
Western University Western University 

Scholarship@Western Scholarship@Western 

Electronic Thesis and Dissertation Repository 

6-6-2019 10:30 AM 

Effect of the nonlinear material viscosity on the performance of Effect of the nonlinear material viscosity on the performance of 

dielectric elastomer transducers dielectric elastomer transducers 

Yuanping Li, The University of Western Ontario 

Supervisor: Jiang, Liying, The University of Western Ontario 

A thesis submitted in partial fulfillment of the requirements for the Master of Engineering 

Science degree in Mechanical and Materials Engineering 

© Yuanping Li 2019 

Follow this and additional works at: https://ir.lib.uwo.ca/etd 

 Part of the Applied Mechanics Commons, Computer-Aided Engineering and Design Commons, 

Electro-Mechanical Systems Commons, Energy Systems Commons, Engineering Mechanics Commons, 

Mechanics of Materials Commons, Polymer and Organic Materials Commons, and the Semiconductor 

and Optical Materials Commons 

Recommended Citation Recommended Citation 
Li, Yuanping, "Effect of the nonlinear material viscosity on the performance of dielectric elastomer 
transducers" (2019). Electronic Thesis and Dissertation Repository. 6223. 
https://ir.lib.uwo.ca/etd/6223 

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted 
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of 
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca. 

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F6223&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/295?utm_source=ir.lib.uwo.ca%2Fetd%2F6223&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/297?utm_source=ir.lib.uwo.ca%2Fetd%2F6223&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/298?utm_source=ir.lib.uwo.ca%2Fetd%2F6223&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/299?utm_source=ir.lib.uwo.ca%2Fetd%2F6223&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/280?utm_source=ir.lib.uwo.ca%2Fetd%2F6223&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/283?utm_source=ir.lib.uwo.ca%2Fetd%2F6223&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/289?utm_source=ir.lib.uwo.ca%2Fetd%2F6223&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/290?utm_source=ir.lib.uwo.ca%2Fetd%2F6223&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/290?utm_source=ir.lib.uwo.ca%2Fetd%2F6223&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/6223?utm_source=ir.lib.uwo.ca%2Fetd%2F6223&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca


i 

 

Abstract 

As a typical type of soft electroactive materials, dielectric elastomers (DEs) are capable of 

producing large voltage-induced deformation, which makes them desirable materials for a 

variety of applications in transduction technology, including tunable oscillators, resonators, 

biomimetics and energy harvesters. The dynamic and energy harvesting performance of such 

DE-based devices is strongly affected not only by multiple failure modes such as electrical 

breakdown, electromechanical instability, loss-of-tension and fatigue, but also by their material 

viscoelasticity. Moreover, as suggested by experiments and theoretical studies, DEs possess 

nonlinear relaxation processes, which makes modeling of the performance of DE-based 

devices more challenging. 

In this thesis, by adopting the state-of-art modeling framework of finite-deformation 

viscoelasticity, the effects of nonlinear viscosity of the polymer chains on the oscillation and 

frequency tuning of DE membrane oscillators are firstly investigated. From the simulation 

results, it is found that the nonlinear viscosity only affects the transient state of the frequency 

tuning process of DE oscillators. Secondly, with both finite-deformation viscoelasticity and 

deformation-dependent viscosity of polymer chains considered, the energy conversion 

efficiency and the harvested energy of dielectric elastomer generators under equi-biaxial 

loading are also examined. It is found that when a nonlinear viscosity model is used, DE 

generators appear to reach an equilibrium state faster and the nonlinear viscosity significantly 

influences the energy harvesting performance. The modeling framework developed in this 

work is expected to provide useful guidelines for predicting the performance of DE-based 

oscillators and energy harvesters as well as their optimal design. 

 

Keywords 

Dielectric elastomers transducers, viscoelasticity, nonlinear viscosity, hyperelasticity, 
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Chapter 1  

1 Introduction 

1.1 Dielectric elastomers and applications 

Dielectric elastomers (DEs) consist of randomly oriented dipoles that respond to 

electrical stimuli. When a dielectric elastomer is subjected to an electric field, the dipoles 

within the material tend to align themselves along the electric field. This unique property 

of dielectric elastomers makes them desirable materials for energy transducers. Figure 1-1 

illustrates the basic element of a dielectric elastomer transducer. Figure 1-1 (a) shows a 

membrane of undeformed dielectric elastomer membrane sandwiched between two 

compliant electrodes. In figure 1-1 (b), a voltage is applied on the electrodes and opposite 

charges flow from external power supply to the compliant electrodes. The attractive force 

between the charges on the electrodes makes the DE membrane contract in thickness and 

expand in area to the current state (Hong, 2011; Suo, 2010; Zhao and Suo, 2010). 

  

Figure 1-1 A dielectric elastomer membrane sandwiched by two compliant electrodes 

(a) undeformed state (b) current state 

Decades ago, it was found that dielectric elastomers possessed great potential for 

sustaining large deformation with strain over 100% (Pelrine et al., 2000). Due to large 

deformation capability, high energy density, softness and flexibility, DEs are excellent 

material candidates for actuators, sensors, oscillators and energy harvesters (Suo, 2010). 

For example, in figure 1-2, an insect-inspired walking robot is designed by using two linear 

(a) (b) 
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dielectric elastomer actuators on each leg. The advantage of DEs in this application is that 

they avoid gears and provide flexible movements (Kornbluh et al., 2002; Pelrine et al., 

2002). Also, due to their comparable softness as human tissue, dielectric elastomer 

actuators have the ability to be implemented as artificial muscles or organs in robotics and 

bioengineering field (Ashley, 2003). For example, an artificial human heart with 

contraction and expansion to ensure flow of blood; an eardrum to convert mechanical 

motion into acoustic signals; artificial pupils capable of adjusting in response to light 

intensity (Pelrine et al., 2002). Also, compared to traditional sensor materials which are 

relatively stiff, DE sensors are adaptable and capable of sustaining large stain. For example, 

a Japanese company EAMEX has claimed to have conducted a DE sensor being able to 

sense external forces (Jung et al., 2008). Goulbourne et al. (2007) proposed a self-sensing 

Mckibben actuator which utilized a DE cylindrical capacitive sensor to define the change 

in strain and pressure of the Mckibben pneumatic actuator. 

DEs have also been developed and explored for applications as loudspeaker, oscillators 

and resonators. Figure 1-3 illustrates the design of dielectric elastomer speakers. Dielectric 

elastomer speakers have many advantages, including various shapes (e.g. conformal, flat, 

round), good fidelity, high sensitivity, and consistent sound pressure response over a wide 

range of frequency (Kornbluh et al., 2002). Furthermore, DEs have shown potential for 

energy harvesting devices or generators which can harvest energy from a variety of 

sources, such as wind, ocean waves, and human movements (Chiba et al., 2008; Kornbluh 

et al., 2012; Pelrine et al., 2001). Figure 1-4 demonstrates a dielectric elastomer generator 

designed to harvest mechanical energy from ocean waves. Experimental results show that 

it can produce a peak power of 11W and attain an energy density up to 80J/kg (Chiba et 

al., 2008). 
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Figure 1-2"FLEX", an insect shape walking robot with dielectric elastomer actuators 

(Pelrine et al., 2002). 

 

Figure 1-3 Dielectric elastomers are used in loudspeakers (a) Three acrylic diaphragm 

speakers. The larger speaker is 12in × 12in (b) Frequency response of a speaker made 

from silicon film on a matrix of holes (inset) (Kornbluh et al., 2002). 
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Figure 1-4 Dielectric electric generator system used to harvest energy from ocean 

waves (Chiba et al., 2008). 

1.2 Large deformation capacity and typical 

electromechanical responses of dielectric elastomers 

Dielectric materials deform when subjected to a voltage, but the amount of deformation 

varies significantly. For instance, piezoelectric ceramics can only attain strains less than 

1%; glass and semi-crystalline polymers can attain strains up to 10% (Zhang et al., 1998). 

For dielectric elastomers, actuation strains over 100% have been achieved by a few 

approaches, for example, by applying pe-stretch (Pelrine et al., 2000), using 

interpenetrating networks (Ha et al., 2006), swelling an elastomer with a solvent (Shankar 

et al., 2007), and spraying charges on compliant electrodes (Keplinger et al., 2010). 

However, existing studies have also found that the voltage-induced deformation of DEs is 

strongly affected by multiple failure modes and electromechanical instability (EMI). 

Among the failure modes of DEs, electrical breakdown is the most common one, which 

occurs when the applied voltage exceeds the breakdown voltage of the material. 

Electromechanical instability is a phenomenon when the applied voltage increases, the 

elastomer thins down, and the same voltage induces an even higher electric field, which 
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causes the elastomer to reduce the thickness dramatically and eventually results in a 

premature electrical breakdown (Keplinger et al., 2012; Suo, 2010). 

 

Figure 1-5 Electromechanical response and electrical breakdown of dielectric 

elastomers. (a)-(c)Three types behavior are defined (Koh et al., 2011b). 

Based on the interplay among the electrical breakdown, the electromechanical 

instability, and the electromechanical response, dielectric elastomers can be classified into 

three types as demonstrated by Figure 1-5, in which both the electromechanical response 

curve and the electrical breakdown curve are plotted. In figure1-5 (a), the electrical 

breakdown happens before the peak of the response curve. For this case, the actuation of 

the DE fails by the electrical breakdown. In figure 1-5 (b), due to the electromechanical 

instability, the electrical breakdown happens during the snap-through deformation, where 

the DE fails by a premature electrical breakdown. In figure 1-5 (c), the electrical breakdown 

happens after the snap-through deformation and large deformation of the DE is achieved 

(Leng et al., 2009). In other words, DEs with low dielectric strength (figure 1-5 (a)) do not 

undergo EMI. For DEs with moderate dielectric strength (figure 1-5 (b)), EMI occurs 

during the actuation and DE fails by a premature electrical breakdown. For DEs with high 
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dielectric strength (figure 1-5 (c)), the actuation survives the EMI and results in large 

deformation (Koh et al., 2011b; Zhao and Suo, 2010). 

1.3 Viscoelastic behavior of dielectric elastomers  

It has been found in experiments that the electromechanical response of DEs is also 

highly rate-dependent (Löwe et al., 2005; Pelrine et al., 2000; Plante and Dubowsky, 2006), 

which is caused by the intrinsic material viscosity of DEs. The rate-dependency of DEs can 

strongly affect its dynamic performance and coupling efficiency (Kornbluh et al., 2000). 

To predict their dynamic performance and improve the performance of various DE-based 

vibrational devices, researchers have devoted much effort to modeling viscoelastic DEs. In 

the early studies, a nonlinear viscoelastic model for DE membrane was developed using 

the Christensen’s theory (Christensen, 1980) of viscoelasticity for small and large 

deformation (Yang et al., 2005). A quasi-linear viscoelasticity model with time-dependent 

coefficients was implemented to describe the nonlinear response of circular DE membranes 

(Wissler and Mazza, 2005). Later, the material viscoelasticity of DEs was studied with a 

modified hyperelastic model (Plante and Dubowsky, 2007). Recently, based on the fully 

coupled field theory (Suo et al., 2008) and the finite-deformation viscoelasticity theory 

(Reese and Govindjee, 1998), a constitutive model was developed by Hong (2011), which 

is capable of adopting most hyperelastic energy functions and thermodynamic evolution 

laws. With this constitutive model for DEs, Park and Nguyen developed a finite-

deformation finite element model and evaluated the viscoelastic response of DEs 

undergoing homogeneous deformation and the effects of shear and bulk relaxation time on 

the EMI phenomenon (Park and Nguyen, 2013). Zhang et al. (2015b) presented a 

theoretical prediction on the dynamic behavior of viscoelastic DE membranes subjected to 

three different loads: equal-biaxial, uni-axial, and pure shear forces.  Later, Wang et al. 

(2013) analyzed the inhomogeneous viscoelastic deformation of a DE subjected to a 

combination of pressure and voltage.  

Moreover, it has been confirmed that the time-dependent inelastic deformation and 

stress relaxation significantly affect the dynamic response of DEs (Chiang Foo et al., 

2012a). Recently, more studies have been conducted to investigate the performance of 
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viscoelastic DE resonators and oscillators. Zhou et al. (2014) investigated the frequency 

tuning process of a viscoelastic DE-based resonator. Zhang et al. (2015a) developed an 

analytical model to investigate the coupled nonlinear oscillation and the stability of 

viscoelastic dielectric elastomers under non-equiaxial forces. Zhou et al. (2016) 

investigated the frequency tuning of a viscoelastic DE membrane oscillator, as well as its 

response to external excitation and AC voltage.  

DE generators are another typical application of DEs that are strongly affected by the 

material viscoelasticity (Huang et al., 2013; Pelrine et al., 2001; Shian et al., 2014). Foo et 

al. (2012b) investigated the effect of material viscoelasticity and current leakage on 

dielectric elastomer generators. Li et al. (2012b) demonstrated an approach to characterize 

the energy harvesting performance of viscoelastic DE generators under inhomogeneous 

fields. Zhou et al. (2017) presented a theoretical framework for analyzing the energy 

conversion performance of DEGs using a triangular harvesting scheme with the 

consideration of various failure modes. 

From the above-mentioned studies, much effort has been devoted to investigating the 

actuation, dynamic performance, failure modes and energy harvesting performance of 

viscoelastic dielectric elastomer-based oscillators or generators. However, much less work 

has been focused on the effect of deformation-dependent viscosity. When large 

deformation is considered, a more realistic situation is that the viscosity of the polymer 

chain is deformation-dependent, which has also been confirmed by experiments 

(Pyckhout-Hintzen et al., 2013; Straube et al., 1995). The nonlinear viscosity of material 

can be explained by the tube model proposed by Doi and Edwards (Doi and Edwards, 

1988). In the theory by Doi and Edwards (Doi and Edwards, 1988), a tube-like region 

surrounding a polymer chain restricts its lateral motion, but allows the chain to move back 

and forth or reptate within the tube. When the elastomer is under large deformation, the 

diameter of this tube-like region changes, which could significantly affect the reptation and 

relaxation ability of the polymer chain (Doi and Edwards, 1988). This deformation-

dependency of viscosity may also strongly influence the dynamic behavior and 

electromechanical coupling of DEs. 
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1.4 Objective  

As discussed above, dielectric elastomers have demonstrated great potential in various 

applications due to their unique features like high energy density, flexibility and capability 

of large deformation. However, due to the complex interplay among electromechanical 

coupling, material viscoelasticity and various failure modes, it is still difficult to predict 

the dynamic performance of DEs. Moreover, most of the existing works do not consider 

the deformation-dependent viscosity of dielectric elastomers, which may also strongly 

affect the dynamic and energy harvesting performance of DEs. Therefore, the objective of 

this work is to develop robust models for predicting the dynamic and the energy harvesting 

performance of DE-based devices as well as provide guidelines for their optimal design. 

Details are given as follows: 

(1) Examining the effect of nonlinear viscosity on the frequency tuning process of 

viscoelastic DE oscillators and resonators as well as their performance under 

external excitation. 

(2) Investigating the effect of deformation-dependent viscosity on the energy 

harvesting efficiency and the energy density of DE-based generators. 

1.5 Thesis structure 

Following the general introduction and objectives in chapter 1, a literature review about 

the fully coupled field theory, the viscoelastic models, as well as the finite-deformation 

viscoelasticity theory for elastomers with nonlinear viscosity is given in chapter 2. In 

chapter 3, the effect of the deformation-dependent material viscosity on the frequency 

tuning of viscoelastic DE based resonators, as well as their behavior under external 

excitation are investigated. In chapter 4, the nonlinear viscosity is further incorporated into 

the finite-deformation viscoelasticity theory to study energy harvesting performance of 

dielectric generators. MATLAB codes are developed in both Chapter 3 and Chapter 4 for 

numerical simulations. Chapter 5 summarizes this thesis and provides recommendations 

for future work.  
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Chapter 2  

2  Literature review  

Over recent decades, dielectric elastomers have drawn much attention due to their wide 

range of applications like artificial muscles, energy harvesters, medical and biomimetic 

equipment. Extensive studies have been carried out to analyze the interplay of their 

electromechanical deformation, failure modes and material viscoelasticity. The following 

section presents a review of the relevant studies on modelling the complex 

electromechanical coupling behavior of DEs. 

2.1 Fully coupled field theory 

Early analyses on DEs tended to consider the material as linear elastic by neglecting 

the effect of large deformation, and modeled the electromechanical coupling by simply 

adding the Maxwell stress  (Kornbluh et al., 1995; Pelrine et al., 1998). However, since the 

relation between strain and stress is assumed to be linear, the analyses are limited to small 

deformation. In order to account for finite-deformation, researchers later implemented the 

hyperelastic constitutive laws into a uniformly deformed elastomer, and have achieved 

results that are in agreement with some experimental observations (Goulbourne et al., 

2005; Pelrine et al., 2000; Wissler and Mazza, 2005). Nevertheless, these uncoupled 

models are only capable of explaining certain experimental results. Later, a fully coupled 

nonlinear field theory for electromechanical response of DEs was proposed to model the 

deformation and instability of dielectric elastomers (Dorfmann and Ogden, 2005; 

McMeeking and Landis, 2005). This fully coupled field theory is capable of explaining the 

nonlinear electromechanical response of DEs and enabling further numerical simulations 

of dielectric elastomers under complex loading conditions. The fully coupled field theory 

(McMeeking and Landis, 2005; Suo et al., 2008) is elaborated as follows. 
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Figure 2-1 A dielectric body subjected to electromechanical loads in the current state 

Figure 2-1 shows a dielectric body which is subjected to free body charge ( , )Q tX , 

free surface charge ( , )t X , body force ( , )tb X , and surface traction ( , )tT X . Under these 

loads, a material point in the dielectric body moves from the reference position X  to the 

current position ( , )tx X  at time t. The dielectric body has an initial volume of 0V , mass 

density of   and surface area of 0S . The deformation gradient of the current state with 

respect to the reference state is defined as  

 
i

ik
k

x ( , t)
F

X


=



X
. (2.1) 

Consider any test function ( )i X , 
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0 0 0

0 0 0
i ik

ik i i i
k kV S V

s
s dV T dS dV

X X


 

 
= −

    , (2.2) 

where iks  is the Piola-Kirchhoff stress (nominal stress). The motion equation of the 

dielectric body is expressed as 

 
2

2
ik i

i
k

s d x
b

X dt



= − +


. (2.3) 

Combining equations (2.2) and (2.3) we obtain 

 

0 0 0 0

2

0 0 0 02
i i

ik i i i i i
kV S V V

d x
s dV T dS b dV dV

X dt


   


= + −

    . (2.4) 

Again, consider any test function ( )X , 

 

0 0

0 0
k

k
k kV S V

D
D dV dS dV

X X


 


= − −

    , (2.5) 

where kD  is nominal electric displacement, and kE  is nominal electric field which could 

be expressed in terms of the electric potential,  

 k
k

E
X


= −


. (2.6) 

According to Maxwell’s law and Gauss’ law, the divergence of the electric displacement 

is equal to the free charge per unit volume, i.e., 

 
k

k

D
Q

X


=


. (2.7) 

Combining equations (2.5) and (2.7) results in, 
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0 0 0

0 0 0k
kV S V

D dV dS QdV
X


 


= − −

   , (2.8) 

which holds true for any arbitrary test function ( )X .  

For any small changes on deformation and electric charge, the corresponding small 

change of the free energy of the system is expressed as, 

 
0

2

2

i i i i

V V S V

i
i

S V

G WdV b x dV T x dS Q dV

d x
dS x dV

dt

    

  

= − − − 

−  +

   

 

, (2.9) 

Combining equations (2.4), (2.8) and (2.9), it becomes 

 
( )

0

0ik ik k k

V

G W F s E D dV   = − − .          
(2.10) 

Moreover, for purely elastic elastomers, 

 ik k
ik k

W W
W F D

F D

 
 =  + 

 
.          (2.11) 

Then the change of the free energy density of the system is further expressed as, 

 
0

0

0 0ik ik k kV
ik kV

W W
G s F dV E D dV

F D
  

    
= − + −   

    
  .          (2.12) 

Thus, the constitutive equations according to the coupled field theory are determined as, 

 
( , )

ik
ik

W
s

F


=



F D
, (2.13) 
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( , )

k
k

W
E

D


=



F D
, (2.14) 

Then the true stress σ , the true electric displacement and the true electric field E  are 

further determined in terms of the nominal quantities, i.e., 

 
det

ik jk

ij

s F
 =

F
, (2.15) 

 
det

k ik
i

D F
D =

F
, (2.16) 

 
1

i ik kE F E−= . (2.17) 

Also, experiments suggest that,  

 0i iD E=
, (2.18) 

where ε0 is the dielectric permittivity of vacuum, ε is the relative dielectric constant of the 

dielectric medium. The framework of nonlinear fully coupled field theory has been 

extensively adopted in the literature to further study the electromechanical coupling of 

dielectric elastomers under complex working conditions. For example, Zhao and Suo 

(2007) analyzed the electromechanical stability of DE actuators. Huang and Suo (2011) 

investigated the electromechanical phase transition of DEs.  
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2.2 Finite-deformation viscoelastic theory 

 

Figure 2-2 Rheological model for viscoelastic DEs. 

As mentioned above, DE exhibits viscoelastic properties. Figure 2.2 shows the 

rheological model to represent the viscoelasticity of DEs. As treated in the work of Lee 

(Lee, 1969) and Hong (Hong, 2011), the total deformation can be multiplicatively 

decomposed into an elastic part and an inelastic part as,  

where the superscripts ‘e’ and ‘i’ represent elastic and inelastic components, respectively. 

With the consideration of viscoelasticity, the Helmholtz free energy density is not only a 

function of the total deformation and the electric displacement. As shown in figure 2-2, the 

total Helmholtz free energy density of the system consists of two parts: one is the 

equilibrium Helmholtz free energy ( ),EQW F D  and the other is the non-equilibrium 

Helmholtz free energy ( )NEQ eW F . 
EQW  is stored in the “time infinity” spring and 

NEQW  

is the strain energy in the Maxwell element. The dashpot relaxes with time and results in 

energy dissipation (Lee, 1969; Reese and Govindjee, 1998). Since the electric field 

equilibrates much faster than the mechanical field, it can be assumed that the electric field 

is always in equilibrium, i.e.,  EQ
E E . Furthermore, the equilibrium Helmholtz free 

energy density is equal to the sum of the strain energy density ( )sW F and the polarization 

energy (Zhao et al., 2007), i.e., 

 
e i

ik im mkF F F= , (2.19) 
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EQ

0

( , ) ( )
2 det( )

ij ik
s i k

F F
W W D D


= +F D F

F
. (2.20) 

Therefore, the variation of the strain energy density function is expressed as, 

 
i

ik mk ki

ik mk k

W W W
W F F D

F F D
   

  
= + +

   . 
(2.21) 

The second law of thermodynamics suggests that the free energy of the system never 

increases, i.e., 0G  . This inequality must hold true in any volume. Therefore, 

 0ik ik k kW F s E D  − −  . (2.22) 

Combining equations (2.21) and (2.22) results in, 

 

For an arbitrary variation of the dielectric elastomer body, the variation in the free energy 

of the body regarding to the change of the deformation gradient is equal to the work done 

by the external force (Coleman and Gurtin, 1967), which gives 

 0ik i
ik

ik k
W

F
sF F 


− =


. (2.24) 

Thus, only the inelastic term in inequality (2.23) retains, i.e.,  

 0NEQ e i i

ik im nk mns F H F  , (2.25) 

where the inelastic first Piola-Kirchhoff stress tensor 
NEQ
ik

s  is given by 

 0i
ik ik mki

ik m

ik

k

W W
F F Fs

F F
  

 
+

 
− . (2.23) 
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NEQ
NEQ
ik e

ik

W
s

F


=


, (2.26) 

Accordingly, the inelastic Cauchy stress tensor can be expressed as, 

 
 det

NEQ e

ik jkNEQ

ij e

s F
 =

F , 
(2.27) 

The inequality (2.25) is re-written as 

 0NEQ e e i i

ij jk im nk mnH F H F   ,  (2.28) 

Since the response of viscoelastic materials is usually rate-dependent, the variation 

expression is often replaced by the corresponding rate of change, e.g., 
i F  is replaced by

/i t F  or
i

F  . Thus, inequality (2.28) is re-written as 

 0NEQ i

ij ijL 
, 

 (2.29) 

where Li is the inelastic part of the covariant velocity gradient, i.e., 

                                    
e i e e e i i e

ij ij ij im mj im mK Kp pjL L L F H F F H H= + = + .             (2.30) 

Due to the symmetry of the true stress tensor, inequality (2.29) can be written in terms of 

the symmetric part of the inelastic velocity gradient, i.e., the inelastic stretch rate 

Qi=(Li+LiT)/2, as 

 0NEQ i

ij ijQ 
. 

 (2.31) 

For inequality (2.31) to hold true, the non-equilibrium stress and the velocity gradient must 

satisfy a thermodynamic evolution equation in the form of (Boyce et al., 1989; Hong, 2011; 

Reese and Govindjee, 1998) 
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1i NEQ

mn mnij ijQ  −= , (2.32) 

where 1−
γ  is a fourth rank mobility tensor which takes the form 

 
1 41 1

2 3

−  
= −  

 
γ I I I


. (2.33) 

with ( )4 1

2
ik jl il jk   = +I  being the fourth order symmetric identity tensor, I  being the 

second order identity tensor, and   representing the shear viscosity. 

2.3 Finite-deformation viscoelasticity of elastomers 

with nonlinear viscosity 

From the above literature review, it can be seen that the viscosity  needs to be 

prescribed prior to the implementation of the developed modeling framework. In most of 

the existing works, the viscosity is assumed as a constant. However, the viscosity varies 

with the deformation of the material, which has also been proven by experiments 

(Pyckhout-Hintzen et al., 2013; Straube et al., 1995). To tackle this issue, de Gennes (1971) 

proposed one of the well-known models, i.e., the tube model, which was further developed 

by Doi and Edward (1998). According to the tube model (figure 2-3), a polymer chain C-

D is assumed to be confined in a tube shape region with diameter a  due to the constraint 

of the other polymer chains from surroundings. The axis of the tube C-D is defined as the 

primitive chain, and the polymer chain could be entangled (figure 2-3(a)) or crosslinked 

(figure2-3(b)) with other chains in the ends. In the short time-scale, the motion of polymer 

chain can be considered as wriggling around the primitive chain within the tube. The effect 

of wriggle motion can be represented by several parameters like the diameter of tube and 

contour length of the primitive chain. In the long time-scale, the polymer chain moves 

along the tube, disengages from the original tube and shifts the ends. The deformation-

dependent viscosity of material can be explained by the tube model. Particularly, when the 

elastomer is under large deformation, the diameter of tube significantly changes, which 
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affects the reptation ability of polymer chain. Following the concept of this tube model, a 

micro-mechanism inspired constitutive models for finite-deformation viscoelasticity of 

elastomers have been developed (Bergström and Boyce, 1998; Linder et al., 2011; Miehe 

et al., 2004). These models can capture the experimental data to some extent. Recently, 

based on the tube model and the theory of polymer dynamics (Doi and Edwards, 1988), a 

micro-macro constitutive model for finite-deformation viscoelasticity of elastomers is 

developed by Zhou et al (2018), in which the viscosity is deformation-dependent. This 

model is expected to be more accurate to capture the electromechanical response of 

dielectric elastomers, particularly when they undergo large deformation. Therefore, this 

modeling framework with the consideration of nonlinear viscosity motivates us to further 

investigate the viscous effect on the dynamic response and energy harvesting performance 

of DE-based devices such as oscillators and generators. 

 

 

Figure 2-3 Schematic of a polymer chain constrained in a tube region with primitive 

chain C-D (a) polymer chain end C and D crosslinked with other chains; (b) the 

polymer chain entangles with other polymer chains at C and D. (Zhou et al., 2018) 
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Chapter 3  

3 Investigation on dynamic performance of viscoelastic 

dielectric elastomer oscillator considering material 

nonlinear viscosity 

As a typical kind of soft electroactive materials, dielectric elastomers (DEs) are capable 

of producing large deformation under external stimuli, which makes them desirable 

materials for many practical applications in transduction technology, including tunable 

oscillators and resonators. The dynamic performance of such DE-based vibrational devices 

is strongly affected by material viscosity as well as electromechanical coupling. Moreover, 

as suggested by experiments and theoretical studies, DEs exhibit deformation-dependent 

relaxation process, which makes the modeling of the dynamic performance of DE-based 

devices more challenging. In this work, by adopting the state-of-art modeling framework 

of finite-deformation viscoelasticity, the effect of the nonlinear material viscosity on the 

in-plane oscillation and the frequency tuning of DE membrane oscillators is investigated. 

From the simulation results, it is found that the nonlinear viscosity only affects the transient 

state of the frequency tuning process. The modeling framework developed in this work is 

expected to provide useful guidelines for predicting the dynamic performance of DE-based 

vibrational devices as well as their optimal design. 

3.1 Introduction  

As soft electroactive polymers, Dielectric elastomers (DEs) are capable of producing 

large deformation under electrical stimuli, which makes them desirable materials for 

electromechanical transducers (Pelrine et al., 2000). A common design of DE actuator 

consists of an elastomeric membrane sandwiched by two soft compliant electrodes on both 

sides. When a voltage is applied on the electrodes, the DE membrane contracts in thickness 

and expands in area (Pelrine et al., 2000). Due to their unique properties including large 

deformation capability, flexibility, and high energy density, DEs have been widely used to 

design functional actuators with different configurations in practical applications, such as 

soft robots, adaptive optical elements, programmable haptic surfaces, energy harvesters, 



20 

 

oscillators and resonators (Ahmadi et al., 2013; Anderson et al., 2010; Carpi et al., 2011; 

Kornbluh et al., 2002; O’Brien et al., 2010; O’Halloran et al., 2008; Pelrine et al., 2000). 

The advantage of DE oscillators and resonators is that the oscillation of the membrane 

and the resonant frequency can be actively tuned by changing the applied alternating or 

static voltage (Li et al., 2012). This feature enables DE-based oscillators to be a promising 

alternative to traditional silicon-based devices. Early studies on analyzing the dynamic 

performance of DE-based oscillators and resonators mainly focused on their 

electromechanical response. For example, Feng et al. (2011) demonstrated the dynamic 

performance of a DE microbeam resonator under electromechanical load and investigated 

the oscillation of the device in terms of the quality factor (Q-factor) and the resonant 

frequency shift ratio. Li et al. (2012a) modeled the in-plane deformation and the frequency 

tuning of a plane membrane resonator using the Gent model (Gent, 1996). Kollosche et al. 

(2012) demonstrated how pre-stretching of DEs can change their voltage-induced 

deformation, electromechanical instability and loss-of-tension. However, DEs are proven 

to exhibit strong viscoelasticity in nature (Hong, 2011).The material viscoelasticity of DEs 

exerts a significant effect on their actuation response. Therefore, more efforts have been 

devoted to studying the viscoelastic effect on the behavior of DEs recently. For example, 

Yang et al. (2005) developed mechanics models accounting for the viscoelastic effect of 

DEs under uniaxial and biaxial loading conditions. Plante and Dubowsky (2007) studied 

the viscoelasticity of DEs with the Ogden model (Ogden, 1972) and experimentally 

demonstrated the effect of the stretching rate on the performance of DE actuators. Recently, 

based on the fully coupled field theory for DEs developed by Suo et al. (2008) and the 

finite-deformation viscoelasticity theory developed by Reese and Govindjee (1998), Hong 

(2011) has developed a constitutive model that can adopt most hyperelastic relations and 

evolution laws of viscoelastic solids to capture the viscoelastic response of DEs. Adopting 

the constitutive model by Hong (2011), Zhang et al. (2015) developed a dynamic model 

for homogeneously deformed viscoelastic DE actuator under equal-biaxial, uniaxial and 

pure shear forces. Based on the same framework, Zhou et al. (2014) demonstrated the effect 

of material viscoelasticity on the resonant frequency of DE resonators. Later, Zhou et al. 

(2016) further investigated the dynamic response of a DE membrane oscillator under a 

harmonic excitation. The above-mentioned studies assume the linearity of the material 
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viscosity when considering the viscoelastic deformation. In other words, the material 

viscosity is assumed as a constant in these studies. Nevertheless, according to the theory 

of polymer dynamics (Doi and Edwards, 1988), the viscosity of polymer chains in 

elastomers is deformation-dependent, i.e., nonlinear, especially when the elastomers 

undergo large deformation. This argument has also been confirmed by experiments 

(Hossain et al., 2012; Wang et al., 2016). In fact, much less effort has been devoted to 

addressing the effect of the nonlinear viscosity of DEs, which may also strongly influence 

the dynamic performance of DEs. Until recently, Zhou et al. (2018) incorporated the 

nonlinear material viscosity into the finite-deformation viscoelasticity theory by Reese and 

Govindjee (1998) to investigate the deformation of elastomers. In this work, the modeling 

framework by Zhou et al. (2018) will be further employed to study the frequency tuning 

process and the dynamic response of DE oscillators. 

3.2 Models and formulations 

In this work, the configuration of a commercial DE oscillator (Biggs and Hitchcock, 

2010) is revisited which was developed by Artificial Muscle Inc. to investigate the dynamic 

performance of DE oscillators and resonators. As shown in figure 3-1, the DE oscillator 

consists of a DE membrane coated with two compliant electrodes on the top and bottom 

surfaces. Figure 3-1(a) shows the DE membrane in the undeformed state with dimensions

1L , 2L  and 3L . In figure 3-1(b), the DE is pre-stretched in area and attached to a rigid frame 

and a rigid bar of mass m with its two edges along 2-directoin. The rigid bar is connected 

to the other side of the frame by a spring and a viscous damper. The stiffness of the spring 

and damping coefficient of the viscous damper are denoted as k  and c , respectively. In 

the pre-stretched state, the elongation of the spring is denoted as 1L   and the dimensions 

of the DE membrane change to 
1 pl , 

2 pl  and  
3 pl  with the pre-stretch ratios defined as 

1 1 1/p pl L = , 
2 2 2/p pl L = , and  

3 3 3/p pl L = . Then an electric voltage  is applied to the 

compliant electrodes as shown in figure 3-1 (c). Under such an electrical load and forces 

from the spring and the viscous damper, the DE membrane further deforms to the current 

state with dimensions 1l , 2l , and 3l . Consequently, the stretch ratios of the current state to 
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the undeformed state are defined as 1 1 1/l L = , 2 2 2/l L = , and 3 3 3/l L = , respectively. In 

the current state, constrained by the rigid frame and the rigid bar, the DE membrane is 

under tensile forces 1P  and 2P  in 1 and 2 -directions. Moreover, the rigid bar is subjected 

to forces sP  from the spring and dP  from the viscous damper. The absolute position of the 

rigid bar in 1-directoin is defined as x .  

For such an oscillator configuration according to figure 3-1 (c), the motion equation of  

the rigid bar is expressed as, 

 

2

1

2

2 3 2 3 2 3 2 3

0
ps

PP P m d x

GL L GL L GL L GL L dt
+ − + = , (3.1) 

where the forces from the spring and the damper are 
1 1 1( )s pP L k  = − +  and 

p

dx
P c

dt
= , 

respectively. It should be mentioned that, in addition to material fracture that could be 

prevented by limiting the stretches, there are other two possible failure modes of the DE, 

namely, loss-of-tension and electrical breakdown. To prevent loss-of-tension of the 

membrane, the in-plane forces in the DE membrane should be ensured as tensile forces, 

i.e., 1P  in 1-direction and 2P in 2-direction should be greater than 0. In addition, the applied 

voltage Φ should be maintained below the electrical breakdown voltage of the DE. The 

breakdown voltage EBV  of the DE is determined by 

 
1 10

1 2

3

EBV
d

L G


 − −= , (3.2) 

where  0 /EBd E G=  and EBE  is the dielectric strength of the DE.(Koh et al., 2011b; 

Zhou et al., 2013) 
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Figure 3-1 Schematic of a DE membrane oscillator (a) undeformed state; (b) pre-

stretched state; (c) current state 

Since DEs are known to exhibit viscoelastic properties, the deformation gradient F of 

the DE membrane is commonly decomposed into an elastic component and an inelastic 

component in a multiplicative form (Hong, 2011), which gives 

 e i
F = F F , (3.3) 

(a) 

(b) 

(c) 
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where 

1
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3
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0 0

0 0







 
 

=  
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 
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1

2

3

0 0

0 0

0 0

i

i

i







 
 

=  
 
 

i
F , and 

1

2

3

0 0

0 0

0 0

e

e

e







 
 

=  
 
 

e
F . 

under the current loading condition which assumes uniform deformation of the DE. The 

superscripts ‘e’ and ‘i’ represent the elastic and inelastic parts, respectively. Assuming  

material incompressibility of the DE (Hong, 2011; Li et al., 2012; Sheng et al., 2014; Yong 

et al., 2011; Zhou et al., 2014), the stretch ratio satisfies 3 1 21/  = ,
3 1 21/e e e  =  and 

3 1 21/i i i  = . Furthermore, the total Helmholtz free energy W of the deformed DE 

membrane consists of two parts. One is the equilibrium Helmholtz free energy density WEQ, 

which is associated with both the total deformation and the applied electric voltage  . The 

other part is the non-equilibrium Helmholtz free energy density 
NEQW , which is only 

related to the elastic deformation. Therefore, 
1 2 1 2( , , ) ( , )EQ NEQ e eW W V W   = + . It is 

worth noticing that the electric field is assumed to be in equilibrium as the electric field 

always reaches the equilibrium state much faster than the mechanical deformation (Hong, 

2011). According to the work of Huang and Suo (2012) the equilibrium Helmholtz free 

energy density 
EQW takes the form of, 

 
2 2 20

1 2 1 2

3

( , ) ( )
2

EQ

sW W
L


   


= + , (3.4) 

where 1 2( , )sW    is the strain energy density function of the elastomer, and the second term 

is the free energy associated with the polarization, 0  is the dielectric permittivity of the 

vacuum and   is the relative dielectric constant of the DE. Here, the Gent model is 

adopted (Gent, 1996) as the strain energy density function for both the equilibrium and 

non-equilibrium Helmholtz free energy density, i.e.,   

 
2 2 2 2

lim 1 2 1 2

lim

3
ln 1

2

EQEQ

s

G J
W

J

   − − + + −
= − −  

 

 (3.5) 
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2 2 2
lim 1 2 1 2

lim

( ) ( ) ( ) 3
ln 1

2

NEQNEQ e e e e
NEQ G J

W
J

    − + + −
= − −  

 

, (3.6) 

where 
EQG  and 

NEQG  are the equilibrium shear modulus and non-equilibrium shear 

modulus, 
lim
EQ

J  is a dimensionless parameter related to the limiting stretch of the DE, while 

lim
NEQ

J  is determined by the stretching limit of the elastic component of the DE.  

When the DE in the current state is perturbed, the change of the total Helmholtz free 

energy equals to the work done by the tensile force 1P  and 2P , the inertia force and the 

voltage  , resulting in  

 
3 2

1 1
1 2 3 1 2 1 1 1 2 2 2 2 3 12

1 2 3

L dW W
L L L PL P L Q L L

dt


      

 

  
+ = + +  − 

  
, (3.7) 

where   is the mass density of the DE and the charge on the DE is expressed as 

2 2

0 1 2 1 2 3/Q L L L  =  . It can be noticed that the work done by the inertia force in the 

thickness direction is ignored in equation (3.7) since the oscillator only vibrates in 1-

direction and 3 1L L . 

Considering that 1  and 2  are any arbitrary small variations, substituting equations 

(3.4) -(3.6) into (3.7) leads to:  
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where 
EQ NEQG G G= +  and /EQG G = ( 0 1  ).  represents the fraction of the 

time-independent polymer networks in the elastomer, which equals to 1 for a purely elastic 

medium, while 0 for a viscous fluid. 

Furthermore, the inelastic stretch ratio (
1

i  and 
2

i ) in equations (3.8) and (3.9) must 

satisfy the thermodynamic evolution law (Reese and Govindjee, 1998), i.e., 
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1−
γ  is an isotropic rank four tensor. According to the work of (Reese and Govindjee, 1998) 

1−
γ  takes the form 
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where ( )4 1

2
ik jl il jk   = +I  is an isotropic rank-four mobility tensor, I  is the second 

order identity tensor, and   represents the shear viscosity. According to this 

thermodynamic evolution law, the time-dependent inelastic stretch ratios are expressed as 
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It should be noted that  is the viscosity of the material in the current state, which 

depends on the deformation of the DE and should be constitutively prescribed to obtain the 

inelastic stretch ratios as shown in equations (3.12) and (3.13). Here, the theory of polymer 

dynamics by Doi and Edwards (1988) will be used to determine the nonlinear viscosity  .  

According to their theory, the viscosity  of elastomers originates from the diffusion 

of the polymer chains in the material and a polymer chain (A-B) is considered to confine 

in a tube-like region due to topological constraints (see figure 3.2 (a)). Moreover, the 

diffusion process of a polymer chain can be classified based on time-scale. In the short 

time-scale the polymer chain wriggles within the tube, while in the long time-scale, the 

polymer chain reptates along the tube. Therefore, the viscosity  can be expressed in terms 

of the tube diameter a as,  

    

3 4

0 0

2

1

12
B

N b G

k T a


 = , (3.14) 

where   is the monomer friction constant, N  is the polymerization degree of chains, 
0b

is the effective bond length between monomers, G0 is the shear relaxation modulus in the 

undeformed state, T is the temperature, kB is the Boltzmann constant and *  is the 

expectation operator of a parameter. Also, the axis of the tube confining chain A-B is 

defined as the primitive chain of the polymer chain. According to the work of Doi and 

Edwards (1988), the tube diameter a is a function of the primitive length L of the polymer 

chain and the end-to-end vector R of the primitive chain, i.e., 
2 /a L= R  (see figure 

3-2). When the deformation of the material is small, R  and L can be assumed as unchanged, 

which leads to a constant tube diameter a and thus a constant viscosity . However, when 

the material undergoes large deformation, both L and R should change with the 

macroscopic deformation (Doi and Edwards, 1988; Zhou et al., 2018), i.e., 

2

4
L Ld




= 

F u
u  and 

22 3

0 ( )= R F R Rf d R , where u  is the unit tangent vector at a 

contour position of the polymer chain in the reference state, 0 ( )f R  is the statistical 

distribution function of the end-to-end vector R  in the reference state and F is the 
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deformation gradient. Therefore, the nonlinear viscosity of the elastomer can be determined 

as, 
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where 0a  is the tube diameter and 
3 4

0 0
0 2

0

1

12 b
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k Ta


 =  is the viscosity in the reference state. 

For the convenience of expression, the viscosity ratio in equation (3.15) can be expressed 

as, 
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Figure 3-2 Illustration of a polymer chain confined in a tube-like region with the tube 

diameter of a. (a) Polymer chain A-B is represented by its primitive chain (blue color); 

(b) dimensions of the primitive chain. 

3.3 Resonant frequency of an oscillator  

For the oscillator shown in figure 1, the deformation of the DE is fixed in 2-direction, 

i.e., 
2 2 p = , and 

1 1 1( )px L = − , then equation (3.1) can be reduced to a second order 

differential equation as, 
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. To study the resonant frequency of 

the oscillator, it adopts the commonly used perturbation method in the literature(Li et al., 

2012; Zhou et al., 2014; Zhu et al., 2010). When the membrane is subjected to a small 

perturbation of amplitude ( )t  in 1-directoin at time t, the total stretch ratio of the 

membrane in that direction can be expressed as 

 
1 1 ( )t  = +   (3.18) 

where 1  is the stretch ratio of the DE in the kinetic equilibrium state in 1-direction before 

the perturbation. Meanwhile, by combining equations (3.17) and (3.18), and expanding the 

equation into Taylor series, equation (3.17) becomes  
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Therefore, the resonant frequency can be determined as  
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(3.20) 

As it can be seen from the expression of the resonant frequency in equation (3.20), it is a 

function of the time-dependent inelastic stretch ratios i

1  and i

2 . Therefore, n  is an 

instant resonant frequency of the oscillator at time t . 

As demonstrated in the literature, the resonant frequency of a DE oscillator can be 

actively tuned by applying a voltage to the DE membrane (Li et al., 2012; Zhou et al., 

2016). Here, the frequency tuning process of DE oscillators with the new material model 

accounting for the nonlinear viscosity is revisited. Figures 3-3 (a) and 3-3 (b) show the 

change of the stretch ratio during a typical frequency tuning process. Also, figure 3-4 (a) 

and figure 3-4 (b) plot the variation of the resonant frequency n  during the same process. 

The results from both the linear and nonlinear viscosity models are also compared in these 

figures. The geometric and material parameters take the values from the previous studies 

(Chiang Foo et al., 2012a; Zhou et al., 2016), i.e., 4 = , 1 = , 1 20a = , 4

2 10a = , 5d = ,

lim 110EQJ = ,
lim 55NEQJ = , 0.3 = , and the relaxation time 0

0 NEQ
3

G


 = = in the reference 

state. Moreover, in the simulation, it is ensured that the applied voltage is lower than the 

electrical breakdown voltage of the DE membrane, and the loss-of -tension of the 

membrane is also avoided. At the very beginning, the oscillator in the pre-stretched state 

(with
1p =1.5 and 

2 p =3) is fully relaxed. Therefore, both the stretch ratio 1  and the 

resonant frequency n  remain unchanged. After sufficient time, for example at t=10 s, a 

voltage is applied to the DE membrane at a rate of / 6.667dV dt =  and the voltage is then 

fixed as V


=0.125 afterwards. The response curves for both the linear and nonlinear 

viscosity models demonstrate the same trend. It is observed that the applied voltage causes 
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a fast rise of the stretch ratio 1  and a sudden drop of the resonant frequency n . After the 

voltage is applied, both the stretch ratio and the resonant frequency fluctuate with a 

decaying amplitude, which is a typical transient response for a spring-damper system. 

During this fluctuation, energy of the system dissipates mainly through the damper. After 

such a period, the stretch ratio starts to increase, while the resonant frequency starts to 

gradually decrease. This is mainly due to the stress relaxation of the DE membrane. From 

figure 3-3 (b) and figure 3-4 (b), it is observed that after sufficient time, the stretch ratio 

and the resonant frequency eventually become steady, which indicates that the DE 

membrane is fully relaxed again and has reached an equilibrium state and the resonant 

frequency remains as a constant thereafter. The value of the resonant frequency at this 

steady state is defined as the tuned frequency by the applied voltage. It is observed that the 

difference of the response curves between the nonlinear viscosity model and the linear 

viscosity model is considerable during the transient state, while the DE membrane reaches 

the same steady state for both the linear and nonlinear models. Moreover, the DE 

membrane reaches the steady state faster when the nonlinear viscosity is considered. The 

reason behind this phenomenon is that, as the stretch ratio increases with the applied 

voltage from the reference state to the current state,  ( )F  rises rapidly. Therefore, the 

viscosity  decreases rapidly since it is inversely proportional to the second order of ( )F  

as shown by equation (3.16).  In other words, the nonlinear viscosity   decreases from the 

reference state to current state. Thus, the DE membrane relaxes faster when the nonlinear 

material viscosity is considered. 
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Figure 3-3 Variation of stretch ratio with time for two different viscosity models when 

a static voltage is applied. (a) Time interval is from 9.5 s to 11 s; (b) time interval is 

from 0 s to 60 s. 
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Figure 3-4 Frequency tuning process for two different viscosity models when a static 

voltage is applied. (a) Time interval is from 9.5 s to 11 s; (b) time interval is from 0 s 

to 60 s. 
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The effect of the applied voltage rate on the tuned frequency of the DE oscillator is 

demonstrated in figures 3-5 and 3-6 with loading rate / 1dV dt =  and / 0.1667dV dt = , 

respectively. At a higher rate of the applied voltage, there is more fluctuation on the 

resonant frequency, which means that the damper has more dominant effect. However, the 

loading rate has no effect on the tuned frequency, which is only a function of the value of 

the applied voltage. Furthermore, figure 3-7 illustrates a comparison of the tuned frequency 

between a viscoelastic ( 0.5= ) DE resonator and a purely elastic DE resonator. It can 

be noticed that the viscoelastic DE membrane resonator has a tuned frequency range about 

50% narrower than the purely elastic one. It should be mentioned that nonlinear material 

viscosity does not change the tuned frequency of the oscillator. 
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Figure 3-5 Effect of loading rate of the applied voltage ( / 1dV dt = ) on frequency 

tuning for two different viscosity models. (a) Time interval is from 9.5 s to 11 s; (b) 

time interval is from 0 s to 60 s. 
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Figure 3-6 Effect of loading rate of the applied voltage ( / 0.1667dV dt = ) on 

frequency tuning for two different viscosity models. (a) Time interval is from 9.5 s to 

11 s; (b) time interval is from 0 s to 60 s. 
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Figure 3-7 Variation of the tuned frequency for purely elastic and viscoelastic DE 

resonators within a certain range of applied voltage. 

To further investigate the influence of the nonlinear material viscosity on the dynamic 

response of DE-based oscillators, an AC voltage sin( )nV p q t = is applied to the DE 

membrane to generate oscillation. p and q  are parameters that govern the amplitude and 

frequency of the alternating voltage. As shown in figure 3-8, the difference between the 

linear viscosity and nonlinear viscosity models is mainly reflected during the transient 

response of the DE oscillator. 
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Figure 3-8 Variation of the stretch ratio with time (0s to 60s) for two different viscosity 

models when an AC voltage is applied. 

3.4 Forced response of an oscillator 

To illustrate the dynamic behavior of the DE oscillator under an external load, the frame 

of oscillator is excited with a displacement field ( ) cos( )by t Y t=  (see figure 3-9), where 

Y  is the amplitude of the excitation and b  is the excitation frequency. Due to the 

external excitation, the absolute position of the rigid bar is changed to ( )1 1 1px L y = − + . 

Correspondingly, the equation of motion (3.17) is rewritten as,  

 

2
21 1

1 1 1 22

1

cos( ) ( , , , ) 0i i

b b

d d Y
a t g V

dt dt L

 
     + + + =  (3.21) 
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Figure 3-9 Representation model of external excitation applied on an oscillator’s 

frame 

Numerical solution of equation (3.21) gives the response of the oscillator according to 

the external base excitation. In order to ensure that the loss-of-tension does not occur, the 

pre-stretched ratio is selected as
1 4p =  when high amplitude excitation is implemented. 

Figures 3-10 depicts the time response (displacement 1/x L  versus time t ) of the rigid bar 

to the external excitation for both the linear and nonlinear models under a static voltage

0.1 =V . In figure 3-10, for low frequency excitation 0.01b n =  ((a) and (b)), the steady 

state response displacement amplitude is approximately the same as the excitation 

amplitude ((a) 10.01=Y L  (b) 11Y L= ). However, for high excitation frequency 1.5b n =  

((c) and (d)), the response amplitude is attenuated. Furthermore, simulation results from 

the two viscosity models stay almost the same at both transient and steady state. It is thus 

concluded that the displacement transmissibility is only frequency dependent. 
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Figure 3-10 Time response of the DE membrane oscillator under external excitation. 

The excitation frequency b varies between 0.01 n  ((a) and (b)) and 1.5 n  ((c) 

and (d)). The amplitude of excitationY  varies between 10.01L   ((a) and (c)) and 11L  ((b) 

and (d)). 
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3.5 Conclusion  

Based on the theory of finite deformation viscoelasticity and the coupled field theory 

for DEs, this work investigates the effect of nonlinear viscosity of material on the frequency 

tuning of a viscoelastic DE membrane oscillator, as well as its oscillation behavior under 

an AC voltage. Comparison of modeling the oscillation between a nonlinear viscosity 

model and a linear viscosity model shows that neglecting the deformation-dependent 

viscosity may lead to error in predicting the transient state response of the oscillator. 

Moreover, by investigating the time response of an oscillator to external base excitation, it 

can be concluded that the effect of nonlinear viscosity is negligible. The modeling 

framework and simulation results are anticipated to provide an increased understanding on 

the dynamic performance of vibrational dielectric elastomer devices. 
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Chapter 4  

4 The effect of nonlinear viscosity on the performance of 

dielectric elastomer energy generators 

Dielectric elastomer generators (DEGs) are capable of converting mechanical energy 

from a variety of sources into electrical energy. The energy harvesting performance 

depends on the interplay between electromechanical coupling, material viscosity and 

multiple failure modes. Experiments also suggest that the material viscosity of dielectric 

elastomers is deformation dependent, which makes the prediction of the performance of 

DEGs more challenging. By adopting the coupled field theory, finite-deformation 

viscoelasticity theory and the theory for polymer dynamics, this work investigates the 

harvested energy and conversion efficiency of DEGs from theoretical perspective. By 

comparing the simulation results from the nonlinear viscosity model to the experimental 

data and the simulation results from the linear viscosity model, we further examine the 

possible factors that may strongly influence the performance of DEGs. It is found that 

DEGs exhibit higher harvested energy when nonlinear material viscosity is considered. 

Moreover, by selecting a higher voltage of the power supply for the generator, the 

conversion efficiency of DEGs can be greatly improved. The theoretical framework in this 

study is expected to offer some new insights into optimizing the design of DEGs and thus 

improving their performance 

4.1 Introduction  

Dielectric elastomers (DEs) have drawn much attention in the field of transduction 

technology recently due to their high energy density, light weight, flexibility, and large 

deformation capability. DEs are particularly promising candidates used for harvesting 

energy from various sources including human motions, ocean waves, and wind (Kornbluh 

et al., 2012). Most dielectric elastomer generators (DEGs) can be envisaged as a DE 

membrane coated with compliant electrodes on its surfaces, which functions as variable 

capacitor to collect and transfer electrical charges during an energy harvesting process. 

First, the DE membrane is connected to a power source and stretched by external 
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mechanical forces, which increases the capacitance of the DE and force the charges to flow 

from the power supply to the compliant electrodes on the DE surfaces. Then the DE is 

disconnected from the power supply and allowed to shrink back to its original shape by 

releasing the applied mechanical forces.  During this step the voltage on the DE increases 

due to the decrease of its capacitance, which enables the charge flow from DE capacitor to 

the storage. Through this electromechanical cycle, mechanical energy is converted into 

electrical energy. The amount of energy transferred depends on the change of the 

capacitance of the DE membrane. Based on this energy harvesting mechanism, DE 

generators with various configurations and harvesting schemes have been developed in the 

literature. One of the pioneering studies was conducted by Pelrine et al. (2001) by 

proposing a DEG with constant voltage scheme. The prototype developed by using acrylic 

elastomers could achieve energy density up to 400 J/kg.  Mckay et al. (2010) developed a 

self-priming DEG system in order to retain the charge losses and experimentally 

demonstrated the energy density ranging from 2.8 J/kg to 12.6 J/kg and the harvesting 

efficiency up to 84% for. Chiba et al. (2008) built a DEG aiming to collect energy from 

ocean waves, which was capable of generating 50W with wave height of 0.5m. Liu et al. 

(2010) designed stacking energy harvesters based on silicon elastomers to collect energy 

from water with energy density of 3.6J/kg. Koh et al. (2009) theoretically analyzed the 

maximal energy that can be converted by a DEG with the consideration of various failure 

modes, including electrical breakdown, electromechanical instability, loss of tension and 

rupture. Recently, more efforts have been devoted to improving the energy density or 

harvested efficiency of DEGs. For example, Huang et al. (2013) boosted the DEGs energy 

density to 560J/kg by adopting equi-biaxial loading that maximize change of the 

capacitance. A triangular energy harvesting scheme was proposed by Shian et al. (2014) to 

optimize the electromechanical harvesting cycle of a DEG which demonstrated the energy 

density could be up to 780J/kg. However, it should be mentioned that the energy harvesting 

performance of the DEGs, including energy density and conversion efficiency, is quite 

scattered in the literature. The currently obtained maximum energy density in the literature 

is still much lower than the theoretical prediction which could be as high as 1700 J/kg (Koh 

et al., 2011a).  
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One of the  main factors that affect the harvesting performance of DEGs is the material 

viscoelasticity, which could cause high energy dissipation and loss-of-tension of 

membrane (Fan et al., 2018; Huang et al., 2013; Shian et al., 2014). Recently, based on the 

fully coupled field theory for DEs developed by Suo et al. (2008) and the finite-deformation 

viscoelasticity theory developed by Reese and Govindjee (1998), Hong (2011) has 

proposed a novel constitutive model capable of capturing the finite-deformation 

viscoelastic response of DEs under electromechanical coupling.  By using the Hong’s 

model (Hong, 2011) and the constant voltage harvesting scheme,  the energy harvesting 

performance of DEs has been investigated. For example, Li et al. (2012b) have analyzed 

the inhomogeneous viscoelastic deformation of DEGs and the effect of rapid loading and 

unloading on the performance of DEGs. Foo et al. (2012b) studied the dissipative processes 

and current leakage in the harvesting cycle of DEGs. Zhou et al. (2015) investigated the 

energy density and the conversion efficiency of DEGs with their fatigue life taken into 

account. Chen et al. (2016) investigated the effect of temperature on the dissipative process 

of DEGs. A triangular harvesting scheme has also been explored to investigate energy 

harvesting performance of viscoelastic DEGs. For example, Zhou et al. (2017) developed 

a theoretical framework for analyzing the energy harvesting process of DEGs and proposed 

optimization methods to improve the energy harvesting performance. Fan et al. (2018) 

investigated the effect of loss-of-tension on energy harvesting performance of DEGs. 

It should be mentioned that most existing studies about DEGs assume linear material 

viscosity within the framework of the finite-deformation viscoelasticity. In other words, 

the material viscosity is assumed as a constant in these studies. However, according to the 

theory of polymer dynamics (Doi and Edwards, 1988), the viscosity of the polymer chains 

in elastomers should not be a constant number, i.e. deformation-dependent, especially 

when they undergo large deformation. This argument has also been proven by physical 

experiments (Hossain et al., 2012; Wang et al., 2016). The effects of such nonlinear 

viscosity on the energy harvesting performance of DEGs have not been investigated thus 

far. Until recently, Zhou et al. (2018) has developed a constitutive law for elastomers that 

incorporated nonlinear viscosity of polymer chain into finite-deformation viscoelasticity 

theory, which is expected to better capture the time-dependent and rate-dependent 

deformation of DEs. In this work, the modeling framework by Zhou et al. (2018) will be 
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further employed to study the energy harvesting performance of DEGs with the triangular 

harvesting scheme.  Particularly, the influence of the deformation-dependent viscosity on 

the energy density and conversion efficiency of the DEGs will be explored. 

4.2 Model and Formulation  

Figure 4-1 sketches the deformation process of the embedded DE membrane in the 

generator, which is covered by compliant electrodes on its top and bottom surfaces. The 

undeformed state is denoted by in-plane length L  and thickness H  as shown in (a). When 

the membrane is subjected to a voltage   between the electrodes and equi-biaxial 

stretching force P , it deforms to the current state with length l  and thickness h . 

Assuming homogeneous deformation and material incompressibility, the stretch ratios in-

plane and along the thickness direction are defined as =l/L and h=h/H with 21/h = . 

The applied voltage across the DE membrane also induces the charges accumulated on the 

two electrodes, i.e.,  

 DEQ C =  , (4.1) 

where 4 2

0 /DEC L H =  is the capacitance of the DE membrane capacitor with 0 being 

the dielectric permittivity of the vacuum and   being the relative dielectric constant of the 

DE. It is evident that the change of the capacitance is realized through the continuous 

deformation of the membrane during the energy harvesting cycle, which governs the 

energy conversion of the DEG. 

 

 (a) 
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Figure 4-1 Schematics of a dielectric elastomer membrane embedded in a DEG. (a) 

reference state (b) current state with voltage    and pre-stretch force P applied. 

 

Under the homogeneous deformation condition, the deformation gradient of the current 

state with respect to the undeformed state can be expressed in terms of the stretch ratios as 

0 0

0 0

0 0 h
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F . As commonly treated in the literature (Chiang Foo et al., 2012b; Hong, 

2011; Zhou et al., 2014), the deformation gradient F of the viscoelastic DE membrane is 

decomposed into an elastic component and an inelastic component in a multiplicative 

format, which gives 

 e i=F F F , (4.2) 
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F with superscripts ‘e’ and ‘i’ representing 

the elastic and inelastic parts, respectively. The material incompressibility of the DE 

ensures 21/h = , 21/ ( )e e

h =  and 21/ ( )i i

h = . 

Due to the work done by tensile forces P  and voltage  , the variation Helmholtz free 

 (b) 
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energy density W  is expressed as, 

 
2 2

W
L H PL Q  




= + 


. (4.3) 

Following Hong’s model (Chiang Foo et al., 2012b; Hong, 2011; Zhou et al., 2017) the 

total Helmholtz free energy W of the deformed DE membrane consists of two parts, i.e., 

( , ) ( )EQ NEQ eW W W =  + . WEQ is the equilibrium Helmholtz free energy, which is 

associated with both the total deformation and applied electric voltage  ; 
NEQW  is the non-

equilibrium Helmholtz free energy, which is only related to the elastic deformation. It is 

worth noticing that the electric field is assumed to be always in equilibrium as the electric 

field always reaches the equilibrium state much faster than the mechanical deformation 

(Hong, 2011). According to the work of Huang and Suo (2012), the equilibrium Helmholtz 

free energy density 
EQW takes the form 

 2 40( ) ( )
2

EQ

sW W
H


 


= + , (4.4) 

where ( )sW   is the strain energy density function of the elastomer, and the second term is 

the free energy associated with the electric polarization. The finite deformation of 

elastomers has been well studied in the literature with hyperelastic constitutive models. 

Here, the Gent model (Gent, 1996) is adopted for case study to define the strain energy 

density function for both the equilibrium and the non-equilibrium parts, i.e.,  
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 (4.5) 
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NEQ G J
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  − + −
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 

, (4.6) 

 where material constants 
EQ
limJ  and

NEQ
limJ  are related to the total stretching limit and the 

stretching limit of the elastic component of the DE chains, respectively; 
EQG  is the 

equilibrium shear modulus and 
NEQG   is the non-equilibrium shear modulus.   

Considering that   is any arbitrary small variation, substituting equations (4.4) -
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(4.6) into (4.3) leads to  
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where a new parameter  =GEQ / G ( 0 1  ) with G=GEQ + GNEQ is introduced to 

indicate the fraction of the time-independent polymer networks related to the total 

deformation (Bergström and Boyce, 1998). For limiting cases, 1 = represents a pure 

elastic medium, while 0 = is for a Newtonian fluid.   

Since the free energy of the system never increases, the inelastic stretch ratio ( i ) in 

equation (4.7) must satisfy the thermodynamic evolution law (Hong, 2011; Reese and 

Govindjee, 1998), i.e., 
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T
e e e  and 

1−
γ  is an isotropic rank four tensor. According to Reese’s work (Reese and Govindjee, 

1998) , 
1−

γ  takes the form 

 
1 41 1
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−  
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 
γ I I I


, (4.9) 

where ( )4 1

2
ik jl il jk   = +I  is the fourth order symmetric identity tensor, I  is the second 

order identity tensor, and   represents the shear viscosity. According to this 

thermodynamic evolution law, the time dependent inelastic stretch ratios are expressed as 
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(4.10) 

In order to demonstrate the effect of current leakage on harvesting efficiency, the charge 

Q  on DE is described as 

  leak

dQ
i i

dt
= −  , (4.11) 

where i  is the current through the conducting wire attached to the compliant electrodes on 

DE, and the leakage current leaki  is governed by an empirical exponential function (Chiang 

Foo et al., 2012b; Di Lillo et al., 2011). 

  
0( / ) 2 2

0

E E

leaki e EL =  . (4.12) 

Here 0  is the conductivity of DE at low electric field, 
7

0 4 10E =  is an empirical 

material constant, and the electric field is governed by 
2 /E H=  . The time dependent 

quantities , , , , , and i

leakP i i Q   can be obtained by solving a set of differential-algebraic 

equations, i.e., equations (4.1), (4.7), and (4.10)-(4.12) when initial conditions are given.  

It should be noted that  is the viscosity of the material in the current state, which 

depends on the deformation of the DE and should be constitutively prescribed to obtain the 

inelastic stretch ratios as shown in equation (4.10). Here, the theory of polymer dynamics 

by Doi and Edwards (1988) is adopted to determine the deformation-dependent viscosity. 

The details of this theory are well elaborated in the literature (Doi and Edwards, 1988; 

Zhou et al., 2018). The basic idea of this theory is that the motion of polymer chains is 

confined by the surrounding polymer chains. This topological constraint can be modeled 

by a tube-like region with the tube axis C-D defined as the primitive chain (figure 4-2 (a)). 

The viscosity of elastomers originates from the diffusion of the polymer chains in the 

material. For this model, the tube diameter is a function of the primitive length L of the 

polymer chain and the end-to-end vector R of the of the primitive chain, i.e., 
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2 /a L= R with *  being the expectation operator of a parameter. It is easily 

perceived that both L and R vary with the macroscopic deformation of the polymer, 

particularly when the DE undergoes large deformation with respect to the current state 

(figure 4-2 (b)). Therefore, the expectation of L and R is a function of the deformation 

gradient F and the statistical distribution function 0 ( )f R  of the end-to-end vector, i.e., 

2

4


= 

F u
L Ld u


 and 

22 3

0 ( )= R F R Rf d R  with u being the unit tangent vector at a 

contour position of the polymer chain in the current state. The nonlinear viscosity was 

given by Doi and Edwards (1988) as, 
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where 0a  is the tube diameter and 
3 4

0 0
0 2

0

1

12 b

N b G

k Ta


 =  is the viscosity in reference state. The 

subscript “0” of the quantities refers to the reference state.  
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Figure 4-2 (a) A tube-like region confines polymer chain C-D. The axis of the tube is 

the primitive chain of polymer chain C-D; (b) description of the primitive chain. 

  

4.3 Energy harvesting cycle of DEGs 

The energy harvesting performance of the DEG with the triangular energy harvesting 

scheme (Shian et al. 2014) has been investigated by Zhou et al. (2017) using a linear 

viscosity model. Here the effect of nonlinear viscosity on their performance will be 

examined. In general, the achievable electrical energy is limited by the electromechanical 

integrity of the DE membrane, i.e., rupture and electrical breakdown. Therefore, a 

maximum stretch ratio max is first prescribed in order to prevent the DE from rupture. 

Meanwhile, a minimum stretch ratio min is usually prescribed as greater than 1 for the DE 

since it takes a longer time for the DE to recover back to the undeformed state during the 

energy harvesting cycle. When the applied voltage exceeds the breakdown voltage B of 

the DE, the energy harvesting process will also fail due to the  short-circuiting (Liu et al., 

2012; Liu et al., 2009). The electrical breakdown voltage follows the rule of 

( ) 2
B B 1 xE H  −=  according to experiments (Huang et al., 2012), where EB (1) =30 MV/m 

for the dielectric strength of the undeformed DE and x=1.13 are determined through 

experimental data fitting. Acrylic elastomer VHB4905 is selected as the DE material for 

simulation, and the corresponding geometric and material parameters are set as 3.5cmL =

, 0.5mmH = , min 2 = , max 5.5 = ,
3960kg/m = , 0.5 = , 4 = , 12

0 8.85 10 F/m −=  ,

350kPaG =  , EQ

lim 110J = , NEQ

lim 55J = , and the relaxation time 0
0 NEQ

3
G


 = = in the 
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reference state (Chiang Foo et al., 2012a; Huang et al., 2013; Shian et al., 2014; Zhou et 

al., 2017).  

In order to demonstrate the achievable harvested energy during the DEG harvesting 

cycle process, Figure 4-3(a) depicts the electrical breakdown, max  and min  curves of the 

embedded DE membrane on the charge-voltage work-conjugate plane following the work 

of  Koh et al. (2011a).Theoretically, the maximum achievable energy during a harvesting 

cycle of the DEG is the area enclosed by these three curves. It is very difficult, if not 

impossible, to harvest the maximum energy due to the implementation feasibility of the 

energy harvesting scheme. However, a desirable harvesting cycle should be designed to 

cover this area as much as possible. Shian et al. (2014) have proposed a triangular 

harvesting cycle denoted by A-B-C in figure 4-3 (a), which appears to be capable of 

achieving as much energy as possible when the voltage at point B and the slope of BC are 

appropriately selected. The implementation of this harvesting scheme is relatively simple 

and could be realized by the electric circuit as shown in figure 4-3 (b). However, due to the 

material viscoelasticity of the DE, it requires extra time for the DEG to finish such a cycle 

A-B-C, which may lead to high energy dissipation and low efficiency. This triangular cycle 

was modified to A1-B1-C1-D1 in the experiment of Shian et al. (2014). In order to further 

improve the energy harvesting performance of the generator, Zhou et al. (2017) has 

proposed a harvesting cycle as A2-B2-C2-D2 for further optimization. For this cycle, loss-

of-tension and current leakage of the DE membrane are both avoided, and the detailed 

process is well documented in their work.  However, the nonlinear viscosity of the polymer 

chains is ignored in both works, which may significantly affect the harvesting process. 

Therefore, a harvesting cycle denoted by A3-B3-C3-D3 with the consideration of material 

nonlinear viscosity is proposed in this work. The harvesting cycle proposed here follows 

the same path as in the work of Zhou et al. (Zhou et al., 2017) and is controlled by the 

electric circuit (figure 4-3 (b)), which is described as follows. With both switches 1 and 2 

open, the DE membrane is stretched to the prescribed maximum stretch ratio max =5.5 by 

an equi-biaxial force P (denoted by point A3 in the figure). Then Switch 1 is closed, and 

charges flow from the power supply to the DE capacitor. During this charging process as 

identified by A3-B3 , the voltage on the DE keeps rising until it reaches the level of the 
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power supply, which is set as L=3000 V for example. Starting from state B3, switch 1 is 

re-opened and the bi-axial force P is decreased to allow the DE to shrink back. During this 

process, the capacitance of the DE decreases, leading to the increase of the voltage on the 

DE. Once the voltage on the DE is higher than that on the transfer capacitor, charges 

accumulated on the DE capacitor will flow to the transfer capacitor through the diode in 

the circuit. In order to achieve the maximum energy, it is expected to shrink the DE back 

to the prescribed minimum stretch, i.e., state C as originally proposed in the triangular 

scheme. However, it is found in the simulation that loss-of-tension of the DE membrane 

occurs during this process, which was also reported in the experiments by Shian et al. 

(2014) and the simulation by Zhou et al. (2017). In the experiment, the loss-of-tension was 

not avoided and the state C1 is reached by the servomotor position. In the simulation, the 

loss-of-tension of the membrane is avoided by artificially selecting a state C3 instead of 

state C. State C3 is selected as the onset of the discharging process by closing switch 2, 

which allows the charges on both the DE and the transfer capacitors to flow to the 

harvesting circuit. This process continues until the DE membrane reaches a state of loss-

of-tension at state D3, then the DE is immediately stretched again and switch 2 is reopened. 

Once the DE is stretched back to max, i.e., to state A3, the harvesting cycle is completed 

and will repeat. It should be noted that all the cycles presented in figure 4-3(a) are stable 

harvesting cycles after a few repeating cycles, which explains why A, A1, A2 and A3 do not 

start from the origin since there are residual charges from the previous cycle. The harvested 

energy is calculated by the area enclosed by A3-B3-C3-D3 in our simulation as 0.5285 J and 

the energy density is determined as 873.73J/kg. Without considering the deformation-

dependent viscosity, the harvested energy and the energy density were determined as 0.48 

J and 794 J/kg, respectively (Zhou et al. 2017). It is found that the energy harvested through 

cycle A3-B3-C3-D3 is more than the other two cycles A2-B2-C2-D2 and A1-B1-C1-D1 (0.47 

J in the experiment by Shian et al. (2014)) 
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Figure 4-3 Energy harvesting cycle of the DEG: (a) proposed triangular path, 

experimental path, simulation results by using both nonlinear and linear viscosity 

models; (b) circuit diagram used to control harvesting cycle. 

Figure 4-4 shows the force-stretch curve for both harvesting cycles A2-B2-C2-D2 and 

A3-B3-C3-D3. Based on the experimental results of Shian et al (2014), where both the 

stretching and the shrinking rates are set as 
-1/ 2.8sd dt = . Meanwhile, the voltage of the 

DE ramps up at the rate of rv=d/dt=6000 V/s during the charging process (from state A2 

(or A3) to state B2 (or B3)). It is found that it requires higher mechanical force to stretch the 

DE when the nonlinear material viscosity is considered. However, the electromechanical 

cycle for the nonlinear model reaches the steady state faster than the linear model. The 
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mechanical work done by the equi-biaxial force P  can be calculated as two times of the 

area enclosed by these curves, which are calculated as 0.8076J and 0.7072J for the 

nonlinear viscosity model and the linear viscosity model, respectively. Correspondingly, 

the energy conversion efficiency for these two cycles A2-B2-C2-D2 and A3-B3-C3-D3 are 

determined as 67% and 65.4%, respectively, which is much higher than 30% obtained in 

the experiment (Shian et al. 2014). The main reason for the efficiency improvement is that 

the loss-of-tension of the DE membrane is avoided in the simulation, which prevents a 

large amount of energy dissipates during the inelastic deformation of the DE. This is 

realized through shortening the discharging process, i.e., from state C2 (or C3) to state D2 

(or D3). It should also be mentioned that the possible energy dissipation through friction, 

plastic deformation and the electric circuit will certainly contribute to the lower energy 

conversion efficiency in the experiment. 

Although the discharging process is shortened in the simulation process, its effect on 

the harvested energy of DEG is negligible since most of the charges have been transferred 

out of the DE at state D2 (or D3). This is evidenced by figure 4-5 (a), which shows the 

variation of the electric charge throughout the whole energy harvesting cycle. It is 

demonstrated that at the end of the discharging, there are little residual charges left. The 

change of the electrical voltage during the energy harvesting process is shown in figure 4-

5(b), which follows /0.45( )(1 )t

C L C e− =  +  −  −  during the discharging process (state 

C2 (or C3)-D2 (or D3) with C  being the voltage level at state C2 (or C3). At state A2 (or A3) 

the voltage of the DE is non-zero since there are still some charges left on the DE capacitor 

from the previous harvesting cycle. In comparison of the nonlinear and linear models, it is 

found that the nonlinear model exhibits lower residual voltage and charge than the linear 

model. It should be mentioned that the current leakage (figure 4-5 (c)) is calculated as 

67.7 10 C−  during the whole harvesting cycle, which is negligible by comparing with the 

peak value of the charges on the DE as shown in figure 4-5 (a). This conclusion is in 

agreement with both the simulation (Zhou et al., 2017) and the experiment (Shian et al., 

2013).   
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Figure 4-4 The force-stretch curve of the DE membrane during the electromechanical 

harvesting cycle for different viscosity models. 
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Figure 4-5  The variation of charge (a), voltage (b) and current leakage (c) on the DE 

capacitor during the electromechanical harvesting cycle. 

From the above analysis, it can be concluded that the harvesting performance of the 

DEG, including the harvested energy and the conversion efficiency, is mainly governed by 

the voltage level of the power supply and the timing (or stretching state) for closing switch 
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2, i.e., the position of B2 (or B3) and C2 (or C3) on the energy harvesting curve.  Therefore, 

a suitable combination of state B3 and C3 may help to improve the energy harvesting 

performance of the DEG, either the harvested energy, or the efficiency, or both. Figure 4-

6 shows the variation of the harvested energy (figure 4-6 (a)) and the efficiency (figure 4-

6 (b)) of the DEG with the stretch ratio at state C3 (
3C ) and the voltage level of the power 

source ( L ) when the nonlinear material viscosity is considered. It is observed that both 

the harvested energy and the conversion efficiency increase when a higher power supply 

voltage L  and a lower stretch ratio 
3C are selected. This trend is different from the one 

predicted by the linear viscosity model (Zhou et al., 2017), which indicates the significance 

of considering nonlinear material viscosity in the modeling framework of the DE. Within 

the given range of the power supply voltage and the stretching ratio 
3C  at C3, the 

maximum energy can be harvested is 0.6 J and the highest conversion efficiency is 69%. It 

is thus concluded that choosing a higher power supply voltage and smaller 
3C (or delay of 

closing switch 2) is an effective approach to improve both the harvested energy and the 

efficiency of DEG. However, it should be ensured that the voltage level of the power source 

is lower than the electrical breakdown voltage of DE at B3, and the loss-of-tension does 

not occur at state C3.  
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Figure 4-6 Variation of harvested energy and efficiency DEG with the stretch ratio at 

C3 and the voltage level of power supply (a) harvesting energy (b) conversion 

efficiency. 
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With the theoretical framework developed in the current work, we also evaluate the 

energy harvesting performance of DEGs with different types of polymer networks. Figure 

4-7 depicts the maximum harvested energy and the maximum efficiency of a DEG as a 

function of  when the power supply voltage level L is set as 3000 V. The results from 

the linear viscosity model by Zhou et al. (2017) are also plotted for comparison. It is 

observed that as  increases, the maximum harvested energy of the DEG increases until 

approaching a constant when  reaches a critical value for both models. This is expected 

since DE membranes with  higher than the critical value, they are able to shrink back to 

the prescribed minimum stretch ratio min=2 without loss-of-tension, i.e., both C2 and C3 

in the simulated harvesting cycles coincide with the originally proposed state C in the 

triangular scheme A-B-C. It is thus concluded that the ideal triangular harvesting scheme 

could be realized when the fraction of the time-independent polymer networks in the 

material is higher than this critical value. For the limiting case of a purely elastic solid with 

 =1, the maximum harvested energy is determined as 0.62 J when L=3000 V, which is 

quite close to the maximum achievable energy 0.74 J of the DEG as calculated by the 

enclosed area by the electrical breakdown, max and min curves in figure 4-3 (a). It is also 

found that the critical value of the fraction of time-independent polymer networks is 

different for the two models, e.g.,  =0.45 for the nonlinear model and  =0.6 for the linear 

model. On the other hand, the change of the maximum efficiency exhibits non-monotonic 

behavior, which attributes to the combined effect of the material viscoelasticity on the 

harvested energy and the mechanical work consumed during the harvesting cycle. This 

curve exhibits similar trend for both the linear and nonlinear viscosity models. While the 

discrepancy between the linear and nonlinear models indicates that neglecting the nonlinear 

behavior of the material viscosity may lead to significant error in analyzing the harvesting 

performance of DEGs.   
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Figure 4-7 Maximum harvested energy (a) and maximum efficiency (b) of DE in terms 

of material parameter χ. 
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4.4 Conclusion  

Based on the finite-deformation viscoelasticity theory and the theory of polymer 

dynamics, a theoretical framework with the consideration of material nonlinear viscosity 

is developed to comprehensively evaluate the energy harvesting performance of DEGs. 

Simulation results show that using a higher voltage power supply for energy harvesting is 

an effective way to improve both the harvested energy and the conversion efficiency of the 

DEG. Meanwhile, avoiding loss-of-tension of the DE membrane by shortening the 

discharging process in the energy harvesting cycle can significantly increase the conversion 

efficiency. This work also theoretically proves that the ideal triangular energy harvesting 

scheme could be realized by using DEs with higher fraction of time-independent polymer 

networks. Comparison between the linear and nonlinear models strengthens the 

significance of considering nonlinear material viscosity in modeling dielectric elastomers. 

This work aims to provide an increased understanding on how the deformation-dependent 

material viscosity affects the energy harvesting performance of DEGs and is expected to 

provide optimization guidance for further experimental works. 
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Chapter 5  

5 Conclusion and future work 

5.1 Contribution  

Among the most promising electroactive polymers for transduction technologies, 

dielectric elastomers are featured with high flexibility, large deformation capability and 

high energy density compared to piezoelectric and electromagnetic materials. However, 

the performance of dielectric elastomers is affected by a few critical factors such as the 

nonlinear viscoelastic material nature, loading conditions and multiple failure modes. 

Extensive studies have been conducted on the viscoelastic effect of dielectric elastomers. 

Nevertheless, most of these studies assume linearity of the material viscosity, while 

experiments have confirmed that the material viscosity of DEs is highly nonlinear 

(deformation-dependent). Therefore, the objective of this work is to incorporate the 

deformation-dependent material viscosity into the finite-deformation viscoelasticity 

modeling framework with the consideration of multiple failure modes to investigate the 

viscoelastic effect on the performance of DE oscillators and generators. The models and 

results in this work are expected to provide guidelines for the optimal design of DE 

oscillators and generators. The contributions of this thesis include: 

1. Incorporating the nonlinear viscosity into the finite-deformation viscoelasticity 

theory for dielectric elastomers, this work examines the natural frequency tuning 

process and the dynamic performance of DE oscillators under external excitation. 

To demonstrate the effect of nonlinear viscosity, comparisons of predictions for the 

frequency tuning, tunable frequency range and influence of electrical loading rate 

from the linear and nonlinear models are presented. In addition, the influence of 

nonlinear material viscosity on time response of DE resonator under external 

excitation was also examined. 

2. With the deformation-dependent viscosity incorporated in the finite-deformation 

viscoelasticity model, this work also investigates the energy conversion efficiency, 

the harvested energy and the energy density of viscoelastic DE membrane 
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generators. To illustrate the effect of the nonlinear material viscosity on the energy 

harvesting process, comparisons of the harvested energy in an energy harvesting 

cycle, the variation of mechanical loads, and the maximum conversion efficiency 

predicted by the nonlinear and linear viscosity models are presented. 

5.2 Conclusion remarks 

According to our simulation results, some concluding remarks of this work are listed below: 

1. It is found that, during the frequency tuning process, the nonlinear viscosity model 

predicts a faster relaxation than the linear model. Therefore, neglecting the 

nonlinear viscosity can lead to error in determining the natural frequency of DE-

based vibration device.  

2. Simulation results also show that the tuned natural frequency does not change with 

the voltage loading rate. Moreover, the applied voltage should be maintained below 

the electrical breakdown voltage of the DE. 

3. For viscoelastic DE generators, it requires higher mechanical force to stretch DE 

when the nonlinear viscosity is considered. However, the electromechanical cycle 

predicted by the nonlinear model reaches the steady state faster than the linear 

model. 

4. It is also concluded that the conversion efficiency improvement in the simulation 

is mainly due to the fact that loss-of-tension of the DE membrane is avoided by 

connecting system to harvesting circuit earlier. This prevents a large amount of 

energy from dissipating during the inelastic deformation of the DE. 

5.3 Future work 

The results of this work are expected to provide guidelines for DE-based vibrational 

devices and dielectric elastomer energy harvesters. However, the proposed modeling 

framework is still limited in certain aspects. Consequently, there are some suggestions for 

our future work: 
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1. The finite-deformation viscoelasticity with consideration of nonlinear viscosity 

above is assumed to have one purely elastic ground network and only one type of 

viscous subnetwork. However, according to experimental results, DEs tend to have 

multiple relaxation processes, which should be captured by multiple viscous 

subnetworks. Therefore, there is still much room to improve the model to examine 

the comprehensive performance of DE oscillators and generators.  

2. Moreover, the dielectric strength of DEs is considered constant in this work. 

Nevertheless, experiments suggest that the dielectric strength of DEs changes with 

some factors like temperature, pressure, and deformation. Therefore, it is also 

essential to develop a model to account for the effect of the varying dielectric 

strength, which could improve the accuracy of the prediction for the performance 

of DE-based devices. 
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