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Abstract

~ This thesis is motivated to investigate distribution theory of a quasi maximum like-
lihood estimator (QMLE) and test of goodness-of-fitting of an ARMA-(I)GARCH
model.

We obtain asymptotic consistency and normality of the QMLEs based on an arbi-
trary likelihood kernel. It shows that the moment conditions of errors in the ARMA
part and innovations in the GARCH part depend on the choice of likelihood kernel.
For example, the asymptotic normality of QMLEs based on student ¢ likelihood ker-
nel holds with arbitrary small positive moment on error term and 2 — ¢ moment on
innovation term, where 0 < ¢ < 1. It also shows that the asymptotic efficiency of
QMLEs depends on the choice of likelihood kernel and the distribution of innova-
tion. For the pure GARCH model with nonzero constant mean, we show that the
common practice of using the sample mean to center financial data is workable if
the error term has finite variance. Consequently, we study some processes based on
residuals of an ARMA-(I)GARCH model. We show that the k-th power partial sum
process converges to a Brownian process plus two correction terms, where the cor-

rection terms always depend on ARMA-GARCH parameters. We also show that the
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CUSUM and the self-normalized processes (standardized by the residual sample mean
and variance) behave as if the residuals were asymptotically IID. Finally, applications
of these results are exhibited with numerical examples.

Chapter 1 gives a brief introduction of financial retum, econometric models such
as ARMA, GARCH and their extensions, as well as model estimation and diagnosis.

Chapter 2 focuses on the distribution theory of one step QMLEs and two step
- QMLEs of an ARMA-(I)GARCH model. Special cases like pure ARMA and pure
GARCH are considered too. Three specific examples with varied kernels are pre-
sented.

Chapter 3 deals with the high moment partial sum processes, the CUSUM and the
self-normalized processes based on residuals of an ARMA-(I)GARCH model, origi-
nally proposed by Kulperger and Yu (2005) for a pure GARCH model.

In Chapter 4, we present some numerical examples of the applications of Chapter
2 & 3, for instance, efficiency of QMLEs based on different kernels, CUSUM statistic
for testing ARMA-GARCH model structural changes, Jarque-Bera omnibus statistic
for testing normality of the unobservable innovation of an ARMA-GARCH model.

Finally some conclusions and discussions are put forward.

Keywords: ARMA-GARCH, ARMA-IGARCH, quasi-maximum likelihood estima-
tion, two-step estimation, asymptotic consistency, asymptotic normality, asymptotic
efficiency, residuals, high moment partial sum process, weak convergence, CUSUM,

omnibus, skewness, kurtosis, 1/n consistency.

iv



To my family
(my mother Jiannan Li, my father Yafu (Lu) He,

my wife Lugiong Jiao and my son David Lu)



Acknowledgements

I would like to express my gratitude to all those who gave me support and encour-
agement to complete this thesis.

I am deeply indebted to my supervisor Dr. Hao Yu, for his advice and supervision
during both my master and Ph.D study. His stimulating suggestions and encourage-
ment helped me in all the time of research for and writing of this thesis. Without
his guidance, support and good nature, I would never have been able to complete my
thesis.

I greatly appreciate Dr. Ian McLeod and Dr. Bruce Jones for their offering me
the chance to work at Statlab, where I gained lots of precious practical experience. I
also would like to express my sincere thanks to the former Stalab manager, Dr. Ying
Zhang for her help and encouragement.

I also want to thank Dr. David Bellhouse, Dr. Reg Kulperger, Dr. John Braun,
Dr. Duncan Murdoch, Dr. Serge Provost, Dr. Ricardas Zitikis for their instructions.
I learned a lot from their teachings.

I would like to thank Jennifer, Lisa and Suzanne, who have been kind enough to

help me in their respective roles.



I greatly appreciate the examiners Dr. Peter Song, Dr. Mark Reesor, Dr. lan
McLeod and Dr. Reg Kulperger for their precious comments on this thesis.

I acknowledge the Department of Statistical & Actuarial Sciences and Faculty of
Graduate Study at the University of Western Ontario for providing me scholarships
to pursue the degree.

I am grateful to all my friends: Xiaogiang, Jingming, Caixia, Andrei, Alex, Yulin,
- Douglas and so many others for having lots of discussions and fun with them while I
stay in London, Ontario.

Especially, I would like to dedicate this thesis to my family, my mother Jiannan Li,
my father Yafu Lu, my wife Luqiong Jiao and my son David, for their love, patience

and understanding - they allowed me to spend most of the time on this thesis.

vii



Table of Contents

| Certificate of Examination ii
Abstract iii
Acknowledgements \'
Table of Contents xi
List of Tables xii
List of Figures xili
1 Introduction 1

1.1 Financial time series . . . . . . . . . i e e e e e e e e e e e e 1
1.1.1 Financialreturns . . . . . . . . . . . . . . . 1
1.1.2 Time series . . . . . . v v v e e e e e e e e e e e e e e e e 2

1.2 Econometric modelling of financial data . . ... 3
1.21 ARMA model . . . . .. .. .. . . e 4
1.2.2 ARCH model and its applications . . . . . ... ... ... .. 5
1.2.3 GARCHmodel . . ... .. .. . . . .. i v 7



1.24 Extensions of GARCH . .. . . ... . . . .. . .. . .... 9

1.2.5 ARMA(P,Q)-GARCH(p,q) . ... . .« v, 12
1.3 Testing the ARCHeffect . . . .. .. ... ... ... ... . ... 13
1.3.1 Engle’s Lagrange multipliertest . . . . . .. . ... ... ... 14
1.32 McLeod-Litest . . ... .. ... ... ... . ... ... 14
1.4 Model estimation . . . .. .. R A AEERIE IR 15
1.4.1 Quasi maximum likelihood estimation . . . . . . .. ... ... 15
1.4.2 Large sample estimation properties . . . . ... .. ... ... 16
1.5 Model diagnosticchecks . . . .. ... ... ... ... . ... 17
1.6 Objectives . . . . . . . . . . e e e 19
QMLE of ARMA-GARCH l 20
2.1 [Existing Distribution Theories of QMLE . . . . . ... ... ... .. 20
2.2 Assumptions and Theorems of QMLE . . . . . ... ... .. ... .. 23
23 Examples . . . . . . . .. 35
2.3.1 QMLE based on the student’stdensity . . . . . .. ... ... 35
2.3.2 QMLE based on smoothed generalized error density . . . . . . 36
2.3.3 QMLE based on the normal density . . . . . . ... ... ... 38
2.3.4 Efficiencyof QMLE . . . . . . . . .. .. ... . ... . ... 39
2.4 Proofs................... ................. 42
2.4.1 Proof of Theorem 2.2.1 . . . . . ... .. .. ... .. ..... 42
2.4.2 Proof of Theorem 2.2.2 . . . ... .. ... ... ... ..... 44
2.4.3 Proofs of Theorem 2.2.3, Corollaries 2.2.1 and 2.2.2 . . . . . . 45



2.4.4 Proof of Theorem 2.2.4 . . . . . . . . . . . v ... 47

2.4.5 Proof of Theorem 2.2.5 . . . ... .. .. .. ... ...... 47

246 Proofsof Lemmas. ... ... ... ... ... ... ... . 48
2.5 APPENDIX . . . . . . . . e 84
A.1 Proof of Proposition 2.2.1 . . . . ... ... .. .. .. ... ... 84
A.2 Expressions of a,(i), as(i), é’t('y),'&t(/\) ................. 87
A.3 Expressions of first and second derivatives of £;(7) and 67()) . . . . . 96
A.4 Modification for pure GARCH with non-zero constant mean . . . . . 08
A.5 Modification for pure ARMA . . ... .. ... ... ......... 100
A.6 Expressions of first and second derivatives of £(y) and &,(A) . . . . . 101

A.7 Difference between €:() and &;(7), o+()A) and &¢()), as well as between

their derivatives . . . . . . . . . . .. ... o 104

3 High Moment Partial Sum Processes of Residuals 107
3.1 Introduction . . ... . ... ... ... ... 108
3.2 Assumptionsand Results . . . . . . .. ... ... .. ... ... .. 109
3.3 Proofs . .. . . . .. e 115
3.3.1 Proof of Theorem3.2.1 . . . . . . ... ... ... ... .... 115

3.3.2 Proof of Theorem 3.2.2 . . . . . ... ... ... ... ..... 119

3.3.3 Proofof Theorem3.2.3 . .. ... ... ... ... .. .. ... 120

3.3.4 Proof of preliminary results . . . .. ... ... ........ 122

4 Diagnostic Test of ARMA-GARCH Models 131
4.1 Fitting ARMA-GARCHModels . . . . ... ... ........... 132



4.1.1 Fitting ARMA-GARCH by Splus module S+FinMetrics

4.1.2 Efficiency of QMLE . . . . . . ..

0000000000000000

4.1.3 Two Step Estimation of ARMA-GARCH . . . ...... ...

4,2 Model Diagnosis. . . . .. ... ... ..
4.2.1 Change Point Problems . .. ..
4.2.2 Jarque-Bera Test for Normality .

4.3 Conclusions and Discussions . . . . . . .

44 APPENDIX . ... ............

A.1 Splus code of simulating ARMA-GARCH
References

Curriculum Vitae

oooooooooooooooo

oooooooooooooooo

0000000000000000

................

oooooooooooooooo

OOOOOOOOOOOOOOOO

132

143

149

154

154

161

167

167

167

175

184



List of Tables

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

72 . for different h and distributionsof 7, . . . . .. ... ... ...

7*2 for different h and distributionsof 9, . . . . . .. ... ... L.

Ratio of Var(é,)and o2 . . . . .. .. .. .. ... .. ... ...

Size and Power of CUSU MW Statistic for GARCH(1,1) with Nonzero

Size and Power of CUSUMW Statistic for AR(1)-GARCH(1,1) with
NonzeroMean . . .. .. ... .. .. ... ...
Size and Power of CUSUMW) Statistic for MA(1)-GARCH(1,1) with
Nonzero Mean . . .. .. .. . .. . ... . e
Size and Power of CUSUM® statistic for ARMA(1,1)-GARCH(1,1)

Size and Power of test, Koul and Ling (2005) . . . . . . ... .....
Size and Power of JB statistic for AR(1)-GARCH(1,1) based on xs
critical value . . . . . . . . . Lo
Size and Power of JB statistic for AR(i)-GARCH(l,l) based on cor-

rected critical value . . . . . . . . . .. e e e e

xii

158

158



List of Figures

4.1

4.2

4.3

4.4

4.5

Plots of U, €y 02, Mo v o v v v e e e e e 134
Plots of QMLEs density and conditional standard deviation, scaled vs
notscaled . . ... .. .. .. 140
Density Plots of (Q)MLEs for the twofits . . .. ... ........ 148
Density Plot of (Q)MLEs for ARMA parameters from One Step and
Two Step Estimations . . . .. .. ... ... ... .......... 152
Density Plot of (Q)MLEs for GARCH parameters from One Step and

Two Step Estimations . . . . ... ... ... ... ... ....... 153

x1i1



Chapter 1

Introduction

This chapter is devoted to some brief introduction of financial return, econometric
models such as ARMA, GARCH and their extensions, as well as the model estimation

and diagnosis.

1.1 Financial time series

1.1.1 Financial returns

To meet and satisfy the commercial and productive needs of various of investors and
markets, many financial tools and derivatives such as stocks, options, forwards and
bonds have been produced. We call these tools as financial assets.

The financial world is full of uncertainty and events take place every minute.
Nonetheless, there are regularities and patterns to be identified. The fast expansion
of financial markets and increasing variety and complexity of financial products give
impetus to the development of econometrics. The aim is to make use of data, statisti-
cal inference methods and structural or descriptive modelling to deal with uncertainty

and guide decisions in economics.
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To investigate the regularities and patterns, we turn to the return, instead of the
asset price itself. In econometric analysis, the return is conventionally defined as the

logarithmic price changes:

Definition 1.1.1. Denote a financial asset with price p; at time t (¢ is an integer)

and price p;_1 at time ¢t — 1, the return is defined as:

R(t —1,t) =log P

Pi—1
We suppose the asset price includes the dividends if it has a dividend payment

during the period.

1.1.2 Time series

Definition 1.1.2. Time series is a discrete stochastic process where the time index

takes on a finite or countably infinite set of values, e.g. {X;, —00 <t < o0}.

With respect to financial data, the price or return process of any asset naturally
gives rise to a time series.

In the rest of this thesis, all quoted sequences like {Y;, —00 < t < 00}, {&;,—0 <
t < oo}, {m, —00 <t < oo} are time series.

Generally an observed time series can be decomposed into three components:
the trend (long term direction), the seasonal (periodic related movements) and the
irregular or residuals (unsystematic, short term fluctuations). The trend and seasonal
effects are deterministic and can be removed by fegression, smoothing, difference or
other methods. In the thesis, we focus on the nondeterministic part. From now
on, without specification, by saying time series we mean the purely nondeterministic

series with the deterministic components being removed from original series.
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Weak stationary time series have time independent first and second moments.
Define v,(k) = E[(X; — E(X}:))(X:—x — E(X:))] as lag k autocovariance of X;. The
lag k autocorrelation function (ACF) of X, is defined by p,(k) = v.(k)/7:(0). In-
tuitively, a stationary time series is characterized by its mean, variance and ACF.
The lag k sample autocovariance and lag k sample autocorrelation function (SACF)
are given by: §.(k) = n™’ Z?=i+1(Xt - X)(Xi-i — X), pz(k) = Y2(k)/42(0), where
X =n"1Y 7, X, is the sample mean.

Time series analysis accounts for the fact that data points taken over time may
have a serial (such as autocorrelation) that should be accounted for. It plays an
important role in evaluating any investment strategy, risk modelling and arbitrage.
Analysis of a given asset’s price or return time series could forecast its future price
movements. A wide variety of mathematical and statistical tools have been developed
for dealing with time series data.

A fundamental theorem in time series analysis is Wold’s decomposition (c.f. Fuller
(1996) pg. 96), which states that every weakly stationary and purely nondeterministic
time series can be written as a linear combination of a sequence of uncorrelated
random variables. The general Wold form of a stationary and ergodic time series is

handy for theoretical analysis but is not practically useful for estimation purposes.

1.2 Econometric modelling of financial data

Portfolio mean-variance optimizing investors are assumed to evaluate the performance

of their investment in terms of two summary statistics that represent the expected gain



4

of a portfolio and its expected risk determined from asset volatility. These statistics
correspond to the first two conditional moments of asset price or return. In statistical
terms, volatility or risk is usually measured by variance, or standard deviation. Risk
from an individual company is diversifiable, while a market component cannot be
diversified.

In the following we will introduce several econometric models that are broadly

utilized in exploring financial return time series.

1.2.1 ARMA model

Definition 1.2.1. {Y;,—0c0o <t < oo} is an ARMA(P, Q) process if Y; is stationary

and, for every t,
Yi=¢g1Ye 1+ @Yo+ ... +0pYip+ e+ 018-1 + P2€t—2 + ... + QQE—Q ,

where ¢; is white noise(0, 02) and the polynomials Ag(2) = 1 — @12 — ¢2%2 —... — pp2”
and B,(z) =1+ ¢12 + @22% + ... + p2¥ have no common factors.
Define L as the back-shift operator such that LY; = Y;_;, L*Y, = Y,_,. Then

ARMA process can be written as Ag(L)Y; = B,(L)e;. The process is a Moving

Average (MA) process if A4(2) = 1, or an Autoregressive (AR) process if B,(z) = 1.

Definition 1.2.2. An ARMA(P, Q) process {Y;, —00 < t < oo} is causal if for all ¢,

Y; can be written as Y; = >~ e, with Y0 1] < oo.

Definition 1.2.3. An ARMA(P, Q) process {Y;, —00 < t < oo} is invertible if for

all t, &; can be written as e, = > mY;—; with >~ |m| < oo.

Proposition 1.2.1. An ARMA(P,Q) process defined by Ay(L)Y; = B,(L)e; is

causal if Ay(z) = 0 has no roots inside or on the unit circle.
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Proposition 1.2.2. An ARMA(P,Q) process defined by Ay(L)Y; = B,(L)e; is in-

vertible if B,(z) = 0 has no roots inside or on the unit circle.

1.2.2 ARCH model and its applications

Empirically financial asset returns tend to be leptokurtotic and show volatility clus-
tering: large changes tend to be followed by large changes, and small changes tend
to be followed by small changes (Ma,ndélbrot 1963). Volatility clustering and heavy
tailed returns are closely related. Usually financial asset returns also show strong
autocorrelation among squared returns. If such patterns are present in a time series,
We say the data has ARCH effect.

The ARMA models successfully captures the movements of conditional mean.
But it assumes that the conditional variance is time-invariant and contains no past
information. The measure of the unconditional variance does not recognize that there
may be predictable patterns in stock market volatility.

Predictable volatility implies investors can predict the risk and uncertainty based
on current and past information. An important role of this prediction is that for
periods where an investor has forecasted prices to be very volatile, he/she should
either exit the market or require a large premium as a compensation for bearing an
unusual high risk. To assess the variation of risk, an approach of involving conditional
heteroscedasticity is required. Engle (1982) proposed Autoregressive Conditional Het-
eroscedasticity (ARCH) model, which plays a revolutionary role in modelling of time
series variances. Because of his contribution, Engle won the 2003 Nobel Prize in

Economics.
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Definition 1.2.4. An ARCH(p) process {Y;, —o0 < t < oo} with constant mean

term c takes the form
Y; — ¢ =m0, (1.2.1)
P
0f = ap + Z a;(Y—; — c)?, (1.2.2)

=1

where ag > 0,0; 2 0,1 < ¢ < p,c € R, are constants. We also assume that
{n, —00 <t < o0} (1.2.3)

is a sequence of random variables identically and independently distributed with

E(no) = 0 and E(n3) = 1 (IID(0,1)).

ARCH specifies the conditional variance as a linear function of past squared re-
turns. It explains the volatility clustering and heavy-tailed non-Gaussian distribution
of the returns.

Volatility has become a very important concept in different areas in financial the-
ory and practice. It has been used in risk management, portfolio selection, derivative
pricing, etc. As pointed out by Gouriéroux (1997), there are two main categories of
potential applications of ARCH. The first category involves examining several eco-
nomic or financial theories concerning the stock or other financial assets. The second
one is basically operational and related to the intervention of banks on the market,
such as risk management, choice of optimal portfolios, hedging portfolios, value at
risk, sizes and times of block trading. The second category is often subject to some

confidentiality restrictions, contrary to the first one, which is of a more global use.



1.2.3 GARCH model

If ARCH effect is present, we fit time series with an ARCH model. In practice it
is often found that a large number p of lags is needed, and thus a large number of
parameters is required to obtain a good model fit. Inspired by the idea of the ARCH
model and the ARMA model, ARCH was generalized (GARCH) by Bollerslev (1986)
by adding the past conditional variance to the conditional variance term.

Definition 1.2.5. A GARCH(p, q) process {Y;, —00 < t < 0o} with constant mean

term c is of the form:

}/t — C = &, (124)
p q
e =n0; and of = ag+ Z uE?  + Z,Bjaf_j, (1.2.5)
’i=} ij=1

where o9 > 0,0, > 0,1 <1 < p,B; 20,1 <3< q,c €R, are constants. We also
assume that

{m, —o0 <t < oo} (1.2.6)

is a sequence of IID(0,1) random variables.

The process reduces to Engle’s ARCH(p) process if ¢ = 0.
When } 7, 0; + 7, B; = 1, model (1.2.4)-(1.2.5) is called integrated GARCH

(IGARCH), due to the fact: Eo} = oo.

Define
( A o | Bmf Byn?
Ip— O(p—l)xl O(p—l)xq
At — b
431 Qp B ﬁq
\ O(q—l)XP Iq—l O(q-—l)xl /




where [} is k X k identity matrix.

Nelson (1990) shows that the model (1.2.4)-(1.2.5) with p = ¢ = 1 has a unique
stationary solution of ¢; if and only if Elog(8; + a1m9) < 0. The general case was
investigated by Bougerol and Picard (1992a, b). They showed that a unique strictly

stationary €; sequence exists if and only if

Y(A) = inf “E(log|AArs-Al) <0 as, (1.2.7)

1<t<oo t

where we use |- | to denote the absolute value of a scalar, or maximum norm of vectors
or matrices. The definition of v(A;) does not depend on the choice of a norm on the
space of the (p + q) x (p + q) matrices.

Ling (2005) shows that for 0 < ¢ < 1, if there exists an integer ¢y such that

10—1

14
k=0

then {e,;} is strictly stationary and ergodic with E|e;|* < oo.

E <1, (1.2.8)

Define v; = €2 — o2. By rearranging (1.2.5), we have

™m q
E? = Qo + Z(ai + /85)5?__,5 + vy — Z ﬂj’Ut_j, (129)
i=1 j=1

where m = max(p,q), a; =0 for i > p, and 5; = 0 for i > q. Thus a GARCH model
can be expressed as an ARMA model with £2. Given the ARMA representation of
the GARCH model, many properties of the GARCH model follow easily from those
of the corresponding ARMA model. With this representation, the GARCH model
is capable of explaining many stylized facts like: volatility clustering, fat tails, and

volatility mean reversion.



1.2.4 Extensions of GARCH

In many cases, the basic GARCH model provides a reasonably good model for ana-
lyzing financial time series and estimating conditional volatility. However, there are
some aspects of the model which can be improved to better capture the characteristics
and dynamics of a particular time series.

'This section introduces several extensions of the basic GARCH model.

GARCH (p, ¢) models successfully capture heavy tailed returns and volatility clus-
tering. But positive and negative shocks have the same effect on volatility since the
model depends only on the squared previous shocks. It fails to capture the “leverage
effect”, which means volatility responds more rapidly to falls (bad news) in financial
market than to corresponding rises (good news). Extended models like Exponential
GARCH or EGARCH (Nelson, 1991), and Threshold ARCH or TARCH (Zakoian
(1990), Glosten, Jaganathan, and Runkle (1993)) capture this asymmetric respond-
ing mechanism.

In the EGARCH model, conditional variance in (1.2.5) is substituted with

P q
log of = g + Z o (iNe—i + |Me—i|) + Z B; log af_j. (1.2.10)
i=1 j=1

The asymmetric news impact (leverage effect) is potential since it allows volatility
to respond more rapidly to bad news. Note that when 7;_; is positive or there is good
news, the total effect of 7;_; is @;(1 + ;). In contrast, when 7,_; 1s negative or there
is bad news, the total effect of 7;_; is a;(w; — 1). Bad news can have a larger impact
on volatility, and the value of w; would be expected to be negative. EGARCH also

releases the nonnegativity constraints in the GARCH model parameters, which are
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too restrictive.

In the TARCH model, conditional variance in (1.2.5) is substituted with

P q
o, = ap + Z(af-’{m_i > 0}e|” + a7 I{me—i < 0}ee|®) + Zﬁjfff_.j,
=1

j=1
where 1{-} denotes the indicator function and s > 0. This model allows response of
volatility to news with different coeflicients for good and bad news, but maintains
the assertion that the minimum volatility will result when there is no news. That
is, depending on whether 7;_; is above or below the threshold value of zero, n;_; has

different effects on the conditional variance. So one would expect that the «; is bigger

+

than a; .

Ding, Granger and Engle (1993) proposed the a Power GARCH (PGARCH)

model. In PGARCH, the conditional variance in (1.2.5) is substituted by

P Y
O‘f = Qo + Z ai(|5t’ + wiEt)d + Z /Bjaf-ja
i=1 =1

where d is a positive exponent, and w; denotes the coefficient of leverage effects. Note

that when d = 2, PGARCH reduces to the basic GARCH model with leverage effects.

In response to the finding that squares of return series tend to have very slowly
decaying autocorrelations, Baillie, Bollerslev and Mikkelson (1996) proposed Frac-
tionally Integrated GARCH (FIGARCH). The main characterization of a FIGARCH
model is that conditional variances exhibit not orily short-run dynamics of the ARMA
type, as in the standard GARCH model, but also the long-run persistence that decays

slowly at hyperbolic rates (instead of the usual exponential rates as of the GARCH
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model). A Fractionally Integrated GARCH (p,d,q) process ¢, is defined as

(1 - Zp: a.gL") (1- L)% =09+ (1 — Zq: ﬂij) (e2 — o}), (1.2.11)
i=1 J=1

where 0 < d < 1. The corresponding conditional variance o2 can be expressed more

explicitly as:

q q p
(1 - Z,@ij) o2 =g+ (1 - ZﬁjLﬂ') 2 — (1 - ZaiLi) (1 — L)%,
j=1 j=1 i=1
The fractional differencing operator (1 — L)¢ that allows the process €7 to have a

long memory. Baillie (1996) argues that the presence of FIGARCH may explain the

common findings of IGARCH in modelling high-frequency financial data.

In financial investment, high risk is often associated with a expected high return.
Engle, Lilien and Robins (1987) proposed to extend the basic GARCH model so
that the conditional volatility can generate a risk premium which is part of the ex-
pected returns. This extended GARCH model is often referred to as GARCH-in-mean
(GARCH-M) model.

The GARCH-M model extends the conditional mean equation (1.2.4) as follows:
Y: =c+mf(o:) + e,

where m is a constant and f can be any arbitrary function of volatility oy, i.e. f(o;) =

o, floy) = o2, or f(o1) = Inoy.

Other extensions of GARCH are skipped here.
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1.2.5 ARMA(P,Q)-GARCH(p, q)

The GARCH model successfully captures the movements of conditional volatility.
Empirically the conditional mean is dynamic rather than zero or constant. As pointed
out by Francq and Zakoian (2004), in economic applications, it is a common practice
to fit financial return series by an autoregressive moving average (ARMA) model
with GARCH errors. The ARMA-GARCH model combines an ARMA model for
- modelling the dynamic conditional mean and a GARCH model for modelling the
dynamic conditional volatility. An ARMA(P,Q)-GARCH(p, ¢) sequence {Y;, —00 <

t < oo} is of the form:

P Q
)/t —C = Z qu-(Yt_i — C) + & + Z Pi€t—j, (1212)
i=1 j=1
p q
Et = O and 0'? = Qg + Z O!i&‘f_i + Z ;BjO'?_j, (1213)
=1 j=1

where the innovations {7, —00 < t < oo} is a sequence of non-degenerate 11D(0,1)
random variables, c € R, e R)1 < I < Py e Ri11 <EkE<L Q00> 0,0, 20,1 <
i <p,B; 20,1 <j<qare constants. In this model, we refer to {g;, —00 < t < o0}
as the sequence of GARCH errors for the ARMA model and {n;, —00 < t < oo} as
the sequence of GARCH innovations.

The ARMA-GARCH model can be extended by adding exogenous explanatory
variables in the conditional mean and (or) conditional variance equations. For in-
stance, the Capital Asset Pricing Model (CAPM) implies that stock returns should
be related to the returns of a market index. And it is widely believed that trading

volume affects the volatility. Then both market index and trading volume could be
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potential explanatory variables candidates.

1.3 Testing the ARCH effect

To check ARCH effect, we plot the ACF of the series itself versus the ACF of squared
series. It is usually the case that there is little serial correlation in the time series
itself, while the squared series exhibits strong autocorrelation. Since the squared
series measures the second order moment of the original time series, it indicates that
the variance of the series based on its past history may change over time.

After we fit a financial time series, it is usually a good practice to test for the
presence of ARCH effect in the residuals. Suppose we fit the data with an ARMA
model by assuming the error term is white ﬁoise. If the white noise assumption of
error term does not hold, an ARCH effect is present in the residuals. It leads to seri-
ous model mis-specification and results in inappropriate standard error of parameter
estimator. On the other hand, If there is no ARCH effect in the residuals, then the
ARCH model is unnecessary.

We assume that linear serial dependence inside the original series is removed and
any remaining serial dependence must be due to conditional heteroscedasticity, which
is not captured by the model. Detection of ARCH effect in a series is actually a joint

test for heteroscedasticity of the residuals e;.
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1.3.1 Engle’s Lagrange multiplier test

Since the ARCH model has the form of an autoregressive model, Engle (1982) pro-
posed the Lagrange Multiplier (LM) test for ARCH effect. LM test is defined as a
test of Hy : & has a constant variance versus H, : The conditional variance is an
ARCH(p) process, that is to test whether the ARCH parameters are all zeros.

Let residuals be e; = &;/;, where €; and &; are estimators of £; and o; with finite
~ sample respectively. The test is based on the regression of € on €7 ;,€f ,,...e7 ..
The test statistic is nR?, where n is the sample size, and R? is the sample multiple
correlation coefficient computed from the regression. Under the null hypothesis that
there is no ARCH effect, the test statistic is asymptotically distributed as xf,. From
this test, it can be seen if the data is homéscedastic, then the variance cannot be
predicted and variation in e, is purely random. If the ARCH effect is present, then
the variation can be predicted by lagged values of squared residuals. It should be
mentioned that the test rejects if the residuals themselves contain some remaining

autocorrelations or other form of non-linearity. So we can not simply assume the

ARCH effect is necessarily present when the test rejects.

1.3.2 McLeod-Li test

Since €2 in (1.2.5) can be written as:

E? = Qg+ (Z ai(Li) + Z/@J(LJ)) E? + (1 - ZﬁJ(LJ)) V¢,

where v; = €2 — 02 is not autocorrelated, so {€2,—00 < t < oo} follows a ARMA

(max(p,q), q) model.
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McLeod and Li (1983) proposed a test for diagnostic checking of possible depar-

tures from the linear ARMA model assumption. They used the autocorrelation of
the squares of the residuals rather than the residuals themselves as in the Ljung-Box
test. They showed the sample autocorrelation of €? have asymptotic variance 1/n.
McLeod and Li statistic tests whether the first £ autocorrelations for the squared

residuals are collectively small in magnitude. The statistic is defined as:

Pe2(1)
n —_—

QML=TL(TL+2)Z( z,),

i=1
where n is the sample size, pe2(i) =Y 1. .., efes ;/ > ., i is sample autocorrelation
of the squared residual series at lag ¢, and k is the number of lags being tested.
Under the null hypothesis of no ARCH effect in the data, McLeod-Li statistic is
asymptotically x2 distributed.

Luukkonen, Saikkonen and Terasvirta (1988) pointed out that McLeod-Li test is
asymptotically equivalent to Engle’s Lagrange multiplier test.

For more tests, see Li (2004, p100-p112).

1.4 Model estimation

1.4.1 Quasi maximum likelihood estimation

Usually model parameters are estimated by maximum likelihood method. But max-
imum likelihood estimation cannot be applied to the model if we do not know the
exact distribution of the random variables. Sometimes we can still estimate the model

parameters by presuming the variables come from a particula.r distribution.
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Definition 1.4.1. A maximum likelihood estimator based on a likelihood function

with misspecified density is called a QMLE.

1.4.2 Large sample estimation properties

For data with a large sample size, we have some established asymptotic consistency
and normality results for the estimators. Let Q,(6) be an objective function, such

that

~

6, = arg max Q.(0), (1.4.1)

where O is the parameter space and is assumed to be compact. Usually Qn(t?) has

the form:
5 1 «—
n f) = — . 559 )
Qn(6) =~ ; f(y:,6)
where 1, -+ , Yy, are a realizations of an IID sequence.

With different functions f, the resulting estimators can be (quasi) maximum like-

lihood estimator, least-squares estimator, or generalized moment estimator.

Theorem 1.4.1. (Consistency Theorem, Newey and Mcfadden 1994)

If there is a function Qu(0) = Ef(y:,6) such that (i) Qo(6) is uniquely mazrimized
at the Oy; (i) © is compact; (iii) Qo(0) is continuous; () Qn(6) converge uniformly
in © in probability to Qo(0), then

6. -2, 0,.

Theorem 1.4.2. (Normality Theorem, Newey and Mcfadden 1994)
Suppose that 6, satisfies (1.4.1), 6. 25 6,, and (i) By is in the interior of ©;
(ii) Qn(é’) s twice continuously differentiable in an open neighborhood Oy of 6y;

(iii) \/n0Qn(6)/80)s=s, <, N(0,X); (iv) there is H(0) that is continuous at 6y and
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SUPgee, 162Q,,(0)06% — H(0)| 2 0; (v) H = H(8,) is nonsingular. Then

Vb, — 6)) = N0, HT'SH™).

1.5 Model diagnostic checks

Mis-specification may result in inconsistency and loss of efficiency in estimating pa-

rameters. Consequently it will lead to poor forecasts. It should be noted that in

many financial econometric models the conditional variance equations play a major

role. Reliable estimation and inference of the conditional variance depend on well-
specified conditional variance models. Therefore testing goodness-of-fit after fitting
the model becomes an important issue. Thg following tests give some routines of
testing various features of ARMA-GARCH models.

(i) ARCH effect or randomness of residuals

Diagnostic test for conditional heteroscedasticity models applied in the litera-
ture can be divided into three categories: Portmanteau test of the Box-Pierce-Ljung
type, Lagrange multiplier (LM) test and other residual-based diagnostics. The Box-
Pierce-Ljung portmanteau statistic is perhaps the most widely used diagnostic test.
It is readily computable from the standardized residuals and has been applied in
many empirical works for model diagnostic checks (see, for example, the papers by
Bollerslev (1990), Baillie and Myers (1991) and Karolyi (1995)). Ling and Li (1997)
further developed this work and derived the asymptotic distribution of the portman-
teau statistic in the multivariate case. The Ling-Li statistic is based on the serial

correlation coefficients of the transformed vector of residuals.
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If the model is successful at modelling the serial correlation structure in the condi-
tional mean and conditional variance, then there should be no autocorrelation left in
the standardized residuals and squared standardized residuals. This can be checked
by using the Ljung-Box test with standardized residuals and McLeod-Li test with
squared standardized residuals. In both cases, we will reject the null hypothesis (that
there is no autocorrelation left) if the statistic is large.

(ii) Distribution of innovation

The normal distribution for the innovations is usually assumed. If the model
is correctly specified then the estimated standardized residuals should behave like
standard normal random variables. To evaluate the normality assumption, a QQ-
plot of the standardized residuals or Jarque-Bera normality test can be performed.

(iii) Change point problem

Another key assumption is that sequence is stationary or t.he model parame-
ters stay constant through time. Parameter instability is evidence of model mis-
specification and standard econometric theory no-longer applies. Robust estimation
requires at a minimum that the conditional mean and variance be correctly specified.

However, GARCH models are rarely tested for structural breaks.

Though mode!l diagnostic checks based on standardized residuals can be used to
compare the effectiveness of different econometric models. Selecting the best model
for a particular data set still can be a daunting.task. Since GARCH models can be
treated as ARMA models of squared residuals, traditional model selection criteria

such as Akaike information criterion (AIC) and Bayesian information criterion (BIC)
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can also be used for selecting models.

1.6 Objectives

Later in this thesis, I will focus on an ARMA(P, Q)-GARCH(p, q) model. The
general conditions of distribution theory of QMLE for a general model have been set
up as in Section 1.4.2. As for an ARMA(P,Q)-GARCH(p,q) model, it is an open
- problem on the distribution theory of QMLE when GARCH innovation 7, has no 4th
moment. | will solve this problem by applying an arbitrary likelihood kernel to build
the likelihood function. The details will be given in Chapter 2.

Standard goodness-of-fit tests (such as Kolmogorov-Smirnov test) and other model
diagnostic tests based on the empirical procéss of an ARMA-GARCH residuals have
been found to be invalid. Kulperger and Yu (2005) studied the high moment partial
sum processes, the CUSUM and the self-normalized processes based on residuals of
an (I)GARCH model. The results are applied to the goodness-of-fit tests and model
diagnostic test. Can we extend their results to an ARMA(P,Q)-GARCH(p,q) model?
This question will be answered in Chapter 3.

More tests (such as scaling issue in S-plus Finmetrics module, efficiency of QMLE,
structural change problems, distribution of innovations) and numerical examples are

presented in Chapter 4.
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Chapter 2
QMLE of ARMA-GARCH

In this Chapter, we obtain asymptotic consistency and normality of a class of global
QMLEs based on arbitrary likelihood kernels and weak moment conditions on both
g and 7;. Two step estimation is also studied.

This chapter is organized as follows: Section 1 exhibits some existing distribution
theorems of QMLE. Section 2 presents the assumptions and results. Some examples
are given in Section 3. Section 4 is devoted to the proofs. Some lengthy expansion of
e:(7), 62()) and etc., as well as proof of Proposition 2.1 are given in the end of this

Chapter as an appendix.

2.1 Existing Distribution Theories of QMLE

Without particular specification, the QMLEs mentioned in this section are based
on normal density. The asymptotic properties of QMLE for ARMA-ARCH were
first presented by Weiss (1986) under assumption of finite fourth moment on &;.
The problem of finding weaker conditions for asymptotic properties of QMLE has

attracted much attention in the literature. Lee and Hansen (1994) and Lumsdaine
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(1996) obtained the asymptotic consistency and normality of QMLE for GARCH(1,

1) and IGARCH(1, 1) with nonzero constant mean. They require a strict condition
on the distribution of 7, and the values of parameters. The former requires Enj < oo,
and the later requires En3? < oo. Linton (1997) studied an asymptotic expansion
of QMLE for GARCH(1,1) and IGARCH(1, 1) with nonzero constant mean ¢;. He
showed if ng is symmetric about 0 and has more than 6th finite moment, then QMLE
~of (o, au, (1) are asymptotically independent of any +/n-consistent estimator of co.

Berkes, Horvath, and Kokoszka (2003) extended the above results to a general
GARCH(p, q) model with mean term zero and relaxed the conditions in Lee and
Hansen (1994) and Lumsdaine (1996). They showed that the asymptotic normality of
QMLE for a GARCH(p, q) holds with Z;‘?:l B; < 1 and E|np|**¢ < oo for some ¢ > 0.
Hall and Yao (2003) obtained the asymptotic normality of QMLE for a GARCH(p, q)
with mean term zero under ) 7, a;+> i, B; < 1and Eng < oo. Berkes and Horvith
(2003) showed that QMLE of GARCH(p, q) parameters based on a normal kernel
cannot be /n-consistent if E|ng|* = oco. Berkes and Horvath (2004) proposed a class
of estimators bases on an arbitrary likelihood kernel for a GARCH(p, ¢) model and
showed that the QMLE based on double exponential density are better than those
based on the standard normal density if the tail of the distribution of 79 is polynomial.
They showed the moment requirement of 7y depends on the choice of likelihood kernel.
Asymptotic normality of QMLE based on double exponential likelihood kernel holds
if Elno|? < oo.

Francq and Zakoian (2004) obtained the asymptotic consistency and normality re-

sults of QMLE for (I)\GARCH(p, q). They removed the condition of lim,_ 2 ¢ P{e2 <
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z} = 0, ¢ > 0 in Berkes, Horvath, and Kokoszka (2003). They also relaxed the pa-

rameter restrictions of requiring all parameters to be in the interior of the parameter
space for asymptotic consistency result. This is essential to handle situations of over-
identification. They showed asymptotic normality holds with Enj < oo.

The above results have been extended to ARMA-GARCH. Ling and Li (1997)
obtained the consistency and normality of local QMLE for ARMA-GARCH under
- Eej < oo. Francq and Zakoian (2004) obtained the global QMLE of an ARMA-
GARCH model with a weak condition. Asymptotic normality result holds with both
Ec; < 0o and E7nj < oo. Ling (2005) proposed a self-weighted QMLE (SWQMLE),
which is asymptotically normally distributed under only a fractional moment of .
By using the SWQMLE as an initial value, he obtained the local QMLE for ARMA-
()GARCH. In both global and local cases, asymptotic normality requires Eng < oc.
In general, it is hard to compare the efficiency of SWQMLE and QMLE. However,
Ling showed that SWQMLE is less efficient than QMLE when 7, ~ N(0,1). For
additional related works, see Li and Ling (1997, 1998, 2003), Li, Ling and McAleer
(2002) and Ling and McAleer (2003).

The parameters in the conditional volatility are restricted by the moment condi-
tions on 3. To make this clear, we present two examples. The example of ARCH(1)
was given by Ling (2005). In ARCH(1) model with o ~ N(0,1), the parameter
space of a; is (0,1) if Ee2 < oo, or (0, 1/v3) if Ecj < co. For GARCH(1,1) with

no ~ N(0,1), if Ee2 < oo, then oy + 5 < 1. If Ee} < oo, then a; € (0, 1/v/3) and

B € (0,4/1 - 202 — o), where \/1 — 2a? — a3 goes to 0 quickly as a; is close to

1/4/3. The space is more restrictive for higher order of GARCH. It can be seen that
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Ecj < oo is a strong condition.

In addition, the parameter space depends on the distribution of 79. For example,
in ARCH(1) model with v/27, being double exponential distribution, the parameter
space of oy is (0,1) if Ee2 < oo, or (0, 0.408---) if Ecj < oo. In addition, there
may be some connections between the moments of €; and 7;. Ling (2005) showed if

rp0i + 20 B < 1, Elno[*** < oo implies Eleo|**¢” < oo, where 0 < ¢ < 1 and

0< (<.

2.2 Assumptions and Theorems of QMLE

Denote v = (¢, @1,y PP, @1, -0, 00) 7,8 = (0,1, ..., p, B1, -, B) T, A = (47, 87)T.
Denote parameter space © = (0., 0;) = ((6;;,, 0,), (B4,05)) C RFFIHI xR+ x RETY,
where R* = (0, 4+00), Ry = [0, 4+00).

We write the model (1.2.12) and (1.2.13) in parametric from as:

P

Q
e(y) = (Ye—c)— Y _¢i(Yii—c) - Z pi€t-3(7), (2.2.1)

=1

() = Et(’/g and o2()\) = ap + Z aie? (y) + Z Biog_;(A) . (2.2.2)

oy (

The true parameter values are unknown and denoted as Ay = (73, 83 )¥. Through-
out the rest of this Chapter, we assume Ay € . Clearly &, = &:(), 02 = 02(\),
and 7 = €:(70)/0¢( o) = €/ 0.

To make the model be identified and stationary, we introduce following assump-

tions:

Assumption 1. © is compact.
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Assumption 2. For each v € 6,, A,(2) and B,(2) have no common roots, the roots
of A,(2)B,(z) = 0 are outside of unit circle. ap # 0 or Bg # 0.

Assumption 3. For each § € ©;, >_;_, §; < 1, As(z) and Bs(z) have no common
roots. As(1) # 0 and oy + 3, # 0.

Remark 2.2.1. Assumption 2 implies the stationarity, invertibility and identifiability
of model (2.2.1). Assumption 3 implies that model (2.2.2) is minimal in the sense
that there is no pair (p*, q*) such that p* '< D, ¢* < q and (2.2.2) holds. In particular,
'z'fP =0, then A,(2) =1, if @ =0, then B,(z) = 1; if ¢ = 0, then Bs(z) =

In Chapter 1, we have defined Ay(z) =1 — 25:1 ¢:iz', By(z) =1+ EJ-—1 ;2

Similarly we define A,(z) = 37 ai2’, Bg(z) =1-3 %, B;27, and

Cy(2) = B,~ Z ay(1)2', Cs(2) = Bg7'(2)Aal2) = ) as(i)7,
i=0 i=0
ALt (2 Z ae(i 1(2) = Z a,(i)z', and Bz'(z Z as(i
i=0 i=0 i=0

where the expressions of a.(i) and as(¢) are given in Appendix A.2. Lemma 2.4.1
shows that the absolute summation of a,(7), as(7), ag(i), a, (i) and ag(i) are finite

respectively. Thus (2.2.1) and (2.2.2) can be rewritten as:

e(y) = B, U L)AS(L)(Y; —¢) = Za,,, (Yii — ) , (2.2.3)

i=0

oi(A) = Bs '(ao + Bs™ (L) Aa(L)e{ ()

Bs '(1)og + Z as(i)e?_,(7) . (2.2.4)

In an application, it is impossible to have an infinite number of observations of

Y;. Hence the initial values are replaced with some fixed constants, which are neither
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random nor functions of the parameters. However this does not affect the asymptotic
results (Ling and McAleer, 2003).
Given initial value Yy, ..., Y1_p, €0, -.-; €1-max(p,@) 00; ---s F1—q, then &:(7), 6(\) and

(M) for t =1, ...,n can be computed from following equations:

P Q
E(7) Ye—0)— > ¢i(Yii — ) — Z pi€t—i(7) (2.2.5)

t=1

w3 = 20 and 520 —ao+§jaget .,(v)+Zﬂjat L0 @226)

As shown in (A.2.2) and (A.2.3) of Appendix A.2, (2.2.5) and (2.2.6) can be

rewritten as:

Ely) = Zaﬂ,, (Yi—i —c +O( B a.s., (2.2.7)
1=0
t—1
5i(\) = Bglao+ Y _as(i)El,(v) + O0(p)) as., (2.2.8)
1={

where 0 < p < 1 and Bg;(z) = S ag(i)2t.
The conditional likelihood function based on a finite sample is defined as:

th ), and L(\) = loghgzt(()\)\))), (2.2.9)

where h is a continuous positive function satisfying properties of a probability density
function with third-order continuous derivative.

Corresponding to L,()), define

th ), and L)) = 1oghgzt(%)). (2.2.10)

Based on h, define a function g and its derivatives as:

olo) = ZENE) MV - () - 2D, (0 = TED.
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Some other conditions on h are assumed.

Assumption 4. For some ¢; > 0 and some constant C' > 0,

(i) |logh(z)| is bounded by C|z|%1,

2011

(ii) |g(x)| is bounded by C(max{|z|,1})
(iii) |¢'(z)| is bounded by C(max{|z|, 1})2(“_1).
| 2113

(iv) |¢"(z)| is bounded by C(max{|z|,1})

Remark 2.2.2. The value of 11 is completely determined by h. Assumption 4 implies
log h(z) has order 3 continuous derivatives. It also implies E|logh(n,)| < CE|n,|**
and expressions like E|g(n;)|, E|g (n)m:| and E|g"(n:)n?| are bounded by CE|n,|*1~1.

These expressions may be used in Section 2.3 and 2.4 for the proofs.

Assumption 5. For any w > 0 and v € R, functions

Eg(wn; + v)

|
o

|
o

1
— + Elg(wn; + v)m:]
have a unique solution at w =1 and v = 0.

Proposition 2.2.1. Suppose that 0, is symmetrically distributed about zero and

E[g(n:)ne) = —1.

(Case i) If g is an odd function with g(0) = 0, |g(z)z| < Cz?, g(z) < 0 but not
always 0 for x > 0, g'(x) < 0 for z > 0, then Eloglwh(wn + v)] < Elogh(n:)
for any w #1 and v # 0.

(Case ii) Ifn; is not uniformly distributed and its density is decreasing on right side,
g(x) is an odd function and g(z)x is a strictly monotone function for x > 0,

then E loglwh(wn; + v)] < Elogh(n;) for any w #1 and v #0 .
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(Case iii) If n, is not uniformly distributed and its density is decreasing on right

side, g(z) is an odd function, then Eloglh(n + v)] < Elogh(n:) for any v # 0.

(Case iv) If g(x)x is a strictly monotone function for x > 0, then Eloglwh(wn;)| <

Elog h(n;) for any w # 1.

The proof of Proposition 2.2.1 will be given in Appendix A.l.

Remark 2.2.3. Assumption 5 implies Eg(n;) = 0 and Elg(n:)n:] = —1. It also
1mplies E log[wh(wn; +v)] < Elog h(n;) for any w > 0 and v € R. The equality holds
if and only if w =1 and v = 0. By Proposition 2.2.1, if h is nicely defined and n; is
symmetrically distributed about 0, then E[g(n,)n:] = —1 implies Eloglwh(wn, + v)] <
Elog h(n,) for any w # 1 and v # 0.

Remark 2.2.4. Assumption 5 guarantees Ely()) is mazimized at true value )y and
connects the distribution of no with h. By Remark 2.2.3, when h is normal kernel,
—~E[g(n:)n:] = En? = 1 guarantees Ely(\) is mazimized at Ag. In addition, Eng = 1
is usually assumed to identify model (1.2.18). When fitting data by a likelihood kernel
other than the standard normal density, we may have to scale n; such that nj = an; for
some constant a > 0 to satisfy E[g(n;)ni] = —1 (see Remark 2.2.3). This makes only
the parameters of ap,a,- - ,ap scaled, while ¢;, p; and B; stay unchanged. After
fitting the scaled model, we have to scale the QMLE of ARCH part of the scaled model
back to get the QMLE of the original model. The algorithm of fitting ARMA-GARCH
model in Splus module S+FinMetrics does not scale back the estimators. A numeric

example is given in Chapter 4.

QMLE of ) is defined as:

pd

n = argmax L, (1) . (2.2.11)
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Theorem 2.2.1. Let )\, be defined in (2.2.11). Under Assumptions 1-5, if E|n,|?* <

oo (or E|ln:}® < oo for some s > 0, if 13 =0 ), then
X, — Ag, @.8. asmn — 00.

Remark 2.2.5. Consistency result imposes no moment requirement on €y. The mo-
ment requirement on 1y depends on the choice of h. For erample, when h is the
student’s t density function, asymptotic consistency requires only E|n|® < oo for
some s > 0. When h is the smoothed double exponential (to be introduced in Section
232) density function, consistency requires E|no| < oo. However, E|nyl? < oo re-
quired by GARCH model will surpass the assumption. When h is the standard normal

density function, consistency requires E|nol? < oo.

For the normality result, we need two additional assumptions:

Assumption 6. )\ is in the interior of ©.

Assumption 7. E? (¢°(n)n:) < Eg*(n.)E(g(ne)m: + 1)2 .

Remark 2.2.6. With Eg(n;) = 0, by Cauchy inequality, it is readily to show that
Assumption 7 holds if and only if Plg(n)m: + 1 = kg(n:)] < 1 for any constant k. As
mentioned in Ling (2005), a simple condition for this is that n, has a positive density

on some interval provided that g(x)x + 1 = kg(x) has finite roots.

By (2.2.10), the first derivative of /;(])) is:

oL(\) 1 82 (\

A\ —5{1+g(m(/\))nt()\)} = Oey(7)/0A

O't(A)

(2.2.12)

1/)8/\ + g(m(N))
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Based on (2.2.12), we have the second derivative of /;()):

821,(\) 1

T = (14 gy TP

¢ ()

(2.2.13)

4& (2 +39(m(A))ne(N) + g’ (me (X)) mi ()\)) 60;52)(\2\/)6)\ 00 (gt;\() )/\39 4

8o} (N)/0OX Oei(7y)/ONT
o (A) g:(A)

e.(1) /0 B0 (X) /0N
01(A) a(A)

g () ZADONINON ) P[0

(9' (ﬂt(/\))ﬂt()\) + g(ﬂt(/\)))

(9" (me(N)me(A) + g(me(N)))

N | = DY | =

The first and second derivatives of £,(v) and o()\) are presented in Appendix A.3.

Throughout the following, for simplicity, we denote

0z())

_0z(X) 0%z(A)
3 = and

NIRRT OAONT

8%2()o)
o, OAOXT

for any function z.

Define matrix

4 [ 8la(Xo) 610()\0)) L (6210(Ao))
I_E( ox o ) 7= Fmaxr )

As to be shown in Lemma 2.4.9, under conditions Eg?(19)no = 0 and Eg’(no)no =
0, Z and J can be written as block-diagonal respectively (due to the partitioning of

parameter space) with following forms:

(2.0 (2 o)

1= ,J = :

o) \oa,

where

Z = ;(Blatwn)’ - 1)E (LLYAXLYT ) (214

2
4 o o

+Eg2(7]t)E (65t(')’0)/3’7 35t(’)’0)/6’}‘T) |

Ot Ot
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I, = %(E(g(m)m)2 — 1)E (

Bcrf(z\g)/35 80?(/\03/35T) C(22.15)

o} o;

i = —iE(g’(m)nf - 1)E (30?(2;)/87 80?(A;§/67T) (2.2.16)
_Eg(n,)E (36::('?)/37 86.:('73)/37"”) |
B = -3B(dor - 1)B (LCYRIRCYR ) - (ga1g

Theorem 2.2.2. Let A be defined in (2.2.11). Under Assumptions 1-7, if J is non-
singular, there exist 0 < 15 < 1 such that E|e,[*1+1)1-2) « o0 and E|nyl* < oo (or
E|n:|® < 00 for some s > 0, if v = 0), then \/ﬁ(:\n — Xo) s asymptotically distributed
as N0, T 'ZJ71).

Remark 2.2.7. By Lemma 2.4.9, J is nonsingular under some regqularity conditions
together with Eg'(ny) < 0, Eg'(no)n3 < 1 and E¢' (no)no = 0. In particular, if ny is
symmetric about 0 and h is the normal, or the smoothed generalized error distribution
((SGED), to be introduced in Section 2.8.2), or the student’s t density function, then

J s non-singular.

Remark 2.2.8. The value of v, is completely determined by h. When h is t@e standard
normal density function, asymptotic normality result holds if Eley[*t~) < oo and
E|no|* < 0o. When h is the smoothed double exponential distribution density function,
asymptotic normality holds if Eleg|?1~2) < oo and E|ngl? < co. Again when h is
the student’s t density function, asymptotic normality holds if E|eg|>1~%2) < oo and
E|nol* < 0o for some s > 0. Thus by choosing an appropriate h, we can relaz the
moment requirements on €9 and 19 in Francq and Zakoian (2004) who need Eleo|* <
oo and E|nol* < oo, and the moment requirement on ny in Ling (2005) who needs

E[no|* < oo.
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Remark 2.2.9. Which value of 1o to choose depends on the parameter space Os,
in particular, Bo1 (true value of 51). In general, we choose t3 = 0. If we use the
condition By > 0 specifically, we can find a positive 1o so the moment of ¢ will
be reduced slightly. If h is the student’s t density, it enables us to find a global
QMLE for an ARMA-IGARCH model but not an ARMA-TARCH model. With 15 = 0,
Theorem 2.2.2 holds for ARMA-ARCH, and ARCH models only if we remove the

redundant parameters and the corresponding components in the covariance matrix.

Remark 2.2.10. In general, ¥, and on may be asymptotically correlated. If ng is
symmetric about 0, E(g*(no)ne) = 0 and E(g'(n0)no) = 0, then 4, and b, are asymp-

totically independent with

-1 —1
J77-1 g 0 Z, 0O J 0
0 L' J\0 I, 0 J!
_ Jl_ll-ljl_l 0
0 NN

Remark 2.2.11. After adopting similar notations used by Ling (2005), we can write

I = E[U:(Mo)IUf (N)], T = E[U:(Xo)JU{ (No)],

where
 [B02(N)/OX  Ben(N)/O
U"‘(’\)"( 20700 ° 0 )
;o E(g(n)m+1)° —E(¢*(n)m) ;o —E(g(n)n? —1) E(d(n)ne)
- —E(¢’(m)m)  E¢(m) - E(@(mm)  -Egd(m)

When P = Q = 0, ¢y # 0, model (1.2.12)-(1.2.13) reduces to pure GARCH with

nonzero constant mean term. The redundant parameters ¢; and ¢; are removed and

L

the QMLE is reduced to (¢,, d).
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Theorem 2.2.3. When P = @@ = 0 and ¢y # 0, under Assumption 1, and As-
sumptions 8- 4, if Eln:/*t < oo (or E|m|®* < oo for some s > 0, if 1, = 0 ), then
(&, 6n) — (co,89) almost surely. Further with Assumption 6, if E|e,[*1(0~) < 0o (
or E|e;|* < 0o for some s > 0, if 1; = 0 ) and Eln[™2(141) | then \/n(é, — co, 6n — o)

is asymptotically distributed as N(0, 7 1ZJ1).

Remark 2.2.12. Results given in Theorem 2.2.83 are not covered by Berkes, Horvdth
and Kokoszka (2003) and Berkes and Horvdth (2003), and are not discussed in detail
by Francq and Zakoian (2004) and Liﬁg (2005). Theorem 2.2.3 implies that for
'a'ny h satisfying the assumptions, consistency of (é,0,) holds without any moment
requirement on €;, and normality of (&,,6,) holds with only Ele,[*1(1-2) < co. If
Bo1 > 0, then 1o > 0, and hence IGARCH with nonzero constant mean can be dealt

with even when h is the normal density.

Corollary 2.2.1. Let 02 = J'1:J;'. For pure GARCH with nonzero constant
mean term, under the same conditions as in Theorem 2.2.83, if &, ~ N(0,1) and h

takes standard normal density, then

Var(&,)

2
O¢

>1

as n — 0o, where &, = > 7 €;/n is the sample mean estimator of co. The ratio does

not depend on agq (true value of oy ).

A simulation result of this Corollary is given in Chapter 4.

Corollary 2.2.2. When P = QQ = 0 and ¢g = 0, under Assumptions 1, 3 - 4 and
Assumption 5 with v =0, if Elny|** < oo ( or E|ln|® < oo for some s >0, if 1; =0
), then 6, — & almost surely. Further with Assumption 6, if Ele,|**(1~2) < oo
and E|n,|*t < oo (or Ele|* < 00 and E|n;|* <.oo for some s > 0 if 1; = 0), then
Vb, — o) is asymptotically distributed as N(0,47*D~1), where
o _ _Elgmn+1)’  D-E (603(50)/65 aaf(ao)/aaT) |
(E(g’(m)n?) = 1) 2 2

O O
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Remark 2.2.13. Corollary 2.2.2 reduces to Theorems 1.1 and 1.2 of Horvdth and
Kokoszka (2003) with weaker conditions, or Theorems 2.1 and 2.2 of Francq and
Zakoian (2004) when h is the standard normal density. For pure GARCH with mean
zero, h can be double exponential density. Again if h is the student t density function,
both consistency and normality results require only E|no|® < oo for some s > 0. As
Berkes and Horvdth (2004) had shown: for a given series of n;, efficiency of QMLE
for pure GARCH depends only on 12, which is determined by the distribution of ng

and choice of h.

Theorem 2.2.4. When p = q = 0, under Assumptions 1 - 2, Assumption 4 with
11 = 1 and Assumption 5 with w = 1, if E|e;|? < oo, then 7, — 7o almost surely.

Further with vy being in interior of ©., then /n(3, — o) is asymptotically distributed

as N(0,T'ZJ™Y), where T 'IJ =712 _ D!,
72 . Eg2(&‘t/\/a00) d D, _‘ Eagt(’)’o)/a’)f 5&(’){0)/8771.

arma ~ (Eg’(st/\/%))w an - \/a—(lé \/a_OO

Remark 2.2.14. Here for pure ARMA, ag (the variance of €;) is taken as nuisance
parameter. Since the sequence {&;, —00 < t < oo} is IID, the likelihood kernel does not

affect the moment requirement on €, however it does affect the efficiency of QMLE.

Let 4, be any \/n consistent estimator (i.e, (Q)MLE, LSE, weighted or self-
weighted LSE) of 7o and & = £;(4,) be the corresponding residuals calculated by
replacing v with 4, in (2.2.5) from the ARMA part. Then we use £; as artificial
observations of ¢; and fit them with a GARCH(p,q) model to obtain the estimator of
J.

Define

’Yn: = Qg + Z agst -3 + Z ﬁjat—g ’Y‘na (2218)
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-~ /a €t
ny0) = ———. 2.2.19
"7t(’7 ) O't(')/m(s) ( )

And define the QMLE of é as

On = argmax Ly (¥n, 9),

where
/A 1 —~ ; A 1 " h(ﬁt(ﬁ’ma))
Ln ’YR, 5 - — l nI 6 _—— 10 o~ ~ " 2-2.20
(9, 0) = ~ t§=12 t(hn, 8) = ~ ;:1: 8 5. (5.0) (2.2.20)

Theorem 2.2.5. With Assumptions 1-5, if E|n,|®2121) < oo then 8, — & in
probability. Further with Assumptions 6 and 7, Ele;|/*1(172) < oo (or Ele|* < 00
for some s > 0, if 1; = 0) and E|n,[™>*(041) < o0, if n, is symmetric about zero and

Eg'(n)n: = 0, then
n'?(8, — &) — N(0,472D71).

Remark 2.2.15. ¢'(z) is an even function when h is the normal or student’s t,
or smoothed generalized double erponential density. Thus Eg'(n:)n, = 0 when ng is

symmetric about 0.

Remark 2.2.16. When P = Q = 0, ¢ # 0, if Ee? < o0, by CLT, &, is a /1
consistent estimator of c. Theorem 2.2.5 implies the common practice of using the

sample mean to center financial data is workable provided that ng is symmetric about

0.

Remark 2.2.17. Under conditions of n; being symmetric about zero and Eg'(ny)n, =

0, the variance of 4, has no effect on the asymptotic variance of br.
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2.3 Examples

2.3.1 QMLE based on the student’s ¢ density

When h is the student’s ¢ probability density function, we have:

12 -
h(a:) = (1 + F) ,

where d > 1 is the degrees of freedom and we ignore the constant term. Then

K(z) = 6}(;5:) _ _(dzl)x (1 N %3)-%‘—1—1,
g(z) = —(d+ 1)df$2,
7@ =+ {d+1 7 ?:2)2} ’
s )

Obviously g(z) is odd and g(z)x is strictly monotone decreasing for > 0. Then
by (Case ii) in Proposition 2.2.1, Assumption 5 is satisfied when 7; is symmetrically
distributed (except uniform distribution) about zero with density function decreasing
on right side and E(1/(d + n3)) = 1/(d + 1). Clearly Assumption 4 is satisfied with
t1 = 0.

With the fact that EX? > (EX)?, we have E(1/(d+n2)?) > 1/(d+1)2. Then for

d > 1, we have

Bg(n) = ~(@+DE{ - 28]

d+n¢ (d+ng)?

( 1 2d
—(d+1)< —E + E
( )\ d + n} (d+n§)2}

< —(d-|—1)<—#+ 2d }

|

|
A\
o
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and
Eg'(mo)n = —(d+1)E {d Zgng - (d iﬂig)z }
_ -_(d+1)<:1—Edfng"2+E(d4f7§3)2+E(did:7§)2}
= ~ld+) ‘:1 ‘Edfng _2+Edidn§ ”E(did;%)z *E(did;%)?}
= —(d+1) Zj_;il" B (d-—zrd:zg)Q}
< (d+1)Ed_2jrdn§—2d+1=1'

If no is symmetric about 0, then it is obvious that Eg'(rg)n0 = 0 (since E|g'(no)no| <
C max (E|no[*'71,1) < oo). Thus by Lemmas 2.4.9 and 2.4.10, J is nonsingular and
block-diagonal.

Assumption 7 is satisfied, since

3
(d+ 18

(Eq(mo)m)? = (d+ 1)? (E )2) — 0 < E%(m0)E(g(m)mo + 1)°.

Then by Lemmas 2.4.9 and 2.4.10, Z is nonsingular and block-diagonal.

Thus when the student’s ¢ density function is used for the quasi-likelihood function,
the QMLE is asymptotically consistent for any small positive moment on 7,. The

asymptotic normality result holds if E|e;|>!72) < co and E|n|* < oo for some s > 0.

2.3.2 QMLE based on smoothed generalized error density

The density of the generalized error distribution (GED) (Nelson 1991) has the form

of f(z) ~ e~I#1°, where d is a certain positive constant. When d is an odd integer,
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the density is not smooth at x = 0 and thus has no derivatives at x+ = 0. Adopting
the idea of Hitomi (1997) for double exponential distribution, we smooth the GED
density as

h(z) = e~ @+

?

where b # 0 is the smooth parameter and d > 0 (b could be 0 when d is an even
integer), and we ignore the constant term. We call such a distribution as smoothed
generalized error distribution (SGED(d)). When d = 1, it is smoothed double expo-

nential distribution (SDE). Then
W (z) = —de & (g2 L p2)d2-10  o(1) = —d(z? + B2)Y/2 g,
¢'(x) = —d(d — 2)(2? + B2 2% — d(z? + BR)3/2-1,
g"(z) = —d(d — 2)(d — 4)(z® + b*)*32® — 3d(d — 2)(2® + V*)¥*?z,

It is obvious that g(z) is odd with g(0) =0, |g(z)z| < Kz? when d < 2, g(z) < 0

for x > 0. For d > 1, we have

2
_ 2 | p2yd/2-1 o
Jd(z) = —d(?+b2)Y (1—(2-——d)$2+b2)
2 | 12
_ 2 2y d— 1)z +b
d(z* + b°) o
< 0

Thus by (Case i) in Proposition 2.2.1, for 1 < d < 2, Assumption 5 is satisfied if
7 is symmetric about zero with E(d(ng + b%)%/2-152) = 1.
By the expressions of g(z), ¢'(x) and ¢"(x), it is obvious that Assumption 4 is

satisfied with ¢, = d/2.
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For 1 < d < 2, we have ¢'(z) < 0, and ¢'(z)z? < 0. If 1 is symmetric about 0,
it is clearly Eg’(n0)n¢ = 0. Thus by Lemmas 2.4.9 and 2.4.10, J is nonsingular and
block-diagonal.

Also when 79 is symmetric about 0, Assumption 7 is satisfied, since

(Eg®(no)mo)? = d*(E(ng + b°)**n3)* = 0 < Eg*(no)E(g(mo)mo + 1)°.

Therefore by Lemmas 2.4.9 and 2.4.10, I is nonsingular and block-diagonal.
Thus when the SGED (with 1 < d < 2) density function is used for the Quasi-
likelihood function, the QMLE is asymptotically consistent when E|n;|* < oco. The

asymptotic normality result holds if E|e;|(¢t2(-2) < oo and E|n,|* < o0.

2.3.3 QMLE based on the normal density

When h is the standard normal probability density function, such that:

h(z) = e_%—,

where we ignore the constant term.

Then we have

2

W(z) = Oh(z)/0x = —xe™ 7,

g(z) = -z, g'(z)=-1, ¢"(z)=0,
If Eng = 0, and En3 = 1, then

2 1 2 2 1
logw—E(wno;v) —§log27r=log'w—w _2'_’0 —§log2w.

By setting the partial differential equations with respect to w and v of above equation

as 0 and solving them, we have w = 1, v = 0. Thus [;()\) is uniquely maximized
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at A = Ag. Assumption 4 is satisfied with ¢; = 1. Thus normality holds with
E|go|*t2) < 0o and E|n|* < o0o. It is obvious that E¢'(no)ng = —1 < 1, E¢'(10) =
—1 < 0, E¢’ (no)no = 0, so that J is nonsingular. Assumption 7 is satisfied, since

g(z) = —x and Eng = 0, by Cauchy-Schwarz inequality, we have

(Eg*(n0)mo)? = [Eg(m0)(g(m0)m0 + 1)]* < Eg?*(m0)E(g(m0)m0 + 1)*.

- Thus by Lemmas 2.4.9 and 2.4.10, 7 is nonsingular.
So when the standard normal probability density is used for the quasi-likelihood

function and Gy; > 0, the asymptotic normality result holds even if E|e;|* = oc.

Remark 2.3.1. It can been seen that if h is a student’s t density and (Gy; > 0, QMLE
is asymptotically normally distributed even if E|e;|? = co. From the above examples of
the normal kernel and the student t kernel, we see, when the degrees of freedom go to
infinity, g(x), ¢'(x) and ¢"(x) computed from the student t kernel converges to those
computed from the normal kernel. Thus T and J computed from the student t kernel
converges to those computed from normal kernel. Thus the variance of the QMLE
based on the student t kernel converges to that based on the normal kernel. This
implies we can obtain QMLE by the student t kernel with a large degree of freedom
so as to reach almost the same efficiency of those obtained by the standard normal
kernel. This is very useful when the variance of GARCH error €; is infinite, a case
where the validity of the asymptotic normality for QMLE based on the normal kernel

1s unclear.

2.3.4 Efficiency of QMLE

Assumption 5 connects the distribution of 7y with k. Usually En2 = 1 is assumed for

model identifiability (1.2.12)-(1.2.13). If A is the normal kernel, Assumption 5 implies
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Eno = 0 and En2 = 1. When we fit data by likelihood kernel other than the standard

normal density, we may have to scale 7; to meet Assumption 5. Let n;* = an, and

of* = oy/a for some positive constant a such that Assumption 5 is satisfied. Then

model (2.2.1) -(2.2.2) are modified as:

P Q
e(7)=Yi—c) =Y ¢i(Yii —c) = > _ wiees(7), (2.3.1)
=1 j=1

3 ** Ak ok **
n(A*) = Utzf\'y)) and o 2(A\**) = ag* +Za ez .(v) —I—Z,@ o; (A7) . (2.3.2)

The parameters of the scaled model are denoted as A** = (v,6*). Comparing to

model (2.2.1) -(2.2.2), we have (og*, - - - ,00")T = (ag/@?, - -+ , 0p/a®)T, (BY*, -, B)T

p

()613 T aﬂq)T°
Let M) = diag(1,---,1,1/a%,---,1/a% 1, -+ ,1) with (P + Q + 2)-th to (P +
@ + p + 2)-th elements 1/a? and all other elements 1. Thus A\* = M)\. From the

derivatives of o7(\) and &;(7) as in (A.3.1)-(A.3.8) of Appendix 3, we have that

6at2()\**) M _1008(N) 00 2(A™) /oA M_lc'?af()\)/a)\
ox* a2 A o] o2(A*) A a2\
Oes(7) _ Oct(A)  Og(y)/OA* _ aast(/\)/(?/\
OX** 6A ’ O't(A**) O't(/\) .

Denote the QMLE of the modified model (2.3.1)-(2.3.2) with A**. By Theorem
2.2.2, we have:

\/ﬁ(:\;* . )\3*) N N(O, J**_._ll-**j**ml) ,

where
I = E[U(A) U (O], T** = E[U(\3") I UL (O8],

e [[O0E(N*)JON* Oey(y)/ON
Ut(’\ )_ ( 20-t2(A**) ? O't(/\**) )’
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I*, J** are 2 x 2 matrix obtained from I, J by replacing n, with n;*.

Mt 0

Let M, = ( 0 a ) , then Ut()\**) = Ut(/\)Ml Thus

I* = E[Uy(Mo) My I*MTUT ()], T** = E[Uy(X) M J*MIUT (X)) .
By Re-scaling ;\;';"‘, we obtain the QMLE of original model. Thus
\/ﬁ(xn . /\0) — \/E(M,\—IX;* . M;IAS*) _ N(O,M;IJ**_II**J**_IMA_l) .

It can be seen the asymptotic variance covariance matrix of the QMLE of original
model depend on I**, J**, and M), which depend on choice of h and the distribution
of ng. Thus given the distribution of 79, the variance of QMLE is decided by the
choice of h. . -

By Remark 2.2.10, if 1 is symmetric about 0, E(¢%(n3*)ns*) = 0 and E(¢'(n3*)n*) =
0, then 5;';"‘ is asymptotically independent with A4}*. In this case, we can find a nice
variance form of Sn.

Define Ms; = {M(i,j),1 < i,7 < 14 p+ q}, where Ms(i,7) = 0, if ¢ # j,
M;s(i,1) = 1/a%,if i <1+ p, and M;(i,i) = 1,if i > 1+ p. Then 6 = M;6.

by (A.3.5)-(A.3.8) in Appendix 3, we have

60.t2 (/\**)
35**

_ %M{l do2(X)  Bo2(\**)/06* _ M_lc’?afg/\)/c'?é.
t

85 0:2(A**) ° g}

By Theorem 2.2.2, we have:

\/5(6;* _ (5**) BN N(O, J**glf*zj**gl),
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where
j**—ll-a:* j** -1
2 2 2

4(E (9(mym*)" = 1) 802 (Ng) /096%™ 8o 2(A*) /85" T\ |
2 E 2 %% 2 * %
{Eg(nz‘*)nz‘* + g’(n?*)nz‘*z)} { ( o (A5") 0 (AF") ) }

— 47_**21)**-—1

Hence

Vo, — 8o) = V(M 182 — M85 — N(0,472M; 1D M),

n

and

A

B B B f 80. 2(/\**)/85** 6(7 2(/\**)/3T6** -1
ID** 1 1 — 4 0 t 0
M6 M6 E (M5 Ut2()\3*) 0.t2(A5*) M5

= (SRR

.

v

.

D1,

It can been seen that when distribution of 7, is fixed, the covariance matrix of

QMLE of ¢ is decided only by 7**2, which depends on choice of h. When P = Q = 0,
it reduces to pure GARCH, which coincides with the result of Berkes and Horvath

(2004). Some numeric computation of effect are left in Section 4.1.2 in Chapter 4.

In general, it is hard to compare the variance of QMLE of v for ARMA-GARCH.

2.4 Proofs

2.4.1 Proof of Theorem 2.2.1

Proof of Theorem 2.2.1: Theorem 2.2.1 can be proved by standard compactness
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argument with following results:
(i) lim,_e SUPyeg |Ln(X) — Ln(A)] = 0. a.s;

(ii) Ell(Xo)| < 00, and if A # Ao, then El;(\g) > ElL()),

where (i) is established in Lemma 2.4.3 in Section 2.4.6 and (ii) is established in

Lemma 2.4.5.

Since for any A € ©, [;()\) is a stationary sequence with finite mean, which is also

ergodic by theorem 3.5.8 of Stout(1974). This implies that

sup |El;y(A\) — L,(A)] = 0 a.s.
Ae6
Together with (i), (i) and L,()) being maximized at \,, we have:
0 < EbL(X)—EL(\)
= (EL(X0) — La(X0)) + (Ln(X0) = La(X0)) + (La(Ao) = Ln(An))

+(La(An) = La(3n)) + (La(On) — EL(A0))

< 2sup |ElL(X) — L.(N)| + 2sup |La(A) — f/n()\)l
AEB A€B

— 0, a.s.

Thus,

P~

Since El;()) is continuous and has a unique maximum at g by (ii), we have that

/\n — Ao , @A.S.

This completes the proof of Theorem 2.2.1. |END
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2.4.2 Proof of Theorem 2.2.2

Proof of Theorem 2.2.2: We adopt the same approach as that in the proof of
Theorem 3.2 by Francq and Zakoian (2004). Theorem 2.2.2 can be proved with

following results:

(i) E|[(0l:(Xo)/ON)(Ol:(A0)/ONT)| < 00, E |8%;(Ao)/ONINT| < o0;

(ll) —1/2 — Blt /\0)/8/\ alt(/\o /6)\ — 0
| 1= 1
and sup; g ‘n_l e (a%t()\)/a,\ax-" — (N /6)\6)\7") ‘ _, 0, in probability

as 1 — 00;

(iii) n=' o0, (8%L(X*)/ONON;) — T (i,7), a.s., where A* between ), and Ao;

(iv) Z is nonsingular and n=Y/23""_ (8l,(Xo)/0)) = N(0,Z) (= means converge in
distribution);

where (i) is established in Lemma 2.4.8; (ii) is established in Lemma 2.4.11; (iii) is
established in Lemma 2.4.12 and (iv) is established in Lemma 2.4.13.
Since by definition of A,, 31 (8ly(A\s)/0A)/\/n = 0, then by the mean value

theorem, for some A* such that |[A\* — Ag| < [A, — Ag|, we have

“< Ol () Oly( )\0 azt B - 1 820 (A)
6)\ ~ V& Z Z = V(A=) (n ANONT |-

Together with (ii), we have

\/I—Z 2 = =v1(A = do) ( %‘Zitc'g,\T) + Op(n_lﬁ)) +0p(1) .

Thus with (i), (iii) and (iv), by ergodic theorem and Slutsky lemma, we can prove

Theorem 2.2.2 if J is nonsingular. This completes the proof. | END
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2.4.3 Proofs of Theorem 2.2.3, Corollaries 2.2.1 and 2.2.2

Proof of Theorem 2.2.3: For pure GARCH with nonzero ¢, after dropping the
redundant parameters, the log-likelihood function and its first and second derivatives
are simplified. Thus Assumptions 2 and 7 are removed.

In particular, as showed in Appendix A 4,

Oes(c) /O
O't(A)

O2%e4(c) /ONOT A
Ot (/\)

da2(N)/OA
i (A)

8202 (X) /ONOT A
a2 ()

sup
V)

; Sup
AEB

, Sup
A€6

, SUup
AeO

have any moments. Thus as a result, the moment condition on &; in Lemma 2.4.12 is
reduced to 2¢;(1 — ¢2). Moment condition of 7; in Lemmas 2.4.8-2.4.12 is reduced to
E |, [max(14a),

Then by Lemmas 2.4.3-2.4.5 with the reduced moment conditions, consistency
in Theorem 2.2.3 can be established by the same approach as that in the proof of
Theorem 2.2.1.

By Lemmas 2.4.8-2.4.12 with the reduced moment conditions, normality in The-

orem 2.2.3 can be established by the same approach as that in the proof of Theorem

2.2.2. {fEND

Proof of Corollary 2.2.1: Under the given condition, by Lemma 2.4.10, both Z and
J are block-diagonal. By Theorem 2.2.3 and Remark 2.2.10, we have the variance

form of ¢,:

1 (003() 2 -
2 = J{‘IJ{‘:%{— (220 +E—1—§}

dg

N

~1
< 1 {Eiz} < lEog = Var(é,)

n | 0§ n
1 Qoo
nl— (0501 + ...+ aOp) - (ﬂol t ...t 60‘1) |
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Refer to proof of Theorem 2.1 in Ling (2005), 67 = agq ( 1+372,17 | | s At_igt_j)
a.s, where ¢ = (2,0,---,0,1,0,--- ’0)%;9+Q)XI with first component 7? and (p + 1)th
component 1, and 1 = (0,---,0,1,0,--- ,O)aﬂ))<1 with (p+ 1)th component 1. Thus

02 = agofi(+) for some function f;. And

007 (X)/0c = —2B5 " (L) As(L)A,(1)B; " (1)meor = v/aoo f2(-)

for some function f,. So there is some function f3, such that o2 = aggfs(-). All fi,

f2 and fs are not functions of agy. Thus Var(é,)/o? is independent of agy. This

completes the proof. | END

Proof of Corollary 2.2.2:

Since ¢y = 0, the parameters are reduced to 6. Assumptions 2 and 7 are removed
as in Theorem 2.2.3. Assumption 5 is modified by letting v = 0, which implies
Eg(n)n +1 =0.

As a result, Lemma 2.4.4 is adjusted as: Under Assumption 3, if there exists some
t such that 07(8) = 07(8) almost surely, then & = &.

For this special case, the first and second derivatives of [;(4) are further reduced

to:
az;ga) = —%{1+9(m(5))m(5)}60;§35;66,
%1, (6 252 T
6536557? = —%(1+g(m(5))m(5))a g?(/(gaaa

1 ! 0 o\ D02(8) /86 Bo2(6)/ 86T
+Z(2+39(m(5))m(5)+9(”t(5))”t(5)) o2(5) a}(6)

Based on above forms of the first and second derivatives of ,(), Lemma 2.4.9 is

modified as: Under Assumptions 1, 3 to 6, if E|n|** < oo, then Z is nonsingular.
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Further with Eg’(no)n3 < 1, then J is nonsingular.

Lemma 2.4.10 is even not necessary in this case.

Since Eg(n,)n; = —1, we have J'ZJ ! = 47?D~! with forms of 72 and D as
given in Corollary 2.2.2. For this special case, the asymptotic covariance matrix has
a nice form, which is helpful in comparing efficiencies of different QMLEs based on

different likelihood kernels.

END

2.4.4 Proof of Theorem 2.2.4

Proof of Theorem 2.2.4: For pure ARMA, some conditions and assumptions
required for ARMA-GARCH are removed.” Redundant Assumptions 3 and 7 are
dropped off. Assumption 5 is modified by letting w = 1. Assumption 4 is modified
by letting ¢; = 1.

Due to simplification of the log-likelihood function and its first and second deriva-
tives, Lemmas 2.4.3-2.4.12 are modified as that shown in Appendix A.5. In particular,
Lemma 2.4.12 holds with E|&;|? < oo.

The consistency in Theorem 2.2.4 can be established by the same approach as
that in the proof of Theorem 2.2.1 by Lemma 2.4.3-2.4.5 with modified conditions.

The normality in Theorem 2.2.4 can be established by the same approach as that

in the proof of Theorem 2.2.2 by Lemma, 2.4.8-2.4.12 with modified conditions. | END

2.4.5 Proof of Theorem 2.2.5

Proof of Theorem 2.2.5: First, by definition, El;(~, 6) is continuous and defined on
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a compact space. Second, by Lemma 2.4.5, El;(~, ) exists and is uniquely maximized
at dg. Lyn(v0,0) is stationary and ergodic, by Lemma 2.4.15 and ergodic theorem, for
any 6 € s, Ln(70,6) — El,(7,6) a.s.. Third, L,(4n,d) is continuous on § € 8; and
is a measurable function of {Y;, Y;_1,...} for all § € ©5. By Lemma 2.4.14, in(&n,é)
converge to L,(70,0) in probability uniformly for all 6 € ©;. Hence Ln(Vn, 6) —
El;(70,0) uniformly for all § € ©s5. These meet the conditions in Theorem 1.4.1
(Newey and Mcfadden, 1994). Thus 8, — &g in probability.

do is in the interior of Q5. Ed%l, (g, 8)/0006T exists and is continuous in Oj.
Since 8%2L,(yo,8)/0606T is stationary and ergodic, by ergodic theorem, for each § €
Qs, 8°Ly,(0,08)/0606T — Ed%l,(vo,0)/0606T a.s. In addition, 62L, (7o, 8)/06067 is
continuous in 65. By Lemma 2.4.16, 82L,(7o,6)/8606T — Ed%,(vo,8)/8686T in
probability uniformly in a neighborhood of ;. From the proof of Lemma 2.4.8, we
have that E9%l;(vo, d0) /06067 is nonsingular. Together with Lemma 2.4.18, we verify

the conditions in Theorem 1.4.2 (Newey and Mcfadden, 1994). Hence /n(8, — &)

converges to a multivariate normal distribution. This completes the proof. | END

2.4.6 Proofs of Lemmas

Throughout the rest of this Chapter, denote the spectral radius of a square matrix A
as p(A). Let K >0,0< p<1and0< (<1 be generic constants. K, p and { may
take different values from place to place. So we can write
0<K)) pi+K) ipy < Kpmntiniz),
i>iy i>ig

where 0 < p; <1,0< py < 1,4 2 0and iy >0.
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Adopting the notation of Francq and Zakoian (2004), let

( ai (M) \ /ao+Zz 1azst—z( ) \
2 of 1(N)
g (A) = 5 , a(A) = 5 :
\ 0?—9+1(A) }qxl \ 0 )qxl
(B1 B -+ By
1 0 --- O
B= : : : ;
\ 0 e 10 /qxq

Then (2.2.2) can be written in vector form:
gt (A) = &(A) + Bal () . (2.4.1)
Repeat (2.4.1), we obtain
;(A) = N+ Be_1(N) + B’ 3(A) + ... + B g, 1 (A) (24.2)
+B" P (A) + ... + B !¢, (A) + Bta3(\ Z Bic,

1=0

Let 37(A) be the vector obtained by replacing o7 ;(\) with 2 ;()) in g2()), and
¢;(A) be the vector obtained by replacing €2_,(vy) with é€2_,() in ¢,(A). Then we have

the vector form of 32()\):
3 (\) = &(\)+Ba (V) (2.4.3)
= &) +B& 1 (N) + B*E_5(N) + .. + B I5,, (V) + BTG, (V)

+...+ B¢, (\) + B'33 .

Lemma 2.4.1. Under Assumption 2, we have sup g ,lag(d)] = O(p"), SUP,co, |0y (1)| =
O(p"), sup,ee, la4(3)] = O(p"), sup,ce, 8a,(i)/0p;] = O(p') for j =1,2,..,Q. Un-
der Assumption 3, we have supgeg, |as(i)| = O(p*), and supscq, |as(i)| = O(p?),

further with Assumption 1, we have sup,cg p(B) < 1.
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Proof: Referring to (2.3) in Ling (2005), we have sup,cg, |a,(i)] = O(p’), and
SUP,co, |84(4)| = O(p*). Referring to (2.5) in Ling (2005), we have supscg, |as(i)| =
O(p*), and supseg, |as(i)] = O(p’). Referring to (2.4) in Ling (2005), we have

sup,ce £(B) < 1. By the definition and Assumption 2, .A>*(2) has the same property

as B '(z), thus supyeg, |as(i)| = O(p*).

From the expressions of a, (i) as in A.2, a,(¢) = 0 for < 0, then by (A.2.1), there

~exist 0 < p; < p2 < 1, such that:

30, Z ~J J _ .. i—7 .
sup 3“"(,) = sup Zaso (K)ay(i —j — k)| = Y _ 05O 7%) = 1i=510(p;?) = O(gh) .
PEO, Pj ¥€By | 120 k=0

This completes the proof of Lemma 2.4.1| END

In the following proofs, we will frequently use the inequality below. Suppose
{X;,—00 < t < oo} is a strictly stationary sequence, m > 0 is a integer, and a; =

O(p'), then we have:

m+¢ 00 00 00 <
< EZZ Z|aaj~--akXX + Xl Za,x,
i=0 j=0 k=0 1=0
< EY Y ) lagg e an XX XMZIGLX:IC
i=0 j=0 k=0 =0
— i N ii|aza----akal|E|XX XkXC|
i=0 j= =0 1=0
< KE|X11m+<, (2.4.4)

by the fact E|X;X; - X X{| < B|X;|™*.

Lemma 2.4.2. Under (1.2.7), then there exists some s > 0, such that

E sup |e:(7)|** < 00, Esup|o:(N)|** < 00, E sup |&(7)|** < 00, and Esup |5:())]** < .

€O, A€EO €O, A€EB
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Proof: Refer to Proposition 1 in Francq and Zakoian (2004), under (1.2.7), we have
E|e|* < 00,and Eo?® < co.

Then by (1.2.12), (2.4.4) and Lemma 2.4.1, we have
2s
< KE|60|28 < 00,

o0

Bo(D) ag(i)ecs

1=0

EIYE I23 —_ E'A.m |2s —E

Hence Esup,cg. |V — c[* < KE|Y; — ¢|** + Ksup,cg_ |c — co|* < oo. Again by

(2.2.3), (2.24), (2.4.4) and Lemma 2.4.1, we have

Za’r )(Yi—i — ¢

=0

2s

< KE sup |Y; — c|* < o0,
YEO,

Z a6 Et z(’y)

< Ksup |25’5_1(1)0-’0|S + KE sup |eo(7)[*
AEB YEO,

E sup [e:(7)[* = E sup
YEB, 7€6,

8

Esup|o:(M\)[* < Ksup|B; ' (1)apl® + KEsup
) =) )

< OoQ.

Similarly, by (2.2.7), (2.2.8), (2.4.4), and Lemma 2.4.1, we have

2s

E sup |&:(7)]* < KE sup Z a,(1)(Yies —c)| + KO(p**)

YES, €8y |'i=o

< KE sup |Y; — c[* + KO(p**)

YE€EO,

t—1 8

Esup [5,()\)]* < Ksup |B; ool + KE sup Zaa DE ()| + KO(p™)
A€O red |3
< K+ KEsup (Zaa Zaf‘; NWYiioj — |2)
VL i

< K + KE sup |&(7)]*

V€O
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This completes the proof of Lemma 2.4.2. | END

In following proofs, we will frequently use the technique of

x_:’ﬁ_:r(l_l)_i_:c—:i&
b b b b b

Lemma 2.4.3. Under Assumptions 1 - 8 and Assumption 4, we have

lim sup |Ln(A) — Lp(A)| =0 a.s..

=00 A6

Proof: Referring to (4.38) and (4.39) in the proof of Theorem 3.1 in Francq and

Zakoian (2004), we have

sup |ex(7) — &x(7)] < Kp*, a.s, (2.4.5)
~YEB. |
sup [g?(A\) — aZ(\)| < Kp' ( Z sup |ex(Y)| + 1) a.s. (2.4.6)

Based on (2.2.9), (2.2.10), by mean value theorem, there exists n;(A) such that

7:(A) — 0 (A)| < [me(A) — 7e(X)|, we have

A€EB
= ilelfe) —Zlog 0 ——Zlog & )
= sup %glog?f:i + = Zlog ;
< sup %glog j:g:\\; +sup %;9(?7? (V) (e(X) = (X))

Now we will prove these two items converge to 0 almost surely respectively.
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Note for any A € ©, with probability 1, and infycg 0:(A) > ap > 0, infyce 6:(A) >

ag > 0. By (2.4.6) and the fact log(1 + |z|) < |z|, we have:

IA

n t—1
1 :
sup — E log (K,oit ( E sup |ex(y)| + 1) + 1)
t=1

A€ 2N

IA

AEO 2N

sup—Zp (Z sup |5k(7)|+1) -

By Cesaro lemma, above expression converges to 0 almost surely if

( Z sup |ex(v)| + 1) — 0, a.s. if t — o0. (2.4.7)

1— p'YEG‘Y

k=
We know E(X + Y)¢ < EX¢ + EY* for all positiver.v X and Y, 0 < ( < 1. By

Markov inequality and Lemma 2.4.2, taking ¢ small enough, we have

(5 )

k=1—p 7€0,

Z Z E sup(|e; (7)] + 1)¢

i=1—p AEO

Ki Pt
=1

< 00,

IA

IA

Thus by Borel-Cantelli lemma, we have

sup———Zlog( i\) » 0 a.s.

e N
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Similarly ,we can show

Then we can claim that

sup
A€6

Zlog( i)l — 0 a.s.

Now we will prove the second convergence.

su (A
sup = Z |g(m7 (A — (V)]
[ne(W)]16E(A) — o (V)] |Et(7)“€t(7)l
< su + su =
\eo n = Z I G + e Fen Z 950
t—1
< i‘ég—zp (lamO)mM] +lg@mON]) 3 (e +1) -
' k=1-p
Again by Cesaro lemma, above expression converge to 0 almost surely if
t—1
p ilelglg )N + g M) D (ex(n)]+1) =0, as. (2.4.8)
k=1—p

Similarly, by Markov inequality, Cauchy inequality and Assumption 4, we have

ZP (P SUP IQ(TIt (A) "7t(/\)| + Ig m t(A) I Z (lei(v)] +1) > 5)

i=1-p

t—1

00 4¢ -
< K35 3 Bawp (o) + o)) ()l + 1F

t= i=1-p
oo ptc t—1 C

< K;f— ; Eﬁgglg (V) + 52N (le(y)] + 1)¢
= 1= —p

N 4(20-1)C 1/2
E (max(sup Wl 1)) + Esup |nf<<>~)|]
Ae6 AEO

A
o
M]3
%lb;g
Mﬁ
——
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since by Lemma 2.4.2,

E sup |, (X)[*4@1064) < KB sup [ey(y)[2x422=D64) < KE sup | (7)]* < oo,
A€O 7E€O, 7€,

E sup |7 (A) [Pex4Ca-1¢4) < KE sup |&,(v)[m2*#@1-1440 < KE sup |&,(7)]* < oo,
AEO YEB, | v7EB

for some ¢ > 0 such that max(4(2:; — 1)¢,4¢) < 2s. Hence E|n}())[max{(42u-1)¢.4¢) <
00.

Thus by Borel-Cantelli lemma, (2.4.8) holds.

This completes the proof of Lemma 2.4.3. | END

Lemma 2.4.4. Under Assumptions 1 to 3, if there exists some t such that g:(y) =

et(v0) and 0}(X) = of(X) almost surely, then A = .

Proof: We refer to (ii) in the proof of Thedrem 3.1 in Francq and Zakoian (2004).

END

Denote F;_, as the o-algebra generated by n;_;, ¢ > 1.

Lemma 2.4.5. Under Assumptions 1-5, if E|lng|** < oo (or E|ns|* < oo for some

s > 0), we have E|l;(Ao)| < 00. Further if A # Ao, then we have El;(Ao) > El;()).

Proof: By Jensen’s inequality and Lemma 2.4.2, for some small s > 0,
1 s 1 + S 1 - 8
E|loga| = EE|logot| < glog Eg] + glog Eo; < 00
since log™ Eo; < max(0, —(logaf;)/2) < co. Then by Assumption 4, we have
E|l;(A)| < E|loga;| + E|log h(n:)| < E|loga,| + CE|n|** < c0.

By (2.2.10) and the fact €; = €:(), 0: = 0:(Xo) and n; = €:(70)/0t(Xo), We have

) = tog | (o + O )| s
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By the expressions of () and £:(70), we have () — () is Fi—1 adapted.

Then by Remark 2.2.3 and independence of 7, with JF;_,, we have for V A,

Elogh(n,) — E {log [Ojg)h (nta:’(rt/\) + E*("’)G:E;t(%))] .7-}._1} >0.

Hence V A\

El;(Xo) — El;())]

Elogh(n;) — Elog [U:Z\)h (ﬂt U:I;) + Et(’Yl-t'E/\E)t(’YO))]

E {Elog h(n) —E {log [023\ h (”*a:?;\ -+ st(’rli ;‘)t('ro))]

> 0.

)

Thus El;(A\g) > El;()). If there exists A, such that El;(A¢) = El;(\). Then by the
fact EX = 0 for non-negative random variable X if and only if X = 0 almost surely,

we have

Elogh(n;) — E {log [02;)/5, (mc’:&) + "‘”("’L K;("’“))J lﬂ_l} =0,a.s.

By Remark 2.2.3, above equation holds if and only if

es(y) — €:("0)
ai(A)

o
—— =1,a.s. and

Ut(/\)

=0, a.s.

Thus by Lemma 2.4.4, we have A = A¢ . This completes the proof. [ END

Let £, = 14> o0 p'|Yei — coo), and &opr = 1+ Do P*€t—i|, where constant cgg

is the true value of cy.

Lemma 2.4.6. Under Assumptions 1 to 3, we have for some constants C > 0 and

0 < p<1, such that
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(i) sup,ce, l€t-1(7)|, sup,ce, [0c:(7)/07|, and sup,cq,_ |0%€:(7)/0v0Y"| are bounded
by C&p,t—l y

(ii) supyee 07(A) is bounded by CE2,_,;

(iii) There exists a neighbor ©g of Ag such that
SUP)eg, 0{2()\)‘80?()\)/85’ and supyeg, 0;2()\)]6203(/\)/8585’-'“ are bounded by

CE, ;1 for any s > 0;

(iv) supyee 07 I(A)laa?(/\)/aﬂ, SUPjco 0¢ 1()\)'320?()\)/3787T|, and
SUDycq 07 1(/\)‘8203(/\)/6785T| are bounded by C&,;_1;

(v) There exists 0 < p,p < 1, such that &z < C&pt 5

(vi) For any k > 0, if Eleo|* < oo, then E&§,,_; < oo.

Proof: (i) and (ii) are the same as Lemma A.1, (iii) as Lemma A.2, (iv) as Lemma
A.3, and (v) as Lemma A.5 in Ling (2005), respectively.

By (2.4.4), for 0 < p < 1, we have

E¢f .1 < C+CElegl* < o0 .

This completes the proof of Lemma 2.4.6. | END

Let & ,: =14+ ooy p'le—i(y)]- By definition &, 5t = o pz-

Lemma 2.4.7. Under Assumptions 1 to 8 and 6, then there exists a neighbor Gy of

Ao, 0<p<1and0< <1, such that:
(i) For any v € 8., |0e4(7)/07|, and |8%ei(vy)/0vOT| are bounded by C&, p1-1 ;
(ii) For any X\ € Oy, [(00f(N)/07)/o:(N)] is bounded by C&, p4—1;

(iii) For any A € 6y, |0%0}(X)/070YT|, and |9%02(X)/DvDéT| are bounded by CE2 ,,_,;
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(iv) For any \* # A, X\* and A € O, there exist 0 < p < g < 1, such that gZ(\*) is
bounded by C&f,..’p,t_l; and - p1—-1 18 bounded by C&, p1—1.

(v) For any A € Oy, there ezist 0 < p < p < 1, such that &, ,+—1/0:()) is bounded by
cegl=2 - n(N)| is bounded by < C(1 + |ntl)£i;ft2-1;

'Yagst'_l ;

(vi) There exist 0 < p < ¢ <1, such that sup,cg, &y, i bounded by CE&,;.

Proof: Note that we have defined K and 0 < p < 1 be generic constants taking
values different from place to place. Generally we take K and p bigger and bigger

from inequality to next inequality. In the following proof, we will frequently use the

fact
00 00 ' oo t—1 o
Y:Piy:ﬂé|$t—i—j| = Z‘ZP;_JPQQ%—H
=1 j=0 i=1 j=0
— 1—(P2/P1)z
= K Y pi|lTi_;
2 Al

I
R
i

i
P
)
k3

|
>
=
g
s

IA

K " max(p}, ph)|zei| , (2.4.9)

i=1
where 0 < p;1,p2 < 1, and K is some positive constant.

From (A.3.1)-(A.3.3) in Appendix A.3, by Lemma 2.4.1, we have for some 0 <

p <1,

685,()7) | = (= ¢ (1), AT (L)eemi(7), =By (L)ee—i (M) | < K(1+ ) plees()]) -

i=1

From (A.3.9)-(A.3.14) in Appendix A.3, by Lemma 2.4.1 and (2.4.9), we have for



29

some 0 < p < 1,

62&(7)
OyornT

- l (0, B (1), A,(1)B*(1),0, ASH(L)B H (L)er—i—j(7), By (L) (€—imj(7) + Et—j(’Y))) |

< K(1+ Zpi|5t—i(7)|)

Thus part (i) holds.

To prove part (ii), we give another derivative form of 62()). By (2.2.4),

7N = Bs ™ (Dao + Y as(i)ed ()

Hence

9, | 3&‘ -1
ot =2 Z a5 Et z tafy(FY) .

'There exists some small positive C; such that for any 7 > 1 we have:

a:(A) > (Bs ™ (V)ap + as(d)e_ (1) * > ¢ (1+a5<z'>sf_z-(fy))”2>— 14+v/a5(i)les—i(7)]) -

Thus with fact |z|/(1+|z|) < 1, by Lemma 2.4.1, part (i) above and (2.4.9), there

exist some 0 < p3, ps < 1 and positive constant K7, such that

80?()\)/87‘ K i as(%)|es—i(7)] aet—i(')’)‘
ot(A) T G 1+ as()lei(m)) | O

IA

K /as(i) (1 +> p;’;lst_z-—l—j('r)l)
i=0

i=1

K+ K Z Pfx Z P§|€t—i-—1—j (v)
i=1 3=0

IA

K+ K max(ph, p})let—i-1(7)| -
=1

IA
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This proves part (ii).
In the following proof, we will frequently use the inequality 2|zy| < 22 + 32
From (A.3.20) and (A.3.22) in Appendix A.3, by Lemma 2.4.1, part (i) and (2.4.9),
there exist 0 < ps, pg < 1, such that

8a{ (M)
Oy06T

= . Oe -1
K|> piei(7) ta,y("’) (2.4.10)

K

IA
(]2
S S
AR
J
2
N
_
+
)¢
R
o
i\
|
J
2
N——

< K Z pslec—i()] + KZ P Zo o4 (e2-i(7) + E?—-z‘—l-j(’)’))
i=1 i=1  j=

IA

K pilecs(n)|+ KD _ max(ph, ph)e? ;(v) -
=1

t=1

Since for some 0 < p; < 1,

1 _q_gzp‘f”gt_z |—|—Zp7 e - (2.4.11)
i=0 i=0
< 1—|—22:p"7|5¢_1L |+ZZP7PJ7|& —~i(V)llee—5(7)]
i=0 =0 j=0
- ’iP?st ’ (2.4.12)

thus there exists 0 < p < 1, such that |8%07(\)/0v867 | is bounded by C&2 ,, .
By (A.3.23) in Appendix A.3 and Lemma 2.4.1, we have for any A € 6, |8202()\)/9v0+7 |

is bounded by

8Et z aEt z 6 Et_i(')/)
(Z p8 + ZZPSEt ( 6’)’6’)’T .

From (A.3.1)-(A.3.3) in A.3 in Appendix A.3, by (2.4.9), we have

~ 2
Z st —i( ast —i < KZPB (1 + ijlst—%—J ) < Cﬁg,p,t .
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By replacing O¢;_;(7y) /07 with 8%;_;()/0v0~T in (2.4.10), together with (2.4.11),

for some 0 < pg < p < 1 and constant C, we have:

6 et—i(7) - i iy .2 2
Zngt —i 373'7 < szslgt —i ’+szax(pSsP9)Et i(7) < 05 Nt

i=] =]
This proves part (iii).
By Lemma 2.4.1, (2.4.9), for any A* # X and 0 < py; < p12 < p13 < 1, we have:

0;(\) = Bilag+ Z“J* i)er_;(v") = Bylao + Zacs* (2) (Z Ay (5) (Yemij — C*))

i=1 3=0

< K+ Kzaé* Za”Y Z (1) ((Yemizj = €*)* + (Yimict ~ C*)z)
=1
< K+ Kzaa* () Zﬂil(thi—j ~c')?
i=1 j=0 '
< K4KY ap(@ Y pale— P+ K () Y oy (Vimicy — o
i=1 =0 i=1 3=0
< K+ K3 an(i) ) (A (DB(L)ewi-; ()’
=1 3=0
< K+KZG«5* Zﬁhzzpmpmlft —i—j— —1(7)es- —i—j— —k(7)]
§=0 1=0 k=0
< K +Kzaa* Zﬂh Zzplzpu Et —imj—1(7) +5?—i—j—k(7))
j= I=0 k=0
< K+ K Z as+ (%) Z iy Z Pl1253;i*j—z(’7)
i=1 7j=0 =0
< K+ szi3€i—i(7) :

=1

Thus there exist 0 < p;3 < p < 1,

gl (A*) < C€?

')’,P,t—l )
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By part (i), Lemma 2.4.1 and (2.4.9), for any v* # «, there exist 0 < p14 < p15 <

P16 < p17 < 1, such that

£’Y* spl4st"'1

IA

IA

IA

IA

1+ ) Aaleei(r*)]
i=1

1‘|'Z:ff5'14|-*"'l L)(Yi-i — )

1+ th Zﬂis |(Yi—iz; — )|
i=1  j=0
1+ Zpl4zpjl5|c“ | + mezpism —i—j

i=1

K+KY Y ols |4 (DBL)eins(7)]

K+KZP14293152P16 €—i—j-1(7)]

1=1 =0

K+ KZPHQ—@(’}’)‘ : (2.4.13)

i=1

Thus there exist 0 < p < ¢ < 1, such that &» -1 < CE,ype-1 -

This completes proof of part (iv).

By (2.4.2), we have

p
£ (ao + Z aJEt z—g ) K + Z Z ]'TBz]'aJEt o 3(7)

where 17 = (1,0, --

interior of 8, for any 1 < j < p, infyce, @; > 0. Together with the fact (1 + z?)

j=1 i=0

,0)4x1. By the definition of B, 1T Bl > (. Since A is in the

1/2 >

(14 2)/v2 for > 0, we have o;()\) > Cs(1 + ,Bi/ ?les—i(7)|) for some small positive

Cs and any ¢ > 1. Hence by the facts |z|/(1+|z]) < 1and 1/(1+ |z|) < 1/(1+ |z|)*
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for 0 < 13 < 1, we have:

(1432, Alle—i(7)]) 1 >~ Ple—i(y)]
£10Y | = (1 " Z:; 1+ /Bi/2|5t—i(7)|)

1 o1& 5 Y _ Pie_ i\
. |Et-—i(’7)|l N ( i
Cs Cs-z( /) 1+ B e0_i(7)]

A
|
+
|

IA
K =
Q=

)&
TN

§\'c:.

[
~

I\

2

T

[ -]

~and

Z Q"|€t—i(7)|1_"2 = (1 + Z gj|6t_j('y)|) Z 0 |€t-—z’("'}/)| —t2

IA
N
b
+
L
U
o
|
LS
2
N——
)
N
[M]s
rbﬂ
N
o | &
T4
2=
| T
| [ )
S

A
T
+
[M]s
_
[
|
2
\:/_
|
M]3
e

Then by taking ¢, small enough, such that 0 < o = p/ ,6’;2/ ? < 1, we have for some

constant C':

6’7!pst_1

1—¢o
0 | = ¢

‘Y&Qst—l )

Now by part (i) and (iv), there exists 0 < p < 1, such that o; and 0¢;(7*)/07* are
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bounded by C¢, ,:1. Then for any A € © and 0 < p < p* < p < 1, we have

ne(N) Zg) | _ el +( ;&,))aa(v*)/m‘
< el :Z\) +‘(7__,},0)85t((y;y&)/67‘
< K(1+ ) L
< K(1+ )2

This proves part (v).

By Lemma 2.4.1 and (2.4.9), there exist 0 < p1g < p1g < pog < 1, such that

SUP ZP18|5t —i < K SUP me ZP’%Q (Ye—ij — ©)

7€0y =0 1€0y =0

< K sup ZP1sZP{9|COO—C|+KZP1SZP319|}Q —i—j — Coo|

€6y 0 =0

< K(l-l-ngo IYt—i_COO|)

=0

Thus there is 0 < p < ¢ < 1, such that &, ,; < C¢,;, which proves part (vi).

This completes the proof of Lemma 2.4.7. [ END

Lemma 2.4.8. Under Assumptions 1 to 5, if E|e,|?1™?) < o0, and E|nl* < oo,

then
Ol (o) Ol (o)
o ONT

821, (Xo)
OAONT

E < 00.

<ooa,ndE|

Proof: By (2.2.12), Assumption 4, Lemmas 2.4.6 and 2.4.7, and the independence
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of n, with £,;_1, we have

Ol (Ao) Ol (o)
oN  OAT

d

802 (M) /O B(X) /ONT

of of

< E{ i (1 + 9(%)%)2

Do2(XNg) /0N Bet(0)/ONT + 6%(n,)

O(0)/OA Oee(y0) /ONT

1 2
+3 ,g(m) +g (m)m' p o o -,

< KE(1+[n/* + > + max(jne, 1) + max(|nel, 1)*172) B 072

By (2.2.13), Assumption 4, Lemmas 2.4.6 and 2.4.7, and the independence of 7,

with £,:_1, we have

9%l (M)
OAONT

< KE (1+|n/** + max(|n, 1)** ™" + max(|n|, 1)**7?) Efg,(;,t_ﬁ)

d

< 00.

This completes the proof of Lemma 2.4.8. | END

Lemma 2.4.9. Under Assumptions 1-7, if Ele;[>(=%) < oo, and E|n|** < oo, then
T is nonsingular. Further if E¢'(no) < 0, E¢'(no)n2 < 1 and Eg'(no)no = 0, then J

s nonsingular.

Proof: Referring to the proof of Theorem 3.2 in Francq and Zakoian (2004), for any

vector rs C RPY?H! and r, C RP*@+1 ) we have:

2
r?aag(;o) =0 a.s

if and only if r5; = 0; and
rTaEt(AU) =0, a.s

T By

}
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if and only if r, = 0. This implies

. (aag(,\o) O 802 (Mo) /8AT) E (&st('yg) /OX Be4(70)/ONT )

2 2
O o J¢ Ot

are nonsingular.
The existence of Z and J are established in the Lemma 2.4.8. We prove the non-
singularity of Z by a contradiction method similar to that in the proof of Theorem

3.2 in Francq and Zakoian (2004). Assume Z is singular, then there exists a vector

r=(r,,7s) # 0, such that r79l;(X\g)/0X = 0 a.s. From (2.2.12), we have

—-;—(1 + g('rh)m)r

2
1997 (X)/0X | . (nt)TTaEt('TO)/a)\ ~0, as. (2.4.14)

0't2 Oy

Taking the variance of the left-hand side of (2.4.14) conditional on F;_;, and using

the fact that 7, is independent with (9o2/9))/o? and (9e;/0))/0:, and Eg(n;) = 0

(see Remark 2.2.3), we have almost surely:

Tc’?af(Ao)/a)\)2

2

0 = E(mn+V? (r

Tao?(xg)/ax) (TTaet(fm)/aA) + Ed(n) (TTaet(v)/aA)z

0, ¢ O

~Eg*(n)m ('r'

I

Klaf - Kgatbt + K3b§

|

AK K3 — K2 K, ?
K| —=2a,— b | .
ik, T\ gt T

By Assumption 7, (4K;K3; — K3)/4K3 is negative. By stationarity, we have either

Ky + (K2 — 4K, K3)Y/? Ky — (K2 — 4K, K3)'/?
= a; or by =

b 2K, 2K,

a; almost surely for all t.

Without loss of generality, take the later case and substitute it into (2.4.14), we obtain

for all ¢,

1 Ky — (K2 — 4K, K3)\/? 2802 (Ao) /X
{—5(1 + g(m)m) + oK, g(me) ¢ v 2 0, as.
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The term in the parenthesis can not be 0 almost surely if P(g(n:)m:+1 = Cg(n:)) < 1

for any constant C. While by Remark 2.2.6, Assumption 7 implies Pg(n:)n: +1 =

Cg(n:)] < 1 for any constant C. Hence a; = 0 a.s. and thus b; = 0 almost surely, that
1S

7002 (o)

r =0, and r

oA

Taat(/\O)
o\

=0, a.s.

Since Je;(XAg)/36 = 0, 7T0e:(Ag)/OX = 0 a.s if and only if r, = 0. With r, =0,

1T802(N)/OX = 0 a.s means 77 0o2(X\g)/08 = 0 a.s, which holds if and only if 75 = 0.

Thus we have r = 0, which contradicts with the assumption. This proves the non-

singularity of 7.

Since E(g(ne)ne + 1) = 0 and Eg(n) = 0 (see Remark 2.2.3), further with

Eg'(n:)n, = 0, by (2.2.13) and the independence of 7; with (97 /0))/o? and (0g;/0N) /o,

we have
o} o; 0 r / t\"Yo0 t T
T = %(1_ng(nt)nt2)E (3 t(j_fz)/a/\a t()\o_;;/a/\ )—Eg (nt)E (66 ("‘};t)/a)\ 3 (’)/2.1/6)\ ) .
(2.4.15)

By the given conditions, we have E¢'(n;)n? < 1, E¢’(n;) < 0. Hence J is a sum of

a positive definite matrix and a positive semi-definite matrix. Thus J is nonsingular.

Lemma 2.4.10. Under Assumptions 1-7, if ng is symmetrically distributed, E|st|2(1“"2) <

oo and Eln,|?*(141) < oo, then we have:
(i) if Eg*>(no)no = 0, then T is block-diagonal;

(ii) if E¢'(no)no = 0, then J is block-diagonal.
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Proof:

. E Blcg’j\o)algg}o) E 310(;;0) 3%)’90) _ ( 1, 1, )
E 61(3(30) acgag)so) E 81(:9(;\0) 6l§§3\'0) s I,
where Z; and Z; have the expressions as those in (2.2.14) and (2.2.15).

Since Oe:(7)/06 = 0, Eg(n:) = Eg*(n)n: = 0, by (2.2.12), we have:

007 (Xo) /06 97 () /07"

ol o2

90 (Xo)/00 Oei(v0)/OY"

0',52 O

14

1
7B+ g(n)m)°E

—%E(g(m) + ¢*(ne)m) E

00%(%) /06 803 (Xa) /1"

2 2

= le-(E(g(nt)nt)2 — I)E o3

Oy
Refer to (ii) in the proof of theorem 3.2 in Francq and Zakoian (2004), for 1 < i <
p+q+1, 1§l§qand1§j§P+Q+1,ﬁfehave

1 99¢ (X0) /96 807 (Xo) /07"

of ot

= 0. (2.4.16)

Thus 7, = 0. Z3 is the transpose of Z,4, so 1;’{ =7Z,=0.
Since Oei(y)/06 = 0, Eg(n:) = 0, Eg(n:)n: + 1 = 0 (see Remark 2.2.3), based on

(2.4.15), one non-diagonal of 7 is:

1

2 o2 0 T
ZE(I _Eg:(nt)ntz)Eagt (A0)/08 Doy (Aa) /O .

ol o2

Thus with (2.4.16), the non-diagonals of 7 are null.

This completes the proof of Lemma 2.4.9. END

Lemma 2.4.11. Under Assumptions 1-5, then

1 [ B(N)  Bl(No) o
N =AU O ’
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Sup
AEBy

821, ( Rl,(\)
Vn & Z (aAaAT NONT ||
in probability as n — 00, where ©g is a neighborhood of A\g.

Proof: Analogous to (2.2.12) we obtain:

) — {1+ o)A L

The first and second derivatives of G2(\) and &;(v) are similar with those of oZ())
“and &;(y) and are given in Appendix A.6. With Assumption 4, inequalities (A.7.1)
o (A.7.5) and (A.7.10) in Appendix A.7, by the mean value theorem, there exists 7}

such that |n; — m| < | — 7/, and

()  Aly(Xo)

ox  OX
_ | - L1+ st (2022 _ 9520000
2 otane — atrn) 20/
ro(m) (ast();)/a)\ ~ aét('?t)/a)\) N (g () — g (ﬁt)) agt();i) /O

1
Kp* |1+ g(ne)me] Se—1(v0)€p,e-1 + 5

IA

(g + o) (- ) LI

t
O¢(Xo)

O

+K0*|g(m)|Se-1(70)€p -1 + ‘9’(77:)(7% — 7t

IA

Kpt(1+ 2 + max(ne, 1)) Si-1(10)Epe-1

+Kp'St_1(70) (1 + |me]) ( max(n;, 1)** ™" + max(r;, 1)2"““2) (14 Kp*Se-1(70))6pt-1

VAN

K p'SE 1 (10)6pe1 (1 + 1% + max(ne, 17 + (1+ i) (max(y, 1)~

+max(n},1)%72)) |
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where
t—1

St-1(7) = Z (les(MI+1) .

i=1-p

Then by the Markov inequality and the Cauchy Schwarz inequality, Lemma 2.4.2,

for some 0 < s < 1 small enough, we have

de )

Ksn—8/2 n 8 s 1/2 o o
Z * (ESi21(0)EE; pi-1) / {1+E|77t|4 ! + E max(n,, 1)*~2

t=1

3lt _ 3L(Xo)
O\

63

1/2
+[(1 + Elm/*) (Emax(n;, 1)~ + Emax(n}, 1)8-%)]"/2 }

INA

'The second convergence in the lemma can be proved by similar arguments. Based on

the expression of 82l;(\)/8\, analogous to (2.2.13) we can obtain the expression of

821,(\)/OA, and then

. O’L(2)  BL(N)
reon | TXONT — BADAT

= In+ I+ L3,
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where

b= s |5 (1+ o))

o? 5

U

0%0{(A)/OX _ 857 (A v\%v

1 B252(X) /O

2 An (m(N)n:(N) — g 3&»599& 52

+w Aw + %Aiéiz + g’ (m(N))mi Ev

Amqr\c /O ?WE /OXT  852(N) /8 B52(N) /AT w

2 ~2 52
O o.u O g

+2 (30 (nN)m) + 9/ ()T ~ 39 (NN — g GO)FN)

: A@i )/9A Q&,E\%J

3 Qﬁ

.M.A.Q ?%»ds%»v — n?ﬂ?vvv
do? yv\wy.wm; )/ON 3G} v\mymm% v\myﬂw

Ot Q.n m.n

o~
[ Qo]
I}

+2{ (g ()N — (V) ) = (9 @) — g((N)) }

852(X)/ON E,(N) /ONT

52 5

N |

X

+.w. Q (7:(A)m(X) — iiév
: ﬁ& )/O\ 80?2 ) JOXT  BE,(X)/0X 852(X)/OAT W

Ot o? t op @...w

4 { (¢ )2 — 9(0N)) = (9 (AR - 9N }

L DE(N)/0A 52 (N) /0N

5 52

)
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Ls = ¢ (m\) {3&()\)/3/\36::()\)/6)\ _ BE(N)/8X 0&,()) /A }

(7 () - ¢ (V) aét(gz/a,\ 9%, );)t/a,\

2e,(X)/ONONT  8%E,()) /a,\a)\T}

O¢ Ot

+9(m(N)) {6

8%5:(X) /020X |

Ot

+ (g(ﬂt()\)) — Q(ﬁt(/\)))

By Assumption 4, inequalities (A.7.1) to (A.7.11) in Appendix A.7, and by the
mean value theorem, there exists 7} () such that |n;(A) — 7. (A)] < |n(A) — 7(A)], and

. O%())  8%h(N)
reon |ONONT ~ BAOAT

< Kp'SE &8 (14027 (N) + max(n(N), 1) + max(m(), 1)*?)
+Kp'Se_1(1+ (N1 + KptSf_l)ﬁﬁ,t_l
x (mE ()™ + max( (3), 1) + max(r; (A), 1)+72) .

Then by Lemma 2.4.2, the Markov inequality and the Cauchy-Schwarz inequality,

similarly we can show:

Z 0%,(N)  6%())
Vn & 8,\8)\7’  ONONT

This completes the proof of Lemma 2.4.11. |END

» 0, in probability as n — oo.

1\690

Lemma 2.4.12. Under Assumptions 1 to 7, E|e,|Xu+1)(-2) if B|p,|mex(1.21) < o0
then
— G%1,(\*)
3)\ O\

» J(4,3),

almost surely for any A\* between )\n and Ag.
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Proof: By Lemma 2.4.8, J exists. By ergodic theorem,

(M)
_Z oNt

Since A, — Ao almost surely, it suffices to prove that for any € > 0,

Pl 8(Xo)
ONONT ~ BOAONT

<€, a.s.

Furthermore since 02l,()\)/OAOAT is stationary and ergodic, thus it reduces to

prove:

821,(\)
INONT

sup E < 00.

AEBy

By (2.2.13), Assumption 4, Lemma 2.4.6 and 2.4.7, the independence of 7, with

-1, we have:

821,(N)
ONONT

sup E
AEBg

< Kf;g) E (1 + 07 (A) + max(n:(A), 1) 217! + max(n(N), 1)2“_2)5,‘;,,(::1&2)}
0

< K sup {E§2(1 L2)+E(1+ |n ,)2L1E£2(b1+1)(1 L2)+E(1+ Intl)2:,1—1E£(2L1+1)(1 t2)
AEBg

FE(L+ ) Bg0 0 |

Since A, — \o almost surely, as ©¢ decreases to the singleton Ag, E0%l;(A\*)/ON\;:0\; —

J (¢, ) almost surely. This completes the proof of Lemma 2.4.12. |[END

Lemma 2.4.13. Under Assumptions 1-5, if E|e;|?17%) < 00, and E|n,[®2*(144) < oo,

then
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Proof: This Lemma can be proved by a central limit theorem for martingale dif-

ferences. It is clear that 0l;(\g)/O\ is stationary and ergodic. By Remark 2.2.3, we

Fia) =0,

Lemma 2.4.8 shows that Var(0l;(Ao)/0A) exists. By Lemma 2.4.9, we have Var(0l;(Ao)/0N)

have

Ol (o)
5 (%

is non-degenerate. So for any r € R(I+P+Q+1+p+a) the sequence {rT0l,(A\g)/ON, Fi-1}
- is a square-integrable stationary martingale difference. Then by the central limit

theorem of Billingsley (1961) and the Wold-Cramér device, we have

\}_th N(0,T) .

This completes the proof of Lemma 2.4.13. |END

Let 0t2 (;\Yna 5) = 030"|‘E?=1 QjE¢—; (’?n)—i—zgzl 18j0t2—j (;S/m 5) and U (;?ns 5) — Et(ﬁ’n)/at (ﬂ’na 5)

Also define

. 1 (%, 0
Ln(')/naé.) = Ezlt 7117 Zl nt ’Y )) .
t=1

Ot ’Y‘na

Similarly define

¥ - n:cs
Ln(&ma)—;z (%, 6 Zlog &A ),

t=1 t 'na )
Lemma 2.4.14. Under Assumptions 1, 8 and 4, if E|le,|**(=24¢ < 0o for some
0< (<1 (or Ele,}* < oo for some s >0 if 1; = 0), and E|n,|™x(1:21) < 00, then as

n goes to infinity, we have:

Sup |Ln(;5’n35) - Ln(')’Us 6)’ = Op(]-) y
0€EB;

sup |Ln(%n,8) — Ln(4n,0)| = 0, a.s.
d€EO;



Proof: By the mean value theorem, we have:

79

Sup | Ln(4ns9) — Ln(0,9)]
.
1< (70, 8) ( £t ) ( et () )
< sup |- lo ~ + su —logh >
Jeeﬁ n; g(ot(’)fmfs) 668% o¢(70,9) . 0¢(Yn,0)
1 Ut(’}’oa(s) Et Et(’s’n)
< sup|— lo ~ + su — ~
56(55 n; g(Ut( n75) 5e€§ Z|g mt ot('yo,J) (’an‘s)
= L1+L2:

where |v* — vo| < |An

_’Yola |nj\t

— &€t/0t(70,9)| < |ee/01(70,0) — €¢(An)/0t(Fn, 9)|.

We will show following both L; and L, are o,(1).

Ling (2005) has showed that L; is 0,(1). For completeness, we give his proof

below.
With probability 1, a,(A) > ag > 0 for any A, by mean value theorem, there exists

~v* between 7o and #,, such that

sup — Zlog(otﬁ %)
9o (7", )/3’7)

5€; N
(1 + ('70 - 7n) ( )

0o (v*, 6)
o0

IA

)

There exists an ( > 0 such that Esup,g |00:()\*,8)/07]* < co. For any € > 0,

CZlog (1 + a5 70 — An|

first taking m small enough such that log(1 + g ‘Esup,g |00:())/87[¢) < €¢ and



then n large enough such

1 .
P {n_C Zlog (1 + agtlvo ~ An| sup
t=1

1 T
< P{— log(
{cz
1 n
— Elog|1
nCe; g(

<

1 log

INA

IN

2¢€ |

1
—Elog (1 + gt
€

(1 + a“CWCE sup

that P(|v0 — An| = 7) < ¢, it follows that

)=

Oay(A)
og]

AEB

A 9o (N N\ ¢ )
1+ ag |0 — Al sup a )) > €, |7o—~7n|§7r}+e
xee| O
- 30t()\)|)c
+ a7 rsu + €
0 Aeg Oy
Aoy (M) [\ ¢
T sup ) + €
xee | Oy

80},(/\)
0

¢
l—l—e

AEO

where the last second inequality holds by Jenson’s inequality. Thus

g

a:(v0,9)

(tA 6)

sup — Z log

€6 N

)26}S26.

Similarly we can show that

-1 - Ot (703 6) )
P <{sup — lo ( ~ >€p < 2e.
{5695 n t=zl & o't(’)/naé)
Thus we can claim that
1 - O¢ (’YU: 6)

76
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Next we show L, is 0,(1).

st(;i’n)
sup Z|g(7r}\t)| Ut(’Yoafs) o't(;?ns(s)\
< sup - Zlg Tre €t — |+Sup Zlg | ieid
~ see; N 0t(70,5) Ut(ﬁ’m(s) 5€6,; T Ut(ﬁ/na5)
(Yo — 4)002(v*,8) /0y ‘C
<
< oy Z'g mlletl |G 0r8)2Cm 6) (@ (10,8) + 72 )
1 1| (’Yo — ’?n)aEt('Y*)/a’)"
X —— + su nt -
Ut(’)’o,(s) O't(’)’mfs) aeé)a ;Ig '\t Ut(’}’nafs)
4] LHe )l
< sup — T — A,
-~ Alelgnzlg ,\tl ()I’YO 7 6’)/
Oes(y *)/5’)"
+sup Zlg mollve =l | =5 -

From (2.4.13) in Lemma 2.4.7, we know that for any +* # +, there exists p and
constant C such that Je.(y*)/07 are bounded by C¢, ,:—;. Thus by Lemmas 2.4.6

and 2.4.7, we have:

&t
su = sup
aeeg Ut(’Yoa )l lntléeea O't ’70,5)|
£p1 t—1 g'ro p2,t—1
< su : < su =
- |m|)\eg ot(A) _lml)\eg o¢(A)
< |m ;,p:‘:t 1 <K |77tlf;1;;21
An A'n_ * 8
0E€EB; ot(’Yna ) 0€B; Ut(’}’n, )
Ot R v p1,t—1
S Sup + n — Sup RARTLY
lntl)\ee ¢(A) g 70')\68 710
< Knl&:% + Kl — ml6524



78

Thus by Assumption 4, if 2¢; — 1 > 0, we have:
* L] — 2t1— —t ~ 11— 2t L
lg(mie)| < Km0 7007 4 K4 — ol e V0 (2.4.18)

If 2¢; — 1 < 0, we have |g(n},)] < K. In the following proof, we give the case of
211 — 1 > 0. The proof for case of 2¢; — 1 < 0 is similar.
Since 4, — 7o in probability, E|n,[®®*(}21) < 0o and Eﬁﬁftl_(_lf"z)"{ < oo due to

Elg;|?1(1-2)+¢ < 00, and 7; being independent with £,; ;. With (2.4.18) and Lemma

2.4.7, by the weak law of large numbers and ergodic theorem, we have:

€ n 10O ¢
sup — Zlgn,\t| |t| |( ’78’)}( t( )l

e n

A ]- & | L 2t —t
< Klho=%l> ) InPegs 570

t=1

) 1 2t1(1—¢
+K |10 — 1 7= Zl |2t
g

op(1)

Similarly by (2.4.18) and Lemma 2.4.7, the weak law of large numbers and ergodic

theorem, we have:

(70 — ’?n)aft(’)’*)/a’)"

5695 O't(’?n,é)
< |vw—% |l i 1nt|2t1—1€(2t1—1)(1—b2)Sup 5‘7“,91,t—1
B "n t=1 -t AEO O't()\)
) . 21 —1)(1—¢ Evx 1 t—1
+K|¥n — 0l = Zﬁ(,tll e Sup 7021)\)

t_

A]-n t1—1¢#2t1(1—e 2 ¢ 2t1(1—¢
< o= Fal= D I T + Kl — 0l Zs,:‘l ) = 0,(1) .
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Thus

Sup |L‘n(;5’na 6) - Ln(7035)| = Op(l)'
0€EB;

By Lemma 2.4.3, we have

sup (L, (An,8) — Ln(3n,8)| = 0, a.s.
8€B;

This completes the proof of Lemma 2.4.14. | END

‘Lemma 2.4.15. Under Assumptions 1, 8 and 4, Assumption 5 with w = 1 , then
E’lt(’70760)l < 00, f'lLT'thBTmOTB Zf(S ?é 60) then Elt(’YOa(sO) > Elt(’ma&)

Proof: We have shown E|l;(v, )| < 00 in Lemma 2.4.5. With the modified Assump-

tion 5 and Lemma 2.4.4, it is straightforward that El;(-y, §) has unique maximum at

0 = dp. |END
Py, 8) 1 8202 (70, 8)/ 06067
6566T = ‘_‘2_(1 +g(nt(7015))nt(7035)) 0?(’}'0,6)

+% (2 + 39(m:(70, 6))ne(70, 8) + ' (1e(70, 6)) 7 (Yo, 6))

802(20,8)/98 903 (0, /08"
0132 (709 5) 0't2 ('703 5) .

(2.4.19)

Similarly we can write down 82l,(vo,8)/98967.

Lemma 2.4.16. Under Assumptions 1, 8 and 4, Assumption 5 with w = 1, if

Ele,|?10~24% < o0 (or Ele,|* < 0o for some s > 0 if 1; = 0) and El|n,|™2x(1:21) < o0

, then
azlt (’yna 6) 62lt (703 6) ____
Sop ;( 56967 06067 ) = op(1),
Fiind)  PlUlind)\|
seos | 2( o~ s )|~ >
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Proof: First we without loss of generality, we assume 2¢; — 1 > 0, by Assumption 4,

Lemmas 2.4.6 and 2.4.7, and the mean value theorem, we have:

sup LY g( e:(4n) ) ()0 (70,0)/068"5
6EB; n =1 olt(’?naé) o.t(’?naé) O (7036)
_g( E ) Et 82 ("}’ 5)/6(58T5
0¢(70,9) / o4+(0,9) 0t(7036)
() £ D202(yy,8) /06075
< - —
— JSEUGI?; Z|g n/\t 77At+9(77>¢)| o't('?na(s) O't('yOs(S)l 0'3(’)’0,(5)
R A I | 1 ¢
< 2&1 1 _ S
< s Z'"’“' < at(w) )| |5000:8) ~ 7m0)
822 (%, )/aaaTél st | €6 = €4(im) | | 802(20,6) /26073
X su 1=
08 | el Z'"’“" N o
K% — 7ol 2y-1| Et 30?(%5)| 0%02(70,6)/0607 6
< 1—
= s n Z'"’“' N || 8 2(70,0)
Kin — 70| o1 | O:(7*) /0| | 8°0% (70, 0) /0606
B Zln”l ¢(n, 6) o2(7o,0) !

where |€:/0:(70,6) — 13| < lee/0e(70,0) — €:(5n)/0¢(5n, )], ¥* between 4, and 7o.

By (2.4.18), Lemmas 2.4.6 and 2.4.7, we have

ot | 603(7*,6)|< 6} (70, 8) /8693
M 01(A) o o2(%o,0)
e €240 |5, — |2 €20
|,,7 |2L1 1 8815(7 )/a’}/ 82 (7035)/658’1.'5
N (’Y‘ns (5) Utz (705 6)
’ntlzu 1£2L1(1 L2)+C+ I’Yn |2L1 15‘2:&;(:; L2)+C

Since (4, — 7o) = 0,(1), by law of large number and ergodic Theorem, we have:

do2(v*,6) [
0y

820} (v,09)/060"
gy (’YUa 5)

£t
Ut(A)

K|’Y — ’YO| 2q—1
su E “a-=
Aeg n |77At|

= Op(l) )
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Kl — 70l % 21 | O€e(v*) /07 || %02 (0, 0) /0607 6
L = 0,(1) .
félepas n Z]nAtl O't(ﬁ’nsé) 0?(’]/0,(5) Op( )
Thus
sup 1S g( t(n) ) ee(3n) 8202(70,6)/06075
se8s T 4= 0t(An,8) ) 0¢(Yn,0) a2 (7o, 0)

_g( (et ) (st 8202 (~0,6) /86075

Y0, 90) Y0,9) (o, 6) = (1)

By Assumption 4, (2.4.17), Lemmas 2.4.6 and 2.4.7, and the mean value theorem,

for some y* between 4,, and 7y, we have

207 (4n, 0) /960"

€¢ ’yn t( )
s 050 (GE ) ey e
) ( ee(3n )) e(n) 8202(70,6)/08078
t(¥n,0) ) 0t(fn.0) ¢ (70, 0)
< sl ( e+(4n) ) et(Yn) | 0202 (4n, 6)/06078  8%a2(y0,0)/86076 "
- 6es N =1 ot(’)’m o't(;i’mé) Oy (771:5) 0?(7035)
' 62@ (4, 6)/86078 _ 0°03(v0,0)/86876|'~¢
7 (4, ) at (70, 6)
€t(n) (1 c)c ¢|Foi(v )/356T53’Y|
< -
- 682195 Z Ut(7na h/n 70' | 7 36)

1 L L L L 1 L —
< sup K A, — ’Yolc Z |7t |2 1¢2 1(1 22y sup K |, — Yo |2 1+ Zﬁztl(ll 2+
€S, t 1 6€EB; t-—l
= o,(1) .

Since by a trivial extension of (iii) in Lemma 2.4.7, we have |83¢2%(v*,8) /8607 60| <

2, ,+—1- The expression of |8c2(v*,8)/8607607| can be obtained from (A.3.16)-

Y ,P,t‘*l

(A.3.19) and (A.3.21) in Appendix A.3.



82

Thus we have:

sup — g( €+(n) ) &:(n) 8207 (n, 6)/850" 6
d€EB; n 1 O.t(;)\/n,a) Ut(’?n,(s) o-tz(’?n'}(s)

= 0,(1).

_( £+ ) e.  0%0%(v,6)/06076
J Ut(’YOv 6) Ot (703 6) O.tz(fma 5)

Then by the same arguments, we can prove

1l £t(¥n) ) et(Yn) ,( et(n) ) et (fn) ]
— 2+3 ~ ~ + ~ "
tsseué?s n =1 { [ g (Ut(’Ynaé) Ut(%u(s) g 0t(7n35) 0'?( 'n:(s)
00 (4, 6)/ 83 807 (n, 0) /08T
7 (4, 6) 7 (4, )

) [2 9 (ot(if,,a)) e (ot(fz,é)) a?(fyi,a)}

x60?(7035)/8560?(7036)/65T‘ — 0 (1)
03(70,5) 0?(’)’0,5) g

This proves the first convergence in the lemma.

By (A.7.2)-(A.7.11) in Appendix A.7, with the same argument as that in the proof

of Lemma, 2.4.11, we can prove the second convergence in this lemma.

This completes the proof of Lemma 2.4.16. [ END

82a2())/850~T

0%l (N) (1 + g(m()\))’?t()‘)) i (A)

860~T

—t b | —

0.2 0.2 T
+1 (24 3000 + o () ) PR T

4
1 00} (N) /96 Ber(v) /D" (2.4.20)

“.é(gf(nt(,\))nt()\)+9("7t()‘))) o\ a(N)

Lemma 2.4.17. Under Assumptions 1, 8 and 5, if E|e,|*1~?) < 0o (or Ele|* < 00

for some s > 0 if 1; = 0) and E|n,|™*>*121) < o0 , then

82 lt (’703 6)

56967 | =

E sup
d€B;
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if s is symmetric about zero and Eg'(n,)n, = 0 then

o3

Proof: From (2.4.19), by Lemmas 2.4.6 and 2.4.7, we have:

ol 70,50 ~ OL(Amibo) |
6(5 ""Op(l)a

azlt('YOs 5)
06067

E sup
dEB;

‘ < E(1+|mP 6307681 < BE, 1 +Eln BT < oo

Since 7; is symmetric. From (2.4.20), by Remark 2.2.3 and (2.4.16), we have

821,( Do)
560~

E = 0.

Note that 4, is {/n consistent, by mean value theorem and Lemma 2.4.12, we

have:

. {3lt (70, do) 3lt(%350)} A — 0 = 0% (7*, 60)
06 B

-

t=1

Il
é
5,2)

|
3

N

&3

Q
S
Q
2
=
N—”’
S
=

This completes the proof. | END

Lemma 2.4.18. Under Assumptions 1, 8, 4 and 6, Assumption 5 with w = 1, if
Esf(l"”z) < oo and E|np|*! < 0o (or Elei]* < 00 and E|n|* < oo for some s > 0 if
v = 0), then n=V2Y"7  01,(8)/08 — N(0,X3), where X3 has the form in Theorem
2.2.5.

Proof: This lemma can be proved with the same arguments as that in the proof of

Lemma 2.4.13. |END
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2.5 APPENDIX

A.1 Proof of Proposition 2.2.1

To show Elog[wh(wn: + v)] < Elogh(n;) for any w # 1 and v # 0, it is enough to

show the partial derivatives of E log[wh(wn, + v)] with respect to w and v

1 Oh(wn, +v)/0w 1 B
- +E h(wn, + 0) = —F E(ng(wn; + v)) =0, (A.1.1)
Oh(wm; +v)/Ov _
h(wn; o) = Eg(wn, +v) =0, (A.1.2)

have a unique solution at w =1 and v = 0.

Since g is odd and 7, is symmetric about zero, it is clear Eg(n;) = 0. Obviously
w = 1,v = 0 is a solution of (A.1.1) and (A;1.2). We first show that for any given
w > 0, (A.1.2) has a unique solution at v = 0. This is equivalent to show that for
any v # 0, Eg(wn, + v) # 0. Let f(x) be the probability density function of 7.

Since g is odd, we have

Eg(wn: +v) = [ ) g(wz +v) f(z)dr

—/ o@)f (222 s
f(’”w )dx+—/ (x_v)d:c
g(-— f( mw )dsc+——/ (x_v)da:

AR

For part (i), since En? < oo, then (1 — F(z))z?> — 0 as * — oo. Together with
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the given conditions ¢(0) = 0 and |g(z)z| < Kz?, we have

Botwn+v) = o) {F (222) - F (222)] )
_.,l_lv./ooog’(a:){F(x;v)—F(a:;zv)}d:c
tim @) {1 F (555 = moto {1-# (55) } -0
= [ {r (22) - F(22Y) }
() (S

which is negative if v > 0 or positive if v < 0. Hence for part (i), it is left to prove

E(wntg('w'qt)) = —1 if and only if w = 1. By using integration by parts again and

since (1 — F(z))r? — 0, we have

E ('wntg(’wm)) - E (ﬂtg(’?t))

| 2as@r (Z)do- [ ag@rsaa

—00 w — 00

= 2/:0 xg(z)d (F (-:%) — F(a:))

= 2zg(x) (F (-—E) — F(:v)) :o — 2/0.00(9(3:) + zg'(z)) (F (%) — F(:c)) dx
- -2 (o) +2g@) (F () - F@)) da

which is zero if and only if w = 1, since ¢'(x) < 0 but not always equals 0 for z > 0.
Thus E(wmng(wn,)) = —1 if and only w = 1.

Furthermore, it is easy to check that (A.1.1) and (A.1.2) cannot be satisfied when
w — 00 or (and) v — oo. This completes the proof of part (i).

For part (ii), since f(z) is even and decreasing for z > 0, g(z) < 0 but not always
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0 for £ > 0, we have

Eg(wX +v) = %[Owg(x){f ("”;"’) -—-f(xz”)}d:c,

which is negative if v > 0, since f((z — v)/w) — f((x + v)/w) > 0 for any z > 0,

or is positive if v < 0, since f((z — v)/w) — f((x + v)/w) < 0 for any z > 0. Thus
Eg(wn +v) = 0 if and only if v = 0.

Since g(x)z is a strictly monotone function,
E(wn.g(wn)) — E(mg(ne)) = 2 /0 (wzg(wz) ~ zg(z)) f(x)dz,
which is 0 if and only if w = 1.

It is easy to check that (A.1.1) and (A.1.2) can not be satisfied when w — 0o or (and)

v — oo. This completes the proof part (i) and (ii).

The proofs of part (iii) and part (iv) are the same as the proof of part (ii). | END
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A.2 Expressions of a,(i), as(i), &(7), 6:(A\)

o0

By comparing the coefficients of z* on both sides of Ag(2) = B,(z) %2, a,(1)2*, we

have if P < Q:
a,(0) = 1,
ay(1) = —é1— p1a,(0),
0,(2) = —¢2—pr1a,(1) — o3,
ay(P) = —¢p—104(P—1) =+ — pp_1a,(1) — pp,
G(P+1) = —~010,(P) = - = ppay(1) — pp,
,(Q) = —¢10,(Q —1) — -+ — pg_1a,(1) ~ pq,
,(Q@+1) = —1a,(Q) — - — pga, (1),
if P> Q,
a,(0) = 1,
ay(1) = =1 = 18,(0),

a,(2) = —¢o— P1a4(1) — 2,
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0y(Q) = —dg—p1a,(Q—-1)—-- - PQ-10,(1) — pq,
a(P) = —¢p—p1a,(P—1) = — pp_1a,(1),
ay(P+1) = —p1a,(P) — -~ pga,(P+1-Q),

for ¢ > max(P, Q),

ay()) = @10, (i — 1) = -+ = poa, (i — Q).

Similar with the calculation of a. (i), by comparing the coefficients of z* on both

sides of 1 = By(z) 3 ;7 a,(i)z*, we can obtain the expression of a,(3):

a,(0) = 1,
ap(l) = —¢y,
a,(2) = —p1a,(1) — o,
64,(Q) = —¢10,(Q — 1) — 20,(Q ~ 2) — -+ — pg-1a,(1) — 0,
for i > Q,
0(i) = —p1a,(i — 1) — 02a,(Q — 2) — -+ — poa,(i — Q).

Let a,(7) = 0 for ¢ < 0. Then based on the expressions of a,(i), for i > 0 and

1 <7< @, we have:

2 Zacp(k)aw(i —7—k). (A.2.1)
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Similarly, by comparing the coefficients of z* on both sides of

Aa(2) = Bp(z) Z as(i)z',

we can write down the expressions of as(¢) in terms of ay,--- ,a, and 5y, -+ ,G,. If

p < q, we have:

a5(0) = 0,

as(l) = oy,

as(2) = ap+ fas(l),

as(p) = ap+ Pas(p—1)+ -+ Bp1as(1),
as(p+1) = pBras(p) + Baas(p — 1) + -+ + Fpas(1),

as(q) = Pras(g— 1)+ Baas(q—2) + -+ + Bg—10a5(1),

as(g+1) = pPias(q) + Faas(g—1) + -+ + Bas(1),
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if p> g,
a5(0) = 0,
36(1) = 0,
as(2) = a2+ fias(l),
as(q) = ag+ Pras(g—1)+---+ By1as(1),
as(p) = op+ Pias(p— 1)+ Baas(p —2) + -+ Bgas(p — 9),
as(p+1) =

Bras(p) + Baas(p — 1) + - - - + Byas(p + 1 — g),
for i > max(p, q),
as(i) = Bras(i — 1) + Baas(i — 2) + - + Byasli — ).

Since o; for 1 < i < p and 3; for 1 < j < g are non-negative, by the expressions of

as(l), we have as(l) > 0 for [ > 0.



By the expressions of a,(i), we have, if P < Q,

&1(v) = Mi—o)

M
[ ]
P
2
Mmr”
|

Q
Z $i(Yi-i —¢) — Z Yi—1€1-i = a,(0)(Y1 — ¢) + Re .y 1
i=1

Q

p
(Ya—c)—1(Y1 —¢) - Z $i(Yz—i — ¢) — p1&1(y) — Z ©Vi€2—i

1=2 =2

1
(Y2 — c) + (—¢1 — p1)(Y1 — c) + Re 2 = Z a,,,(i) (Yo—i — c) + Rey2

i=0

Q
€P+1(’Y) = (YP+1 —C) _Zfib YP+1 —i Z‘PzEPH —i )— Z Pi€ P+1—i

(Ypi1 — c) Z@ (Ypi1-i — C) Z‘PaEQ (7) — ©vQ€o

1=1
Q-1

Z a”)’(i)(YQ—i - C) + Re,’y,Q )

1=(
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If P> (@, we have

P

Q
51(’7’) = (Yl — C) - Z ¢‘z’(Yl——z' — C) - Z Pi-1€1—; = 07(0)(1/1 — C) + Rz-:,'y,l y

=1 i=1

Q
E207) = Ya—c¢)—¢1(Y1—¢) Z@ Yoi—c) —piéi(y) — Z‘Pigz_i
=2 1=2
1
= =)+ (=01 —@)Y1— )+ Rep2 =Y _ a,())(Yos —¢) + Rerys
, 1=0
Q P Q
§Q+1(,},) = (YQ+1 — C) — Z ¢1(YQ+1—2 - c) — Z ¢'¢(YQ+1—3 — C) - (ngQ—{—l—z(’Y)
i=1 i=Q+1 i=1
= Yogri—o)+(—dr—p1)(Yo—c¢) +
(=0 —p1a4(Q@ — 1) — -+ — pg-18,(1) — @)(Y1 — ¢) + Re 1041
Q
= ) a,(i)(Yos1-i — ©) + Repot1 »
P-1 Q

R, ;= Zcpz emi—ir fOr J>Q,
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which is a recurrence function of ¢; for 1 < ¢ < q. By Assumption 2, and the property

of recurrence sequence, we have sup,cg |Req,;| = O(p’) as. for0<p<1,j>1.
Thus
E¢(y) = (Yt'—c)"'z (Yii— Z‘stt i( Za'r (Yi—i—c)+O(p ) (A.2.2)
i=1 1=0

By the expressions of as(2), we have, if p < g,

&f()) = ao+zaz€1 3+Zﬁ:’o‘1 —F 0,5,1
p
55N = a+m&()+ ) i)+ BFEN) + Zﬂm _; =018 (Y) + Ros2
i=2 j=2
= as(1)&2(y) + Ry 2 —Zaa (i)és_ z' )+ Ros.0
p q
55(0) = ao+ (1) +wE (V) + ) afi + A3\ + B5i(N) + > 853,
1=3 j=
= m&(7) + (a2 + B105(1))E1(Y) + Roysy2
2
= Y a5()&5i(7) + Ros3
i=0
&3+1('\) = ao"‘za’z 1 +Z/83 pr1—j(A) + Z ﬁJapﬁ-l*J
j=p+1
= a&y(7) + (e2 + Bras(1)ep_1(7) + -+ + (ep + Pras(p — 1) +

+Bp-1a5(1))€1(7) + Rospr1

Za’ts Ept1-i(7) + Rospt
1=0



p

ag+Za,qz ‘|‘Z;83 +ﬂq2

i=1

alé'f,('y) + (o2 + Bras(1))é2 Ep1(7) +

+(ﬁlaé(q "" 1) + 1820'6((] - 2) + 0+ ﬁq__laa(l))é'f('y) + Ra,é,p+1

q p
Qg + Z ai€g+1—i(7) + Z € q+1 i T Z ’8.7 q+1—.7
i=1

i=q+1

n5(7) + (a2 + £105(1)E2_1(7) + -+ + (0 + Bras(g — 1) + - -

+08q-1a5(1))&5 () + Ry 59+1

qg

Z (2)6q+1 z( )+R0:5,Q+1

=0

94
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+(op_1 + Bras(p — 2) + Bras(p — 3) + -+ - + Beas(p — q — 1))551!(7) + Rs5p

|
=
O
—
o~
\-._./
l\:

. p—()+R011p3

for i > max(p, q) ,

52(\) = a0+ZaJ 2 +Z,@J
= aél 1 (7) + (a2 + Bras(1))& 5 (v) + -
+(Bras(i — 2) + Boas(i — 3) + -+ + Beas(i — g — 1)EX(Y) + Roy;
= Zaa NE2 (7) + Ry
where

q
Ro,&,i = Z ‘PjRa,a,i—j, for i > q,
j=1

which is a recurrence function of 3; for 1 < j < q. By Assumption 3, and property

of recurrence sequence, we have supscg, |Ros:| = O(p*) as. for 0 < p<1,i> 1.

Thus

Zag ()E2_,(v) + O(ph) . (A.2.3)

1=0
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A.3 Expressions of first and second derivatives of

g:(v) and aZ(\)

By (2.2.1), we have the first derivatives of &,(7):

6655:7) = —G(1)=- (1 - ;%) ;a(p(z'), (A.3.1)
632) = —BNL)(Yii - ) = - ;Oasa(j)m_i_j — ) (A.3.2)

Oe _ -
2~ B Le) = - Y aeis(), 1<5SQ (A3
j i=0
By (2.4.2), we have the first derivatives of o2()\):
0z () -
_ B A.35
80:0 kz_:% - ( )
o ?(A = : .
%2 - B L0), 1<is<h, (A.36)
¢ k=0
2 o0 k
3%5(/\) _ Z (2 Bz-—1B(z')Bk—l) c_.(N), 1<i<gq, (A.3.7)
: k=1 \lI=1
2 o P .
29 _ S B, 1) Y 2o ki) Z2 ) << Pyt (a3
6'7.7' k=0 i=1 87j

where 1 = (1,0,...,0)7.;, &(7) = (€:(%),0,...,0)%,, BY is a ¢ x ¢ matrix with (1,3)th

element 1 and all other elements 0.



Based on (A.3.1)-(A.3.4),we have the second derivatives of £;(v):

625:&(’)’)
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(A.3.9)

(A.3.10)

(A.3.11)

(A.3.12)

(A.3.13)

dcde 0,
625t(’7) =101y =~
500, B (1) = ;%(k),
Pely) _ Py ~ ) 5~ 9a,(k)
Bedp; — A‘r(l)B’Y (1) —{1- ;qb.? kZ-__O d; ’
dei() ;s |
= 0, 1<4,73< Pv
56:0%; !
0%e4(7) _ 71 -1
8(,!51'6(,03' = A‘Y (L)B,y (L)Et——z—J(’Y)
= ZZatp(k)agp(l)st—z——‘y—l—k(’)/)a 1<:2< Pal < J < Q7
k=0 =0
8251&(’7) _ -2
(999,;6(,0_7' = -—-B,Y (L) (Et—z’—j(')’) + Et—; (7))
— Ja, (k) = Oct—i—k(7)
= — Et_z_k(’)/) — a (k) ) 1 < (| < Q?
kz-_-; 0p; ; Y 0p;
828,5(’7) — 0
000 '

Based on (A.3.5)-(A.3.8),we have the second derivatives of o?()\):

PN _ B _ F2O)
Oaglag Oopla; Oap0y; -

8%02()\) N (L
Y (Y BIBUIBKIL L 1<j<yq,
0codp; =1 1= - =7 =4

ai(N)
= 1<1.1 <
aazaaj 03 ?’&.7 — p'J
ag?(’\) _ So.; - Bl—lB(j)Bk—l g2 (7)
;00 —I\= Sk

=0, 1<i<p,<j<1+P+Q,(A3.16)

(A.3.17)

(A.3.18)

(A.3.19)
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822? (A) . = k Oet—i—k(7Y)
Gady, 2;3 (1, )esii(v) o (A.3.20)

1<i<pl<j<P+R+1,

(A.3.21)

32N &L
0B;00;- k2

i—1
(Z Bl—lB(j*)Bi—l-—l) B(j)Bk—i

[=1

1=2

k—1

t2

i=1

Ba?(\) SN & R )
= 2) B7'BYB*1,1) ) omet—k-m aom A.3.22
8,818’)’] o = ( ) “ t—k (’7) 8’}’3 ‘( )

1<1<¢,1<j<P+Q+1,

}Qt-—k(/\)a 1 S jaj* S q,

k—i
Bi—lB(j) (Z Bl—l B(j"‘)Bk——z'—l)

=1

g

O?ci(N) =~ & Oet—k—i(7Y) Oet—k—i(7)
= 25 B )S al.
00 kzz:o L2 *; O+

0%tk (7)
00

+er—n_i(7) ) 1<5,7*<P+Q+1. (A.3.23)

A.4 Modification for pure GARCH with non-zero

constant mean

Some modifications for pure GARCH with non-zero constant mean are listed below:

Modifications 1:

When P = @ = 0, ¢y # 0, model (1.2.12)-1.2.13 reduces to pure GARCH with

nonzero constant conditional mean. The parameter space reduce to (c¢,d) and {&;}

becomes the observations. Initial values of €g, -+ ,€1_p, 62, ,5%_ are required in
’ ) Y0 'Y 1—¢q
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calculating &7 and (2.4.3) is replaced by:

g;(A) = glc) +Be_(c) + B’g_s(c) +... + B P ¢4 (c) (A.4.1)
+B*P¢ (c) + ... + BT (¢) + B'g3(A)

Based on (A.4.1), we can adjust the derivatives of &7.
Modifications 2:
The first and second derivatives of [;(d,c) still have the form of (2.2.12) and

(2.2.13). Some derivatives of £,(c) and o,()) are simplified as:

aEt(C) . 326t(c) _
ox (L0 0), aAaAT =4
BUE(A) _ EOO: 1 5’: § : z § :
()\) _ Z i

1= =]

62 — . -1 p(k) pi-l
8c65k =-2) (S_‘B B®B-(1 1)2 i(Emij—c) |-
Modifications 3:

Based on Modifications 2, we have for any A € Qg :

sup 207 ())/0cda; _ 2 D ieo B'(1,1)o; (Et-—i—j — C)
S oY 2 | KT Sy B 1) 57y ag(erssg — O
< sup> im0 B'(1, 1)aj(€t._i—j — o) lles—ij — | 2 1|
T a0y K +3.2B'(1,1)a(€t—i—j — c)?
+sup 220 Bz(l, 1)ajI|€t—z’—j — C| <1
A€o K+ Zzo Bi(l, 1)0.’_7'(6,:_3'_3' — 6)2
< K.
Similarly we can show
do2(N\)/8c 202(X)/0cdB;
su , Su
xeo| ot | aeol o)
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are bounded by some constants. Then together with Lemma 2.4.6, we have that

Oes(c) /O
o ()

8%,(c) /ONGT A
Ot (A)

3202()) /ONOTA
o ()

sup
A€6

y Sup
Ae6

, Sup
A€B

; Sup

do2(N) /O
A) A€O

o (

are bounded by Cfg,t_l, which has any moments.

By Lemma 2.4.7, we have n(A) = moi(Xo)/0:(A) + (co — ¢)/o:()\) is bounded
uniformly by C|1 + nt|£;;f_1 for any A € ©y. Thus in the proof of Lemma 2.4.12, for
pure GARCH with c # 0, we can relax t'he moment condition of gy to 2¢;(1 — ¢2) (or

some s > 0 if ¢; = 0).

A.5 Modification for pure ARMA

When p = q = 0, ARMA(P,Q)-GARCH(p,cj) model reduces to pure ARMA(P,Q)
model (1.2.12). Modified assumption 5 implies g(e:/+/c,) = 0.

In this reduced model, {e;:} is a sequence of IID random variables with mean 0
and variance ag. With o being nuisance parameter, the parameters are reduced to
. .Initial values Yy, ..., Y1_p are required.

For pure ARMA, [; = log[h(e:(7)/ V) / /). The first and second derivatives of

l;(7y) are simplified as:

o(y) _  (e(v) Bely)/By
By ‘9(\/&0) Vo,

PL(v) (&) Oe(7)/07 Oes(n)/OV" ei(7)\ 0%:(7)/8v0y"
_avaw‘g(\/ao) Va,  vVa, *9(@) Va,

Lemmas 2.4.3 to 2.4.5 and 2.4.8 to 2.4.12 still hold with modified conditions.

These Lemmas may have more simple forms for this special case. For instance:
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Lemma 2.4.4 is adjusted as: Under Assumption 2, if there exists some t such that
et(y) = €:(0) almost surely, then v = ~,.
Lemma 2.4.9 is modified as: Under Assumptions 1, 2, 5 to 6, if E|¢;|?> < oo, then

7 is nonsingular.
Thus by modified Assumption 4 and Lemma 2.4.6, for pure ARMA, if E|gg|? < o0,

then E8%l;(y)/0v9yT < 0o as in Lemma 2.4.12 .

A.6 Expressions of first and second derivatives of

E+(7y) and G4(A)

Since the initial values are fixed, analogous to (A.3.1)-(A.3.4) and (A.3.9)-(A.3.15),

by method of induction, differentiate (2.2.5), we have:

Oé, P =

Eafj’) - —(1—j=1 ¢j)§%(z), (A.6.1)
0&(Y) .

rli — Y 4, (i) (Yij — ©) (A.6.2)

t—1 00
—> a,(®) Y _ay(k)er—iji(r), 1<j<Pif t—i—j>0,

1=0 k=0
82,(7) it
A0 = - Zacp(i)gt—i—j(’)/)s 1< .7 < Qa (A63)
9; i=0
%0) _ (A.6.4)



0%, ()
OcOc
0%€, (7)
303(152-

9%¢:(v)
608(,03
9°¢,(7)
0¢;09;
0°€:(v)
0¢:0p;

|
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0, (A.6.5)
t—1
>_ap(k), 1<i<P (A.6.6)
k=0
& 2 da (k)
—(1—-2%-)2 s 1<i<Q (A.6.7)
j=1 k=0 Op;
0, 1s4j< P (A.6.8)
t—1
da,,(k
-2 ‘;“’(. )-(Yi—z—k - ) (A.6.9)
k=0 ¥i
= Bay (k) &
- Z 3(‘0 Za’y(l)st———z—k—l(’Y), if t—1—-k> 0,
k=0 ¥ =g
1<i<P1<j5<Q,
t—1 t—1 .
Oa, (k) . 02_—_i(7)
- Ee-k-i(7) — ) _ ap(k) : (A.6.10)
; 6‘105 ; ? 890_7'
]' S Z?J S Qa
0. (A.6.11)
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Analogous to (A.3.9)-(A.3.23), differentiate (2.4.3), we have:

~9 t—-1
9.) _ gk (A.6.12)
80,‘0 Y—0
~9 t—1
W) _ g2 (), 1<i<h, (A.6.13)
60{,- 0
~2 t—1 k
S - (ZB"IB‘*’B‘““) Gk, 1<i<q  (A614
ﬁi k=1 \l=1
35?()\) ik k F ~ agt—k-—i (7)
= B 1,1 2063'5..___.5")/ ) A.6.15
= BN ) (A6.15)

1<j<P+Q+1.

2~2 252 252
06 _ 00N 06N _ ) icp<i<i+P+QabIs)

Oaglag daglo; 0o,
PN = [ pie1po
= BH1BUBEIY 1 1< i<y, A.6.17
Baoaﬂj Z le = >7>49 ( )
252
30’t(A) — 0’ 1<z',j£p, (A618)
da;00;
AF2(\) A N
= BF1BWBkT) &2 . (), A.6.19
605618_7' k=; Z_—; =t k(fy) ( )
1<i<p,1<j<yq,
&*52()) — Ak 0&1-i-k(7)
= 29y BF(1,1)&_;_ , A.6.20
1<i<p1<j<P+Q+1,
8%52(\) i LI Y e C
= BI-tBU) pi-1-1 | pU) gk (A.6.21)
ooy~ =12 |\ &

k-1 k—1
+2_ |BBY (ZB‘"IB"'"B"’“'“) }é_k, 1<j, <4,
=1 =1
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0% (N) (X piot po - Ot—i—k-m(7)
— 25 ‘ Bi-1 ) gkl § :g_,;_ m i kom A.6.22
96:9v; k=1 \1=1 b= () 07; ( )

1<¢<¢,1<j<P+Q+1

=1 m=1

8252(\) =, [ 08 _k_i(y) OFi—k—i(7)
= 2 B ]_, ]. ag‘ !
87;07; ; i ; % O

32§t-—k-—z‘ (’7)
0;07;

& ki(7) ) 1<i,j<P+Q+1. (A.6.23)

A.7 Difference between ¢;(v) and &(v), o:(\) and

e

d:(A), as well as between their derivatives

Refer to (4.55) in Francq and Zakoian (2004), we have

Oep(y)  OFk(v) 5
— < . . ] .
By By < Kp®, a.s (A.7.1)

sup max{isk(fr) — &),

Based on the expressions of 8% (v)/0v0yT, and 8%Ex(y)/0v8yT, by Lemma 2.4.1

and a trivial extension of (A.7.1), we have:

O%ex(v)  0%k(7)
OyoyT OyoyT

< Kp*, a.s. (A.7.2)

sup
YEO

Refer to (iii) in the proof of Theorem 3.2 in Francq and Zakoian (2004), we have

0020 _ 95| _ gy |1 _ 1 (Sia(7)
— <K — < 7.
] B N R P PV 10| VAR
note that

S = 3 ()l +1)

With similar proof as that for first item in (A.7.3) in (iii) of the proof of Theorem

3.2 in Francq and Zakoian (2004), we have

0’ai(\) _ d*a ()
ONON; | ONON;

sup < Kp*.

AEO
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Based on (2.4.6), (A.7.1) to (A.7.3), by Lemma 2.4.6, for any A € © we have:

1 1

W) = < 1| =55 = 5| + 5 ) )

< Im(A)

< Kp'Sp-1(7)(1 + [mel(N),

0o?(N)/0A  85%(N) /a)\‘
(A)

Utz(’\) o

a2 (N)
<
— o

2N | T

1 1 I 1

< Kp (1 + Si-1(7)

< Kp'Si1(7)épt-1,

Bo2(N)/OX Ba2(N) /T 852(N) /N BF2(N) /ONT
of (M) o (A) a7 () 53 (A)
9o (A )/3)\' 0o7(A)/OAT 06} (N)/0AT
o (A) o () 57 (M)
9o} (N)/OX 067 (A )/3A| ()\)/
ai(A) 57 (\) 7 (A

ONT
)

IA

Kp'S: 1(m)&s i1+ Kp'Sea(7)E,1(1 4+ Kp*Si1(7))

IA

KPtSE—l('Y) ﬁ,t—l -

Similarly, for any A € ©, we can show:

8202(N) /ONONT  B252(N)/ONONT

< Kp'Si1(7)épe-1,

a2(\) &0
002(\)/OX O, /ONT 857 (\)/ON BE,/OAT o
o7 (A) o¢(A) G2 () a1(A) < Kp' 51 (1)€pe-1s

Ogs(y)/OA aft(’)’)/a)\T O&(vy )/B)\Bé’t('y)/a)\T

O't(/\) O't(/\) B 5}:(/\) &t()\) < Kp St_l(’Y) pit=1

(A.7.4)

(A.7.5)

(A.7.6)

(A.7.7)

(A.7.8)

(A.7.9)
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< Kp'Si1(Mépur (A.7.10)

Oes(7) /0N 8€t(7)/3)\|
o1 () G ()

82{':,5 ("}’) /GAB)\T _ 82gt (’Y) /5/\8)\T
O't(/\) 6}(/\)

< KptSt_l(’}/)fp,t_l. (A?ll)
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Chapter 3

High Moment Partial Sum
Processes of Residuals

In this Chapter we study some high moment partial sum processes based on residuals
from an ARMA-GARCH/IGARCH model, originally proposed by Kulperger and Yu
(2005) for a pure GARCH model. We show that the k-th power partial sum process
of residuals converges to a Brownian process plus two correction terms, where the
correction terms always depend on ARMA-GARCH parameters. We also consider the
CUSUM and the self-normalized processes (standardized by the residual sample mean
and variance), which behave as if the residuals were asymptotically IID distributed.

This Chapter is organized as follows. Section 3.1 exhibits some existing results of
empirical processes and high moment partial sum processes based on (G)ARCH mod-
els. Section 3.2 presents the assumptions and our results. The proofs are postponed

to Section 3.3.
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3.1 Introduction

Several authors have studied the residuals from non-linear time series models. They
showed that the residuals from non-linear time series models behavior different with
those from linear time series models.

Boldin (1998) first studied the empirical process of an ARCH(1) and showed that
the limiting distribution depends on the parameters of the model. Horvath, Kokoszka
‘and Teyssiére (2001) extended the result to ARCH(p) model. Kawczak, Kulperger
and Yu (2002) showed that the limiting distributions of the empirical process and
the partial sum process based on residuals from a stationary ARCH-M model are no
longer distribution free and hence the residuals cannot be treated as asymptotically
IID. They showed that the limiting Gaussian process for the empirical process is a
standard Brownian bridge plus an additional term, while the one for partial sum
process is a standard Brownian motion plus an additional term. They showed that
Kolmogorov-Smirnov test for goodness-of-fit based on residuals differs from the one
based on IID sample. The Kolmogorov-Smirnov test produced smaller size and poorer
power and is not applicable for ARCH-M models.

Kulperger and Yu (2005) studied some processes based on residuals of pure GARCH
(IGARCH) models. These processes are partial sum processes of k-th powers of resid-
uals, CUSUM processes and self-normalized partial sum processes. They showed that
the k-th power partial sum process converges to a Brownian motion process plus a
correction term that depends on the k-th moment of the innovation sequence. If

k-th moment of the innovation is 0, then the correction term is gone and the partial
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sum moment process converges weakly to the same Gaussian process as if the resid-
uals were IID with same distribution as the innovation. Further, they showed that
CUSUM processes and self-normalized partial sum processes converge to Gaussian
processes as if the residuals were asymptotically IID. They applied those results for
following applications: CUSUM statistics for testing structure change, Jarque-Bera
omnibus statistic for testing normality of the unobservable innovation distribution
_and kernel density estimation of the innovation.

Based on the theories in Chapter 2, we can extend Kulperger and Yu’s (2005)
results to ARMA-GARCH/IGARCH models. Similar to the extension of QMLE
theory from a pure GARCH to an ARMA-GARCH model (see Remark 3.5 in Francq
and Zakoiab, 2004), this extension also leads to non-trivial problems and additional
assumptions are required for the approximation of hight moment partial sum processes
for the ARMA-GARCH model. Basically we require some additional moments on
GARCH errors that are not needed for a pure GARCH model. The applications of

these results will be introduced in Chapter 4 with numerical samples.

3.2 Assumptions and Results

In model (1.2.12)-(1.2.13), En3 = 1 and Eny = 0 are assumed. When 7 has a finite
k-th moment, denote y; = E(n¥). Thus p; =0 and p, = 1.

Throughout this chapter we assume that ), =. (4T, 3.:{ )T’ is an estimator of A based
on a sample Y},...,Y,, and that it is v/n consistent as defined in Assumption 8. To

show the results, we assume:
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Assumption 8. /1|, — Ao| = Op(1),

|2:,

Assumption 9. F|g|* < oo for some ¢ > 0.

Lemma 2.4.6 (v) and (vi) implies that the moments of §,; and & ,; are determined
by the moment of &;. For example, &y, has 2¢ moment if E|e;|* < co. Furthermore,
é;ff_l has 2¢/(1 — ¢3) moment, where 0 < t3 < 1. Thus there exists some ¢ so
that 1 — 3 < ¢+ < 1 and hence 2¢/(1 — ¢3) > 2, which is crucial for the following
proofs. This means that we can choose either ¢ = 1 or some 0 < ¢ < 1. Notice
that + = 1 corresponds to the ARMA model with finite variance GARCH errors (the
ARMA-GARCH model) and 0 < ¢ < 1 to the ARMA model with infinite variance
GARCH errors which includes the ARMA-IGARCH model. Throughout the rest of
this chapter, we assume that Assumption 9 holds for such a 0 < ¢ < 1.

In Chapter 2, we denote &, = &,(%,). Correspondingly denote 52 = 52(),). Then

the residual at time ¢ is

The k-th (k = 1,2,3,4,...) order high moment partial sum process of residuals is

defined as

[nu]

Sy =) 7 0<u<l, 3.2.1
n t
t=1

where [nu] is the ceiling integer of nu.

Its counterpart based on the IID innovations is defined as

[ny]

SEw)=) nf,0<u<l. (3.2.2)

t=1
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Theorem 3.2.1. Suppose that Assumptions 1 to 3, 6, & and 9 hold and let k > 1

be an integer. If E|nol® < oo, then

1
Jn

sup
0<u<l

(891w) - 5Bw)) + 2 (A, Vhs = 1)

—kupsk—1 (T, V(G — 7)) | = op(1),

where A = E (8logo2(X)/0)), T = Eoy'(Xo) (Oeo(10)/07), and (x,y) is the inner

product of the vectors x and y.

Remark 3.2.1. Theorem 3.2.1 shows that the asymptotic properties of the high
moment partial sum process {S(u),0 < u < 1} always depend on the parame-
ters of the model for any integer k. This is different from the pure GARCH case
where there is no such a term as kupr—1 (', v/n(9n — %)) and the approximation for
{gﬁk) (u),0 < u < 1} can be parameter free if ﬁk = 0 for some odd k. See Remark 1.1

in Kulperger and Yu (2005).

Remark 3.2.2. The discussion after Theorem 4.1 in Ling (2005) indicates that By; #
0 is critical when 0 <t < 1 in Assumption 9. With the same reason, Theorem 3.2.1
cannot be applied to the ARMA-IARCH model though it holds for the ARMA-ARCH
model after removing the redundant parameters. Further, Theorem 3.2.1 holds also for
a pure GARCH model after dropping Assumptions 2 and 9 and letting vector I' = 0.
Thus, for the pure GARCH model, Theorem 3.2.1 imposes weaker conditions than
those given in Kulperger and Yu (2005). Mainly, the parameter space O; is wider
and the condition

lin%) ™" P{|no| <z} =0 for some >0

s dropped.

Remark 3.2.3. Lemma 2.4.6 and Assumption 9 imply the existence of A and T'.
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By Theorem 3.2.1, we immediately obtain the following CUSUM result, Corol-

lary 3.2.1. It implies that the CUSUM normalized high moment partial sum process
{5’,(1’“) (u) — ugﬁk)(l),o < u < 1} behaves as if the residuals {7;,1 < t < n} were
asymptotically the same as the unobservable innovations {n;,1 <t < n}.

Corollary 3.2.1. Suppose that Assumptions 1to 3, 6, 8 and 9 hold and let k > 1

be an integer. If Elnol" < 00, then

sup

o<u<1 VI I(S(k) “grgk)(lj) — (8 (u) - uS,gk)(l))‘ =op(1) .

The next result follows immediately from Corollary 3.2.1 based on the invariance
principle for partial sums for an IID sequence {n}} (see for example Billingsley, 1999).

Corollary 3.2.2. Suppose that Assumptions 1to 8, 6, 8 and 9 hold. Let k > 1 be

an integer and (? = E(nf — ux)? < co. If E|no|** < oo for some integer k > 1 then

(k) o(k)
n (u) —uSy (1)
{ Cev/n  O2us 1}

converges weakly in the Skorokhod space D|0, 1] with J; topology to a Brownian bridge

{Bo(u),0 <u<1}.

Before formulating the next result, we need to modify the high moment partial
sum processes of (3.2.1) and (3.2.2). The k-th order moment residual centered partial

sum process is defined as

[nu]

TOw) =Y (", 0<us1,

t=1

where 7 is the sample mean of the residuals. Its counterpart based on the IID inno-

vations is

[nu]

T®wW) =Y (m-n° 0<u<l,

t=1

where 7 is the sample mean of innovations.
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Theorem 3.2.2. Suppose that Assumptions 1to 3, 6, 8 and 9 hold and let k > 1

be an integer. If E|nol* < oo, then

1
/n

Remark 3.2.4. Theorem 3.2.2 shows that the sample mean centering is able to re-

sup = op(1).

0<u<l

(79 ) - TH@) + 2 (A, ViR~ 0))

move the parameter term kupg_1 (L', vVn(5» — %)) in Theorem 3.2.1. This matches
with a result for high moment partial sum processes for a stationary ARMA model in

Yu (2005).

Let &(2”) = ﬁz)(l) /n be the sample moment estimator of u,. Just like in the
pure GARCH case, 6(2n) will play an important role when it is used to self-normalized
Tk (u). Denote O'?R) = T.,.£2)(1) /n, and note that it is the sample variance of the true
innovations, except with divisor n instead of n — 1, which does not matter as long as
large sample properties are concerned.

Theorem 3.2.3. Suppose that Assumptions 1to 3, 6, 8 and 9 hold and let k > 1

be an integer. If E|ng|™axk2} < oo, then

Tw) T (u)
~k o k
T(n) T(n)

sup ! = op(1).

0<u<1 v

Let v, = p,k/ug/‘z for k£ > 1 and define vy = 1. For each k > 1, let {B®)(u),0 <

u < 1} be a zero mean Gaussian process with covariance

EB%) (u)B(k)('v) = (v~ {)(uAV) + kvg_1(kvk—1 + kvkvs — 20441 )uv

+kv (1 — k/4) v + kv /4 — Vi) uv (3.2.3)

for any 0 < u,v < 1, where u A v = min(u, v).
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If por < 00, then Lemma 3.8 in Kulperger and Yu (2005) implies

(k)
{\/175 (T,;k(u) — nuuk) ,0<u< 1}
(n)

converges weakly to the Gaussian process {B®*)(u), 0 < u < 1}. By Theorem 3.2.3,

we immediately obtain the following corollary.

Corollary 3.2.3. If Assumptions 1to 3, 6, 8 and 9 hold , then E|ny|?* < oo for

some integer k > 1 implies that

1 [(T®
{\/ﬁ( &k(u) —nuvk), Ogugl}
(n)

converges weakly to the Gaussian process { B®)(u), 0 < u < 1}.

When k£ = 1, (3.2.3) becomes EB(I)(U)B(I)(U) =uAv—uvforany 0 <u,v<1,
that is, {BW(u), 0 < u < 1} is a Brownian bridge. For k = 2, (3.2.3) implies
that EB@(4)B@(v) = (14 — 1)(u Av — uv) for any 0 < u,v < 1. This means
{B®(u)/\/vg—1, 0 < u < 1} is also a Brownian bridge. In general, the Gaussian
process {B®*)(u), 0 < u < 1} for k > 3 depends on the moments of the innovation
distribution and cannot be identified to be a specific process known in the literature,
such as a Brownian motion or a Brownian bridge. More details can be found in
Kulperger and Yu (2005). Here we just give the following corollary that will be used
to construct the Jarque-Bera test statistic given in the next Chapter.

Corollary 3.2.4. Suppose that Assumptions 1to 3, 6, 8 and 9 hold. Assume also

that k > 1 is an odd number and p3 = px = prro = poryr = 0. Then E|ng|2* Y < oo

implies that

1 [ TP(z) T+ (y)
~ — NIV, ~ = NYVk41 | 0< T,y < 1
{\/ﬁ ( g8 A
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converges weakly in the Skorokhod space D?[0, 1] to a two dimensional Gaussian
process {(B®)(z), B*tD(y)) 0 < z,y < 1}, where {B®)(z), 0 < z < 1} and
{B*+)(y), 0 < y < 1} are two independent zero mean Gaussian processes defined by

EB(?:) (SL‘)B(%)(y) = (sz' - Vf) (33 AN y) -+ iVi_l(?:Vi—l + ?:V,;V3 — 2Vi+1)$y

+?:Vi ((1 — 2/4)1/3 + ?:V.,;I/4/4 — Vi+2) TY, 1= ’C, k + 1,

Jorany 0 <z,y <1.

3.3 Proofs

This section begins with a proof of Theorem 3.2.1. It is given in a sketch or overview
form with the details given in a series of lemmas, which are placed in the later
part of this section. The proofs of Theorems 3.2.2 and 3.2.3 rely on the proof of

Theorem 3.2.1.

3.3.1 Proof of Theorem 3.2.1

Proof of Theorem 3.2.1: Let é, = £,(%,), 62 = 02(\,,),

[nu]

2 Et(’?n) Et k
A ] , 1<t<n, and S¥(u E k 0<u<l.
" G T =

Then Theorem 3.2.1 follows if we can show that

sup |—=(50(w) — SP(w)) + T (A, Viilha ~ o)) (3.3.1)
—kupr—1 (T, vn(5n — 10)) | = 0p(1)
and
sup in 50(u) — 5 (w)| = 0p(1). (3.3.2)
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The proof of (3.3.2) is left in Lemma 3.3.1. Let

\/'r_z(crf(/\o +n~1/2)) — of(/\g))
— P+Q+p+q+2
gt(N) TEW , AER (3.3.3)

and

\/’ﬁ(et(’)’o +n72y) — Et(’Yo))
Zi(v) = 2700) . (3.3.4)

Note the we adopt the same notation in Kulperger and Yu (2005). And there is
- 1o relationship between the function g;()\) defined here and the function g(x) defined
in Chapter 2.

Though g¢(A\) and Z;(y) depend on n, we omit it for convenience of notation. By

the definition of 7, it is not difficult to see

i, = Nt + n—l/zzt(\/ﬁ(?n ~ 7)) . (3.3.5)
\/1 +n712g,(v/n(An — X))

Thus, by Assumption 8, to prove (3.3.1), we need to prove for any b > 0 that

A (120 |
Z (\/1 + n=1/2g, ()\))

sup sup
0<u<1 |A[<b | V7

kupiy

1
__—_g(k) — = op(1
\/ﬁSn (u) + 9 (A, /\) kuuk_l (F, ’}’) Op( )
This last part follows by
1 % me+ 122, \* 336)
sup su 3.
o<ugl |A|<pb Vn = \ V1+n"12g(N)

= Op(l),

= op(1), (3.3.7)

sup sup
0<u<l |\|<b

k
1 1 k—1
=y M Ze(y) — upe—1 (L)Y
n =1 (\/1+n—1/2gt()\)) t t( ) k 1< )
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and
[nu] ¥ 1 ( ) kUﬂk
sup su — =S¥ (u) + A A) | =op(1).
05u21 NSB’ Z (\/1+n—1/2gt(/\)) \/,,_z ( ) 9 ( ) P( )
(3.3.8)
To prove (3.3.6) to (3.3.8), we need to find how fast the following terms
|9¢(A)] 2
max sup and max sup |g:(A) — (Ologo; (Ag)/ON A)| (3.3.9)

I<t<n p<p VI 1stsn |n\<b
converge in probability to zero. In pure GARCH case, Lemma 3.3 in Kulperger and
Yu (2005) show that both supy < 1g:(1)| and supyy<p V7 9:(A) — (Olog af(Xo) /0N, A)|
have any finite moments and hence one can use a well-known result that if { X,,,n > 0}
is a sequence of identically distributed r.v.’s. With E| X, < oo for some k* > 0,
then

max | X;| = op(n!/*"). (3.3.10)

1<t<n

In addition the following important approximation

can be established as well.

max sup
1<t<n |/\|<b

Unfortunately, if we adapted the same approach used in Kulperger and Yu (2005),
we would need at least E|eg|'® < oo due to variation contributed from ARMA com-
ponents. In fact (3.3.11) may be not feasible for ARMA-GARCH models under a
minimum moment condition on GARCH errors. Notice by (3.3.3) that we only need
to work with the function ¢7()\) in the neighborhood |\ — Ag| < b/y/n of A¢. Indeed
we are able to take such an advantage in Lemma 3.3.3 and find proper convergence

rates of (3.3.9) in Lemma 3.3.4 without requiring higher moments on GARCH errors.
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(3.3.6) and (3.3.7) are proven in Lemmas 3.3.6 and 3.3.7, respectively. We divide

the proof of (3.3.8) into three parts. Let w(z) = 1/v/1+ z and w¥(z) denote the
i-th derivative of w(x). Let M be a positive integer which will be determined in

Lemma 3.3.5. Then equation (3.3.8) follows by

k
1 <, 1
— 3.3.12
3?5\/5;%' (\/1+n*1/29t()~)) N
M w9 (0) (log o?(Xo) /A A\
-1+ z_; ] 'nifz = OP(]-)'J
1 « k w(0) (Blog o2(Ng) /0N, N)?
— 1+ 3.3.13
lilllspb vn t=1 G ( ; d ni/? ( )
B (Olog o? (/\0)/8/\ A\ _
1-— 2\/5 ———Op(].),
and
[nu]
(Bloga2(Ng)/O\, )\))
3.3.14
AT N G v -
1 k:uuk
——_glk) =
\/ES" (u) + 5 (A, A) | = op(1).

They are proven in Lemma 3.3.8 to 3.3.10, respectively. Now we completely finish

the proof of Theorem 3.2.1.

As a consequence of Theorem 3.2.1, we can obtain for any 1 <¢ <k

S i = Zm i L (A v - 0) (3.3.15)

520t o ()

In particular, since o = 1 and y; = 0, we have

= _ o . (L
n=1+ \/—(I‘ , V(i = %)) + p(\/ﬁ). (3.3.16)
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3.3.2 Proof of Theorem 3.2.2

Proof of Theorem 3.2.2: When k = 1, Theorem 3.2.2 follows by

sup Té”(u)—T,EU(U)l < sup

0<u<l 0<uxl

(80(w) ~ uSO W) = (SP(w) - uSP (W) [+17 - 7

and Corollary 3.2.1 and (3.3.16).

Next we consider the case kK > 2. Theorem 3.2.1 and weak law of large number

implies that

~ 1l o=, . 1
Sff)(u)l < EZ n¢| + Op (%) = Op(1)
t=1

for 1 < i <k, while (3.3.16) and CLT imply

= 1 _
7)20}3(%) and‘7)=0p(

1
sup —
0<u<1 N

3|“

).

= op(1)

In addition,

1
=S (u) — wpt—y

sup
n

0<ux<l1

follows by Lemma 3.3.2. Thus, by Theorem 3.2.1 and (3.3.16), we have uniformly in
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L me) = Law Gk-1) () 4 1)k-iZk=i56) (y,
=T @) \/_S() \/_sn \/EZ() DY) (u)

i=0

T2 — T (A, VA~ 20)) + ks (0, VA — )
—k (77+ 7n (T, v/n(¥m — %)) + op (—\/%)) X

(_1-_8(’9_1)(“) B (k — Dupg_q <A, \/‘T—i(:\n — /\0)>

2

k= s (0 = 20)) + e (=) ) +op(1)

1 k kﬁ k—1 ku‘”
= 80(w) ~ ZLSE () ~ T (A, Vi - X)) +op(1)
1

kuu
—\/—HT,E")(U) u <A vn (,\ — )\0)> + op(1).

This completes the proof of Theorem 3.2.2.

3.3.3 Proof of Theorem 3.2.3

Proof of Theorem 3.2.3: First Theorem 3.2.2 implies for any 1 < i < k

_Z (7, — =nzn:(m 7) — \/_< V(i )>+0P(%). (3.3.17)

t=1

Since we assume En¢ < oo for any k£ > 1, (3.3.17) implies

Glay = Olny — 7_- <A v, )> + op (%) : (3.3.18)
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Then
1 | TP TF) SUDg<y<q | Ln(t) ~ Ly (u 1 1
\/— ( ) . k(u) S pOS Sl‘ k( ) ( )l+ sup }L (U)l k .
0<'u,<1 oF () T(n) ) O<u<l (n) T(n)
Notice that (3.3.18) implies
1 1 1
)
k k
Tm)  T(n) vn
Therefore we can prove Theorem 3.2.3 if
sup |L,(u) — L,(u)| = op(1) (3.3.19)
0<u<l
and
| Ln(u)]
su = op(1). 3.3.20
i My~ p(1) ( )
By the facts that 7 = Op(1/4/n) and 0Ly = ‘Nz + op(1),
[nu}
Ln(u) k
AN/ A —yt= 1))*/2
\/ﬁ Z 77t uug/g (/J'2+OP( ))

(nu]
1
- e — uy, + op(1)

t=1

thus (3.3.20) holds by Lemma 3.3.2.
When k£ = 1, (3.3.19) follows directly from Theorem 3.2.2 since p1 = 0. Let us
consider the case k > 2. By (3.3.18) and a first order Taylor’s approximation with

remainder we have

Vnény = vn (02 2 <A, V(A — /\0)> +op (_1_))&/2

™" v
,\ k/2
= Vi (ot~ L2 (AL - 20) ) o)
_ ok, - kO?,;)?uz <A, VA, — )\0)> + op(1)
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Putting the above into L,(u), together with Theorem 3.2.2 and the fact that

0ty = 2 + op(1), we obtain

Lfw) = —=T¥(w) ~ 2% (A, V(i — o))
- (f o~ 25 (A, VG >>)+ )
k na(n) 9 y VI Ap 0 op

Ly(u) + op(1)

‘uniformly in 0 < u < 1. This concludes the proof of (3.3.19) and hence Theorem 3.2.3.

3.3.4 Proof of preliminary results

The remainder of this section gives the various Lemmas needed in the proofs above.
Throughout the rest of proofs, C denote a ﬁn‘ite positive constant which may change
values from place to place but does not depend on . We also use the following
inequality

|(z + A)F - | < k2NA (|Jz)F + AR (3.3.21)
on several occasions.

Lemma 3.3.1. Under Assumptions 1to 3, 6, 8 and 9, we have for k > 1

1 = A
sup —= |57 (u) — S (u)| = op(1).

0<u<l VT

Proof: By definitions of 7; and 7;, we can rewrite

and hence
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[nu] ~ ~ AN
300 =00 + 30 (1) Lot (Mem 2 racay’
t

Since we assume that o > 0 and ©; is compact, by (2.2.2) and (2.2.6), there exists

a constant C' > 0 such that almost surely
0. >C andag, > C forallt>1.

Thus, by using the inequality |a 4 b)* < 2°7!(|a* + |b]f) for any real a,b and integer

1 2 1, Lemma 3.3.1 is proven if we can show for all i =1,... k
1 — .
—= Y |&/*167 — 52" = op(1) (3.3.22)
\/T_l t=1
and
1 « . .
— Y &l e — & = op(1). (3.3.23)
Vg

Now, by Lemma 2.4.6 (i) and (2.4.6),
€% 167 — 671" < C&, 0 S} ().
By Assumption 8, Lemma 2.4.6 (v), and Hélder’s inequality, takihg T = 1/(4k),
E?[¢8 .Si(%0)|™ < EE2™ESE™ () < C(1+1) forall1<t<n.

Hence we have
n Tk
E (Z |&:]F|62 — 52| ) < Cz VI+tpt™ <
t=1
This proves (3.3.22). One can prove (3.3.23) similarly. This completes the proof of

Lemma 3.3.1.
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Lemma 3.3.2. Let X; = h(n, Nt—1,...) and suppose that E|Xo| < co. Then

[nu]

Y X, — uEXo| = op(1) .

t=1

1
sup |—
0<u<1 | N

Proof: We refer to Lemma 3.6 of Kulperger and Yu (2005).
The following lemma is a key result that provides proper convergence rates used

in proving (3.3.9) under minimum moment conditions on GARCH errors. Notice that

A is in the neighborhood |\ — Ag| < b/+/n of Ag. Denote for any b > 0,

2 2 .2 T
I, = max  sup Iaatz()\)/a)\l and J, = max  sup 19 O't()z\) A l
ISt<n |\_yol<b/vi  Ot(Ao) 1SR |3 2o(<b/v/m o7(Mo)

Lemma 3.3.3. Under Assumptions 1to 3, 6, 8 and 9, we have
I, =op (nl/”) and J, = op (nl/") ,

where kK = 2t/(1 — 13) > 2.

Proof: By Lemma 2.4.6(iii),

2 2 20\ _ 42
sup |60t2(A)/85| _ sup |0o; g)\)/‘%l ‘1 n 0y (A)z a;(Ao)
A=Aol<b/vim Ot (Ao) A-dol<b/vm Ot (A) o (o)
|0 (A) /O]
< C€, {14+ sup A— A
o ( |A~Ao|5b/ﬁ| d 0 (o)
. bl,
< C&p,t—l (1 + —ﬁ) .
By Lemma 2.4.6 (iv) and (v), 2.4.7 (v), we have
2 2 _
wp LAOUH L, PO, o) o
[A=Xo|<b/ /7 (o) (o) IA=Xo|<b/\/7 o1(A) ot(Ao)
2
S Cgp,t—l 1 + sup IA . AOI laotz(A)/a/\l
ot(Ao) IA=Xo|<b/vR (o)

IA

. bI,
Cg(ll,pl?t—-l (1 + \_/—H) .
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Putting the above together after choosing s < 1 — t3, we obtain

bl
1—¢3 n
In S Clrgtaélgo’pl’t_l (1 + \/T_Z) .

Though I, appears on the right hand side in the above, the extra \/n term will make

it small so we can move it to the left hand side as long as

1—¢3 1/2
max =0 n
1<t<n O,P]_‘,t—"l p ( )

- which follows immediately by Assumption 9 and (3.3.10). In fact, Assumption 9

implies E{é};ff)” < oo and hence by (3.3.10)

1—:e3 1/k
max 1 =0 n .
1<t<n 0,01,t—1 .P ( )

Therefore we prove the first half of Lemma 3.3.3.
To prove the second half, we adapt the same approach as we use in the first half.

We have

1<t<n \/7_2,

This proves the second half. Thus Lemma 3.3.3 is proved.

bl,
Jn < C max £§;j?t__1 (1 + —-——) :

Lemma 3.3.4. Under Assumptions 1 to 3, 6, 8 and 9, we have for any b > 0

1g:())] 1/k—1/2
IInlax su = 0op N
1<t gy v/ P )

and

max sup |g:(A) — (O log Uf(/\o)/a/\7 A)| = op (nl/n—1/2) -

ISt<n |3 <b
Proof: The proof follows easily from Lemma 3.3.3 and one or two terms Taylor

expansion of o7()). The details are omitted.
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Lemma 3.3.5. Under Assumptions 1 to 3, 6, 8 and 9, there exists an integer M

such that for any b > 0

1 w®(0) (Olog o2(Xg) /O, A)
\/1 +n~1/2g,(\) (1 N Z ! ni/2 )

max sup

= Op (n—1/2) .

=1

Proof: By M-term Taylor expansion of w(x), when x is small,

w(zr) =1+ Z 'w(j!(O)w + O (£M*1).

i=

- Thus Lemma 3.3.4 implies
g:(\)

1 w(z)
1 = O —
V14 n2g,() ( ! Z ¢ "’2/2 ) l ’ (IIE%‘ e \/—

op (n(M+1)(1/n—1/2))

max Su
1<t<n l)\|<b

M+1)

op (n—1/2)

if M > k/(k —2) — 1. Now we can finish the proof of Lemma 3.3.5 if we show for

each:=1,2,..., M that

max sup Igt(/\) (8log o?(Xo) /0N, N | = op ( (nt=172) . (3.3.24)

1<t<n IAI

When ¢ = 1, (3.3.24) follows directly from Lemma 3.3.4. Let us consider the cases

i=23,...,M. From Lemma 3.3.3 we have for each ¢ = 2,3,..., M that

max sup |(9loga?(Xe)/0X, N[ = op (n¢V/")

1<t<n |z\|<b
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which, together with (3.3.21) and Lemma 3.3.4, implies

Istsn |)<b

= op (n!/*71/?) (ma.x sup [(8log o7 (Ae)/OA, /\)|i_1 + op (n(l/”"l/z)(i"l)))

1stsn z|<b

= op (nl/n—1/2) (OP (n(i—l)/n) + op (n(l/n-—l/2)(z'-—1)))

op (n(i—l)/i’)

since K > 2. This proves (3.3.24) and Lemma 3.3.5.

Lemma 3.3.6. Under Assumptions 1to 3, 6, 8and 9, for any b > 0 and k > 1,

Elngl* < oo implies that
1 ‘lg:] ( e+ "2 Z(y) ) k
v t=1 V1+n712g,(N)
1 [nu] 7 k k [nu] 1 k -
Vn ; (\/1 n n'l/'*’gt()\)) T t; (\/1 m n—wgt(,\)) w4

Proof: The case k = 1 is trivial. We consider the case k¥ > 2. By Newton’s

sup sup
0<u<1 |AJ<b

= Op(l).

binomial formula, Lemma 3.3.6 follows by

k : .

L § 1 =512
U n - = op(1
IAIS% vn ; (\/1 + n_lfzgt()\)) ni/2 (1)

for each i = 2,...,k. By Lemma 3.3.4, we can reduce the above to

A SUP|y|<b 1Z(7)]*
Z n+1)/2 — =op(1)

t=1

~which can be proven if for each t = 2,...,k

n i i\ 2/1
E (Z |7e|*~* sup| <5 | Z: (7)) ) ~0(1). (3.3.25)

i/2
t=1 n
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By Lemma 2.4.6 (i) and (v)

Oty ('Y)
Oy

bC&p,t—l
Ot ( Ao)

< C&L8 . (3.3.26)

sup [Z;()| < sup l <
[r1<b 0t(A0) py—rol<b/vm

Now we can easily prove (3.3.25) since n and & ,, ;1 are independent, E|no|* < oo
and Eﬁt(,,lpl"f‘)'; < 00. The proof of Lemma 3.3.6 is finished.
Lemma 3.3.7. Under Assumptions 1to 3, 6, 8and 9, for anyb> 0 and k > 1,

E|no|* < oo implies that

[nu]

1 1 g k—1
}{; (\/ 1+ n—1/2gt(/\)) T e

Proof: First we get rid of the term g;(A) by using Lemma 3.3.4 and the same

= Op(l).

sup sup
0<u<1 [A[<b

argument in proving (3.3.25). Mainly, by [1/(1 + z)*/? — 1| = O(z) for small z and

(3.3.26), we have

1 T
sup —

(\/1 T nil/zg (/\)) nf‘th('y) — nf”th('r)

A
= QOp (max sup 9 )I) Zlﬂtk K (ll,pi?t 1

1<t<n l)\|<b

Op(].).

Next we need to prove that

sup — Z 7]~

ly<b T

= Op(l). (3327)

- (S5

To this end, we get by using two terms Taylor expansion and Lemma 2.4.6 (i) and

(V)7

sup
by|<b

Oct(Y0) /0 > b Sup<p 10%€1(7)/ ovoy'| _C 3,;;’3—1
ot(Ao) Vvn ot(Ao) Vvn

Zy(7y) — <
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This proves (3.3.27).

Finally we can prove Lemma 3.3.7 if
1

()
1/ Oe 0
sup sup —| 3 7; 1< (70)/ 7,7>—uuk-1 (L, 7)
=1

0<u<l |y|<b 1| % ot (Ao)

(3.3.28)

The proof of (3.3.28) follows by taking sup,, <, into the inner product first, then

applying Lemma 3.3.2 and noting that <3E;$E‘j\)0/)3”,'y> = X(Nt-1,M¢~2,...) for an ap-

propriate function X. This completes the proof of Lemma 3.3.7.

- Lemma 3.3.8. Under Assumptions 1to 3, 6, 8and 9, for any b > 0 and k > 1,

E|nol* < oo implies that

1 k
(\/1 +n~1/2g, (,\))
_ (1 + 35000 @logo? (a) 2, ) ) ‘ o).

7! ni/2
i=1

1 — y
sup —

|AI<b

Proof: Lemma 3.3.8 follows easily from (3.3.21), LLN, and Lemmas 3.3.4 and

3.3.5. The detail is omitted.

Lemma 3.3.9. Under Assumptions 1to 3, 6, 8 and 9, for any b > 0 and k > 1,

Elnol* < oo implies that

sSu —1- y k

IAl<b VT T

_ (1_ <8loga,:20\\/(;_3/ax )\))

Proof: By (3.3.21) and then by taking sup, <, into the inner products, we find

(1 N Z w1000 @log? (4 /03, )

n2/2

= Op(l).

the dominate term in the above is

ZZI |k|510g0‘t (A0)/OA]}
0 n+1)/2

i=2 t=1

which is op(1) by following the same way as we prove (3.3.25).
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Lemma 3.3.10. Under Assumptions 1to 3, 6, 8 and 9, foranyb>0and k > 1,

E|no|* < oo implies that

[nu]

1 N (alogaf(xo)/a)\,)\)i)’“
sSup s —_— 1 —
o<1 [NSb | V7 ;m ( 2v/n
-—1-—S(k)(u) + Fupy (A, A) | = op(1).
vn " 2 ’

Proof: By Newton’s binomial formula and by using similar way in proving

Lemma 3.3.9, the dominate term left in the above is

[ny]

sup sup |~ 7 (910g 02 (Ao)/OA, A) — upue (4, 1

0<u<1 A<b | P 4o

which follows easily from Lemma 3.3.2. Now we complete the proof of Lemma 3.3.10.
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Chapter 4

Diagnostic Test of
ARMA-GARCH Models

With the results in Chapter 2 and 3, we can investigate some properties of QMLE
and conduct model diagnostic tests based on residuals with numerical examples.

In fitting ARMA-GARCH, we notice that Splus module S+FinMetrics version 1
and 2 does not scale the QMLE. One scaling approach based on outputs from the
Splus S+FinMetrics is introduced. Then we verify numerically the relative efficiency
of QMLE based on different likelihood kernels. Fitting ARMA-IGARCH model is
also considered.

We also study by Monte Carlo simulation the residual-based diagnostic tests like:
CUSUM test for model structural change and Jarque-Bera test for normality of in-
novation.

Finally, some open problems are presented as the future work.
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4.1 Fitting ARMA-GARCH Models

4.1.1 Fitting ARMA-GARCH by Splus module S+FinMetrics

Usually En2 = 1 is assumed to identify model (1.2.13). As mentioned in Remark 2.2.4
in Chapter 2, when we fit data by a likelihood kernel other than the standard normal

density, we may have to scale 7; such that n}* = an;. As showed in Section 2.3.5, it

results in a scaling of ag, a1, - ,a, only. If a is known, after estimating A**, we can
~ scale the estimators &gy, 635, -+ , & by multiplying a® back to obtain estimators of
ap, oy, -+ + , 0p In the original model.

The algorithm of fitting ARMA-GARCH model in Splus module S+FinMetrics
version 1 and 2 does not scale the estimates after the parameters are estimated. In
addition, standardized residuals, the estimates of conditional variances and asymp-
totic variances are not scaled either. This could lead to wrong inference and poor
prediction.

In the following, we use an example of ARMA(1,1)-GARCH(1,1) to show the

scaling problem and give an approach to amend it based on the Splus outputs.

> module(finmetrics)
> data <- sim.arma.garch(n = 10000, n0 = 500, arch = ¢(0.0002, 0.2),

garch = c( 0.5), dist.par = 0, mu = 0, ar = ¢(0.4), ma = c(0.6))

Instead using the command of “simulate.garch” in S+FinMetrics, we write our own
command “sim.arma.garch” (the code is appended) to generate the data. This com-
mand produces an output including an ARMA-GARCH series {y;,1 < t < n},

GARCH errors {e;,1 < t < n}, GARCH innovations {r,1 < t < n} and condi-
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tional variances {07,1 < t < n}. The model parameters are given in the command.
dist.par = 0 means the innovation is generated from the standard normal distribu-
tion. n is sample size and ny is the starting value. Figure (4.1) display the simulated

data.

> par(mfrow = c(2, 2))

> tsplot(data$series, main = "Series")
> tsplot(data$error, main = "Error")

> tsplot(data$sigma.sq, main = "Sigma")

> tsplot(data$innov, main = "Innovation")
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We fit the series y; with an ARMA(1,1)-GARCH(1,1) model based on the standard

normal kernel and the student t(3) kernel respectively by the command “garch” built
in S+FinMetrics. Since n; ~ N(0,1), we have Eny = 0 and En? = 1. By Proposition
2.2.1, Assumption 5 is satisfied, so we do not need to scale the model when fit the
data with standard normal kernel. The estimators actually are MLE. But we have
to scale 7, when applying the t(3) kernel. The scale parameter a is chosen such that
Eang/(3+ 1) = 0 and E(3 + (an0)2)_1‘ = 1/(3 + 1). Solve the equations, we have

a~ 1.26.

> series <- data$series

> fit.nm <- garch(series = series, formula.mean = ~ -1 + arma(l, 1),
formula.var = ~ garch(i, 1), cond.dist = "gaussian", trace = FALSE)

> fit.t3 <- garch(series = series, formula.mean = ~ -1 + arma(1l, 1),
formula.var = ~ garch(l, 1), cond.dist = "t", dist.par = 3, dist.est

= F, trace = FALSE)

We have shown in Chapter 2, both of these (Q)MLEs are asymptotically consistent
and normally distributed even the likelihood kernels are different. After scaling, both

of these estimators should be very close to the true values.

> coef.nm.splus <- fit.nm$coef
> coef.t3.splus <- fit.t3$coef
> list(coef.nm.splus, coef.t3.splus)
[[1]1]:
COEF
AR(1) 0.3850685255
MA(1) 0.6283150831
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A 0.0001963835
ARCH(1) 0.1994200015
GARCH(1) 0.5051757511

[[2]]:
COEF
AR(1) 0.3872451994
MA(1) 0.6222308782
A 0.0003761551
ARCH(1) 0.3720943546
GARCH(1) 0.5062610707

It can be seen that estimators of ¢, ¢, ,81 are very close to true values in both
two fittings. But the estimates of ap and «; from the two fittings are quite different.
Estimates of g and «; based on the normal kernel fit are closer to the true value
than the estimates based on the t(3) kernel.

Since En = 1, we would expect the variances of standardized residuals from the

two fittings to be close to 1.

> res.nm.splus <- residuals(fit.nm, st = T)
> res.t3.splus <- residuals(fit.t3, st = T)
> var(res.nm.splus)

[1] 1.002256

> var(res.t3.splus)

[1] 0.5267372

> var(data$innov)

[1] 1.000595
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It can be seen that the sample variance of standardized residuals based on the t(3)
fitting is far away from 1.

Not only are the parameter estimators and the residuals of fit based on the t(3)
kernel not scaled, neither are the estimated conditional standard deviation sequence
o: and the estimated asymptotic variance. One approach of solving this scaling issue
is to apply a correction parameter a;3. Denote 735, ¢ = 1,--- ,n be the standardized
residuals given by S+finMetrics based 6n the t(3) fitting. Since Eni = 1, we expect

the sample variance of the standardized residuals to be close to 1. So a3 is set to
n/ E?:l(ﬁﬁs:‘)z'

> a.t3 = 1/mean(res.t3.splus”2)
> a.t3

[1] 1.898638

This correction parameter is just used to scale the Splus estimation. Now we can
use it to correct the problems. For example:
(i) Rescale the QMLES:

Denote 451,:33, D135+ 51,533 Ogi3s, O1r3s as the estimator based on the t(3) kernel
fitting given by S+FinMetrics. Let qgltgc, P1t3c, ,5'”30 Qot3c, (13 be the properly re-

scaled estimators based on the t(3) kernel. To correct the estimators, let (51t3c = (;)lt&g,

P1t3c = P1t3sy X0t3c — G’Otss/ a3, X143 = 0!11:3.9/ 43, /81t3c = »311:33-

> coef.t3.correct <- coef.t3.splus/c(1, 1, a.t3, a.t3, 1)
> coef.t3.correct
COEF

AR(1) 0.3872451994
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MA(1) 0.6222308782
A 0.0001981184
ARCH(1) 0.1959796218

GARCH(1) 0.5062610707

The modified QMLE of the t(3) kernel fitting now are very close to the true param-
eters.
(ii) Correct the standardized residuals:

We begin with a look of the density of the standardized residuals (in Figure 4.2)
of the two fittings given by Splus Finmatrics.
> plot(density(res.t3.splus), type = "p", col = 1, pch = 2, main =

"Density Plots of Splus Residuals of two fittings", xlab = "", ylab =
y P g y

"")
> lines(density(res.nm.splus), type = "p", col = 5, pch = 0)
> lines(density(data$innov), type = "p", col = 6, pch = 3)
> legend(1.6, 0.5, legend = c("t(3)", "normal", "original"), marks = c(2, O,

3), col = c(1, 5, 6, ), bty = "n")

The density of residuals based on the normal kernel fitting overlaps with that of
the true innovation, which implies the fitting is good. There is a big difference between
the density of residuals based on the t(3) kernel and that of the true innovation.

Denote correct standardized residuals as 73.,. Then we correct the residuals by
M3c; = v/ Qt3T)e3s; -

> res.t3.correct <- res.t3.splus * sqrt(a.t3)

Plot again the density (in Figure 4.2) of the modified residuals.
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> plot(density(fes.t3.correct), pch = 2, col = 1, main =
"Density Plot of Modified Residuals", xlab = "", ylab = "")
> lines(density(res.nm.splus), type = "p", pch = 0, col = 2)
> lines(density(data$innov), type = "p", pch = 3, col = 3)
> legend(2, 0.38, legend = c("t(3)", "normal", "original"), marks = c(2, 0,

3), col = c(1, 5, 6, ), bty = "n")
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The plots shows, after scaling, both the densities of residuals from the two fits
almost overlap with the density of the true innovation. This indicates the scaling
parameter works well.

(iii) Correct conditional variance
Since there is no scaling problem in (Q)MLE of the ARMA part for both fits, the
two estimated GARCH errors sequences of the two fits given by S+FinMetrics are
very (ﬁlose to the true values. Howevef, G2 = ap + €2 + 516,52__1, thus wrong QMLE
results in wrong J; in t(3) fitting. This can be visualized by a plot (in Figure 4.2) of

? the &, given by S+FinMetrics 6.1 against the true o;.

> plot(fit.t3%sig, sqrt(data$sigma.sq), type = "p", pch = 1, col = 1, main =
g, 89 gm ypP P", P
"two Splus Sigma vs True Sigma",.X1ab = "" ylab = "")

> lines(fit.nm$sig, sqrt(data$sigma.sq), type = "p", pch = 2, col = 2)

> legend(0.08, 0.04, legend = c("t(3)", "normal"), marks = c(1, 2), col = c(

1, 2, ), bty = "n")
It can be seen (from the third plot in Figure 4.2) that plot of d; based on the normal
kernel fit versus the true o; is almost on a 45 degree straight line. However, the plot
of &; based on the t(3) kernel fit against the true o, is above on a 45 degree straight
line.
To correct 6; based on the t(3) fit, we divide the sequence by the scaling parameter
as:

> sigma.t3.correct = fit.t3$sig/a.t370.5

It can be seen (from the forth plot in Figure 4.2) that plots of the corrected sequences

versus the true o; overlap and almost lie on a 45 degree straight line.
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> plot(sigma.t3.correct, sqrt(data$sigma.sq), type = "p", pch = 1, col = 1,
main = "Modified Sigma vs True Sigma", xlab = "", ylab = )

> lines(fit.nm$sig, sqrt(data$sigma.sq), type = "p", pch = 2, col = 2)

> legend(0.06, 0.04, legend = c("t(3)", "normal"), marks = c(1, 2), col = c(

1, 2, ), bty = "n")

(iv) Correct unconditional variance

Since EG2 = 64/(1 — &, — 31), thus wrong QMLE results in wrong E&? in the t(3)

- kernel fit.

> fit.nm$asymp.sd"2

[1] 0.0006647958

> coef.nm.splus[3]/(1 - coef.nm.splus[4] - coef.nm.splus(5])
[1] 0.0006647958

> fit.t3%asymp.sd"2

[1] 0.003092248

> coef.t3.8plus[3]/(1 - coef.t3.splus[4] - coef.t3.splus[5])
[1] 0.003092248

To correct, we can use the corrected estimators to calculated the unconditional vari-

alce.

> asymp.var.t3.correct <- coef.t3.correct[3]/(1 - coef.t3.correctl4] -
coef.t3.correct[5])

> asymp.var.t3.correct

[1] 0.0006653643

Now it is very close to the unconditional standard deviation based on the normal

kernel fitting.
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(v) Check our assumption
Assumption 5 can be verified by checking if E{1/(3 + (an;)?)} is 1/4.
With residuals based on t(3) kernel given by Splus, we have:

> mean(1/(3 + res.t3.splus~2))

[1] 0.2924377

which is a little bit away from 0.25.
With the rescaled residuals, we have:

> mean(1/(3 + (1.26 * res.t3.correct)~2))

[1] 0.2497764

which is very close to 0.25.

This implies that the scale parameter correctly modified the fit.

4.1.2 Efficiency of QMLE

(i) Pure ARMA
As shown in Theorem 2.2.4 in Chapter 2, with aq being nuisance parameter, the

asymptotic variance of 7, for pure ARMA is 72__D:!. For a given distribution of &,

D. is not determined by the choice of kernel. Thus efficiency of the QMLE depends
on 72 which is determined by the likelihood kernel h. Table 4.1 lists some 72

arma’ arma

based on several different distribution of ¢, and likelihood kernels.

It can be seen from Table 4.1 that for a given distribution of €;, the MLE is the
most efficient. The closer is the likelihood kernel to the density of 7;, the smaller is

T2 It also can be seen that when 7; is heavy-tailed, fitting with the normal kernel

arma’
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Table 4.1: 72

for different h and distributions of 7,

me ~t(3) | m~t6) | n~SDE | p ~ N(0,1)
h ~ t(3) 1.499 1.307 1.278 1.110
h ~ t(6) 1.532 1.286 1.375 1.049
h~SDE 1.830 1.687 1.004 1.552
h~ N(0,1)| 2.993 1.5 2 1

Table 4.2: 7**2 for different h and distributions of 7

N ~ N~ e ~ N ~ Ne ~

GED(.5) | GED(1) | GED(L5) | N(0,1) | t(6)

h ~ SGED(.5) 2.000 1.090 0.837 0.720 | 0.850
h ~ SGED(.8) 2.122 1.012 0.735 0.614 | 0.784
h ~ SGED(I) 2.330 1.000 0.698 0.570 | 0.778
h ~ SGED(1.5) 3.444 1.065 0.667 0.514 | 0.879
h ~ N(0,1) 6.050 1.250 0.690 0.500 | 1.250
h ~ SGED(3) 27.127 2.110 0.867 0.543 | 17.128
h ~t(6) 2.223 1.032 0.700 0.554 | 0.750

h ~t(12) 2.413 1.035 0.674 0.520 | 0.774
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is less efficient than fitting with the student’s t kernel. However, for a fixed kernel h,

it is hard to compare the efficiency among different ¢,, since the variance depends on

both 72

arma

(ii) Pure GARCH

and D.!. D! is decided by distribution of £; and model parameters.

As to pure GARCH, it can been seen from Section 2.3.5, that for a given distribu-

tion of 7;, asymptotic variance of 8,, is determined only by 7**2, which depends on the

choice of h. Table 4.2 presents some 7**2 for several distributions of 7; and likelihood

kernels.

In Table 4.2, GED(v) is the generalized error distribution (Nelson, 1991). GED(1)
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is equivalent to double exponential distribution or Laplace distribution. GED(2) is
equivalent to the standard normal distribution.

Table 4.2 shows that for a fixed distribution of 7;, the closer is the likelihood
kernel to the density of n;, the smaller is the 7**2. Similar to the findings in the Table
4.1, Table 4.2 shows that when 7; is heavy-tailed, fitting by the normal kernel is less
efficient than fitting by a student t kernel. Similarly for a fixed kernel A, it is hard to
compare the efficiency among different distribution of 7, since the variance depends

on both 7**2 and D~!. D! is decided by the distribution of 7, and model parameters.

(iii) Pure GARCH with Nonzero Mean

Theorem 2.2.5 in Chapter 2 implies that the common practice of using the sample
mean to center financial data is workable when E|¢;|? is finite. While Corollary 2.2.1
shows that estimation of the mean term by the sample average is less efficient.

Lu (2001) showed by a simulation study that the asymptotic efficiency ratio of
sample average estimator and QMLE of the mean term c depends on other parameters.
When the model is close to IGARCH, QMLE is much more eflicient than the sample
average estimator. Table 4.3 presents some simulation results of GARCH(1,1) with
no ~ N(0,1) and samples size 10000 for different parameters, repeated 2000 times.

When a; + 3, is fixed, the efficiency ratio seems to depend more on o;.



Table 4.3: Ratio of Var(g,) and o2

a | o1 | By | Var(&,)/o?
0.05| 0.9 | 0.05 13.7
0.05]0.8] 0.1 12.1
0.05| 0.8 10.15 11.1
0.0510.75 | 0.2 9.7
0.05 | 0.7 | 0.25 8.6
0.05 | 0.65| 0.3 7.6
0.056| 0.5 | 045 5.0
0.05| 0.3 | 0.65 2.7
0.05}| 0.1 |'0.85 1.2
0.05 [ 0.75 | 0.05 3.6
0.05 | 0.7 | 0.1 3.3
0.05| 0.6 | 0.2 2.6
0.05| 0.5 | 0.3 2.2
0.05( 04 | 04 1.8
0.05 1 0.45 | 0.05 1.6
0.05| 0.4 | 0.1 1.4
005 03| 0.2 | 1.3
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(iv) For ARMA-GARCH

Theorem 2.2.2 in Chapter 2 shows the variance of QMLE depends on the choice of
the likelihood kernel and the distribution of the innovation 7;. Under some conditions,
QMLE for the ARMA part and the GARCH part are asymptotically independent
and the efficiency of the QMLE for the GARCH part is decided by 7**2 for a fixed
distribution of 7;. In general, it is hard to compare the efficiency of QMLE for the
ARMA part.

We verify the result by a simulation study. First we generate ARMA(1,1)-GARCH(1,1)
data with sample size 10000, ¢; = 0.4, p; = 0.6; ao = 0.0002, a; = 0.2, 8; = 0.5, and
n¢ from the standard normal distribution. Then we fit the data with the standard

normal kernel and the student t(3) kernel respectively. The estimates from the t(3)
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fit have been adjusted as discussed in Section 4.1.1. We repeat this procedure 5000
times. Thus we have 5000 estimates for each true parameters. The sample means and
variances of these 5000 replications should be very close to the true mean parameters
and asymptotic variances of the (Q)MLEs.

Let’s first have a look of the average across all 5000 replicates of the two fits for
each parameter.

mean(coef.n[, 11)

> mean.nl

" > mean.tl = mean(coef.t3[, 11)

> mean.n2 = mean(coef.n[, 2])
> mean.t2 = mean(coef.t3[, 2])
> mean.n3 = mean(coef.n[, 3])
> mean.t3 = mean(coef.t3[, 3])
> mean.nd4 = mean(coef.n[, 4])
> mean.t4 = mean(coef.t3[, 4])
> mean.n5 = mean(coef.n[, 5])

> mean.t5 = mean(coef.t3[, 5])

> c(mean.nl, mean.n2, mean.n3, mean.nd4, mean.n5)

[1] 0.3984329078 0.6013272417 0.0002019203 0.1992662602 0.4965470515
> c(mean.tl, mean.t2, mean.t3, mean.t4, mean.tbh)

[1] 0.3988031599 0.6003895511 0.0002039537 0.1975628389 0.4957456241

It shows that the means of these (Q)MLEs for the two fits are close to the true values.
Next we plot the density of (Q)MLEs of the two fits (in Figure 4.3).
It can be seen from Figure 4.3 that the density of QMLEs based on the t(3) kernel

fit is more spread, which implies the t(3) kernel fit is less efficient than the normal

kernel fit.


mean.nl

o M e B SR LT S ]

P e S U T R e

For (Q)MLE of AR parameter For (Q)MLE of MA parameter

&
0 8
N
& o
]
0
e o
T
o o
0.36 0.40 0.44 056 058 060 062 064

For (Q)MLE of a0 For (Q)MLE of ARCH parameter a1

i

N
: ]
) 2

e
g ]
== o

0.00015 0.00025

~or (Q)MLE of GARCH parameter b1

10

0.35 0.45 0.55 0.65

Figure 4.3: Density Plots of (Q)MLEs for the two fits

148



A direct calculation of the variance, we have

> var.
> var.
> var.
> var.
> var.
> var.
> var.

> var.

> var

> var

> c(var.nl/var.tl, var.n2/var.t2, var.n3/var.t3,
var.nd4/var.t4, var.n5/var.tbh)

[1] 0.8529636 0.8701201 0.7046332 0.7781677 0.7672930

nl
t1
n2
t2
n3
t3
n4

t4

.nbd

.t5

var (coef
var(coef
var(coef
var (coef
var (coef
var (coef

var (coef

var (coef.

var (coef

var (coef

.o, 11)
.t3[, 11D
.o, 2])
.t3[, 21)
.o, 31
.t3[, 31)
.n[, 4])
t3[, 41)
.n[, 5])
.t3[, 5])
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It can be seen that the efficiency of the ARMA part and the GARCH part is different.

It also confirms that the MLE from the normal kernel fit is more efficient than QMLE

from the t(3) kernel fit.

We also fit the data by the student t distributions with other degrees of freedom.

It shows when degree of freedom is big enough, there are no big difference between

the efficiency of the QMLESs based on the normal kernel and the student t kernel.

4.1.3 Two Step Estimation of ARMA-GARCH

We show this by a simulation example. First we generate ARMA(1,1)-GARCH(1,1)

data with sample size 2000 and ¢ = 1, ¢y = 0.4, ©; = 0.5, ap = 0.005, a; = 0.3,

By = 0.6, n; from the standard normal distribution. For two step estimation, since &,
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is heavy-tailed, by Theorem 2.2.4, QMLE based on a student t kernel will be more
efficient than that based on the normal kernel. We first fit the data with ARMA
model by the standard normal kernel and the student t(3) respectively. Estimates
of ¢, ¢1, w1 and residual sequences e, are obtained correspondingly. Then using
{e:,1 <t < n} as observations, we obtain the estimates of ap, ay, 5 by fitting these
two sequences of {e;,1 < t < n}, respectively, with GARCH model based on the
normal kernel. For the ARMA pa.raméters, by using the estimators from the t(3)
:kernel as initial values, we obtained the local QMLESs by one step replication based
on normal kernel and the t(3) kernel respectively as given by (3.9) in Ling (2005).
As to one step estimation, we fit the data with ARMA-GARCH based on the normal
kernel.

Since 1, ~ N(0,1), we do not need to scale the estimators for the GARCH part.
Note that the ¢ in our model is different from what is in the Splus. Since ¢; = 0.4,
¢ = 1 in our model implies ¢ = .6 in Splus.

We repeat this procedure 2000 times. Thus we have 2000 estimations for both
one step and two step estimations.

Since €; is not independent and presents ARCH effect, fitting ARMA-GARCH
data by ARMA model may lead to bad estimation of ARMA parameters.

Also since 7, ~ N(0,1) is symmetric about 0 and & is the normal kernel. We
have E(g%(n0)n0) = 0 and E(g'(0)n0) = 0. Thus by Theorem 2.2.5, the variance of
the estimators of the ARMA part does not affect the variance of the estimator of the
GARCH parameters in the two step estimation. By Remark 2.2.10, estimators of the

ARMA parameters and the GARCH parameters are asymptotically independent in
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one step estimation.

Figure 4.4 plots the densities (the curve of histogram of the 2000 estimations)
of the QMLEs for the ARMA parameters. It can be seen that the density of the
MLE from two step estimation are heavier than those from one step estimation. Also
it can be seen that density of QMLEs based on the normal kernel are heavier than
that based on the t(3) kernel, which is confirmed from Table 4.1. With one step
replication, the efficiency of local QMLE is somewhat improved. But they are still
less accurate then one step estimation.

Figure 4.5 plots the densities the QMLEs for the GARCH parameter. The vari-
ances of one step and two step estimations are almost the same. It can be seen
that the densities of the estimators in both qné step and two step estimations almost

overlap.
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4.2 Model Diagnosis

As introduced in Chapter 1, after fitting a model, it is a good practice to test the
model assumptions like: randomness of residuals, remainder ARCH effect, structural
change, and distribution of residuals and etc.. In this section, we only present some
numeric examples based on results from Chapters 2 and 3, in particular the CUSUM

test for the change point problem, and Jarque-Bera test for distribution of residuals.

4.2.1 Change Point Problems

In the modelling of financial time series analysis, usually the sequences are assumed
to be stationary or the model parameters is assumed to be constant over the time
period. However financial time series often suffer from structural changes due to
changes in political and social events. Ignoririg this can lead to a poor estimation
and false conclusions. Thus detecting possible changes in the stochastic structure of a
time series has become an important area of research in the last two decades and has
drawn much attention from many researchers. Recently, there is a growing interest
in testing for and estimating changes in parameters of econometric models. So far,
a large number of articles have been published in various journals. See, for instance,
Brown, Durbin and Evans (1975), Wichern, Miller and Hsu (1976), Zacks (1983),
Krishnaiah and Miao (1988) and Csorgé and Horvath (1997) among the others.
Kokoszka and Leipus (2000) studied a change point for an ARCH process based
on the original observations. Kim, Cho, and Lee (2000) constructed a CUSUM test

based on the squares of the original data of a GARCH(1,1) model. Lee, Tokutsu and
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Maekawa (2003) improved the test of Kim, Cho, and Lee by constructing a test based
on the standardized residuals.

Berkes, Horvath, Kokoszka (2004) proposed a test for change in the parameters
of a GARCH(p q) model. The test is based on approximate likelihood scores and
does not require the observations to have finite variance. They show that the test has
asymptotical correct size under some weak assumptions on the model errors.

Kulperger and Yu (2005) showed the CUSUM processes based on residuals from a
| GARCH(p, q) process behaves as if they were asymptotically IID as the unobservable
innovations. And they applied this result to detect change-point in a GARCH(p, q)
model. In particular, Yu (2004) demonstrated with numerical examples that the
CUSUM test based on standardized residuals of GARCH(p, q) has reasonable size
and nice power with large sample sizes. There are substantial power gains when the
innovation distribution is t(8) comparing to standard normal. This test can be used
to perform near-integrated GARCH(1,1) with a comparison to Kim, Cho, and Lee’s
test, which could not perform at all for the near-integrated GARCH(1,1).

Based on the results in Chapter 3, we can extend the results of Kulperger and Yu
(2005) to ARMA-GARCH processes.

(i) a Structural Change in the Conditional Mean

First we consider a structural change in the conditional mean for ARMA-GARCH
model. Due to the masking effect of ARMA, we consider only a structural change
on constant term ¢ in the pure GARCH model with nonzero ¢y, AR-GARCH model
and MA-GARCH model.

(1) Pure GARCH model with nonzero c,
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The null hypothesis is “no-change in the conditional mean”

Y=o + co
HQ: ,t=1,...,n

af = Qpo + Zf=1 aoi(Yi—i — 60)2 + Z_?:l /603“7?—3‘

and the alternative is “one change in the conditional mean”

¢

Y: = o + o . -
s t=1,...,|nu

of = Qoo + Zﬁ;l O-’Oz‘(Yt—z' - C0)2 + 2?:1 503‘"::2—-3'

Y, =0m+ ¢ f= ] + 1
, t=[nu ¥

\ af = Qo + Zﬁ;l aOi(Yt-—i - 66)2 + Z?=1 f@OjU?—j

where ¢y # ¢y and 0 < u* < 1.

(2) MA-GARCH model

The null hypothesis is “no-change of ¢y in the conditional mean”

4 )

K“Co=5t+zg= QjEt—j
Ho:{ =t ! },t=1,...

\ Et = O}y and O't2 = (o + E?:l aOi(}/t——i — CO)2 + Z?:l ﬁﬂjatz—j )

and the alternative is “one change of ¢y in the conditional mean”

(
)/t""'CO:Et"I'Z.?:lQOjEt_J', if t=0,...,[nu"]

H, : { }1-(;6:@-}-2_?:1%&_3-, if t=[nu]+1,...,n

— 2 __ p 2 q 2 —
Et -_ O'tnt and Ot —_— aoo + Ez=1 aoz&'t_z + Z]:l ﬂojat__:] 3 t —_— ]., - ,n

\

where ¢y # ¢y and 0 < u* < 1.
(3) AR-GARCH model

The null hypothesis is “no-change of ¢y in the conditional mean”

Y, —co=3 i ¢i(Yij —co) +¢
Ho! t Z : o t },t=1,

g = oy and 0'? = Qo t Z?:l agi (Ye-i — co)* + Zq=1 B0j0t2—j y
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and the alternative is “one change of ¢ in the conditional mean”

r

Y, —co=3 i 0:(Yiej—co) +&, if t=0,...,[nu

=
3

Y, —cp=S1 (Y —ch) +&, if t=[nu]+1,...,n

er = oy and of = ago+ Y oy 00t + 2 imy Boioi-j s t=1,...,n
where ¢y # ¢y and 0 < u* < 1.

To test above hypothesis, we use the standard CUSUM test constructed from

CUSUMW = max |Zt=1m _ '”?’ ,
I<i<n G(n)y/1

By Corollary 3.2.2, under Hy,

CUSUMW 25 sup |By(u)|,

0<u<1
where {By(u), 0 < u < 1} is a Brownian bridge. Hence we can reject Hy in favor of
H, if CUSUMW is large.

Table 4.4 lists the simulation results of GARCH(1,1) with nonzero mean. The
parameter in Hg is (cg, @0, @01,5001) = (0,0.5,0.1,0.8). Table 4.5 lists the simu-
lation results of AR(1)-GARCH(1,1) with nonzero mean. The parameter in Hj is
(co, Po1, oo, Q01,5 Bo1) = (0,0.4,0.5,0.1,0.8). Table 4.6 lists the simulation results of
MA(1)-GARCH(1,1) with nonzero mean. The parameter in Hy is (co, o1, @00, @01, Bo1) =
(0,0.6,0.5,0.1,0.8). In These 3 tables, all the break points in H, are u* = 0.5 and
co changes from 0 to 0.5 after [u*n]. Critical values 1.358 and 1.2239 are chosen for
significance levels a = 5% and a = 10% respectively. Five thousand replications are

used.
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Table 4.4: Size and Power of CUSUMWY Statistic for GARCH(1,1) with Nonzero

Mean

o ~ N(0,1) | n=300 | n=600 | n=1000 | n=3000
Size
a = .05 0.038 | 0.038 0.043 .050
a=.1 0.075 | 0.079 0.094 .099
Power
a=.05 0.387 | 0.689 0.902 1
o =. 0.509 | 0.792 0.944 1

Table 4.5: Size and Power of CUSUM) Statistic for AR(1)-GARCH(1,1) with

Nonzero Mean

o ~ N(0,1) | n=300 | n=600 | n=1000 | n=3000
Size
a = .05 037 .043 .049 .050
a=.1 077 .086 .091 .102
Power
o= .05 0.142 | 0.288 0.480 930
a=.1 0.234 | 0.403 0.595 961

Table 4.6: Size and Power of CUSUM®Y) Statistic for MA(1)-GARCH(1,1) with

Nonzero Mean

no ~ N(0,1) | n=300 | n=600 | n=1000 | n=3000
Size
a=.05 0.044 | 0.035 0.045 .052
a=.1 0.087 | 0.081 | 0.098 105
Power
a=.05 0.164 | 0.315 0.521 0.947
a=.1 0.255 | 0.436 | 0.632 0.97
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From Table 4.4 - Table 4.6, it can be seén that sizes are somewhat conservative
when sample size n is small. When sample size increases, the sizes are very close
to the nominal significance level. The powers increase with the sample size and are
bigger than 93% as sample size is bigger than 3000.

(ii) a Structural Change in Conditional Variance
Next we consider a change in the conditional variance of an ARMA-GARCH model

with null hypothesis as “no-change in the conditional variance”

( \
Yi—c= 25;1 ¢0£(Yt—i - Co) t & + E?:l "»bOjst—J'

HUI:< Et=0-t7k },t=1,...,n

2 __ p 22 q 2
\ gy = Qo + Zi=1 Qgi€y_g + Zj:l ﬁOJat—j )

against the “one change in the conditional variance” alternative

4

Yi— ¢ = Zf—_l Go;(Yi—i —co) + & + E?ﬂ Yoi€t—j

€t = Ot
H, : <
) Qoo + D _img C0i€i—; + iy Bojor; if t=1,..., [nu’]
oy =
\ a’()U + Zf:l a;]i‘s?—i + Z?:l ﬁaja?—j if ¢t= [nU*] + 1& RRRN(?
where (aoo, @01, - - -, Qop, Bo1, - - -  Bog) F (o> A0y - - -+ Ay Boys - - - Bpg) 80d 0 < w* <

1. The statistic is defined as

i _E\2 s
CUSUM® = max l2t=1 ('fh — 'r)) —_ w(2n)
s 52\/7_1 ’

where
~ 1 - ~ =\ 2 ~ 2
G = - Y ((m —7)" = U?n))
t=1

is an estimator of (3 = E(n3 — u2)? = p3(vs — 1). Therefore, by Corollaries 3.2.3,
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Table 4.7: Size and Power of CUSUM® statistic for ARMA(1,1)-GARCH(1,1)

o ~ N(0,1) | n=500 | n=1000 | n=1500 | n=3000
Null 0.036 | 0.036 | 0.037 | 0.044
oy =.0003 | 0.236 | 0.754 | 0.929 | 0.999
of, =.167 | 0.334 | 0.416 | 0.621 | 0.914
By, =.767 | 0.306 | 0.655 | 0.851 | 0.994
Mo ~ t(9) =500 | n=1000 | n=1500 | n=3000
Null 0.039 | 0.046 | 0.048 | 0.043
ohy =.0003 | 0.191 | 0.442 | 0.645 | 0.930
oh, =.167 | 0.148 | 0.367 | 0.551 | 0.868
By, =.767 | 0.182 | 0.425 | 0.636 | 0.938

under Hj,

CUSUM® 2 sup |By(u)],

0<u<l

where {By(u), 0 < u < 1} is a Brownian bridge. Hence we can reject Hy in favor of
H, whenever CUSUM® is large.
Table 4.7 presents the simulation results of ARMA(1,1)-GARCH(1,1) with 7, ~

N(0,1) and n; ~ t(9) respectively. The parameter in Hy
(co, Po1, Po1, Coo, o1, Bo1) = (0,0.4,0.6,0.0002,0.1,0.8).

Break point 0.5 in H, is used. Replication is 5000 times. Each time there is only
one change in the conditional variance. Critical values 1.358 is chosen for significance
level 5%.

Table 4.7 shows some similar conclusion of ARMA(1,1)-GARCH(1,1) to that of
GARCH(1,1) in Yu (2004). There is size distortion, which is less serious when the

sample size is bigger. Also there are power losses when the innovation distribution
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changes from normal to student t.

4.2.2 Jarque-Bera Test for Normality

Although normality of the innovations in ARMA-(I)GARCH model is not neces-
sary for the estimation, the efficiency of QMLE is related to the density presumed.
The closer is the likelihood kernel to the density of innovation, the more efficient
is the QMLE. Empirically the innovation density is leptokurtic and not normally
distributed. Thus normality test is quite important in diagnosis of goodness-of-fit,
efficiency test and inference.

A popular graphical method for examining normality is the normal quantile-
quantile plot (QQ-plot). QQ-plot is a scatter plot of the standardized empirical
quantiles of the residuals against the quantiles of the standard normal distribution.
If the data is normally distributed, then the quantiles will lie approximately on a 45

degree line.

In econometrics a normality test is customarily performed by Jarque-Bera (JB)
test for its straightforward interpretation and implementation.
The JB statistic is defined as:

'nb% n(bg—-3)2 D
JB=+ "%

> X?z), (4.21)

where b; = m3/ mg/ 2 by = my /m2 respectively, and m; is the i** central moment of

the sample with size n.

The JB test was formally derived by Jarque and Bera (1987) as a Lagrange
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Multiplier test of normality of the regression residuals versus the alternative that the
error distribution belongs to the Pearson family, which includes the beta, gamma and
student’s t distribution and others. They showed JB is asymptotically equivalent to
the likelihood ratio test, implying it has the same asymptotic power characteristics
including maximum local asymptotic power (Cox and Hinkley (1974)). Hence a test
based on JB is asymptotically locally most powerful. They also showed that JB is
asymptotically distributed as x*(2).

There are some reasons which limit the application of JB test. One of the reasons

is that the asymptotic validity of the J B test has been only proved for limit stationary

models. It is unclear if this test can be extended. Recently, Kulperger and Yu (2005)
extended it to GARCH(p,q) models.

A second limitation is that JB statistic does not take the serial correlation into
account. In time series modelling, due to mis-specifying the model or other reasons,
the residuals may not be identically and independently distributed. For example,
Kawczak, Kulperger and Yu (2005) has shown that residuals of ARCH models cannot
be treated as IID in general.

Another limitation is that the asymptotic distribution of the JB statistic may
provide a poor approximation in finite samples.

Urzia (1996) adjusted the JB statistic by using the exact means and variance of

by, by in (4.2.1) instead of the asymptotic means and variance. He showed that the

4
\‘
;
¥

adjusted statistic behaves better for small and medium size samples by simulation.
Kilian and Demiroglu (2000) studied the Jarque-Bera test for vector error-correction

(VEC) models and level vector autoregressions (VAR) containing possibly integrated
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or cointegrated variables. They also proposed to use bootstrap critical values to im-
prove the small-sample performance of the test in stationary VAR models and in VEC
models and compared the accuracy of the asymptotic and the bootstrap version of
the Jarque-Bera test by simulation.

Lu (2001) extended the JB statistic to test normal and student ¢ distribution for
residuals from ARCH models. In testing he used adjusted critical values for finite
sample instead of applying directly the X2 critical value. With this correction, the
size and power of the test are improved. In the work, he obtained equations of the JB
statistic critical value (size .10 and .05) for both the normal distribution and student ¢
distribution with different sample size n. To do this, he used Monte Carlo simulation
to obtain critical values critical value for diffefent sample sizes n (and degree freedom
d for student t distribution) and then regressed on sample size n (and degree freedom
d for student t distribution). The critical value formulas are listed here:

Critical value for normality test with size 0.10 is:

11.438 = 290.146  5767.467 = 30798.127

, n>100 (4.2.2)

Critical value for normality test with size 0.05 is:

16.912 = 519.764  7754.753 = 36092.983

,n>100 (4.2.3)

Critical value for the student ¢(d) test with size 0.10 is:

444 53.75 149.1 23050 1810300

d1/2+ d  d3/? n2 T n3

38.15 " 3294 3584 + 10070 120200
(dn)/2 ~ dn  dn'/? = d?n dn?

JB;1 = 4.60517 —

. > 100 (4.2.4)
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Critical value for student ¢(d) test with size 0.05 is:

40.88 361.44 816.43 10.27 142.28

JBt05-5991645“T+ d3/2 — d2 — n1/2 _ n3/2

139.68 2013 608.86 24640
— ———f— — > 4. L]
+(dn)1/2 an a2 | @n ' "7 100 (425)

Kulperger and Yu (2005) extended the JB statistic to test normal distribution of

GARCH(p,q) innovations. They defined the test as:
JB = = (40 — K3)® + — (fon — K4)?, (4.2.6)
where, 7. is the GARCH(p,q) innovation, ur = E(n), kx = ux/ ufj/ ? and

s _ 2 (e — 1)’

—

T (- fv) 372

(e — )

n LS
" Zt— N —

17
)?)

= (kg — K3) + 3(3 + 3K3 — 2K4) + 3k3(K3/4 + 3Kk3kye/4 — K5)

and

02 = (kg — K2) + 4K3(4K3 + dK3ks — 2K5) + 4K4(K3 — Kg) .

8

Based on results in Chapter 3, we can further extended it to test distribution of
ARMA-(I)GARCH innovations. The statistic is defined same as in (4.2.6).

Koul and Ling (2005) proposed a test based on a vector of certain weighted resid-
ual empirical processes and used it to test the normality of the GARCH innovation

distribution ( as in Table 4.8). To compare the performance of Koul and Ling’s (2005)
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Table 4.8: Size and Power of test, Koul and Ling (2005)

n=200 n=400
a=01]a=005a=001{a=01|a=0.05|a=0.01

Null .089 041 .006 102 .053 .008
Ha, 171 .086 021 .348 226 058
Hyo .309 .180 .056 590 453 200
H. 070 434 201 .909 882 081
Hgay 407 247 .060 793 .640 283
Ha5 1 1 1 1 ' 1 1

test with the JB test, we use the same model AR(1)-GARCH(1,1), same parameters
of (¢o1, @0, @01, Bo1) = (0.5,0.025,0.25,0.5) and with same sample size 200 and 400.
The procedure is replicated 1000 times. The Null distribution of 7, is N(0,1) and its

alternatives are set as:

Hgy :me ~/3/58(5); Hag:me~+/1/2t4); Haz:m~ /1/3 (3);
H,4 : 1y ~ double exponential ; H,s: 7 ~ [0.5N(=3,1) + 0.5N(3,1)]/v10 .

‘Table 4.9 lists the JB test results based on x, critical values. Table 4.10 lists
the JB test results based on corrected critical values by Lu (2001). It can be seen
that JB test based on both corrected critical values and x, critical values are much
more powerful than Koul and Ling’s (2005) test. In particular, JB test has substantial
power gains under H,; and H,s. The sizes are conservative when Y, critical values are
used. While applying corrected critical values, the sizes are very close to the nominal

significance level for n = 400, though the sizes are still somewhat conservative for

n = 200.
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Table 4.9: Size and Power of JB statistic for AR(1)-GARCH(1,1) based on x critical

value

n=200

n=400

a=0.1

a = 0.05

a=0.01

a=0.1

a = 0.05

a=0.01

.064

032

015

064

034

.008

831

794

715

991

984

959

932

912

854

997

991

985

981

969

1

954

933

875

998

998

995

1

1

Table 4.10: Size and Power of J B statistic for AR(1)-GARCH(1,1) based on corrected

critical value

n=200

n=400

a=0.1

a=0.05

a=0.1

a = 0.05

088

043

.096

052

.845

.810

986

975

944

915

997

993

989

980

1

965

933

998

998

1

1




167
4.3 Conclusions and Discussions

In Section 4.1.1, with a being unknown, due to EnZ = 1 and En}** = a’En? = a?,

1Y~ 1 7ir*2. One shortcoming of this estimation of a is

we can estimate a® by n~
that it brings extra variation to the estimator of ag, a1, ,a,. And the normality
of rescaled estimators requires 4th moment of 7,. Another shortcoming is that the
sample variance of #? is constant 1 for any sampling. To relax the moment require-
ments of 7, and constant sample variance of 72, we can assume other conditions, i.e.
Elno| = 1 or E(g(n0)mo) = —1 to.identify model (1.2.13).

In the proof of normality theorem in Chapter 2, we require the distribution of 7,
to be symmetric about 0. If the innovation distribution is not symmetric, we can
employ other models which consider the leverage effect as introduced in Chapter 1.

The problem is how to test the symmetry, which will be considered in my future work.

In my future work, I will consider if the results in Chapter 2 and 3 can be extended

to multivariate ARMA-GARCH.

4.4 APPENDIX

A.1 Splus code of simulating ARMA-GARCH

#E eta"2 =1

#Normal distribution: dist.par=0; Double Exponential distribution:

dist.part=1; #Student distribution: dist.par > 2.
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sim.garch <- function(n, n0, arch, garch, dist.par) {
module (finmetrics)
if (dist.par == 0)

| innov <- rnorm(n + noO)

else if(dist.par == 1)

innov <- rdexp(n + n0, rate = sqrt(2))

else innov <- rt(n+n0, df=dist.par)#*sqrt((dist.par - 2)/dist.par)
X <- innov
h <- rep(arch[1], (n + n0))
p <~ length(arch)
q <- length(garch)
m <- max(c(p - 1, q))
if(m == 0)
return(innov)
if(p-1<1)
return("error: NO arch")

x[1] <- sqrt(h[i]) * x[1]

#ARCH
if(q < 1) {
for(i in 2:p) {
for(j in 2:i)
h{i] <- h{i] + (arch[j] * (x[i - j + 1)~ 2)

x[i] <- sqrt(h[i]) * x[i]

}
for(i in (m + 2):(n0 + n)) {

for(j in 2:p)
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h{i] <- hli] + arch[j] * (x[i - j + 1])°2
x[i] <- sqrt(nli]) * x[i]
}
error <- Xx
sigma.sq <- h

return(error, sigma.sq, innov)

#GARCH initial
if((p - 1) == q) {
for(i in 2:p) {
for(j in 2:i) |
h{i] <- h[i] + (arch[j] * (x[i - j + 1)~ 2)
+ garch[j - 1] * h[i - j + 1]
x[i] <- sqrt(h[il) * x[i]

}
else if((p - 1) < q) {
for(i in 2:p) {
for(j in 2:i)
hfi] <- h[i] + (arch([j] * (x[i - j + 1])"2)
+ garch[j - 1] * h[i - j + 1]
x[i] <- sqrt(hlil) * x[i]
}
for(i in (p + 1):(q + 1)) {
for(j in 2:p)
hli] <- h[i] + arch[j] * (x[i - j + 1])"2



170
for(j in 2:i)
h[i] <- h[i] + garch[j - 1] * h[i - j + 1]

x[i] <- sqrt(h[i]) * x[i]

}
}
else {
for(i in 2:(q + 1)) {
for(j in 2:i)
h[i] <- h[i] + arch[j]l * (x[i - j + 1])"2
+ garch(j - 1] * h[i - j + 1]
x[i] <- sqrt(h[il) * x[i]
}
for(i in (q + 2):p) {
for(j in 2:(q + 1))
h[i] <- h[i] + garch[j - 1] * h[i - j + 1]
for(j in 2:1i)
h{i] <~ h[il + arch[j] * (x[i - j + 1])"2
x[i] <- sqrt(h[i]) * x[i]
}
}
# GARCH

for(i in (m + 2):(n0 + n)) {
for(j in 1:q)
h[i] <- h[i] + garch[j] * h[i - q]
for(j in 2:p)
h[i] <- h[i] + arch[j] * (x[i - j + 1])"2
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x[i] <- sqrt(hlil) * x[i]
}

list(error = x, sigma.sq = h, innov = innov)

sim.arma.garch <- function(n, n0, arch, garch,
dist.par, mu, ar, ma)
{
e.sig.eta <- sim.garch(n = n, n0 = n0, arch = arch,
garch = garch, dist.par = dist.par)
e <- e.sig.eta$error
X <—- e
p <- length(ar)
q <- length(ma)
m <- max(c(p, q))
if(m == 0) {
series <- x[ - (1:n0)] + mu
error <- e[ - (1:n0)]
sigma.sq <- e.sig.eta$sigma.sql - (1:n0)]
innov <- e.sig.eta$innov[ - (1:n0)]
return(series, error, sigma.sq, innov)
}
x[1] = e[1] + mu

#AR-GARCH
if(q < 1) {
for(i in 2:(p + 1))
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x[i} <- mu + sum(ar[1:(i - 1)] * (x[(i - 1):1] - mu)) + e[il]
for(i in (p + 2):(n + n0))
x[i] <- mu + sum(ar[1:p] * (x[(i - 1):(1 - p)] - mu)) + e[il
series <- x[ - (1:n0)]
error <- e[ - (1:n0)]
sigma.sq <- e.sig.eta$sigl - (1:n0)]
innov <- e.sig.eta$innov[ - (1:n0)]

return(series, error, sigma.sq, innov)

}
#MA-GARCH
if(p < 1) {
for(i in 2:(q + 1))
x[i] <~ mu + e[i] + sum(mall:(i - 1)] * e[(i - 1):
1
for(i in (q + 2):(n + n0))
x[i] <- mu + e[i] + sum(ma[l:q] * el(i - 1):(i - @)1)
series <- x[ - (1:n0)]
error <- e[ - (1:n0)]
sigma.sq <- e.sig.eta$sig[ - (1:n0)]
innov <- e.sig.eta$innov[ - (1:n0)]
return(series, error, sigma.sq, innov)
}

#ARMA-GARCH, initial
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if(p == q) {
for(i in 2:(p + 1))
x[i] <~ mu + sum(ar([1:(i - 1)] =*

+ sum(maf1:(i - 1)] * e[(i -

else if(p < q) {
for(i in 2:(p + 1))
x[i] <- mu + sum(ar[1:(i - 1)] =*
+ sum(maf1:(i - 1)] * e[(i -
for(i in (p + 2):(q + 1))
x[i] <- mu + sum(ar([1:p] * (x[(i

+ sum(maf1:(i - 1)] * e[(i -

else {
for(i in 2:(q + 1))
x[i] <- mu + sum(ar(1:(i - 1)] =*
+ sum(maf1:(i - 1)] * e[(i -
for(i in (q + 2):(p + 1))
x[i] <- mu + sum(ar[1:(i - 1] *

+ sum(mafl:q] * el(i - 1): (i

#ARMA-GARCH, initial

for(i in (m + 2):(m0 + n))

(x[(1 - 1):1] -
1):11)

(x[(1 - 1):1] -
1):1])

-1):(1 -p)] -
1):11)

(x[(1 - 1):1] -
1):1])

(x[(i - 1):1] -
- ql)

mu) )

mu))

mu))

mu))

mu) )
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eli]

e[i]

el[il

eli]

e[il
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x[i] <- mu + sum(ar[1:p] * (x[(i - 1): (1 - p)] - mu)) + e[ i]

+ sum(maf1:q] * e[(i - 1): (i - 1)

list(series = x[ - (1:n0)], error = e[ - (1:n0)],
sigma.sq = e.sig.eta$ sigma.sql - (1:n0)],

innov = e.sig.eta$innov[ - (1:n0)])
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