
Western University Western University

Scholarship@Western Scholarship@Western

Electronic Thesis and Dissertation Repository

8-23-2019 11:30 AM

A New Approach to Sequence Local Alignment: Normalization A New Approach to Sequence Local Alignment: Normalization

with Concave Functions with Concave Functions

Qiang Zhou, The University of Western Ontario

Supervisor: Kaizhong Zhang, The University of Western Ontario

A thesis submitted in partial fulfillment of the requirements for the Master of Science degree in

Computer Science

© Qiang Zhou 2019

Follow this and additional works at: https://ir.lib.uwo.ca/etd

 Part of the Theory and Algorithms Commons

Recommended Citation Recommended Citation
Zhou, Qiang, "A New Approach to Sequence Local Alignment: Normalization with Concave Functions"
(2019). Electronic Thesis and Dissertation Repository. 6470.
https://ir.lib.uwo.ca/etd/6470

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F6470&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=ir.lib.uwo.ca%2Fetd%2F6470&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/6470?utm_source=ir.lib.uwo.ca%2Fetd%2F6470&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

Abstract
Sequence local alignment is to find the most similar segment pair from the two input

sequences. The Smith-Waterman algorithm is one of the essential techniques in sequence local
alignment, especially in computational molecular biology. This algorithm produces the optimal
sequence local alignment, which is defined to be the segment pair with the highest similarity
score as long as the similarity metric used is additive. However, the solution obtained by the
Smith-Waterman algorithm may not be ideal in some cases. The segment pair produced by the
algorithm may contains pieces of non-conserved regions between highly conserved regions as
long as the whole segment pair has the highest similarity score.

In order to obtain consistently similar segments between two sequences, the concept of
using segment lengths to normalize the corresponding local alignment similarity score was
proposed. In this thesis, some existing algorithms for normalized sequence alignment will be
discussed. We first generalized the concept of normalization with segment length to normalization
with the normalized similarity metric. Then, we proposed a new algorithm to compute the
optimal sequence local alignment with normalized similarity metric. Given a set of normalization
(concave) functions, our algorithm can e�ciently compute all the optimal sequence local
alignments for every normalization function all together.

Keywords: Protein sequence, sequence local alignment, similarity metric, normalized
similarity metric, red-black tree, dynamic programming, phylogenetic tree.

ii

Lay Summary
Sequence comparison tools are widely used in many areas, such as the studies regarding

DNA or protein sequences. The target is to find the most similar regions between any two
sequences. Usually, an optimal similar region should consist of identical parts and some
dissimilar fragments. Many existing applications may only focus on including identical regions
as many as possible; however, the dissimilar fragments also need to be considered to measure
the similarity of two subsequences. Our research provides a new approach to find the consistently
similar region of input sequences, based on a normalized similarity metric.

A similarity metric will be applied to measure the similarity for each element pair from
input sequences, and a score will be given. Typically, people measure the similarity of two
subsequences by summing up the score of each element pair, and the solution should have the
highest similarity score. However, besides the similarity score, our method also considered
the segment scale to measure the similarity. A high score segment that contains a large poor
fragment may not be ideal in our method. The solution found by our method is meaningful
because there will not be any relatively large dissimilar fragments that exist in our solution.

iii

Acknowledgements

First of all, I would like to express my sincere gratitude to my supervisor Dr. Kaizhong
Zhang for his guidance of my study and relative research, for his patience and immense
knowledge. It is my great honor to work for Dr. Kaizhong Zhang, and he is the professor
whom I respect the most in my life.

Secondly, I would like to thank my parents and my wife Yiwen Hao sincerely. I could not
finish my studies without their support and understanding.

Last but not least, I thank the friends and lab mates who gave me valuable suggestions and
help since I stepped in Computer Science.

iv

Contents

Abstract ii

Lay Summary iii

Acknowlegements iii

List of Figures vii

List of Tables x

1 Introduction 1

2 Background 5
2.1 Sequence Global Alignment . 5
2.2 Sequence Local Alignment . 6
2.3 Smith-Waterman Algorithm . 7
2.4 Similarity Metric . 10
2.5 Distance Metric . 12
2.6 Similarity and Distance Metric Normalization 13
2.7 Neighbor-joining and Phylogenetic Tree . 15
2.8 Red-black Tree . 17

3 Literature Review 19
3.1 Normalized Editing Distance . 19
3.2 An improvement of Normalized Editing Distance 23
3.3 Normalized Local Similarity Score . 27
3.4 Similarity Metric and Normalized Similarity Metric 28
3.5 BLOSUM . 35

4 A New Algorithm for Normalized Sequence Local Alignment 38
4.1 A Simple Algorithm for finding Normalized Sequence Local Alignment 39
4.2 Main Idea of New Algorithm . 40
4.3 Algorithm Design . 42

4.3.1 Strategy of Redundant Alignments Rejection 42
4.3.2 Data Structure . 46
4.3.3 Strategy of Merging and Sorting Candidates 47
4.3.4 Red-Black Tree . 51

v

4.4 Process Stored Data by Applying Normalized Similarity Metric 54
4.5 Time and Space Complexity Analysis . 55
4.6 Corresponding Algorithms . 55

5 Experiment 59
5.1 Protein Sequences . 59
5.2 Datasets . 60
5.3 Protein sequence local alignment . 63
5.4 Build Phylogenetic Tree by Neighbor Joining Method 63
5.5 Experiment Result . 66
5.6 Evaluation . 67

6 Conclusion 70

Bibliography 72

Curriculum Vitae 73

vi

List of Figures

1.1 X = ”ACAGTC” and Y = AGATCT , there are many ways to align these two
sequences, the optimal solution is with most matches and as fewer mismatches
as possible. 2

2.1 A matrix H is created to split sequence alignment problem into smaller problems.
Suppose we have sequences A = a1a2...an and B = b1b2...bm, where 0 < i  n
and 0 < j  m. At any position (i, j) during dynamic programming, the
alignment path can come from (i � 1, j), (i, j � 1) and (i � 1, j � 1). All the
candidates will be extended to contain ai and bj, and the similarity scores or
distances will be accumulated, the one with higher similarity degree will be
kept for next dynamic programming steps. 6

2.2 Suppose the similarity scores for regions AB, BC and CD are 100, �120 and
110 respectively. If negative scores can be stored in H, at position C the
similarity score will be �20, and 90 for position D; therefore, the optimal local
alignment would be region AB, since it is the highest score. However, we know
region CD is a better solution with a higher score. Smith-Waterman solved this
problem by setting all negative scores to 0 (position C will store value 0), then
the similarity score for CD can be obtained correctly. 8

2.3 For any two sequences A = a1a2...an and B = b1b2...bm, suppose we know
there are two alignment PR and QR ending at R with similarity score 30 and
20 respectively, and the alignment RS start from R has score 30, then alignment
PS always provide higher additive score than QS . In this example, the cumulative
score for PS is 60, but 50 for QS . Therefore, Storing the highest score alignment
at each Hi, j is enough for Smith-Waterman to find optimal alignment. 10

2.4 Mosaic e↵ect. The local alignment which is found by the Smith-Waterman
algorithm has a score 120, and the scale is 300 ⇥ 300. The whole alignment is
composed of three segments, two with score 80 and scale 100 ⇥ 100, the other
one with score �40 and scale 100 ⇥ 100 as well. For some applications, only
the consistently similar regions are required, such as the two regions with score
80, so that the internal segments with score �40 is useless, but Smith-Waterman
will not decompose them into three pieces. 11

vii

2.5 Shadow e↵ect without overlapping. There is another alignment with score
80, which is lower than 120, but its scale is much smaller than the algorithm
result. That means the low score alignment may have much higher similarity
degree than the ”optimal” one; however, Smith-Waterman only targets to find
the alignment with the highest similarity score, so another biologically meaningful
region will be discarded. 12

2.6 Shadow e↵ect with overlapping. Smith-Waterman will take the alignment
path which can obtain a higher similarity score 120, rather than a much shorter
path with score 80. 13

2.7 This is an example of phylogenetic tree built by complete mtDNA sequences
using frequency of k-mers [13]. 16

2.8 (a) is the original distance matrix obtained from sequences comparison; (b) is
the Q values calculated by equation 2.3 based on (a), for example, Q(a, b) =
(4 � 2) ⇥ 6 � (6 + 6 + 5) � (6 + 7 + 6) = �24; (c) is the distance matrix after
joining, and d(u, c) and d(u, d) are obtained by equations 2.4, 2.5 and 2.6. . . . 17

3.1 (a) shows the weight function of each pair. (b) shows the result of post-
normailzation. The path with minimum weight has been obtained firstly with
value 6, and Ŵ(P) is equal to 1.5 since L(P) is 4; however, it is not the path
with actual minimum normalized distance. The ideal path is shown in (c), with
normalized distance 1.33 [14]. 20

3.2 The editing graph GX,Y for the strings X = aba and Y = bab. [2] 23
3.3 a + c is the distance of X and Y , and b is the similarity. 32
3.4 Example of concave functions. L1, L2 and k are constants, where L > 0 and k � 1. 33

4.1 Any two alignments ending at the same position can have two di↵erent shapes
based on their segment lengths. In 4.1a, neither of the alignment shapes fully
contains the other one. Extending both alignments to C1 and C2 could give the
opposite result, so either of them can be rejected at position C. In 4.1b, the
subsequences of alignment Q fully contain the segments of P. If the similarity
score of Q is lower, then no matter how the alignment extends, Q will not give
better solution so that it can be discarded at position C. 44

4.2 The general shapes of alignments ending at position (i, j). Suppose there are
three candidates O, P and Q ending at (i, j), then the segment lengths for P are
xo and yo. Also, xp and yp for P, xq, yq for Q. 49

5.1 Human mitochondrial DNA gene map [5]. 61
5.2 An example of fasta file, the first line is file description, and the rest lines are

the sequence of the particular protein which is inside the square bracket at the
end of the description. 61

5.3 Rounded BLOSUM62 table, obtained from NCBI. 62
5.4 Two sequences of protein ATP6, one is from human and the other one is from

cat. 63

viii

5.5 By applying multiple concave functions, the solutions have di↵erent similarity
degrees. The solution generated by the Smith-Waterman algorithm is identical
with the original sequences. 64

5.6 For alignment of sequence X and Y , we can get L1 and L2 length, but if changing
sequence Y to Z, new L1 will be obtained corresponding to the new optimal
alignment. 65

5.7 Phylogenetic tree of 20 mammals, the protein sequences were trimmed by the
new approach. and the distances were used by neighbor joining are normalized.
Similarity metric is BLOSUM62. 67

5.8 This Phylogenetic tree used the trimmed protein sequences which were generated
by Smith-Waterman Algorithm, and the distances used by neighbor joining
were not normalized. 68

ix

List of Tables

3.1 The weight function which makes post-normalization fail triangular inequality. 21

5.1 amino acids table. 60

x

Chapter 1

Introduction

Let ⌃ denote a finite alphabet with space, and ⌃⇤ be the set of all finite-length string over

⌃. For any two elements x and y from ⌃, let s(x, y) denotes the score of aligning x and y, if

they are identical or similar, a positive s(x, y) will be given for a match, which could be two

identical nucleotides for DNA sequences alignment or both identical and very similar amino

acids for protein sequence alignment; meanwhile, s(x, y) could be negative for penalizing a

mismatch (two irrelevant elements) or aligning one alphabet with space. Suppose we have

strings A = a1a2...am and B = b1b2...bn with length m and n respectively. If spaces are inserted

into both A and B to get sequences A0 = a01a02...a
0
L and B0 = b01b02...b

0
L with same length L, and

additive similarity score s(A0, B0) =
PL

i=1 s(a0i , b
0
i) (such a similarity metric is called additive

similarity metric), then sequence alignment is to find A0 and B0, which generate maximum

s(A0, B0). For example, in Figure 1.1, X and Y are two DNA sequences, where X = ”ACAGTC”

and Y = AGATCT . The naive alignment shows in Figure 1.1a is to do nothing and align every

two letters at the same position from X and Y , respectively. On the other hand, spaces can be

inserted to gain more matches, like Figure 1.1b. 1.1b aligned the sequence better, or we say

alignment shown in 1.1b has higher similarity degree (percentage of matches) than 1.1a. In

this thesis, if an element is aligned to space, the pair is called an indel.

Sequence alignment is widely used in bioinformatics and biostatistics, in order to find

the homology or common ancestor through DNA or protein sequences from di↵erent species

or individuals. There are two kinds of sequence alignment for di↵erent purposes: global

1

2 Chapter 1. Introduction

(a) Naive alignment (b) Better alignment solution

Figure 1.1: X = ”ACAGTC” and Y = AGATCT , there are many ways to align these two
sequences, the optimal solution is with most matches and as fewer mismatches as possible.

alignment and local alignment. A global alignment attempts to align each residue in the input

sequences, and the result can show how close the input sequences are. On the other hand, a

local alignment focuses on finding high similarity degree regions of sequences; it is usually

used in aligning protein sequences to find homology.

There are two kinds of metric can be employed to measure how good alignments are:

similarity metric and distance metric. Both of them quantify matches and mismatches of pairs,

then sum up the scores for all aligned pairs to obtain the total distance or similarity score, so that

di↵erent alignments can be compared. The similarity score for any single residue alignment

can be positive or negative, but all scores are no less than 0 for distance metric.

In 1965, Soviet mathematician Vladimir Levenshtein proposed the first algorithm for sequence

alignment all over the world, named Levenshtein Distance. It is a string metric and tries to

minimize the single-character editing number to modify one string to the other [10].

The Needleman Wunsch algorithm was proposed in 1970. Specifically for protein sequences,

by using a similarity metric for each possible amino acid pair alignment and indel, the optimal

global alignment pattern can be obtained by a dynamic programming approach that splits

one massive problem into smaller problems. For each small step, the highest score will be

stored and wait for the next step until reaching the ends for both sequences [15]. It is one of

the earliest applications using dynamic programming to compare biological sequences [1].

Moreover, later on in 1981, in order to find the homologous part between two molecular

sequences, the Smith-Waterman algorithm has been developed to find optimal sequence local

alignment. Comparing to the Needleman Wunsch algorithm, there is no negative score stored

3

during dynamic programming; so whenever a positive score appears, it is the start point of a

local alignment. After all, the position, which contains the highest score, is the endpoint of the

optimal local alignment [17].

Nowadays, Smith-Waterman is a popular algorithm for finding sequence local alignment,

and are widely adopted in many applications; However, similarity score was the only criterion

in this algorithm to select alignment pattern, regardless of the path’s length. The purpose of

this algorithm is to find the highest score alignment which cannot be extended on both sides;

therefore, if a poorly conserved segment is surrounding by well-aligned subsequences, the

algorithm will consider them as one entire alignment, since the aggregate similarity score is

the highest. For example, it has been discussed in [3] that when comparing long genome

sequences, the output given by Smith-Waterman may not be ideal.

Notice that for any two sequences A = a1...an and B = b1...bm, if an alignment is found

with segments A0 = ag...ai and B0 = bh...bj, then we denote the length (element numbers)

of A0 as x-length, and the length of B0 to be y-length. To solve the above problem, both

x � length and y � length should also be considered to evaluate the alignment. For example, if

there are two local aligned patterns X and Y from the same genomic sequences A = a1...an and

B = b1...bm, the scores of X and Y are 100 and 80 respectively, the x � length and y � length

of X are both 120, but alignment Y has both x � length and y � length 50. In this situation,

pattern Y will be discarded by the Smith-Waterman algorithm, but it is obvious that elements

are more consistently similar in pattern Y than in X. There might be small segments in pattern

X, which are not biologically homologous. Due to these, sometimes, pattern B need also be

considered as a meaningful alignment. In 2001, a new algorithm was introduced to normalize

the similarity score in order to measure the degree of sequence similarity [3]. Then in 2016,

normalized similarity metrics and normalized distance metrics have been well-defined in [20],

and it has been proved in the paper that the normalized sequence local similarity proposed in

[3] is not a similarity metric, because it does not satisfy condition 4 of the definition. Details

will be presented in chapter 3.

4 Chapter 1. Introduction

The similarity normalization strategy is to find sequence local alignment with higher similarity

degree than the solution provided by the Smith-Waterman algorithm, but for two fixed input

sequences, the higher the output similarity degree is, the shorter the alignment length will

be. Therefore, for di↵erent applications, di↵erent normalization functions need to be applied

for the same two sequences due to the di↵erent similarity degree requirements. Since most

existing algorithms for finding sequence local alignment are based on dynamic programming

which consumes a significant amount of time, when applying multiple normalization functions,

dynamic programming will be executed multiple times, it leads to massive time consumption.

In order to obtain proper local alignments, we extended the idea of Smith-Waterman to

design a dynamic programming algorithm to find optimal sequence local alignment. We used

the normalized similarity metric family which is constructed by Minkowski type distance

metric to find optimal solutions for di↵erent similarity degree requirements. Also, our algorithm

only needs to run once, no matter how many normalization functions are applied since all useful

data are kept during each dynamic programming run.

In Chapter 2, the specific introduction of the Smith-Waterman algorithm will be given, also

the definition of similarity and distance metric, as well as the normalized metric. We will then

review some existing algorithms for normalization in Chapter 3. Furthermore, Chapter 4 will

introduce our new algorithm specifically, and all core algorithms will be given. Eventually, a

experiment result will be shown in Chapter 5; we constructed a phylogenetic tree based on our

algorithm output.

Chapter 2

Background

Sequence global alignment is a very basic idea to align two sequences and measure the similarity

degree. The idea was extended to find sequence local alignment, and one of the most famous

methods is the Smith-Waterman Algorithm. Later on, people noticed that only similarity score

is not enough to find consistently similar local alignment; therefore, segment lengths has been

considered for normalizing similarity score, aiming to find alignments that are consistently

similar. At the same time, distance and similarity metrics have been well defined. Furthermore,

since our experiment is to build a phylogenetic tree by the neighbor-joining method, a brief

introduction of phylogenetic tree will be given at the end of this chapter.

2.1 Sequence Global Alignment

Sequence global alignment is to find the best arrangement, which can most e�ciently align

two sequences (achieve the highest similarity score or smallest distance). Specifically, every

residue from the compared sequences must be aligned with space or a residue from the other

sequence. Suppose we have sequences A = a1a2...an and B = b1b2...bm, where 0 < i  n

and 0 < j  m. In terms of finding optimal global alignment, dynamic programming split the

problem into subproblems. A matrix shown in Figure 2.1 can be built to keep optimal global

alignment scores for subsequences A0 = a1a2...ai and B0 = b1b2...bj at each position (i, j).

Notice that at the very first row and column, all similarity scores are negative (or positive for

5

6 Chapter 2. Background

using distance metric) except value 0 at (0, 0), because whenever a residue is aligned to space,

a gap penalty � with negative value should be given for using similarity metric. When we add

spaces at the beginning of one sequence, the gap penalties will accumulate from position (0, 0)

to (0,m) and (n, 0). Then at each position (i, j) during dynamic programming, the alignment

candidates from (i � 1, j), (i, j � 1) and (i � 1, j � 1) will be extended by one more residue

alignment, and the highest similarity score will be stored for calculating the rest part of matrix

H. Eventually, the one stored in position (n,m) in matrix H will be the score of optimal global

alignment.

Figure 2.1: A matrix H is created to split sequence alignment problem into smaller problems.
Suppose we have sequences A = a1a2...an and B = b1b2...bm, where 0 < i  n and 0 < j  m.
At any position (i, j) during dynamic programming, the alignment path can come from (i�1, j),
(i, j � 1) and (i � 1, j � 1). All the candidates will be extended to contain ai and bj, and the
similarity scores or distances will be accumulated, the one with higher similarity degree will
be kept for next dynamic programming steps.

2.2 Sequence Local Alignment

Sequence local alignment aims to find the most similar segment pairs from two input sequences.

Di↵erent from global alignments, the x-length and y-length of a local alignment are not fixed,

so an optimal solution can be di↵erent segment pair with di↵erent similarity degrees, in order

2.3. Smith-Waterman Algorithm 7

to satisfy the distinguishing requirements for applications. For instance, the Smith-Waterman

algorithm always finds the segment pair with the highest similarity score, for those applications

which require the optimal local alignment to be the segment pair with maximum score, the

Smith-Waterman algorithm is e↵ectively. However, if the application needs the segment pairs

which are strictly identical, the similarity score of optimal solution could be much smaller than

the alignment found by the Smith-Waterman algorithm, which is more tolerant for mismatches

(mismatches are accepted if they do not lower down similarity score below 0).

2.3 Smith-Waterman Algorithm

In the past half-century, along with more genes and proteins sequences of di↵erent species

that have been decoded, people kept trying to develop new approaches to analyze the vast

amount of sequence data. Before the Smith-Waterman algorithm was proposed, it was a

tough task to find the homologous segments from long sequences, because along with the

evolution, mutations and variations of DNA sequences always make too much noise along with

the alignment. In 1981, based on global alignment approaches, the Smith-Waterman algorithm

which is a dynamic programming algorithm was developed to find a pair of segments, from two

given long sequences, such that there is no other pair of segments with greater similarity score

(homology)” [17]. That means the optimal local alignment cannot be extended on both sides to

achieve a higher similarity score. The Smith-Waterman algorithm also generates matrix H, but

at each position (i, j) in H (we denote it as Hi, j), the data stored is the global alignment score,

which is maximum among all possible subsequence pair ag...ai and bh...bj, where 0 < g  i and

0 < h  j. In this thesis, when we talk about alignment starting from position (g, h) and ending

at (i, j) in H, it means the optimal global alignment for subsequence pair ag...ai and bh...bj.

Notice that in the algorithm of finding global alignment, Hi, j can be negative, but the Smith-

Waterman algorithm does not keep any negative scores in H. If a local alignment contains a

series of mismatches which lower down the similarity score below 0, then the alignment before

8 Chapter 2. Background

or after the mismatches can achieve higher similarity score than the whole piece. Meanwhile,

if g = i and h = j, then that means there is no similar segment pair exists between input

sequences, such as DNA sequences A = ”GGG” and B = ”TTTT”, that means the alignment

which is found by the Smith-Waterman algorithm can be two empty segments with similarity

score 0. Meanwhile, any alignments with negative scores will not be more optimal than score

0; therefore, negative scores will not be stored in H due to these two reasons. When negative

scores are obtained during dynamic programming, the Smith-Waterman algorithm will record

the scores as 0; then the similarity scores are correctly represented the similar regions without

being e↵ected by mismatches before them. An example is given in Figure 2.2.

Figure 2.2: Suppose the similarity scores for regions AB, BC and CD are 100, �120 and 110
respectively. If negative scores can be stored in H, at position C the similarity score will be
�20, and 90 for position D; therefore, the optimal local alignment would be region AB, since
it is the highest score. However, we know region CD is a better solution with a higher score.
Smith-Waterman solved this problem by setting all negative scores to 0 (position C will store
value 0), then the similarity score for CD can be obtained correctly.

The Smith-Waterman algorithm firstly set up matrix H, and initialize all the values in the

first row and column to 0. Then at any position (i, j) during dynamic programming, a gap

penalty is added to the similarity score of the candidates from Hi�1, j and Hi, j�1. And if the

2.3. Smith-Waterman Algorithm 9

candidate is from Hi�1, j�1, the additive for similarity score will be s(ai, bj). Hi, j will take the

maximal value among them and 0. The relationship is shown in Equation 2.1.

Hi, j = max

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

Hi�1, j�1 + s(ai, bj),

Hi�1, j + �,

Hi, j�1 + �,

0

(2.1)

where � is a gap penalty. The Smith-Waterman algorithm only need to store one alignment with

the highest score at each Hi, j, because Smith-Waterman only measures the similarity score. As

we know the score is cumulative, so that if more than one candidate are stored at any position

(i, j), then the alignments with lower scores will not generate higher score alignment in the end.

Moreover, an example can be found in Figure 2.3. The time complexity of Smith-Waterman is

O(mn) because, at each position (i, j), the comparison part consumes fixed time.

The significance of the Smith-Waterman algorithm is undoubted; however, in the following

three scenarios, Smith-Waterman may provide ine�cient alignment solutions due to its properties

[3].

Firstly, the optimal solution can include poorly aligned segments, and it is called mosaic

e↵ect [3]. As long as the poorly aligned region cannot lower down the accumulative similarity

score under 0 like shown in Figure 2.2, the whole piece will achieve the highest score. It is

an optimal solution by the definition of Smith-Waterman, but it is not an ideal solution for all

applications which may require more consistently similar alignment. The example is shown in

Figure 2.4 [3].

Secondly, Figure 2.5 [3] shows the shadow e↵ect without overlapping. There could be

other alignments that have higher similarity degree, but the similarity score is lower than the

solution obtained from Smith-Waterman locate in other regions. Such alignments are also

biologically meaningful, due to the definition of Smith-Waterman, they will be ignored.

10 Chapter 2. Background

Figure 2.3: For any two sequences A = a1a2...an and B = b1b2...bm, suppose we know there
are two alignment PR and QR ending at R with similarity score 30 and 20 respectively, and
the alignment RS start from R has score 30, then alignment PS always provide higher additive
score than QS . In this example, the cumulative score for PS is 60, but 50 for QS . Therefore,
Storing the highest score alignment at each Hi, j is enough for Smith-Waterman to find optimal
alignment.

The third problem is similar to the previous one, the alignment could take another path to

an endpoint with a little low score, but much shorter, but Smith-Waterman was designed to take

the path which can generate the highest similarity score. See Figure 2.6 [3] for an example.

Briefly, Even though Smith-Waterman is an e�cient algorithm to find local alignment, it

is not flexible for all applications to find corresponding ideal solutions, since the only criterion

Smith-Waterman takes to measure alignments is similarity score.

2.4 Similarity Metric

Similarity metric is widely used in many areas, such as protein sequences comparison. The

definition is given in [7] in 2007, and is stated below:

Definition Given a set X, a real valued function s(a, b) on the Cartesian product X ⇥ X of X is

2.4. SimilarityMetric 11

Figure 2.4: Mosaic e↵ect. The local alignment which is found by the Smith-Waterman
algorithm has a score 120, and the scale is 300 ⇥ 300. The whole alignment is composed of
three segments, two with score 80 and scale 100 ⇥ 100, the other one with score �40 and scale
100 ⇥ 100 as well. For some applications, only the consistently similar regions are required,
such as the two regions with score 80, so that the internal segments with score �40 is useless,
but Smith-Waterman will not decompose them into three pieces.

a similarity metric if, 8a, b, c 2 X, it satisfies the following properties:

1. s(a, b) = s(b, a)

2. s(a, a) � 0

3. s(a, a) � s(a, b)

4. s(a, b) + s(b, c)  s(b, b) + s(a, c)

5. s(a, a) = s(b, b) = s(a, b) if and only if a = b

Furthermore, we say a similarity metric s(a, b) is a normalized similarity if

|s(a, b)|  1. (2.2)

12 Chapter 2. Background

Figure 2.5: Shadow e↵ect without overlapping. There is another alignment with score 80,
which is lower than 120, but its scale is much smaller than the algorithm result. That means the
low score alignment may have much higher similarity degree than the ”optimal” one; however,
Smith-Waterman only targets to find the alignment with the highest similarity score, so another
biologically meaningful region will be discarded.

2.5 Distance Metric

Let ⌃ be a set of finite characters including space, and (a, b) be a string pair of any finite length

from ⌃. Then an edit operation could be to substitute a with b, insertion or deletion. The

penalty of each edit operation can be assigned by distance metric function �, which has to

satisfy the following conditions:

1. �(a, b) = �(b, a),

2. �(a, b) � 0,

3. �(a, c)  �(a, b) + �(b, c) (triangle inequality),

4. �(a, b) = 0, if and only if a = b.

Also for a distance metric �(a, b) to be a normalized distance metric, �(a, b) must be less

than or equal to 1.

2.6. Similarity and DistanceMetric Normalization 13

Figure 2.6: Shadow e↵ect with overlapping. Smith-Waterman will take the alignment path
which can obtain a higher similarity score 120, rather than a much shorter path with score 80.

From distance metric condition 4, it is obvious that if sequences X and Y are identical with

infinite elements, the total distance for these two sequences will be 0 forever, by adding the

distance of each element pair. In this case, if one base in X has been modified to another

alphabet, then the distance of X and Y equal to the distance of the particular base pair. For

example, if Xi was changed from ”a” to ”b”, the distance of two infinite length string would

be �(Xi,Yj), which is �(b, a). Meanwhile, suppose we have another two strings M and N with

length 1 for both, where M = ”b” and N = ”a”. Then the distance for M and N will be the

same as the distance of X and Y; however, over 99% base pair of X and Y are the same, and

M has no relationship with N at all. To avoid this problem, the alignment length needs to

be considered in order to normalize distance. The detail algorithms will be introduced in the

following chapter.

2.6 Similarity and Distance Metric Normalization

Definition Distance metric �(a, b) is normalized distance metric if �(a, b)  1.

14 Chapter 2. Background

Definition Similarity metric s(a, b) is normalized similarity metric if |s(a, b)|  1.

The only measurement needed for global alignment is similarity score or distance because

all the possible alignments must include every residue from both sequences, which means all

possible alignments have the same length. Therefore, for any two fixed sequences, the optimal

global alignment must be the one with the highest similarity score or smallest distance.

For finding local alignment, at each dynamic programming step, we cannot reject lower

score alignment. Because at the specific point, candidates can have di↵erent starting points, so

the alignment with a lower score may have much shorter lengths than another candidate with a

higher similarity score. Also, since the local alignment length is flexible, then there could be

a great number of similar segments combinations exist. Notice that for each found individual

local alignment, it is the optimal global alignment among all candidates from the corresponding

segment pair with fixed starting and ending points; however, its similarity degree may be less

than another local aligned segment pair, so it has to be rejected. Briefly, both segment lengths

and similarity score need to be considered, and it is much more complex than global alignment.

Therefore, how to make rejection decision and find the most similarity segment pair become

the most controversial issue for the local alignment problem. The very basic idea is to reject

those alignments with lower similarity scores and including more residues (longer length) at

the same time, but except those obvious ine�cient candidates, there are still many lefts. In

the past decades, people proposed many algorithms that attempted to e↵ectively normalize

similarity scores by alignment lengths for making rejection decisions, and chapter 3 will give

details of di↵erent normalization approaches.

The normalized similarity and distance metrics we used may generate scores that are greater

than 1. The method we used is considered as generalized normalization, the metrics functionally

regulated the similarity score or distance, even though the normalized result may not satisfy

the normalized metric definition.

2.7. Neighbor-joining and Phylogenetic Tree 15

2.7 Neighbor-joining and Phylogenetic Tree

According to the studies of di↵erent organisms, it is speculated that all creatures on the earth

had one common ancestor, and the evolutionary relationships have been studied for many

years. For di↵erent species, the relationships can be represented by a phylogenetic tree, which

is an acyclic graph. Each leaf node of the tree stands for one particular organism, and the

edges’ lengths (or the weights) are the distances among species. Figure 2.7 is an example

of phylogenetic tree, and it is observed that gibbon and orangutan, grey seal and harbor seal,

opossum platypus are clustering as branches firstly, this situation can be interpreted as those

three pairs of species are closely related respectively. A phylogenetic tree can be rooted or

unrooted, where unrooted tree does not make any prediction for ancestor, it only shows the

evolutionary distances. Since we constructed unrooted tree for experiments, all phylogenetic

trees which are mentioned will be unrooted in the rest of this thesis.

Neighbor-joining is one of the most popular methods for constructing phylogenetic tree,

and it was proposed in 1987 [16]. The main idea of this method is to iteratively join two

particular taxa and gain a new graph that has less total distance than any other joining combination

and reduce the taxa set by one. For example, in order to build a phylogenetic tree which

includes n species, where d(i, j) denotes the distance between any two taxa, the algorithm

always try to find minimum Q in each iteration [11]:

Q(i, j) = (r � 2)d(i, j) �
rX

k=1

d(i, k) �
rX

k=1

d(j, k) (2.3)

where r is the current taxa number. After finding optimal joining combination, an internal node

u will be created to join these two taxa (suppose they are f and g). Then:

d(f , u) =
1
2

d(f , g) +
1

2(r � 2)
[

rX

k=1

d(f , k) �
rX

k=1

d(g, k)] (2.4)

d(u, g) = d(f , g) � d(f , u) (2.5)

16 Chapter 2. Background

Figure 2.7: This is an example of phylogenetic tree built by complete mtDNA sequences using
frequency of k-mers [13].

After joining, the distance from u to any other taxa k need be calculated for next iteration,

and u will replace taxa f and g in the distance matrix.

d(u, k) =
1
2

[d(f , k) � d(f , u)] +
1
2

[d(g, k) � d(g, u)] (2.6)

For example, if we have four species a, b, c and d, with distances between any pair of them,

then we have the distance matrix in Figure 2.8a. Firstly, Q(i, j) will be calculated to generate

Figure 2.8b; also since Q(a, b) and Q(c, d) have the same value, we can either join a, b or c, d.

For this example, we join a, b, and they both connect to an internal node u. Then in the next

iteration, the distances from u to other taxa will be considered, instead of all distances from a

2.8. Red-black Tree 17

(a) distance matrix (b) Q values (c) maintained distance matrix
for next iteration

Figure 2.8: (a) is the original distance matrix obtained from sequences comparison; (b) is the
Q values calculated by equation 2.3 based on (a), for example, Q(a, b) = (4 � 2) ⇥ 6 � (6 +
6 + 5) � (6 + 7 + 6) = �24; (c) is the distance matrix after joining, and d(u, c) and d(u, d) are
obtained by equations 2.4, 2.5 and 2.6.

or b. After joining, the new distance matrix in Figure 2.8c needs to be generated for the next

joining iteration.

2.8 Red-black Tree

A red-black tree is a binary search tree. Another attribute is added in each tree node to indicate

the node color, in order to make the tree self-balancing. A red-black tree must have the

following properties:

1. The color of root node must be black.

2. Each node must have color red or black.

3. Every leaf node must be black.

4. The children of a red node must be black.

5. All the paths from an arbitrary leaf node to the root must have same black-height (black-

height is the number of black node in the path).

18 Chapter 2. Background

When a new node is inserted into the tree, a series of rotations must be taken to maintain

the tree, in order to satisfy the above properties. Therefore, we get the following lemma [18],

and the proof can be found on the page: [18, p. 309]:

Lemma 2.8.1 A red-black tree with n internal nodes has height at most 2 lg(n + 1).

Chapter 3

Literature Review

3.1 Normalized Editing Distance

In the 1990s, many algorithms have been developed to fix the mosaic e↵ect, such as the X �

alignments method, where X is a predetermined and fixed positive integer, the alignment will

be considered, if the score does not drop more than X [21]. Later on, Zhang et al. tried to

decompose the local alignment into sub-alignments [22]; however, if the highly aligned parts

are split into di↵erent subsequences, they could be missed, since the segments may not win out

in the corresponding subsequences. At the same time, normalizing distance or similarity score

has been considered.

In 1993, one of the earliest normalization algorithms was published by Andres Marzal

and Enrique Vidal [14]. In the paper, they provided a well-designed algorithm to find the

normalized editing distance in O(m⇥ n2) time and O(n2) memory space, where m and n are the

input sequence lengths, and m � n. Furthermore, they explained that normalized distance could

not be calculated by firstly getting the minimum weight path, then use the length to normalize

it.

Suppose the editing path P = (i0, j0)...(im, jm) with length L(P) = m, then the general

formula to calculate normalized distance Ŵ(P) is:

Ŵ(P) =
W(P)
L(P)

, (3.1)

19

20 Chapter 3. Literature Review

(a) Weighting function (b) Ŵ(P) =
6
4
= 1.5 (c) Ŵ(P) =

8
6
= 1.33

Figure 3.1: (a) shows the weight function of each pair. (b) shows the result of post-
normailzation. The path with minimum weight has been obtained firstly with value 6, and
Ŵ(P) is equal to 1.5 since L(P) is 4; however, it is not the path with actual minimum normalized
distance. The ideal path is shown in (c), with normalized distance 1.33 [14].

where W(P) is the weight of path P. Therefore, the normalized editing distance between string

X and Y is:

d(X,Y) = min{ Ŵ(P) | P is an editing path between X and Y} (3.2)

The minimization step is to compare the normalized weights of paths with di↵erent lengths

and find the minimum one, and it has been proved that the minimization step cannot be carried

out before normalization. The following example can show the reason.

Given string X = abbb, Y = aaab, and the weight function is shown in Figure 3.1a. If

the minimization step is carried out after the dynamic programming, indeed the resulting path

is the one with minimum weight, but since the path lengths are not the same, the normalized

weight may not be the minimum as well. The path shown in Figure 3.1c is the path with

minimum normalized distance. Also, theoretically, the post-normalization method does not

satisfy condition 3 (triangular inequality) of distance metric, which was given in chapter 2. For

example, if the weight function in Table 3.1 is used, and X = a, Y = ab and Z = b. The

Ŵ(P) for X and Y is
1
2

, and
5
2

for Y and Z; however, The Ŵ(P) for X and Z is
5
1

. Now we have
1
2
+

5
2
↵

5
1

, it means D(X,Y)+D(Y,Z) < D(X,Z) [14]. Actually, the Ŵ(P) for X and Z should

3.1. Normalized Editing Distance 21

be
6
2

, then the inequality hold again.

W a b space
a 0 5 5
b 5 0 1

space 5 1

Table 3.1: The weight function which makes post-normalization fail triangular inequality.

In order to get d(X,Y), the naive way would be to list all the paths between X and Y ,

then calculate the normalized weight for each of them; however, it is too expensive to do so.

Suppose X = X1X2...Xn, Y = Y1Y2...Ym, and n � m, then the length of editing path between X

and Y should be in the range [n,m + n]. Hence, during dynamic programming, at any position

(Xi,Yj), where i  j there will be i + 1 paths with di↵erent lengths are calculated and saved.

For each length, the calculation is shown in the following Theorem [14]:

Theorem 3.1.1 8i, j, 1  i  |X|, 1  j  |Y |,8k,max(i, j)  k  i + j, let �(a ! b) be the

editing operation weight function to transfer a to b.

D(i, j, k) = min{D(i�1, j, k�1)+�(Xi ! �),D(i, j�1, k�1)+�(�! Yj),D(i�1, j�1, k�1)+�(Xi ! Yj)}

D(i, j, k) = 1,8k  max(i, j),8k � i + j

From Theorem 3.1.1, it is known that the time complexity of calculating D(i, j, k) is O(1).

So that the time complexity of getting all lengths path at position (Xi,Yj) is O(N), which is O(m)

since m  n here. Eventually, to finish the whole dynamic programming, the time complexity

would be O(nm2). The detail is shown in Algorithm 1 [14].

22 Chapter 3. Literature Review

Algorithm 1 Normalized editing distance
Input: X = X1X2...Xn, Y = Y1Y2...Ym, weight function �(a! b);
Output: d(X,Y)

1: int i, j, k
2: D[|X|, |Y |, |X| + |Y | + 1] is a 3D array
3: D[0, 0, 0] = 0
4: D[0, 0, 1] = 1
5: for j = 1! |Y | do
6: D[0, j, j � 1] = 1
7: D[0, j, j] = D[0, j � 1, j � 1] + �(�! Yj)
8: D[0, j, j + 1] = 1
9: end for

10: for i = 1! |X| do
11: D[i, 0, i � 1] = 1
12: D[i, 0, i] = D[i � 1, 0, i � 1] + �(Xi ! �)
13: D[i, 0, i + 1] = 1
14: for j = 1! |Y | do
15: D[i, j,max(i, j) � 1] = 1
16: for k = max(i, j) to i + j do
17: D[i, j, k] = min(D[i � 1, j, k � 1] + �(XI ! �),D[i, j � 1, k � 1] + �(y j ! �),D[i �

1, j � 1, k � 1] + �(Xi ! Yj))
18: end for
19: D[i, j, i + j + 1] = 1
20: end for
21: end for

3.2. An improvement of Normalized Editing Distance 23

3.2 An improvement of Normalized Editing Distance

As mentioned, the time complexity of the previous algorithm is O(mn2), if m and n are the

lengths of sequence X and Y , respectively, and m � n. In 1999, Abdullah N. Arslan and Omer

Egecioglu [2] proposed an improved algorithm that requires O(mn log n) time, if the cost of

the same type of editing operation is uniform. Instead of calculating normalized weight along

with the dynamic programming, this algorithm only solves ordinary editing distance problem

at most log n times.

A graph could be used to describe the ordinary problem, just like 3.2. An editing path of

string X and Y is from vertices (0, 0) to (m, n), and can go to three directions corresponding

to three di↵erent operations which are deletion (if goings horizontally), insertion (if going

vertically) and substitution (if going diagonally). Also, the cost function is � = (�I , �D, �M, �N),

which �I is the cost for insertion, �D for deletion, �M for matching substitution and �N for non-

matching substitution. The assumption is that all of them are constant.

Figure 3.2: The editing graph GX,Y for the strings X = aba and Y = bab. [2]

24 Chapter 3. Literature Review

Let W�(p) denote the weight of editing path p, and h(p) be the horizontal move number of

path p, v(p) be the vertical move number, dN(p) is the non-matching diagonal move number

and dM(p) be the matching diagonal move number. Then:

W�(p) = �Dh(p) + �Iv(p) + �MdM(p) + �NdN(p), (3.3)

The length of path p is:

L(p) = h(p) + v(p) + dM(p) + dN(p), (3.4)

We also have:

m = h(p) + dM(p) + dN(p) (3.5)

n = v(p) + dM(p) + dN(p) (3.6)

Therefore, W�(p) and L(p) can be transformed to:

W�(p) = �D + n�I + (�M � �I � �D)dM(p) + (�N � �I � �D)dN(p) (3.7)

L(p) = m + n � dM(p) � dN(p) (3.8)

Recall the normalized editing distance is:

N E Dx,y,� = min
p2P

W�(p)
L(p)

, (3.9)

So it can be transformed to:

3.2. An improvement of Normalized Editing Distance 25

N E Dx,y,� = min
p2P
�D + n�I + (�M � �I � �D)dM(p) + (�N � �I � �D)dN(p)

m + n � dM(p) � dN(p)
. (3.10)

From the above Equation 3.10, we can see finding NED becomes to optimize the ratio of

two linear functions. In order to solve this problem, Dinkelbach’s algorithm [9] are used. The

basic idea of this algorithm is fractional programming. The optimal solution of equation 3.10

can be achieved by solving Equation 3.11, where � 2 R. �⇤ will be the optimal solution of

Equation 3.10, if and only if the optimal vaule of f (�⇤) is zero.

f (�) = min[W�(p) � �L(p)]. (3.11)

Noticed that, if we substitute W�(p) and L(p) with Equation 3.7 and 3.8, then 3.11 can be

simplified to a new editing path weight function with new weights, and the variables are dM(p)

and dN(p). Instead of calculating NED through the dynamic programming, we just need to

try di↵erent � by finite times to find the optimal value; therefore, the time consuming of this

algorithm should be O(kmn), where k is the number of trials. As we know, dM(p)+dN(p) cannot

be greater than the length of the shorter sequence, which is n here; therefore, there should be

n ⇥ n combinations of dM(p) and dN(p), which corresponding to n2 candidates of �. To make

it simple, that n2 values will be calculated in advance. Then the median candidate (let’s say

�̂) value can be picked for first trial, after finding the minimum weight editing path, if f (�̂))

is greater than 0, that means the �⇤ should be greater than �̂), then all the candidates smaller

than �̂) can be ignored, vice versa, until it reaches zero. In each iteration, the range will be

divided into half, then the worst case would be log n2 iterations. In other words, k is O(log n).

Combining the time of building possible � set, the time complexity of the whole algorithm is

O(n2+mn log n), which is O(mn log n). The main steps of this algorithm is shown in Algorithm

2 [2].

26 Chapter 3. Literature Review

Algorithm 2 NED algorithm for uniform weights
Input: X = X1X2...Xn, Y = Y1Y2...Ym, weight function
Output: �⇤

1: if m = n = 0 then
2: return �1
3: end if
4: if m = 0 then
5: reuturn �I

6: end if
7: if n = 0 then
8: return �D

9: end if
10: Generate the set Q of �
11: while true do
12: Find the median �med of Q
13: Solve E DX,Y,�(�med)
14: if the minimum path weight is 0 then
15: return �med

16: else
17: if the minimum path weight is smaller than 0 then
18: remove the values equal and larger than�med

19: else
20: remove the values equal and smaller than�med

21: end if
22: end if
23: end while

3.3. Normalized Local Similarity Score 27

3.3 Normalized Local Similarity Score

In order to find similar segments between DNA sequences of di↵erent species, local alignment

algorithm must be used. In 2000, [3] extended the idea of uniform weight normalized editing

distance algorithm [2], which was just discussed above, to normalize the similarity score.

Suppose we have string X and Y , I and J are the substrings for X and Y respectively. The

basic idea is to find the maximum value of s(I, J)/(|I| + |J|), where |I| + |J| � T and T is the

threshold for alignment length. However, those alignments with high similarity degree but very

short length will be obtained by this formula, the result is biologically meaningless. To fix this

problem, they add a constant number L to the denominator. Then fractional programming will

be used to find the optimal alignment.

As mentioned in the last section, an alignment can be considered as a graph, and the

similarity score can be calculated by three values: number of matches, mismatches and indels

(insert or deletion). Suppose the score for a match is 1, � for a mismatch and µ for indel.

Therefore, vector (x, y, z) can be used to represent a local alignment with x matches, y mismatches

and z indels. Then the similarity score is:

S CORE(x, y, z) = x � �y � µz (3.12)

The best alignment between substrings ai...ak and bj...bk would be the vector with maximum

score among all the alignment vectors between these two strings. Furthermore, the optimal

local alignment of strings a and b is to seek for two substrings ai...ak and bj...bl, with the

highest similarity score, let LA⇤ be the score of optimal local alignment, then:

LA⇤(a, b) = max{S CORE(x, y, z) | (x, y, z) is any alignment vector o f ai...ak and bj...bl}

(3.13)

The length of an alignment between ai...ak and bj...bl is (k � i + 1) + (l � j + 1) + L =

28 Chapter 3. Literature Review

2x + 2y + z + L, where L is the constant to control the optimal alignment length:

LENGT H(x, y, z) = 2x + 2y + z + L (3.14)

Therefore, the optimal normalized similarity score should be:

NLA⇤(a, b) = max{ S CORE(x, y, z)
LENGT H(x, y, z)

} (3.15)

= maximize
x � �y � µz

2x + 2y + z + L
(3.16)

Recall the parametric method, NLA⇤(a, b) can be transferred to another ordinary similarity

problem:

LA(�)(a, b) = maximize x � �y � µz � �(2x + 2y + z + L) (3.17)

Then the Smith-Waterman and Dinkelbach’s algorithm will do the rest work until find the

optimal local alignment, just like the algorithm introduced in section 3.2. Later on, the author

proved that the time complexity could be better if using Megiddo’s algorithm [2].

3.4 Similarity Metric and Normalized Similarity Metric

Recall the definition of similarity metric was given in [7] is:

Definition Given a set X, a real valued function s(x, y) on the Cartesian product X ⇥ X of X is

a similarity metric if, 8x, y, z 2 X, it satisfies the following properties:

1. s(x, y) = s(y, x)

2. s(x, x) � 0

3. s(x, x) � s(x, y)

3.4. SimilarityMetric and Normalized SimilarityMetric 29

4. s(x, y) + s(y, z)  s(y, y) + s(x, z)

5. s(x, x) = s(y, y) = s(x, y) if and only if x = y

Although similarity measure is used in many fields such as protein sequence comparison,

there was no formal concept had been proposed until 2007 [7].

The first three conditions are intuitive, and condition four is similar to triangle inequality of

distance metric. It states that the similarity between two elements through the third one is less

than the actual similarity of these two elements plus the similarity of the third one comparing

to itself. In addition, in order to understand condition 5, suppose we have s(x, y) that satisfies

the first 4 conditions of similarity metric, and s(x, x) = s(y, y) = s(x, y). For any z, by condition

4, we have s(x, y) + s(y, z)  s(x, z) + s(y, y). Since s(x, y) = s(y, y), we can get s(y, z)  s(x, z).

On the other hand, we also can have s(y, x) + s(x, z)  s(y, z) + s(x, x), which can be simplified

to s(x, z)  s(y, z). Therefore, we have s(x, z) = s(y, z), which means x can be treated as y.

The definition of normalized similarity metric is:

Definition A similarity metric s(x, y) is a normalized similarity metric if |s(x, y)|  1.

In [8], the authors also pointed out the method, which had been introduced in the previous

section (s(a,b)
|a|+|b|+L , where L is a constant and L > 0), is not a similarity metric. It can be easily

proved by a counter example. Suppose we have sequences X = ”abc”, Y = ”abcde” and Z =

”cde”, for any character pair i and j, we have scoring function s(i, i) = s(j, j) = 2, s(i, j) = �1

and 0 for any indels. We can see s(i, j) is a similarity metric, s(X,Y) = s(Y,Z) = 6, s(Y,Y) = 12

and s(X,Z) = 2. We also have |X| = |Z| = 3, |Y | = 5, and suppose L = 1. If we used s(a,b)
|a|+|b|+L to

normalize the scores, then we have s(X,Y)
|X|+|Y |+L +

s(Y,Z)
|Y |+|Z|+L =

6
9 +

6
9 , and s(X,Z)

|X|+|Z|+L +
s(Y,Y)
|Y |+|Y |+L =

2
7 +

10
11 .

It is clearly that s(X,Y)
|X|+|Y |+L +

s(Y,Z)
|Y |+|Z|+L is larger than s(X,Z)

|X|+|Z|+L +
s(Y,Y)
|Y |+|Y |+L , so condition 4 does not hold

under this situation.

Based on the distance and similarity metric definitions, there are some important lemmas

and theorems, which are highly relevant to our new algorithm, were proposed in [20]. The

30 Chapter 3. Literature Review

detail will be given in the following, with the definition of concave function. The proofs can

be found in [20].

Definition A function f is concave over an interval [a, b] if for every x1, x2 2 [a, b] and 0 

�  1,

� f (x1) + (1 � �) f (x2)  f (�x1 + (1 � �)x2) (3.18)

Lemma 3.4.1 if a function f is concave over interval (�1,1), then for any a, b � 0 and

c � 0,

f (a) + f (a + b + c)  f (a + b) + f (a + c). (3.19)

Lemma 3.4.2 Let f be a non-negative concave function on domain [0,1), and 0  x  y,

b � 0, then x
f (x+b) 

y
f (y+b) .

The paper [20] also defined Minkowski type similarity and distance metric for p � 1.

Theorem 3.4.3 If s(x, y) is similarity metric, and p � 1, then:

d(x, y) = p
p

(s(x, x) � s(x, y))p + (s(y, y) � s(x, y))p (3.20)

is a distance metric.

Lemma 3.4.4 If s(x, y) and d(x, y) are similarity and distance metric respectively, also satisfying

normalization condition, and f (x) is a monotone increasing concave function on [0,1), also

f (x) > 0. Then:

s(x, y) + s(y, z) � s(y, y)
f (d(x, y) + s(s, y) + d(y, z) + s(y, z) � s(y, y))

 s(x, z)
f (d(x, z) + s(x, z))

(3.21)

Theorem 3.4.5 If s(x, y) and d(x, y) are similarity and distance metric respectively, also satisfying

normalization condition, and f (x) is a monotone increasing concave function on [0,1), also

f (x) > 0. Then:

3.4. SimilarityMetric and Normalized SimilarityMetric 31

s(x, y) =
s(x, y)

f (d(x, y) + s(x, y))
(3.22)

is a similarity metric.

In order to find sequence local alignment, a proper similarity metric is required. Smith-

Waterman applied additive similarity metric, so it may not provide ideal solution in some

scenarios. The metric shown in Theorem 3.4.5 considers segment length when finding optimal

solution, and it invokes concave function to control the similarity degree of solution; therefore,

we consider the following similarity metric which satisfies Theorem 3.4.3 and 3.4.5 is proper

for finding normalized sequence local alignment.

s(x, y) =
s(x, y)

f (p
p

(s(x, x) � s(x, y))p + (s(y, y) � s(x, y))p + s(x, y))
, (3.23)

Where f (x) is a monotone increasing concave function on [0,1), also f (x) > 0.

Being di↵erent from other normalization functions, Equation 3.23 quantifies both similar

and dissimilar regions, rather than directly normalize the similarity score by the summation of

two segment lengths. It can be easily understood by using set theory. We treat s(x, y) as the

common part of sequences x and y, it is shape b in Figure 3.3. Also, we can see shape a and

c are the non-common parts for sequences x and y respectively, so s(x, x) � s(x, y) represent

shape a and s(y, y) � s(x, y) for shape c, then d(x, y) can be interpreted as a + c. Therefore, we

use a+ b+ c to represent the union of sequences x and y, which is d(x, y)+ s(x, y). In addition,

di↵erent value of k can be chosen to calculate d(x, y) for specific applications.

In addition, to normalize the similarity score properly and smoothly, a concave function

must be applied to control the normalization strength, otherwise only length one and identical

segments will be obtained, which are biologically meaningless. Due to the property of concave

function, the normalized strength will be high when the alignment length is short, then keep

reducing smoothly along with the alignment, which means we encourage relatively long alignments

which are more biologically meaningful, but not too long as the output of Smith-Waterman.

32 Chapter 3. Literature Review

Figure 3.3: a + c is the distance of X and Y , and b is the similarity.

Figure 3.4 shows an example of concave functions, where f (x) = x + L1 is a special case

of a concave function. When alignment is short, L1 will be relatively large, so it e↵ectively

avoids obtaining very short alignments. However, notice that this function does not regulate

variable x, so when the alignment gets longer, normalization strength still increases too fast

to encourage longer alignment. On the other hand, g(x) = x1/k + L2 works better, because

its normalization strength is relative with the alignment length. Longer the alignment length

is, slower the strength increases. Furthermore, if a concave function converges too fast, the

denominator of normalization function will be like a constant; therefore, the solution will be

close to, or even the same as the solution of Smith-Waterman Algorithm.

Let X and Y be two sequences, then there are a great number of arrangement patterns for

them with di↵erent similarity scores. Let A(X,Y) denotes the additive similarity score for an

alignment, then among all A(X,Y), the highest one is the score of optimal global alignment for

X and Y , and denoted as s(X,Y). Specifically,

s(X,Y) = max
all A

A(X,Y). (3.24)

For each particular global alignment with score A(X,Y), there is corresponding normalized

similarity score A(X,Y) exist:

3.4. SimilarityMetric and Normalized SimilarityMetric 33

Figure 3.4: Example of concave functions. L1, L2 and k are constants, where L > 0 and k � 1.

A(X,Y) =
A(X, X)

f (pp(s(X, X) � A(X,Y))p + (s(Y,Y) � A(X,Y))p + A(X,Y))
, (3.25)

where s(X, X) and s(Y,Y) are the optimal global alignment scores for aligning X and Y to

themselves. Then we have:

s(X,Y) = max
allA

A(X,Y). (3.26)

Therefore, the normalized similarity metric shown in 3.23 has following lemma:

Lemma 3.4.6 For any finite sequences X and Y, let s(X,Y) denotes the additive similarity

score of optimal global alignment, and s(X,Y) denotes the normalized similarity score of

optimal alignment by applying normalized similarity metric showing in Equation 3.23, then

the alignment generating s(X,Y) will always generate s(X,Y) as well.

Proof Suppose there are two global alignment patterns with similarity score s1(X,Y) and

34 Chapter 3. Literature Review

s2(X,Y) respectively, where s1(X,Y)  s2(X,Y), then by Lemma 3.4.2, we have:

s1(X,Y)
f (b + s1(X,Y))

 s2(X,Y)
f (b + s2(X,Y))

, (3.27)

where b � 0. If 0 < c  b, then

s2(X,Y)
f (b + s2(X,Y))

 s2(X,Y)
f (c + s2(X,Y))

, (3.28)

since concave function f (x) is monotone increasing. So

s1(X,Y)
f (b + s1(X,Y))

 s2(X,Y)
f (c + s2(X,Y))

. (3.29)

Also since s1(X, X) and s2(Y,Y) are fixed, then:

p
p

(s1(X, X) � s1(X,Y))p + (s1(Y,Y) � s1(x, y))p  p
p

(s2(X, X) � s(X,Y))p + (s(Y,Y) � s(X,Y))p

(3.30)

Let b = p
p

(s1(X, X) � s1(X,Y))p + (s1(Y,Y) � s1(x, y))p, c = pp(s2(X, X) � s(X,Y))p + (s(Y,Y) � s(X,Y))p,

then from Equation 3.29 we have

s1(X,Y)  s2(X,Y). (3.31)

Therefore, higher s(x, y) generate higher s(x, y).

In Lemma 3.4.6, s(x, y) does not have to be additive similarity metric, but the algorithm

which we will propose in next chapter applied additive similarity metric, because the idea is

extended from Smith-Waterman algorithm, which invokes additive metric.

3.5. BLOSUM 35

3.5 BLOSUM

The protein sequence alignments are usually involved in order to study gene and protein

function. No matter for global, local, or multiple sequence alignments, a scoring scheme must

be invoked to measure the similarity degree. Before 1992, there are several scoring schemes

have been proposed, and the most popular one is the mutation data matrices which were

proposed by Dayho↵ in 1968 [6]. In his model, the amino acid substitution rates are generated

from protein sequences, which are aligned, and the similarity degree is above 85%. However,

most tasks need to identify those distantly related segments by inferred from Dayho↵’s model

which is derived from high similarity protein sequences. Therefore, BLOSUM was proposed to

use di↵erent protein sequence alignments groups which have particular lower similarity degree

within specified sequence blocks.

Until now, BLOSUM metric series is still one of the most common methods to measure

the similarity of any amino acid pairs. The matrices are proposed by Steven Heniko↵ and

Jorja G. Heniko↵ in 1992 [12], and the content of BLOSUM matrices are the frequencies of

corresponding amino acids are substituted by other amino acids, just like Dayho↵’s model.

Firstly, from a group of related proteins, a set of blocks will be found, and a system called

PROTOMAT finishes this process. Each block is the most common region for the particular

protein family. For example, if we have 5 protein sequences from the same family, and the

block length is 3 amino acids, then the block size is 5⇥3. For each column, all the matches and

mismatches for the corresponding amino acid pair will be counted. For example, if there are 4

A, and only one B in the first column, then AA appears 3+2+1 = 6 times, 4 for AB or BA, and

0 times for BB. The calculation for each column is summed up for a observed frequency table.

After counting, the probability of each amino acid pair will be calculated based on the table.

For the same example, the 5 ⇥ 3 block can generate 3 ⇥ 5 ⇥ (5 � 1)/2 = 30 pairs, and since

AA appears 6 times, then the observed probability of (A, A) is Pr(A, A) = 6/30 = 0.2, and

P(A, B) = Pr(B, A) = 4/30 = 0.13.

36 Chapter 3. Literature Review

Pr(i, j) =
fi j

P20
i=2
Pi

j=1 fi j
. (3.32)

Then, the expected probability that i appears in any pair is:

Pr(i) = Pr(i, i) +
X

j,i

Pr(i, j)/2. (3.33)

In the example, the expected probability of A appears in a pair is 0.2+ 0.13/2 = 0.265, and

0.13/2 = 0.065 for B. And then, the expected probability for any pair (i, j) is:

ei j = Pr(i) ⇥ Pr(i), i f i = j (3.34)

= Pr(i) ⇥ Pr(j) + Pr(j) ⇥ Pr(i), i f i , j. (3.35)

Eventually, the odds ratio can be got by:

si j = log2(Pr(i, j)/ei j). (3.36)

If si j > 0, it means the pair appears more than expected, it will be multiplied by scaling

factor 2. Generally, the result will be rounded to the nearest integer, and it is how BLOSUM

matrices are generated.

Furthermore, in order to reduce the frequency contribution from those protein sequences

which are too closely related, such sequences will be clustered within blocks and contributed

as one single sequence. There are di↵erent standards for clustering, such as BLOSUM62, it

means that if sequences are identical more than 62% of their aligned positions, they will be

clustered together. Without rounding, any BLOSUM-N matrix with N � 55 is a similarity

metric [20].

Recall it is proved in [20] that:

3.5. BLOSUM 37

s(x, y) =
s(x, y)

f (p
p

(s(x, x) � s(x, y))p + (s(y, y) � s(x, y))p + s(x, y))
, (3.37)

is a similarity metric. Therefore, we used this method to normalize the similarity score,

where s(x, y) is based on BLOSUM62. The reason we used the concave function is its slope

function is monotone decreasing, so that along with the editing path get longer, the normalization

strength gets weaker, which means we can control the output alignments length by adjusting

the concave function. The specific experiment result with di↵erent concave functions will be

shown in chapter 5.

Chapter 4

A New Algorithm for Normalized
Sequence Local Alignment

Sequence local alignment is to find similar segments from input sequences, but ”similar”

can be defined in di↵erent ways. For example, Smith-Waterman defines the optimal local

alignment to be the one with the highest similarity score. Even though it is widely used

in bioinformatics studies, it is not suitable for those applications which require consistently

similar local alignment. In order to obtain segments with high similarity degree, normalization

functions need to be invoked to take both similarity score and alignment length into account.

Therefore, multiple normalization functions need to be applied on the same sequences for

di↵erent similarity degree requirements, and it will consume a significant amount of time.

To solve these issues, we invoked the normalized similarity metric family [20] which are

constructed by Minkowski type distance metric to satisfy di↵erent requirements for similarity

degree. Then, a dynamic programming algorithm has been designed to find sequence local

alignment. As introduced in chapter 2, algorithms which target finding sequence alignment

will generate a matrix H. Our algorithm also produces matrix H, but the data stored in each

Hi, j includes all alignment candidates which pass through (i, j) and have the possibility to

generate optimal solution. Therefore, no matter how many normalization functions from our

similarity metric family are applied, the corresponding optimal solution can be obtained by

iterating each Hi, j and applying normalization functions to process all alignment candidates.

We define the optimal local alignment to be the segment pair with the highest normalized

38

4.1. A Simple Algorithm for finding Normalized Sequence Local Alignment 39

similarity score. Specifically, for any two sequences A = a1a2...an and B = b1b2...bm, we look

for subsequence pair A0 = ag...ai and B0 = bh..bj, where 0 < g  i  n and 0 < h  j  m, that

has the highest normalized similarity score among all possible subsequence pairs of A and B.

Recall the similarity metric we used is:

s(x, y) =
s(x, y)

f (p
p

(s(x, x) � s(x, y))p + (s(y, y) � s(x, y))p + s(x, y))
, (4.1)

where s(x, y) is additive similarity metric, f is any non-negative concave functions monotone

increase on [0,1), p is a constant for Minkowski distance, which is always greater than 1. This

metric takes both similar and dissimilar regions into account to normalize similarity score.

4.1 A Simple Algorithm for finding Normalized Sequence

Local Alignment

A simple algorithm to find normalized sequence local alignment can be obtained by extending

the algorithm for finding global alignment.

As introduced in chapter 2, for any given sequences A = a1a2...an and B = b1b2...bm,

similarity metric s(x, y), the algorithm for finding sequence global alignment generates a matrix

H during dynamic programming, each position Hi, j of H contains the optimal global alignment

score for subsequence pair starting from (1, 1) and ending at (i, j), where 0 < i  n and

0 < j  m. Then, not only the optimal global alignment for A and B is obtained, but also we

can have all optimal global alignment starting from (1, 1) to every possible (i, j). Then for any

(g, h), where 0 < g  i  n and 0 < h  j  m, if the algorithm of finding global alignment

is applied on subsequences ag...an and bh...bm, we obtain the optimal global alignments from

the particular (g, h) to all possible (i, j). Since there are m ⇥ n (g, h) positions exist, then if we

repeat the algorithm on every (g, h), we have optimal global alignments for all subsequence

pair ag...ai and bh...bj from A and B. Then by iterating all obtained alignments, optimal local

40 Chapter 4. A New Algorithm for Normalized Sequence Local Alignment

alignment of A and B with additive similarity metric will be the one with the highest score.

Furthermore, recall Lemma 3.4.6 in chapter 3, for any two sequences A and B, the optimal

global alignment with the highest additive similarity score also has the highest normalized

score. Therefore, it is unnecessary to apply the normalized similarity metric during finding

global alignments for ag...an and bh...bm, because they will generate identical solutions.

As long as we have optimal global alignments for all possible subsequence pairs, normalization

function can be applied to each of them to find the highest normalized score alignment, which is

the optimal solution. Instead of storing all possible alignments at each position, normalization

function can be applied at each (g, h) to find the alignment with the highest normalized score,

then only one alignment needs to be stored at each (g, h). This method can reduce memory

consumption, but if more normalization functions need to be applied after, the algorithm needs

to be executed multiple times, so in order to reduce time consumption, we do not consider

applying normalization functions during dynamic programming.

The algorithm for finding sequence global alignment, and the algorithm to obtain matrix

containing all alignments for all possible subsequence pair are given in Algorithm 3 and 4,

respectively in section 4.6. Notice that the algorithm for finding sequence global alignment is

dynamic programming based, so the time complexity is O(mn). Also, since there are m ⇥ n

positions in H, the algorithm of global alignment needs to be executed m⇥ n times, so the time

complexity for the local alignment algorithm is O(m2n2). Meanwhile, matrix H needs to store

additive score, and segment lengths for each alignment candidate, the space complexity for the

algorithm is also O(m2n2).

4.2 Main Idea of New Algorithm

The above simple algorithm is to find optimal global alignments starting from each (g, h).

Symmetrically, if we reverse sequences A and B to get A0 = anan�1...a1 and B0 = bmbm�1...b1,

after applying the above algorithm to A0 and B0, matrix H will store all alignments starting

4.2. Main Idea of New Algorithm 41

from each (g, h) to all possible (i, j), notice that 0 < i  g  n and 0 < j  h  m here

in A0 and B0, so it is identical with generating all possible alignment ending at each (g, h) for

A and B. Therefore, we modified the above algorithm, to start dynamic programming from

position (1, 1), and store alignments ending at each (i, j) which have the possibility to generate

the highest normalized score along with dynamic programming after (i, j).

In chapter 2, we discussed the Smith-Waterman algorithm only stores the highest similarity

score and discard other candidates at each Hi, j to reduce both time and space consumption and

it is su�cient for applying additive similarity metric. Such a method does not work correctly

in our algorithm, because of segment length matters in calculating normalized similarity score

after dynamic programming. Some low additive score alignments at (i, j) may be contained

by a more extended alignment that passes through (i, j) and generates a high normalized score.

The naive method to store nonredundant alignments at each Hi, j is to keep optimal alignments

starting from all possible positions and ending at (i, j), it can guarantee the optimal solution

will always be found; however, it costs too much time and space. Besides the nonredundant

alignments, there are many redundant candidates exist, which can be determined that they

cannot generate a higher normalized score, not only at the position they are determined but

also with any extension. Therefore, we designed an algorithm to remove as many redundant

alignments as possible at each Hi, j, the specific reason and strategy will be introduced in the

next section.

As long as we save all necessary information at each position, after dynamic programming,

we can either iterate each position to find the optimal solution for the corresponding normalization

function or check any specific position (i, j) to see the best alignment ending at (i, j). Besides,

when finding optimal local alignment, not only the one with the highest normalized score will

be found, but also other alignments with relatively high normalized scores can be found and

listed as well.

42 Chapter 4. A New Algorithm for Normalized Sequence Local Alignment

4.3 Algorithm Design

4.3.1 Strategy of Redundant Alignments Rejection

For all candidates ending at the same position (i, j), redundant alignments mean they cannot

provide higher normalized similarity score than another existing alignment, not only ending

at (i, j), but also with extension. Then discarding redundant alignments will not a↵ect the

solution.

When comparing two alignments ending at (i, j), if the subsequences of one alignment do

not fully contain the subsequences of the other alignment, then either of them has the possibility

to produce higher normalized score along with the extension, so both of them need to be kept.

On the other hand, if one alignment covered the other one, and suppose the inner one has a

higher similarity score, then the outer alignment can be discarded for sure. So we have the

following lemma:

Lemma 4.3.1 For any two sequences A = a1a2...an and B = b1b2...bm, let 0 < p  r < i  n

and 0 < q  s < j  m, let L1 be the optimal global alignment for subsequence ap...ai

and bq...bj, and L2 for ar...ai and bs...bj. By applying normalized similarity metric 4.1, if the

additive similarity score of L1 is less or equal to the additive similarity score of L2, then L1 can

be discarded.

Proof To prove L1 can be discarded at (i, j), it is necessary to show either both L1 and L2

ending at (i, j) without extension, or they merge at (i, j) and extend to further position, L1 will

not generate higher normalized similarity score.

Let A1 = ap...ai, B1 = bq...bj denote the subsequences of L1, also A2 = ar...ai and B2 =

bs...bj denote the subsequences of L2. Then the additive similarity scores of L1 and L2 are

s(A1, B1) and s(A2, B2). Also, let A3 = ai...au, B3 = bj...bv, suppose L3 is optimal alignment

starting from (i, j) and ending at (u, v) with similarity score s(A3, B3), where i  u  n and

j  v  m, then L01 and L02 will be alignments which both contain L3 but are extended from L1

4.3. Algorithm Design 43

and L2 separately. Notice that when i = u and j = v, there will be no extension for L1 and L2,

for this situation, we consider they both end at (i, j), then s(A3, B3) = 0, L01 = L1, L02 = L2. Let

A01 = ap...au, B01 = bq...bv denote the subsequences L01, also A02 = ar...au and B02 = br...bv for L02.

So the normalized similarity score of L01 is:

s(A01, B
0
1) =

s(A01, B
0
1)

f (p
p

(s(A01, A
0
1) � s(A01, B

0
1))p + (s(B01, B

0
1) � s(A01, B

0
1))p + s(A01, B

0
1))
, (4.2)

and the normalized similarity score of L02 is:

s(A02, B
0
2) =

s(A02, B
0
2)

f (p
p

(s(A02, A
0
2) � s(A02, B

0
2))p + (s(B02, B

0
2) � s(A02, B

0
2))p + s(A02, B

0
2))
. (4.3)

Notice that s(A01, B
0
1) = s(A1, B1) + s(A3, B3) and s(A02, B

0
2) = s(A2, B2) + s(A3, B3), so

s(A01, B
0
1)  s(A02, B

0
2). Let d01 and d02 denote p

p
(s(A01, A

0
1) � s(A01, B

0
1))p + (s(B01, B

0
1) � s(A01, B

0
1))p

and p
p

(s(A02, A
0
2) � s(A02, B

0
2))p + (s(B02, B

0
2) � s(A02, B

0
2))p respectively. Then we have:

s(A01, B
0
1)

f (d01 + s(A01, B
0
1))
 s(A02, B

0
2)

f (d01 + s(A02, B
0
2))
, (4.4)

Also, since A02  A01 and B02  B01, s(A01, B
0
1)  s(A02, B

0
2), then d02  d01. So we can have:

s(A02, B
0
2)

f (d01 + s(A02, B
0
2))
 s(A02, B

0
2)

f (d02 + s(A02, B
0
2))
, (4.5)

Then from 4.4 and 4.5,

s(A01, B
0
1)

f (d01 + s(A01, B
0
1))
 s(A02, B

0
2)

f (d02 + s(A02, B
0
2))
. (4.6)

Therefore, L1 cannot provide higher normalized similarity score, either ending at (i, j) or

with extension, it can be discarded at (i, j).

44 Chapter 4. A New Algorithm for Normalized Sequence Local Alignment

(a) Partially overlapping (b) Fully covered

Figure 4.1: Any two alignments ending at the same position can have two di↵erent shapes
based on their segment lengths. In 4.1a, neither of the alignment shapes fully contains the
other one. Extending both alignments to C1 and C2 could give the opposite result, so either of
them can be rejected at position C. In 4.1b, the subsequences of alignment Q fully contain the
segments of P. If the similarity score of Q is lower, then no matter how the alignment extends,
Q will not give better solution so that it can be discarded at position C.

If only consider two alignments which end at the same position (i, j), it is easy to make

rejection decision by comparing the normalized similarity scores; however, along with dynamic

programming, the two alignments can extend to further position, the alignment with lower

normalized similarity score at (i, j) has the possibility to provide better alignment in the end. It

depends on the shape of these two alignments at (i, j), and how they extend.

Figure 4.1 shows an example. Sequences A = a0a1...an and B = b0b1...bm, suppose we have

two alignments P and Q ending at C, let xp and yp be the subsequence lengths of alignment P

from A and B, also xq and yq for alignment Q. In Figure 4.1a, xp > xq but yp < yq. Along with

dynamic programming, both P and Q can extend to position C1 or C2. Recall the Minkowski

distance in Equation 4.1 is:

d = p
p

(s(a, a) � s(a, b))p + (s(b, b) � s(a, b))p, (4.7)

Where a and b stand for two subsequences. The comparison result of Minkowski distance

of alignments P and Q can be opposite, based on the alignment extension direction. If the

alignment extends to C1, then the Minkowski distance of Q will increase much faster, which

4.3. Algorithm Design 45

may cause P to be the one with the higher normalized score; however, if the extension is to

C2, the result may be di↵erent. Suppose the subsequence pair for P is Ap and Bp, also Aq

and Bq for alignment Q. Then we can have the following specific example. If s(Ap, Ap) =

60, s(Bp, Bp) = 30, s(Aq, Aq) = 20 and s(Bq, Bq) = 70, also let s(Ap, Bp) = s(Aq, Bq) = 100

for convenient. We denote the subsequence pair from C to C1 to be Ac1 and Bc1, also Ac2 and

Bc2 to be the subsequences from C to C2. Let S (Ac1, Ac1) = 10, S (Bc1, Bc1) = 30, S (Ac2, Ac2) =

30, S (Bc2, Bc2) = 10 and s(Ac1, Bc1) = s(Ac2, Bc2) = 5. Since all the additive similarity scores

are the same in this example for convenient, the dominant part in the normalization function

4.1 is the Minkowski distance. Firstly, if both alignments extend to C1, then the Minkowski

distance of P is:

dp =
p
p

(60 + 10 � 20 � 5)p + (30 + 30 � 20 � 5)p (4.8)

Also the Minkowski distance of Q is:

dq =
p
p

(20 + 10 � 20 � 5)p + (70 + 30 � 20 � 5)p (4.9)

Let p = 2, then dp = 57, dq = 75. Based on the normalized similarity metric shown in

Equation 4.1, alignment P generate higher normalized score than Q, if the extension is to C1,

so P need to be saved at position C. However, if both P and Q extend to C2, then the Minkowski

distances for both P and Q are:

dp =
p
p

(60 + 30 � 20 � 5)p + (30 + 10 � 20 � 5)p (4.10)

dq =
p
p

(20 + 30 � 20 � 5)p + (70 + 10 � 20 � 5)p (4.11)

When p = 2, we have dp = 67 and dq = 60. The extension which is from Q will generate

a higher normalized similarity score if both P and Q extend to C2. In this situation, Q should

46 Chapter 4. A New Algorithm for Normalized Sequence Local Alignment

also be kept at C. Therefore, based on these two scenario, if two alignments ending at same

position, and the shape of one alignment does not fully cover the other one, neither of them can

be eliminated, since at the current position, it is unknown that which one can provide better

solution with extension, regardless of their current additive similarity score.

On the other hand, if the shape of Q fully cover P, like Figure 4.1b, and if the similarity

score of P is no less than the score of Q, then regardless of how the alignment extends, the

shape of Q will cover P, that means P always can produce higher normalized similarity score,

so Q can be discarded at position C.

After realizing redundant candidates exist, we need to design how alignments are stored at

each Hi, j, before attempting to remove them.

4.3.2 Data Structure

Recall the normalized similarity metric shown in Equation 4.1. In order to calculate the

normalized score for alignment with corresponding subsequences A0 and B0 at any arbitrary

(i, j), we need to know s(A0, B0), S (A0, A0) and B(B0, B0). Besides the additive similarity score

s(A0, B0), segments A0 and B0 are required to calculate S (A0, A0) and B(B0, B0), so either the

starting positions of A0 and B0 or their subsequence lengths need to be stored, in order to retrieve

entire segments at (i, j). Besides, when sorting alignments at each position, segment lengths

need to be compared; therefore, for each alignment, we firstly store the additive similarity

score, and segment length in our algorithm. The starting position of any segment can be

obtained by subtracting segment length from the ending position (i, j).

At each position (i, j), not one alignment but all nonredundant alignments need to be

stored. They are generated by maintaining the stored candidates at (i � 1, j), (i � 1, j � 1)

and (i, j � 1). In addition, if s(ai, bj) is positive, then a new alignment with score s(ai, bj) and

both subsequence lengths one will be created and stored in Hi, j as well. Consequentially,

each position during dynamic programming will have alignments candidates coming from

three directions; therefore, we used a list in each position to store nonredundant alignment

4.3. Algorithm Design 47

candidates, in order to keep dynamic programming e�cient, and easy to be maintained to the

same structure at each position.

Furthermore, we need to decide the storing order of the candidate list. Briefly, candidates

will be stored by descending order of additive similarity score, and same score alignments will

be stored by ascending order of x � length. Then after removing redundancies, every position

H(i, j) in matrix H should store a list of nonredundant alignments ending at (i, j), with the above

order. The reason is when comparing candidates to remove redundancies, we attempt to reduce

comparison times. Also, notice that there will not be any two alignments are stored in a list with

same additive score and x � length (or y � length), because if they have same score and same

x�length (or y�length), then the one with longer y�length (or x�length) is redundant and will

not be added into the list. From Lemma 4.3.1, it is known that in order to reject an alignment,

there must be another alignment exist with higher additive similarity score and shorter segment

length; therefore, it is relatively hard to reject high score alignments which can be used to

reject lower score candidates. Due to this, at each position Hi, j, the candidates are stored by

descending order of additive similarity score. Meanwhile, there could be some candidates with

the same additive similarity score. For this scenario, as long as the particular alignment shape

does not fully cover another alignment with the same score, it cannot be rejected by other

candidates with same additive score, so shorter the alignment length is, less likely they will be

rejected, in other words they are more likely to be the one to reject other alignments.

Next, we need to consider how to sort and remove all redundant candidates at each Hi, j

during dynamic programming, the method will be given in the following section.

4.3.3 Strategy of Merging and Sorting Candidates

At each position (i, j), we assume there is no redundant candidates exist in (i�1, j), (i�1, j�1)

and (i, j � 1), and the alignment lists from them will be sorted by descending order of additive

similarity score, for those alignments with the same score, they will be sorted by ascending

order of x � length. Therefore, we need to remove all redundancy at (i, j), and store the left

48 Chapter 4. A New Algorithm for Normalized Sequence Local Alignment

candidates as the same order at (i, j) to keep the assumption.

Firstly, we need to maintain the candidates from three directions by extending their subsequences

and updating the additive similarity score. The process for maintaining candidates from each

specific direction is shown below:

• From (i � 1, j): x � length will be extended by 1, the other one remains the same, one

indel penalty is added to the additive similarity score. If the updated additive score is not

greater than 0, the alignment is removed;

• From (i � 1, j � 1): both x � length and y � length will be extended by 1, score s(ai, bj)

will be added to the additive similarity score. If the updated additive score is not greater

than 0, the alignment is removed; or if s(ai, bj) > 0, a new alignment with score s(ai, bj)

and both x � length and y � length one will be created;

• From (i, j � 1): y � length will be extended by 1, the other one remains the same, one

indel penalty is added to the additive similarity score. If the updated additive score is not

greater than 0, the alignment is removed;

Even though there is no redundancy exists in the candidate lists of (i�1, j), (i�1, j�1) and

(i, j � 1), some of them may become redundant after maintaining and merging at (i, j). Figure

4.2 illustrates an example of shape for alignments ending at position (i, j). As discussed, we

know by comparing candidates O and Q, it is impossible to reject either one regardless of their

similarity scores, it is the same for comparing P and Q. However, if the sore of P is no less

than O, then O can be rejected by P. Therefore, in order to make sure all redundant candidates

will be removed, the naive method is to compare each pair of all candidates. Suppose we have

k candidates ending at (i, j), then totally k(k�1)
2 comparisons have to be taken. To reduce the

time consumption, we found a better method for comparison.

After maintaining the three lists from (i, j � 1), (i � 1, j � 1) and (i � 1, j), the first thing we

do is merge them into a single list. During merging, we can remove the redundant alignments

within the same additive similarity score groups. Notice that it may not be necessary to do so

4.3. Algorithm Design 49

Figure 4.2: The general shapes of alignments ending at position (i, j). Suppose there are three
candidates O, P and Q ending at (i, j), then the segment lengths for P are xo and yo. Also, xp

and yp for P, xq, yq for Q.

during merging, but since it costs fixed time, so we do that for convenience. Suppose candidates

O, P, and Q in Figure 4.2 have the same score and coming from three directions, then we find

the one with minimum x � length, which is xp. We knew that if one alignment is rejected, then

there must be another one that has shorter x � length and y � length with no less similarity

score. Therefore, among all the alignments with the same score, P will not be rejected for sure,

because xp is the minimum x � length. Then we can compare P with alignment O which has

the second shortest x � length, in order to make rejection decision for O. Notice that we only

need to compare y� length here, if yo is less than yp, then candidate O can be kept temporarily.

For this particular example, we can see the shape of P is covered by O, so O is discarded by

Lemma 4.3.1. For another scenario, if yo is less than yp, then O is kept, and O will be used

to compare with the candidates with third shortest x � length and so on. In our algorithm, for

comparing same score alignments, as long as the same score candidates are checked by the

ascending order of x � length, then we only compare the next candidate with the previously

kept one, because the previous kept candidates must have the shortest y� length among all kept

50 Chapter 4. A New Algorithm for Normalized Sequence Local Alignment

candidates with same additive score otherwise it will be discarded.

Specifically, we will have three sorted lists before merging. Let P1, P2, and P3 be three

alignment pointers which point to the first elements of three lists individually with corresponding

additive scores and subsequence lengths showing below:

• Alignment P1: additive score S 1, x-length x1 and y-length y1;

• Alignment P2: additive score S 2, x-length x2 and y-length y2;

• Alignment P3: additive score S 3, x-length x3 and y-length y3;

Here we only illustrate the situation when three of them have the same additive similarity

score S , since it is the most complicated case. Suppose S 1 = S 2 = S 3 = S , also let M be the

merged list. Then we will have the following scenarios during merging same score alignments:

• if x1 < x2 and x1 < x3, mark the alignment which pointed by P1 as Ptemp, move P1 to

the next element in the corresponding list;

• if x1 = x2 and x1 < x3, then if y1  y2, mark the alignment which pointed by P1 as Ptemp,

move P1 and P2 to the next element in the corresponding lists;

• if x1 = x2 and s1 = x2, then if y1  y2 and y1  y3, mark the alignment which pointed by

P1 as Ptemp, move P1, P2, and P3 to the next element in the corresponding lists;

Then, if Ptemp is the first alignment stored in M with score S , or it is not the first one but

its y � length is shorter than the y � length of the last element in M, then it will be directly

added into M; otherwise, it means the previous element should have both shorter x � length

and y� length than Ptemp, but with the same score, then Ptemp is redundant. If any pointer points

to lower score alignment after moving, it will not be processed until its additive score is highest

among all three pointers.

The comparison will keep going until every element from three lists is stored in M or

discarded. After merging, we have a list of alignments ending at (i, j) which does not contain

4.3. Algorithm Design 51

any redundancy within each same score group, and the list is sorted by similarity score in

descending order; for those paths with the same score, they are sorted by x�length in ascending

order.

The merging step can guarantee that there is no redundant alignment within the candidates

with the same similarity scores; however, we did not check if any higher score alignments

can be used to reject lower score alignments during merging. For this situation, the simplest

method is to compare all alignments with all relatively higher score alignments, but it will

consume too much time. According to Lemma 4.3.1, in order to reject an alignment, we just

need to find another alignment with a higher score and shorter x� length and y� length. Hence

we considered invoking a self-balancing tree to find if such alignments exist to reject lower

score candidates. An augmenting red-black tree is designed to sort the merged list, and it will

be discussed in the next section.

4.3.4 Red-Black Tree

Our problem is, for each candidate in the merged list, we need to search if alignment exists

somewhere previously in the list, has a higher additive score and both shorter x � length, y �

length. If such candidates exist, the current one is redundant and can be discarded; otherwise

it needs to be kept at current position in matrix H. The simplest method is to compare current

candidate with each one before it in the list, it can guarantee all redundant alignments will be

found; however, the time complexity for this method is quadratic. Considering we only need to

know if such a better candidate exists to reject an alignment, it is unnecessary to find the exact

candidate. Typically, a self- balancing tree can be used to shorten the searching time. Due to

Lemma 2.8.1 in chapter 2, the height of the red-black tree is O(logn), where n is the tree size

so that the time complexity for both searching and insertion is O(logn). Hence, we considered

invoking a red-black tree to solve this problem.

For each node in the tree, we decide to store the data of one candidate from the merged list

at Hi, j, including x � length and y � length. Recall that all redundant alignments within each

52 Chapter 4. A New Algorithm for Normalized Sequence Local Alignment

score group are removed, then candidates who are already in the tree will not have less score

than the current one, so it is unnecessary to store the additive score in tree node. The key of

each node will be the x � length of the corresponding candidate. Also, all nodes in the left

subtree always have shorter x � length than the root, and nodes in its right subtree always have

greater x � length. Notice that there is no node in the tree that has the same x � length; the

reason will be given.

In the red-black tree, each node only contains one key, but we need to consider both x �

length and y � length when comparing two candidates, and we do not want to test each node

in the subtree. Therefore, we augmented the red-black tree by adding one more attribute for

each tree node, to determine the minimum y � length among all the inserted alignments in the

subtree rooted at the current node. It is called minY . Because when we compare the current

candidate with a tree node, if its x� length is greater than node key, then if its left child’s minY

is less than the candidate’s y � length, that means there must be an alignment exist in the tree

have both shorter x � length and y � length, so the candidate can be regarded without further

testing.

Due to the pattern of merged list, any alignment in the list cannot be used to reject any other

candidates before them, but may reject alignments after them, so we insert node from the left-

hand side of merged list, that is the one with the highest additive score and shortest x � length

within the same score group. By this insertion order, any existing nodes (alignments) in the

tree will not be rejected and removed from the tree. This is the reason why alignments with the

same scores are sorted by ascending order of x � length; any tree node deletion will cost much

extra time.

When an alignment candidate P with x-length xp, y-length xp and similarity score S p is

ready for comparison, firstly it will be compared with the root node R. Suppose the alignment

stored in R has x-length xr, y-length yr and similarity score S r. Then the comparison will

have the following scenarios:

1. if xp < xr, then let R be the left child of R;

4.3. Algorithm Design 53

2. if xp = xr and yp < yr, then change the alignment stored in R to alignment P;

3. if xp = xr and yp � yr, then P can be discarded;

4. if xp > xr and yp is less than the minY of R’s left child, then let R be the right child of R;

5. if xp > xr and yp is greater than or equal to the minY of R’s left child, P can be discarded.

For cases 1 and 4, the loop will keep going until a leaf node is reached, or case 2, 3 or 5

happens.

Firstly if xp < xr, it means the alignment stored in R cannot judge alignment P; therefore,

move to the left child of R and keep comparison. On the other hand, if xp = xr, then if

yp < yr, the alignment stored in the root will be changed to P. This modification does not

mean the previous alignment is discarded, it helps to keep the tree size as small as possible.

For example,if S r = 10, xr = 10 and yr = 10 for the alignment stored in R, S p = 9, xp = 10

and yp = 8. If we do not replace the root alignment to P, then P will be inserted somewhere on

the right side of R. At this time, suppose the next alignment T will be compared with the tree

has similarity score 8, x � length 10 but y � length 9. By comparing with the root, T cannot

be removed; then the comparison keeps going until reach the node contains P, which has a

higher score than T , but the smaller shape, at this time, T can be discarded. On the other hand,

suppose the alignment stored in root is changed to P. When comparing T , the decision can be

made at the first comparison. Therefore, the replacing step can avoid inserting an extra node so

that the comparison time is shortened. Also, there are no extra operations needed to maintain

the tree, since the structure does not change, and the only modification is the data stored in R,

which is fixed time consumption. Next, if xp = xr and yp � yr, then it means P can be removed

by R. The third case of comparison is xp > xr, then if yp is less than the minY of R’s left child,

move to the right child of R and keep comparison; otherwise, that means there must be another

alignment that exists on the left side of root, has less x � length and y � length than P, then it

can be discarded.

54 Chapter 4. A New Algorithm for Normalized Sequence Local Alignment

If there is no such alignment exists in the tree to reject the new candidate, it will be stored

in the list of Hi, j and inserted at the correct position in the augmenting red-black tree as a new

node, the tree structure need to be checked, and certain operations will be taken if needed.

Algorithm 5 is the insertion function, and the time complexity is O(log n), where n here is the

size of candidate list. The new attribute minY actually will not a↵ect the time consumption,

because updating minY cost fixed time, and the rest part is the same as a regular red-black tree.

The specific maintenance steps can be found in Algorithm 6, 7, and 8.

After trying to insert all elements from the merged list, all successfully inserted alignment

are not redundant at (i, j), they will be stored in the list of Hi, j.

4.4 Process Stored Data by Applying Normalized Similarity

Metric

After dynamic programming, a matrix H, which stores all the necessary data at each position

(i, j), has been obtained. Let S [i, j] denotes the list of all stored alignments which start

from the di↵erent position but ending at (i, j). For di↵erent applications, any number of

normalized similarity metric can be applied to find the corresponding optimal normalized local

alignment; this can be done by iterating each element of H and testing all the candidates by the

corresponding metric. Meanwhile, during iteration, a list can be generated, which contains a

certain number of local alignments sorted by their normalized similarity scores.

Furthermore, because the alignment data at each point is kept, then it is possible to directly

access the data in a particular position (i, j) and find the optimal local alignment ending at this

point, without rerunning dynamic programming.

Therefore, our algorithm not only can find an optimal solution based on corresponding

normalized similarity metric but also can find other biologically meaningful alignments that

are not as good as the optimal solution but with relatively high normalized scores.

4.5. Time and Space Complexity Analysis 55

4.5 Time and Space Complexity Analysis

The theoretical time complexity of the whole program is O(m2n2 ⇥ log(mn)) since, at any

position (i, j), the worst case is that there are i ⇥ j candidates need to be processed, then the

maximum red-black tree height would be log(i j). However, our algorithm always remove

redundant alignments at each position, so the maximum candidates number processed in each

particular position have never been this huge, the actual complexity of this program is much

smaller than O(m2n2⇥ log(mn)), it is close to O(mn log(k)), where k is a constant which is much

smaller than m or n. Since the program need to store the matrix H, the space complexity is

O(m2n2) theoretically in the worst case, but it never happened, so the actual space complexity

is close to O(mn).

4.6 Corresponding Algorithms

Algorithm 3 FindingGlobalAlignment
Input: sequences A = a1...an and B = b1...bm, similarity metric s(x, y), indel penalty �;
Output: score matrix H

1: initialize matrix H with size (m + 1) ⇥ (n + 1)
2: set H0,0 = 0
3: for i is from 1 to n do
4: set Hi,0 = Hi�1,0 + �
5: end for
6: for j is from 1 to m do
7: set H0, j = H0, j�1 + �
8: end for
9: for i is from 1 to n do

10: for j is from 1 to m do
11: let Hi, j be the maximum of Hi�1, j + �, Hi�1, j�1 + s(ai, bj) and Hi, j�1 + �
12: end for
13: end for
14: return H

56 Chapter 4. A New Algorithm for Normalized Sequence Local Alignment

Algorithm 4 GettingAllOptimalAlignmentCandidates
Input: sequences A = a1...an and B = b1...bm, similarity metric s(x, y), indel penalty �;

Output: matrix H, stores all alignments starting from each possible
position

1: initialize matrix H with size m ⇥ n
2: for g is from n � 1 to 1 do
3: for h is from m � 1 to 1 do
4: FindingGlobalAlignment(Ag = ag...an, Bh = bh...bm, s(a, b), �)
5: store all optimal global alignments starting from (g, h) to Hi, j

6: end for
7: end for
8: return H

Algorithm 5 Augmented red-black tree insertion
Input: root node R and new node N;
Output: true for successful insertion, false otherwise

1: while root node is not empty do
2: if N.x � length < N.x � length then
3: set N to N’s left child
4: else
5: if N.x � length = R.x � length then
6: if N.y � length < R.y � length then
7: replace the path stored in R to the new path in N
8: return true
9: end if

10: return false
11: else
12: if N.y � length < R.y � length then
13: if N.y � length < R.minY or R’s left child is a leaf then
14: set R to R’s right child
15: else
16: return false
17: end if
18: else
19: return false
20: end if
21: end if
22: end if
23: end while
24: \\ R is now the position to insert new node
25: add the new path
26: maintenance(R)

4.6. Corresponding Algorithms 57

Algorithm 6 Maintenance
Input: the inserted node R;
Output: maintain the tree structure

1: while R’s is not root and its parent’s color is red do
2: if R’s parent is the left child of R’s grandparent then
3: let right be the right child of R’s grandparent
4: if right’s color is red then
5: set R’s parent’s color to black
6: set right’s color to black
7: set R’s grandparent’s color to red
8: set R to R’s grandparent
9: else

10: if R is right child then
11: set R to its parent
12: leftRotate(R)
13: set R’s parent’s color to black
14: set R’s grandparent’s color to red
15: rightRotate(R’ grandparent)
16: else
17: set R’s parent’s color to black
18: set R’s grandparent’s color to red
19: rightRotate(R’s grandparent)
20: end if
21: end if
22: else
23: let le f t be the left child of R’s grandparent
24: if le f t is red then
25: set R’s parent’s color to black
26: set le f t’s color to black
27: set R’s grandparent’s color to red
28: set R to its grandparent
29: else
30: if R is left child then
31: set R to its parent
32: rightRotate(R)
33: set R’s parent’s color to black
34: set R’s grandparent’s color to red
35: leftRotate(R’s grandparent)
36: else
37: set R’s parent’s color to black
38: set R’s grandparent’s color to red
39: leftRotate(R’s grandparent)
40: end if
41: end if
42: end if
43: end while
44: set root’s color to black
45: return true

58 Chapter 4. A New Algorithm for Normalized Sequence Local Alignment

Algorithm 7 LeftRotate
Input: node N;
Output: adjust local tree structure

1: let temp be the right child of N
2: let temp’s left child be the right child of N
3: if N is root then
4: let temp be the new root
5: else
6: let temp be the child of N’s parent, instead of N
7: end if
8: let N be the left child of temp
9: N.renewMinY()

Algorithm 8 RightRotate
Input: node N;
Output: adjust local tree structure

1: let temp be the left child of N
2: let temp’s right child be the left child of N
3: if N is root then
4: let temp be the new root
5: else
6: let temp be the child of N’s parent, instead of N
7: end if
8: let N be the right child of temp
9: N.renewMinY()

Chapter 5

Experiment

We used the above approach to find normalized local alignments of di↵erent protein sequences

pairs, during the experiment several concave functions were tested. Finally, a phylogenetic tree

was built over 20 mammals.

5.1 Protein Sequences

Proteins are large biomolecules and perform a massive number of functions within organisms,

and consist of at least one amino acid chain, which is assembled by the di↵erent number of

amino acids. So far, it has been studied that there are 20 standard amino acids coding from

genes; therefore, protein sequences are much more variable than DNA sequences. The 20

amino acids are represented by 20 alphabetic letters so that a protein sequence can be treated

as a finite string over a 20 � letter alphabet, shows in Table 5.1.

Let ⌃ be the corresponding 20� letter alphabet, and A, B be two finite strings over ⌃, where

A = a1a2...an and B = b1b2...bn. The goal is to find subsequences ag...ai and bk...bj within A, B

that have the highest similarity degree, where 0 < g < i  n, 0 < k < j  m. Notice that there

are two more additional amino acids are found in some species to interpret stop codons; also

BLOSUM matrices consist 24 letters, which the last 3 alphabetic letters are used to identify

unknown residues during chemical analysis, and the ⇤ letter is for matching a space.

59

60 Chapter 5. Experiment

amino acids alphabetic letter amono acids alphabetic letter
Alanine A Leucine L
Arginine R Lysine K

Asparagine N Methionine M
Aspartic acid D Phenylalanine F

Cysteine C Proline P
Glutamine Q Serine S

Glutamic acid E Threonine T
Glycine G Tryptophan W

Histidine H Tyrosine Y
Isoleucine I Valine V

Table 5.1: amino acids table.

5.2 Datasets

The protein sequences we used for experiments are encoded by animal’s mitochondrial DNA. It

is known that in most cases, the inheritance of an animal’s mtDNA is uniparental from mother

[5], so mtDNA is highly conserved. This property is a potent tool to study the evolutionary

relationships between organisms. The size of animal mtDNA is around 16k base pairs and

contains the same 37 genes: 13 for proteins, 22 for tRNAs, and 2 for rRNAs [4]. An example

of mtDNA is given in Figure 5.1, and it is a human mtDNA. By the sequence order of mtDNA,

the 13 proteins are NADH dehydrogenase subunit 1 (NADH1), NADH dehydrogenase subunit

2 (NADH2), cytochrome c oxidase subunit I (COX1), cytochrome c oxidase subunit II (COX2),

ATP synthase F0 subunit 8 (ATP8), ATP synthase F0 subunit 6(APT6), cytochrome c oxidase

subunit III (COX3), NADH dehydrogenase subunit 3 (NADH3), NADH dehydrogenase subunit

4L (ND4L), NADH dehydrogenase subunit 5 (NADH5), NADH dehydrogenase subunit 6

(NADH6) and cytochrome b (CYTB).

We only use the 13 proteins portion for experiment, rather than the whole mtDNA sequence.

The 20 species included in the experiment are blue whale (balaenoptera musculus), cat (felis

catus), chimpanzee (Pan troglodytes), cow (bos taurus), finback whale (balaenoptera physalus),

gibbon (hylobates agilis), gorilla (gorilla gorilla), grey seal (halichoerus grypus), harbo seal

5.2. Datasets 61

Figure 5.1: Human mitochondrial DNA gene map [5].

(phoca vitulina), human (homo sapiens), horse (equus caballus), house mouse (mus musculus),

opossum (micoureus demerarae), bornean orangutan (pongo pygmaeus), platypus (ornithorhynchus

anatinus), pygmy chimpanzee (pan paniscus), rat (rattus norvegicus), sumatran orangutan

(pongo abelii), wallaroo (osphranter robustus) and white rhino(ceratotherium simum). All the

above 20 ⇥ 13 protein sequences are obtained from GenBank in fasta file format. An example

is given in Figure 5.2.

Figure 5.2: An example of fasta file, the first line is file description, and the rest lines are
the sequence of the particular protein which is inside the square bracket at the end of the
description.

62 Chapter 5. Experiment

Besides the protein sequences, we employed BLOSUM62 for similarity metric, showed in

Figure 5.3. All the values in the table were rounded to the nearest integers, and it still satisfies

the similarity metric definition.

Figure 5.3: Rounded BLOSUM62 table, obtained from NCBI.

5.3. Protein sequence local alignment 63

5.3 Protein sequence local alignment

In this section, an experiment of aligning protein sequences is given. The two input sequences

are both for protein ATP6, and are from human and cat respectively, showing in Figure 5.4.

Figure 5.4: Two sequences of protein ATP6, one is from human and the other one is from cat.

For experiment, by using the normalized similarity metric:

s(x, y) =
s(x, y)

f (d(x, y) + s(x, y))
. (5.1)

For similarity metric s(x, y), we applied BLOSUM62. We tested three di↵erent concave functions,

the result is showed in Figure 5.5.

The result shows that similarity degree decreased, along with the decreasing of the power

of x in concave functions. On the other hand, by applying the Smith-Waterman algorithm with

BLOSUM62, the optimal local alignment is identical with the input sequences; therefore, it is

ine↵ective in this situation.

5.4 Build Phylogenetic Tree by Neighbor Joining Method

A phylogenetic tree is a graph that consists of di↵erent species as terminal vertices, and the

edge weights between each node are the actual distance among aligned sequences. There are

also internal nodes which are used to lower the total distance of the graph and represent the

similarity degree among species.

64 Chapter 5. Experiment

Figure 5.5: By applying multiple concave functions, the solutions have di↵erent similarity
degrees. The solution generated by the Smith-Waterman algorithm is identical with the original
sequences.

There are many methods to build a phylogenetic tree such as the maximum-likelihood

method [19] and by k-mers [13]. For our experiment, since the algorithm is to find optimal local

alignment, and the normalized similarity score can be transferred to distance, then we used the

neighbor-joining method, which is one of the most e�cient methods to build a phylogenetic

tree. In the beginning, we have a starlike graph that only contains one internal vertex, and it

connects to all terminal nodes which represent each species. Moreover, a new internal vertex

will be created to cluster any two species that can obtain the minimum total distance, and such

grouping is the optimal solution in the current joining step. This will be looped n � 1 times,

where n is the species number [16]. We used the approach from [11] to do neighbor join, and

it has been proved that the method gives exactly the same phylogenetic tree as the original

method in [16].

There are two constraints for using neighbor-joining by our local alignments result. Firstly,

for each individual protein, when aligning with other sequences, the optimal local alignments

may correspond to di↵erent regions. Even though we can transfer the similarity scores to

5.4. Build Phylogenetic Tree by Neighbor JoiningMethod 65

distances, they cannot be compared with each other, since each distance value represents

di↵erent segment pairs. To solve this problem, we tried to find a fixed subsequence from

each protein sequence. For each protein sequence, after finding all the local alignments by

aligning with other proteins, we trimmed it based on the longest alignment length among all

those alignments. So the subsequence within the range will be kept. For example, suppose

X,Y and Z are three protein sequences, and for sequence X, we will get individual best local

alignments from X,Y , and X,Z, which related to di↵erent subsequences of X (L1 in Figure 5.6).

Then we compare all the alignments which contain X, and the longest L1 will be used to trim

X. In other words, we use local alignment results to find a subsequence of each protein; these

subsequences will be used to represent corresponding protein sequences for finding global

distances.

Figure 5.6: For alignment of sequence X and Y , we can get L1 and L2 length, but if changing
sequence Y to Z, new L1 will be obtained corresponding to the new optimal alignment.

Moreover, the similarity scores need to be transferred to distance values, then sum up the

total distances for all 13 proteins. Notice that for each protein, all species have similar sequence

66 Chapter 5. Experiment

lengths; nevertheless, for di↵erent proteins, the sequence lengths are diverse. For example,

normally, the sequence lengths of protein NADH5 are over 600 amino acids, but protein ATP8

only contains less than 80 amino acids. Therefore, for each pair of species such as human and

cat, if we sum up the distances of all 13 proteins, longer protein sequences will distribute more

to the total distance of these two species. Therefore, we attempted to normalize the distances

to interpret the actual distance of any two species for each protein. It has been proved in

[20] that Equation 5.2 is a normalized distance metric, where f (x) is a concave function, and

dL2(x, y) = 2
p

(s(x, x) � s(x, y))2 + (s(y, y) � s(x, y))2. Just like the normalized similarity metric

which we used to find out optimal alignment, this distance metric interprets how di↵erent the

two sequences are.

d(x, y) =
dL2(x, y)

f (dL2(x, y) + s(x, y))
(5.2)

At the beginning of our experiment, when calculating dL2(x, y) in Equation 5.2, we used the

trimmed sequences to generate s(x, x) and s(y, y), but the experiment result was not ideal. Then

we considered that the parts had been discarded after trimming should also take into account,

so we tried to use the original sequences to generate s(x, x) and s(y, y), the output phylogenetic

tree was improved, and it is shown in Figure 5.7.

5.5 Experiment Result

Figure 5.7 is the phylogenetic tree, which was built following the above steps, and the similarity

metric used is BLOSUM62. We also tried BLOSUM80, and the tree is identical to using

BLOSUM62. Meanwhile, we constructed a contrasting phylogenetic tree, which invoked the

Smith-Waterman algorithm to find local alignments. The tree is shown in Figure 5.8.

5.6. Evaluation 67

Figure 5.7: Phylogenetic tree of 20 mammals, the protein sequences were trimmed by the new
approach. and the distances were used by neighbor joining are normalized. Similarity metric
is BLOSUM62.

5.6 Evaluation

Firstly, we tracked the dynamic programming part of the experiment. If the length of protein

sequences is around 230 amino acids, at each position (i, j), there will be around 30 candidates

that have been stored, which means our algorithm e�ciently reduced the size of the candidate

list stored in each Hi, j. Furthermore, the protein sequences we used for experiments have high

similarity degree, so if the sequences used are not closely related, then the average list size will

be smaller.

Moreover, from the phylogenetic tree 5.7, we can see Primates, Ferungulates, and Rodents

68 Chapter 5. Experiment

Figure 5.8: This Phylogenetic tree used the trimmed protein sequences which were generated
by Smith-Waterman Algorithm, and the distances used by neighbor joining were not
normalized.

are separately clustered correctly. The only flaw we got is cow, finback whale and, blue whale

are all belong to Artiodactyla order biologically, but in the tree, cow is not closely related to

those two species. The reason was unknown when finishing this thesis; a future study will be

taken to figure out the reason. By contrast, the tree built by Smith-Waterman cannot cluster

Ferungulates.

Meanwhile, we tried three di↵erent concave function for normalization: f1(x) = x0.95, f2(x) =

x0.75 and f3(x) = x0.5; furthermore, the local alignments obtained by f3(x) are identical with the

outputs from the Smith-Waterman algorithm. By contrast, the normalization strength of f1(x)

5.6. Evaluation 69

is too much, so the local alignments are short, and the corresponding segments are highly

identical. This function cannot provide ideal solutions even for aligning mitochondrial protein

sequences, so it may give worse results for aligning dissimilar sequences. f2(x) works fine,

because the optimal solutions given by this function are not so long as the output of Smith-

Waterman, and not too short to distinguish the distances between di↵erent species.

Chapter 6

Conclusion

In this thesis, we have studied the topic of finding sequence local alignment by applying

normalized similarity metric. Firstly we discussed the Smith-Waterman algorithm, which is

one of the earliest methods for finding sequence local alignment. Then, we analyzed this

algorithm may not be able to provide meaningful results in some scenarios because it only

returns the alignment with the highest additive similarity score. Then reviewed a few approaches

for normalizing similarity score or distance, in order to get the alignment with the required

similarity degree.

Then, our new algorithm has been introduced. It is designed to find the optimal local

alignment with the highest normalized similarity score. Firstly, it invokes a Minkowski distance

typed normalized similarity metric family to find di↵erent optimal local alignments with distinct

similarity degree, in order to satisfy the di↵erent requirements for biological applications.

Meanwhile, after executing the algorithm, all necessary data is stored as a matrix, so that

dynamic programming can be avoided when other normalization functions from the metric

family need to be applied. It can be achieved by iterating the alignment candidates stored in

the generated matrix. The theoretical time complexity of our algorithm is O(m2n2), but since

all redundant candidates are removed at each position of the matrix, the actual time complexity

is much lower.

In the end, the experiment result was shown and discussed. A phylogenetic tree which

includes 20 animal species, was built, based on the data obtained from our new algorithm.

70

71

Almost all species were grouped correctly by their biological order. Meanwhile, another

tree was built by using the same raw data as the previous experiment but processed by the

Smith-Waterman algorithm. The experiment result shows that our algorithm successfully find

sequence local alignment with high similarity degree, based on normalized similarity metric.

In the future study, we attempt to discover if any other redundant candidates are stored in

matrix H. Also, we will try to find a better trimming method for protein sequences, in order to

produce a more accurate phylonegetic tree.

Bibliography

[1] Needleman–Wunsch algorithm. Needleman–wunsch algorithm — Wikipedia, the free
encyclopedia, 2018. [Online; accessed 27-December-2018].

[2] Abdullah N Arslan and Omer Egecioglu. An e�cient uniform-cost normalized edit
distance algorithm. In 6th International Symposium on String Processing and Information
Retrieval. 5th International Workshop on Groupware (Cat. No. PR00268), pages 8–15.
IEEE, 1999.

[3] Abdullah N Arslan, Ömer Eğecioğlu, and Pavel A Pevzner. A new approach to sequence
comparison: normalized sequence alignment. Bioinformatics, 17(4):327–337, 2001.

[4] Je↵rey L Boore. Animal mitochondrial genomes. Nucleic acids research, 27(8):1767–
1780, 1999.

[5] Charlotte Capt, Marco Passamonti, and Sophie Breton. The human mitochondrial genome
may code for more than 13 proteins. Mitochondrial DNA Part A, 27(5):3098–3101, 2016.

[6] MA Chang, MO Dayho↵, RV Eck, and MR Sochard. Atlas of protein sequence and
structure. 1965.

[7] Shihyen Chen, Bin Ma, and Kaizhong Zhang. The normalized similarity metric and its
applications. In 2007 IEEE International Conference on Bioinformatics and Biomedicine
(BIBM 2007), pages 172–180. IEEE, 2007.

[8] Shihyen Chen, Bin Ma, and Kaizhong Zhang. On the similarity metric and the distance
metric. Theoretical Computer Science, 410(24-25):2365–2376, 2009.

[9] Werner Dinkelbach. On nonlinear fractional programming. Management science,
13(7):492–498, 1967.

[10] Levenshtein distance. Levenshtein distance — Wikipedia, the free encyclopedia, 2019.
[Online; accessed 29-April-2019].

[11] Olivier Gascuel and Mike Steel. Neighbor-joining revealed. Molecular biology and
evolution, 23(11):1997–2000, 2006.

[12] Steven Heniko↵ and Jorja G Heniko↵. Amino acid substitution matrices from protein
blocks. Proceedings of the National Academy of Sciences, 89(22):10915–10919, 1992.

72

BIBLIOGRAPHY 73

[13] Ming Li, Xin Chen, Xin Li, Bin Ma, and Paul Vitányi. The similarity metric. In
Proceedings of the fourteenth annual ACM-SIAM symposium on Discrete algorithms,
pages 863–872. Society for Industrial and Applied Mathematics, 2003.

[14] Andres Marzal and Enrique Vidal. Computation of normalized edit distance and
applications. IEEE transactions on pattern analysis and machine intelligence, 15(9):926–
932, 1993.

[15] Saul B Needleman and Christian D Wunsch. A general method applicable to the search
for similarities in the amino acid sequence of two proteins. Journal of molecular biology,
48(3):443–453, 1970.

[16] Naruya Saitou and Masatoshi Nei. The neighbor-joining method: a new method for
reconstructing phylogenetic trees. Molecular biology and evolution, 4(4):406–425, 1987.

[17] Temple F Smith, Michael S Waterman, et al. Identification of common molecular
subsequences. Journal of molecular biology, 147(1):195–197, 1981.

[18] Ronald L. Rivest Cli↵ord Stein Thomas H. Cormen, Charles E. Leiserson. Introduction
to Algorithms, Third Edition 3rd. The MIT Press c�2009, 2009.

[19] Ziheng Yang. Maximum likelihood phylogenetic estimation from dna sequences with
variable rates over sites: approximate methods. Journal of Molecular evolution,
39(3):306–314, 1994.

[20] Kaizhong Zhang. Similarity metric induced metrics with application in machine
learning and bioinformatics. In 2016 IEEE 15th International Conference on Cognitive
Informatics & Cognitive Computing (ICCI* CC), pages 283–287. IEEE, 2016.

[21] Zheng Zhang, Piotr Berman, and Webb Miller. Alignments without low-scoring regions.
Journal of Computational Biology, 5(2):197–210, 1998.

[22] Zheng Zhang, Piotr Berman, Thomas Wiehe, and Webb Miller. Post-processing long
pairwise alignments. Bioinformatics, 15(12):1012–1019, 1999.

Curriculum Vitae

Name: Qiang Zhou

Post-Secondary The University of Western Ontario
Education and London, Ontario, Canada
Degrees: 2008 - 2013 B.S.

University of Western Ontario
London, ON
2017 - 2019 M.S.

Honours and Dean’s Honor List
Awards: 2016 - 2017

Related Work Teaching Assistant
Experience: The University of Western Ontario

2017 - 2019

74

	A New Approach to Sequence Local Alignment: Normalization with Concave Functions
	Recommended Citation

	tmp.1567701739.pdf.rIVzp

