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Abstract

Point process data with a latent or hidden component arise in a variety of research 

fields. Examples include reaction time, forest fires, seismology, and transactional 

data. We develop statistical methodology that can be applied to point process data 

with a latent component. The methodology is applied to data from a number of 

reaction time (RT) experiments.

Reaction time experiments have been of interest to psychophysicists for more than 

a century. A reason for this interest lies in the fact that the time taken to perform 

a task indicates the complexity of the operations occurring in the brain. We study 

three types of visual-motor RT experiments that increase in complexity.

The main contributions of my thesis are the development of two types of models 

that can be used in the analysis of point process data, in particular RT data. For 

each of the three RT experiments, we develop a parametric model to help provide a 

foundation for understanding the behavior of nonparametric intensity estimates. We 

also study threshold models and introduce different variants for the three RT exper­

iments. The parameters in a threshold model have direct biological interpretations 

regarding inferences on the eye-brain-hand system.

Additional contributions include the use of nonlinear regression in parameter esti­
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mation for our simple RT parametric model. This estimation method is useful when it 

is of interest to obtain a single set of parameter estimates for data sets obtained using 

different flash rates. We also provide a derivation of a covariance that is necessary 

for a hypothesis test by Asimit and Braun (2005).

Keywords: point process, hidden processes, nonparametric estimation, intensity 

function, parametric modelling, Brillinger mixing, kernel smoothing, threshold model, 

generalized linear model, ordinal logit model, integrate-and-fire model.
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Chapter 1

Introduction

Researchers in visual psychophysics study the brain mechanisms underlying vision by 

presenting visual stimuli and obtaining behavioral responses from an observer (see 

Cornsweet (1970)). In a reaction time (RT) experiment, the experimenter presents 

stimuli and an observer hits a button in response to the stimuli. RT has been ex­

tensively studied, and is of interest to psychophysicists because the time taken to 

perform a visual-motor task indicates the complexity of the operations taking place 

in the brain, for example. We consider three variations of RT experiments: simple, 

go-no go, and choice.

Simple RT is concerned with detecting the occurrence of a stimulus, without iden­

tifying its type. In a simple RT experiment flashes are presented to a subject who 

responds as quickly as possible by pressing a button. The times of the flashes and re­

sponses are recorded, but the correspondence between the two sequences is unknown. 

In a go-no go RT experiment two flash types are presented and the observer is in­

structed to respond to only one type, by pressing a button. Thus, the observer needs 

to distinguish between the stimulus types presented, and respond only to a certain 

type of stimulus. Choice RT involves the additional task of responding differently to 

different stimuli; press button one when a type one stimulus is observed, and press 

button two when a type two stimulus is observed.
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1.1 Overview

In Chapter 2 we review the history of reaction time experiments and the necessary 

background for the subsequent chapters. In that chapter we provide some of the fun­

damental point process definitions and properties, as well as a discussion on threshold 

models as latent variable models. The simple RT parametric model of Braun et al. 

(2003) is also reviewed there.

Simple RT data is studied in Chapter 3, which is a fundamental chapter that we 

often refer to in later chapters. A derivation of a covariance approximation necessary 

for the hypothesis test developed by Asimit and Braun (2005) is provided there. We 

also modify the parameter estimation method of Braun et al. (2003) and compare 

it with a nonlinear regression estimation method that we propose. Furthermore, we 

introduce a threshold model for simple RT, as well as diagnostics, and a variant that 

incorporates randomness due to experimental trials. The variables in a threshold 

model have direct biological interpretations.

We introduce two models for go-no go RT data in Chapter 4. First, we propose a 

parametric model, for which we derive expressions for certain point process intensity 

functions. Our parametric intensity estimates are used in conjunction with the corre­

sponding nonparametric estimates to make inferences on the eye-brain-hand system. 

In the latter half of the chapter we introduce a threshold model for go-no go RT data. 

We fit both models to simulated and real data. Fitting the models to simulated data 

allows us to study the behaviour of our fitted models for data in which we know the 

relationship between the flashes and responses.

The objective of Chapter 5 is to introduce a parametric model for choice RT data. 

In that chapter, we derive intensity function expressions under our model, and fit our 

model to both simulated and real data.

Various threshold models for choice RT data are studied in Chapter 6. We first 

introduce an ordinal response threshold model that combines the information of both 

flash and response types. In order to extract more information from the data we also 

develop marginal threshold models for each response type. The inclusion of second-
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order interaction terms in the marginal models allow us to make inferences regarding 

the effect of any flash interactions on the response types.

Finally, in Chapter 7 we summarize our results and discuss areas of further re­

search.
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Chapter 2

Literature Review and
Preliminaries

The first reaction time experiment has been credited by Ribot (1900) to Helmholtz 

(1850), who followed an earlier recommendation of Dubois-Reymond (see Welford 

(1980)). Helmholtz designed a reaction time task in an attempt to measure the 

speed of neural transmission. In his experiment, the same type of response was made 

when various parts of the body were stimulated, so that impulses had to be sent 

along different nerve fibre lengths. Then, the velocities of neural transmission were 

calculated from the times taken over different measured lengths of fibres. Helmholtz 

concluded that the speed of neural transmission contributes to only a small portion 

of the total reaction time; central processes are a major component of reaction time.

One of the most important RT studies is the comparison of Donders (1868) of 

simple, go-no go, and choice reactions, from which he provided a method to measure 

mental processes (see Welford (1980)). Donders reasoned that since simple RT does 

not involve discrimination, and go-no go does, subtraction of simple RT from go-no 

go RT should yield the time for discrimination. Likewise, because discrimination is 

involved in both go-no go and choice RT, but a response only needs to be chosen 

for choice RT, the time spent in choosing a response can be found by subtracting 

go-no go RT from choice RT. Subsequent researchers suggested that there may be a 

time overlap of different processes, and that the analysis of complex elements cannot 
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always be decomposed into the analysis of simple elements. Eventually, the additive 

model of Donders lost favour.

In the traditional simple RT experiment the stimuli are presented on a trial­

by-trial basis, so that the performance of a subject can be observed with ease. A 

complete summary is provided by Luce (1986). The stimuli are presented according 

to a certain distribution; a popular choice is the uniform distribution. The notion of 

a hazard function can be used to show why this is not a good experimental design. 

Recall that the hazard function h(t) of a distribution gives the tendency for an event 

to occur at time t, and is defined by

a - f(t) h() - 1-F(t)’ 

where f(-) and F() are the density and cumulative distribution functions, respec­

tively.

Upon presentation of a signal the hazard function is set to zero, and stays at that 

level for some amount of time after the response. Doing so prevents any overlapping 

of stimuli, and does not allow a subsequent stimulus to occur during the interval 

between a stimulus and its response. Thus, the stimuli are presented in discrete 

triais. In order to inform the subject when the hazard function becomes positive, so 

that it is time to be alert to respond to a stimulus, a warning signal is presented. The 

warning signal is usually a moderately intense stimulus of a modality different from 

the reaction stimulus; in the case that the stimuli are visual, the warning signal is 

usually auditory. The time interval between the warning signal and reaction stimulus 

is called the foreperiod. The RT is the time from the stimulus presentation to the 

response.

Many studies have been run using various distributions for the foreperiod lengths, 

with the uniform distribution being the most common (see Luce (1986)). A problem 

with using the uniform distribution for the foreperiods is that it has an increasing 

hazard function, which may help the subject predict when a stimulus will occur. That 

is, with a uniform delay distribution, the observer can anticipate the stimulus since 

as the observer waits, the chance of a stimulus occurring in the next instant increases.
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In the case that the hazard function is constant, the stimulus can occur at any 

time after the warning signal, making it difficult to anticipate when to respond. The 

exponential distribution, which has density

f(x) = Ae^λx,

is the only continuous distribution with a constant hazard function indicating that it 

is suitable for RT experiments. However, the exponential distribution is not without 

problems. Using an exponential distribution can occasionally lead to a very long 

time to wait for a stimulus to occur. It has been argued that after a few seconds of 

waiting the subject is unable to maintain a constant rate of anticipation. However, 

Luce (1986) cites empirical evidence that attention can be sustained for as long as 

nine seconds.

An exponential distribution for the time until a stimulus occurs solves the antic­

ipation problem, but the traditional simple RT experiment has further deficiencies. 

Firstly, it is unrealistic to have the stimuli presented in discrete triais, and to fol­

low a warning. In reality, signals that require a response occur without warning and 

at random times. For example, while driving a car, dangers appear and a driver 

must respond immediately by pressing the brake pedal. Another disadvantage of the 

traditional simple RT experiment is the impossibility of studying interaction effects 

between the stimuli, due to the discrete triais.

Presenting the flashes according to a point process and recording the times of 

the button presses resolves these issues. In a Poisson process with rate A, the times 

between events are exponentially distributed with mean 1∕A. Thus, due to the memo­

ryless property of the exponential distribution, the times of events are unpredictable, 

and the anticipation problem is still addressed. Figure 2.1 displays a segment of 

simple RT data from an experimental run in which the flash process has rate 1/s.

Evidence of the influence of the hazard function on RT was given by Simpson 

et al. (2000), who compared simple RT experiments in which flashes are presented as 

a uniform delay point process, and as a Poisson process. They found that when the 

stimuli have uniform delays the responses are very similar, and quicker, with speed
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Figure 2.1: A display of RT data from the first 80 5 of one experimental run with 
flashes presented at rate 1/s. The complete experimental run has a length near 320 s, 
and consists of 300 flashes and 202 responses.

increasing as the wait for the stimulus increases. This led to the conclusion that any 

information contained in the hazard function is used by the observers. That is, the 

high level cognitive task of computing the hazard function is involved in simple RT. 

The modified simple RT experiment consists of presenting the flashes according to a 

Poisson process, and recording the times of the button presses.

A measure of RT is given by the location (in time) of the peak of the average 

impulse response of the eye-brain-hand system. A quantity of interest to psychophysi­

cists is the irreducible minimum RT, which is defined as the fastest possible RT that 

is approached as stimulus strength (i.e. flash brightness) increases. In order to ob­

tain the irreducible minimum RT, Simpson et al. (2000) measure RT as a function of
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stimulus strength.

Simpson et al. (2000) tentatively inferred the presence of nonlinearity in the sys­

tem; the presence of inhibition and facilitation among the flashes. However, they 

did not provide uncertainty measures. There is inhibition among flashes if a pair of 

flashes at certain times is associated with a decrease in the response rate. Facilitation 

is present when a pair of flashes at certain times is associated with an increase in the 

response rate.

We focus on visual RT experiments involving responses to flashes of light, but 

various types of reaction time experiments exist in the literature. Diederich (1995) 

studied a simple RT experiment in which the subject had to respond to three different 

types of sensory stimuli (visual, auditory, tactile) presented alone, in pairs, or as 

triples to a subject. The phenomenon of a decrease of RT when two or more stimuli 

are presented, compared to the RT when only one stimulus is presented (intersensory 

facilitation) was observed, and his objective was to explain this occurrence.

Visual motor RT has been explored by Genova et al. (2000) with the purpose of 

studying how the visual system provides input for maintaining equilibrium and control 

of motor behavior, when there are quick changes in the direction of the optic flow. In 

this context, an RT experiment involved responding when there was a change in the 

direction (left or right) and angle of motion of a vertically upwards moving random 

dot pattern. In a simple RT experiment the subjects press a button regardless of the 

direction change, while in a choice RT experiment a left or right button is pressed, 

corresponding to the change of direction perceived.

Kreegipuu et al. (2006) investigated reaction times for detecting a change in the 

color or contrast of an object, stationary or moving at constant velocity. They found 

that the reaction time to detect a change in colouration decreased as the speed of the 

moving object increased, indicating that the mechanism processing colour is aware of 

movement parameters.

In Section 2.1 we review the basic neurophysiology of visual perception in RT ex­

periments, while some fundamental point process definitions and properties are given 

in Section 2.2. We discuss a point process system identification problem in Section 2.3,
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where we also define associated point process parameters. In Section 2.4 we review 

the point process operations used in a parametric model for simple RT introduced 

by Braun et al. (2003), which we review in Section 2.5. We discuss nonparametric 

intensity estimation in Section 2.6. Threshold models as latent variable models are 

discussed in Section 2.7.

2.1 Neurophysiology of Visual Perception in RT

Experiments

RT experiments involving responses to flashes of light are used by researchers in visual 

psychophysics to learn about the brain mechanisms underlying vision. A thorough 

account on the details of visual perception is given by Cornsweet (1970). We discuss 

some of the fundamentals.

The retina is an important component of visual perception. It contains five layers 

of cells, but the two most important layers are the photoreceptors and the ganglion 

cells (see Deutsch and Deutsch (1993)). The photoreceptors receive the light energy 

and transform it into a graded receptor potential, which is in turn converted into 

action potentials in ganglion cells; action potentials are the neuronal output of the 

receptor potential. There are two types of photoreceptors: cones and rods. Cones are 

responsible for colour vision and high resolution vision, while rods are used to see in 

dim light and control lower resolution, black-and-white night vision. In the reaction 

time experiments of interest to us, black and/or white flashes are presented against 

a grey background in a dark room, to a subject who has been adapted to the dark. 

Thus, our interest is in studying the rods and black-and-white night vision.

Images are formed on the retina, which contains millions of rods (see Cornsweet 

(1970)). Rhodopsin is a photopigment that is a mixture of retinal and protein mole­

cules. After a flash of light is presented a number of rods in the eye retinas change 

shape (isomerize) causing a change in the electrical current produced by the rod. 

Some isomerizations are due to flashes and others occur spontaneously. The rod cur-
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rent is proportional to the number of isomerizations, and when the current crosses 

a threshold level, a retinal ganglion cell is activated to generate an impulse that is 

transmitted down its axon to act upon other neurons in the brain, and the observer 

will decide that a flash was presented.

2.2 Point Processes

A point process on the real line may be used to model the occurrences of events. An 

excellent reference on point processes is Daley and Vere-Jones (2003); here we discuss 

some of the important properties and definitions. A point process on the line can be 

described in one of four equivalent ways:

• counting measures;

• nondecreasing integer-valued step functions;

• sequences of points;

• sequences of intervals.

We take an informal approach here. Let A be a point process with event times 

{A1, A2,...,}, and counting measure N. For a Borel subset X of the real line, N(X) 

denotes the number of times that events of A occur in the set X; that is

N(X) = «{i : A ∈ X).

When X is the half-open interval (a, b] we follow the convention of using the more 

convenient notation N(a, b], rather than N((a, b]). Likewise, the number of events in 

(0,t] is denoted N(t).

In the case where N(-co, 0] = 0 the equivalency of describing a point process by 

specifying the points A and specifying the function N(t) is made clear by noting the 

following relation:

inf (t > 0 : N(t) ≥ i} ≤ t if and only if N(t) ≥ i.



11

In the reaction time experiments we study, the stimulus process is a homogeneous 

Poisson process on the real line. The stationary Poisson process possesses the ex­

ponential increment property. That is, the times between events of a homogeneous 

Poisson process with rate λ are independent and exponentially distributed with mean 

ι∕λ.

2.2.1 Definitions

A point process has the property of crude stationarity (or simple stationarity) if the 

distribution of the number of points lying in an interval depends only on its length, 

and not its location, so that Pr{N(x) = k} = Pr{N(t,t+x] = k}, x > 0, k = 0,1,.... 

This is a weaker property than stationarity.

Definition 2.2.1. A point process is stationary when the joint distribution of

{N(A1 +),..., N(A, +t)}

does not depend on t for all r = 1,2,... and all bounded Borel subsets A1,..., A, of 

the real line.

Definition 2.2.2. A point process is simple when

Pr{N({t}) = 0 or 1 for all t} = 1.

The intensity λ of a (crudely) stationary point process is a measure of the rate, 

and is given (informally) by

Pr{N(0,h > 0} λ = hm-------- ;---------- .
h.0 h

(2.2.1)

For a simple point process with finite λ, the quantity λh gives an approximation of 

the probability that there is at least one point in an interval of length h. That is, we 

have

Pr{N(a, x +h] >0} = λ⅛ + o(h).

The conditional intensity function u(t) determines the probability structure of the 

point process uniquely (Daley and Vere-Jones (2003)), and is defined by

. . Pr(N(t,t+At) > 0|H,)
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where Ht is the history of the process until time t. It may be thought of as the 

frequency with which events are expected to occur around a particular point in time, 

conditional on the prior history of the point process, which may be multivariate. For 

the point process system (A, B), up(t) is the conditional rate of the B process given 

the history of both the A and B processes.

Approximating the conditional intensity function is one of the problems of system 

identification, and is discussed in Section 2.3. This involves the estimation of certain 

point process parameters, which are defined and discussed in Section 2.3.1.

2.3 A Point Process System Identification Prob­

lem

A point process system has input and output processes that are both point processes. 

The identification problem for a point process system is to determine features of the 

system based on observations of inputs and output. In general, complete identification 

is impossible, so the objective is to determine average quantities or parameters that 

characterize the statistical properties of the system. The identification problem may 

also be described as determining an estimate of a finite dimensional parameter that 

characterizes the system behavior (see Brillinger (1975b)). Prior to giving some details 

of the problem, we provide the definitions of some point process parameters.

2.3.1 Point Process Parameters

Let (A, B) be a stationary bivariate point process on the real line, where A is an 

input process, and B is the corresponding output process. We denote the number 

of A events, respectively B events, in the interval X by A(X), respectively B(X). 

The following parameters describe stochastic point processes, and are as defined in 

Brillinger (1975b).

The mean density, or first-order intensity, of the B process, PB satisfies

E[B(Y)] = PBYL,
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where YL denotes the length of the interval Y. In the context of RT data, ps is the 

response rate. The constant response rate implies that B is a first order stationary 

point process. Later we show that the response process is also second order stationary. 

Note that Pe = E[B(0, 1]].

A useful result is given by Korolyuk’s Theorem (see, for instance, Daley and Vere- 

Jones (2003), p.47) and is stated below::

Theorem 2.3.1. (Korolyuk’s Theorem) For a crudely stationary simple point process, 

λ = E[N(0,1]], finite or infinite.

From this theorem, it follows that λ = E[B(0,1]] — PB when B is a crudely sta­

tionary simple point process. Thus, using (2.2.1), the quantity PBh can be interpreted 

roughly as the probability of a B point occurring in an interval of length h. In the 

case of RT data PB is the response rate.

The second-order intensity or second-order cross product density, PAB(u), satisfies 

E(A(X)B(Y)] =/ PaB(u - ≈) dx dy.

An approximation to the probability that an A point occurs in an arbitrary interval 

of length h, and a B point occurs u time units later in a similar interval is given by 

PAB(u)h2. An analogous interpretation holds for PBB(u), which satisfies

E(B(Y) B(Y2) = [ [ PBB(yι - y2) dyi dy2+PBlYOYlL. 
JYi JY2

The third order intensity PAAB(u, v) satisfies

E[A(X)A(X2)B(Y)] = Iff Paab(y - 1,y - 2)dzidady. (2.3.1)
JY

The function PAAB(u, v) provides a measure of the intensity with which the occurrence 

of a type B point coincides with the occurrence of two type A points u and v seconds 

earlier. Values of (u, v) that yield large PAAB(u, v) are those for which a B point is 

frequently found within u and/or v seconds from A point(s).

The conditional mean intensity, or AB cross-intensity function (CIF), is a first- 

order conditional rate function, and can be expressed as

mAB(u) = PAB(u)/PA. 
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The quantity mAB(u) measures the average instantaneous rate of generating a B 

point at an interval near t, given that an A event occurs u time units earlier.

Cumulant densities give a measure of the dependence between processes. A cu­

mulant density of order two is the cross-covariance density of (A, B), which gives a 

measure of the dependence as a function of the lag, and is defined as follows

qaB(u) = PAB(u) - PAPB- (2.3.2)

As the dependence decreases between A and B points u units apart, qAB(u) ap­

proaches 0.

In the derivations of some of the intensity functions in later chapters we use the 

Dirac delta J(∙), which satisfies

∣ δ(x - x0)f(x)dx = f(xo).

2.3.2 System Identification

Identification of the point process system involves the construction of an expansion 

based on functions called "kernels" , which is the point process analog of the Wiener­

Volterra expansion (Brillinger (1975b), Brillinger (1976)). The kernels provide a 

complete characterization of the system, and can be expressed in terms of certain 

intensity functions. Brillinger’s identification approach is used by Simpson et al. 

(2000) to characterize the time-varying rate of response up(t), the conditional rate of 

response given the system history. We discuss system identification in the context of 

reaction time. The input process A consists of the flash times, and the times of the 

responses form the output process B.

The zeroth-order kernel do is the mean response rate PB, and when up(t) is con­

stant the simplest characterization is

up(t) = PB.

However, if the observer is actually perceiving the flashes then the responses will not 

occur with the same frequency at all time instances. That is, the responses will be 
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more likely to occur a short time after a stimulus event. Introduction of the first-order 

kernel ai(t), which relates to the effect of a single flash, in the expansion for uB(t) 

reflects this dependence:

pB(t) =Q+/ ai(t - u)d.A(u) == do +2Cai(t - Aj), 

where Aj is the time of the jth stimulus. The first order kernel is also called the 

impulse response, and is the best linear predictor of the average change of the instan­

taneous response rate at time t in a response train B, when a single stimulus occurs 

at time t - u in a stimulus train A. Brillinger (1975b) has shown that when the input 

A is a Poisson process the first order kernel is aι(t) = PABC2 — PB. The lag at which 

the peak of ai(t) (or PAB(u)) occurs is taken as a measure of the RT (Simpson et al. 

(2000) ).

When two stimuli are presented close together in time there may be an inhibitive 

or facilitative effect on the response rate, indicating a nonlinear system. A second- 

order kernel a2(u, v) takes into account the effect of pairs of stimulus events on the 

response rate. When the second-order is included in the expansion we have:

up(t) =ao+2 ai(t - Aj) +22 ax(t - Aj, t - Ak), 
k+j

where Aj and Ak are two stimulus times. When the input is a Poisson process the 

second-order kernel is a2(u, v) = PAAB(u, v) — PAB(u) — PAB(v) ÷ PB.

The expansion may also involve higher order kernels, but (nonparametric) esti­

mates of such kernels involve a large amount of data, and have a large variance (see 

Simpson et al. (2000)).

2.4 Point Process Operations

In order to form a parametric model for a point process version of an RT experi­

ment, certain point process operations are required. Some operations of interest in 

our modelling are superposition, thinning, and random translation. Details of these 

operations follow, where we assume that multiple points do not occur at a single 



16

time instance. For a point process A, the number of events up to time t is denoted 

by NA(t). Details of the operations are provided by Reiss (1993) and Stoyan et al. 

(1987).

Superposition is the sum of a finite or countable number of point processes. For 

example, the superposition of point processes Al and Ag is A =AIU A2, and we have 

NA(t) = NA(t) + NA2(t). When A1 and A2 are independent homogeneous Poisson 

processes with respective rates X1,A2, the resulting superposed process is a Poisson 

process with rate X1 + À2.

Thinning is an operation that deletes points of a point process according to some 

definite rule. For the simplest thinning, called p-thinning, each point is deleted with 

probability 1 — p independently of the times and possible deletions of other points. 

More generally, the thinning probability can depend on the time of the point, so that 

a point at time t is deleted with probability 1 — p(t), where p(-) is a deterministic 

function, and deletion does not depend on the times or deletions of other points; this 

operation is referred to as p(x)-thinning. Both p-thinning and p(x)-thinning belong 

to the class of independent thinnings. Alternatively, thinning could depend on the 

configuration of the points in the point process - such thinnings belong to the class 

of dependent thinnings. A dependent thinning is employed in the parametric model 

for simple RT of Braun et al. (2003), described in Section 2.5.

Random translation is a special case of the clustering operation, which replaces 

every point x of a point process A by a cluster Ax of points. The cluster point process 

is the union of all of the clusters. In the case of random translation the size of each 

cluster is 1, and the ith cluster A, is of the form + V., where the V; are random 

variables with density ∕i(∙). In the parametric model of Braun et al. (2003) the V; 

are assumed to be independently and identically distributed with mean u, variance 

o2, and common density f(-).

Thinning can also be viewed as a special case of the clustering operation in which 

each cluster A is either the singleton set {x} or the empty set.
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2.5 A Parametric Simple RT Model

We now review a parametric model for simple RT that was developed by Braun 

et al. (2003). In their parametric model the relationship between the flash process 

and response process in a simple RT experiment is modelled by the point process 

operations superposition, thinning and random translation. These operations are 

defined in Section 2.4.

Flashes are presented according to a homogeneous Poisson process with rate PA 

per second. Therefore, the lengths of intervals between flashes are independent and 

exponentially distributed with mean 1∕pa- The sequence A = {A1, A2, ...} denotes 

the set of flash times on the real line, while the number of flashes in a time interval 

X is denoted A(X). Similarly, B = {B1, B2,...} represents the set of response times, 

and B(X) is the number of responses in time interval X, All flash and response times 

are reported in seconds. The flash and response processes can be thought to have 

been observed by the experimenter on an interval [O, T]. Note that A is taken to be a 

stationary Poisson process, and B is assumed to be a simple stationary point process.

Superposition is used to model a noisy flash process; it takes into account the 

possibility of mistakenly perceiving a flash, so that there is a response in the absence 

of a flash. The noise process is modelled as an independent Poisson process with rate 

ps, and superposed onto the flash process. The superposed process A U S is denoted 

A'.

Thinning captures inhibition effects. The probability of the deletion of A;, in­

dependently of all other flashes and perceived flashes, will be denoted by πj. Two 

possibilities for Tj are considered: either T.1

=D(A- A-)

or T.2
* = D(A+1-A) 

where D(.) is a nonincreasing function. In either case, this thinned process is denoted 

by A".
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They consider the case where the deletion probability D(x) is the following simple 

piecewise constant function:

1, x<d
. (2.5.1) 

p, x2d

Here, d2 0, and p ∈ [0,1]. If d = 0, deletions occur with probability p, completely 

independently of the flash process. If d > 0, some deletions occur independently of 

the process, but flashes or apparent flashes which are within d time units of their 

predecessor (alternatively, successor) are deleted with probability 1. In this case, 

there is nonlinear inhibition due to consecutive flashes occurring too close together 

in time.

Random translation is used to describe the formation of the response process 

from the flash process. That is, assuming the reaction time is distributed with den­

sity fv(v), each response is of the form Bi = Af- + Vi, where {V} is a sequence 

of independent and identically distributed random variables with common density 

fv(v), mean u, and variance o2. Some possibilities are the normal and lognormal. 

The latter has theoretical justification (Ulrich and Miller (1993)). However, it has 

been shown in Braun et al. (2003) that at parameter values estimated from the given 

data, the lognormal and normal densities are not statistically distinguishable. Hence, 

following Asimit and Braun (2005), we shall assume normality. In later chapters, we 

also assume a normal delay distribution in the parametric models that we develop for 

go-no go and choice RT experiments.

2.6 Nonparametric Intensity Estimation

Braun et al. (2003) use nonparametric estimation in conjunction with their para­

metric model for simple RT data to make inferences on the eye-brain-hand system. 

Similarities between nonparametric and parametric intensity estimates can indicate 

that common features in the nonparametric estimates are predicted by the parametric 

model. Furthermore, features distinct to the nonparametric estimates suggest char­

acteristics that the model cannot predict. Thus, a parametric model can provide a 
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foundation for understanding the behavior of nonparametric intensity estimates.

Nonparametric intensity estimates are provided by Brillinger (1975a). In the 

case that a cumulant mixing condition is satisfied, Brillinger (1975a) shows that 

his estimates are asymptotically normal. Stationary point processes satisfying these 

mixing conditions are commonly referred to as “Brillinger mixing” or “B-mixing” 

(e.g. Heinrich (1988)).

An r vector-valued stationary point process is said to be Brillinger mixing if 

all cumulant densities of order ι/ ≥ 2 satisfy the condition that the integral of the 

absolute value of the cumulant density is finite (see Brillinger, 1975, Heinrich, 1988). 

Heinrich (1988) provides a sufficient condition for a stationary cluster point process 

to be Brillinger-mixing. We apply his result to prove that the RT point process data 

is Brillinger-mixing when our model assumptions are satisfied.

We now review Brillinger’s estimates of intensities of orders one through three, 

as well as their asymptotic distributions. An estimate of the first-order response 

intensity is given by

PB = B([0, T])/T,

where T is the time of the last response (T = max(Bk)).

Let K(x) be a symmetric second order smoothing kernel with compact support, 

and h be an appropriately chosen bandwidth. Then the second-order nonparametric 

intensity estimates are given by

Pamou)= AEE*(*=(8=4)), 

and

PBB(u) =TZZK—A— ■

We have found that the biweight kernel K(x) = (15∕16)(1 — x2)21.221) works well 

(see for example, Wand and Jones (1995)).

Under Brillinger’s mixing conditions the intensity function estimates are asymp­

totically normal as h → O and Th → ∞, with mean

E[Pab(u)l = / K(u1)pab(u - u1h) du, (2.6.1)
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and asymptotic variance

(Th)-"PAB(u). (2.6.2)

The bias is of order O(h2).

A nonparametric estimate of PAAB(u, v) is

Paab(u, v)=T-EE2 Kh((u, v) - (Bk - A, Bk - A,)), (2.6.3) 
i j+i k 

where Kh(x, y) = h 2K(x/h, y/h), is a bivariate kernel function with bandwidth h. 

We use the product form of the kernel

K(u, v) = K(u)K(v).

When the property of Brillinger-mixing holds this estimate is asymptotically nor­

mal with mean

E PaaB(u,v)l= / J K(uj)K(v )Paab(u - ujh,v-vh)dudu 

and approximate variance PAAB(U, v)/(Th2).

2.6.1 Bandwidth Selection

The choice of bandwidth is critical in the estimation of intensities and densities due 

to the variance-bias trade-off (Wand and Jones (1995)). When the bandwidth is 

too small the result is an undersmoothed estimate, which has little bias, but high 

variability since few points are used in the averaging process at each point. Such 

an estimate takes into account only the particular data set, and not the variation 

across samples. The other extreme is too large of a bandwidth, which yields an over­

smoothed estimate that removes the essential structure of the underlying intensity. 

An oversmoothed estimate has small variance and large bias.

Optimal bandwidths for the intensities are found by a popular approach of mini­

mizing the asymptotic mean integrated squared error (AMISE) with respect to h, the 

bandwidth (see Wand and Jones (1995)). The AMISE is a large sample approxima­

tion to the mean integrated squared error (MISE), which is the integral of the mean 
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squared error (MSE). The MSE of an estimate can be shown to be the sum of the 

estimate’s variance and square of the bias.

We now derive the general form of the AMISE optimal bandwidth for a second- 

order intensity. Using the expression for the asymptotic mean (2.6.1) with a second 

order Taylor expansion of PAB(u — ujh) about u, together with

J K(z)dx =1, / xK(x)dx =0, / x2K(x)dx < ∞,

and the notation of Wand and Jones (1995):

uz(K)=y a2K(x) dzt, R(K)=( / K2(x) dz)2,

we get
h2h2 82

EDAB(u)] = PAB(u) + 2 92PAB(u)p2(K) + o(h2). (2.6.4)

We obtain an expression for MSE(ÔAB(u)) by using (2.6.4) to obtain the bias, 

and Brillinger’s approximation of the variance (2.6.2), yielding:

MSEGAB(u))
= 4(2Pab(u)) H3(K)+(Th)-R(K) / PAB(U) du + o(h4). (2.6.5)

Integrating over u in (2.6.5) yields MISE(PAB) from which we get the following 

expression for the AMISE:

AMISE(PAB) = Mua(K) / (3Pab(u)) du+(Th)"R(K) PAB(u) du.

Minimizing AMISE(AB) with respect to h yields the optimal bandwidth hAMISE 

for PAB, given as follows.

R(K) J PAB(u) du 1/5
NAMISE(PAB) =

LTu(K) J(SLPAB(u))2 du_ ■
The integrals involving the intensity can be numerically approximated using the 

Trapezoid quadrature formula. In the case of the biweight kernel we have u2(K) = 1/7 

and R(K) = 5/7, so that
. 35 ( Dap(u) du 11/5 . hAMISE(PAB) = 205 ■ (2-6.6) 
LTJC2PAB(u))2 duj

The above expression for the optimal bandwidth holds for each estimate, replacing 

PAB by the desired second-order intensity.
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2.7 Modelling with Latent Variables

A maximum likelihood approach to the identification of nonlinear systems is de­

scribed in Brillinger (1988b) and Brillinger (1988a), where a threshold-type model is 

introduced. His work is concerned with modelling the firing of a neuron either sponta­

neously or under the influence of other neurons. The firing of a neuron is described as 

dependent on some internal potential formed from a combination of internal and ex­

ternal mechanisms. When the internal potential exceeds some threshold, the neuron 

fires. The coefficients of the internal potential relate to the kernels in the expansion 

of up(t). Details of the model are provided in Section 3.3, where we modify the model 

and apply it to simulated and real simple RT data.

The threshold models that we consider can be viewed as latent variable models.

A complete review of latent variable models is given by Skrondal and Rabe-Hesketh 

(2004). In our models we discretize the times of stimuli and responses over a grid of 

time intervals. The observed responses are the discretized response random variables 

Yt, and the noisy internal potentials Ut + Et are the latent responses. The Y are 

ordinal responses that depend on the value of the unobservable Ut ÷ Et, which we 

denote by Y*. Models for Ut are discussed for different RT experiments in Chapters 

3, 4, and 6.

In these chapters we set up the observed response Yt to be an indicator random 

variable for a response occurring in a time interval with right endpoint t. Thus, Yt 

takes on values in {0,1}. We model the relationship between observed and latent 

responses by
J 1, Y*> 0

It —,I 0, otherwise
(2.7.1)

where Y* is a noisy internal state variable, and θ is a threshold. The models that we 

propose for the internal state variable involve the times of the flashes.

In the case that a normal error distribution, respectively logistic error distribution, 

is assumed for the error term Et, our model corresponds to a dichotomous probit 

model, respectively dichotomous logit model. The logistic cumulative distribution 



function is

F(x) ≡ Pr(εi <a) = .

In order to clarify the connection between the latent response and generalized 

linear model formulations we consider the probability Pt of a response at t conditional 

on the history of the process. We denote the history of the process up to time t by 

Ht, and we have

p. = Pr(Y, = 1|H) = Pr(yi > @|H.) = Pr(U, +e, > 0) = Pr(e, < U,-B),

where the last equality holds only in the case that the distribution of Et is symmetric 

about zero. Since Yt is Bernoulli distributed with parameter Pt, the likelihood function 

of the data is given by

IIPX(1 -p)!-Y,

and the latent response model coincides with a generalized linear model of the bino­

mial family with a link function coinciding with the canonical link for the distribution 

family. For example, the link function for the glm formulation of the dichotomous 

logit model is the logit link. The link function provides the link between the random 

and deterministic components of the response variable Y. It is a function of the mean 

of the response variable and is linearly related to the explanatory variables. Estimates 

of θ and the parameters that Ut is a function of can then be found using maximum 

likelihood.

In Chapter 6 we also consider the case in which the response variable takes on three 

values, and as before, the latent response has the form Y* = Ut + 8t. The observed 

response Yt takes on one of three response categories {-1,0,1}, where Yt = -1, 

respectively yt = 1, indicates a black response, respectively white response, occurring 

in a time interval with right endpoint t. We model the relationship between the 

observed and latent responses by
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This set-up corresponds to an ordinal logit regression model, in the case that the 

error distribution is logistic.
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Chapter 3

Modelling of Simple RT Data

Simple RT provides an indication of the complexity of the operations of the brain 

which are involved in performing a visual-motor task. In a simple RT experiment, 

flashes are presented to a subject, and immediately upon perception of a flash the 

observer hits a button. The times of the flashes and responses are both recorded. The 

observer might press the button in the absence of a flash because of internal noise 

within the eye-brain-hand system that causes the observer to mistakenly perceive a 

stimulus.

A parametric model for simple RT was presented by Braun et al. (2003), and we 

continue to study that model, as well as to introduce a threshold model for simple RT. 

Both models are of interest, but for different reasons. A parametric model provides 

a basis for understanding the behavior of nonparametric intensity estimates, while 

the parameters in a threshold model have direct biological interpretations regarding 

inferences on the eye-brain-hand system.

Two types of simple RT data are studied in this chapter. In the first type there 

is a single flash type, and the observer’s task is to hit a button immediately upon 

perception of a flash. The simple RT data consists of the times of the flashes and the 

responses. Such data was used by Braun et al. (2003) and Asimit and Braun (2005). 

An alternative way to run a simple RT experiment is to present two flash types (black 

and white), and the subject hits a button immediately after perception of either flash 

type; the same response occurs regardless of the flash type. For this case, in addition 
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to the times of the flashes and the responses, the simple RT data also consists of the 

flash type at each time.

Braun et al. (2003) use their parametric model to develop hypothesis tests in­

volving second-order intensities. Using the same model, Asimit and Braun (2005) 

study the third order intensity PAAB(u, v), and propose hypothesis testing methodol­

ogy based on features of PAAB(u, v) observed in contour plots. The parametric model 

and testing methodology can also be applied to the simple RT data with two flash 

types. If the subject has a tendency to respond to one flash type more than the 

other, then we say that the subject has a flash-type bias. Due to the fact that the 

same response is made to both flash types, we make the simplifying assumption that 

there is no flash-type bias. This assumption allows us to consider only the times of 

the flashes, which in turn, enables us to apply the parametric model to both types of 

simple RT data that we consider in this chapter.

In Section 2.5 we reviewed the parametric model of Braun et al. (2003), and 

in Section 3.0.1 we review tests from Braun et al. (2003) and Asimit and Braun 

(2005). In Section 3.1, we give the details of the covariance approximation of a third 

order intensity at two points, which is used in the hypothesis testing of Asimit and 

Braun (2005). The parameter estimation of Braun et al. (2003) is reviewed and 

modified slightly in Section 3.2, where we compare it with nonlinear regression as 

an alternative method of estimation when it is of interest to obtain a single set of 

parameter estimates for data sets obtained using different flash rates. A threshold 

model for simple RT is introduced in Section 3.3, which includes diagnostics and 

applications to various simulated and real data sets. A random effects threshold 

model is proposed in Section 3.4, as an alternative to fitting a threshold model to 

pooled data. Finally, a discussion of the methods and models considered in this 

chapter follows in Section 3.5.

3.0.1 Testing of Thinning Assumptions

We denote the number of A events, respectively B events, in the interval X by A(X), 

respectively B(X). The results of Brillinger (1975a), provided in Section 2.6, are 
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used to obtain nonparametric intensity estimates. Such estimates are asymptotically 

normal under mixing assumptions given by Brillinger (1975a), which we will show are 

satisfied for the simple RT model, in Section 3.1.

Plots of the second-order intensities PBB(u) and PAB(u) are studied by Braun 

et al. (2003), and based on features of these plots they develop their hypothesis tests. 

The function PBB(u) is the same under thinning assumptions T.1 and T.2, and has a 

trough centered at 0, which widens and deepens as d increases; as d approaches zero 

the curve flattens out, and is constant when d — 0 (no nonlinear inhibition). Based on 

these observations, they use pointwise bootstrapped confidence bands for E[BB(u)] 

to test for nonlinear inhibition. In the absence of nonlinear inhibition, PBB(u) and 

E[PBB,h(u)] should be constant; thus, if a horizontal line cannot be contained within 

the confidence bands, then there is evidence of nonlinear inhibition.

The effect of the d parameter on PAB(u) is to depress the region to the right of 

the peak when thinning assumption T.1 is operative, and to depress the region to 

the left of the peak when T.2 is operative. Thus, Braun et al. (2003) use confidence 

bands for E[PAB,h(u)] to test the appropriateness of each thinning assumption. If 

the null hypothesis is T.1, then one obtains confidence bands for E[AB,h(u)] and 

overlays a graph of E[PAB,h(u)] computed under the T.1 assumption and evaluated 

at the parameter estimates. If the overlaid curve falls outside the confidence bands, 

there is evidence against the assumption T.1 as postulated by the model. In a similar 

manner, the null hypothesis of T.2 can be tested.

The tests of Braun et al. (2003) have a high degree of dependency on the model. 

If the hypothesis T.1 is rejected, the conclusion is not that there is no thinning of 

that type. The only conclusion that can be made is that there is no thinning of that 

type, under the assumption that the model is otherwise correct. Another deficiency 

of that test is that it has a very low power for d < .25 (when flashes are presented at 

rate (PA = 1)). Thus, Asimit and Braun (2005) sought more powerful tests which do 

not have the same degree of dependence on the model. These tests are based on the 

third order intensity PAAB(u, v), and they consider two tests of hypotheses: Tl versus 

T.2 and T.2 versus T.1. Asimit and Braun (2005) derive the following expressions 
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for PAAB(u, "):

PAAB(u, υ) = (1 - p)phe-dPa PAq- + 9+(v, u, d) + g+(u, v, d)] (3.0.1) 

under thinning assumption T.1, and

PaAB(u, v) = (1 - p)phe-dPA [PAq+ + g-(v, u, d) + g-(u, v, d)] (3.0.2) 

under assumption T.2, where

q- = P(V € (u-d,u),V € (v - d,v)), 

q+ = P(V d (u,u+d),V 4 (v,v+d)), 

g-(v,u,d) = I(v € (u-d,u))f(u), 

and

9+(V,u, d) = I(v € (u,u+d))f(u).

Motivation for their test statistic is based on characteristics observed in contour 

plots of PAAB(u,v) under each thinning assumption. Under T.1, a trough appears 

near the upper right side of the peak (near (u, u)). An identical trough appears 

under T.2, but near the lower left side of the peak.

The test statistic is formed by considering the trough under the thinning assump­

tion of the alternative hypothesis, and choosing two points. One point (UL,VL) falls 

within the trough and near the peak, while (uv, Vu) is directly above (uL,VL) (i.e. 

UL = uy) in the direction away from the peak. Under the null hypothesis, we have 

PAAB(UU, Vu) & PAAB(UL, VL), and PAAB(UU, υu) > PAAB(uL,"L) under the alterna­

tive hypothesis, which leads to a one-sided test. The test points are chosen so that 

the power function is maximized for one data set, and for subsequent data sets the 

test points are shifted by the difference in the RT mean estimates û, in order to avoid 

bias. The test statistic of interest is:

DAAB(uU,"u) -AAB(uL,VE) (3 0 3)
So ' "

where PAAB(u, v) is a nonparametric intensity estimate of PAAB(u, v), and so is a 

consistent estimator of the standard error of PAAB(uv, vU) — PAAB(UL, VL) when the 
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null hypothesis is true. The variance estimate s3 is a linear combination of two 

variances and a covariance. The variances and covariance are approximated, but 

with modifications to reduce variability, bias, and computation time. Some details of 

the modifications follow.

Based on simulations, Prokop (2004) found that Brillinger’s variance approxima­

tion, as given in Section 2.6, underestimates the variance, and at certain test points 

there is a high variability in the approximations. This was overcome by modifying 

Brillinger’s estimator so that PAAB(u,v) is replaced by E[PAAB(u, v)]. Brillinger’s 

approximation for the expectation is provided in Section 2.6. Asimit and Braun 

(2005) estimate expectation approximations using the Trapezoid Quadrature Rule. 

An approximation of the covariance will be derived in Section 3.1. Comparisons of 

V(PAAB(UL, VL) — PAAB(uU,Vu)) based on simulations and the expression using the 

covariance approximation indicated that the approximation underestimates the vari­

ance of the difference by an approximate factor of 1.3 (see Prokop (2004)). In order 

to correct the variance estimation of PAAB(UL,UL) — PAAB(uU,Vu) (evaluated under 

the null thinning assumption) Asimit and Braun (2005) use 1.3 as a correction factor 

for the variance.

For moderate values of the thinning parameter d, the test is found to have mod­

erately high power, but the results are inconclusive. For each of the twelve data sets, 

Asimit and Braun (2005) fail to reject T.2 in favor of T.1. In the test of T.1 vs. T.2, 

two of the twelve p-values are moderately small, but such results are consistent with 

T.1 for each data set. Due to the inconclusiveness of their results, neither T.1 nor 

T.2 can be ruled out for any of the data sets, and we cannot rule out the possibility 

that a thinning mechanism different from T.1 and T.2 may be in effect.
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3.1 Approximation of Cov(PAAB(1, V1), DAAB(U2, 02))

for a Simple RT Parametric Model

The test statistic (3.0.1) of Asimit and Braun (2005) is evaluated at points chosen 

such that (UL, VL) falls within the trough and near the peak, while (uu, vu) is directly 

above (UL, VL) (i.e. UL = up) in the direction away from the peak. In this section we 

determine an approximation for the covariance between PAAB(W1, Vi) and PAAB(U2, V2), 

when either u1 = u2 or V1 = V2, and the points satisfy

max{uι — V1,U1 — V2} ≥ 2h or max{vi — W1, V1 — u2} ≥ 2h, (3.1.1) 

respectively. This approximation is valid under mixing conditions given by Brillinger 

(1975a), which we show are satisfied.

3.1.1 Simple RT as a Brillinger-mixing Process

Heinrich (1988) provides a sufficient condition for a stationary cluster point process to 

be Brillinger-mixing. A cluster point process consists of a point process of cluster cen­

ters (primary process), and a point process of cluster members (secondary process). 

Each cluster center generates a point process of cluster members, and the superpo­

sition of the cluster members forms the cluster point process. Let Ns(X) denote the 

number of secondary process points in the set X. Heinrich’s sufficient condition is 

that the point process of cluster centers is Brillinger-mixing, and E[N*(X)] < ∞, 

for all bounded subsets X, and Vk ≥ 1. In the case of a Poisson cluster process, 

the cluster centers are a Poisson process, which is Brillinger-mixing. Thus, it only 

remains to show that E[N(X)] < ∞, for all bounded subsets X, and Vk ≥ 1.

For our simple RT model with no superposition (ps = 0), the response process B 

can be viewed as a Poisson cluster process with the flash process A as the primary 

process (see Section 2.4). We denote A; to be the ith flash, which is the ith cluster 

center. Each cluster center Ai generates either {0} or {Ai + Vi}, where the V are 

identically distributed with density fv(-). Therefore, E[NK(X)] ≤ 1. Thus, the 
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response process is Brillinger-mixing. In the case that ps > 0 the same argument 

holds with the A process replaced by the Poisson process A‘ with rate PA + ps.

In order to show that the bivariate point process (A, B) is Brillinger-mixing, we 

consider the point process AUB, which we denote by C. The process C is a Poisson 

cluster process with cluster centers at A;. When there is no thinning in our model 

(i.e. d — 0 and p = 0), each cluster center Aj generates two points: (A; + 0, Ai + V}, 

where the Vi are as before. In the case that there is thinning, there is also the 

possibility that Ai generates only one point: {A; + 0}. Therefore, regardless of the 

presence or absence of thinning, Ns(X) takes on values in {1,2}, and it follows that 

E[NF(X)] ≤ 2λ < oo. Thus, AIJ B is Brillinger-mixing, from which we conclude that 

the bivariate point process (A, B) is also Brillinger-mixing.

3.1.2 Derivation of a Cov(AAB(U1, V1), ÔAAB(U2, V2)) Approxi- 

mat ion

Before we proceed with the derivation of the covariance approximation, we state our 

result. The covariance approximation under constraint (3.1.1) is given by

Cov(AAB(ui, V1),PAAB(M2,V2))
= T2 J [ k^x^ y^ u^ u^ v^ v^ h^ dx dy

(3.1.2)

+* /(ka(x,u,z, uj,u2, V),v2,h) + ka(w,2,2,01,V2,u),u2,h)) dx dy dz, 

where

k2(x, y, uι, u2, V1, D21 h)
=K()K()K(a+"2."1) K(y+"2."1 PAAB(u,—2h,V,-yh), (3.1.3) 

and

k3(x,y, z, u1,u2, υι,υ2,h)
U2 — U1 ∖

x----- 7— K(z)PAAAB(u1 -xh, v1 -yh, v2-zh). (3.1.4)

Our approximation can be simplified further by using a Taylor expansion of 

PAAB(u,v), but this was found to lead to numerical problems such as asymmetry: 
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PAAB(u, v) 7 PAAB(v, u) • In the same manner as the derivation of PAAB(u, v) (see 

Asimit and Braun (2005)), expressions for PAAAB(t, u, v) can be found. For our para­

metric model,

PAAAB(t, u, v) = (1 - p)pae-dPA PAT- + s+(t, u, v, d) + s+(u, v, t, d) + s+(t, v, u, d)]

under thinning assumption T.1, and

PAAAB(t, u, v) = (1- p)pe-dPa PAT+ + s-(t, u, v, d) + s_(u, v, t, d) + s-(t, v, u, d).

under assumption T.2, where

r- = P(V 4(t - d,t),V € (u - d,u),V € (v-d,v)), 

r+ = P(V € (t,t+d),V € (u,u+d),V € (v,v+ d)), 

s_(t, u, v, d) = I(t € (v-d, v), u € (v—d, v))f(v),

and

s+(t, u, v, d) = I(t € (v,v+ d),u € (v,v+ d))f(v).

As in the variance approximation, PAAB(u, v) is replaced by E[DAAB(u, v)] in the in­

tegral involving k2(x,y,u1, U2,V1,V2, h) in the covariance approximation (3.1.2). We 

numerically approximate this integral by implementing the Trapezoid Quadrature 

formula. Similarly, PAAAB(t,u, v) can be replaced by E[PAAAB(t, u, v)] in integrals 

involving k3(x,y,z, ui, u2,V1, V2,h). However, it is too time-consuming to obtain 

E[PAAAB(t, u, v)]. Therefore, in order to increase the computation speed, we use Monte 

Carlo integration to approximate the integrals involving k3(x, y, z, u1,U2, V1, V2, h).

We now derive an approximation of the covariance. The covariance is given by

Cov(AAB(U1, V1),PAAB(W2, V2))

= E[PAAB(W1, V1)PAAB(U2, V2)] - EPAAB(U1, V1)]E[PAAB(U2, V2)]

K4(W1, V1, W2, V2, X1,Y1, Z1, I2, Y2, 22)

x(E[A(dx1)A(dx2)A(dy1)A(dy2)B(dz1)B(d22)]

-E[A(dx1 ) A(dy1 )B(dz1 )]E[A(dx2)A{dy2}B(dz^ ),
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where

K4(u1,V1, U2, V2, X1,Y1, Z1, X2, Y2, Z2) 

(u-zi+y1(0-21+x1(u2-22+y2)(02-22+32 I =K—h—A—h—∏—h—) K—h—) (3.1.5)

Under constraint (3.1.1), many of the cross-product terms of

EDAAB(W1, V1)DAAB(u2, V2)] are zero due to the biweight kernel having support in 

[-1, 1]. For example, when X1 = Y1, x2 = Y2, and 21 = Z2, the product of the kernels 

(3.1.5) is 0. Since either u1 = u2 or vi = V2, and PAAB(u,v) is symmetric, without 

loss of generality we assume that u1 = u2. Thus, (3.1.5) becomes

K ( u=21+91)K(=21+91)K( M= Z1+92) K ( v2=21+92) 
∖ h ) h ) h h )' 

and in the case that > 2h, it follows that uy=21+1 > 11=21+1 + 2. Thus, 

K( "1A*1 ) and K( 21A*vi ) cannot be simultaneously nonzero. A similar argu­

ment can be used in the case that ui-V2 2 2h. Because of asymptotic independence 

the differences between the remaining terms with terms from E[DAAB(W1, V1)]E[PAAB(U2, V2). 

are negligible.

Since the bivariate point process (A, B) is Brillinger mixing, we conclude that 

all intensities of (A,B) are bounded. The basic approximation involves terms of 

order (Th2)-1 (the PAAB term), and other terms can be included to improve the 

approximation; since the PAAAB terms (have order (Th)-1) are simple to work with, 

we include them. The resulting approximation is

1 AT AT ATT2hd Uo Jo Jo K4(U1, V1,"2,12, X1,Y1,Z1,31,91,Z1)E[A(dyi)A(dxi)B(dZ1)] + 
Jo Jo Jo Jo KA(ul, vi, u2, v2, X1, y1,21,2, yi,21)E[A(dyi) A(dxi).A(d.2) B(dz1)] + 

J Jo Jo J KA(ui, V1, u2, V2, xi, yι, Z1,d1,Y2, z1)E[A(dyi).A(dy2)A(dxi)B(dz1)]}.

By making the change of variables ti = 21 - Y1, t2 = 21 - X1,t3 =21 - 32, t4 = Z1 in 

the first integral we obtain 

1 fτ fτ fτ „(u-t\(-t2)(u2-t)(02-t2) T2N4 Jo h)V)V)Vh)
x E[A(d(t3 - ti)) A(d(t3 - t2)) B(dt3)],
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which, by the definition of PAAB(u, v), simplifies to

1 f AT „(u1-ti\(i-t2\(u-t1\.( v - 2) /. ,J 
Th4 Lr J^y^ry^ry^ry-^)^^^^ 

and another change of variables, x = ut,y = "1Et2, yields

Vi±T / . ∖
∣ K(x)K(y)K(a+"2“1)x(y+"2”1PAAB(u,—xh, v-yh)dady.
JVi-T \ h

The second integral in the covariance approximation is simplified in a similar 

manner, with the change of variables ti=21 — Y1,t2 =21 — K1,t3 =21 — X2,t4 = 21 

followed by the change of variables x =(ui - ti)/h, y = (vi- 2)/h, z = (v2 - 3)/h. 

Therefore, under constraint (3.1.1) an approximation of the covariance between two 

third order intensity estimates is given by

Cov(PaAB(u),Vi),DAAB(u2, V2) - 72 j j ka(z,w,u),u2,01,v2,h) dx dy 

+*L // /(ka(,v,z,u),u2,v1,V2, h) + ka(w,2,2,01,V2,u1,u2,h)) dx dy dz,

where k2(-) and k3(-) are given respectively by (3.1.3) and (3.1.4).

3.2 Parameter Estimation for a Simple RT Para­

metric Model

In this section we discuss and compare two methods of parameter estimation for 

simple RT data, using real and simulated data. First, we consider a modification of 

the method of Braun et al. (2003); we refer to this modified method as the original 

method. We also introduce an estimation method that is based on nonlinear regres­

sion. This proposed method can be used when data is available from experiments run 

at different flash rates, and it is believed that the parameters have the same values 

across the data sets. We implement a simulation study to compare the performance 

of the two estimation methods in terms of their bias, variance and MSE.

We apply our methods to simple RT data in which black and white flashes are 

presented, and the observer presses a button immediately upon perception of either
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flash type. At each of nine different flash rates, a simple RT experiment was run 

eight times, where each run consisted of 100 flashes. For the parameter estimation 

we pool the runs of the same rate into one data set, and consider estimation for the 

nine pooled data sets. Pooling is done by concatenating consecutive runs together so 

that the last event of run j is followed by the first event of run j + 1, with the times 

adjusted appropriately.

3.2.1 Original Estimation Method

In Braun et al. (2003) an iterative algorithm is used to obtain û, ⅛, and ps for simple 

RT data. In their algorithm, estimates of μ and σ are obtained after each iteration. 

However, when the delay distribution is symmetric, the location of the peak of the 

intensity PAB(u) coincides with the mean of the reaction times. Thus, in such cases, 

the location of the peak for the nonparametric estimate of PAB(u) should be near the 

value of the mean reaction time. Therefore, since we are assuming a N(u,o) delay 

distribution, we fix the peak location as an initial value for the estimation of μ. The 

estimates of σ and the noise rate ps are as in their algorithm. The modified algorithm 

is given as Algorithm 3.2.1.

Algorithm 3.2.1. For RT data (A, B) the parameters u, o, and ps can be estimated 

as follows:

1. Find the location of the peak in a nonparametric intensity estimate of PAB(u) 

and set Lo as the peak location.

2. Match each response time Bj with a flash time preceding it. À”, such that Bj-ÂJ 

is closest to uo, to obtain estimates of the reaction times: Vj — Bj — Â".

A

3. Estimate μ and σ by the mean and standard deviation of the V;.

4. Let T = Bnbj where NB is the number of responses. Estimate the noise rate ps 

by:
A 

PS =

where ∣∙∣ denotes set cardinality.

{AJ: A = AXH 
T ’
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Braun et al. (2003) showed that for the simple RT parametric model the response 

rate can be expressed as

pB = (l-p)bHPs)e'd(PA+ps). (3.2.1)

They find estimates of d and p by manipulating (3.2.1) to obtain an expression for p 

that involves d:

$=1-602+6,240-*7 (3.2.2)

where Ps is replaced by the estimate obtained from Algorithm 3.2.1, and PB = 

NB(T)/T is the nonparametric estimate of the response rate (see Section 2.6). It 

then follows that the second order intensity PBB(u) = ⅛P(∣½ -Vi-u > d) can be 

expressed as a univariate function of d by replacing p with (3.2.2).

It was shown in Braun et al. (2003) that PBB(u) is useful in obtaining an estimate 

of d. This intensity has a trough at u = O for d > 0 and as d approaches 0 the 

trough flattens out, while as d increases the trough deepens. Furthermore, for long- 

run experiments (large T values) the bias of the nonparametric intensity estimate is 

near zero. Thus, the estimation of d is based on minimizing the difference between the 

parametric (based on model expression with parameter estimates) and corresponding 

nonparametric estimate. By taking advantage of the fact that this intensity has a 

trough at lag u = 0 an estimate of d is obtained by finding d that minimizes the 

distance of the two intensity estimates evaluated at lag 0.

3.2.2 Nonlinear Regression Estimation

The dependent variable y in a nonlinear regression method is modeled by a nonlinear 

function of an independent variable x with parameters θ (see Montgomery et al. 

(2001)). Suppose the simple RT model parameters d,p, and ps are the same for 

k > 3 data sets with different flash rates PA- When this is the case, it is desirable 

to obtain a single set of parameter estimates {⅛ p, ps} for the k data sets. Using the 

nonparametric response rate estimates PB for each data set along with the set flash 

rates PA, we may view (3.2.1) as a nonlinear regression model where d, p, and ps are
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unknown model parameters. Doing so takes into account the different response rates 

for the various flash rates and allows us to obtain simultaneous estimates for d, p, 

and ps∙

If it is the case that the nonlinear regression parameter estimates are not within 

the required ranges, ps > 0, 0 < p < 1, and d > 0, rather than getting direct 

parameter estimates, we work with (3.2.1) in terms of q, r, and s, where q = log(ps), 

r = log(2p), and s = log(d). That is, the nonlinear regression model becomes

1
PB = 14e(PA + e?) exp(-e'(PA + e’)),

and we estimate q,r, and s. We obtain estimates of ps,p, and d by the inverse 

relations, so that Ps = e4,p = 1Lef, and d = es.

Under the assumption of equal parameters across data sets, in addition to obtain­

ing a single set of parameter estimates, an advantage of using nonlinear regression 

to obtain parameter estimates is that it is simple to perform hypothesis tests on the 

parameters.

3.2.3 Performance Study of the Two Estimation Methods

In order to study the performance of the two estimation methods, in terms of bias, 

variance and mean squared error (MSE), we conduct a simulation study. Each sim­

ulation run consists of 17 simulations, where each simulation is comprised of NA 

flashes with a different rate from {.4,.5,..., 1.9,2}, and with fixed parameters d = .2, 

p = .15, Ps = 0,u = .4, and σ = .1. One set of nonlinear regression estimates is 

obtained for each simulation run by the nature of the estimation method. Our non­

linear regression model is fit using the nls function in the statistical package R (R 

Development Core Team (2006)). For the original estimation method, a set of para­

meters is obtained for each simulation within a run. Therefore, since we are assuming 

that the parameters to be estimated are the same (which is a correct assumption in 

this case) the estimates within each run are averaged in order to be comparable with 

the single set of estimates from nonlinear regression.

As expected, when the number of flashes increases from 800 to 1200 there is a
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Table 3.1: Performance comparison of the two estimation methods based on 1000 
simulation runs of RT data sets with NA flashes and parameters d =.2, p = .15, 
Ps =0,u = .4, and σ = .1, and flash rates of {.4,.5,...,1.9,2}.

Na
Bias 
800 1200

Variance
800 1200

MSE
800 1200

original d -.009533 -.008887 .000027 .000015 .000112 .000094
P .017500 .016936 .000075 .000049 .000382 .000336

Ps .021120 .020451 .000002 .000001 .000448 .000420

regression d -.015611 -.010953 .001377 .000924 .001620 .001044
P .026030 .018230 .003316 .002119 .003994 .002451

Ps .022708 .016428 .001119 .000668 .001634 .000938

reduction in the bias, variance, and MSE of each estimator, regardless of the estima­

tion method. Overall, the estimators resulting from the original method appear to 

be slightly better than those obtained from nonlinear regression; estimators from the 

original method appear to possess smaller bias, variance, and MSE than the corre­

sponding estimates resulting from nonlinear regression. However, the differences in 

these performance measures are quite small; differences in bias, variance and MSE 

between the two methods are less than 10^2.

Due to the similarities in bias, variance, and MSE for the two estimation methods, 

when the parameter values are assumed to be the same across data sets of different 

rates, we recommend nonlinear regression estimation because of its advantages. With 

nonlinear regression, as well as easily obtaining a single set of parameter estimates, 

hypothesis testing for the parameters is readily available. Thus, we conclude that an 

important experimental design consideration is to include at least four different flash 

rates (since estimating three parameters) when running simple RT experiments so 

that nonlinear regression may be used to obtain estimates of d, p, and ps.
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3.2.4 Application to Simple RT Data

We first find parameter estimates for the nine pooled simple RT data sets using the 

original estimation method. In order to avoid negative estimates of the thinning 

probability p, we set the estimate as max{p, 0}. The results are given in Table 3.2.

Table 3.2: Parameter estimates for each of the nine pooled data sets

flash rate, PA A d A

P P^s

0.4 .296 .049 .065 .026 .020
0.6 .291 .049 .101 0 .019
0.8 .286 .053 .109 0 .035
1.0 .283 .057 .117 .007 .029
1.2 .282 .058 .110 .001 .063
1.4 .284 .066 .125 0 .058
2.0 .278 .064 .114 0 .122
4.0 .283 .070 .120 0 .134
8.0 .285 .055 .100 0 .181

Across the nine data sets, the means and variances of d, p, and ps are (.107, .000313), 

(.003778, .000075), and (.073444, .003402), respectively, suggesting that these parame­

ters are similar for the nine data sets. For this reason, we proceed with obtaining 

estimates of d, p, and ps via nonlinear regression.

We obtain nonlinear regression estimates for the reaction time data in R using the 
____ A

function nls. The estimates are d = 0.093, p = 0.041, and = 0.072, with p-values 

of 3.1 x 10-6, 0.341, and 0.193, respectively. This provides us with additional evidence 

that the thinning parameter d is nonzero, so that there is nonlinear inhibition present 

in the eye-brain-hand system. It also suggests that the thinning probability p is zero, 

which means that according to our model flashes are rarely deleted with complete 

randomness. Finally, it indicates that any internal noise process has a negligible rate, 

so that there is essentially no noise in the system.
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There are only nine pairs (pa,Pb) used in the regression, but as a quick adequacy 

check for the fit of the model a plot of the fitted response rates against the observed 

values (nonparametric estimates) is provided in Figure 3.1. It can be seen that the 

model is able to predict the response rates quite well.

observed pB

Ti

3.5

Figure 3.1: Plot of the fitted vs. observed response rates for the nonlinear regression 
model fit to nine pooled simple RT data sets.

3.3 Threshold Models for Simple RT

In the analysis of a simple RT experiment, another conceptual model of interest 

is a threshold model (integrate-and-fire model), (see Brillinger (1988b), Brillinger 

(1988a)). In such a model, a response occurs when an internal state variable exceeds 

a threshold. Brillinger used this type of model to analyze a spontaneously firing 
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neuron (“noise” input), as well as the firing of a neuron under the influence of two 

other neurons (Brillinger (1988b)). Estimates of the threshold and other internal 

quantities are obtained via maximum likelihood. Advantages of this approach include 

biologically interpretable parameters and the availability of formal hypothesis testing.

We first consider the case where only one flash type is presented. Let A = 

{A1, A2,...} represent the sequence of flash times, and A(t) denote the number of 

flashes that occur in the time interval (0,t]. We denote the times of the responses 

by B = {B1, B2,...}, with B(t) defined analogous to A(t). As in Brillinger (1988a), 

we discretize into a 0-1 valued time series for analysis. We transform the data by 

choosing a lag value m and creating time intervals {(0, m], (m, 2m],..., (T, T+m]} = 

{11, I2, ... ,IT}, where T = m[max(B)/m]. The lag m may be chosen such that there 

is at most one flash (response) in each discretization interval, but to decrease com­

putation time we choose m slightly larger, allowing more than one point in a given 

interval. We discretize the A process as follows:

{1, if there exists Ak such that Ak ∈ Ij

0, otherwise

We discretize the B process in a similar way:

{1, if there exists Bk such that Bk ∈ Ij

0, otherwise

That is, we set Xj and Yj to equal 1 or 0, depending on whether or not there is a 

flash or response, respectively, in interval Ij.

Following the terminology of Brillinger (1988b), au is a summation function that 

is defined as follows. Assuming that a flash occurs at time τ, at—r represents the 

effect of that flash on the internal potential at time t. Both at and the first-order 

kernel αι(w), discussed in Section 2.3.2, estimate the average impulse response of the 

system.

Suppose t ∈ Ij, so that j is the index of the interval containing time t. As of time 

t, we denote the number of time intervals elapsed since the last interval containing 

a response by Nj. Under the assumption Yo = 1, it follows that 1 = 1, and letting 
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k be the index of the interval in which the first response occurs, we have Yj = j for 

j = 1,...,k. In general, NYj = j - i for j = 1,... ,IT, where i is the index of the last 

interval before Ij that contains a response. Note that time is in terms of an index 

j corresponding to the interval Ij containing the time of interest t. An example of 

how we obtain NYj for the first five time intervals when the first two responses occur 

at times 0.12 s and 0.23 s, and the time lag is m = .05 is given in Table 3.3.

Table 3.3: Example of Y calculations

j Yj %

1 0 1
20 2
3 1 3
4 0 1
5 1 2

We start with a linear model as an approximation to the internal potential. Under 

this assumption, the internal potential can be expressed as follows (Brillinger (1988b))

9-1
U = >ayXe-u, (3.3.1)

u=0

where gt = min{Yt, G} and G is the index of the corresponding interval that contains 

the maximum time lag of interest. We usually set the maximum time lag of interest 

to be 1.0, since our main interest is in short time intervals, i.e. less than 1 s. Brillinger 

(1988a) uses NYt in the upper limit to take into account the effect of the response process 

Y on itself. However, we truncate the sum to decrease the amount of computations, 

and because of our interest in short times intervals.

We arbitrarily set a response to occur at time 0, so that interval 0 contains a 

response, and Yo = 1, from which it follows that 1 = 1. That is, we assume that 

recording of the flashes and responses begins immediately after some initial response. 
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If we do not make such an assumption, then we have Yj = 0 for all time interval indices 

j until a response occurs in some time interval. However, this is problematic because 

when 7j = 0, it can be seen from (3.3.1) that Ui = 0, and there is no dependency on 

the stimuli until a response occurs.

A response occurs when

U,+6> e,

where θ is the threshold, and Et is internal noise, which we assume to have a symmetric 

distribution about 0. In our model, the threshold is fixed and internal noise is added 

to the internal potential Ut. This differs from Brillinger's model, where a random 

threshold is used; at time t the threshold is 0 = 0+ Et, and a neuron fires when 

Ut > 0 + E+. However, by restricting the distribution of the noise to be symmetric 

about zero, the form of the likelihood remains the same for both formulations, and 

only the interpretations differ. Both models have two sources of variation, one of 

them from whether or not a response occurs (neuron fires) given the threshold level. 

The other source of variation is derived from the random threshold in Brillinger’s 

model, and from the internal noise in the total internal potential of our model.

We also look at an extension of the linear model, so that interaction terms are 

included. We take into account the fact that a response to a flash may be dependent 

on the occurrence of previous flashes that are close together in time with the present 

one. That is, we consider interactions of a flash at time t with the occurrence of any 

flashes that are up to d time units earlier, for some d. The parameter d is related to 

the d parameter in the parametric RT model of Braun et al. (2003). In that model, 

when two consecutive flashes occur within d time units apart, one of the two flashes 

is deleted (not responded to). For simplicity, in the threshold model, we set d = rm, 

for some integer r, since we are working with data that is discretized using lag m. 

Letting Zj = I{2=1 Xj-i > 0}, the internal potential can be expressed as
9t-1 2-1

Ut — 2 auXt-u + > b.Xt-uZt-u,
u=0 u=0 

(3.3.2)

where Zt — min{ t, z} is the maximum number of time intervals (prior to the current 

time interval) that are of interest for an interaction effect on the internal potential. 
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Thus, z<G.

For the threshold model of the simple RT experiment in which two flash types 

are presented, the notation is identical, but we must introduce additional notation to 

distinguish between the two flash types. We denote the discretized black and white 

flashes, by Xs and XW, respectively. For our model without interactions the internal 

potential is now

- ( Yb Xw )Ct 2 (du*t-u T Out-u)
u=0

where, as before, gt = min{Yt, G} and G is the index of the corresponding interval 

that contains the maximum time of interest. In the simplest model au = bu, which 

corresponds to the case in which black and white flashes lead to effects of the same 

magnitude on the internal potential; the effect of a black flash in increasing Ut is the 

same as the effect of a white flash in increasing Ut. Intuitively, this appears to be a 

reasonable assumption. Thus, we make the assumption of equal effects au = bu, which 

allows us to ignore flash type so that the internal potential is identical to (3.3.1), and 

in the case of interactions the internal potential is (3.3.2).

3.3.1 Statistical Methods

We fit binomial models with probit (standard normal error distribution), and logit 

(logistic error distribution with location 0 and scale 1) link functions to simple RT 

data with one flash type by using the glm function of R (R Development Core Team 

(2006)). Our fitted model has the form

where

in the case of no interactions, and

u=0 u=0
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in the case of inclusion of interaction terms.

In R we fit the model
. 0, if f: < 0

3 1, if f > 0 

where in the case that interaction terms are included

so that the estimate of the threshold θ is the negative of the intercept estimate B.

Prior to fitting the model to real data, we fit the integrate-and-fire model using 

probit and logit links for data simulated from an integrate-and-fire model, and from 

a simple RT parametric model (Braun et al. (2003)). We make comparisons between 

the coefficient estimates at from the fitted threshold models, and the first-order kernel 

estimates âi(t) = Pen - DB = mAB(t) - PB discussed in Section 2.3.2; both ât and 

âi(t) give estimates of the average impulse response. When converting the simple RT 

data with one flash type to 0-1 time series we use a lag of m = .07.

The results obtained using the standard normal error distribution and using the 

logistic error distribution are virtually the same except for scaling. This gives us 

evidence that the fitting procedure is somewhat robust with respect to the assumed 

error distribution. A similar observation was made by Brillinger (1988a) for threshold 

models fit to neuron data. For this reason, we only consider the logit link in the 

analysis of simple RT data with two flash types, and in the remaining chapters.

For the simple RT data with two flash types we consider logit link functions and 

fit binomial models, as in the case of one flash type. We use a lag of m = 0.05, and 

fit models to nine real data sets, each having a different stimulus rate; the rates of 

flashes per second are 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 2.0, 4.0, and 8.0.

3.3.2 Diagnostics

As in Brillinger (1988b), we can assess goodness of fit of either model by examining 

plots of the empirical probability of responding against the corresponding predictor 

Ût. The probability of a response will increase with Ut since a response occurs when 
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the predictor, with some random noise added to it, crosses the threshold 0; the larger 

the value of Ut, the higher the probability of a response. Using a grid of u values 

that span the range of the Ût the empirical probability of a response is the proportion
A

of responses that occur when Ut is in a small interval near each u. For small h, an 

estimated probability of a response is given by

#(Y = 1 with u — h < Û, < u + h} 
#t with u — h <Ùt <u + h}.

Under the assumption that the model is correct, the probability of a response is

P(U, +€ > 0) = P(e: > θ - Û,).

For a model that fits the data well, the empirical probabilities should follow the curve 

of the fitted probabilities.

3.3.3 Application to Integrate-and-fire Simulations

As a means of studying the goodness of fit and robustness of the integrate-and-fire 

(i-f) model we apply it to data simulated from such a model. We consider standard 

normal and standard logistic error distributions, corresponding to probit and logit 

links, respectively. To study the goodness of fit, we fit a model in which the link 

function matches the error distribution of the simulation. We study the robustness 

by fitting a model with a link function different from the error distribution of the 

simulation.

As a simple case, we first study an i-f model in which only the first two coefficients, 

ao and αχ, are non-zero. When the probit link i-f model is fit to i-f simulated data 

with a standard normal noise distribution, the fit is very good. In the diagnostic plot 

(not shown) the empirical probability points follow the theoretical curve with the 

exception of one outlier. The first two coefficients are very close to the true values 

used for the simulation and are clearly non-zero. Although a2 = 0 for the simulation, 

in this fitted model, it is significantly different from 0 with an estimate of 0.41 and a 

standard error of .15.
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When we fit an i-f model with a logit link to the i-f simulated data with normal 

noise, we find that the first three coefficients are significantly different from 0, as in 

the fit using the probit link. However, the diagnostic indicates a poor fit, and the 

estimates are far from the true values.

A plot comparing the two coefficient estimates obtained from fits with the two 

links, and with αι(u) is given in Figure 3.2. The graph corresponding to the model fit 

with the logit link appears to have the same features as the one for the probit link, but 

on a different scale. It can also be seen that where the coefficients are actually zero 

all three estimation curves fluctuate around zero, with the logit link model estimates 

having the largest variability.

Coefficient Comparison

actual values
- glm, logit link

glm, probit link 
mAB(u)

0.0 0.2 0.4 0.6 0.8 1.0 

u

Figure 3.2: Comparison plots for linear integrate-and-fire models fit to a simulated 
data set from an i-f model with normal error distribution and having only the first 
two coefficients nonzero.
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Similarly, we simulate data from an i-f model with logistic noise, and fit i-f models 

with probit and logit link functions to the simulated data. The diagnostic plot (not 

shown) for the logit link fit indicates that a model with a logit link is better than one 

with a probit link. As expected, the estimates based on the logit link are very close 

to the actual values.

A similar comparison was done for simulated data from an i-f model in which 

ao,...,a9 are nonzero. Asintheprevioussimulations, for the normal noise simulation 

the probit link model yields estimates with a smaller bias than the logit link model, 

and in the same sense the logit link model is better than the probit link model for a 

logistic noise simulation. However, unlike the case with only two non-zéro coefficients, 

the diagnostic plots are very similar for the two link functions. That is, as the number 

of non-zéro coefficients increase, there are fewer differences in the diagnostics for 

models with different link functions. Furthermore, the fits for the data with more 

non-zéro coefficients (e.g. nine) are better than those fit to data with few nonzero 

coefficients (e.g. two). Diagnostic plots for the two models fit to the simulation with 

a normal error distribution and nine non-zéro coefficients are given in Figure 3.3.

When an i-f model with interaction terms is fit to the i-f simulated data considered 

above, as expected, the interaction terms are not discernible from zero.

In summary, we find that when the link function of the fitted model is the same 

as the error distribution of the simulation, the diagnostics indicate a very good fit, 

and the coefficient estimates are near the true values. When we fit a model with a 

link function different from the error distribution of the simulation, we find that the 

robustness of the model rises as the number of nonzero coefficients in the simulation 

increases. That is, when the number of coefficients increases, the diagnostics indicate 

a good fit regardless of the link function employed. A different scaling in the graphs 

of the coefficients is the only observable difference in fits of models with different link 

functions.
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Figure 3.3: Diagnostic plots for simulated data from an i-f model with a normal 
error distribution and having the first nine coefficients non-zero. The points are 
the empirical probability of a response, and the curve is the corresponding fitted 
probability.

3.3.4 Application to RT thinning model simulations

We fit the integrate-and-fire model with probit and logit links to simulations that we 

generated from the parametric simple RT model of Braun et al. (2003) with various 

parameter settings.

For data that we simulated from the parametric RT model with d — 0, the di­

agnostic plots (for logit and probit) indicate that the i-f fit without interactions is 
A

excellent for Ut < θ. For larger Ut, most of the empirical probabilities do not follow 

the curve as well, and many fall below the fitted probabilities.

As d increases, the fit of the i-f model without interactions worsens, according 
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to the diagnostic plots. For all d, when Ut < 0 the fit is excellent. However, the 

corresponding probabilities are near 0 and there are very few responses so such a 

good fit is expected; under the i-f model there are no responses when Ut < O so the 

probability of a response is near 0. For d > 0, when 0 < Ut < θ the i-f model fits well, 

but tends to underestimate the probability of a response, and it overestimates the 
A 

probability of a response when Ut > θ. We expect such results since the i-f model will 

predict a low probability of a response when Ut < 8, and as Ut increases above θ the 

response probability increases. There is likely more dependence among the responses 

and their history of flashes than the form of the i-f model considered here.

It is difficult to see any effect that σ and p have on the fit. There is a tendency 

for the fit to be slightly better when σ = .08 than when σ = .12, but the model still 

does not fit well. There does not appear to be a difference in the fit when we simulate 

the data under either of the two thinning assumptions, T.1 and T.2. The estimates 

of the threshold θ tend to be around 2.0 for the probit link model, and around 3.6 

for the logit link model.

In the i-f model without interactions a response occurs when Ut+Et > 0, where Ut is 

a function of the indicators of flash occurrences from the time after the last response up 

to the current time. Since the coefficients of the indicators tend to be positive, when 

there are no responses to many flashes the value of Ut (plus random noise) increases 

and is eventually greater than the threshold 0, resulting in a response. The inclusion 

of interaction terms yields a better fit, with significant coefficients of interaction terms 

being negative; interaction terms decrease Ut resulting in a lower probability of Ut 

crossing the threshold, and a response occurring. Negative interaction coefficients are 

indicative of inhibition among the flashes, which we know is present when d > 0 in 

the parametric model.

When the i-f model with interactions is fit to RT data simulated from a model 

with d = 0, the interaction terms are not usually needed, and when some are needed 

the diagnostic indicates an improvement over i-f models without interaction terms. 

In the i-f model, d = .21 is usually used since there appears to be no improvement 

in using a smaller d such as d =.14 or d = .07. Similarities in the fits of the models 
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with and without interactions lessen as o and p increase. The models with interaction 

terms fit quite well, except for an occasional outlier for large U.

When d > 0, fits involving the i-f models with interactions are an improvement 

over those without interaction terms, sometimes giving an excellent fit. The fit tends 

to worsen as σ increases from .08 to .12, and there does not appear to be a difference 

in the fits for data generated under thinning assumptions T.1 and T.2. The fits under 

the probit model and the logit model are very similar, as illustrated in Figure 3.4. In 

that figure logit and probit models with d = .21 are fit to simulated RT data under 

thinning assumption T.2 with parameters d =.2,0 = .08,p = .15, and μ = .4.

Empirical Probability
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o
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Figure 3.4: Diagnostic plots for integrate-and-fire models with interactions (d=.21) 
fit to simulated RT data under thinning assumption T.2 with parameters d = .2,0 = 
.08,p = .15,p = .4.The points are the empirical probability of a response, and the 
curve is the corresponding fitted probability.
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3.3.5 Application to Simple RT Data - One Flash Type

The fits for the 12 RT data sets with flash rate 1.0 s are similar, and the θ estimates are 

provided in Table 3.4. Under the logit i-f linear model the estimate of θ across the 12 

data sets has sample mean 4.09, standard error 0.177, and under the logit model with 

interactions, the mean and standard error are 4.37 and 0.222, respectively. Under the 

probit model without interactions the estimates have mean 2.18 and standard error 

.077, while for the model with interactions the mean and standard error are 2.26 and 

.088, respectively. These results give an indication that the value of θ is very similar 

among the data sets.

Table 3.4: Threshold estimates θ for RT data with flash rate PA = 1.0.

data set
without interactions with interactions
0, logit 0, probit θ, logit

A
0, probit

1 4.36 2.32 4.65 2.40
2 4.35 2.29 4.53 2.33
3 4.07 2.17 4.18 2.18
4 3.96 2.13 4.33 2.23
5 3.91 2.11 4.20 2.19
6 4.28 2.24 4.49 2.30
7 3.97 2.14 4.19 2.20
8 4.20 2.24 4.73 2.37
9 4.13 2.21 4.58 2.34
10 4.00 2.16 4.34 2.26
11 3.80 2.05 3.98 2.10
12 4.05 2.19 4.32 2.26

As a comparison, for the first RT data set, the coefficient estimates for the model 

without interactions are plotted along with the first order kernel estimates αι(u) = 

mAB(u) — PB, in Figure 3.5. All three estimates peak in the same location, but 

are of different magnitudes, and as observed in other examples, the estimation curves 
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corresponding to the probit and logit link models are identical, except for a a different 

scale. For each of the RT data sets the diagnostic plots indicate a poor fit for Ut > O.

Coefficient Comparison

glm, logit link 
glm, probit link 
mAB(u)

T
0.8

1

0.6

Figure 3.5: Comparison plots for linear integrate-and-fire models fit to the first RT 
data set with flash rate PA = 1.0.

Diagnostic plots of the i-f model with interactions fit to the RT data reveal an 

improvement over the models without interaction terms. In some cases, such as the 

second data set, the model fits quite well. Diagnostic plots for the second data set 

are provided in Figure 3.6; the logit model with interactions is an excellent fit with 

the exception of one outlier.
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Figure 3.6: Diagnostic plots for linear integrate-and-fire models with interactions fit 
to the second RT data set with flash rate PA = 1.0. The points are the empirical 
probability of a response, and the curve is the corresponding fitted probability.

3.3.6 Application to Pooled Simple RT Data - One Flash 

Type

Since the 12 RT data sets are based on the same person, we assume that they should 

have the same parameters for the i-f model. In the previous subsection, where each 

data set is fit individually, it appears that the threshold θ may be the same across 

the data sets. In order to get one set of estimates for the 12 data sets we pool them 

into one large data set. The RT data is pooled in a simple manner by concatenating 

the 12 data sets. Let Mi and N; denote the number of flashes and the number of 
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responses for data set i, respectively. Then the pooled RT data is

12

A1, A12, • • • , A1M, A21 + A1M,,...,A2M2 + A1MI, A31 + A2M2 + AIM,,...,2 AiM,

i=1

and
12

B11, B12, ..., BIN,, B21+A1M,, ..., B2N2+A1M., B31+A2M2+A1MI,. • . , B12Mnz+2 AiM,

i=1

When converting the data to 0-1 time series a lag of m = .07 is used and only 

coefficients corresponding to lags less than 1.0s are included in the model.

For both of the i-f models, all of the coefficients corresponding to intervals in 

[0.21, 0.77] are discernible from 0. This is an indication that button presses (responses) 

tend to occur between 0.21 s and 0.77 s after a flash. For the model with interactions 

the interaction coefficients that are discernible from zero correspond to intervals in 

[0.21,0.63], indicating that flashes occurring 0.21 to 0.63 s before the current flash 

influence the occurrence of a response to the current flash. The coefficients au for the 

logit and probit link models with interactions are displayed in Figure 3.7.
A

The threshold estimates θ are given in Table 3.5. Recall that when the internal 

potential rises above the threshold, a response occurs. The diagnostic plots indicate

Table 3.5: Threshold estimates θ for pooled RT data with flash rate PA ≈ 1.0

logit θ probit

without interactions 3.98 2.15
with interactions 4.29 2.23

that the linear i-f models are a poor fit to the pooled RT data, and are provided in 

Figure 3.8. However, inclusion of interactions yield a better fitting model, as can be 

seen in Figure 3.9.
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Figure 3.7: Impulse responses for threshold models with interactions and logit and 
probit links, respectively, fit to pooled RT data with PA = 1.0.

3.3.7 Application to Simple RT (two flash types)

Following the belief that data resulting from different runs of an experiment on the 

same individual can be fit by identical models, with differences due only to randomness 

between triais, our analysis is done on pooled data. Models with interactions are fit 

to nine pooled simple RT data sets, each having a different stimulus rate, and within 

each data set black and white flashes are presented at equal rates. Each pooled data 

set is based on eight experimental runs consisting of a total of 100 flashes each. As 

discussed in Section 3.3.1, we only fit models using the logit link, due to a difference 

in graph scaling being the only difference in the fits from different link functions. In 

the discretization of the data we use a lag of m = 0.05.
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Figure 3.8: Diagnostic plots for linear integrate-and-fire models without interaction 
terms, and with logit and probit links, respectively, fit to pooled RT data with PA = 
1.0. The points are the empirical probability of a response, and the curve is the 
corresponding fitted probability.

A

Table 3.6 displays the threshold estimates, θ for a model that fits the data reason­

ably well, based on the diagnostic plots. The "best-fitting" model varies for each of 

the data sets, with different d parameters, and different numbers of interaction terms. 

The thresholds tend to decrease with the stimulus rate.

Plots of the impulse responses, as well as the impulse response peaks as a function 

of stimulus rate, are provided in Figures 3.10 and 3.11. The peaks of the response 

impulses decrease with the stimulus rate. This is consistent with intuition. With a 

slower stimulus rate one is less likely to miss a stimulus. A higher peak is an indication 

of a larger frequency of responses at the lag for which the peak occurs. Examples
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Figure 3.9: Diagnostic plots for linear integrate-and-fire models with interactions, 
and logit and probit links, respectively, fit to pooled RT data with PA = 1.0. The 
points are the empirical probability of a response, and the curve is the corresponding 
fitted probability.

of diagnostic plots for four of the pooled data sets are provided in Figure 3.12, from 

which it can be seen that the model fits the data quite well.

3.4 Random Effects Threshold Model

We fit a random effects threshold model to the 12 sets of simple RT data with rate 

1.0. As an alternative to pooling simple RT data sets with the same rate, we treat 

each data set as a realization of observations that could result from a single i-f model 

and consider any differences among the data to be due to randomness. Doing so
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Table 3.6: Threshold estimates θ for pooled simple RT data from experiments run at 
various flash rates. A logit link is used.

rate

0.4 5.86
0.6 5.15
0.8 5.80
1.0 4.62
1.2 4.14
1.4 4.00
2.0 3.30
4.0 2.56
8.0 2.28

maintains the idea that the i-f model parameters should be the same for the twelve 

data sets. We fit a mixed effects model with the threshold and coefficients as fixed 

effects, and a random intercept with data set number as a grouping variable. Our 

model with interactions has the form:

where 

yul 0, if U, <O
* 1, if U, > 0 '

i=1 u=0 i=l u=0

where τ and Et, t = 1,... are independently distributed Normal random variables 

with mean zero and respective variances o? and o2, n is the number of data sets 

included in the model, and Xi,t and Zi,t correspond to Xt and Zt for the ith RT data 

set.

The random threshold model is fit in R using the function glmmPQL from the 

MASS library (Ripley (2006)). This function fits a generalized linear mixed model 

with multivariate normal random effects, using Penalized Quasi-Likelihood. We fit
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Figure 3.10: Plots of the stimulus linear filters for each of the 9 data sets. Curves are 
labeled by the stimulus rate (s). For ease of illustration, each curve is shifted upwards 
by one unit.

a model with logit link to the 12 data sets, and the impulse response is displayed 

in Figure 3.13, while the diagnostic plot is provided in Figure 3.14. In comparison 

with Figure 3.7, the impulse response from the model for pooled data, the same 

characteristics of a peak near 0.4, and a dip to the left of the peak appear in both 

graphs. Overall the results are the same, with the main difference between the two 

impulses being that the one resulting from the random effects model is slightly wider 

with a higher peak. The estimate of the threshold θ is 4.66, which is slightly higher 

than the estimate based on pooled data, 0 = 4.29 (see Table 3.5).

The standard error of the random effects coefficient for data set number is 0.1201, 

indicating that there is not much variability among the data sets. In addition to the
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Figure 3.11: Plot of the impulse response peak height as a function of stimulus rate, 

similarities in the impulse and threshold estimates, this gives us evidence that the 

data sets ares similar enough for the analysis to be done using simple pooling as in 

Section 3.3.6.

3.5 Discussion

In this chapter we continued to explore the parametric model of Braun et al. (2003), 

and introduced a threshold model for simple RT. Regarding the parametric model, 

details of the covariance approximation required for the computation of a test statistic 

for hypotheses involving the thinning mechanism are provided, as well as an alter­

native parameter estimation method involving nonlinear regression. The alternative
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Figure 3.12: Diagnostic plots for the data sets with stimulus rates 0.6,1.2,2.0 and 
4.0, as indicated in the top left corner of each plot. The points are the empirical 
probability of a response, and the curve is the corresponding fitted probability.

estimation method can be implemented when there are at least four simple RT data 

sets, each with a different flash rate, and it is assumed that the parameters are the 

same across the data sets. We found, based on a simulation study, that in terms of 

bias, variance, and MSE, nonlinear regression and the original parameter estimation 

method tend to have negligible differences in performance. Therefore, due to the 

advantages in using nonlinear regression we prefer this alternative method when it is 

reasonable to assume that the data sets come from the same population.

A threshold model for simple RT was introduced and applied to both simulated 

and real data. Fitting such models allowed us to obtain estimates of the threshold 

for each response type, as well as estimate certain intensities relating the stimuli to
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Figure 3.13: Impulse response for a random effects threshold model with logit link fit 
to 12 runs of simple RT data with flash rate PA = 1.0.

the responses. Threshold estimates for the real data sets with different flash rates 

suggest that as the flash rate increases, a lower rod current is required for a response 

to occur. We fit models to data resulting from individual experimental runs, and to 

pooled data. Data with the same flash rates were pooled based on our assumption 

that since the data are the result of experiments run on the same person, the threshold 

and coefficients should be similar.

As an alternative to pooling the data to get a single set of parameter estimates, 

we proposed a random threshold model. Such a model incorporates variation due to 

different experimental runs, while maintaining the assumption that parameters are 

the same across runs of the same flash rate. We found that there is not a large amount
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Figure 3.14: Diagnostic plot for a random effects threshold model with logit link fit 
to 12 runs of simple RT data with flash rate PA = 1.0. The points are the empirical 
probability of a response, and the curve is the corresponding fitted probability.

of variation due to different runs. In addition, the results based on simple pooling of 

the data sets are very similar to those for the random effects model, which indicates 

that pooling the data is sufficient in the fitting of threshold models to these RT data.
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Chapter 4

Parametric and Threshold Models 
for a Go-No Go RT Experiment

A go-no go reaction time experiment is more closely related to a real-life task than 

the simple RT experiment. For a simple RT experiment the sole activity is to decide 

whether or not there is a flash, and then immediately press a button. In a go-no go 

reaction time experiment, two types of flashes, black and white, are presented against 

a grey background, to an observer. Upon perception of a black flash the subject 

immediately presses a button, while white flashes are ignored by the observer. Thus, 

a go-no go RT experiment involves the extra activity of deciding when one of two 

stimulus types occurs.

The observer may correctly press the button in response to a black flash, not 

respond at all to a black flash, or may press it as as a result of committing one of two 

possible errors. First, the incorrect response may be due to misperceiving a white 

flash. Another possibility is pressing the button when neither flash type is presented. 

This type of error is due to internal noise within the eye-brain-hand system that 

causes the observer to mistakenly perceive a black stimulus.

The goal of this chapter is two-fold: to present a parametric model and a threshold 

model for go-no go RT data. First, we introduce a parametric model, and use it in 

conjunction with nonparametric estimation, to make inferences about the eye-brain- 

hand system. The second model that we will introduce is a threshold model for go-no 
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go RT data.

In Section 4.1 we introduce a parametric model for a go-no go RT experiment. 

We provide an outline of how to simulate data from this model in Section 4.2. In 

Section 4.3 we describe some point process intensity functions for this model. In 

the subsequent section we provide the derivations of the intensities. In Section 4.5 

we discuss nonparametric intensity estimates and bandwidth selection. We develop 

parameter estimation methods in Section 4.6, and in Section 4.7 we illustrate our es­

timation methods on simulated data. Finally, in Section 4.8, we fit our model to ten 

data sets from go-no go RT experiments with different flash rates. We introduce the 

threshold model in Section 4.9. Within this section we discuss the model details, sta­

tistical methods, diagnostics, and application to data simulated from our parametric 

model, and to real data. A discussion of our two models concludes this chapter.

4.1 A Parametric Model for the Go-No Go RT 

Experiment

In a go-no go reaction time experimental run, black and white flashes are presented 

to a subject as independent homogeneous Poisson processes with rates psB and PSw 

(per second), respectively. Thus, the entire flash process, which is the superposition 

of the black and white flash processes, has rate Psp +psw.

We denote the number of white flashes in the time interval X by Sw(X), and 

the set of times of the white flashes is denoted by Sw — {SW,1, SW,2,...}. Analogous 

notation is used for the black flash times, SB, as well as the subject’s response times, 

R. Note that SB and Sw are taken to be independent stationary Poisson processes.

We use a superposition operation to account for noise internal to the nervous 

system. We consider the possibility of an observer pressing a button in the absence of a 

flash. Associated with the black flashes is a noise process, modelled as an independent 

Poisson process SN with rate PN. The noise process is superposed onto the black flash 

process, so that the superposed process is SB = SB U SN. Because of the nature of
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the experiment, we do not consider a noise process associated with the white flashes.

A thinning operation is used to model a failure to perceive a flash at SB or Sw. 

Each flash is deleted with probability p independently of the other flashes. The 

deletion probability for the thinning of white flashes is given by

P(SW,j deleted) = p.

For the thinning of the black flashes, in addition to completely random deletions, 

there may also be non-linear inhibition resulting when two black flashes occur within 

d time units of each other. The deletion probability for the thinning of black flashes 

is given by

P(SBjdeleted) = 1 1) SBsh SB<d, 4.11) 

’ p, otherwise

so that when a black flash is closely followed by another black flash the two flashes 

are integrated and observed as one higher intensity flash. Since the white flashes are 

supposed to be ignored by the observer, analogous interactions between the white 

flashes are not modelled. We denote the thinned white and black flash processes by 

SW and SB, respectively.

Each response is of the form Ri = S" + Vi, where {Vi} is a sequence of indepen­

dent and identically distributed random variables with common density fv(v). The 

random variables Vi correspond to the amounts of time required for the brain and 

hand to respond to the flash; these are the particular reaction times for each of the 

events.

The responses are related to the flash processes as follows, where q is the proba­

bility of responding to a white flash:

S5j+Voj - R, 
SWj + V1, — Rk, w.p. q, 

where we make the simplifying assumption that the delays Vo,j and V1,j are sequences 

of independent and identically distributed random variables with common density 

fv(v); q is an error probability. The reaction times to both kinds of flashes are 
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assumed to be independent and identically distributed, and the parametric intensity 

functions that we derive in Section 4.4 depend on this assumption.

We now set out all of the assumptions that we make in this chapter:

Assumptions

1. Reaction times resulting from black (white) flashes are independent random 

variables.

2. Reaction times from black flashes are independent of those from white flashes.

3. Reaction times from white flashes have the same distribution as those from 

black flashes.

4. SB and Sw are independent stationary Poisson processes.

5. All reaction times have a N(u,o) distribution. However, the derivations and 

estimation methods are also valid for alternative distributions.

4.2 Simulation of Data from the Model

In our simulation of the flash processes, we first simulate the total flash process S, 

which is a Poisson process with rate PSB + PSw. Assignment of flash types to each 

flash time Si is done by noting that because the black and white flash processes are

independent of each other, the probability that a given flash is black is -PSB 
PSB +Psw

Likewise, the probability that a given flash is white is -PSw 
PSp +PSw

In our algorithm,

IDs denotes a stimulus identification vector, where IDs,i identifies the stimulus type 

for Si. We assign IDS,i — 0 when the flash at time Si is black, and IDs,i — 1 when 

the flash at time S; is white.

In the case that PN > 0, letting T be the time length of the experiment, the 

number of events from the noise process is a Poisson random variable with mean 

PNT. We denote the number of events in the noise process by N. The noise process 

is simulated by generating NN uniform random variables on the interval (O, T). Each 

noise event time is assigned a black identification label of ‘O’.
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Both the noise event times and corresponding identification labels are appended 

to the flash times and identification labels. The stimulus times (noise and flashes) and 

identification labels are sorted in ascending order by stimulus times. This is done by 

sorting the vector of stimulus times, and changing the positions of the identifications 

for each change in position of the corresponding stimulus times.

In Algorithm 4.2.1 the vector R consists of the response times, and we denote the 

number of responses by N#.

The data set will be a list consisting of three vectors, not necessarily the same 

length, consisting of stimulus times and response times, as well as labels to indicate 

the type of stimulus. That is, each black stimulus time has a label of ‘0’, while a label 

of ‘l’identifies those that are white.

Algorithm 4.2.1. The following steps can be used to generate go-no go RT data 

consisting of Ns flashes with black flash rate psβ, white flash rate psw, noise rate pχ, 

thinning parameter d, thinning probability p, and N(μ,σ) distributed reaction times.

1. Generate stimulus sequences consisting of a total of Ns black and white stimuli.

(a) Generate Ns random exponential variates with mean ps ^ps. *

(b) Compute the Ns cumulative sums of the exponential variates. Assign these 

times to S.

(c) Set

Po ÷-
PsB

PSs + PSw
(d) Assign the stimulus types. Fori = 1,2, ...,Ns, set

IDs[i∖ {
I 1

with probability po

with probability 1 — po

(e) Set SB {S[i] : IDs[i] == 0} and Sw {S[i] : IDs[i] = 1}.

2. Add noise. IfpN > 0, then

(a) Generate a Poisson PnT random variate and assign to Nn∙
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(b) If NN - 0, go to Step 3.

(c) Assign Ns — Ns + NN.

(d) Generate NN random uniform variates on [0, T]. Assign these values to 

N.

(e) Assign the black stimulus type to the noise. Fori = 1,2,...,NN, set

IDs[4 — 0.

(f) SetS, ^SUN and IDst — IDsUIDsw.

(g) Sort S' and IDs' ∞ ascending order of S’.

3. Thinning and translating.

(a) Set Nr + 0.

(b) For i = 2,... ,Nsb, if (SB[i] — Sp[i -1] > d), then do the following with 

probability 1 — p:

i. Assign NR — NR+ 1.

ii. Generate a N(u,o2) random variable V.

iii. Assign R[NR] — Sp[i -1]+V

(c) Fori = 2,...,Nsw, do the following with probability (1 — p)q:

i. Assign NR — NR+ 1.

it. Generate a N(u, o2) random variable V.

izi. Assign R[NR] — Sw[i — 1] + V

4. Sort R in ascending order.

5. Return Sf IDs, and R.

We used the programming language Fortran (Lahey Computer Systems, Inc. 

(1999)) to implement our algorithm.
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4.3 Point Process Intensity Functions

The response rate, or first order intensity of the R process is denoted PR. We denote 

the response-response second order intensity by PRR(u).

There are two stimulus-response second order intensities corresponding to each 

flash type with the response process, which we denote PSpR(u) and PSwR(u). The 

intensity PSeR(u) corresponds to the intensity of a response following a black flash 

at a lag of u time units, while PSwR(u) coincides with the intensity of a white flash 

followed by a response.

Under our model, we show that the Brillinger mixing condition holds by using 

an argument similar to that given in Section 3.1.1. By the same reasoning as in 

Section 3.1.1, which applies a result of Heinrich (1988), we have that each of the 

three processes SB, Sw, and R is Brillinger mixing.

In order to show that the point process (SB, Sw, R) is Brillinger mixing, we con­

sider the point process SB USw UR, which we denote by C. The process C is a 

Poisson cluster process with cluster centers at Si ∈ Sb U Sw. When there is no thin­

ning in our model (i.e. d — 0 and p = 0), each cluster center Si generates two points: 

(S; +0,S+ ⅝}. Note that Si+VE R. In the case that there is thinning, there is 

also the possibility that Si generates only one point: {S; + 0}. Therefore, regardless 

of the presence or absence of thinning, Ns(X) takes on values in {1,2}, and it follows 

that E[NE(X)] ≤ 2fc < ∞. Thus, SBUSwUR is Brillinger mixing, from which 

we conclude that the three vector valued point process (SB, Sw, R) is also Brillinger 

mixing.

For our parametric model the response rate is given by

PR = (1 - p)[gpsw + (ps, +pv)e-d(Psp+PN)]. (4.3.1)
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The second order intensities are given by:

PSpR(u) = (1 - P)PsplIPSw

+^^Jl^+^p^^^u + d)) + ^)}] (4.3.2)

PswR(u) = (1 - P)Psw Kpsb + PN)e-(psatpn) + q(Psw + f(u))l (4.3.3)

PRR(L) = (1 - P)2[P(V - V - ul> d)((ps, + pN)2e-24(05ptpN))
+^P2sw + 2q(psp + PN)pswe-d(PSp+PN)], (4.3.4) 

where Vj V1, and V2 are independent random variables having common density fv(v).

In the special case of q = 0, so that white flashes are never responded to, the 

expressions simplify to:

PR = (1-P)(PS + pN)e APsaTPN) 
Ps,R(u) = PsePRP(V * (u,u+d)+f()} 

( PSp + PN)
PswR(u) = PswPR .

PRR(u) = PRP(V2-Vi-u|>d).

The expressions for PR, PSeR(u), and PRR(u) are identical to those for the simple RT 

model introduced by Braun et al. (2003). In addition, since in this case the response 

and white flash processes are independent of each other, as expected, pswR(u) = 

PswPR, from which it can be seen that qSwR(u) = 0 for all u.

Graphs of the two stimulus-response second order intensities with three values of 

q at two values of d are provided in Figure 4.1. These intensities have a peak at the 

mode of f(u), which increases in height as q increases, with the effect most distinct 

for PSwR(u). As q approaches zero the intensity PSwR(u) flattens and is constant for 

q= 0. Thus, information about the error probability q is contained in PSwR(u). As 

the d parameter increases the curve to the left of the peak of PSgR(u) is depressed. 

Note that the d parameter has the same effect on the stimulus-response second order 

intensity for the simple RT model described in Braun et al. (2003).

Figure 4.2 displays plots of the second order response-response intensity for three 

values of d at two values of q. Regardless of the value of q, when d =0 the intensities
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Figure 4.1: The second-order stimulus-response intensity functions with PSw = .5, 
Pse = ∙5, u=.4, o=.1, p=.15, PN = 0,q = 0 (solid line), q=.1 (dashed line), and 
q=.5 (dotted line), and d = .1 (top panel), d = .25 (bottom panel)

are constant. Otherwise, there is a trough centered at zero, which widens as d in­

creases. The effect of q is not as noticeable, but as q increases the curve slowly shifts 

upwards and the depth of the trough decreases slightly. Thus, the response-response 

intensity contains information on the nonlinear inhibition parameter d.

4.4 Derivations of the Intensity Functions

Before proceeding to the derivations we briefly review the notation for our point 

processes:

• SB: black flash process; a Poisson process with rate psB
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Figure 4.2: The second-order response-response intensity function in the normal case 
with psw = .5, Pse = .5, u=.4, o=.1, p=.15, PN = 0,d = 0 (solid line), d = .1 (dashed 
line), and d = .25 (dotted line), and q = .05 (left panel), q = .15 (right panel)

• SN: noise process for black flashes; a Poisson process with rate PN

• SB: SBUSN, black flash process superposed with noise process; a Poisson 

process with rate PSp + PN

• SB: the resulting process after thinning of S'B; each event contributes a response

• Sw: white flash process; a Poisson process with rate psw

• SW: the resulting process after thinning of Sw; each event contributes a re­

sponse with error probability q

• R: response process consisting of both correct and error responses.
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4.4.1 First-Order Response Intensity

We first derive the expression for the response rate. We have

Pn = lim h 1E∖R(u, u + h)]. (4.4.1) ∕ι→0

As a result of the translation mechanism in the model, we have

R(u, u + h) ∖ l{s" .∈(u-⅝,u-⅛+⅛)} + Λ l{s^i∈(u-⅛,u-½+Λ)}A, 
ii

where

Ai — 1{responsewhite flash atS∙}?

Sfi = (S'β U SW)i and the Vi represent independent random variables from a popu­

lation having density f(v). The probability of a response given a white flash is the 

error probability q. Thus,

E[R(u, u + h)] = E ^ l{∙¾i∈(u-½,u-½+Λ)} +yE ∑ 1(sw,E(u-V,u-v,+h)) ∙(4.4.2) 
~i j

The first term in (4.4.2) corresponds to the response process rate for correct responses, 

while the second term coincides with the rate of the error response process.

White flashes are deleted with probability p independently of the other flashes, so 

we have

E[SW(dai)] = ^[Sjy(d^ι)l{uvι.v>p}] = (1-p)p3w dx1, 

where Uyι-v is an independent uniform random variable that is independent of the 

flash and response processes. Thus the thinned white flashes are a Poisson process 

with rate PsW = psw(1 - p).

A black event is deleted with probability p when another black event occurs within 

d time units after it, so we have

^[¾(^(∙rl))] — E[SB(d(x1))1{U,>p)l(s(1,21+d)=0}]
= (l-p)(psβ + pv)e d(Psp+PN) dxj. (4.4.3) 
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Thus, we have

E[R(u,u+ h)]

= qEL2 1(swE(u-V,u-V,+hy)l + ED2 l(sg, e(u-V,,u-V,+h))l
ii

= qEEDX 1(sWE(u-V.,u-V,+))lSwll + E[ED2 l(sg E(u-V..u-V,+ry}S3]J
i i

= qE[E[EL> 1(swE(u-v,u -v+n))IV, Swll + E[E[EDX l(sge(u-v,u -v+ny)IV, Sell 
i i

=gEED2 J 1(sww,6(u-v,u-v-+ny)f(0) du)Swl

+EE21 l(sg,eoa-v-v+m)if(0) doSall

=QE2/ list,ct-vucv+hyyf(u) duj

+ED2 I 1(sg.,E(u-v,u-v-+ny)f (V) dυ]

= qE[ ∣ 2 1(SWE(u-v,u-v+n)yf (u) dv]

+E/2 1isg.e(ua-v-+m))f (V) duj

= qE[/ SW(u -v,u-v+ h)f(u) do

+E[ / Sβ(u - vu-v+ h)f(u) dv]

(4.4.4)

(4.4.5)

(4.4.6)

where (4.4.4) is obtained by using the fact that the Vi are i.i.d. with density f(-). By 

application of the Tonelli-Fubini theorem (see Jacod and Protter (1991), pp. 63-64), 

the integral and sum are reversed to get (4.4.5).

Since SW, and SB are counting measures, and for a counting measure A(-) we have 
A(0, h) = J" A(dxι) (see Daley and Vere-Jones (2003)), (4.4.6) may be expressed as 

ruth ruth
' SW(d(yi - v))f(v) dv+E[/ Sp(d(yi -v))f(v) dυ].

By noting that the integrand is non-negative the order of integration and expectation 
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may be reversed yielding

E[R(u,u+h)]
ruth c ru+th c

= 4/ E[SW (d(yi - v))]f(v) du + E[SA(d(yi - v))]f(v) dv.
JuJ JuJ

Using (4.4.3) and the stationarity of SB and S'w it follows that

E[R(u,u + h)]
ru+th A

= qJ J(1-p)Psw dy1f(υ)dv

ru+th C
+/ J(1-P)(PS + pn)e-d(sa*PN) dy1f(v) dv.

h(1 - p)[qpsw+)(pse + PnY d(Psp+PN)j [: J f(v) dv. (4.4.7)

Substitution of (4.4.7) into (4.4.1), and using the fact that f(v) is a probability density 

function, we see that the first order intensity for the R process is given by

PR = (1 - p)[qps. +{PSb+PnY d(Psp*PN)].

4.4.2 Stimulus-Response Second-Order Intensities

We now derive expression (4.3.2) for PSgR(u). By a similar argument expression 

(4.3.3) for PswR(u) is derived, so for this case only the key steps are outlined.

The intensity PSBR(u) is generally a function of two variables, but it reduces to a 

function of one variable because of stationarity. That is, letting u=y-x,

PSER(x, y) = lim h-2E[SB(x, x + h)R(y, y + h)]

may be expressed as

PS„R(u) = lim h-2E[SB(0, h)R(u, u + h)]. (4.4.8)
h—0 ■

In the following we assume that the reaction times V, from the white and black 

flashes are independently and identically distributed with the same distribution f(v). 
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That is, this result depends on Assumptions 1, 2, and 3.

E[SB(0, h)R(u, u + h)] 

= E[SB(O, h)(qEl2 1(sw. E(u-V.u-v,+y)lSw,Sg.

+E2 l(sg,E(u-v.u- v.+yISW,S50)

= E[Sp(0, h)(EE2 l(sk,E(u-v,u -r+AyIV, swell 

+EEC 1(sg,E(u-v,-vt*yIV, S5II)I (4.4.9)

E[Sb(O,h)(E!2C ∣ 1(sk.e(u-v.a-v.+m)f(0) du,Swi 

+2 J 1(sg,e6a-,-v+yf(u) duSel)

E[Sb(o,h)G/2. 1(sk.eku-v-vthyyf(0) du

+ 12.1(sg,,e(u-v,u-v+n))f (v) dv).
J;

= E[Sp(0,h)(q / SW(u-v,u-v+h)f(u) du 

+ Sg(u-v,u-v+h)f(u) dv)l

(4.4.10)

(4.4.11)

where (4.4.9) is obtained by using the fact that the Vi are i.i.d. with density f(-). By 

application of the Tonelli-Fubini theorem, the integral and sum are reversed to get 

(4.4.10).

Since SW, SB, SW, and SB are counting measures (4.4.11) may be expressed as

qEI
rh r ruth

Sβ(dx1)SW(d(yi - v))f(v) dυ]
0 J.u

+ E[∣ Sβ(dx1) ∣ ∣ S(d(yi - v))f(u) do).

By noting that the integrand is non-negative the order of integration and expectation 
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may be reversed yielding

E[Sp(0, h)R(u, U ÷ h)]
ruth rh r

= q/ E[Sp(dxi)SW(d(y1 - v))]f(v) dv
Ju J

ruth rh r
+ / ∖ ∖ E[Sp(dxi)S3(d(y1 - v))]f(v) dv. (4.4.12)

Ju Jθ J

Because of the thinning assumption, the two expectations in (4.4.12) can be expressed 

as

E[Sβ(dx1)S,w(d(y1 - υ))] = E[Sp(dzi)Sw(d(i - v))1(,,-*>p)l, (4.4.13)

and

E[SB(da )S(d(ui - 1))l

E[Sp(dai)Sp(d(1 v))1(,,->p)l(sp(v-V,M-v-+d)=o).- (4.4.14)

Using the independence of UJ1-v and the fact that Se and Sw are independent Poisson 

processes with rates Ps, and psw, respectively, (4.4.13) can be re-written as

E[Se(dai)Sw((w - v)) = (1 - p)PswPsp dx1dy1. (4.4.15)

To simplify (4.4.14), we note that if 0 <I1- (y1 -v)<d, then SB(y1 — v) is deleted, 

because there is then a point at least d time units after SB(y1 — v). Thus, we get the 

expression

E[Se(di)SG(d(w - 1)1

= (1 - p)e-4GpsptpN)(Co(21, V1,v) + C(i,y,v)) dxι dy1, (4.4.16) 

where

Co(ai,Y1,v) Ps,(PSa + PN)l(40- v,n- v+d)}, 

Ci(x1,y1,v) = Psaδ(yι - v-1).

The terms Co and C‘1 account for the events that the condition 0<1-(yi-v) <d 

fails and holds, respectively. If the condition holds, then (4.4.16) is nonzero only 

when x1=y- v, which is identified by the Dirac delta in C1.
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Substitution of (4.4.15) and (4.4.16) into (4.4.12) gives

E[SB(O, h)R(u, u + h)]
∕ rh ru+h r

= (1-p)(g / J J PSpPSwf(V) dvdyι dx1

rh ru+h r ∖
+ Jo J J e-"PsatPN)[Co(21,91,0) + C1(x1,y1,v)1f(v) dv dy1 dai)(4.4.17)

Using the property of the Dirac delta with x -υ and Co = Y1 — T1, and noting that 

since f(v) is a density function we have f f(v) dv = 1, (4.4.17) simplifies to

ESB(0, h)R(u, u+h)]=(1- p)ps. (qh2psw

4e-d(PSB +PN )
h ruthr

(PSb +PN) J 1(ve(v +ayyf(u) dυ

+f(-2) dyi dz))(4.4.18)

Finally, substituting (4.4.18), after two applications of the mean value theorem for 

integrals to the double integral involving f{y1 - 1), we get an expression for PSeR(u):

PS„R(u) = lim E[SB(0, h)R(u, u + h) h—0
= (l-p)psplapsw+e-A(psptPN){(Ps, +PN)P(V $ (u,u + d)) + ∕(u)}].

In a similar manner PswR(u) can be obtained, by noting that by similar arguments 

we have:

E[Sw(dai)Sw(d(1-v))1 = E[Sw(dxi)Sw(d(1-v))1{,->pil 

= (1-p)[sw + Pswo(i - 31+)],

and

E[Sw(dai)sp(d(yi - v))] = E[Sw(dai)Sp(d(i - v))1{,,->p)l(sg( -υ,yι-v+d)=0}] 

= Psw(Psp + PN)(I - p)e-dGp9atpn),

so that

PswR(u) = (1 - p)psw[q{psw + f(u)} + (Psb + Pv)e d(Pss+PN)'ι
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4.4.3 Response-Response Second Order Intensities

Arguments similar to those used in the derivation of the second-order stimulus­

response second-order intensities are used in the derivation of the response auto­

intensity function PRR(u).

E[R(x,x + h)R(y, y + h)]

= Elq / / SW(d(x1 - 1))f(v) dui+ / / Sp(d(x1 - V))f(V1) dvi} 
J Jx JJχ 
r ry+h r ry+h 

x{qSW(d(yi - 2))(V2) dv2 + Sp(d(yi - V2))(V2) dv2}]
J Jy JJy

= (1-p)2efj
rx+h ry+h
/ E[Sw(d(a1 - vi))Sw(d(yi - v2))]
x Jyy1=x1

xf(Vi)f(V2) dxι dyι dv1 dv2 + PrI(,x + h) O(y, y + h)lL
r r rx+h ry+h
∕ / ∕ I E[SB(d(x1 - vi))Se(d(yi - v2))1(s,(1-01,*1-01+d)=0)
J J Jχ Jyy1=x1

x1(sg(1-V2.m-V2+d)=0]f (V1)f(V2) dai dyι dvi dv2 +Pr∖(x,x + h) A(y,y+ h)L
rrr+h ry+h '

+ 2q / E[Sw (d(x1 - V1))Ss(d(yi - V2))
J J Jx Jy

X 1(sg(-V2,M1-02+d)=o)]f (Vi)f(V2) dxi dyi dvi dv2

Making use of the fact that SB and Sw are independent Poisson processes with 

respective rates PSe + PN and PSw allows us to write the second term in the sum as 

/ h (ps, +PN) e (Psp PN)1(e- 0A(u- va.0- va+ay)ltu- v2€(- 0,- v+ay)lf (vi)/(V2) du) dv2

After division by h2 and letting h → 0, we obtain an expression for PRR(u), where 

u=y-x:

PRR(u) = (1-p)2lo2p8w + (psa + PN)2e-240P5p*PW)P(V - V,-u> 4) 

+2qps. (ps, + PN)e-d(Psp +PN)].

4.5 Nonparametric Intensity Estimation

As for simple RT, the first-order response intensity can be estimated by

ÔR = R([O, T])/T, (4.5.1)
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where T is the time of the last response (T = max(Rx)). Let K(x) be a symmetric 

second order smoothing kernel with compact support, and h be an appropriately 

chosen bandwidth. Then the second-order nonparametric intensity estimates are 

given by

PsR(u) -> Ex("=(R=S)). (4.5.2) 

where S denotes one of the stimulus processes, and

PARu)=L EEx(u-(R)-R)). (4.5.3) 
In this analysis we use the biweight kernel, K(x) — (15/16)(1-x2)21{2<1). Brillinger 

(1975b) has shown that under cumulant mixing conditions, the intensity function 

estimates are asymptotically normal as h → 0 and Th → ∞, with mean

Epsr(u)l = K(ui)psr(u - u1h) du (4.5.4) 

and asymptotic variance

(Th)( K2(uj) du) PsR(u) (4.5.5)

The bias is of order O(h2).

We assume that the cumulant mixing condition holds, so that the above holds for 

each estimate, replacing PSR by the desired second-order intensity. This is justifiable 

since the condition holds under the model (see Section 4.3), and the model is a rough 

approximation to the data.

4.5.1 Bandwidth Selection

We find optimal bandwidths for the intensities by minimizing the asymptotic mean 

integrated squared error (AMISE) with respect to h, the bandwidth. A general ex­

pression of the AMISE optimal bandwidth for a second-order intensity is derived in 

Section 2.6.1, and in the case of the biweight kernel we have

35fpsR(u) du 11/5
hAMISE(PSR) = 82- - - - 2 • (4.5.6)LT J (82.PsR(u))2 du.
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Using our fitted model, we can obtain estimates of hAMISE(PSR), which are dif­

ferent for each intensity. Based on the expression for PSeR(u), given in (4.3.2), it can 

be seen that dependency on u is through

Wp(u) = P(V 4 (u,u+ d)) + -(), 
PsB + PN 

which, under the assumption of a normal delay distribution, has second derivative 

, u+d-u. , 1 ((u-u)2 ∖ (u-u)
wM =------of(u+d) + -—-——2 -1 - —2 f(u),02 L(PSB + PN)02 \ o2 ∕ σ J 

where f(-) is the Normal density with mean μ and variance o2. Similarly, from (4.3.3) 

it can be seen that PSwR(u) is dependent on u only through

, f(u) 
ww(u) =----- ,

PSw
for which we have

, 1 ((u u) ) ww(u) =----- 2---- 2----- 1 f(u).Pswo'N 02 /
Thus,

@Ps„n(u) = (1 - p)Psb (Psb + PN)e-d(PSp+PN)w'Z(u),

and
82 82,PSw R(u) = (1 - P)qpswww(u).

Similarly, using the expression for PRR(u) given in (4.3.4) it can be seen that this 

intensity depends on u by the term:

s(u) = P(V2 — Vi — u > d),

which has second derivative 

s"(u) = (u + d)g(u +d) (u — d)g(u — d) , 

where g(-) denotes the Normal density with mean 0 and variance 2σ2. Thus, 

2PRR(u) = (1 - p)2(psp + PN)2e 24C75p*PM)g"(u).

Finally, for a given second-order intensity, substitution of the intensity expression 

and corresponding second derivative into (4.5.6) yields the exact form of an optimal 

bandwidth.
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4.6 Parameter Estimation

For our parametric model the likelihood function does not have a closed-form expres­

sion, so parameter estimation via maximum likelihood is very complicated, and may 

not even be possible. Assumptions 1 through 5 allow us to use a quick approximation 

method that is a modification of the one used by Braun et al. (2003) to estimate u, 

σ, and the noise process rate PN for simple RT data.

In Braun et al. (2003) an iterative algorithm is used to obtain û, Ô, and ÔN for 

simple RT data. Assuming independent and identically distributed reaction times 

from both the black and white flashes allows us to consider only the times of the 

flashes and responses, and not the types of flashes. In their algorithm, estimates of 

μ and σ are obtained after each iteration. However, the locations of the peaks of 

the intensities PSwR(u) and PSpR(u) correspond to the modes of the white and black 

reaction times, respectively, which we assume to be equal. Therefore, the locations of 

the peaks for the corresponding nonparametric estimates should be near the value of 

the mean reaction times, since we are assuming a symmetric distribution. Based on 

simulated data we have found more variability in the location of the peak for PswR(u) 

- this is discussed further in Section 4.7. Therefore, we focus on PSgR(u), and as a 

modified algorithm, we choose the location of the peak of PSeR(u), which we denote 

uo, as an initial value for the estimation of μ. The estimates of σ and the noise rate 

PN are as in the algorithm of Braun et al. (2003). The modified algorithm is given 

as Algorithm 4.6.1. The algorithm is dependent on the assumption that the reaction 

times are normally distributed, but it can be adapted to handle other distributions, 

if necessary.

Algorithm 4.6.1. For RT data (S, R) the parameters u, o, and PN can be estimated 

as follows:

L Find the location of the peak in a nonparametric intensity estimate of PSpR(u) 

and set Lo as the peak location.

such that R7-S^•J
A

2. Match each response time Rj with a flash time preceding it, Sj,

is closest to μo, to obtain estimates of the reaction times: Vj ≈ Rj — S".
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3. Estimate μ and σ by the mean and standard deviation of the Vj.

4- Let T = Rnr, where NR is the number of responses. Estimate the noise rate PN 

by:
. K{Sy': Sy = SXH
PN =---------T--------- '

where ∣ ∙ ∣ denotes set cardinality,

Examination of plots of the intensities PSwR(u) and PRR(u) indicate that these 

functions may be useful in obtaining estimates of q and d, respectively. Further­

more, for long-run experiments (large T values) the bias of each of the nonparametric 

intensity estimates is near zero, and one expects the difference between the nonpara­

metric and parametric estimates to be minimal. We obtain estimates of d, q and p 

by minimizing the differences between parametric (based on model expression with 

parameter estimates) and corresponding nonparametric estimates at a certain point.

Manipulation of (4.3.1), the expression for PR, allows us to express p in terms of 

d and q as follows

- - - - - - - - - Pr— - - - - - , (4.6.1)
(Psp + Me APspTPN) + qpsw

where PR is a nonparametric estimate given by (4.5.1) and ÔN is the estimate obtained 

from Algorithm 4.6.1. If (4.6.1) is negative then we set p as zero.

Motivated by the effect of q on the behavior of PSwR(u), manipulation of (4.3.3)
A

with p replaced by (4.6.1) yields an expression for q that involves d:

6= (462)
PswÂswR(u) - PswPr{Psw + F(u))

A

In (4.6.2), the density estimate f(u) is obtained by using the estimates of μ and σ 

obtained from Algorithm 4.6.1. Evaluation is done at u = û, which is the location of 

the peak for PSwR(u). Since we assume a N(u,o) delay distribution, we write Qa,s(û) 

rather than f(û) in the remainder of this chapter.

Depending on whether or not the presence of non-linear inhibition is assumed, we 

develop a corresponding estimation method.



86

4.6.1 Absence of Non-Linear Inhibition

In the case that d = 0, our estimate of p (4.6.1) simplifies to:
A

______ PR______  
(Psp + PN) + @psw ’

(4.6.3)

Furthermore, our expression for Â (4.6.2) with d = 0 reduces to:

^ (PS, +PN)∣PswPR-PswR(μ)l
PswPswR.h(â) PswÔrÛÂSw + Ça,>(û)) 

where ÔSwR,h(û) is a nonparametric estimate (4.5.2). We set Â as zero when evaluation 

of (4.6.4) yields a negative value.

Because of the dependence of our estimates on nonparametric estimates, the ac­

curacy of our estimates will depend on the choice of bandwidth. As shown in the 

previous section, the AMISE optimal bandwidth depends on the values of the model 

parameters. Therefore, to obtain ÔSwR,h(û) we first find an initial bandwidth h using 

the already obtained estimates û and σ, along with d = 0, q = qo and p = p. Since 

the error probability is likely relatively small, we use qo = .05, as an initial value. 

The estimate of ÔSwR,h(û) can then be used to obtain Â, which can be used to find 

p. If Â > 0, we use our parameter estimates to update the value of h. Using this 

bandwidth, a nonparametric estimate is obtained once more and then used to obtain 

a final update of the parameter estimates for q and p.

4.6.2 Presence of Non-Linear Inhibition

In this case d > 0, and our expressions for p and q, as given by (4.6.1) and (4.6.2), 

involve d. Therefore, p and q can be found upon finding an estimate of d.
_ A

The effect of d on the intensity PRR(u) helps us obtain d. We consider estimation 

at the trough location u = 0. Substituting (4.6.1) and (4.6.2) into the expression for 

PRR(O) as given in (4.3.4) enables us to express PRR(O) as a univariate function of d. 

However, a closed-form expression for d cannot be found, so we find an estimate of d by 

choosing d that minimizes the distance between the parametric and nonparametric 

estimates of PRR(O). This is accomplished by using the optimize function in the 
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statistical package R (R Development Core Team (2006)), which uses a combination 

of golden section search and successive parabolic interpolation. We use a search 

interval of [0, .3] for our d estimate.

As in the previous case, since our estimates depend on the nonparametric esti­

mates, we use an initial bandwidth h to obtain parameter estimates. In finding this 

initial bandwidth, we set do as the midpoint of the search interval for d. Using the 

resulting parameter estimates we then update the bandwidth and use this to obtain 

our final parameter estimates.

4.7 Application to Simulated Data

In this section we study the behaviour of our intensity function estimates for simulated 

data. Our parameter estimates tend to be close to the true parameter values of 

the simulated data. Furthermore, plots of the intensity estimates and corresponding 

nonparametric intensity estimates reveal that the two estimates share similar features.

Recall that since we are assuming a symmetric reaction time distribution, the lo­

cation of the peaks for the nonparametric intensity estimates of PSpR(u) and PSwR(u) 

should be near the mean reaction times from white and black flashes, respectively. 

Based on nonparametric intensity estimates of PSeR(u) and PSwR(u) for simulated 

data generated by Algorithm 4.6.1, although the data is generated such that the 

mean reaction times are μ for both black and white flashes, the two peaks do not 

always occur at similar locations; the distance between the peak locations was found 

to vary from 0 to as much as 0.16, with the largest differences occurring when d 

and/or q are small, and most differences being less than 0.06. The peak location for 

PSpR(u) is consistently near u, while there is more fluctuation in the peak location 

for PswR(u). Examples of peak locations for simulated data with various parameter 

settings and flash rates are given in Table 4.1.
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Table 4.1: Peak locations for nonparaιnetric estimates of PswRw and PSeRe for simu­
lated choice RT data, with u =.4,o = .08, p = .1, Pnb = PNW — 0, d and q specified 
in the column headings, and PswiPSp specified by the row names. A bandwidth of 
h = .15 was used. The entries in the table are (psbrb peak location, PSWRW peak 
location).

PSpiPSw d = 0,q =.05 d =.1,q =.05 d =.2,4 =.05 d =.1,q =.02
.2,.2 (.40,.52) (.41,.56) (.41,.45)
.2,.2 (.40,.32) (.41,.42) (.40,.47)
.4,.4 (.40,.31) (.40,.34) (.41,.35)
.4,.4 (.41,.35) (.40,.47) (.39,.46)
.6,.6 (.39,.43) (.40,.27) (.41,.28)
.6,.6 (.40,.49) (.41,.40) (.40,.47)
.5,.7 (.39,.49) (.39,.35) (.42,,36)
.5,.7 (.39,.36) (.40,.50) (.41,.43)

(.39,.30)
(.40,.45)
(.40,.33)
(.41,.25)
(.41,.46)
(.41,.31)
(.42,.34)
(.38,.43)

4.7.1 Absence of Non-Linear Inhibition

Here, we provide two examples of estimation under the assumption of d = 0, for 

simulated data with d = 0. Estimates are obtained using the method of Section 4.6.1 

with Algorithm 4.6.1.

In our first example, we consider simulated data with equal flash rates. The 

simulated data consists of 800 flashes and has parameters u =.4,o = .1, PN = 0, 

d = 0, p = .15, psB = .5, PSw = .5, and q = .1. The estimates we obtain are û = 0.394, 

σ = 0.093, q = 0.098, p = 0.163, and PN = 0.019. An illustration comparing the 

parametric and nonparametric intensity estimates is given in Figure 4.3. The general 

features of the nonparametric estimates appear to be captured by our model.

The means and standard errors of estimates based on 500 simulations of 800 

flashes with the same parameter settings as in the previous example are given in 

Table 4.2 The estimates have small standard errors with the largest standard error, 

.0434 belonging to p.

Next, we consider simulated data with different flash rates. The simulated data 

consists of 800 flashes and has parameters μ = .4, σ = .1, d = 0, p = .15, PSs = .7, 

Psw =.5, q = .1, and PN = 0. The estimates we obtain are û = 0.395, Ô = 0.092, 

q = 0.097, p = 0.188, and ÔN = 0.037. An illustration comparing the parametric
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Figure 4.3: Second-order parametric (solid lines) and nonparametric (dashed lines) 
intensity estimates for simulated data with psw = .5, psB = .5, and d = 0.

and nonparametric intensity estimates is given in Figure 4.4. The nonparametric and 

parametric estimates exhibit the same main qualitative features; the nonparametric 

estimates are affected by greater variability

Table 4.3 displays the standard errors of the estimates for 500 simulations with 

parameters μ = .4,0 =.1,d = 0,p = .15,PS, = .7,psw = .5,PN = 0, and q = .1. The 

estimates of p an q have the largest standard errors, .0380 and .0306, respectively.

4.7.2 Presence of Non-Linear Inhibition

Here, we provide two examples of estimation for simulated data with d = .2. Esti­

mates are obtained using the method of Section 4.6.2 with Algorithm 4.6.1.
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Table 4.2: Standard errors of parameter estimates for simulated data with rate pss = 
Psw = ∙5 and d = 0, based on 500 simulations

parameter true value mean standard error
M .4 .398 .0066
σ 1 .091 .0038
Q .1 .074 .0268
P .15 .159 .0434
PN 0 .022 .0052

Table 4.3: Standard errors of parameter estimates for simulated data with psw = .7, 
p8e = .5, and d = 0, based on 500 simulations

parameter true value mean standard error
M .4 .398 .0060
σ .1 .089 .0035
Q .1 .076 .0306
P .15 .175 .0380
PN 0 .040 .0078

In our first example, we consider simulated data with equal flash rates. The 

simulated data consists of 800 flashes and has parameters μ = .4, σ = .1, d = .2, 

p = .15, psb = .5, psw = .5, and q = .1. The estimates we obtain are μ = 0.398, 

σ = 0.087, d = .193, q = 0.083, p = 0.183, and pχ = 0.011. An illustration comparing 

the parametric and nonparametric intensity estimates is given in Figure 4.5. The same 

main qualitative features are exhibited in both estimates.

Table 4.4 displays the standard errors of the estimates for 500 simulations with 

parameters μ = .4,σ = 1,d = .2,p — .15,p¾ = .51psw == .5,PN = 0, and q = .1. The 

estimates of d have the largest standard error, .0468, and tend to be underestimated.

Next, we consider simulated data with different flash rates. The simulated data 

consists of 800 flashes and has parameters μ = .4, σ = .1, d = .2, p — .15, psB = .7, 

psw =.5, q = ,lj pN = 0. The estimates we obtain are μ = 0.406, σ = 0.090, 
A

d = .214, q = 0.100, p = 0.155, and pχ = 0.007. The parametric and nonparametric 

intensity estimates are displayed in Figure 4.6. The nonparametric estimates have
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Figure 4.4: Second-order parametric (solid lines) and nonparametric (dashed lines) 
intensity estimates for simulated data with Psw = .5, psβ = .7, and d = 0.

greater variability, but both estimates have similar characteristics.

Standard errors of the estimates for 500 simulations with parameters μ = .4,0 = 

.l,d= .2,p = .15,p¾ = .7,psw = .5,PN = 0, and q=.1 are given in Table 4.5. The 

standard errors are quite small with p having the largest standard error .0491.

4.8 Model Fitting for Go-no go RT data

We fit our model to ten pooled runs (pooling based on 8 runs of 100 flashes each), 

each with equal stimulus rates. A description of how we pooled the data is provided in 

Section 3.3.6. We also consider an example of estimation for the individual unpooled 

data. The stimulus rates are 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 2.0, 4.0, 5.0 and 8.0; because
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Table 4.4: Standard errors of parameter estimates for simulated data with rate PSB = 
Psw = .5, based on 500 simulations

parameter true value mean standard error
μ .4 .402 
σ .1 .092 
d .2 .189 
q .1 .074 
p .15 .139
PN 0 .009

.0066

.0086

.0513

.0288

.0511

.0033

Table 4.5: Standard errors of parameter estimates for simulated data with PSw = .7, 
PsB — .5, and d = 0, based on 500 simulations

parameter true value mean standard error
u 
o 
d

.4 .404 .0065

.1 .090 .0037

.2 .196 .0388
q
P
Pn

.1 .069 .0333
.15 .138 .0491
0 .013 .0043
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Figure 4.5: Second-order parametric (solid lines) and nonparametric (dashed lines) 
intensity estimates for simulated data with Psw = .5, pse = .5, and d = .2.

of equal stimulus rates a rate of 1.0 corresponds to PSg = PSw = 0.5.

We make the simplifying assumption that the distribution of the reaction times 

from white and from black flashes are identical, so that they have the same parameters 

μ,σ (Assumption 3). We use Algorithm 4.6.1 to obtain the estimates of μ, o, and PN. 

For the real data we do not make the restriction of assuming d = 0. Thus, estimates 

of p, q, and d are found using the method of Section 4.6.2.

Recall that the location of the peaks for the nonparametric intensity estimates of 

Psbr(u) and PswR(u) should be near the mean reaction times from white and black 

flashes, respectively. Based on plots of these nonparametric estimates for the ten 

pooled data sets the assumption of equal means for the black and white reaction
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Figure 4.6: Second-order parametric (solid lines) and nonparametric (dashed lines) 
intensity estimates for simulated data with Psw = .5, psa = .7, and d = .2.

times appears to be somewhat unrealistic for the majority of the data sets. However, 

we also found that for simulated data there is large variability in the location of the 

peak for PSwR(u). Taking this observation into account, the assumption of equal RT 

means from black and white flashes is not unreasonable. Locations of the peaks for 

the ten pooled data sets are given in Table 4.6, while the parameter estimates are 

given in Table 4.7.

The mean reaction time estimates μ are in the interval (0.3,0.4), and tend to 

decrease as the rates increase. A faster reaction time as the rate increases may result 

from the high flash intensity which makes the subject expect flashes with a high 

frequency. In simple RT experiments run at nine of the ten rates the mean reaction
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Table 4.6: Peak locations for nonparametric estimates of psbr and PSwR for pooled 
choice RT data, using a bandwidth of h = .15.

PSB 5 PSw PSAR(u) Peak location PSwR(u) peak location

0.2
0.3
0.4
0.5
0.6
0.7
1.0
2.0
2.5
4.0

.39 .31

.37 .31

.36 .32

.36 .31

.36 .26

.33 .29

.33 .29

.33 .26

.30 .27

.30 .24

Table 4.7: Parameter estimates for each of the ten pooled data sets

Pse , PSw
A d A

P
A

9 PN
0.2 .393 .077 7 × 10-5 .114 .061 .015
0.3 .376 .068 7 × 10-5 0 .024 .032
0.4 .376 .082 .159 0 .023 .014
0.5 .368 .073 7 × 10-5 .054 .012 .032
0.6 .363 .074 .123 0 0 .027
0.7 .349 .088 .199 0 .041 .023
1.0 .339 .069 .098 0 .040 .061
2.0 .327 .062 .170 0 .044 .074
2.5 .308 .057 .175 0 .014 .069
4.0 .307 .051 .107 .112 .0004 .131
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times are near 0.3 (see Table 3.2 for the complete results), so the mean is higher for 

go-no go RT experiments. That is, the time to respond to a flash in a go-no go RT 

experiment is longer than in a simple RT experiment, which seems reasonable since 

a go-no go RT experiment involves the extra tasks of identifying and responding to 

only the black flashes. In psychophysics, this result is well-known (see Luce (1986)).

The rate of the noise process also increases with the stimulus rates, which seems 

to agree with intuition because as flashes are presented with a higher frequency it 

seems more likely that the subject will be overwhelmed and press the button in the 

absence of a flash.

The estimates of d are essentially zero when both flash rates are .2, .3, or .5, while
A

d > .09 for the remaining stimulus rates. This suggests that temporal summation 

(two consecutive flashes viewed as one bright flash) occurs more frequently in the 

visual system when flashes are presented at a fast rate. Recall that in our parametric 

model, when a black flash occurs within d time units after the previous black flash, 

the two flashes are perceived as one bright flash, and only one response occurs.

Completely random thinning does not appear to occur, as indicated by p = 0 for 

the majority of the cases. For most data sets, the estimated error probability Â is 

small and positive, giving an indication of the proportion of wrong response types.

Comparisons of the parametric and nonparametric second-order intensity esti­

mates reveal that the correspondence between the two curves is closest for low to 

moderate flash rates (e.g. rates of .2 to .7 flashes/s for each flash type). For the three 
A

data sets with d = 0 (PSgIPSw ∈ {0.2,0.3,0.5}) we do not consider plots of PRR(U) 

because the intensity is constant. In Figures 4.7 to 4.16 it can be seen that key 

features of the nonparametric estimates are captured by the parametric estimates.

In Figures 4.7 and 4.8 the difference in the peak locations is quite apparent, as
A

observed in Table 4.7. For these data sets we also have d near zero. Such results 

are consistent with the results obtained for our simulations; for simulated data with 

small d values there were occurrences in which the difference in peak locations was 

as large as 0.16.

Comparison plots of the intensity estimates for go-no go RT data with black and
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Figure 4.7: Second-order parametric (solid lines) and nonparametric (dashed lines) 
intensity estimates for pooled go-no go RT data with PSB = psw = .2.

white flash rates of PSe = PSw = .7 are given in Figure 4.12. In the plot for PS„R(u) 

there is a dip to the left of the peak in both estimates, and the peak location is 

similar for the two estimates. The nonparametric estimate of PSwR(u) has a lower 

peak location than the parametric estimate, but the model is able to capture the low 

height of the intensity. Both estimates of PRR(u) reach the same trough depth, with 

the parametric estimate slightly wider.

As a comparison, we also studied parameter estimation for the unpooled data. 

The parameter estimates for the unpooled data tend to fluctuate around the esti­

mates obtained for the pooled data. As an example, the parameter estimates for the 

unpooled data sets with Ps, = PSw = .7 have the means and variances as given in
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Figure 4.8: Second-order parametric (solid lines) and nonparametric (dashed lines) 
intensity estimates for pooled go-no go RT data with PSg = PSw = .3.

Table 4.8, where the pooled estimates are provided as well. The means of the para­

meter estimates for the unpooled data are quite close to the estimates obtained for 

the pooled data.

4.9 A Go-no go RT Threshold Model

In a simple RT experiment, if two flash types are presented, the subject presses a 

button immediately after perceiving either flash type. In Chapter 3 we assumed that 

there was no bias in response to flash type, so that flash type was not taken into 

account in the corresponding threshold model. However, since only black flashes are 

responded to in a go-no go RT experiment, flash type must be taken into consid-
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Figure 4.9: Second-order parametric (solid lines) and nonparametric (dashed lines) 
intensity estimates for pooled go-no go RT data with PSp = Psw = .4.

eration; most responses occur after a black flash, and those in response to a white 

flash are errors. As in the simple RT threshold model the go-no go threshold model 

involves one internal potential and a single threshold.

In our conceptual model, the stimulus, which consist of both black and white 

flashes, passes through an internal filter. Internal noise is added to the filter output, 

forming the internal potential. When the internal potential exceeds the threshold θ 

the subject decides that there is a black flash and presses the button.

Prior to setting up the threshold model, notation must be introduced, some of it 

repeated from Chapter 3 for convenience. We discretize a point process S into the 0-1 

time series X as follows, where we choose some lag value m to create the time intervals
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Figure 4.10: Second-order parametric (solid lines) and nonparametric (dashed lines) 
intensity estimates for pooled go-no go RT data with PSe — Psw = .5.

{(0, m], (m, 2m], ...(T,T+ m]} = {I, I2,..., Ir}, where T = m[max(RB, RW)/m°

1, if there exists Sk such that Sk € I;

0, otherwise

We use the following notation:

• SB and SW denote the black and white stimulus point processes, respectively;

• R denotes the response point process;

• XB and XW denote the discretized black and white stimulus point processes;

• Y denotes the discretized response process;
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Figure 4.11: Second-order parametric (solid lines) and nonparametric (dashed lines) 
intensity estimates for pooled go-no go RT data with PSp = Psw = .6.

• 7j denotes as of time t, the number of time intervals elapsed since the last 

interval containing a response (t ∈ Ij, so that j is the index of the interval 

containing time t);

• at-τ represents the effect of a black flash on the internal potential at time t, 

assuming such a flash occurs in a time interval with right endpoint T;

• ht~τ represents the effect of a white flash on the internal potential at time t, 

assuming such a flash occurs in a time interval with right endpoint τ.

• Ut is the internal potential at time t.
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Figure 4.12: Second-order parametric (solid lines) and nonparametric (dashed lines) 
intensity estimates for pooled go-no go RT data with Pse = psw = .7.

A response occurs when

U,+e> 8,

where θ is the threshold, and Et is internal noise, which we assume to have a symmetric 

distribution about 0.

A simple model for the internal potential does not include interaction terms and 

is given by 
flt-1

Ut = 2(ayXPu + byXML),
u=0

where gt = min{7t, G}, and G is the maximum number of time intervals (prior to the 

current time interval) that are of interest. Again, we consider only lags of less than 

1 s; when m = .05 we would have G = 20.



103

3 
Y 
0 
( 0

0

N

if. I

0. 0)

NN

3
Y 
3 

00 
0

W
Y

to 
6

to 
C

∣1

1 1

1------1 1 11------Γ

0.0 02 0.4 0.6 0.8 1.00.0 0.2 0.4 0.6 0.8 1.0

Figure 4.13: Second-order parametric (solid lines) and nonparametric (dashed lines) 
intensity estimates for pooled go-no go RT data with PSp = Psw = 1.0.

We consider interactions of a black flash occurrence in a time interval with right 

endpoint t with the occurrence of any black flashes occurring within d time units 

earlier, for some d. For simplicity we set d = rm, for some integer r, since we are 

working with data that is discretized using lag m. Letting Zj = I{2=1 XJ; > 0}, 

the internal potential can be expressed as

u=0

where zt = min{ Yt, z}, and % ≤ G is the maximum number of time intervals (prior to 

the current time interval) that are of interest for an interaction effect on the internal 

potential.

The coefficient of the interaction terms Cu can be used to make inferences on any
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Figure 4.14: Second-order parametric (solid lines) and nonparametric (dashed lines) 
intensity estimates for pooled go-no go RT data with PSp = Psw = 2.0.

inhibition or facilitation occurring among the black flashes. If cu is significantly differ­

ent from zero and is positive then the term cuX,.Zu gives a positive contribution 

to the internal potential Ut when there is a black flash at time t — u and another 

black flash within d time units earlier. With an increase in Ut, the internal potential 

is closer to crossing the threshold 0 and causing a response. Thus, positive significant 

interaction coefficients provide evidence of facilitation among the black flashes. By 

similar reasoning it can be seen that negative coefficients are indicative of inhibition.

Our fitted model has the form

0,

11
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Figure 4.15: Second-order parametric (solid lines) and nonparametric (dashed lines) 
intensity estimates for pooled go-no go RT data with PSB = PSw = 2.5.

where Ût is a function of the stimuli and the coefficient estimates.

We fit the model 
. f 0, if f * < 0

■ 1, if Y* > 0

where

Î*=Û+B
so that the estimate of the threshold θ is the negative of the intercept estimate β.

We fit models to ten go-no go pooled RT data sets (pooling based on 8 runs of 

100 flashes each), each with equal stimulus rates. We pool the data as described in 

Section 3.3.6. The rates of flashes per second are 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 2.0, 4.0,
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Figure 4.16: Second-order parametric (solid lines) and nonparametric (dashed lines) 
intensity estimates for pooled go-no go RT data with PSg = PSw = 4.0.

5.0 and 8.0. In each experiment black and white flashes are presented with equal 

rates so that each has a rate equal to half of the total flash rate. When converting 

the data to 0-1 time series a lag of m = .05 is used. We employ the same model 

assessment strategy as we did in Chapter 3.

In order to study the behaviour of the fitted model and diagnostic for data in 

which we know the relationship between the flashes and responses, we fit our model 

to data generated from our parametric go-no go model using Algorithm 4.2.1.

Based on the diagnostic plots for simulations resulting from various parameter 

settings, it appears that regardless of the presence or absence of thinning within the 

black flashes (parametric d parameter non-zero or zero, respectively) the fit tends to
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Table 4.8: Comparison of pooled and unpooled parameter estimates for data with 
rate ps - .7

parameter pooled estimate mean of
unpooled estimates

standard deviation of 
unpooled estimates

u .349 .354
σ .088 .083
d .199 .144
q .041 .049
p 0 .017
PN .023 .021

.0008

.0002

.0066

.0046

.0022

.0001

improve as the flash rate increases. Such an improvement is usually most apparent 

when the two flash rates are at least 0.5. Any problems in the fit occur in the
A

upper tail, Ut > O, where empirical probabilities tend to be much smaller than those 

resulting from the model.

An example of a close fit is for a simulation with parameters μ = .5, σ = .12, 

d =.1, p = .15, Pse = 2, psw = 2 and q = .1. This can be seen in the diagnostic plot, 

which is provided in Figure 4.17. Figure 4.18 displays plots of the correct (black flash­

black response) and error (white-flash-black response) linear filters. As expected, a 

peak for the correct impulse is located near 0.5, the same value as the mean parameter 

u. Before 0.2 s there appears to be an increase in the number of errors resulting from 

a response to a white flash, as can be seen from the error impulse peak before u = .2.

The majority of the interaction coefficients are negative, agreeing with the form 

of the parametric model, which incorporates a thinning mechanism.

We now discuss the fitted threshold models for the experimental data. The “best­

fitting” model varies for each of the data sets, with different d parameters, and dif­

ferent numbers of interaction terms. The threshold estimates are given in Table 4.9, 

from which it can be seen that the threshold tends to decrease with the stimulus 

rate. Such behavior is expected since the response frequency should increase as the 

flash rate increases. The internal potential Ut will cross the threshold more frequently 

when there is a fast stimulus rate; in a short time interval more flashes occur so that 

after a small amount of time a response occurs. In order for the internal potential to
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Figure 4.17: Diagnostic plot for simulated go-no go RT data with parameters μ = .5, 
o = .12, d=.1, p = .15, Psb = 2, psw = 2 and q = .1. The points are the empirical 
probability of a response, and the curve is the corresponding fitted probability.

cross the thresholds within a short period of time it is anticipated that the threshold 

must not be large when the flash rate is high.

Plots of the correct (response to black stimuli) and error (response to white stim­

uli) impulse responses are provided in Figures 4.19 and 4.20, while plots of the peaks 

of each impulse as function of the lag are displayed in Figures 4.21 and 4.22. The 

peak locations are between 0.3 and 0.4, which agree with our estimates of the mean 

reaction time using our parametric model.

There is a tendency for the peaks of the correct response impulses to decrease with 

the stimulus rate, which is consistent with intuition. With a slower stimulus rate one 

is less likely to miss a stimulus or mistakenly press the wrong button. A higher peak
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is an indication of a larger frequency of responses to the stimulus type at the lag for 

which the peak occurs. The error impulses have smaller peak values; with a lower 

frequency the wrong button is pressed.

The majority of the interaction effects are negative, suggesting the presence of 

inhibition effects among the black flashes. This provides some support for our para­

metric model, which incorporates thinning among the black flashes. Table 4.10 lists 

the lags of the interaction coefficients included in the model, as well as the corre­

sponding coefficient value, for each data set. Interaction terms were not found to give 

an improvement to the fits for the data sets with rates 5.0 and 8.0.

Figure 4.23 displays examples of diagnostic plots, for four of the ten data sets. 
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Table 4.9: Threshold estimates θ for gonogo RT data. 

rate θ 
0.4 6.36 
0.6 5.55 
0.8 5.53 
1 .0 4.85 
1.2 4.80 
1.4 4.47 
2 .0 4.02
4.0 3.22
5.0 2.79
8.0 2.98

The diagnostics suggest that our threshold model fits the data quite well when the 

flashes are presented with a (combined) rate of at least 1.0. Based on the diagnostic, 

the threshold models are a poor fit for the data with the slower flash rates of 0.4, 0.6, 

and 0.8.

The diagnostic plots for the rate 0.4 data (not shown) and 0.6 data (not shown) 

reveal similar behaviour to the plot for rate 0.8 data. However, the rate 0.6 diag­

nostic plot indicates a slightly better fit at the upper tail. Furthermore, the rate 0.4 

diagnostic suggests that the fitted probabilities tend to underestimate rather than 

overestimate, as in the rate 0.8 diagnostic.

The rate 1.0 and 1.2 diagnostic plots (not shown) exhibit the same behaviour as 

the rate 1.4 diagnostic plot, while the rate 4.0 diagnostic (not shown) is similar to 

the rate 2.0 diagnostic, and the rate 8.0 diagnostic (not shown) resembles the rate 

5.0 diagnostic. Each of these diagnostics suggest that a threshold model fits the data 

quite well.

4.10 Discussion

In this chapter we introduced a parametric model and a threshold model for go- 

no go RT data, and fit each model to both real and simulated data. Each model
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Figure 4.19: Plots of the black stimulus linear filters for each of the 10 go-no go RT 
data sets. Curves are labelled by the stimulus rate (s). Each curve is shifted upwards 
by one unit.

is studied for a different reason. The parametric model is of interest for providing 

a basis for understanding the behavior of nonparametric intensity estimates, while 

the parameters in a threshold model have direct biological interpretations regarding 

inferences on the eye-brain-hand system.

Certain point process intensity functions were studied in order to fit the para­

metric model, and we derived intensity expressions under our model. We also dis­

cussed nonparametric intensity estimation, including optimal bandwidth selection. 

The parametric model was based on the assumption that the reaction times from 

both black and white flashes are independent and identically distributed as N(u,o) 

random variables. We developed parameter estimation methods under these assump-
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Figure 4.20: Plots of the white stimulus linear filters for each of the 10 go-no go RT 
data sets. Curves are labelled by the stimulus rate (s). Each curve is shifted upwards 
by one unit.

tions, and illustrated the methods on simulated data. Finally, we fit our model to 

ten go-no go RT data sets by applying our estimation methods. For the majority of 

the data sets the assumption of identical distributions for reaction times from black 

and white flashes appears to be somewhat unrealistic. However, similar behavior is 

observed in our simulated data.

Fitting threshold models allowed us to obtain estimates of the threshold, as well 

as to estimate certain intensities relating the stimuli to the responses. Threshold 

estimates for the real data sets with different flash rates suggest that as the flash rate 

increases, a lower rod current is required for a response to occur. There also appears 

to be evidence of nonlinear inhibition among black flashes.
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Table 4.10: Black Flash Interactions for go-no go RT data.

rate
0.4 Lag .25

Coefficient -2.73
0.6 Lag .25 .30 .35

Coefficient -3.13 -4.27 -5.00
0.8 Lag .25 .30 .35

Coefficient -2.01 -3.59 -4.86
1.0 Lag .3

Coefficient -3.32
1.2 Lag .15 .25 .30 .35

Coefficient 2.32 -1.68 -2.85 -3.98
1.4 Lag .15 .30

Coefficient 2.37 -3.45
2.0 Lag .25 .30 .35 .40

Coefficient -1.32 -2.79 -2.94 -4.23
4.0 Lag .10 .35

Coefficient 1.06 -1.94
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Figure 4.23: Examples of diagnostic plots for the go-no go RT data sets with stimulus 
rates 0.8,1.4,2.0 and 5.0, as indicated in the top left corner of each plot. The points 
are the empirical probability of a response, and the curve is the corresponding fitted 
probability.
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Chapter 5

A Parametric Model for the
Choice RT Experiment

In the choice RT experiment, there are two types of stimuli, (black or white flashes) 

and two types of responses (‘black’ or ‘white’ button presses). The subject may 

correctly press the ‘white’ button in response to a white flash, or may press it as one of 

two possible errors. First, the incorrect ‘white’ response may be due to misperceiving 

a black flash. Another possibility is pressing the ‘white’ button when neither flash 

type is presented. The latter error type is due to internal noise within the eye-brain- 

hand system that causes the observer to mistakenly perceive a white stimulus. Similar 

kinds of errors occur for black responses.

The choice RT experiment is more closely related to ‘real’ activities than either 

the simple RT or go-no go RT experiments. In a choice RT experiment the subject 

has to decide when a flash occurs and the type of flash presented, as well as press 

one of two buttons corresponding to the flash type. Although not as complicated, the 

combination of activities required in a choice RT experiment is similar to responding 

to traffic lights when driving a car. Considering red and green lights, a driver needs 

to decide which type of light is present, and choose the correct action depending on 

the light type - press down on brake pedal for red, and acceleration pedal for green.

The goal of this chapter is to introduce a parametric model for choice RT data, 

and use it in conjunction with nonparametric estimation, to make inferences about 
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the eye-brain-hand system.

In Section 5.1 we introduce a parametric model for a choice RT experiment and 

describe the point process operations involved. We outline how to simulate data from 

this model in Section 5.2. Next, in Section 5.3 we discuss some point process intensity 

functions for this model. In the subsequent section we provide the derivations of these 

intensities. We describe nonparametric intensity estimation and discuss bandwidth 

selection in Section 5.5. In Section 5.6 we develop parameter estimation methods, 

while in Section 5.7 we illustrate our methods for simulated data. Finally, in sec­

tion 5.8, we fit our model to nine data sets from choice RT experiments with different 

flash rates. A discussion and conclusions follow in Section 5.9.

5.1 The Proposed Model

In a choice reaction time experimental run, black and white flashes are presented to a 

subject as independent homogeneous Poisson processes with rates pse and psw (per 

second), respectively. Thus, the entire flash process, which is the superposition of the 

black and white flash processes, has rate psB + Psw.

We denote the number of white flashes in the time interval X by Sw(X), and 

the set of times of the white flashes is denoted by Sw = {SW,1, SW,2,. ..}. Analogous 

notation is used for the black flash times, SB, as well as the subject’s white response 

times to both types of flashes, Rw, and the black response times to both stimulus 

types, RB. Note that SB and Sw are taken to be independent stationary Poisson 

processes.

As in Chapter 4, we postulate internal noise. We associate a noise process with 

each of the black and white flash processes, and model these noise processes as inde­

pendent Poisson processes SN, and SNw, with respective rates PNB and PNw. Each 

noise process is superposed onto the corresponding flash process, so that the super­

posed processes are SB = Sb U⅛ and SW = Sw U SNw.
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The deletion probability for the thinning of white flashes is given by

P(SWj deleted) = U 1, Sws+-Sw,<d. 6.1.1)
' p, otherwise

The deletion probability for the thinning of the black flashes is expressed as in (5.1.1), 

but with all instances of W replaced by B. We denote the thinned white and black 

flash processes by SW and SB, respectively.

Each response is of the form Ri = S" ÷ Vi, where {Vi} is a sequence of indepen­

dent and identically distributed random variables with common density fv(v). The 

random variables Vi correspond to the amounts of time required for the brain and 

hand to respond to the flash; these are the particular reaction times for each of the 

events.

The responses are related to the flash processes as follows, where q is the proba­

bility of responding incorrectly to a flash, and we make the simplifying assumption 

that the delays Vi for black and for white flashes are identically distributed

w.p. 1 — q
w.p. q

w.p. 1 — q

w.p. q

Response types are completely random in the case where q = .5.

We assume that the reaction times from black flashes are independent of the 

reaction times from white flashes. The parametric intensity functions that we derive 

in Section 5.4 depend on this assumption.

We now set out all of the assumptions that we make in this chapter:

Assumptions

1. Reaction times resulting from black (white) flashes are independent random 

variables.

2. Reaction times from black flashes are independent of those from white flashes.
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3. Reaction times from white flashes have the same distribution as those from 

black flashes.

4. SB and Sw are independent stationary Poisson processes.

5. All reaction times have a N(u,o) distribution. However, the derivations and 

estimation methods are also valid for alternative distributions.

5.2 Simulation of Data from the Model

The flash process is simulated as it was for the go-no go experiment. A noise process 

is simulated in a manner similar to that used for the go-no experiment. However, the 

noise process rate is now PN, +PNW , and each noise event is assigned an identification 

label of 'O' or '1'. The probability that a noise event is associated with the black flash 

process is -— B—,
- PNp+PNw' 

_PNw__
PNB +PNw ’

The data set, resulting from Algorithm 5.2.1, will be a list consisting of four vec­

tors, not necessarily the same length, consisting of stimulus times and response times, 

as well as identification labels for the times. That is, each black stimulus (response) 

time has a label of '0', while a label of T’ identifies those that are white.

and the probability that it is associated with the white flashes is

Algorithm 5.2.1. The following steps can be used to generate choice RT data con­

sisting of Ns flashes with black flash rate PSg, white flash rate Psw, black noise rate 

PNB, white noise rate PNw, thinning parameter d, thinning probability p, and N(u,o) 

distributed reaction times.

1. Generate stimulus sequences consisting of a total of Ns black and white stimuli.

(a) Generate Ns random exponential variates with mean ps+po

(b) Compute the Ns cumulative sums of the exponential variates. Assign these 

times to S.
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(c) Set

Po 6 PsB
Psb + Psw

(d) Assign the stimulus types. Fori = 1,2,...,Ns, set

{0 with probability Po

1 with probability 1 — Po

(e) Set SB — {S[i] : IDs[i] — 0} and Sw — {S[i] : IDs[i] = 1}.

2. Add noise. If Pnb + PNw > 0, then •

(a) Generate a Poisson (PN, + PNW )T random variate and assign to NN.

(b) If Nn = 0, go to Step 3.

(c) Assign Ns — Ns + NN.

(d) Generate Nn random uniform variates on [0, T]. Assign these values to

N. '

(e) Set
Pnb 

P1 4---------- ------ • 
PNB + PNw

(f) Assign the stimulus types to the noise. Fori = 1,2,...,NN, set

{0 with probability P1

1 with probability 1 —pι

(g) Set S’— SUN and IDs, + IDsU IDS.

(h) Sort Sf and IDs, in ascending order of Sf.

3. Thinning and translating.

(a) Set Nr 0.

(b) For i = 2,. . . ,Nsp, if (⅞[i] — S'p[i — 1] > d), then do the following with 

probability 1 —p:

i. Assign Nr — NR+ 1.
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it. Generate a N(u,o2) random variable V.

iii. Assign R[NR] — SBli- 1]+V
iv. Set

{0 with probability 1 — q (correct response)

1 with probability q (incorrect response)

(c) Fori = 2,. ..,Nsw, if (SW[i] — SW[i — 1] > d), then do the following with 

probability 1 — p:

i.

ii.

tιι,

Assign NR — NR+ 1.
Generate a N(u, o2) random variable V.

Assign R[NR] — SW(i -1]+V
iv. Set

{1 with probability 1 — q (correct response) 

O with probability q (incorrect response)

4. Sort R and IDR in ascending order of R.

5. Return Sj IDs, R, IDR.

We used the programming language Fortran (Lahey Computer Systems, Inc. 

(1999)) to implement our algorithm.

5.3 Point Process Intensity Functions

We denote the white response rate, or first order intensity of the Rw process by PRw- 

Analogously, we denote the black response rate by PRE.

There are four stimulus-response second order intensities corresponding to each 

possible combination of black and white flashes with black and white responses, which 

we denote PswRw(u), PswRp(u), PS„Rw(u), and Psbrb(u). The intensities PswRw (u) 

and Psbrb (u) correspond to intensities of a response following a flash of the same 

type at a lag of u time units, while PSeRw (u) and PSwRe (u) coincide with intensities 

of a flash followed by the wrong type of response at a lag of u time units.
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Corresponding to each possible combination of two responses, there are four 

response-response second order intensities, which we denote PRwRw(u), PRwRB(u), 

PRpRw(u), and Prbrb(u). The intensities PR,R.(u) satisfy

E(R,(X)R,(Y)
Jx Jy PR.R.(y ~ x) dx dy, rés

Jx JY PR.R,(y - x) da dy + prIX nYL, r = s^

where r and s take on values in {B, W}. Since the above expressions remain the same 

in the event that the time intervals X and Y are shifted by h units, we have that the 

response processes are second order stationary processes.

Under our model, the point process (SB, Sw, RB, Rw) is Brillinger mixing. This 

can be shown in a manner similar to the argument given in Section 4.3 to show that, 

under the model assumptions, (SB, SW, R) is Brillinger mixing.

For our parametric model, the response rates are given by

PRw = (1-p)Ig(Psp + PN„)e-“(psa*PNp)+ (1-q)(psw + PNw)e-"Gpsw*PNw"), (5.3.1) 

and

PR, = (1-p)lq(Psw + PNw)e-d(pSw*PNw)+(1-q)(Psp + PNg)e-4GpsptpNp)). (5.3.2)

The second order stimulus-response intensities are given by:

pswRw(u) = (1-p)Psw[q(psb +PNB)e-d(psB+PNB^ (5.3.3) 

+(1 - q)e-"Gpsw +PNw{(psw + PNw)P(V € (u,u+d)) +f(u)}]

PswRb(u)= (1-p)pswl(1 - q)(Psp + PNg)e““(p@ptpMp) (5.3.4) 
+qe-AGpsw tow {(psw + PNw )P(V d(u,u+d))+ /(u)}]

PSpRe(u) = (1-p)Psplg(Psw + PNw)e-d(psw*pNw) (5.3.5)

+(1 - q)e-4(pSp+pb){(PSp + PNL)P(V 4 (u,u+d) +/(«)}]

PSaRw(u) = (1 - p)pspl(1-q)(psw + PNw)e““Gpsw*PNw) (5.3.6)
+qe-d(Psp±PNp){(pse + PNR)P(V 4 (u,u+ d)) + f(u)}],
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and the response-response intensities are expressed as follows:

PRWRw(u) = (1-p)2[P(V - V -u)> d)(o2(psp + PNg)2e-24GP5atPN2) 

+(1 - q)2(psw + PNw)2e-24(pswtpNw))

+2q(1-q)(Psp + PN„)(PSw + PNw)e-4(psp*PNa*pSw*PNw) (5.3.7)

PRARp(u) = (1-p)2[P(V -V,-u> d)(2(psw + PNw)2e-24GP5w*PNw) 

+(1 - q)2(ps, + PNg)2e-24(P5a+PNa))

+2q(1 - q)(Psw + PNw)(PSp + PNg)e-d(swtpNw+psptpMp)] (5.3.8) 

PRwRe(u) = (1-P)2[P(IV -V -ul> d)(0l - q)(Psg + PNg )2e-24(p8ptPNa)

+q(1 - q)(Psw + PNw)2e-24(psw*pnw'} 

+q2(ps, + PNg) (Psw + PNw )e-AGpsp +PMe +psw +PNw ’

+(1 -q)2(Psp +PNa)(PSw + PNw)e-4(psa+PNotpswtpsp)], (5.3.9)

where V, V1, and V2 are independent random variables having common density fv(v). 

By definition PRgRW (u) = PRwRp (u).

Graphs of the four stimulus-response (S-R) second order intensities with three 

values of q at two values of d are plotted in Figures 5.1 and 5.2. These intensities 

have a peak at the mode of f(u), which increases in height as the stimulus rate 

increases. The effect of the q parameter as it approaches zero is to flatten the black­

white and white-black S-R intensity curves; when q=0 these intensities are constant. 

This behavior is expected since when q is near zero there is a very low probability of 

an error response type, so there is a low intensity of black responses following white 

flashes, and vice versa. As q increases to 0.5 the four curves have similar peak heights. 

In the case of q = .5, after a flash there is an equal probability of either response 

type, thus the intensities of each kind of response following either stimulus are similar. 

Thus, information about the magnitude of the error probability q is contained in the 

white-black and black-white S-R intensities. As the d parameter increases the curve 

to the left of the peak is depressed. Note that the d parameter has the same effect 

on the stimulus-response second order intensity for the simple RT model described in 

Braun et al. (2003).



125

2- AX S
Sm / N O

% q. / K ” 

I I I
0.0 0.2 0.4 0.6 0.8 1.0

u

1P- r

o --------------------- -
I I I I..."I I

0.0 0.2 0.4 0.6 0.8 1.0

u

NN
3
o in
Y ,
O 
(D 
0 I

6

3
s w
Y -
(D
0 U 

o

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 

u u

Figure 5.1: The second-order stimulus-response intensity functions with Psw = .6, 
PSp = .7, u=.45, o=.1, p=.15, PNB = PNw = 0, d = .1, and q=0 (solid line), q=.1 
(dashed line), and q=.5 (dotted line).

Figure 5.3 displays plots of the second order response-response (R-R) intensities 

for three values of d at two values of q. Since the PRWRB (u) and Prbrw (u) functions 

are identical, graphs of PRERw(u) are excluded. When d = 0 the intensities are 

constant. Otherwise, there is a trough centered at zero, which widens as d increases. 

Thus, information regarding the magnitude of the nonlinear inhibition parameter d 

is contained in the white-white and black-black R-R intensities. In addition, as q 

approaches zero the black-white and white-black R-R intensity curves become more 

narrow and lose some depth.
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Figure 5.2: The second-order stimulus-response intensity functions with PSw = .6, 
Psb = .7, u=.45, o=.1, p=.15, PNB = PNw =0,d = .25, and q = 0 (solid line), q=.1 
(dashed line), and q=.5 (dotted line).

5.4 Derivations of the Intensity Functions

5.4.1 First-Order Response Intensities

We first derive the expression for the first order intensity of the Rw process. We have

PRW = lim h 1E[Rw(u, u+h)]. h—0 (5.4.1)

As a result of the translation mechanism in the model, we have

Rw(u,u + h)=2 l{s⅛ e(u-V,u-V,+h)} Ai + 2 1(s%,E(u-V,u-V,+h)) Bi,
i i
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Figure 5.3: The second-order response-response intensity functions with PSw = .6, 
Psb = .7, u=.45,0=.1, p=.15, PNB = PNw = 0,d = 0 (solid line), d = .1 (dashed line), 
and d = .25 (dotted line), and q = .05 (top panel), q = .15 (bottom panel)
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0-

Ai — l{white response ∣ black flash atS'}

Bi = 1{white response ∣ white flash atS'},

SI = (SB U SW)i, and the Vi represent independent random variables from a pop­

ulation having density f(v). As a result of the random splitting in the model, the 

probability of a white response given a black flash is q, and the white response prob­
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ability conditional on a white flash is 1 — q. Thus,

E[Rw(u, u + h)]

The first term in (5.4.2) corresponds to the rate of the white response process formed 

from black flashes, while the second term coincides with the rate of the white response 

process formed from white flashes.

When there is no non-linear inhibition (i.e. d = 0) flashes are deleted with prob­

ability p independently of the other flashes, so we have

E[SW(di)) = E[SW(d1)1(,,-,>p}] = (1 - p)(psw + PNw) di,

where Uyι-v is a uniform random variable that is independent of the flash and response 

processes. Thus the thinned white flashes are a Poisson process with rate psy = 

(psw + PNw)(1 — p). Similarly, the rate of the thinned black flash process is psg — 

(Psb + PNp)(1 - p).
When d > 0, a flash is deleted with probability p when there is a flash of the same 

type within d time units after it, so we have

E[Sw(d(ai))] = E[Sw(d(X1))1(U.,>)l(sw (F1,+d)=o)l
= (1-p)(Psw + PNw)e-d(psw+PNw) dz. (5.4.3)

Similar expressions can be obtained for the black flashes, by interchanging the 'B' 

and iW, subscripts.
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Thus, we have

E[Rw(u, u + h)]

= qEL2 1(sg,,E(u-V,,u-v,+h))l + (1 - q)ED2 1(swE(u-Vs,u-v,+h))l
i

= qE[EDX 1(sg. e(u-vu-v+myls3ll 
i

+(1 - Q)EEX 1(sEzE(u-V,u -v.+ny/SWI
i

= qE[EIEX list ,E(u-v,uvtny)IV, Sell

+(1 - Q)E[E[E> 1(sd,E(a-0,u-*+AyIV, swll

IEELX J 1(sg, E(u-v,u-v+n))f(u) du/SBll 

+(1 - Q)EED2 J 1(55,e(u-u-v-+myf(u) dojSwl 

— qEQ22 J 1(sg,e(u-v,-v+m)f(0) du

+(1-q)E2/ 1st,cku-v.-v-+n)yf(u) du

= qE[ ∣ 2 1(sg.E(u-v,u-v+ny)f(v) du]

+(1- q)E[ ∣ 2 1(5WE(u-U,u-v+*))f(v) duj

= qE[j Sg(u — v,u — υ + h)f(v) dv]

+(1 - q)E f SW(u -v,u-υ + h)f(v) dv]

(5.4.4)

(5.4.5)

(5.4.6)

where (5.4.4) is obtained by using the fact that the Vi are i.i.d. with density f(-). By 

application of the Tonelli-Fubini theorem (see, Jacod and Protter (1991), pp. 63-64), 

the integral and sum are reversed to get (5.4.5).

Since SW, and SB are counting measures, and for a counting measure A(-) we have 
A(0, h) = Joh A(dxi) (see Daley and Vere-Jones (2003) ), (5.4.6) may be expressed as

r ruth r ruth
qE[/ / SA(d(yi - v))f(v) dv]+(1 - q)E[/ SW(d(y1 - v))f(u) dv].

JJu

By noting that the integrand is non-negative the order of integration and expectation 
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may be reversed yielding

E[Rw(u, u + h)]
ru+h r ruth C

= q E[SA(d(yi - v))]f(v) dv+(1-q) E[SW(d(1-v))]f() du.Ju J
Using (5.4.3) and the stationarity of SB and SW it follows that

E[Rw(u, u + h)]
u+th r

J(1- p)(Psb + PNp)e-dsa*PNa) dy1f(υ) dυ

ru+h r
+(1-q)j J(1-P)(sw + PNw)e-"Sw*Pw) dyιf(v) dv

= A(1-p) F(u) dvg(ps, + PN„)e-“GpsptPNp)

+(1 - q)(ps. + PNw)e-d(Psw +PNw)j. (5.4.7)

Substitution of (5.4.7) into (5.4.1), and using the fact that f(v) is a probability density 

function, we see that the first order intensity for the Rw process is given as in (5.3.1):

PRw = (1 - p)[g(Psp + PNg)e-GpsptpNa) +(1- q)(psw + PNw)e-"Gpsw*P*w)).

In the same manner, expression (5.3.2) can be derived for PRE.

5.4.2 Stimulus-Response Second-Order Intensities

We now derive expression (5.3.3) for PswRw(u). A similar argument can be used to 

obtain expressions (5.3.4), (5.3.5), and (5.3.6) for PswRp (u), Psβ⅛(u) and PspRw (u), 

respectively.

The intensity PSw RW (u) is generally a function of two variables, but it reduces to 

a function of one variable because of stationarity. In other words, letting u=y-x,

PswRw (x,y) = lim h-2E[Sw(x, x + h)Rw(y, y + h)]

may be expressed as

PswRw^ = lim h-2E[Sw(0, h)Rw(u, u + h)]. (5.4.8)
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In the following, we assume that the reaction times Vi from the white and black 

flashes are independently and identically distributed with the same distribution f(v). 

That is, this result depends on Assumptions 1, 2, and 3.

E[Sw(0, h)Rw(u, U + h)]

= E[Sw(0, h)(El> 1(sg. E(u-v..-v+yISW, S51
i

+(1 - Q)E2 1(sk,6(u-V,W-V,+Ay)SW, SEmI
i

= E[Sw(0, h)(E[ED2 1(g. E(u-v,u -+*», SEl

+(1 - Q)EE2 1sd,6(-0,u-*+AyIV, sWIDl

= E[Sw(0,h)(qEX / 1(sg E(u-v,u-v+ny)f (v) dv∖S'g]

+(1 - 9)E2 J 1(sw,E(u-v,u-v-tn))f(0) duSwl)7

E[Sw(0, h)(2 ∣ lisg. e(u-v,u-v+nyf (V) dv 
i

+(1 q) X I 1(S%,E(u-U,u-v+h))f (V) dv)]

= E[Sw(0,h)(9 J 2l(sg,eoa-0-v+f(0) dv

+(1 - q) / 2 1(s%E(u-v,u-v+n))f(v) dv).

= E[Sw(0, h)(q f S'g(u — v,u — v + h)f(v) dv

+(1 -q)/ SW(u-v,u-v+h)F(u) dv)l 

(5.4.9)

(5.4.10)

(5.4.11)

where (5.4.9) is obtained by using the fact that the Vi are i.i.d. with density f(∙). 

As in the derivation of the expression for p∏w, by application of the Tonelli-Fubini 

theorem, the integral and sum are reversed to get (5.4.10).

Since SW, SB, SW, and SB are counting measures (5.4.11) may be expressed as 
ch ruth

qE Sw(dai) 1 / SB(d(yi - v))f(v) dv]
rh rruth

+(1-q)E[Sw(dxi)SW(d(yi - v))f(v) dv].
Jo JJu
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By noting that the integrand is non-negative the order of integration and expectation 

may be reversed yielding
ruth h A

E[Sw (0, h)Rw(u, u + h)]=q / E[Sw(dxi)S3(d(y1 - v))]f(v) dv
0 J

ruth f
+(1-q)E[Sw(dx1)SW (d(yi - v))]f(v) dv.

Ju Jo J
(5.4.12)

Because of the thinning method, the two expectations in (5.4.12) can be expressed

as

E[Sw(dxi)sp(d(i-v))]

= E[Sw(dxi)SB(d(yi — v))1{U,,-y>p}l{8(1- v,n1- v+d)=0}], 

and

E[Sw(dxi)Sw(d(y1 - v))]

= E[Sw(di)Sw(d(y1 - v))1{v,,->p)l(sw(-v,01-0+d)=0)]. 

(5.4.13)

(5.4.14)

Using the independence of Uyι-v and the fact that S'B and Sw are independent Poisson 

processes with rates psβ + Pnb and psw, respectively, (5.4.13) can be re-written as

E[Sw(dxι)Sβ(d(yι - v))] = (1 - p)e d(PSa+PNa'psw (pse + Pnb) dx1 dy1. (5.4.15)

To simplify (5.4.14), we note that if 0 < 1 — ⅛ι~^) < d, then Sw(yi — v) is deleted, 

because there is then a point at least d time units after Swiyι — v). Thus, we get the 

expression

E[Sw(dai)sw(d(1 - v))]
= (1 - p) e-d(Psw+PNw) (Co (21, y1, v) + C.(1,y1,v)) dx1 dy1, (5.4.16) 

where

Co(x1,Y1,") Psw(PSw + PNw )l(zi4(i-v,m-v+d)}, 

C1(x1,Y1,v) = Pswδ(yi - v - 1).

The terms Co and C1 account for the events that the condition 0 < ^i — (yι — v) < d 

fails and holds, respectively. If the condition holds, then (5.4.16) is nonzero only 

when x1=y- v, which is identified by the Dirac delta in C1.
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Substitution of (5.4.15) and (5.4.16) into (5.4.12) gives

E[Sw (0, h)Rw(u, w + h)] 
u+h r

(1- p)e-d(PSp +Psp Psw (psg + psb )f(v) dv dy1 da
u+h J(-p)e d(pswtPrw) Co(2+,V,v)f(0) dυ

+ C1(x1,Y1, v)f(v) dv dyi dx1 (5.4.17)

Using the property of the Dirac delta with x =v ando = Y1 - X1, and noting that 

since f(v) is a density function f f(v) dv = 1, (5.4.17) simplifies to

E[Sw(0, h)Rw(u,u+ h)] = qh2(1 - p)e dOPsp*PSB)(pse + PN)Psw

+(1 - q)(1 — p)e d(Psw +PNw Psw (psw + Pnw )
u+h Γ r

11(ve(1-*1,y1-21+d}f(v) dv + K(1—⅛ dyl dæs (5.4.18) 
Psw+PNW5

Finally, substituting (5.4.18), after two applications of the mean value theorem for in­

tegrals to the double integral involving f(y1-X1), we get an expression for PswRw (u), 

as in (5.3.3):

PSwRW (u) = lim E[Sw (0, h)Rw(u, U + h)]

= (1 - P)Psw [g(Psp + PN„)e““GpsB*PNp)

+(1 - q)e-d(psw +pNw){(psw + PNW)P(V « (u,u+d))+ f(u)}].
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5.4.3 Response-Response Second Order Intensities

We now look at prwrb(u). Arguments similar to those in the derivation of the 

second-order stimulus-response second-order intensities lead to

E[Rw(x,x+ h)RB(y, y + h)] 
r rx+h r rx+h

= Elle J J SMx1-υ^f(υ1) dv1 + (1-q)/ J Sw(d(x1-01))f(1) dui} 
r ry+h r ry+h 

x{q / / SW(d(yi - V2))f(V2) dv2 + (1 - q) / / Sβ(d(y1 -v2))f(v2) dv2}]
JJy

T crx+h ry+h (1-p)29(1-q)/// 1 E[SB(d(x1 - v1))SB(d(y1 - V2))
X\s'B(x1-v1,x1^i+d)=0}^{S'B(y1-V2,y1-v2+^^ dx1 dy1 dv1 dv2

+PRpl(x,x+ h) (y, y + h)\L 
r f rx+h ry+h

+q(1 -^ ∕ E[SW(d(1 - v1))s,w(d(yι - v2))1(sW(1-0,21-01+d)=0)
J J Jχ Jyy1=x1

xl(sW(1-W2,0-W2+d)=olf (V1)f (v2) di dyι dv^ dv2 + Prwl(,a+ h) A(,y+ h)∖ι 
r r +h ry+h+q2 J J J J E[SW(d(xi - v1))Sb(d(1 - V2))1(sw(z)-0),2)-0)+4)=0)

x1(sg(1-02,01-02+d)=o]f (Vi) (2) dai dyi dvl dv2
r r rx+h ry+h

+(1 ~ ^ 111 J E[Sp(d(xi - Vi))Sw(d(i - V2))1(Sg(=)-v,1-v+4)=0)

x1(sW(1-02,M1-02+d)=0]f(V1) f(V2) dai dyi dvi dv2

Making use of the fact that SB and SW are independent Poisson processes, after 

division by h2 and letting h — 0, we obtain an expression for PRWRB(u), where 
u=y-x.

PRwRe(u) = (1 - p)[P(IV-V - > 4)000 - q)(ps, + PNg)2e-24(P9atpM2) 

+ q(1-q)(psw + PNw)2e-24(psw*PNw'} 
+ q(Psp + PNg)(Psw + PNwe-A(PsptPNptpSwtpw)

+ (1-q)2(Psp + PNg)(Psw + PNw)e-4(psp*PNatpswtP5p) (5.4.19)

The intensity PRERW (u) is identical to PRWRR (u) by definition. In a similar manner 
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we obtain expressions (5.3.7) and (5.3.8) for PRW Rw (u) and Prbrb(u), respectively.

5.5 Nonparametric Intensity Estimation

The approach to nonparametric intensity estimation is similar to that used for the 

go-no go RT experiment. First-order response intensities and stimulus-response inten­

sities are estimated as in Section 4.5. Estimates of the response-response intensities 

are given by:

. , /+LE, K(R=*=Ra2), sér
8 1K(u-(R,j-Rr,i)) —,

( Th ZiZjtim h

5.5.1 Bandwidth Selection

We find optimal bandwidths for the intensities by minimizing the asymptotic mean 

integrated squared error (AMISE) with respect to h, the bandwidth. A general ex­

pression of the AMISE optimal bandwidth for a second-order intensity is derived in 

Section 2.6.1, and in the case of the biweight kernel we have

A , 35 JPsR(u) du 11/5
RAMISE(PSR) —92 , 9 , •

LTJCzuPsR(u))2 du.
Using our fitted model, we can obtain estimates of hAMISE(PSR). Expressions for 

the stimulus-response second order intensities are given in (5.3.3),(5.3.4), (5.3.5), and 

(5.3.6) from which it can be seen that the terms involving u in the expressions with 

the same stimulus type are identical. For example, PSwRW (u) and PSwRe (u) depend 

on u only through

w(u) = P(V d(u,u+ d)) + —f(u)—, 
PSw + PNw

which, under the assumption of a normal delay distribution, has second derivative

„ u + d-μ [ 1 ((u - u)2 ∖ (u-μ)l 
w (U) =   f(u + d}+      2  2 1 5— f(u),

02 L(Psw + PNw)o2 \ 02 
where f(-) is the Normal density with mean μ and variance σ2. Thus

OPswRw(u) = (1 - P)(1 - q)psw (psw + PNw)e-d(PSw+PNw)w"(u),
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XTPSbRb(U) = (1 - p)(1 - q)Pse(Ps, + PNe)e dPsp*PNp'w"(u),

and
OPswRp (u) = 1 - p)qpsw (Psw + PNw )e-d(Psw +PNw w"(u). 

U O
Analogous expressions can be found for Psbrb (u) and PSBRW (u).

Expressions for the response-response second order intensities are given in (5.3.7),

(5.3.8), and (5.3.9). It can be seen that each intensity depends on u by the same 

term:

r(u) = P(V2 - Vi - u > d),
which has second derivative

1 Γ
T (U) = 202 (u + d)g(u + d) — (u — d)g(u — d) ,

where g(-) denotes the Normal density with mean 0 and variance 2σ2, Thus,

PPRR(u) =(- p)2[qP(pse + PN„)2e-24(Psg±PNg) 
U L

+(1 - q)2(ps. + PNw )2e-2d(PSw+PNw)]r"(u),

@ PReRg(u) = (1 - p)2[42(psw + PN.)2e 24(Psw+PNw)
U LU

+(1 - q)2(psp + PNB )2e-2d(Psa+PNB)]r"(u), 

and

S.PRwRp(u) =(- P)2⅛(1 - q)(Psp + PN„)2e-24(P5ptpNa) 

+q(i - q)P(psw + PNw)2e-24(psw+PNw")P"(u).

Finally, for a given second-order intensity, substitution of the intensity expression 

and corresponding second derivative into (5.5.1) yields the exact form of an optimal 

bandwidth.

5.6 Parameter Estimation

Assumptions 1 through 5 allow us to use a quick approximation method that is a 

modification of the one used by Braun et al. (2003) to estimate u, o, and the total 

noise process rate PNe + PNW, which we denote by PNB,w.
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For estimation, we also assume that the black and white noise process rates are 

proportional to their respective flash rates, so that

Ps
PNb PNB,w - Γ~ , ' PSB + PSw

and
. _ . PSw PNw — PNpw- ∣ * Psb + PSw

It is reasonable to assume that when flashes are presented at the same rate, the rates 

of the noise processes will also be similar. Likewise, when one flash rate is higher 

than the other, it is reasonable to assume that the noise process corresponding to the 

faster flash process has a faster rate than the other noise process; there is likely more 

noise associated with the flash process with a higher rate.

In Braun et al. (2003) an iterative algorithm is used to obtain û, Ô, and the total 

noise rate for simple RT data. Assuming independent and identically distributed reac­

tion times from both the black and white flashes allows us to consider only the times of 

the flashes and responses, and not the types of flashes and responses. Since the loca­

tions of the peaks of the intensities PSw RW (u) and PSB RB (u) correspond to the modes 

of the white and black reaction times, respectively, and we are assuming identical 

symmetric distributions, the locations of the peaks for the corresponding nonpara­

metric estimates should be near the value of the mean reaction time. Therefore, as a 

modified algorithm, we fix the mean of the two peak locations, uo, as an initial value 

for the estimation of u. The estimates of o and the total noise rate PNB +PNW are as in 

their algorithm. The modified algorithm is given as Algorithm 5.6.1. The algorithm 

is dependent on the assumption that the reaction times are normally distributed, but 

it can be adapted to handle other distributions, if necessary.

Algorithm 5.6.1. For RT data (S, R) the parameters u, O, PNp, and PNW can be 

estimated as follows:

1. Find the location of the peak in nonparametric intensity estimates of PswRw (u) 

and PSeRe (u) and set up as the mean of the two locations.
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2. Match each response time Rj with a flash time preceding it, Sj, such that Rj-Sj 

is closest to uo, to obtain estimates of the reaction times: Vj = Rj — Sj

3. Estimate μ and σ by the mean and standard deviation of the V;.

4. Let T = RNR, where Nr is the number of responses. Estimate the total noise 

rate PNp w, by:

PNB,w T ' 

where ∣ - ∣ denotes set cardinality.

5, Estimate individual noise rates by:

. . Psb 
PNa 5 PNa Psp + Psw' 

and

PNw PXa-Psa + Psw'
Examination of plots of the intensities PSwRB (u) (and Psbrw (u)) and PRwRW (u) 

(and PRRRe(u)) indicate that these functions may be useful in obtaining estimates 

of q and d, respectively. Furthermore, for long-run experiments (large T values) the 

bias of each of the nonparametric intensity estimates is near zero, and one expects the 

difference between the nonparametric and parametric estimates to be minimal. Let 

Pswrb (û) and PSwRB,h(û) denote the parametric and the nonparametric (with band­

width h) estimates, respectively. We obtain estimates of d, q and p by minimizing the 

differences between parametric (based on model expression with parameter estimates) 

and corresponding nonparametric estimates, evaluated at a certain point. For each 

of the four cases resulting from whether or not the stimulus rates are equal, and the 

absence or presence of nonlinear inhibition, we develop an estimation method. The 

stimulus rates are equal for the choice RT experiment data, but for completeness, 

we also provide estimation methods for the more general cases involving different 

stimulus rates.

Recall the expressions for PRW and PRR, given in equations (5.3.1) and (5.3.2), 

respectively. Manipulating each of these equations, with PRW and PRR replaced by 
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their nonparametric estimates, yields an expression for p that involves q and d. We 

denote these two expressions for p by pw and pB, which are given as follows, with 

PNR and PNW replaced by their estimates obtained from Algorithm 5.6.1:

Pw- 1 —

Pb = 1-

PRW
q(psp + PnbV d(PSp+PNp) + (1 - ê)(psw + PNw)e d(Psw+Nw)

and

PRb
ê(psw + PNw V dipsw +Nw) + (1 - Q)(ps, + PnbV dOPSp+Np)

(5.6.1)

(5.6.2)

We estimate p by the simple average (Âw + ÔB)/2, which we denote p, and our 

estimation problem is reduced to finding q and d. When the stimulus rates are equal 

and/or d = 0, the expression for p is reduced to a simpler form, and a simpler 

estimation procedure can be used. The different cases and corresponding estimation 

methods are given in the following subsections.

5.6.1 Equal Stimulus Rates and Absence of Nonlinear Inhi­

bition

First, we consider estimation for the simplest case of equal stimulus rates and no 

nonlinear inhibition, so that PSp = Psw :— Ps and d = 0. By assumption, since the 

stimulus rates are equal, we have PN, = PNW := PN. In this case, our estimate of p 

becomes

p=1-2pl B(PRw+PRa), (5.6.3)

which can be evaluated without knowledge of q because of the equal stimulus rates.

Since 0 ≤ p ≤ 1, in the event that p < 0, we set p = 0.

In this case, for a fixed u the expression for PSWRe (u) (see (5.3.4)) is a linear 

function of q:

Pswrb(u) =(1 - p)ps[ps +PN+ f(u)q]. (5.6.4)

The estimation is done at u = û, which is the location of the peak of PswRp(u).

Insertion of the nonparametric estimator PSwRe,h(u) into (5.6.4) yields

( pswRs,h(μ)________1 (ps + Pn) 
(1 - P)ps(ps + PN) ) Φμ,σ(P) (5.6.5)
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where p is replaced by (5.6.3), and we assume a N(μ, σ) density, which is estimated 

using the estimates μ, σ obtained from Algorithm 5.6.1.

Since the estimation of q is dependent on PswRb^(p)^ the accuracy of the q esti­

mate will depend on the choice of bandwidth. As shown in the previous section, the 

AMISE optimal bandwidth depends on the values of the model parameters. There­

fore, we first find an initial bandwidth h using the already obtained estimates μ and 

σ, along with d = 0, q = qo and p = p. Since the error probability is likely relatively 

small, we use qo = .05, as an initial value. This h is then used in (5.6.5) to obtain 

the estimate q, which is then used to updaté the bandwidth and evaluate (5.6.5) once 

again, yielding our final estimate q, and finally p.

5.6.2 Equal Stimulus Rates and Nonlinear Inhibition

Now we allow d > 0, so that there is nonlinear inhibition, and maintain the restriction 

of equal stimulus rates. In this case, our expression for p involves d, and is given by

= PRw + PRb
^Ps + Pn)c~⅛ps+m ’ 

(5.6.6)

Based on the expression for Pswrb(u∖ knowledge of p can be used to obtain q as 

follows:

∖ (l-p)ps(ps+M ) 1-P(V ^u,u + d))-φβf(^

Consequently, upon substitution of (5.6.6) into (5.6.7) we obtain:

^PSWRBΛ(P) ∖_________________ J_________________ /5 6
∖ Ps(PRw + Prb)/ 1 - ^(V ^ (u,u + d)) - ΦμAμy(Ps+PNy ' * 

Thus, p and q can be found upon obtaining an estimate of d. In the event that p or 

q is negative, the corresponding estimate is set to zero.

As discussed earlier either PRwRw {μ) or PrbRb (u) give an indication of the mag­

nitude of d. In the estimation of d we use Prwrw(u) (or Prbrb(u)), expressing p 

and q as in (5.6.6) and (5.6.8), respectively. A closed-form expression for d cannot 

be found, so we minimize with respect to d the difference between the nonparametric 

and parametric estimates of pRw Rw (0) (or prbrb(O)); the location of the function’s 
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trough is at u = 0. This is accomplished by using the optimize function in the 

statistical package R (R Development Core Team (2006)), which uses a combination 

of golden section search and successive parabolic interpolation. Again, because of the 

dependence on the nonparametric estimator, the estimation is done in two steps in 

order to update the bandwidth and improve our estimates. However, if Â = 0 after the 

first step, the intensity PRWRW (u) (or PRERB (u)) is constant according to our model, 

and there is no need to perform the second step.

5.6.3 Different Stimulus Rates and Absence of Nonlinear In­

hibition

Next, consider the case where the stimulus rates are different, and the absence of 

nonlinear inhibition, so that d = 0. In this case our estimate of p involves q and is 

given by:

. 1 PRWp = 1---- ----------------------------------------------
2 L(Psp +PNa)+(1- )(Psw + ÔNw)

4_____________ PRB_____________ (5.6.9)
@(psw + ÔNw) + (1-)(Psp + ÔNB)J‘ " 

and PSwRp(u) has the form:

PswRp(u) = (1 - p)Psw [Ps, + Pnb

+q{(psw + PNw) + f(u) - (Psb + PN„)}]. (5.6.10)

Substitution of (5.6.9) into (5.6.10) yields a long and complicated quadratic in q. The 

expressions for the two solutions can be found using Mathematica (Stephen Wolfram 

(2006)). The estimation is done at u = û, which is the location of the peak of 

PSwRe(u), and as in the other cases the estimation is done in two steps to improve 

our estimates. Of the two solutions for q from the quadratic, one tends to be large 

and negative, while the other tends to be between 0 and 1. We set our estimate of q 

as the solution that falls in [0,1]. In the case that neither solution is in [0,1], we set 

Â = 0; one solution is very small and negative in this case.
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5.6.4 Different Stimulus Rates and Nonlinear Inhibition

For the most general case, the stimulus rates are unequal and d > 0, so that there is 
nonlinear inhibition. In this case knowledge of both d and q can be used to evaluate 

P = (Pw + PB)/2, and PSwRp (u) has the form:

PSwRp(u) =(- p)psw Kpsb + PNg)e-d(psatPNp)

+qe-d(swtPNw{(psw + PN„)P(V 4 (u,u+d)) ÷ f(u) - (PS, + PNp)IK5.6.11)

Substitution of the expression for p into (5.6.11) yields a quadratic equation of q, for 

which knowledge of d is required for evaluation. The evaluation is done at u = û, 

which is the location of the peak of PSwRB(u). As in the previous case, the quadratic 

has a long and complicated form, and the expressions for the two solutions can be 

found using Mathematica (Stephen Wolfram (2006)). Note that the solutions both 

require knowledge of d. For a given d, we set our estimate of q as the solution that 

falls in [0,1]. In the case that neither solution is in [0,1], we set Â = 0; one solution 

is very small and negative in this case.

In the estimation of d we use PRWRW (u) (or PRARB(u)), expressing p and q as 

functions of d. A closed-form expression for d cannot be found, so we minimize with 

respect to d the difference between the nonparametric and parametric estimates of 

PRWRW (0) (or PRERB(0)); t^e location of the function’s trough is at u = 0. As in 

the case of equal stimulus rates, d can be found by using the optimize function in 

the statistical package R. Again, because of the dependence on the nonparametric 

estimator, the estimation is done in two steps in order to update the bandwidth and 

improve our estimates. If @ = 0 after the first step, the second step is not implemented.

5.7 Applications to Simulated Data

In this section we study the behaviour of our intensity function estimates for simu­

lated data. Simulated data is generated from our parametric choice RT model using 

Algorithm 5.2.1. The peak locations of the nonparametric estimates of PswRw (u) 

and Psbrb (u) tend to coincide; the difference between the two estimates is usually at 
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most 0.05, for simulated data with μ ∈ [.4, .5], σ ∈ [.1,.15], d ∈ [0, .2], p ∈ [.08, .15], 

q € [0, .5], PN = 0.

5.7.1 Equal Stimulus Rates and Absence of Nonlinear Inhi­

bition

Here, we consider the simplest type of choice RT data, which has PSp = PSw, and 

d = 0. For such data, we use the estimation method of Section 5.6.1, and we provide 

an example of the estimation for simulated data as follows.

Figure 5.4 displays the parametric and nonparametric stimulus-response intensity 

estimates for one set of simulated choice RT data with parameters u =.4, =.1,d = 

0,p = . 15, psB == .5,psw = .5,pv == 0, and q = .1. The estimates obtained are 

μ = .399,0 = .091, ÔN = .027,p = .225, and q = .080. The final bandwidth used in 

the estimation is h = 0.22.

The parametric and nonparametric intensity estimates correspond quite well. Sim­

ilarly low peak heights are revealed in both plots of the intensity estimates involving 

flashes with responses of the opposite type. This agrees with the small q used in the 

simulation, and the correspondingly small q. The variability of the estimates appears 

to be quite low. Table 5.1 provides the means and standard errors of estimates based 

on 500 simulations of 800 flashes with the same parameter settings as in the previous 

example. The estimates have small standard errors with the largest standard errors, 

.0281 and .0258, belonging to q and p, respectively.

Table 5.1: Standard errors of parameter estimates for simulated choice RT data with 
rate Ps — .5 and d = 0, based on 500 simulations

parameter true value mean standard error
u .4 .397 .0050
o .1 .091 .0026
Q .1 .077 .0281
P .15 .202 .0258
PN 0 .035 .0046
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Figure 5.4: Second-order stimulus-response parametric (solid lines) and nonparamet­
ric (dashed lines) intensity estimates for simulated choice RT data with PSw = .5, 
PSb = .5, and d= 0.

5.7.2 Equal Stimulus Rates and Nonlinear Inhibition

For this type of choice RT data we still have the simplification of PSp = Psw, but 

now d > 0. For such data, we use the estimation method of Section 5.6.2. In that 

estimation method, either PRW RW (u) or PRARL (u) can be used to obtain an estimate of 

d. Our estimation depends on the typical shape of the response-response intensities: a 

valley centered at 0, which widens and deepens as d increases. Occasionally, for some 

simulated data sets we find that one of the nonparametric estimates of PRW Rw(u) 

and PR„Re(u) has a peak at 0 rather than a trough. This is an indication that the 

nonparametric estimates should be examined before parameter estimation in order to 

choose the more appropriate intensity function for the estimation of d.

An example where it is necessary to employ PRAR„(u) because of the behavior 
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of the nonparametric estimates follows. The true parameters for the data are μ = 

.5, σ = .133 ,d =.1, p = .11, psβ = Psw =.5, q = .025, and PN = 0. Using 

PrwRw (u),which has a peak at 0 for its nonparametric estimate, the d obtained is 

approximately 0. However, when PRRRR (u) is used we get d = .078, which is close to 

the true parameter value d = .1. The other estimates are μ = .484, σ = .125, Â = 0, 

p = .228, and ÔN = .034.

Plots comparing the nonparametric and parametric estimates are displayed in 

Figures 5.5 and 5.6. The peak at lag 0 for the nonparametric estimate of PRwRw(u) 

indicates the necessity of using PRARe(u) for the estimation of d. The stimulus­

response parametric and nonparametric intensity estimates are very similar, as well 

as the cross response-response intensities PRWRB(u) and PRBRw(u). The PRERB(u) 

estimates achieve the same depth, but the nonparametric estimate is much wider.

3 
I

5 
a

s
0 
O

%

Figure 5.5: Second-order stimulus-response parametric (solid lines) and nonparamet­
ric (dashed lines) intensity estimates for simulated data with psw = .5, psB = .5, and 
d = .2. Estimation employed Prbrb (u).

An example in which we employ PRwRw(u) follows. Figures 5.7 and 5.8 display 

the parametric and nonparametric stimulus-response and response-response intensity



146

0.S 0.5 0.51.0

1-------------- 1-------------- 1-------------- 1--------------I
-1.0 -0.5 0.0 0.5 1,0 0.5

T

0.0
1
0.5

Figure 5.6: Second-order response-response parametric (solid lines) and nonparamet­
ric (dashed lines) intensity estimates for simulated data with PSw — .5, Ps, = .5, and 
d — .2. Estimation employed Prbrb (u).

estimates for one set of simulated choice RT data with parameters u = .4,0 = .1,d = 

.2,p = . 15, psB = .5,psw = .5,PN = 0, and q — .1. The estimates obtained are 

μ = .395,σ = .087, ÔN = .018, p = .167,d = .166, and 4 = .075. The two estimates of 

PRwRW (u) and the stimulus-response intensities coincide quite well.

Standard errors of the estimates for 500 simulations with parameters u =.4,0 = 

.1,d = .2,p = . 15, psB = .5,psw = .5,PN = 0, and q=.1 are given in Table 5.2. The 

largest standard error 0.0433 is for d, which tends to be underestimated, on average.

Table 5.2: Standard errors of parameter estimates for simulated choice RT data with 
rate Ps = .5, based on 500 simulations

parameter true value mean standard error
u .4 .400 .0051
O .092 .0029
d .2 .141 .0433
q 1 .072 .0285
P .15 .199 .0316
PN 0 .019 .0035
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Figure 5.7: Second-order stimulus-response parametric (solid lines) and nonparamet­
ric (dashed lines) intensity estimates for simulated data with psw = .5, psβ = .5, and 
d =.2.

5.7.3 Different Stimulus Rates and Absence of Nonlinear In­

hibition

We now consider the case where PSw 7 PSp, and d = 0. Our estimation method 

of Section 5.6.3 is implemented for such data, and we provide an example of the 

estimation for simulated data as follows.

Figure 5.9 displays the parametric and nonparametric stimulus-response inten­

sity estimates for simulated choice RT data parameters μ = .4,0 = .1,d = 0.p = 

.15,Ps, = .5,Psw = .7,PN = 0, and Q = .1. The estimates obtained are μ = 

.401,σ = .085,p = .206, q = .114, PNp = .040, and PNw = .057. Estimates of the 

stimulus-response intensities match very closely, except for a slightly lower peak in
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Figure 5.8: Second-order response-response parametric (solid lines) and nonparamet­
ric (dashed lines) intensity estimates for simulated data with psw = .5, Pse = .5, and 
d =.2.

the nonparametric estimate of Psbrb (u).

Standard errors of the estimates for 500 simulations with parameters μ = .4,0 = 

.l,d = 0,p = . 15,psB = .7,Psw = .5,PN = 0, and q=.1 are given in Table 5.3. The 

standard errors are quite small with p and q having the largest standard errors, .0267 

and .0200, respectively.

5.7.4 Different Stimulus Rates and Nonlinear Inhibition

In the final case, we have psw / PSp, and d > 0. The estimation method of Sec­

tion 5.6.4 is implemented for such data, and we provide an example of the estimation 

for simulated data as follows.

Figures 5.10 and 5.11 display the parametric and nonparametric stimulus-response
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Figure 5.9: Second-order stimulus-response parametric (solid lines) and nonparamet­
ric (dashed lines) intensity estimates for simulated data with psw = .7, PSp = .5, and 
d= 0.

and response-response intensity estimates for simulated choice RT data with para­

meters μ = .4,σ = .1,d = .2,p = . 15, PSp = .5,psw = .7,PN = 0, and q = .1. The
A

estimates obtained are û = .406, Ô = .090, p = .120, d = .219, q = .101, PNB = .023, 

and PNw = .033. For each intensity, the parametric and nonparametric estimates are 

very similar, except in the case of PRBRE (u); the parametric estimate of PRBRB (u) has 

a deeper valley at lag 0 than the corresponding nonparametric estimate.

Table 5.4 displays the standard errors of the estimates for 500 simulations with 

parameters u =.4,0 =.1,d = .2,p = .15, PSp = .7,psw = .5,PN = 0, and q = .1. The 

estimates of d have the largest standard error, .0468, and tend to be underestimated.

5.8 An Application to Experimental Data

We fit our model to nine pooled runs (pooling based on 8 runs of 100 flashes each), 

each with equal stimulus rates. A description of how we pooled the data is provided in 

Section 3.3.6. We also consider an example of estimation for the individual unpooled
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Table 5.3: Standard errors of parameter estimates for simulated choice RT data with 
Psw = .7, PSb = .5, and d = 0, based on 500 simulations

parameter true value mean standard error
u 
σ

.4 .396 .0046

.1 .089 .0026
q
P
PNb
PNW

.1 .073 .0200
.15 .210 .0267
0 .040 .0049
0 .056 .0070

Table 5.4: Standard errors of parameter estimates for simulated choice RT data with 
Psw = .7, Psg = ∙5, based on 500 simulations

parameter true value mean standard error
μ .4 .402 
σ .1 .090 
d .2 .152 
q .1 .074 
p .15 .199 
Pnb 0 .022 
PNw 0 .030

.0050 

.0029 

.0468 

.0273 

.0380 

.0036 

.0050
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Figure 5.10: Second-order stimulus-response parametric (solid lines) and nonpara­
metric (dashed lines) intensity estimates for simulated data with PSw = .7, PSg = .5, 
and d = .2.

data. The stimulus rates are 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 2.0, 4.0, and 8.0 flashes per 

second.

Occasionally there is a '2' instead of a 'O' (black) or ‘1’ (white) recorded in the 

response data. This means that both the black and white buttons were pressed almost 

simultaneously. We tried two different methods for dealing with such instances. First, 

we recorded the response times with a '2' label twice, so that if a ‘2’ is recorded at 

time t, the event is replaced by a ‘0’ at time t, and a T’ at time t. Another method 

we tried was to split the event so that it occurs at time t — .00001 as a '0' and at time 

t + .00001 as a '1', where t is the time at which a t2, is recorded. However, the two 

methods yield identical results, so we use the former one.

We make the simplifying assumption that the distribution of the reaction times 

from white and black flashes are identical, so that they have the same parameters 

u,o. Recall that the location of the peaks for the nonparametric intensity estimates 

of PswRw (u) and PSgRB (u) should be near the mean reaction time from white and
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Figure 5.11: Second-order response-response parametric (solid lines) and nonpara­
metric (dashed lines) intensity estimates for simulated data with PSw = .7, PSp = .5, 
and d = .2.

black flashes, respectively, because of the symmetric delay distribution. For data 

simulated from the model under the assumption of identical black and white reaction 

time distributions, the maximum difference observed between the peak locations of 

nonparametric PSwRW (u) and PSgRe (u) estimates was 0.05. Taking this observation 

into account, and based on plots of these nonparametric estimates for the nine pooled 

data sets, the assumption of equal means for the black and white reaction times 

appears to be reasonable for the majority of the data sets. Locations of the peaks for 

the nine pooled data sets are given in Table 5.5.

We also assume that the rates of the noise processes associated with the black 

and white flashes are both equal because of the equal stimulus rates, so that PNB = 

PNW := PN. We use Algorithm 5.6.1 to obtain the estimates of u, o, and PN. For 

the real data Pse = psw := ps, and we do not make the restricting assumption of 

d = 0. Thus, estimates of p, q, and d are found using the method of Section 5.6.2. In 

the parameter estimation Prbrb (u) is employed since for each of the pooled data sets
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Table 5.5: Peak locations for nonparametric estimates of PSwRw and PSgRB for pooled 
choice RT data, using a bandwidth of h = .15.

flash rate, Ps PswRw peak location PSERB peak location
0.2
0.3
0.4
0.5
0.6
0.7
1.0
2.0
4.0

.55 .54

.53 .54

.51 .56

.53 .53

.52 .55

.49 .56

.47 .49

.49 .52

.39 .48

the nonparametric estimates PRBRB,h(u) exhibit the typical behavior for our model 

(a trough rather than a peak at 0), which is not always true for PRWRW ,h(u). The 

parameter estimates are given in Table 5.6.

Table 5.6: Parameter estimates for each of the nine pooled choice RT data sets

flash rate, Ps A A σ d A

P
A PN

0.2 .551 .142 .025 .054 .033 .044
0.3 .522 .130 7 × 10-5 .072 .054 .068
0.4 .511 .133 .079 .046 .046 .108
0.5 .504 .132 .007 .098 .028 .139
0.6 .504 .134 .084 0 .084 .188
0.7 .483 .121 .051 .110 .072 .227
1.0 .434 .109 .154 0 .128 .615
2.0 .465 .101 .099 0 .124 .761
4.0 .422 .065 .133 0 .261 .962

The mean reaction time, which is near 0.5, is higher than for the simple RT and 

go-no go RT experiments, where μ = 0.3 and μ = 0.4, respectively. This agrees with 

intuition since in a choice RT experiment more activities are required - a decision has 

to be made regarding the type of flash perceived, as well as which button to press. 

This result is consistent with previous observations (see Luce (1986)).

In general, the estimates of d are close to zero when both flash rates are .5 or less, 
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while d > 0 for the faster stimulus rates. This result suggests that when flashes are 

presented at a high rate, temporal summation (two consecutive flashes viewed as one 

bright flash) occurs more frequently in the visual system. Recall that in our model, 

when two flashes are presented within d time units of each other they are perceived 

as one bright flash, and only one response occurs.

Completely random thinning does not appear to occur when the flash rate is high, 

as indicated by the p = 0 for these cases. The error probabilities q give an indication 

of the proportion of wrong response types, and appear to increase with the flash rate. 

Such a result seems reasonable, since when the frequency of flashes is higher, mistakes 

are more likely to occur. As one may expect, the internal noise rate PN appears to 

increase with the flash rate; when the stimuli are presented more frequently it may 

be more likely for a response to occur in the absence of a flash.

For simulations from our model PRWRw,h(u) and/or PrbRb (u) do not always have 

the expected trough at O. Therefore, the absence of such a trough for our data is not 

necessarily an indication of our model’s failure to capture the behavior for the choice 

RT data. Except for the poor fit for PRWRw(u), comparisons of the parametric and 

nonparametric estimates reveal that the correspondence between the two curves is 

closest for low to moderate flash rates (e.g. rates of .2 to .7 flashes/s for each flash 

type). Comparison plots of the intensity estimates for the nine choice RT data are 

given in Figures 5.12 to 5.28.

The estimate of d is negligibly different from zero for the data set with Ps = .3. 

Therefore, the response-response intensity estimates are constant and such plots are 

not considered.

In Figure 5.21 the difference in peak locations for PSw Rw (u) and PSBRB (u) is clear, 

with the white response times having a slower rate. Despite the difference in peak 

locations, the similarities between the parametric and nonparametric estimates of 

PsbRw (u) and Pswrb (u) in Figure 5.21 suggest that our estimate of q is reasonable.

At faster stimulus rates (ps > 1.4) our model does not fit well. A factor for this 

poor fit may be dependence between the reaction times. The plot of the PSBRe(u) 

and Prbrb (u) estimate in Figure 5.23 reveals a characteristic of a d value larger than
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Figure 5.12: Second-order stimulus-response parametric (solid lines) and nonpara­
metric (dashed lines) intensity estimates for pooled choice RT data with ps = .2.
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Figure 5.13: Second-order response-response parametric (solid lines) and nonpara­
metric (dashed lines) intensity estimates for pooled choice RT data with Ps = .2.
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Figure 5.14: Second-order stimulus-response parametric (solid lines) and nonpara­
metric (dashed lines) intensity estimates for pooled choice RT data with Ps = .3.
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Figure 5.15: Second-order stimulus-response parametric (solid lines) and nonpara­
metric (dashed lines) intensity estimates for pooled choice RT data with ps = .4.



157

0.0

_ S 
3

0.0 0.0

3

2

Figure 5.16: Second-order response-response parametric (solid lines) and nonpara­
metric (dashed lines) intensity estimates for pooled choice RT data with Ps = .4.

0.0 0.0 0.2 0.4 0.β 1.0

LA 
d

Figure 5.17: Second-order stimulus-response parametric (solid lines) and nonpara­
metric (dashed lines) intensity estimates for pooled choice RT data with pg = .5.
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Figure 5.22: Second-order response-response parametric (solid lines) and nonpara­
metric (dashed lines) intensity estimates for pooled choice RT data with ps = .7.

what was estimated by the model; there is a depressed region to the left of the peak of 

PSeRe,h(u). This suggests that there is more thinning in the data than predicted by 

our model. Possibly the extra thinning is because of dependencies between reaction 

times; at faster stimulus rates it is more likely that there is a time overlap between 

the time to respond to a flash, and the subsequent flash. Such an overlap is not likely 

as common in the slower flash rate data sets, which is probably why the model fits 

them better.

The two data sets with the fastest rates are the only ones in which all of the 

response-response intensities have a valley at lag zero. However, there is a poor 

correspondence between all of the nonparametric and parametric response-response 

intensities, as can be seen in Figures 5.26 and 5.28.
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Figure 5.23: Second-order stimulus-response parametric (solid lines) and nonpara­
metric (dashed lines) intensity estimates for pooled choice RT data with ps = 1.

Figure 5.24: Second-order response-response parametric (solid lines) and nonpara­
metric (dashed lines) intensity estimates for pooled choice RT data with ps = 1.
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As a comparison, we also studied parameter estimation for the unpooled data. The 

parameter estimates for the unpooled data tend to fluctuate around the estimates 

obtained for the pooled data. As an example, the parameter estimates for the 8 

unpooled data sets with rate ps = .4 have the means and variances as given in 

Table 5.7, where the pooled estimates are provided as well.

Table 5.7: Comparison of pooled and unpooled parameter estimates for choice RT 
data with flash rate ps = .4

parameter pooled estimate mean of 
unpooled estimates

standard deviation of 
unpooled estimates

u .511 .505 .046
o .133 .126 .020
d .079 .060 .064
9 .046 .059 .083
P .046 .066 .062
PN .108 .109 .041

The standard deviations of the 8 unpooled estimates are quite small for each of 

the parameter estimates, and the means of the estimates are close to the estimates 

obtained for the pooled data. This gives support for studying the pooled data rather 

than the individual experimental runs. As a comparison, we estimate the means and 

standard deviations of the parameter estimates for 8 simulations with parameters 

equal to the pooled estimates for the data set with rate ps = .4. Table 5.8 displays 

the results based on 500 samples of 8 simulations. There, it can be seen that the 

estimates have means that are quite close to the true values used in the simulations 

(except in the case of p), and small standard errors. Furthermore, the standard errors 

are quite similar to the empirically observed standard errors (given in Table 5.7), 

lending some further credibility to the parametric model.

5.9 Discussion

In this chapter we introduced a parametric model for choice RT data and developed 

methods for fitting such a model. Certain point process intensity functions were



165

Table 5.8: Standard errors of parameter estimates for 8 simulated data sets of 100 
flashes with flash rate ps = .4, based on 500 samples

parameter true 
value

mean standard 
error

u .511 .509 .022
o .133 .138 .047
d .079 .059 .059
Q .046 .043 .049
P .046 .132 .070
PN .108 .111 .020

studied in order to fit the model, and we derived intensity expressions under our 

model, as well as discussed nonparametric intensity estimation, including optimal 

bandwidth selection.

In the estimation of the parameters we made certain assumptions. We assumed 

that the reaction times from both black and white flashes are independent and iden­

tically distributed as N(u, a), and that the noise processes associated with the black 

and white flashes have rates proportional to the respective flash process. Parameter 

estimation methods were developed under these assumptions, and illustrated on sim­

ulated data. Finally, we fit our model to nine choice RT data sets by applying our 

estimation methods. For the majority of the data sets the assumption of identical 

distributions for reaction times from black and white flashes appears to be reasonable.



166

Chapter 6

Threshold Models for a Choice RT
Experiment

In a choice reaction time experiment two types of flashes, black and white, are pre­

sented against a grey background, to an observer. Upon perception of a flash the 

subject immediately presses one of two buttons, depending on the type of flash per­

ceived, so that there are two response types.

In this chapter we extend the single response type threshold models studied in 

chapters 3 (simple RT) and 4 (go-no go RT) to two-response type threshold models. 

Fitting such models gives us a procedure for estimating both the black and white 

thresholds. Knowledge of the threshold values aids in making inferences regarding 

the minimum rod current level for each flash type to be detected.

In Section 6.1 we develop a threshold model with one threshold for each stimulus 

type, and a single internal potential for the two response types. Such a threshold 

model accounts for all of the information given in the data, but it is difficult to make 

inferences regarding the correct and error responses. This model is then extended 

further in Section 6.2, where we develop a marginal model for each response type, with 

a threshold for each marginal model. These marginal models are found to be more 

useful in making inferences on the intensities with which correct and error responses 

are made. Within this section we also extend our marginal models to incorporate 

bivariate interaction terms, which allow us to study interactions between two flashes 
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at different distances from a single response. For each of the models considered we 

discuss the statistical methods involved and diagnostics, as well as fit the models to 

both simulated data based on the parametric model of Chapter 5, and real data. We 

conclude this chapter with a discussion in Section 6.3.

6.1 A Threshold Model for Choice RT Data

In this section, we extend the model used for a single response type to data with two 

response types, and two thresholds - one threshold for each response type. Prior to 

describing this threshold model, we describe our conceptual model for a choice RT 

experiment.

In our conceptual model, the stimuli, which consist of both black and white flashes, 

pass through an internal filter. We set up the model such that black flashes give 

negative contributions, while white flash contributions to the filter are positive valued. 

We model the internal potential as the filter output with internal noise added to it. 

When the internal potential drops below the ‘black’ threshold θβ the subject decides 

that there is a black flash and has a ‘black’ response. A ‘white’ response occurs when 

the internal potential exceeds the white threshold 0w.

If the subject tends to make each response type with the same frequency when 

both flash types are equiprobable, then the subject has no bias in responding to the 

two flash types, and OB = —w.

As in previous chapters, we discretize a point process S into the 0-1 time se­

ries X as follows, where we choose some lag value m to create the time intervals 

{(0, m], (m, 2m], ...,(T,T+ m]} = {I1, 12, ..., Ir}, where T = m[max(RB, RW)/m]. 

The lag m may be chosen such that there is at most one flash (response) in each 

discretization interval, but to decrease computation time we choose m slightly larger, 

allowing more than one point in a given interval.

We use the following notation:

• SB and Sw denote the black and white stimulus point processes, respectively;
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• RB and Rw denote the black and white response point processes, respectively;

• X3 and Xw denote the discretized black and white stimulus point processes, 

respectively;

1, if there exists Sk such that Sk ∈ Ij

I 0, otherwise

• Y denotes the discretized response process, and takes on the values {—1,0,1} 

as follows:

—1, if there exists Rf such that Rf ∈
Y= 1, if there exists RW such that RW ∈ I,

3 JJ

otherwise

Occasionally Y = 2 due to a black and white response occurring almost simul­

taneously. For each such case, with equal probabilities we set Y = 1, Y+1 = —1, 

or Yt = —1, Y+1 = 1. The same results are obtained when the simpler assign­

ment of setting Y = 1, Y+1 = -1 for all case of Yt = 2.

We denote the internal potential at time t by Ut. Possible models for Ut are 

considered later in this section. In our model, a black response occurs when

Ut + St < 0B,

and a white response occurs when 

Ut + St > Ow, 

where Et is internal noise, which we assume to have a symmetric distribution about 

0. We assume a logistic error distribution.

This set-up corresponds to an ordinal logit regression model (Skrondal and Rabe- 

Hesketh (2004)). The observed response Yt takes on one of three response values 

{—1,0,1}, while the latent response has the form Ut + Et, where Et is an error term, 

and the relationship between the observed and latent responses is given by

-1, if Ut + Et < 8B 

ye= 4 0, if 0p <U,+6 <0w

1, if Ut + + > Ow
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We will use the same notation as in the single response cases of simple and go-no 

go RT, but we describe it here for convenience. Assuming that a flash occurs at time 

Ty at-τ represents the effect of that flash on the internal potential at time t. The 

summation function au acts as a filter on the flash process. Note that time is in terms 

of an index corresponding to the interval containing the time of interest.

As of time t, the number of time intervals elapsed since the last time interval 

containing a response is denoted by Y. We assume that a response occurs at time 

O. Thus, 71 = 1, and letting k be the interval in which the first response occurs, we 

have NYj = j for j=1,. ..,k. In general, NYj =j-i for j = 1,...,T, where the i th 

interval I;, was the last interval before Ij to contain a response.

We start with a linear model as an approximation to the internal potential. Let au 

and bu be the summation functions for white flashes and black flashes, respectively. 

Under this assumption, the internal potential can be expressed as follows (Brillinger 

(1988b)) 
9t-1

U= >(aX".+byXP.), (6.1.1)
u=0

where gt = min {Yt, G} and G is the index of the corresponding interval that contains 

the maximum time lag of interest. We truncate the sum at G if Y > G since based 

on physical grounds, there is no reason to believe that effects continue past interval

In the simplest case buy = —au, and the model is

91-1
U=2 ay(XM. - XPL).

u=0

This corresponds to the case in which black and white flashes lead to effects of the 

same magnitude on the internal potential in a tendency towards a response of the 

same type as the flash; the effect of a black flash in decreasing Ut is the same as the 

effect of a white flash in increasing Ut. Intuitively, this appears to be a reasonable 

assumption. Note that the assumption of effects of equal magnitude does not imply 

no response bias. That is, there is no restriction that 0B = —w; it is possible that 

when Ut = C > 0 we have Ut > 0w, but when Ut = ~C < 0 we do not have Ut < 0B.
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Thus, we make the assumption of equal effects bu = —Au, and focus on this simplest 

model, including the term XP = XW — XP rather than the individual XW and XP, 

so that our model becomes 
9-1 

U=2 ayXP.
u=0

We next look at an extension of the linear model that includes interaction terms. 

Inclusion of such terms takes into account the fact that a response to a flash may 

be dependent on the occurrence of previous flashes that are close together in time 

with the present one. That is, we consider interactions of a flash at time t with 

the occurrence of a flash of a certain type that is up to d time units earlier, for 

some d. For simplicity we set d = rm, for some integer r, since we are working 

with data that is discretized using lag m. Letting ZP = I{2=1 XJ, > 0}, and 

ZY = I{2=1 XM, > 0} the internal potential can be expressed as

9t-1 2t 1 zt -
U, = CaXL.+ 2 b,XP.ZB.+ 2 c.XP.ZMu (6.1.2) 

u=0 u=0 u=0 

where z3 = min{ t, z5}, ZX = min{ t, zW}, and z5, zW<G are the indices of the 

interval containing the maximum interaction time lag of interest, involving black and 

white flashes, respectively. In some cases, there may be two different d parameters, 

dB for black stimuli and dw for white stimuli.

Interaction effects give an indication of the presence of inhibition or facilitation 

among the flashes. For example, negative (positive) bu points toward inhibition (fa­

cilitation) between black flashes, since XP.ZL. is negative when there are two black 

flashes within dB time units. That is, two black flashes within dB time units will give 

a positive contribution to Ut when bu < 0 so that a response by crossing the lower 

threshold is less likely to occur, indicative of inhibition among the black flashes. Like­

wise, facilitation among the black flashes is present if bu > 0, since the contribution 

of two black flashes within dB time units will be negative, giving a negative contribu­

tion to Ut and crossing the lower threshold is more probable. It should be noted that 

negative (positive) bu also signifies an inhibition (facilitation) effect on a white flash 

that follows within dβ time units of a black flash. Similar reasoning can be used to 
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show that negative (positive) Cu points toward inhibition (facilitation) between white 

flashes, and to a black flash following a white flash.

We fit ordinal logit regression models to the data in R by using the polr function 

in the MASS library (Ripley (2006)). Our fitted model with interactions has the form:

f -1,

*=4 0,

1,

if ^ < ÂB

if ⅛ < Ùt < θw , 

if Ut > êw

where

zp-1 zX-1
⅛≈Σ â„XPu + 2 b„XPuZLu + 2 XPuZMu-

g—1

u=0 U=O u=0

Models with interactions are fit to nine pooled data sets (pooling based on 8 runs 

of 100 flashes), each having a different stimulus rate. We pool the data as described 

in Section 3.3.6. The rates of flashes per second are 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 2.0, 

4.0, and 8.0. Black and white flashes are presented with equal rates, so that if the 

stimulus rate is 1.0, each flash type is presented with rate ps = .5.

We can assess goodness of fit of the model by examining plots of the empirical 

probabilities of a black response (Y = —1) and a white response (Y = 1) against the
A

predictor Ut. The probability of a white (black) response will increase (decrease) with 

Ut since a response occurs when the internal potential, with some random noise added 

to it, crosses the white threshold 0w ( black threshold 8B); the larger the absolute 

value of Ut, the higher the probability of some type of response.

Using a grid of u values that span the range of the Ût the empirical probability 

of a white (black) response is the proportion of white (black) responses that occur
A

when Ut is in a small interval near each u. An estimate of the probability of a white 

response is given by
#(Y = 1 with u — h < Ût < u + h} 

A

#Lt with u-h<Ut<u+h}, 
where h is taken to be a small positive value, and the empirical probability of a black 

response is found by replacing Yt = 1 by Y = —1 in the above ratio. This estimate 

of the probability is not very sensitive to h; the general pattern of the probability 
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estimates is similar for different h. However, for h < .15 there tends to be more 

estimates equal to one, due to the small interval width 2h. We use h = .2 in the 

probability estimation.

Under the assumption that the model is correct, the probability of a white response 

is

P(U. +e > 6w) = P(er > w - 0,),

and the probability of a black response is

P(U. +6< 0p) - P(e, <θβ~ Û,).

The plots of the two empirical probabilities should follow the corresponding theoret­

ical curve if the model fits the data well.

Before fitting our model to real data, we first fit our model to simulated data 

from our parametric model in Chapter 5, in order to study the behaviour of the fitted 

model and diagnostic for data in which we know the relationship between the flashes 

and responses. The data is simulated using Algorithm 5.3.1.

Plots of the linear filter estimates exhibit similar behavior regardless of the stim­

ulus rates, but the peak height tends to increase with flash rate. As q increases to 0.5 

the linear filter tends to fluctuate around zero, and most coefficients are near zero. 

For some of the simulated data sets, as d increases a region to the left of the peak is 

depressed. This behaviour can be seen in Figure 6.1 for the two curves corresponding 

to simulated data with Ps = .5 and d ∈ {0, .1}.

Interaction effects that improve the model tend to be negative, suggesting that 

there are inhibition effects among flashes of the same type. This is expected since the 

model from which our simulations are generated incorporates deletions of flashes of 

the same type that are “close” in time, when d> 0.

Examples of threshold value estimates for various simulated data sets are provided 

in Table 6.1. For the simulated data we know that there is no response bias, so 

8B = 0w, and we expect the two threshold estimates to be approximately equal in 

magnitude. At faster flash rates, regardless of the parameter values, there is little
AA

to no difference in magnitude between OB and Θw∙ However, at slower flash rates
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for realistic (small) values of q, the differences in magnitude between Θp and 

slightly larger; as q approaches 0.5, the two estimates are similar in absolute value.

For a given flash rate, the threshold estimates tend to be very similar across var­

ious parameter settings. Furthermore, the threshold estimates tend to decrease in 

magnitude as the flash rate increases. The behavior of decreasing threshold mag­

nitudes with increasing flash rates is expected since the response frequency should 

increase as the flash rate increases. The internal potential Ut will cross the thresh­

olds more frequently when there is a fast stimulus rate; in a short time interval more 

flashes occur so that after a small amount of time a response occurs. In order for the 

internal potential to cross the thresholds within a short period of time it is anticipated 

that the magnitude of the thresholds must not be large when the flash rate is high. 

Furthermore, such results are consistent with the observation that the peak heights 

of the linear filter decrease as the stimulus rate increases; if the threshold is low then 

the coefficients in the linear filter do not need to be large for a response to occur.

Ow are

Table 6.1: Examples of threshold estimates for simulated data. The upper value in 
each table element is B, while the lower term is w.

d∖q
(a) Ps 
.05

=.5
.5

(b) Ps
.05

= 2
.5

0 -4.58
4.17

-3.87
3.81

-2.54
2.54

-2.46
2.55

1 -4.59
4.28

-3.81
3.94

-2.83
2.70

-2.66
2.67

.2 -4.57
4.27

-3.98
3.98

-2.90
2.87

-2.74
2.83

The diagnostics of the fitted models for the simulated data tend to improve as 

the stimulus rates increase and as the thinning parameter d of the parametric model 

increases. When nonlinear inhibition is absent in the parametric model (d = 0), the 

diagnostics indicate that the fit is relatively good, but there is a tendency for the 

threshold model to overestimate the probability of a response at large magnitude Ut. 

As the thinning parameter increases to 0.1 and to 0.2, the fits improve, and for faster 

rates such as ps = 2.0 the fit becomes very good.
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The parametric model can assist us in interpreting the behaviour in our diagnostic 

plots. In the parametric RT model many consecutive non-responses to flashes do not 

increase the probability of a response, but in the threshold model the probability 

increases with the number of consecutive non-responses. However, in our parametric 

model, when d= 0 there are fewer instances in which a flash is not responded to, and 

as d increases the number of non-responses increases. Thus, the improvement in fit 

of the threshold model to simulated data with larger d settings may be because with 

larger d values, non-responses occur more frequently in the simulated data. That 

is, in our parametric model more non-responses may give the appearance that the 

probability of a response increases with the number of non-responses, which is true 

for the threshold model, thus providing a good fit.

An example of the diagnostic for a simulation with parameters u =.5, = .12, 

d = 0, p = .1, psB = Psw = .5,and q — .05 is given in Figure 6.2, while an example 

of the diagnostic for a simulation with parameters u =.5,0 = .12, d =.2,p = .1, 

PsB = Psw == 2,and q = .05 is given in Figure 6.3.

We now discuss the fitted threshold models for the experimental data. The “best­

fitting” model, based on the diagnostic plots, for each of the pooled data sets has 

d =d=d= .2, but varies in the number of interaction terms.

A plot of the coefficients of lags of the flash process for each of the nine data 

sets is provided in Figure 6.4. It can be seen that the peak locations for each curve 

are all near a lag of 0.5 s, which indicates that most responses tend to occur 0.5 s 

after a flash, regardless of the flash type. This agrees with our estimates of the mean 

reaction time based on parametric models, in Chapter 5. The curves also appear to 

flatten out and have lower peak heights as the flash rate increases. The pattern of 

decreasing peak heights as the stimulus rate increases is evident in Figure 6.5. Such 

behaviour was also observed in the fits for simulated data.

The coefficients of the main effects included in the fitted models are given in 

Table 6.2, where a lag of m = .05 was used. For illustration purposes, in Figure 6.4 

we included terms that are negligibly different from zero, but in Table 6.2 we only 

include those that are significantly different from zero. In the output from R a t-value 
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is provided for each coefficient. We set level of significance as a = .05, so that those 

with a t-value larger in absolute value than 1.96 are included in the model.

Table 6.2: Main effect coefficients included in ordinal logistic threshold models fit to 
choice RT data.

Lag ∖ rate 0.4 0.6 0.8 1.0 1.2 1.4 2.0 4.0 8.0
0 
.05

-.26
-.48 -.34

.15 

.25 

.3 

.35 

.4 

.45 

.5 

.55 

.6 

.65 

.7 

.75

.8 

.85 

.9 

.95 
1.00

.43
-.28 -.34

.41
.60 .84 .77 .56 .53

1.89 1.59 1.62 1.71 .22 .85 .40
2.69 2.16 1.71 1.67 .56 .83 .69
2.44 2.26 1.98 1.91 1.56 1.58 1.19 .45
3.69 3.21 2.66 2.73 1.48 1.64 .86 .79
3.93 3.23 2.54 2.48 1.79 1.37 .91 .78 .80
3.84 3.01 2.51 2.49 1.72 1.64 1.09 .70
3.46 2.10 1.70 1.79 1.41 1.23 .81
2.70 2.54 2.00 1.39 1.49 .97 .80 .69
2.34 1.66 1.54 .91 .60 .84 .45
2.57 1.35 .99 .61 .54 .64 .40 .68 1.18
1.70 1.14 .92 .53 .79 .56 .49
1.39 .82 .65 .40 .54
1.50 1.07 .39

.92 .47 -1.07

Interaction effects that are included in the model tend to have negative coefficients, 

suggesting that there are inhibition effects among flashes of the same type. Both the 

black and white flash interaction coefficients included tend to be less than 0.2 lags 

above or below the filter peak height of 0.5. Recall that in our threshold model we 

used dp =dw = .2. This indicates that at lags near the mean reaction time inhibition 

effects occur frequently. That is, at lags near the mean reaction time, when two flashes 

of the same type are presented within 0.2 s apart the two flashes are perceived as one 

bright flash - temporal summation of the flashes occurs.

Tables 6.3 and 6.4 provide the interaction coefficient estimates at lags included in 

the fitted models of each data set.
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Table 6.3: Black flash interactions included in ordinal logistic threshold models fit to 
choice RT data.

Lag ∖ rate 0.4 0.6 0.8 1.0 1.2 1.4 2.0 4.0 8.0
0 -1.47
.15 -1.21 1.15
.25 -1.35 -.92 -.87 -1.00
.3 -1.26 -.78
.35 -2.93 -1.75 -1.92 -1.84 -1.07
.4 -2.05 -1.91 -1.34 -1.04
.45 -2.11 -2.82 -2.04 -1.27 -1.34
.5 -2.38 -1.61 -1.83 -1.08
.55 -3.77 -2.39 -.86 -.96
.6 -1.98
.65 -1.15 .85
.7 -2.49 -1.62 -2.11 -1.26
.75 .9
.8 -1.54

.94
.60

-1.05
-.60

-.94

-.76 -1.49

-.98

The two threshold estimates, PB, Ow, for our fitted models are provided in Ta­

ble 6.5. The absolute values of the threshold estimates tend to decrease with the 

stimulus rate, which is the same behaviour observed for simulated data.

For a given total flash rate of at least 1.4 s, there are small differences in the black
A

and white threshold magnitudes, so that the magnitude differences between PB and 

Âw are negligible. This relation suggests that there is negligible bias in response choice 

when flashes are presented at moderately high speeds. The difference in magnitude 

is slightly larger for slower flash rates. For the simulated data we observed that for 

realistic values of q the differences in magnitude between Θβ and Θw are larger when 

flashes are presented at a slower rate. Therefore, these results suggest that at all flash 

rates, there is negligible bias in response choice.

As an example of the diagnostic results, diagnostic plots are provided for four of 

the nine data sets in Figure 6.6. As observed for the simulated data with slow stimulus 

rates, the diagnostic plot for the data set with the slowest rate, 0.4, reveals a poor 

fit for predicting the probability of a black response when Ût < ÂB; the probability of 

a black response is overestimated by the threshold model. The fitted and theoretical
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Table 6.4: White flash interactions included in ordinal logistic threshold models fit 
to choice RT data.

Lag ∖ rate 0.4 0.6 0.8 1.0 1.2 1.4 2.0 4.0 8.0
.05 -.34
.1 .77 -.69
.2 .63
.25 -1.00 -.53
.35 -1.4
.4 -2.44 -2.19 -1.68
.45 -1.72 -1.83 -1.76
.5 -2.01 -3.35 -1.77 -1.36
.55 -4.23 -2.87 -2.19 -1.41 -1.69
.6 -3.36 -1.47 .93
.65 -3.31 -1.20

white response probabilities correspond relatively well. Similar behaviour is exhibited 

in the diagnostic plots for the data sets with rates 0.6 (not shown), 0.8 (not shown), 

and 2.0.

The diagnostic plot for the data set with stimulus rate 1.0 indicates that for 

the white responses there is an overestimation by the threshold model when Ut > 

Ow. The black responses are predicted quite well except for the right tail, where 

the empirical probabilities are slightly larger than the predicted. This may be an 

indication that the threshold for the black responses has been overestimated, since 

responses are occurring in the data with a higher than predicted probability when 

Ùt > Âg. Diagnostics for the pooled data set with rate 1.2 have a similar type of 

behaviour (not shown). For both the white and black response probabilities the fit 

is quite good for positive values of Ùt- However, both also have a higher probability 

of responses occurring when Ut is smaller in magnitude than the threshold, possibly 

indicating overestimation of the thresholds.

The threshold model fits the data set with rate 1.4 quite well. Diagnostic plots 

display a good fit for the white responses, and a relatively good fit for for the black 

responses. The fits are also quite good for the data set with rate 4.0 (not shown), 

with the exception of one outlier at the left tail of the black response probability
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____ AA

Table 6.5: Ordinal logistic threshold estimates 0B, 0w for choice RT data.

rate Pw
0.4 -5.61 5.02
0.6 -4.92 4.50
0.8 -4.46 4.09
1.0 -4.20 3.92
1.2 -3.66 3.42
1.4 -3.53 3.43
2.0 -2.89 2.80
4.0 -2.16 2.29
8.0 -1.69 1.68

prediction. Diagnostics for the data set with rate 8.0 (not shown) are relatively good 

- there are a few stray empirical points that do not follow the theoretical curve that 

well, but the majority of the empirical points follow the theoretical curve.

Overall, the real data exhibit similar behaviour to data simulated from our para­

metric model; both real and simulated data show an improvement in fit as the stim­

ulus rate increases. For slower stimulus rates it is more suggestive that our threshold 

model does not fit the experimental data very well. The poor fits for data with slower 

stimulus rates are likely because fewer non-responses occur when the flash rate is 

slow. In the threshold model the response probabilities are high when the magnitude 

of Ut is large, and Ut increases with the number of non-responses.

6.2 Marginal Models for Choice RT data

In the previous model, the incorporation of interaction effects allows inference on the 

presence of any inhibition or facilitation among flashes of the same type, and accounts 

for all of the information in the data in a single model. However, with the single 

impulse response, inferences cannot be made on the intensity of a specific response 

type following a certain kind of flash. To overcome this, we consider a marginal 

model for each response type. Doing so allows us to examine four impulse responses - 
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the “correct” impulse responses (black stimulus-black response, white stimulus-white 

response) and “error” responses (black stimulus-white response, white stimulus-black 

response).

Our conceptual model, is an extension of the one described in Section 6.1, with 

two internal potentials and two thresholds. Black and white flashes pass through an 

internal filter corresponding to the flash type, and the noisy filter outputs model the 

respective internal potentials. When the black internal potential exceeds the black 

threshold θβ the subject decides that there is a black flash and has a ‘black’ response. 

Similarly, a ‘white’ response occurs when the white internal potential crosses the 

white threshold θw .

If a subject has a response bias, then the threshold corresponding to the more 

frequent response type is smaller than the other threshold; when θβ = 0w there is no 

response bias.

We use the following notation:

• SB and SW denote the black and white stimulus point processes, respectively

• Rb and Rw denote the black and white response point processes, respectively

• XB and XW denote the discretized black and white stimulus point processes, 

respectively.

• Similarly, YB and YW denote the discretized black and white response processes, 

respectively.

• Occasionally Y = 2 due to the black and white buttons being pressed simulta­

neously. In such an event, we set YW = 1, Y41 = 1.

In order to determine the effect of black stimuli and of white stimuli on each type 

of response, two separate (marginal) models are fit. An internal potential is modelled 

for each type of response, and each type of internal potential is compared with a 

corresponding threshold.

For simplicity, we describe the model in terms of the white internal potential. 

Assuming that a white flash occurs at time T, aX represents the effect of that flash 
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on the white internal potential at time t. Similarly, assuming that a black flash occurs 

at time T, b, represents the effect of that flash on the white internal potential at time 

t. Note that time t is in terms of an index corresponding to the interval containing 

the time of interest. In an analogous manner we define the coefficients a and 

As of time t, the number of time intervals elapsed since the last interval containing a 

response (either black or white) is denoted by Y. We assume that a response occurs 

at time 0.

We start with a linear model as an approximation to the internal potential. Under 

this assumption, the white and black internal potentials can be expressed as follows 

(Brillinger (1988b)):

gt-1 i-1

Ut 2 Cu At-u T 2 Ou At-u 
u=0 u=0 

pt —1 6-1 
UB = X axB, +>6 xa, 

u=0 u=0 

where gt = min{ Yt, G}, it = min{ Yt, i}, and G and i are the respective indices of the 

corresponding interval that contains the maximum time lag of interest for flashes of 

the same type as the response, and of the opposite type of the response, respectively. 

A white response occurs when

UM+e, > 8w,

and a black response occurs when

U*+ δt>θβ,

where Et and δt are internal noise, which we assume to be have a symmetric distrib­

ution about 0. More specifically, we assume a logistic error distribution.

We next consider an extension of the linear model so that interaction terms are 

included. As in the ordinal logit threshold models, we take into account the fact 

that a response to a flash may be dependent on the occurrence of previous flashes 

that are close together in time with the present one. That is, for the white response 

case we consider interactions of a white flash at time t with the occurrence of any 
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white flashes that are up to dW time units earlier, for some dW, and of a white flash 

occurrence at time t with the occurrence of any black flashes that are up to dB time 

units earlier.

For simplicity we set dw = rm, dB = sm, for some integers r, s, since we are 

working with data that is discretized using lag m. Letting ZY = I{2=1 XX, > 0} 

and ZB = I{23=1 XE; > 0}, we can express the white internal potential as follows:

9t-1 i-1 2-1
U'= Xa XW. +>bBxB, + X cV xW.ZW. + gBxW.ZB., (6.2.1) 

u=0 u=0 . u=0 

where 2t = min{ Yt, z}, and z ≤ G is the index of the interval containing the maximum 

interaction (current flash occurrence with flash occurrences within dB or dW time 

units earlier) time of interest. Similarly, we can express the black internal potential 

as follows:
g+-1 it~l z-1

U,B = > aXB, +Y bYxW, + > cBxB,ZB, + gWXB,ZX,. (6.2.2)
u=0 u=0 u=0

The main coefficients have the following interpretations:

• aY: impulse of white flashes and white responses

• bB: impulse of black flashes and white responses

• aB: impulse of black flashes and black responses

• bW: impulse of white flashes and black responses,

so that aW and aB correspond to the “correct impulses”, while bB and bY coincide 

with the “error” impulses.

Interaction effects can be used to make inferences on the existence of inhibition or 

facilitation among the flashes. For example, the effect on a white flash at t — u by a 

white flash within dW time units before it is given by CY, while the effect by a black 

flash within dW time units earlier is given by gB. Similar interpretations hold for 

cB and gX. In all cases, a positive coefficient indicates facilitation, while a negative 

coefficient signifies an inhibition effect.
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Each marginal model is fit by a generalized linear model of the binomial family, 

and the method of maximum likelihood is used to obtain estimates of the threshold 

and any coefficients included in the marginal model. We assume a logistic error 

distribution with location 0 and scale 1, so that the logit link function is employed.

We fit binomial models with logit link functions to the data in R by using the 

glm function (R Development Core Team (2006)). For the white responses, our fitted 

model with interactions has the form:

(
| 1,

where

gt-1 i-1

if Û" < Θw 

if 0 > 6w

frW1 • 1 B W
Ct 2 Cu At-u ' 2 t-u 1 Z Cu At-u-t-u T 9u At-u-t-u 

u=0 u=0 u=0

and we fit the model 
çw±l 0, if fw* <0 

t ∣ 1, if W* > 0 ‘

where

gt-1 im-1 2-1
(W* _  • SW VW I V B YB ∣ VA -W W W I ~B W PB AW 
ft 2 Cu *t-u 1 L *t-u T 2 Cu *t-u-t-u T 9u At-u-t-uTP 

u=0 u=0 u=0

so that the estimate of the threshold r is the negative of the intercept estimate βw. 

An analogous formulation is used for the black responses.

We fit models to the same nine data sets as in the previous section, each having 

a different stimulus rate; the rates of flashes per second are 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 

2.0, 4.0, and 8.0. We use a lag of m = 0.05.

We can assess goodness of fit of the model by examining plots of the empirical 

probability of each type of response against the corresponding predictor ÜW, Uf. 

Each diagnostic plot has the same form used in assessing the fit of the threshold 

model for the go-no go experiment of Chapter 4.

As a means of studying the behaviour of our fitted model and the diagnostics in 

a situation where we know how the data is formed, we fit our threshold models to 
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data simulated from our parametric model for choice RT data, described in Chapter 

5. The data is simulated using Algorithm 5.2.1.

For simulations run at different flash rates, the behaviour of the four impulse 

responses appear similar for fixed parameter settings, except for a lower peak height 

as the stimulus rate increases. For simulations with large values of d, there is a 

tendency for a small trough on the right side of the peak (located near lag u) in the 

“correct” impulse responses.

The “error” impulse responses for simulations with small values of q tend to fluc­

tuate around 0, and at slower stimulus rates a sharp positive peak usually occurs after 

μ. Such behaviour is observed for any d, but is more common as d increases. When 

the error probability q is small, flashes of the opposite type to the response cause few 

of that response type, which explains the fluctuation around 0. The sharp peak near 

μ is likely due to the identical reaction time distributions for responses to both flash 

types; the error responses usually occur μ time units after a flash.

As q approaches 0.5, the “error” impulse responses have a peak near u, and exhibit 

behaviour similar to the “correct” impulse responses; at q = .5 the four impulse 

responses possess the same peak heights at μ. The case of q = .5 corresponds to a 

situation in which the subject responds with complete randomness to the stimuli. This 

also explains why for positive d troughs also appear in the “error” impulse responses. 

The two responses types are equiprobable, so when two flashes of the same type are 

presented within d time units apart, either response type is as likely to occur. Thus, 

the inhibition present between flashes of the same type exists for both response types, 

regardless of the flash type.

An example of a plot of the four stimulus-response impulses for a simulation with 

parameters u =.5,o = .12, d =.1, p = .1, PSp = psw =1,q = .05, and PN = 0, and 

consisting of 800 flashes, is given in Figure 6.7. In the two “correct” impulses there 

is evidence of a dip near a lag of 0.1 s. The two "error" impulses are near zero with 

the exception of a sharp peak near 0.5 for the white stimuli-black response impulse, 

and near 0.6 for the black stimuli-white response impulse.

Our next example is for the case of completely random responses to the flashes. 



184

The impulses for a choice RT simulation with parameters u =.5, 0 = .12, d = .2, 

p = .1, pSB = .5, psw =.5, q = .5, and PN = 0, and consisting of 800 flashes, is 

given in Figure 6.8. A valley near lag 0.2 is evident in each of the plots, and the four 

impulses have peaks of similar height near 0.5.

Examples of threshold estimates for various simulated data sets are provided in 

Table 6.6. For the simulated data we expect ⅛ Ow since we know that there

is no response bias. The difference between the estimates appears to decrease with 

the flash rates, regardless of the parameter values. Furthermore, when we fix the 

flash rate for a simulation and allow the model parameters to vary, the threshold 

estimates are very similar. This observation suggests that the minimum rod current 

required for flash detection changes with flash rate, but is not affected by the degree of 

temporal summation (increases with d). As in the ordinal logistic threshold model of 

Section 6.1, as the flash rate increases, there is a decrease in the threshold estimates.

Table 6.6: Examples of marginal threshold estimates for simulated data. The upper 
value in each table element is ÔB, while the lower term is w.

d\ps .5 2
0 4.75 2.33

4.48 2.36
.1 4.71 2.76

4.49 2.72

When nonlinear inhibition is absent in the parametric model, so that the thinning 

parameter is equal to zero, the diagnostics indicate that for slow stimulus rates (e.g. 

Ps = .5) the fit is poor below Θβ for the black marginal diagnostic and above 

for the white diagnostic. However, as the rate increases to ps = 2 the diagnostics 

reveal an excellent fit with the exception of a couple of outliers at the upper tail. As 

the thinning parameter increases to .1, the fits improve, and for faster rates such as 

Ps = 2.0 the fit is much better.

The diagnostic behaviour may be explained by the parametric model, as in the 

previous section; consecutive non-responses increase the response probability for the 

threshold model, but this is not true for the parametric model from which the data 



185

is generated. However, as the flash rates increase the number of non-responses in a 

time period also increase, so that there appears to be a positive relationship with 

the response probabilities. As d increases this relationship appears more apparent, 

which is also explained by the fact that in our parametric model, the number of 

non-responses increases with d. Examples of diagnostic plots with fast and slow flash 

rates are given in Figures 6.9 and 6.10, respectively.

We now discuss the fits of our marginal threshold models to the experimental data. 

For almost all data sets we study, the effects of interactions between opposite types 

of stimuli are not different from zero in the “best-fitting” model for each internal 

potential. Therefore, such interactions are only included in the data set with rate 1.2, 

which is the only one for which the fit was improved by their inclusion.

Plots of the impulse responses of the “black” button responses to black stimuli 

and “white” button responses to white stimuli, as well as the error responses “black”- 

white and “white”-black are provided in Figures 6.11 and 6.13, respectively. Plots 

of the impulse response peaks and error response peaks as a function of the lag are 

also displayed in Figures 6.12 and 6.14. There is a tendency for the peaks of the 

“black”-black and “white”-white impulses to decrease with the stimulus rate. This 

is consistent with intuition. With a slower stimulus rate one is less likely to miss a 

stimulus or mistakenly press the wrong button. A higher peak is an indication of a 

larger frequency of the response type to the stimulus type at the lag for which the 

peak occurs. The error impulses have smaller peak values; with a lower frequency the 

wrong button is pressed.

The fitted marginal models of the internal potentials Uf, UW for the nine pooled 

data sets follow, where a lag of m = .05 was used. For illustration purposes, we 

include terms that are negligibly different from zero in Figures 6.11 and 6.13, but in 

the fitted models given below we only include those that are significantly different 

from zero. In the output from R a p-value is provided for each coefficient. We set 

the level of significance as a = .05, so that those with a p-value smaller than 0.05 

are included in our model. The coefficients of the black and white stimulus effects 

included in the models are given in Tables 6.7 and 6.8.
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Table 6.7: Black stimulus coefficients included in black marginal threshold models fit 
to choice RT data.

Lag ∖ rate 0.4 0.6 0.8 1.0 1.2 1.4 2.0 4.0 8.0
0 -.86
.05
.1 .77
.15
.25 .65 .74
.3 1.23 .79 .86 1.40 1.41 .62
.35 2.26 1.59 2.19 2.14 .90 1.52 .82
.4 3.28 2.32 2.49 1.90 1.31 1.60 1.43
.45 3.26 2.19 2.69 2.21 2.26 1.94 2.20
.5 2.26 3.37 3.70 3.14 2.04 2.46 2.00
.55 4.70 3.80 3.66 3.04 2.28 2.80 2.05
.6 4.69 3.94 3.44 3.50 1.97 2.45 2.58
.65 4.67 3.29 3.52 3.03 1.78 1.87 2.08
.7 4.38 3.68 3.51 2.22 1.29 3.30
.75 4.48 2.68 3.64 3.31 1.41
.8 5.05 3.11 2.37 3.16 2.23
.85 4.43 3.83 4.28
.9 4.78 2.89 3.69
.95 3.86
1.00 3.80

The black flash interaction coefficients included in the black threshold model are 

given in Table 6.9. There tends to be facilitation among the black flashes at lags 

smaller than 0.3, and inhibition at larger lags. This inhibition is not evident in data 

sets with flash rates higher than 1.4, and is most common in the data set with rate 

0.8. In the rate 0.8 data set the inhibition effect appears to be at lags centered around 

the mean reaction time, 0.5.

Table 6.10 gives the white flash interaction coefficients that are included in the 

white marginal model. As in the case of the black flashes, there tends to be facilitation 

among the white flashes at lags smaller than 0.3, and inhibition at larger lags. This 

inhibition is not evident in data sets with flash rates higher than 1.2, and is most 

common in the data set with rate 0.4. In the rate 0.4 data set the inhibition effect 

appears to be at lags before the mean reaction time, 0.5.
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Table 6.8: White stimulus coefficients included in white marginal threshold models 
fit to choice RT data.

Lag ∖ rate 0.4 0.6 0.8 1.0 1.2 1.4 2.0 4.0 8.0
0
.05

-.86

.15 

.25 

.3 

.35 

.4 

.45 

.5 

.55 

.6 

.65 

.7 

.75 

.8 

.85

.9 

.95 
1.00 
1.05

-1.10 .54
-1.23 

.65 .74
1.16 .97 . 75 1.25 .89 1.22

.97 1.84 1.90 1.64 1.06 .67
2.61 2.45 1.97 2.14 1.26 1.81 .95
2.77 2.66 2.20 2.04 1.99 2.51 1.74
2.84 3.76 2.96 3.41 2.10 2.61 2.15 2.73
4.16 3.75 2.96 3.72 2.79 2.34 1.25
4.16 3.77 3.45 3.22 2.45 3.00 1.82
4.37 3.47 2.17 3.02 2.92 1.54 2.64
4.13 3.84 3.70 2.70 1.79 1.83 2.76
3.02 3.95 2.82 1.46
3.37 3.70 2.68 1.91 2.90
3.24 2.63 2.92 3.38
1.49 4.08 3.30 
1.85 
2.70 3.88 3.80 
3.37 1.05

Table 6.11 displays the two threshold estimates, Ow, OB for models that fit the 

data reasonably well, based on the diagnostic plots. For a given data set the two 

threshold estimates are quite close, so that in general we have êw = θβ- Such results 

suggest that there is no bias in response choice. As observed for the simulated data, 

the thresholds tend to decrease with the stimulus rate.

Diagnostic plots are provided for four of the data sets in Figure 6.15, as an ex­

ample. For the data set with the slowest rate 0.4, the diagnostic indicates a good fit 

for the black responses, but suggests a poor one for white responses. For ÛW > êw, 

the threshold model overestimates the probability of a white response. This overes­

timation behaviour is also observed in both the black and white diagnostics for the 

data sets with rate 0.6 (not shown) and rate 0.8 (not shown), although not as poor



188

Table 6.9: Black flash interactions included in black marginal threshold models for 
choice RT data.

Lag )\ rate 0.4 0.6 0.8 1.0 1.2 1.4 2.0 4.0 8.0
0 1.18 -1.18

1.51 .80
.15 1.16
.2 2.02 1.27 1.11 1.82
.25 2.47
.3 -2.67
.35 -2.37 -2.09
.4 -2.47 -2.42
.45 -3.89 -1.95
.5 -3.82 -2.45
.55 -3.79
.6 -3.20
.65
.7
.75
.8

for the rate 0.8 diagnostic. There is still an overestimation tendency in both diag­

nostics for the rate 1.0 data set, but the fit is better than the slower rate data sets. 

The fit is very good for white responses in the 1.2 rate data set, but there is still an 

overestimation problem with the black threshold fitted model. The fitted models for 

the data sets with rates faster than 1.2 are all excellent, according to the diagnostics. 

In these four cases, the empirical probabilities follow the theoretical curve quite well. 

This improvement in fit agrees with the results of our simulations.
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Table 6.10: White flash interactions included in white marginal threshold models for 
choice RT data.

Lag ∖ rate 0.4 0.6 0.8 1.0 1.2 1.4 2.0 4.0 8.0
.15 
.2
.3
.35
.4
.45 
.5

2.63 2.32 1.23
’ 1.43 1.46 1.60

1.90
-1.51
- 2.42 -2.48 -2.02
- 2.89 -2.31 -2.74
- 3.74 -3.42

0.6

Φ 
(0 
C 
0 
0 
(0

0

a N
E

Figure 6.1: Ordinal logistic threshold model linear filters for 4 choice RT simulated 
data sets consisting of 800 flashes. For display purposes, each curve is shifted upwards 
by one unit. Starting from bottom to top, the curves correspond to simulated data 
sets with (ps = 2,d = .2), (ps = 2,d = 0), (ps = .5,d = .1), and (ps = .5,d = 0), 
respectively. The other parameters are held constant as u =.5, 0 = .12,p = .1, and 
q = .05.
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Figure 6.2: Diagnostic plots for a choice RT simulation from our parametric model 
with ps = .5, d = 0, u = .5, o = .12, p = .1, and q = .05.
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Figure 6.3: Diagnostic plots for a choice RT simulation from our parametric model 
with ps = 2, d = .2, μ = .5, σ = .12, p = .1, and q = .05.
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Figure 6.4: Ordinal logistic threshold model linear filters for each of the 9 choice RT 
data sets. Curves are labelled by the stimulus rate (s). For display purposes, each 
curve is shifted upwards by one unit.
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stimulus rate (s)

2

Figure 6.5: Plot of the peak height of the linear filters as a function of stimulus rate, 
for ordinal logistic threshold models fit to experimental data.
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Figure 6.6: Examples of ordinal logistic threshold model diagnostic plots for the data 
sets with stimulus rates 0.4,1.0,1.4 and 2.0, as indicated in the top left corner of each 
plot. The points are the empirical probability of a response, and the curve is the 
corresponding fitted probability.
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Figure 6.7: Marginal threshold model stimulus-response impulse plots for a choice RT 
simulation from our parametric model with Ps =1, =.5,0 = .12, d=.1, p = .1, 
PSp = PSw = 2 and q = .05.
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Figure 6.9: Diagnostic plots for marginal threshold models fit to a choice RT sim­
ulation from our parametric model with ps = 2, u =.5, 0 = .12, d =.1, p = .1, 
Psb = Psw = 2 and q = .05.

Empirical Probability 
vs. Predictor

co

CD

0-2

predictor, U



198

Empirical Probability 
vs. Predictor

CO

CO

0

6 
e

-1 0 1 2 3 4 5 6

predictor, U

Figure 6.10: Diagnostic plots for marginal threshold models fit to a choice RT sim­
ulation from our parametric model with u =.5, 0 = .12 p¾ = Psw =.5,p = .1, 
d = .2, and q = .5.
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Figure 6.11: Plots of the marginal threshold "correct" linear filters for each of the 
9 choice RT data sets. Curves are labelled by the stimulus rate (s). For display 
purposes, each curve is shifted upwards by one unit.

0.0 0.2 0.4 0.6 0.8 1.0

800
400

100Il.
2

Lag (s)

(b) White stimulus-white response linear 
filter

h 
1

stimulus rate (s)

(a) Black stimulus-black response linear fil­
ter peaks

Figure 6.12: Plots of the marginal threshold "correct" impulse peak heights as a 
function of stimulus rate, for the nine data sets.
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Figure 6.13: Plots of the marginal threshold "error" linear filters for each of the 9 
choice RT data sets. Curves are labeled by the stimulus rate (s). For display purposes, 
each curve is shifted upwards by one unit.
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Figure 6.14: Plots of the marginal threshold "error" impulse peak heights as a function 
of stimulus rate, for the nine data sets.
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Table 6.11: Threshold estimates θβ, Θw for choice RT data.

rate Os 0w

0.4 5.58 5.26
0.6 4.78 4.82
0.8 4.49 4.31
1.0 4.06 4.10
1.2 3.63 3.64
1.4 3.58 3.61
2.0 2.96 2.81
4.0 2.25 2.26
8.0 1.84 1.73
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Figure 6.15: Example of marginal threshold diagnostic plots for the data sets with 
stimulus rates 0.4,1.0,1.4 and 2.0, as indicated in the top left corner of each plot. The 
points are the empirical probability of a response, and the curve is the corresponding 
fitted probability.
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6.2.1 A Marginal Model with Second Order Interaction Ef­

fects

Interaction terms are included in the marginal model that we have studied, but only 

between a current flash and an indicator of whether or not a flash occurred some 

amount of time units before it. Now, we consider an extension of the marginal models 

to include interaction terms between all combinations of flashes. Doing so allows us 

to study second order intensities.

In the case of white responses, the internal potential can be expressed as follows:

u=0 v=u++1

u=0
gt-1 gi-1

where the interaction coefficient interpretations are:

• Cu,u : intensity with which a white response occurs u time units after a white 

flash and v time units after another white flash

• da,v : intensity with which a white response occurs u time units after a black 

flash and v time units after another black flash

• Tu,v : intensity with which a white response occurs u time units after a white 

flash and v time units after a black flash

• Su,u : intensity with which a white response occurs u time units after a black 

flash and v time units after a white flash.

By symmetry, it follows that Cau,v = Cu,w, du,v = dv,u, Tu,v = Sw,u, and S.u,v = Tv,u- The 

diagonal elements are undefined and we set them equal to zero. The black internal 

potential has an expression similar to (6.2.3) with analogous interpretations for its 

interaction coefficients.

In the same manner as the simpler marginal models studied we fit binomial models 

with logit link functions to the data in R by using the glm function (R Development 



204

Core Team (2006)). However, due to the four bivariate coefficients considered a large 

amount of computing memory is required in R. To solve such memory problems, 

rather than fitting the full model including all four interaction combinations of the 

two flash types, we fit two separate models before the reduced model fitting. For each 

response type, a model is fit with white-white and black-black interactions, and one 

with white-black and black-white interactions. The coefficients with p-values smaller 

than 0.25 are included in a reduced model involving all four types of interactions. In 

the two reduced models (one for black responses and one for white responses) with 

all four second-order interaction effects, bivariate coefficients with large p-values and 

estimates near 0 are left in the model instead of fitting another reduced model.

The model is assessed using diagnostics plots in the exact same way as the simpler 

marginal models studied earlier.

Earlier, we studied the behaviour of the fitted marginal threshold model without 

second-order interaction terms, and its diagnostics in depth. Therefore, due to the 

memory problems and computational time, we study one example of the marginal 

threshold model with second-order interactions fit to one simulation of choice RT 

data. We use Algorithm 5.3.1 to generate the data.

We fit models to simulated choice RT data with parameters psβ = Psw = .5, 

μ = .5, o = .1, p = .12, d =.2,q = .1, PN = 0, and consisting of 800 flashes. Filled 

contour plots of the interaction effects for black responses are provided in Figures 

6.16 and 6.17, while plots for the white responses are given in Figures 6.18 and 6.19.

Based on Figure 6.16(a) there appears to be frequent inhibition among black 

flashes when the two flashes occur between .3 s and .6 s before a black response. The 

data was simulated with a thinning parameter of d = .2, so when two black flashes 

are within .2 s apart the first of the two flashes is not responded to. In addition, the 

mean reaction time is 0.5 s. Therefore, it is reasonable that inhibition is frequent 

when two black flashes are within 0.2 s apart and occur approximately 0.5 s before 

a response. There is also evidence of facilitation when one black flash occurs 0.6 s 

before a black response and another one occurs less than 0.1 s before the response.

In Figure 6.16(b) there is a positive interaction effect among white flashes occur-
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Figure 6.16: The second order intensities of the fitted black marginal threshold model 
for one set of choice RT simulated data with rate Ps =.5,d = .2 and q = .1.
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Figure 6.17: Second order intensities of the fitted black marginal threshold model for 
one set of choice RT simulated data with rate Ps =.5,d = .2 and q = .1.

ring before a black response. This tends to occur when both flashes are around 0.5 s 

before a black response, and are likely due to the error probability of q =.1 for our 

simulated data; in our simulated data with probability q = .1 a black response occurs 

from a white flash, and the mean reaction time is 0.5.

In the two mixed flash interaction plots for black responses, given in Figure 6.17, 

there appears to be a negative interaction effect on the black responses when one of 

each flash type occurs around 0.5 s before a response. This may be linked to the fact 

that the mean reaction time from both black and white flashes is 0.5 s.

Figure 6.18(a) displays similar behaviour to 6.16(a). There is evidence of frequent
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for one set of choice RT simulated data with rate Ps =.5,d = .2 and q = .1.

inhibition among white flashes for white responses when both flashes are within .4 

s to .7 s before a white response. Such behaviour may be explained by the same 

reasoning used for the black flash inhibitions for black responses. There also appears 

to be inhibition among the white flashes when one occurs 0.5 s before the response, 

and another occurs almost immediately before the response.
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Figure 6.19: The second order intensities of the fitted white marginal threshold model 
for one set of choice RT simulated data with rate ps =.5,d = .2 and q = .1.

There appears to be facilitation among the black flashes for white responses when 

one black flash occurs around 0.7 s before a white response, and another black flash 

occurs nearly 0.1 s before the response. In the mixed flash interaction plots of Fig­

ure 6.19 similar behaviour is exhibited as in the case of black responses.
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Diagnostic plots for the two marginal models are given in Figure 6.20. The black 

marginal model appears to fit quite well. The fit for the white marginal is fine except 

at the upper tail, where the fitted probabilities appear to overestimate.

►10

redictor, U

(a) Black Response Marginal Model

• 2 2

redictor, U

(b) White Response Marginal Model

Figure 6.20: Diagnostic plots for one set of choice RT simulated data with rate Ps = .5, 
d=.2 and q = .1.

In the previous analysis of experimental data, we fit marginal threshold models 

with interactions to all of the experimental data sets. However, because of the com­

puter memory problems encountered when fitting models with bivariate terms, here, 

we just give one example of a fit to the experimental data.

As an example, models are fit to choice reaction time data in which the flashes are 

presented with a rate of 1 flash per second (rate of .5 for each stimulus type). Filled 

contour plots of the interaction effects for black responses are provided in Figures 

6.21 and 6.23, while plots for the white responses are given in Figures 6.22 and 6.24. 

The threshold estimates are êw = 4.16 and ÂB = 4.05, which are similar enough 

to suggest that there is no response bias. For both the white responses and for the 

black responses the plots suggest that inhibition effects are present for flashes of the 

same type as the response. For example, in the case of the black internal potential 

many of the interaction effects of black flashes with each other are large and negative 
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when flashes are separated by less than 0.2 seconds and occur between 0.4 and 0.6 

seconds before a response. A similar pattern appears in the case of white responses 

and white flash interactions. Since the mean reaction time is 0.5, such behaviour 

suggests that there is thinning among flashes of the same type when they are within 

0.2 s apart.

Based on the white-white flash interaction contour plot for black responses, Figure 

6.21(b), it appears that an error of a black response tends to occur when a white flash 

occurs 0.8 s earlier and 0.2 s before the current time. This same error seems to occur 

when a white flash occurs 0.8 s earlier and 0.6 s before the current time.

Errors of a white response tend to occur when two black flashes were presented 

0.65 and 0.2 seconds earlier or when two black flashes were presented around 0.35 s 

and 0.45 s, as can be seen from Figure 6.22(b).

White-White stimulus interactions

00 0.2 0.4 06 08
White Lag (s)

06

0.2

00

SSl

(b) White-White flash interactions

Figure 6.21: The second order intensities for the black responses of pooled choice RT 
data with rate ps = .5.

(a) Black-Black flash interactions

For either response type, there does not appear to be any negative interactions 

between flashes of different types. There are a few instances of positive interactions 

for both response types, with a slightly higher frequency for white responses.

Diagnostic plots for the two marginal models are given in Figure 6.25. The white 

marginal model appears to fit relatively well, while the black marginal model does 

not fit well at the upper tail, where the fitted probabilities appear to overestimate.
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Figure 6.23: Second order intensities for the black responses of pooled choice RT data 
with rate Ps = .5.
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Figure 6.22: The second order intensities for the white responses of pooled choice RT 
data with rate Ps = .5.
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6.3 Discussion

In this chapter we developed various threshold models for choice RT data and applied 

them to both real and simulated data. Fitting such models allowed us to obtain 

estimates of the threshold for each response type, as well as estimate certain impulse 

responses. Threshold estimates for the real data sets with different flash rates suggest 

that as the flash rate increases, a lower rod current is required for a response to occur. 

Each of the threshold models studied gives us evidence that there is no bias in response 

type. That is, when the two stimuli types are equiprobable, the two response types 

occur with similar frequencies.
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Figure 6.24: The second order intensities for the white responses of pooled choice RT 
data with rate Ps = .5.

The first threshold model that we studied allowed us to conclude that there are 

inhibition effects among flashes of the same type, but we could not study the effect of 

each flash type on each stimulus type. Inferences on the intensities of each response 

type following each stimulus type can be made by studying marginal models.

Based on the marginal models we are able to see that, as expected, there are 

higher intensities for responses following a flash of the same type, than for responses 

following flashes of the opposite type. Evidence of inhibition is found among flashes 

of the same type, and for lower lags there are a few cases of facilitation. In order 

to study interactions between flashes at different lags before a response type, and 

their effect on the response, a marginal model with all four interaction combinations 

of stimulus types at different lags is developed. Based on contour plots of these 

bivariate coefficients we are able to make inferences regarding any interactions that 

occur between flash types that are different lags before a response.
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Chapter 7

Conclusions and Future Research

In this work we introduce two types of models for reaction time data, and focus on 

three types of RT experiments. Each model type is used for a different purpose.

The parametric models that we develop are used in conjunction with nonparamet­

ric estimation to make inferences on the eye-brain-hand system. Similarities between 

nonparametric and parametric intensity estimates can indicate that common features 

in the nonparametric estimates are predicted by the parametric model. Furthermore, 

features unique to the nonparametric estimates suggest characteristics that the model 

cannot predict. For some simulated and real data sets, there is a peak in nonpara­

metric estimates of response-response intensity functions involving the same response 

type, while our model always predicts a valley.

As an alternative parameter estimation method for runs of simple RT data with 

different flash rates, we propose a nonlinear regression method. Such a method is 

useful when it is assumed that the data sets have the same parameters, and this 

method has the advantage of a solid theoretical basis underlying hypothesis tests 

for the parameters. Based on the estimates obtained using the original estimation 

procedure, it appears reasonable to pool our simple RT data. Application of the 

nonlinear regression estimation to the simple RT data leads us to conclude that there 

is nonlinear inhibition present in the eye-brain-hand system, and that flashes are 

rarely deleted completely at random. Furthermore, our results indicate that there is 

negligible internal noise within the visual system. These results depend heavily on 
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the validity of our model.

Our fitted go-no go parametric models suggest that when flashes are presented at 

a fast rate (e.g. more than .5∕s for each flash type), flashes that are close together 

in time are more likely to be perceived as one bright flash (i.e. temporal summation 

occurs). As in the simple RT experiment, our results imply that there are few occur­

rences of completely random thinning. Estimates of the error response probability 

(responding to a white flash), tend to be around 0.03.

In our fitted choice RT models, temporal summation is more likely to occur at 

both slow and fast flash rates, but the lag between flashes can be larger for faster 

flash rates. Our results suggest that at lower flash rates, completely random thinning 

appears to occur, but is relatively rare for faster flash rates. Estimates of the error 

probabilities (responding incorrectly to a flash) are at least 0.03, and seem to increase 

with the flash rate.

Estimates of the mean reaction time increase with the complexity of the RT ex­

periment. For simple RT experiments, the mean is near 0.3, for go-no go RT a button 

is pressed around 0.4 s after a flash, while the mean delay is 0.5 for choice RT. These 

results are consistent with previous observations (Luce (1986)).

The variables in threshold models have direct biological interpretations. Fitting 

a threshold model gives us a procedure for estimating the minimum rod current at 

which a flash type can be detected. For all three types of RT experiments, we find 

that threshold estimates decrease as the flash rate increases. Threshold estimates for 

the choice RT experiments suggest that there is very little bias in response choice. 

Coefficients in the model can be used to make inferences on the presence of inhibition 

or facilitation among the flashes. The location of the peak for the impulse response 

coincides with the mean RT, and our results agree with the estimates obtained for 

our parametric models.

In the fitted go-no go threshold models, interaction coefficients tend to be negative, 

suggesting that pairs of flashes are associated with a decrease in the response rate, 

so that inhibition is present among the flashes.

There is evidence of inhibition effects between flashes of the same type, in the
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fitted choice RT threshold models. Fitted marginal threshold models also suggest 

that when there is a small delay between a flash and response (e.g. lag smaller than 

0.3), pairs of flashes actually increase the response rate, indicating the presence of 

facilitation.

We also fit a random threshold model to runs of simple RT data with the same 

flash rate, as an alternative to pooling the runs. Our results indicate that the data 

sets are similar enough to use simple pooling.

7.1 Future Research

Some extensions of the present work might be considered for future research. I think 

that the most natural could be a relaxation of a simplifying assumption in our para­

metric models for go-no go and choice RT data. Since the assumption of identical 

delay distributions for responses from black and from white flashes may not always 

be the case, dropping this assumption may improve the proposed model.

When the delay distribution is symmetric, the location of the peak of stimulus­

response nonparametric intensity estimates coincides with the corresponding mean 

delay. That is, in the case of a symmetric delay distribution, the location of the peak of 

PswRw,h can be used to estimate the mean reaction time from a white flash. Therefore, 

in that case, S-R nonparametric intensity estimates can be used to give support to the 

appropriateness of our assumption of identical delay distributions. However, based on 

the results of our simulations, if the peak locations of the S-R nonparametric intensity 

estimates are not the same, it does not imply that our assumption fails to hold. In 

the case of simulated data we know that the delay distributions are identical, but the 

locations of the peaks in S-R nonparametric intensity estimates do not always support 

this. If the delay distribution is not symmetric, then the peak location approximates 

the mode of the delay distribution, and the S-R intensities cannot be used to make 

inferences on the mean RT.

Under a generalization that allows different delay distributions for responses from 

black and from white flashes the second-order intensity function expressions derived 
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in Sections 4.4 and 5.4 are no longer valid. However, it is simple to modify the 

intensity expressions in order to accommodate different delay distributions. Similar 

arguments can be used in the derivations, and it is only necessary to replace f(v) by 

the respective density fB(v) or fw(v) depending on whether the response comes from 

a black or white flash, respectively.

When different delay distributions are permitted parameter estimation becomes 

more difficult. Our method for estimating the mean and standard deviation of the 

single delay distribution does not extend to the case of two delay distributions. As 

crude estimates of the means, the peak locations for appropriate stimulus-response 

intensities may be used. However, corresponding standard deviation estimates cannot 

be found by iterating through the data because it is impossible to match up the black 

flashes with possible white and black responses, and pair white flashes with possible 

white and black responses while simultaneously keeping the appropriate delay between 

flashes and responses; the delay between flashes and responses changes with flash type. 

Thus, alternative estimation methods should be sought.
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