Western University

Scholarship@Western

Western® Graduate& PostdoctoralStudies

Electronic Thesis and Dissertation Repository

5-27-2019 11:00 AM

Incorporating Figure Captions and Descriptive Text into Mesh
Term Indexing: A Deep Learning Approach

Xindi Wang, The University of Western Ontario

Supervisor: Mercer, Robert E., The University of Western Ontario

A thesis submitted in partial fulfillment of the requirements for the Master of Science degree in
Computer Science

© Xindi Wang 2019

Follow this and additional works at: https://ir.lib.uwo.ca/etd

6‘ Part of the Artificial Intelligence and Robotics Commons

Recommended Citation

Wang, Xindi, "Incorporating Figure Captions and Descriptive Text into Mesh Term Indexing: A Deep
Learning Approach" (2019). Electronic Thesis and Dissertation Repository. 6263.
https://ir.lib.uwo.ca/etd/6263

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of
Scholarship@Western. For more information, please contact wiswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F6263&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=ir.lib.uwo.ca%2Fetd%2F6263&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/6263?utm_source=ir.lib.uwo.ca%2Fetd%2F6263&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

Abstract

The exponential increase of available documents online makes document classification an im-
portant application in natural language processing. The goal of text classification is to au-
tomatically assign categories to documents. Traditional text classifiers depend on features,
such as, vocabulary and user-specified information which mainly relies on prior knowledge.
In contrast, deep learning automatically learns effective features from data instead of adopting
human-designed features. In this thesis, we specifically focus on biomedical document clas-
sification. Beyond text information from abstract and title, we also consider image and table
captions, as well as paragraphs associated with images and tables, which we demonstrate to be

an important feature source to our method.

Keywords: text classification, MeSH term indexing, deep learning, convolutional neural

network, recurrent neural network, attention model

Summary for Lay Audience

Text classification, especially document classification, is a process of assigning categorical la-
bels to each document. In recent years, the number of digital documents, for instance scientific
publications, continues to increase exponentially. The huge amount of open data on the internet
is critical for research, and it is important to index them in a proper way. Manual indexing is
inefficient and costs a lot of time and money, so automatic document indexing is a burgeoning
field of research.

Deep learning has become an essential part of artificial intelligence due to the improve-
ments in parallel computing and supporting hardware. Deep learning has performed exception-
ally in many domains, such as computer vision and natural language processing. Compared
to traditional machine learning algorithms, deep learning is more flexible and requires less do-
main knowledge when dealing with the tasks. It can automatically learn effective features from
data instead of adopting human-designed features.

In this thesis, we deal with large scale document classification in an automatic way using
deep learning approaches, and we specifically focus on biomedical document classification.
Beyond text information from the abstract and title, we also consider image and table cap-
tions, as well as paragraphs associated with images and tables, which we demonstrate to be an

important feature source for our method.

i

Acknowledgements

Throughout the writing of this dissertation, I have received a great deal of support and assis-
tance. I would first like to thank my supervisor, Dr. Robert Mercer, for his expertise, ideas,
feedback, time, support and encouragement.

I would like to acknowledge Dr. Hongjun Wang, and Dr. Qiang Wu, at Shandong Univer-
sity, China. I want to thank them for offering me access to their high-quality computational
devices, which was a great help for my research.

I would like to thank my parents for their support and encouragement throughout my life
and made it possible for me to complete this degree. Finally, my friends and lab-mates, who

were great support in offering me valuable suggestions.

il

Contents

[Abstract

Summary for Lay Audience|

[Acknowledgements|

[List of Figures|

[List of Tables

1__Introduction|
(1.1 Background|
(1.2 Research Question|. o

2 Related Work
[2.1 Traditional Machine Learning Approaches in Text Classification|

2.2 Deep Learning Approaches in Text Classification|

2.3 Related Work in MeSH Indexing|

3 Theoretical Framework

[3.1 ‘Text Representations|

[3.2 Machine Learning Classifiers|,

v

ii

iii

vii

ix

4.1 If-attention Mechanisms| o oL
[3.5 Model Evaluation Techmiques|.

[3.5.1 Bipartition-base Evaluation| 0000,
[3.5.2 Ranking-based Evaluation|

B1_ Problem Statementl
M2 Classifiers) e e
42.1 Multichannel TextCNNl o o o L.
B22 Multichannel XMLCNNI o
B23 Multichannel biILSTM|
4.2.4 Multichannel Attention Based convI.STM|
/ o)
M3T1 Datasets]
4.3.2 Data Pre-processing|., .
4.3.3 Generate Word Embeddings| 0oL
@4.3.4 Experiment Setup and Model Hyperparameters|
M4 Experiments|
U441 Evaluation Metrics] oL
442 Results]
5 Conclusions|
0.1 Conclusions|o
2 Futur Kl . e

IC__Summaries of the Models for biLSTM

37
37
39
39
40
42
44
44
44
45
49
49
50
50
51

60
60
61

63

67

72

77

80

84

Vi

List of Figures

1.1 Multi-cl lassification Multi-label classificationl.

2.3 Two lypes of Convolution|
[2.4 Model Architecture of Deep pyramud CNN|.
2.5 Model Architecture of Very Deep CNN|
2.6 Example of A Convolutional Block in Very Deep CNN Model|

2.11 MTI Processing Flow|
2.12 A Work Flow of MeSHRanker (a) and MeSHLabeler (b)|

[3.3 Perceptron|

(3.5 Multilayer Neural Network] 0.

[3.6 Visualization of Convolution Operation|

[3.7 Visualization of Pooling|. o 0oL

vii

4.3 Multuchannel biLSTM Architecturel. 42
4.4 Muluchannel convL.STM Architecturel 43
#.5 Main Branches in the MeSH Hierarchy|. 46
4.6 An Example of MeSH Hierarchy| 47

[A.1 System Generated Summary for TextCNN Model on AbstractAndTitle (Small) |

|A.2 System Generated Summary for TextCNN Model on FullText (Small) Dataset| . 69
[A.3 System Generated Summary for TextCNN Model on AbstractAndTitle (Large) |

Datasetl. s 70

[A.4 System Generated Summary for TextCNN Model on FullText (Large) Dataset| . 71

[B.1 System Generated Summary for XML-CNN Model on AbstractAndTitle (Small) |

Datasetl. e e 73

[B.2 System Generated Summary for XML-CNN Model on FullText (Small) Dataset| 74
[B.3 System Generated Summary for XML-CNN Model on AbstractAndTitle (LLarge) |

Datasetl. e 75

[B.4 System Generated Summary for XML-CNN Model on FullText (Large) Dataset] 76

[C.1 System Generated Summary for biILSTM Model on AbstractAndTitle (Small) |

[C.2 System Generated Summary for biLSTM Model on FullText (Small) Dataset|. . 78
[C.3 System Generated Summary for biILSTM Model on AbstractAndTitle (Large) |

Datasetl. e e 79

[D.T System Generated Summary for convLSTM Model on AbstractAndTitle (Small) |

[D.2" System Generated Summary for convLSTM Model on FullText (Small) Dataset] 82
[D.3 System Generated Summary for convLSTM Model on AbstractAndTitle (Large) |

viii

List of Tables

4.1 Stausticsof the Datasets] o oL 45
/4.2 Evaluation of the Four Models: Resultsof p@k| 52
4.3 Evaluation of the Four Models: Results of tDCG@Kk 53
“4.4 Flat and Hierarchical Measures for TextCNN in Different Datasets| 54
#.> Flat and Hierarchical Measures for XMILCNN 1n Different Datasets| 54
4.6 Flat and Hierarchical Measures for bilLSTM 1n Different Datasetsl 55

Flat and Hierarchical M res for conv.STM 1in Different Datasets| 55
4.8 Hierarchical Analysis of TextCNN Results| 56
4.9 Results for TextCNN 1n p@k and nDCG@k| 57
.10 Comparison with Existing Models| 58
M.11 Teston BIoASQ Test Cases| 58

iX

Chapter 1
Introduction

In this chapter, we provide a background of text classification, discuss the importance of the

research question and our contribution toward solving it, and also provide the thesis layout.

1.1 Background

In the internet age, the number of electronic documents has grown exponentially. Manual
classification of documents cannot keep up with the high demand of document processing.
Thus, document classification and information retrieval has attracted special attention. They
are important problems in the fields of natural language processing and artificial intelligence
and solutions are urgently required.

Text classification is a task that automatically assigns categorical labels to documents. It is
important in the area of document management, web searching, and document filtering. Text
classification applications make our lives easier and more convenient. For instance, Google
News customizes users’ pages, and it filters news results based on browsing history. Email
clients, such as Microsoft Outlook, filter spam effectively to protect the users. Browsers block
inappropriate or offensive contents to ensure that users are under a safety web environment.

In recent years, digital libraries have become global information and knowledge networks,
improving the quality of life for people as well as providing numerous research opportunities
for scholars. The number of scientific publications continues to increase exponentially. Hence,
digital libraries are a significant component in research. Scientific digital libraries, such as
those of publishers (e.g., Springer’s SpringerLink and Elsevier’s ScienceDirect), open access
repositories (e.g., arXiv.org), and scientific societies (e.g., IEEE Explore and ACM Digital Li-
brary), add new publications continuously [39]. Digital libraries usually offer various services,
such as, metadata searching, resource discovering, and reference services. Content-based ser-

vices of digital libraries depend greatly on the system upon which it is built, an example being

2 CHAPTER 1. INTRODUCTION

the semantic information of the corresponding domain, such as the ACM Computing Classifi-
cation System for Computing and Medical Subject Headings (MeSH) [39].

The huge amount of open data in digital libraries is critical for research, and it is important
to index them in a proper way. Processing documents associated with searchable tags enhances
the functionality and organizational productivity of digital libraries. Manual indexing is inef-
ficient, using a lot of time and money. Automatic document indexing is a burgeoning field of
research.

In this thesis, we deal with automatic biomedical document indexing. We will give a de-
tailed description of our research question in Section 1.2. We primarily apply deep neural
network models to seek solutions to our research question since these models have shown ex-
cellent performance in various related areas, such as text classification, machine translation,
and question-answer systems. In Chapter 2, we will review current research in text classifica-

tion using deep neural networks.

1.2 Research Question

In this thesis, we primarily deal with text classification, in particular, multi-label classification

of biomedical documents.

1.2.1 Text Classification

Text classification is a process that assigns labels or tags to text according to its contents. It
can be done manually or automatically. Most text classification tasks were done by human
annotators, prior to the information age. A human annotator reads and interprets the content
of the text and then classifies it into certain categories. Traditional text classification is time
consuming and expensive, especially when dealing with large number of documents. Currently,
there is a trend to support text classification through automatic tools as it does the same job as
human annotators, but accomplishes it in more accurate, and efficient ways.

Automatic text classification is an important application and research topic in natural lan-
guage processing because of increasing numbers of online documents. Automatic text classifi-

cation has been used in many areas. Some of the examples are listed below:

Knowledge organization includes document indexing and classification in libraries, databases,
etc. It organizes documents in order to improve the efficiency of user queries, such as the

library taxonomy system, which, for example, reduces readers traversing libraries.

Information filtering is a process of removing redundant or irrelevant information from the

1.2. RESEARCH QUESTION 3

Multi-Class Multi-Label
C=3 Samples Samples
qbﬁqb 'ﬂﬁ" (O ((O
4 & 1 o3

Labels (t) Labels (t)

O [001] [100] [010] [101] [010] [111]

Figure 1.1: Multi-class classification VS Multi-label classification (taken from the source:
https://gombru.github.i0/2018/05/23/cross_entropy_loss/)

information flow. Since people can obtain information from various sources, the re-
quirement of getting more relevant information keeps increasing. Artificial information
filtering technology is in urgent demand to meet users’ requirements in text classification

and filtering; it constantly introduces users to valuable information only.

Topic detection and tracking is a process of clustering topics and tracing the appearance of

those topics; the method helps users deal with information overload.

Text classification saves time and money in general, leading to its continued and enthusias-
tic usage in both business and research.

There are three different types of classification: binary classification, multi-class classifi-
cation and multi-label classification. Binary classification classifies elements into one of two
categories; multi-class classification classifies elements into one of at least three classes; multi-
label classification classifies elements into a set with at least two target labels. Figure 1.1 shows
the difference between multi-class classification and multi-label classification. In our thesis, we
are dealing with multi-label classification in biomedical documents. We will define multi-label

classification in the next subsection.

1.2.2 Multi-label Classification

Multi-label classification is a variant of the classification problem. It classifies a document into
a set of target labels; each is mutually exclusive. We define the problem as follows: suppose we

have the training data which is given as n document-label pairs {x;, y;}!_,, where x; € X € RP

4 CHAPTER 1. INTRODUCTION

and y; € {0, 1}£, D is the number of document features and L is the number of total labels, so
each document x; is associated with a set of relevant labels, denoted by label vector y;. The
goal of multi-label classification is to find the most relevant subset of labels from the space of

categories for each document, which is X — {0, 1}£.

1.2.3 Medical Subject Headings Indexing

MEDLINEﬂ and PubMe(ﬂ are databases that can access publications of life sciences and
biomedical topics. They are maintained by the United States National Library of Medicine
(NLM). The MEDLINE database includes bibliographic information for articles in various
disciplines of the life sciences and biomedicine, such as medicine, health care, biology, bio-
chemistry and molecular evolution. The database contains more than 25 million records in
over 5,200 worldwide journals. More than 800,000 citations were added to MEDLINE in
2017, which is more than 2,000 updates daily. PubMed is a web server that can freely access
the MEDLINE database of references and abstracts. Some PubMed records have full text arti-
cles available on PubMed Centra Journals in MEDLINE are indexed according to Medical
Subject Heading (MeSH) terms, which is the NLM’s controlled vocabulary thesaurus. MeSH is
a hierarchically-organized terminology indexing system that categories biomedical documents
in NLM databases. The 2018 version of MeSH contains 28,939 headings. Among these MeSH
terms, there are 29 check tags that are a special group of MeSH terms describing subjects of
research. NLM’s MeSH Indexing has been produced by human annotators at significant eco-
nomic cost. It is important to explore the automatic indexing method to reduce expenditure
and improve efficiency.

In Chapter 2, we will introduce current approaches in text classification as well as in MeSH
indexing, and we will present different classification techniques performing MeSH indexing in
Chapter 4.

1.3 Contributions

The contributions of our thesis are as follows:

e We explore the use of multi-channel deep learning architectures toward solving the au-

tomatic MeSH indexing tasks.

"https://www.nlm.nih.gov/bsd/medline.html
2https://www.nlm.nih. gov/bsd/pubmed.html
3https: //en.wikipedia.org/wiki/PubMed_Central

https://www.nlm.nih.gov/bsd/medline.html
https://www.nlm.nih.gov/bsd/pubmed.html
https://en.wikipedia.org/wiki/PubMed_Central

1.4. STRUCTURE OF THIS DOCUMENT 5

e We provide experimental results that show that including figure and table information
in addition to the typical title and abstract information improves the performance of

automatic MeSH indexing.

e We provide a labeled full-text (title, abstract, figure and table captions, as well as para-
graphs related to figures and tables) biomedical document dataset for the research com-

munity.

1.4 Structure of this document

The aim of this thesis is to discover and imporve automatic MeSH indexing. This chapter
has given the background and has introduced the research problems in this thesis. Chapter
2 discusses traditional machine learning approaches in text classification, explores the deep
learning approaches, and examines current attempts in MeSH indexing. Chapter 3 provides the
necessary theoretical background required to understand the content of the thesis. Chapter 4
explains multichannel deep learning approaches in automatic MeSH indexing and shows the
improved performance when adding full text information. Finally, Chapter 5 concludes the

thesis, and outlines potential future work.

Chapter 2

Related Work

The goal of text classification is to automatically assign labels to certain documents. Traditional
statistics-based methods depend on features, and prior knowledge of the designers. In contrast,
deep neural networks learn effective features from data automatically.

In this chapter, we will briefly review statistic-based machine learning techniques that are
applied on text classification, describe the various neural networks approaches, and explain

current works regarding MeSH indexing.

2.1 Traditional Machine Learning Approaches in Text Clas-

sification

Text classification is an application of supervised machine learning task; it trains a classifier
using a labeled dataset that contains text documents and their labels. Traditional text classifi-
cation usually involves four phases: text preprocessing, feature extraction, training classifier,
and classification model. The first step of text preprocessing is tokenization that chops the
input document into small pieces, namely tokens, such as words, phrases and symbols. The
text documents are then processed to minimal meaningful units. The next step is normalization
that converts a list of tokens into a uniform sequences, such as converting text into lowercase,
and converting numbers into words. After performing text preprocessing, feature extraction
works on the pre-processed data; it selects a subset of terms describing the data before apply-
ing classifiers. In traditional text classification, features are reliant on the prior knowledge of
the designer. Engineers develop strategies are to select simple and sufficient features. The final
step in text classification is to train a classifier and get the classification result using features
acquired from previous steps. There are many classification models available, such as logistic

regression, decision tree, rule based classification, support vector machine, k-nearest neigh-

2.2. DEEP LEARNING APPROACHES IN TEXT CLASSIFICATION 7

bour, and naive Bayesian [40]. We will discuss different classification methods that are widely

used in text classification in the next chapter.

2.2 Deep Learning Approaches in Text Classification

Deep learning has become an essential part of artificial intelligence due to improvements in
parallel computing and supporting hardware. Currently, complex and deep neural networks
are feasible and are used now in industries. Deep learning has performed exceptionally in
many domains, such as computer vision and natural language processing. Compare to machine
learning algorithms, deep learning is more flexible and requires less domain knowledge when
dealing with the tasks. The section analyzes various text classification techniques based on

deep neural networks.

2.2.1 Convolutional Neural Networks in Text Classifcation

Convolutional neural networks (CNN) is a type of feed-forward artificial neural networks.
CNN has been proven successfully in the areas of classification and image recognition. There
are three main layers in CNN architecture: convolutional layer, pooling layer, and fully-
connected layer. Convolutional layer is used to extract various input features. It applies the
convolution operation on input neurons; output neurons connect to local regions of input neu-
rons. After the convolutional layer, feature maps are generated. The pooling layer reduces
dimensionality of feature maps by taking the maximum value, average or sum. A fully con-
nected layer turns the local feature into global, and computes a class score. Chapter 3 will
have a detailed review of CNN. In this section, we outline seven CNN related structures in text
classification.

The most popular model that CNN has been applied in language processing especially
in text classification is TextCNN (proposed by Kim in 2014) [19], shown in Figure 2.1. In
the paper, the authors proposed a shallow neural net with one convolutional layer followed
by a max-pooling layer; final classification layer is a fully connected layer with dropout and
softmax outputs. TextCNN first embedded natural words to word vectors, which used pre-
trained embeddings on 100 billion words of Google News [30]. Then, convolutional filters
operated on embedded word vectors with multiple filter sizes, and feature maps were generated
subsequently. A max-pooling had been applied on those feature maps, which returned the most
important feature in each filter. The pooling process extracted one feature from each filter and
passed them to the fully connected softmax layer which outputted the probability distribution

over classes. In the experimental results, TextCNN has shown excellent performance in multi-

8 CHAPTER 2. RELATED WORK

wait
for
the
video
and
do
n't
rent
it

=

| J | | | L |

n x k representation of Convolutional layer with Max-over-time Fully connected layer
sentence with static and multiple filter widths and pooling with dropout and
non-static channels feature maps softmax output

Figure 2.1: Model Architecture of TextCNN (taken from the source: Convolutional Neural
Networks for Sentence Classification, Kim 2014 [[19])

class classification.

Similar to TextCNN, Kalchbrenner et al. [[18] proposed a dynamic convolutional neural
network (DCNN) in 2014. The DCNN model contains an embedding layer, convolutional
layer, folding layer and max-pooling layer, illustrated in Figure 2.2. Comparing to the afore-
mentioned TextCNN model, DCNN uses convolutional neural networks with dynamic k-max
pooling and operates wide convolution on the embedding matrix in the convolutional layer.
Dynamic k-max pooling allows the network to capture k most important features and reserves

the relative positions among theses features; it is defined as:

L—-1
k; = max(kip, fTST)

where [is the number of current convolutional layer, L is the total number of convolutional
layers in the network, s is the sentence length, and &, is the fixed parameter for the topmost
convolutional layer. Wide convolutions ensure that all weights in the filter reach every word
in the sentence. Figure 2.3 shows the difference between narrow convolutions and wide ones.
The DCNN model achieves high performance in sentiment classification, which is considered

as a strong baseline in text classification.

In the paper Johnson et al. published in 2015 [15], the authors proposed two types of CNN
structure to solve text categorization tasks: seq-CNN and bow-CNN. These apply CNN directly
on high dimensional vectors, i.e., one-hot encodings instead of using low dimension word
embeddings. The seq-CNN straightforward adapts CNN from image to text, and the bow-CNN

employs bag-of-word conversion in the convolution layer.

2.2. DEEP LEARNING APPROACHES IN TEXT CLASSIFICATION 9

Fully connected
layer

K-Max pooling
(k=3)

Folding / [LTYV] /

Wide /

convolution
(m=2)

Dynamic
k-max pooling
(k=f(s) =5)

\ "
comitn %Lu\ﬁ / 0 1 UW

Projected
sentence
matrix
(s=7)

The cat sat on the red mat

Figure 2.2: Model Architecture of DCNN for a Sentence with Seven Words (taken from the
source: A Convolutional Neural Network for Modelling Sentences, Kalchbrenner et al. [18]])

In the seq-CNN model, the embedding layer uses one-hot-encoding directly to represent
the input document. Suppose the input document D = (wy, ws, - ,w,) with vocabulary size
V, then each word can be represented as a V-dimensional one-hot vector. Convolution filters

with region size p are employed on the one-hot represented document matrix, so the size of

10 CHAPTER 2. RELATED WORK

Cs C1 Cs

¢ ° .
S1 Ss S1

Figure 2.3: Two Types of Convolution with Filter Size 5, Narrow Convolution on the Left-
hand-side and Wide on the Right (taken from the source: A Convolutional Neural Network for
Modelling Sentences, Kalchbrenner et al. [[18]])

the region vector, namely the convolution filter, is p|V|. The convolutional layer learns features
from high dimensional text regions and returns low dimensional feature vectors.

Seq-CNN has potential problems if the dataset has a large vocabulary size and the region
size is large. Since high dimensional region vectors lead to a large number of weigh vectors,
the model needs to learn more parameters. An alternative bow-CNN reduces the dimension-
ality of region vectors. Similar to seq-CNN, bow-CNN also uses one-hot encodings as word
embedding vectors. The only difference is that bow-CNN introduces bag-of-word conversion
in the convolutional layer on region vectors; thus, the dimension of region vector becomes
V-dimensional rather than p|V/| in the seq-CNN model. The region vector is a V-dimensional
binary vector where the ith position is ‘1’ if and only if the word in the vocabulary appears
in the text region. The seq-CNN and bow-CNN models use dynamic k-max pooling similar
to DCNN [[18]]; the pooling takes k largest values from the feature map and k depends on the
length of the document. Dropout layer and L2-norms are applied on the penultimate layer to
improve performance. The last layer is the classification layer, which outputs the probability
distribution over classes. The architectures of seq-CNN and bow-CNN can have two or more
convolutional layers in parallel as well. Johnson’s paper demonstrates an alternative model that
applies CNN directly on high-dimensional one-hot vector of words in the text regions. It learns
word embeddings straight from small text regions, and adds bag-of-word conversion to the
convolutional layer in order to reduce the number of parameters and simplify the complexity
of CNN model.

Semi-supervised CNN [[16] is built on top of seq-CNN and bow-CNN [[15]. It uses a semi-
supervised CNN framework to learn word embedding from a small text region on an unlabeled
dataset.The learned word embeddings are fed into the neural network as an additional input to
one-hot vectors, which is different to seq-CNN and bow-CNN. Semi-supervised CNN trains

on unlabeled data and it learns two-view embeddings from the text region. Unlabeled data can

2.2. DEEP LEARNING APPROACHES IN TEXT CLASSIFICATION 11

| Pooling |

4 @ N

| 3001111:;, 250 |

|~ Repeat

| 30011}/. 250 |

[Pooling, /2
_ ¥ |>4 Downsampling

L3 conF, 250 | "\ conv'W o (x)+b
[3conv. 250 | pre-activation
Region embedding

Unsupervised

\ optional
embeddings p

“A good buy "

Figure 2.4: Model Architecture of Deep pyramid CNN (taken from the source: Deep Pyramid
Convolutional Neural Networks for Text Categorization, Johnson et al. [17])

be taken from additional large corpus or chosen from the same classification data source. The
model structure of learning two-view embedding is similar to bow-CNN. Two-view embedding
concatenated with one-hot embedding as a new input, and is fed into the convolution layer in
bow-CNN. Semi-supervised CNN is a new model that learns classification features from word
embedding trained in both unlabeled data and labeled data.

Deep pyramid CNN (DPCNN), proposed by Johnson et al. in 2017 [17], is the first at-
tempt in applying deep neural networks in text classification at the word level. It is built on
semi-supervised CNN [16] and has a more complex architecture (Figure 2.4). DPCNN applies
region embedding to represent the input document, which is similar to semi-supervised CNN
[16]. Then, two convolutional blocks are applied on the embedding matrix to extract features.
Convolutional blocks contain two convolutional layers and a shortcut that avoids gradient ex-
plosion and vanishing. A pooling layer is added after each convolution block, and it applies
max-pooling across feature maps. The final pooling layer aggregates the input document into
one most important feature, and passes it to the fully connected layer to compute the probability

distribution over classes.

12 CHAPTER 2. RELATED WORK

| fc(2048, nClasses) |
A
| (2048, 2048), RelU |

A
| fc(4096, 2048), ReLU |

T output: 512 x k

| k-max pooling, k=8 ‘
4
Convolutional Block, 3, 512

optional 4
shortcut Convolutional Block, 3, 512

output: 512 x s/8

pool/2

optional
shortcut

Convolutional Block, 3, 256

optional
shortcut Convolutional Block, 3, 256
T output: 256 x s/4

pool/2
optional T

shortcut

Convolutional Block, 3, 128

optional)
shortcut Convolutional Block, 3, 128
T output: 128 x 5/2

pool/2

optional
shortcut

Convolutional Block, 3, 64

optional
shortcut Convolutional Block, 3, 64
4 output: 64 x s

| 3, Temp Conv, 64
4 output: 16 x s

| Lookup table, 16 |
1‘ input: 1xs
Text

Figure 2.5: Model Architecture of Very Deep CNN (taken from the source: Very Deep Convo-
lutional Networks for Text Classification, Schwenk et al. [36])

2.2. DEEP LEARNING APPROACHES IN TEXT CLASSIFICATION 13

RelU

A

Temporal Batch Norm

o

3, Temp Conv, 256

!

RelU
Y

Temporal Batch Norm

0
3, Temp Conv, 256

Figure 2.6: Example of A Convolutional Block in Very Deep CNN Model (taken from the
source: Very Deep Convolutional Networks for Text Classification, Schwenl et al. [36]])

Very deep CNN (VDCNN) model, proposed by Schwenl et al. in 2017 [36], is the first
attempt in applying deep CNN at character level in natural language processing. The overall
VDCNN model is shown in Figure 2.5. First, the model projects a sentence to a tensor of size
(fo, 5), where s is a fixed length of characters in a sentence and f; is the dimension of the lookup
table for characters. Then, a convolution layer is applied on the input tensor, followed by three
pooling operations. Before each pooling layer, two convolutional blocks are deployed. Each
convolutional block contains a sequence of two convolutional layers, each followed by a batch
normalization layer with ReLu activation, shown in Figure 2.6. Two more convolutional blocks
are applied on the output of the last pooling operation, followed by a k-max pooling layer.
Then, the network extracts kK most important features, and preserves their position relationships.
Lastly, three fully connected layers with ReLu activation output classification results. VDCNN
achieves excellent results in large-scale datasets, which shows that increasing the depth of

model will improve performance.

XML-CNN proposed by Liu et al. in 2017 [235]], is the first attempt that applies CNN on
extreme large multi-label text classification. Similar to TextCNN [18], XML-CNN is also
built on dense word vectors and learns features of documents through convolutional layers.
The two main variations that differ from the original TextCNN are convolutional filters and
pooling methods. The structure is illustrated in Figure 2.7. XML-CNN inputs a document

embedding matrix with dimension n X k, where n is the length of the padded document and k

14 CHAPTER 2. RELATED WORK

wait T==F=~-= X
for
the

video
and
do -
n't 4

rent A"

L J | J [] |] | J

Representations of Embenl'jdi‘ng-mllilse " Dynamic max Fully connected Fully connected layer

documevts with word CD”[Vf) Im'f‘?lna aysfhw") pocling layer for a compact With sigmoid output for

embeddings ;“U tiple Tilter widths an representation large label space and
eature maps binary entropy loss

Figure 2.7: Model Architecture of XML-CNN (taken from the source: Deep Learning for
Extreme Multi-label Text Classification, Liu et al. [25])

is word embedding dimensionality. Convolutional filters with multiple filter sizes are applied
on the input matrix, and feature maps are returned afterwards. Compared to TextCNN, XML-
CNN’s holistic filters work with the entirety of words at every position and capture global
features of the document. In the max-pooling layer, XML-CNN divides feature maps into k
chunks, and takes the maximum value inside each chunk to form outputs. In between the max-
pooling output layer and final classification layer, XML-CNN adds a hidden bottleneck layer in
order to reduce the number of parameters. Lastly, dropout and binary cross-entropy loss over
sigmoid are applied on the final layer. In practice, XML-CNN has demonstrated an excellent

performance in extreme multi-label classification.

2.2.2 Recurrent Neural Networks in Text Classification

Recurrent neural networks (RNN) are popular artificial neural networks used when dealing
with sequential data, such as text and speech. Unlike CNN, which has relatively independent
inputs and outputs, the outputs of RNN are dependent on its inputs and memories from previous
time steps. RNN is expanded in time steps, and it can be unfolded as multiple copies of RNN
cells, shown in Figure 2.8. At time step ¢, x; is the input, s; is the hidden state or "memory"
that have been gathered so far, and o; is the output. Information is passed from one RNN cell
to its successor, and the previous information is connected to the current states according to
"memory". A detailed description of RNN is provided in Chapter 3.

In 2016, Zhou et al. [47] proposed an attention-based bidirectional long short-term mem-

2.2. DEEP LEARNING APPROACHES IN TEXT CLASSIFICATION 15

0
O 0, , 0,

DHI
| Y Y
G W RIS T o
D == — 050505
nfold
U T U U
X 2 g 2 Kot

Figure 2.8: A Recurrent Neural Network (taken from the source: http://www.wildml.com/
2015/09/recurrent-neural-networks-tutorial-part- 1-introduction-to-rnns/)

Output
Layer

Attention
Layer

LSTM
Layer

Layer

Figure 2.9: Model Architecture of Attention-based Long Short-term Memory Networks (taken
from the source: Attention-Based Bidirectional Long Short-Term Memory Networks for Rela-
tion Classification, Zhou et al. [47])

ory network (biLSTM) in solving relation classification tasks at the word level. The proposed
model captures important features using attention-based biLSTM rather than deriving features
from lexical resources in current state-of-the-art systems. The model is formed by five lay-
ers, namely input layer, embedding layer, LSTM layer, attention layer and output layer. The

model’s structure is described in Figure 2.9. The input layer takes the original sentence and

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/)
http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/)

16 CHAPTER 2. RELATED WORK

sentence
attention
Usg ;_ I :
: - [
| o | | i
1 | | | | I
= = ! i sentence
LBy R R T | R | encoder
- I L |
word
attention
Uy _ _ >
!] " : " :
: %21 4,_1' ‘522 ‘,‘_ R 47723" :
: L ! l !
1 | |
= l — | ! : word
I | 1
P [R [T | Rar | encoder
I___#___l '___+___| '___*___|
Wa1 Waa Wat

Figure 2.10: Model Architecture of Hierarchical Attention Network (taken from the source:
Hierarchical Attention Networks for Document Classification, Yang et al. [44])

the embedding layer projects every word in the sentence to a low dimension vectors. The fol-
lowing LSTM layer captures strong features from embedded word vectors. Then the attention
layer produces a weight matrix that connects the word level features extracted from the LSTM

layer to a sentence level feature vector. Lastly, a softmax-based output layer takes the sentence

2.3. REeLATED WoORK IN MESH INDEXING 17

Title + Abstract

Pubhled
Related
Clitatioms

Metahlap
Indexing

UMLS concepts

Related Citations

Extract MieSH
Descriptors

MeSH Main Headings

Clustering & Ranking

Ordered list of MeSH Main Headings

Apply Indexing Rules
CheckTag Expansion
Subheading Attachment

Final Orderedlist of Recommendations

Figure 2.11: Current MTI Processing Flow (taken from the source: https://it.nlm.nih.gov/MTI/
)

Restrict to MeSH

level feature vector as input, and outputs probability distributions for each relation class.
Hierarchical Attention Network (HAN) proposed by Yang et al. [44]], is the first model that
brings attention mechanisms into text classification. Its "context vector" finds the importance
of word and sentences in documents. The architecture is illustrated in Figure 2.10. The model
takes pre-trained word embedding, and applies bi-directional GRU to the embedding matrix.
Outputs from the hidden layer interact with context vectors, and generate weights for each
word. A sentence is represented by the weighted word. The model applies the same process on
sentences to get the presentation of input document. Lastly, a softmax layer is used to generate

the probability distribution over classes.

2.3 Related Work in MeSH Indexing

Due to the growth of documents in MEDLINE, and the increasing number of MeSH terms
every year, automatic MeSH indexing is a difficult challenge. The Medical Text Indexer (MTI)
[3] produced by the U.S. National Library of Medicine (NLM), is the first program that au-

tomatically produces MeSH indexing recommendations. Given an article in MEDLINE with

https://ii.nlm.nih.gov/MTI/)
https://ii.nlm.nih.gov/MTI/)

18 CHAPTER 2. RELATED WORK

Initial list

(a) (b)
[/

Ranked list

(Log'\sticRegress'\on) / Ml:‘m1 /

Target Doc
||MeSHNumber||

Ranking Mode!|
tep 1

MeSHRanker .
Similar documents

Co] [T

| Ol [/
@) i T

LambdaMart

Figure 2.12: A Work Flow of MeSHRanker (a) and MeSHLabeler (b) (taken from the source:
MeSHLabeler: improving the accuracy of large-scale MeSH indexing by integrating diverse
evidence [26])

title and abstract, MTI will provide a ranked list of MeSH terms. The initial system of MTI
was developed in 2002, and has been continuously improved over the years. The current MTI
processing flow is shown in Figure 2.11. There are two main components in MTI, namely
MetaMap [2], and the PubMed Related Citations (PRC) [24]]. MetaMap analyzes documents
and annotates them using Unified Medical Language System (UMLSﬂ Restrict-To-Mesh [20]
maps from UMLS to MeSH terms. The PRC algorithm E] with k-nearest neighbours (k-NN)
uses the document similarity to find MeSH terms. MTI is an important tool in MeSH indexing
and indexers can use MTI suggestions for documents they are annotating.

BioASQE], a European Union-funded project, has organized challenges on automatic MeSH
indexing since 2013. Participants are required to annotate unlabelled PubMed citations with
abstracts and titles using their models before these articles were indexed by human annotators.
The winning system in 2013, for example, used the MetalLabeler algorithm [37] to learn two
models, one for ranking, and the other for predicting the number of related labels. MeSH-
Labeler won the first place in the 2014, which includes two components: MeSHRanker and
MeSHNumber. MeSHRanker returns a ranked list of candidate MeSH terms. MeSHNumber
predicts the number of output MeSH terms [26]. A workflow of MeSHLabeler is visualized
in Figure 2.12. DeepMeSH won the best system in 2017. It incorporates deep semantic in-
formation into MeSHLabeler, using a dense semantic representation for documents, namely

document to vectors (D2V). Additionally, DeepMeSH has another classifier to find the number

Thttps://www.nlm.nih.gov/research/umls/
Zhttps://ii.nlm.nih.gov/MTI/Details/related.shtml
3http://bioasq.org

https://www.nlm.nih.gov/research/umls/
https://ii.nlm.nih.gov/MTI/Details/related.shtml
http://bioasq.org

2.3. REeLATED WoORK IN MESH INDEXING

Attention Matrix

Frequent
MeSH

19

-

[Bina.ry Cross-Entropy Loss]

4

[yz'l, o Uit € {0, 1}]

Abstract l I Binary|Encoding
Abstract: — h: 0 Wi YWi2 v W iL;
— MeSH terms
— DNA Copy Number Variations
S] Tokemze & Embed ona. L 4
— .] t}'l Diabetes Insipidus/complications . Diabetes Mallitus/classification
MeSH: 0 . Artlcle i Gradient Diabetes Melitus/diagnosis”
Tumm\l Name: Diabetes Melltus/eliclogy”
J— — ! 5
Pedmg”c Diabetes Based Diabetes Melitus/genetics
—_ iabetes Diabetes Mellitus/tharapy®
The of clinical and of ial forms of Diabetes Melltus/genetics Opt-imizat-ion .
diabetes. Diabetes Prediction
Abstract L&‘hel
Primary mitochondrial dissases rafer to a group of heterogenecus and complex genetic disorders affecting 1:5000 peopie. The true
KNN prevalence is anticipated to be even higher because of the complexity of achieving a diagnosis in many patients who present with N N
multisystemic complaints ranging from infancy to adulthood. Diabetes is a prominent feature of several of these disorders which might be
overlooked by the endocrinologist. We hare review mitochondrial disorders and describe the phenotypic and pathogenetic differences. ﬁalnlng Inference

between mitochondrial diabetes mellitus (mDM) and other more commeon forms of diabetes mellitus.

Figure 2.13: Model Architecture of AttentionMeSH (taken from the source: AttentionMeSH:
Simple, Effective and Interpretable Automatic MeSH, [10])

of MeSH terms returned. AttentionMeSH, also proposed in 2017 [10], uses a bi-direction re-

current gated unit (BiGRU) to capture contextual features, and attention mechanisms to select

MeSH terms from the candidate list. The model architecture is illustrated in Figure 2.13.

Rios et al. in 2015 [34] used CNN to classify 29 most frequent MeSH terms on a small
dataset with 9,000 citations. Gargiulo et al. in 2018 [[7] applied deep CNN on 1,115,090 papers
with abstracts and titles for each article. Besides deep learning approaches, machine learning

algorithms also have been explored in the hopes of solving MeSH indexing tasks. A few exam-

ples are, Naive Bayes (NB), support vector machines (SVM), linear regression, and AdaBoost

(131 [14).

Chapter 3
Theoretical Framework

In this chapter, we explain theoretical concepts in different classification methods and model
evaluation techniques which have been applied in the work described. We first introduce
word2vec embeddings as the most common text representation in natural language process-
ing. Next, we briefly describe classifiers in traditional machine learning and then move to
classification methods in deep neural networks. Lastly, we show different evaluation metrics

applied in the presented work.

3.1 Text Representations

Word embedding is mapping words or phrases from the vocabulary to vectors of real numbers.
Tomas Mikolov [29, 30]] proposed word2vec embeddings which have become one of the most
important components in natural language processing. Word2vec represents words as vectors,
these word vectors retain meanings and relationships from the original words in the vector
spaces, i.e. V(king) — V(man) + V(woman) = V(queen), where V(x) represents word vector for
word x, as shown in Figure 3.1.

The architecture of word2vec is a two layer neural network where input is a context and
produces a set of representing vectors. Word2vec utilizes two model architectures to construct
the embedding: continuous bag-of-words(CBOW) and continuous skip-gram. The CBOW
model takes the context words as input and predicts the middle word. For instance, given a text
sequence w;_p, Wy_1, W, W1, Wiia, the CBOW model interests in the probability of generating w
given context words wy,_», w;_1, w1 and wy,,, as shown in Figure 3.2, left-side. Conversely, in
skip-gram architecture, the model predicts the surrounding context words given a single word
as shown in Figure 3.2, right-side. We use domain specific pre-trained word2vec embeddings

in our described work and more details will be provided in the next chapter.

20

3.2. MACHINE LEARNING CLASSIFIERS 21

“. Queen
King - Man
Woman
Figure 3.1 Vector Difference between Words (taken from
the source: https://blogs.mathworks.com/loren/2017/09/21/

math-with-words-word-embeddings-with-matlab-and- text-analytics-toolbox/)

3.2 Machine Learning Classifiers

Classification is a method where we group data into a given number of categories. It is a
supervised learning problem which can be performed on both structured and unstructured data.
The goal of classification is to accurately predict the class to new given data. In this section,

we briefly discuss classification algorithms that are commonly used in machine learning.

Logistic Regression is a powerful algorithm for binary classification. It arises from the
desire to model the posterior probabilities of classes via linear functions in features. [8]. We
suppose two class labels are 1 and O in binary classification. For every input sample x, the
probability of output given x is defined:

w! x+b 1

e
P(Y =1 | X, W) = 1+ €WTX+b = 1+ g—(WTx"'b)

ewa+b 1
P(Y =0 | X,W) =1- 1 +ewa+b = 1 +ewa+b

https://blogs.mathworks.com/loren/2017/09/21/math-with-words-word-embeddings-with-matlab-and-text-analytics-toolbox/)
https://blogs.mathworks.com/loren/2017/09/21/math-with-words-word-embeddings-with-matlab-and-text-analytics-toolbox/)

22 CHAPTER 3. THEORETICAL FRAMEWORK

INPUT PROJECTION QUTPUT INPUT PROJECTION OQUTPUT

w(t-2) D w(t-2)
w(t-1)

wit-1)

wi(t+1)

A
A
D e

w(t+1)

w(t+2)

CcCBOW Skip-gram

Figure 3.2: Architecture of Word2vec (taken from the source: Efficient Estimation of Word
Representations in Vector Space Mikolov et al. 2013 [29])

where x € R", Y € 0,1, w € R" and b € R. w is weights and b is bias, and they are hyper-

parameters learned from training. The loss function is defined as:
1 n
Jow) = == yilog(h(x) + (1 = y) log(1 = hy(x7)
Mg

where
1

1+ e—wa+b

hyy(x) =

w is updated using gradient descent:

1 « :
Wit1 < Wi — QE ;(hw(xi -)’i)xf)

Support Vector Machine is a discriminative classifier, and it outputs an optimal hyper-
plane which separates new examples by using labeled training data. It has been often used in

solving non-linear classification and regression tasks.

Decision Tree is a simple non-parametric supervised classification algorithm. It predicts

target classes by learning pre-defined rules inferred from the given data.

3.3. ARTIFICIAL NEURAL NETWORKS 23

X1

X2

h 4
-

X3

b

Figure 3.3: Perceptron

3.3 Artificial Neural Networks

Artificial neural networks (ANN) are composed of neurons, which are inspired by biological
neural networks, an important constitution of human brains. ANN is not an algorithm but a
system which learns a task by using existing data. In this section, different neural network

architectures used in this thesis are discussed.

3.3.1 Feed-forward Neural Networks

Feed-forward neural networks, or multilayer perceptrons (MLPs) is type of artificial neural
networks that aims to learn a function that maps y = f(x, 6) through learning 6.

Neural networks emerged from the concept of perceptron.The perceptron is a machine
learning algorithm, which takes inputs xi, x5,, x,, and return a single binary output y. Figure
3.3 shows an example of a perceptron.

In this example, the perceptron has three inputs: xi, x,, and x3; each input x; has a weight

determined by the importances of corresponding input. The output 4, is defined as:
hop(6) = FOWT0) = F() wixi +b)
i=1

where x; € RY, W = wy, Wy, ..., w,,, b is the bias term and £ is an activation function. Non-linear

functions, such as sigmoid function, hyperbolic tangent function (tanh), and Rectified Linear

24 CHAPTER 3. THEORETICAL FRAMEWORK

Sigmoid Function Hyperbolic Tangent Function
10 100
0.75
08
050
06 025
0.00
04 -0.25
-0.50
02
-0.75
0.0 ~1.00
-10.0 -75 -50 -25 00 25 50 715 100 -100 -75 -30 -25 00 25 50 75 100

Rectified Linear Unit(ReLU)

10

-100 -75 -50 -25 00 25 50 75 100

Figure 3.4: Activation Functions

Units (ReLU), are commonly used as activation functions in neural networks. Their curves are
shown in Figure 3.4.

A neural network consists of multiple layers of perceptrons, and neurons (each neuron is
a preceptron) are connected in a feed-forward way. Figure 3.5 is an example of a multi-layer
neural network. The first layer in the network is called the input layer which is constituted by
input neurons. The last layer is called the output layer, and the layers in the middle are called

hidden layers.

3.3.2 Convolutional Neural Networks

Convolutional neural networks (CNNs), a variant of feed-forward neural networks, were pro-
posed by Yann LeCun in 1998 [23]], and they are inspired by multilayer perceptrons in essence.
CNNs have been widely used in recognition and classification tasks, for instance: facial recog-
nition, handwriting recognition and documents classification. The success of CNNss is in adopt-
ing local connectivity and weight sharing strategies to exploit local correlation. CNNs has three

types of layers: convolutional layer, pooling layer and fully connected layer. We suppose inputs

3.3. ARTIFICIAL NEURAL NETWORKS 25

Hidden Layer

Input Layer

Output Layer

A\ V . Output

Figure 3.5: Multilayer Neural Network

vectors for CNN described below are two-dimensional.

3.3.2.1 Convolutional Layer

Convolutional Layer is the core block in convolutional neural networks. CNN extract features
from input vectors by applying convolution operatiorﬂ on subregions of the input vectors re-
peatedly, as shown in Figure 3.6. The output generated by the convolutional layer is called
Jeature map. Convolution preserves the local connectivity in the subregions of the input vec-
tors. Mapping from a single two-dimensional input vector to the k — th feature map A* using a

convolutional filter (shown in Figure 3.6) can be defined as follows:

hf-‘j = ReLu((W* x X)ij + b

"https://en.wikipedia.org/wiki/Convolution

https://en.wikipedia.org/wiki/Convolution

26 CHAPTER 3. THEORETICAL FRAMEWORK

convolutional filter

wi|w2

w3 (w4

Feature map

LR T

P

Figure 3.6: Visualization of a 2 X 2 filter convolving around a 3 X 3 input and producing a 2 X 2
feature map.

where W* is the weight and b* is the bias factor of the convolutional filter. i and j are the
column and row indices of a neuron in the input vector. ReLu is short for Rectified Linear Unit,
which is a non-linear activation function used to bound the result of convolution operation to a

certain range.

3.3.2.2 Maxpooling Layer

Pooling layer is usually added in the convolutional structure. It is used to reduce the dimension
size and number of parameters in order to control overﬁttingﬂ Max pooling is the most com-
mon pooling operation used in CNN. Similar to the convolutional filter, max pooling operates
in the feature map obtained from the convolutional layer and picks the maximum value over
each filter, which creates a downscaled feature map. An example of 2 X 2 max pooling filter

with stride 1 is shown in Figure 3.7.

Zhttps://en.wikipedia.org/wiki/Overfitting

https://en.wikipedia.org/wiki/Overfitting

3.3. ARTIFICIAL NEURAL NETWORKS 27

max-pooling kernel

Feature Map

Feature map

I :
I I after Max-pooling
: 1 2 .5
I |
| — 4 5
: 1 4 |, 3
S S E— : 6 4
6 2 1

Figure 3.7: Visualization of a 2 X 2 max pooling filter operating on a 3 X 3 feature map with
stride 1.

3.3.2.3 Fully Connected Layer

Fully connected layer connects every neuron in the previous layer to every neuron in the next
layer using activation functions. Dropoutﬂ is usually placed on the fully connected layer in

order to prevent overfitting in the network.

3.3.2.4 Classification Process

CNN models take pre-trained word vectors as input and pass them through convolution layers
with different filters size. Next, the pooling layer downscales and flattens the feature map ob-
tained from the convolution. Afterwards, extracted features are passes into the fully connected
layer, and finally, probabilistic values are returned for final classification. Figure 3.8 describes

a complete flow for the CNN classification process.

3.3.3 Recurrent Neural Networks

Recurrent neural networks(RNN) are classes of neural networks which perform recursive op-

eration on neurons in the direction of sequential evolution. RNN is used to work on sequential

3 https://en.wikipedia.org/wiki/Dropout_(neural_{networks})

https://en.wikipedia.org/wiki/Dropout_(neural_{networks})

28 CHAPTER 3. THEORETICAL FRAMEWORK

Input Convolutional ~ Pooling Fully Connected QOutput

Layer Layer Layer Layer Layer
| | |

Figure 3.8: Convolutional Neural Network (taken from the source: https://www.frontiersin.
org/articles/10.3389/tfpsyg.2017.01745/tull)

L> A —J = A— A— A——— A
Figure 3.9: An Unrolled Recurrent Neural Network (taken from the source: http://colah.github.
10/posts/2015-08-Understanding-LSTMs/)

data, such as text and speech.

In Figure 3.9, A is a chunk of a neural network, it takes an input x, and gives an output 4.
Information can be passed from one RNN cell to its successor. It can be unfolded as multiple
copies of RNN cells, each one passes information to its next one. Recurrent nets perform well
in operating sequences of vectors, and it can use sequential information. We can think about
RNNs have memory that can gather information from what has been calculated so far. They
can connect previous information to the current task, such as using previous words to predict
the next word in a sentence. The RNN calculates the hidden state 4, and output y, at time step
t as following:

h; = oy (Wyx, + Uph,—y + by)

v = oy(Wyh, + by)

where W, U are the weights matrices, b is the bias parameter, x, is the input vector at time step

https://www.frontiersin.org/articles/10.3389/fpsyg.2017.01745/full)
https://www.frontiersin.org/articles/10.3389/fpsyg.2017.01745/full)
http://colah.github.io/posts/2015-08-Understanding-LSTMs/)
http://colah.github.io/posts/2015-08-Understanding-LSTMs/)

3.3. ARTIFICIAL NEURAL NETWORKS 29
- T e W
>

]
Figure 3.10: An Internal Structure of Recurrent Neural Networks (taken from the source: http:
//colah.github.io/posts/2015-08-Understanding-LSTMs/)

t, and o7, oy are the activation functions at the hidden layer and output layer, respectively. An

internal structure of RNN unit is described in Figure 3.10.

3.3.3.1 Long Short Term Memory Network

Long short term memory network (LSTM) proposed by Hochreiter and Schmidhuber [9] is a
special kind of RNN, which can capture long-term dependencies of sequential data. Hochreiter
et al introduced "Gate" and "Memory block" into the RNN model in order to avoid the long-
term dependency problem. LSTM uses the same chain-like structure as the standard RNN, but
it includes a memory block in every LSTM unit. Every memory block in LSTM unit has an
input gate, an output gate, a forget gate and a cell state. These gates can learn and control
which data in the input sequence is important to keep or throw away. The cell state contains
the historical information, which remembers the input information. The LSTM calculates the

hidden state A, as following:
i = O-gate(Wixt + Uihi—y + b))

ﬁ = O-gate(fot + Ufht—l + bf)
0 = O_gate(Woxt + Ushi—y + b,)
Cr = ft 0Ci1 + it o O-C(chl + Ucht—l + bc)

h; = 0, o op(c;)

http://colah.github.io/posts/2015-08-Understanding-LSTMs/)
http://colah.github.io/posts/2015-08-Understanding-LSTMs/)

30 CHAPTER 3. THEORETICAL FRAMEWORK

& ® ﬁfD

A

—
—® ®
Gn>
A ® A
I s
—> >
I

Figure 3.11: An Internal Structure of LSTM (taken from the source: http://colah.github.io/
posts/2015-08-Understanding-LSTMs/)

where i, f;, 0;, ¢, b, stand for input gate, forget gate, output gate, cell state and hidden state,
respectively. x, is the input vector to the LSTM unit, W,, U, and b, are the weights bias
parameters for coresponding gate A and state A. 0 g4, 0, 07, Stand for activation functions in
gate, cell state and hidden state. Operation o denotes Hadamard product, which is an element-

wise product over matrices. The internal structure of LSTM unit is shown in Figure 3.11.

Bi-directional LSTM is a variation of the standard LSTM. It connects two hidden units
from two directions, namely forward and backward, i.e. h, = [E, E], where E is generated
from right-to-left and Z is generated form left-to-right. An example of biLSTM is shown in
Figure 3.11.

3.4 Attention Mechanism

Attention mechanism was first proposed in the field of visual imaging in the 1990s and has
become popular when the google mind team published "Recurrent Models of Visual Atten-
tion" in 2014 [31] which applied the attention mechanism in image classification. In the same
year, Bahdanau et al. [4] proposed an RNN Encoder-Decoder framework in machine trans-
lation which was the first attempt to adopt attention model in natural language processing.
Afterwards, attention mechanism has been widely used in various NLP tasks based on neural
networks, such as RNN and CNN.

Attention mechanism is inspired by human perception. People don’t generally process a

scene in whole at one. Instead, they often focus on specific parts based on their needs and

http://colah.github.io/posts/2015-08-Understanding-LSTMs/)
http://colah.github.io/posts/2015-08-Understanding-LSTMs/)

3.4. ATTENTION MECHANISM 31

X Xz X3 Xt

Figure 3.12: Bi-directional Long Short Term Memory Networks (biLSTM)

combine similar scenes to build internal relations [33]]. An attention mechanism allows neural
networks to focus on the relevant portion of the features more than the irrelevant parts. In this

section, we discuss basic attention mechanisms and self-attention which are used in this thesis.

An attention mechanism is a process of computing a context vector which is a weighted
average over all hidden states. We define attention mechanism as a function that maps a query
and a set of key-value pairs to an output, which is similar to [41]. The query vector is the
previous decoder state, key and value vectors are the encoder hidden states. The output is a
weighted average, where weights are calculated by a compatibility function between keys and

values. Given a query g with values vy, vs,...,v,, and keys ki, k,, ..., k, we can compute the

Z = Z aj(vj)
=1

output at the attention layer z [1]:

32 CHAPTER 3. THEORETICAL FRAMEWORK

o _enfkq)
Ty expfki,q)

where «a; is the normalized coefficient, f(k;, q) is the compatibility score between k; and g.

The compatibility function [41] is defined as:

k)(@)"
Vdy

Sflk,q) =

where d;. is the dimension of keys.

3.4.1 Self-attention Mechanisms

The Google machine translation team published “Attention is All you Need” [41] in 2017,
which made self-attention a hot research topic in all kinds of NLP tasks. Self-attention is an
attention mechanism that calculates a representation of every position in the input sequence
itself. It assigns the weights of importance to each word in the sequence. Query, key and value
have been created for each position x; in the sequence, and then attention mechanism has been
applied at x;. At last input sequence X = (x, xp, ..., X,,) is transformed to another sequence of
equal length Y = (y1, s, ..., yn), Where x;,y; € R%. The computation of the attention function is
on a set of queries, keys and values, which can be packed together into metrics respectively Q,

K, and V. The output matrix is computed as:

T

K
Attention(Q, K, V) = softmax(0

v
\/ch)

3.5 Model Evaluation Techniques

There is no generally accepted standard for the evaluation of multi-label classifications. Evalu-
ation metrics adopted from multi-class classification and binary classification are used to mea-
sure multi-label classification in an efficient way. In this section, we present three groups of
measures suggested by Tsoumakas et al. [38] and Kosmopoulos et al. [21], namely bipartition-
based, ranking-based and hierarchy evaluation. In this section, we describe some of the evalu-
ation metrics used in our thesis to compute the quality of the classification models.

To set the stage to discuss the three metrics, we define a test set of N document-label pairs
{x;, y,-}?i , taken from the dataset, where x; is the document text and y; € {0, 1}£. The vector y;
denotes the set of true labels (i.e., MeSH terms) for each document i (O meaning the label is
not in the set, 1 meaning it is in the set), N denotes the number of test examples, and L is the

total number of labels. Given a document x;, the set of labels predicted by the classifiers is

3.5. MobEL EvaruatioN TECHNIQUES 33

denoted as {}?i}f\i \» Where y; € {0, 1}£, and the ranking indexes of predicted labels among the top
k is denoted as ry (9), where § = {y;}¥,

3.5.1 Bipartition-base Evaluation

Bipartition evaluation is divided further into example-based and label-based. Example-based
measurements calculate hamming loss, precision, recall and F-score (in our evaluation) the
top5, topl0, and top15 ranked labels over all of the documents of the test set. Label-based
evaluation are calculated based on each label in the label set, for instance, macro-average pre-

cision, micro-average precision, macro-average F-score, and micro-average F-score.

3.5.1.1 Example-based Evaluation

Hamming loss is used to evaluate the frequency that a true label is misclassified, namely the
label that belongs to the document is not predicted or the label that does not belongs to the
document is predicted. It is the fraction of the number of misclassified labels to the total
number of labels. The smaller the hamming loss, the better the model performs. Hamming

loss is defined as follows:
T
Hamming Loss = — Z Z yvi®y:)

where N is the number of test examples, L is the number of total labels, and @ denotes exlusive-
or (same as XOR in logic operation). (y; ® ¥;) = 1 if y; # ¥;, and 0 otherwise.

Example-based precision (EBP) calculates the percentage of relevant labels returned for
each test document. It is represented by the ratio of positive predictions that are correctly

classified, and it is defined as follows:

N

EBP = — Z y

i=1

D

Example-based recall (EBR) is the ratio of actual positive cases. It shows the fraction of

relevant labels that have been successfully retrieved. The formula is:
l m l
EBR = Z lyi 0 il
lyil

Example-based F-score (EBF) is the harmonic mean of precision and recall, and is defined

34 CHAPTER 3. THEORETICAL FRAMEWORK

as follows: N
Z 2 X |y Nyl
il + il

1
EBF = —
N

3.5.1.2 Label-based Evaluation

In order to evaluate averaging performance across labels, two averaging operations are consid-
ered, i.e. macro-average and micro-average. Macro-average methods compute global means
per label and they consider all labels as equally important. Micro-average methods aggregate
scores of all labels to compute average metrics and they weigh more to high frequency labels
[43].

We denote TP, FP; and F'N; as true positives, false positives, and false negatives respec-

tively for each label /; in the set of total labels L.

L

. 1 TP;
Macro-average Precision = — Z _
L /:1 TP;+FP;

Z?:l TPJ

Micro-average Precision = — T
Zj:l TPJ + ijl FPJ

Il TP,
Macro-average Recall = — E —
L& TP;+FN,

Z?:l TP/
25:1 TP+ Z]L‘:l FN;

Micro-average Recall =

Macro-average Recall X Macro-average Precision

Macro-average F-score = 2 X —
Macro-average Recall + Macro-average Precision

Micro-average Recall X Micro-average Precision

Micro-average F-score = 2 X — - —
Micro-average Recall + Micro-average Precision

3.5.2 Ranking-based Evaluation

Ranking-based evaluation ranks the predicted labels and aims to rank the relevant labels higher
than the irrelevant ones. It is a robust evaluation against outliers in the returned predicted set.
In this thesis, we use precision at k and normalized discounted cumulative gain to evaluate the
performance of classification models.

Precision at k (p@Xk) evaluates retrieved labels at a given cutoff rank, considering the top-
most relevant labels returned by the classification method. P@k is therefore a localized ranking

method that evaluating the quality of ranking based on the top £ most important retrieved labels

3.5. MobEL EvaruatioN TECHNIQUES 35

[28]]. It is defined as follows:

pak=1 >

lerk(y

Discounted cumulative gain (DCG) is used to measure the effectiveness of ranking. The
higher the ranking quality, the higher the DCG score. It has the assumption that highly relevant
documents are more useful to the user and should have a higher score in ranking; documents
with low relevance should be ranked lower conversely. The formula of DCG accumulated at

ranking position k is defined as:

Vi
DCG@k = —_
[;k@) log(1+1)

Ranking results vary in size when having queries, so DCG value should be normalized across
different queries, which is achieved with normalized discounted cumulative gain (nDCG) [12].
The nDCG is obtained by dividing DCG with Ideal DCG (IDCG), which is the maximum
possible DCG at position k.

min(k Jyllo) 1
IDCG = _
= log(l+1)
DCG@k
DCG@k = ————
n IDCG

3.5.3 Hierarchical Evaluation

Hierarchical evaluation is used to measure hierarchical classification that classify elements into
a hierarchy of classes. It measures the performance based on the golden truth and predicted
labels as well as their ancestors and descendants. We defined the golden truth Y,,, and predicted
labels f/aug of hierarchical evaluation as sets that are augmented with ancestors and descendants

of the true and predicted classes within distance N, where N € {1, co}.

Ya”g =YU YdistanceJ U...U YdiStancefN
Y‘mg =YU Ydistance_l U..uU Ydistance_N

Hierarchical precision (HP) measures the percentage of relevant labels returned, including
their ancestors and descendants, and hierarchical recall (HR) shows the ratio of positive cases

that are correctly classified. HP and HR are defined as follows:

A

N
Z Yaug N Yaugl
i=1 |Yuug|

36

HR =

1
N

N

2,

i=1

CHAPTER 3. THEORETICAL FRAMEWORK

|Yuug N Yaug|

|Yuug|

Chapter 4

Automatic Medical Subject Heading

Indexing

In this chapter, we have two aims: 1) to design and compare four architecturally different deep
learning models that can automatically assign medical subject headings (MeSH terms) to given
biomedical documents; and 2) to compare the models when trained with different data sources.
We first define our problem below, and then discuss the models and data which are used in this

thesis. Finally, we show detailed experiments that have been performed to achieve these goals.

4.1 Problem Statement

Automatic document classification is defined as assigning categories to documents based on
their contents. Machine learning, statistical methods and deep neural networks are commonly
used to construct classifiers. In this thesis, we have implemented four deep learning models
for automatic medical subject heading indexing. We have also curated four datasets based on
two sets of documents. For each set of documents, the datasets are comprised of title and
abstract text, and text comprising these two sources together with figure and table caption text
and paragraphs that mention and discuss the figures and tables.

We wish to determine which of the four deep learning models performs best on the MeSH
indexing task and we want to observe which data source produces the best trained model. The
four models are described in Section and the datasets used to train and evaluate the models
are described in Section[4.3.1] We now turn to a discussion of the MeSH indexing task.

Medical subject headings (MeSHﬂ comprise a vocabulary that has been used to uniformly

and consistently index biomedical literature. MeSH terms are arranged in a hierarchical struc-

! https://www.nlm.nih.gov/mesh/meshhome.html

37

https://www.nlm.nih.gov/mesh/meshhome.html

38 CHAPTER 4. AutoMATIiC MEDICAL SUBJECT HEADING INDEXING

ture and are updated annually. MeSH terms are distinctive features of MEDLINEﬂ which
are great tools for indexers and searchers. Indexers from the National Library of Medicine
(NLM) use MeSH terms to classify documents based on the contents of journal articles in the
MEDLINE database. Searchers and researchers use MeSH terms to assist subject searching in
MEDLINE, PubMe(ﬂ and other databases.

Currently, MeSH term indexing is performed by a large number of human annotators, who
review full text documents and assign suitable MeSH terms to each article. Human annotation
is time consuming and costly. Research shows that the average cost of annotation one docu-
ment is around $9.40 [32], which is a huge cost for indexing a large number of documents.
Meanwhile, a large number of documents are uploaded to MEDLINE and PubMed databases
every day (approximately 2,000 on average, but as many as 4,000, on a daily basisﬂ It is chal-
lenging to annotate all new coming documents in a relatively short time. Therefore, a system

that can index a large numbers of biomedical articles is highly desired.

Multi-label classification studies the problem where each document is associated with a set
of labels [46]]. In the MeSH indexing problem, each MeSH term can be treated as a class label
and each biomedical article can have multiple MeSH terms. We regard automatic MeSH term

indexing as an extreme large-scale multi-label classification problem.

The learning framework is defined as follows. Suppose X represents a set of input docu-
ments and Y is the set of corresponding MeSH terms for each input document. Then X € R?
denotes the D-dimensional input space, and Y = {yi, y,, ..., y.} denotes the label space with L
possible class labels. Multi-label classification studies the learning function f : X — 2¥ using
the training set D = (x;, ¥;). Each instance (x;, Y;), x;; € X is a D-dimensional feature vector
(Xi» Xips - - -, X;,), Where j € {1,2,...,J}, J is the number of words in document x;, and ¥; € Y
is the set of labels associated with instance x;. The objective of multi-label classification is to

predict the proper label set Y; for any unseen instance x; [46].

Two sources of challenge should be considered when solving automatic MeSH indexing
tasks [45]]. First, the number of MeSH terms is large and they have widely varying occurrence
frequencies. There are around 30,000 MeSH terms in total and they are updated annually. The
frequency of each MeSH term appearing in document labels is quite biased. For instance, of
the 30,000 MeSH terms, the most frequent term “Humans”, appears in 8,152,852 citations; and
“Pandanaceae”, on the other hand, only appears in 31 documents [45]. Second, the number of
MeSH terms assigned to each document varies. Some documents have more than 30 MeSH

terms, while some have fewer than 5. In this thesis, we use the 2018 version of MeSH which

Zhttps://www.nlm.nih.gov/bsd/medline.html
3https://www.nlm.nih. gov/bsd/pubmed.html
4https://www.nlm.nih. gov/bsd/medline.html

https://www.nlm.nih.gov/bsd/medline.html
https://www.nlm.nih.gov/bsd/pubmed.html
https://www.nlm.nih.gov/bsd/medline.html

4.2. CLASSIFIERS 39

contains 28,939 headings in total.
In the following section, we have implemented four novel deep learning architectures to

approach the MeSH indexing challenge.

4.2 Classifiers

In this section, we describe four novel deep learning approaches to automatically assign proper
MeSH terms to given documents. To make use of multimodal features, our models have two

input channels:
e Channel 1: word embeddings from the abstract and title

e Channel 2: word embeddings from figure and table captions, and corresponding para-

graphs that mention the figures and tables

The word embedding matrix for each text segment is e € R™", where n is the number of
words in the text segment and d is the dimension of the word embeddings. Therefore, for each
document, we have two embedding matrices for different aspects of the text, namely e4r and
ecp, where esr denotes word embedding matrix from abstract and title, and ecp is from captions

and paragraphs.

4.2.1 Multichannel TextCNN

We implemented a TextCNN [19] but with multichannel inputs. The model structure is shown
in Figure 4.1 (a system generated model summary is presented in Appendix A). For each
channel, the architecture is similar to the work presented by Kim [[19]. The model learns feature
representations by passing documents into different convolutional filters with various sizes.
Suppose we have the d-dimensional word embedding vectors w' € R¢, where i corresponds to
the i-th word in the document. The entire input document in each channel can be represented
as ey, = ley,es,...,e,] € R™" where n is the length of the document. Embedded documents
are input and passed to the convolutional layer. In the convolutional layer, we have three
convolutional filters of size 3, 4, and 5, with 128 filters each, so the convolutional windows are
m X d, where m € {3,4,5}. After the convolutional operation, we obtain 128 feature maps from
each filter size. The feature maps are passed to the pooling layer, which takes the maximum
value for each associated feature map. After pooling, the feature maps for each channel are
concatenated to form a single feature vector. This feature vector is then passed to a fully
connected bottleneck layer with 512 hidden units, and then followed by a sigmoid classifier to

return probability values over the 28,939 MeSH terms.

40 CHAPTER 4. AutoMATIiC MEDICAL SUBJECT HEADING INDEXING

1 Max-
3 feature | pooling
Convolution maps for
] each filter —L 3 univariate concatenate
3 filter size' 3. 4. 5 size vectors for vectors to form a fully connected layer with
3 filters for each each filter [*] single feature | | dropout and sigmoid out
6'6 filter size, total 8 size vector
filters

—

— e/
parA

_E_S

Figure 4.1: Multichannel TextCNN Architecture

Channell ML

IIIII—|_| IIIII H‘I IIIII [H‘I

1
Channel2 "

Illli—‘_| IIIII H‘I IIIII [L'_l

4.2.2 Multichannel XMLCNN

In this model, we implemented an XMLCNN but with multichannel inputs. Figure [4.2] shows
the model structure (a system generated model summary is presented in Appendix B). Similar
to the work presented by Liu et al. [25], our model learns feature vectors by inputting an
embedded document matrix into various convolutional filters. Especially, we use a vertical
filter and adopt a k-chunk max-pooling in this model. We input the embedded document e;., =
ler, ea,...,e,] € R where n is the length of the document and d is the word embedding

dimensionality. The convolutional layer has three kernels of size 2, 4 and 8, with 128 filters

4.2. CLASSIFIERS 41

k-chunk
max-pooling
with k=3

univariate cor vectors -
N fully connected layer with
vectors for each —» to form a single Ny .
. - dropout and sigmoid out
filter size feature vector

\/
4

3 feature maps for
each filter size

3 filter size: 2, 4, 8
3 filters for each
filter size, total 9
filters

Sentence Matrix 6*10

e | /QU T (T
H

e \5 - lﬁ\/

Channel1 ('

________________ /Ll_IIrLJIIIIIr—H—'iD—H—_

""" IS

-------------- \E - ﬁl_/

Figure 4.2: Multichannel XMLCNN Architecture

Channel2 Yy

EEEEEEEE

each. The convolutional window sizes are n X m, where m € {2,4,8}. This is followed by
a k-chunk max pooling layer of window size k X 1. Instead of taking the maximum value
in each feature map, p features are generated through k-chunk pooling to enrich the captured
information. For an /-dimensional feature map obtained from the convolutional layer f =
Lfi, f>, - ., fi], we divided it into p chunks, where p = % Each chunk is pooled to a single
feature by picking the largest value within the chunk. After the pooling layer, feature vectors for
each channel are obtained and then concatenated to form a single feature vector. Finally, these
features are passed through a layer with sigmoid activations to return values to be interpreted
as probabilities for the 28,939 MeSH terms.

42 CHAPTER 4. AutoMATIiC MEDICAL SUBJECT HEADING INDEXING

Channell

IS

Channel2

X xR xE

Figure 4.3: Multichannel biLSTM Architecture

4.2.3 Multichannel biLSTM

In this subsection, we describe our implementation of a bi-directional LSTM (biLSTM) [33]
with multichannel inputs. We chose this model because biLSTMs are the preferred model for
capturing contextual information of long texts [22]. Figure .3] shows the model structure (a
system generated model summary is presented in Appendix C). For each channel, we used
biLSTM as an encoder to learn hidden states from both the forward and backward directions.

A biLSTM processes each word in the document by using their word embedding vectors in

4.2. CLASSIFIERS 43

both the forward and backward directions in order to calculate the hidden states 4 at time step
t (i.e., the representation of the sentence up to and including the word at location ¢). At each

time step ¢, we concatenate the final hidden state as follows:

—_ &~

hy=h&h,

where @ indicates concatenation, Z represents the hidden state at ¢ from the forward direc-
tion and hT is the hidden state at ¢ from the backward direction. In the forward direction, Z
is generated from Z = LSTM(x,, fT_;). Similarly, the backward direction is calculated from
E = LSTM(x,, }:). LS T M represents the operations inside each LSTM cell and for detailed
calculations the reader is referred to Section[3.3.3]in the previous chapter. The outputs obtained
from biLSTM in both channels are concatenated to form a single feature vector, and then it is

passed to a sigmoid function to return probabilities over the 28,939 MeSH terms.

3 feature
Convolution maps for
each filter LSTM layer concatenate
3 filter size: 3, 4, 5 size on each filter self-attention vectors to form a fully oonnectezl:l Iay(.er with
Sent Matrix 6°6 3 filters for each map layer single feature dropout and sigmoid out
filter size, total 9 vector
filters

______________ Il EDEN

Channel1 :: ::
:: ': R — —» |[self-attention| — 5
\ ﬂl , | LSTM \j \

1 " /
Channel2 " :u
' " ——> | Ls™™ I-attention

Figure 4.4: Multichannel convLSTM Architecture

44 CHAPTER 4. AutoMATIiC MEDICAL SUBJECT HEADING INDEXING

4.2.4 Multichannel Attention Based convLSTM

In this model we use a stacked CNN and LSTM for feature extraction. We chose this model
because it combines the attributes of the CNN and LSTM models. The model structure is
shown in Figure 4.4] (a system generated model summary is presented in Appendix D). The
convolutional layer is similar to the multichannel TextCNN model which processes the embed-
ded document matrix to convolutional filters of size 3, 4, and 5, with 128 filters each. Then
instead of the max-pooling layer, the feature map is processed with an LSTM. The outputs are
then passed to a self-attention layer to obtain an attention representation of the vectors. At last,
the attention vectors from both channels are concatenated and passed to a sigmoid function to
return probabilities over the 28,939 MeSH terms.

4.3 Setup

In this section, dataset that are used in this thesis, and data pre-processing steps are first dis-
cussed, Second, we explain how we generate word embedding. Finally, we show the detailed

experiment setup and model hyper-parameters that are used in this thesis.

4.3.1 Datasets

Most existing approaches in automatic MeSH indexing are performed on datasets with ab-
stracts and titles only. In this thesis, we created a full text dataset which contains table and
figure captions as well as associated paragraphs, as we believe figures and tables might provide

important MeSH features for classification. The two datasets we used are described as follows:

e 2015 Subject Extraction Test Collection (SETC2015): SETC2015 contains 14828
PMC full text articles used in the "Extracting Characteristics of the Study Subjects from
Full-Text Articles" [6]. We used this dataset to create the following two datasets:

— Abstract and Title (Small): labelled documents from SETC2015 which contains

abstract and title only

— Full Text (Small): labelled documents from SETC2015 which contains abstract,
title, figure and table captions, and associated paragraphs (we defined "associated

paragraphs" as paragraphs that have key words "Figure" and "Table")

e PMC Full Text Collectimf] (PMC Collection): We download 257,590 PMC full text

documents in the XML format, and used this dataset to create the following two datasets:

Shttps://www.ncbi.nlm.nih.gov/pmc/tools/ftp/

https://www.ncbi.nlm.nih.gov/pmc/tools/ftp/

4.3. SetUP 45

Datasets D N, ain Ny F L L L
AT (S) 14828 13346 1482 63004 14365 13.15 13.5
Full (S) 14828 13346 1482 148330 14365 13.15 13.5
AT (L) 257590 231831 25759 188693 22881 13.34 150
Full (L) 257590 231831 25759 669999 22881 13.34 150

Table 4.1: Statistics of the Datasets. D is the total number of documents; N,,,;,1s the number
of training documents; N, is the number of test documents; F represents the total number of
unique tokens in all documents; L is total number of class labels; L is total number of labels
per document; L is total number of documents per label

— Abstract and Title (Large): labelled documents from PMC Collection which con-

tains the abstract and title only

— Full Text (Large): labelled documents from PMC Collection which contains ab-
stract, title , figure and table captions, and associated paragraphs

Table [.1] provides statistical information for the described datasets. We considered our
dataset with labels, which covered 28,939 MeSH terms in total. MeSH terms are organized in
a "tree" hierarchical structure with 16 main branches shown in Figure 4.5. Each branch has
many levels of sub-branches, and each MeSH term has a position in the hierarchy, an example
is shown in Figure 4.6. We exploited MeSH in hierarchical structure and split them into 5
levels. The number of MeSH terms in the first, the second, the third, the fourth and the fifth
level, are: 16, 120, 1903, 6,808, and 11,127, respectively.

4.3.2 Data Pre-processing

The full-text source files from PMC are in XML format. We retrieved article information
(include PMID, abstract, title, captions and paragraphs) from the downloaded XML files and
scripted MeSH terms for each article on PubMed by using PMID which is a unique identifier
number used in PubMed for each article. An example [27] of our extracted data is shown

below.
e PMID: 19333414

e Title: Investigation on the protective effect of @-mannan against the DNA damage in-

duced by aflatoxin B; in mouse hepatocytes

e Abstract: Aflatoxin B(1) is a contaminant of agricultural and dairy products that can be
related to mutagenic and carcinogenic effects. In this report we explore the capacity of

a-mannan (Man) to reduce the DNA damage induced by AFB (1) in mouse hepatocytes.

46 CHAPTER 4. AutoMATIiC MEDICAL SUBJECT HEADING INDEXING

A. Anatomy

B. Organisms

C. Diseases

D. Chemicals and Drugs

E. Analytical, Diagnostic and Therapeutic Techniques and Equipment
F. Psychiatry and Psychology

G. Phenomena and Processes

H. Disciplines and Occupations

l. Anthropology, Education, Sociology and Social Phenomena
J. Technology, Industry, Agriculture

K. Humanities

L. Information Science

M. Named Groups

N. Health Care

V. Publication Characteristics

Z. Geographicals

Figure 4.5: Main Branches in the MeSH Hierarchy

For this purpose we applied the comet assay to groups of animals which were first ad-
ministered Man (100, 400 and 700 mg/kg, respectively) and 20 min later 1.0 mg/kg of
AFB (1). Liver cells were obtained at 4, 10, and 16 h after the chemical administration
and examined. The results showed no protection of the damage induced by AFB(1) with
the low dose of the polysaccharide, but they did reveal antigenotoxic activity exerted
by the two high doses. In addition, we induced a co-crystallization between both com-
pounds, determined their fusion points and analyzed the molecules by UV spectroscopy.
The obtained data suggested the formation of a supramolecular complex between AFB
(1) and Man.

e Captions:

— Antigenotoxic effect of @-mannan (Man) against the DNA damage induced by afla-

toxin B1 (AFB1) in mouse hepatocytes.

— Results are the mean = SD of 5 mice per group (100 nuclei per doses) statisti-

cally significant difference with respect to the value of the control groups and, with

4.3. SetUP 47

Anatomy
Body Regions
Torso
Back

Lumbosacral Region
Sacrococcygeal Region

Figure 4.6: An Example of MeSH Hierarchy

respect to the value obtained in mice treated with AFB1 only. ANOVA and Student-
Newman Keuls tests, p < 0.05.

— UV spectrum of the crystals formed by aflatoxin B1 (AFB1) plus Man (a), and the
corresponding to AFB1 (b). The A values in the ordinate of (a) vary from 0.06 to
3.50, in (b) the values are from 0.06 to 1.00. The maximum peaks in (a) (224, 266,
and 363 nm) show a correspondence with the detected in (b) (222, 264, and 358

nm).

— UV spectrum of the crystals formed by Man. The A values in the ordinate vary from

0.005 to 0.230. No peaks were found in the spectrum.
e Paragraphs:

— Figure 1 shows the comet measurements obtained in our assay. To summarize, at
the fourth hour of the schedule we found no significant DNA damage induced by
the tested chemicals: mice treated with the control agents had a mean T/N index of
1.1, and animals treated with AFB1 as well as those administered with 100 mg/kg
of Man plus the mutagen had a slight comet increase. At 10 h we found similar
behaviour regarding the control and the Man treated animals, although in mice
administered only AFB1 we determined a T/N index increase of about four times
as much. With respect to the groups treated with the combination of chemicals,
no protection was observed when the low dose of Man was applied. However, a
clear antigenotoxic effect was found with the two high doses; particularly with 700
mg/kg of Man, the prevention of DNA damage was about 50%. Then, at 16 h, the
genotoxicity of AFB1 and the protection exerted by Man continued although to a
lesser extent. The higher level of DNA damage at 10 h with respect to that found

48 CHAPTER 4. AutoMATIiC MEDICAL SUBJECT HEADING INDEXING

in the other evaluated times corresponds to the schedule where maximum breakage
is present in our model, and it agrees with results reported for an acute comet assay
with a single administration; moreover, because the assay also detects the repair

process [17] which, in our case, can begin after 10 h of exposure to the chemicals.

— Figure 2a shows the UV spectrum of the crystals obtained. The presence of AFB1
in the mixture is clear, as indicated by its characteristic maximum peaks at 223,
261, and 364 nm, which were very similar to those detected in the spectrum of the
mutagen in independent form (Figure 2b). Moreover, the spectrum obtained with
the crystals differs sharply from that obtained with the polysaccharide alone, which
showed no peaks in the range from 220 to 400 nm (Figure 3).

e MeSH Terms: Administration, Oral | Aflatoxins | Animals | DNA Damage | Hepatocytes

| Mannans | Mice | Mutagens

In pre-processing, we first did word level tokenization on our input documents, which splits
a document into a list of individual words. Then we further prepared our data by using follow-

ing process:

e Set all characters to lowercase

e Convert numbers to "NUM"

e Convert percentage sign "%" to "PERCENTAGE"
e Convert chemical notations(i.e. H,0) to "CHEM"

e Remove punctuation

e Convert relation symbols, namely "=", "<",">", "<", ">", to "EQUAL", "LESS", "GREATER",
"LessAndEqual", "GreaterAndEqual"

A comparison of input text and processed output in shown below:

e Input Text: Results are the mean = SD of 5 mice per group (100 nuclei per doses)
statistically significant difference with respect to the value of the control groups and,
with respect to the value obtained in mice treated with AFB1 only. ANOVA and Student-
Newman Keuls tests, p < 0.05.

e Processed Output: results are the mean sd of NUM mice per group NUM nuclei per
doses statistically significant difference with respect to the value of the control groups
and with respect to the value obtained in mice treated with CHEM only anova and student

newman keuls tests p LessAndEqual NUM

4.3. SetUP 49

After the above process, we utilized Keras [S]] Tokenizer API to vectorize our data into a se-
quence of integers, and each integer represents the index of a token in the dictionary generated

by dataset. An example outputs by Keras Tokenizer is shown below:

e Pre-processed Data: investigation on the protective effect of alpha mannan against the

dna damage induced by aflatoxin CHEM CHEM in mouse hepatocytes

e Tokenizer Output: 2297, 22, 2, 1892, 102, 3, 1045, 11201, 304, 2, 119, 800, 112, 14,
18349, 31, 31, 6, 299, 3001

4.3.3 Generate Word Embeddings

We used pre-trained BioASQ word embedding vectors [11] to represent each token in the
dictionary. Theses pre-trained word vectors are trained on 10,876,004 biomedical English
abstracts from PubMed, and contains vectors of 1,701,632 distinct words. The dimensionality

of the word vectors is 200.

4.3.4 Experiment Setup and Model Hyperparameters

In order to support our hypothesis that adding more information, specifically figure and table
information, improves the performance of biomedical document classification, we perform our
experiment in two parts: datasets (Abstract and Title (Small) and Abstract and Title (Large))
with abstract and title only have been fitted to single channel models, and datasets (Full Text
(Small) and Full Text (Large)) with captions and paragraphs added have been fitted into multi-
channel models.

The training of our proposed methods mentioned above is performed using binary cross-
entropy as loss function on sigmoid classifier. We use sigmoid function to return the probability

score of each class. The sigmoid function is defined as:

1
l1+e>

o(x) =
And binary cross-entropy is formulated as:
L
1
H(g) =~ > yi-log(a) + (1 =) - log(1 = ()
i=1
where o 1s sigmoid function, L is the total number of labels, y; is the original label of document

i, and o(y;) is predicted probability of label y for document i. The sigmoid binary cross-
entropy optimizes a label one-versus-all loss based on the max-entropy. Hyper-parameters are

50 CHAPTER 4. AutoMATIiC MEDICAL SUBJECT HEADING INDEXING

chosen based on grid search and reference to previous work. In TextCNN model, we used filter
windows of 3, 4, 5 with 128 filters each, dropout rate of 0.5. For XMLCNN model, we used
filter windows of 2, 4, and 8 with 128 filters each, dropout rate of 0.5, k was 10 in k-chunk
max-pooling, and the number of hidden unit was 512 at the bottleneck layer. In biLSTM
model, we used 200 hidden units in biLSTM and followed by one fully connected layer. In
convLSTM model, we used filter windows of 3, 4, and 5 with 128 filters each, dropout rate
of 0.5, and 128 hidden units in LSTM, 256 hidden unit at fully connect layer. We used batch
size 10 and 64 for Full Text (Large) and other datasets (Abstract and Title (Small), Full Text
(Small), Abstract and Title (Large)), and learning of 0.001 for each model. We ran 20 epochs
on TextCNN and XMLCNN model, and ran 5 epochs on biLSTM and convLSTM due to the
running time. For each dataset, we used 90% of the data as training set and 10% to test the
performance of the model. We randomly reserved 20% of the training data as the validation
set, and remaining 80% is used for training the model. All experiments are performed on the
Nvidia GeForce 1080Ti GPU. Models for Full Text(Large) is performed on 2 GPUs and other

datasets are performed on a single GPU.

4.4 Experiments

In this section, we first provide in the next subsection the evaluation metrics that are used in

our assessments, and then discuss the experimental results in the subsections following that.

4.4.1 Evaluation Metrics

In automatic MeSH indexing, even if the label space is very large, only relatively few MeSH
terms match each document. To evaluate the performance of the models we discussed in Sec-
tion 4.2] we used the evaluation metrics mentioned in Section [3.5] namely hamming loss,
example-based, label-based and hierarchical based precision, recall, and F-score, precision
at top k (p@k), and normalized discounted cumulative gain at top k (nDCG@k). For ranking-
based evaluation, we used k € {1, 3,5, 10, 15} for p@k, and k € {1,3,5} for ntDCG@k. For
example-based, label-based and hierarchical-based evaluation, we returned the top k predicted
labels and did the calculation accordingly, where k € {5, 10, 15}. The example-based, ranking-
based, and hierarchical evaluation metrics are calculated for each document and an average
score over all documents in the test set is returned. Likewise, the label-based evaluation is

calculated for each label and an average score over all labels in the test set is returned.

4.4. EXPERIMENTS 51

4.4.2 Results

We first conducted our experiment on datasets with title and abstract only, and then we fur-
ther conducted the experiment over datasets that include captions and paragraphs as well. As
will be pointed out and discussed below, the (multichannel) TextCNN model outperformed
the other models. We wanted to investigate the importance of having a multichannel rather
than single channel model. So, with the TextCNN model, we also performed an extra exper-
iment with datasets that contain the full text information: we passed word embeddings for
titles, abstracts, captions and paragraphs to a single channel TextCNN. Four datasets have been
used in the experiments. The small dataset is SETC2015, mentioned in Section #.3.1] which
derives AbstractAndTitle (Small) and FullText (Small). AbstractAndTitle (Small) represents
SETC2015 based on title and abstract only, and FullText (Small) also includes figure and table
related captions as well as paragraphs. The large dataset is the PMC collection, discussed in
Section[4.3.1] which also derives two datasets: AbstractAndTitle (Large) and FullText (Large).
AbstractAndTitle (Large) contains the abstracts and titles only, and FullText (Large) adds the
captions and paragraphs. The running time for the LSTM based classifiers, i.e., biILSTM and
convLSTM, are nearly 17 days for one epoch on the FullText (Large) dataset. Due to this
computation time, the two LSTM based models are not tested on the FullText (Large) dataset.
Since LSTM based models target on sequence patterns they cannot be parallelized; therefore,
acceleration of LSTM models has limitations so they suffer from high cost on large datasets.

The performance of precision@k (p@k) and nDCG @k among various models on all four
datasets are shown in Tables [4.2] and 4.3] Each row in the table compares all methods on a
specific dataset, where the best result over all models is printed as bold. Underlined items
are the best result when comparing the AbstractAndTitle and the FullText datasets for each
evaluation metric for each model for the small and large datasets

Comparisons are also made between the AbstractAndTitle (Small) and FullText (Small)
datasets and theAbstractAndTitle (Large) and FullText (Large) datasets for each model. The
best performance in each evaluation metric for each of these comparisons is underlined. The
performance of nDCG @k has the same trend as p@k, and thus nDCG@10 and nDCG@15
were omitted in Table [4.3]

Investigating Tables [4.2| and 4.3|led to the following:

e Comparisons across classifiers led to the following conclusions:

— The TextCNN model performed the best among the four models.

— The models that include convolution (TextCNN, XMLCNN, and convLSTM) per-
form better than the solely LSTM based model (biLSTM) suggesting that MeSH

term indexing is more word-based than sentence-based.

52 CHAPTER 4. AutoMATIiC MEDICAL SUBJECT HEADING INDEXING

Methods
Datasets Metrics TextCNN XMLCNN biLSTM convLSTM

p@l 0.76197 0.66217 0.69589 0.67701

p@3 0.58283 0.50124 0.45493 0.47516

AbstractAndTitle (Small) p@5 0.47633 0.40984 0.38732 0.39056
p@10 0.39641 0.30883 0.30329 0.30642

p@l15 0.37281 0.27728 0.26323 0.27283

p@l 0.80512 0.67296 0.66689 0.65678

p@3 0.62980 0.51090 0.46168 0.45448

FullText (Small) p@5 0.52057 0.40850 0.38233 0.37559
p@10 0.41958 0.31431 0.30469 0.29200

p@l15 0.39587 0.28940 0.25829 0.26118

p@l 0.87600 0.81032 0.72476 0.71905
p@3 0.70951 0.63501 0.51066 0.50545
AbstractAndTitle (Large) p@5 0.60532 0.51975 0.41922 0.41641
p@10 0.51000 0.42509 0.32699 0.32480
p@l15 047127 0.39069 0.28286 0.28083
p@l 0.87907 0.81609 - -
p@3 0.72139 0.63781 - -
FullText (Large) p@5 0.61479 0.52601 - -
p@10 0.51793 0.43378 - -
p@15 0.48009 0.39977 - -

Table 4.2: Evaluation of the Four Models: Results of p@k. Boldface indicates the best p@k
results for each k across all models. Underlined items are the best result when comparing the
AbstractAndTitle and the FullText datasets for each evaluation metric for each model for the
small and large datasets

— The models that include convolution show consistent (or almost consistent) im-
provements when adding more information. The LSTM based model is less con-

sistent.

e Comparisons within the same dataset but with different contents led to the following

conclusions:

— Multi-channel models perform better with the CNN based models, which indicates

captions and paragraphs provide useful information for the CNN classifiers.

— In the best performing model, TextCNN, when comparing the results, using data
that comes from abstracts and titles only with the full text data, the Small dataset
shows the greater improvement, approximately 2-5 percentage points for each p@k

and each nDCG @k value. The improvement for the Large dataset is typically closer

4.4. EXPERIMENTS 53

Methods
Datasets Metrics TextCNN XMLCNN biLSTM convLSTM

nDCG@1 0.76196 0.66217 0.69588 0.67700
AbstractAndTitle (Small) nDCG@3 0.62306 0.53812 0.50582 0.51683
nDCG@5 0.53918 0.46519 0.44659 0.44854
nDCG@1 0.80512 0.67296 0.66689 0.65677
FullText (Small) nDCG@3 0.66982 0.54769 0.50255 0.49689
nDCG@5 (0.58409 0.46716 0.43766 0.43217
nDCG@1 0.87600 0.81031 0.72476 0.71904
AbstractAndTitle (Large) nDCG@3 0.74737 0.67468 0.55394 0.54950
nDCG@5 0.66640 0.58510 0.48040 0.47756

nDCG@1 0.87907 0.81609 - -

FullText (Large) nDCG@3 0.75737 0.67778 - -

nDCG@5 0.67521 0.58053 - -

Table 4.3: Evaluation of the Four Models: Results of nDCG@k. Boldface indicates the best
nDCG @k results for each k across all models. Underlined items are the best result when
comparing the AbstractAndTitle and the FullText datasets for each evaluation metric for each
model for the small and large datasets

to 1 percentage point. It should be noted that the Large dataset has a somewhat
higher, thus more difficult to improve upon, abstract and title baseline for each
metric (10 percentage points or more than the Small dataset). This could be that the
Small and Large datasets were generated from documents with different attributes.

We have not investigated this possibility.
e Comparisons over different sizes of the dataset led to the following conclusion:

— Comparing AbstractAndTitle (Large) to AbstractAndTitle (Small) and FullText
(Large) to FullText (Small) shows an approximately 7-13 percentage point im-
provement for each p@k and nDCG@k. This result indicates that more training
examples simply gives better models, so the extra information provided by the new
data sources does not have as significant an effect as the increase in the number of

training examples.

Table §.4] to Table 4.7 report the performance of flat and hierarchical evaluations of all pre-
sented models on all datasets giving a further assessment of introducing the extra information
sources. We selected to return top k labels from the label sets, where k € {5, 10, 15}. We eval-
uated our models on example-based, label-based and hierarchical evaluations. EBP, EBR and
EBF calculate models’ performance over each document; MaP, MaF, MiP, and MiF evaluate

models over all labels; HP and HR measures model performance based on gold-standard and

54 CHAPTER 4. AutoMATIiC MEDICAL SUBJECT HEADING INDEXING

Metrics
Datasets top_k_selected EBP EBR EBF MiP MaP MiF MaF HP, HR, HP, HR,

@5 0.47684 0.18676 0.26091 0.49753 0.49941 0.45628 0.47804 | 0.52049 0.13520 0.60490 0.14347

AbstractAndTitle (Small) @10 0.34863 025301 0.28808 0.47330 0.49814 0.45588 0.47810 | 0.38057 0.20811 0.45634 0.22511
@15 0.30089 0.27835 0.28789 0.45798 0.49706 0.45283 0.47807 | 0.32516 0.24080 0.39877 0.26243

@5 0.52113 0.20028 0.28156 0.50257 0.49832 0.45933 0.47790 | 0.53849 0.16136 0.60841 0.17620

FullText (Small) @10 0.37723 0.27009 0.30927 0.47832 0.49539 0.45976 0.47740 | 0.38576 0.23705 0.44186 0.26472
@15 0.32464 0.29827 0.30945 0.46255 0.49373 0.45700 0.47721 | 0.32605 0.26791 0.38026 0.30378

@5 0.60625 0.23896 0.33234 (0.57454 0.50219 0.36413 0.39817 | 0.63210 0.19579 0.68524 0.19668

AbstractAndTitle (Large) @10 0.46160 0.33370 0.38038 0.47892 0.49987 0.40743 0.40113 | 0.47824 0.30389 0.53204 0.31513
@15 0.40430 0.37220 0.38565 0.43378 0.49733 0.41410 0.40280 | 0.41333 0.35164 0.46788 0.37134

@5 0.61569 0.24341 0.33833 0.58120 0.50253 0.36939 0.39963 | 0.64027 0.19934 0.70217 0.19967

FullText (Large) @10 0.46767 0.33916 0.38614 0.48437 0.49992 0.41285 0.40316 | 0.49180 0.30675 0.55795 0.31847
@15 0.41073 0.37868 0.39212 0.44003 0.49679 0.42042 0.40511 | 0.42621 0.35704 0.49112 0.37776

Table 4.4: Flat and Hierarchical Measures for TextCNN in Different Datasets. top_k_selected
indicates the top k labels returned by the classifier; EBP indicates example-based precision;
EBR indicates example-based recall; EBF indicates example-based F-score; MiP indicates
micro-average precision; MaP indicates macro-average precision; MiF indicates micro-average
F-score; MaF indicates macro-average F-score; HP indicates hierarchical precision; HR indi-
cates hierarchical recall; m denotes the distance from the original label to its ancestors and
descendants in HP,, and HR,,

Metrics
Datasets top_k_selected EBP EBR EBF MiP MaP MiF MaF HP, HR, HP, HR,

@5 041042 0.15681 0.22097 0.48996 0.49996 0.44842 0.47792 | 0.42348 0.09548 0.47456 0.08615
AbstractAndTitle (Small) @10 0.27218 0.19448 0.22300 0.45770 0.49972 0.44030 0.47793 | 0.30462 0.12003 0.35582 0.12076
@15 0.22643 0.20905 0.21638 0.43861 0.49947 0.43369 0.47793 | 0.23001 0.13844 0.28807 0.14397

@5 0.40910 0.15367 0.21746 0.48985 0.49994 0.44834 0.47777 | 0.43655 0.09237 0.48340 0.08753
FullText (Small) @10 0.27185 0.19175 0.22088 0.45834 0.49966 0.44065 0.47777 | 0.29177 0.12545 0.33252 0.14206
@15 0.22679 0.20725 0.21546 0.44001 0.49953 0.43465 0.47784 | 0.22611 0.14883 0.28784 0.1678
@5 0.52054 0.20150 0.28186 0.51552 0.50020 0.32636 0.39558 | 0.53244 0.14821 0.59463 0.15162

AbstractAndTitle (Large) @10 0.37936 0.27130 0.31055 0.41214 0.49778 0.35022 0.39638 | 0.38140 0.22483 0.43733 0.23671
@15 0.32734 0.30006 0.31144 0.36843 0.49513 0.35132 0.39668 | 0.32258 0.26073 0.37816 0.27932
@5 0.52686 0.19920 0.27910 0.51285 0.50030 0.32472 0.39620 | 0.53730 0.14162 0.60720 0.13990
FullText (Large) @10 0.37621 0.26844 0.30760 0.40985 0.49795 0.34835 0.39709 | 0.38466 0.21823 0.45025 0.22582
@15 0.32430 0.29719 0.30852 0.36646 0.49528 0.34953 0.39743 | 0.32487 0.25346 0.38872 0.26796

Table 4.5: Flat and Hierarchical Measures for XMLCNN in Different Datasets. top_k_selected
indicates the top k labels returned by the classifier; EBP indicates example-based precision;
EBR indicates example-based recall; EBF indicates example-based F-score; MiP indicates
micro-average precision; MaP indicates macro-average precision; MiF indicates micro-average
F-score; MaF indicates macro-average F-score; HP indicates hierarchical precision; HR indi-
cates hierarchical recall; m denotes the distance from the original label to its ancestors and
descendants in HP,, and HR,,

predicted labels as well as their ancestors and descendants. CNN based models, i.e., TextCNN
and XMLCNN, show support on our initial hypothesis, but RNN based models, i.e., biLSTM
and convLSTM, do not. We are more interested in the results reported from TextCNN model,
as it is the best performing model among all four presented models. We have showed flat and
hierarchical evaluations over all presented models, but will only discuss the TextCNN model

below. The exploration led to the following conclusions:

e CNN based models show that adding captions and paragraphs indeed provide valuable

information in automatic MeSH indexing.

4.4. EXPERIMENTS 55

Metrics
Datasets top_k_selected EBP EBR EBF MiP MaP MiF MaF HP, HR, HP, HR,

@5 0.38788 0.14921 0.20993 0.48738 0.49998 0.44572 0.47764 | 0.35962 0.09429 0.36151 0.08436

AbstractAndTitle (Small) @10 0.26689 0.19073 0.21875 0.45670 0.49992 0.43905 0.47771 | 0.28087 0.11067 0.29518 0.09449
@15 0.21827 0.20191 0.20880 0.43633 0.49985 0.43128 0.47775 | 0.19504 0.12627 0.23569 0.10919

@5 0.38285 0.14556 0.20517 0.48689 0.49998 0.44536 0.47777 | 0.35835 0.09413 0.36919 0.08683

FullText (Small) @10 0.26183 0.18495 0.21290 0.45644 0.49992 0.43852 0.47784 | 0.28152 0.11140 0.30056 0.09846
@15 0.21145 0.19398 0.20134 0.43574 0.49983 0.43024 0.47786 | 0.21827 0.11794 0.23837 0.10857

@5 0.41991 0.16242 0.22740 0.44581 0.49999 0.28252 0.39523 | 0.39331 0.10021 0.40592 0.09209

AbstractAndTitle (Large) @10 0.29005 0.20643 0.23683 0.33833 0.49993 0.28777 0.39534 | 0.31171 0.11911 0.33533 0.10522
@15 0.23814 0.21874 0.22685 0.28924 0.49985 0.27601 0.39541 | 0.20636 0.13980 0.23879 0.14646

Table 4.6: Flat and Hierarchical Measures for biLSTM in Different Datasets. top_k_selected
indicates the top k labels returned by the classifier; EBP indicates example-based precision;
EBR indicates example-based recall; EBF indicates example-based F-score; MiP indicates
micro-average precision; MaP indicates macro-average precision; MiF indicates micro-average
F-score; MaF indicates macro-average F-score; HP indicates hierarchical precision; HR indi-
cates hierarchical recall; m denotes the distance from the original label to its ancestors and
descendants in HP,, and HR,,

Metrics
Datasets top_k_selected EBP EBR EBF MiP MaP MiF MaF HP, HR, HP, HR,

@5 0.39159 0.14984 0.21059 0.48786 0.49998 0.44589 0.47766 | 0.36694 0.09566 0.37573 0.08773

AbstractAndTitle (Small) @10 0.27147 0.19219 0.22099 0.45767 0.49992 0.43965 0.47773 | 0.28829 0.11256 0.30727 0.09861
@15 0.22207 0.20334 0.21128 0.43741 0.49984 0.43197 0.47776 | 0.20923 0.12827 0.24484 0.14678

@5 0.37571 0.14577 0.20418 0.48606 0.49998 0.44507 0.47789 | 0.35179 0.09227 0.36856 0.08728

FullText (Small) @10 0.25765 0.18424 0.21109 0.45512 0.49992 0.43785 0.47795 | 0.27781 0.10824 0.30539 0.09829
@15 0.21133 0.19477 0.20180 0.43529 0.49984 0.43022 0.47798 | 0.19906 0.12125 0.24007 0.10991

@5 041717 0.16159 0.22615 0.44401 0.49999 0.28125 0.39538 | 0.39200 0.09997 0.40737 0.09193

AbstractAndTitle (Large) @10 0.28814 0.20544 0.23553 0.33661 0.49993 0.28625 0.39548 | 0.31169 0.11899 0.33776 0.10530
@15 0.23716 0.21800 0.22602 0.28818 0.49985 0.27489 0.39555 | 0.21815 0.13815 0.25314 0.14638

Table 4.7: Flat and Hierarchical Measures for convLSTM in Different Datasets. top_k_selected
indicates the top k labels returned by the classifier; EBP indicates example-based precision;
EBR indicates example-based recall; EBF indicates example-based F-score; MiP indicates
micro-average precision; MaP indicates macro-average precision; MiF indicates micro-average
F-score; MaF indicates macro-average F-score; HP indicates hierarchical precision; HR indi-
cates hierarchical recall; m denotes the distance from the original label to its ancestors and
descendants in HP,, and HR,,

e When comparing AbstractAndTitle to FullText Multichannel in the Small and Large
datasets, we see an approximate .5-5 percentage point improvement in all of the measures
except MaP. Most importantly, there is improvement in precision without a decrease in
recall. The obtained results further suggest that our hypothesis that adding captions and

paragraphs indeed provides valuable information in automatic MeSH indexing.

e Comparing EBP, which is the same as HP,, with the HP values, an approximate 1-5
percentage point improvement in all cases at HP; and an approximate 6-13 percentage
point improvement in all cases at HP, can be seen. These observations indicate that some
of the predicted MeSH terms are not exactly the same as the gold-standard labels, but
the model has suggested MeSH terms that are in the correct branch of the MeSH term

hierarchy. With this latter observation we have investigated how the predicted results

56 CHAPTER 4. AutoMATIiC MEDICAL SUBJECT HEADING INDEXING
correspond to the gold-standard results.

An in-depth analysis of the hierarchical evaluation on the AbstractAndTitle (Large) and
FullText (Large) datasets are reported in Table 4.8 We have computed the average number
of gold-standard MeSH term labels in common with the predicted labels including m levels
up and n levels down over all documents, where m € {0, 1,2} and n € {0, 1,2}. Each row in
the table compares model performance at a certain MeSH hierarchy, where C,, indicates the
predicted label augmented with children with distance m, and P, is predicted label augmented
with parents with distance n. As an example: Cy,_P; on AT (L) with the top 5 predicted
labels indicates that if the predicted labels are augmented with their parents with distance /,
the number of common labels between true labels and predicted ones will increase on average
by 0.0256 over all documents in the test set. For each top_k_predicted labels returned by the
TextCNN model, comparisons within the same dataset but expanded augmentations show that
the number of common MeSH terms between the gold-standard and predicted ones increase
in all cases (except two instances of an increased window size for the multichannel TextCNN,
the single channel TextCNN when augmenting only with parent labels, and the AT (L) dataset
for top_5_predicted). Looking only at each column, this can be more than a ten-fold increase.
Comparing AT with Full multichannel TextCNN the increase is approximately three times
when adding captions and related texts. This observation gives us confidence in concluding that
the multichannel TextCNN model gives MeSH terms that are in the correct branch of the MeSH
hierarchy and adding figure captions and related texts does provide valuable improvement in
automatic MeSH indexing.

The p@k and nDCG @k performance of the single channel TextCNN and the multichannel
TextCNN on all four datasets is summarized in Table .9 Each row in the table compares
all datasets on a specific metric, where the best score for each metric (the Small and Large
datasets being observed separately) is in boldface. In addition to noting the best scores, it
should be observed that the single channel TextCNN on the Full (Large) dataset performs
worse than TextCNN on the AbstractAndTitle (Large) dataset. These results clearly indicate

top_5_predicted top_10_predicted top_15_predicted
AbstractAndTitle (Large) | FullText (Large) | AbstractAndTitle (Large) | FullText (Large) | AbstractAndTitle (Large) | FullText (Large)
Co_P, 0.0256 0.0748 0.0236 0.1107 0.0290 0.1424
Ci_Py 0.1119 0.4551 0.2420 0.8545 0.2791 1.0379
Co_P, 0.2387 0.4904 0.2933 0.6983 0.3405 0.8269
C,_Py 0.1591 0.6528 0.3202 1.1166 0.3681 1.3542
C,_P, 0.1847 0.7276 0.3438 1.2267 0.3971 1.4954
C_P, 0.3506 0.9455 0.5354 1.5528 0.6196 1.8649

Table 4.8: Hierarchical Analysis of TextCNN Results. top_k_selected indicates the top k labels
returned by the classifier; C,,_P, indicates that the predicted labels are compared to the gold-
standard labels augmented with their children with distance m and ancestors with distance n

4.4. EXPERIMENTS 57

Datasets and Models

Metrics AbstractAndTitle (S) Full (S) Full (S) AbstractAndTitle (L) Full (L) Full (L)
Single_Channel Single_Channel Multichannel Single_Channel Single_Channel Multichannel

p@l 0.76197 0.78220 0.80512 0.87600 0.72305 0.87907

p@3 0.58283 0.59699 0.62980 0.70951 0.51016 0.72139

p@k p@5 0.47633 0.48901 0.52057 0.60532 0.41908 0.61479

p@10 0.39641 0.38815 0.41958 0.51000 0.32631 0.51793

p@l15 0.37281 0.35910 0.39587 0.47127 0.28318 0.48009

nDCG@1 0.76197 0.78219 0.80512 0.87600 0.72305 0.87907

nDCG@k nDCG@3 0.62306 0.63744 0.66982 0.74737 0.55327 0.75737

nDCG@5 0.53918 0.55227 0.58409 0.66640 0.48009 0.67521

Table 4.9: Results for TextCNN in p@k and nDCG@k. Boldface indicates the best result for
each metric on the Small (S) and Large (L) datasets.

that when dealing with the same dataset, multi-channel TextCNN performs the best, which
indicates that integrating captions and paragraphs through a separate channel indeed helps
to improve the performance of classification. Also, the multi-channel TextCNN outperforms
the single channel TextCNN, suggesting that the multi-channel TextCNN architecture has an
advantage over the single channel TextCNN architecture. The reason for this could be that the
single channel model misses some important features in the captions and related paragraphs in
the convolutional and pooling layers. To be more explicit, the single channel model may be
extracting insignificant features in the convolutional layer from which the max-pooling layer
can take only one value in each filter.

The final analysis of the TextCNN model is to compare its performance with the perfor-
mance reported in previous research. Normally, a quantitative comparison requires a number
of features of the comparison to be the same: similar task, and similar amount and type of
training data. Typically, this is made possible because the research community has reached a
consensus on a set of training data and the task to be performed. Because of the immaturity of
this research area, i.e., the comparison of automatic MeSH term indexing to human indexing, a
standard dataset has not yet been established, so a quantitive comparison to the existing work is
impracticable at this time. In addition the work that has been presented here focusses on train-
ing neural models using a novel dataset that contains information in addition to the abstract
and title information used in previous work. So instead of a quantitative comparison, we have
done a qualitative comparison with a Deep convolution model proposed by Gargiulo et al. [7]].
They have used the titles and abstracts of 11,150,090 articles to train their classifiers. We did a
qualitative comparison using EBP, EBR and EBF. Results are shown in Table d.10]

The 11,150,090 papers that the Deep convolution model trains on are almost 40 times more
documents compared to our Large dataset. This model outperforms our multichannel model
on precision but has a low recall, which means that their model has a high false negative rate.
Our TextCNN model improves both the precision and recall when moving from single channel

to multichannel and has a better F-score compared to the Deep convolution model.

58 CHAPTER 4. AutoMATIiC MEDICAL SUBJECT HEADING INDEXING

Models EBP EBR EBF
TextCNN (abstract and title only) 0.4043 0.3722 0.3856
Multichannel TextCNN 0.4107 0.3787 0.3921

Deep convolution model [7] 0.7211 0.1312 0.2220

Table 4.10: Comparison with Existing Models. EBP indicates example-based precision; EBR
indicates example-based recall; EBF indicates example-based F-score

Models MiF EBP EBR EBF MaP MaR MaF MiP MiR
TextCNN 0.3909 0.4459 0.2163 0.2797 0.4994 - 0.4377 0.4902 -
Multichannel TextCNN 0.3927 0.4508 0.2183 0.2825 0.4995 - 0.4382 0.4925 -
cebl 0.6561 0.6900 0.6371 0.6449 0.6237 0.5146 0.5090 0.6838 0.6306

Table 4.11: Test on BioASQ Test Cases. p@k indicates precision at k; MiF indicates micro-
average F-score; EBP indicates example-based precision; EBR indicates example-based recall;
EBF indicates example-based F-score; MaP indicates macro-average precision; MaR indicates
macro-average recall; MaF indicates macro-average F-score; MiP indicates micro-average pre-
cision; MiR indicates micro-average recall

We also tested our model on a set of BioASQ challenge test documents, dry run 2 in 2018,
in particular. This dataset is comprised of 9715 documents. Each document has a PMID,
and abstract and title. In order to obtain the MeSH terms for these documents, we scraped
the PubMed site using the 9715 PMIDs. We compared our best model, TextCNN, with one
of the participating models, cebl. Results of cebl’s performance are provided on BioASQ’s
Webpageﬂ Table provides a summary of the MiF, EBP, EBR, EBF, MaP, MaR, MaF,
MiP, and MiR results on this set of test cases. This comparison needs to take into account
some important factors. Firstly, cebl is trained on 13,486,072 documents which is about 40
times more articles compared to our training set. Having more data to train on is an important
factor in the quality of the trained model. Secondly, we are using a model trained on a possibly
different genre of biomedical articles. We did not compare the 9715 articles with our training
dataset because this is beyond the scope of this thesis. It is assumed that the test documents
for the BioASQ dry run 2 are from a similar genre as some of the documents used for training
by cebl. Thirdly, it is difficult to compare model performance when the models are trained on
different datasets since the quality of the transfer of knowledge is difficult to quantify. When
comparing TextCNN and Multichannel TextCNN, we see a slight improvement in all measures,
which is what is expected given the results discussed earlier in this thesis.

In all comparisons it is important to report important aspects of the model testing. In
this last comparison, our test model was the multichannel TextCNN. The only aspect that

was different from the normal multichannel TextCNN model testing was that we supplied the

®http://participants-area.bioasq.org/results/7a/

4.4. EXPERIMENTS 59

abstract and title word embeddings to both channels of the multichannel TextCNN model, since
the BioASQ test cases only have abstract and title provided and the multichannel TextCNN
model requires input to both channels. For purposes of understanding the cebl model, we
unfortunately have no knowledge of the design of cebl (cebl is the only model with results
presented on the dry run 2 test set).

MeSHProbeNet [42], the winner of the BioASQ challenge for the MeSH indexing task in
2018, is a self-attentive deep neural network. The model uses a bidirectional RNN followed by
self-attentive MeSH probes to extract useful features, and finally a multi-view neural classifier
generates a set of relevant MeSH terms. The self-attentive layer weights the input sequence by
assigning attention scores and interprets word importance. MeSHprobeNet and Multichannel
TextCNN have the same intuition for solving the MeSH indexing problem by using word level

features, but extract word importance using different approaches.

Chapter 5
Conclusions

In this chapter, we conclude our work presented in this thesis by summarizing our work and

discussing our future plans.

5.1 Conclusions

In this thesis we set out to explore the use of deep learning and two sources of training infor-
mation for the MeSH indexing task. For the first item we investigated multichannel variants
of four deep learning models. For the second, we generated four datasets for the training and
testing of these models from two available datasets, one small and one much larger. For each
of these two dataset sizes we curated two datasets, one containing the titles and abstracts of the
documents found in the dataset, and one containing the titles, abstracts, figure and table cap-
tions, and paragraphs related to those figures and tables. This exploration led to the following

contributions:

e We have implemented four multichannel deep neural network models to capture im-
portant features from the given documents. Two of them are CNN-based and two are
LSTM-based. The multichannel TextCNN model handily outperforms the other three
models on all performance measures. Looking only at TextCNN, it showed consistently
improved performance for all performance measures on both the small and large datasets
when provided with the complete information source. The CNN models converged in a
few days of training for both the small and large datasets with the restricted and complete
information sources. The LSTM-based models took significantly more time to converge,
as was expected. We abandoned the training of the LSTM-based models on the large
dataset with complete information because it was taking days of computing to complete

only one epoch of the training.

60

5.2. FUuTurReE WORK 61

That the TextCNN model showed the best performance was somewhat unexpected, as the
best results for many NLP tasks are observed when LSTM-based models are used. The
performance of TextCNN may suggest that the MeSH indexing task is more word-based

than sentence-based.

The implementation code is publicly available.

e Notably, our experiments explored the use of training information obtained from different
parts of the document. The results for TextCNN, the best performing model, indicate
that adding more information sources indeed improves performance. This observation
supports the initial hypothesis that figure and table captions as well as the associated
paragraphs can provide valuable information for automatic MeSH indexing (at least for
our multichannel TextCNN model).

e Our curated biomedical document datasets are available to the research community. To
the best of our knowledge, the dataset comprising 257,590 full-text documents is the
largest biomedical dataset curated for the MeSH indexing task, up to now.

We curated our dataset from PubMed Central, which is a database that contains a large
number of free full text biomedical documents. Our dataset might be biased as some biomedi-

cal articles in certain fields never release free version.

5.2 Future Work

In this thesis, we mainly focused on finding a classifier to capture important features in the
document. We manually set the number of MeSH terms returned from the model, i.e., in our
thesis, we asked our model to return the top k predicted MeSH terms, where k € {5, 10, 15}. In
the future, we plan to improve our model by implementing a ranking system module which can
be added right after the classifier. The ranking module can automatically suggest the number
of labels returned for each document, which could help the indexing system to return a more
accurate set of MeSH terms.

We also intend to extend our experiments on different optimizers, learning rates and classi-
fiers in order to improve the performance of our models.

This work is an attempt to explore classifiers that can help to reduce the workload for human
annotators, not to replace their work. With this aim in mind, we also want to develop a tool
which could help human annotators locate the places in the document that has text important

for determining MeSH terms in order to improve the efficiency of MeSH indexing.

62 CHAPTER 5. CONCLUSIONS

Additionally, we intend to work with biomedical researchers to see whether the TextCNN
model can provide better MeSH terms for their research papers then are provided by NLM

human annotators.

Bibliography

[1] Artaches Ambartsoumian and Fred Popowich. Self-attention: A better building block for
sentiment analysis neural network classifiers. In WASSA@EMNLP, 2018.

[2] Alan R Aronson and Francois-Michel Lang. An overview of MetaMap: historical per-
spective and recent advances. Journal of the American Medical Informatics Association,
17(3):229-236, 05 2010.

[3] Alan R. Aronson, James G. Mork, Clifford W. Gay, Susanne M. Humphrey, and Willie J.
Rogers. The nlm indexing initiative’s medical text indexer. Studies in health technology
and informatics, 107 Pt 1:268-72, 2004.

[4] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by
jointly learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

[5] Francois Chollet et al. Keras. https://keras.1io, 2015.

[6] Dina Demner-Fushman and James G. Mork. Extracting characteristics of the study sub-
jects from full-text articles. AMIA ... Annual Symposium proceedings. AMIA Symposium,
2015:484-91, 2015.

[7] Francesco Gargiulo, Stefano Silvestri, and Mario Ciampi. Deep convolution neural net-
work for extreme multi-label text classification. In Proceedings of the I1th Interna-
tional Joint Conference on Biomedical Engineering Systems and Technologies - Volume
5: Al4Health,, pages 641-650. INSTICC, SciTePress, 2018.

[8] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The elements of statistical learn-

ing: data mining, inference and prediction. Springer, 2 edition, 2009.

[9] Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural computa-
tion, 9(8):1735-1780, 1997.

[10] Indexer, Qiao Jin, Bhuwan Dhingra, and William W. Cohen. Attentionmesh : Simple ,

effective and interpretable automatic mesh. 2018.

63

https://keras.io

64

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

BIBLIOGRAPHY

Ion Androutsopoulos Ioannis Pavlopoulos, Aris Kosmopoulos. Continuous space word

vectors obtained by applying word2vec to abstracts of biomedical articles.

Kalervo Jarvelin and Jaana Kekildinen. Ir evaluation methods for retrieving highly rele-
vant documents. In Proceedings of the 23rd annual international ACM SIGIR conference

on Research and development in information retrieval, pages 41-48. ACM, 2000.

Antonio Jimeno-Yepes, James G. Mork, Dina Demner-Fushman, and Alan R. Aronson.
A one-size-fits-all indexing method does not exist: Automatic selection based on meta-
learning. JCSE, 6:151-160, 2012.

Antonio Jimeno-Yepes, James G. Mork, Dina Demner-Fushman, and Alan R. Aronson.
Comparison and combination of several mesh indexing approaches. AMIA ... Annual

Symposium proceedings. AMIA Symposium, 2013:709-18, 2013.

Rie Johnson and Tong Zhang. Effective use of word order for text categorization with
convolutional neural networks. In HLT-NAACL, 2015.

Rie Johnson and Tong Zhang. Semi-supervised convolutional neural networks for
text categorization via region embedding. In C. Cortes, N. D. Lawrence, D. D. Lee,
M. Sugiyama, and R. Garnett, editors, Advances in Neural Information Processing Sys-
tems 28, pages 919-927. Curran Associates, Inc., 2015.

Rie Johnson and Tong Zhang. Deep pyramid convolutional neural networks for text cat-
egorization. In Proceedings of the 55th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages 562-570. Association for Computa-
tional Linguistics, 2017.

Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom. A convolutional neural net-

work for modelling sentences. In ACL, 2014.
Yoon Kim. Convolutional neural networks for sentence classification. In EMNLP, 2014.

Olivier Bodenreider KinWah Fung. Utilizing the umls for semantic mapping between

terminologies. AMIA ... Annual Symposium proceedings. AMIA Symposium, 2007.

Aris Kosmopoulos, Ioannis Partalas, Eric Gaussier, Georgios Paliouras, and Ion Androut-
sopoulos. Evaluation measures for hierarchical classification: a unified view and novel
approaches. Data Mining and Knowledge Discovery, 29(3):820-865, May 2015.

Siwei Lai, Liheng Xu, Kang Liu, and Jian Zhao. Recurrent convolutional neural networks
for text classification. In AAAI, 2015.

BIBLIOGRAPHY 65

[23] Yann Lecun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. In Proceedings of the IEEE, pages 2278-2324, 1998.

[24] Jimmy Lin and W. John Wilbur. Pubmed related articles: a probabilistic topic-based
model for content similarity. BMC Bioinformatics, 8(1):423, Oct 2007.

[25] Jingzhou Liu, Wei-Cheng Chang, Yuexin Wu, and Yiming Yang. Deep learning for ex-
treme multi-label text classification. In SIGIR, 2017.

[26] Ke Liu, Shengwen Peng, Junqiu Wu, ChengXiang Zhai, Hiroshi Mamitsuka, and Shan-
feng Zhu. Meshlabeler: improving the accuracy of large-scale mesh indexing by integrat-
ing diverse evidence. Bioinformatics, 31 12:1339-47, 2015.

[27] Eduardo Osiris Madrigal-Santilldn, José Antonio Morales-Gonzalez, Manuel Sanchez-
Gutiérrez, Alicia Reyes-Arellano, and Eduardo Madrigal-Bujaidar. Investigation on the
protective effect of I§-mannan against the dna damage induced by aflatoxin bl in mouse
hepatocytes. International Journal of Molecular Sciences, 10:395 — 406, 2009.

[28] Brian McFee and Gert R Lanckriet. Metric learning to rank. In Proceedings of the 27th
International Conference on Machine Learning (ICML-10), pages 775-782, 2010.

[29] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word
representations in vector space. CoRR, abs/1301.3781, 2013.

[30] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed
representations of words and phrases and their compositionality. In C. J. C. Burges,
L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Weinberger, editors, Advances in Neu-
ral Information Processing Systems 26, pages 3111-3119. Curran Associates, Inc., 2013.

[31] Volodymyr Mnih, Nicolas Heess, Alex Graves, et al. Recurrent models of visual attention.

In Advances in neural information processing systems, pages 2204-2212, 2014.

[32] James G. Mork, Antonio Jimeno-Yepes, and Alan R. Aronson. The nlm medical text
indexer system for indexing biomedical literature. In BioASQ @ CLEF, 2013.

[33] Ronald A Rensink. The dynamic representation of scenes. Visual cognition, 7(1-3):17—
42, 2000.

[34] Anthony Rios and Ramakanth Kavuluru. Convolutional neural networks for biomedical
text classification: Application in indexing biomedical articles. In Proceedings of the
6th ACM Conference on Bioinformatics, Computational Biology and Health Informatics,
BCB 15, pages 258-267, New York, NY, USA, 2015. ACM.

66 BIBLIOGRAPHY

[35] Mike Schuster and Kuldip K. Paliwal. Bidirectional recurrent neural networks. IEEE
Transactions on Signal Processing, 45:2673-2681, November 1997.

[36] Holger Schwenk, Loic Barrault, Alexis Conneau, and Yann LeCun. Very deep convolu-
tional networks for text classification. In FACL, 2017.

[37] Lei Tang, Suju Rajan, and Vijay K. Narayanan. Large scale multi-label classification via
metalabeler. In WWW, 20009.

[38] Grigorios Tsoumakas, [oannis Katakis, and loannis P. Vlahavas. Mining multi-label data.
In Data Mining and Knowledge Discovery Handbook, 2010.

[39] Grigorios Tsoumakas, Manos Laliotis, Nikos Markantonatos, and loannis Vlahavas.

Large-scale semantic indexing of biomedical publications at bioasq.

[40] Krina Vasa. Classification through statistical and machine learning methods : A survey.

In International Journal of Engineering Development and Research, 2016.

[41] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in

Neural Information Processing Systems, pages 5998—6008, 2017.

[42] Guangxu Xun, Kishlay Jha, Ye Yuan, Yaqing Wang, and Aidong Zhang. Meshprobenet:

A self-attentive probe net for mesh indexing. Bioinformatics, 2019.

[43] Yiming Yang. An evaluation of statistical approaches to text categorization. Information
Retrieval, 1(1):69-90, Apr 1999.

[44] Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alexander J. Smola, and Eduard H.
Hovy. Hierarchical attention networks for document classification. In HLT-NAACL, 2016.

[45] Chengxiang Zhai, Hiroshi Mamitsuka, Junqiu Wu, Ke Liu, Shanfeng Zhu, and Shengwen
Peng. MeSHLabeler: improving the accuracy of large-scale MeSH indexing by integrat-
ing diverse evidence. Bioinformatics, 31(12):1339-1347, 06 2015.

[46] M. Zhang and Z. Zhou. A review on multi-label learning algorithms. /IEEE Transactions
on Knowledge and Data Engineering, 26(8):1819—1837, Aug 2014.

[47] Peng Zhou, Wei Shi, Jun Tian, Zhenyu Qi, Bingchen Li, Hongwei Hao, and Bo Xu.
Attention-based bidirectional long short-term memory networks for relation classifica-
tion. In ACL, 2016.

Appendix A

Summaries of the Models for TextCNN

In the following, we provide system generated model summaries for TextCNN described in
Chapter 4. The four summaries are TextCNN models training on AbstractAndTitle (Small),
FullText (Small), AbstractAndTitle (Large) and FullText (Large) respectively.

67

68

CHAPTER A. SUMMARIES OF THE MODELS FOR TEXTCNN

Layer (type) Output Shape Param # Connected to

input_1 (InputLayer) (None, 694) 0

embedding_1 (Embedding) (None, 694, 200) 12601000 input_1[0] [e]

convld_1 (ConvlD) (None, 692, 128) 76928 embedding_1[0@] [@]

convld_2 (ConvilD) (None, 691, 128) 102528 embedding_1[@] [@]

convld_3 (Conv1D) (None, 690, 128) 128128 embedding_1[@] [@]

batch_normalization_1 (BatchNor (None, 692, 128) 512 convld_1[0] [@]

batch_normalization_2 (BatchNor (None, 691, 128) 512 convld _2[@] [@]

batch_normalization_3 (BatchNor (None, 690, 128) 512 convld_3[0] [@]

max_poolingld_1 (MaxPoolinglD) (None, 1, 128) 0 batch_normalization_1[0][0]

max_poolingld_2 (MaxPoolinglD) (None, 1, 128) "} batch_normalization_21[0] [@]

max_poolingld_3 (MaxPoolinglD) (None, 1, 128) 0 batch_normalization_3[@] [0]

concatenate_1 (Concatenate) (None, 3, 128) "} max_poolingld_1[0][@]
max_poolingld_2[0] [@]
max_poolingld_3[0] [@]

flatten_1 (Flatten) (None, 384) %] concatenate_1[0][0]

dropout_1 (Dropout) (None, 384) 4] flatten_1[0] [0]

dense_1 (Dense) (None, 28940) 11141900 dropout_1[0][0]

Total params: 24,052,020
Trainable params: 11,450,252
Non-trainable params: 12,601,768

Figure A.1: System Generated Summary for TextCNN Model on AbstractAndTitle (Small)

Dataset

69

Layer (type) Ccutput Shape Param # Connected to

input 1 (InputLayer) (None, 742)

input_2 (InputLayer) (None, 12393)

embedding 1 (Embedding) (None, 742, 200) 29666200 input 1[0]1[0]

embedding 2 (Embedding) (None, 123%3, 200) 29666200 input_2[0]1[0]

convld 1 (ConwvlD) (None, 740, 128) 76528 embedding_l[ﬂ][ﬂ]

convld 2 (ConvlD) (None, 73%, 128) 102528 embedding 1[0][0]

convld 3 (ConwvlD) (None, 738, 128) 128128 embedding_l[ﬂ][ﬂ]

convld 4 (ConvlD) (None, 123%1, 128) 76928 embedding 2[0] [0]

convld 5 (ConvlD) (None, 12350, 128) 102528 embedding_2[0][0]

convld 6 (ConvlD) (None, 1238%, 128) 128128 embedding 2[0] [0]

batch normalization 1 (BatchNor (None, 740, 128) 512 convld 1[0][0]

batch normalization 2 (BatchNor (None, 739, 128) 512 convld 2[0][0]

batch normalization 3 (BatchNor (None, 738, 128) 512 convld 3[0][0]
batch_normalization_4 {BatchNor (None, 12391, 128) 512 convld 4[0][0]
batch_normalization_5 (BatchNor (None, 12390, 128) 512 convld 5[0][0]
batch_normalization_6 {BatchNor (None, 12389, 128) 512 convld 6[0][0]
max_poolingld 1 (MaxPoolinglD) (None, 1, 128) 0 batch normalization 1[0]1[0]
max poolingld 2 (MaxPoolinglD) (None, 1, 126) 0 batch normalization 2[0][0]
max_poolingld 3 (MaxPoolinglD) (None, 1, 128) 0 batch normalization 3[0][0]
max_poolingld 4 (MaxPoolinglD) (None, 1, 128) 0 batch normalization 4[0]1[0]
max poolingld 5 (MaxPoolinglD) (None, 1, 128) 0 batch normalization 5[0][0]
max_poolingld € (MaxPoolinglD) (None, 1, 128) 0 batch normalization 6[0][0]
concatenate 1 (Concatenate) (None, 3, 128) 0 max_poolinqld_l[ﬂ][ﬂ]

max_poolingld 2[0][0]
max_poolingld 3[0][0]

concatenate 2 (Concatenate) (None, 3, 128) 0 max_poolinqld_4[0][0]
max poolingld 5[0][0]
max_poolingld 6[0][0]

concatenate 3 (Concatenate) (None, &, 128) 0 concatenate 1[0][0]
concatenate 2[0][0]

flatten 1 (Flatten) (None, 768) 0 concatenate 3[0]1[0]
dropout_1 (Dropout) (None, 768) 0 flatten 1[0][0]
dense 1 (Dense) (None, 28940) 22254860 dropout_1[07[0]

Total params: 82,205,500
Trainable params: 22,
Non-trainable params: 59,333,936

Figure A.2: System Generated Summary for TextCNN Model on FullText (Small) Dataset

70 CHAPTER A. SUMMARIES OF THE MODELS FOR TEXTCNN

Layer (type) Output Shape Param # Connected to

input_1 (InputLayer) (None, 1461) 0

embedding_1 (Embedding) (None, 1461, 200) 37738800 input_1[e] [@]

convld_1 (ConvilD) (None, 1459, 128) 76928 embedding_1[0] [0]

convld_2 (ConvilD) (None, 1458, 128) 102528 embedding_1[0] [0]

convld_3 (ConvilD) (None, 1457, 128) 128128 embedding_1[0@] [0]
batch_normalization_1 (BatchNor (None, 1459, 128) 512 convld_1[@] [@]
batch_normalization_2 (BatchNor (None, 1458, 128) 512 convld_2[e][e]
batch_normalization_3 (BatchNor (None, 1457, 128) 512 convld_3[@] [@]
max_poolingld_1 (MaxPoolinglD) (None, 1, 128) 0 batch_normalization_1[0][0]
max_poolingld_2 (MaxPoolinglD) (None, 1, 128) %} batch_normalization_2[0][0]
max_poolingld_3 (MaxPoolinglD) (None, 1, 128) 0 batch_normalization_3[0][0]
concatenate_1 (Concatenate) (None, 3, 128) %} max_poolingld_1[0] [@]

max_poolingld_2[0] [0]
max_poolingld_3[0][@]

flatten_1 (Flatten) (None, 384) 0 concatenate_1[0] [@]
dropout_1 (Dropout) (None, 384) [} flatten_11[0] [@]
dense_1 (Dense) (None, 2894Q) 11141900 dropout_1[0] [0]

Total params: 49,189,820
Trainable params: 11,450,252
Non-trainable params: 37,739,568

Figure A.3: System Generated Summary for TextCNN Model on AbstractAndTitle (Large)
Dataset

71

Layer (type) ocutput Shape Param # Connected to

input_l (InputLayer) (None, 1542) 0

input_2 {(InputLayer) (None, 57340) 0

embedding 1 (Embedding) (None, 1342, 200) 134000000 input_1[01([0]

embedding 2 (Embedding) (None, 57340, 200) 134000000 input_2[0]1[0]

convld 1 (ConvlD) (None, 1540, 128) 76928 embedding_l[ﬂ][ﬂ]

convld 2 (ConvlD) (None, 153%, 128) 102528 embedding 1[0][0]

convld 3 (ConvlD) (None, 1538, 128) 128128 embedding_l[ﬂ][ﬂ]

convld 4 (ConvlD) (None, 57338, 128) T6928 embedding_2[0][0]

convld 5 (ConvlD) (None, 57337, 128) 102528 embedding_Z[G][O]

convld 6 (ConvlD) (None, 5733¢, 128) 128128 embedding_2[0][0]

batch normalization 1 (BatchNor (None, 1540, 128) 512 convld 1[01[0]

batch normalization 2 (BatchNor (None, 512 convld 2[0][0]

batch normalization 3 (BatchNor (None, 1538, 128) 512 convld 3[0][0]

batch normalization 4 (BatchNor (None, 57338, 128) 512 convld 4[0][0]

batch_normalization_S (BatchNor (None, 57337, 128) 512 convld 5[0][0]

batch normalization 6 (BatchNor (None, 57336, 128) 312 convld &6[0][0]

max_poolingld 1 (MaxPoolinglD) (None, 1, 120) 0 batch normalization 1[0][0]

max _poolingld 2 (MaxPoolinglD) (None, 1, 128) 0 batch normalization 2[0][0]

max_poolingld 3 (MaxPoolinglD) (None, 1, 128) 0 batch normalization 3[0][0]

max poolingld 4 (MaxPoolinglD) (None, 1, 128) batch normalization 4[0][0]

max_poolingld 5 (MaxPoolinglD) (None, 1, 128) batch normalization 5[0][0]

max poolingld 6 (MaxPoolinglD) (None, 1, 128) batch normalization 6[0][0]

concatenate 1 (Concatenate) (None, 3, 128) max_poolingld_l[ﬂ][ﬂ]
max poolingld 2[0][0]
max_poolingld 3[0][0]

concatenate 2 (Concatenate) (None, 3, 128) max_poolingld_4[0][0]
max_poolingld 5[0][0]
max_poolingld 6[0][0]

concatenate 3 (Concatenate) {None, &, 128) concatenate 1[0][0]
concatenate 2[0][0]

flatten 1 (Flatten) (None, 76€8) concatenate 3[0][0]

dropout_1 (Dropout) {(Ncne, 768) flatten 1[0][0]

dense_1 (Dense) (None, 285940) 2225486 dropout_1[0][0]

Total params: 250

Trainable params: 22,871,564

Non-trainable params: 268,001,536

Figure A.4: System Generated Summary for TextCNN Model on FullText (Large) Dataset

Appendix B

Summaries of the Models for XML-CNN

In the following, we provide system generated model summaries for XML-CNN described in
Chapter 4. The four summaries are XML-CNN models training on AbstractAndTitle (Small),
FullText (Small), AbstractAndTitle (Large) and FullText (Large) respectively.

72

73

Layer (type) Output Shape Param # Connected to

input_1 (InputLayer) (None, 742) (%]

embedding_1 (Embedding) (None, 742, 200) 12601000 input_1[@] [0]

reshape_1 (Reshape) (None, 742, 200, 1) @ embedding_1[0] [@]

conv2d_1 (Conv2D) (None, 1, 199, 128) 190080 reshape_11[0]1[@]

conv2d_2 (Conv2D) (None, 1, 197, 128) 380032 reshape_11[0][0]

conv2d_3 (Conv2D) (None, 1, 193, 128) 759936 reshape_11[0]1[0]

batch_normalization_1 (BatchNor (None, 1, 199, 128) 512 conv2d_1[0] [0]

batch_normalization_2 (BatchNor (None, 1, 197, 128) 512 conv2d_2[0e] [0]

batch_normalization_3 (BatchNor (None, 1, 193, 128) 512 conv2d_3[0] [0]

max_pooling2d_1 (MaxPooling2D) (None, 1, 19, 128) @ batch_normalization_1[0]1[@]

max_pooling2d_2 (MaxPooling2D) (None, 1, 19, 128) @ batch_normalization_2[0] [@]

max_pooling2d_3 (MaxPooling2D) (None, 1, 19, 128) @ batch_normalization_3[0] [0]

concatenate_1 (Concatenate) (None, 1, 57, 128) @ max_pooling2d_1[@][@]
max_pooling2d_2[0][@]
max_pooling2d_3[0] [@]

flatten_1 (Flatten) (None, 7296) %] concatenate_1[0] [@]

dense_1 (Dense) (None, 512) 3736064 flatten_1[0] [0]

dropout_1 (Dropout) (None, 512) %] dense_1[0] [0]

dense_2 (Dense) (None, 28940) 14846220 dropout_1[0] [@]

Total params: 32,514,868
Trainable params: 19,913,100
Non-trainable params: 12,601,768

Figure B.1: System Generated Summary for XML-CNN Model on AbstractAndTitle (Small)

Dataset

74 CHAPTER B. SUMMARIES OF THE MODELS FOR XML-CNN

Layer (type) cutput Shape Param # Connected to
input_l {InputlLayer) (None, 742) 0
input_2 (InputlLayer) (None, 14840) 0
embedding 1 (Embedding) (None, 742, 200) 29666200 input_1[0]1[0]
embedding 2 (Embedding) (None, 14840, 200) 29666200 input_2[0][0]
reshape 1 (Reshape) (None, 742, 200, 1) 0O embedding_l[ﬂ][ﬁ]
reshape 2 (Reshape) (None, 14840, 200, 1 0 embedding 2[0] [0]
conv2d 1 (ConvZD) (None, 1, 195, 128) 150080 reshape 1[01[0]
convZd_2 (ConvZD) (None, 1, 197, 128) 380032 reshape 1[0]1[0]
conv2d 3 (ConvZD) (None, 1, 193, 128) 759936 reshape 1[01[0]
conv2d 4 (ConviD) (None, 1, 19%, 128) 3799168 reshape 2[01[0]
conv2d_5 (ConvZD) (None, 1, 197, 128) 7598208 reshape 2[01[0]
conv2d 6 (ConviD) (None, 1, 193, 128) 15196288 reshape 2[01[0]
batch_normalization_l (BatchNor (None, 1, 198, 128) 512 conva2d 1[0]1[0]
batch_normalization_2 (BatchNor (None, 1, 197, 128) 512 conv2d 2[0][0]
batch_normalization_3 (BatchNor (None, 1, 193, 128) 512 conva2d 3[0]1[0]
batch_normalization_4 (BatchNor (None, 1, 19%, 128) 512 conv2d 4[0][0]
batch_normalization_5 (BatchNor (MNone, 1, 197, 128) 512 convad S[0][0]
batchinormalizationiﬁ (BatchNor (None, 1, 193, 128) 512 conv2d 6[0][0]
max pooling2d 1 (MaxPooling2D) (None, 1, 1%, 128) 0 batch normalization 1[0][0]
max_pooling2d 2 (MaxPooling2D) (None, 1, 1%, 128) (batch normalization 2[0][0]
max pooling2d 3 (MaxPooling2D) (None, 1, 1%, 128) 0 batch normalization 3[0][0]
max_pooling2d 4 (MaxPooling2D) (None, 1, 19, 128) (batch normalization 4[0][0]
max pooling2d 5 (MaxPooling2D) (None, 1, 1%, 128) (batch normalization 5[0][0]
max_pooling2d & (MaxPooling2D) (None, 1, 19, 128) (batch normalization 6[0][0]
concatenate 1 (Concatenate) {(None, 1, 357, 128) 0 max_pooling2d_l[0][0]
max _pooling2d 2[0][0]
max_pooling2d 3[0]1[0]
concatenate 2 (Concatenate) (None, 1, 37, 128) 0 max_poolinq2d_4[0][0]
max _pooling2d 5[0][0]
max_pooling2d 6[0][0]
concatenate 3 (Concatenate) (None, 1, 114, 128) O concatenate 1[0][0]
concatenate 2[0][0]
flatten 1 (Flatten) (None, 14552) 0 concatenate 3[0][0]
dense 1 (Dense) (None, 512) 7471616 flatten 1[0]1[0]
dropout_1 (Dropout) (None, 512) 0 dense 1[01[0]
dense 2 (Dense) {None, 28940) 14846220 dropout_1[0][0]

Total params: 109
Trainable params: y e
Non-trainable params:

Figure B.2: System Generated Summary for XML-CNN Model on FullText (Small) Dataset

75

Layer (type) Output Shape Param # Connected to

input_1 (InputLayer) (None, 1542) 0

embedding_1 (Embedding) (None, 1542, 200) 37738800 input_1[e][e]

reshape_1 (Reshape) (None, 1542, 200, 1) © embedding_1[@] [@]

conv2d_1 (Conv2D) (None, 1, 199, 128) 394880 reshape_1[0] [@]

conv2d_2 (Conv2D) (None, 1, 197, 128) 789632 reshape_1[0] [@]

conv2d_3 (Conv2D) (None, 1, 193, 128) 1579136 reshape_1[0] [0]
batch_normalization_1 (BatchNor (None, 1, 199, 128) 512 conv2d_1[0] [@]
batch_normalization_2 (BatchNor (None, 1, 197, 128) 512 conv2d_2[0] [0]
batch_normalization_3 (BatchNor (None, 1, 193, 128) 512 conv2d_3[0] [0]
max_pooling2d_1 (MaxPooling2D) (None, 1, 19, 128) @ batch_normalization_1[0] [@]
max_pooling2d_2 (MaxPooling2D) (None, 1, 19, 128) @ batch_normalization_2[0] [@]
max_pooling2d_3 (MaxPooling2D) (None, 1, 19, 128) @ batch_normalization_3[@] [0]
concatenate_1 (Concatenate) (None, 1, 57, 128) © max_pooling2d_1[@][0]

max_pooling2d_2[@][0]
max_pooling2d_3[@][0]

flatten_1 (Flatten) (None, 7296) (%] concatenate_1[0] [@]
dense_1 (Dense) (None, 512) 3736064 flatten_1[0] [0]
dropout_1 (Dropout) (None, 512) 0 dense_1[0] [@]
dense_2 (Dense) (None, 28940) 14846220 dropout_11[@] [@]

Total params: 59,086,268
Trainable params: 21,346,700
Non-trainable params: 37,739,568

Figure B.3: System Generated Summary for XML-CNN Model on AbstractAndTitle (Large)
Dataset

76 CHAPTER B. SUMMARIES OF THE MODELS FOR XML-CNN
Layer (type) output Shape Param # Connected to

input_1 (Inputlayer) (None, 1542) 0

input_2 (InputLayer) (None, 57340) 0

embedding 1 (Embedding) (None, 1542, 200) 124000000 input 1[0][0]

embedding 2 (Embedding) (None, 57340, 200) 134000000 input_2[0]1[0]

reshape 1 (Reshape) {None, 1542, 200, 1) I embedding 1[0][0]

reshape 2 (Reshape) (None, 57340, 200, 1 I embedding 2[0] [0]

conv2d 1 (ConvaD) (None, 1, 199, 128) 39488(reshape 1[0][0]

conv2d 2 (Conv2D) (None, 1, 157, 128) 785632 reshape 1[0][0]

conv2d 3 (Conv2D) {(None, 1, 193, 128) 157%136 reshape 1[0][0]
conv2d 4 (ConvaD) (None, 1, 19%, 128) 1467%168 reshape 2[0][0]
conv2d 5 (Conv2D) {(None, 1, 197, 128) 25358208 reshape 2[0][0]
conv2d € (ConvaD) (None, 1, 193, 128) 58716288 reshape 2[0]1[0]
batch normalization 1 (BatchNor (None, 1, 15%, 128) 512 conv2d 1[0][0]
batch normalization 2 (BatchNor (None, 1, 157, 128) 512 convad 2[0][0]
batch normalization 3 (BatchNor (None, 1, 193, 128) 512 convad 3[0][0]
batch_normalization_4 (BatchNor (None, 1, 15%, 128) 512 conv2d 4[0][0]
batch_normalization_S (BatchNor (None, 1, 187, 128) 512 conv2d 5[0][0]
batch_normalization_6 (BatchNor (None, 1, 153, 128) 53512 conv2d 6[0][0]
max pooling2d 1 (MaxPooling2D) (None, 1, 15, 128) i batch normalization 1[0][0]
max _pooling2d 2 (MaxPooling2D) (None, 1, 19, 128) batch normalization 2[0][0]
max pooling2d 3 (MaxPooling2D) (None, 1, 15, 128) batch normalization 3[0][0]
max_pooling2d 4 (MaxPooling2D) {None, 1, 19, 128) batch normalization 4[0][0]
max_pooling2d 5 (MaxPooling2D) (None, 1, 19, 128) batch normalization 5[0][0]
max pooling2d 6 (MaxPooling2D) (None, 1, 1%, 128) batch normalization 6[0][0]
concatenate 1 (Concatenate) (None, 1, 37, 128) max_pooling2d 1[0]1[0]
max_pooling2d 2[0]1[0]
max pooling2d 3[0][0]
concatenate 2 (Concatenate) (None, 1, 57, 128) max_poolinq2d_4[0][0]
max pooling2d 5[0]([0]
max_pooling2d 6[0]1[0]
concatenate 3 (Concatenate) (None, 1, 114, 128) concatenate 1[0][0]
concatenate 2[0][0]
flatten_1 (Flatten) (None, 143592) concatenate_ 3[0][0]
dense 1 (Dense) {None, 512) 74716le flatten 1[0][0]
dropout_1 (Dropout) (None, 512) dense 1[0][0]
dense 2 (Dense) (None, 28540) 145846220 dropout_1[0][0]

Total params:
Trainable params: 127,
Non-trainable params:

Figure B.4: System Generated Summary for XML-CNN Model on FullText (Large) Dataset

Appendix C

Summaries of the Models for biLSTM

In the following, we provide system generated model summaries for biLSTM described in
Chapter 4. The four summaries are TextCNN models training on AbstractAndTitle (Small),
FullText (Small), AbstractAndTitle (Large) and FullText (Large) respectively.

77

78 CHAPTER C. SUMMARIES OF THE MODELS FOR BILSTM

Layer (type) Output Shape Param #
input_1 (InputLayer) (None, 694) 0
embedding_1 (Embedding) (None, 694, 200) 12601000
bidirectional_1 (Bidirection (None, 400) 641600
dense_1 (Dense) (None, 28940) 11604940

Total params: 24,847,540
Trainable params: 12,246,540
Non-trainable params: 12,601,000

Figure C.1: System Generated Summary for biLSTM Model on AbstractAndTitle (Small)
Dataset

Layer (type) Output Shape Param # Connected to

input_1 (InputLayer) (None, 742) 0

input_2 (InputLayer) (None, 12393) 0

embedding_1 (Embedding) (None, 742, 200) 29666200 input_1[0][0]
embedding_2 (Embedding) (None, 12393, 200) 29666200 input_2[0] [@]
bidirectional 1 (Bidirectional) (None, 400) 641600 embedding_1[0] [@]
bidirectional 2 (Bidirectional) (None, 400) 641600 embedding_2[0] [@]
concatenate_1 (Concatenate) (None, 800) 0 bidirectional_11[@][0]

bidirectional_2[@][0]

dense_1 (Dense) (None, 28940) 23180940 concatenate_1[0][0]

Total params: 83,796,540
Trainable params: 24,464,140
Non-trainable params: 59,332,400

Figure C.2: System Generated Summary for biLSTM Model on FullText (Small) Dataset

79

Layer (type) Output Shape Param #
input_1 (InputLayer) (None, 1461) 0
embedding_1 (Embedding) (None, 1461, 200) 37738800
bidirectional_1 (Bidirection (None, 400) 641600
dense_1 (Dense) (None, 28940) 11604940

Total params: 49,985,340
Trainable params: 12,246,540
Non-trainable params: 37,738,800

Figure C.3: System Generated Summary for biLSTM Model on AbstractAndTitle (Large)
Dataset

Appendix D

Summaries of the Models for convLSTM

In the following, we provide system generated model summaries for convLSTM described
in Chapter 4. The four summaries are TextCNN models training on AbstractAndTitle (Small),
FullText (Small), AbstractAndTitle (Large) and FullText (Large) respectively.

80

81

Layer (type) Output Shape Param # Connected to
input_1 (InputLayer) (None, 742) 0

embedding_1 (Embedding) (None, 742, 200) 12601000 input_1[0] [@]
convld_1 (Convi1D) (None, 740, 128) 76928 embedding_1[0] [0]
convld_2 (Conv1D) (None, 739, 128) 102528 embedding_1[0] [0]
convld_3 (Convi1D) (None, 738, 128) 128128 embedding_1[0] [0]
1stm_1 (LSTM) (None, 128) 131584 convld_1[e] [e]
1stm_2 (LSTM) (None, 128) 131584 convld_2[0] [0]
1stm_3 (LSTM) (None, 128) 131584 convld_3[@] [e]
lambda_1 (Lambda) (None, 3, 128) %} lstm_1[0]1[0]

lstm_2[@] [0]
lstm_3[0] [0]

lambda_2 (Lambda) (None, 3, 128) %] lambda_1[0@] [0]
flatten_1 (Flatten) (None, 384) %} lambda_2[0] [@]
dense_1 (Dense) (None, 256) 98560 flatten_1[0] [@]
dropout_1 (Dropout) (None, 256) %] dense_1[0] [@]

dense_2 (Dense) (None, 28940) 7437580 dropout_1[0][0]

Total params: 20,839,476
Trainable params: 8,238,476
Non-trainable params: 12,601,000

Figure D.1: System Generated Summary for convLSTM Model on AbstractAndTitle (Small)
Dataset

82 CHAPTER D. SUMMARIES OF THE MODELS FOR CONVLSTM

Layer (type) Output Shape Param # Connected to
input_1 (Inputlayer) (None, 742) 0

input_2 (InputLayer) (None, 12393) 0

embedding 1 (Embedding) (None, 742, 200) 29666200 input_1[0][0]
embedding 2 (Embedding) {None, 12393, 200) 20666200 input_2[0][0]
convld 1 (ConvlD) {None, 740, 128) 76528 embedding 1[0][0]
convld 2 (ConvlD) {None, 739, 128) 102528 embedding 1[0][0]
convld 3 (ConvlD) {None, 738, 128) 128128 embedding 1[0][0]
convld 4 (ConvlD) (None, 12351, 128) 76928 embedding 2[0][0]
convld 5 (ConvlD) {None, 12350, 128) 102528 embedding 2[0][0]
convld & (ConvlD) {None, 12389, 128) 128128 embedding 2[0][0]
lstm 1 (LSTM) (None, 128) 131584 convld 1[0][0]
lstm 2 (LSTM) {None, 128) 131584 convld 2[0][0]
lstm 3 (LSTM) {None, 128) 131584 convld 3[0][0]
lstm 4 (LSTM) (None, 128) 131584 convld 4[0][0]
1stm 5 (LSTM) {None, 128) 131584 convld 5[0][0]
1stm & (LSTM) {None, 128) 131584 convld &[0][0]
lambda 1 (Lambda) (None, 3, 12B8) 0 1stm 1[0][0]

1stm 2[0][0]
1stm 3[0][0]

lambda 3 (Lambda) (None, 3, 128) 0 1stm 4[0][0]
1stm 5[0][0]
1stm 6[0][0]
lambda 2 (Lambda) (None, 3, 128) 0 lambda 1[0][0]
lambda 4 (Lambda) (None, 3, 128) 0 lambda 3[0][0]
flatten 1 (Flatten) (None, 284) 0 lambda 2[0][0]
flatten 2 (Flatten) (None, 284) 0 lambda 4[0][0]
concatenate 1 (Concatenate) (None, 7€8) 0 flatten 1[0][0]
flatten 2[01[0]
dense_1 (Dense) (None, 256) 196664 concatenate 1[07[0]
dropout_1 (Dropout) (None, 256) 0 dense_1[0]1[0]
dense_2 (Dense) (None, 28540) 7437580 dropout_1[0]110]

Total params: 68,371,516
Trainable params: 9,039,11¢
Non-trainable params: 59,332,400

Figure D.2: System Generated Summary for convLSTM Model on FullText (Small) Dataset

83

Layer (type) Output Shape Param # Connected to
input_1 (InputLayer) (None, 1542) 0
embedding_1 (Embedding) (None, 1542, 200) 37738800 input_1[e] [@]
convld_1 (ConvlD) (None, 1540, 128) 76928 embedding_1[0] [@]
convld_2 (ConvilD) (None, 1539, 128) 102528 embedding_11[0] [@]
convld_3 (ConvilD) (None, 1538, 128) 128128 embedding_1[0@] [0]
lstm_1 (LSTM) (None, 128) 131584 convld_1[e] [@]
lstm_2 (LSTM) (None, 128) 131584 convld_2[@] [e]
lstm_3 (LSTM) (None, 128) 131584 convild_3[@] [@]
lambda_1 (Lambda) (None, 3, 128) 0 1stm_1[0][@]
stm_2[0][0]
lstm_3[0][0]
lambda_2 (Lambda) (None, 3, 128) 0 lambda_1[0] [@]
flatten_1 (Flatten) (None, 384) %] lambda_2[@] [@]
dense_1 (Dense) (None, 256) 98560 flatten_1[0][0]
dropout_1 (Dropout) (None, 256) %] dense_1[0] [0]
dense_2 (Dense) (None, 28940) 7437580 dropout_1[0] [@]

Total params: 45,977,276
Trainable params: 8,238,476
Non-trainable params: 37,738,800

Figure D.3: System Generated Summary for convLSTM Model on AbstractAndTitle (Large)

Dataset

Curriculum Vitae

Name: Xindi Wang

Post-Secondary The University of British Columbia
Education and Vancouver, BC
Degrees: 2012-2015 B.Sc.

The University of Western Ontario
London, ON
2017-2019 M.Sc.

Related Work Teaching Assistant and Research Assistant
Experience: The University of Western Ontario
2017 - 2019

Publications:

X. Wang, & R. Mercer. Incorporating Figure Captions and Descriptive Text in MeSH Term
Indexing. Proceedings of the BioNLP 2019 workshop, Association for Computational Lin-

guistics.

84

	Incorporating Figure Captions and Descriptive Text into Mesh Term Indexing: A Deep Learning Approach
	Recommended Citation

	Abstract
	Summary for Lay Audience
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Background
	Research Question
	Text Classification
	Multi-label Classification
	Medical Subject Headings Indexing

	Contributions
	Structure of this document

	Related Work
	Traditional Machine Learning Approaches in Text Classification
	Deep Learning Approaches in Text Classification
	Convolutional Neural Networks in Text Classifcation
	Recurrent Neural Networks in Text Classification

	Related Work in MeSH Indexing

	Theoretical Framework
	Text Representations
	Machine Learning Classifiers
	Artificial Neural Networks
	Feed-forward Neural Networks
	Convolutional Neural Networks
	Recurrent Neural Networks

	Attention Mechanism
	Self-attention Mechanisms

	Model Evaluation Techniques
	Bipartition-base Evaluation
	Ranking-based Evaluation
	Hierarchical Evaluation

	Automatic Medical Subject Heading Indexing
	Problem Statement
	Classifiers
	Multichannel TextCNN
	Multichannel XMLCNN
	Multichannel biLSTM
	Multichannel Attention Based convLSTM

	Setup
	Datasets
	Data Pre-processing
	Generate Word Embeddings
	Experiment Setup and Model Hyperparameters

	Experiments
	Evaluation Metrics
	Results

	Conclusions
	Conclusions
	Future Work

	Bibliography
	Summaries of the Models for TextCNN
	Summaries of the Models for XML-CNN
	Summaries of the Models for biLSTM
	Summaries of the Models for convLSTM
	Curriculum Vitae

