about 40% of global energy and emit approximately 33% of GHG emissions 

(UNEP, 2017). In Canada, buildings use 29% of the total energy, out of this, residential 

building use 58.6% and commercial and institutional buildings use 41.4% (NRCan Energy 

facts, 2015) as illustrated in Figure 1-1.  Realizing the significant amount of energy 

consumption in buildings, it is essential to investigate the accuracy of building energy 

consumption estimation and provide passive strategies to improve building energy 

efficiency in the long-term. 

 

Figure 1-1: Energy use facts of Canada 2018 -2019; a) Residential appliances b) 

commercial and institutional (NRCan, 2018) 

Building windows play a critical role in moderating the elements of the climate. Numerous 

studies have reported that design and selection of a proper window system is one of the 

most critical passive strategies for saving energy in buildings (Greenup, 2004; 

Tzempelikos, 2005; Ghisia et al., 2005; Bokel, 2007; Haglund, 2010; Ochoa, 2012; 

Straube, 2012). In recent years, there is an urban architectural evolution towards the use of 

glazing in high-rise buildings as illustrated in Figure 1- 2. Although good for outside view 

and lighting, glazing has very little ability to control heat flow and solar radiation. For 

example, the study by Straube (2012) has shown that the overall heat transfer coefficient 



2 

 

(U-factor) of windows usually is five times greater than other components of a building’s 

façade, e.g., walls, doors, roof, etc. For a building having an opaque wall, the windows 

alone could be the most significant heat flow contributors. About 20% - 40% of the energy 

consumed in a building is wasted through windows (Lee et al., 2013). Accordingly, 

improving the windows climate performance should take priority over improving the 

opaque wall thermal resistance. 

 

Figure 1-2: The façade of this condominium tower is covered with low thermal 

resistance and high solar gain curtain wall (Straube, 2012) 

Therefore, to assess the impact of window configuration on the energy efficiency of 

buildings, the first research question that should be asked is that what makes a window 

energy efficient? The energy efficiency of a window is dependent on its: thermal attributes 

such as U-factor, Solar Heat Gain Coefficient (SHGC), glazing components; daylighting 

attributes such as visible transmittance; size and location attribute such as a size of the 

window, an aspect ratio of the window, its location on a wall, building orientation, etc.; 

and other attributes such as the purpose of the room. While some of these attributes work 
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concurrently with each other, others contradict the benefit of the other. Thus, requiring an 

optimal design process under constraints. 

A literature review covering various aspect related to convective heat transfer performance 

of building façade is provided in this introductory chapter. The review includes previously 

researched CFD based CHTC analysis, the impacts of  the existing-CHTC accuracy on 

building energy performance, effects of glazing on building energy performance, and a 

general review on window to wall ratio configuration impact on thermal performance is 

provided. The research gaps, the thesis scope and organization are then outlined.  

1.2 Literature review 

1.2.1 Computational fluid dynamics and heat transfer simulation 

In buildings, a large part of the energy consumption is caused by heat transfer from the 

external surface. This heat transfer consists of two parts: radiation and convection. The 

radiation heat loss is a function of surface temperature and emissivity while the convective 

heat loss is a function various parameter such as wind speed, wind direction, topography, 

flow pattern, building geometry, building architectural elements, and the temperature 

difference between indoor and outdoor. Figure 1-3 illustrates a convective heat transfer 

from hot surface to air by convection. 

 

Figure 1-3: Convective heat transfer 
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The amount of heat transferred from a surface can be expressed using Newton’s law of 

cooling as the amount of heat transferred from a unit area to the surrounding is due to the 

temperature difference between the surface and the bulk fluid flowing over it and a 

parameter CHTC that characterizes the flow behavior. Hence, the external convective heat 

transfer is defined as in Equation 1-1: 

                               𝐶𝐻𝑇𝐶 =
𝑞𝑐

′′

(𝑇𝑠𝑢𝑟−𝑇𝑎𝑖𝑟)
                                                                Equation 1-1 

where CHTC (W/m2.K) is convective heat transfer coefficient, 𝑞𝑐 is local surface heat flux 

(W/m2), 𝑇𝑠𝑢𝑟 is surface temperature (K), and 𝑇𝑎𝑖𝑟 is the reference air temperature (K).   

The CHTC is dependent on conditions in the boundary layer. These include, but not limited 

to, nature of fluid motion, fluid thermodynamics and transportation properties, surface 

geometry, surface texture, surface orientation (windward & leeward in case of buildings), 

surface to air temperature difference (∆T), wind speed, wind direction, and topography 

(Blocken et al., 2009; Defraeye et al., 2011; Mirsadeghi et al., 2013; Montazeri et al., 2015; 

Jubayer et al., 2016).  

Since the 1930s, many methods have been proposed to calculate CHTC, but each method 

has had significant differences (Yazdanian and Klems, 1994; Palyvos, 2008; Mirsadeghi 

et al., 2013). Some of the existing methods for evaluating CHTC correlations includes 

wind-tunnel experiments (Meinders et al., 1998, 1999; Nakamura et al., 2001) and full-

scale measurements on buildings facades (Sharples, 1984; Yazdanian and Klems, 1994; 

Loveday and Taki, 1996). However, the existing-CHTC correlations have limitations in 

considering all of those parameters stated above and their interaction with the complex 

microclimate parameters. Thus, the improper use of the existing correlations can easily 

cause errors in energy demand calculations in the order of 20 – 40% (Palyvos, 2008). For 

example, EnergyPlus, one of the widely used in building energy simulation (BES) 

programs, offers a wide selection of CHTC correlations based on low-rise buildings, flat 

plate, and vertical window (Palyvos, 2008; Defraeye et al., 2011). However, limited 

information is available for high-rise buildings and buildings with complex architectural 

detail.  
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In addition to the physical experiments, the physical interaction of air flow around the 

boundary layer can be modeled using Computational Fluid Dynamics (CFD) and Heat 

transfer numerical simulation. The numerical simulation has some advantages over 

physical experiments. It allows for simulating the actual size of the building with its 

complex architectural form, and therefore, it avoids the potential scaling effects related to 

the property of fluids. Also, numerical simulation allows for generating detailed 

information about the flow and temperature field in both time and space compared with 

experiments.   

CFD is a computer-based mathematical modeling tool capable of dealing with the spatial 

and temporal distribution of velocity, temperature, and pressure by solving the conservative 

equation of the flow and energy transfer (Versteeg & Malalasekera, 2007).  It has been 

used intensively as a tool for analyzing  outdoor and indoor environment of  buildings as 

well asits interaction with the building façade (Blocken et al., 2009; Jiru et al., 2010; 

Dagnew & Bitsuamlak, 2014; Jubayer et al., 2016). Numerous studies (Franke et al., 2007; 

Zhang et al., 2008; Dalal et al., 2009; Roeleveld et al., 2010; Peetersa et al., 2011; Kim, 

2013; Younes & Shdid, 2013, Montazeri and Blocken, 2018) have investigated building 

interaction with the environment using CFD. As learned from the studies above-mentioned, 

CFD has been useful for building design and analyses where it has been applied with 

considerable success. 

A steady-state Reynolds-Average Navier-Stoke (RANS) simulation is used in numerous 

numerical studies such as Franke et al. (2007); Blocken et al. (2009); Defraeye et al. (2011); 

Karava et al. (2012); which provide a time average flow field. Large eddy simulation (LES) 

undeniably provide more accurate and more reliable information about the flow field than 

the RANS approach; however, it requires substantially greater computing resources (Peng 

& Davidson, 2001; Ampofo & Karayiannis, 2003; Dagnew & Bitsuamlak, 2014; Blocken, 

2018). In addition, in building heat transfers, most of the convective heat is transferred very 

near to the wall. Thus, to resolve the entire boundary layer, including the viscous sublayer 

and the buffer layer, which dominates the convective heat resistance, the fact that turbulent 

eddies are very small and resolving them with LES could be very computationally 

expensive.  
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Therefore, in this thesis, a RANS turbulence model will be used for  to the building energy 

simulation (BES). Since the prediction accuracy of air flow and heat transfer in CFD 

depend on the accuracy of its boundary conditions, emphasis is given to defining realistic 

microenvironment and geometrical boundary conditions. In recent years, many studies 

have used CFD to predict CHTC-U10 correlations, such as Emmel et al. (2007); Blocken et 

al. (2009); Defraeye et al. (2010); however, the existing correlations are surface-averaged 

correlations and based on a generic building geometrical configuration of a 10 m cubical. 

An exception is a study by Montazeri et al. (2015, 2017, 2018), which used a narrow floor 

plan dimension of 10 m width, 20 m depth, and various height configurations ranging from 

10 to 80 m, where a correlation of 𝐶𝐻𝑇𝐶/(𝑈10
0.84) relatively insensitive to 𝑈10 for each 

building was developed by averaging the maximum and minimum values of the case study 

buildings. Although all of the above  studies provide very useful insights on building 

convective heat transfer analysis,  none of these studies discussed  the local-CHTC 

variations, the effect of external shadings (see Figures 1-4 & 1-5) , the existing-CHTC 

correlations, and the local-CHTC distribution on building energy performance and window 

configurations.  

 

Figure 1-4: A case study on high-rise buildings model a) without shading b) 

horizontal shading c) vertical shading and d) egg-crate shading 

Therefore, these missing aspects will be investigated in this thesis by introducing a novel 

concept on analyzing of local-CHTC using zoning approach, new CHTC-U10 correlations 

for different building geometries, the impact of the existing-CHTCs on building energy 

consumption, and a framework for simulation-based optimization of window configuration 
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in a high-rise building . To perform this investigation, an integration of CFD, BES, and an 

optimizer algorithm is applied using a simplified high-rise building geometry model. 
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Figure 1-5: Model of high-rise buildings a) without-shading – smooth façade, b) 

horizontal shading, c) vertical shading, and d) egg-crate shading 

 

CFD analysis of the flow field around a bluff body with sharp edges have some limitations 

(Murakami, 1998). To mention some: difficulties related to high Reynolds number which 

requires fine grid resolution, the complex nature of the 3D flow field in the separation, 

reattachment, and vortex shading zones, and the numerical difficulties associated with flow 

at sharp corners and consequences for discretization schemes. The recent studies by 

Blocken (2015 and 2018) have indicated that RANS is by far the most often used, despite 

its deficiencies, in both research and engineering practices. However, to asses the accuracy 

and reliability of the CFD analysis, a validation through comparison with previous 

experimental work is done, and detail of the validation and verification of the CFD is 

covered as shown in Chapter 2 of this thesis. 

1.2.2 Studies on the effect of existing-CHTC correlations on 
building energy consumption 

To date, the CHTCs used by BES tools are primarily derived from experimental and 

numerical analysis carried out on a low-rise building with smooth façade surfaces (Palyvos, 

2008; Defraeye et al., 2011; Mirsadeghi et al., 2013). However, the external shading 

elements, as well as the height of the building have a significant effect on the CHTC. 

Therefore, the application of the existing CHTCs for non-smooth facades and high-rise 

buildings may not be accurate. Within the building industry, there is an increasing concern 

about a mismatch between the predicted energy performance of a building and actual 

measured performance referred to as “the performance gap” (De Wilde, 2014). For 

instance, Menezes et al. (2012) have investigated the energy performance gap between the 

predicted versus actual energy performance of non-domestic buildings using post-

occupancy evaluation data suggesting that the measured energy use can be as much as 2.5 

times the predicted use. These are attributed to shortcomings of the current modeling 

programs, poor assumptions, poor construction quality, as well as lack of monitoring 

following construction. Bridging the gap between the predicted and measured performance 
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is crucial for designers. Therefore, understanding the interaction of a building with the 

microclimate in detail is essential to evaluate the CHTC-U10 correlation and hence to model 

the energy consumption accurately. Further, the estimation of an accurate CHTC 

distribution on the surface of the façade is used in analyzing local effects on surface 

condensation, heating, cooling & moisture (HAM) transfer studies. 

1.2.3 Studies on window configuration effect on building energy 
consumption 

Previous studies of Greenup & Edmonds (2004); Tzempelikos (2005); Ghisia et al. (2005); 

Ochoa et al. (2012), Kahsay et al. (2017) have shown that design and selection of a proper 

window system is one of the essential passive strategies for saving energy in buildings. 

Thus, choosing a window system and its corresponding configuration is a fundamental 

decision in the early design stage, which is costly to be changed later. Due to this, ASHRAE 

standard 90.1 provides a guideline on the Window-to-Wall Ratio (WWR) stating that: “the 

total vertical window area shall be less than 40% of the gross wall area”. While this is 

useful, this general guideline on the WWR does not provide any explicit way to evaluate 

whether a given WWR size will give satisfactory results regarding thermal and lighting 

performance for different window configurations having the same WWR. For example, 

consider the following four window configurations as shown in Figure 1-6 that have the 

same area of 20% WWR but with different configurations that lead to different thermal 

and lighting performance. Accordingly, it is vital for the guideline to accommodate for a 

question such as which of the four window configurations (see Figure 1-6) is more energy 

efficient and thermally comfortable.  

Therefore, window configuration has to be optimized for more than one objective due to 

its influence on heating, cooling, and lighting performance. Hence, obtaining the optimum 

size of WWR and the configuration of a window for a generic room building that complies 

with the multi-objective is one of the main aims of this thesis, which is discussed in detail 

in Chapter 5 and 6 of this thesis.  
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Figure 1-6: Model window configurations with 20% WWR that represent a) 

horizontal rectangular b) vertical rectangular c) square and d) circular 

1.2.4 Studies on optimization of a window configuration 

To investigate the effect of window configuration on building energy consumption, one 

of the most straight forward methods in assessing building energy consumption is by 

changing a design parameter while the other parameters are constant (Susorova, 2013). 

As building energy simulation programs are based on a scenario-by-scenario process, this 

procedure is often extremely time-consuming and may be infeasible in action. In this 

respect, coupling a proper optimization procedure with a building energy simulation tool 

makes it possible to analyze and optimize the characteristics and performance of 

buildings in the least time (Caldas & Norford, 2002; Rapone, 2012; Nguyen, 2014; 

Delgarm et al., 2016).  

Therefore, due to the iterative nature of the procedure, simulation-based optimization tools 

will be used. Simulation-based optimization is a procedure that couples an optimization 

program to a simulation program whose function is to calculate a specific performance of 

a model. Today, simulation-based optimization has become an efficient measure to reach 

a cost-effective building design with reliable performance in a short time (Rapone, 2012; 

Nguyen, 2014). Therefore, in this thesis, a new approach of simulation-based optimization 

of window configuration in high-rise buildings by integrating CFD, BES, and an optimizer 

tool is developed.  

In this thesis, an optimization of window configuration in high-rise buildings for 

sustainable thermal and lighting performance is carried out; where a detail investigation 
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interaction of the microclimate with buildings and its effect on building energy 

performance is performed. The topic of optimization of window configuration in buildings 

is an active research areas in building physics and sustainable building design today due to 

the following reasons: 

o Research conducted on this topic is limited; there is insufficient information about 

window configurations on high-rise buildings. 

o High-rise buildings with glazed cladding or having large window-to-wall ratio are 

the most vulnerable to high heat losses and solar heat gains. 

o The existing Convective Heat Transfer Coefficient (CHTC) correlations available 

in building energy simulations (BES) programs are derived from a low-rise building 

and the use of these correlations on high-rise building energy consumption analysis 

may not be accurate. 

o The existing-CHTC correlations are based on smooth facades; it does not account 

for a building having external architectural features. 

o Local-CHTC correlations can provide accurate energy consumption information 

than averaged surface correlations particularly, for buildings with glazed claddings.  

o Window system is one of the most complex components of a building façade with 

conflicting objectives such as heating, cooling, and lighting demands and its 

architectural forms. Hence, it requires a simulation-based optimization analysis to 

optimize the configuration of the window that satisfies the objective functions. 

1.3 Research gap 

Thermal comfort and lighting performance inside a building is highly dependent on 

window configuration as the selection of optimal window configuration often involves 

many factors such as micro-climate condition, building location, orientation, height, and 

purpose of the room. However, windows are mainly configured based on their aesthetic 

value rather than their thermal comfort, due to this there is a lack of consistency with 

external convective heat transfer rate distribution on the façade of the building. 

Consequently, different studies have shown that 20% - 40% of the building’s energy 

wasted through windows (Lee et al., 2013). Although ASHRAE standard (ASHRAE 

standard 90.1-2010) provides a general guideline on the WWR percentage; building height 



12 

 

effect, airflow around a building effect, a shape of the buildings, and architectural details 

on the surface of the building are not considered in detail. Furthermore, this guideline does 

not provide any explicit way to evaluate the thermal and lighting performance of the 

window with respect to the orientation of the building. Moreover, it is also well understood 

that during window configuration conflict will arise in optimizing heating, cooling, and 

light performance simultaneously. Most often, as a small window size is preferred for 

reducing heat loss during winter and less solar heat gain during summer; in contrast a large 

window size is preferred for better views of the outside environment, solar heat gain during 

winter and daylighting. Both sizes may be preferred simultaneously by the occupants; 

however, the designer will be challenged to optimize these two sizes simultaneously 

without having any specific objective guidelines or tools.  

In addition, the effect of wind on convective heat transfer rate of the building is not 

explored in detail. Aerodynamics around a building varies with the geometry. As a result, 

the external convective heat transfer rate also varies on the surface of the building due to 

this, the value of the external CHTC is unknown and determined by the empirical 

correlation of wind speed, building height, and shape. To this effect, many methods have 

been proposed to calculate CHTC, but each method has had significant differences 

(Yazdanian and Klems, 1994; Palyvos, 2008; Mirsadeghi et al., 2013). Thus, the improper 

use of these correlations can easily cause errors in energy demand calculations in the order 

of 20% – 40% (Palyvos, 2008). To date, the CHTCs used by building energy simulations 

(BES) tools are primarily derived from experimental and numerical analysis carried out on 

a low-rise building with smooth façade surfaces (Palyvos, 2008; Defraeye et al., 2011; 

Mirsadeghi et al., 2013). However, the external shading elements, as well as the height of 

the building have a significant effect on the CHTC. Therefore, the application of the 

existing CHTCs for non-smooth facades and high-rise buildings may not be accurate. 

Numerous studies have shown that within the building industry; there is an increasing 

concern about a mismatch between the predicted energy performance of a building and 

actual measured performance, typically addressed as “the performance gap” (De Wilde, 

2014). 



13 

 

Therefore, understanding the convective heat transfer of a building in detail is essential to 

estimate the CHTC accurately, and it is currently one of the fundamental challenges in the 

analysis of building energy consumption. BES cannot configure the optimal position of a 

window. As a result, there is a lack of generalized approach to enable window 

configuration optimization with respect to energy consumption, thermal comfort, and 

lighting performance simultaneously. There is a limitation on the study of window 

configuration based on wind exposure and accurate external CHTC distribution on the 

surface of a building. There is a need to develop effective approach to  assess the impacts 

of building geometry and its architectural features on the local-CHTC distribution and use 

this info to optimize window configurations of high-rise buildings. Therefore, the primary 

objective of the thesis is to develop a new framework for simulation-based optimization of 

window configuration in high-rise building under opposing constraints of energy and 

comfort (thermal and lighting), thus, contributing to the sustainable built-environment of 

the future. The technique involves CFD to develop the wind-driven CHTC-U10 

correlations, BES to analyze building energy consumption, and a numerical optimizer to 

optimize window configuration as illustrated in Figure 1-7. The detail of this approach and 

its applications are presented in this thesis in Chapter 6. 

 

Figure 1-7: Flow chart of simulation-based window configuration optimization 
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1.4 Scope of the thesis  

The thesis aims to address the research gaps mentioned in the above section. As such the 

objectives of the thesis are: 

o To investigate the effect of building height on the external-CHTC distribution and 

develop CHTC-U10 correlations using validated numerical approaches. 

o To develop a generalized approach for evaluating CHTC distribution using a local 

CHTC-zoning approach. 

o To developing CHTC-U10 correlations for building with different forms of external 

shadings. 

o To investigate the effect of different window configurations on the convective heat 

transfer rate of a window 

o To investigate the impact of the existing-CHTC correlations on the accuracy of 

energy consumption assumptions. 

o Developing a new framework for simulation-based optimization of window 

configuration in a high-rise building under opposing constraints of energy and 

comfort (thermal and lighting) and examining these procedures on high-rise 

building. 

1.5 Organization of the thesis 

This thesis has been prepared in an “Integrated-Article” format. In Chapter 1, a review of 

studies on the existing-CHTC development and the effect of window configuration on 

building energy consumption is provided. These objectives are addressed in detail in the 

following six chapters. 

1.5.1 Numerical analysis of convective heat transfer coefficient for 
building façades 

Chapter 2 discusses first on the numerical validation of a CFD with a previous experimental 

study of a small scale as a fundamental base for this study. Then based on the validated 

computational procedure and techniques, applied to full-scale of low- and high-rise 

buildings to investigate the impact of building on averaged-CHTC distribution. In this 
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study, five buildings with heights of 10.1 m, 33.7 m, 50.6 m, 67.4 m, and 100 m, 

respectively, are used. A new local- and surface-averaged CHTC correlations are 

developed. Further, a new concept on local-CHTC zoning is introduced and the 

aerodynamics effects are discussed in detail. 

1.5.2 CFD simulation of external convective heat transfer 
coefficient on high-rise building with and without external 
shading 

In chapter 3, a comparison of local-CHTC distribution between buildings with and without 

shading elements for rooms located in different floor heights and in locations of the 

building is performed. Wind directionality and external shading effect on CHTC-U10 

distribution is investigated in detail. Thus, new CHTC-U10 correlations are developed for 

different external shading forms and depths. 

1.5.3 Effect of exterior convective heat transfer coefficient on high-
rise-building energy consumption 

Chapter 4, the impact of the existing-CHTC on energy consumption of a high-rise building 

is investigated. In this study, a high-rise building which is located in different climate 

conditions is considered as a case study. First, a new-CHTC correlation is developed that 

considered wind speed and building height using a CFD. Then the existing- and new-CHTC 

correlations are compared using the EnergyPlus building energy simulation program to 

illustrate the wind impact on the building energy consumption. 

1.5.4 Effect of window configuration on the convective heat 
transfer rate of a window with a natural convective heater 

Chapter 5, the effect of different window configuration on the convective heat transfer rate 

of a window with natural a convective heater is numerically investigated. In this study, 

initially, a CFD validation with an experimental study is carried out. Then, a downdraft 

velocity and convective heat transfer rate of a window are computed for different full-scale 

windows configurations are performed. 
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1.5.5 Optimization of window configuration on high-rise building 

Chapter 6 discusses the utilization of simulation-based optimization of optimal window 

configuration in high-rise buildings. The techniques involved in this study are CFD, BES, 

and a numerical optimizer for optimal window configuration. The optimization process 

aims to reduce both heating and cooling energy demands and maximize daylight entrance 

to the room. 
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Chapter 2  

2 Numerical analysis of convective heat transfer 
coefficient for building facades 

2.1 Introduction 

Modern architecture utilizes significant glazing in buildings. Although glazing is good for 

viewing, daylighting, and other solar design features, it poorly controls heat flow. 

Quantifying the heat exchange between the building surface and the external environment 

requires a detailed understanding of the external convective heat transfer coefficient 

(CHTC) distribution. The convective heat transfer is governed by Newton’s law of cooling 

as shown Equation 2-1: 

                                                𝑞𝑠
′′ = ℎ(𝑇𝑠 − 𝑇𝑟𝑒𝑓)                                            Equation 2-1 

where 𝑞𝑠
′′ is the local surface heat flux (W/m2), ℎ is the local convective heat transfer 

coefficient (W/m2 K), 𝑇𝑠 is the surface temperature (K), and 𝑇𝑟𝑒𝑓 is a characteristic 

temperature of the fluid moving over the surface (K). However, this linear relationship is 

only an approximation. The flow condition can vary from one point to another on the 

surface and both 𝑞𝑠
′′ and ℎ can vary as a function of time. CHTC cannot be defined without 

defining a  𝑇𝑟𝑒𝑓. Therefore, there are an infinite number of CHTC and 𝑇𝑟𝑒𝑓 combinations 

that give rise to the same surface heat flux.   

Accurate CHTCs evaluations are particularly important for the thermal analysis of critical 

building enclosure components such as glazed curtain walls, fenestration configuration, 

and double-skin facades. Previous studies (Palyvos, 2008; Defraeye et al., 2011; 

Mirsadeghi et al., 2013, Kahsay et al., 2017) on the exterior surface CHTC computation 

indicated that their inappropriate use can result in 20% - 40% errors in the building energy 

consumption. Numerous studies have also shown that CHTC on building facades is 

dependent on the simultaneous interactions of the wide range of parameters. These include, 

but not limited to, building geometry, surface slope angle, surface texture, surface 

orientation (windward & leeward), surface to air temperature difference (∆T), wind speed, 
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wind direction, sheltering by nearby buildings, and topography (Blocken et al., 2009; 

Defraeye et al., 2011; Mirsadeghi et al., 2013; Montazeri, et al., 2015).  

Table 2-1: CHTC-U10 correlations derived from wind-tunnel experiments on bluff 

body for windward façade for flow approaching at 0° incident angle 

 

Authors name 

 

Approach flow 

Reference 

speed 

Reynolds 

number range 

 

Correlations 

Meinders et al. 

(1999) 

Developing 

turbulent channel 

flow 

Bulk velocity 2.7x103 -4.9x103 Nu = aRe0.65 

Nakamura et al. 

(2001) 

Turbulent, BL 

thickness 1.5 -1.83 

of cube height 

Free stream 

velocity 

4.2x103- 33x103 Nu = 0.71Re0.52 

Chyu and 

Natarajan 

(1991) 

Turbulent BL 

thickness of + ¼ 

height of the cube 

Free stream 

velocity 

3.1x104 -11x104 Sh=0.868Re0.53 

 

Wang and 

Chiou (2006) 

 

Fully-developed 

channel flow 

 

Maximum 

velocity at the 

inlet 

 

8.0x102 -5.0x103 

 

Sh=0.961Re0.52 

Sh: Sherwood number, a: correlation coefficient for wind speed and direction, the CHTC 
can be derived from heat transfer and mass transfer analog 

Existing methods for evaluating CHTC correlations include wind-tunnel experiments 

(Meinders et al., 1998, 1999; Nakamura et al., 2001), full-scale measurements on buildings 

facades (Sharples, 1984; Yazdanian and Klems, 1994; Loveday and Taki, 1996), and 

numerical simulations (Emmel et al., 2007; Blocken et al., 2009; Defraeye et al., 2010; 

Karava et al., 2012; Liu et al., 2013; Montazeri et al., 2015).  

In the wind tunnel studies, wide range of flow parameters have been used. Table 2-1 

summarizes relevant correlation parameters related to windward, vertical, and smooth 

surfaces used in these studies. More comprehensive review of these correlations can be 

found in studies by Palyvos (2008) and Mirsadeghi et al. (2013). Most of these experiments 
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were not performed in the context of building aerodynamics immersed in the atmospheric 

boundary layer. They were rather carried out for thin turbulent boundary layers compared 

to the body height and at relatively low Reynolds numbers (e.g. Re = 102-104). Therefore, 

these flow characteristics may not directly represent the atmospheric boundary layer flow 

around buildings (Defraeye et al., 2010). In reality, the flow structure around buildings is 

more complex (Holmes, 2015). In addition, the existing wind-tunnel studies do not 

consider the variations of the CHTC correlation over the surface.  

Full-scale experiments in literature are summarized in Tabel 2-2. In these full-scale 

experiments, CHTC were correlated to wind speed at different reference locations. Linear 

and power-law correlations were developed shown in Table 2-2 for relevant full-scale 

experiments. The reported results are not holistic as the spatial resolution, building 

geometry configurations, control on boundary conditions, and the experimental setups are 

usually case-specific (Mirsadeghi et al., 2013). However, they are very valuable for 

benchmarking numerical and model-scale experiments, as these full-scale experiments 

provide realistic CHTC data for exterior building surfaces. 

On the numerical side, Computational Fluid Dynamics (CFD) and heat transfer-based 

simulations to predict CHTC-U10 correlations have been used, as summarized in Table 2-

3. These studies consider the influence of wind speed (Emmel et al., 2007; Blocken et al., 

2009; Defraeye et al., 2010; Karava et al., 2012; Liu et al., 2013), wind direction (Blocken 

et al., 2009) and building geometry (Montazeri et al., 2015). The existing correlations, 

summarized in Table 2-3, are developed primarily for a generic geometrical configuration, 

for example, a 10 m cube. An exception is the study by Montazeri et al. (2015), which used 

a narrow floor plan dimension of 10 m width, 20 m depth, and various height configurations 

ranging from 10 to 80 m. However, it is reasonable to conclude that the existing 

correlations do not account for variations in building surrounding, building type, building 

geometry, and topography (Mirsadeghi et al. 2013). 



24 

 

Table 2-2: CHTC-U correlation derived from full-scale measurements on building 

facade for windward for flow approaching at 0° incident angle. 

 

 

Author name 

 

Building 

geometry 

 

Wind speed 

Range (m/s) 

Wind speed 

measurement 

location 

 

 

Correlation 

ASHRAE task 

group (1975) 

(incorporating 

results of Ito et 

al., 1972) 

Open L-shaped 

building, 18 m 

high 

0.5 - 3.5 0.3 m from 

the facade 

ℎ𝑐 = 18.6𝑈𝑠
0.605 

𝑈𝑠 = 0.25𝑈10 

    For 𝑈10 > 2 𝑚/𝑠 

Sharples (1989) Center of the 18th 

floor (20 x 36 x 

78) m 

0.5 - 20 1 m from the 

facade 

ℎ𝑐 = 1.4𝑈10 + 6.5 

MoWiTTa 

(Yazdanian and 

Klems, 1994) 

Low rise building 0 - 12 U10 

ℎ𝑐 = √
(0.84∆𝑇

1
3)

2

+

(2.38𝑈10
0.89)2

 

Loveday and 

Taki (1996) 

L-shape building 

(21 x 9 x28) m 

0.5 - 9 1 m from the 

facade 

ℎ𝑐 = 16.15𝑈𝑠
0.397 

Liu and Harris 

(2007) 

Low rise building 

(8.5 x 8.5 x 5.6) m 

U10 0-16 ℎ𝑐 = 1.53𝑈10 + 1.43 

Zhang et al. 

(2004) 

Low rise building 

(3 x 3 x 3) m 

0.5 m from 

facade 

0- 0.35 ℎ𝑐 = 6.31𝑈𝑙𝑜𝑐 + 3.32 

Us: local wind speed near the façade, a MoWiTT (Mobile Window Thermal Test) 

In the present study, the influence of building geometry on the CHTC-U10 correlations is 

examined. Full-scale, 3D steady RANS simulations are carried out to evaluate surface-

averaged CHTCs. Five different building heights, 10.1 m, 33.7 m, 50.6 m, 67.4 m, and 

101.1 m respectively with a rectangular floor plan dimension of 30 m x 42 m have been 
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investigated. Furthermore, for the 101.1 m high building, a spatial distribution of CHTC 

over the entire windward façade is investigated by dividing the building height into ten 

cubical floor zones, which highlights the necessity of zonal treatments of CHTC for tall 

buildings. The current studies are carried for five different wind directions, namely 0°, 

22.5°, 45°, 67.5°, and 90° wind angles of attacks, respectively. 

Table 2-3: CHTC-U correlations derived from CFD simulation on bluff body for 

windward facade for flow approaching at 0° incident angle 

 

 

Author name 

Building 

Geometry 

H x W x D (m) 

 

Near wall region 

modeling 

 

𝑼𝟏𝟎 range 

(m/s) 

CHTC-𝑼𝟏𝟎 

correlation for 

windward 

Emmel et al. 

(2007) 

2.7 x 6 x 8  Wall function 1.0 -15.0 ℎ𝑐 = 5.15𝑈10
0.81 

Blocken et al. 

(2009) 

10 x 10 x 10 Low-Reynolds 

Number 

Modeling 

1.0 - 4.0 ℎ𝑐 = 4.60𝑈10
0.89 

Defraeye et al. 

(2009) 

10 x 10 x 10 Low-Reynolds 

Number 

Modeling 

0.5 – 5.0 ℎ𝑐 = 5.01𝑈10
0.85 

Defraeye et al. 

(2010) 

10 x 10 x 10 Low-Reynolds 

Number 

Modeling 

0.15 - 7.5 ℎ𝑐 = 5.15𝑈10
0.82 

Montazeri et al. 

(2015) 

H = 10 - 80  

W = 10  

D = 20 

Low-Reynolds 

Number 

Modeling 

1.0 - 5.0 ℎ𝑐 = 𝑎𝑈10
0.84     

a: correlations coefficients for windward 

This chapter is organized as follows: In section 1 (this section), an introduction to the 

previous CHTC correlations development studies is presented. Section 2 describes the CFD 

validation process of surface temperatures prediction in comparison with an experimental 
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study from literature. Section 3 describes the new CFD based evaluation of CHTC for low- 

and high-rise buildings and finally, and Section 4 concludes the chapter. 

2.2 CFD validation 

2.2.1 Experimental data description  

Experimental data by Meinders et al. (1999) for a cube placed in a turbulent channel flow 

is used to validate the present numerical model (see Figure 2-1). The salient features of the 

experiment are provided in Figure 2-4. The physical properties used in the simulations are 

presented in Table 2-4. Details of experimental set-up can be found Meinders et al. (1999). 

It is to be noted that ideally the validation data would have been a boundary layer flow, 

however the current choice is due to the lack of available high-resolution boundary layer 

wind-tunnel CHTC data at high Reynolds numbers for building applications.   

 

Figure 2-1: Experimental setup of Meinders et al. (1999): (a) general setup (b) detail 

of the heated cube. All dimensions are in mm (figure not to scale) 

Table 2-4: Physical property of Air and Epoxy 

Physical Properties Air Epoxy 

Density (kg/m3) 1.225 1191 

Specific heat capacity (J/KgK) 1006.4 1650 

Thermal conductivity (W/mK) 0.0242 0.237 

Dynamic viscosity (Kg/ms) 1.7894 x 10-5 - 
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2.2.2 Numerical model for validation 

A computational domain (CD) that mimics the experimental setup is employed based on 

the recommendation of Franke et al. (2007); Tominaga et al. (2008); Dagnew and 

Bitsuamlak (2013). However, it deviates from these recommendations for height of the CD 

adopted, which is set as 3.3H to replicate the experimental channel (see Figure 2-2) where 

H represent the height of the cube. Other dimensions of the CD follow the 

recommendations, where an upstream length of 5H and a downstream length of 15H and 

side distance of 5H from the cube are adopted. Two simulations are conducted; the first 

one consists of an empty CD later used to produce inflow condition to the main CD. The 

second one is the main CD that consists of the study cube.  

 

Figure 2-2: Empty CD for velocity and turbulence intensity extraction at the inlet 

and incident planes 
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Figure 2-3: a) Vertical inlet velocity mean wind profile, b) vertical profile of 

turbulent kinetic energy k for measured (inlet) and modeled (incident) 

For the empty domain simulation with smooth ground surface, inflow and turbulence 

intensity profiles at inlet are extracted from Meinders et al. (1999) experimental data at 

Reynolds number of 4440. Similarly, the velocity and turbulence intensity profiles have 

been extracted and stored for later use as inlet boundary conditions by the main CD (see 

Figure 2-3). These profiles fit into a log-law with aerodynamic roughness length z0 = 6.6 × 

10-6 m and a friction velocity u* = 0.25 m/s. A uniform temperature of 348 K was specified 

in the copper core of the cube. Using conjugative heat transfer, an interface between solid 

and fluid has been applied. The exterior cube surfaces are specified as no-slip boundaries 

with zero roughness. For the ground boundary of the domain, no-slip boundary conditions 

and adiabatic surface are assumed. Zero static pressure at the outlet and symmetry 

boundary conditions at the top and sides of the CD are specified. In addition, the bulk 

velocity, Ubulk = 4.47 m/s, and uniform temperature, T = 283 K are specified at the domain 

inlet. The simulations are conducted using a commercial CFD package (STAR-CCM+ 

v.10.12, 2015) and the SHARCNET (www.sharcnet.ca, 2015) high-performance 

computing (HPC) facility at Western University. 

The local CHTC at each node (CHTCnode) is calculated using the standard wall function as 

shown in Equation 2-2: 
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                                          𝐶𝐻𝑇𝐶𝑛𝑜𝑑𝑒 =
𝜌(𝑦𝑝)𝐶𝑝(𝑦𝑝)𝑢∗

𝑇+(𝑦+(𝑦𝑝))
                                      Equation 2-2 

where 𝜌 is the fluid density, 𝐶𝑝 is the fluid-specific heat capacity, 𝑢∗ is a velocity scale that 

is based on the wall shear stress, 𝑇+ = (𝑇𝑠 − 𝑇𝑝) (𝑇𝑠 − 𝑇𝑟𝑒𝑓)⁄  is the dimensionless 

temperature, 𝑦+ =  𝑢∗𝑦𝑝 𝑣⁄   is a dimensionless wall distance, 𝑦𝑝 and 𝑇𝑝 are the normal 

distance and temperature of the near-wall cell, respectively, and 𝑣 is the kinematic 

viscosity.  

The standard wall functions are a set of semi-empirical functions that are used to satisfy 

the flow physics in the near-wall region where the relationships for 𝑇+  and  𝑢∗  is given in 

terms of the laminar and turbulent Prandtl numbers, the dimensionless near-wall flow 

velocity, and the turbulent kinetic energy. However, in this chapter, all internal convective 

heat transfer coefficient (CHTC) values are determined based on the upstream 𝑇𝑟𝑒𝑓, which 

is unaffected by the presence of the building. . Therefore, to perform post-processing for 

the target surface building using user defined  𝑇𝑟𝑒𝑓, Equation 2-3 will be used. 

                             𝐶𝐻𝑇𝐶𝑢𝑠𝑒𝑟 = 𝐶𝐻𝑇𝐶
(𝑇𝑠−𝑇𝑝)

(𝑇𝑠−𝑇𝑟𝑒𝑓)
                                             Equation 2-3 

where CHTC is defined based on the approach-flow temperature 𝑇𝑟𝑒𝑓, and 𝐶𝐻𝑇𝐶𝑛𝑜𝑑𝑒, 𝑇𝑝, 

and 𝑇𝑠 is determined from the CFD simulation near the wall.  

2.2.3 Comparison of CFD with experimental results 

For validation, computationally evaluated surface temperature along a mid-plane vertical 

centerline and a mid-height horizontal line is compared with experimental results (see 

Figure 2-4). The temperature distribution on the surface of the cube is analyzed by 

resolving the entire boundary layer, including the viscous sublayer and the buffer layer, 

which dominate the convective heat resistance. In this simulation, a minimum grid distance 

of 130 𝜇m from the cube surface has been employed to achieve the required y+ to capture 

important details of the temperature gradients and flow structures near the walls. The 

comparison of the simulated temperature distribution value at the windward surface of the 

leading cube with the experimental data is shown in Figure 2-4. Both two-equation models 
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i.e. SST k-ω model and Realizable k-ε model combined with the one-equation Wolfshtein 

model perform well at the windward surface. The average difference between experimental 

data and results obtained with the SST k-ω turbulence model in the windward is 

approximately on average less than 3% deviation, whereas the Realizable k-ε model with 

an average deviation of up to 5% is found.  

 

 

Figure 2-4: Comparison of experimental measured and simulated temperature 

distribution on the surfaces of the cube in a vertical (a) and horizontal (b) center 

plane 

The worst agreement with the experimental data shows an overestimation for local 

temperatures of more than 10% at the top and lateral surface of the cube. This discrepancy 
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could be attributed to the inaccurate predictions of flow field in the separation and 

reattachment zones of the top and sidewalls resulting in larger temperature values 

predictions. This has also been pointed out by Blocken et al. (2009) and Defraeye et al. 

(2010). For the leeward surface, the distribution of the predicted surface temperatures by 

the SST k-ω model agrees on average about 5% deviation with the experimental results, 

especially for the mid plane, whereas the realizable k-ε models overestimated by more than 

15%. Therefore, the SST k-ω turbulence model will be used in the full-scale computational 

study. 

2.3 CFD based evaluation of CHTC for low- and high-  rise 
buildings 

2.3.1 Computational domain 

The size of the 3-D computational domain, defined with respect to H (i.e. height of study 

building), is the same as the validation study as mentioned above except the height of the 

domain is 5H based on Franke et al. (2007) and Dagnew and Bitsuamlak (2014) guidelines 

(see Figure 2-5). A blockage ratio of 1.8% is obtained, which is sufficiently low (Franke et 

al., 2007). The distance between the inflow boundary and the building is 5H, with the 

outflow boundary at 15H downstream of the building to allow for wake flow 

redevelopment. Lateral boundaries are set at 5H from the building surfaces. In all cases, 

the inflow direction is normal to the vertical façade. 

2.3.2 Boundary conditions 

Five different wind speeds U10 = 1, 2, 3, 4, and 5 m/s, respectively, are simulated at the 

reference height of 10 m. Accordingly, the Reynolds numbers range from 0.7x106 to 28x106 

based on the building heights (H). At the inlet of the CD, an atmospheric boundary layer 

(ABL) is imposed (see Figure 2-7). This boundary layer can be described by the 

logarithmic law, which constitutes a vertical profile of the mean horizontal wind speed, 

turbulent kinetic energy K (m2/s2) and turbulence dissipation rate ε (m2/s3) (Richards and 

Hoxey, 1993) as shown in Equations 2-4 – 2-6. These profiles represent a neutral ABL, 

where the turbulence originates only from friction and shear: 
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                                     𝑢(𝑧) =
𝑢∗

𝑘
𝑙𝑛 (

𝑧+𝑧0

𝑧0
)                                                      Equation 2-4 

                                        K = 3.3𝑢∗
2                                                                  Equation 2-5 

                                          𝜀 =
𝑢∗

3

𝑘(𝑧+𝑧0)
                                                               Equation 2-6 

where 𝑢∗  is friction velocity (m/s), 𝑧0 is the aerodynamic roughness length which is 

assumed that the buildings are situated on a large grass-covered terrain z0 = 0.03 m (ESDU, 

2001), k is the von Karman constant (~0.42). The thermal boundary conditions are a 

uniform inlet air temperature of Tref = 283 K and a fixed surface temperature of Tw = 303 

K for the building. An adiabatic boundary condition is used for the ground surface. 

Symmetry boundary conditions are applied at the top and lateral sides of the domain. The 

ground surface is modeled as a no-slip wall with zero roughness height ks = 0 because in 

Low Reynolds Number Modeling (LRNM) surface roughness values cannot be specified 

(Blocken et al., 2009; Defraeye et al., 2010; Karava et al., 2012). Zero static pressure is 

applied at the outlet plane.  

2.3.3 Grid dependency analysis 

In this case, a generic low-rise with height H of 10 m cube has been used to accurately 

adopt the LRNM turbulence closure and grid resolutions at full-scale. The CD is discretized 

using polyhedral control volumes with a refined grid near the building exterior surfaces 

(Figures 2-5 and 2-6). Two levels of grid density with G1 (1.166x106 cells) and G2 

(1.517x106 cells) are used to assess grid independency and ensure optimum mesh size. 

Properties of the two grids are summarized in Table 2-5, and different grid zones are used 

as illustrated in Figure 2-5. CV3 is located close to the building and its surroundings where 

fine grids are deployed to achieve small y+ to capture vital details of the temperature 

gradients near the wall and the flow structures. A refinement ratio of 1.5 has been used in 

each dimension. Whereas, CV1 and CV2 are away from the building. 
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Table 2-5: Grid distributions 

 

 

 

 

 

Figure 2-5: a) Perspective view of different control volume distributions, b) detail 

view of grid distributions 

 

Figure 2-6: Comparison between grid G1 and G2 

 Control volumes G1 G2 

Control volume 1 (CV1) H/10 H/10 

Control Volume 2 (CV2) H/15 H/20 

Control Volume 3 (CV3) H/20 H/25 

Total grids 1,066, 000 1,517,000 
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A viscous boundary layer with 10 prism layers is generated on the surfaces of the cubical 

model thus producing the required y+ values. A stretching factor of 1.05 is used to resolve 

the boundary layer at all solid-fluid interfaces of CV3. LRNM using the Realizable k-ε (R 

k-ε) and the Shear Stress Transport k-ω (SST k-ω) turbulence models has been used in the 

present work. The LRNM requires very high grid resolution near the wall. The simulation 

has employed grid with cell centers at a minimum distance of 130 𝜇m from the cube surface 

to resolve the entire boundary layer, including the viscous sublayer and the buffer layer, 

which dominate the convective heat resistance. The simulated CHTC result does not 

change significantly between the two grids. Therefore, the grid distribution of G2 has been 

adopted in the present studies of five isolated buildings. A total of 2.1 x106, 2.4 x106, 2.64 

x106, 3.37 x106, and 4.83 x106 grid cells are deployed, for (i.e. 3, the 10, 15, 20, and 30 

story building, respectively.  

 

Figure 2-7: Comparison of simulated inlet and incident mean wind and specific 

turbulence dissipation rate (ω) profiles for U10 = 3 m/s case 

2.3.4 Surface-average CHTC distributions 

Bluff bodies are characterized with flow separation at the leading-edge corners. The 

separated flows at the edges forms vortices. The geometry of a building plays a crucial role 

in the flow structure and hence the CHTC distribution. Figures 2-8 and 2-9 illustrate that, 

as the stagnation pressure forces the impinging wind flow towards the top, bottom and side 

corners of the building. Near wall velocity increases around the leading-edge corners, 
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which leads to higher surface friction velocity. As a result, higher values of CHTC are 

observed at the leading top and side corners of the building (see Figures 2-10. a - e). 

However, around the stagnation position and closer to the base of the buildings, lower 

values of CHTC are observed. Further, the standing and horseshoe vortices around the base 

of the buildings, which increases the residence time of the air, leads to a higher local air 

temperature resulting in lower values of CHTC.   

 

Figure 2-8: Wind velocity contours for the 10.1 m tall building (Ref. speed = 3 m/s at 

the inlet) 

 

Figure 2-9: Wind velocity contour for 101.1 m tall building (ref. speed = 3m/s at the 

inlet) 
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Figure 2-10: Windward CHTC distribution (for Ref. wind speed of 3 m/s at the inlet 

of building height) for building with a) 10.1 m, b) 33.7 m, c) 50.6 m, d) 67.4 m and e) 

101.1 m heights 

2.3.5 CHTC distribution on 10 m cubical building 

The steady RANS is not capable of modeling the inherently transient nature of separation 

and circulation that occur downstream of the windward façade and of von Karman vortex 

shedding in the wake (Blocken et al., 2009). Therefore, calculating results in the 

downstream regions are generally deficient (Tominaga et al., 2008; Blocken et al., 2009). 

However, steady RANS with SST k-ω has a capability for the calculation of the mean wind 
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speed upstream of the building façade and for the calculation of the CHTC for the 

windward face of the cube used in the validation. For this reason the CHTC analysis in in 

the present study focuses on windward façade of the buildings.  The present study utilizes 

power-law relationship to represent forced convective heat transfer. A similar approach is 

considered by previous studies (Emmel et al., 2007; Blocken et al., 2009; Defraeye et al., 

2010; Montazeri et al., 2015). A correlation between the CHTC and U10 averaged over the 

windward façade for a wind speed of 1-5 m/s is derived with high coefficients of 

determination (R2). Close correlations are observed with the average deviation less than 

5% is (see Figure 2-11) when compared with previous studies (Blocken et al. 2009; 

Defraeye et al. 2009; Defraeye et al. 2010). However, the study of Montazeri et al. (2015) 

deviates by 10%.  

 

Figure 2-11: Comparison of surface-average CHTC-U10 correlation for windward 

façade of a 10 m cubical building 
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2.3.6 CHTC-U10 correlation 

For each of the building configurations where H ranges from 10.1 m to 101.1 m and the 

reference wind speed 1 – 5 m/s, a power-law correlation for the surface-average of CHTC 

is derived with high coefficients of determination (R2) as shown in Table 2-6 and illustrated 

as in Figure 2-12. The local and surface-averaged CHTC at the surfaces of each building 

is highly dependent on the immediate flow structure. The coefficient of the correlation 

shows that as the building height increases, the surface-average CHTC increases.  

Table 2-6: Surface-average CHTC correlations 

Building height 

(H x W x D) m 

Reference wind 

speed range (m/s) 

CHTCavg-𝑼𝟏𝟎 correlation for 

windward (W/m2K) 

 

R2 (-) 

10.1 x 30 x 42 1 – 5 𝐶𝐻𝑇𝐶𝑎𝑣𝑔 = 3.142 𝑈10
0.84 0.9978 

33.7 x 30 x 42 1 – 5 𝐶𝐻𝑇𝐶𝑎𝑣𝑔 = 3.95𝑈10
0.83 0.9997 

50.6 x 30 x 42 1 – 5 𝐶𝐻𝑇𝐶𝑎𝑣𝑔 = 4.005𝑈10
0.89 0.9994 

67.4 x 30 x 42 1 – 5 𝐶𝐻𝑇𝐶𝑎𝑣𝑔 = 4.11𝑈10
0.94 0.9985 

101.1 x 30 x 42 1 – 5 𝐶𝐻𝑇𝐶𝑎𝑣𝑔 = 4.385𝑈10
0.96 0.9999 

 

Figure 2-12: Surface-average CHTC correlation as a function of U10 
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2.3.7 CHTC and building height correlation  

To assess the surface–average CHTC variations with respect to the building height for a 

reference wind speed of 1-5 m/s, a correlation is derived with high coefficients of 

determination (R2) as shown in Equation 2-7.  

                                        𝐶𝐻𝑇𝐶𝑎𝑣𝑔 = 4.67𝐻0.21                                              Equation 2-7 

Thus, as H increases from 10.1 m to 101.1 m, the surface-average CHTC also increases by 

about 55% (see Figure 2-13). 

 

Figure 2-13: Surface- average CHTC as a function of building height for U10
 = 1-5 

m/s 

 

 



40 

 

 

Figure 2-14: Plot of surface-average CHTC as a function of wind speed U10 and 

height (H) 

Moreover, a new CHTC correlation as a function of reference wind speed (U10) and 

building height (H) (see Figure 2-14) is developed as shown in Equation 2-8, where the 

coefficients are with 95% of confidence bound. 

                                      𝐶𝐻𝑇𝐶𝑎𝑣𝑔 = 0.62𝑈10
1.81 + 𝐻0.45                                   Equation 2-8                    

2.3.8  Effect of wind direction on spatial distribution of CHTC 

Spatial distribution of CHTC is calculated for the wind speed of U10 =1-5 m/s and for wind 

directions of 𝜃= 0°, 22.5°, 45°, 67.5° and 90° at high-resolution. Note that 𝜃= 0° represent 

wind direction perpendicular to the façade.  
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Figure 2-15: CHTC distribution on the windward façade for wind direction of : a) 

0°, b) 22.5° c) 45°, d) 67.5°, and e) 90° for U10 of 3 m/s 

CHTC value increases from bottom to top-corners zones in all cases as shown in Figure 2-

15.  This is due to the increase on the surface wind velocity from the stagnation point 

towards the edges and along the height of the building. The average-CHTC was similar for 

all wind directions except for the wind direction of 90° (see Figure 2-16) for the simulated 

wind speed ranges (i.e. 1-5 m/s). For the 90° wind direction, the façade under consideration 

is inside the separated flow that increases the residence time of the air, which can lead to a 

higher local air temperature and lower values of CHTC. For highly insulated wall systems 

average values may be good, however, for facades having low thermal resistance 

components such as windows or facades with curtain wall, local CHTC have an impact on 
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the energy performance of the building attesting the need for wind directionality 

considerations.   

 

 

Figure 2-16: Average-CHTC distribution across windward façade for wind speed of 

U10 (1 – 5 m/s) 
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Figure 2-17: Zoning: A 101.1 m high-rise building divided into different thermal 

zones (10 m cube) 

2.3.9 CHTC distribution effect on window and curtain walls  

To analyze the CHTC distribution effect on window configurations and building energy 

consumption, a high-resolution spatial distribution of CHTC across the entire windward 

façade of the 101.1 m height building is considered. The façade is divided into ten vertical 

thermal zones, where one thermal zone is 10 m cube. In this study, for comparison purpose, 

rooms are categorized as center-zone where all rooms located in the mid-floors whereas 

rooms around the edges are considered as a corner- zones (see Figure 2-17). 
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Figure 2-18: Average-CHTC distribution on different zones of 101.1 m height 

building for windward speed of U10 = 1 – 5 m/s, and wind direction of 00 

2.3.10 CHTC- zoning 

In building energy simulation, regardless of the window position, modelers use a single 

average-CHTC value to perform energy consumption analysis. The windward façade 

average-CHTC value is 12.08 W/m2K for a wind speed of U10 1-5 m/s. However, the top-

corner zone (zone-10) of the building is 24% higher whereas at the base-center zone (zone-

1) of the building it is lower by 27% decrement is observed. The local- CHTC distribution 

varies spatially across the entire façade of the building.  The overall energy consumption 

analysis of a building, particularly curtain walls, where the least thermal resistance has, 

shall be analyzed consistent with this CHTC variation, to conserve the energy consumption 

of a building. Therefore, consideration of spatially varying CHTC for tall building energy 

analysis may be necessary. A previous study by Straube, J. (2012) reported that the overall 

heat transfer coefficient (U-factor) of highly insulated windows is normally five times 

greater than other components of a building’s envelope e.g., wall, door, roof etc. Therefore, 

selection of optimal window configuration of a building consistent with the local CHTC 
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distribution is one of the most important passive strategies, for saving energy. Thus, an 

architect’s decision to position windows and to select a glazing type for high-rise building 

facades plays a key role in energy saving of the buildings. This is particularly for high-rise 

buildings that have curtain wall or large window-to-wall ratio.  

2.4 Conclusion 

Five different building configurations were investigated using high-resolution 3D steady 

RANS simulations for the analysis of convective heat transfer at the façade of a building. 

Surface-average CHTC – U10 correlations were determined. Firstly, validation of the 

numerical model with an experimental study conducted by Meinders et al. (1999) was 

carried out. This comparative validation also showed that the Shear Stress Transport k-ω 

(SST k-ω) provide more accurate results for convective heat transfer at the windward 

surface of reduced-scale cubic models. Based on the validated computational procedures 

and techniques, the surface-average CHTC-U10 correlations were computed for full-scale 

low- and high-rise buildings. The local and surface-averaged CHTC values at the surfaces 

of each building were observed to be highly dependent on the local flow structure. For 

example, the CHTC value increases as building height increases, and consistent with the 

increase of wind speed with height in the atmospheric boundary layer. In addition, CHTC 

distribution increases as the surface friction velocity increases. For the considered building 

plan dimensions and U10 (1-5 m/s), the surface-average CHTC increases by about 55% as 

H increases from 10.1 m to 101.1 m. For the top-corner zone (zone-10) of the building, the 

CHTC values were higher by 24% compared to the surface average CHTC and average 

CHTC values that were 27% lower compared to the surface average were observed at the 

base-center zone (Zone-1) of the building. This implies the necessity of zonal treatment of 

CHTC to enhance tall building energy simulation accuracy.   
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Chapter 3  

3 CFD simulation of external CHTC on high-rise building 
façade with and without external shadings 

3.1 Introduction 

Improving the building’s energy efficiency and reducing energy demand are widely 

believed as the likely means to mitigate climate changes. There have been several studies 

reporting that building envelope plays a curial role in moderating the elements of the 

climate (Hien & Istiadji, 2003; Lee & Tavil, 2007; Tzempelikos & Athienitis, 2007; 

Simmler & Binder, 2008; Kirimtat et al., 2016).  To this effect, designers usually prescribe 

high R-value walls and windows etc. Glazed areas provide natural light and external views 

but represent the weakest thermal performance creating high heating and cooling loads. 

The requirements to minimize energy consumption is partially satisfied by integrating 

architectural shading features such as balconies, mullions, and egg-crates on their façade 

systems particularily to reduce the cooling load during summer. There are many studies in 

literature that focussed on shading devices energy performance assessment in buildings by 

using simulation programs (Awadh, 2013; Bueno et al., 2015; Stazi et al., 2014; Bellia et 

al., 2013; Kirimtat et al., 2016). Further, external shadings modify the flow regime near the 

surface, which in turn affect the convective heat transfer and air infiltration process 

significantly.  Building have very diverse architectural design details (as illustrated in 

Figure 3-1 for city of Toronto with complex and varied facade system) that can lead to 

complex interaction of the building facade with the environment. It is expected that each 

architectural form (aerodynamics) interact with the environment differently than the other. 

Therefore, careful treatment of external convective heat transfer is necessary.   

In a building, a large part of the energy consumption is caused by heat transfer from the 

external surfaces, which consists of radiation and convection. The radiation heat loss is a 

function of surface temperature and emissivity while the convection heat loss is a function 

of various parameters such as wind speed, wind direction, topography, flow pattern, 

building form and other architectural detials (i.e. aerodynamics), and the temperature 

difference between indoor and outdoor (Blocken et al., 2009; Bergman and Incropera, 
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2011; Kahsay et al., 2018). Thus, the external convective heat transfer is modeled using 

Newton’s law of cooling as in Equation 3-1: 

                                       𝐶𝐻𝑇𝐶 =
𝑞𝑐

(𝑇𝑠𝑢𝑟−𝑇𝑎𝑖𝑟)
                                                     Equation 3-1 

where CHTC (W/m2. K) is convective heat transfer coefficient, 𝑞𝑐 is local surface heat flux 

(W/m2), 𝑇𝑠𝑢𝑟 is surface temperature (K), and 𝑇𝑎𝑖𝑟 is reference air temperature (K). 

Therefore, considering these parameters, the analysis of heat transfer makes it complex to 

get accurate estimates, particularly of the convective heat transfer rate. External CHTC is 

affected by surface roughness, such as the window sash, the wall texture and the building 

external shading elements. Consequently, the prediction and evaluation of CHTC is 

extraordinarily complex (Maruta et al., 1998). 

 

Figure 3-1: High-rise buildings with interacted façade system, Toronto 

To date, the CHTCs used by building energy simulations (BES) tools are primarily derived 

from experimental and numerical analysis carried out on a low-rise building with smooth 

façade surfaces (Palyvos, 2008; Defraeye et al., 2011; Mirsadeghi et al., 2013). However, 

the external shading elements, as well as the form and size of the building have a significant 

effect on the CHTC. Therefore, the application of the existing CHTCs for non-smooth 
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facades and high-rise buildings may not be accurate. Within the building industry, there is 

an increasing concern about a mismatch between the predicted energy performance of a 

building and actual measured performance referred as “the performance gap” (De Wilde, 

2014). For instance, Menezes et al. (2012) have investigated the energy performance gap 

between the predicted versus actual energy performance of non-domestic buildings using 

post-occupancy evaluation data suggesting that the measured energy use can be as much 

as 2.5 times the predicted use.  These are attributed to shortcomings of the current modeling 

programs, poor assumptions, poor construction quality, as well as lack of monitoring 

following construction. Bridging the gap between the predicted and measured performance 

is crucial for designers. Understanding convective heat transfer of a building in detail is 

essential to estimate the CHTC and hence model energy consumption accurately.  

One of the most widely used simulation programs for energy consumption analysis is 

EnergyPlus (Kirimtat et al., 2016), which offers a wide selection of different values of 

CHTC correlations. The commonly existing-CHTC correlations in EnergyPlus are DoE-2 

as default, Simple Combined, TARP, and MoWiTT as shown in Table 3-1.  In recent years, 

there are numerous numerical studies on the investigation of CHTC correlations such as 

Blocken et al. (2009); Defraeye et al. (2010); Montazeri et al. (2015); Montazeri and 

Blocken (2017 & 2018); however, in these studies, only a smooth façade was considered. 

Besides there are also previous studies on the impact of external shading in building energy 

consumption, yet, in these studies, the existing- CHTC correlations are used which are 

primarily developed from smooth facades (Kirimtat, 2016). Thus, the present study 

investigates compartively the effects of smooth facade, balconies, mullions, and egg-crates 

on the convective heat transfer rate of a high-rise building.  The CHTC is evaluated using 

high-resolution 3D computational heat transfer and fluid dynamics simulations. A steady 

RANS with SST k-ω model at full-scale simulation on the study building, an isolated 100 

m tall building with smooth façade and covered with different forms of external shading 

elements. The influence of the external shading elements on the surface-average CHTC 

value distribution is investigated at different Reynolds Numbers ranging from 6.67x106 to 

33x106 to define new-CHTC correlations as a function of reference wind speed.  
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Table 3-1: The common existing-CHTC correlations in EnergyPlus 

Reference CHTC correlations Comment 

Nusselt & Jurges 

(1922) 

7.13𝑉0.78 WTM, plate, parallel flow, 5 < Vw < 24 m/s, 

ASHRAE proposes exponent= 7.2 for 5 < Vw < 

30. 

McAdams (1954) 7.6𝑉0.78 V > 5 m/s, rough surface 

Mitchell (1971) 6.6𝑉0.6 Vertical surface behind a wedge-separated 

subsonic flow 

Ito et al. (1972) 5.8 + 2.9V Nocturnal field measurement, wall, Vf > 3 

m/s, windward (if leeward and Vf > 4 m/s, hw 

= 13 W/m2 K) 

ASHRAE task group 

(1975) 

18.65𝑉0.605 FM, Vw–Kimura’s ‘‘6th floor model” Vw = 

0.25Vf for Vf > 2 m/s, Vw = 0.5 for Vf =2 m/s 

(windward) and Vw = 0.3 + 0.05Vf (leeward) 

TARP (Walton, 1983) 
2.537𝑊𝑓𝑅𝑓

𝑃𝑈𝑙𝑜𝑐

𝐴

+ 𝑐|∆𝑇|1/3 

Reduced scale experiment, Windward: Wf = 

1.0, Leeward: Wf = 0.5, For rough brick, 

roughness index Rf = 1.67 Vertical surface, c 

= 1.31 

Sharples (1984) 5.8 + 2.9V FM on facade of tall building, Vw =1.8Vf + 0.2 

windward. 

DoE-2 (LBL, 1994) 
√[𝑎𝑈𝑙𝑜𝑐

𝑏 ]
2

+ [𝑐|∆𝑇|1/3]2 
On-site full-scale experiment with U10, 

Windward: a=3.26, b=0.89, Leeward: a=3.55, 

b=0.617 

Loveday & Taki 

(1996) 

16.15𝑉0.397 FM, flat vertical panel, windward, Vw = f(Vf) 

= 0.68Vf < 0.5 and 0.2Vf < 0.1 

Taki & Loveday 

(1996) 

14.82𝑉0.42 FM on a 6th floor vertical surface in 200 mm 

recess, windward, 
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Hagishima & 

Tanimoto (2003) 

4.47 + 10.21V Multipoint FM, V= √𝑎𝑣𝑔(𝑢2 + 𝑣2 + 𝑤2), 

on a vertical wall 

Emmel et al. (2007) 5.15𝑉0.81 FM, walls of isolated, low-rise building, 

00angle of attack, ∆𝑇= surface-to-air 

temperature difference = 10 K, wind speed 1 

– 5 m/s 

MoWiTT (Booten et 

al., 2012) 
√[𝑎𝑈𝑙𝑜𝑐

𝑏 ]
2

+ [𝑐|∆𝑇|1/3]2 
On-site full-scale experiment of low-rise 

building with U10, Windward: a = 3.26, b = 

0.89, c = 0.84, Leeward: a = 3.55, b = 0.617, c 

= 0.84 

Simple-combined 

(DoE, 2016) 

𝐷 + 𝐸𝑈𝑙𝑜𝑐 + 𝐹𝑈𝑙𝑜𝑐
2  A simple algorithm, For rough brick, 

roughness coefficient D=12.49, E=4.065, 

F=0.028 

ℎ𝑛: Natural convection; 𝑈𝑙𝑜𝑐: local wind speed calculated at the height above ground of the 
surface centroid; V: wind speed at a reference height of 10 m; P: Perimeter; A: Area; FM: Field 
measurements; WTM: wind tunnel measurement. 

The remaining sections of the chapter are organized as follows: Section 2 describes 

validation process and the methodology used for evaluating CHTC and CHTC-U10 

correlations. Section 3 presents the results and discussion, and section 4 concludes the 

chapter. 

3.2 Methodology 

The methodology consists of two parts. In the first part, experimental data from literature has 

been used to validate the proposed CFD simulation; and in the second part the present study 

case and the study cases and numerical model and its boundary conditions has been described. 

The validated CFD model has been used to assess effect of different external shading forms 

on high-rise building convective heat transfer coefficients, and to develop CHTC correlations. 

3.2.1 CFD model validation 

To validate the CFD model, an experimental data from literature by Meinders et al. (1999) 

for a cube in a turbulent channel flow is used. The validation detail study has been 
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presented by Kahsay et al. (2018a), in this study a brief description of the method is 

presented for completeness.  In the experiment, the convective heat transfers at the surfaces 

of a cube placed in turbulent channel flow were evaluated.  The channel had a rectangular 

test section with a height of 50 mm, the width of 600 mm and a depth of 600 mm. A single 

cube having an internal copper core of 12 mm in length covered with an epoxy layer of 1.5 

mm thickness and external side dimensions of 15 mm is placed at the center of the channel. 

For the validation study, a Reynolds number of 4440 resulting in a bulk velocity of 4.47 

m/s is considered based on the cube height. The approaching airflow temperature is set to 

283K and is taken as the reference temperature to calculate the CHTCs. The 3D steady 

RANS with SST κ-ω turbulent model closure is used. Ccommercial CFD solver (STAR-

CCM+ v 11.06.011, 2018) has been adopted in the present study.  

Computationally evaluated surface temperature along a mid-plane vertical centerline and 

a mid-height horizontal line are compared with experimental results (see Figure 3-2) for 

validation purposes. At the windward surface indicates that the low Reynolds number 

(LRNM) model namely the two-equation SST κ-ω model perform well in this region. The 

average difference between experimental data and results obtained with the SST κ-ω 

turbulence model in the windward facade along the vertical and horizontal lines is about 

1.34 and 1.48%, respectively.  This is inline with previous CFD studies by Montazeri et 

al., (2015) and Defraeye et al., (2010). Nevertheless, some overestimations can be clearly 

seen close to the ground, and it could be attributed to the additional heat loss through the 

base wall in the experiment, which is not considered in the simulation. Some studies also 

reason out that is may be due to an incorrect prediction of the size and shape of the standing 

vortex due to the upstream longitudinal gradients in the approach-flow profiles Montazeri 

et al. (2018). Further, an overestimation about 10% is observed on the top and lateral 

surface of the cube.  This discrepancy could be attributed to the inaccurate predictions of 

the flow field in the separation and reattachment zones of the top and sidewalls resulting 

in larger temperature values predictions. This has also been pointed out by Blocken et al. 

(2009); Defraeye et al. (2010); and Montazeri, et al. (2015). For the leeward surface, the 

distribution of the predicted surface temperatures by the SST k-ω model is within 5% 

deviation from the experimental results, especially for the midplane. Therefore, it is fair to 

assume the adopted model can yield reliable results for the windward facade. The 
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temperature predicted with SST k-ω provides sufficient accuracy on the surface of a cube, 

and therefore the same set of parameters will be used in the next full-scale computational 

section.

 

 

Figure 3-2: Comparison of experimental measured and simulated temperature 

distribution on the windward surfaces of the cube in a) vertical center plane (b) 

horizontal center plane 
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3.2.2 High-rise building case study 

The study building has a dimension of 30 m x 40 m x 100 m (width, depth, height) but with 

three different forms of external shading elements namely horizontal, vertical, and egg-

crate and fourth smooth façade case as illustrated in Figure 3-3. The detail dimensions of 

the shading elements are provided in Table 3-2. The horizontal shading or balconies are 

common structures frequently used in buildings, and they have different forms of walls or 

fences, however, in this study, balconies with free edges are considered. The depth of the 

balconies range between 0.2 m and 1 m. Vertical shading or mullions on the external wall 

of a building are also common cladding elements. In this study, a vertical ribs depth ranging 

between 0.2 m and 1 m are used. Further, egg-crate shading that represent a combination 

of both horizontal and vertical shades to provide higher shading effect under the hot-humid 

climate (Lau et al., 2016) is modeled. Like the other cases, the depth of the shading range 

between 0.2 m to 1m. Details of different shading elements that are used for the numerical 

model are described in deatial in Figure 3-4.  
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Figure 3-3: Model of high-rise buildings a) without-shading – smooth façade, b) 

horizontal shading, c) vertical shading, and d) egg-crate shading 

 

 

Figure 3-4: Types of shading details 
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Table 3-2: Numerical simulation case study 

Study cases Width (w) m Height (h) m Depth (d) m Thickness (t) m 

Case1 5 3.3 0.2 0.15 

Case 2 5 3.3 0.5 0.15 

Case 3 5 3.3 1 0.15 

3.2.3 Numerical modeling 

The dimensions of the 3-D computational domain (CD) are defined based on the height of the 

study building (H). The dimensions and boundary conditions of the CD are selected based on 

the recommendations of Franke et al. (2007); Tominaga et al. (2008); Dagnew & Bitsuamlak 

(2014), as illustrated in Figure 3-5. A blockage ratio of 1.8% is obtained, which is sufficiently 

low to minimize effects due to blockage in the numerical results (Franke et al. 2007). In this 

analysis, different wind speeds at the reference height of 10 m of U10 = 1, 2, 3, 4 and 5 m/s 

are used. In all cases of the study, the wind inflow direction is normal to the vertical façade of 

the building is considered. Atmospheric boundary layer (ABL) flow is imposed at the inlet of 

the domain where the velocity profile is described by the logarithmic law, which constitutes 

a vertical profile of the mean horizontal wind speed, turbulent kinetic energy K (m2/s2) and 

turbulence dissipation rate ε (m2/s3) (Richards and Norris, 2011) as shown in Equations 3-2 – 

3-4: 

                               𝑢(𝑧) =
𝑢∗

𝑘
𝑙𝑛 (

𝑧+𝑧0

𝑧0
)                                                               Equations 3-2 

                                       𝑘 = 3.3𝑢∗
2                                                                            Equation 3-3 

                                𝜀 =
𝑢∗

3

𝑘(𝑧+𝑧0)
                                                                              Equation 3-4 

where 𝑢∗  is friction velocity (m/s), 𝑧0 is the aerodynamic roughness length which is 

assumed that the buildings are situated on a large grass-covered terrain 𝑧0 = 0.03 m (ESDU, 

2001),  is the von Karman constant (~0.42). The thermal boundary conditions are a 

uniform inlet air temperature of Tref = 283 K and a fixed surface temperature of Tw = 303 

K for the building. An adiabatic boundary condition is used for the ground surface. 

Symmetry boundary conditions are applied at the top and lateral sides of the domain. The 
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ground surface is modeled, as a no-slip wall with zero roughness height (ks), since in LRNM 

surface roughness values cannot be specified (Blocken et al., 2009; Defraeye et al., 2010). 

Zero static pressure is applied to the outlet plane.  

In order to effectively discretize the computational domain, three different grid density are 

constructed with different control volumes (see Figures 3-5 and 3-6) where dense grids are 

allocated near study building and the ground where flow gradients changes significantly. 

The grid distributions are CV1 (H/10), CV2 (H/20), and CV3 (H/25). In CV3 to achieve a 

high-resolution (LRNM) grid with cell center at a minimum distance of yp = 130 µm from 

the building surface is used to resolve the entire boundary layer, including the viscous 

sublayer and the buffer layer, which dominate the convective heat resistance. In this study, 

different grid cells are used, such as for the case of building without shading a total of 

2.66x106 cells, for the building with horizontal shading a total of 3.35x106, for the building 

with vertical shading a total of 3.42x106 cells, and for a building with egg-crate shading a 

total of 4.92x106 cells are deployed. Low-Reynolds number modeling, Shear Stress 

Transport 𝑘 − 𝜔 (SST 𝑘 − 𝜔) turbulence models have been used in the present work.  

 

Figure 3-5: Computational domain 
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Figure 3-6: High-resolution mesh distribution 

3.3 Results and discussions 

In this section, the influence of wind speed, wind direction, and three external shading 

elements and one smooth façade on local-CHTC distribution on a high rise will be 

discussed. In addition, a correlation on surface-averaged CHTC and a reference wind speed 

(U10) for all study cases will be presented. 

3.3.1 Wind speed effect on the local-CHTC distribution 

Wind speed affects the convective heat transfer coefficient; the higher the speed of the air 

flowing around a building, the more heat will be drawn from the building convectively. 

Overall, providing building surface roughness such as shading decreases the airflow near 

the surface of the building; however, depending on the geometrical details and the 

arrangement of the shading elements their effect on the local-CHTC varies as discussed 

in the following sections. 

3.3.2 Building without external shading – smooth facade 

 

For a case of building without shading, the simulation result shows that for a windward 

façade of a building, as the stagnation pressure forces the impinging wind flow towards the 

top, bottom and side corners of the building, the separated layer flows at high shear form 

vortices around the edge as illustrated in Figure 3-7. Near-wall, velocity increases around 
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the leading-edge corners, which leads to higher surface friction velocity. As a result, a 

higher value of CHTC is observed at the leading top and side corners of the building. In 

addition, a variation on the convective rate at the corner and center zones of the building is 

observed, which leads to higher heat losses from the corner-zones rooms than that of center 

zone rooms are observed as shown in Figure 3-7. However, around the stagnation position 

and closer to the base of the buildings, lower values of velocities are observed, which 

increases the residence time of the air, leads to a higher local air temperature resulting in 

lower values of CHTC.  

 

Figure 3-7: Wind velocity contour and vector plots at distance of 0.01m from the 

wall for a smooth wall building (Ref. speed U10 = 3 m/s at the inlet) 

Further, at different floor height of the building and room locations, the variation on local-

CHTC distribution is investigated. As the building height increases, the convective heat 

transfer rate also increases; this is due to the exposure of the zones to higher wind speed as 

illustrated in Figure 3-8. Thus, local-CHTC comparison on zone 1, 5, and 10 between the 
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corner and the center zones are performed. Compared to the center zone, the corner-zone has 

increased by 30.2%, 25.7%, and 12.8%, respectively. 

 

Figure 3-8: Surface-averaged CHTC correlation for windward façade at the ref. U10 

wind speed 

3.3.3 Building with horizontal shading 

For the case of building with horizontal shading elements, considering the windward façade 

of the building, at near the wall, the stagnation pressure forces the impinging wind flow 

primarily towards the side corners of the building, and this is due to the horizontally aligned 

balconies (see Figure 3-9). Therefore, the separated layer flows at a high shear velocity 

around the side edges. As a result, a higher CHTC value is observed at the side corners 

than the center zone of the buildings. However, around the stagnation location and down 

to the base of the buildings, lower values are observed as illustrated in Figure 3-9. 
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Figure 3-9: Wind velocity vector and contour plots at distance of 0.01m from the 

wall for a building with horizontal shading (Ref. speed U10 = 3 m/s at the inlet) 

Therefore, a comparison between the corner and center zones of the building on local-

CHTC distribution is made at different zone 1, 5, and 10 of the building heights (see Figure 

3-8). For instance, for the case of a building having 1 m depth of external shading, the 

CHTC value at the corner-zone has increased by 34%, 35%, and 27% on zone 1, 5, and 10, 

respectively compared to the center zone (as illustrated in Figure 3-10). 
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Figure 3-10: Surface-averaged per zone CHTC comparison for buildings without 

and with horizontal shading depth of a) 0.2 m, b) 0.5 m, c) 1.0 m, and d) Surface-

averaged per floor comparison between different shading depths 

3.3.4 Building with vertical shading  

For the case of buildings with vertical shading elements and considering the windward 

façade, the stagnation pressure forces the impinging wind flow primarily towards the top 

corner and the ground, and this is due to the obstruction of the mullions (see Figure 3-11). 

Near-wall velocity increases towards the leading top corner, which leads to higher surface 

friction velocity. As a result, a higher CHTC value is observed at the top corners of the 

building. 
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Figure 3-11: Wind vector and contour plots at distance of 0.01m from the wall for a 

building with vertical shading (Ref. speed U10 = 3 m/s at the inlet) 
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Figure 3-12: Surface-average per zone CHTC comparison for buildings without and 

with vertical shading depth of a) 0.2 m, b) 0.5 m, c) 1.0 m, and d) Surface-averaged 

per floor comparison between different shading depths 

In addition, a comparison on the corner and center of zone 1, 5, and 10 is analyzed. For 

instance, for the case of a building having 1 m depth external shading, the local-CHTC 

value in the corner-zone has increased by 24.4%, 20.3%, and 10.4% on zone 1, 5, and 10, 

respectively compared to the center zone as illustrated in Figure 3-12. 

3.3.5 Building with egg-crate shading 

For the case of buildings with egg-crate shading elements, both the horizontal and vertical 

shading elements restrict the flow on the surface of the building, this increases the residence 

time of the air on the building surface resulting in low CHTC values as illustrated in Figure 

3-13. 
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Figure 3-13: Wind velocity vector and contour plots at distance of 0.01m from the 

wall for building with egg-crate shading (Ref. speed U10 = 3 m/s at the inlet) 
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Figure 3-14: Surface-averaged per zone CHTC comparison for buildings without 

and with egg-crate shading depth of a) 0.2 m, b) 0.5 m, c) 1.0 m, and d) Surface-

averaged per floor comparison between different shading depths  

A comparison between the corner and center zones of the building on local-CHTC is made 

for zones 1, 5, and 10 of the building heights. For the case of a building with 1 m depth of 

egg-crate external shading, the CHTC value at the corner-zone has increased by 20.6%, 

28.2%, and 18.9% on zone 1, 5, and 10, respectively, compared to the center zone as 

illustrated in Figure 3-14. 

3.3.6 Wind direction effect on convective heat transfer 

Wind direction effect on the local-CHTC distribution of buildings with external shading 

elements is investigated. CHTC distribution across the windward façade, calculated for a 

wind speed of 3 m/s and wind directions of 𝜃 = 0°, 𝜃 = 22.5°, 𝜃 = 45°, 𝜃 = 67.5°, and 

𝜃 = 90°. In all cases, the surface-average CHTC distributions increases from bottom to 

top and from stagnation point to the edges of the facades. Thus, the highest values are 

found at the top corners. This is due to the accelerated surface friction velocity that 

reduces the thickness of the boundary layer. The results with each case of the building 

external shading configurations are presents below. 
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3.3.7 Building without external shading 

The local-CHTC distribution pattern shows some changes with a change in wind direction. 

The CHTC distribution is similar for all wind directions except for the wind direction of 

90° (see Figure 3-15) for the simulated wind speed of 3 m/s. For the 90° wind direction, 

the façade under consideration is inside the separated flow that increases the residence time 

of the air, which can lead to higher local air temperature and lower CHTC value as 

illustrated in Figure 3-16. 

 

Figure 3-15: CHTC distribution on windward façade of smooth wall for wind 

direction of: a) 0°, b) 22.5°, c) 45°, d) 67.5°, and e) 90° for U10 of 3 m/s 
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It can be seen that (see Figure 3-15) at wind direction of  𝜃 = 45°, the maximum CHTC 

value occurs at the top and lateral edges where the wind speed is also relatively high. For 

highly insulated façade systems, the average values do not show significant changes, 

however, for curtain walls with low thermal resistance such as a window, the local-CHTC 

distribution has an impact on the energy performance of the building attested the need for 

wind directionality consideration. 

 

Figure 3-16: Surface-averaged CHTC on smooth wall building for U10 of 3 m/s 

3.3.8 Building with horizontal shading 

Due to the horizontally aligned shading effects, the wind flow is guided toward the side 

corner of the building. Therefore, higher local-CHTC values are observed as illustrated in 

Figure 3-17. This has a significant impact on the rooms, which are located on the corner 

sides of the building. 
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Figure 3-17: CHTC distribution on the windward façade of building with horizontal 

shading for wind direction of: a) 0°, b) 22.5°, c) 45°, d) 67.5°, and e) 90° for U10 of 3 

m/s 

Figure 3-18 shows a wind direction of  𝜃 = 45°, the maximum CHTC value occurs when 

the wind speed is relatively high. Since the vertical airflow is restricted by the external 

shading, the wind directionality will have an effect of the side edges of a building 

particularly, buildings having large window-to-wall ratio at the corners. 
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Figure 3-18: Surface- averaged CHTC on building with horizontal shading for U10 of 

3 m/s 

3.3.9 Building with vertical shading 

Due to the vertical arrangement of external shadings, the surface-average CHTC 

distribution pattern does not show significant changes with a change in wind direction 

except for the wind direction of 90° (see Figure 3-19) for the simulated wind speed of 3 

m/s. However, higher local-CHTC are observed at the top edge of the building. This is due 

to the vertical shading alignment that guides the airflow vertically. 
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Figure 3-19: CHTC distribution on the windward façade of building with vertical 

shading for wind direction of: a) 0°, b) 22.5°, c) 45°, d) 67.5°, and e) 90° for U10 of 3 

m/s 

In Figure 3-20, it confirms that the relative insensitivity of the CHTC distribution at the 

windward façade to wind direction except at wind direction of 𝜃 = 90°. This will have an 

effect mainly at the top edge of the room having a large window-to-wall ratio. 
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Figure 3-20: Surface- averaged CHTC on building with vertical shading for U10 of 3 

m/s 

3.3.10 Building with egg-crate shading 

Figure 3-21 shows for egg-crate shaped external shading, the CHTC distribution decreases 

with the wind direction except for the case of 22.5° Angle of Attack (AOA). As the wind 

direction changes from 0° to 22.5°, the circulated air inside the egg-crate are extracted by 

the accelerated wind speed leads to a lower resident time of the air, which lowers the 

thermal resistance of the boundary layer (see Figure 3-22) and shows higher local-CHTC 

values. 
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Figure 3-21: CHTC distribution on the windward façade of building with egg-crate 

shading for wind direction of: a) 0°, b) 22.5°, c) 45°, d) 67.5°, and e) 90° for U10 of 3 

m/s 
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Figure 3-22: Surface- averaged CHTC on a building with egg-crate shading for U10 

of 3 m/s 

Overall, for higher R-value wall systems, the average values of CHTC may not have an 

effect. However, for curtain walls or a room with large window-to-wall ratio positioned at 

the edge side of the building, the local-CHTC has an impact on the energy consumption of 

the particular room and the overall building.  Further, it may have impact on   surface 

condensations, thus, it is good practice to assess the effect of wind directionality on 

buildings with external shading elements. 

3.3.11 Shading depth effect 

The effect of different external shading forms with three different depths considered for 

shading elements on the local-CHTC distribution of the building is assessesed. A 

comparison of CHTC distribution on the surface of a building is made between a building 

with and without shading at different zones of the building for U10 of 3 m/s.  

For Case 1 (see Table 3-2) where the building has a horizontal shading of 1 m depth, the 

local-CHTC at the corner-zone is decreased by 7.6%, 11%, and, 17.2% on the 1st, 5th, and 

10th zones, respectively compared with the smooth façade building. For Case 2 where the 

building has a vertical shading of 1 m depth, the local-CHTC at the corner-zone is 



78 

 

decreased by 27.3%, 25.3%, and 15.5% on the 1st, 5th, and 10th zones, respectively 

compared with the smooth facade building. For Case 3 where the building has an egg-crate 

external shading with 1 m depth, the local-CHTC at the corner-zone is decreased by 35.9%, 

37.4%, and 37.5% on the 1st, 5th, and 10th zones, respectively compared with the smooth 

façade building as illustrated in Figures 3-23. 

 

 

Figure 3-23: Surface- average CHTC comparison on four shading with shading 

depth of a) 0.2 m, b) 0.5 m and c) 1.0 m 

Further, for the case where the building has a shading depth of 0.2 m (Case 1), on average 

5%, 9%, and 19% of decrement is shown on horizontal, vertical, and egg-crate shading, 

respectively, compared with smooth facade. For Case 2 i.e. a building with shading depth 

of 0.5 m, on average 9%, 15%, and 30% decrement are shown on horizontal, vertical, and 
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egg-crate shading, respectively, compared with smooth facade. For case 3 where the 

building has shading depth of 1 m, on average 13%, 22%, and 46% decrement is shown in 

horizontal, vertical, and egg-crate shadings respectively, compared to smooth façade. 

3.3.12 CHTC – U10 correlations 

The impact of external shading on the CHTC-U10 correlations is investigated. The results 

from the previous sections show that local and surface-averaged CHTC at the building 

surface is highly dependent on the immediate flow structure around it that is strongly 

affected by the shading element details. Thus, average-surface correlations for each of the 

shading type (smooth, horizontal, vertical, egg-crate) and depth (0.2 m, 0.5 m, and 1 m) 

are developed. In order to easily integrate the correlations with BES programs, power-law 

correlations between CHTC and U10 are derived with a high coefficient of determinations 

(R2) as shown in Table 3-3.  

Table 3-3: CHTC correlation for high-rise building with external shadings 

Building 

type U10 range (m/s) Shading depth (m) 

CHTC correlation 

(W/m2K) 

 

R2(-) 

Without 

shading 

 

1 -5 
-  𝐶𝐻𝑇𝐶avg = 4.38U10

0.96 0.9989 

 

Horizontal 

shading 

 

1 -5 

0.2 𝐶𝐻𝑇𝐶avg = 4.14U10
0.81 0.999 

0.5 𝐶𝐻𝑇𝐶avg = 4.03U10
0.8 0.9988 

1 𝐶𝐻𝑇𝐶avg = 3.86U10
0.78 0.9985 

 

Vertical 

shading 

 

1 -5 

0.2 𝐶𝐻𝑇𝐶avg = 3.93U10
0.81 0.999 

0.5 𝐶𝐻𝑇𝐶avg = 3.71U10
0.82 0.9978 

1 𝐶𝐻𝑇𝐶avg = 3.37U10
0.8 0.9992 

 

Egg-crate 

shading 

 

1 -5 

0.2 𝐶𝐻𝑇𝐶avg = 3.76U10
0.8 0.9986 

0.5 𝐶𝐻𝑇𝐶avg = 3.4U10
0.79 0.9976 

1 𝐶𝐻𝑇𝐶avg = 2.89U10
0.76 0.9962 

3.4 Conclusion 

This study numerically investigated the impact of external shading on the convective heat 

transfer coefficients. A building with different external shading forms and depths are 
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investigated using a high-resolution 3D steady RANS simulation of convective heat 

transfer at the façade of a building. Based on the results obtained, the following conclusions 

can be drawn. 

• Validation: A good agreement is achieved on the validation between the 

experimental and CFD simulated temperature profile, hence, it affirms that the SST 

k-ω turbulent model can be used to predict convective heat transfer on the 

windward building facades. 

• Local aerodynamics: The local and surface-averaged CHTC values at the surfaces 

of each building are dependent on building aerodynamics and forms of the shading 

element depth. In all cases, the CHTC value has reduced with the increase on the 

building shading depth. 

• Surface zone variation: For the case of a building having horizontal shading 

element with 1 m depth, the local-CHTC at the corner-zone is decreased by 7.6%, 

11%, and, 17.2% on the 1st, 5th, and 10th zone, respectively compared with the 

smooth wall building. For a case building having vertical shading with 1 m depth, 

the local-CHTC at the corner-zone is decreased by 27.3%, 25.3%, and 15.5% on 

the 1st, 5th, 10th zone, respectively compared with the smooth wall building. For the 

case of a building having egg-crate shading with 1 m depth, the local-CHTC at the 

corner-zone is decreased by 35.9%, 37.4%, and 37.5% on the 1st, 5th, and 10th zone, 

respectively compared with the smooth wall building. 

• Shading elelment depth effect: Considering the surface-averaged CHTC, for Case 

1 of the study where a building having a shading depth of 0.2 m, on average 5%, 

9%, and 19% of decrement is shown on horizontal, vertical, and egg-crate shading 

respectively. For the case of 2 where a building is having shading depth of 0.5 m, 

on average 9%, 15%, and 30% decrement are shown on horizontal, vertical, and 

egg-crate shading respectively. For case 3 where the building has shading depth of 

1 m, on average 13%, 22%, and 46% decrement is shown in horizontal, vertical, 

and egg-crate shadings respectively. 

• Wind directionality effect: Wind direction affects the CHTC distribution regardless 

of whether a building is with or without shading. Particularly, rooms located at the 

side edge of the building shows higher local-CHTC values. 
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• New CHTC correlations: To integrate the new-CHTC correlations derived from the 

CFD into BES programs, power-law correlations between CHTC and U10 are 

derived with a high coefficient of determinations. 

• Local effects: For buildings with high R-value cladding systems, the use of an 

average value of CHTC may not have an effect. However, for curtain walls or a 

room with large window-to-wall ratio positioned at the edge side of the building, 

the local-CHTC has an impact on the energy consumption of the building, 

therefore, this study shows the importance of local effect assessment.  

In summary, the external feature (i.e. aerodynamics) of a building has an impact on 

moderating the microclimate effects. Thus, the egg-crate shading form shows the highest 

CHTC reduction compared to vertical, horizontal shadings.  Building with horizontal 

shading shows higher local-CHTC value at the side edge of the building, however, for the 

case of a building with vertical shading higher local-CHTC values are observed at the top 

edge of the buildings, this is due to accelerated wind speed guided by the shading elements. 

Since a type of shading element and its depth play a critical role in the convective heat 

transfer rate of a building, it is recommended that the shading elements should be designed 

by optimizing for the solar effect mitigation and convective wind effects. For further study, 

the new-CHTC correlations that are developed from CFD can be be compared with the 

existing-CHTC correlations in order to investigate the impact of external shadings on the 

annual energy consumption for high-rise buildings. 
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Chapter 4  

4 Effect of exterior convective heat transfer on high-rise 
building energy consumption 

4.1 Introduction 

Buildings use about 40% of global energy and emit approximately 33% of GHG emissions 

(UNEP, 2017). Realizing the significant amount of energy consumption in buildings, it is 

essential to investigate the accuracy of the estimation of energy consumption predictions 

by the Building Energy Simulation (BES) programs at the early design stages to achieve 

long-term sustainability. Many BES programs can be used to analyze the energy 

consumption by low-rise buildings efficiently; however, they have some fundamental 

limitations when applied to high-rise buildings. Some of the limits include a size of the 

building, changes in microclimate at different altitudes, and the uncertainties associated 

with the existing convective heat transfer coefficients (CHTC) correlations. The height of 

a high-rise building means that there are many thermal-zones, which are a collection of 

spaces having a similar space-conditioning requirement and the same heating and cooling 

set point. For instance, considering a 70-story office building where each floor has four 

perimeter zones, a core zone, and a plenum zone, the modeling would require 420 thermal-

zones (70 floors * 6 zones) (Ellis and Torcellini, 2005). Consequently, the user requires 

extensive input data to define the energy analysis problem, which can be computationally 

expensive. Furhter, the size of a building introduces some challenges in the building energy 

analysis. For instance, as the building width increases, the aerodynamics around the 

building will be changed. Large width leads to more air blockage near the center and 

accelerated airflow near the corners. This will result in lowers convective heat transfer at 

the center and more convective heat loss near the corner. These types of variations are not 

commonly considered in the current practices. In addition, as the building size increases 

rooms energy requirements increase such as, light and thermal scheduling couple with a 

purpose of the rooms, cafeteria, office etc., and these lead to complex system design of the 

thermal load analyzes. 



89 

 

To deal with these limitations, the common practice is to select and simulate only a few 

floors at the mid-height of the high-rise building and then multiply the results by a factor 

to estimate the energy consumption of the entire building (Ellis and Torcellini, 2005). 

EnergyPlus has a built-in multiplier to perform this action. The main problem with this 

kind of multiplier approach is that it may decrease the accuracy of the overall energy 

prediction, which may lead to local thermal discomfort in individual rooms and unexpected 

surface condensations. This is because the selected representative floor or rooms may not 

adequately capture the energy consumption variations along the building height. Further, 

high-rise buildings are exposed to different wind speeds along the building height that 

significantly effects the local CHTC distributions. Due to these variations in airflow 

characteristics, the energy consumption of each room at different floor heights of the 

building also varies. 

Buildings interact with the atmosphere through convective heat transfer between the 

outside air and the exterior surface of the building façade, and through the exchange of air 

between the outside and inside of the building through infiltration/exfiltration. The external 

convective heat transfer is defined as in Equation 4-1: 

                                                𝐶𝐻𝑇𝐶 =
𝑞𝑐

(𝑇𝑠𝑢𝑟−𝑇𝑎𝑖𝑟)
                                               Equation 4-1 

where CHTC (W m2. K⁄ ) is convective heat transfer coefficient, 𝑞𝑐 is local surface heat 

flux (W/m2), 𝑇𝑠𝑢𝑟 is surface temperature (K), and 𝑇𝑎𝑖𝑟 is the reference air temperature (K).  

Since the 1930s, many methods have been proposed to calculate this coefficient, but each 

method has had significant differences (Yazdanian and Klems, 1994; Palyvos, 2008; 

Mirsadeghi et al., 2013). Thus, the variations on these correlations can easily cause errors 

in energy demand calculations in the order of 20% – 40% (Palyvos, 2008). For example, 

EnergyPlus, one of the widely used BES programs, offers a wide selection of CHTC 

correlations based on low-rise buildings, flat plate, and vertical windows (Palyvos, 2008; 

Defraeye et al., 2011). The common existing-CHTCs correlations in EnergyPlus are DoE-

2 (LBL, 1994), Simple Combined (DoE, 2016), Thermal Analysis Research Program -
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TARP (Walton, 1983), and Mobile Window Thermal Test - MoWiTT (Yazdanian and 

Klems, 1994; Booten et al., 2012).  

The DoE-2 model is a combination of the MoWiTT and Building Load Analysis and 

system Thermodynamics - BLAST (Sparrow et al., 1979) convectional models. This model 

considers different surface textures, windward and leeward orientations, and different 

surface slope angles but its application is limited to low-rise building with very smooth 

surfaces e.g. glass (Mirsadeghi et al., 2013; DoE, 2016). The simple combined is based on 

simple second-degree polynomial equations proposed by ASHRAE (2009). This simple 

algorithm uses surface roughness and local surface wind speed to calculate the exterior 

heat transfer coefficient. The roughness correlation is taken from the ASHRAE Handbook 

of Fundamentals (ASHRAE, 2009).  

The MoWiTT algorithm offers a reasonable balance between accuracy and ease of use 

(Palyvos, 2008). This model is based on measurements taken at the Mobile Window 

Thermal Test facility (Yazdanian and Klems, 1994). This correlation also applies to very 

smooth, vertical surfaces (e.g. window glass) in low-rise buildings. The original MoWiTT 

model has been modified for use in EnergyPlus so that it is sensitive to the local surface’s 

wind speed, which varies with the height above ground. However, the MoWiTT algorithm 

may not be appropriate for rough surfaces (e.g. external architectural features) or high-rise 

buildings (DoE, 2016). TARP is an important predecessor of EnergyPlus (Walton 1983). 

Walton developed a comprehensive model for exterior convection by blending correlations 

from ASHRAE and flat plate experiments by Sparrow et al. (1979). The model was 

reimplemented to use Area and Perimeter values for the group of surfaces that make up a 

facade or roof, rather than the single surface being modeled (DoE, 2016). The Building 

Loads Analysis and System Thermodynamics (BLAST) model is based on wind tunnel 

experiments performed by Sparrow et al. (1979). While this model is rather comprehensive, 

it does not consider variations in building type (high-rise, medium, or low-rise), and surface 

orientation (Mirsadeghi et al., 2013). Previous study of Liu et al. (2015) has investigated 

the impact of the existing-CHTC correlations on a low-rise building energy consumption 

in urban neighborhoods with different plan area densities, and the result indicated that there 

is a direct impact of the urban microclimate variation on the energy performance of 
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buildings. All the equations shown in Table 4-1 are derived from a low-rise building 

(Mirsadeghi et al., 2013). The use of these correlations for the analysis of the energy 

consumption of high-rise buildings will have an impact on the accuracy of the estimation. 

This is because the wind flow pattern around a building is highly dependent upon the 

geometry and height of the building, resulting in local-CHTC variations. Further, rooms of 

a similar size, on the same floor, positioned at the edge or center zone of the building may 

have different energy consumption rates.  

In recent years, numerous studies have used CFD to develop surface-averaged CHTC-U10 

expression, such as the influence of wind speed (Emmel et al., 2007; Blocken et al., 2009; 

Defraeye et al., 2010; Montazeri et al., 2016; Jousef et al., 2017; Montazeri et al., 2017 & 

2018), wind direction (Blocken et al., 2009; Montazeri et al, 2018) and building geometry 

(Montazeri et al., 2015, 2017, and 2018). Further, a study by Montazeri et al. (2015), which 

used a various height configuration ranging from 10 to 80 m a correlation of 𝐶𝐻𝑇𝐶/(𝑈10
0.84) 

relatively insensitive to 𝑈10 for each building was developed by averaging the maximum 

and minimum values of the case study buildings. However, in the present study, the impact 

of local-CHTC variations on energy consumption focusing on a high-rise building with 

curtain claddings is investigated. For this purpose, detail CFD simulations will be 

conducted considering the specificity of the study building and its local microclimate. 

More specifically, a 100 m tall building, exposed to open wind field conditions, having 

floor dimensions of 30 m width by 40 m in-depth and exposed to different microclimate 

conditions will be considered. The floor plan is adopted from the CAARC (Commonwealth 

Advisory Aeronautical Research Council) building which is a typical building used as a 

benchmark for various aerodynamics studies (Dagnew and Bitsuamlak 2014). Different 

window-to-wall ratios and analysis for rooms located at different positions in the building 

are considered. Consequently, the aerodynamic effect on the existing-CHTC will be 

investigated for wind speeds ranging from 1 to 5 m/s. First, at the windward façade of the 

building, the spatial distribution of the CHTC will be calculated using a CFD simulation. 

The calculated CHTC values are then used to define a new surface-averaged CHTC 

correlation as a function of the reference wind speed (U10) for the windward face. Then the 

new-CHTC correlations will be implemented and compared with the existing-CHTC 
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correlations in EnergyPlus program. In this approach, the high-resolution CFD and heat 

transfer simulations have enabled extraction of high spatial resolution of CHTC for a wide 

range of wind speeds accurately.  

Table 4-1: Existing-CHTC correlations used by the EnergyPlus simulation tool 

Correlation name Correlations Remarks 

DoE-2     

(LBL, 1994) 

√ℎ𝑛
2 + [𝑎𝑈𝑙𝑜𝑐

𝑏 ]
2

  
Windward: a=3.26, b=0.89 

Leeward: a=3.55, b=0.617 

Simple-combined  

(DoE, 2016) 

 

𝐷 + 𝐸𝑈𝑙𝑜𝑐 + 𝐹𝑈𝑙𝑜𝑐
2   

For rough brick, roughness coefficient, 

D=12.49, E=4.065, F=0.028 

 

TARP  

(Walton, 1983) 

 

2.537𝑊𝑓𝑅𝑓
𝑃𝑈𝑙𝑜𝑐

𝐴
+ 𝑐|∆𝑇|1/3  

Windward: Wf = 1.0, Leeward: Wf = 

0.5, For rough brick, roughness index 

Rf = 1.67 Vertical surface, c = 1.31 

MoWiTT  

(Booten et al., 2012) 

√[𝑎𝑈𝑙𝑜𝑐
𝑏 ]

2
+ [𝑐|∆𝑇|1/3]2  

Windward: a = 3.26, b = 0.89, c = 0.84, 

Leeward: a = 3.55, b = 0.617, c = 0.84 

hn: Natural convection; U10: local wind speed calculated at the height above ground of the surface 

centroid;P: perimeter; A: Area 

This chapter is organized into four sections. Section 1 presents an introduction and 

literature review on the challenges of analyzing the energy consumption for high-rise 

buildings. Section 2 presents the development of new CHTCs using high-resolution CFD 

and heat transfer simulations. Section 3 presents the application of the new CHTCs and 

other widely used correlations in building energy modeling using BESs and discusses the 

results comparatively, and Section 4 concludes the chapter. 

4.2 New-CHTC development using CFD 

The study is conducted in two parts. In the first part of the study, an accurate CHTC at the 

windward façade of the building was generated by using high-resolution CFD and heat 

transfer simulations. In the second part of the study, energy consumption rates, using the 
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newly generated and existing-CHTC correlations are compared using EnergyPlus to 

quantify the impact CHTCs have on building energy simulation results. For this study, a 

100 m tall building with 3.33 m floor-to-floor height rooms that are exposed to open wind 

field is considered. The building is described as shown in Figure 4-1. To investigate, in 

detail, the effect of the room position and window size, two different zones were 

considered: the corner-zone (all rooms at the edge of the building along the height) and 

center-zone (all rooms at the center of the building along the height) as shown in Figures 

1 and 2.  

 

Figure 4-1: High-rise building with 40% window-to-wall ratio 
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Figure 4-2: High-rise building with 100% window-to-wall ratio 

4.2.1 CFD setup 

A building exposed to open terrain conditions for five different wind speeds U10 = 1, 2, 3, 

4 and 5 m/s at the reference height of 10 m is considered. The outdoor air temperature is 

kept constant at Tref = 283 K, and the building has a fixed surface temperature of Tw = 303 

K. The dimensions of the 3-D computational domain (CD) were defined based on the 

height of the building (H) and recommendations by Franke et al. (2007) and Tominaga et 

al. (2008) as illustrated in Figure 4-3. The distance between the inflow boundary wall and 

the building is 5H, with the outflow boundary 15H downstream of the building, to allow 

the wake-flow to develop. The lateral boundaries are set at 5H from the building surfaces, 

and the CD height is 5H from the top of the highest building surface.  Three sub-

computational domain volumes (in short CV) with different grid density and grid 

distributions were constructed to capture high-velocity gradient zones such as those near 

the study building and near the ground, behind the study building, etc. Further a low 

Reynolds number model near the wall region that resolves the viscous sublayer and the 

buffer layer, which dominates the convective heat transfer in the CD, has been used. The 
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sub-computational domain volume distributions are CV1 (H/10), CV2 (H/20), CV3 (H/25) 

as illustrated in Figure 4-3. The CD is discretized using polyhedral control volumes with a 

refined sub-grid near the exterior surfaces of the building. As illustrated in Figure 4-4, the 

surfaces of the buildings have a viscous boundary layer with ten prism layers, producing 

y+ < 5 values. A dimensionless wall distance 𝑦+ = (𝑢∗𝑦𝑝)/𝑣, is used to characterize the 

grid resolution near the wall, where, 𝑢∗ is friction velocity (m/s), 𝑦𝑝 is the distance from 

the center point of the wall adjacent cell to the wall (m), and 𝑣 is kinematic viscosity (m2/s). 

The simulation uses a sub-grid with cell centres at a minimum distance of 130 𝜇m from the 

building surface. Hence, a stretching factor of 1.05 is used to resolve the boundary layer at 

all solid-fluid interfaces of CV3 satisfying the recommendations of Franke et al. (2007) 

and Tominaga et al. (2008). Grid independency test with grid refinement ratio is 1.5 was 

carried. More details on grid dependency analysis can be found in the previous study by 

the same author Kahsay et al. (2018). A total of 4.83 x106 grid cells are deployed. 

Convergence is assumed when all the scaled residual values level off and reach 10-7 for x, 

y, z momentum and energy, 10-5 for continuity and 10-6 for k and ε.  

 

Figure 4-3: Computational domain geometry 
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Figure 4-4: Grid distribution 

4.2.2 Boundary conditions 

The mean velocity and turbulent profile are generated assuming an open terrain exposure. At 

the inlet of the domain, an atmospheric boundary layer (ABL) is imposed. This boundary layer 

can be described by the logarithmic law, which constitutes a vertical profile of the mean 

horizontal wind speed, turbulent kinetic energy K (m2/s2) and turbulence dissipation rate ε 

(m2/s3) (Richards and Norris, 2011). These profiles represent a neutral ABL, where the 

turbulence originates only from friction and shear: 

                                                           𝑢(𝑧) =
𝑢∗

𝑘
𝑙𝑛 (

𝑧+𝑧0

𝑧0
)                                         Equation 4-2 

                                                             K = 3.3𝑢∗
2                                                      Equation 4-3 

                                                           𝜀 =
𝑢∗

3

𝑘(𝑧+𝑧0)
                                                      Equation 4-4 

where 𝑢∗  is friction velocity (m/s), 𝑧0 is the aerodynamic dynamic roughness length which is 

assumed that the buildings are situated on a large grass-covered terrain z0 = 0.03 m (ESDU, 

2001), and k is the von Karman constant (~ 0.42). An adiabatic boundary condition is used for 

the ground surface. Symmetry boundary conditions are applied at the top and lateral sides of 

the computational domain. The ground surface is modeled as a no-slip wall with no roughness 
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height (ks = 0) since in LRNM (Low Reynolds Number Model) surface roughness values 

cannot be specified (Defraeye et al., 2010). Zero static pressure is applied to the outlet plane. 

Note that in this simulation, only a forced convection heat transfer is considered. The turbulent 

closure of standard 𝑘 − 𝜔 allows for a more accurate near-wall treatment and automatically 

switches a wall function to a low-Reynolds number formulation based on grid spacing 

(Wilcox, 1988). One of the shortcomings on the 𝑘 − 𝜔 is that the model strongly depends on 

the free-stream values of 𝜔  that are specified outside the shear layer. Menter (1994) proposed 

SST𝑘 − 𝜔, which combines the original  𝑘 − 𝜔 model used near walls and the standard 𝑘 −

𝜀 model (Launder, 1974) away from walls using a blending function. Thus, SST 𝑘 − 𝜔 is 

recommended for more accurate boundary layer simulation and is therefore used in this study. 

Details on the CFD simulation validation with experimental data of Meinders et al. (1999) 

and grid sensitivity analysis are provided in Kahsay et al. (2018). The simulations are 

conducted using a commercial CFD package (STAR-CCM+ v.10.12, 2015) and the 

SHARCNET (www.sharcnet.ca, 2017) high-performance computing (HPC) facility at 

Western University. 

4.2.3 CHTC results and discussion 

To evaluate building energy consumption accurately, knowledge of the CHTC distribution 

over the facade of the building is essential. Thus, in this study, the evaluation of surface-

averaged CHTC with the wind free stream velocity is the primary target, and the correlations 

are then integrated into building energy simulation. 

The geometry of a building plays a crucial role in the flow structure and 77 the CHTC 

distribution. Figure 4-5 illustrates how the incoming wind flow is forced around the structure 

both on the sidewalls and the roof. Near-wall velocity increases around the leading-edge 

building corners, leading to higher surface friction velocity. As a result, a higher value of 

CHTC is observed at the leading top and corners zones of the building as illustrated in Figure 

4-6. However, around the stagnation position and closer to the base of the buildings, lower 

values of CHTC are observed. Further, the standing and horseshoe vortices around the bottom 

of the building, which increases the residence time of the air, leads to lower velocity, resulting 

in lower values of CHTC. The local surface-averaged CHTC distribution for a specified room 

is dependent on its location on the building with respect to these different flow region zones.  
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Figure 4-5: Velocity magnitude contours and CHTC distribution (for a wind speed 

of 3 m/s at 10 m ref height at the inlet) 

Figures 4-7 and 4-8 show the averaged-surface CHTC values for different wind speeds at 

corner and center-zones of a building, respectively. The windward CHTC-U10 expression for 

the corner and center zones are presented with a high coefficient of determinations in Table 

4-2. At a lower wind speed (1 m/s), the CHTC variations are insignificant. However, the 

CHTC variations along the height increase as the wind speed increase to 5 m/s. Moreover, at 

the center-zone of the building, since the air velocity is lower, the variations in CHTCs are 

lesser. However, at the corner-zones of the building, high variations in CHTCs are observed 

due to higher surface velocity.  
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Figure 4-6: a) Windward CHTC distribution for a wind speed of 3 m/s at 10 m ref 

height at the inlet, b) Wind field vector and contour on a plane taken in front of the 

windward façade at 0.01 m from the wall of a building 

Table 4-2: Local-CHTC correlations 

Building zones 

Reference wind 

speed range (m/s) 

𝑪𝑯𝑻𝑪 − 𝑼𝟏𝟎 correlation for 

windward (W/m2K) R2 (-) 

Zone 1 center 1 -5 𝐶𝐻𝑇𝐶 = 3.29𝑈10
0.78 0.9966 

Zone 5 center 1 -5 𝐶𝐻𝑇𝐶 = 3.60𝑈10
0.83 0.9943 

Zone 10 center 1 -5 𝐶𝐻𝑇𝐶 = 4.83𝑈10
0.81 0.9996 

Zone 1 corner 1 -5 𝐶𝐻𝑇𝐶 = 4.16𝑈10
0.8 0.9991 

Zone 5 corner 1 -5 𝐶𝐻𝑇𝐶 = 4.58𝑈10
0.83 0.9997 

Zone 10 corner 1 -5 𝐶𝐻𝑇𝐶 = 5.43𝑈10
0.82 0.9998 
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Figure 4-7: Surface-averaged CHTC distribution on different corner-zones of a 100 

m tall of building on the windward side 

 

Figure 4-8: Surface-average CHTC distribution on different center-zones of a 100 m 

tall of building on the windward side 
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These new-CHTCs that are developed for the corner and center-zone of the buildings, as 

shown in Figures 7 and 8 respectively, are then integrated into EnergyPlus.  The energy 

consumption that uses the new CHTC correlation can then be compared and analyzed against 

the energy consumption of the existing-CHTC correlation as discussed in the next section. 

4.3 Application of CHTC on energy modeling 

BES programs are essential in building design to predict energy consumptions. In this 

study, EnergyPlusV8.6.0, developed by the U.S. Department of Energy (DoE, 2016) is 

used. EnergyPlus is a building energy simulation program that calculates the heating and 

cooling loads necessary to keep the thermal control set points throughout the HVAC 

system. The building thermal zone calculation is a based-on heat balance model as shown 

in Equation 4-5 that uses the following assumptions: the air in the thermal zone has a 

uniform temperature; the temperature of each surface is uniform; the surface irradiation is 

diffusive, and the heat conduction through the surfaces is one-dimensional. 

𝐶𝑧

𝑑𝑇𝑧

𝑑𝑡
= ∑ 𝑄𝑖

𝑁𝑖

𝑖=1

+ ∑ ℎ𝑖𝐴𝑖(𝑇𝑠 − 𝑇𝑎) + ∑ 𝑚𝑖𝐶𝑝(𝑇𝑖 − 𝑇𝑎)

𝑁𝑧𝑜𝑛𝑒

𝑖=1

+ �̇�𝑖𝑛𝑓𝐶𝑝(𝑇∞ − 𝑇𝑎) + �̇�𝑠𝑦𝑠𝐶𝑝(𝑇𝑠𝑢𝑝 − 𝑇𝑎)

𝑁𝑠𝑢𝑟𝑓.

𝑖=1

 

Equation 4-5 

where 𝐶𝑧
𝑑𝑇𝑧

𝑑𝑡
 is heat stored in the air, ∑ 𝑄𝑖

𝑁𝑖
𝑖=1  is the sum of convective internal loads, 

∑ ℎ𝑖𝐴𝑖(𝑇𝑠 − 𝑇𝑎)
𝑁𝑠𝑢𝑟𝑓.

𝑖=1
 is the convective heat transfer from the zone surface,  

∑ 𝑚𝑖𝐶𝑝(𝑇𝑖 − 𝑇𝑎)𝑁𝑧𝑜𝑛𝑒𝑠
𝑖=1  is the heat transfer due to inter-zone air mixing, �̇�𝑖𝑛𝑓𝐶𝑝(𝑇∞ − 𝑇𝑎) 

is heat transfer due to infiltration of outside air, and �̇�𝑠𝑦𝑠𝐶𝑝(𝑇𝑠𝑢𝑝 − 𝑇𝑎) is the air system 

in and out.The correlations used in the EnergyPlus simulations are DoE-2, MoWiTT, 

TARP, and new-CHTC for external convective and TARP for internal convective. The 

energy consumption of a high-rise building using the existing-CHTC is compared with 

evaluations based on the new-CHTC correlations.  These comparative studies are carried 

out for case studies where the study building is exposed to two different weather conditions 

located in two different cities. The buildings exposed to different wind speeds are 

considered. The first case study analyzes the building located in London, ON, which is 
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located at 42.90 north latitude, 81.20 west longitude, and at an altitude of 251 m. The annual 

average wind speed is 3.8 m/s, and the annual average temperature high is 130C and the 

low is 30C. In the second case study, the building is located in Boston, MA, which is located 

at 42.20 north latitude and 71.030 west longitude and an altitude of 43 m. The annual wind 

speed is 5.5 m/s, and the annual average temperature high is 150C and the low is 70C. 

Weather data from a typical metrological year (TMY) is used in the building energy 

simulation for both London, ON, and Boston, MA. The TMY consists of hourly data that 

includes ambient temperature, relative humidity, wind speed and direction, solar radiation, 

cloud cover and other metrological data over a year. The TMY weather data is available at 

the National Renewable Energy Laboratory, U.S. Department of Energy. For both study 

cases, different window configurations, i.e. 40% WWR and 100 % WWR have been 

considered. Rooms located in different parts of the building are investigated to assess the 

effects of wind flow around a building (aerodynamics). The representative floors are placed 

at the 1st, 5th, 10th, 15th, 20th, 25th, and 30th floor of the building, at the corner and center of 

one side of the building. Rooms in the corner-zone are oriented to south and west direction 

while rooms at the center-zone are oriented to south only as illustrated in Figures 1 and 2. 

Each room has a size of 10 m in width, 10 m in length, and is 3.33 m high. A total of 448 

simulations is performed to cover the case studies illustrated in Table 4-3. 

Table 4-3: Case studies 

Building 

location 

Window 

configuration 

Room 

location 

 

Model room floor 

 

CHTC correlations 

 

 

London, ON  

 

40WWR  

Corner  

 

 

1st, 5th, 10th, 15th, 

20th,25th, and 30th  

 

 

 

 

DoE-2, MoWiTT,  

TARP, and New-CHTC 

Center 

 

100WWR 

Corner 

Center 

 

Boston, MA. 

 

40WWR 

Corner 

Center 

 

100WWR 

Corner 

Center 
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4.3.1 Building envelope description: 

The schematic diagram of the buildings, which are considered for energy simulation, is 

illustrated in Figures 1 and 2. The building is made of lightweight construction and has 

dimensions of 30 m width, 40 m length, and 100 m height. The case where the building 

has a 40% window-to-wall ratio on the south wall and west wall also has two identical 

windows with dimensions of 3.3 m width and 2 m height. The exterior walls consist of 19 

mm thick gypsum board on the interior, followed by a 13 mm wall airspace, and then a 128 

mm thick insulation panel with 1.5 mm thick metal cladding on the exterior. The roof 

consists of a 19 mm thick gypsum board, followed by a 650 mm thick fiberglass quilt, 

finally 100 mm thick concrete on top. The floor slab is composed of 100 mm thick concrete, 

followed by 100.3 mm insulation, and 19.1 mm thick acoustic tile.  The partition wall is 

composed of 19 mm thick of gypsum board, followed by 15 mm partition airspace, and 19 

mm thick gypsum board. The physical and thermal properties of all these materials are 

presented in Table 4-4. 

4.3.2 Boundary conditions and building operating conditions 

The exterior boundary conditions for the walls and roof are generated from the weather 

data file while a constant 100C ground temperature is assumed for the floor. The building 

is assumed to operate with a continuous ventilation rate of 0.5 ACH (air-exchange per 

hour), and constant internal sensible heat gain of 800 W; 60% of the total heat gain is 

assumed to be radiative and the remaining 40% is convective. It is assumed that all units 

are maintained at the same temperature so that there is no heat exchange between units and 

adiabatic boundary conditions are enforced. This assumption is valid for all units except 

the top and bottom floors. An ideal loads air system is used to control the temperature in 

the rooms. The room is equipped with a 10 W/m2 compact fluorescent lamp (CFL) lighting 

system. Moreover, the model has a day-lighting controller sensor to automatically dim the 

lighting system with a threshold of 500 lx. When illuminance surpasses 500 lx, artificial 

lighting is not required, and the lighting system turns off. The cooling and heating set-

points are 200C and 240C. A generic office occupancy of 0.05 people/m2 with an activity 

schedule of 8 am to 7 pm on workdays is considered.        



104 

 

Table 4-4: Thermophysical properties of materials that make up the building. 

 

Materials 

Thermal 

conductivity 

(W/m K) 

 

Thickness 

(m) 

Thermal 

resistance 

(m2 K/W) 

 

Density 

(Kg/m3) 

Specific heat 

capacity (J/Kg K) 

Exterior wall assembly 

Metal clad 44.96 0.0015 3.33x10-5 7688.86 410 

Wall insulation 0.045 0.128 2.85 265 836 

Wall airspace  0.013 0.15   

Gypsum board 0.16 0.019 0.11875 800 1090 

Insulated glass unit cladding 

Clear-glass 0.9 0.006 0.0067 2500 800 

Window 

airspace 

 0.013 0.15   

Clear-glass 0.9 0006 0.0067 2500 800 

Partition wall 

Gypsum board 0.16 0.019 0.11875 800 1090 

Partition 

airspace 

 0.013 0.15   

Gypsum board 0.16 0.019 0.11875 800 1090 

Ceiling 

Heavy weight 

concrete 
1.95 0.1 0.051 2240 

900 

Ceiling air 

resistance 

  
0.15  

 

Acoustic tile 0.06 0.0191 0.32 368 590 

Floor  

Heavy weight 

concrete 
1.95 0.1 0.051 2240 900 

Insulation 0.04 0.1003 25.075   

Acoustic tile 0.06 0.0191 0.32 368 590 

Roof 

Heavy weight 

concrete 
1.95 0.1 0.051 2240 900 

Fiberglass quilt 0.040 0.65 16.25 12.0  

Gypsum board 0.16 0.019 0.11875 800 1090 

 

4.3.3 Results and discussions 

A comparison between the energy consumption of a building using the existing- and new-

CHTC is performed using EnergyPlus to quantify the impact that building geometry and 
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microclimate changes with height on the annual energy consumption. The energy 

consumption deviation using the coefficients is calculated as shown in Equation 4-6. The 

evaluation approach is based on an analytical verification and comparative diagnostic 

procedure of the International Energy Agency (IEA) building energy simulation test 

(BESTEST) of whole-building energy simulation (Judkoff and Neymark, 1995).                                                                                           

               𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 (%) = 100 𝑥 
𝐸𝐸𝑥𝑖𝑠𝑡𝑖𝑛𝑔_𝐶𝐻𝑇𝐶 − 𝐸𝑁𝑒𝑤_𝐶𝐻𝑇𝐶

𝐸𝑁𝑒𝑤_𝐶𝐻𝑇𝐶
                         Equation 4-6 

Comparison between the new and existing-CHTC on annual energy consumption is 

illustrated in Figures 10 to 13.  It is important to note that the default correlation used in 

EnergyPlus program is DoE-2, thus, the average deviations between the DoE-2 and the 

new-CHTC correlation are presented while a comparison to other correlations is 

summarized in tabulated form below. Considering the first case study, when a building that 

has 40% WWR is exposed to London, ON weather conditions, the deviation between the 

existing- and the new-CHTC show insignificant deviations. For instance, rooms located at 

the corner and center zone of the building on the 1st, 5th,10th, 15th, 20th, 25th, and 30th floors 

show an average annual heating energy consumption deviation of 1.78% and 1.53%, 

respectively.  For the annual cooling energy consumption, a deviation of 1.54% and 1.71% 

was seen respectively in Figure 4-9.  
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Figure 4-9: Annual energy consumption for a building located in London, ON with 

40% WWR:  a) corner-zone rooms heating b) corner-zone rooms cooling c) center-

zone rooms heating, and d) center-zone rooms cooling 

However, for the case of a building having a 40% WWR and exposed to the Boston, MA 

weather conditions, a higher deviation is observed. This is due to the intense winds in 

Boston, MA compared to London, ON.  For the selected rooms, in the 1st, 5th,10th, 15th, 

20th, 25th, and 30th floor, at the corner-zone and the center-zone of the building, an average 

deviation on annual heating energy consumption reached 2.82% and 3.54%, respectively. 

Whereas the annual cooling energy consumption deviation reached 2.53% and 3.02%, 

respectively as shown in Figure 4-10. The comparison between the existing- and new-

CHTC correlations for the chosen floors are summarized in Table 4-5 for average 

deviations and Table 4-6 for local deviations. 
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Figure 4-10: Building located in Boston, MA for the case of 40%WWR, the annual 

energy consumption for a) corner-zone rooms heating b) corner-zone rooms cooling, 

c) center-zone rooms heating, and d) center-zone rooms cooling 

Table 4-5 gives a summary of the absolute average deviation results of the heating and 

cooling loads of buildings located in London and Boston for the case of 40%WWR. 

Overall, due to the small window size and the higher thermal resistance of the opaque wall, 

on average lesser deviations on the CHTCs correlations are seen. Table 4-5 shows that for 

individual rooms, for instance, the 5th floor, a deviation of 4.4% and 3.7% on heating and 

cooling, respectively, is observed.  

Table 4-5: Absolute annual average deviation of the heating and cooling load for a 

building with 40% WWR 

Existing-

CHTC 

correlation 

London, ON 

40% WWR 

corner-zone 

London, ON 

40% WWR 

center-zone 

Boston, MA 

40% WWR 

corner-zone 

Boston, MA 

40% WWR 

center-zone 

Heating Cooling Heating Cooling Heating Cooling Heating Cooling 

DoE-2 1.78% 1.54% 1.53% 1.71% 2.82% 2.35% 3.54% 3.02% 

MoWiTT 1.64% 1.26% 1.30% 1.45% 2.69% 2.22% 3.27% 1.88% 

TARP 2.25% 2.83% 1.85% 2.38% 1.87% 1.89% 1.37% 2.06% 
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Table 4-6: Absolute annual deviation of the heating and cooling load between DoE-2 

and new-CHTC for a building with 40% WWR. 

 

 

Floors 

London, ON 

40% WWR 

corner-zone 

London, ON 

40% WWR 

center-zone 

Boston, MA 

40% WWR 

corner-zone 

Boston, MA 

40% WWR 

center-zone 

Heating Cooling Heating Cooling Heating Cooling Heating Cooling 

5th floor 2.1% 1.8% 2.2% 2.6% 4.1% 2.6% 4.4% 3.7% 

15th floor 1.9% 1.7% 1.5% 1.8% 2.2% 2.4% 3.8% 3.8% 

25th floor 1.7% 1.6% 1.2% 1.4% 2.9% 2.3% 3.1% 3.3% 

Considering the second case study where a building has 100% WWR, a higher deviation 

between the existing- and the new-CHTC correlations are observed in both exposures, as 

illustrated in Figures 11 and 12. For instance, considering a building exposed to the 

London, ON weather conditions, and for rooms that are located in the corner and center 

zones of the 1st, 5th,10th, 15th, 20th, 25th, and 30th floors of the building, the annual average 

heating energy consumption deviated by 3.84% and 5.44%, respectively. Whereas, the 

average annual cooling energy consumption deviated by 3.35% and 3.94%, respectively. 

However, considering individual rooms such as the 5th floor, a deviation of 7.1% and 4.1% 

on heating and cooling, respectively, is observed.  
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Figure 4-11: Building located in London, ON, for the case of 100% WWR, annual 

energy consumption for a) corner-zone rooms heating b) corner-zone rooms cooling, 

c) center-zone rooms heating d) center-zone rooms cooling 

Further, significant deviations on the annual average energy consumption of a building are 

observed when the building with 100% WWR is exposed to Boston’s windy environment. 

For instance, for the case of a building exposed to the Boston, MA, weather condition, 

where rooms are located on the 1st, 5th,10th, 15th, 20th, 25th, and 30th floors in the corners 

and center of the building, a deviation of 5.68% and 8.53% of the average annual heating 

energy consumption is observed, respectively. Whereas, a deviation of 3.9% and 3.84% on 

annual average cooling energy consumption, respectively, is observed. However, 

considering individual rooms such as the 15th floor, a deviation of 11.2% and 4.7% on 

heating and cooling, respectively, is observed. Details on the comparison between the 

existing- and new-CHTC correlations for the chosen floors and are summarized in Table 

4-7 for average deviations and Table 4-8 for local deviations. 
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Figure 4-12: Building exposed to Boston, MA, weather condition for the case of 

100% WWR, annual heating energy consumption for a) corner-zone rooms b) 

center-zone rooms, annual cooling consumption for c) corner-zone rooms d) center-

zone rooms 

Table 4-7: Annual average deviation of heating and cooling load for a building with 

100% WWR. 

Existing-

CHTC 

correlations 

London, ON 

100% WWR 

Corner -zone 

London, ON 

100% WWR 

Center-zone 

Boston, MA 

100% WWR 

Corner-zone 

Boston, MA 

100% WWR 

Center-zone 

Heating cooling Heating Cooling Heating cooling Heating Cooling 

DoE-2 3.84% 3.35% 5.44% 3.94% 5.64% 3.9% 8.53% 3.84% 

MoWiTT 3.61% 3.09% 5.22% 3.34% 5.51% 3.8% 8.28% 3.73% 

TARP 2.13% 2.08% 1.91% 1.46% 2.84% 1.86% 2.94% 1.71% 
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Table 4-8: Absolute annual deviation on heating and cooling load between DoE-2 

and new-CHTC for a building with 100% WWR. 

 

 

Floors 

London, ON 

100% WWR 

corner-zone 

London, ON100% 

WWR 

center-zone 

Boston, MA 

100% WWR 

corner-zone 

Boston, MA 

100% WWR 

center-zone 

Heating Cooling Heating Cooling Heating Cooling Heating Cooling 

5th floor 5.1% 3.4% 7.1% 4.1% 7.7% 3.7% 10.6% 4.7% 

15th floor 4.9% 3.5% 6.9% 4.1% 6.5% 4.9% 11.2% 4.7% 

25th floor 4.33% 3.3% 4.1% 3.0% 5.8% 4.7% 7.2% 3.9% 

Therefore, for a building with a curtain wall exposed to a windy environment such as that 

located in Boston, MA, higher deviations of the CHTC coefficients are observed. These 

deviations are highly noticeable when comparing individual rooms. Hence, the existing-

CHTC correlations are very sensitive to the local microclimate such as wind effects. 

4.3.4 Multiplier effect on high-rise building energy consumption 

The common practice in energy simulation for high-rise buildings is to select and simulate 

only a few representative floors and then multiply the results by a factor to estimate the 

energy consumption of the entire building. Previous studies by Ellis and Torcellini (2005) 

have recommended that rooms located at mid-height will closely approximate the average 

energy consumption of the entire building. However, the main problem with the multiplier 

approach is that it can decrease the accuracy of the thermal comfort requirement of 

individual rooms, as this approach may not capture the average-energy consumption 

variation between the rooms in the bottom and top floors of the building as well as corner 

and center zones.  
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Table 4-9: Absolute deviations of annual energy consumption for room positioned at 

the center-zone of the building. 

 

Location of 

building  

 

Window 

configuration 

Mid-height (15th floor) 

deviation from 5st -floor room 

Mid-height (15th floor) 

deviation from 25st -floor room 

Heating Cooling Heating Cooling 

London, ON 40% WWR 5.7% 5.8% 2.6% 3.9% 

100% WWR 2.8% 2.3% 3.4% 2.7% 

Boston, MA 40% WWR 8.1% 5.9% 2.0% 3.4% 

100% WWR 7.8% 1.0% 7.6% 3.2% 

In the present study, significant deviations in the energy consumption between the mid-

height (15th) and the 5th and 25th floors are observed. For instance, the middle floor of a 

building exposed to Boston, MA, weather condition and having 100%, WWR has an 

additional 7.8% average annual heating compared to the 5th floor. Whereas compared to 

the 25th floor, the average annual heating decreased by 7.6%. A summary of the details of 

these comparisons is presented in Table 4-9. Therefore, the use of a representative floor at 

the mid-height of the building may lead to a variation in the estimation of the annual energy 

consumption of individual rooms. Consequently, this can lead to thermal discomfort and 

unexpected surface condensation on surfaces at the individual room level. Accordingly, 

multiple representative floors should be selected based on the CHTC distribution on the 

surface of the building using CFD analyses.  

4.4 Conclusion 

During the early design stages of high-rise building numerical analyses of the energy 

consumption of the building is an effective strategy to achieve energy efficiency. However, 

high-rise buildings pose unique challenges for BES programs. A few of these limitations 

of BES include the size of the building, the changes in a microclimate with altitudes, and 

the uncertainties regarding the correlation of the existing convective heat transfer 

coefficients (CHTC). Introducing CFD and heat transfer simulations help solve these issues 

and improve the current BES. In this study, a 100 m tall isolated building is investigated 

as a case study for two different weather condition (Boston, MA, and London, ON). First, 

a new-CHTC correlation is developed that considered for a high-rise building for different 
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wind speed by using CFD and heat transfer simulations. Then, EnergyPlus simulations are 

carried out by using the new and existing-CHTC correlations to comparatively illustrating 

the impact of aerodynamics on energy consumption, and the following conclusions can be 

drawn: 

• The existing-CHTCs correlations are more sensitive to windy environments such as in 

Boston MA than to the calmer weather in London, ON. For the case of a building 

located in London, ON, having rooms located in the 1st, 5th,10th, 15th, 20th, 25th, and 30th 

floors and positioned at the center-zone of the building, a deviation of 5.44% on heating 

and 3.94% on cooling is observed. However, for a building located in Boston, MA, a 

deviation of 8.53% on heating and 3.84% on cooling is observed.  

 

• As the WWR is increased, a higher deviation between the new-CHTC and the existing-

CHTC correlations are observed. For instance, considering a building exposed to 

Boston, MA, weather condition, a room located on the 5th floor at the center-zone of 

the building, and for the case of 40% WWR, a deviation of 4.4% on heating and 3.7% 

on cooling is observed; however, as the WWR increases to 100%, a deviation of 10.6% 

on heating and 4.7% on cooling is observed.  

 

• Using a representative room located at the mid-height of a building as a multiplier may 

lead to thermal discomfort in individual rooms located on other zones. For instance, for 

the case of a building with 40% WWR exposed to Boston, MA, weather condition, the 

energy consumption difference between the representative and the 5th floor and 25th 

floor was compared. This comparison showed that the annual heating consumption of 

the representative mid-height room is 7.8% higher than the 5th floor room. However, 

compared to the 25th floor room, the annual heating consumption 7.6% lower. Thus, 

the use of a representative floor or multiplier at mid-height can have a significant 

impact on the local thermal comfort of each room and may lead to unexpected surface 

condensations. 

It is fair to say that case-specific CFD and heat transfer simulation can be used to generate 

CHTC for each room of a high-rise building in a relatively simple and accurate way that 
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could result in an accurate building energy consumption analysis. Further studies can 

optimize window configurations based on the local-CHTC distributions and needs for 

thermal comfort of individual rooms by representing the urban microclimate in a realistic 

way. 
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Chapter 5  

5 Effect of window configuration on the convective heat 
transfer rate of a window with natural convective heater 

5.1 Introduction 

The amount of energy consumed in a building through heating, cooling, and lighting can 

be lost in different ways through the façade components. The study by Lee et al. (2013) 

has shown that about 20% - 40% of energy in a building is wasted through windows. The 

energy performance of a building is therefore strongly influenced by its window systems 

and configuration. Windows provide daylight, view, and fresh air to occupants; hence, it 

plays a crucial role both in the energy exchange of the building as well as the occupant’s 

psychological satisfaction. Windows are configured on buildings in different forms as 

illustrated in Figure 5-1.  

 

Figure 5-1: Window configuration examples: a) horizontal rectangular, b) vertical 

rectangular, c) square, and d) circular 

Previous studies by Greenup & Edmonds (2004); Tzempelikos (2005); Ghisia et al. (2005); 

Ochoa et al. (2012), Kahsay et al. (2017) have shown that design and selection of a proper 

window system is one of the essential passive strategies for saving energy in buildings. 

Choosing a window system and its corresponding configuration is a fundamental decision 

in the early design stage, which is costly to change later. ASHRAE standard 90.1 provides 

a guideline on the Window-to-Wall Ratio (WWR) stating that: “the total vertical window 

area shall be less than 40% of the gross wall area”. While very useful and pragmatic, this 

general guideline on the WWR does not provide any explicit way to evaluate whether a 
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given WWR size will give satisfactory results regarding thermal and lighting performance 

for different window configurations having the same WWR. For example, consider the 

following four window configurations as shown in Figure 5-2 that have the same area 20% 

WWR. Since the design and selection of a proper window system is one of the most 

effective strategies for conserving the energy of a building, it is important to determine 

which of the four window configurations more energy efficient and thermally comfortable 

is.  

 

Figure 5-2: Model window configurations with 20% Window-to-Wall Ratio (WWR) 

that represent a) horizontal rectangular b) vertical rectangular c) square, and  d) 

circular. 

In winter, outdoor environmental conditions primarily influence the indoor surface 

temperature of the window, and this leads to a temperature gradient in the indoor 

environment that induces a downdraft and affects the thermal comfort of occupants. This 

phenomenon is sensitive to the configuration and the location of windows. Although it is 

well understood that high-performance windows can reduce building energy consumption, 

a better understanding of the effects of window configuration on thermal comfort would 

lead to further savings. 

Window's effect on thermal comfort varies during summer and winter, which is governed 

by the U-factor (the overall heat transfer coefficient including surface film thermal 

resistance), visual transmittance, and solar heat gain coefficient of the window and the 

temperature difference between indoor and outdoor. The existing guidelines, such as 

ASHRAE handbook in the Fenestration chapter (ASHRAE, 2017) offers basic guidance 
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about windows and comfort. The guideline suggests that “In heating-dominated climates, 

windows with the lowest U-factor tends to give the best comfort outcomes…In cooling-

dominated climates for orientations where cooling loads are of concern, window with 

lowest rise in the surface temperature for a given SHGC tends to give the best comfort 

outcomes.” However, this may not provide an accurate way to evaluate window 

configurations and their corresponding thermal comfort rating. Further, it does not refer to 

the full range of modern products such as Low-E glazing and the current standard in high-

performance glazing systems (Lyons et al., 2000). Despite such recognition on the thermal 

discomfort, there is no standard method to quantify the extent of the discomfort. To 

counteract the draft effect and increase the indoor thermal comfort and reduce possible 

window condensation risk, convective heaters are often mounted below the window in 

buildings. This alters the airflow patterns, temperature distributions near the window and 

the rate of convective heat transfer on the window.   

Based on the fundamental principles of the downdraft, when the window temperature is 

low; indoor air near the window loses heat by convective heat exchange. The cooler air 

downpours to the floor. This forms a cold air layer near the floor as illustrated in Figure 5-

3a. The local cooling effect caused by air movement can create thermal convective 

discomfort. However, as the convective heater temperature increases, the flow pattern of 

the downdraft is pushed up from the floor. This behavior of the airflow field and its 

sensitivity to the configuration of windows numerically investigated in this study.  

The effect of different window configurations on the energy performance of a building are 

examined using the fundamentals of a vertical heated plate, experimentally (Churchill and 

Chu, 1975), analytically (Eckert and Jackson, 1950) and numerically (Zitzmann et al., 

2005). In addition, several studies have investigated flow near window-wall heater systems 

(Oosthuizen, 2011; Oosthuizen & Naylor, 2009). Although there have been many studies 

of flow near window-wall heater systems, most of these studies are two-dimensional and 

based on the assumption that the flow remains laminar and steady. There are limited studies 

that consider both laminar and turbulent flows (Oosthuizen, 2011). In most of the previous 

studies, only one window configuration was considered. Studies on the effect of different 

window configurations on the convective thermal discomfort, and convective heat transfer 
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rate are very limited. Therefore, the present study aims at investigating the influence of 

different window configurations on the indoor convective thermal discomfort and 

convective heat transfer rate of a window. For this purpose, an approximate numerical 

model of the convective heat transfer for various window shapes below which a natural 

convective heater is mounted is considered.  

 

Figure 5-3: Cold downdraft from window a) without a convective heater and b) with 

convective heater below a window. 

The heater and the window are modeled as isothermal plane boundaries; the window is 

colder than the room air temperature, and the heater is hotter than the room air temperature. 

The sensitivity of window Nusselt number and room temperature distributions to various 

window configurations have been examined. Parameters investigated in this study include 

the window configuration and heater temperature. The results are discussed and compared 

with previous analytical, numerical, and experimental works whenever applicable. 

The remaining sections of the chapter are organized as follows: section 2 provides 

validation of CFD simulations with previous experimental and computational studies on 
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vertical isothermal planes. Section 3 describes the details of the simulation and the 

parameters included in the computational fluid dynamics and heat transfer model. Section 

4 presents result and discusses, and finally, section 5 concludes the chapter. 

5.2 CFD validation study 

5.2.1 Experimental data for validation 

To validate the numerical study, an experimental data by Churchill & Chu (1975) and 

numerical data by Oosthuizen (2011) for flow over a vertical heated isothermal plate is 

used. In this experiment, the Nusselt number for the entire Rayleigh number (Ra = 107-

1012) range- laminar, transition, turbulent -natural convective are evaluated.  

The heat transfer rate from a vertical wall in the presence of turbulence in the boundary 

layer has been measured experimentally and correlated as a function, 𝑁𝑢𝑦
̅̅ ̅̅ ̅̅ (𝑅𝑎𝑦, 𝑃𝑟), 

where 𝑅𝑎𝑦 is Rayleigh number, 𝑃𝑟 is Prandtl number, and  𝑁𝑢𝑦
̅̅ ̅̅ ̅̅  is an alternative notation 

for overall Nusselt number 𝑁𝑢0−𝑦 (Bejan, 2013). An empirical isothermal-wall correlation 

that relates the wall averaged Nusselt number 𝑁𝑢𝑦
̅̅ ̅̅ ̅̅  for the entire Rayleigh number range –

laminar, transition, turbulent-was constructed by Churchill & Chu (1975) as presented in 

Equation 5-1. 

                                     𝑁𝑢𝑦
̅̅ ̅̅ ̅̅ = {0.825 +

0.387𝑅𝑎𝑦
1/6

[1+(0.492/Pr)9/16]
8/27}

2

                      Equation 5-1 

where 𝑁𝑢𝑦
̅̅ ̅̅ ̅̅   is surface averaged Nusselt number, 𝑅𝑎𝑦 is the Rayleigh number, y is window 

vertical height, and Pr is ratio of viscosity diffusion rate to thermal diffusion rate (𝑃𝑟 =

(𝐶𝑝 𝜇)/𝑘). The physical properties used in the definition of 𝑁𝑢𝑦
̅̅ ̅̅ ̅̅ , 𝑅𝑎𝑦 and Pr are evaluated 

at the film temperature (𝑇𝑤 − 𝑇𝑎) 2⁄  (Bejan, 2013). The boundary layer flow remains 

laminar if y is small enough so that the Rayleigh number 𝑅𝑎𝑦 does not exceed a critical 

value. The transition to turbulent flow occurs at a y position where 𝑅𝑎𝑦~109𝑃𝑟 

where (10−3 ≤ 𝑃𝑟 ≤ 103).  
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5.2.2 Numerical model for validation case 

To validate the wall-averaged Nusselt number with the empirical correlation of Churchill 

and Chu (1975), a computational domain (see Figure 5-4) that represents a two-

dimensional heat transfer in a vertical isothermal window is used. In this study, the vertical 

right-side boundary is an open boundary, and the inflow on this boundary has a constant 

air temperature of 𝑇∞ (290 K). The wall is assumed adiabatic to isolate the window effects 

and the window is uniformly fixed at 𝑇𝑤 (310 K) as shown in Table 5-1.  The Nusselt 

number is evaluated for laminar, transition to turbulent regimes.  

 

Figure 5-4: Model boundary conditions 

Table 5-1: Boundary conditions 

Name Boundary conditions 

Wall Adiabatic* (u= v=0, q=0) 

Window Tw = 310 K (isothermal) 

Outlet Pressure outlet, 𝑇∞ = 290 K 

                          *u and v are velocities and q is a heat flux 

x y 
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In this study, a high-resolution, steady Reynolds-Averaged Navier-Stokes (RANS) CFD 

simulations using Shear Stress Transport (SST) 𝑘 − 𝜔 Low Reynolds number modeling 

(LRNM) approach has been used to resolve the near-wall heat transfer in conjunction with 

the buoyancy force. The buoyancy force is what causes the fluid motion in free convection. 

In addition, fluid properties are treated as constant values, except when changes in 

temperature lead to changes in density and the development of a buoyancy force. In other 

words, this scenario is treated using the Boussinesq approach. The simulations are 

conducted using a commercial CFD solver (STAR-CCM+ v.11.06.11, 2018) and the 

SHARCNET (www.sharcnet.ca) high-performance computing (HPC) facility at Western 

University. 

The solution is obtained by numerically solving the full two-dimensional governing 

equations. In this analysis, the height of the window, h, is used as the length scale and the 

magnitude of the overall temperature difference  |(𝑇𝑤 − 𝑇𝑎)| is used as the temperature 

scale. These parameters show the same essential characteristics for all cases of window 

configurations. The effect of the radiative heat transfer has been excluded. The governing 

equations are (Equation 5-2 – Equation 5-4): 

Continuity: 

                                                 
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0                                                      Equation 5-2 

Momentum in the y-direction: 

               𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= −

1

𝜌

𝜕𝑝

𝜕𝑥
+ 𝜗 (

𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2) + 𝛽𝑔(𝑇 − 𝑇𝑎)                        Equation 5-3 

Energy: 

                             𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
= 𝑘

𝜌𝐶𝑝
⁄ (

𝜕2𝑇

𝜕𝑥2 +
𝜕2𝑇

𝜕𝑦2)                                        Equation 5-4 

where 𝐶𝑝 is specific heat capacity of air, 𝛽 is volumetric thermal expansion coefficient, g 

is gravitational acceleration, h, is window height, and 𝜗 is kinematic viscosity of air. 

Density changes, due to temperature variation in a fluid at constant pressure, are 

http://www.sharcnet.ca/
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represented by 𝛽 the volumetric thermal expansion coefficient (Equation 5-5), which is a 

thermodynamic property of a fluid: 

                                                      𝛽 = −
1

𝜌
(

𝜕𝜌

𝜕𝑇
)

𝑝
                                             Equation 5-5 

It should be noted that the Boussinesq approximation could only be used when the 

temperature variation in the solution domain is not significant (Equation 5-6). 

                                                             𝛽(𝑇 − 𝑇𝑎) ≪ 1                                     Equation 5-6 

5.2.3 Grid sensitivity analysis 

The quality of the mesh has a significant effect on the accuracy of the results that are 

obtained from the simulation. Accordingly, the computational domain is discretized using 

polyhedral control volumes with a refined grid near the vertical heated plate “window” 

interior surfaces. Three levels of grid density with G1 (24,000 cells), G2 (34,090 cells), 

and G3 (52,400 cells) as illustrated in Figure 5-5 is used to assess the grid independence 

and to ensure that the optimum mesh size and computational accuracy for Low Reynolds 

Number Modeling (LRNM) simulations are met. The control volume is located close to 

the window where fine grids are deployed to capture essential details of the temperature 

gradients near the window and the flow structures.  

 

Figure 5-5: Grid distribution resolution and sensitivity analysis 
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On the surfaces of the window, a viscous boundary layer with 10 grid layers is generated. A 

stretching factor of 1.05 is used to resolve the boundary layer at all solid-fluid interfaces of 

the computational domain. Low-Reynolds number modeling (LRNM), Shear Stress Transport 

k-ω (SST k-ω) turbulence model, has been used in the present work. The LRNM requires a 

very high grid resolution near the wall that is computationally expensive.  

The simulation has employed a grid with cell centers at a minimum distance of 120 𝜇m from 

the window surface to resolve the entire boundary layer, including the viscous sublayer and 

the buffer layer, that dominate the convective heat resistance. For a grid independence study 

of G1 (coarse), G2 (medium) and G3 (fine), a Nusselt number on the surface of the window 

is compared. The similarly of the results from grid distribution of G3 (fine) and G2 (mean) 

confirmed that results are independent of the grid sizes as shown in Figure 5-6. 

Conservatively, the grid distribution of G3 has been adopted in the reminder of the study. 

Convergence is assumed when all the scaled residuals level off and reach the values 10-7 for 

x, y, z-momentum and energy, 10-5 for continuity and 10-6 for 𝑘 and ε. 

 

Figure 5-6: Grid sensitivity analysis: variation of Nusselt number along the window 

height. 
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5.2.4 Validation of CFD in comparison with experimental results 

For validation, a computationally evaluated average Nusselt number is compared to a 

vertical centerline with experimental and previous computational results (see Figure 5-7). 

Since the property of air is considered constant except for the density, the approximate 

value of air is calculated to be Pr is 0.7. The range of the study includes laminar cases that 

exist at lower Rayleigh number, and turbulent flow that exists at the higher Rayleigh 

number. The solution parameters are 𝑁𝑢̅̅ ̅̅
𝑤 and 𝑅𝑎𝑤, where 𝑁𝑢̅̅ ̅̅

𝑤 is the mean Nusselt 

number based on the reference window height (Equation 5-7). 

                                                              𝑁𝑢̅̅ ̅̅
𝑤 =

𝑞𝑤
,̅̅ ̅̅  ℎ𝑤

𝑘(𝑇𝑎−𝑇𝑤)
                                   Equation 5-7 

where 𝑞𝑤
,̅̅̅̅  is the mean heat transfer rate from the window surface, ℎ𝑤 is window height, k, 

is thermal conductivity of air, 𝑇𝑎 , is room air temperature, and 𝑇𝑤, window temperature. 

The window Rayleigh number is expressed in the following Equation 5-8 – 5-10. 

 

                             𝑅𝑎𝑤 = 𝑃𝑟. 𝐺𝑟 =  
𝐶𝑝𝜇

𝑘
(

𝛽𝑔(𝑇𝑤−𝑇𝑎)ℎ𝑤
3

𝜗2 )                                  Equation 5-8 

                                            𝑃𝑟 =
𝐶𝑝𝜇

𝑘
                                                                Equation 5-9 

                                            𝐺𝑟 =
𝛽𝑔(𝑇𝑤−𝑇𝑎)ℎ𝑤

3

𝜗2                                                Equation 5-10 

where Gr is Grashof number, 𝜇 is the dynamic viscosity of air, 𝐶𝑝 is the specific capacity 

of air, 𝛽 is volumetric thermal expansion coefficient, g is gravitational acceleration, and 𝜗 

is kinematic viscosity of air. The numerical results obtained in the present study for the 

case of a vertical heated window are in good agreement with experimental measurements 

of Churchill & Chu (1975) and previous numerical study of Oosthuizen (2011). The 

computational results are similar in the lower laminar region where the values gradually 

increase until the transition region. The computational results give lower values in the 

turbulent region than the experimental correlation; however, the overall average deviation 

is less than 10%. 
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Figure 5-7: Comparison of experimental and numerical results of window Nusselt 

number for Rayleigh number 

Therefore, the Nusselt number determined from the CFD numerical simulation can be 

relied upon with confidence. The same set of parameters will be used in the next full-scale 

3D computational section. 

5.3 Numerical evaluation of thermal comfort and 
 convective heat transfer rate  

5.3.1 Computational domain 

In this study, an office room of 4 m width, 3 m depth, and 2.5 m height is considered as a 

computational domain as illustrated in Figure 5-8. Four different window configurations 

are evaluated having the same 20% WWR (Figure 5-9).  The basic situation considered in 

the present study is an approximate model of most typical cases of window configurations. 

As shown in Figure 5-8, the heater width has been assumed greater than the window width, 

which leads to a complex three-dimensional flow near the vertical edges of the window. 

The presence of the heater below the window alters the flow and temperature distributions. 

Hence, the main focus of this study is to investigate the lowest heater temperature that 
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ensures the cold downward flow from the window is diverted away from the floor by the 

hot upward flow from the heater for different window configurations.  

 

Figure 5-8: Computational domain for horizontal rectangular window configuration 

 
a) 

Heater 

Windo

w 

Wall 
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Figure 5-9: Schematic of physical models used for parametric study a) horizontal b) 

vertical c) square, and d) circular 

5.3.2 Boundary condition 

In this study, only natural convection heat transfer is considered. Thus, to isolate the 

window effect, the heater and the window are modeled as plane isothermal boundaries, the 

window being colder, and the heater is hotter than the room air temperature as shown in 

Table 5-2. In the computational domain, the velocity is assumed zero on all the walls. The 

vertical right-side boundary is an open boundary, the inflow on this boundary is assumed 

to be constant air temperature, 𝑇𝑎, and walls are assumed to be adiabatic. The dimensionless 

heater temperature (𝜃) is expressed as in Equation 5-8. 

                                           𝜃 =
(𝑇ℎ−𝑇𝑎)

(𝑇𝑎−𝑇𝑤)
                                                           Equation 5-11 

where 𝑇ℎ is heater temperature, 𝑇𝑎 is room air temperature, and 𝑇𝑤 is window temperature. 

Table 5-2: Boundary conditions 

Name  Boundary Condition 

Wall Adiabatic* (u= v=w=0, q=0) 

Window Isothermal, Tw = 273 K 

Heater Isothermal, Th > Ta 

Outlet Pressure outlet, Ta = 294 K 

                                       *u, v, and w are velocities and q are heat flux 

b) c) d) 
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5.4 Results and discussions 

5.4.1 Cold draft analysis  

As the cold air flows down past the cold surface of a window the thickness of the air layer 

increases from the top to the bottom. At a certain distance, along with the window, the 

airflow will become turbulent. This phenomenon caused more discomfort. Accordingly, as 

the window height increased, the turbulent effect has also increased. Thus, the window 

geometry has an impact on the comfort of an individual. The closer a person is to a window 

or the larger the size of the window, the higher the impact on comfort. Therefore, ASHRAE 

Standard (2013) has defined the comfort occupied zone as 0.6 m away from the window. 

Further, a study of Manz & Frank (2004) suggests that 0.1 m above floor height is an 

appropriate height for measuring thermal comfort since people usually wear shoes. 

Therefore, in this section, the influence of window configuration on convective heat 

transfer and the effect of downdraft at 0.6 m away from the window is analyzed, and results 

are presented. 

5.4.2 Case study I: No natural convective heater below the 
window 

 

Figure 5-10: Temperature contour on vertical plane section for the cases of a) 

horizontal-, b) vertical-rectangular c) square, and d) circular with no heater and for 

Raw = 109 
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At a certain distance, the airflow will become turbulent and increase in velocity near the 

floor as illustrated in Figures 5-11 and 5-12. Accordingly, in all cases, the cold airflow 

touches the floor and may cause discomfort on the occupants. 

 

Figure 5-11: Vertical contours on vertical plane section for the case of a) horizontal-, 

b) vertical-rectangular, c) square, and d) circular with no heater for Raw = 109 

 

Figure 5-12: Variation of downdraft velocity at a distance of 0.6 m (No heater, Raw = 

109) 

Therefore, at the height of 0.1 m above the floor, considered to be an appropriate height as 

proposed by (Manz & Frank, 2004), the vertical rectangular window configuration shows 



133 

 

the worst draft speed that is about 86% higher than the horizontal rectangular configuration 

as illustrated in Figure 5-12. The window’s Nusselt number (see Figure 5-13), at lower 

values of Rayleigh numbers the variations are independent of the window configuration 

because the flow is laminar. However, at higher Rayleigh numbers, changes are dependent 

on the window configuration. Thus, comparing the average Nusselt number value, the 

horizontal configuration shows the least, and the vertical window configuration is the 

largest. 

 

Figure 5-13: a) Variation of window Nusselt number with Rayleigh number for the 

case of no heater and b) variation of downdraft temperature at a distance of 0.6 m 

from the window for the case with no heater (Raw =109) 

5.4.3 Case study II: Where there is a natural convective heater 
below the window 

For the case with a convective heater below the window, the solution parameters are draft 

velocity (v), room air temperature at the suggested occupied zone (0.6 m from the window), 

and the heater Rayleigh number (𝑅𝑎ℎ) and heater dimensionless temperature (𝜃). Where 

the analysis is based on the  𝑅𝑎ℎ as shown in Equation 5-12. The typical variations of 

window Nusselt numbers with heater Rayleigh number for dimensionless heater 

temperatures (𝜃) of 1 and 2 and for four window configurations are presented in the 

following Figures 5-15 and 5-18. The mean Nusselt number (Nuw) (Equation 5-7) has been 

presented as a function of the reference window height (hw) (see Figures 5-16 and 5-19). 

At the lower values of Rah (1.77*106 - 1.77*108) considered, the windows Nusselt number 

a) b) 
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variations are identical to the previous case where there is no heater below the window. 

However, at the higher values of Rah (1.77*109 -1.77*1011) the window Nusselt numbers 

are higher due to the turbulent flow (see Figures 5-14 and 5-17). 

                                            𝑅𝑎𝐻 =
𝛽𝜌(𝑇𝐻−𝑇𝑎)ℎℎ

3

𝜗𝛼
                                              Equation 5-12 

where hh is height of heater. 

5.4.3.1 For the case of 𝜃 = 1 

 

Figure 5-14: Plane section view of velocity contour for 𝜽 = 𝟏 and for the case of Rah 

= 109 a) horizontal b) vertical c) square, and d) circular window configuration 
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Figure 5-15: Variation of downdraft velocity at a distance of 0.6 m from the window 

for the case of 𝜽 = 𝟏 

 

Figure 5-16: a) Variation of window Nusselt number with heater Rayleigh number 

for 𝜽 = 𝟏, and b) Variation of downdraft temperature at a distance of 0.6 m from 

the window for the case of 𝜽 = 𝟏 
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5.4.3.2 For the case of 𝜃 = 2 

 

Figure 5-17: Plane section view of velocity contour for 𝜽 = 𝟐  and Rah = 109 for the 

case of a) horizontal -, b) Vertical – rectangular, c) square, and d) circular window 

configuration 

 

Figure 5-18: Variation of downdraft velocity at a distance of 0.6 m from the window 

for the case of 𝜽 = 𝟐 
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Figure 5-19: Variation of window Nusselt number with heater Rayleigh number for 

𝜽 = 𝟐  and for vertical rectangular configuration, and b) variation of downdraft 

temperature at a distance of 0.6 m from the window for the case of  𝜽 = 𝟐 

The changes in the direction of the flow are associated with the increase in 𝜃. At low values 

of 𝜃, the downward flow from the window dominates whereas at the higher values of 𝜃 the 

upward flow from the heater dominates. Therefore, it is essential to determine the minimum 

𝜃 where the direction of the flow changes occur to maintain the thermal comfort of the 

room and save energy.  

5.4.4 Flow patterns 

The reference velocity associated with a natural convection flow over a vertical plane can 

be determined using Equation 5-12 (Oosthuizen & Naylor, 1999). 

                                                𝑢𝑟 =
𝛼

𝐿
√𝑅𝑎𝑃𝑟                                                 Equation 5-12 

where α is the thermal diffusion of air, Pr is the Prandtl number, and Ra is the Rayleigh 

number based on the height of the surface L. Thus, the change in flow pattern occurs when 

the 𝑢𝑟 of the upward flow from the heater is equal to 𝑢𝑟 of the downward airflow from the 

window. The downward flow from window represented in the left side of the Equation 5-

13 and the upward flow are presented the right side of the Equation 5-13. 

                                      
𝛼

ℎ𝑤
√𝑅𝑎𝑤𝑃𝑟 =

𝛼

ℎℎ
√𝑅𝑎ℎ𝑃𝑟                                        Equation 5-13      
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From Equation 5-8: 

                                𝑅𝑎𝑤 =
𝛽𝑔(𝑇𝑤−𝑇𝑎)ℎ𝑤

3

𝜗𝛼
               and            𝑅𝑎ℎ =

𝛽𝑔(𝑇ℎ−𝑇𝑎)ℎℎ
3

𝜗𝛼
 

Then 

                                      𝑅𝑎ℎ = 𝑅𝑎𝑤
𝜃

(
ℎ𝑤

ℎℎ
⁄ )

3                                                  Equation 5-14 

From Equation 5-13: 

𝑅𝑎ℎ = 𝑅𝑎𝑤 (
ℎℎ

ℎ𝑤
)

2

 

Therefore, the change is expected when: 

                                           𝜃 (
ℎℎ

ℎ𝑤
)

−1

= 1                                                        Equation 5-15 

where ℎ𝑤 is the height of the window and ℎℎ is the height of the heater. In this study, the 

height of the heater is defined as ℎℎ = 0.3ℎ𝑤.    

Equation 5-15 defines flow pattern change can occur at a particular value of 𝜃 irrespective 

of the value of the Rayleigh number. However, this empirical formula (Equation 5-15) 

gives an approximation of the changes in the 2D flow patterns where the window and heater 

are in a vertically aligned position. It does not show a 3D spatial distribution of the air 

speeds and temperature, complex geometry of the window configurations, or the effects of 

the window recess and protrusion of the heater that can also affect the flow patterns 

(Oosthuizen & Paul, 2011; Oosthuizen, 2009). However, in realistic situations, the flow 

patterns are dependent upon the complex window configurations, heating systems and are 

sensitive to their geometrical configurations and exterior microclimates. Thus, the flow 

patterns for the four window configurations are determined using a high-resolution CFD 

approach under the specified boundary conditions.  
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Table 5-3: Flow pattern change 

Window shapes 𝒉𝒘/𝒉𝒉 𝜽(𝑬𝒒. 𝟏𝟓 )  𝜽(𝑪𝑭𝑫) 

Horizontal rectangular 1/0.3 3.33 2 

Vertical rectangular 2/0.3 6.67 4 

Square 1.4/0.3 4.67 3 

Circular 1.6/0.3 5.33 2.5 

In the present case study, it is indicated that the flow direction change will occur at different 

𝜃 for different window configurations as shown in Table 5-3. However, 𝜃 greater than two 

may pose safety concern with the higher heater temperature. 

To analyze the flow direction variation for a hypothetical higher heater temperature 𝜃 

values, the average window Nusselt number (𝑁𝑢𝑤
̅̅ ̅̅ ̅̅ ) is normalized by the average window 

Nusselt numbers when there is no heater (𝑁𝑢̅̅ ̅̅
𝑛𝑜𝐻𝑒𝑎𝑡). Thus, the flow changes from moving 

dominantly downward to dominantly upward irrespective of the Rayleigh number occur at 

an approximate value of  𝜃 as illustrated in Figure 5-20. 

It can be seen that the energy demand due to the increase in heater surface temperature  

counter the down draft for the horizontal rectangular windw configuration is the least. The 

vertical rectangular window configuration requires the most energy demand. This amounts 

to double “𝜃” derived for the horizontal window configuration.  
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Figure 5-20: Comparison of window average Nusselt number with dimensionless 

heater temperature 𝜽 

 

Figure 5-21: a) Comparison of window average Nusselt number for the range of 

dimensionless heater temperature  𝜽 (1 and 2), b) comparison of window average 

Nusselt number for all range Ra and 𝜽 

In summary, considering the average windows Nusselt number as shown in Figure 5-21 at 

the lower values of Rayleigh number, the variations in convective heat transfer rate are 

independent of the dimensionless heater temperature (𝜃) and the window configuration 
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because the flow is laminar. However, at the higher values of Rayleigh numbers, the 

variations are dependent on the dimensionless heater temperature(𝜃), and the window 

configuration. Thus, the horizontal window configuration shows the least whereas the 

vertical shows the larger Nusselt number. Therefore, the horizontal window configurations 

require the least energy to maintain thermal comfort in a region of the room adjacent to the 

outdoor window.  The overall thermal performance ranking from higher to lower is 

horizontal rectangular, square, circular and vertical rectangular window configuration, 

respectively.  

5.5 Conclusion and further work 

This study comparatively studied the convective heat transfer at the internal surface of the 

window to determine the convective thermal comfort and convective heat transfer rate for 

four different window configurations. A high-resolution 3D steady RANS simulation is 

used for the analysis. Initially, a CFD validation of the numerical model is carried out based 

on an experimental study of Churchill & Chu (1975) and numerical study of Oosthuizen, 

(2011). The results of the CFD validation showed that LRNM of Shear Stress Transport 

𝑘 − 𝜔 models could provide accurate results for the convective heat transfer rate. Based 

on the validated computational procedures and techniques, the downdraft velocity and 

convective heat transfer rates of a building are computed for four different full-scale 

windows with and without convective heaters. The following conclusions are deduced: 

• Considering the window Nusselt number (𝑁𝑢𝑤
̅̅ ̅̅ ̅̅ ), at the lower values of Rayleigh 

numbers (Rah), variations in convective heat transfer rate are independent of the 

window configuration, and the dimensionless heater temperature (𝜃). This is because 

the flow is mainly laminar. However, at the higher values of the Rayleigh number, 

variations are dependent on the window configuration and the dimensionless heater 

temperature. Thus, the horizontal-rectangular window configuration shows the least 

convective heat transfer rate value (Nusselt number) whereas the vertical rectangular 

configuration shows the largest convective heat transfer rate value. 

• Considering the flow pattern near the floor, at the lower values of the dimensionless 

heater temperature, a downward flow from the window is observed, and the variation 
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of the window Nusselt number is independent of the window configuration. This flow 

pattern is approximately the same as the flow over a vertical plane without a heater. 

• At the higher values of the dimensionless heater temperature, an upward flow from 

the heater is dominant, except for the vertical configuration where a downward flow 

is observed. In addition, the variation of the window Nusselt number is dependent on 

the window configuration and the dimensionless heater temperature values. 

• On average, a change in the flow pattern occurs at the assumed dimensionless heater 

temperature value of, (𝜃) ~ 2, 4, 3, and 2.5 for horizontal, vertical, square, and circular 

window configurations, respectively. Thus, the Nusselt number, at a particular value 

of the Rayleigh number, increases as the dimensionless heater temperature increases, 

and the horizontal window configuration shows a minimum convective heat transfer 

rate. 

• In general, considering the four window configurations that are investigated in the 

present study, the horizontal rectangular window configuration shows minimum 

downdraft velocity and convective heat transfer rate. The overall thermal performance 

ranking from higher to lower is horizontal rectangular, square, circular and vertical 

rectangular window configuration, respectively. 

The present study is limited to heat transfer aspects of the windows, but as part of the on-

going research, the authors are in the process of investigating optimal window 

configuration for minimum energy consumption. Along with the configuration of the 

window, many other objectives should be considered that influence the energy 

consumption, thermal and lighting performance of the building. Thus, a multi-objective 

optimization analysis will be required.  
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Chapter 6  

6 Optimization of window configuration on high-rise 
building 

6.1 Introduction 

The need for energy efficient buildings has increased due to the increase in urban 

development, environmental concerns, and rising energy costs. Building façade plays a 

crucial role in meeting the building efficiency and internal thermal comfort demands. The 

primary energy use in building for heating and cooling is due to the heat flow through the 

façades. Window systems alone could easily be the largest heat flow contributors for 

buildings. Previous studies by Lee et al. (2013) and Norris et al. (2012) have shown that 

about 20% to 40% of building energy is lost through windows. Therefore, improving 

window systems should take priority over improving the opaque wall thermal resistance 

that has often superior thermal performance. The building façade is a complex interface 

between the indoor-outdoor environments (see Figure 6-1). The annual energy 

consumption level is strongly dependent on the outdoor microclimate and the thermal 

performance of the envelope.  

Previous studies (Greenup & Edmonds, 2004; Tzempelikos, 2005; Ghisia et al., 2005; 

Ochoa et al., 2012) have shown that design and selection of a proper window system is one 

of the essential passive strategies for saving energy in buildings. To minimize the energy 

consumption of a building, the window must minimize solar radiation in summer but 

maximize solar heat gain in winter; at the same time, it must provide appropriate 

daylighting and natural ventilation, which raises conflicting objectives, energy 

consumption and thermal comfort, in the selection of an appropriate size and position of a 

window. Choosing a window system and its corresponding configuration is one of 

fundamental decisions to be made in the early design stage, which is costly to be changed 

later. In practice, windows configured in high-rise buildings are architecturally driven and 

are based on, for example, the ASHRAE recommended approach (ASHRAE 90.1, 2010). 

Local microclimate, building geometry, building form, and orientation have a significant 
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impact on windows performance, but typically are not comprehensively considered in 

practice. 

 

Figure 6-1: A window as an interface between indoor-outdoor environment 

To investigate the effect of window configuration on building energy consumption, one of  

the conventional methods is assessing building energy consumption by changing a design 

parameter while other parameters remain constant.  In the study of Susorova (2013), for 

instance, a window-to-wall ratio (WWR) was changed for a different direction of the 

building and this method was repeated for all building parameters. Since building energy 

simulation programs are based on a scenario-by-scenario process, this procedure is often 

time-consuming, and the exploration of the design space is usually not fully completed. 

Thus, it is ineffective in deciding the optimum solutions (Caldas & Norford, 2002; Rapone, 

2012). In this respect, coupling a proper optimization procedure with a building energy 

simulation program makes it possible to analyze and optimize the characteristics and 
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performance of buildings (Caldas & Norford, 2002; Rapone, 2012, Nguyen, 2014; Delgarm 

et al., 2016). Hence, due to the iterative nature of the procedure, simulation-based 

optimization tools are required. 

Simulation-based optimization is a procedure that couples an optimization program to a 

simulation program whose function is to calculate a specific performance of a model. 

Simulation-based optimization has become an efficient measure to reach a cost-effective 

building design with reliable performance in a short time (Rapone, 2012; Nguyen, 2014). 

Many researchers use Building Energy Simulation (BES) programs, such as EnergyPlus, 

DoE-2, ESP-r, eQUEST, TRNSYS, or any custom-made programs (Liu, 2015; Ellis & 

Torcellini, 2005; Judkoff & Neymark, 1995). Using an optimization algorithm, it is 

possible to perform an automated search of a design domain for one or more optimal 

solutions. There are many different types of algorithms that can be used, and they can be 

classified into two main groups: a deterministic gradient-based algorithm or probabilistic 

algorithms. In building envelope design studies, the evolutionary algorithms, which is a 

family of the probabilistic algorithm, has been used (Naboni et al., 2013; Rapone, 2012; 

Delgarm et al., 2016) for optimization problems due to their capability to handle large 

amounts of variables. Evolutionary algorithms search for optimal solutions using the 

principles of evolution of a species or the behavior of groups of animals, some popular 

evolutionary algorithms include the Genetic Algorithm (GA), Evolutionary Neural 

Network (ENN), and Particle Swarm Optimization (PSO) (Rapone, 2012). Some of the 

studies on building façade designs using GA are Wright & Farmani (2001); Znouda et al. 

(2007); Rapone (2012); Delgarm et al. (2016). There are different types of tools, which are 

available in commercial and free resources. These tools are general optimization programs 

are not specific tools for design façade simulation. Yi & Malkawi (2009) used EnergyPlus 

and the GA optimization method to optimize the shape of a building based on heat flow, 

heat gain, heat loss, and volume. There are numerous studies on optimization of window 

configuration for low-rise buildings (Caldas & Norford, 2002; Rapone, 2012; Delgarm et 

al., 2016). However, there are limited studies regarding high-rise building window 

configuration optimization. 
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Therefore, the main aim of this study is to develop a novel framework of simulation-based 

optimization of window configuration (size and shape) in high-rise buildings. This 

framework integrates Computational Fluid Dynamics (CFD), which is used to develop new 

wind-driven CHTC-U10 coefficients specific to a high-rise building, Building Energy 

Simulation (BES) program to analyze the annual energy consumption, and a numerical 

optimizer for iterative optimal window configuration selection based on the objective 

function such as energy and comfort. As an application of the proposed framework, a case 

study of an isolated 100 m, high-rise building with a floor-to-floor height of 3.33m and 

floor plane dimension of 30 m x 40 m. Test case rooms are at different floor height and 

locations of the building (corner and center zones) are investigated to optimize their annual 

energy consumptions. In the present study, a steady Reynolds Average Navier-Stokes 

(RANS) with SST k-ω turbulence simulation at full-scale are considered to investigate the 

impact of building height and room location on the CHTC-U10 correlations.  Furthermore, 

by dividing the building height into ten different floor-zones, a spatial distribution of local-

CHTC over the entire windward façade is investigated. Once the new CHTC-U10 

correlation is developed, then it is integrated into the BES to replace the existing-CHTC 

correlations to perform window configuration optimization. This process can be used for 

other shapes of buildings. 

This chapter is organized into five sections. Section 1 presents an introduction and 

literature review on the limitations of window optimization on high-rise buildings. Section 

2 presents the development of new local-CHTCs using CFD simulations. Section 3 presents 

the implementation of simulation-based optimization. Section 4 discusses the results, while 

section 5 concludes the chapter. 

6.2 CFD based CHTC development 

6.2.1 CFD setup 

A building exposed to open terrain conditions for five different wind speeds U10 = 1, 2, 3, 

4 and 5 m/s at the reference height of 10 m is considered. The outdoor air temperature is 

kept constant at Tref = 283 K, and the building has a fixed surface temperature of Tw = 303 

K. The dimensions of the 3-D Computational Domain (CD) were defined based on the 
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height of the building (H) and recommendations by Franke et al. (2007), Tominaga et al. 

(2008), and Dagnew & Bitsuamlak (2014) as illustrated in Figure 6-2. The distance 

between the inflow boundary wall and the building is 5H, with the outflow boundary 15H 

downstream of the building, to allow the wake-flow to develop. The lateral boundaries are 

set at 5H from the building surfaces, and the CD height is 6H. Three sub-grids with 

different control volumes were constructed to resolve the entire boundary layer to include 

the viscous sublayer and the buffer layer that dominate the convective heat transfer in the 

CD. The sub-computational domain volume (CV) are CV1 (H/10), CV2 (H/20), CV3 (H/25) 

with different grid density and grid distribution are constructed. The CD is discretized 

using polyhedral control volumes with a refined grid near the exterior surfaces of the 

building. As illustrated in Figure 6-3, the surfaces of the buildings have a viscous boundary 

layer with ten prism layers, producing y+ < 5 values. A dimensionless wall distance 𝑦+ =

(𝑢∗𝑦𝑝)/𝑣 is used to characterize the grid resolution near the wall, where, 𝑢∗ is friction 

velocity (m/s), 𝑦𝑝 is the distance from the center point of the wall adjacent cell to the wall 

(m), and 𝑣 is kinematic viscosity (m2/s). The simulation uses a grid with cell centers at a 

minimum distance of 130 𝜇m from the building surface. A total of 4.83 x106 grid cells are 

deployed. Convergence is assumed when all the scaled residual values level off and reach 

10-7 for x, y, z momentum and energy, 10-5 for continuity and 10-6 for k and w. 

 

 Figure 6-2: Computational domain geometry 
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Figure 6-3: Grid distribution 

6.2.2 Boundary conditions 

The mean velocity and turbulent profiles are generated assuming an open terrain exposure. At 

the inlet of the domain, an atmospheric boundary layer (ABL) is imposed (see Equation 6-1 – 

6-3). This boundary layer can be described by the logarithmic law, which constitutes a vertical 

profile of the mean horizontal wind speed, turbulent kinetic energy K (m2/s2) and turbulence 

dissipation rate ε (m2/s3) (Richards and Norris, 2011). These profiles represent a neutral ABL, 

where the turbulence originates only from friction and shear: 

                                                           𝑢(𝑧) =
𝑢∗

𝑘
𝑙𝑛 (

𝑧+𝑧0

𝑧0
)                                          Equation 6-1 

                                                             𝐾 = 3.3𝑢∗
2                                                      Equation 6-2 

                                                            𝜀 =
𝑢∗

3

𝑘(𝑧+𝑧0)
                                                      Equation 6-3 

where 𝑧0 is the aerodynamic dynamic roughness length which is assumed that the buildings 

are situated on a large grass-covered terrain z0 = 0.03 m (ESDU, 2001), and k is the von 

Karman constant (~ 0.42). An adiabatic boundary condition is used for the ground surface. 

Symmetry boundary conditions are applied at the top and lateral sides of the computational 
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domain. The ground surface is modeled as a no-slip wall with no roughness height (ks = 0) 

since in Low Reynolds Number Model (LRNM) surface roughness values cannot be specified 

(Defraeye et al., 2010). Zero static pressure is applied to the outlet plane. For this simulation, 

only a forced convection heat transfer is considered. The Shear Stress Transport 𝑘 − 𝜔 (SST 

𝑘 − 𝜔) is used as turbulent model closure in this study. Details on the CFD simulation 

validation from experimental data of Meinders et al. (1999) and grid sensitivity analysis are 

provided in Kahsay et al. (2018). The simulations are conducted using a commercial CFD 

package (STAR-CCM+ v.10.12, 2015) and the SHARCNET (www.sharcnet.ca, 2017) high-

performance computing (HPC) facility at Western University. 

6.2.3 CHTC-U10 expressions 

To evaluate building energy consumption accurately, knowledge of the local-CHTC 

distribution over the facade of the building is essential. Thus, in this study, the evaluation of 

local-CHTC with the wind free stream velocity (CHTC-U10) is the primary target, and the 

correlations are integrated into the building energy simulation. 

The building aerodynamics play a crucial role in the local-CHTC distribution. The 

incoming wind flow is forced around the structure both on the sidewalls and the roof of the 

building (see Figure 6-4). The velocity increases around the leading-edge building corners, 

leading to higher surface friction velocity. As a result, a higher value of CHTC is observed 

at the leading top and corners zones of the building as illustrated in Figure 6-4. However, 

around the stagnation position and closer to the base of the buildings, lower values of 

CHTC are observed. Furthermore, the standing and horseshoe vortices around the bottom 

of the building, which increases the residence time of the air, leads to lower velocity, 

resulting in lower values of CHTC. The local-CHTC distribution for a specific room is 

directly dependent on its location within the building.  
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Figure 6-4: Velocity magnitude contours and CHTC distribution for a wind speed of 

3 m/s at 10 m ref. height at the inlet. 

Table 6-1 shows the local-CHTC correlations that have a high coefficient of determination 

(R2) for different wind speeds at a corner- and center-zones of a building, respectively.  
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Table 6-1: Local-CHTC distribution on center and corner-zones of a 100 m tall of 

building for a windward side for a wind speed of 1 to 5 m/s at 10 m ref. height at the 

inlet. 

Zone Zone location 

𝑪𝑯𝑻𝑪𝒂𝒗𝒈 − 𝑼𝟏𝟎 correlation for 

windward (W/m2K) R2 (-) 

 

1 

Center-zone 

Corner-zone 

𝐶𝐻𝑇𝐶𝑎𝑣𝑔 = 3.29𝑈10
0.78 

𝐶𝐻𝑇𝐶𝑎𝑣𝑔 = 4.16𝑈10
0.8 

0.9966 

0.9991 

 

2 

Center-zone 

Corner-zone 

𝐶𝐻𝑇𝐶𝑎𝑣𝑔 = 3.7𝑈10
0.81 

𝐶𝐻𝑇𝐶𝑎𝑣𝑔 = 4.49𝑈10
0.82 

0.997 

0.9988 

 

3 

Center-zone 

Corner-zone 

𝐶𝐻𝑇𝐶𝑎𝑣𝑔 = 3.65𝑈10
0.83 

𝐶𝐻𝑇𝐶𝑎𝑣𝑔 = 4.47𝑈10
0.83 

0.9975 

0.999 

 

4 

Center-zone 

Corner-zone 

𝐶𝐻𝑇𝐶𝑎𝑣𝑔 = 3.66𝑈10
0.83 

𝐶𝐻𝑇𝐶𝑎𝑣𝑔 = 4.51𝑈10
0.83 

0.9983 

0.9995 

 

5 

Center-zone 

Corner-zone 

𝐶𝐻𝑇𝐶𝑎𝑣𝑔 = 3.60𝑈10
0.83 

𝐶𝐻𝑇𝐶𝑎𝑣𝑔 = 4.58𝑈10
0.83 

0.9943 

0.9997 

 

6 

Center-zone 

Corner-zone 

𝐶𝐻𝑇𝐶𝑎𝑣𝑔 = 3.68𝑈10
0.80 

𝐶𝐻𝑇𝐶𝑎𝑣𝑔 = 4.61𝑈10
0.81 

0.9989 

0.997 

 

7 

Center-zone 

Corner-zone 

𝐶𝐻𝑇𝐶𝑎𝑣𝑔 = 3.68𝑈10
0.8 

𝐶𝐻𝑇𝐶𝑎𝑣𝑔 = 4.65𝑈10
0.81 

0.9987 

0.9997 

 

8 

Center-zone 

Corner-zone 

𝐶𝐻𝑇𝐶𝑎𝑣𝑔 = 3.7𝑈10
0.79 

𝐶𝐻𝑇𝐶𝑎𝑣𝑔 = 4.64𝑈10
0.81 

0.9986 

0.9993 

 

9 

Center-zone 

Corner-zone 

𝐶𝐻𝑇𝐶𝑎𝑣𝑔 = 3.844𝑈10
0.8 

𝐶𝐻𝑇𝐶𝑎𝑣𝑔 = 4.75𝑈10
0.92 

0.9988 

0.9996 

 

10 

Center-zone 

Corner-zone 

𝐶𝐻𝑇𝐶𝑎𝑣𝑔 = 4.83𝑈10
0.81 

𝐶𝐻𝑇𝐶𝑎𝑣𝑔 = 5.43𝑈10
0.82 

0.9996 

0.9998 

𝐶𝐻𝑇𝐶𝑎𝑣𝑔 surface-averaged convective heat transfer coefficient; 𝑈10 wind speed at ref. a height of 

10 m; R2: Coefficient of determination. 
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The new-CHTC developed for the corner and center-zone of the buildings, as shown in 

Table 6-1 are integrated into EnergyPlus to replace the existing-CHTC. Therefore, the 

building energy simulation in this stud is performed based on the actual exposure of the 

room to its local-CHTC distribution. 

6.3 Building energy simulation analysis 

6.3.1 EnergyPlus 

The building energy simulation is conducted using EnergyPlus V8.9.0 software, developed 

by the US Department of Energy (DOE) (DOE, 2016). The energy simulation program can 

model a whole building and calculates the combined heat transfer of heating and cooling 

loads necessary to maintain the thermal control set points throughout a secondary HVAC 

system, as well as the consumption of the primary plant equipment. The energy simulation 

model is based on the fundamental principles of thermal balance (DOE, 2016) as shown in 

Equation 6-4. The input model consists of text files, which are interpreted by the simulation 

manager, which can also interact with external modules to interpret data coming from 

various sources. Formulating energy and moisture balances for the zone air is the basis for 

the zone and air system integration and to solve the resulting ordinary equations. The heat 

balance of air scheme is formulated as: 

𝐶𝑧
𝑑𝑇𝑧

𝑑𝑡
= ∑ 𝑄𝑖

̇𝑁𝑖
𝑖=1 + ∑ ℎ𝑖𝐴𝑖(𝑇𝑠𝑖 − 𝑇𝑧) + ∑ �̇�𝑖𝐶𝑝(𝑇𝑧𝑖 − 𝑇𝑧)𝑁𝑧𝑜𝑛𝑒

𝑖=1 + �̇�𝑖𝑛𝑓𝐶𝑝(𝑇∞ − 𝑇𝑧) + �̇�𝑠𝑦𝑠
𝑁𝑠𝑢𝑟𝑓.

𝑖=1
      

Equation 6-4 

where: 

𝐶𝑧
𝑑𝑇𝑧

𝑑𝑡
 is heat stored in the air,  

∑ 𝑄𝑖
𝑁𝑖
𝑖=1  is the sum of convective internal loads? 

∑ ℎ𝑖𝐴𝑖(𝑇𝑠 − 𝑇𝑎)
𝑁𝑠𝑢𝑟𝑓.

𝑖=1
 is convective heat transfer from the zone surface  

∑ 𝑚𝑖𝐶𝑝(𝑇𝑖 − 𝑇𝑎)𝑁𝑧𝑜𝑛𝑒𝑠
𝑖=1  is heat transfer due to inter-zone air mixing, 
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 �̇�𝑖𝑛𝑓𝐶𝑝(𝑇∞ − 𝑇𝑎) is heat transfer due to infiltration of outside air, and 

 �̇�𝑠𝑦𝑠 is air systems provide hot or cold air to the zones to meet heating or cooling loads.  

If the air capacitance is neglected, the steady state system output is: 

−𝑄𝑠𝑦𝑠 = ∑ 𝑄𝑖

𝑁𝑖

𝑖=1

+ ∑ ℎ𝑖𝐴𝑖(𝑇𝑠𝑖 − 𝑇𝑧) + ∑ 𝑚𝑖𝐶𝑝(𝑇𝑧𝑖 − 𝑇𝑧)

𝑁𝑧𝑜𝑛𝑒

𝑖=1

+ �̇�𝑖𝑛𝑓𝐶𝑝(𝑇∞ − 𝑇𝑧)

𝑁𝑠𝑢𝑟𝑓.

𝑖=1

          

Equation 6-5 

The air system (𝑄𝑠𝑦𝑠) is expressed in the form of the difference between the supply air 

enthalpy and the leaving air enthalpy. 

�̇�𝑠𝑦𝑠 = �̇�𝑠𝑦𝑠𝐶𝑝(𝑇𝑠𝑢𝑝 − 𝑇𝑧)                                                                               Equation 6-6 

If Equation 6-6 is substituted into Equation 6-5, we have: 

𝐶𝑧
𝑑𝑇𝑧

𝑑𝑡
= ∑ 𝑄𝑖

𝑁𝑖
𝑖=1 + ∑ ℎ𝑖𝐴𝑖(𝑇𝑠𝑖 − 𝑇𝑧) + ∑ 𝑚𝑖𝐶𝑝(𝑇𝑧𝑖 − 𝑇𝑧)𝑁𝑧𝑜𝑛𝑒

𝑖=1 + �̇�𝑖𝑛𝑓𝐶𝑝(𝑇∞ −
𝑁𝑠𝑢𝑟𝑓.

𝑖=1

𝑇𝑧) + �̇�𝑠𝑦𝑠𝐶𝑝(𝑇𝑠𝑢𝑝 − 𝑇𝑧)                                                                                               Equation 6-7 

Equation 6-7 shows that the sum of system output and zone loads are equal to the change 

in energy stored in the zone.  

6.3.1.1 Description of the building model 

To investigate the effect of wind-driven CHTC on window configuration and energy 

performance of a high-rise building, the proposed method is applied to a single test room, 

which is located at a different position of the building height as shown in the case study 

Table 6-2. As illustrated in Figure 6-5, the architectural schematic view of the baseline 

room are 5 m width, 10 m depth, and 3.33 m height and have a 100% window-to-wall ratio. 

In this study model, only the southern wall of the room is exposed to the sunlight and 

outside air. The high-rise building is made of lightweight construction with dimensions of 

30 m width, 40 m length, and 100 m height. The exterior walls consist of 19 mm thick 
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gypsum board on the interior, followed by a 13 mm wall airspace, and then 128 mm thick 

insulation panel with 1.5 mm thick metal cladding on the exterior. The roof consists of a 

19 mm thick gypsum board, followed by a 650 mm thick fiberglass quilt, finally 100 mm 

thick concrete slab on top. The floor slab is composed of 100 mm thick concrete, followed 

by 100.3 mm insulation, and 19.1 mm thick acoustic tile. The partition wall is comprised 

of 19 mm thick of gypsum board, followed by 15 mm partition airspace, and 19 mm thick 

gypsum board. The physical and thermal properties of all these materials are presented in 

Table 6-3. 

Table 6-2: Case studies 

Floor zone Floor height Window position 

Zone 1 2nd Floor Center window 

Zone 5 15th Floor Center window 

Zone 10 29th Floor Corner window 
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Figure 6-5: Schematic view of energy analysis baseline model 

 

Table 6-3: Physical and thermal properties of materials that make up the building 

 

Materials 

Thermal 

conductivity 

(W/m K) 

 

Thickness 

(m) 

Thermal 

resistance 

(m2 K/W) 

 

Density 

(Kg/m3) 

Specific heat 

capacity (J/Kg 

K) 

Exterior wall assembly 

Metal clad 44.96 0.0015 3.33x10-5 7688.86 410 

Wall insulation 0.045 0.128 2.85 265 836 

Wall airspace  0.013 0.15   

Gypsum board 0.16 0.019 0.11875 800 1090 

Insulated glass unit cladding 

Clear-glass 0.9 0.006 0.0067 2500 800 

Window 

airspace 

 0.013 0.15   

Clear-glass 0.9 0006 0.0067 2500 800 

Partition wall 
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Gypsum board 0.16 0.019 0.11875 800 1090 

Partition 

airspace 

 0.013 0.15   

Gypsum board 0.16 0.019 0.11875 800 1090 

Ceiling 

Heavy weight 

concrete 

1.95 0.1 0.051 2240 900 

Ceiling air 

resistance 

  0.15   

Acoustic tile 0.06 0.0191 0.32 368 590 

Floor  

Heavy weight 

concrete 

1.95 0.1 0.051 2240 900 

Insulation 0.04 0.1003 25.075   

Acoustic tile 0.06 0.0191 0.32 368 590 

Roof 

Heavy weight 

concrete 

1.95 0.1 0.051 2240 900 

Fiberglass quilt 0.040 0.65 16.25 12.0  

Gypsum board 0.16 0.019 0.11875 800 1090 

 

6.3.1.2 Boundary conditions and building operating conditions 

The exterior boundary conditions for the walls and roof are generated from the weather 

data file while a constant 100C ground temperature is assumed for the room floor. The 

building is expected to operate with a continuous ventilation rate of 0.5 ACH (air-exchange 

per hour), and constant internal sensible heat gain of 800 W; 60% of the total heat gain is 

assumed to be radiative, and the remaining 40% is convective. It is assumed that all units 

are maintained at the same temperature so that there is no heat exchange between units and 

adiabatic boundary conditions are enforced. This assumption is valid for all units except 

the top and bottom floors. An ideal loads air system is used to control the temperature in 

the rooms. The room is equipped with a 10 W/m2 compact fluorescent lamp (CFL) lighting 

system. Moreover, the model has a day-lighting controller sensor to automatically dim the 

lighting system with a threshold of 500 lx. When illuminance surpasses 500 lx, artificial 

lighting is not required, and the lighting system turns off. A generic office occupancy of 

0.05 people/m2 with an activity schedule of 8 am to 7 pm on workdays is considered. The 
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heating and cooling set points are 200C and 270C, respectively for operating of the zone 

thermostat control. In this study, the local-CHTC expression integrated into the building 

energy consumption using EnergyPlus by defining the speed type referred as “parallel 

component with height adjust” which is used to modify the height of the room location and 

the parallel component velocity and local-CHTC-U10 distribution on the surface. 

6.3.1.3 Climate to be considered  

In this study, a study building is placed in Boston, MA, weather condition which is located 

at 42.20 north latitude and 71.030 west longitude and an altitude of 43 m is used. The annual 

wind speed is 5.5 m/s, and the annual average temperature high is 150C, and the low is 70C. 

Weather data from a typical metrological year (TMY) consists of hourly data that includes 

ambient temperature, relative humidity, wind speed and direction, solar radiation, cloud 

cover, and other metrological data over a year is used. The TMY weather data is available 

at the National Renewable Energy Laboratory, U.S. Department of Energy  

6.3.2 jEplus 

jEplus is an open-sourced tool that allows the user to manage a complex parametric 

simulation on building design using EnergyPlus or TRNSYS (Yi, 2009). It is developed in 

java file that links the weather file (.epw) and results extraction file as read variable input 

(.rvi) to the main (input data/macro file/.idf/.imf) file, which is necessary for a successful 

EnergyPlus simulation (Naboni et al., 2013; Delgarm et al., 2016). Based on the design 

variables and objective functions, this tool which consists of four modules is used for 

optimization: the input parameter database files, the Evolutionary Algorithm optimization 

software (jEPlus+EA), the energy simulation program, and the optimized output files. The 

objective functions are retrieved from EnergyPlus output files. Then a coupling function 

read variable extension (.rvx) is used as a hidden function, in this way the jEplus 

environment will completely control the EnergyPlus. 

6.4 Multi-objective optimization (MOO) 

Optimization is the selection of the best option concerning some criteria from a set of 

available candidates. When conflicting goals needed to be satisfied simultaneously, a single 
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objective function is not sufficient to describe the problem, and multi-criteria procedure 

arise. Thus, the process of optimization that collect the objective functions in a 

systematically and simultaneously is called multi-objective optimization (MOO) (Marly et 

al., 2004). Multi-objective, multi-criteria or vector optimization is a process in which a 

number of objective functions are optimized. Optimization consists of maximizing and 

minimizing an objective function, and the problem is expressed mathematically as follow 

in Equation 6-8: 

Minimize 𝐹(�⃗�) = (𝑓1(�⃗�), 𝑓2(�⃗�), … . 𝑓𝑘(�⃗�))                                                      Equation 6-8 

Subject to: {
�⃗�(�⃗�) ≤ 0,

ℎ⃗⃗(�⃗�) = 0
 

where the integer 𝑘 ≥ 2 is the number of objective functions, �⃗�(�⃗�) is the number of 

inequality constraints and their vector, ℎ⃗⃗(�⃗�) is a number of equality constraints and their 

vector. �⃗� ∈  ℜ𝑛 is the vector of design variables (decision variable), where n is the number 

of decision variables 𝑥𝑖. 𝐹(�⃗�) ∈  ℜ𝑘 is their vector of the objective function in which 

𝑓𝑖(�⃗�): ℜ𝑛 → ℜ1. The feasible design space (X) is defined as {�⃗�|𝑔𝑗(�⃗�) ≤ 0,   𝑗 =

1,2,3 … 𝑚  𝑎𝑛𝑑  ℎ𝑖(�⃗�) = 0,    𝑖 = 1,2,3 … 𝑒} where m is the number of inequality 

constraints and e is the number of equality constraints. The feasible criterion space (S) is 

defined as {𝐹(�⃗�)|�⃗�  ∈ 𝑋}. Feasibility implies that no constraint is violated. 

In single objective optimization problems, a single solution can be achieved. However, in 

multi-objective optimization problems there is no a single global solution to determine for 

an optimum and the mathematical theory shows there is a set of trade-off solution, i.e., 

Pareto set or the Pareto frontier. Vilfredo Pareto (Censor, 1977), is one of the popular 

methods to present multi-objective solutions. In the solution, if no other feasible solution 

improves one objective without deteriorating at least another one, it is known as a Pareto 

or non-dominated solution. All points in the Pareto front are potentially are the optimum 

solution. Mathematically defined as “A point, 𝑥∗𝜖 𝑋 is Pareto optimal if there does not 

exist another point, 𝑥𝜖𝑋, such that 𝐹(𝑥) ≤ 𝐹(𝑥∗), and 𝐹𝑖(𝑥) < 𝐹𝑖(𝑥∗) for at least one 

function”. 
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6.4.1 Design of the parameters 

Any part of the building model is defined as a parameter. In each parameter, definitions 

contain a number of alternative values, which are assigned by users. Thus, each path from 

top to bottom of the tree represents one solution as illustrated in Figure 6-6. 

6.4.1.1 Objective function and decision variables 

In this study, three objective functions, the annual heating, cooling, and electric lighting 

demand are considered to investigate the energy performance of the case study room. The 

main aim is to examine optimum window configuration with minimum annual energy 

consumption in the room. The optimization problem consists of rooms at different floors 

heights and location of the building (corner and center), and window size as illustrated in 

Figure 6-7.  

 

 

Figure 6-6: Diagram of parameter tree 
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Figure 6-7: Definition of design parameters 

 

The design parameters searching space area is between 0.1 ≤ 𝑥 ≤ 4.9 along the width and 

0.2 ≤ 𝑧 ≤ 3.23 along the height of the window. The left side frame extends between 0.1 ≤

𝑥1 ≤ 4.8  having five discrete values; and the right frame extends between 0.2 ≤ 𝑥2 ≤ 4.9  

having five discrete values. The lower frame moves between 0.1 ≤ 𝑧1 ≤ 3.13  having 

seven discrete values: and the top frame moves between 0.2 ≤ 𝑧2 ≤ 3.23  having seven 

discrete values, thus the total searching space is 1225. 

6.4.2 Simulation-based optimization 

Simulation-based optimization is a process of integration of optimization techniques into 

the simulation analysis. Thus, a parametric simulation method is used to evaluate the 

performance of the system. To find the optimal solution in a minimum computational time, 

the problem is solved iteratively. In each iteration, the solution is closer to the optimal 

solution (Nguyen, et al., 2014). The simulation-based optimization procedure is 

implemented using a multi-objective and non-dominated sorting genetic algorithm 

(NSGA-II) code written in Java in the jEplus+EA (jEplus Evolutionary Algorithm) 

environment. The flowchart for the simulation-based optimization is illustrated in Figure 

6-8. 
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6.4.2.1 Algorithm selection 

There are many algorithms used for optimization problems, the choice of the optimization 

algorithm is dependent on the number and type of variables such as continuous and 

discrete, and the type of the objective function evaluated. A simulation-based optimization 

process where an external dynamic simulation is integrated can be highly discontinuous 

and non-differentiable. It is essential to use an algorithm that can complement these 

characteristics to compute the objective functions. Thus, Evolution algorithm is more 

suitable in these fields (Yi, 2009; Naboni et al., 2013; Delgarm et al., 2016). 
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Figure 6-8: Flowchart of simulation-based optimization coupling CFD, BES, and 

optimization program. 

6.4.2.2 Genetic Algorithm (GA) 

John Holland (Holland, 1992) developed GA based on the mechanisms of natural 

adaptations. A genetic algorithm is population-based probabilistic method based on 



168 

 

selection and genetic combination. One of the advantages of the GA over gradient-based 

techniques is that it can locate the extreme global value (i.e. maximum or minimum) with 

less probability of being trapped in local extreme values. The procedure involves 

initializations (random generated), selections, genetic operators, and termination (Rao, 

2009). The general processes of GA’s are illustrated in Figure 6-9. 

 

The design variables are coded as real numbers. The optimization process starts by 

implementing an encoding scheme for numerically representing the problem variables. The 

encoding of a solution is called a “chromosome,” in which each variable is encoded as a 

“gene”.  Accordingly, the optimization starts by randomly selecting candidates from the 

“initial population”.  At each step, the GA selects individuals from the current population 

to be parents based on their fitness function value (i.e., minimizing/maximizing their 

objective function values) and uses them to produce the children for the next generation 

through crossovers and mutation. Crossover and mutation are nature-inspired ways of 

creating new “offspring” from existing “parents”. Crossover operators are applied to the 

candidates (parents) with higher fitness to produce better candidates (offspring’s). While 

the mutation operators are applied to candidates with lower fitness to explore different 

regions in the search space and avoid stagnating in a local extreme value. 

This procedure is applied to new generations, and it will continue until no significant 

improvements are obtained over the generations. Thus, the highest fitting candidate in the 

last generation will be considered the optimal solution. More detail discussion on GA can 

be found in (Parkinson et al., 2013). To implement the simulation-based optimization 

procedure, a multi-objective non-dominated sorting genetic algorithm (NSGA-II) code 

written in the Java environment is used. As explained before, the objective function is 

energy consumption (heating, cooling, and lighting) of the building required to be 

minimized while the design variables are geometric and property variables that controls 

the window configuration as illustrated in Figure 6-7. 
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Figure 6-9: GA process flowchart 

6.4.2.3 The setting of the Genetic algorithm parameters 

In this study, the optimization procedure starts by randomly selecting 20 candidates to form 

the initial population. Then a maximum generation of 200, crossover rate is 1.0, a mutation 

rate of 0.2, and a binary tournament selector are selected to get the best tradeoff between 

the computational time and the reliability of the Pareto front. 
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Figure 6-10: Single candidate represents one solution 

As illustrated in the scattered plot of Figure 6-10, the single candidate is representing one 

solution, thus, the iteration is repeated until the stopping criteria is satisfied to confirm a 

convergence to the same optimal solution by avoiding trapping in a local minimum, i.e. the 

average change on the Pareto front becomes lower than the tolerance of the maximum 

generation is satisfied.  

6.5 Results and discussions 

After running the optimization procedure, a Pareto solution is created which is an archive 

of a tested window configuration and a series of optimal points. Figures 6-11, 6-13, and 6-

15 show the optimum results of a multi-objective minimization in the form of three-

dimensional Pareto front for the rooms located on the 2nd, 15th, and 29th floor rooms, 

respectively. Further, Figures. 6-12, 6-14, and 6-16 present a bi-objective optimization 

results in the forms of Pareto optimal curves for rooms located on the 2nd, 15th, and 29th 

floor, respectively. This prevails the conflicting objectives of both objective functions.  
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Figure 6-11: Pareto front for triple-objective optimization for case of room at the 2nd 

floor located at the center zone of the building 

Figure 6-12 shows that as one of the objective decreases, the other ones increase. Hence, it 

is impossible to minimize all the objective functions simultaneously without sacrificing at 

least one criterion. Therefore, to choose a single optimum solution from the non-dominated 

set, decision-making or trade-off between criteria is required. 

 

Figure 6-12: Pareto front for the bi-objective optimization for the case of room at 

the 2nd floor located at the center zone of the building 
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Figure 6-13: Pareto front for the triple-objective optimization for the case of room 

at the 15th floor located at the center zone of the building 

 

Figure 6-14: Pareto front for the bi-objective optimization for the case of room at 

the 15th floor located at the center zone of the building 
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Figure 6-15: Pareto front for the triple-objective optimization for the case of room 

at the 29th floor located at the corner zone of the building 

 

Figure 6-16: Pareto front for the bi-objective optimization for the case of room at 

the 29th floor located at the corner zone of the building 

The multi-objective problem has an infinite number of Pareto optimal solutions. Thus, to 

determine a single optimal solution, it is necessary to incorporate user preference (Rao, 

2009). To select the final optimum configuration among the available solutions, a decision-

making process is required depending on the importance of each objective, characteristics, 

and performance of the system, and engineering experience. Accordingly, in this study, a 
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weight-sum method (WSM) as shown in Equation 6-8 is used. WSM transfers the multi-

criteria decision-making approach with multi-criteria optimization to mono-criteria 

optimization. The WSM uses the concept of multiplying each objective function by a 

relative weight and then sums up to a single value, which gives the designer an idea to the 

best solution. However, the problem with this method is that different users can assign 

different weights to each objective function, which will vary the optimal solution 

depending on the user. There are many variations of the WSM, all of which follow the 

same concept but with slightly altered methodologies (Marler & Arora, 2004). In this study, 

all consumed energy is in the form of electricity, it can be assumed that all objective 

functions are weighted equally. Thus, the designers may select the optimum window 

configuration based on their actual needs and interests. 

𝑈 = ∑ 𝑤𝑖𝐹𝑖(𝑥)

𝑘

𝑖=1

                                                                                                  Equation 6 − 8 

where 𝑈 is Pareto optimality; 𝑤 is a vector of weights typically set by the decision maker; 

𝐹 is the objective function with variable 𝑥; 𝑖 is initial and a subsequent number of objective 

functions; 𝑘 maximum number of objective functions.  Additional criteria based on the 

effect of window configuration on the convective heat transfer rate of a window and 

thermal comfort of occupants is included. These criteria are based on the previous work of 

Kahsay et al. (2017), on the numerical study of the effect of window configuration on the 

convective heat transfer rate of a window. A sensitivity of a window configuration on 

Nusselt number and room temperature distribution was examined, and the result show that 

horizontal window configuration has the least rate of convective heat transfer rate and 

down draft effect than other types of window configuration.  
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Figure 6-17: Window configurations alternatives presented as best solutions 

After the WSM analysis is done, the least annual energy consumption a horizontal 

configuration located at the center of the wall is selected as optimum configuration for all 

cases. Figure 6-17 shows some of the alternative of best WWR configurations.  

Accordingly, considering the first case study (see Table 6-2) for a room located on the 2nd 

floor, the optimum values of the objective functions are presented in Table 6-4. The best 

optimal configuration is a window positioned at the center (1.1 m away from the edge) 

having 30% WWR with horizontal configuration is selected.  
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Table 6-4: Best values of objective functions for a room at zone 1 and floor 2nd 

Optimal 

solution 

rank 

Objective 

function 

Optimal 

value 

(KWh/m2) 𝑼(𝒙) 

 

x1 

 

z1 

 

x2 

 

z2 WWR 

 

Window position 

1 

Annual lighting 

Annual heating 

Annual cooling 

18.9 

21.11 

29.04 

23.0 0.1 0.6 2.2 3.2 32.8 
Position: Right corner 

Shape: Square 

2 

Annual lighting 

Annual heating 

Annual cooling 

19.6 

21.75 

27.78 

23.1 1.1 1.1 4.2 2.7 29.8 
Position: Centered  

Shape: Horizontal 

3 

Annual lighting 

Annual heating 

Annual cooling 

19.6 

21.75 

27.78 

23.1 0.1 1.1 3.2 2.7 29.8 
Position: Right corner  

Shape: Horizontal 

4 

Annual lighting 

Annual heating 

Annual cooling 

19.6 

21.76 

27.78 

23.1 0.1 1.6 3.2 3.2 29.8 
Position: Right corner  

Shape: Horizontal 

 

Considering the second case study (see Table 6-2) for the case of a room located on the 

15th floor, the best values of the objective functions are presented in Table 6-5. The best 

optimal configuration is a window positioned at the center (1.1 m away from the edge) 

having around 48% WWR with horizontal configuration is selected.  

Table 6-5: Best values of the objective functions for a room at zone 5 and floor 15th 

Optimal 

solution 

rank 

Objective 

function 

Optimal 

value 

(KWh/m2) 𝑼(𝒙) 

 

x1 

 

z1 

 

x2 

 

z2 

 

WWR 

 

Window position 

1 

Annual lighting 

Annual heating 

Annual cooling 

18.89 

22.08 

28.03 

 

23.0 

 

0.1 

 

0.6 

 

2.2 

 

3.2 

 

32.8 
Position: Left corner 

Shape: Vertical 

2 

Annual lighting 

Annual heating 

Annual cooling 

18.89 

22.08 

28.03 

 

23.0 

 

2.1 

 

0.6 

 

4.2 

 

3.2 

 

32.8 
Position: Right corner 

Shape: Vertical 

3 

Annual lighting 

Annual heating 

Annual cooling 

19.59 

22.66 

26.83 

 

23.01 

 

0.1 

 

1.1 

 

3.2 

 

2.7 

 

29.8 
Position: Right corner 

Shape: Vertical 

4 

Annual lighting 

Annual heating 

Annual cooling 

16.11 

19.35 

35.48 

 

23.6 

 

1.1 

 

0.1 

 

4.2 

 

2.7 

 

48.4 
Position: Centered Shape: 

Horizontal 
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The third case study (see Table 6-2) for the case of room located in the 29th floor, the best 

values of the objective functions are presented in Table 6-6. The best optimal configuration 

will be a window positioned at the center (1.1 m away from the edge) having around 30% 

WWR with horizontal configuration is selected.  

Table 6-6: Best values of objective functions for a room at zone 10 and floor 29th  

Optimal 

solution 

rank 

Objective 

function 

Optimal 

value 

(KWh/m2) 𝑼(𝒙) 

 

x1 

 

z1 

 

x2 

 

z2 

 

WWR 

 

Window position 

1 

Annual lighting 

Annual heating 

Annual cooling 

18.89 

23.25 

26.81 

22.9 2.1 0.6 4.2 3.2 32.8 
Position: Right corner  

Shape: Vertical 

2 

Annual lighting 

Annual heating 

Annual cooling 

18.89 

23.25 

26.81 

22.9 0.1 0.6 2.2 3.2 32.8 
Position: Left corner 

Shape: Vertical 

3 

Annual lighting 

Annual heating 

Annual cooling 

18.89 

23.25 

26.81 

22.9 1.1 0.6 3.2 3.3 32.8 
Position: Centered 

Shape: Vertical 

4 

Annual lighting 

Annual heating 

Annual cooling 

19.59 

23.83 

25.64 

23.1 0.1 0.1 3.2 1.7 29.8 
Position: Right corner 

Shape: Horizontal 

5 

Annual lighting 

Annual heating 

Annual cooling 

19.59 

23.83 

25.64 

23.1 1.1 0.1 4.2 1.7 29.8 
Position: Centered 

Shape: Horizontal 

This study confirms that the outdoor microclimate and architectural design parameters are 

important factors in designing optimal window configurations, which has a significant 

influence on the building overall energy consumption. In the present case study, energy 

consumption is highly decreased while maintaining required illuminance by choosing 

optimal window configurations (as shown in Figure 6-18) according to the floor height and 

exposure to the wind. 
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Figure 6-18: “Optimal” window configurations, 30% WWR around the corner & 

top and 48% WWR around the center of the building 

Finally, a comparison between the optimal WWR and the baseline room model of having 

100% WWR is performed. Thus, for the case of a window located in the 2nd, 15th, and 29th 

floor room of the high-rise building, a reduction of 31.7%, 26.1%, and 39.6%, respectively 

is observed on the annual energy consumption as shown in Table 6-7.  
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Table 6-7: Optimal value of objective function 

Window floor height 

and location of room 

Objective 

function 

Baseline window 

(KWh/m2) 

Optimal window 

(KWh/m2) Diff. % 

Floor 2 - center zone 
Annual electric 

consumption 
91.09 69.19 -31.7% 

Floor 15 - center zone 
Annual electric 

consumption 
89.48 70.98 -26.1% 

Floor 29 - corner zone 
Annual electric 

consumption 
96.42 69.08 -39.6% 

6.6 Conclusion                                                                                                                                                  

A novel framework for simulation-based optimization of window configuration for a high-

rise building is developed under opposing constraints of energy and comfort. This 

framework is applied on an isolated a 100 m case study high-rise building.  Optimal 

window configurations for single room models located at different floors of the high-rise 

building located in Boston, MA, climatic condition is determined. The objective functions 

are to minimize the annual energy consumption for heating, cooling, and electric light. The 

decision parameters are window size and room location. The thermal comfort temperature 

set points and daylight illuminance are taken as constraints. In this multi-objective 

optimization, the optimum solutions were presented in the form of Pareto fronts to study 

the interaction between the objective functions and the window configurations. Finally, a 

weight-sum method is applied to obtain a single optimum solution. For the study case, for 

a rooms located in the center-zone at the second floor a 30% WWR, for room located in 

the center-zone of the fifteenth floor a 48%WWR, and for a room located in the corner-

zone of the twentieth floor a 30% WWR is chosen.   

In addition, an annual energy consumption comparison between the optimum window 

configuration and the base model of 100%WWR is performed. The study shows that a 

reduction more than, 32%, 26%, and 40% are obtained for rooms located on the 2nd, 15th, 
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and 29th floor, respectively. From the case study, it is clear that the building height and 

window location affects the building lighting, heating, and cooling energy consumption. 

Overall, architectural details, window configuration parameters, and room location have a 

critical impact on the betterment of the building energy performance. Therefore, choosing 

an appropriate window configuration based on the convective heat transfer distribution on 

the façade can improve building energy performance significantly. Although in this study, 

only a smooth wall high-rise building is considered, other architectural elements such as 

external shadings have an effect of building energy performance. Further studies may be 

extended to analyze the effect of external shading on window optimization, thermal 

bridging, and internal surface condensation analysis. The optimization framework can also 

be applied to determine optimal window configurations for other building forms. 
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Chapter 7  

7 Conclusions and recommendations 

7.1 Conclusions 

This thesis introduces a new framework of simulation-based optimization of window 

configuration in buildings that combines Computational Fluid Dynamics (CFD) and heat 

transfer simulation, Building Energy Simulation (BES), and an optimizer algorithm. 

Intensive numerical analysis of wind-driven convective heat transfer from a building 

façade is performed. The numerical models are validated in comparison with experimental 

data from literature whenever applicable.  Since the prediction accuracy of air flow and 

heat transfer in CFD depend on the accuracy of its boundary conditions, the emphasis is 

given in defining realistic microenvironment and geometrical boundary conditions. In the 

numerical analysis, a high-resolution of three-dimensional steady-state modeling with 

Reynolds-Averaged Navier-Stokes (RANS) simulation is used. To estimate the convective 

heat transfer coefficients (CHTC) accurately an SST κ-ω turbulence model closure is used. 

Detailed grid sensitivity analysis is also performed.   

Detailed analysis of the aerodynamics (focusing on size) effects around five buildings with 

heights of 10.1 m, 33.7 m, 50.6 m, 67.4 m, and 100 m, respectively, and four different 

façade surfaces with and without- external shadings are investigated. The floor plan is 

adopted from the CAARC (Commonwealth Advisory Aeronautical Research Council) 

building which is a typical building used as a benchmark for various aerodynamics studies. 

The buildings are exposed to open terrain wind field conditions, having floor dimensions 

of 30 m width by 40 m in-depth and exposed to different local microclimate conditions (i.e. 

different cities) are considered.  

Novel local-CHTC zoning is developed, motivated by the wind load zoning approach. New 

CHTC-U10 correlations for a building with-and without external shadings are developed. 

Futher, the impact of the existing-CHTC on building energy consumption is assessed by 

comparing with the newly developed CHTC correlations. The effect of different window 

configuration of the convective heat transfer of a window is investigated. Finally, a new 
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simulation-based optimization framework of a window configuration is developed. As an 

application example, this framework is used to optimize a window configuration in a 

typical 100 m high building consistent with its local-CHTC distributions and aerodynamics 

effects around the buildings. Therefore, the proposed framework can be used for architects 

and designers to layout different window configuration with minimal energy consumption 

and maximum thermal and lighting comforts in a building.  

7.2 Main contributions 

The original contributions of the present study to scientific knowledge are presented below: 

i. A CFD based procedural framework for an accurate analysis of convective heat 

transfer on building facades for a high-rise building is developed. 

ii. A new approach to CHTC-zoning is introduced. This approach is used to 

understand the localized effect of convective heat transfer on buildings with glazed 

claddings. For example. the zoning information revealed zones of max and min 

convective heat loss regions that are useful among other things for optimizing 

window location, use of different R-values by the façade elements similar to use of 

different thickness glass for various pressure zones etc. 

iii. A new surface average- and local- CHTC-U10 correlations are developed 

considering different building sizes, thus producing more accurate estimates that 

will enhance the energy consumption estimation by buildings. 

iv. A new surface average- and local- CHTC-U10 correlations for high-rise buildings 

with and without external shading is developed. The effect of different external 

shading depths and forms on convective heat transfer of a building is also 

investigated. The benefits of architectural details such as egg crates are highlighted. 

v. The impact of the existing-CHTCs on building energy performance is investigated 

and compared with new-CHTC developed using CFD. 

vi. The effect of different window configurations on the convective heat transfer rate 

of a window is investigated for the first time. A detailed procedural framework for 

the analysis of convective heat transfer from the surface of a window is developed. 

vii. A procedural framework for simulation-based optimization of window 

configuration in buildings is developed. This framework is also implemented in a 
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typical high-rise building in a realistic environment. Different optimal window 

configurations are also proposed.  

7.3 Recommendation for future work 

The work presented in this thesis discusses several topics related to the effect of wind on 

building convective heat transfer and optimization of window configuration in a typical 

high-rise building. For the future development and improvement of the research, the 

following recommendations can be made: 

i. Including urban topography effect and assessing their impact on building 

convective heat transfer is important to represent the realistic boundary conditions 

at the inlet. 

ii. Large eddy simulation (LES) can be carried out to numerically investigate the 

unsteadiness characteristic of the flow around the building.  This will improve the 

accuracy of the CHTC-U10 correlations particularly around the lateral, top and 

leeward sides of the building. 

iii. Extend the window configuration optimization process to include shading 

elements. 

iv. Wind tunnel heat transfer experiments on building models of different heights with 

different architectural forms are highly recommended to analyze the wind effect 

around the corner sides of the building which are highly susceptible to loss of more 

energy and condensation effects. 
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Appendices 

Appendix A 

Governing equation 

The governing equations, in CFD generally known as Navier-Stokes (N-S) equation consist 

of set of Partial Differential Equation (PDEs) includes: conservation of mass, conservation 

of momentum, and conservation of energy Equations A-1 – A-3.  

                                                  
𝜕𝑢𝑖

𝜕𝑥𝑖
= 0                                                            Equation A-1 

                               
𝜕

𝜕𝑥𝑗
(𝑢𝑖𝑢𝑗) = −

1

𝜌

𝜕𝑝

𝜕𝑥𝑖
+  

𝜕

𝜕𝑥𝑗
𝜗 (

𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
)                          Equation A-2 

                                       
𝜕

𝜕𝑥𝑗
(𝑢𝑗𝑇) =

𝜕

𝜕𝑥𝑗
(

𝑘

𝜌𝐶𝑝
+

𝜕𝑇

𝜕𝑥𝑗
)                                       Equation A-3 

where the vectors  𝑢𝑖 and 𝑥𝑖 are instantaneous velocity and position, p is instantaneous 

pressure, T is the instantaneous temperature, 𝜌 is density, 𝜗 is the kinematic molecular 

viscosity, 𝐶𝑝 is the specific heat capacity, and K is thermal conductivity. In this study, 

Reynolds-Average Navier-Stokes (RANS) equations with steady solver are employed to 

solve the fluid flow and energy equations. 

Reynolds-Average Navier-Stokes 

The basis for the RANS equation is the application of decomposition as the sum of a mean 

(ensemble-averaged or time averaged) and the fluctuating component as in Equation A-4: 

  𝑢𝑖 = �̅�𝑖 + 𝑢𝑖
,
                   𝑝 = �̅� + 𝑝′                  𝑇 = �̅� + 𝑇′                          Equation A-4 

where �̅�𝑖, �̅�, and �̅� are mean values and 𝑢𝑖
,
, 𝑝′, and 𝑇′ are the fluctuating components. By 

inserting Equation A-4 into Equation A1 -A3 and taking the ensemble average of the 

equations yields the RANS equations as shown in Equations A-5 – A-7. 
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𝜕𝑢𝑖

𝜕𝑥𝑖
= 0                                                              Equation A-5 

          
𝜕

𝜕𝑥𝑗
(�̅�𝑖�̅�𝑗) = −

1

𝜌

𝜕�̅�

𝜕𝑥𝑖
+

𝜕

𝜕𝑥𝑗
𝜗 (

𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
) −

𝜕

𝜕𝑥𝑗
(𝑢𝑖

, 𝑢𝑗
, )̅̅ ̅̅ ̅̅ ̅̅                             Equation A-6 

                        
𝜕(�̅��̅�𝑗)

𝜕𝑥𝑗
=

𝜕

𝜕𝑥𝑗
(

𝑘

𝜌𝐶𝑝

𝜕�̅�

𝜕𝑥𝑗
) −

𝜕

𝜕𝑥𝑗
(𝑢𝑗

′𝑇′)̅̅ ̅̅ ̅̅ ̅̅                                             Equation A-7 

In Equation A-6 the (𝑢𝑖
, 𝑢𝑗

, )̅̅ ̅̅ ̅̅ ̅̅  is called the Reynold stress (normal and shear stress) 

component and in Equation A-7 the  (𝑢𝑗
′𝑇′)̅̅ ̅̅ ̅̅ ̅̅  is called turbulent heat flux. They represent the 

influence of turbulent in the mean flow and the heat transfer.  The RANS equation does not 

form a closed set due to the presence of the Reynolds stress and turbulent heat fluxes which 

appear more unknowns than the equations and requires a closure or turbulence modeling.       

 Turbulence modeling 

Generally, there are two types of modeling: First-order closure and Second-order closure. 

The first-order closure uses the Boussinesq eddy-viscosity hypothesis to relate the 

Reynolds stress to the velocity gradient in the mean flow by means of eddy-viscosity ( 𝜗𝑡), 

and the turbulent heat flux is to mean temperature gradients. The second-order closure or 

Reynolds stress modeling (RSM) refers to computing the Reynolds stress from their 

respective transport equation. Although RSM is more comprehensive, application in 

building simulation have not shown a consistent superiority as Boussinesq hypothesis 

approach (Ferziger 1997; Blocken, 2018). Thus, in this study the first-order closer which 

is expressed in terms of the turbulence eddy viscosity (𝜗𝑡) is used. 

                                      −𝑢𝑖
, 𝑢𝑗

,̅̅ ̅̅ ̅ = 𝜗𝑡 (
𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
) −

2

3
𝑘𝛿𝑖𝑗                                Equation A-8 

                                                 𝜗𝑡 =
𝜇𝑡

𝜌
                                                             Equation A-9 

The (2/3) 𝑘𝛿_𝑖𝑗 term is to insures that the normal stresses sum to 𝑘 = (3/2)𝑢_𝑖^′2 
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Where 𝑘 is the turbulent kinetic energy associated with the fluctuations in the flow, 𝜇𝑡 is 

the dynamic viscosity, and 𝛿𝑖𝑗 is the Kronecker delta: 

                                         𝑘 =
1

2
𝑢𝑖

, 𝑢𝑖
,̅̅ ̅̅ ̅                                                               Equation A-10 

 𝛿𝑖𝑗 = {
1 for 𝑖 = 𝑗
0 for 𝑖 ≠ 𝑗

 

Like the turbulent eddy viscosity, the turbulent heat flux (𝑢𝑗
′𝑇′)̅̅ ̅̅ ̅̅ ̅̅  is expressed by means of 

turbulent heat diffusivity (𝐾𝑇) which related to turbulent momentum diffusivity by the 

turbulent Prandtl number 𝑃𝑟𝑡. 

                                  𝑢𝑗
′𝑇′̅̅ ̅̅ ̅̅ = 𝐾𝑇

𝜕�̅�

𝜕𝑥𝑗
                                                               Equation A-11 

 By analog with the molecular heat transfer to express the temperature gradients,  

                                           𝑃𝑟 =
𝜇𝐶𝑝

𝐾
=

𝜗

𝛼
                                                       Equation A-12 

                                           𝑃𝑟𝑡 =
𝜗𝑡

𝐾𝑇
                                                          Equation A-13 

                                  𝑢𝑗
′𝑇′̅̅ ̅̅ ̅̅ =

𝜗𝑡

𝑃𝑟𝑡
(

𝜕�̅�

𝜕𝑥𝑗
)                                                            Equation A-14 

where 𝐾𝑇, 𝜗𝑡 , and 𝑃𝑟𝑡 are flow properties. In CFD the 𝑃𝑟𝑡 is an assumed constant value 

between 0.7 to 1 which is an important for the simplification. Several turbulence models 

exist can model the turbulent eddy viscosity. In this study, the Shear Stress Transport 

(SST) 𝑘 − 𝜔 turbulent model is mainly employed. 

Shear Stress Transport (SST) 𝑘 − 𝜔 

This is a two-equation model presented by Menter (1994) which combines the original 

𝑘 − 𝜔 (Wilcox, 1988) model and the standard 𝑘 − 𝜀 model (Launder, 1974). A blending 

function, F1, activates the Wilcox model near the wall in the viscous sub-layer and 𝑘 − 𝜀 

model in the free stream. 
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𝜕𝑘

𝜕𝑡
+ 𝑢𝑖

𝜕𝑘

𝜕𝑥𝑖
= 𝑃𝑘 − 𝛽∗𝑘𝜔 +

𝜕

𝜕𝑥𝑗
[(𝜗 + 𝜎𝑘𝜗𝑡)

𝜕𝑘

𝜕𝑥𝑗
]                               Equation A-15 

𝜕𝜔

𝜕𝑡
+ 𝑢𝑖

𝜕𝜔

𝜕𝑥𝑖
= 𝛼𝑆2 − 𝛽𝜔2 +

𝜕

𝜕𝑥𝑗
[(𝜗 + 𝜎𝜔𝜗𝑡)

𝜕𝜔

𝜕𝑥𝑗
] + 2(1 − 𝐹1)𝜎𝜔2

1

𝜔

𝜕𝑘

𝜕𝑥𝑖

𝜕𝜔

𝜕𝑥𝑖
        

Equation A-16 

F1 (Blending function) 

𝐹1 = 𝑡𝑎𝑛ℎ {{𝑚𝑖𝑛 [𝑚𝑎𝑥 (
√𝑘

𝛽∗𝜔𝑦
,

500𝜗

𝑦2𝜔
) ,

4𝜎
𝜔2𝑘

𝐶𝐷𝑘𝜔𝑦2
]}

4

}                                      Equation A-17 

                     𝑆 =
1

2
(

𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
)                                                        Equation A-18 

where 𝑃𝑘 is the production limiter, 𝑘 determines the energy in the turbulence, and 

𝜔 determines the scale of turbulence (specific rate of dissipation of turbulent kinetic 

energy into thermal energy), and  𝛽∗=0.09, 𝜎𝜔 = 2, 𝜎𝑘 = 2, 𝛼 = 5/9, S is stress tensor. 

            𝜗𝑡 =
𝑘

𝜔
=

𝜇𝑡

𝜌
     and  𝜔 = 𝐶

𝜀

𝑘
                                                              Equation A-19 

 The unknown Reynolds stress tensor, 𝑢𝑖
, 𝑢𝑗

,̅̅ ̅̅ ̅, is calculated from: 

 −𝑢𝑖
, 𝑢𝑗

,̅̅ ̅̅ ̅ = 𝜗𝑡 (
𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
) −

2

3
𝛿𝑖𝑗 (𝜌𝑘 + 𝜗𝑡

𝜕𝑢𝑘

𝜕𝑥𝑘
)                                   Equation A-20 
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Appendix B 

Velocity and CHTC contour 

 

Figure B 1: Wind field vector and contour on a plane taken in front of the 

windward façade at 0.01 m from the wall of a building with height of a) 10.1 m, b) 

33.7 m, c) 50.6 m, d) 67.4 m and e) 100 m heights (ref. wind speed of 3 m/s at the 

inlet) 
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Figure B 2: Windward wall CHTC distribution (ref. wind speed of 3 m/s at the inlet) 

for building with a) 10.1 m, b) 33.7 m, c) 50.6 m, d) 67.4 m and e) 100 m heights 
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Figure B 3: Leeward wall CHTC distribution (ref. wind speed of 3 m/s at the inlet) 

for building with a) 10.1 m, b) 33.7 m, c) 50.6 m, d) 67.4 m and e) 100 m heights 
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Figure B 4: Lateral sidewall CHTC distribution (ref. wind speed of 3 m/s at the inlet) 

for building with a) 10.1 m, b) 33.7 m, c) 50.6 m, d) 67.4 m and e) 100 m heights 
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Appendix C 

CHTC-U10 correlation with building height 

 

Figure C 1: Surface-averaged 𝑪𝑯𝑻𝑪𝐚𝐯𝐠 (𝐔𝟏𝟎
𝟎.𝟖𝟗)⁄  correlation on the windward facade 

as a function of building height 

 

Correlation between CHTC and Uz
  

The wind speed measured at a meteorological station can be extrapolated and transferred 

to another location using power law.  Local wind speed 𝑈𝑧 (at the building height) 

accounting for the different types of topography (ASHRAE, 2009) and altitude can be 

given with Equation C-1.  

                                         𝑈𝑧 = 𝑈10 (
𝑍𝑔−𝑚𝑒𝑡

𝑍𝑚𝑒𝑡
)

𝛼1

(
𝑍

𝑍𝑔
)

𝛼2

                                     Equation C-1                    

where  𝑈𝑧 is wind speed at altitude 𝑧 above the grade,  𝑈10 is wind speed at 10 m from the 

ground at the meteorological station, 𝑍𝑔−𝑚𝑒𝑡 is the boundary layer thickness at the 

meteorological station, 𝑧𝑚𝑒𝑡, height above ground of the wind speed sensor, and 𝛼1,  wind 

speed profile exponent at the meteorological station, z is height above ground of the wind 
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at the building site, 𝑧𝑔 is wind speed profile boundary layer thickness at the building site, 

𝛼2,wind speed profile exponent at the site. The wind speed profile 

coefficients 𝛼1, 𝑧𝑔−𝑚𝑒𝑡 , 𝛼2, and 𝑧𝑔 are variables that depend on the roughness 

characteristics of the surrounding terrain. The typical values of 𝛼 range from 0.14 for the 

flat and the open country to 0.33 for towns and cities, while the values for  𝑧𝑔 range from 

270 m to 460 m for open and urban terrain types, respectively. The coefficient that connect 

the local wind speed and the reference wind speed obtained from meteorological station 

due extrapolations is calculated and summarized in Table B-1. Accordingly, Figure B-5 

shows surface-averaged 𝐶𝐻𝑇𝐶 𝑈𝑧
0.89⁄  as a function of building height H. While comparing 

Figure B-5 with Figure B-6, it is clear that the main reason that the CHTC changes with 

height of the building is the change in ref. velocity itself. But removing that effect of 

velocity as shown in Figure B-6 still indicate the impact of the building height on the CHTC 

coefficient albeit in a reduced scale.  

Table C 1: Coefficient for conversion 

 

𝑈𝑧

𝑈10
 

Building height (m) 

10.1m 33.7 m 50.6 m 67.4 m 101.1 m 

1 1.18 1.25 1.30 1.38 
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Figure C 2: Surface-averaged 𝑪𝑯𝑻𝑪𝐚𝐯𝐠 (𝐔𝐳
𝟎.𝟖𝟗)⁄  correlation on the windward facade 

as a function of building height 
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