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Abstract

This thesis is motivated to investigate distribution theory of a quasi maximum like

lihood estimator (QMLE) and test of goodness-of-fitting of an ARMA-(I)GARCH 

model.

We obtain asymptotic consistency and normality of the QMLEs based on an arbi

trary likelihood kernel. It shows that the moment conditions of errors in the ARMA 

part and innovations in the GARCH part depend on the choice of likelihood kernel. 

For example, the asymptotic normality of QMLEs based on student t likelihood ker

nel holds with arbitrary small positive moment on error term and 2 — L moment on 

innovation term, where 0 ≤ L < 1. It also shows that the asymptotic efficiency of 

QMLEs depends on the choice of likelihood kernel and the distribution of innova

tion. For the pure GARCH model with nonzero constant mean, we show that the 

common practice of using the sample mean to center financial data is workable if 

the error term has finite variance. Consequently, we study some processes based on 

residuals of an ARMA-(I)GARCH model. We show that the k-th power partial sum 

process converges to a Brownian process plus two correction terms, where the cor

rection terms always depend on ARMA-GARCH parameters. We also show that the 
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CUSUM and the self-normalized processes (standardized by the residual sample mean 

and variance) behave as if the residuals were asymptotically IID. Finally, applications 

of these results are exhibited with numerical examples.

Chapter 1 gives a brief introduction of financial return, econometric models such 

as ARMA, GARCH and their extensions, as well as model estimation and diagnosis.

Chapter 2 focuses on the distribution theory of one step QMLEs and two step 

QMLEs of an ARMA-(I)GARCH model. Special cases like pure ARMA and pure 

GARCH are considered too. Three specific examples with varied kernels are pre

sented.

Chapter 3 deals with the high moment partial sum processes, the CUSUM and the 

self-normalized processes based on residuals of an ARMA-(I)GARCH model, origi

nally proposed by Kulperger and Yu (2005) for a pure GARCH model.

In Chapter 4, we present some numerical examples of the applications of Chapter 

2 & 3, for instance, efficiency of QMLEs based on different kernels, CUSUM statistic 

for testing ARMA-GARCH model structural changes, Jarque-Bera omnibus statistic 

for testing normality of the unobservable innovation of an ARMA-GARCH model. 

Finally some conclusions and discussions are put forward.

Keywords: ARMA-GARCH, ARMA-IGARCH, quasi-maximum likelihood estima

tion, two-step estimation, asymptotic consistency, asymptotic normality, asymptotic 

efficiency, residuals, high moment partial sum process, weak convergence, CUSUM, 

omnibus, skewness, kurtosis, vn consistency.
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Chapter 1

Introduction

This chapter is devoted to some brief introduction of financial return, econometric 

models such as ARMA, GARCH and their extensions, as well as the model estimation 

and diagnosis.

1.1 Financial time series

1.1.1 Financial returns

To meet and satisfy the commercial and productive needs of various of investors and 

markets, many financial tools and derivatives such as stocks, options, forwards and 

bonds have been produced. We call these tools as financial assets.

The financial world is full of uncertainty and events take place every minute. 

Nonetheless, there are regularities and patterns to be identified. The fast expansion 

of financial markets and increasing variety and complexity of financial products give 

impetus to the development of econometrics. The aim is to make use of data, statisti

cal inference methods and structural or descriptive modelling to deal with uncertainty 

and guide decisions in economics.
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To investigate the regularities and patterns, we turn to the return, instead of the 

asset price itself. In econometric analysis, the return is conventionally defined as the 

logarithmic price changes:

Definition 1.1.1. Denote a financial asset with price pt at time t (t is an integer) 

and price pt-1 at time t — 1, the return is defined as:

R(t -1,t) = log Pt.
Pt-1

We suppose the asset price includes the dividends if it has a dividend payment 

during the period.

1.1.2 Time series

Definition 1.1.2. Time series is a discrete stochastic process where the time index 

takes on a finite or countably infinite set of values, e.g. {Xt,-0 <t < ∞}.

With respect to financial data, the price or return process of any asset naturally 

gives rise to a time series.

In the rest of this thesis, all quoted sequences like {Y, —∞ <t< ∞}, {Et, —∞ < 

t < ∞}, {nt, —∞ <1< ∞} are time series.

Generally an observed time series can be decomposed into three components: 

the trend (long term direction), the seasonal (periodic related movements) and the 

irregular or residuals (unsystematic, short term fluctuations). The trend and seasonal 

effects are deterministic and can be removed by regression, smoothing, difference or 

other methods. In the thesis, we focus on the nondeterministic part. From now 

on, without specification, by saying time series we mean the purely nondeterministic 

series with the deterministic components being removed from original series.
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Weak stationary time series have time independent first and second moments. 

Define Y(k) = E[(X - E(X))(X4-k — E(X2))] as lag k autocovariance of X. The 

lag k autocorrelation function (ACF) of Xt is defined by Pa(k) = (k)/“(0). In

tuitively, a stationary time series is characterized by its mean, variance and ACF. 

The lag k sample autocovariance and lag k sample autocorrelation function (SACF) 

are given by: (k) = n-1 2t=4+1(Xe - X)(X- - X), Px(k) = Â(k)/Â (0), where 

X — n-1 20=1 Xe is the sample mean.

Time series analysis accounts for the fact that data points taken over time may 

have a serial (such as autocorrelation) that should be accounted for. It plays an 

important role in evaluating any investment strategy, risk modelling and arbitrage. 

Analysis of a given asset’s price or return time series could forecast its future price 

movements. A wide variety of mathematical and statistical tools have been developed 

for dealing with time series data.

A fundamental theorem in time series analysis is Wold’s decomposition (c.f. Fuller 

(1996) pg. 96), which states that every weakly stationary and purely nondeterministic 

time series can be written as a linear combination of a sequence of uncorrelated 

random variables. The general Wold form of a stationary and ergodic time series is 

handy for theoretical analysis but is not practically useful for estimation purposes.

1.2 Econometric modelling of financial data

Portfolio mean-variance optimizing investors are assumed to evaluate the performance 

of their investment in terms of two summary statistics that represent the expected gain 
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of a portfolio and its expected risk determined from asset volatility. These statistics 

correspond to the first two conditional moments of asset price or return. In statistical 

terms, volatility or risk is usually measured by variance, or standard deviation. Risk 

from an individual company is diversifiable, while a market component cannot be 

diversified.

In the following we will introduce several econometric models that are broadly 

utilized in exploring financial return time series.

1.2.1 ARMA model

Definition 1.2.1. {Y, —∞ <t < ∞} is an ARMA(P, Q) process if Y is stationary 

and, for every t,

Y — $1Y-1 + $2Y-2 + ... + φpYt-P +E+ $184-1 + 9284-2 + ... + PQEt-Q , 

where Et is white noise(0, 02) and the polynomials Ao(z) = 1-Piz-Q222-...-pzP 

and B(z) =1+ $1% ÷ P222 + ... + (Q2° have no common factors.

Define L as the back-shift operator such that LY = Y-1, L*Y = Y-k. Then 

ARMA process can be written as A+(L)Y = Be(L)Et- The process is a Moving 

Average (MA) process if A(z) ≡ 1, or an Autoregressive (AR) process if Bp(z) ≡ 1.

Definition 1.2.2. An ARMA(P, Q) process {Y, —∞ <t< ∞} is causal if for all t, 

Y can be written as Y = 2720 Uiet-i with 2720 qi < ∞.

Definition 1.2.3. An ARMA(P, Q) process {Y,-co <t< ∞} is invertible if for 

all t, Et can be written as at = 220 niY—i with 20 Ti < ∞.

Proposition 1.2.1. An ARMA(P, Q) process defined by AA(L)Y = B(L)Et is 

causal if A+(z) = 0 has no roots inside or on the unit circle.
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Proposition 1.2.2. An ARMA{P, Q) process defined by A<(L)Y = B(L)Et is in

vertible if Be(z) = 0 has no roots inside or on the unit circle.

1.2.2 ARCH model and its applications

Empirically financial asset returns tend to be leptokurtotic and show volatility clus

tering: large changes tend to be followed by large changes, and small changes tend 

to be followed by small changes (Mandelbrot 1963). Volatility clustering and heavy 

tailed returns are closely related. Usually financial asset returns also show strong 

autocorrelation among squared returns. If such patterns are present in a time series, 

We say the data has ARCH effect.

The ARMA models successfully captures the movements of conditional mean. 

But it assumes that the conditional variance is time-invariant and contains no past 

information. The measure of the unconditional variance does not recognize that there 

may be predictable patterns in stock market volatility.

Predictable volatility implies investors can predict the risk and uncertainty based 

on current and past information. An important role of this prediction is that for 

periods where an investor has forecasted prices to be very volatile, he/she should 

either exit the market or require a large premium as a compensation for bearing an 

unusual high risk. To assess the variation of risk, an approach of involving conditional 

heteroscedasticity is required. Engle (1982) proposed Autoregressive Conditional Het- 

eroscedasticity (ARCH) model, which plays a revolutionary role in modelling of time 

series variances. Because of his contribution, Engle won the 2003 Nobel Prize in

Economics.
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Definition 1.2.4. An ARCH(p) process {Y,-00 <t< ∞} with constant mean 

term c takes the form

Y-c= no, (1.2.1) 
P

02 = ap +2a (Yi - c)2, (1∙2.2) 
i=1 

where & > 0,0 2 0,1 <i<p,ceR, are constants. We also assume that

{¾,-∞<t<∞} (1.2.3)

is a sequence of random variables identically and independently distributed with 

E(Mo) = 0 and E(n8) = 1 (IID(0,1)).

ARCH specifies the conditional variance as a linear function of past squared re

turns. It explains the volatility clustering and heavy-tailed non-Gaussian distribution 

of the returns.

Volatility has become a very important concept in different areas in financial the

ory and practice. It has been used in risk management, portfolio selection, derivative 

pricing, etc. As pointed out by Gouriéroux (1997), there are two main categories of 

potential applications of ARCH. The first category involves examining several eco

nomic or financial theories concerning the stock or other financial assets. The second 

one is basically operational and related to the intervention of banks on the market, 

such as risk management, choice of optimal portfolios, hedging portfolios, value at 

risk, sizes and times of block trading. The second category is often subject to some 

confidentiality restrictions, contrary to the first one, which is of a more global use.
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1.2.3 GARCH model

If ARCH effect is present, we fit time series with an ARCH model. In practice it 

is often found that a large number p of lags is needed, and thus a large number of 

parameters is required to obtain a good model fit. Inspired by the idea of the ARCH 

model and the ARMA model, ARCH was generalized (GARCH) by Bollerslev (1986) 

by adding the past conditional variance to the conditional variance term.

Definition 1.2.5. A GARCH(p, q) process {Y, —∞ < t < ∞} with constant mean 

term c is of the form:

(1.2.4)

(1.2.5)

Y C Et,

et = not and 02 = α0 + 2ae2-i + 2B,02-j,
i=1 j=1

where No > 0,; ≥ 0,1 Six p,βj ≥ 0,1 <j< q,c ∈ K, are constants. We also 

assume that

{n,-o <t < 0} (1.2.6)

is a sequence of IID(O,1) random variables.

The process reduces to Engle’s ARCH(p) process if q — 0.

When X os + 291 βj = 1, model (1.2.4)-(1.2.5) is called integrated GARCH

(IGARCH), due to the fact: Eo? = ∞.

Define
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where Ik is k x k identity matrix.

Nelson (1990) shows that the model (1.2.4)-(1.2.5) with p=q=1 has a unique 

stationary solution of Et if and only if E log(/1 ÷ N1o) < 0. The general case was 

investigated by Bougerol and Picard (1992a, b). They showed that a unique strictly 

stationary εt sequence exists if and only if

7(A) = inf -E(log∣AA-ι • • • A∣) <0 a.s, l≤i<∞ T (1∙2.7)

where we use ∣∙∣ to denote the absolute value of a scalar, or maximum norm of vectors 

or matrices. The definition of Y(At) does not depend on the choice of a norm on the 

space of the (p+q) × (p+ q) matrices.

Ling (2005) shows that for 0 < t ≤ 1, if there exists an integer io such that

(1.2.8)

then {et} is strictly stationary and ergodic with E|et|2 < ∞.

Define v=E — o?. By rearranging (1.2.5), we have

where m = max(p, q), Qi = 0 for i > p, and Bi = 0 for i > q. Thus a GARCH model 

can be expressed as an ARMA model with e?. Given the ARMA representation of 

the GARCH model, many properties of the GARCH model follow easily from those 

of the corresponding ARMA model. With this representation, the GARCH model 

is capable of explaining many stylized facts like: volatility clustering, fat tails, and 

volatility mean reversion.
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1.2.4 Extensions of GARCH

In many cases, the basic GARCH model provides a reasonably good model for ana

lyzing financial time series and estimating conditional volatility. However, there are 

some aspects of the model which can be improved to better capture the characteristics 

and dynamics of a particular time series.

This section introduces several extensions of the basic GARCH model.

GARCH (p, q) models successfully capture heavy tailed returns and volatility clus

tering. But positive and negative shocks have the same effect on volatility since the 

model depends only on the squared previous shocks. It fails to capture the "leverage 

effect”, which means volatility responds more rapidly to falls (bad news) in financial 

market than to corresponding rises (good news). Extended models like Exponential 

GARCH or EGARCH (Nelson, 1991), and Threshold ARCH or TARCH (Zakoian 

(1990), Glosten, Jaganathan, and Runkle (1993)) capture this asymmetric respond

ing mechanism.

In the EGARCH model, conditional variance in (1.2.5) is substituted with

p q
logo? =0+2 ai(wiηt-i + m-il) + 2 βj log o?-j- (1.2.10)

i=1 j=1

The asymmetric news impact (leverage effect) is potential since it allows volatility 

to respond more rapidly to bad news. Note that when nt-i is positive or there is good 

news, the total effect of nt-i is ¾(1 + wi). In contrast, when nt-i is negative or there 

is bad news, the total effect of nt-i is a^wi — 1). Bad news can have a larger impact 

on volatility, and the value of wi would be expected to be negative. EGARCH also 

releases the nonnegativity constraints in the GARCH model parameters, which are 
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too restrictive.

In the TARCH model, conditional variance in (1.2.5) is substituted with

P q 
of =0+ 2(of I{n- > 0} ∣εt Is + a,I{n- < O}kt∣s) + 2 βj^-j, 

i=1 j=1

where I{-} denotes the indicator function and 5 > 0. This model allows response of 

volatility to news with different coefficients for good and bad news, but maintains 

the assertion that the minimum volatility will result when there is no news. That 

is, depending on whether ηt-i is above or below the threshold value of zero, ηt-i has 

different effects on the conditional variance. So one would expect that the a, is bigger 

than a.

Ding, Granger and Engle (1993) proposed the a Power GARCH (PGARCH) 

model. In PGARCH, the conditional variance in (1.2.5) is substituted by

p
o@ = 0+2

i=1 j=1

where d is a positive exponent, and wi denotes the coefficient of leverage effects. Note 

that when d = 2, PGARCH reduces to the basic GARCH model with leverage effects.

In response to the finding that squares of return series tend to have very slowly 

decaying autocorrelations, Baillie, Bollerslev and Mikkelson (1996) proposed Frac

tionally Integrated GARCH (FIGARCH). The main characterization of a FIGARCH 

model is that conditional variances exhibit not only short-run dynamics of the ARMA 

type, as in the standard GARCH model, but also the long-run persistence that decays 

slowly at hyperbolic rates (instead of the usual exponential rates as of the GARCH 
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model). A Fractionally Integrated GARCH (p,d,q) process Et is defined as

1-2aL' ) (1-L)e = 0 + (1-26L' (e3 - o?), (1.2.11) 
6=1 / \ j=1 / 

where 0 < d ≤ 1. The corresponding conditional variance o2 can be expressed more 

explicitly as:

1-2B,L)o3= ao + 1-2B,Li)e3 (1-ZaL') (1 - L)ee2. 
j=1 / \ j=1 / \ i=1 /

The fractional differencing operator (1 — L)d that allows the process &? to have a 

long memory. Baillie (1996) argues that the presence of FIGARCH may explain the 

common findings of IGARCH in modelling high-frequency financial data.

In financial investment, high risk is often associated with a expected high return. 

Engle, Lilien and Robins (1987) proposed to extend the basic GARCH model so 

that the conditional volatility can generate a risk premium which is part of the ex

pected returns. This extended GARCH model is often referred to as GARCH-in-mean 

(GARCH-M) model.

The GARCH-M model extends the conditional mean equation (1.2.4) as follows:

Y = c+mf(z) + et,

where m is a constant and f can be any arbitrary function of volatility Tt, i.e. f(ot) = 

Tt, f(ot) = 02, θr f(ot) = In o+

Other extensions of GARCH are skipped here.
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1.2.5 ARMA(P,Q)-GARCH(p, q)

The GARCH model successfully captures the movements of conditional volatility. 

Empirically the conditional mean is dynamic rather than zero or constant. As pointed 

out by Francq and Zakoïan (2004), in economic applications, it is a common practice 

to fit financial return series by an autoregressive moving average (ARMA) model 

with GARCH errors. The ARMA-GARCH model combines an ARMA model for 

modelling the dynamic conditional mean and a GARCH model for modelling the 

dynamic conditional volatility. An ARMA(P,Q)-GARCH(p, q) sequence {Y, —∞ < 

t < ∞} is of the form:

P Q
Y-c=>d(Y-c)+e+29je4-j, (1.2.12) 

i=1 j=1 

pq
e = σtηt and o? =0+2 a,e2- + 2 βjσ^j, (1.2.13) 

i=1 j=1 

where the innovations {ft, —∞ < t < ∞} is a sequence of non-degenerate IID(O,1) 

random variables, c ∈ R, φι ∈ R, 1 ≤ I ≤ P, Çk € R, 1 ≤ k ≤ Q, No > 0, ai ≥ 0,1 ≤ 

i < P^βj ≥ 0,1 ≤ j< Q are constants. In this model, we refer to {Et,-0 <t < ∞} 

as the sequence of GARCH errors for the ARMA model and {nt, —∞ < t < ∞} as 

the sequence of GARCH innovations.

The ARMA-GARCH model can be extended by adding exogenous explanatory 

variables in the conditional mean and (or) conditional variance equations. For in

stance, the Capital Asset Pricing Model (CAPM) implies that stock returns should 

be related to the returns of a market index. And it is widely believed that trading 

volume affects the volatility. Then both market index and trading volume could be 
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potential explanatory variables candidates.

1.3 Testing the ARCH effect

To check ARCH effect, we plot the ACF of the series itself versus the ACF of squared 

series. It is usually the case that there is little serial correlation in the time series 

itself, while the squared series exhibits strong autocorrelation. Since the squared 

series measures the second order moment of the original time series, it indicates that 

the variance of the series based on its past history may change over time.

After we fit a financial time series, it is usually a good practice to test for the 

presence of ARCH effect in the residuals. Suppose we fit the data with an ARMA 

model by assuming the error term is white noise. If the white noise assumption of 

error term does not hold, an ARCH effect is present in the residuals. It leads to seri

ous model mis-specification and results in inappropriate standard error of parameter 

estimator. On the other hand, If there is no ARCH effect in the residuals, then the 

ARCH model is unnecessary.

We assume that linear serial dependence inside the original series is removed and 

any remaining serial dependence must be due to conditional heteroscedasticity, which 

is not captured by the model. Detection of ARCH effect in a series is actually a joint 

test for heteroscedasticity of the residuals et.
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1.3.1 Engle’s Lagrange multiplier test

Since the ARCH model has the form of an autoregressive model, Engle (1982) pro

posed the Lagrange Multiplier (LM) test for ARCH effect. LM test is defined as a 

test of Hq : Et has a constant variance versus Ha : The conditional variance is an 

ARCH(p) process, that is to test whether the ARCH parameters are all zeros.

Let residuals be et = êt/Ôt, where êt and Ôt are estimators of Et and Tt with finite 

sample respectively. The test is based on the regression of e? on e2 1,e?-2,...e?_p. 

The test statistic is nR2, where n is the sample size, and R2 is the sample multiple 

correlation coefficient computed from the regression. Under the null hypothesis that 

there is no ARCH effect, the test statistic is asymptotically distributed as x3. From 

this test, it can be seen if the data is homoscedastic, then the variance cannot be 

predicted and variation in et is purely random. If the ARCH effect is present, then 

the variation can be predicted by lagged values of squared residuals. It should be 

mentioned that the test rejects if the residuals themselves contain some remaining 

autocorrelations or other form of non-linearity. So we can not simply assume the 

ARCH effect is necessarily present when the test rejects.

1.3.2 McLeod-Li test

Since &? in (1.2.5) can be written as:

where v = e — σ2 is not autocorrelated, so {e?, —∞ < t < ∞} follows a ARMA

(max(p,q), q) model.
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McLeod and Li (1983) proposed a test for diagnostic checking of possible depar

tures from the linear ARMA model assumption. They used the autocorrelation of 

the squares of the residuals rather than the residuals themselves as in the Ljung-Box 

test. They showed the sample autocorrelation of e? have asymptotic variance 1/n. 

McLeod and Li statistic tests whether the first k autocorrelations for the squared 

residuals are collectively small in magnitude. The statistic is defined as:

k -2 ( 
QML = n(n +2)2 Pe2l) , 

(n-3) 

where n is the sample size, Pe2(i) = 2=+1 e2e2Li/ 27=1 et is sample autocorrelation 

of the squared residual series at lag i, and k is the number of lags being tested. 

Under the null hypothesis of no ARCH effect in the data, McLeod-Li statistic is 

asymptotically X2 distributed.

Luukkonen, Saikkonen and Terasvirta (1988) pointed out that McLeod-Li test is 

asymptotically equivalent to Engle’s Lagrange multiplier test.

For more tests, see Li (2004, pl00-pll2).

1.4 Model estimation

1.4.1 Quasi maximum likelihood estimation

Usually model parameters are estimated by maximum likelihood method. But max

imum likelihood estimation cannot be applied to the model if we do not know the 

exact distribution of the random variables. Sometimes we can still estimate the model 

parameters by presuming the variables come from a particular distribution.
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Definition 1.4.1. A maximum likelihood estimator based on a likelihood function 

with misspecified density is called a QMLE.

1.4.2 Large sample estimation properties

For data with a large sample size, we have some established asymptotic consistency
A

and normality results for the estimators. Let Qn(b) be an objective function, such

that
A A

θn = arg max Qn(θ), (1∙4∙1)

where Θ is the parameter space and is assumed to be compact. Usually @n(0) has

the form:
1 1 Ân(0) =-2 f(i,0), 

1=1 

where yic ,Yn are a realizations of an IID sequence.

With different functions f, the resulting estimators can be (quasi) maximum like

lihood estimator, least-squares estimator, or generalized moment estimator.

Theorem 1.4.1. (Consistency Theorem, Newey and Mcfadden 1994)

If there is a function Qo(O) = Ef(yt,0) such that (i) Qo(0) is uniquely maximized
A

at the 0o; (ii) Θ is compact; (iii) Qo(O) is continuous; (iv) Qn(O) converge uniformly

in θ in probability to Qo(8), then

‰ -P 00.

Theorem 1.4.2. (Normality Theoremf Newey and Mcfadden 1994)
A Am

Suppose that θn satisfies (1.4.1), θn —• 00, and (i) ¾ is in the interior of O;
A

(ii) Qn(0) is twice continuously differentiable in an open neighborhood @o of 00;

(iii) VnoÔn(0)/00e=0o - N(0,2); (iv) there is H(0) that is continuous at 80 and
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supece, 82n(8)082 — H(8)1 P, 0/ (v) H = H(Bo) is nonsingular. Then

Vn(ên - @0) 4, N(0, H-H-1).

1.5 Model diagnostic checks

Mis-specification may result in inconsistency and loss of efficiency in estimating pa

rameters. Consequently it will lead to poor forecasts. It should be noted that in 

many financial econometric models the conditional variance equations play a major 

role. Reliable estimation and inference of the conditional variance depend on well- 

specified conditional variance models. Therefore testing goodness-of-fit after fitting 

the model becomes an important issue. The following tests give some routines of 

testing various features of ARMA-GARCH models.

(i) ARCH effect or randomness of residuals

Diagnostic test for conditional heteroscedasticity models applied in the litera

ture can be divided into three categories: Portmanteau test of the Box-Pierce-Ljung 

type, Lagrange multiplier (LM) test and other residual-based diagnostics. The Box- 

Pierce-Ljung portmanteau statistic is perhaps the most widely used diagnostic test. 

It is readily computable from the standardized residuals and has been applied in 

many empirical works for model diagnostic checks (see, for example, the papers by 

Bollerslev (1990), Baillie and Myers (1991) and Karolyi (1995)). Ling and Li (1997) 

further developed this work and derived the asymptotic distribution of the portman

teau statistic in the multivariate case. The Ling-Li statistic is based on the serial 

correlation coefficients of the transformed vector of residuals.
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If the model is successful at modelling the serial correlation structure in the condi

tional mean and conditional variance, then there should be no autocorrelation left in 

the standardized residuals and squared standardized residuals. This can be checked 

by using the Ljung-Box test with standardized residuals and McLeod-Li test with 

squared standardized residuals. In both cases, we will reject the null hypothesis (that 

there is no autocorrelation left) if the statistic is large.

(ii) Distribution of innovation

The normal distribution for the innovations is usually assumed. If the model 

is correctly specified then the estimated standardized residuals should behave like 

standard normal random variables. To evaluate the normality assumption, a QQ- 

plot of the standardized residuals or Jarque-Bera normality test can be performed.

(iii) Change point problem

Another key assumption is that sequence is stationary or the model parame

ters stay constant through time. Parameter instability is evidence of model mis

specification and standard econometric theory no-longer applies. Robust estimation 

requires at a minimum that the conditional mean and variance be correctly specified. 

However, GARCH models are rarely tested for structural breaks.

Though model diagnostic checks based on standardized residuals can be used to 

compare the effectiveness of different econometric models. Selecting the best model 

for a particular data set still can be a daunting task. Since GARCH models can be 

treated as ARMA models of squared residuals, traditional model selection criteria 

such as Akaike information criterion (AIC) and Bayesian information criterion (BIC)
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can also be used for selecting models.

1.6 Objectives

Later in this thesis, I will focus on an ARMA(P, Q)-GARCH(p, q) model. The 

general conditions of distribution theory of QMLE for a general model have been set 

up as in Section 1.4.2. As for an ARMA(P,Q)-GARCH(p,q) model, it is an open 

problem on the distribution theory of QMLE when GARCH innovation nt has no 4th 

moment. I will solve this problem by applying an arbitrary likelihood kernel to build 

the likelihood function. The details will be given in Chapter 2.

Standard goodness-of-fit tests (such as Kolmogorov-Smirnov test) and other model 

diagnostic tests based on the empirical process of an ARMA-GARCH residuals have 

been found to be invalid. Kulperger and Yu (2005) studied the high moment partial 

sum processes, the CUSUM and the self-normalized processes based on residuals of 

an (I)GARCH model. The results are applied to the goodness-of-fit tests and model 

diagnostic test. Can we extend their results to an ARMA(P,Q)-GARCH(p,q) model? 

This question will be answered in Chapter 3.

More tests (such as scaling issue in S-plus Finmetrics module, efficiency of QMLE, 

structural change problems, distribution of innovations) and numerical examples are 

presented in Chapter 4.
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Chapter 2

QMLE of ARMA-GARCH

In this Chapter, we obtain asymptotic consistency and normality of a class of global 

QMLEs based on arbitrary likelihood kernels and weak moment conditions on both 

Et and n. Two step estimation is also studied.

This chapter is organized as follows: Section 1 exhibits some existing distribution 

theorems of QMLE. Section 2 presents the assumptions and results. Some examples 

are given in Section 3. Section 4 is devoted to the proofs. Some lengthy expansion of 

Et(Y), o2(X) and etc., as well as Proof of Proposition 2.1 are given in the end of this 

Chapter as an appendix.

2.1 Existing Distribution Theories of QMLE

Without particular specification, the QMLEs mentioned in this section are based 

on normal density. The asymptotic properties of QMLE for ARMA-ARCH were 

first presented by Weiss (1986) under assumption of finite fourth moment on εt. 

The problem of finding weaker conditions for asymptotic properties of QMLE has 

attracted much attention in the literature. Lee and Hansen (1994) and Lumsdaine 
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(1996) obtained the asymptotic consistency and normality of QMLE for GARCH(1, 

1) and IGARCH(1, 1) with nonzero constant mean. They require a strict condition 

on the distribution of ηt and the values of parameters. The former requires End < co, 

and the later requires En32 < ∞. Linton (1997) studied an asymptotic expansion 

of QMLE for GARCH(1, 1) and IGARCH(1,1) with nonzero constant mean co. He 

showed if no is symmetric about 0 and has more than 6th finite moment, then QMLE 

of (No, Ni, βι) are asymptotically independent of any Vn-consistent estimator of CO.

Berkes, Horvath, and Kokoszka (2003) extended the above results to a general 

GARCH(p, q) model with mean term zero and relaxed the conditions in Lee and 

Hansen (1994) and Lumsdaine (1996). They showed that the asymptotic normality of 

QMLE for a GARCH(p, q) holds with 29 3; < 1 and Enol4+ < ∞ for some (>0. 

Hall and Yao (2003) obtained the asymptotic normality of QMLE for a GARCH(p, q) 

with mean term zero under 271 a+21 βj < 1 and End < co. Berkes and Horvath 

(2003) showed that QMLE of GARCH(p, q) parameters based on a normal kernel 

cannot be Vn-consistent if E∣%∣4 = ∞∙ Berkes and Horvath (2004) proposed a class 

of estimators bases on an arbitrary likelihood kernel for a GARCH(p, q) model and 

showed that the QMLE based on double exponential density are better than those 

based on the standard normal density if the tail of the distribution of no is polynomial. 

They showed the moment requirement of no depends on the choice of likelihood kernel. 

Asymptotic normality of QMLE based on double exponential likelihood kernel holds 

if Enol2 < ∞.

Francq and Zakoian (2004) obtained the asymptotic consistency and normality re

sults of QMLE for (I)GARCH(p, q). They removed the condition of lim,-0 x-SP{e3 ≤ 
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x} — 0, C > 0 in Berkes, Horvath, and Kokoszka (2003). They also relaxed the pa

rameter restrictions of requiring all parameters to be in the interior of the parameter 

space for asymptotic consistency result. This is essential to handle situations of over

identification. They showed asymptotic normality holds with End < ∞.

The above results have been extended to ARMA-GARCH. Ling and Li (1997) 

obtained the consistency and normality of local QMLE for ARMA-GARCH under 

Eed < ∞. Francq and Zakoian (2004) obtained the global QMLE of an ARMA- 

GARCH model with a weak condition. Asymptotic normality result holds with both 

Eεθ < ∞ and End < ∞. Ling (2005) proposed a self-weighted QMLE (SWQMLE), 

which is asymptotically normally distributed under only a fractional moment of So. 

By using the SWQMLE as an initial value, he obtained the local QMLE for ARMA- 

(I)GARCH. In both global and local cases, asymptotic normality requires End < ∞. 

In general, it is hard to compare the efficiency of SWQMLE and QMLE. However, 

Ling showed that SWQMLE is less efficient than QMLE when ¾ ~ N(0,1). For 

additional related works, see Li and Ling (1997, 1998, 2003), Li, Ling and McAleer 

(2002) and Ling and McAleer (2003).

The parameters in the conditional volatility are restricted by the moment condi

tions on εo∙ To make this clear, we present two examples. The example of ARCH(1) 

was given by Ling (2005). In ARCH(I) model with % ~ N(0,1), the parameter 

space of a is (0,1) if Ee3 < ∞, or (0, 1/V3) if Eεθ < ∞. For GARCH(1,1) with 

no ~ N(0, 1), if Eεθ < ∞, then a + 31 < 1. If EeA < ∞, then an ∈ (0, 1/V3) and 

β1 ∈ (0, √ι≡M — Ni), where V1 - 2~2 — & goes to 0 quickly as αi is close to 

1/V3. The space is more restrictive for higher order of GARCH. It can be seen that 
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Eco < ∞ is a strong condition.

In addition, the parameter space depends on the distribution of no. For example, 

in ARCH(I) model with V2no being double exponential distribution, the parameter 

space of 01 is (0,1) if Ec3 < ∞, or (0, 0.408∙∙ •) if Eεθ < ∞. In addition, there 

may be some connections between the moments of St and %. Ling (2005) showed if 

+ X91 B; < 1, E nol2+ < ∞ implies E∣εo∣2+^* < ∞, where 0 < ζ < 1 and 

0 < C < C

2.2 Assumptions and Theorems of QMLE

Denote Y = (c, $1;.., 0p, (1,.-,Q)7,5 = (α0,tt1,...,αp,ft,...,⅛)r,λ = (YT,8T)7. 

Denote parameter space Θ = (0y, θj) = ((96, 0,), (θαι Θ⅛)) C RP+Q+1 xR+x RB+V, 

where R+ = (0, +∞), Ro = [0, +∞).

(2∙2∙1)

(2.2.2)

We write the model (1.2.12) and (1.2.13) in parametric from as:

^(7) =(Y, -c)-2 d(Y, - c) - >9,643(7), 

i=1 j=1

P(X) = e(7) and

-Y i=ι j=1

The true parameter values are unknown and denoted as Xo = (N, ^)τ. Through

out the rest of this Chapter, we assume Xo ∈ θ. Clearly εt = Et(NYo), 02 = σ2(λo), 

and ne = E (Yo)/ce(ào) = εt∕σt.

To make the model be identified and stationary, we introduce following assump

tions:

Assumption 1. θ is compact.
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Assumption 2. For each 7 ∈ Oy, Ay(z) and By(z) have no common roots, the roots 

of Ay(z)By(z) = 0 are outside of unit circle. &p 7 0 or BQ 7 0.

Assumption 3. For each 6 ∈ Os, 21 βj < 1, s(z) and Bs(z) have no common 

roots. As(1) 7 0 and ap + / 7 0.

Remark 2.2.1. Assumption 2 implies the stationarity, invertibility and identifiability 

of model (2.2.1). Assumption 3 implies that model (2.2.2) is minimal in the sense 

that there is no pair (p*,q*) such that p* < p,q*<q and (2.2.2) holds. In particular, 

if P = 0, then A-(z) = 1; if Q = 0, then B,(z) == 1; ifq — 0, then Bs(z) = 1.

In Chapter 1, we have defined A6(z) = 1 — 21diz", Be(z) =1+ 29=19j2).

Similarly we define A~(z) = D7=102', Be(z) =1- 29=1/,2, and

00 Co

Cy(z) = Bo-U(z).AA(z) = Zay(i)z", Cs(z) = Ba-1(z).Aa(z) = 2az(i)z*, 
1=0 1=0

∞ 0O 0

A1(z) = >a(i)z", B,1(z) =2a(i)z", and Ba'(z) = >ap(i)z*,
i=0 i=0i=0

where the expressions of ay(i) and as(i) are given in Appendix A.2. Lemma 2.4.1 

shows that the absolute summation of ay(i), az(i), ap(i), app(i) and ag(i) are finite 

respectively. Thus (2.2.1) and (2.2.2) can be rewritten as:

∞
e(y) = B,-1(L).A(L)(K - c) = >ay(i)(Y- -c) , 

i=0

σi2(λ) = Ba-"(1)00 + B-U(L) Aa (L)e2(7)

= Be-1(1)00 + 2as(i)e2-.(o) •
i=0

(2.2.3)

(2.2.4)

In an application, it is impossible to have an infinite number of observations of

Y. Hence the initial values are replaced with some fixed constants, which are neither 
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random nor functions of the parameters. However this does not affect the asymptotic 

results (Ling and McAleer, 2003).

Given initial value Yo,..., Y1-P,0,...,1-max(p,Q),0,...,01=q, then (), σz2(λ) and

st(X) for t = 1,...,n can be computed from following equations:

P Q
εth) = (Y - c) - 2d(Y-i - c) - 2je-j(x) , (2.2.5)

i=1 j=1

p q
*e(A) σt(A) and σ2(λ) = & + 2aje2-4(Y) +20,03-,(X) . (2.2.6)

i=1 j=1

As shown in (A.2.2) and (A.2.3) of Appendix A.2, (2.2.5) and (2.2.6) can be

rewritten as:

£-1

^(7) = Xay(i)(Y-i-c) + O(p) a.s., (2.2.7) 
i=0

t-1

02(X) = Bal&o + 2 as(i)e?—.(~) + O(ρt) a.s., (2.2.8) 
i=0

where 0 <p<1 and Bal(z) = 2=8 ap(i)z'.

The conditional likelihood function based on a finite sample is defined as:

: 1—ι h(n(A))
Ln(A) = n244(), and 4e(A) = 1og a(X)) (2.2.9)

where h is a continuous positive function satisfying properties of a probability density 

function with third-order continuous derivative.

Corresponding to Ln(A), define

, 1— , ι h(ne(A))
Ln(A) =n240), and 4(A)=18 c,() (2.2.10)

Based on h, define a function g and its derivatives as:

∂x h(x) '
log h(x) _ ∂h(x)∕∂x
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Some other conditions on h are assumed.

Assumption 4. For some l1 ≥ 0 and some constant C > 0,

(i) log h(x) is bounded by Cx241,

(ii) Ig(x))l is bounded by C(max{a,1})21 1.

(iii) Ig'(a) is bounded by C(max{a], 1})2(1 1).

(iv) Ig"(x)l is bounded by C(max{a,1})21 3.

Remark 2.2.2. The value of l1 is completely determined by h. Assumption 4 implies 

log h(x) has order 3 continuous derivatives. It also implies E∣ log h(nt) < CE|nt|21 

and expressions like E|g(nt)|, E|g‘(nt)nt and Elg"(nt)n2 are bounded by CEnt21-1.

These expressions may be used in Section 2.3 and 2.4 for the proofs.

Assumption 5. For any w> 0 and v∈R, functions

Eg(wnt+v) = 0, 

1+E[g(wn. + v)nd] = 0,

have a unique solution at w = 1 and v = 0.

Proposition 2.2.1. Suppose that ηt is symmetrically distributed about zero and 

Eg(n)nd = -1

(Case i) If g is an odd function with g(0) = 0, g(x)x ≤ C'x2, g(x) < O but not 

always O for x > 0, g'(x) ≤ 0 for x> 0, then E log[wh(wnt + v)] < E log h(nt) 

for any w*1 and v+0.

(Case ii) If nt is not uniformly distributed and its density is decreasing on right side, 

g(x) is an odd function and g(x)x is a strictly monotone function for x > 0, 

then E log[wh(wnt ÷ v)] < E log h(nt) for any w #1 and v±0.
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(Case iii) If ηt is not uniformly distributed and its density is decreasing on right 

side, g(x) is an odd function, then E log[h(nt + v)] < E log h(nt) for any v+0.

(Case iv) If g(x)x is a strictly monotone function for x> 0, then E log[wh(wnt)] < 

E log h(nt) for any w =1.

The proof of Proposition 2.2.1 will be given in Appendix A.1.

Remark 2.2.3. Assumption 5 implies Eg(nt) = 0 and E[g(nt)nt] = —1. It also 

implies E log[wh(wnt +v)] ≤ E log h(nt) for any w > 0 and v ∈ R. The equality holds 

if and only ifw = 1 and v = 0. By Proposition 2.2.1, if h is nicely defined and ηt is 

symmetrically distributed about 0, then E[g(nt)nt] = —1 implies Elog[wh(wnt + v)] < 

E log h(Mt) for any w *1 and v ≠ 0.

Remark 2.2.4. Assumption 5 guarantees Elo(X) is maximized at true value λo and 

connects the distribution of no with h. By Remark 2.2.3, when h is normal kernel, 

—E[g(nt)nt] = En2 = 1 guarantees Elo(X) is maximized at Xo. In addition, En3 = 1 

is usually assumed to identify model (1.2.13). When fitting data by a likelihood kernel 

other than the standard normal density, we may have to scale ηt such that nt = ant for 

some constant a > 0 to satisfy E[g(n*)nt] = —1 (see Remark 2.2.3). This makes only 

the parameters of Q0,Q1, ∙ ∙ ,Qp scaled, while Qi, (Pi and βi stay unchanged. After 

fitting the scaled model, we have to scale the QMLE of ARCH part of the scaled model 

back to get the QMLE of the original model. The algorithm of fitting ARMA-GARCH 

model in Splus module S-Z-FinMetrics does not scale back the estimators. A numeric 

example is given in Chapter 4.

QMLE of λ0 is defined as:

Ah = arg max Î„(X). (2.2.11)
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Theorem 2.2.1. Let Xn be defined in (2.2.11). Under Assumptions 1-5, if Ent241 < 

co ( or E|nt|8 < ∞ for some s > 0, if u = 0 ), then

λn —> Λo, a.s. as n — 00.

Remark 2.2.5. Consistency result imposes no moment requirement on S0. The mo

ment requirement on no depends on the choice of h. For example, when h is the 

student’s t density function, asymptotic consistency requires only Eno|s < ∞ for 

some s> 0. When h is the smoothed double exponential (to be introduced in Section 

2.3.2) density function, consistency requires Eno < ∞. However, Eno|2 < ∞ re

quired by GARCH model will surpass the assumption. When h is the standard normal 

density function, consistency requires E|no|2 < co.

For the normality result, we need two additional assumptions:

Assumption 6. λo is in the interior of O.

Assumption 7. E2 (g2(ηt)ηt} < Eg2(m)E(g(m.)n. + 1)2 .

Remark 2.2.6. With Eg(nt) = 0, by Cauchy inequality, it is readily to show that 

Assumption 7 holds if and only if P[g(nt)nt +1= kg(nt)] < 1 for any constant k. As 

mentioned in Ling (2005), a simple condition for this is that ηt has a positive density 

on some interval provided that g(x)x ÷ 1 = kg(x) has finite roots.

By (2.2.10), the first derivative of 4(X) is:

∂lt(X) ,002(X)/8X , 0e(~)/8Xax =-21+g(n(A))n0A)} -60) +g(n(A)) -0 - (2.2.12)
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Based on (2.2.12), we have the second derivative of lt(X):

824,(X) 1/, ( A 8202Q)/0X8XTaxaxr = -⅛+^m  ̂ — (2.2.13)

1/ -, zιxλ 20 002(X)/0X 002(X)/XT +4(2+3g(ne (A) )ne(A)+g (ne(A))ne(A)) -2()02(A)— 
4(00a01**4*00y)0*222920*400945

-WtmATmaytatman 242001847909"

_ 8e(~)/8X 8e(X)/8XT. / 82€4(0)/8A8XT
*8 oi(a)—oxa) *9(C)—■

The first and second derivatives of Et(Y) and ot(A) are presented in Appendix A.3.

Throughout the following, for simplicity, we denote

Oz(A)
0X X-XnA—A0

= 0z(o) and
∂λ

82z(A) _ 82z(o)
0XXT x-x ∂λ∂λτ'A—A0

for any function z.

Define matrix

TE (8lo(o) Olo(2o)) T_ F (82lo(o) 
“ ∖ 3λ ∂λτ )' d 8x8XT )

As to be shown in Lemma 2.4.9, under conditions Eg2(no)no = O and Eg'(no)no —

O, I and J can be written as block-diagonal respectively (due to the partitioning of

parameter space) with following forms:

where

z = 1 (E ⅛⅛W2 - 1) E (807(2)/87 80709)/075) (2.2.14)

_2, - (de^idI det(Y)/8y)TAg (Ot)A-------------------------------------- j ,
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1(E(90mm)2-1)E(00209)/0600/0A9)/067), (22.15)
4 /Ot σt∕

72

J1 - _E(/0LI)E (80209/8780209/077) (2216)
4 It Ot /

\ Ot Ot /

(2.2.17)
7 1p(2 ( 02(o)/08 002(o)/08n)
J1 45(90)m/----- 82------------ 82------ 1

Theorem 2.2.2. Let An be defined in (2.2.11). Under Assumptions 1-7, if J is non

singular, there exist 0 <l2 <1 such that Elet2(+1)(1-42) < co and Eno|41 < co (or 

Elnts < co for some s> 0, if l1 = 0), then Vn(An — Λo) is asymptotically distributed 

as N(0, J-J-1).

Remark 2.2.7. By Lemma 2.4.9, iJ is nonsingular under some regularity conditions 

together with Eg'(no) < 0, Eg'(no)n3 < 1 and Eg'(no)no = 0. In particular, if no is 

symmetric about 0 and h is the normal, or the smoothed generalized error distribution 

((SGED), to be introduced in Section 2.3.2), or the student’s t density function, then 

J is nonsingular.

Remark 2.2.8. The value of l1 is completely determined by h. When h is the standard 

normal density function, asymptotic normality result holds if Eeo4(1-42) < ∞ and 

E no|4 < co. When h is the smoothed double exponential distribution density function, 

asymptotic normality holds if E|co|3(1-42) < ∞ and E|no2 < ∞. Again when h is 

the student’s t density function, asymptotic normality holds if Eco2(1-42) < co and 

Enos < ∞ for some s > 0. Thus by choosing an appropriate h, we can relax the 

moment requirements on So and no in Francq and Zakoian (2004) who need ElEol4 < 

∞ and Eno4 < ∞; and the moment requirement on no in Ling (2005) who needs 

Enol4 < ∞.



31

Remark 2.2.9. Which value of L2 to choose depends on the parameter space Os, 

in particular, B01 (true value of βγ). In general, we choose L2 = 0. If we use the 

condition 801 > 0 specifically, we can find a positive L2 so the moment of So will 

be reduced slightly. If h is the student’s t density, it enables us to find a global 

QMLEfor an ARMA-IGARCH model but not an ARMA-IARCH model. With L2 = 0, 

Theorem 2.2.2 holds for ARMA-ARCH, and ARCH models only if we remove the 

redundant parameters and the corresponding components in the covariance matrix.

Remark 2.2.10. In general, Yn and δn may be asymptotically correlated. If no is 

symmetric about O, E(g2(no)no) = 0 and E(g'(no)no) = 0, then Tn and on are asymp

totically independent with

1 1 (g- o (I 0 ( J1-1 0
= -II I 

( 0 321)0

_ ( 37,37 0

( 0 32’723,1 )

Remark 2.2.11. After adopting similar notations used by Ling (2005), we can write

1 = EU-(No)IU, (Xo)], J = EU-(A)JUT (Ao)],

where
Pc (X)/8X) 

σt(λ) )' 

-E('(na)n? - 1) E((n.)m.) 

^^m) -Eg (m)

Ue(A) = (202(X)
E(g(n.)m.+1)2 -E(g2(ma)m)

-E(g2(na)ne) Eg2(ηt)
,J =

When P= Q= 0, c 7 0, model (1.2.12)-(1.2.13) reduces to pure GARCH with 

nonzero constant mean term. The redundant parameters Qi and Qj are removed and 

the QMLE is reduced to (cn, on).
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Theorem 2.2.3. When P = Q = O and Co = 0, under Assumption 1, and As

sumptions 3- 4, if Elnt2t1 < ∞ ( or E∣⅞∣5 < ∞ for some s > 0, if w = 0 ), then 

(cn, δn) —» (Co, ⅝) almost surely. Further with Assumption 6, if Elet21(1-42) <00 ( 

or Eje/s < ∞ for some s> 0, if bι =0) and Enemax(1,411), then Vn(En - co,0n - 80) 

is asymptotically distributed as N(0, J-IIJ-1).

Remark 2.2.12. Results given in Theorem 2.2.3 are not covered by Berkes, Horvdth 

and Kokoszka (2003) and Berkes and Horvath (2003), and are not discussed in detail 

by Francq and Zakoian (2004) and Ling (2005). Theorem 2.2.3 implies that for 

any h satisfying the assumptions, consistency of (n,on) holds without any moment 

requirement on St, and normality of (cn,δn) holds with only Ele|2u(1 ‘2) < ∞. If 

/01 > 0, then L2 > 0, and hence IGARCH with nonzero constant mean can be dealt 

with even when h is the normal density.

Corollary 2.2.1. Let 02 — J11J1. For pure GARCH with nonzero constant 

mean term, under the same conditions as in Theorem 2.2.3, if Et ~ N(0,1) and h 

takes standard normal density, then

Var(n)1

as n — 00, where En = XT Ei/n is the sample mean estimator of co. The ratio does 

not depend on &00 (true value of No).

A simulation result of this Corollary is given in Chapter 4.

Corollary 2.2.2. When P=Q=0 and co = 0, under Assumptions 1, 3 - 4 and 

Assumption 5 with v = 0, if Ent211 < ∞ ( or E|nts < ∞ for some s > 0, if ( = 0 

), then δn —» 80 almost surely. Further with Assumption 6, if Elet2t1(1-42) < ∞ 

and E|nt|41 < ∞ (or E|et|s < ∞ and E|nt|s < ∞ for some s > 0 if l = 0), then 

Vn(on — 80) is asymptotically distributed as N(0, 4-2D-1), where 

E((n)ne+1)2 N(002(80)/86 
(E(/(m)m?)-1)2 ( o?

∂σ^∣∂δτ∖
02 '
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Remark 2.2.13. Corollary 2.2.2 reduces to Theorems 1.1 and 1.2 of Horvath and 

Kokoszka (2003) with weaker conditions, or Theorems 2.1 and 2.2 of Francq and 

Zakoian (2004) when h is the standard normal density. For pure GARCH with mean 

zero, h can be double exponential density. Again ifh is the student t density function, 

both consistency and normality results require only Enos < ∞ for some s> 0. As 

Berkes and Horυdth (2004) had shown: for a given series of ηt, efficiency of QMLE 

for pure GARCH depends only on r2, which is determined by the distribution of no 

and choice of h.

Theorem 2.2.4. When p = q = 0j under Assumptions 1-2, Assumption 4 with 

41 = 1 and Assumption 5 with w = 1, if E|et|2 < ∞, then %n → Yo almost surely. 

Further with 70 being in interior of Oy, then Vn(n-Yo) is asymptotically distributed 

as N(0, J-zJ-), where J-3- = +2maDp",

2 _ Eg2(e,/V000) - „0ce(No)/8y 0€ (0)/8YT 
τarma (Eg‘(ee/V0o))2‘ " Voo

Remark 2.2.14. Here for pure ARMA, N00 (the variance of Et) is taken as nuisance 

parameter. Since the sequence {Et, —0 <t< ∞} is IID, the likelihood kernel does not 

affect the moment requirement on Et, however it does affect the efficiency of QMLE.

Let On be any vn consistent estimator (i.e, (Q)MLE, LSE, weighted or self

weighted LSE) of Yo and t = t(n) be the corresponding residuals calculated by 

replacing 7 with On in (2.2.5) from the ARMA part. Then we use εt as artificial 

observations of Et and fit them with a GARCH(p,q) model to obtain the estimator of 

8.

Define

(2.2,18)
i=1 j=1
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Ot(Yn,8)

And define the QMLE of 8 as

(2.2.19)

A A

On = arg max Ln(n,0),

where

1.4.9)-=215.8)-*2-*-0*62a)) (2.2.20)

Theorem 2.2.5. With Assumptions 1-5, if Enemax(1,241) < co, then δn —, 80 in 

probability. Further with Assumptions 6 and 7, Elet241(1-42) < co (or E|et|5 < ∞ 

for some s> 0, if l = 0) and Elntmax(1,461) < co, if nt is symmetric about zero and 

Eg'(nt)nt = 0, then 

n1/2(8n - 80) → N(0, 472D-1).

Remark 2.2.15. g'(x) is an even function when h is the normal or student's t, 

or smoothed generalized double exponential density. Thus Eg'(nt)nt = 0 when no is 

symmetric about 0.

Remark 2.2.16. When P= Q = 0, co = 0, if Ee? < co, by CLT, En is a vn 

consistent estimator of c. Theorem 2.2.5 implies the common practice of using the 

sample mean to center financial data is workable provided that no is symmetric about 

0.

Remark 2.2.17. Under conditions of nt being symmetric about zero and Eg'(nt)nt =
A

Oj the variance of n has no effect on the asymptotic variance of δn.
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2.3 Examples

2.3.1 QMLE based on the student’s t density

When h is the student’s t probability density function, we have:

h(x) =(1+) ,

where d > 1 is the degrees of freedom and we ignore the constant term. Then

Obviously g(x) is odd and g(x)x is strictly monotone decreasing for x > 0. Then 

by (Case ii) in Proposition 2.2.1, Assumption 5 is satisfied when Mt is symmetrically 

distributed (except uniform distribution) about zero with density function decreasing 

on right side and E(1/(d+ n3)) = 1/(d + 1). Clearly Assumption 4 is satisfied with 

/1 = 0.

With the fact that EX2 ≥ (EX)2, we have E(1/(d+n8)2) ≥ 1/(d+ 1)2. Then for 

d > 1, we have

7d1
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and

If no is symmetric about 0, then it is obvious that Eg'(no)no = O (since Elg'(no)no < 

Cmax (E|no|24-1,1) < ∞). Thus by Lemmas 2.4.9 and 2.4.10, J is nonsingular and 

block-diagonal.

Assumption 7 is satisfied, since

(E⅜y = (d+i)2 (Era 7~92) =0 < Eg2(m)E(g(mo)mo+1)2.

Then by Lemmas 2.4.9 and 2.4.10, I is nonsingular and block-diagonal.

Thus when the student’s t density function is used for the quasi-likelihood function, 

the QMLE is asymptotically consistent for any small positive moment on nt- The 

asymptotic normality result holds if E|e|2(1-42) < ∞ and E|nts < co for some s> 0.

2.3.2 QMLE based on smoothed generalized error density

The density of the generalized error distribution (GED) (Nelson 1991) has the form 

of f(x) e-lal°, where d is a certain positive constant. When d is an odd integer,
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the density is not smooth at x — 0 and thus has no derivatives at x = 0. Adopting 

the idea of Hitomi (1997) for double exponential distribution, we smooth the GED 

density as

_ -(=2+62)4/2 UW 9 

where b 7 0 is the smooth parameter and d> 0 (b could be 0 when d is an even 

integer), and we ignore the constant term. We call such a distribution as smoothed 

generalized error distribution (SGED(d)). When d = 1, it is smoothed double expo

nential distribution (SDE). Then

H'(a) = -de-(z8-462)“/8(a2 + 62)4/2-42, g(æ) = -d(a2 + 62)4/2-12, 

g'(a) = —d(d - 2)(a2 + 62)4/2-222 — d(a2 + 62)4/2-1, 

g"(x) = -d(d - 2)(d - 4)(a2 + b2)4/2-323 - 3d(d - 2)(τ2 + 62)4/2-22,

It is obvious that g(x) is odd with g(0) = 0, g(x)x ≤ Kx2 when d <2, g(x) < 0 

for x > 0. For d > 1, we have

√(x) = -d(a2 + 62)4/2-1 (1-(2-d-) 

- -dqa+vyan-/(4=D*+0

≤ 0

Thus by (Case i) in Proposition 2.2.1, for 1 ≤ d ≤ 2, Assumption 5 is satisfied if 

Ye is symmetric about zero with E(d(n3 + b2)d/2-1n3) = 1.

By the expressions of g(x), g'(x) and g"(x), it is obvious that Assumption 4 is 

satisfied with l1 = d∕2.
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For 1 ≤ d < 2, we have g'(x) ≤ 0, and g'(x)x2 ≤ 0. If no is symmetric about 0, 

it is clearly Eg'(no)no — 0. Thus by Lemmas 2.4.9 and 2.4.10, J is nonsingular and 

block-diagonal.

Also when no is symmetric about 0, Assumption 7 is satisfied, since

(Eg2(mo)mo)? = d"(E(n3 + 62)4-3n8)2 =0< Eg2(no)E(g(no)no + 1)2∙

Therefore by Lemmas 2.4.9 and 2.4.10, I is nonsingular and block-diagonal.

Thus when the SGED (with 1 ≤ d ≤ 2) density function is used for the Quasi

likelihood function, the QMLE is asymptotically consistent when End < ∞. The 

asymptotic normality result holds if Ele(d+2)(1-62) < ∞ and E|n2d < co.

2.3.3 QMLE based on the normal density

When h is the standard normal probability density function, such that:

where we ignore the constant term.

Then we have

2 
h'(x) = Oh(x)/8x = —xe 2 ,

g(a) = -x, g'(a) = -1, g'(a) = 0,

If Eno = 0, and En3 = 1, then

. (wno + v)2 1,1 w2 + 02 1, log W — E2------—----- --  log 27 = log W-----------------  log 27.

By setting the partial differential equations with respect to w and v of above equation 

as 0 and solving them, we have w = 1, v= 0. Thus ⅛(λ) is uniquely maximized 
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at A = λo- Assumption 4 is satisfied with l1 = 1. Thus normality holds with 

Eeo/401-12) < ∞ and E∣%∣4 < oo. It is obvious that Eg'(no)n3 = —1 < 1, Eg'(no) = 

— 1 < 0, Eg'(no)no = 0, so that J is nonsingular. Assumption 7 is satisfied, since 

g(x) = —% and Eno = 0, by Cauchy-Schwarz inequality, we have

(Eg2(no)mo)2 = Eg(no)(g(no)no + 1)12 < Eg2(mo)E(g(no)no + 1)2∙

Thus by Lemmas 2.4.9 and 2.4.10, I is nonsingular.

So when the standard normal probability density is used for the quasi-likelihood 

function and B01 > 0, the asymptotic normality result holds even if E|e|4 = ∞.

Remark 2.3.1. It can been seen that ifh is a student’s t density and B01 > 0, QMLE 

is asymptotically normally distributed even if E|et|2 = ∞. From the above examples of 

the normal kernel and the student t kernel, we see, when the degrees of freedom go to 

infinity, g(x), g'(x) and g"(x) computed from the student t kernel converges to those 

computed from the normal kernel. Thus T and J computed from the student t kernel 

converges to those computed from normal kernel. Thus the variance of the QMLE 

based on the student t kernel converges to that based on the normal kernel. This 

implies we can obtain QMLE by the student t kernel with a large degree of freedom 

so as to reach almost the same efficiency of those obtained by the standard normal 

kernel. This is very useful when the variance of GARCH error St is infinite, a case 

where the validity of the asymptotic normality for QMLE based on the normal kernel 

is unclear.

2.3.4 Efficiency of QMLE

Assumption 5 connects the distribution of no with h. Usually En3 = 1 is assumed for 

model identifiability (1.2.12)-(1.2.13). If h is the normal kernel, Assumption 5 implies 
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Eno — 0 and End = 1. When we fit data by likelihood kernel other than the standard 

normal density, we may have to scale ηt to meet Assumption 5. Let n** = ant and 

of* = Tt/a for some positive constant a such that Assumption 5 is satisfied. Then 

model (2.2.1) -(2.2.2) are modified as:

P Q 
e(%) = (Y - c) - 2d(Yi - c) - 24j6+-3(7), (2∙3.1) 

2=1 j=1

( P q ne(X**) = -O and o,2(X**) = a“ + Σαr⅛i(7) + ∑⅛∙(A") • (2.3.2) 
‘ 1=1 3=1 

The parameters of the scaled model are denoted as X** = (N,8**). Comparing to 

model (2.2.1) -(2.2.2), we have (agt, • • • , α^)τ = (ao/a?, • • • , ap∕a2)τ, (8;, β**)τ 

(B., ,B,)T.

Let Ma = diag(l, • • ,l,l∕a2,∙ ∙∙ ,l∕α2,l,∙ •• ,1) with (P+Q+ 2)-th to (P + 

Q+p+2)-th elements 1/a2 and all other elements 1. Thus X** = MAX. From the 

derivatives of σ2(λ) and Et(Y) as in (A.3.1)-(A.3.8) of Appendix 3, we have that

00,2(X*) - 1,-802() 0c,2(X”)/8X- - „-00?(X)/8X 
3λ" α2 λ 0X ' 0,2(X**) λ σ2(λ) ’ 

0e,(T) Be(A) 86,(7)/8X*4 86 (X)/8X 
8x** ax ' a(X**) “ c(A) ‘ 

Denote the QMLE of the modified model (2.3.1)-(2.3.2) with X. By Theorem

2.2.2, we have:

Vn(e* - X*) —, N(0, J**-m*J**-1), 

where

I" = EU,()T"U,7(6)), J" = EU,(X)J"U,F 05), 

m. _ (00,2(X**)/8X" 8ee(~)/8X** 
t 2 \ 2,2(X**) ' 0+(X**) )‘
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I*, J** are 2 × 2 matrix obtained from I, J by replacing nt with η**. 

Let M1= ( M^ 0 ), then U,(X*) = U,(X)M,. Thus 
O a / ‘

I" = E[V.(N)M,I"MT VF (o)], J" = EV.(N)M,J"MT V7 (0)l.

By Re-scaling X**, we obtain the QMLE of original model. Thus

Vn(n - A0) = Vn(M-1** - MJ1XX*) —> N(0, MJ**I**J**1M=1) .

It can be seen the asymptotic variance covariance matrix of the QMLE of original 

model depend on I**, J**, and Mx, which depend on choice of h and the distribution 

of no. Thus given the distribution of no, the variance of QMLE is decided by the 

choice of h.

By Remark 2.2.10, if no is symmetric about 0, E(g2(n**)n8*) == 0 and E(g'(n**)n** 

0, then 5** is asymptotically independent with 7**. In this case, we can find a nice 

variance form of on.

Define Mδ = {M(i,j),1 ≤ i,j S 1 + p+ q}, where Ms(i,j) == 0, if i 7 j, 

Ms(i,i) = 1/a2, if i ≤ 1+p, and Ms(i,i) =1,ifi> 1+p. Then 8** = Mδδ.

by (A.3.5)-(A.3.8) in Appendix 3, we have

00t2(X**)_ 1-1002(A) 00+2(A**)/08** _-1002(A)/08 
08** a? δ 08 ' σt2(λ**) s c?(X)

By Theorem 2.2.2, we have:

vn(o* - 8**) » N(0, J**zI**23**21),
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where

Hence

Vn(3n - 80) = Vn(Mg'3, - M5'681) — N(0,4r**2M,'D**Mz1), 

and

( \ oe2(0*) 0e2(A0*) /) 
_ /(002(X0)/06 00200)/8T6)1=1 

1 \ σ2(λ0) σi2(λo) )) 

= D-1.

It can been seen that when distribution of nt is fixed, the covariance matrix of 

QMLE of 8 is decided only by T**2, which depends on choice of h. When P=Q=0, 

it reduces to pure GARCH, which coincides with the result of Berkes and Horvath 

(2004). Some numeric computation of effect are left in Section 4.1.2 in Chapter 4. 

In general, it is hard to compare the variance of QMLE of y for ARMA-GARCH.

2.4 Proofs

2.4.1 Proof of Theorem 2.2.1

Proof of Theorem 2.2.1: Theorem 2.2.1 can be proved by standard compactness 
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argument with following results:

(i) limn-co supace Ln(A) - Ln(A)1 = 0. a.s;

(ii) EL(Ao)I < ∞, and if A — No, then El(Xo) > EL(A),

where (i) is established in Lemma 2.4.3 in Section 2.4.6 and (ii) is established in 

Lemma 2.4.5.

Since for any λ ∈ θ, lt(X) is a stationary sequence with finite mean, which is also 

ergodic by theorem 3.5.8 of Stout(1974). This implies that

sup El(X) - L„(X)1 → 0 a.s. 
λ∈θ

Together with (i), (ii) and Ln(A) being maximized at λn, we have:

0 ≤ El(No) - EL(X)

= (EZt(A0) - Ln(Ao)) + (Ln(o)- En(Xo)) + (E.(Xo) - En(n)

≤ 2 sup El(X) - L(X) + 2 sup L„(X)- L(X) 
λ∈θ λ∈θ

→ 0, a.s.

Thus,

Since Elt(X) is continuous and has a unique maximum at λo by (ii), we have that

An • λo , a.s.

This completes the proof of Theorem 2.2.1. END
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2.4.2 Proof of Theorem 2.2.2

Proof of Theorem 2.2.2: We adopt the same approach as that in the proof of 

Theorem 3.2 by Francq and Zakoïan (2004). Theorem 2.2.2 can be proved with 

following results:

(i) E (1(X)/8X)(l (o)/0XT) < ∞, E82l(A)/0X0X" < ∞;

(ii) n-1/2 27=1 [¾(λ0)∕3λ - ⅛(λo)∕0λj → 0

and supace n-1/2 27=1 (824(A)/8X8XT - 82 (X)/0X8XT) → 0, in probability

asn-0;

(iii) n 1 2=1(02lt(X*)/0);8Aj) — J(i,j), a.s., where λ* between λn and Ào; 

(iv) I is nonsingular and n 1/2 21(0l(X)/0X) => N(0,T) (=> means converge in 

distribution); 

where (i) is established in Lemma 2.4.8; (ii) is established in Lemma 2.4.11; (iii) is 

established in Lemma 2.4.12 and (iv) is established in Lemma 2.4.13.

Since by definition of An, 2=1(l(An)/8X)/vn = 0, then by the mean value 

theorem, for some λ* such that ∣λ* — Xo ≤ An — Xo, we have

1 "8(A0) 1 "0(X0) 1 "8(Xn) / (1002(X*)) 
Vn L 81 Vn — 0x Vn — 01 ^ VAn Co)nL 0X8XT / 

Γ∙*1 / 

Together with (ii), we have

1580. - A (158102+ ■ 
t—1 —1 /

Thus with (i), (iii) and (iv), by ergodic theorem and Slutsky lemma, we can prove

Theorem 2.2.2 if J is nonsingular. This completes the proof. END
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2.4.3 Proofs of Theorem 2.2.3, Corollaries 2.2.1 and 2.2.2

Proof of Theorem 2.2.3: For pure GARCH with nonzero c, after dropping the 

redundant parameters, the log-likelihood function and its first and second derivatives 

are simplified. Thus Assumptions 2 and 7 are removed.

In particular, as showed in Appendix A.4,

sup
Xee

Ôee(c)/8À 
oz(X)

> sup 
λ∈θ c(X)

sup 
λ∈θ

8c2(X)/8X 
c?(X)

, sup 
λ∈θ

8202(X)/8X8TA 
02(X)

have any moments. Thus as a result, the moment condition on St in Lemma 2.4.12 is 

reduced to 2^(1 — ⅛)* Moment condition of ηt in Lemmas 2.4.8-2.4.12 is reduced to

Enmax(1,441).

Then by Lemmas 2.4.3-2.4.5 with the reduced moment conditions, consistency 

in Theorem 2.2.3 can be established by the same approach as that in the proof of

Theorem 2.2.1.

By Lemmas 2.4.8-2.4.12 with the reduced moment conditions, normality in The

orem 2.2.3 can be established by the same approach as that in the proof of Theorem

2.2.2. END

Proof of Corollary 2.2.1: Under the given condition, by Lemma 2.4.10, both I and

J are block-diagonal. By Theorem 2.2.3 and Remark 2.2.10, we have the variance

form of cn:

1_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
n 1 — (Q01 + ... + αθp) — (Aι + ... + Boq)
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Refer to proof of Theorem 2.1 in Ling (2005), o? = αθo (1 + 2921 1T IIi=0 At-iSt-j 

a.s, where St = (n2,0, • ,0,1,0,**- ,0)5+q)x1 with first component n2 and (p + 1)th 

component 1, and 1 = (0,* ,0,1,0,** ,0)+q)x1 with (p+1)th component 1. Thus 

o? = Nofi(-) for some function fi. And

002(0)/8c = -2B51(L) As(L) A,(1)3,'(l)n.o, = Vo0ofa() 

for some function f2. So there is some function f3, such that o2 = Qof3(-). All f^ 

f2 and f3 are not functions of N0o- Thus Var(n)/o2 is independent of N0o- This 

completes the proof. END

Proof of Corollary 2.2.2:

Since co = 0, the parameters are reduced to 8. Assumptions 2 and 7 are removed 

as in Theorem 2.2.3. Assumption 5 is modified by letting v = 0, which implies 

Eg(M)ne+1 = 0.

As a result, Lemma 2.4.4 is adjusted as: Under Assumption 3, if there exists some 

t such that o2(8) = 02(80) almost surely, then δ = 80.

For this special case, the first and second derivatives of lt(8) are further reduced 

to:

8l (8) 1g, ∕ A 002(8)/06

⅛ - _1/002(0)/0506T3606T 2(1*9(e(00)ne(0)) 02(6)
+(2+30(n/0ymn(0) + */(n/80)n(0))003/00/060e7002/067.- t )

Based on above forms of the first and second derivatives of l(8), Lemma 2.4.9 is 

modified as: Under Assumptions 1, 3 to 6, if E|nt|41 < ∞, then T is nonsingular. 
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Further with Eg'(no)n3 ≤ 1, then J is nonsingular.

Lemma 2.4.10 is even not necessary in this case.

Since Eg(ηt)ηt = —1, we have J-1J-1 = 4r2D-1 with forms of τ2 and D as 

given in Corollary 2.2.2. For this special case, the asymptotic covariance matrix has 

a nice form, which is helpful in comparing efficiencies of different QMLEs based on 

different likelihood kernels.

END

2.4.4 Proof of Theorem 2.2.4

Proof of Theorem 2.2.4: For pure ARMA, some conditions and assumptions 

required for ARMA-GARCH are removed. Redundant Assumptions 3 and 7 are 

dropped off. Assumption 5 is modified by letting w = 1. Assumption 4 is modified 

by letting 1 = 1.

Due to simplification of the log-likelihood function and its first and second deriva

tives, Lemmas 2.4.3-2.4.12 are modified as that shown in Appendix A.5. In particular, 

Lemma 2.4.12 holds with Ect2 < ∞.

The consistency in Theorem 2.2.4 can be established by the same approach as 

that in the proof of Theorem 2.2.1 by Lemma 2.4.3-2.4.5 with modified conditions.

The normality in Theorem 2.2.4 can be established by the same approach as that 

in the proof of Theorem 2.2.2 by Lemma 2.4.8-2.4.12 with modified conditions. END

2.4.5 Proof of Theorem 2.2.5

Proof of Theorem 2.2.5: First, by definition, Elt( Y, 5) is continuous and defined on 
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a compact space. Second, by Lemma 2.4.5, Elt(Yo, 5) exists and is uniquely maximized 

at 80. Ln(NYo, 8) is stationary and ergodic, by Lemma 2.4.15 and ergodic theorem, for 

any 5 ∈ Os, Ln(Yo,8) — Elt(Y0,8) a.s.. Third, Ln(‰δ) is continuous on δ € Os and 

is a measurable function of {Y, Y-1,...} for all £ ∈ Os. By Lemma 2.4.14, Ln(n,8) 

converge to Ln(Yo,8) in probability uniformly for all 8 € Os. Hence Ln(Yn,8) → 

Elt(Yo, 8) uniformly for all 5 ∈ @s. These meet the conditions in Theorem 1.4.1 

(Newey and Mcfadden, 1994). Thus on → 80 in probability.

80 is in the interior of Os. E82lt(,8)/0806T exists and is continuous in Os. 

Since 02Ln(Yo, δ)∕∂δ∂δτ is stationary and ergodic, by ergodic theorem, for each £ ∈ 

06, 82Ln(Y0,8)/0606T → E824(,8)/0608T a.s. In addition, 32Ln(Y0,8)/0806T is 

continuous in 0s. By Lemma 2.4.16, 021„(~0,8)/0806T → E821(~0,8)/0808T in 

probability uniformly in a neighborhood of 80. From the proof of Lemma 2.4.8, we 

have that E02lt( Y0, 80)/0887 is nonsingular. Together with Lemma 2.4.18, we verify 

the conditions in Theorem 1.4.2 (Newey and Mcfadden, 1994). Hence Vn(on — ¾) 

converges to a multivariate normal distribution. This completes the proof. END

2.4.6 Proofs of Lemmas

Throughout the rest of this Chapter, denote the spectral radius of a square matrix A 

as p(A). Let K>0,0<p<1 and 0 < ζ < 1 be generic constants. K, p and C may 

take different values from place to place. So we can write

0<K Xp+K Zipb ≤ Kpmin(1.4a),

where 0 < p1 < 1, 0 < P2 < 1, in ≥ 0 and i2 ≥ 0.
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Adopting the notation of Francq and Zakoian (2004), let

qXq
Then (2.2.2) can be written in vector form:

02(X) = Ct(A) + Bo2-1(X) . (2.4.1)

Repeat (2.4.1), we obtain

02(A) = ct(λ) + Ba-1() + B2e,-2(A) + ... + B17-1,+1(A) (2.4.2) 

∞
+Bt-Pcp(A) +... + Btci(A) + B'a3(A) = 2 B'c-(A). 

i=0

Let 02(X) be the vector obtained by replacing o2_;(X) with σf.i(λ) in 02(X), and

E(X) be the vector obtained by replacing E2-i() with 82L() in C(X). Then we have 

the vector form of σt(A):

02(X) = E(X) + B021(X) (2.4.3)

= G(λ) + BC-1(A) + B⅛-2(λ) + - + B'^p^⅛+1(λ) + Bt-PEp(X)

+... + B'-⅛1(A) + Bt^ .

Lemma 2.4.1. Under Assumption 2, we have sup,ce, aç(i) — O(p°), sup,ce, ap(i) 

O(p’), supyce, ay(i)l = O(p’), sup,ce, 0a,(i)/0tj = O(p) for j = 1,2,...,Q. Un

der Assumption 3, we have supsee, ag(i) = O(p"), and supsce, as(i) = O(p), 

further with Assumption 1, we have supλeθ p(B) < 1. 
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Proof: Referring to (2.3) in Ling (2005), we have supφ∈θ^ ∣αv(i)∣ = 0(^), and 

Sup7eθ7 ∣α7(i)∣ = O(p*). Referring to (2.5) in Ling (2005), we have sup^eθ ∣α^(i)∣ — 

O(pl), and sup5eθδ ∣α^(i)∣ = O(pi). Referring to (2.4) in Ling (2005), we have 

supλeθ p(B) < 1. By the definition and Assumption 2, A^1(^) has the same property 

as B~1(z), thus supφeθψ ∣α⅛(i)∣ = O(pi).

From the expressions of aφ(i) as in A.2, aφ(i) = 0 for i < 0, then by (A.2.1), there 

exist 0 < pι < p2 < 1, such that:

supsup St = sup >ap(k)ap(i-j-k) = >0()0(3=*) = i-j0(1) = O(p2).
€©, vφj -A -^θ^ ⅛⊂0 k=0

This completes the proof of Lemma 2.4.1. END

In the following proofs, we will frequently use the inequality below. Suppose 

{Xi,-00 < t < ∞} is a strictly stationary sequence, m ≥ 0 is a integer, and aj = 

O(p’), then we have:

≤ KE|Xi|m+ , (2.4.4)

by the fact E|X:Xj • ■ • X*X/ ≤ E|Xi|m*s.

Lemma 2.4.2. Under (1.2.7), then there exists some s> 0, such that

E sup et(~)128 < ∞, Esup o+(A)128 < ∞, E sup 8t(~)128 < ∞, and Esup ∣σt(λ)∣25 < oo. 
€0, A∈θ 7∈θ7 λ∈θ
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Proof: Refer to Proposition 1 in Francq and Zakoian (2004), under (1.2.7), we have

Ele,l2s < ∞, and Eo28 < ∞.

Then by (1.2.12), (2.4.4) and Lemma 2.4.1, we have

E|Y - col2s = EA1(L)B,(L)ee28 = E
∞

Byo(L) 2 abo(i)et-i
1=0

2s

≤ KE|co|2s < ∞.

Hence Esup7e07 |Y — c/2s ≤ KE|Y — co∣2s + K sup,ce, ∣c — co∣2s < ∞. Again by

(2.2.3), (2.2.4), (2.4.4) and Lemma 2.4.1, we have

E sup ∣εt(7)∣2s = E sup > ay(i)(Y-i - c)
Y€0y Y€@y i=0

2s

≤ KE sup Y - c/2s < ∞, 
~E0,

Esup ∣σt(λ)∣2s ≤ K sup Ba 1(1)⅜∣8 + KEsup 
λ∈θ λ∈θ λ∈θ

≤ Ksup Bs 1(1)aos + KE sup Eo(~)128 
λ∈θ y€@y

< ∞.

Similarly, by (2.2.7), (2.2.8), (2.4.4), and Lemma 2.4.1, we have

E sup Iεt(7)∣2s
Y€Oy

KE sup
YE0,

t-1 28
>ay(i)(M-i-c) + KO(P2st) 
i=0

≤ KE sup |Y - c2s+ KO(p2st)
7∈θτ

< ∞,

—1

Esup Iσt(λ)∣2s ≤ Ksup Blaols + KEsup > as(i)ê?_;() + KO(pst) 
λ∈θ XEO ' X60 .

t-1 t-i VS

X as(i) X a2(j)|Y-4=; - c/2 ) 
i=0 3=0 ” )

< K+KE sup Eo(~)128
€0y

∞

S

S



52

This completes the proof of Lemma 2.4.2. END

In following proofs, we will frequently use the technique of 

x x /1 1∖ x — x 
b~b~x∖b~b)+ b ' 

Lemma 2.4.3. Under Assumptions 1-3 and Assumption 4, ^e have 

lim sup∣Ln(λ) — Ln(λ)∣ = 0 a.s., 
n→∞λ∈θ

Proof: Referring to (4.38) and (4.39) in the proof of Theorem 3.1 in Francq and 

Zakoïan (2004), we have 

sup ∣ε⅛(γ) - εjt(7)∣ ≤ Kpk,a.s, (2.4.5) 
7∈Θ7

(t-1 ∖ 
^ sup ∣ε⅛(γ)∣ + 1 ] a.s. (2.4.6) 
u1^7∈θ7 J

Based on (2.2.9), (2.2.10), by mean value theorem, there exists ¾*(λ) such that

⅛(λ) - ¾*(λ)∣ ≤ I^(A) - ¾(λ)∣, we have

sup I-Ln(A) - Ln(A) 
λ∈θ

Iv, ^(A)) 1^1 h(ηt(λ)) 
= sup - > log-l7÷- ) log 1 7 

λ∈θ n⅛ σt(λ) n⅛ σt(λ)

1 ⅜(λ) ^(¾(λ)) 
suP - ∑ 1°s "τπ + - λ1°s λ∈θ n^ σt{λ) n^ h(ηt(λ))

sup 
λ∈θ

+ sup 
λ∈θ

1 n
-∑j⅛w)⅛w - ⅛⅛ 
ft t=l

Now we will prove these two items converge to 0 almost surely respectively.
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Note for any A ∈ θ, with probability 1, and inface σt(A) 200> 0, inface t(X) ≥

Qo > 0∙ By (2.4.6) and the fact log(1 + x) ≤ x, we have:

1— (X) n215o.0)

_ 15 /02()-620)0) 
SEE 2n 2.10g( σ≡(λ) +1)

< sup 1 Xlog (Kp ( 2 sup ex(7)l +1)+1) 
 

 

A∈θ 2n 4=1 \ V=1-p7ee, ) /
Kn ∕t~l ∖

< sup—Xp > suP Ex(y)1+ 1 - 
⅛θ 2n t=1 \=1-pY€0, )

By Cesàro lemma, above expression converges to 0 almost surely if

t-1 ∖
Σ sup Ex(~)I+1 ∣ → 0, a.s. if t — co. 

, — ee, / k=1-p /
(2.4.7)

We know E(X + Y)S ≤ EXS + EYS for all positive r.v X and F, 0 < ζ < 1. By

Markov inequality and Lemma 2.4.2, taking ( small enough, we have

Thus by Borel-Cantelli lemma, we have

sup — > log - ) —> 0 a.s. 
Xee n — Ot(A)/



54

Similarly ,we can show

Then we can claim that

1. ((A)) ∩sup- ) log—-—• 0 a.s.xe n — 6 ot(X))

→ 0 a.S.

Now we will prove the second convergence.

SuB n ∑ g(ni(A)) (n(A) - ne(A)) 1-1
X sup - 

λ∈θ n 1=1
1,Ie(A)l2()-o2(A).n,2190eC)) (82(X) +0(A))0+(X) 1 En

, 1. E(Y)-E(Y)I
+sup,2 9(e (A))1—⅛μΓ t—1

≤ sup — 
λ∈θ n

yn t—1

- 2p (g(ne(X))ne(A)+g (ne (X))1) 2 (ex()1+1).
t=1 . k=1-p

Again by Cesàro lemma, above expression converge to 0 almost surely if

p supg(ne(X))ne(X)) + g(ne(X)) 2 (ex(~)1 + 1) → 0, a.s.
λ≡θ k=1-p

(2.4.8)

Similarly, by Markov inequality, Cauchy inequality and Assumption 4, we have
00 / t-1 ∖

XP I p'supg(nE(X))ne(X)) + Ifl(^t(A))I 2 (e,(o)1 + 1) > € 1
∖ λ∈θ . /t=1 ∖ i=l-p /

—1

∞ to t-1 (
≤ KE2 Esup (g(n*(A))n(X)+g(ne(X))1) (lεi(7)l + l)ζ 

t=1 e i=1-p Aee 7

: P

< O0,

n

n
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since by Lemma 2.4.2,

Esup ne(X)max(4(211-1)0,49) ≤ KE sup e()lmax(4(241-1)0,49) < KE sup e,(~)128 < oo, 
λ∈θ 7∈Θ1 760, 

Esup Re(X) max(4(241-1)0,49) ≤ KE sup e,(o)lmax(4(241-1)6,49) ≤ KE sup E,(~)128 < 00, 
λ∈θ 7∈θ7 7€0y 

for some ç>0 such that max(4(2ti — 1)ç, 4ç) ≤ 2s. Hence Ent(X)max(4(241-1)0,49) <

∞.

Thus by Borel-Cantelli lemma, (2.4.8) holds.

This completes the proof of Lemma 2.4.3. END

Lemma 2.4.4. Under Assumptions 1 to 3, if there exists some t such that Et(Y) = 

Et(Yo) and 02(X) = σt(λo) almost surely, then A = λo.

Proof: We refer to (ii) in the proof of Theorem 3.1 in Francq and Zakoian (2004).

END

Denote Ft-1 as the o-algebra generated by nt-i, i21.

Lemma 2.4.5. Under Assumptions 1-5, if E|n|21 < co (or E|nts < ∞ for some 

s > 0), we have Elt(Xo) < ∞. Further if A 7 Ao, then we have El(Xo) > Elt(A).

Proof: By Jensen’s inequality and Lemma 2.4.2, for some small s > 0,

E∣ logoa = IE logos ≤ - log+ Eo, + - log- Eσ⅛ < ∞ 
SSS

since log Eo{ ≤ max(0, —(log a80)/2) < co. Then by Assumption 4, we have

EW(No)I < E∣ logσt∣ + E∣ log h(na)l ≤ E∣ logσt∣ + CEne/2a < co.

By (2.2.10) and the fact εt = Et(Yo), Tt = σt(λ0) and net = Et(Yo)/t(o), we have

, 0( o et(~) - €+(%)) 1 
44(A) ^ log o,qxyh (*0,(X) + .,w JJ - logo •
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By the expressions of Et(Y) and Et(Yo), we have Et(Y) — Et(Yo) is F-1 adapted.

Then by Remark 2.2.3 and independence of nt with F-1, we have for V A,

Hence V A

El(Xo) - El+(X)1

E log h(nt) - E log

Thus Elt(Ao) > EZt(A). If there exists A, such that Elt(Ao) = Elt(A). Then by the 

fact EX = 0 for non-negative random variable X if and only if X = 0 almost surely, 

we have

E log h(nt) - E < log 0(X) ("c(A) σt(λ) J.
Et(Y) - Et(No)

By Remark 2.2.3, above equation holds if and only if

_Ot 
c+(X)

=1,a.s. and
Et(%) - Et(Y) 

c+(X)
= 0, a.s.

Thus by Lemma 2.4.4, we have A = λo . This completes the proof. END

Let Sp,t =1+ 2720 p'Y-i - Cool, and So,p,t =1+ 2720 p'lat-il, where ∞nstant Coo 

is the true value of CO.

Lemma 2.4.6. Under Assumptions 1 to 3, we have for some constants C > 0 and 

0<p<1, such that 
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(i) sup,ce, Et-1(7), supyce, 0e(x)/8y, and supy ce, 02e(n)/8y7I are bounded 

by C8,L-1;

(ii) supλeθ σf2(A) is bounded by CS3,t-1; 

(iii) There exists a neighbor θ0 of Xo such that

suPa∈θ0 02(X) ∂σt(λ)∕∂δ and sup,ce, a2(X) 0202(A)/0806T are bounded by 

C68,,-1 for any s > 0;

(iv) supace O 1(A) 002(A)/8Y , supace O 1(A) 8202(A)/0yoy" , and 

supce o+1(X) 82a2(X)/0ydT are bounded by C6p,t-1;

(v) There exists 0 < p,0 < 1, such that So,t < CSo,p,t ;

(vi) For any k > 0, if E|eo|* < ∞, then ES8,,,,1 < co.

Proof: (i) and (ii) are the same as Lemma A.1, (iii) as Lemma A.2, (iv) as Lemma 

A.3, and (v) as Lemma A.5 in Ling (2005), respectively.

By (2.4.4), for 0 < p < 1, we have

E⅛p,t-ι <C+ CE|Eo|* < ∞ • 

This completes the proof of Lemma 2.4.6. END

Let Sy,p,t = 1 + 22 p‘&t—i()|. By definition Syo,p,t = So,p,t.

Lemma 2.4.7. Under Assumptions 1 to 3 and 6, then there exists a neighbor θ0 of 

20,0 <p<1 and 0 < l < 1, such that:

(i) For any Y € Oy, Oet(~)/8°l, and 82et(~)/0yOy7 are bounded by CFy,p,t-1 ;

(ii) For any A ∈ Θo, |(0c?(X)/8y)/ot(X)| is bounded by CS,0,1-1;

(iii) For any λ ∈ θ0, 82c?(X)/087l, and 82o?(X)/0yoo" are bounded by
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(iv) For any λ* ≠ A, A* and λ ∈ θ, there exist 0 < p < ρ < 1, such that o2(X*) is

bounded by CS3.,0,t-1; and Sy*,0,t-1 is bounded by CFy,0,t-1.

(v) For any λ ∈ @o, there exist 0 <p<0<1, such that §y,p,t-1/0t(A) is bounded by 

Ce,--.; I^(A)∣ is bounded by < c( + m)6,.2-1;

(vi) There exist 0 < p < Q < 1, such that sup,ce, Sy,p,t is bounded by CSe,t.

Proof: Note that we have defined K and 0 < p < 1 be generic constants taking 

values different from place to place. Generally we take K and p bigger and bigger 

from inequality to next inequality. In the following proof, we will frequently use the 

fact

00 00

i=1 j=0

∞ i-1

X2 Pi'p2a+-il
i=1 j=0 

0 1-(P2/P1)

= KpL Z - 0E)kc-4 
P1 — P2 —

≤ K )max(p, 02)24-1 , (2.4.9)
i=l

where 0 < P1,P2 < 1, and K is some positive constant.

From (A.3.1)-(A.3.3) in Appendix A.3, by Lemma 2.4.1, we have for some 0 <

0<1,

Co

=I(- C,(1), -A,1(L)6+-4(), -,1(L)e-j(7)) I ≤ K(1 +2pe-()I) .
i=1

et(%) 
8y

From (A.3.9)-(A.3.14) in Appendix A.3, by Lemma 2.4.1 and (2.4.9), we have for
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some 0 < p < 1,

82e,(~)

0y0yT

= (θ,B^,A^B^).β,A^L)B^L^

≤ K(1 +2pe-4()I).
2=1

Thus part (i) holds.

To prove part (ii), we give another derivative form of σi2(λ). By (2.2.4),

co 

σiw = Ba-1(1)00 + 2 as(i)e2-,(o). 
2=1

Hence

002(X) AA . , 86t-i(Y) 

' i=1 ‘ 

There exists some small positive C‘1 such that for any i ≥ 1 we have:

σt(λ) > (βj^1(l)αo + as(i)e3-,(07))1/2 > Ci (1 + aj(i)⅛i(γ))v2 ≥ C(1+Vas(i)le4-(»)) .

Thus with fact x/(1 + x) < 1, by Lemma 2.4.1, part (i) above and (2.4.9), there 

exist some 0 < p3,p4 <1 and positive constant Kι, such that

002(A)/8y , K, 9 a(i)le,-(7)L 86,-4(7) 
σt(λ) - C =1+ Vas(i)ley-(7)I) 8Y

<KX Vas(i) (1 + Σ pSle+--1-3(7)1 ) 
i=1 \ j=0 /

co ∞ 

≤ K+KXA2esle+-4-1-3(7)I 
i=1 j=0
∞ 

≤ K+K)max(p3,P4)e--1(7)1.
i=1
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This proves part (ii).

In the following proof, we will frequently use the inequality 2xy <x2+ y2.

From (A.3.20) and (A.3.22) in Appendix A.3, by Lemma 2.4.1, part (i) and (2.4.9),

there exist 0 < P5, pe < 1, such that

0202(X) 
8y88T (2.4.10)

≤ K >pe-()+KEpoe (=2-4(7) + e2--1=,(7)) 
i=1 i=1 j=0

∞ 00

≤ K >pe,-(7)1 + K >max(ps, pé)e?—4(%) •

Since for some 0 < 07 <1,

(2.4.11)

≤ 1+22 P7∣^t-i(7)l +22 piphlet-()lle+-3(7)1 
i=0 i=0 j=0 

= 6364, (2.4.12) 

thus there exists O<∕X1, such that 0202(X)/0y86T is bounded by Cξ^ t .

By (A.3.23) in Appendix A.3 and Lemma 2.4.1, we have for any λ ∈ θ, 8202(X)/0y8yT

is bounded by 

(S0e4-4()06,40)0 8264440)) * (280y+ ■
From (A.3.1)-(A.3.3) in A.3 in Appendix A.3, by (2.4.9), we have

00 ∖1+206-=9(0)1) ≤C‰.
j=1 /
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By replacing 0et-i(o)/8Y with 02et-i()/0 dy in (2.4.10), together with (2.4.11), 

for some 0 < Pg < p < 1 and constant C, we have:

This proves part (iii).

By Lemma 2.4.1, (2.4.9), for any A* ≠ à and 0 < p11 ≤ P12 ≤ P13 < 1, we have:

∞ ∞ / 0 ∖
02(X*) = Ba-’o + 2ag-(i)e2-.(*) = Ba-’o +2az-(i) ( 2a,()(Y-4=5 - c*) ) 

i=1 i=1 Vj=0 /

Co000

≤ K+K Zax-(i) Zay(j) Za,() ((Y--j - c')2 + (Y - c')2) 
i=1 j=0 =0

∞ ∞
≤ K+K Ca(i)Xp(Y-4j - c*)2 

i=1 j=0

CODO CoS

≤ K+K Za-(i) Zpi(c-c)2+K Zaz-(i) >pi(Y-j - c)2 
i=1 j=0 i=1 j=0
co ∞

≤ K+K Zag(i))pi(A-1(L)B(L)e-=3(7))2 
i=1 j=0

∞ ∞ 00 00

≤ K+KXa()X22 P12P12le,-i-j-1(07)8+-4-j-*(7)I
i=l j=0 1=0 k=0

co 00 00 co
≤ K+K Za-(i)2 Phi 2 2 Pi2p2 (=2-4-j-1(%) + e2-4-3=*(7))

i=1 j=0 l=0 k=0

Co C00

S K+K Zas(i) >p>0z€3-4-3—1(~)
i=1 j=0 1=0

1=1

Thus there exist 0 <013 <p <1,



62

By part (i), Lemma 2.4.1 and (2.4.9), for any 7* 7 Y, there exist 0 <014 < P15 ≤

P16 ≤ 017 < 1, such that

= 1+)p4 A(L)B-U(L)(Y- - c*)∣
i=1

∞ 00
< 1+ >p4>pisI(Y4-4-j - c*)∣

i=l j=0

≤ ^+^^⅛^√15∣^ι(L)β(L)εw.j(7)∣ 
i=1 j=0 
00 ∞ 00 

≤ K+KE2 Pls 2 Pie e-4-3-1(7)1 
i=1 j=0 1=0 

∞
≤ K+K Xp1e+-(7)1. (2.4.13) 

i=1

Thus there exist 0 < p ≤ 0 < 1, such that Sy*,p,t-1 ≤ CSy,0,t-1 .

This completes proof of part (iv).

By (2.4.2), we have 

∞ /P ∖ P∞ 
σtw = X1TB'1 ( «0 + 2aje2-4=3(7) j = K+ 221TB"laje2--3(1), 

i=0 \ j=1 / j=1 i=0 

where 1T = (1,0,... ,0)qX1. By the definition of B, 1T B'1 2 B;. Since λ0 is in the 

interior of O, for any 1 <j<p, infce, Qj > 0. Together with the fact (1 + x2)1/2 > 

(1 + x)/V2 for x > 0, we have ot(A) > C3(1 + B/2et—i(~)|) for some small positive 

C3 and any i > 1. Hence by the facts x/(1 + x) < 1 and 1/(1 + x) < 1/(1 + x)'2
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for 0 <l2 < 1, we have:

and 

00 (00 1’20 1 („1-12 2ee-4(7)11-2 = (1+2ee-(1)1) 20-—6+-4(7)1—-124
4=1 N 3=1 / $=1 (1+291ee,-3(7)1)

oo 1-12 co 

1+2ee-3(x)1) 20*2. 
j=1 / i=1

Then by taking L2 small enough, such that 0 <0= p/B:2/2 < 1, we have for some

constant C:

Now by part (i) and (iv), there exists 0<p<1, such that Tt and Oet(o*)/* are
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bounded by CS,p,t-1. Then for any À € θ and 0 < p < p* < ρ < 1, we have

nt(X) = Et(Y) _ Et(Yo) + (7 - Yo)OEt(*)/OY
o+(X) σt(λ)

< mel—o
Ot(A)

_ O8t(Y*)/8Y+0Y)(X)

5 + w>⅛r 
≤ ^1÷w>⅛r
≤ K(1 + n),2-1.

This proves part (v).

By Lemma 2.4.1 and (2.4.9), there exist 0 < P18 ≤ P19 ≤ P20 < 1, such that 

∞ ∞ 
suP > ⅛lεt-i(7)l ≤ K sup > pis 
70,40 *0,40

C0C ∞∞
≤ K sup 2ps 2 pgloo -c+ K 2ps 2 Pig IX-i-j - Coo 

T€0Y i=0 j=0 i=0 j=0

\ ι=0 /
Coo

Thus there is 0 <p<0<1, such that Sy,p,t < C'So,t, which proves part (vi).

This completes the proof of Lemma 2.4.7. END

Lemma 2.4.8. Under Assumptions 1 to 5, if Elet2(1 42) < co, and Eno|41 < co.

then
Olt (Ao) Ole (Ao)

8) XT
< 0O and E 02l(Ao)

8x8XT
< 0O.

Proof: By (2.2.12), Assumption 4, Lemmas 2.4.6 and 2.4.7, and the independence
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of ηt with So,t-1, we have

Ole(Ao) Ole(Ao)
8x ∂λτ

, R1(2 002(0)/0X002(o)/0XT
≤ E4C+9(e)nt) —-- —

1 A 802(X0)/8X 8ez(o)/XT 2 ,
+ g(nt) + 9 Wt PTt -2-------------- ------- + 9 W

2 Ot Ot
8ee(Yo)/8A dee(o)/0X5

0 σt

≤ KE(1+ne/44 + Ine/241 + max(In, 1)44 1+max(n, 1)441 2) E63,0,,42

• ∞.

By (2.2.13), Assumption 4, Lemmas 2.4.6 and 2.4.7, and the independence of ηt

with S0,t-1, we have

02lt(o)
8\8XT ≤ KE(1+ nel2u1 + max(∣⅞∣, 1)241 1 + max(∣¾∣, 1)241 2) E62042)

This completes the proof of Lemma 2.4.8. END

Lemma 2.4.9. Under Assumptions 1-7, if Elet2(1-42) < co, and Ent/41 < ∞j then 

T is nonsingular. Further if Eg'(no) < 0, Eg'(no)n3 ≤ 1 and Eg'(no)no = 0, then J 

is nonsingular.

Proof: Referring to the proof of Theorem 3.2 in Francq and Zakoian (2004), for any 

vector rs C RP+9+1 and ry C RP+Q+1, we have:

„802(X0) .

if and only if rs = O; and

TOet(Ao) .
*8=0, Q.S
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if and only if ry = 0. This implies

(002(0)/8X 802(0)/8XT) (∂εt(70)∕∂λ 8ee(o)/8XT)
\ \ Ot /

are nonsingular.

The existence of I and J are established in the Lemma 2.4.8. We prove the non

singularity of I by a contradiction method similar to that in the proof of Theorem 

3.2 in Francq and Zakoian (2004). Assume T is singular, then there exists a vector 

r = (ry,ra) 7 0, such that rTOlt(o)/0X = 0 a.s. From (2.2.12), we have

1/, , ∖„802(0)/0X , . „8€(~0)/8) .-(1+ g(nt)ne )rT 2 — + g(n)rT-— = 0, a.s. (2.4.14) 21 St σt

Taking the variance of the left-hand side of (2.4.14) conditional on F-1, and using 

the fact that ηt is independent with (002/0X)/o? and (∂εt∕∂λ)∕σt, and Eg(nt) = 0 

(see Remark 2.2.3), we have almost surely:

- 1 ∖ / 802(0)/0X20 = -E(g(nt)nt + 1)2 ( rr-2 )
4 NO/

-EePGnDM. (,002(X0)/8A) (,r8c,(00)/82) +E20n) („r8e,(7)/8X)2
∖ σt ∕ ∖ Ot / NO/

= K,a - K2a,b, + K3b?

4K,K3-K3 2 ( K2 12
= 4K,a+*Ka (2K30+0) ■

By Assumption 7, (4K1K3 — K2)/4K3 is negative. By stationarity, we have either

K2+(K3 4K K3)1/2 K2-(K3-4K K3)1/2Ot =---------- —z----------- at or bt =-----------or------------ at almost surely for all t.
213

Without loss of generality, take the later case and substitute it into (2.4.14), we obtain 

for all t,

f 1/ , A K2-(K3 - 4K, K3)1/2 , 1 „802(X0)/8X .12(1+9(e)n) + - - - - - - - 2K,- - - - - - - g(m)jr - - - - 02- - -  = 0, a.s.
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The term in the parenthesis can not be 0 almost surely if P(g(nt)nt+1 = C'g(nt)) < 1 

for any constant C, While by Remark 2.2.6, Assumption 7 implies P[g(nt)n + 1 = 

C'g(nt)] < 1 for anY constant C. Hence a = 0 a.s. and thus by = 0 almost surely, that 

is 

„8c2(Xo) „8€(Xo) ∩F- —5— = 0, and F ——— = 0, a.s. OA OA

Since ∂εt(λo)∕∂δ = 0, rτ∂εt(λ0)∕∂λ - 0 a.s if and only if ry = 0. With r7 = 0, 

rT002(A0)/8X = 0 a.s means rT0c2(Xo)/08 = 0 a.s, which holds if and only if rs = 0. 

Thus we have r - 0, which contradicts with the assumption. This proves the non

singularity of 1.

Since E(g(nt)nt + 1) = 0 and Eg(nt) — 0 (see Remark 2.2.3), further with 

Eg'(nt)nt = θ, by (2.2.13) and the independence of ηt with (0c2/8X)/o? and (Et/0X)/ot, 

we have

, 1. E 2 / 802(X0)/8X 802(X0)/8XT) E . ( 8ee(0)/8X 8e-(0)/8XT)

(2.4.15)

By the given conditions, we have Eg'(nt)n2 < 1, Eg'(nt) ≤ 0. Hence J is a sum of 

a positive definite matrix and a positive semi-definite matrix. Thus J is nonsingular.

Lemma 2.4.10. Under Assumptions 1-7, if no is symmetrically distributed, Els241-42) < 

∞ and E|ntmax(1,4(1) < oo, then we have:

(i) if Eg2(no)no = 0, then I is block-diagonal;

(ii) if Eg'(no)no = 0, then J is block-diagonal.
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Proof:

w( Olo(o) Plo(Xo) p(O(o) lo(o) _ 
E ( Olo(ào) Blo(0) E( Blo(o) Olo(Ao) / T3

where 11 and 12 have the expressions as those in (2.2.14) and (2.2.15).

Since ∂εt(y)∕∂δ = 0, Eg(nt) = Eg2(nt)nt = 0, by (2.2.12), we have:

z = 1E(1+9(n)n)2r80702)/060070o)/877

-HE((n)+g2(m )n)E°o2@g)/ad 8ed(o)/872 ‘ Of Ot

= T(E(g(n.)m.)2 - 1)E 802(Xo)/08 802(o)/oT 
o? 02

Refer to (ii) in the proof of theorem 3.2 in Francq and Zakoian (2004), for 1 ≤ i ≤ 

p+q+1, 1<l<q and 1 ≤ j < P + Q + 1, we have

„02(o)/06 002(o)/ÔYT
La--------- 5-------------------5-------- = U. (2.4.10) 

O€ Or

Thus T4 = 0. 13 is the transpose of I4, so IT = T4 = 0.

Since et(~)/08 = 0, Eg(nt) = 0, Eg(nt)nt + 1 = 0 (see Remark 2.2.3), based on

(2.4.15), one non-diagonal of J is:

4 NI of of

Thus with (2.4.16), the non-diagonals of J are null.

This completes the proof of Lemma 2.4.9. END

Lemma 2.4.11. Under Assumptions 1-5, then
n
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sup 
λ∈θθ

L J(824(A) 824(A))
n— 8X8XT 8X8XT )
L-Y .

in probability as n —> Co, where θ0 is a neighborhood of Ao.

Proof: Analogous to (2.2.12) we obtain:

≡^-∣{1 + 9⅛(A))lit(A)}β + 9⅛(A))⅛≡ .

The first and second derivatives of 02(X) and Et(Y) are similar with those of 02(X) 

and Et(Y) and are given in Appendix A.6. With Assumption 4, inequalities (A.7.1) 

to (A.7.5) and (A.7.10) in Appendix A.7, by the mean value theorem, there exists në 

such that në - net ≤ ne - ηi∖, and

81 (No) ⅛(λo)
8) 8) ■

1/, , _/) (802(o)/0X 802(o)/8X)- 2(1+9⅛)¾J (—of—)

1/ 002(0)/8X-2 (g(nt)"e - g(he)nt) —32—

+9(m) (0e,0A0)/82 - 82,(30)/8A) + (9(n)-904.3)0E,09)/8X
VOt Ot / / Ot

≤ κpt 1+g(n)ne S-1(0)64-1 + ^^t^ +g(ne)) (,nt-ηt)-02(o)/0X
02

+Kp'lg(n)S-1(N),,t-1 + g'(n)(nt — ft) ¾(⅛)
Ot

< Kpt{l + n24 + max(n,1)24471) S,-1(90)6,-1

+KptSt-1 (7o)(l + nl)(max(n; 1)24-1 + max(ni, 1)24-2)(1 + KptSt-ι

< Ko's2-.(0)6.=1(1+n?" + max(n-,1)241+(1+ n)(max(ni,1)24/=1 

+max(n,1)241=2)) ,
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where

$-16) = 2 (e,(7)+1).
i=1-p

Then by the Markov inequality and the Cauchy Schwarz inequality, Lemma 2.4,2, 

for some 0 < s < 1 small enough, we have

P( 1 — 8l (No) 8l(Xo) )
VnL 8x 8x J

< -2pte (ES(1(Y)E623-1)12 1+E n/4sl + Emax(n, 1)4814-25
t=1

+ [(1 + En4s) (E max(%*1 1)8844-46 + E max(¾*, 1)884=86)]1/2 }

The second convergence in the lemma can be proved by similar arguments. Based on 

the expression of 82l(A)/0A, analogous to (2.2.13) we can obtain the expression of 

82(X)/0X, and then

sup 
λ∈θ0

824(A) 824e(A)
∂λ∂λτ ∂λ∂λτ

— 111 ÷ 112 + 113 ,



1

Ex
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20
 xe

/(x
)‘3

0
00
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0



72

113 = g'(ne(A)) / 0et(A)/0A Oee(A)/8X5 
0 0

(X)/8X (X)/XT

+( (n(X)) - 9/(n(X)))86r(3)/aèdé-la)/akt
+g(n(X)) / 82ee(A)/828AT 02Ee(A)/8A8AT 1

Ot σt

hw^) alt^
Ot

By Assumption 4, inequalities (A.7.1) to (A.7.11) in Appendix A.7, and by the

mean value theorem, there exists n*(X) such that në(X)—nt(X) ≤ nt(X)—ft(X), and

sup
X€00

824e(A) 820(A)
8x8XT 8X8T

≤ Kp'S2-183,,-1 (1 + n2"(A) + max(⅞(λ), l)2t1 1 + max(¾(λ), 1)241 2)

+Kp'Se-1(1 + ∣¾(λ)∣)(i + Kp'S2-1)68,-1

×⅛(λ)2u + max(ne(X),1)241-1 + max(ni(A),1)241-2) .

Then by Lemma 2.4.2, the Markov inequality and the Cauchy-Schwarz inequality,

similarly we can show:

sup
A€@0

1 J(824(A) 020(A))
Vn 2∂λ∂λτ ∂λ∂λτ 1
V 1=1 /

—► 0, in probability as n — 00.

This completes the proof of Lemma 2.4.11. END

Lemma 2.4.12. Under Assumptions 1 to 7, Elet2(1+1)(1 t2∖ if Enmax(1,261) < co.

then

almost surely for any X* between An and Xo.
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Proof: By Lemma 2.4.8, J exists. By ergodic theorem,

1 $ 824(o) _ 
n2 8X8XT JI a's'

t=1

Since An —> Ao almost surely, it suffices to prove that for any € > 0,

n1. 02l(X) 02l(Xo)
^n∑Sep, ∂λ∂λτ ∂λ∂λτ

Ltne 1

≤ e, a.S.

Furthermore since 82l(X)/0XXT is stationary and ergodic, thus it reduces to

prove:

- 824(X) sup E 0 <∞ 
λ∈θ0 OX0AT

By (2.2.13), Assumption 4, Lemma 2.4.6 and 2.4.7, the independence of net with 

ξt.1, we have:

sup E
X€00

024(A)
8X8XT

≤ K sap E{(1+n2"(A)+max(ne(A),1)24 1 +max(n(~), 1)241=2)s39-20)}

≤ K sup E8241-42) + E(1 + nel)2"Es2+10-2)+ E(1 + nel)2u-1E8(24+1)01-*2)
λ∈θo

+E(1 + nel)2u-2Es2(-42)1

< 0O.

Since λn → Xo almost surely, as Θo decreases to the singleton λo, E82lt(X*)/02;0A;

J(i,j) almost surely. This completes the proof of Lemma 2.4.12. END

Lemma 2.4.13. Under Assumptions 1-5, if E|e|2(1 42) < ∞, and Elnmax(1,441) < co.

then

= N(0,T).
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Proof: This Lemma can be proved by a central limit theorem for martingale dif

ferences. It is clear that Olt(Ao)/8X is stationary and ergodic. By Remark 2.2.3, we

have

Lemma 2.4.8 shows that Var(Ol(Xo)/0X) exists. By Lemma 2.4.9, we have Var(Olt(Xo)/0X)

is non-degenerate. So for any r ∈ R(+P+Q+1+p+g), the sequence {rT0l(A)/02,3-1}

is a square-integrable stationary martingale difference. Then by the central limit 

theorem of Billingsley (1961) and the Wold-Cramér device, we have

This completes the proof of Lemma 2.4.13. END

Letσf(‰δ) = Yo+27=1 ajet-i(n)+23=1 Bjo2-j(n,8) andηt(‰δ) = Et(În)/0t(În,Ô).

Also define

. 1 1 h(ne(6n,6))
Ln(m,)-n24(n,d)-n210g 0A(6n,6) *

Similarly define

τ(^ 1= 1— h(7e(6n,8))n(m,8) -n24(n,d) -n210g 04(6n,8) ’

Lemma 2.4.14. Under Assumptions 1, 3 and 4, if Elet241(1-42)* < ∞ for some 

0 < ζ < 1 (or Eels < ∞ for some s > 0 if u = 0), and Enemex(1,241) < oo, then as 

n goes to infinity, we have:

sup Ln(n,8) - Ln(γo, 5)∣ = op(1) , 
8€05

sup
8605

= 0, a.s.
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Proof: By the mean value theorem, we have:

sup ∣Ln(‰J) - Ln(Y,8)
8€0s

— L1 L2, 

where * - Vol < ∣⅛ - Yoll, nXe - &/ot(0,8)1 ≤ Et/ot(Yo, £) - E(Ân)/ot(n, 8)l.

We will show following both L1 and L^ are op(1).

Ling (2005) has showed that L1 is op(1). For completeness, we give his proof 

below.

With probability 1, ot(X) > ap> 0 for any λ, by mean value theorem, there exists 

7* between 70 and Sn, such that

n

sup — 2
€esn t=1

There exists an ζ > 0 such that Esupλeθ 0ot(X*,8)/8° < ∞. For any e > 0, 

first taking π small enough such that log(l + nao E suPλ∈θ 0ct(X)/0~) < €2ç and
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then n large enough such that P( Yo — n >T) Se, it follows that

where the last second inequality holds by Jenson’s inequality. Thus

Similarly we can show that

n

Ps sup
(8€06

Thus we can claim that

1 
sup — 
8€05 n = 0p(1) ■
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Next we show L2 is op(1).

n

δ∈θi n

860s n

Et(Ân)

Tt(Y0,8) Tt(n,8) δ∈θδ n

n n

1. 
sup - > 
8605 n —

(70 - ¾)9σt2(γ∖<5)/^
σt(70, δ)σt(‰ O)(ot(Y0, δ) + σt(‰ 8))

n
(70 - InItet(Y)Zdy

8€05 n
77

λ∈θ n ot(X) Y0 — Yn
802(X) S

Oy
n ∂εt(y*)∕∂y

X€0 T ot(X)

From (2.4.13) in Lemma 2.4.7, we know that for any 7* 7 y, there exists p and

constant C such that Ot(*)/O are bounded by CSy,p,t-1. Thus by Lemmas 2.4.6

and 2.4.7, we have:

suP ——κ δ∈θδ Ot(0,0)
Otnt sup / 5 

δ∈θδ Ot(%0,0)

ntsup 1X€0 Ot(A) ≤ nt sup
λ∈θ ot(X)

Et(n)
suP /. ex δ∈θδ Ot(Yn,0)

sup
8€05

Tt ∣ sup
X€0

'n - Yo)Ôet(*)/Ô° (2.4.17)

_Ot_ 
c+(X) λ∈θ ot(X)

nec-521 ≤ K|nsz42

≤ KInt,74 + Kln - Yol74 •
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Thus by Assumption 4, if 21-1> 0, we have:

∣δ(⅛)∣ ≤ Kne24-1e(21700-42) + KF. - 10/24—16(24170)0-/2) • (2.4.18)

If 261 — 1 ≤ 0, we have g(nXe) ≤ K. In the following proof, we give the case of 

261 — 1 > 0. The proof for case of 261 — 1 ≤ 0 is similar.

Since ⅛ - Yo in probability, Enemax(1,241) < co and Es244-12)*6 < ∞ due to 

Ele2u1(1-42)* < ∞, and nt being independent with 6p,t-1. With (2.4.18) and Lemma

2.4.7) by the weak law of large numbers and ergodic theorem, we have:

1. ∕ * M Et sup — 2 g(xt)-x 
Xeen 4 Ot(A)

(% - 5n)^CΓ≡(Λ) S

1 n≤ KlYo - 7∏⅛ 2 ne2uts23-V2)+G
t=1

+Klo - An/24=1+1 2 nels2.4-*2)tG 
n - ‘ 

t=1

= op(1).

Similarly by (2.4.18) and Lemma 2.4.7, the weak law of large numbers and ergodic 

theorem, we have:

1 "sup - 2 g(nXe)1
8€0s n t=1

(Y = în)ee(7*)/8Y 
0(hn,8)

n
2 620441-12) = ⅛(1)
1=1

n
e(21-1)(1-42)
Sp,t-1

t=1
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Thus

sup ∣Ln(⅛, 5) - Ln(Yo, 5)∣ = op(1). 
8€0s

By Lemma 2.4.3, we have

sup Ln^n,δ) - Ln(n,8) = 0, a.s. 
8€05

This completes the proof of Lemma 2.4.14. END

Lemma 2.4.15. Under Assumptions 1, 3 and 4, Assumption 5 with w =1, then 

El(0,80) < co, furthermore if δ + 80, then El(Y0,00) > El(N,8).

Proof: We have shown Elt(Yo, 80)| < ∞ in Lemma 2.4.5. With the modified Assump

tion 5 and Lemma 2.4.4, it is straightforward that Elt( 0, 5) has unique maximum at

8 = 8. END

024(0,8)
8888T

1( / a , s0202(Yo,)/080oT 2(1+9((0.8))n(o,d)) —08(70,6)—

+4(2 + 3g(ne(Yo, 8))ne(%0, S) + g'(ne(Yo, 8))n2(o,8))

„802(10,6)/06 802(0,6)/86T a
Xo2(Y0,8) 02(~0,8)" (2.4:19)

Similarly we can write down 82lt(Y0, 8)/0886".

Lemma 2.4.16. Under Assumptions 1, 3 and 4, Assumption 5 with w = 1, if

E|e201(1-/2)+2 < ∞ (or Elea]s < ∞ for some s> 0 if lx = 0) and Enemax(1,241) ≤ 00

, then
1.(021(n,8) 82lt(Y,8))

SEP, n2 0806T 0806T ) op(1),

1" ( 02(n, 6) 021 (9n,8)
-P n2 0606T 0686T)
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Proof: First we without loss of generality, we assume 21-1> 0, by Assumption 4,

Lemmas 2.4.6 and 2.4.7, and the mean value theorem, we have:

n

8€0s n t=ι

(Ee(sn)) Ee(n)_02oë(Yo,8)/088T8
0(n,8)) 0(n,8) o2(~,8)

_ (_E_) ε⅛ 8202(Yo,)/888"8 
9a(Yo,8)) c(0,8) 02(0,8)

≤ sup —
6€05

⅛∣9'(⅛)* + s<⅛)∣ En) --
_ Ot(n,0) Ot(Y0,0)t=1

0202(Y,8)/080T8
02(90,8)

1 n
< sup-2 nxl2-lee

⅛θi n t=1
Fσf(∩o1∩∕∂δ(Fδ

02(0,8)

≤ sup
λ∈θ

1-C

Ot(Y0,8) Tt(n,8) Tt(%0,8) 0(,8)

+ sup

P Klîn-xol X ⅛ιs'-'

t=1

1 JT * 211-1 εt - E(Tn) 8202(Y,8)/0808
Tt(n,8) 02(N0,)

002(,8) S 8202(Y,)/060“8

o+(X) 97 02(0,8)n

1 1 Ç 1

⅛¾ n t=1

+ sup
8605

Klîn -Yol $ !„» 241-1 0et(9*)/8y 02o2(Yo, )/088T8
n Lx σt(‰δ) 02(N0,8)

where Et/ot(%0, 5) - ⅛∣ ≤ Et/ot(%0, 5) - εt(¾)∕σt(⅛, i)∣, 7* between Ân and 70.

By (2.4.18), Lemmas 2.4.6 and 2.4.7, we have

n

9

n*l2u-1
002(*,8) S 8202(Y,)/060"8

σtw Ory 02(0,8)

≤ ne2u1624-t2)+26 +1% - Yo2uA=1ntl2,14-12)+26 ,

n*2-1 et(~*)/y 0202(Yo, δ)∕∂δ∂τδ
σt(‰δ) 02(Y0,8)

< Ine2u-16244t2)*6 +1% - 7o∣2tι-ιci1r2>κ.

Since (An — Yo) = op(1), by law of large number and ergodic Theorem, we have:

sup 
λ∈θ

Kln,57l 2inâa/2a-1 
t=1 0,(X)

002(~*,8) S 8202(,8)/080"8O°y o2(Y0,8) — Op(1) ,



81

Thus

sup
8605

^^'L∖^-' t=1
0et(7*)/07
0(n,8)

0202(Yo,)/080T8
02(0,8) = 0p(1) •

02(0,8)

_ (_&) _& 0202(Yo,)/000"8
9,(0,8)) 02(0,8) 02(0,8) = op(1) •

By Assumption 4, (2.4.17), Lemmas 2.4.6 and 2.4.7, and the mean value theorem, 

for some 7* between Ân and 70, we have

( E() Ee(n) 02o?(n,8)/08"8- 1 ct(7n) 1 ct\7n) 
suP —g - -T 8€0s n t=1 \Ot(Yn,0)/ Ot(Yn,0) 02(n,0)

_ (Et(n)) Et(Ân) 02o2(Yo,)/0d0"8 
9c(n,8)) 0+(8n,8) 02(0,8)

n Pσ⅛‰∩∕∂m 
c2(n,8)

8202(%Y0, 8)/088"8 S
02(0,8)

7

n

82(n,8)

, 2 — Ee(n)X sup — > -—ax
fe¾ n — Ot(n,0)bar 1

261

8202(0,8)/080T8 16
02(Y0,8)

g(1-0615 C 8302(*,6)/088T58y S
Sp,t-1 On Vol 02(~*,8)

≤ sup K In - Yo 1 2Inel2416244-12)+2 + sup K I - Yol2a+1 2s24-'2)+2
6€0s nii 6€05 n

— Op(1) .

Since by a trivial extension of (iii) in Lemma 2.4.7, we have 83o?(~*,8)/080"80° < 

62.0,4-1. The expression of 0302(y*,8)/080T68y can be obtained from (A.3.16)- 

(A.3.19) and (A.3.21) in Appendix A.3.
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Thus we have:

n
sup 
5∈θi

(EM(n)) Ee(în)_0koë(Ân,Ô)/08ô"8
∖σt(‰δ)) ot(n,8) c2(n,8)

_ (_&_) _E_ 02ok(Yo,8)/080°8 
9z(Y0,8)) 0+(~0,8) 02(0,8)

Then by the same arguments, we can prove

= op(1).

sup —
8€05 n

002(în,)/0Ô 00?(în,)/06
^(7n,δ) o2(n,8)

_ (_é) + , ( € )
. 5o(Y,8)) oe(Y0,8) 9 (o(Yo,8)) o2(Yo,8).

02(Y0,8) 02(Y0,8) ∫ plλ

This proves the first convergence in the lemma.

By (A.7.2)-(A.7.11) in Appendix A.7, with the same argument as that in the proof

of Lemma 2.4.11, we can prove the second convergence in this lemma.

This completes the proof of Lemma 2.4.16. END

021(A) 1, ∕0202(X)/080T360,7 = 2(1+9(m0))n0))-0) 

+(2-+3s0m0V)m0)+*/(moy)m*a))0*202/0606490/9"7

-4((m00/m00)+*4 *0)2*2985*0*425*5427

Lemma 2.4.17. Under Assumptions 1, 3 and 5, if Elet2(1-42) < ∞ (or Elets < ∞ 

for some s > 0 if lx = 0) and Enemax(1,211) ≤ co , then

E sup
8€05

82le(%,8)
8888T
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if nt is symmetric about zero and Eg'(nt)nt = 0 then

Proof: From (2.4.19), by Lemmas 2.4.6 and 2.4.7, we have:

E sup
8€0s

02lt(Yo, 8)
8888T < E(1+M2^S^^^ < EcS-1+En24E6244-t2)* < ∞.

Since nt is symmetric. From (2.4.20), by Remark 2.2.3 and (2.4.16), we have

02lt(o) _
050T

Note that An is vn consistent, by mean value theorem and Lemma 2.4.12, we

have:

1y J 0lt(Yo, 0) _ ∂^(‰⅞) 1 _ î -Y — 024(%*,80)
Vn—1 ∂δ 08 ) Vn — 080T—1 —1

This completes the proof. END

Lemma 2.4.18. Under Assumptions 1, 3, 4 and 6, Assumption 5 with w = 1, if 

Ee2-12) < co and Ent/241 ≤ ∞ (or Eleis < ∞ and Elne/s < ∞ for some s > 0 if 

iι = 0∕ then n-1/2 20=1 Olt(80)/08 — N(0,23), where 23 has the form in Theorem 

2.2.5 .

Proof: This lemma can be proved with the same arguments as that in the proof of

Lemma 2.4.13. END
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2.5 APPENDIX

A.1 Proof of Proposition 2.2.1

To show E log[wh(wnt + v)] < E log h(nt) for any w 71 and v 7 0, it is enough to 

show the partial derivatives of E log[wh(wnt + v)] with respect to w and v

1 Oh(wn+v)/Ow 1 . .
— + E——---- —— = + E(ntg(wnt + v)) = 0, (A.1.1) w h(wηt + υ) w v 7

Oh(wn+v)/8v _——--- —— = Eg(wnt + v) = 0, (A.1.2)
h(wnt + v)

have a unique solution at w = 1 and v=0.

Since g is odd and ηt is symmetric about zero, it is clear Eg(nt) = 0. Obviously 

w = 1,v = 0 is a solution of (A.1.1) and (A.1.2). We first show that for any given 

w > 0, (A.1.2) has a unique solution at v = O. This is equivalent to show that for 

any v±0, Eg(wnt + v) 7 0. Let f(x) be the probability density function of ηt.

For part (i), since En? < co, then (1 — F(x))x2 — 0 as x — co. Together with
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the given conditions g(0) = 0 and g(x)x ≤ Kx2, we have

lim g(x) 
00

which is negative if υ > 0 or positive if v < 0. Hence for part (i), it is left to prove 

E(wng(wnt)) = —1 if and only if w = 1. By using integration by parts again and 

since (1 — F(x))x2 → 0, we have

E(wng(wnt)) - E(ng(nt))

/0 1 * 
= / -g(x)f (—) dx - 

Jow Vw) 

C

ag(a)f(x)dx 
co

ACO / /* ∖ = 2/ æg(æ)d(F (w)-F(x))

∞
2rg(r) (F (S) - F(x)) -2[ (g(a)+xg'(a)) (F (E) - F(x)) daJ0 Nw- /

=-2 (g(a)+ag(x)) (F (w) - F(x)) da. 

which is zero if and only if w = 1, since g'(x) < 0 but not always equals 0 for x > 0. 

Thus E(wng(wnt)) = —1 if and only w = 1.

Furthermore, it is easy to check that (A.1.1) and (A.1.2) cannot be satisfied when 

w → ∞ or (and) v → ∞. This completes the proof of part (i).

For part (ii), since f(x) is even and decreasing for x > 0, g(x) ≤ 0 but not always 
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0 for x > 0, we have 

Eg(wX+v) = d/ g(z) ρ (5.") - / (*$)} dt, 

which is negative if v > 0, since f((x — v)/w) — f((x + v)/w) > 0 for any x > 0, 

or is positive if v < 0, since f((x — v)/w) — f((x + v)/w) < 0 for any x > 0. Thus 

Eg(wnt + v) = 0 if and only if v = 0.

Since g(x)x is a strictly monotone function,

E(wng(wn)) - E(ng(n)) = 2 (wxg(wx) - xg(x))f()dæ.

which is 0 if and only if w = 1.

It is easy to check that (A.1.1) and (A.1.2) can not be satisfied when w — co or (and) 

v → ∞. This completes the proof part (i) and (ii).

The proofs of part (iii) and part (iv) are the same as the proof of part (ii). END
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A.2 Expressions of ay(i), as(i), Et(), 0t(X)

By comparing the coefficients of zi on both sides of As(z) = B,(z) 292 a,(i)z", we 

have if P < Q:

a,(0) = 1,

ax(1) - -01 - Pia,(0),

ay(2) = -02 - 1ay(1) - 2,

ay(P) = -op-iay(P-1)-------- Pp-ja,(1) - (p,

ay(P+1) = -iay(P) - pa,(1) - PP+1,

ay(Q) = -iax(Q -1) - Pq-1a,(1) - PQ, :

ax(Q+1) = -ia-(Q) -qa,(1),

if P 2 Q,

a,(0) = 1,

ay(1) = -01 - ia,(0),

ay(2) = —02 - P1ay(1) - P2, :
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ay(Q) = -0o - ia(Q-1)-------- o-1a,(1) - Q,

ay(P) = -op - piay(P-1)4p-ja,(1), 

ax(P+1) = -Qiay(P)yqay(P+ 1 - Q),

for i > max(P, Q),

ay(i) - -P1ay(i - 1)-------- Pqay(i- Q).

Similar with the calculation of ay(i), by comparing the coefficients of zt on both 

sides of 1 = B,(z) 2920 ap(i)zi, we can obtain the expression of app(i):

ap(0) — 1»

⅛(1) = -1,

⅛(2) = -Pia(1) - (2,

ap(Q) Piap(Q 1) (2a,(Q 2) Pq-a,(1) — PQ, 

for i>Q,

app(i) = -Piav(i -1) - ^⅜(Q - 2)---------Pqa,(i - Q).

Let ap(i) = 0 for i < 0. Then based on the expressions of a,p(i), for i > 0 and

1<j<Q, we have:

(A.2.1)
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Similarly, by comparing the coefficients of z' on both sides of

∞

A~(z) = Bβ(z) 2 as(i)z",
i=0

we can write down the expressions of as(i) in terms of αι,∙∙∙ ,Qp and /1,* ,/q. If

p <q, we have:

as(0) = 0,

as(1) = a1,

as(2) = 02 + Bias(1),

as(p) = Np + Bias(p -1)    /p-ias(1),

¾⅛+l) = β1ai(p) + Bzas(p - 1) +---- +Bpas(1),

as(q) = Bias(q-1) + Bzas(q - 2) ---------  Bq-ias(1),

as(q+1) = Bias(q) + Bzas(q - 1)+---- F⅛⅛(1),
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if p 2 4,

as(0) = 0,

as(1) = αι,

as(2) = ax + Bias(1),

as(q) = a +/1as(q-1)+—-/q-ias(1),

as(p) = ap + Bias(p - 1) + B2as(p - 2) ---------  Bqas(p-q),

as(p +1) = Bias(p) + Bzas(p - 1) + • ∙ +Bas(p+1 - q),

for i > max(p, q),

as(i) = Bias(i - 1) + Bzas(i - 2) H------ - Bqas(i - q).

Since O; for 1 ≤ i ≤ p and βj for 1 <j<q are non-negative, by the expressions of 

as(l), we have as(l) ≥ 0 for I > 0.
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By the expressions of ay(i), we have, if P < Q,

PQ
F1(x) = (Y - c) - 2o(Y- - c) - 24-161- = ay(0)(Y - c) + Re,7,1 , 

i=1 i=1 

P Q 
E2(7) = (Y2 -c) - A1(Y -c) - 2vi(Y2-i -c) - qle1(y) — 2402-4 

i=2 i=2 
1 

= (Y2 - c) + (-01 - q1)(Yi -c)+ R,7,2 =Zay(i)(Y2- - c) + Re,7,2 , 
i=0

Ep+1(7) - (Yp-+1 - c) -2d(Yp+1- - c) -2qEp+1-(*) - 2 q.p.+144 
1=1 i=1 i=P+1 

= (Yp-+1-c)+(-6 - )(Yp - c)-—

+{-φp - 91a,(P - 1)4p-1a,(1) - «P)(Y - c) + Re,p,P4+1

= >ay(i)(Yp+1-4 — c) + Re,,P.+1 , 
i=0

¾(7) — (Yp-+1 - c) -2(Yp.+1- - c) - 2qq-(7) - %qo 
i=1 i=1

Q-1

= Lay(i)(Yo-i - c) + Re,7,Q ,
i=0
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If P2Q, we have

PQ 
Ei() = (Y-c)- Lo(M- -c)-24-101-4 = ay(0)(Y - c) + Re,7,1 , 

i=l i=l
P Q 

E2(n) = (Y - c) - o1(Y1 - c) - 2d(Y2-6 -c) - qp1E1(7) - 2pE2- 
i=2 i=2 

= (Y -c) + (-o - 1)(Y - c) + Re,,2 = 2ay(i)(Y- - c) + Re,,2, 
i=0

QPQ 
eq+(7) - (Yo+-c) - 2d(Yo+1-i - c)- 2 4(Y+1-i -c)-2 q0q4+1-4(%) 

i=1 i=Q+1 i=1 

= (Yo+1 -)+ (-61 - 1)(Y - c)- 

+(-% - y1ay(Q - 1)o-1a,(1) - Q)(Y — c) ÷ Re,7.Q-+1 

Q 
2av(i)(Yo+1-i -c)+ Re,,Q+1 , 

i=0 

P-1 Q 
Ep(x) = (Yp - c) - 2di(Yp-i -c) - Ap(Y - c) - 2Ep-i(y) 

i=1 i=1 

P-1 

2ay(i)(Yp-i - c)+ Re,y,P , 
i=0

for j > max(P, Q),

P Q j-1

E,(y) =(Y,-)-2 «.(Yj-i -c)-2 ViZj-W = 2 ay(i)(Yj-i ~ c) + Re,73 , 
i=1 i=1 i=0 

where
Q 

Re,wj =-29Re,Yj-i, for j2Q,
i=1
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which is a recurrence function of Pi for 1 ≤ i ≤ q. By Assumption 2, and the property 

of recurrence sequence, we have sup7∈θ Re,Y.jl = O(p') a.s. for 0 < p < 1, j 2 1.

Thus

P Q t-1

E(~) = (Y-c)-2d(Y-i-c)-24e-4(01) = 2 a,(i)(Y- -c)+O(p) . (A.2.2)
i=1 i=1 i=0

By the expressions of as(i), we have, if p ≤ q,

p 4

02(A) = ao + 2a,ed-, +28,03-j = Ro,6,1 
i=1 j=1
pq

02(A) =0+ αl^(7) + 2a,e2- + A^(λ) +28,02-s = «1^(7) + Ro,6,2 
i=2 j=2

1

= as(1)e2() + R0,6,2 = >as(i)€3—4(%) + R0,6,2
i=0 

p q
03(A) = ⅝ + aje2(x) + az82(%) + 2a,e34 + 6102(A) + B202(X) +28,03-6 

i=3 j=3

= aje2(x) + (02 + Bias(1))E2() + R0,6,2 

2

= 2as(i)e3—4(Y) + Ro,6,3 

i=0

P P q
⅛ι(λ) = Co +2a,e+i-/(%) +20,03+1-j() + 2 8,02+1-5 

i=1 j=1 j=p+1

“ aje2() + (α2 + Bas(1))€2-1(0) ÷,"÷ (ap + Bias(p - 1)+

+/p-1as(1))82(Y) + Ro,6,p+1 

p= 2 as(i)ep+1=4(Y) + Ro,6,p+1
i=0
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03(A) = a + 2a,q-(*)+20,03-(A)+/03 

i=1 j=1

= ajép(n) + (a2 + Bas(1))e3-.(~)

+(Mβ-1) + Wj-2) + '∙∙+⅛-l<⅛(l)>1(7)+⅛l

= >as(i)eq—4(o) + Ro,6,4
i=0

if p > q.

02(A) = Co + 2a,e3- +26,03- = Ro,6,1 

i=l j=1
P q

02(A) = ⅛+ aje2() + 2a,e3- + B.02(A) +20,02- = aje2(o) + R,6,2 

i=2 j=2 

= as(1)e(%) + R6,6,2 = 2 as(i)E2—.(~) + R0,6,2
i=0

03(A) = Co + aje2(y) + azE7(v) + 2 α>εf-i + B.02(A) + B202(X) + 2 8,83—j 

i=3 j=3

— aj2(~) + (02 + /as(1))82(~) + R0,8,3

2
2 as(i)e3—4(%) + Ro ,8,3 
i=0

7q+1(A) Co + 2 a,g+1-4(%) + 2 a,5,+1- + 2 6,7,+1-3() 
i=1 i=q+1 j=1

= oje2(y) + (»2 + Bjas(1))8-1(Y) +.+( + Bias(q - 1) + ■ ■ •

+Bg-106(1))e3(7) + Ro,8,q+1

q

> as(i)e?+1=/(Y) + Ro,6,q+1
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2 ^-ih) + ape3 + 2 βj^jW
i=1 j=1

= a e-1(7) + (az + Bias (1))e2-2(7)+*-

+(⅜-ι + Bias(p -2) + Bzas(p - 3)-- βgas(p -q- 1))e2(7) + Ro,6,p
p-1

= 2as(i)ep-4(%) + Ro,d,p ,
i=0

for i > max(p, q) ,

02(A) = ao + 2aje?-3(%) +20,02-()
j=1 j=1

= ajes-1(7) + (02 + Bas(1))e3-2(0)+-

+(B,as(i - 2) + Bzas(i - 3)++ βqas(i -q - 1))e2(7) + Ro,6,

= >as(j)e?_;(y) + Re,6,i ,

where

for i>q,
j=1

which is a recurrence function of Bj for 1<j<q By Assumption 3, and property

of recurrence sequence, we have supsee, ∣¾,i∣ = O(p') a.s. for 0 < p < 1, i ≥ 1.

Thus

(A.2.3)
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A.3 Expressions of first and second derivatives of 

€() and 02(X)

By (2.2.1), we have the first derivatives of Et(Y):

et(Y)
∂c

8e4(~)
∂φi

(
P ∖∞ 
1-2%) 2ap(i), 
j=1 ∕ i=0

∞

(A.3.1)

8ee(7) 
84;

8e4(~) 
88

= -β7-1(L)(yt-i-c) = -52α√j)(yw-c) (A.3.2)
j=0

∞
= -A,1(L)e-(%) = - 2ad(i)et-i-j(7), 1<i<P, 

. j=0
∞

= -B,1(L)e-j() = - 2ap(i)e-4-3(7), 1≤J≤Q, (A.3.3)
2—0

= 0. (A.3.4)

By (2.4.2), we have the first derivatives of o2(X): 

υ k=0 

^ = ∑‰(7), I<i<p, (A.3.6) 
' k=0 

°950 = X(2B"BVBH)a-)isise (A.3.7) 

≡ - S bta,n)S20,6 4/0061-4(7), 163<P+0+1A.38) 
073 k=0 1=1 07 

where 1 = (1,0,..., 0)X1, E(N) = (Et(~), 0,..., 0)X1, B() is a q x q matrix with (1, i)th

element 1 and all other elements 0.
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Based on (A.3.1)-(A.3.4),we have the second derivatives of Et(Y):

02e(x) 
∂c∂c

8Re,(~) 
∂c∂φi

02e(y) 
∂c∂φi

826,(~)
∂φi∂φj

82e4(7)
∂φi∂φj

CO 
2a(k), 

k=0

(A.3.9)

(A.3.10)

(A.3.11)

(A.3.12)

(A.3.13)

= 22ao(k)ay(l)e+-i-j-1-*(7), 1<isP,1<j<Q 
k=0 l=0

8,0.0,0, B, (L)(6 - 9(7)+6-,(») (A.3.14)

026(7)
8882

°8a(k) ) ° 0E+-i-k(Y) . .
= -2-t-i-k() - 2 A(k)—o, 160<Q, 

k=0 °VP3 k=0 000,

= 0. (A.3.15)

Based on (A.3.5)-(A.3.8),we have the second derivatives of 02(X):

02g2(A)
0 Oco

8202(X) 0202(X) . . , X= -V=-=0, 1<i<p,Sj<1+P+Q,(A.3.16) 
OQoOQi OQgOj

06088, - 2128180B*J1 1Sjsq.
82g2(X)
Ôajaj = 0, ι <i,j <p,

^^ = 2 (EB!-1B0)BH7) 224(7), 0c,0Bj LT )‘*

(A.3.17)

(A.3.18)

(A.3.19)
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1<ixp,1<j<P +Q+1,

(A.3.20)

i

02oe(A) 03,8;

A.4 Modification for pure GARCH with non-zero 

constant mean

Some modifications for pure GARCH with non-zero constant mean are listed below:

Modifications 1:

When P = Q = 0, co = 0, model (1.2.12)-1.2.13 reduces to pure GARCH with 

nonzero constant conditional mean. The parameter space reduce to (c, 5) and {Et} 

becomes the observations. Initial values of E0,-* ,81-p, 03,- ,02q are required in
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calculating 02 and (2.4.3) is replaced by:

a2(X) = c,(c) + ¾-ι(e) + B2c,_2(c) + - + Bt-p-1cpli(c) (A.4.1)

+Bt-pcp(c) + ... + Btci(c) + B'o3(A)

Based on (A.4.1), we can adjust the derivatives of 02.

Modifications 2:

The first and second derivatives of lt(8, c) still have the form of (2.2.12) and 

(2.2.13). Some derivatives of Et(c) and ot(X) are simplified as: 

ae,()-010.. 0) 8e,(c) ±0 8x λ 0x0XT - 

802()_00 R R _ 820Q)L0 8c 228(1,1)2aj(t-i-j C), 8c8c 22(1,1)2, 
i=0 j=1 i=0 j=1

≡ - -2 Spa, - 4

02o2(X) 
∂c∂βk

Modifications 3:

Based on Modifications 2, we have for any λ ∈ Θo :

sup 
λ∈θ

8202(A)/8c0aj
02(X)

Similarly we can show

sup 
λ∈θ

0o2(A)/8c
02(X)

sup 
λ∈θ

2o2(A)/8c0/j
02(X)
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are bounded by some constants. Then together with Lemma 2.4.6, we have that

sup 
λ∈θ

ee(c)/8A 
σt(A)

sup
Xce

02et(c)/0X8TA
0(X)

sup 
λ∈θ

0o2(X)/8X
^2(A)

sup 
λ∈θ

8202(A)/8X8TA
02(X)

are bounded by C6,,,-1, which has any moments.

By Lemma 2.4.7, we have ¾(λ) = not(o)/ot(X) + (co — c)∕σt(λ) is bounded 

uniformly by C|1 + %∣ξ^1 for any λ ∈ Θo. Thus in the proof of Lemma 2.4.12, for 

pure GARCH with c 7 0, we can relax the moment condition of E0 to 2i(1 — L2) (or 

some s > 0 if l1 = 0).

A.5 Modification for pure ARMA

When p — g — 0, ARMA(P,Q)-GARCH(p,q) model reduces to pure ARMA(P,Q) 

model (1.2.12). Modified assumption 5 implies g(&t/V&) = 0.

In this reduced model, {εt} is a sequence of IID random variables with mean 0 

and variance α0∙ With Np being nuisance parameter, the parameters are reduced to 

7. Initial values Y,..., Yi-P are required.

For pure ARMA, lt = log[h(&t()/V&)/V0o]. The first and second derivatives of 

lt(Y) are simplified as:

0l(7)4 (e(x)) 0c4(y)/8y 
8y Vo) V ’

024,(7) - , (e,(x)) 82e-(7)/070,"
8y8yT Va) V& Vao Vo) Va '

Lemmas 2.4.3 to 2.4.5 and 2.4.8 to 2.4.12 still hold with modified conditions.

These Lemmas may have more simple forms for this special case. For instance:
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Lemma 2.4.4 is adjusted as: Under Assumption 2, if there exists some t such that 

εt(7) — ⅞(70) almost surely, then ^∕ ⅝^ ∕y0

Lemma 2.4.9 is modified as: Under Assumptions 1, 2, 5 to 6, if E∣εt∣2 < ∞, then 

1 is nonsingular.

Thus by modified Assumption 4 and Lemma 2.4.6, for pure ARMA, if E∣ε0∣2 < ∞, 

then 'EJd2It^∕∂^∂^τ < ∞ as in Lemma 2.4.12 .

A.6 Expressions of first and second derivatives of 

⅜(7) and σγ(λ)

Since the initial values are fixed, analogous to (A.3.1)-(A.3.4) and (A.3.9)-(A.3.15), 

by method of induction, differentiate (2.2.5), we have:
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02e() 
∂c∂c

326,() 
∂c∂ψi

82E,(7) 
OcOpi

326,(7)
∂φi∂φj

82E,(7)
∂φi∂φj

82(7)
9φi∂φj

02t(x) 
080

= 0,

t-1

= >ap(k), 1<i<P,
k=0

- -(1-56)5 80-0k) 14140

∖ 3=1 ) E=0 Ôtpi

(A.6.5)

(A.6.6)

0, l≤i,j≤P,

$ ∂aψ{k)
- 2 8-l*t-i-k - C)

k=0

— 8a,(k) — . . .->-7—> ay(l)Et-i-k-I(), if t--k> 0,
k=0 13 1=0

1<isP,1SisQ

-293,494.14) - 24.0406-43)

k=0 13 k=0 13

1<ij<Q,

0.

(A.6.7)

(A.6.8)

(A.6.9)

(A.6.10)

(A.6.11)
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Analogous to (A.3.9)-(A.3.23), differentiate (2.4.3), we have:

002(X) _ —5E-2 , . 
'_ k=0 

aggv - E(Le-g"g+-)2446o). ι≤i≤9, 
k-1 I-1 / 

8020x) $ RL R 06-*4() ~ h 01,1)220k***00)-ay, 

1<j<P+Q+1.

(A.6.12)

(A.6.13)

(A.6.14)

(A.6.15)

(A.6.20)

(A.6.21)

^λ) 
0a0j

OQgOQj OagOYj
t-1 ( k

8277(A) 
OdpOdp

0202(A) 
∂a0∂βj

8262(X)
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P
2. Otj 

i=l

A.7 Difference between Et(Y) and Et(Y), Tt(X) and

0+(X), as well as between their derivatives

Refer to (4.55) in Francq and Zakoian (2004), we have

sup max{ex(~) - Ex(~)l, de*7) _ 8E*(x) 1 ≤ Kph, a.s. (A.7.1)
yee, I OY O

Based on the expressions of 82Ek()/0yOyT, and 82k()/O~yT, by Lemma 2.4.1

and a trivial extension of (A.7.1), we have:

sup
Y€0y

02e*(Y) _ 2k(Y)
8y8yT Bydyr

≤ Kpk, a.s. (A.7.2)

Refer to (iii) in the proof of Theorem 3.2 in Francq and Zakoïan (2004), we have

„ 0o2(A) - 002(A) Kot 1_ _ _ _1 KtSt-1(%) (A73)SEP 8x BX - P 02(X) 02(X) - KP σ^(λ) ' (A.7.3)
note that

S,-1(7) =
i=1-p

With similar proof as that for first item in (A.7.3) in (iii) of the proof of Theorem

3.2 in Francq and Zakoïan (2004), we have

sup 
λ∈θ

02oe(A) _ ^(λ)
∂λi∂λj 8),8X,
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Based on (2.4.6), (A.7.1) to (A.7.3), by Lemma 2.4.6, for any A ∈ θ we have:

⅛ω-⅛w! ≤ E4(0)16,02) - 6,0X)+80yle,(7) - 6,(71
o getIne(A))l σt(A)(σt(λ) +0(X)) +Kp

≤ Kp'St-1(~)(1+In(X)), (A.7.4)

002(X)/0X 002(X)/0X
σt2(λ) σ2(λ)

, 002(X) 1ι . ι 802(N) 802(X)
^ #A σ-2(A) σ2(λ) σ2(λ) ∂λ 8X

(A.7.5)

0o2(X)/8X 
02(X)

≤ Kp'S-1(Y)50,1-1,

0c2(A)/0X 0c2(X)/8XT ∂σ*(λ)∕∂λ ∂σ⅛λ)∕∂λτ
02(X) 02(X) σ2(λ) σ2(λ)

802(X)/8À 
σt2(λ)

002(A)/0AT 802(A)/8AT
02(X) 82(X)

8o2(X)/8X 802(A)/8X
02(X) 82(X)

002(A)/8XT 
82(X)

≤ Kp'S,-1(7)80,t-1 + Kp'S-1()87.t-1(1 + Kp'Se-1(0))

≤ Kp's2,(7)62.1 .

Similarly, for any λ∈θ,we can show:

(A.7.6)

8202(X)/8XXT 8202(X)/0X8AT t (A.77)
----------2/1---------------------~2/1-------- - Ap St-1 (Y)Sp,t-1, (A..6)

80?(X)/0X Os/XT ∂σ1t(X∖∣∂λ ∂εt∕∂λτ
σ^(λ) σt(λ) 62(X) σt(λ)

< Kp'S21(Y) 83,t-1,

det(»)/8X de(»)/8XT 0(»)/8X dt(n)/8XT
σj(λ) σt(λ) σt(λ) σt(A)

≤ Kp'Sg 1(x)83,t-1,

(A.7.8)

(A.7.9)
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8e,(7)/8A_8e,(7)/0A ≤ Ke'SLOE.L. (A.7.10)

026,()/8X8AT 826,()/8X8AT

VtW 8(X)
< Kp'S,-1(7)621-1. (A.7.11)
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Chapter 3

High Moment Partial Sum 
Processes of Residuals

In this Chapter we study some high moment partial sum processes based on residuals 

from an ARMA-GARCH∕IGARCH model, originally proposed by Kulperger and Yu 

(2005) for a pure GARCH model. We show that the k-th power partial sum process 

of residuals converges to a Brownian process plus two correction terms, where the 

correction terms always depend on ARMA-GARCH parameters. We also consider the 

CUSUM and the self-normalized processes (standardized by the residual sample mean 

and variance), which behave as if the residuals were asymptotically IID distributed.

This Chapter is organized as follows. Section 3.1 exhibits some existing results of 

empirical processes and high moment partial sum processes based on (G)ARCH mod

els. Section 3.2 presents the assumptions and our results. The proofs are postponed 

to Section 3.3.
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3.1 Introduction

Several authors have studied the residuals from non-linear time series models. They 

showed that the residuals from non-linear time series models behavior different with 

those from linear time series models.

Boldin (1998) first studied the empirical process of an ARCH(I) and showed that 

the limiting distribution depends on the parameters of the model. Horvath, Kokoszka 

and Teyssiére (2001) extended the result to ARCH(p) model. Kawczak, Kulperger 

and Yu (2002) showed that the limiting distributions of the empirical process and 

the partial sum process based on residuals from a stationary ARCH-M model are no 

longer distribution free and hence the residuals cannot be treated as asymptotically 

IID. They showed that the limiting Gaussian process for the empirical process is a 

standard Brownian bridge plus an additional term, while the one for partial sum 

process is a standard Brownian motion plus an additional term. They showed that 

Kolmogorov-Smirnov test for goodness-of-fit based on residuals differs from the one 

based on IID sample. The Kolmogorov-Smirnov test produced smaller size and poorer 

power and is not applicable for ARCH-M models.

Kulperger and Yu (2005) studied some processes based on residuals of pure GARCH 

(IGARCH) models. These processes are partial sum processes of k-th powers of resid

uals, CUSUM processes and self-normalized partial sum processes. They showed that 

the k-th power partial sum process converges to a Brownian motion process plus a 

correction term that depends on the k-th moment of the innovation sequence. If 

k-th moment of the innovation is 0, then the correction term is gone and the partial
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sum moment process converges weakly to the same Gaussian process as if the resid

uals were IID with same distribution as the innovation. Further, they showed that 

CUSUM processes and self-normalized partial sum processes converge to Gaussian 

processes as if the residuals were asymptotically IID. They applied those results for 

following applications: CUSUM statistics for testing structure change, Jarque-Bera 

omnibus statistic for testing normality of the unobservable innovation distribution 

and kernel density estimation of the innovation.

Based on the theories in Chapter 2, we can extend Kulperger and Yu’s (2005) 

results to ARM A-G ARCH∕IG ARCH models. Similar to the extension of QMLE 

theory from a pure GARCH to an ARMA-GARCH model (see Remark 3.5 in Francq 

and Zakoïab, 2004), this extension also leads to non-trivial problems and additional 

assumptions are required for the approximation of hight moment partial sum processes 

for the ARMA-GARCH model. Basically we require some additional moments on 

GARCH errors that are not needed for a pure GARCH model. The applications of 

these results will be introduced in Chapter 4 with numerical samples.

3.2 Assumptions and Results

In model (1.2.12)-(1.2.13), En3 = 1 and Eno = 0 are assumed. When no has a finite 

k-th moment, denote Uk = E(77q). Thus μ1 = 0 and L2 = 1.

Throughout this chapter we assume that λn = (AT, 8)T is an estimator of λ based 

on a sample Y,...,Yh, and that it is Vn consistent as defined in Assumption 8. To

show the results, we assume:
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Assumption 8. Vn|Ân — Ào = Op(1),

Assumption 9. E|Eo|2t < ∞ for some > O.

Lemma 2.4.6 (v) and (vi) implies that the moments of So,t and So,p,t are determined 

by the moment of εt. For example, §o,p,t has 2b moment if E|et|2t < co. Furthermore, 

S0,5,31 has 2/(1 — L3) moment, where 0 < 13 < 1. Thus there exists some b so 

that 1 — L3 < L ≤ 1 and hence 2/(1 — L3) > 2, which is crucial for the following 

proofs. This means that we can choose either b = 1 or some 0 < b < 1. Notice 

that=1 corresponds to the ARMA model with finite variance GARCH errors (the 

ARMA-GARCH model) and 0 < L < 1 to the ARMA model with infinite variance 

GARCH errors which includes the ARMA-IGARCH model. Throughout the rest of 

this chapter, we assume that Assumption 9 holds for such a 0 < b ≤ 1.

In Chapter 2, we denote & = Et(n). Correspondingly denote 02 = σ^(Λn). Then 

the residual at time t is

- - E(n) & 
nt - A(An) = - = — 

Ot(An) Ot

The k-th (k = 1,2,3,4,...) order high moment partial sum process of residuals is 

defined as
[nu

SX(u) =Z5, 0 ≤ u ≤ 1, (3∙2.1)
t=1

where [nu] is the ceiling integer of nu.

Its counterpart based on the IID innovations is defined as

[nu]

SMP(u) = Zn, 0<usi. (3.2.2)
t=1
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sup 0<u<1

Theorem 3.2.1. Suppose that Assumptions 1 to 3, 6, 8 and 9 hold and let k 2 1 

be an integer. /∕E⅛∣fc < ∞f then

W(SMu) - s^ + ^ (A. VRG. - à))

-kuμk-1 (T, Vn(în - Y)) = op(1),

where A = E(9 log o3 (Xo)/8X), Γ = Edo (Xo) (Eo()/Ôy), and (x, y) is the inner 

product of the vectors x and y.

Remark 3.2.1. Theorem 3.2.1 shows that the asymptotic properties of the high 

moment partial sum process {SM(u),0 <u<1} always depend on the parame

ters of the model for any integer k. This is different from the pure GARCH case 

where there is no such a term as kupk-1 (Γ, vn(Ân — Yo)) and the approximation for 

{SM(u),0 <u<1} can be parameter free if ur = 0 for some odd k. See Remark 1.1 

in Kulperger and Yu (2005).

Remark 3.2.2. The discussion after Theorem 4.1 in Ling (2005) indicates that /01 7 

0 is critical when 0 < L < 1 in Assumption 9. With the same reasonf Theorem 3.2.1 

cannot be applied to the ARMA-IARCH model though it holds for the ARMA-ARCH 

model after removing the redundant parameters. Furtherf Theorem 3.2.1 holds also for 

a pure GARCH model after dropping Assumptions 2 and 9 and letting vector Γ ≡ 0. 

Thusf for the pure GARCH modelf Theorem 3.2.1 imposes weaker conditions than 

those given in Kulperger and Yu (2005). Mainlyf the parameter space Os is wider 

and the condition

lim x TP{no <x}=0 for some T>0

is dropped.

Remark 3.2.3. Lemma 2.4.6 and Assumption 9 imply the existence of A and Γ.
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By Theorem 3.2.1, we immediately obtain the following CUSUM result, Corol

lary 3.2.1. It implies that the CUSUM normalized high moment partial sum process 

{M(u) — u,k)(1),0 ≤ u < 1} behaves as if the residuals {¾,1 <t<n} were 

asymptotically the same as the unobservable innovations {nt, 1<t< n}.

Corollary 3.2.1. Suppose that Assumptions 1 to 3, 6, 8 and 9 hold and let k 2 1 

be an integer. If E no|k < ∞, then

SUR, $ ∣ (s°(u) - usp()) - (s(P(u) - usp() ∣ = op(l) .

The next result follows immediately from Corollary 3.2.1 based on the invariance 

principle for partial sums for an IID sequence {n*} (see for example Billingsley, 1999).

Corollary 3.2.2. Suppose that Assumptions 1 to 3, 6, 8 and 9 hold . Let k>l be 

an integer and Ce = E(⅛ — ux)2 < ∞. If E|no|2k < ∞ for some integer k > 1 then 

f5%(u)-usk()1

converges weakly in the Skorokhod space D[0, 1] with Ji topology to a Brownian bridge 

{Bo(u),0 ≤ u ≤ 1}.

Before formulating the next result, we need to modify the high moment partial

sum processes of (3.2.1) and (3.2.2). The k-th order moment residual centered partial

sum process is defined as
[nu]

TP(u) =E(n-5)*,0<us1,
t=1

where η is the sample mean of the residuals. Its counterpart based on the IID inno-

vations is
[nu]

TW(u) =Z(n-7*,0<usi, 
t=1

where η is the sample mean of innovations.
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Theorem 3.2.2. Suppose that Assumptions 1 to 3, 6, 8 and 9 hold and let k 2 1 

be an integer. If E|no|* < ∞, then

sup
0<u<i

Remark 3.2.4. Theorem 3.2.2 shows that the sample mean centering is able to re

move the parameter term kuuk-1 (T, Vn(Ân — Y)) in Theorem 3.2.1. This matches 

with a result for high moment partial sum processes for a stationary ARMA model in 

Yu (2005).

Let 02) = T2)(1)/n be the sample moment estimator of up. Just like in the 

pure GARCH case, 02) will play an important role when it is used to self-normalized 

TW"(u). Denote o2) = T.2(1)/n, and note that it is the sample variance of the true 

innovations, except with divisor n instead of n — 1, which does not matter as long as 

large sample properties are concerned.

Theorem 3.2.3. Suppose that Assumptions 1 to 3, 6, 8 and 9 hold and let k > 1 

be an integer. If E nomaxik,2} < ∞, then

sup 
0≤u≤l

Let Vk = uk/ub/2 for k > 1 and define Vo = 1. For each ⅛ ≥ 1, let {B(k)(u),0 ≤ 

u ≤ 1} be a zero mean Gaussian process with covariance

EB(u)B()(v) = (V2k - v2)(u Av) + kvk-1(kvk-1 + kvkV3 - 2Vk+1)uv

+KVk ((1 - k/4)Vk + kVkV4/4 — Vk+2) uv (3.2.3)

for any 0<u,v<1, where uAv= min(u, v).



114

If μ2k < ∞, then Lemma 3.8 in Kulperger and Yu (2005) implies

/1 (T(u) ) 1
< - I —,--------nUV’k , 0 ≤ u ≤ 1 > 
Vnoo)-------------) ) 

converges weakly to the Gaussian process {B(k)(u), 0≤w≤l}. By Theorem 3.2.3, 

we immediately obtain the following corollary.

Corollary 3.2.3. If Assumptions 1 to 3, 6, 8 and 9 hold , then E|no|2k < ∞ for 

some integer k >1 implies that

nuvk

converges weakly to the Gaussian process {BO)(u), 0 ≤ u < 1}.

When k = 1, (3.2.3) becomes EBO(u)B()(v) = uAv — uv for any 0 ≤ u,v < 1, 

that is, {B((u), 0 ≤ u < 1} is a Brownian bridge. For k = 2, (3.2.3) implies 

that EB()(u)B(2)(v) = (V4 — 1)(u Av - uv) for any 0 ≤ u, v ≤ 1. This means 

{B@2)(u)/vv4 - 1, 0 ≤ u ≤ 1} is also a Brownian bridge. In general, the Gaussian 

process {B(k)(u), 0 ≤ u < 1} for k > 3 depends on the moments of the innovation 

distribution and cannot be identified to be a specific process known in the literature, 

such as a Brownian motion or a Brownian bridge. More details can be found in 

Kulperger and Yu (2005). Here we just give the following corollary that will be used 

to construct the Jarque-Bera test statistic given in the next Chapter.

Corollary 3.2.4. Suppose that Assumptions 1 to 3, 6, 8 and 9 hold. Assume also 

that k > 1 is an odd number and us = uk = Uk+2 = U2k+1 = 0. Then E|no|2(k+1) < ∞ 

implies that

TXVk, nyVk+1,



converges weakly in the Skorokhod space D2[0, 1] to a two dimensional Gaussian 

process {(B()(x), B(k+U)(y)) 0 ≤ x,y ≤ 1}, where {B(k)(a), 0 ≤ x ≤ 1} and 

{B(k+B(y), 0<y<1} are two independent zero mean Gaussian processes defined by 

EBO(x)BO(y) = (V2i - v?)(x Ay)+ iv,-1(iv,-1 + iv,v3 - 2v,+1)ry

+iv: ((1 - i/4)v; + iv:va/4 - V/+2) xy, i = k,k + 1, 

for any 0 ≤ x,y < 1.

3.3 Proofs

This section begins with a proof of Theorem 3.2.1. It is given in a sketch or overview 

form with the details given in a series of lemmas, which are placed in the later 

part of this section. The proofs of Theorems 3.2.2 and 3.2.3 rely on the proof of 

Theorem 3.2.1.

3.3.1 Proof of Theorem 3.2.1

Proof of Theorem 3.2.1: Let êt = Et(Ân), ô2 = o?(Ân),

Then Theorem 3.2.1 follows if we can show that

sup 
0≤u≤l

A(SMP(u) - sç(u)) + ⅛⅛ (A, VR(. - Ao)) (3.3.1)

-kupk-1 (Γ, vn(n - 70)) = op(1)

and

sup
0≤u≤l

S^(u) - SM)(u) = op(1). (3.3.2)
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The proof of (3.3.2) is left in Lemma 3.3.1. Let

vn(o(o+n 1/22) - 02(X0))
ge(X) =--- ---------- >----------- 2, A € RP+Q+p++2 (3.3.3)

and
Vn(ee( Yo + n-1/2,7) - E(o))

2,0»)*——  (834)

Note the we adopt the same notation in Kulperger and Yu (2005). And there is 

no relationship between the function gt(A) defined here and the function g(x) defined 

in Chapter 2.

Though gt(X) and Zt(Y) depend on n, we omit it for convenience of notation. By 

the definition of ft, it is not difficult to see

nt+n 12Zt(n(n Y)) (3.3.5)

Thus, by Assumption 8, to prove (3.3.1), we need to prove for any b> 0 that

sup sup
0≤w≤l A|<b

LsW(u) + key* (A, A) - kupk-1 (T,~)Vn 2

This last part follows by

= θp(l)∙

15 (ne+n12Ze(x)) 
Vn L V1+n-1/2ge(A)) (3.3.6)sup sup

0≤u≤l X<b

k1 'n^ / 1
sup sup /I .---------------  .

OSusi AISb n⅛ ∖√1 + n-12gt(A))
n#-1Z(~) - upp_1 (T,~) = op(1), (3.3.7)
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and

sup sup
0≤u≤l AI<b

k

To prove (3.3.6) to (3.3.8), we need to find how fast the following terms 

max sup 9e(A)1 and max sup ge(A) — (Ologo2(0)/0X,A) (3.3.9) 
l≤t≤n A|<b Vn 1St<n A|<b

converge in probability to zero. In pure GARCH case, Lemma 3.3 in Kulperger and 

Yu (2005) show that both supy><b gt(A) and sup∣λ∣<6 Vngt(X) — (O log o2(Xo)/0X, λ) 

have any finite moments and hence one can use a well-known result that if {Xn,n ≥ 0} 

is a sequence of identically distributed r.v.'s. with E|Xo|“ < ∞ for some K* > 0, 

then

max Xt = op(n1/*°).
1<t<n

(3.3.10)

In addition the following important approximation

max sup 
l≤t≤n ∣λ∣<6

_____ (_(ôlogo(o)/8X,A))
√1+^FT^(A)∖ 2Vn ) 

(3.3.11)

can be established as well.

Unfortunately, if we adapted the same approach used in Kulperger and Yu (2005), 

we would need at least E|Eo|16 < ∞ due to variation contributed from ARMA com

ponents. In fact (3.3.11) may be not feasible for ARMA-GARCH models under a 

minimum moment condition on GARCH errors. Notice by (3.3.3) that we only need 

to work with the function 02(X) in the neighborhood ∣λ — Xo ≤ b/vn of Xo. Indeed 

we are able to take such an advantage in Lemma 3.3.3 and find proper convergence 

rates of (3.3.9) in Lemma 3.3.4 without requiring higher moments on GARCH errors.
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(3.3.6) and (3.3.7) are proven in Lemmas 3.3.6 and 3.3.7, respectively. We divide

the proof of (3.3.8) into three parts. Let w(x) = 1∕√1 + x and w()(x) denote the

i-th derivative of w(x). Let M be a positive integer which will be determined in

Lemma 3.3.5. Then equation (3.3.8) follows by

suP — 2 nelk (
Sb Vn (1 1

1 ∖ K

( V1+n-1/2ge(X) ) (3.3.12)

and

_(M W((0) (log o2(o)/82,2)0)
∖ 2 i! ni/2 )
∖ i=1 /

1 
sup — 
|A|b VI

M

= 0p(l),

k

Xinalk (1+X *(0) (0lo8o20p/aà,A)) (3.3.13)
t=1 \ i=1 /

(. (log o2(Xo)/0X, A)* 
( 2Vn )

sup sup
0≤u≤l |A|<b

1
Vn

= op(1),

1 5, (1-(log o?(o)/8A,2))* (3.3.14)

⅛*lW + ⅞t(Λ,λ) = 0p(1).
L

They are proven in Lemma 3.3.8 to 3.3.10, respectively. Now we completely finish

the proof of Theorem 3.2.1.

As a consequence of Theorem 3.2.1, we can obtain for any 1Si<k

1 n 1 n ∙

„2n = „2nt - 2 (A,Vn(Ân - λ0)) 
"t=1 *t=1 /

+44 (r, v¾⅛ - Y0)) +0p(L).

(3.3.15)

In particular, since uo =1 and /1 = 0, we have

f=n-=(I, Vn(Ân - o)) +0p-). Vn\vn/
(3.3.16)
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3.3.2 Proof of Theorem 3.2.2

Proof of Theorem 3.2.2: When k =1, Theorem 3.2.2 follows by

sup Î(u) - TO(u) ≤ sup 
0≤u≤l 0<u<1 

(SM(u) - us,(1)) - (sMP(u) - us,(1)) + - 7

and Corollary 3.2.1 and (3.3.16).

Next we consider the case k ≥ 2. Theorem 3.2.1 and weak law of large number 

implies that

1 
sup — 

0≤u≤l n

for 1 ≤ i ≤ k, while (3.3.16) and CLT imply

In addition,

suP -S υ(ω)- upk_1 = op(1) 0<uxl

follows by Lemma 3.3.2. Thus, by Theorem 3.2.1 and (3.3.16), we have uniformly in 
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u that

UE(u) - USGP(u) - kst-V(u)+L5 (K) (-1)44=-8Q(0) 

^ 1s(u) - ku* (A,V(-A)) + kupe-I (T, VR(6 90)) 

-*(#+ Th(T, V7(5. - 70))+op (4)) x 

( 1su-V(u) - (k-D)uuk-1 (A. VRG, _ λo)∖ 

+(k - 1)upaz-a (T, vn(5. - 2))+ op (A) ) + op(l)

= 1s(h(u) - ksa-l(u) -kupe* (A,Vn(-M))+0m(1)

= 1T(u) - kuytt (A,vn( - X)) + 0p(1).

This completes the proof of Theorem 3.2.2.

3.3.3 Proof of Theorem 3.2.3

Proof of Theorem 3.2.3: First Theorem 3.2.2 implies for any 1 ≤ i ≤ k

Z∑(¾- R)* =-2(n- R)* - ⅛ (A,vn(n- Ao))+op (-) . (3.3.17)

Since we assume En3 < ∞ for any k> 1, (3.3.17) implies

5% = 08-5 (A,Vn(n-A))+0p (9). (3.3.18)

Let

Ln(u) = vn (AE(u) - uvatm)) and Ln(u) = Vn (AT(u)- uv,ot.)) .



121
Then

1 T(u) TP(u)
OSugl √n o(n) o(n)

Notice that (3.3.18) implies

Therefore we can prove Theorem 3.2.3 if

sup În(u) - L„(u)l = op(1) (3.3.19) 
0≤u≤l

and

sup ILn(u)l =0p(I). (3.3.20) 
0≤u≤l Vn

By the facts that η = Op(1/Vn) and o2) = u2+ op(1),

⅛ = -2(m - )*-u*( + op (1)4/2 

VsD
v t=1 —2

1 [naua] 
= - 2n - uu + 0p(1) 

t=1

thus (3.3.20) holds by Lemma 3.3.2.

When k = 1, (3.3.19) follows directly from Theorem 3.2.2 since μι = 0. Let us 

consider the case k 2 2. By (3.3.18) and a first order Taylor’s approximation with 

remainder we have
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Putting the above into Ln(u), together with Theorem 3.2.2 and the fact that 

o°) = u2+ op(1), we obtain

uniformly in 0 ≤ u ≤ 1. This concludes the proof of (3.3.19) and hence Theorem 3.2.3.

3.3.4 Proof of preliminary results

The remainder of this section gives the various Lemmas needed in the proofs above. 

Throughout the rest of proofs, C denote a finite positive constant which may change 

values from place to place but does not depend on t. We also use the following 

inequality

(x + Δ)fc - x* ≤ k2*-1/A (x*-1 + Ak-1) (3.3.21)

on several occasions.

Lemma 3.3.1. Under Assumptions 1 to 3, 6, 8 and 9, we have for k> 1 

sup 1 5(u) -SC(u) =⅛(1).
0≤u≤l Nn

Proof: By definitions of ηt and ft, we can rewrite

*=n+h,pte-e
Ot 

and hence
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k z x [nu] a - J
S(P(u) = S(P(u) + 2 (K) ^(⅛∑4i≤2≥ . 

i=1 No t=1 NO/
Since we assume that & > 0 and Os is compact, by (2.2.2) and (2.2.6), there exists 

a constant C > 0 such that almost surely

σt≥C and σt>C for all t> 1.

Thus, by using the inequality ∣α + b|“ ≤ 21-1(at + b°) for any real a,b and integer

i 2 1, Lemma 3.3.1 is proven if we can show for all i = 1,..., k

LX ê/kô? - 021 = 0p(1) (3.3.22) 
v t=1

and

1 n-2le*-e - εt∣i = op(1). (3.3.23)
V" t=1

Now, by Lemma 2.4.6 (i) and (2.4.6),

êdô? - ⅛T < c‰ pit Si(o).

By Assumption 8, Lemma 2.4.6 (v), and Holder’s inequality, taking T* = L/(4k),

ERlet st(vo)i" ≤ EGSTT'ES?*"(70) < C(+t) for all 1 ≤ t <n.

Hence we have

1

itr*

This proves (3.3.22). One can prove (3.3.23) similarly. This completes the proof of

Lemma 3.3.1.



124

Lemma 3.3.2. LetXt = h(nt,nt-1,...) and suppose that E|Xo < ∞. Then

[nu]

sup -X Xt — uEXo 0p(1) • 
0≤u≤ι n —

Proof: We refer to Lemma 3.6 of Kulperger and Yu (2005).

The following lemma is a key result that provides proper convergence rates used 

in proving (3.3.9) under minimum moment conditions on GARCH errors. Notice that 

A is in the neighborhood ∣λ — Xo ≤ b/Vn of Xo. Denote for any b > 0,

, 0o2(X)/0X ITIn = max sup -----20— and Jn = max sup
ι≤t≤" X—XIb/Vn Ot (Ao) ι≤t≤∏ X-Xb/Vn

8202(X)/0X8XT
02(X0)

Lemma 3.3.3. Under Assumptions 1 to 3, 6, 8 and 9, we have

In = Op (n1/*) and Jn = op (n'/*) ,

where K — 2/(1 — L3) > 2.

Proof: By Lemma 2.4.6(iii),

. 002(X)/08sup -----2/1)—
X-AoSb/Vn Ot (A0)

8c?()/08

‰(1+ suP
\ A-Aolb/vn

bIn
CSp,t-1 ∖ V

σf(λ) -σt2(λ0)
σt2(λo)

002(X)/8X )
02(o) )

-0183/. 02(X) 1 +

By Lemma 2.4.6 (iv) and (v), 2.4.7 (v), we have

002()/8% _ 1 WWW
Iλ-λo∣≤6∕√n σt(A0) oz(Xo) —XoIb/Vn oz(X)

CSp,t 1.≤ —/ 1+ suP A - A0
Ot(Ao) \ X-XISb/Vn

s cas-(1+V).

σt(λ) - Jt(Ao) 
0(A0)

0o2(X)/0à|
02(o) J
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Putting the above together after choosing s < 1 - 13, we obtain

I, < C max 88-53_, (14bn).

Though In appears on the right hand side in the above, the extra Vn term will make 

it small so we can move it to the left hand side as long as

max §3 031 = op (n1/2) 
1<t<n-P1, 1 ' ' 

which follows immediately by Assumption 9 and (3.3.10). In fact, Assumption 9 

implies E60,02)* < co and hence by (3.3.10)

max So l3^1 = op (n1/*) . 
1<t<nP1a ' '

Therefore we prove the first half of Lemma 3.3.3.

To prove the second half, we adapt the same approach as we use in the first half. 

We have

J, < C max 88-13.1 (1+bn).l≤t≤n ,Pl’ V Vn)
This proves the second half. Thus Lemma 3.3.3 is proved.

Lemma 3.3.4. Under Assumptions 1 to 3, 6, 8 and 9, we have for any b> 0

gt(X) max sup —— = 
ι≤t≤n ∣λ∣≤b Vn 

and

max sup g(X) - (logo,)/),)) = op (n’/K 1/2) .1Stn JAISb

Proof: The proof follows easily from Lemma 3.3.3 and one or two terms Taylor 

expansion of o2(X). The details are omitted.
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Lemma 3.3.5. Under Assumptions 1 to 3, 6, 8 and 9, there exists an integer M 

such that for any b > 0

max sup 
l≤i≤n |X|<b

A ∞>∙∣(0) (log o2(X)/02,xγ∖ . l,2. 
^~. nj/2 ) =°p(n 
i=l /

Proof: By M-term Taylor expansion of w(x), when x is small, 

w(x) = 1+)  ÷ O [x MT ).

Thus Lemma 3.3.4 implies

max sup 
l≤t≤n (A∣≤6

1 _ (IM ⅛ gE(A) )

V1+n-1/2g:(X) Li! n3/2 )
Op ∣ max sup 

yl≤t≤n AISb

Op (n(+1)(/x-1/2))

= Op (n 1/2)

if M 2 K/(K — 2) — 1. Now we can finish the proof of Lemma 3.3.5 if we show for

each i= 1,2,...,M that

max sup g'(X) - (0 log o2(X)/0X, λ)'∣ - op (n( 1)/2). 
l<<<n ∣A∣≤6

(3.3.24)

When i = 1, (3.3.24) follows directly from Lemma 3.3.4. Let us consider the cases

i = 2,3,..., M. From Lemma 3.3.3 we have for each i = 2,3,...,M that

max sup (8logo?(0)/02,X)" 1=op(n( 1)/*) 
1StSn X<b
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which, together with (3.3.21) and Lemma 3.3.4, implies 

max sup ∣jj(λ) - (log o2(o)/02,A)“
l≤t≤n Xb

( max sup (8logo?(0)/8X,A) ‘1+0p (n(/k 1/2)( 1)) ) 
ll≤i≤n [A<b' )

= op (n1/*-1/2) (op (n(-1)/*) + op (n(/*-1/2)0-1)))

= 0p (n( 1)/2)

since K> 2. This proves (3.3.24) and Lemma 3.3.5.

Lemma 3.3.6. Under Assumptions 1 to 3, 6, 8 and 9, for any b> 0 and k21,

E|no|k < ∞ implies that

sup sup
0≤u≤l XIb

Proof: The case k = 1 is trivial. We consider the case k > 2. By Newton’s

binomial formula, Lemma 3.3.6 follows by

for each i — 2,...,k. By Lemma 3.3.4, we can reduce the above to

"nt t sup∣7∣≤fe ∣ Zt (7) Ii _
L n(+1)/2 ^θp(1)

which can be proven if for each i=2,..,k

("me/-supr/salz,(»)6)2/ o e∑—nd/2—) =0(1).
\t=1 /
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By Lemma 2.4.6 (i) and (v)

sup Z,(Y) ≤ - sup 069(0) ≤ ⅛ ≤ C68,5531. (3.3.26)
ISb Ot(Ao) —Yo|<b/Vn OY Ot(A0)

Now we can easily prove (3.3.25) since nt and §0,01,t-1 are independent, E|no|k < ∞ 

and E66,500 < co. The proof of Lemma 3.3.6 is finished.

Lemma 3.3.7. Under Assumptions 1 to 3, 6, 8 and 9, for any b> 0 and k > 1, 

E|no|k < co implies that

Proof: First we get rid of the term gt(A) by using Lemma 3.3.4 and the same 

argument in proving (3.3.25). Mainly, by 1/(1+x)k/2 — 1 = O(x) for small x and 

(3.3.26), we have

-= nE-Z(x)-n-1Z(7) 
V1+n-1/2ge(à))

= Op (max sup 9e00)1) 1 im*-16853341V1Stn JAISb Vn J n 4=1 ‘

= op(1).

Next we need to prove that

sup - EI.*-1 z(»)-(36/(00)/07,) = 0p(1).
IISb n 4=1 \ Ot(Ao) / (3.3.27)

To this end, we get by using two terms Taylor expansion and Lemma 2.4.6 (i) and

(v),

,/Et(NYo)/ sup Zt(Y) — ( ----- —
Sb ∖ ot(X0) ,) ≤

b supy sb 82 (n)/87871 < CS0,:3-1
vn ot(A0) Vn



129

This proves (3.3.27).

Finally we can prove Lemma 3.3.7 if

sup sup Tnz : (8e(70)/07,7)-u*-1(T,»)
0≤u≤l I~<bn 21 ∖ Ot(Ao) /

(3.3.28)

The proof of (3.3.28) follows by taking sup∣7∣<δ into the inner product first, then 

applying Lemma 3.3.2 and noting that (06c(x7,o) — X(n-1,7t-2,...) for an ap

propriate function X. This completes the proof of Lemma 3.3.7.

Lemma 3.3.8. Under Assumptions 1 to 3, 6, 8 and 9, for any b> 0 and k > 1, 

E|no|k < ∞ implies that

suP = 
XI<b Vn

Proof: Lemma 3.3.8 follows easily from (3.3.21), LLN, and Lemmas 3.3.4 and

3.3.5 . The detail is omitted.

Lemma 3.3.9. Under Assumptions 1 to 3, 6, 8 and 9, for any b> 0 and k> 1,

E|no|k < ∞ implies that

Proof: By (3.3.21) and then by taking sup,I<b into the inner products, we find

the dominate term in the above is

MTk 0 log 02(o)/0X|*
2.2t ----- n(i+1)/2------

i=2 t=1

which is op(1) by following the same way as we prove (3.3.25).
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Lemma 3.3.10. Under Assumptions 1 to 3, 6, 8 and 9, for any b > 0 and k > 1, 

^∣¾∣t < ∞ implies that

sup sup 
0≤u≤l ∣λ∣≤6

(log o?(o)/82,A))"
2yn )

Proof. By Newton s binomial formula and by using similar way in proving

Lemma 3.3.9, the dominate term left in the above is

nu

sup sup - 2n(log o2(Ao)/02,A) - upk (A,A) 0xu21 AlSb T 1=1
which follows easily from Lemma 3.3.2. Now we complete the proof of Lemma 3.3.10.
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Chapter 4

Diagnostic Test of
ARMA-GARCH Models

With the results in Chapter 2 and 3, we can investigate some properties of QMLE 

and conduct model diagnostic tests based on residuals with numerical examples.

In fitting ARMA-GARCH, we notice that Splus module S-I-FinMetrics version 1 

and 2 does not scale the QMLE. One scaling approach based on outputs from the 

Splus S+FinMetrics is introduced. Then we verify numerically the relative efficiency 

of QMLE based on different likelihood kernels. Fitting ARMA-IGARCH model is 

also considered.

We also study by Monte Carlo simulation the residual-based diagnostic tests like: 

CUSUM test for model structural change and Jarque-Bera test for normality of in

novation.

Finally, some open problems are presented as the future work.
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4.1 Fitting ARMA-GARCH Models

4.1.1 Fitting ARMA-GARCH by Splus module S+FinMetrics

Usually En3 = 1 is assumed to identify model (1.2.13). As mentioned in Remark 2.2.4 

in Chapter 2, when we fit data by a likelihood kernel other than the standard normal 

density, we may have to scale ηt such that η** = aηt. As showed in Section 2.3.5, it 

results in a scaling of N0,Q1,** ,0p only. If a is known, after estimating X**, we can 

scale the estimators *,{,*.- ,p% by multiplying a2 back to obtain estimators of 

Q0,Q1,** 1ap in the original model.

The algorithm of fitting ARMA-GARCH model in Splus module S+FinMetrics 

version 1 and 2 does not scale the estimates after the parameters are estimated. In 

addition, standardized residuals, the estimates of conditional variances and asymp

totic variances are not scaled either. This could lead to wrong inference and poor 

prediction.

In the following, we use an example of ARMA(1,1)-GARCH(1,1) to show the 

scaling problem and give an approach to amend it based on the Splus outputs.

> module (finmetrics)

> data <- sim.arma.garch(n = 10000, nθ = 500, arch = c(0.0002, 0.2), 

garch = c( 0.5), dist.par = 0, mu = 0, ar = c(0.4), ma = c(0.6))

Instead using the command of "simulate.garch" in S+FinMetrics, we write our own 

command "sim.arma.garch" (the code is appended) to generate the data. This com

mand produces an output including an ARMA-GARCH series {yt,1 <t< n}, 

GARCH errors {Et, 1<t< n}, GARCH innovations {nt,1 <t<n} and condi-
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tional variances {02,1 <t< n}. The model parameters are given in the command. 

dist.par = 0 means the innovation is generated from the standard normal distribu

tion. n is sample size and no is the starting value. Figure (4.1) display the simulated 

data.

> par(mfrow = c(2, 2))

> tsplot(data$series, main = "Series")

> tsplot(data$error, main = "Error")

> tsplot(data$sigma.sq, main = hSigman)

> tsplot(data$innov, main = "Innovation")
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Figure 4.1: Plots of Yt, εt , 02, ηt.
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We fit the series yt with an ARMA(1,1)-GARCH(1,1) model based on the standard 

normal kernel and the student t(3) kernel respectively by the command “garch” built 

in S+FinMetrics. Since ηt ~ N(0, 1), we have Eno — 0 and En3 = 1. By Proposition 

2.2.1, Assumption 5 is satisfied, so we do not need to scale the model when fit the 

data with standard normal kernel. The estimators actually are MLE. But we have 

to scale ηt when applying the t(3) kernel. The scale parameter a is chosen such that 

Eano/(3 + 1) = 0 and E(3 + (ano)2)-1 = 1/(3 + 1). Solve the equations, we have 

a & 1.26.

> series <- data$series

> fit.≡ <- garch(series = series, formula.mean = ~ -1 ÷ arma(l, 1), 

formula.var = " garch(l, 1), cond.dist = "gaussian", trace = FALSE) 

> fit.t3 <- garch(series = series, formula.mean = -1 + arma(l, 1), 

formula.var = * garch(1, 1), cond.dist = "t", dist.par = 3, dist.est

= F, trace = FALSE)

We have shown in Chapter 2, both of these (Q)MLEs are asymptotically consistent 

and normally distributed even the likelihood kernels are different. After scaling, both 

of these estimators should be very close to the true values.

> coef .nm.splus <- fit.nm$coef

> coef.t3.splus <- fit.t3$coef

> list(coef.nm.splus, coef.t3.splus)

[CUJ :

COEF

AR(1) 0.3850685255

MA(1) 0.6283150831
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A 0.0001963835

ARCH(1) 0.1994200015

GARCH(I) 0.5051757511

[[2]]:

COEF

AR(1) 0.3872451994

MA(1) 0.6222308782

A 0.0003761551

ARCH(I) 0.3720943546

GARCH(I) 0.5062610707

It can be seen that estimators of Q1, P1, /1 are very close to true values in both 

two fittings. But the estimates of Np and Ni from the two fittings are quite different. 

Estimates of & and & based on the normal kernel fit are closer to the true value 

than the estimates based on the t(3) kernel.

Since En3 = 1, we would expect the variances of standardized residuals from the 

two fittings to be close to 1.

> res.nm.splus <- residuals(fit.nm, st = T)

> res.t3.splus <- residuals(fit.t3, st = T)

> var(res.nm.splus)

[1] 1.002256

> var(res.t3.splus)

[1] 0.5267372

> var(data$innov)

[1] 1.000595



137

It can be seen that the sample variance of standardized residuals based on the t(3) 

fitting is far away from 1.

Not only are the parameter estimators and the residuals of fit based on the t(3) 

kernel not scaled, neither are the estimated conditional standard deviation sequence 

σt and the estimated asymptotic variance. One approach of solving this scaling issue 

is to apply a correction parameter at3. Denote Me3s,, i=1, . ,n be the standardized 

residuals given by S+finMetrics based on the t(3) fitting. Since En3 = 1, we expect 

the sample variance of the standardized residuals to be close to 1. So at^ is set to 

n/ E'=1(⅛⅛)2.

> a.t3 = 1/mean(res.t3.splus 2)

> a.t3

[1] 1.898638

This correction parameter is just used to scale the Splus estimation. Now we can 

use it to correct the problems. For example:

(i) Rescale the QMLES:

Denote Oit3s, Plt3s, βιtss Ot3s, lt3s as the estimator based on the t(3) kernel 

fitting given by S+FinMetrics. Let V1t3c, Pit3c, Bit3c Ot3c, it3c be the properly re

scaled estimators based on the t(3) kernel. To correct the estimators, let Qit3c = P1t3s,

Plt3c = Plt3s, Ot3c = Ot3s/at3, lt3c = lt3s/at3, βlt3c = βlt3s∙

> coef.t3.correct <- coef .t3.splus∕c(l, 1, a.t31 a.t3, 1)

> coef.t3.correct

COEF

AR(1) 0.3872451994
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MA(1) 0.6222308782

A 0.0001981184

ARCH(I) 0.1959796218

GARCH(1) 0.5062610707

The modified QMLE of the t(3) kernel fitting now are very close to the true param

eters.

(ii) Correct the standardized residuals:

We begin with a look of the density of the standardized residuals (in Figure 4.2) 

of the two fittings given by Splus Finmatrics.

> plot(density(res.t3.splus), type = "p", col = 1, pch = 2, main = 

"Density Plots of Splus Residuals of two fittings", xlab = "", ylab = 
It II )

> lines (density (res.nm. splus ), type = "p", col = 5, pch = 0)

> lines (density (data$innov) , type = "p", col = 6, pch = 3)

> legend (1.6, 0.5, legend = c("t(3)", "normal", "original"), marks = c(2, 0, 

3), col = c(1, 5, 6, ), bty = "n")

The density of residuals based on the normal kernel fitting overlaps with that of 

the true innovation, which implies the fitting is good. There is a big difference between 

the density of residuals based on the t(3) kernel and that of the true innovation.

Denote correct standardized residuals as nt3c,. Then we correct the residuals by

nt3c, = vatsnt3s, •

> res.t3.correct <- res.t3.splus * sqrt(a.t3)

Plot again the density (in Figure 4.2) of the modified residuals.
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plot(density(res.t3.correct), pch = 2, col = 1, main =

"Density Plot of Modified Residuals", xlab = "", ylab = "")

lines(density(res.nm.splus), type = "p", pch = 0, col = 2)

lines(density(data$innov), type = "p", pch = 3, col = 3)

legend(2, 0.38, legend = c("t(3)", "normal", "original"), marks = c(2, 0, 

3), col = c(l, 5, 6, ), bty = "n")



140

Density Plots of
Splus Residuals of two fittings

normal 
original

Density Plot of Modified Residuals

***** A 

a * Δ t(3)
# 4 • normal
* 4 original

°a, 
 ********

-4 -2 0

80 0 
90 0 

W
0 

300 
80 0 

900 
M

O 
Z00

4
4

0.04 0.06 0.08 0.10

Modified Sigma vs True Sigma

0.02 0.03 0.04 0.05 0.06 0.07 0.08

Figure 4.2: Plots of QMLEs density and conditional standard deviation, scaled vs 
not scaled
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The plots shows, after scaling, both the densities of residuals from the two fits 

almost overlap with the density of the true innovation. This indicates the scaling 

parameter works well.

(iii) Correct conditional variance

Since there is no scaling problem in (Q)MLE of the ARMA part for both fits, the 

two estimated GARCH errors sequences of the two fits given by S+FinMetrics are 

very close to the true values. However, 2=+ jê? + 0102-1, thus wrong QMLE 

results in wrong σt in t(3) fitting. This can be visualized by a plot (in Figure 4.2) of 

the σt given by S+FinMetrics 6.1 against the true σt.

> plot(fit.t3$sig, sqrt (data$sigma.sq), type ≡ "p", pch = 1, col ≡ 1, main = 

"two Splus Sigma vs True Sigma", xlab = "", ylab = "")

> lines(fit.nm$sig, sqrt(data$sigma.sq), type = "p", pch = 2, col = 2)

> legend(0.08, 0.04, legend = c("t(3)", "normal"), marks = c(1, 2), col = c( 

1, 2, ), bty = "n")

It can be seen (from the third plot in Figure 4.2) that plot of σt based on the normal 

kernel fit versus the true σt is almost on a 45 degree straight line. However, the plot 

of σt based on the t(3) kernel fit against the true σt is above on a 45 degree straight 

line.

To correct σt based on the t(3) fit, we divide the sequence by the scaling parameter 

as:

> sigma.t3.correct = fit.t3Ssig∕a.t3^0.5

It can be seen (from the forth plot in Figure 4.2) that plots of the corrected sequences 

versus the true σt overlap and almost lie on a 45 degree straight line.
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> plot(sigma.t3.correct, sqrt(data$sigma.sq), type * "p", pch = 1, col * 1, 

main = "Modified Sigma vs True Sigma", xlab ■ "", ylab = "")

> lines(fit.nm$sig, sqrt(data$sigma.sq), type = "p", pch = 2, col = 2)

> legend(0.06, 0.04, legend = c("t(3)", "normal"), marks = c(1, 2), col = c( 

1, 2, ), bty ■ "n")

(iv) Correct unconditional variance

Since Eσj = 0/(1 — δι — 31), thus wrong QMLE results in wrong Ecrf in the t(3)

kernel fit.

> fit.nmφasymp.sd^2

[1] 0.0006647958

> coef. nm. splus [3] / ( 1 - coef.nm.splus[4] - coef.nm.splus[5])

[1] 0.0006647958

> fit.t3Sasymp.sd 2

[1] 0.003092248

> coef .t3. splus [3]∕(1 - coef.t3.splus[4] - coef.t3.splus[5])

[1] 0.003092248

To correct, we can use the corrected estimators to calculated the unconditional vari

ance.

> asymp.var.t3. correct <- coef.t3.correct [3]∕(1 - coef.t3.correct[4] - 

coef.t3.correct[5])

> asymp.var.t3 .correct

[1] 0.0006653643

Now it is very close to the unconditional standard deviation based on the normal

kernel fitting.
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(v) Check our assumption

Assumption 5 can be verified by checking if E{1∕(3 + (an)2)} is 1∕4.

With residuals based on t(3) kernel given by Splus, we have:

> mean(1/(3 + res.t3.splus 2))

[1] 0.2924377

which is a little bit away from 0.25.

With the rescaled residuals, we have:

> mean(l∕(3 + (1.26 * res.t3.correct) 2))

[1] 0.2497764

which is very close to 0.25.

This implies that the scale parameter correctly modified the fit.

4.1.2 Efficiency of QMLE

(i) Pure ARMA

As shown in Theorem 2.2.4 in Chapter 2, with Np being nuisance parameter, the 

asymptotic variance of ⅛ for pure ARMA is TmaDa1. For a given distribution of Et, 

De is not determined by the choice of kernel. Thus efficiency of the QMLE depends 

on T2 which is determined by the likelihood kernel h. Table 4.1 lists some T2WITTE • WTTTVI

based on several different distribution of εt and likelihood kernels.

It can be seen from Table 4.1 that for a given distribution of Et, the MLE is the 

most efficient. The closer is the likelihood kernel to the density of Mt, the smaller is 

T2hma- It also can be seen that when ηt is heavy-tailed, fitting with the normal kernel
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Table 4.1: T2 for different h and distributions of nt

ne ~ t(3) ne ~ t(6) n~SDE n ~ N(0,1)
h ~ t(3) 1.499 1.307 1.278 1.110
h ~t(6) 1.532 1.286 1.375 1.049
h ~ SDE 1.830 1.687 1.004 1.552

h ~ N(0, 1) 2.993 1.5 2 1

Table 4.2: T**2 for different h and distributions of ne

GED(.5)
Vt ~ 

GED(I)
n~

GED(1.5)
n~

N(O,1)
n.~

t(6)
h ~ SGED(.5) 2.000 1.090 0.837 0.720 0.850
h ~ SGED(.8) 2.122 1.012 0.735 0.614 0.784
h ~ SGED(I) 2.330 1.000 0.698 0.570 0.778

h ~ SGED(1.5) 3.444 1.065 0.667 0.514 0.879
h ~ N(O,1) 6.050 1.250 0.690 0.500 1.250

h ~ SGED(3) 27.127 2.110 0.867 0.543 17.128
h ~t(6) 2.223 1.032 0.700 0.554 0.750
h ~t(12) 2.413 1.035 0.674 0.520 0.774

is less efficient than fitting with the student’s t kernel. However, for a fixed kernel h, 

it is hard to compare the efficiency among different Et, since the variance depends on 

both T2hma and DE1. De1 is decided by distribution of Et and model parameters.

(ii) Pure GARCH

As to pure GARCH, it can been seen from Section 2.3.5, that for a given distribu

tion of Mt, asymptotic variance of Jn is determined only by T**2, which depends on the 

choice of h. Table 4.2 presents some τ**2 for several distributions of ηt and likelihood 

kernels.

In Table 4.2, GED(v) is the generalized error distribution (Nelson, 1991). GED(1)



145

is equivalent to double exponential distribution or Laplace distribution. GED(2) is 

equivalent to the standard normal distribution.

Table 4.2 shows that for a fixed distribution of Mt, the closer is the likelihood 

kernel to the density of ηt, the smaller is the τ**2. Similar to the findings in the Table 

4.1, Table 4.2 shows that when ηt is heavy-tailed, fitting by the normal kernel is less 

efficient than fitting by a student t kernel. Similarly for a fixed kernel h, it is hard to 

compare the efficiency among different distribution of Mt, since the variance depends 

on both τ**2 and D-1. D-1 is decided by the distribution of ηt and model parameters.

(iii) Pure GARCH with Nonzero Mean

Theorem 2.2.5 in Chapter 2 implies that the common practice of using the sample 

mean to center financial data is workable when E∣εt∣2 is finite. While Corollary 2.2.1 

shows that estimation of the mean term by the sample average is less efficient.

Lu (2001) showed by a simulation study that the asymptotic efficiency ratio of 

sample average estimator and QMLE of the mean term c depends on other parameters. 

When the model is close to IGARCH, QMLE is much more efficient than the sample 

average estimator. Table 4.3 presents some simulation results of GARCH(1,1) with 

no ~ N(0,1) and samples size 10000 for different parameters, repeated 2000 times. 

When 01+81 is fixed, the efficiency ratio seems to depend more on Qj.
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Table 4.3: Ratio of Var(En) and 02

No 01 31 Var(εn)∕σ^
0.05 0.9 0.05 13.7
0.05 0.85 0.1 12.1
0.05 0.8 0.15 11.1
0.05 0.75 0.2 9.7
0.05 0.7 0.25 8.6
0.05 0.65 0.3 7.6
0.05 0.5 0.45 5.0
0.05 0.3 0.65 2.7
0.05 0.1 0.85 1.2
0.05 0.75 0.05 3.6
0.05 0.7 0.1 3.3
0.05 0.6 0.2 2.6
0.05 0.5 0.3 2.2
0.05 0.4 0.4 1.8
0.05 0.45 0.05 1.6
0.05 0.4 0.1 1.4
0.05 0.3 0.2 1.3

(iv) For ARMA-GARCH

Theorem 2.2.2 in Chapter 2 shows the variance of QMLE depends on the choice of 

the likelihood kernel and the distribution of the innovation ηt. Under some conditions, 

QMLE for the ARMA part and the GARCH part are asymptotically independent 

and the efficiency of the QMLE for the GARCH part is decided by T**2 for a fixed 

distribution of ηt. In general, it is hard to compare the efficiency of QMLE for the 

ARMA part.

We verify the result by a simulation study. First we generate ARMA(1,1)-GARCH(1,1) 

data with sample size 10000, $1 = 0.4,401 = 0.6, No = 0.0002, a = 0.2, Bi = 0.5, and 

ηt from the standard normal distribution. Then we fit the data with the standard 

normal kernel and the student t(3) kernel respectively. The estimates from the t(3)
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fit have been adjusted as discussed in Section 4.1.1. We repeat this procedure 5000 

times. Thus we have 5000 estimates for each true parameters. The sample means and 

variances of these 5000 replications should be very close to the true mean parameters 

and asymptotic variances of the (Q)MLEs.

Let’s first have a look of the average across all 5000 replicates of the two fits for 

each parameter.

>  = mean(coef.n[, 1])mean.nl

> mean.tl = mean(coef.t3[, 1])

> mean.n2 = mean(coef.n[, 2])

> mean.t2 = mean(coef.t3[, 2])

> mean.n3 = mean(coef.n[, 3])

> mean.t3 = mean(coef .t3[, 3])

> mean.n4 = mean(coef.n[, 4])

> mean.t4 = mean(coef.t3[, 4])

> mean.n5 = mean(coef .n[, 5])

> mean.t5 = mean(coef.t3[, 5])

> c(mean.n1, mean.n2, mean.n3, mean.n4, mean.n5)

[1] 0.3984329078 0.6013272417 0.0002019203 0.1992662602 0.4965470515

> c(mean.t1, mean.t2, mean.t3, mean.t4, mean.t5)

[1] 0.3988031599 0.6003895511 0.0002039537 0.1975628389 0.4957456241

It shows that the means of these (Q)MLEs for the two fits are close to the true values. 

Next we plot the density of (Q)MLEs of the two fits (in Figure 4.3).

It can be seen from Figure 4.3 that the density of QMLEs based on the t(3) kernel 

fit is more spread, which implies the t(3) kernel fit is less efficient than the normal

kernel fit.

mean.nl
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For (Q)MLE of AR parameter
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normal 
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For (Q)MLE of GARCH parameter b1

normal 
t(3)

Figure 4.3: Density Plots of (Q)MLEs for the two fits
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A direct calculation of the variance, we have

> var.nl = var(coef.n[, 1])

> var.t1 = var(coef.t3[, 1])

> var.n2 = var(coef.n[, 2])

> var.t2 = var(coef.t3[, 2])

> var.n3 = var(coef.n[, 3])

> var.t3 = var(coef .t3[, 3])

> var.n4 = var(coef.n[, 4])

> var.t4 = var(coef.t3[, 4])

> var.n5 = var(coef.n[, 5])

> var.t5 = var(coef.t3[, 5])

> c( var.nl/var.tl, var.n2/var.t2, var.n3/var.t3.

var. n4∕var. t4, var .n5∕var .t5)

[1] 0.8529636 0.8701201 0.7046332 0.7781677 0.7672930

It can be seen that the efficiency of the ARMA part and the GARCH part is different.

It also confirms that the MLE from the normal kernel fit is more efficient than QMLE 

from the t(3) kernel fit.

We also fit the data by the student t distributions with other degrees of freedom. 

It shows when degree of freedom is big enough, there are no big difference between 

the efficiency of the QMLEs based on the normal kernel and the student t kernel.

4.1.3 Two Step Estimation of ARMA-GARCH

We show this by a simulation example. First we generate ARMA(1,1)-GARCH(1,1) 

data with sample size 2000 and c = 1, 1 = 0.4, ^1 = 0.5, No = 0.005, αχ = 0.3, 

31 = 0.6, nt from the standard normal distribution. For two step estimation, since St 
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is heavy-tailed, by Theorem 2.2.4, QMLE based on a student t kernel will be more 

efficient than that based on the normal kernel. We first fit the data with ARMA 

model by the standard normal kernel and the student t(3) respectively. Estimates 

of C, 01, (1 and residual sequences et are obtained correspondingly. Then using 

{et, 1 ≤ t ≤ n} as observations, we obtain the estimates of No, a1,01 by fitting these 

two sequences of {et, 1 <t< n}, respectively, with GARCH model based on the 

normal kernel. For the ARMA parameters, by using the estimators from the t(3) 

kernel as initial values, we obtained the local QMLEs by one step replication based 

on normal kernel and the t(3) kernel respectively as given by (3.9) in Ling (2005). 

As to one step estimation, we fit the data with ARMA-GARCH based on the normal 

kernel.

Since ηt ~ N(0,1), we do not need to scale the estimators for the GARCH part. 

Note that the c in our model is different from what is in the Splus. Since 01 = 0.4, 

c =1 in our model implies c =.6 in Splus.

We repeat this procedure 2000 times. Thus we have 2000 estimations for both 

one step and two step estimations.

Since Et is not independent and presents ARCH effect, fitting ARMA-GARCH 

data by ARMA model may lead to bad estimation of ARMA parameters.

Also since ηt ~ N(0,1) is symmetric about 0 and h is the normal kernel. We 

have E(g2(no)no) = 0 and E(g'(no)no) = 0. Thus by Theorem 2.2.5, the variance of 

the estimators of the ARMA part does not affect the variance of the estimator of the 

GARCH parameters in the two step estimation. By Remark 2.2.10, estimators of the 

ARMA parameters and the GARCH parameters are asymptotically independent in 
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one step estimation.

Figure 4.4 plots the densities (the curve of histogram of the 2000 estimations) 

of the QMLEs for the ARMA parameters. It can be seen that the density of the 

MLE from two step estimation are heavier than those from one step estimation. Also 

it can be seen that density of QMLEs based on the normal kernel are heavier than 

that based on the t(3) kernel, which is confirmed from Table 4.1. With one step 

replication, the efficiency of local QMLE is somewhat improved. But they are still 

less accurate then one step estimation.

Figure 4.5 plots the densities the QMLEs for the GARCH parameter. The vari

ances of one step and two step estimations are almost the same. It can be seen 

that the densities of the estimators in both one step and two step estimations almost 

overlap.



(Q)MLE of Mean term c

1 step ■
2 step NM
2 step 1(3) 
repeat by t(3) 
repeat by NM

(Q)MLE of PhL1

(O

0.30 0.35 0.40 0.45 0.50

— 1 step .
2 step NM

■-■ 2stept{3)
- repeat by 1(3)
- — repeat by NM :

O.

OT,∙
co

(Q)MLE of Varphi_1

0.40 0.45 0.50 0.55 0.60

1 step
2 step NM 
2 step t(3) 
repeat by t(3) 
repeat by NM
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4.2 Model Diagnosis

As introduced in Chapter 1, after fitting a model, it is a good practice to test the 

model assumptions like: randomness of residuals, remainder ARCH effect, structural 

change, and distribution of residuals and etc.. In this section, we only present some 

numeric examples based on results from Chapters 2 and 3, in particular the CUSUM 

test for the change point problem, and Jarque-Bera test for distribution of residuals.

4.2.1 Change Point Problems

In the modelling of financial time series analysis, usually the sequences are assumed 

to be stationary or the model parameters is assumed to be constant over the time 

period. However financial time series often suffer from structural changes due to 

changes in political and social events. Ignoring this can lead to a poor estimation 

and false conclusions. Thus detecting possible changes in the stochastic structure of a 

time series has become an important area of research in the last two decades and has 

drawn much attention from many researchers. Recently, there is a growing interest 

in testing for and estimating changes in parameters of econometric models. So far, 

a large number of articles have been published in various journals. See, for instance, 

Brown, Durbin and Evans (1975), Wichern, Miller and Hsu (1976), Zacks (1983), 

Krishnaiah and Miao (1988) and Csorgo and Horvath (1997) among the others.

Kokoszka and Leipus (2000) studied a change point for an ARCH process based 

on the original observations. Kim, Cho, and Lee (2000) constructed a CUSUM test 

based on the squares of the original data of a GARCH(1,1) model. Lee, Tokutsu and
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Maekawa (2003) improved the test of Kim, Cho, and Lee by constructing a test based 

on the standardized residuals.

Berkes, Horvath, Kokoszka (2004) proposed a test for change in the parameters 

of a GARCH(p q) model. The test is based on approximate likelihood scores and 

does not require the observations to have finite variance. They show that the test has 

asymptotical correct size under some weak assumptions on the model errors.

Kulperger and Yu (2005) showed the CUSUM processes based on residuals from a 

GARCH(p, q) process behaves as if they were asymptotically IID as the unobservable 

innovations. And they applied this result to detect change-point in a GARCH(p, q) 

model. In particular, Yu (2004) demonstrated with numerical examples that the 

CUSUM test based on standardized residuals of GARCH(p, q) has reasonable size 

and nice power with large sample sizes. There are substantial power gains when the 

innovation distribution is t(8) comparing to standard normal. This test can be used 

to perform near-integrated GARCH(1,1) with a comparison to Kim, Cho, and Lee’s 

test, which could not perform at all for the near-integrated GARCH(1,1).

Based on the results in Chapter 3, we can extend the results of Kulperger and Yu 

(2005) to ARMA-GARCH processes.

(i) a Structural Change in the Conditional Mean

First we consider a structural change in the conditional mean for ARMA-GARCH 

model. Due to the masking effect of ARMA, we consider only a structural change 

on constant term co in the pure GARCH model with nonzero Co, AR-GARCH model 

and MA-GARCH model.

(1) Pure GARCH model with nonzero co
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The null hypothesis is “no-change in the conditional mean”

Yt — Ott + Co
Ho: 2

I 02 = 000 + 27=1 Qot(Y-i - Co)2 + 23=1 BojoÊ-j j

and the alternative is "one change in the conditional mean”

Yt == Ott + Co

02 =000+ XPL, oo(Y,4, - Co)2 + 29L1 80,02-3

Y = on + co

03 = 00 + 2741 Qo(Y,4, - C)2 + 2941 Pojo2-,

>,t=1,...,[nu*

, t = [nu*]+1,...,n,

where co 7 co and 0 < u* < 1.

(2) MA-GARCH model

The null hypothesis is “no-change of Co in the conditional mean”

Y-c=6+ 29-19364-5

er = σtηt and 02 = Woo + 27=1 aos(Y- - Co)2 + 23=1 βoj°t-j , 

and the alternative is “one change of Co in the conditional mean”

E = Cent and 02 = 00 + 27=1 00 e2, + 23=1 B0joj,t=1,...,n 

where co 7c and 0 < u* < 1.

(3) AR-GARCH model

The null hypothesis is “no-change of Co in the conditional mean”

Ho : < Y Co — 2i=19(Y-j Co) + E

εt = σtηt and 02 = No + > Q(Y-i ~ Co)2
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and the alternative is “one change of Co in the conditional mean”

Y - co = 26(Y-- Co) + Et, if t=0,...,[nu*]

Hais Y-c=2Ed(Y-j-c)+6, if t= nu"]+1,...,n 

εt = Cent and 02 = %00 + 2T=1 ape2-; + 23=1B0j02-; , t =1,...,n 

where Co = co and 0<u*<1.

To test above hypothesis, we use the standard CUSUM test constructed from

residuals as

CUSUM(1) = max
l≤i<n

2=1 ηt-iη

By Corollary 3.2.2, under Ho,

CUSUM(1) 2 sup Bo(u) , 
0≤u≤l

where {Bo(u), 0 < us1 is a Brownian bridge. Hence we can reject Ho in favor of 

Ha if CUSUM(L) is large.

Table 4.4 lists the simulation results of GARCH(1,1) with nonzero mean. The 

parameter in Ho is (co,000,001,301) = (0,0.5,0.1,0.8). Table 4.5 lists the simu

lation results of AR(1)-GARCH(1,1) with nonzero mean. The parameter in Ho is 

(Co, 01,Q00, Q01,B01) = (0,0.4,0.5,0.1,0.8). Table 4.6 lists the simulation results of 

MA(1)-GARCH(1,1) with nonzero mean. The parameter in Ho is (Co, (01, aæ, Q01,B01) = 

(0,0.6, 0.5,0.1,0.8). In These 3 tables, all the break points in Ha are u* = 0.5 and 

Co changes from 0 to 0.5 after [u*n]. Critical values 1.358 and 1.2239 are chosen for 

significance levels α = 5% and a = 10% respectively. Five thousand replications are 

used.
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Table 4.4: Size and Power of CUSUM^ Statistic for GARCH(1,1) with Nonzero 
Mean

no ~ N(0, 1) n=300 n=600 n=1000 n=3000
Size

a =.05 0.038 0.038 0.043 .050
a = .1 0.075 0.079 0.094 .099
Power
a =.05 0.387 0.689 0.902 1
0=.1 0.509 0.792 0.944 • 1

Table 4.5: Size and Power of CUSUM^ Statistic for AR(1)-GARCH(1,1) with 
Nonzero Mean

no ~ N(0,1) n=300 n==600 * n=1000 n=3000
Size

a =.05 .037 .043 .049 .050
a=.1 .077 .086 .091 .102
Power
a =.05 0.142 0.288 0.480 .930
a = .1 0.234 0.403 0.595 .961

Table 4.6: Size and Power of CUSUM() Statistic for MA(1)-GARCH(1,1) with 
Nonzero Mean

no ~ N(0, 1) n=300 n=600 n=1000 n=3000
Size

a =.05 0.044 0.035 0.045 .052
α = .1 0.087 0.081 0.098 .105
Power
a =.05 0.164 0.315 0.521 0.947
α = .1 0.255 0.436 0.632 0.97
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From Table 4.4 - Table 4.6, it can be seen that sizes are somewhat conservative 

when sample size n is small. When sample size increases, the sizes are very close 

to the nominal significance level. The powers increase with the sample size and are 

bigger than 93% as sample size is bigger than 3000.

(ii) a Structural Change in Conditional Variance

Next we consider a change in the conditional variance of an ARMA-GARCH model 

with null hypothesis as “no-change in the conditional variance”

Y - Co = 2E1 Vo (Y- - Co) + εt + 29-1 PojEt-j

Ho:3 εt = σtηt

02 = αoo + Σi=ι Gote?_, + 231 80302L, 

>, t — 1,...,n

against the “one change in the conditional variance” alternative

Y c0 — 2=1 Qoi(Y—i Co) +8+ 291 V0jet-j

Haf : <
εt = Ot"t

] 00 + EP00 e + 291/0502-, if t = l,∙∙∙,W 

obo + 2=1 00 €2-+ 23=1 B0,02-3 if t = [nu*]+1,...,n, 

where (000,001,.., 00pi/01,...,Boq) ≠ (doo,001.., 00pi/01,...,/0q) and 0 < u* < 

1. The statistic is defined as

CUSUM(2) = max  ----------=——----------- - ,
l≤i<n Co./n 

where
Inz 2 

C2 =*2(T - 7)2 - ¾)

is an estimator of C2 = E(n3 — u2)2 = u2(va — 1). Therefore, by Corollaries 3.2.3,
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Table 4.7: Size and Power of CUSUM(2) statistic for ARMA(1,1)-GARCH(1,1)

To ~ N(0, 1) n=500 n=1000 n=1500 n=3000
Null 0.036 0.036 0.037 0.044
oo = .0003 0.236 0.754 0.929 0.999
061 = .167 0.334 0.416 0.621 0.914
Box = .767 0.306 0.655 0.851 0.994

no ~ t(9) n=500 n=1000 n=1500 n=3000
Null 0.039 0.046 0.048 0.043
No = .0003 0.191 0.442 0.645 0.930
061 = .167 0.148 0.367 0.551 0.868
/861 = ∙767 0.182 0.425 0.636 0.938

under HO,

CUSUM(2) D, sup Bo(u)I, 
0≤u≤l

where {Bo(u), 0 ≤ u ≤ 1} is a Brownian bridge. Hence we can reject Ho in favor of 

Her whenever CUSUM(2) is large.

Table 4.7 presents the simulation results of ARMA(1,1)-GARCH(1,1) with ηt ~ 

N(0,1) and nt ~ t(9) respectively. The parameter in Ho

(co, dol, 401,000, 001> ‰) = (0, 0.4, 0.6, 0.0002, 0.1,0.8).

Break point 0.5 in Ha∣ is used. Replication is 5000 times. Each time there is only 

one change in the conditional variance. Critical values 1.358 is chosen for significance 

level 5%.

Table 4.7 shows some similar conclusion of ARMA(1,1)-GARCH(1,1) to that of 

GARCH(1,1) in Yu (2004). There is size distortion, which is less serious when the 

sample size is bigger. Also there are power losses when the innovation distribution
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changes from normal to student t.

4.2.2 Jarque-Bera Test for Normality

Although normality of the innovations in ARMA-(I)GARCH model is not neces

sary for the estimation, the efficiency of QMLE is related to the density presumed. 

The closer is the likelihood kernel to the density of innovation, the more efficient 

is the QMLE. Empirically the innovation density is leptokurtic and not normally 

distributed. Thus normality test is quite important in diagnosis of goodness-of-fit, 

efficiency test and inference.

A popular graphical method for examining normality is the normal quantile

quantile plot (QQ-plot). QQ-plot is a scatter plot of the standardized empirical 

quantiles of the residuals against the quantiles of the standard normal distribution. 

If the data is normally distributed, then the quantiles will lie approximately on a 45 

degree line.

In econometrics a normality test is customarily performed by Jarque-Bera (JB) 

test for its straightforward interpretation and implementation.

The JB statistic is defined as:

JB=^ « 2 ^21l (4.2.1)
O 1

where b1 = m3/m2/2, b2 = m4/m2 respectively, and mi is the ith central moment of 

the sample with size n.

The JB test was formally derived by Jarque and Bera (1987) as a Lagrange
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Multiplier test of normality of the regression residuals versus the alternative that the 

error distribution belongs to the Pearson family, which includes the beta, gamma and 

student’s t distribution and others. They showed JB is asymptotically equivalent to 

the likelihood ratio test, implying it has the same asymptotic power characteristics 

including maximum local asymptotic power (Cox and Hinkley (1974)). Hence a test 

based on JB is asymptotically locally most powerful. They also showed that JB is 

asymptotically distributed as χ2(2).

There are some reasons which limit the application of JB test. One of the reasons 

is that the asymptotic validity of the JB test has been only proved for limit stationary 

models. It is unclear if this test can be extended. Recently, Kulperger and Yu (2005) 

extended it to GARCH(p,q) models.

A second limitation is that JB statistic does not take the serial correlation into 

account. In time series modelling, due to mis-specifying the model or other reasons, 

the residuals may not be identically and independently distributed. For example, 

Kawczak, Kulperger and Yu (2005) has shown that residuals of ARCH models cannot 

be treated as IID in general.

Another limitation is that the asymptotic distribution of the JB statistic may 

provide a poor approximation in finite samples.

Urzua (1996) adjusted the JB statistic by using the exact means and variance of 

b1,b2 in (4.2.1) instead of the asymptotic means and variance. He showed that the 

adjusted statistic behaves better for small and medium size samples by simulation.

Kilian and Demiroglu (2000) studied the Jarque-Bera test for vector error-correction 

(VEC) models and level vector autoregressions (VAR) containing possibly integrated
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or cointegrated variables. They also proposed to use bootstrap critical values to im

prove the small-sample performance of the test in stationary VAR models and in VEC 

models and compared the accuracy of the asymptotic and the bootstrap version of 

the Jarque-Bera test by simulation.

Lu (2001) extended the JB statistic to test normal and student t distribution for 

residuals from ARCH models. In testing he used adjusted critical values for finite 

sample instead of applying directly the X2 critical value. With this correction, the 

size and power of the test are improved. In the work, he obtained equations of the JB 

statistic critical value (size .10 and .05) for both the normal distribution and student t 

distribution with different sample size n. To do this, he used Monte Carlo simulation 

to obtain critical values critical value for different sample sizes n (and degree freedom 

d for student t distribution) and then regressed on sample size n (and degree freedom 

d for student t distribution). The critical value formulas are listed here:

Critical value for normality test with size 0.10 is:

, 11.438 290.146 5767.467 30798.127
JBnm.1 = 4.60517------ + ------- +------------- 3-----, n-/2 n n°/2 n- 

Critical value for normality test with size 0.05 is: 

, _ 16.912 519.764 7754.753 36092.983 JBnm.05 — 5.991645 1/9 + 3/2 + „ n-/2 n n°/2 n2

n ≥ 100 (4.2.2)

n ≥ 100 (4.2.3)

Critical value for the student t(d) test with size 0.10 is: 

, L 4.44 53.75 149.1 23050 1810300 J‰ = 4.60517-^ + -—+

38.15 3294 _ 358.4 10070 120200
(dn)1/27 dn dn1/2 * d2n dn2 >n- (4.2.4)
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Critical value for student t(d) test with size 0.05 is:

JBtte = 5.991645 - 40.88 361.44 816.43 10.27 142.28
d + 43/2 42 „1/2 „3/2

139.68 2013
+(dn)1/2 dn

608.86 24640 . .
d„1/2 + 02 ’ n-10° (4.2.5)

Kulperger and Yu (2005) extended the JB statistic to test normal distribution of

GARCH(p,q) innovations. They defined the test as:

TD Ta 2 Ta 2JB — 9 (Sn K3) + o (Kn K4) ,

where, ¾ is the GARCH(p,q) innovation, Uk = E(¾), KE = uk/ub/2, and

(4.2.6)

aZT-d)3 
” (Σ^1(^ - 0)2)3/2

a-E1(h - 0)4 
" (X"1(fe - 7)2)2

02 = (K6 — K3) + 3(3 + 3k3 — 2K4) + 3K3(K3/4 + 3K3K4/4 — K5)

and

02 = (κ8 - KÂ) + 4κ3(4κ3 + 4K3K4 - 2Ks) + 4K4(k2 - K6) .

Based on results in Chapter 3, we can further extended it to test distribution of 

ARMA-(I)GARCH innovations. The statistic is defined same as in (4.2.6).

Koul and Ling (2005) proposed a test based on a vector of certain weighted resid

ual empirical processes and used it to test the normality of the GARCH innovation 

distribution ( as in Table 4.8). To compare the performance of Koul and Ling’s (2005)
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Table 4.8: Size and Power of test, Koul and Ling (2005)

n=200 n=400
a = 0.1 a = 0.05 a = 0.01 a = 0.1 a = 0.05 a = 0.01

Null .089 .041 .006 .102 .053 .008
Hol .171 .086 .021 .348 .226 .058
Ha2 .309 .180 .056 .590 .453 .200
Ha3 .570 .434 .201 .909 .882 .581
Hai .407 .247 .060 .793 .640 .283
Ha5 1 1 1 1 1 1

test with the JB test, we use the same model AR(1)-GARCH(1,1), same parameters 

of (01, Q00, Q01,B01) = (0.5,0.025, 0.25,0.5) and with same sample size 200 and 400. 

The procedure is replicated 1000 times. The Null distribution of nt is N(O,1) and its 

alternatives are set as:

Haiin ~ V3/5 t(5); Haz:n ~ V1/2t(4); Has:m ~ V1/3 t(3);

Had : ne ~ double exponential ; Has : ηt ~ [0.5N(-3, 1) + 0.5N(3, 1)]/V10 .

Table 4.9 lists the JB test results based on X2 critical values. Table 4.10 lists 

the JB test results based on corrected critical values by Lu (2001). It can be seen 

that JB test based on both corrected critical values and X2 critical values are much 

more powerful than Koul and Ling’s (2005) test. In particular, JB test has substantial 

power gains under Hal and Ha2. The sizes are conservative when X2 critical values are 

used. While applying corrected critical values, the sizes are very close to the nominal 

significance level for n = 400, though the sizes are still somewhat conservative for

Tl = 200.
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Table 4.9: Size and Power of JB statistic for AR( 1 )-G ARCH ( 1,1) based on X2 critical 
value

n=200 n=400
a = 0.1 a = 0.05 a = 0.01 a = 0.1 a = 0.05 a = 0.01

Null .064 .032 .015 .064 .034 .008
Hal .831 .794 .715 .991 .984 .959
Ha2 .932 .912 .854 1 .997 .991
Ha3 .985 .981 .969 1 1 1
Ha4 .954 .933 .875 .998 .998 .995
Has 1 1 1 1 1

Table 4.10: Size and Power of JB statistic for AR(1)-GARCH(1,1) based on corrected 
critical value

n=200 n=400
a = 0.1 a = 0.05 a =0.1 a = 0.05

Null .088 .043 .096 .052
Hai .845 .810 .986 .975
Ha2 .944 .915 .997 .993
Ha3 .989 .980 1 1
Ha4 .965 .933 .998 .998
Ha5 1 1 1 1
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4.3 Conclusions and Discussions

In Section 4.1.1, with a being unknown, due to En3 = 1 and Ent*2 = a2En2 = a2, 

we can estimate α2 by n~12T=1 n**2. One shortcoming of this estimation of α is 

that it brings extra variation to the estimator of a0,Q1,- ,0p. And the normality 

of rescaled estimators requires 4th moment of n. Another shortcoming is that the 

sample variance of 2 is constant 1 for any sampling. To relax the moment require

ments of ηt and constant sample variance of n2, we can assume other conditions, i.e. 

Enol = 1 or E(g(no)no) = —1 to identify model (1.2.13).

In the proof of normality theorem in Chapter 2, we require the distribution of ne 

to be symmetric about 0. If the innovation distribution is not symmetric, we can 

employ other models which consider the leverage effect as introduced in Chapter 1. 

The problem is how to test the symmetry, which will be considered in my future work.

In my future work, I will consider if the results in Chapter 2 and 3 can be extended 

to multivariate ARMA-GARCH.

4.4 APPENDIX

A.1 Splus code of simulating ARMA-GARCH

#E eta 2 =1

#Normal distribution: dist.par≡0; Double Exponential distribution: 

dist.part=1; #Student distribution: dist.par > 2.
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sim.garch <- function(n, no, arch, garch, dist.par) {

module(finmetrics)

if(dist.par == 0)

innov <- rnorm(n + n0)

else if(dist.par == 1)

innov <- rdexp(n + nθ, rate = sqrt(2))

else innov <- rt(n+n0, df=dist.par)*sqrt((dist.par - 2)∕dist.par) 

x <- innov

h <- rep(arch[1] , (n + n0))

p <- length(arch)

q <- length(garch)

m <- max(c(p - 1, q))

if (m == 0) .

return(innov)

if(p - 1 < 1) 

return("error: NO arch") 

x[l] <- sqrt(h[l]) * x[1]

#ARCH

if(q <1) {

for(i in 2:p) {

for(j in 2:i)

h[i] <- h[i] + (arch[j] * (x[i - j + 1])^ 2)

x[i] <- sqrt(h[i]) * x[i]

for(i in (m + 2):(n0 + n)) { 

for(j in 2:p)
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h[il <- h[i] + arch[j] * (x[i - j + 1])°2

x[i] <- sqrt(h[i]) * x[i]

error <- x

sigma.sq <- h

return(error, sigma, sq, innov)

#GARCH initial

if((p - 1) == q) {

for(i in 2:p) {

for(j in 2:i)

h[i] <- h[i] + (arch[j] * (x[i - j + 1])^ 2)

+ garch[j - 1] * h[i - j + 1]

x[i] <- sqrt(h[i]) * x[i]

else if((p - 1) < q) {

for(i in 2:p) {

for(j in 2:i)

h[i] <- h[i] + (arch[j] * (x[i - j + 1])“2)

+ garch[j - 1] * h[i - j + 1]

x[i] <- sqrt(h[i]) * x[i]

for(i in (p + 1):(q + 1)) {

for(j in 2:p)

h[i] <- h[i] + arch[j] * (x[i - j + 1])*2
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for(j in 2:i)

h[i] <- h[i] + garch[j - 1] * h[i - j + 1]

x[i] <- sqrt(h[i]) ♦ x[i]

else {

for(i in 2:(q + 1)) €

for(j in 2:1)

hfil <- h[i] + arch[j] * (x[i - j + 1])^2

+ garch[j - 1] * h[i - j+1]

x[i] <- sqrt(h[i]) * x[i]

for(i in (q + 2):p) {

for(j in 2:(q + 1))

h[i] <- h[i] + gar ch [j - 1] ♦ h[i - j + 1] 

for(j in 2:i)

h[i] <- h[i] + arch[j] * (x[i - j + 1])'2 

x[i] <- sqrt(h[i]) * x[i]

# GARCH

for(i in (m + 2):(nθ + n)) {

for(j in l:q)

h[i] <- h[i] + garch[j] * h[i - q]

for(j in 2:p)

h[i] <- h[i] + arch[j] * (x[i - j + 1])^2



171

x[i] <- sqrt(h[i]) * x[i]

list(error = x, sigma.sq = h, innov = innov)

sim. arma, gar ch <- function(n, nθ, arch, garch, 

dist.par, mu, ar, ma)

e.sig.eta <- sim.garch(n = n, n0 = no, arch = arch, 

garch = garch, dist.par = dist.par)

e <- e.sig.eta$error

x <- e

p <- length(ar)

q <- length(ma)

m <- max(c(p, q))

if(m == 0) {

series <- x[ - (l:n0)] + mu

error <- e[ - (l:n0)]

sigma.sq <- e.sig.eta$sigma.sq[ - (l:n0)]

innov <- e.sig.eta$innov[ - (l:n0)] 

return(series, error, sigma.sq, innov)

x[1] = e[l] + mu

#AR-GARCH

if(q < 1) {

for(i in 2:(p + 1))
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x[i] <- mu + sum(ar[l:(i - 1)] * (x[(i - 1):1] - mu)) + e[i] 

for(i in (p + 2):(n + n0))

x[i] <- mu + sum(ar[l:p] * (x[(i - 1):(i - p)] - mu)) + β[i] 

series <- x[ - (l:n0)]

error <- e[ - (l:n0)]

sigma.sq <- e.sig.etaSsig[ - (l:n0)]

innov <- e.sig.eta$innov[ - (l:n0)]

return(series, error, sigma.sq, innov)

#MA-GARCH

if(p < 1) {

for(i in 2:(q + 1))

x[i] <- mu + e[i] + sum(ma[l:(i - 1)] * e[(i - 1):

1])

for(i in (q + 2):(n + n0))

x[i] <- mu + e[i] + sum(ma[1:ql * e[(i - 1):(i - q)])

series <- x[ - (l:n0)]

error <- e[ - (l:n0)]

sigma.sq <- e.sig.eta$sig[ - (l:n0)]

innov <- e.sig.etaSinnov[ - (1:n0)]

return(series, error, sigma.sq, innov)

#ARMA-GARCH, initial
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if(p == q) {

for(i in 2:(p + 1))

x[i] <- mu + sum(ar[1:(i - 1)] * (x[(i - 1):1] - mu)) + β[i]

+ sum(ma[1:(i - 1)] * e[(i - 1):1])

else if(p < q) {

for(i in 2:(p + 1))

x[i] <- mu + sum(ar[1:(i - 1)] * (x[(i - 1):1] - mu)) + e[i]

+ sum(ma[1:(i - 1)] * e[(i - 1):1])

for(i in (p + 2):(q + 1))

x[i] <- mu + sum(ar[l:p] * (x[(i - 1):(i - p)] - mu)) + e[i]

+ sum(ma[1:(i - 1)] * e[(i - 1):1])

else {

for(i in 2:(q + 1))

x[i] <- mu + sum(ar[1:(i - 1)] * (x[(i - 1):1] - mu)) + e[i]

+ sum(ma[1:(i - 1)] * e[(i - 1):1])

for(i in (q + 2):(p + 1))

x[i] <- mu + sum(ar [1:(i - 1)] * (x[(i - 1):1] - mu)) + e[i]

+ sum(ma[l:q] * e[(i - 1):(i - q)])

#ARMA-GARCH, initial

for(i in (m + 2):(n0 + n))
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x[i] <- mu + sum(ar [1:p] * (x[(i - 1) : (i - p)] - mu)) + e[ i] 

+ sum(ma[1:ql * e[(i - l):(i - q)J)

list(series = x[ - (l:n0)], error = e[ - (l:n0)],

sigma.sq = e.sig.eta$ sigma, sq[ - (l:n0)],

innov = e.sig.eta$innov[ - (l:n0)])
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