
Western University Western University

Scholarship@Western Scholarship@Western

Electronic Thesis and Dissertation Repository

7-5-2019 11:00 AM

Measuring Enrichment Of Word Embeddings With Subword And Measuring Enrichment Of Word Embeddings With Subword And

Dictionary Information Dictionary Information

Felipe Urra, The University of Western Ontario

Supervisor: Mercer, Robert E., The University of Western Ontario

A thesis submitted in partial fulfillment of the requirements for the Master of Science degree in

Computer Science

© Felipe Urra 2019

Follow this and additional works at: https://ir.lib.uwo.ca/etd

Recommended Citation Recommended Citation
Urra, Felipe, "Measuring Enrichment Of Word Embeddings With Subword And Dictionary Information"
(2019). Electronic Thesis and Dissertation Repository. 6262.
https://ir.lib.uwo.ca/etd/6262

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F6262&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/6262?utm_source=ir.lib.uwo.ca%2Fetd%2F6262&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

Abstract

Word embedding models have been an important contribution to natural language processing.
Following the distributional hypothesis, that is "words used in similar contexts tend to have
similar meanings", these models are trained on large corpora of natural text. By analyzing how
words are used in context, the mapping of a word to a vector of real numbers is learned. Some
later models have tried to incorporate external information to enhance the vectors. The goal of
this thesis is to evaluate three models of word embeddings and measure how these enhance-
ments improve the word embeddings. These models, along with a hybrid variant, are evaluated
on several tasks of word similarity and a task of word analogy. Results show that fine-tuning
the vectors with semantic information dramatically improves performance in word similarity;
conversely, enriching word vectors with subword information increases performance in word
analogy tasks, with the hybrid approach finding a solid middle ground.

Keywords: Word embedding, word2vec, fastText, dict2vec, semantic relatedness, word
similarity, dictionary information

i

Summary for Lay Audience

Word embedding models have been an exploding field in Natural Language Processing in the
last few years. After several improvements in computational power and the development of
neural networks, previously proposed models are now possible to implement in modern com-
puters. In simple terms, a word embedding is a mapping of words to vectors of real numbers,
while a word embedding model is a structure or a program that builds said mapping. The ad-
vantage of being able to represent words as vectors of a hundred or so dimensions makes these
models ideal to use in real applications. Moreover, word embeddings have demonstrated to
have several interesting properties, such as making words with similar meanings also similar
in the vector space and the ability to represent word analogies through vector operations, for
example, king − man + woman ≈ queen.

The way these models learn this information is based on word frequency and analyzing
contexts to learn which words are used together. The learning is founded on the distributional
hypothesis: "words that occur in similar contexts tend to have similar meanings", also known
as "a word is characterized by the company it keeps". In addition to using this hypothesis some
models derive extra information from the data or incorporate external information from other
sources. One thing that makes the models difficult to analyze is the fact that all of them use dif-
ferent values of hyperparameters to do the learning, such as the number of vector dimensions,
or the size of the contexts to analyze, among many others. This situation is also worsened by
the fact that the values of the hyperparameters are not universal, and the performance of the
model changes depending on the type or size of the data and the problem to solve.

This thesis aims to evaluate several word embedding models based on a popular one called
word2vec. Two of these models are novel: a simplified variant of an existing model and a
hybrid combination of two other models. Word similarity and word analogy tasks are used
in this evaluation. This thesis also aims to replicate some previously published results and
hyperparameter values and to check whether the novel models can obtain competent results on
both types of tasks.

ii

Contents

Certificate of Examination i

Abstract i

Summary for Lay Audience ii

List of Figures vi

List of Tables viii

1 Introduction 1
1.1 Problem Statement . 2

1.2 Contributions . 2

1.3 Vectors . 3

1.3.1 Syntactic Information . 3

1.3.2 Semantic Information . 4

1.3.3 Analogical Information . 4

1.4 Evaluation . 5

1.4.1 Extrinsic Tasks . 5

1.4.2 Intrinsic Tasks . 6

1.4.3 Datasets . 6

1.5 Format of the Thesis . 7

2 Related Work 8
2.1 Word Embedding Models . 8

2.2 Sentence Embedding Models . 9

2.3 Word2vec . 10

2.3.1 Skip-Gram . 14

Vocabulary and Weights . 14

Embedding . 14

iii

Error Function . 15
Output . 15
Updating Weights . 16

2.3.2 Optimizations . 16
Hierarchical Softmax . 16
Negative Sampling . 18

2.4 FastText . 20
2.5 Dict2vec . 21

3 Model Implementations and Evaluation 23
3.1 Word2vec - Skip Gram . 23
3.2 FastText . 24
3.3 Dict2vec . 25
3.4 Proposed Model (dictFastText) . 25
3.5 Evaluation . 26

3.5.1 Experiments . 26
Word Semantic Similarity . 26
Word analogy . 27

3.5.2 Training Data . 28
3.5.3 Web Scraping . 28
3.5.4 Hyperparameters . 28

4 Results 32
4.1 Analysis . 32

4.1.1 Word2vec . 33
4.1.2 FastText . 40
4.1.3 Dict2vec . 43
4.1.4 DictFastText . 47
4.1.5 All Models . 52

4.2 Evaluation . 56
4.2.1 Word similarity . 56
4.2.2 Word analogy . 57

5 Conclusions 59

6 Future Work 61

Bibliography 63

iv

A Word embeddings 66
A.1 Word representation . 66

A.1.1 Bag of words . 66
A.1.2 One hot encoding . 67

A.2 Word similarity . 67

B Spearman’s Rank Correlation Coefficient 69

C Diffvec 70
C.1 Lexical Relations . 70
C.2 Spectral Clustering . 70
C.3 V-measure . 71

Curriculum Vitae 74

v

List of Figures

2.1 Continuous Bag-of-Words Model . 12

2.2 Skip-Gram Model . 13

2.3 Hierarchical Softmax . 17

2.4 Huffman encoding . 18

2.5 Unigram distribution . 19

2.6 Unigram distribution zoomed up to x = 1 . 19

2.7 Spearman’s rank correlation results (fastText) 21

2.8 Spearman’s rank correlation results (dict2vec) 22

4.1 Word2vec performance by epoch . 34

4.2 Word2vec performance by epoch (boxplot) . 34

4.3 Word2vec performance by negative sampling 36

4.4 Word2vec training time by negative sampling 36

4.5 Word2vec performance by epoch and negative sampling 37

4.6 Word2vec performance by sampling . 38

4.7 Word2vec performance by sampling (boxplot) 38

4.8 Word2vec training time by sampling . 39

4.9 FastText performance by n-grams . 41

4.10 Subwords performance by n-grams . 41

4.11 FastText and Subwords performance by epoch and n-grams 42

4.12 Dict2vec performance by epoch . 44

4.13 Dict2vec performance by strong draws and beta strong 45

4.14 Dict2vec performance by weak draws and beta weak 46

4.15 Dict2vec performance by strong and weak hyperparameters 48

4.16 DictFastText performance by n-grams . 49

4.17 DictFastText performance by strong draws and beta strong 50

4.18 DictFastText performance by weak draws and beta weak 51

4.19 Results for all algorithms . 53

4.20 Results for all algorithms (zoomed) . 53

vi

4.21 Box plot for results of word2vec, fastText and subwords 54
4.22 Box plot for results of dict2vec and dictFastText 54
4.23 Training time of dict2vec and dictFastText (5-grams) 55
4.24 Spectral clustering on the word analogy task 58

A.1 Term-document matrix . 67
A.2 Vector similarity . 68

B.1 Monotonic and non-monotonic functions . 69

C.1 Details of lexical relations dataset . 71
C.2 Laplacian matrix . 71
C.3 Normalized Spectral clustering algorithm . 72

vii

List of Tables

4.1 Top 5 score results for word2vec. 35
4.2 Top 5 score results for fastText and subwords 43
4.3 Top 5 score results for dict2vec . 47
4.4 Top 5 score results for dictFastText . 47
4.5 Top scores and hyperparameters for each algorithm 56
4.6 Task score breakdown for each algorithm . 57

viii

Chapter 1

Introduction

Word embeddings are one of the most used representations of vocabulary in NLP. Essentially, a
word embedding is a particular mapping of words to vectors (collection of real numbers); addi-
tionally, in a confusing way, word embedding is also the collective name of several models that
can build said mapping. The possibility to transform words to vectors of real numbers makes
them an ideal model to explore and apply several mathematical operations and transformations
to hopefully represent some of the features that languages have.

There has been an exploding interest in these kinds of techniques after word2vec [16] was
proposed in 2013. A shallow neural network (composed of 2 layers) is used to produce a word
embedding, i.e., a vector space where some interesting properties can be observed. One of
such properties is vector similarity (in terms of semantics). Given that words are now vectors,
several similarity functions can be applied as a quantifiable way of comparing such words.
A good word embedding would map similar words to similar vectors, and would map not so
similar words to not so similar vectors. For example: the vectors for cat and dog should be
more similar than say, cat and flower. Another property is analogies. This aspect of word
embeddings has gained a lot of popularity after word2vec successfully modeled this property
via addition and substraction operations on the word vectors: king − man + woman ≈ queen.

The real power of the word embedding approach is that it is an unsupervised learning

model, meaning that it works on unannotated data (and text data is widely available nowadays).
The way these models learn these numbers is based on analyzing the contexts between different
words and using a prediction approach based on the idea of the Neural Probabilistic Language
Model [3] which, in turn, is based on the idea of statistical language models: predict words
given a certain sequence of pre-occurring words. For example, given the phrase "read the New
York", there are some words (like "Times") that are more likely to occur than others. The idea
is that if in the training data there are enough examples of this phrase, then it’s possible to
calculate the probability of the next word through the frequency of these word sequences.

1

2 Chapter 1. Introduction

There are many models and algorithms that create word embeddings, with different ap-
proaches. In the last few years there’s been a resurgence in deep learning with several archi-
tectures and hyperparameters being proposed; some of them can even use pre-trained word
embeddings from other models as a starting point. Moreover, with of all these different ap-
proaches, different numbers are obtained for the embeddings, making it really important to
have a solid way of evaluating the different results. However, there’s no one universal stan-
dard way of evaluating the word vectors and additionally, there are different properties of the
word embeddings that can be evaluated, which makes the evaluation and comparison between
models inconsistent across different studies.

1.1 Problem Statement

Adding to the situation of the different evaluation methods, all models are implemented in
different programming languages, frameworks, and platforms. While this is natural, given
the preferences and capabilities of the different options, the fact that they’re all implemented
differently can make some comparisons inaccurate. The main motivation for this thesis is both
to try different combinations of hyperparameters and also training the models using the same
base language and program; several word embedding models share the same base architecture
which makes them ideal to use in this scenario. Additional goals are to confirm the usual
recommended values for the hyperparameters and also to be able to measure the improvement
of the modules or enhancements of the later models to the baseline in a more accurate way.

1.2 Contributions

First, experiments are run to show how much tuning hyperparameters impacts word relatedness
and word similarity tasks for five models based on the same base architecture. Graphs show
results for some values of hyperparameters using grid search for individual models, and then
all together in the same graph; the best five results of the individual models are shown in tables
as well. Finally, for the best result of each model, results of the individual tasks are displayed
in a table alongside the average scores.

In addition, an extra evaluation dataset is tested. Given that word embeddings have shown
some analogy properties in the form of vector differences, it is desirable to study if embeddings
that have high performance over word similarity tasks can transfer some of that performance
to vector differences. Experiments show an inverse relationship over these two kinds of tasks,
meaning that a model with higher performance in word similarity will have a lower perfor-
mance in analogies and viceversa. A hybrid model combining the particular approaches from

1.3. Vectors 3

two models which shows a solid middle ground between these tasks is proposed, albeit with a
tradeoff with the training time.

1.3 Vectors

As previously mentioned, vectors are supposed to represent words (at least in word embed-
dings; there are other types of embeddings at sentence-level, paragraph-level, character-level,
etc.), but certain issues can occur. For example, things like: polysemy, word senses, and inflec-
tions can make it difficult to interpret the mapping from the word to the vector; additionally,
the way to learn these vectors is through examples and usage, not by grammar or rules, making
them dependent on the quality of the text or type of discourse. On top of that, it’s also im-
portant to consider that these embeddings are used in different fields; for example, engineers
may use them as inputs for apps or other models, whereas linguists may be more interested in
exploring properties related to semantics or other related topics (for more specific details about
word embeddings, see Appendix A).

Regarding the size or dimension of the vectors, it’s not quite understood what the dimen-
sions mean in the different models; moreover, the number of dimensions is a hyperparameter in
most, if not all, with some tasks having better results with some specific numbers. In addition,
the same number of dimensions could have different results depending on the training data.
This makes it more difficult to understand what the vectors are or represent.

Finally, different tasks have different requirements for "word relatedness"; for example,
when dealing with part-of-speech tagging, two words with the same POS tag should be more
related than two words that do not, independent of their individual meanings, whereas in other
tasks, there’s no such requirement. In the same vein, tasks like plagiarism detection need finer
tuning to define what word or phrases could mean, due to things like paraphrasing.

1.3.1 Syntactic Information

In linguistics, syntax refers to how words in a sentence (clause) relate to each other. It has to
do with word order, sentence structure, and grammar. Usually, word vectors don’t encode syn-
tactic information in them (mainly due to not encoding word order), but sentence or paragraph
vectors do. However, when employing context windows, some word order information is used
when learning the representations, so it can be argued that there is some syntactic information;
nevertheless, it’s hard to know how much, if any, information is encoded.

4 Chapter 1. Introduction

1.3.2 Semantic Information

Semantics refers to the meaning of lexical items, like words or phrases. Word embeddings
base their representations on meaning, which is inferred by the usage of the word, according to
the distributional hypothesis "Words used in similar context, tend to have similar meanings".
There is one problem though: word senses.

Languages tend to "like" polysemous words. One theory is that it makes languages more
efficient (recycling of signs, i.e., words and phrases)1. Independently of the reason, strictly
speaking, all words are polysemous to one degree or another2 (although this is a point of con-
tention among linguists). Some languages are also more open to the use of words to describe
certain concepts that are related but not the same thing; in these cases, the word can "bleed"
over time in the lexicon and become a new word sense. For example the word "eat", even
though as a verb it describes the act of putting, chewing and swallowing food in the mouth,
it also means to have a meal, and additionally consuming a lot of something. The degree on
which all of this is defined is not easy to determine and, on top of that, there’s the complication
of differentiate between homonymy and polysemy. Word embeddings have some problems with
this because the only thing that is used in the vocabulary is the word itself, which depending on
the data, could have multiple usages in the context data (which would make the representation
too general) or, have some word senses totally absent, which would make the word embedding
to not capture those meanings.

Lastly, synonyms and antonyms are an important mention. Synonyms are usually well
encoded in word embeddings (given that the basis for learning the word is based on semantic
information); however, antonyms are not: They are not explicitly used when training so there’s
no clear encoding in the embedding itself. Additionally, similarity between words is not well
defined (conceptually speaking), so it’s not clear what the difference is between words that are
not related at all with words that are antonyms.

1.3.3 Analogical Information

Simply stated, an analogy is an inference of a relation between two or more lexical items that
can be transferred to the same number of other items. Example: "Annoying like nails on a
chalkboard". In NLP, analogies are treated more broadly, i.e., as similarities, for example:
"New York is to the United States as Paris is to France".

There are pair-based and set-based methods3 and two types of analogies that are commonly

1http://news.mit.edu/2012/ambiguity-in-language-0119
2http://anglisztika.ektf.hu/new/content/tudomany/ejes/ejesdokumentumok/2011/Kovacs_2011.pdf
3https://aclweb.org/aclwiki/Analogy_(State_of_the_art)

http://news.mit.edu/2012/ambiguity-in-language-0119
http://anglisztika.ektf.hu/new/content/tudomany/ejes/ejesdokumentumok/2011/Kovacs_2011.pdf
https://aclweb.org/aclwiki/Analogy_(State_of_the_art)

1.4. Evaluation 5

used:

• Syntactic Analogy: plurals, verb gerunds, prefixes, suffixes (morphology).

• Semantic Analogy: collective nouns, hypernym, hyponym, meronyms, or simple mean-
ing.

1.4 Evaluation

One of the problems with word embeddings is that it’s not fully clear how to quantify the
quality of them; considering that there are a lot of tasks where word embeddings are used
(for example, part-of-speech tagging, semantic, syntactic, paraphrasing tasks, etc.), to evaluate
them is not straightforward. Currently, two popular categories exist [2]:

• Extrinsic Evaluation: Using the vectors as features of a downstream task (outside of the
word embedding itself).

• Instrinsic Evaluation: Evaluating the vectors by comparing them to human judgement
(innate properties of the vectors or the vector space).

1.4.1 Extrinsic Tasks

Some evaluation tasks [2] include:

• Noun Phrase Chunking: Extracting "compact" noun phrases (not containing other NP-
chunks) from a sentence (Bigrams noun + dependent word. Example4: The yellow dog

barked at the cat-> (the yellow dog), (the cat).

• Named Entity Recognition: Identify names of organizations, brands, people.

• Sentiment Analysis: Text classification task where a piece of text is marked with a label
that reflects level of positive, negative or neutral polarity. Examples: customer reviews,
tweets.

• Text classification: Mark a piece of text with a label depending on the content. Examples:
tag text by topics (sports, news, film).

4https://www.nltk.org/book/ch07.html

https://www.nltk.org/book/ch07.html

6 Chapter 1. Introduction

• Input for Neural Networks: Using pre-trained word vectors as inputs for other models,
for example, using GloVe vectors as a starting point for an LSTM.

1.4.2 Intrinsic Tasks

Some examples of intrinsic tasks [2] are:

• Word semantic similarity: word vectors with similar meanings should be closer than
word vectors that are not; the more closer, the more similar the words are.

• Word analogy: as mentioned previously in Section 1.3.3, it’s based on the idea that arith-
metic operations over the vectors can model certain relations or concepts by association,
e.g., a is to a∗ as b is to ?.

1.4.3 Datasets

Some evaluation tasks and datasets, which will also be used in this thesis are:

• MC-305: 30 pairs with a scale of 0 to 4 (the higher the "similarity of meaning", the higher
the number).

• MEN6: 3000 pairs with a score scale from 1-50 of human-assigned similarity judgments.

• MTurk-2877 287 pairs and a similarity rating with a scale of 1 to 5.

• Mturk-7718: 771 word pairs with mean relatedness scores. Scores were collected on
Amazon Mechanical Turk, with at least 20 ratings collected for each word pair. Rating
consists of a 1-5 scale, where 5 stands for "highly related" and 1 stands for "not related".

• RG-659: 65 pairs with a scale of 0 to 4 (the higher the "similarity of meaning," the higher
the number).

• RW10 2034 pairs of "rare words" and a similarity rating with a scale of 0 to 10.

• SimLex99911: 999 pairs with a scale of 0 to 10.
5https://aclweb.org/aclwiki/MC-28_Test_Collection_(State_of_the_art)
6https://staff.fnwi.uva.nl/e.bruni/MEN
7http://www.cs.technion.ac.il/~shaulm/papers/pdf/Radinsky-WWW2011.pdf
8http://www2.mta.ac.il/~gideon/mturk771.html
9https://aclweb.org/aclwiki/RG-65_Test_Collection_(State_of_the_art)

10https://nlp.stanford.edu/~lmthang/morphoNLM/
11https://fh295.github.io/simlex.html

https://aclweb.org/aclwiki/MC-28_Test_Collection_(State_of_the_art)
https://staff.fnwi.uva.nl/e.bruni/MEN
http://www.cs.technion.ac.il/~shaulm/papers/pdf/Radinsky-WWW2011.pdf
http://www2.mta.ac.il/~gideon/mturk771.html
https://aclweb.org/aclwiki/RG-65_Test_Collection_(State_of_the_art)
https://nlp.stanford.edu/~lmthang/morphoNLM/
https://fh295.github.io/simlex.html

1.5. Format of the Thesis 7

• SimVerb-350012: 3500 verb pairs and a similarity rating on a scale of 0 to 10.

• WordSimilarity-35313: 353 word pairs with similarity score from 0 (totally unrelated
words) to 10 (very much related or identical words). The dataset used in the evaluation
task is based on a further subdivision14 which has 2 extra subsets:

1. ALL: This is the full 353 pairs set.

2. REL: Goldstandard for measuring relatedness (252 pairs), e.g., clothes-closet 8.0.

3. SIM: Goldstandard for measuring similarity (203 pairs), e.g., clothes-closet 1.9.

• YP-13015 130 pairs with similarity rating on a scale of 0 to 4.

1.5 Format of the Thesis

This chapter has introduced the problem, where some background for word information was
given, explained the types of evaluation tasks, and finally described the evaluation tasks that
will be used in this thesis.

Chapter 2 talks about related works, specifically, how the models work in theory. The base
architecture is explained, mentioning the modules that will be relevant for the later models.

Chapter 3 is about the models’ code implementations, where a detailed overview is given,
due to the difference between a model’s theory and its implementation. Additionally, the pro-
posed approach along with the evaluation process are explained as well.

Results of the experiments are shown in Chapter 4, with several graphs for all the different
hyperparameters for all the different models for the average scores. The highest values for the
models are shown in a table along with the scores for each task for two averages.

Chapter 5 talks about conclusions over the results and Chapter 6 outlines some potential
future work.

12http://people.ds.cam.ac.uk/dsg40/simverb.html
13http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/wordsim353.html
14http://alfonseca.org/eng/research/wordsim353.html
15http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.119.1196

http://people.ds.cam.ac.uk/dsg40/simverb.html
http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/wordsim353.html
http://alfonseca.org/eng/research/wordsim353.html
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.119.1196

Chapter 2

Related Work

This chapter will be an overview on several word embedding and related embedding models.
Detailed descriptions on the word embedding models relevant to this thesis are given on later
sections, with special emphasis on word2vec’s skip-gram; this is because all the models that
are going to be analyzed are based on this architecture. The first two section are a general
overview of word embedding models and some sentence embedding models; the third section
describes word2vec, defining the basic concepts and ideas, and describing some optimizations
over the initial proposal. Later sections deal with the changes and/or enhancements applied to
this base model that fastText and dict2vec propose.

2.1 Word Embedding Models

Although word embedding models have been increasedly cited in the last few years, the concept
has been discussed for several years before. The idea of vector spaces representing words
were discussed previously in computational linguistics as distributional semantic models; they
were eventually realized after some early models such as Latent Semantic Analysis [7] and
Hyperspace Analogous to Language [13] appeared. In particular, LSA was very influential
in demonstrating that information from contexts was enough to produce representative word
spaces with interesting properties, such as representing semantic similarity for word vectors
and relating words that don’t co-occur together. On the other hand, HAL had more success in
the field of cognitive science as a model representative of semantic memory [6].

In parallel, neural models such as simple recurrent neural networks eventually started to
develop. Once computational power increased and the curse of dimensionality was solved
by the Neural Language Model [3], neural word embedding models really started to develop.
Starting with word2vec [16], and in conjunction with several libraries and frameworks being
developed to treat text data, word embedding models made a big impact in the field. Word2vec

8

2.2. Sentence EmbeddingModels 9

is based on training word pairs taken from contexts found in text corpora and it learns to
relate words that occur together. Afterwards, several other models were being proposed as
improvements of word2vec. Among them, GloVe [18] focuses on incorporating co-occurrence
information from counts instead of training the network using probability, arguing that the
order on which words are mentioned is important. Although GloVe has been highly cited,
there are some people that have criticized the method of evaluation of GloVe vs word2vec for
being "not fair"1.

Other examples of later models include: wang2vec [12], which includes the positional in-
formation of the context words to improve the embeddings; sense2vec [24], which proposes
adding part-of-speech tags to the words in the training data to improve the vectors and dif-
ferentiate word senses; fastText [4], which represents the word vectors as a normalized sum
of the word vector plus its n-gram subword vectors, partially solving the problem of out-of-
vocabulary words and incorporating syntactic properties; dict2vec [23], that proposes to in-
corporate semantic information for the words found in dictionary definitions to fine-tune the
vectors.

Later, more complex architectures were developed for neural networks (called deep neural
networks, unlike the word2vec model, which is shallow, i.e., 2 layers), with models such as
Deep Structured Semantic Model [22], originally designed for information retrieval, that uses
a deep network and bag-of-words inputs to learn low-dimensional representations, and CoVe
[15] that employs an encoder-decoder architecture with 2-layered LSTMs in conjunction with
attention (a network sub-module to help the encoder part of the network remember long sen-
tences). Other models trained as language models like ELMo [19] that learns contextualized
words (that is, words as a function of their context) which are also character-based, with 2
biLSTM stacked together, and BERT [8] which gets its word representations from learning
bidirectional contexts with the transformer [26] encoder, are some of the latest state-of-the-art
methods to be proposed.

2.2 Sentence Embedding Models

Alternatively, other complex models have been proposed, where, instead of word embeddings,
these new models can represent whole sentences and even paragraphs. Notably, doc2vec [11],
which is also based on the architectures of word2vec, uses a parameter, a document id, along
with the sentence as an input so the model learns both the sentence and its unique id as a
vector. On another note, the Deep Average Network or DAN [10], which consists of two fully-
connected layers and a softmax layer, can use pre-trained word embeddings by averaging the

1https://rare-technologies.com/making-sense-of-word2vec/#glove_vs_word2vec

https://rare-technologies.com/making-sense-of-word2vec/#glove_vs_word2vec

10 Chapter 2. RelatedWork

word vectors that make up the input sentence to learn the sentence vector.
Recent developments such as the Universal Sentence Encoder [5], which can use DAN or

the transformer as part of its internal architecture, and LaSeR2 [1], which uses bidirectional
LSTMs, are based on machine translation and an encoder-decoder architecture to learn the
representations; the former learns one language, while the latter is language-agnostic.

On the dictionary side, this model [9] also uses an LSTM but it incorporates dictionary
definitions to map the word to its definition. By also using pre-trained word embeddings, the
authors also built a reverse dictionary, where the input is a phrase or description, and the output
is a word; this way, the model learns the definition of the word by making its representation
closer to its word vector representation.

2.3 Word2vec

Word2vec [16], consists of a predictive model applied to text data, specifically, co-occurrence
data within a sliding symmetric context window; this window is made from the middle word
(called the target word) and its surrounding words (context words):

Example: "The snow is white"
Context 1:

• Target word: snow

• Context words: The, is

Context 2:

• Target word: is

• Context words: snow, white

The main idea is to feed the model different contexts and learn which words co-occur in
the same context; in other words, it aims to find good representations of words that can predict
other words that occur in similar contexts. This is fairly similar to Probabilistic Language
Models, where given a sequence of words, the next word is predicted. The main problems with
these kinds of models are the "Curse of Dimensionality" (where the number of variables for
the sequences explodes as the vocabulary grows) and that once the model is trained, it’s not
possible to calculate the probability over a previously not seen sequence (because there’s no
training data, it’s impossible to calculate the probability over counts).

2Although this is the name of the released framework, the reference is the study where its learning architecture
is proposed. More details on: https://github.com/facebookresearch/LASER

https://github.com/facebookresearch/LASER

2.3. Word2vec 11

Both of these problems were minimized by the Neural Probabilistic Language Model [3]
through the use of a shallow neural network; because this model doesn’t use the frequency of
words (it tries to fit the known data with neuron weights and it tries to generalize from that).
Word2vec uses a similar architecture and the same base idea.

Word2vec has 2 different "versions" of training:

• Continuous Bag-of-Words: Predicts a target word given the context words.

• Skip-Gram: Given a target word, predicts the context words.

For both of these cases, the model tries to maximize the log probability of the output
word(s) given the input word(s). That means predicting through probability the context words
given the target word in the case of Skip-Gram and the target word given a context word in the
case of Continuous Bag-of-Words.

Figure 2.1 shows the architecture of CBOW. Note that V is the size of the vocabulary (the
number of words that are going to be trained in the model). Words xci represent the context
words in one-hot encoding; this means that the current i-th value (which is the position of the
word in the vocabulary) of the input vector is 1, and 0 for all other values. hi is the vector
representation of word xci, C the size of the context, and j the position of the target word in
the vocabulary. Skip-Gram, depicted in figure 2.2, follows the same notation as CBOW, with
the difference that now the input (xi) is the target word and the outputs yc j will be the context
words.

One important variable is the dimension of the vectors (which is N and is a hyperparameter
of the model); while the model is originally trained for finding good representation of words
that can predict co-occurring words, the ultimate objective is to learn low-dimensional repre-
sentations of the words in the vocabulary (which are originally represented with dimension V ,
the size of the vocabulary). Notice that because the model has words in both its input(s) and
output(s), the dimensions of the weight matrices are inverted in order to match the multiplica-
tion of the vectors.

Cost function (Continuous Bag-of-Words Model):

J = max(
C∑

t=1

n∑
k=−n

log p(wt|wt+k)) (2.1)

p(wt|wt+k) =
evt ·vt+k∑

w∈V
ev·vt+k

(2.2)

12 Chapter 2. RelatedWork

Figure 2.1: continuous bag of words model;
inputs are C context words and output is the target word.

2.3. Word2vec 13

Figure 2.2: Skip-gram model; input is the target word, outputs are C context words.

And for Skip-Gram:

J = max(
C∑

t=1

n∑
k=−n

log p(wt+k|wt)) (2.3)

p(wt+k|wt) =
evt+k ·vt∑

w∈V
ev·vt

(2.4)

where, for both cases, w is a word in the vocabulary, wt is the target word, wt+k a context
word, v is the vector for word w, and vi is the vector for word wi. For CBOW, context word
vectors are taken from their corresponding rows of W and the target word vector is taken from
its corresponding column of W ′; conversely, for skip-gram, the target word vector is taken its
corresponding row of W and context word vectors from their corresponding columns of W ′.

In both models, the input layer is also called the embedding layer, the second layer is called
the hidden layer and the third layer is the output or softmax layer. It is important to note that,
ultimately, the main task of the model is to represent words as vectors; so once the model has

14 Chapter 2. RelatedWork

finished training, the hidden and output layers are removed. This causes the output to now
be the low-dimensional vector representation of the input word (this process is common in
learning models, where the goal is to train the model for a certain task and the objective is to
get a good representation instead of the predictive model itself3).

Additionally, while the embeddings of both architectures are comparable, according to
Mikolov4 that skip-gram needs more data and represents infrequent words well; conversely,
CBOW is faster to train and it represents frequent words slightly better. This is probably
because for CBOW, more input data points with the same output are generated5.

2.3.1 Skip-Gram

In this section, Skip-gram will be explained over CBOW because the other models analyzed are
based on this architecture; for more in-depth analysis of the formulas specifically to word2vec,
read this document6).

Vocabulary and Weights

The architecture, as previously stated, consists of 2 layers of neuron weights plus an output
layer. The number of weights in each layers is the same as words in the vocabulary (so every
word has a set of weights), meaning that some pre-processing must be made beforehand to
determine the vocabulary. Because too rare words are not useful (because they don’t appear in
enough contexts) a cut-off frequency is commonly used where words below a certain frequency
are deleted (or ignored) from the input data.

Embedding

A training input will be a word pair (target word-context word) obtained from a context; a
context is obtained by moving a sliding window over the text. The context size (how many
words from a context), from now on called window size, is a hyperparameter. Because the
data is read as this moving window, all punctuation is removed and all text is put in one line
(separated by spaces) so the sliding window can move through all words, not taken the structure
of text into account (titles, paragraphs, etc.).

For example, given the following sentence, with a window size of 5 (some sources use
the number of context words at either side of the target word; in this work, the word2vec

3http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/
4https://groups.google.com/forum/#!searchin/word2vec-toolkit/c-bow/word2vec-toolkit/NLvYXU99cAM/

E5ld8LcDxlAJ
5https://groups.google.com/forum/#!msg/word2vec-toolkit/LNPeC5gyhmQ/p8683JkD6LoJ
6http://www.1-4-5.net/~dmm/ml/how_does_word2vec_work.pdf

http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/
https://groups.google.com/forum/#!searchin/word2vec-toolkit/c-bow/word2vec-toolkit/NLvYXU99cAM/E5ld8LcDxlAJ
https://groups.google.com/forum/#!searchin/word2vec-toolkit/c-bow/word2vec-toolkit/NLvYXU99cAM/E5ld8LcDxlAJ
https://groups.google.com/forum/#!msg/word2vec-toolkit/LNPeC5gyhmQ/p8683JkD6LoJ
http://www.1-4-5.net/~dmm/ml/how_does_word2vec_work.pdf

2.3. Word2vec 15

convention is used, which is all words in the window) "The waves were crashing on the
shore", generates the folowing target word, context word pairs (edges ignored):

• "the waves were crashing on": (were, the), (were, waves), (were, crashing), (were, on)

• "waves were crashing on the": (crashing, waves), (crashing, were), (crashing, on),
(crashing, the)

• "were crashing on the shore": (on, were), (on, crashing), (on, the), (on, shore)

Now, given that the neural network weights can be modeled as a matrix (one for each layer),
with each row of the matrix corresponding to each word in the vocabulary and the input is a
vector (using one-hot encoding), then the embedding hi for input word wi (the target word) can
be defined as:

hi = wT
i · xi (2.5)

where xi is the i-th word in the vocabulary. Because this input is in one-hot encoding, then this
is the same as just taking the i-th row of weight matrix W. This works for both layers of the
model.

Error Function

The objective function is the log probability of the context word wc given the target word wt:

− log p(wc|wt) (2.6)

In other words, the desire is to maximize the probability of the model outputting the context
word given the target word. Because several contexts exist, then given a target there’s going to
be a big range of likely words and these probabilities are adjusted (or learned) by modifying
the weights. According to this angle, this is really similar to a multi-classification problem
(having the output words wc as the classes), and given that the outputs are probabilities, then
softmax (Section 2.3.1) is suitable.

Output

As previously stated, the output layer uses the so-called softmax function 2.7 which outputs
probabilities of one item over all possible items (essentially a normalized sum), with all its
calculated terms summing 1. In the case of word2vec, the term is calculated for every training
word pair, so it has to iterate over all words in the vocabulary and it can become computa-
tionally demanding. What the model does is to maximize the objective function through the

16 Chapter 2. RelatedWork

softmax function, and then changing the weights of the two previous layers via back propaga-
tion (Section 2.3.1).

F(xi) =
exi

k∑
j=1

ex j

(2.7)

Updating Weights

After making a prediction in a training pair, the error is calculated and the weights are modified
according to the product of the error and the gradient of the output of said layer. The idea is
to apply gradient descent to find the optimum weight value which would minimize the error of
both sets of weights.

After modifying the weights of the hidden layer, then the same process is made for the
previous layer but instead taking the gradient of the activation function of the next layer. Be-
cause each gradient depends on the output of the layer, this process is called back propagation
because the errors propagate through each layer (to put it differently, the output of a layer de-
pends on the output of the previous layer). For more details on how to calculate the gradients,
see [20].

2.3.2 Optimizations

In a follow-up paper [17], the authors mention several implementation details to speed up the
training process. The most important (and cited) are:

• Hierarchical Softmax

• Negative sampling

Hierarchical Softmax

Because calculating the softmax denominator output is expensive (going through all words in
the vocabulary), a binary tree can be built with the leaves of the tree being the words in the
vocabulary. Then, the probability of a word is given by the path from the root to the leaf node.
This way, it is only necessary to evaluate log2(vocab_size) at most.

When navigating the path, going a to certain direction in any non-leaf node (left or right)
has a probability p, then going in the other direction has a probability 1 − p; then the word
probability is going to be the multiplication at each non-terminal node of the path. Given that
both options at each node sum to one, then the summation of all leaf-nodes probabilities is also

2.3. Word2vec 17

one.

Sigmoid can be used as a function to get probabilities at each node, which is defined as
the similarity between the representation of the word and a coefficient vector7 which can be
defined and learned in a multitude of ways; they can be seen as weights of the hidden layer in
the neural network model.

P(left) = σ(v′Tnvw) (2.8)

P(right) = 1 − P(left) (2.9)

with v′Tn being the coefficient vector for node n.

Example: "The yellow dog barked at the cat".

Figure 2.3: Hierarchical Softmax

Also, the way in which the tree is built, impacts the performance directly. The authors also
proposed to use Huffman encoding so that more common words are closer to the root, further
improving performance.

7http://building-babylon.net/2017/08/01/hierarchical-softmax/

http://building-babylon.net/2017/08/01/hierarchical-softmax/

18 Chapter 2. RelatedWork

Figure 2.4: Huffman encoding; words that are more common will be closer to the root.

Negative Sampling

An alternative to softmax (based on Noise Contrastive Estimation, or NCE). Given that the
model is only interested in learning high-quality vector representations, the objective function
can be changed to use pairs of words, instead of a probability distribution. In a simplified way,
only "good pairs of words" (or good examples) are needed to train the model; in this vein, it can
be argued that "negative examples" make the algorithm learn a generalized representation and
"positive examples" make the algorithm learn a specific representation. These negative samples
are sampled randomly from the vocabulary given a noise distribution. A good distribution,
according to the authors, is the unigram ditribution:

U(w)α
n∑

i=1
U(wi)α

(2.10)

Figures 2.5 and 2.6 show how this distribution looks for different values of α; the authors
mentioned that α = 3

4 gave the best results for the model. It was also suggested that a good
number of negative samples is between 5-20 for small datasets and 2-5 for large datasets.

Using these labeled samples, with the actual word pair as a positive label and the word
and its negative samples as a negative label, it’s possible to model this problem as binary
classifiction problem. This way, logistic regression can be applied in conjunction with the
cross-entropy error as its loss function:

2.3. Word2vec 19

Figure 2.5: Unigram distribution

Figure 2.6: Unigram distribution zoomed up to x = 1

20 Chapter 2. RelatedWork

J = −

|C|∑
i=1

(
L log(σ(wt · wci)) −

K∑
k=1

(1 − L) log(1 − σ(wt · wnk))
)

(2.11)

with K being the number of words sampled from the noise distribution (and a hyperparameter),

L the label of the word pair, S the sigmoid function: S (x) =
1

1 + e−x , wt the vector for the target
word taken from the embedding layer weights W, wci the context word i from the hidden layer
weights W ′, and wnk the word k from the noise distribution (the negative sample).

The resulting training process is now changed to a positive sampling operation plus K

negative sampling operations for each target word and context word pair.

2.4 FastText

Proposed in [4], it uses the same architecture as skip-gram of word2vec, but makes a small but
important change. Instead of just using words in the vocabulary, subword character n-grams
are also learnt; a word representation is now the normalized sum between the representation of
its subwords and the whole word. This means that for a word like apple, the generated tokens
will be: <ap, app, ppl, ple, le>, apple (having < and > as the start and end delimiters for the
word, respectively). This also slightly increases the vocabulary size and a function has to be
used to find the subword n-grams or they can be pre-computed.

The objective function is updated to maximize the summation of the representations:

J =

C∑
t=1

n∑
k=−n

∑
w∈Gwt

log p(wt+k|w) (2.12)

One strength about fastText in contrast to word2vec, is that these word vectors give the
possibility of representing out of vocabulary words (OOV) by just using their subword vectors.

Figure 2.7 shows results of evaluating8 the word vectors on several tasks of word similarity
and word relatedness in languages such as: Arabic (AR), German (DE), English (EN), Spanish
(ES), French (FR), Romanian (RO), and Russian (RU). The two english tasks are also evaluated
in this thesis and are described on Section 1.4.3.

8The score is the Spearman’s rank correlation coefficient between human judgement and cosine similarity over
the word vectors; results are multiplied by 100.

2.5. Dict2vec 21

Figure 2.7: Spearman’s rank correlation between human judgement and cosine similarity
of fastText vectors for different tasks in different languages (results are multiplied by 100).
Columns sg and cbow are both of word2vec’s implementations; sisg- is the Subword Infor-
mation Skip Gram (fastText) when representing OOV words as null and sisg when subword
vectors are used to model OOV words. The languages evaluated are: Arabic (AR), German
(DE), English (EN), Spanish (ES), French (FR), Romanian (RO), and Russian (RU) (image
taken from source paper [4]).

2.5 Dict2vec

Dict2vec [23] also uses the same architecture as skip-gram but tries to add semantic information
from word definitions to the training process. Additional sampling steps are added: sampling
new words from sets defined as either strong or weak depending on their mutual appearance on
dictionary definitions (which are taken from different dictionaries online). For example: if the
word road appears in the definition of car, and viceversa, then they form a strong pair; if only
one of the words appear in the other’s definition, then they form a weak pair. Additionally,
pre-trained word embeddings can be used to help define if words can be a strong or weak pair
depending if they mutually appear in their k-nearest neighbors. Additionally, this model also
uses negative sampling and the same weight initialization as word2vec.

The objective function is changed to this:

J(wt,wc) = `(vt · vc) + Jpos(wt) + Jneg(wt) (2.13)

where:

22 Chapter 2. RelatedWork

Jpos(wt) = βs

∑
wi∈Vs(wt)

`(vt · vi) + βw

∑
w j∈Vw(wt)

`(vt · v j) (2.14)

Jneg(wt) =
∑

wi∈F(wt)
wi<S (wt)
wi<W(wt)

`(−vt · vi) (2.15)

One additional constraint is that the negative samples can’t belong to the strong or weak
sets of the target word, as shown in equation 2.15.

According to the authors, this model gets better results than word2vec and fastText for both
word similarity and text classification evaluations and it’s also claimed that it has less training
time (it takes less time to reach the optimum); however, it uses more hyperparameters (the
strong and weak sampling and beta values (for the strong and weak sampling).

Table 2.8 shows the published results of evaluating several word similarity tasks on the
dict2vec embeddings using the Spearman’s rank correlation coefficient (scores are multiplied
by 1000); this method of evaluation is going to be reutilized for this thesis, hoping to replicate
results.

Figure 2.8: Spearman’s rank correlation coefficient (scores multiplied by 1000) between human
judgement and cosine similarity of word vectors (top) and accuracies on text classification tasks
(bottom). Models analyzed are word2vec, fastText, and dict2vec (labelled as ours). Corpus A
is Wikipedia, whereas corpus B is Wikipedia + the dictionary definitions concatenated; the
50M & 200M refer to the first 50 million and the first 200 million words from Wikipedia,
respectively (image taken from source paper [23]).

Lastly, as a side note, the authors also tried the model using semantic information taken
from WordNet pairs; however, no finer details were mentioned.

Chapter 3

Model Implementations and Evaluation

In this chapter, technical and specific details about the implementations are discussed. Given
that the theory of how the models work differs slightly from the actual implementations (mostly
due to inherent limitations of the medium, such as hardware or memory), special attention is
given to these aspects of the models, which are sometimes not covered. As mentioned in
previous chapters, given that both fastText and dict2vec are based on skip-gram, only this
model will be discussed; this chapter also presents this thesis’ main contribution: a hybrid
model of fastText and dict2vec.

In addition, the method of evaluation of the models is presented along with descriptions
of the experiments such as: training data and preprocessing, hyperparameter discussion, and
details about extra information needed for both dict2vec and the proposed model.

3.1 Word2vec - Skip Gram

The code is written in C and it’s available on GitHub1. It is important to note that all the mul-
tiplication routines are done in basic C with no external libraries; it’s also highly optimized for
several other tasks such as random values, shuffling and the activation function. The repository
also contains other programs related to word2vec and scripts with demos and basic evaluation
tasks.

In terms of how it works, the program reads the input, which is a text file of words written
in a single line separated by spaces, builds the vocabulary and creates the sampling table. The
sampling table is a big array of 10 million values where each value in the array is going to be
the index of a word. The amount of times each value appears in the table is given by:

1https://github.com/tmikolov/word2vec

23

https://github.com/tmikolov/word2vec

24 Chapter 3. Model Implementations and Evaluation

frequency =
f

3
4∑V

i=1 f
3
4

i

× ts (3.1)

with fi being the sum of all counts to the 0.75 power and ts is the size of the table (107).

After the sampling table is filled with values, it gets shuffled so the same values are not
contiguous. Then, the input file is divided into chunks which are then given to a set of threads
that go through every word (a thread per chunk). For every word, the context window is
calculated (edges are ignored) and for each pair of target and context words, negative words
are sampled from the sampling table. Because of the sampling table shuffling, an index at the
start of the array that goes through it is enough to simulate the random sampling.

An additional hyperparameter called sampling is used: it is used to calculate the probability
of discarding a word when going through the input. The probability of discarding the word is
defined as:

p(w) = 1 −
√

t
f (w)

, where t is the treshold (the sampling hyperparameter) and f (w) is the

proportion of the word w in the corpus, i.e., f (w) =
count(w)

N
, where N is the total number of

words. The intention of this is to train the model with words that are not so frequent because
words that are too frequent tend to have no meaning (stopwords). The usual recommended
value for sampling is 0.0001.

After the positive and negative samples are obtained (1 positive + n negatives), logistic
regression is applied to the dot product of the vectors, where the error is obtained. That value
gets multiplied by the learning rate to obtain the gradient, which will be used to modify the
weights of both layers. Through backpropagation, the output weights get updated first by the
gradient multiplied by the input word vector, and then the input weights are modified after all
samples are processed by the accumulated sum (of all samples) of the gradient multiplied by
the output word vector.

After the epochs have finalized, then the program goes through every word in the vocab-
ulary and writes a .vec file with the vector representation of every word (one for each line,
where first comes the word and the weight values, all separated by space). Notably, this imple-
mentation also has the option of using either hierarchical softmax or negative sampling for the
training.

3.2 FastText

The main difference with word2vec is that for getting the word representation, the subword
vectors are needed. To accomplish this, when the vocabulary is being built, the program cal-

3.3. Dict2vec 25

culates the subwords and adds them to a subword vocabulary with their own weights and the
list of indices of the subwords are stored in the structure of the word. Then, at training, when
reading a word, the program gets the weights of the subwords (via the list of indices) and adds
them. Afterwards, the vector of the full word is added to this sum and then it’s averaged. Note
that this sum is only calculated for context words (the input weights). The rest remains the
same.

The process of updating the weights is mostly the same, the only change is that each of
the subwords weights are also going to be modified by the same amount as the input weights.
This implementation also gives the option to choose between hierarchical softmax and negative
sampling. The original code2 is in C++, although there’s a fairly popular python implementa-
tion in gensim3. It’s also important to mention that the published program also allows one to
use the word embedding for text classification problems.

3.3 Dict2vec

This code is a re-implementation of the skip-gram base code, it’s also written in C and it
doesn’t have hierarchical softmax available. The big change is the additional sampling of the
dictionary words, from both the strong and weak sets; basically two extra steps after updating
the output weights (the normal positive and negative sampling) but before updating the input
weights (because this uses the sum of all the output words multiplied by the gradient). In this
model, the number of words sampled from each set as well as the beta (learning rate) of each
sampling are hyperparameters.

The process itself is a form of positive sampling but from semantically related sets. The idea
is that when training the context word, it’s possible to randomly sample the set of definition-
related words (both the strong and weak sets) to add semantic information (just like negative
sampling, but in this case the label is positive). In other words, normal positive sampling finds
word pairs that co-occur in a given context in writing, and dict2vec positive sampling finds
word pairs that co-appear in word definitions.

3.4 Proposed Model (dictFastText)

The implementation of this proposed model is based on the Dict2vec C code with the subword
embedding process added, and was dubbed dictFastText. This means that training is the same
as it is in fastText (with a word being the normalized sum of the internal subwords that make

2https://github.com/facebookresearch/fastText
3https://github.com/RaRe-Technologies/gensim

https://github.com/facebookresearch/fastText
https://github.com/RaRe-Technologies/gensim

26 Chapter 3. Model Implementations and Evaluation

the word), but after the positive and negative sampling training is done for a word pair, then
the strong and weak sampling from dictionary word pairs is applied.

To sum up, for a given word pair (wi,w j), the process is as follows:

• build the word embedding swi with subwords of the target word wi and apply logistic
regression over this positive sample.

• sample negative pairs of the context word w j (word2vec negative sampling) and apply
logistic regression.

• sample pairs from the strong set of words for w j and apply logistic regression.

• sample pairs from the weak set of words for w j and apply logistic regression.

The hypothesis is that this hybrid model can have some of the syntactic properties and the
capability of representing words not in the vocabulary of fastText and the high performance
over word similarities demonstrated by dict2vec.

3.5 Evaluation

3.5.1 Experiments

Word Semantic Similarity

This task is a replication of the process of evaluation applied in dict2vec [23]. It consists of
comparing the tasks’ evaluation scores (described in Section 1.4.3) against a similarity metric
score applied on the embeddings. The chosen similarity metric was cosine similarity (same as
the dict2vec evaluation process):

similarity = cos(θ) =
A · B
||A|| · ||B||

=

n∑
i=1

Ai · Bi√
n∑

i=1
A2

i

√
n∑

i=1
B2

i

(3.2)

Given that the human judgements scores and the cosine similarity are in different scales, the
Spearman’s rank correlation coefficient (See appendix B for more information) is used as the
score of each task. With all of these tasks evaluated, an average score is calculated to measure
this overall evaluation, which will be the metric to compare the different models. The range of
values of this average score is from -1 to 1, where closer to 1 is better (which implies a positive
correlation).

3.5. Evaluation 27

Said average score is the micro average, which is calculated by:∑T
i=1 S i · Ni∑T

i=1 Ni
(3.3)

where T is the number of tasks, S i the score (the Spearman’s rank correlation coefficient) of
task i, and Ni the number of samples (word pairs) in task i.

The reason to use this metric was not backed by the authors, but it’s usually employed
when there’s a significant difference in the number of samples of each task; this is because the
score of each task is proportional to its number of samples. In this case, the lowest number of
samples is 30 while the maximum is 3500, so it’s highly likely that this was the reason to do so.
On top of this, because each task has a different focus (for example, a task contains only verbs,
another one only rare words) it can happen that the score can be skewed to certain tasks. To
give a better view of performance, a macro average (the average of the task scores) was added
to show how the models perform across all tasks.

Additionally, training time is also analyzed for this task, with lower being better and mea-
sured in minutes. Lastly, as a note, the evaluation script was slightly modified to add support
for the models with n-grams.

Word analogy

As previously mentioned, the word analogy property can be generalized to pairs of words that
display some kind of relation. Based on this view, Diffvec [27] is a dataset built to evaluate
several lexical relations that can be represented by vector differences (see Appendix C for more
information). Essentially, there are 9 classes such as: collective noun, hypernym, meronym, and
singular-plural that represent said relation between words; the idea is to evaluate if the word
embedding can produce vectors that show these relations through vector differences (Section
1.3.3).

As the previous section dealt with the Spearman’s rank correlation coefficient for evalua-
tion, in this case, spectral clustering (expanded in Appendix C) is employed. Spectral clustering
measures how well the dataset represents or fits a given number of clusters (which is a hyperpa-
rameter). The way to evaluate this is through a score called V-measure, which is the harmonic
mean between two metrics: homogeneity and completeness, both of these metrics measure how
well the clusters contain samples: the first is maximized when clusters contain samples from
the least amount of different classes as possible; the latter is maximized when all samples from
a class belong to a single cluster. Therefore, when the V-measure is high, it means that the
dataset is grouping the data properly in the given amount of clusters. There is some discussion
to be had in what the cluster are or represent, but just as the number of dimensions in word

28 Chapter 3. Model Implementations and Evaluation

embeddings, they’re an abstract concept.

3.5.2 Training Data

The same corpus of dict2vec is used (Wikipedia dump from July 20174), however, due to time
constraints and the number of hyperparameters, only the first file (the first 50 million words) is
going to be used for training.

The preprocessing is the same as the one applied by dict2vec5 which is quite simple: all
text is lowercased, and only characters in the english alphabet are kept, except digits which are
translated to words, e.g., 1 turns to one. All text is then written in one line with words separated
by space.

3.5.3 Web Scraping

To obtain the strong and weak pairs data, the words from the vocabulary (which is made from
all words with a frequency of 5 and more) are searched in these oline dictionaries: Cambridge6,
Collins7, Dictionary.com, and Oxford8; all pages were downloaded and only the HTML ele-
ment with the definitions’ texts were saved to disk. This method was preferred because if
there’s any IP blocking or disconnect midway, the files are saved.

Because the way to access these webpages is by a direct URL, some websites return a 404
response and those webpages can be ignored; however, there’s other websites where accessing
a non-existing URL triggers a search page, so the only way to check if the dictionary has the
definitions for the word is to actually analyze the webpage. The base program was modified
to read these files from disk instead of downloading them. An additional script was made to
delete files with no definitions.

3.5.4 Hyperparameters

As mentioned before, one objective is to reproduce and confirm the usual recommended values
for hyperparameters of the models. After the values were selected, the models were then trained
using grid search over seven epochs and word embeddings were saved for the third, fifth, and
seventh epoch. Experiments were run with 8 threads each, on a linux machine with its CPU
being an Intel i7-7700K @ 4.20GHz.

4Obtained from https://dumps.wikimedia.org/enwiki/, although the used corpus is no longer available.
5Although the perl script to preprocess the data is available in the dict2vec’s github page, the original can be

found here http://www.mattmahoney.net/dc/textdata.html
6https://dictionary.cambridge.org/dictionary/english/
7https://www.collinsdictionary.com/dictionary/english
8https://en.oxforddictionaries.com

https://dumps.wikimedia.org/enwiki/
http://www.mattmahoney.net/dc/textdata.html
https://dictionary.cambridge.org/dictionary/english/
https://www.collinsdictionary.com/dictionary/english
https://en.oxforddictionaries.com

3.5. Evaluation 29

The hyperparameters are:

• Vector size: Size of the vectors. Usual recommended values are 100 and 300.

• Window size: Number of words in each context. Usual recommended value is 5.

• Sampling: Threshold factor to estimate the probability of discarding a word (as described
in Section 3.1). Usual recommended value is 0.0001.

• Negative sampling: Number of words sampled from the noise distribution (described in
Section 2.3.2). Usual recommended values are 2-5 for big datasets and 5-20 for small
datasets.

• Ngrams: size of the subwords (described in Section 2.4). Recommended values are 5
and 6.

• Strong draws: Number of words sampled from the strong set (described in Section 2.5).
Recommended values are 2-5.

• Beta strong: Factor that multiplies the positive strong sampling (described in Section
2.5). Recommended value are 0.5-1.2.

• Weak draws: Number of words sampled from the weak set (described in Section 2.5).
Recommended values are 2-5.

• Beta weak: Factor that multiplies the positive weak sampling (described in Section 2.5).
Recommended values are 0.2-0.6.

The selected hyperparameters for word2vec were:

• Vector size: 10, 25, 50, 100, 200, 300, and 400.

• Window size: 3, 5, and 7.

• Sampling: 0.1, 0.01, 0.001, and 0.0001.

• Negative sampling: 5, 10, and 20.

For FastText the hyperparameters chosen were:

• Vector size: 10, 50, 100, 200, 300.

• Window size: 3, 5, and 7.

30 Chapter 3. Model Implementations and Evaluation

• Sampling: 0.0001.

• Negative sampling: 5.

• Ngrams: 2, 3, 4, and 5.

For dict2vec the hyperparameters chosen were:

• Vector size: 10, 50, 100, 200, 300.

• Window size: 3, 5, and 7.

• Sampling: 0.0001.

• Negative sampling: 5.

• Strong draws: 2, 4, and 8.

• Beta strong: 0.2, 0.4, and 0.8.

• Weak draws: 2, 5, and 8.

• Beta weak: 0.3, 0.45, and 0.9.

For dictFastText, the hyperparameters chosen were:

• Vector size: 100, 200, and 300.

• Window size: 3, 5, and 7.

• Sampling: 0.0001.

• Negative sampling: 5.

• Strong draws: 4 and 8.

• Beta strong: 0.4 and 0.8.

• Weak draws: 5 and 8.

• Beta weak: 0.45 and 0.9.

• Ngrams: 3, 4, and 5.

3.5. Evaluation 31

These values were selected in a way to be somewhat extensive enough without increasing
the number of experiments too much; this is a bigger problem for dictFastText and dict2vec
given the high number of hyperparameters. Additionally, all models were trained with a learn-
ing rate of 0.025, which is the factor that multiplies the gradient for backpropagation (see
Section 2.3.1) to change the neural network weights.

Chapter 4

Results

This chapter shows and discusses the results over the experiments defined in the previous chap-
ter, with the first section dealing with the hyperparameter tuning for each model individually.
In general, all results are shown in graphs for each model for qualitative results, and tables for
quantitative ones. The reader should note how the different combination of hyperparameter
values affect the models; for this effect, some additional type of graphs (such as box plots) are
shown to try to highlight different views of the results. Towards the end of the section, results
of all models are shown in the same graph to have a better idea how they compare to each other.

At the end of the chapter, the highest performances are selected for each model and shown
in a summary table including the performance over each task. On top of this, a less-known
additional evaluation is applied to the models to evaluate a different aspect of the embeddings
and show that it appears there’s some indirect relationship between the two properties.

4.1 Analysis

It’s important to remember that some hyperparameters of the models were mantained constant
in all experiments such as the learning rate (locked at 0.025) and the cutoff frequency of words
for the vocabulary (5, meaning that words with frequency of 4 and less were ignored). Also,
as mentioned before, the micro average of the Spearman’s rank correlation coefficient is going
to be considered as the metric for evaluation and, to a small extent, the training time as well.
Each experiment was run once, saving the vectors for epochs 3, 5, and 7; that means that one
experiment appears three times on any given graph (unless plotting separate epochs).

Regarding the graphs, given the high number of experiments in some of the models and
that hyperparameter values are discrete, swarmplots were preferred; swarmplots, in essence,
work just as scatterplots. The main difference is that swarmplots try to show or display more
data points when there are many of them by exploiting the horizontal space (which is possible

32

4.1. Analysis 33

because of the discrete values in the x-axis), whereas in scatterplots, those data points would
not be visible because most of them would be superimposed, making it harder to analyze the
results. Boxplots were also added to this end, hoping that information from both types of
graphs can give a good view of the results.

4.1.1 Word2vec

As a note, the plotting of the sampling hyperparameter was changed to its exponential value to
make it easier to graph results; also, time values in plots are in minutes.

Figures 4.1 and 4.2 show different experiments with different epochs colored. With the
exception of vector size 10 and 25, there’s a clear tendency of lower epochs having lower
scores. This is offset by the fact that all these experiments have different values for their
hyperparameters, which will be shown as well. One interesting thing is that window size 3
seems better to train for more epochs (meaning that hyperparameters don’t have that much
influence); however, window sizes 5 and 7, paint a different situation: in general, increasing
the epochs increases the range of possible results, in other words, training for more epochs
could lead to better or worse results, meaning that the choice of hyperparameters have more
influence in these cases.

34
C
h
a
pt
e
r

4.R
e
su
lt
s

Figure 4.1: Word2vec performance by epoch, note how higher results are associated to higher epochs.

Figure 4.2: Word2vec performance by epoch in boxplot.

4.1. Analysis 35

Figure 4.3 shows that for window sizes 5 and 7, lower negative sampling values tend to have
higher results (for window size 3 it’s similar but it seems to be less clear). This also confirms
that the usual recommended value for negative sampling (5); apparently it seems that trying to
learn too much from negative examples disrupts the learning from the positive sampling. It can
be seen in Figure 4.4 how adding more samples also makes it much slower. Finally, Figure 4.5
shows results divided by epoch and window size in order to see them more granularly.

Figures 4.6 and 4.7 show some interesting results: the usual recommended value of 0.0001
(or -4 in the log scale) has consistent high scores for windows sizes 3 and 5 for vector sizes
100 and lower (for greater values -4 and -3 are on par). With window size 7 there’s a less clear
scenario in the higher scores with a mix between all values for the hyperparameter; looking at
the box plot, it seems that -3 seemes to have a higher max and median, although the difference
looks minimal. Window size 7 seems to have better results than other windows, specially at
higher values of vector size; this seems to indicate that the decision of window size could be
more important than the sampling value.

Regarding training time, Figure 4.8 shows how increasing the sampling hyperparameter af-
fects its training time; increasing the value means training more words because the probability
of discarding a word is lower. It’s important to note that although increasing this hyperparam-
eter makes the model to have somewhat better results, the training time is considerable higher;
hence, a sampling of 0.0001 is good enough because the performance increase is negligible.

epoch vector size window size sampling negative sampling average score time
7 400 7 -2 5 0.450 14.295
7 400 7 -3 5 0.450 11.349
7 300 7 -3 5 0.449 9.468
7 400 7 -4 5 0.446 8.110
7 300 7 -2 5 0.445 11.964

Table 4.1: Top 5 score results for word2vec.

36
C
h
a
pt
e
r

4.R
e
su
lt
s

Figure 4.3: Word2vec performance by negative sampling.

Figure 4.4: Word2vec training time by negative sampling.

4.1.
A
n
a
ly
sis

37

Figure 4.5: Word2vec performance by epoch and negative sampling.

38
C
h
a
pt
e
r

4.R
e
su
lt
s

Figure 4.6: Word2vec performance by sampling.

Figure 4.7: Word2vec performance by sampling in boxplot.

4.1.
A
n
a
ly
sis

39

Figure 4.8: Word2vec training time by sampling.

40 Chapter 4. Results

4.1.2 FastText

For fastText, some interesting results were obtained. Figure 4.9 shows how increasing the
number of n-grams raises performance; this makes sense because 4-grams and 5-grams are
getting closer to actual words. It was surprising to see that 3-grams had very low scores,
because one good strength about 3-grams is that it’s possible to reconstruct (almost) all words.

Additionally, extra experiments were defined to check the performance of fastText using
only subword n-grams and skipping the addition of the whole word; this implementation was
named subwords. Figure 4.10 shows the subwords embeddings; results are somewhat similar to
fastText and also shows better performance as n-grams increase. One key difference between
fastText and subwords is that words shorter than ngram_length − 2 can’t be represented in
subwords1. This can be important if shorter words are needed and it’s obviously dependant
on n-gram length, with only being a significant problem for n-grams greater than 4. There
are some possible solutions to this: for example, using the whole word only in these cases,
or adjust the number of n-grams on the fly depending on the length of the word; in this work
however, these options were not tried.

Figure 4.11 shows both variants in the same grid for different epochs. Surprisingly, it seems
that adding the word doesn’t have that much impact in the embeddings, although maybe this
doesn’t occur when using more training data, bigger vector sizes, or bigger window sizes. In
any case, if this holds, then smaller embedding files can be used without too much of a loss in
performance.

1For example, given 5-grams, the word dog can be represented by: ’<dog>’; on the contrary, a word like ’do’
has the following n-gram: ’<do>’, which is shorter than a 5 gram and thus, can’t be represented. In the case of
fastText, the whole word can be used in absence of n-grams.

4.1.
A
n
a
ly
sis

41

Figure 4.9: FastText performance by n-grams.

Figure 4.10: Subwords performance by n-grams.

42
C
h
a
pt
e
r

4.R
e
su
lt
s

Figure 4.11: FastText and Subwords performance by epoch and n-grams.

4.1. Analysis 43

algorithm epoch vector size window size n-grams average score time
ft 7 300 7 5 0.492 17.731
ft 5 300 7 5 0.482 17.731
ft 7 200 7 5 0.482 13.161
ft 7 300 5 5 0.479 12.786
ft 7 200 5 5 0.479 9.514
sw 7 300 7 4 0.444 11.336
sw 7 300 5 4 0.440 7.821
sw 7 200 5 4 0.438 5.831
sw 7 200 7 4 0.435 8.429
sw 5 200 5 4 0.422 5.831

Table 4.2: Top 5 score results for fastText (top 5) and fastText with no word added (bottom 5).
Time is measured in minutes.

4.1.3 Dict2vec

Figures 4.12 and 4.13 show some interesting results: almost all top scores have values of 4
and 8 for the strong draws and 0.4 and 0.8 for the beta strong; conversely, 2 strong draws are
almost at the bottom with a handful at the top. This implies that higher values of the strong
set variables have an important role in higher score values. This is slightly different from the
results proposed by the authors where 4 strong draws and strong beta 0.4 were mentioned as
the optimum; however, the authors did give some intervals where all these variables would be
better, so it could depend on the dataset.

Regarding the weak set hyperparameters, there’s a similar scenario; however, it’s not as
clear-cut. Figure 4.14 shows more of a mixture between 5 and 8 weak draws, where there’s
no clear winner; additionally, there’s also some results with 2 weak draws at the top of some
of them. In any case, the lower scores seem to be mostly 2 weak draws. Regarding the beta,
there’s quite a mix too: some results have the lowest value at the top. This seems to indicate
that the weak beta is not as important as the other variables.

44
C
h
a
pt
e
r

4.R
e
su
lt
s

Figure 4.12: Dict2vec performance by epoch

4.1. Analysis 45

Figure 4.13: Dict2vec performance by strong set draws (left) and beta of strong set sampling
(right)

Figure 4.15 shows results by some high hyperparameters (strong draws: 4 and 8, strong

46 Chapter 4. Results

Figure 4.14: Dict2vec performance by weak set draws (left) and by beta of weak set sampling
(right)

4.1. Analysis 47

beta: 0.4 and 0.8, weak draws: 5 and 8, and weak beta: 0.45 and 0.9; vector sizes 100, 200,
and 300. Looking at both hyperparameters side by side, it can be noticed that for window size
7, it seems to be there’s some correlation for the weak hyperparameters (particulary, the weak
beta; lower values have higher scores and vice-versa). For the other window sizes, there’s
more mixture; like the previous figures, lower values for both the strong draws and strong beta
have lower scores. At the top, it could be said that strong beta of 0.8 (orange and red) has
higher scores, although there are plenty points of 0.4 with 8 strong draws (green). For the
weak hyperparameters is hard to discern some clear pattern.

epoch vector
size

window
size

strong
draws

strong
beta

weak
draws

weak
beta

average
score

time

7 100 7 8 0.8 2 0.45 0.587 11.210
7 100 7 8 0.4 5 0.30 0.587 13.864
7 100 7 8 0.4 2 0.45 0.587 11.410
7 100 7 4 0.8 2 0.45 0.587 10.211
5 100 7 8 0.8 2 0.45 0.586 11.210

Table 4.3: Top 5 score results for dict2vec.

4.1.4 DictFastText

Just like in fastText, Figure 4.16 shows that increasing the number of n-grams also increases the
score; however, it has much better overall performance than fastText. Given that 4-grams and
5-grams have much better performance and there’s more hyperparameters in this model than
the rest of them, only 4-grams and 5-grams will be analyzed for the rest of the hyperparameters.
Figure 4.17 shows results by the strong set hyperparameters. Interestingly enough, it’s hard to
conclude anything, because they look evenly distributed. This could mean that the performance
from these hyperparameters is somewhat comparable. One important thing to note is that
window size 3 has a lower interval in the low end than the others.

epoch vec-
tor
size

win-
dow
size

n-grams strong
draws

strong
beta

weak
draws

weak
beta

average
score

time

7 200 7 5 4 0.8 5 0.45 0.587 22.657
7 200 7 5 4 0.4 5 0.90 0.586 24.335
7 200 7 5 8 0.4 5 0.90 0.586 23.514
7 200 7 5 8 0.4 5 0.45 0.585 24.517
7 200 7 5 4 0.4 5 0.45 0.585 23.260

Table 4.4: Top 5 score results for dictFastText.

48 Chapter 4. Results

Figure 4.15: Dict2vec performance by strong set hyperparameters (left) and weak set
hyperparameters (right)

4.1.
A
n
a
ly
sis

49

Figure 4.16: DictFastText performance by n-grams.

50 Chapter 4. Results

Figure 4.17: DictFastText performance by strong set draws (left) and by beta of strong set
sampling (right).

4.1. Analysis 51

Figure 4.18: DictFastText performance by weak set draws (left) and by beta of weak set
sampling (right).

52 Chapter 4. Results

4.1.5 All Models

For this section, only results with epochs 3, 5, and 7; n-grams 3, 4, and 5; and negative sampling
5 and 10 are shown2. For referece, the model names are shortened: d2v is dict2vec, dft is
dictFastText, ft is fastText, sw is subwords, and w2v is word2vec. Figure 4.19 shows all models
with different vector and window sizes. At first glance, it can be seen that the best ones are
dict2vec and dictFastText. DictFastText seems to show better results at vector sizes 200 (in
all window sizes) and 300 (the exception being in window size 7, although there’s a couple of
points at the top). Dict2vec is predominant near the top across all window sizes. Next to them
is fastText with 5 n-grams which is slightly over word2vec but under the dictionary based ones.
Finally, subword embeddings (fastText with no added word) and word2vec come lower.

Figure 4.20 shows the same graphic but zoomed in. DictFastText has comparable results to
dict2vec, but comes with a big trade-off: Figure 4.23 shows training time for dict2vec and dict-
FastText (5-grams). DictFastText’s training time goes up dramatically as vector and window
size are increased; at the most extreme instance, dictFastText takes almost double the time for
vector size 300 and window size 7. This means that for bigger datasets, it could take a consid-
erable amount of time. Finally, it’s important to emphasize that even if there are improvements
over the other implementations, the difference is minimal (in the order of thousandths) for this
type of evaluation. With this in mind, the task discussed in the next section shows results that
are suggestive of dictFastText’s importance as a word embedding model.

2It’s important to note that not all models share all hyperparameter values; for example, some vector sizes
weren’t included in dictFastText because of time constraints and lower performance on other models. Please refer
to Section 3.5.4 for the exact values.

4.1.
A
n
a
ly
sis

53

Figure 4.19: Results for all algorithms (4-grams and 5-grams only).

Figure 4.20: Results for all algorithms (zoomed).

54
C
h
a
pt
e
r

4.R
e
su
lt
s

Figure 4.21: Box plot for results of word2vec, fastText and subwords (4-grams and 5-grams only).

Figure 4.22: Box plot for results of dict2vec and dictFastText (4-grams and 5-grams only).

4.1.
A
n
a
ly
sis

55

Figure 4.23: Training time of dict2vec and dictFastText (5-grams). Time is measured in minutes.

56 Chapter 4. Results

4.2 Evaluation

4.2.1 Word similarity

It’s important to remember that the average score is calculated as a micro average; because all
tasks have different number of word pairs, each score is normalized by the amount of word
pairs found in the embedding. Table 4.5 shows the top average scores of all algorithms along
with their hyperparameters. Notably, dict2vec and dictFastText show very similar results but
dict2vec needs lower dimensional vectors and much less training time to reach those scores.

algorithm epoch vec-
tor
size

win-
dow
size

n-grams strong
draws

strong
beta

weak
draws

weak
beta

avg
score

time

d2v 7 100 7 - 8 0.8 2 0.45 0.587 10.211
dft 7 200 7 5 4 0.8 5 0.45 0.587 22.657
ft 7 300 7 5 - - - - 0.492 17.731

w2v 7 400 7 - - - - - 0.450 14.295
sw 7 300 7 4 - - - - 0.444 11.336

Table 4.5: Top scores and hyperparameters for each algorithm. Time is measured in minutes.

For a more detailed analysis, Table 4.6 shows a breakdown of scores for each evaluation
task (detailed in Section 1.4.3). As mentioned previously, both the micro and macro average
were included to show how well the models perform across all tasks. It can be noted that the
macro average is higher; the main reason for this is due to the tasks simlex999 and simverb-

3500 which drag the micro average down due to their low scores in all models.
For the best performing algorithms (in almost all cases, dict2vec and dictFastText), the

results are fairly similar (the highest score of each row is bolded). There are some tasks that
one of them performs slightly better than the other, but the difference is negligible. However,
dict2vec has the advantage of having a smaller vector size and a lower training time; one
advantage about dictFastText is that there are fewer out of vocabulary words because of the use
of subwords, however if a high number of n-grams is needed for better performance then this
advantage can be rendered moot.

Notably, fastText has the highest score in one of the tasks (word similarity) and, in general,
performs slightly better than word2vec. It’s also interesting to note that the scores of fastText
for ws-353 and rw tasks are comparable with the results claimed by the authors in the paper
where the model was proposed [4]; however, for word2vec, it’s not the case. This could be due
to the difference in training data, where in this case it was a fraction of Wikipedia, whereas in
the paper, the full Wikipedia is trained. It’s still interesting that results are somewhat similar
(with the exception of rw-stanford).

4.2. Evaluation 57

task type model
- d2v dft ft w2v sw

micro average - 0.587 0.587 0.492 0.45 0.444
macro average - 0.669 0.67 0.603 0.552 0.532

mc-30 similarity 0.814 0.821 0.769 0.759 0.634
men-tr-3k similarity 0.735 0.741 0.71 0.651 0.68
mturk-287 relatedness 0.63 0.633 0.653 0.622 0.609
mturk-771 relatedness 0.683 0.694 0.616 0.586 0.569

rg-65 similarity 0.836 0.871 0.716 0.686 0.616
rw-stanford-2034 similarity 0.528 0.543 0.468 0.375 0.372

rw-stanford-2034 OOV - 37% 8% 8% 37% 2%
simlex999 similarity 0.477 0.473 0.369 0.365 0.342

simverb-3500 similarity 0.438 0.439 0.252 0.225 0.222
simverb-3500 OOV - 2% 1% 1% 2% 0%

ws-353-all - 0.755 0.748 0.704 0.675 0.634
ws-353-rel relatedness 0.694 0.684 0.666 0.604 0.612
ws-353-sim similarity 0.766 0.751 0.751 0.739 0.666

yp-130 similarity 0.672 0.64 0.567 0.343 0.429
yp-130 OOV - 3% 3% 3% 3% 0%

Table 4.6: Task score breakdown for each algorithm’s best performance. The number in the
name of each task corresponds to the number of samples in said task. Model names have
been shortened due to space reasons: d2v is dict2vec, dft is dictFastText, ft is fastText, sw is
subwords, and w2v is word2vec.

On another note, subwords has the fewest OOV words of all the algorithms and its perfor-
mance is slightly lower than word2vec, with the exception of yp-130 and men-tr-3k where the
difference is considerable higher in favor of subwords. Notably, the 2% in the stanford dataset
is due to hyphenated compound words; as mentioned before, the preprocessing of the training
data eliminated all hyphens, so the model didn’t learn those kind of subwords.

4.2.2 Word analogy

Figure 4.24 shows spectral clustering (for more specific details check Appendix C.2) applied
to the models (subwords was excluded). Interestingly, fastText has the best performance of all
algorithms, with the only exception at 20 clusters, where dictFastText surpasses it. Moreover,
as the number of clusters increase, dictFastText shows a steady decrease, where fastText shows
some sort of increasing tendency.

Also, in a surprising manner, dict2vec shows the worst performance in this task in relation
to the others. Apparently the semantic fine-tuning given by the dictionary definitions makes the
embedding to lose some properties in the vector difference area (which makes sense, because

58 Chapter 4. Results

Figure 4.24: Spectral clustering applied to the models on the diffvec dataset.

this fine-tuning is based on definitions, which is a type of description and not usage of the term,
where analogies are commonly seen). This seems to indicate that there’s an inverse relationship
between the two tasks (word similarity and word analogies); however, more research is needed
to confirm this hypothesis. Lastly, this also pinpoints that these different effects should be con-
sidered when expecting to deploy the embeddings to a real application, because improvement
over one task at expense of the other could have unexpected side-effects.

Finally, these results show a different view of the models; dictFastText is on par with
dict2vec in the word similarity task and does better than the baseline in the word analogy
task. This means that when considering all tasks, dictFastText does better overall than the rest
at the expense of higher vector size, a bigger vocabulary, and more training time.

Chapter 5

Conclusions

This chapter is about commenting the results shown in the last chapter and try to derive mean-
ingful conclusions. It’s important to note that these are early conclusions based on this partic-
ular dataset and may not hold true in a different scenario (which in itself is an interesting situa-
tion), meaning that more experimentation is needed to confirm these indications. Additionally,
the fact that grid search in itself is an extensive endeavor, limiting the number of values that
went into the experiments, makes the experiments not exhaustive. Moreover, following one of
the objectives of this thesis, evaluating the models under the same implementation, in order to
measure how much a small improvement (such as normalizing subwords or fine-tuning) over
the vectors affects results, the models were evaluated for the properties of word similarity and
word analogy to check if there’s a correlation between the results of the two tasks.

Regarding results, both dict2vec and dictFastText are considerable better than word2vec
and fastText on the word similarity and word relatedness tasks. Some of the recommended
values for the hyperparameters were confirmed for dict2vec while others weren’t (as previ-
ously mentioned, it’s important to remember that not all ranges for the hyperparameters were
explored). It could also mean that the suggested values are good in general, but for every spe-
cific case there could be a better value, being dependant on the size or type of training data,
or even other hyperparameters. In this regard, we can safely conclude that adding up seman-
tic information taken from word associations given by their dictionary definitions provides a
considerable increase in the word similarity and word relatedness tasks while not adding a
substantial training time. In general, lower values of window and vector sizes perform worse,
while performance gets better from window size 5 and vector size 100, although this depends
on the model being used.

In the case of the subword-based models, adding full words to fastText doesn’t seem to add
that much information; disregarding the cases where n-grams are much bigger than the short-
est words, not adding the word produces somewhat similar results (performance-wise) which

59

60 Chapter 5. Conclusions

makes it an interesting trade-off. The main drawback of n-grams is slightly more training time,
and this is obvious because now training a word takes more cycles due to the normalized sum
of the grams. Surprisingly, even though that fastText does indeed perform better than word2vec
in the word similarity tasks, the difference is not that much, however, it’s still important. In
spite of this, the word analogy task shows a different strength of fastText.

Going back to the word similarity tasks, although combining the dictionary information
with the subwords modelling in dictFastText provides a generous increase to performance, it
comes with the penalty of a significantly higher training time. As mentioned before, this is
because of the n-grams word construction (which is the only difference between dict2vec and
dictFastText). An additional important thing to consider (and this also counts for dict2vec) is
that extracting the dictionary data is extremely time-consuming and is subjected to some exter-
nal factors (API access, IP blocking). In comparison with dict2vec, its average performance is
on par, with some small differences in some tasks.

That being said, in the word analogy task the scenario is quite different: fastText shows
the highest V-measure of all models with dictFastText following next. Surprisingly, dict2vec
has the lowest V-measure of all models, which seems to indicate that fine-tuning the vectors
with the dictionary information somehow affects this property, even though that word similarity
score goes higher. It also seems that the subword embeddings represent word analogies better.
One potential reason for this, is that several of the lexical relations defined in diffvec have
syntactic patterns (for example, prefix rule, verb conjugations, pluralization, etc.), which this
approach can address.

In conclusion, if training time is not an issue and the dictionary information is available,
dictFastText looks like a reasonable alternative for having good scores on both types of tasks,
doing just as good as dict2vec in the word similarity task and slightly worse than fastText in
the word analogy task. Nevertheless, more experiments and more tasks are needed to confirm
if this pattern is consistent for other scenarios.

Chapter 6

Future Work

Following the conclusions detailed in the last chapter, this chapter mentions some aspects about
the experiments that can be improved or worked on in order to strengthen or confirm the ideas
presented in this thesis.

Bigger corpus

In this work, only the smallest version (the first 50 million words from Wikipedia) was used
as training data. Trying the whole Wikipedia corpus could show interesting results (although
the authors already proved that it doesn’t change the results too much). To have a perspective,
the 50 million words set is 284 megabytes, the first 200 million words set is 1.1 gigabytes, and
the full set is 24 gigabytes.

Additionally, other corpora can be explored.

Other Languages

FastText has made available several embeddings of other languages; while this task needs
further work (specially to normalize the data in other languages, and also because Wikipedia
in other languages can be different to the english one), it can result in notable insights.

One costly operation would be to find dictionary information in other languages, which
could be a hindrance.

Additional Hyperparameter Values

Several hyperparameters weren’t thoroughly explored; for example: number of n-grams
and some ranges & values in the dict2vec hyperparameters.

61

62 Chapter 6. FutureWork

Dictionary Information

While it’s clear that the semantic information from dictionary definitions have rich content
for the embeddings, different approaches can be taken to try to include this information on
the embeddings (for example, not using word pairs but instead defining sentences, context
windows or using part of speech tags). Additionally the cost of extracting the definitions is
quite high and it could not necessarily work for certain types of words (compound words for
example).

While the authors of dict2vec already analyzed resources such as WordNet, it would be
interesting to see if there’s an easier or less-expensive way to get related word pairs (not nec-
essarily semantic); for example, words related by a Thesaurus, or grouping from a hand-made
dataset.

Bibliography

[1] Mikel Artetxe and Holger Schwenk. Massively multilingual sentence embeddings for
zero-shot cross-lingual transfer and beyond. CoRR, abs/1812.10464, 2018.

[2] Amir Bakarov. A survey of word embeddings evaluation methods. CoRR,
abs/1801.09536, 2018.

[3] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Janvin. A neural prob-
abilistic language model. J. Mach. Learn. Res., 3:1137–1155, March 2003.

[4] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. Enriching word
vectors with subword information. Transactions of the Association for Computational

Linguistics, 5:135–146, 2017.

[5] Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua, Nicole Limtiaco, Rhomni St. John,
Noah Constant, Mario Guajardo-Cespedes, Steve Yuan, Chris Tar, Yun-Hsuan Sung,
Brian Strope, and Ray Kurzweil. Universal sentence encoder. CoRR, abs/1803.11175,
2018.

[6] Patrick Conley and Curt Burgess. A computational approach to modeling population
differences. Behavior Research Methods, Instruments, & Computers, 32(2):274–279, Jun
2000.

[7] Scott Deerwester, Susan T. Dumais, George W. Furnas, Thomas K. Landauer, and Richard
Harshman. Indexing by latent semantic analysis. JOURNAL OF THE AMERICAN SO-

CIETY FOR INFORMATION SCIENCE, 41(6):391–407, 1990.

[8] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training
of deep bidirectional transformers for language understanding. CoRR, abs/1810.04805,
2018.

[9] Felix Hill, Kyunghyun Cho, Anna Korhonen, and Yoshua Bengio. Learning to understand
phrases by embedding the dictionary. CoRR, abs/1504.00548, 2015.

63

64 BIBLIOGRAPHY

[10] Mohit Iyyer, Varun Manjunatha, Jordan Boyd-Graber, and Hal Daumé III. Deep un-
ordered composition rivals syntactic methods for text classification. pages 1681–1691,
01 2015.

[11] Quoc V. Le and Tomas Mikolov. Distributed representations of sentences and documents.
CoRR, abs/1405.4053, 2014.

[12] Wang Ling, Chris Dyer, Alan Black, and Isabel Trancoso. Two/too simple adaptations
of word2vec for syntax problems. In Proceedings of the 2015 Conference of the North

American Chapter of the Association for Computational Linguistics: Human Language

Technologies. Association for Computational Linguistics, 2015.

[13] Kevin Lund and Curt Burgess. Producing high-dimensional semantic spaces from lexical
co-occurrence. Behavior Research Methods, Instruments, & Computers, 28(2):203–208,
Jun 1996.

[14] Ulrike Luxburg. A tutorial on spectral clustering. Statistics and Computing, 17(4):395–
416, December 2007.

[15] Bryan McCann, James Bradbury, Caiming Xiong, and Richard Socher. Learned in trans-
lation: Contextualized word vectors. CoRR, abs/1708.00107, 2017.

[16] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word
representations in vector space. CoRR, abs/1301.3781, 2013.

[17] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed
representations of words and phrases and their compositionality. In NIPS, pages 3111–
3119. Curran Associates, Inc., 2013.

[18] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global vectors
for word representation. In In EMNLP, 2014.

[19] Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Ken-
ton Lee, and Luke Zettlemoyer. Deep contextualized word representations. In Proc. of

NAACL, 2018.

[20] Xin Rong. word2vec parameter learning explained. arXiv preprint arXiv:1411.2738,
2014.

BIBLIOGRAPHY 65

[21] Andrew Rosenberg and Julia Hirschberg. V-measure: A conditional entropy-based ex-
ternal cluster evaluation measure. In Proceedings of the 2007 Joint Conference on Em-

pirical Methods in Natural Language Processing and Computational Natural Language

Learning(EMNLP-CoNLL), pages 410–420, 2007.

[22] Xinying Song, Xiaodong He, Jianfeng Gao, and Li Deng. Unsupervised learning of word
semantic embedding using the deep structured semantic model. Technical Report MSR-
TR-2014-109, August 2014.

[23] Julien Tissier, Christopher Gravier, and Amaury Habrard. Dict2vec : Learning word em-
beddings using lexical dictionaries. In Proceedings of the 2017 Conference on Empirical

Methods in Natural Language Processing, pages 254–263. Association for Computa-
tional Linguistics, 2017.

[24] Andrew Trask, Phil Michalak, and John Liu. sense2vec - A fast and accurate method for
word sense disambiguation in neural word embeddings. CoRR, abs/1511.06388, 2015.

[25] Peter D. Turney and Patrick Pantel. From frequency to meaning: Vector space models of
semantics. J. Artif. Int. Res., 37(1):141–188, January 2010.

[26] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. CoRR,
abs/1706.03762, 2017.

[27] Ekaterina Vylomova, Laura Rimell, Trevor Cohn, and Timothy Baldwin. Take and took,
gaggle and goose, book and read: Evaluating the utility of vector differences for lexical
relation learning, 2015. cite arxiv:1509.01692.

Appendix A

Word embeddings

Word embeddings is the collective name of several models used in NLP where features (such
as word or phrases) are represented as vectors of real numbers. Word embedding is also known
as the Distributional Semantic Model in the Computational Linguistics community, where the
main idea is the Distributional Hypothesis: "linguistic items with similar distributions tend to

have similar meanings" [25].

The first model to use vectors as word representations was the Vector Space Model, which
led eventually to the development of Latent Semantic Analysis by means of applying the Sin-
gular Value Decomposition to the original model.

There’s different types of models nowadays, the most known are the ones that spawned from
the Probabilistc Neural Language Model proposed by Bengio et al. [3], namely word2vec.

A.1 Word representation

In word embedding models, a word is represented as an n-dimensional vector of real numbers.
The number of dimensions will depend on which model is used:

A.1.1 Bag of words

In this representation, the number of dimensions will be the number of documents1 and the
value of each dimension will be the number of times the word appears in said document.

Example of 3 contexts:

• Alice likes to watch movies, eat and sleep.

1An instance or context where a word appears; it can be a sentence, paragraph, section or even a full text-
document. It’s named document because it first spawned from the vector space model where a term-document
matrix is used.

66

A.2. Word similarity 67

• Bob likes to watch his cat sleep like Alice.

• Carl’s cat eats like his owner.

Figure A.1: Example of a term-document matrix, with the columns being the 3 context
examples. Keep in mind that conjugated verbs are considered in their infinitive form for

simplicity purposes.

In summary, this model represents the words by their frequency of appearance across all
contexts known by the model regardless of word order.

A.1.2 One hot encoding

In this representation, the frequency of the values of the n-dimensional vector are not important,
so if a word appears in a context (this context being, for example, the vocabulary or a row or
column in a co-occurrence matrix) it’s just marked as a one.

A.2 Word similarity

The Distributional Hypothesis (from the distributional semantics field) states that: "linguistic
items with similar distributions tend to have similar meanings"2. This is often interpreted in
practice as "words that appear in similar contexts, tend to have similar meanings"; intuitively,
if 2 words can be interchangeable in a given piece of text without losing general meaning, then
those words can be considered similar.

Now, how to quantify that similarity is a problem that has been tackled for a long time with
several approaches. Because word embeddings allow for words to be compared as vectors, a
lot of options are available. Some of them are:

2https://en.wikipedia.org/wiki/Distributional_semantics

https://en.wikipedia.org/wiki/Distributional_semantics

68 Chapter A. Word embeddings

• Dot product

• Cosine similarity

• Euclidean distance

Figure A.2: Example of vector visualization

It’s important to note that cosine similarity is one of the most used because it doesn’t get
affected by the magnitude of the vectors (as opposed with the other 2 distances); also, cosine
similarity can be interpreted as the normalized dot product. There are more other metrics to
compare vectors, but there hasn’t been any substantial use in NLP works.

Appendix B

Spearman’s Rank Correlation Coefficient

The Spearman’s rank correlation coefficient1, normally noted as ρ or rs, is a measurement
of correlation between the ranked values of two variables through the use of a monotonic
function; in other words, the Spearman correlation determines if the variables show a mono-
tonic relationship. A monotonic relationship occurs when the values of both variables are
non-decreasing (positive correlation) or non-increasing (negative correlation); roughly speak-
ing, if one variable increases or doesn’t change when the other increases, or if the variable
decreases or doesn’t change when the other decreases, then they are monotonic. Figure B.1
shows examples of monotonic and non-monotic functions.

For two variables X and Y , with their ranks calculated as R(x) and R(y) respectively, the
Spearman’s coefficient is:

ρs =

∑
i(R(xi) − R(x))(R(yi) − R(y))√∑

i(xi − x)2 ∑
i(yi − y)2

(B.1)

Figure B.1: Examples of monotonic and non-monotic functions. The left and the middle image
are monotonic functions, whereas the right one is non-monotonic.

1https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient

69

https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient

Appendix C

Diffvec

This paper [27] evaluates several types of word embeddings, measuring how good the embed-
dings are to model lexical relations by analyzing the vector differences produced by them. The
authors argue that because these vector differences (diffvecs) are so prevalent in analogical

reasoning1, then the "diffvec themselves must be meaningful".

C.1 Lexical Relations

A lexical relation is a relation r between a pair of words (wi,w j). For example, (light, illumination)
belong to the relation CAUSE-PURPOSE. Some tasks of NLP where this is used include: re-
lation learning, where a word pair is classified as a certain relation; relation extraction, where
relations are learned from text given a corpus; and analogical reasoning, where there’s a need
to complete analogies in the form of A : B :: C :?.

Image C.1 describes the dataset; it shows the relations, the name of the dataset where it
comes from, and some examples. It’s important to mention that while the image shows 15
types of relations, there are actually more (36 to be precise); this is because some of the rela-
tions have sub-types, such as CAUSE-PURPOSE having both Instrument:Goal and Instru-
ment:IntendedAction as sub-types.

C.2 Spectral Clustering

Spectral clustering is a technique that employs the eigenvectors of a similarity matrix to reduce
the dimensionality of the data, where then a clustering algorithm is applied (like k-means).
First, a similarity matrix must be constructed. To construct it, a similarity graph is defined;

1king − man + woman = queen

70

C.3. V-measure 71

Figure C.1: Details of lexical relations dataset

Figure C.2: Example of an unnormalized Laplacian matrix

each vertex of the graph is a data point (in this case a diffvec) and an edge occurs if a pair
of vertices are similar (the definition of similarity depends on the similarity function and its
threshold). With the graph defined, then the similarity matrix can be obtained by calculating
the Laplacian matrix, which there are several types of them. Image C.2 shows an example of
an unnormalized Laplacian matrix2, while image C.3 shows the normalized version of spectral
clustering.

C.3 V-measure

V-measure is a score to evaluate the quality of a clustering model. In the diffvec paper, the
authors employed v-measure as proposed by Rosenberg [21], where V-measure is defined as
the harmonic mean of two metrics:

v = 2 ∗
homogeneity ∗ completeness
homogeneity + completeness

(C.1)

2taken from https://en.wikipedia.org/wiki/Laplacian_matrix

https://en.wikipedia.org/wiki/Laplacian_matrix

72 Chapter C. Diffvec

Figure C.3: Normalized Spectral clustering algorithm, taken from source paper [14]

Homogeneity is maximized when each cluster contains elements of as few different classes
as possible and it’s calculated by:

h = 1 −
H(C|K)
H(C)

i f H(C|K) , 0; 1 otherwise. (C.2)

where:

H(C|K) = −

|K|∑
k=1

|C|∑
c=1

ack

N
log

ack∑|C|
c=1 ack

(C.3)

H(C) = −

|C|∑
c=1

∑|K|
k=1 ack

n
log

∑|K|
k=1 ack

n
(C.4)

Completeness aims to put all elements of each class in a single cluster and it’s calculation
is given by:

c = 1 −
H(K|C)
H(K)

i f H(K|C) , 0; 1 otherwise. (C.5)

where:

H(K|C) = −

|C|∑
c=1

|K|∑
k=1

ack

N
log

ack∑|K|
k=1 ack

(C.6)

H(K) = −

|K|∑
k=1

∑|C|
c=1 ack

n
log

∑|C|
c=1 ack

n
(C.7)

For both cases, C is the set of classes {ci|i = 1, ..., n}, K is the set of clusters {ki|1, ...,m}, and

C.3. V-measure 73

ai j is the number of samples with class ci in cluster k j.

Curriculum Vitae

Name: Felipe Urra

Post-Secondary Universidad Técnica Federico Santa María, Valparaíso, Chile
Education and 2005 - 2013
Degrees: Telematics Engineer B.A.

Related Work Engineer
Experience: Foris, Santiago, Chile

2013-2014

Developer
Lemontech, Santiago, Chile
2014-2016

Teaching Assistant
The University of Western Ontario, London, Canada
2017 - 2018

74

	Measuring Enrichment Of Word Embeddings With Subword And Dictionary Information
	Recommended Citation

	Certificate of Examination
	Abstract
	Summary for Lay Audience
	List of Figures
	List of Tables
	Introduction
	Problem Statement
	Contributions
	Vectors
	Syntactic Information
	Semantic Information
	Analogical Information

	Evaluation
	Extrinsic Tasks
	Intrinsic Tasks
	Datasets

	Format of the Thesis

	Related Work
	Word Embedding Models
	Sentence Embedding Models
	Word2vec
	Skip-Gram
	Vocabulary and Weights
	Embedding
	Error Function
	Output
	Updating Weights

	Optimizations
	Hierarchical Softmax
	Negative Sampling

	FastText
	Dict2vec

	Model Implementations and Evaluation
	Word2vec - Skip Gram
	FastText
	Dict2vec
	Proposed Model (dictFastText)
	Evaluation
	Experiments
	Word Semantic Similarity
	Word analogy

	Training Data
	Web Scraping
	Hyperparameters

	Results
	Analysis
	Word2vec
	FastText
	Dict2vec
	DictFastText
	All Models

	Evaluation
	Word similarity
	Word analogy

	Conclusions
	Future Work
	Bibliography
	Word embeddings
	Word representation
	Bag of words
	One hot encoding

	Word similarity

	Spearman's Rank Correlation Coefficient
	Diffvec
	Lexical Relations
	Spectral Clustering
	V-measure

	Curriculum Vitae

