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ABSTRACT 

A systematic and comprehensive study of fluidization hydrodynamics and separation properties 

was conducted in a bench-scale and a semi-industrial Air Dense Medium Fluidized Bed 

(ADMFB) systems for dry coal beneficiation. In order to achieve the fluidized bed density 

adjustment required for efficient dry gravity separation, various types of binary mixtures of solid 

particles were tested and used as the medium materials in the ADMFB. Fluidization 

hydrodynamics including minimum fluidization velocity, fluidized bed expansion, solids 

mixing/segregation, and bed density distribution were carefully investigated. A series of 

continuous experiments studying raw coal dry beneficiation were successfully implemented in a 

semi-industrial ADMFB system with binary mixtures magnetite and fine coal particles.  

The minimum fluidization velocity of binary mixtures of solid particles was experimentally 

studied while accounting for the effects of particle size ratio, particle density ratio, and mixture 

composition of solid materials. A new correlation has been developed for the accurate prediction 

of minimum fluidization velocity of binary mixtures used in ADMFB or other similar fluidized 

bed systems. In addition, an attempt was made to study the effects of bed inventory on the 

incipient fluidization, and the correlation proposed by Wen and Yu was modified to precisely 

predict the minimum fluidization velocity as a function of the bed inventory. Combining of these 

two correlations would significantly improve the accuracy of estimations for various binary 

systems.  

Fluidized bed expansion behavior was carefully investigated in terms of the two-phase theory 

which predicts the distribution of gas flow in bubbling fluidized beds. Since the original two-

phase theory was confirmed to overestimate the bubble flowrate in most cases, a correction 

factor (Y) was introduced for the modification. The expansions of fluidized beds containing 

single and binary mixtures of solid particles were inspected to reveal the influences of particle 

properties and operating conditions on the correction factor (Y). The contribution for estimating 

the parameter Y for Geldart Group B and D particles was formulated based on the available 

experimental data in literature and the present work.  
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The mixing and segregation behavior of ADMFB with binary mixtures were investigated to 

achieve a relatively uniform gas-solid suspension for efficient coal beneficiation. The effects of 

operating parameters on the mixing and segregation pattern were examined, including particle 

properties, mixture composition, superficial gas velocity, and fluidized bed height. Moreover, a 

mixing index was employed to evaluate the mixing and segregation performance for identifying 

the appropriate conditions for the ADMFB operations.   

The distribution of bed density in an ADMFB with Geldart Group B and D particles was studied 

both theoretically and experimentally. A new correlation based on the modified two-phase theory 

was derived to predict the distribution of fluidized bed density, with consideration of particle 

properties and fluidization characteristics. An examination of the bed density distribution for 

fluidizing single and binary mixtures of Geldart Group B and/or D particles at various operating 

conditions has been made to validate the proposed correlation with a strong agreement.   

The performance of dry coal beneficiation in a semi-industrial ADMFB with binary mixtures 

was evaluated using the variations of ash content and calorific value, considering the effects of 

feed coal size, operating gas velocity, and mixture composition of solid particles. These 

continuous operations of coal beneficiation are used to validate the ADMFB operation using 

binary mixtures of solid particles as medium materials.  

Keywords: Air dense medium fluidized bed; Binary mixtures; Fluidization characteristics; Dry 

coal beneficiation; Two-phase theory; Fluidized bed density. 
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SUMMARY FOR LAY AUDIENCE 

Suspension of solid particles by an upward gas flow generally leads to a gas-solid fluidized bed, 

characterized by particles suspension and bed expansion, while the upward gas flow travels 

through the void space (voidage) between solid particles. At a relatively lower gas flowrate, the 

fluidized bed exhibits lower bed expansion with the appearance of gas bubbles, like boiling 

water. This bubbling fluidized bed which is also called Air Dense Medium Fluidized Bed 

(ADMFB) has similar properties like a liquid, and thus the buoyancy effect can be utilized for 

the dry gravity separation of particulate materials of different densities, e.g. raw coal dry 

beneficiation. According to Archimedes principle, the clean coal of less density than the 

fluidized bed will float on top of the bed, whereas the gangue of heavier density will sink to the 

bottom and thus can be removed from raw coal. Therefore, control of the density of fluidized bed 

is crucial for dry coal beneficiation by the ADMFB technology.  

The density of a fluidized bed is corresponding to the mass of solid particles per unit bed 

volume. In order to adjust the bed density for more efficient coal beneficiation, binary mixtures 

of solid particles of different densities are proposed to replace the single particles in ADMFB 

system. Consequently, the fluidized bed density can be easily manipulated by changing the 

composition of the solids mixture. The objectives of this work is to study the fundamental theory 

and underlying mechanism of the ADMFB with binary mixtures, including the followings: (1) 

The minimum requirement of gas velocity for fluidization of the binary mixtures; (2) The gas 

distribution between the bubbles and emulsion phase; (3) Axial distribution of two types of solid 

particles in  the fluidized bed; (4) Prediction of the fluidized bed density at different operating 

conditions; (5) Performance of coal beneficiation in a semi-industrial ADMFB with binary 

mixtures of solid particles. 
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 CHAPTER 1 

GENERAL INTRODUCTION 

1.1 Background 

Coal is the second largest primary and available energy source in the world, which plays a major 

role in the economic development of many countries, e.g. China, India, Australia, South Africa. 

In 2018, the world production of coal was 7.54 billion ton occupying 27.6% of the world’s 

energy structure, and the proven world coal reserves are 1552.5 billion tons and are currently 

sufficient to meet 134 years of global production which is much higher than that of oil and gas 

(BP statistical review of world energy, 2018). The run-of-mine coal is a complex mixture of 

organic and inorganic matters, generated by decaying and compression of organic plant under 

prolonged geological and environmental processes. This fossil energy source is generally used 

for power generation and as a critical substance in many industries through coal combustion, e.g. 

cement production, steel manufacturing. In order to reduce the environmental impact of 

emissions using coal combustion, the associated inorganic impurities such as ash-forming matter 

and pyritic sulfur should be first removed by coal beneficiation methods which can also upgrade 

the coal carbon concentration and reduce the transportation weight (Cooper et al., 1991; Gui et 

al., 2015). Therefore, the beneficiation process is of great importance for coal utilization.  

Coal beneficiation process is a series of operations that remove the ash-forming and sulfur-

containing inorganic impurities from raw coal. Generally, the run-of-mine coal needs to be 

crushed into the size range of smaller than 50 mm before the beneficiation operation, because the 

crushing process is required to dissociate the combining organic and inorganic materials in large 

coal ores. After coal crushing, raw coal will be sieved into different size ranges, which adequate 

to different coal beneficiation methods. For 1 ~ 50 mm raw coal, gravity-based physical 

separation processes, e.g. heavy medium cyclone, wet jigging, are generally used to achieve the 

ash removal and sulfur reduction, as the mineral matters are much denser than the clean coal 

material. Sulfur reduction by the separation process is reached due to the removed ash-forming 

matter contains pyritic sulfur. These gravity-based separation processes have the significant 

advantages of simple equipment, low operation cost, and good separation efficiency, which are 
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the desired methods for the beneficiation of relatively coarse coal. For the raw coal of smaller 

than 1 mm, forth floatation and triboelectrostatic separation processes based on chemical surface 

properties are usually employed to upgrade the quantity of fine raw coal.  

In general, coal beneficiation processes can be divided into wet methods and dry methods. 

Currently, majority of coal beneficiation is carried out using wet methods (Noble and Luttrell, 

2015), such as heavy medium cyclone, wet jigging, and froth floatation, due to the advantages of 

sharp separation and high product recovery. However, these hydraulic techniques suffer from 

coal slurry processing and wastewater treatment (Lockhart, 1984, Houwelingen and Jong, 2004), 

and the availability of large quantities of water for coal beneficiation is becoming an increasingly 

important problem in many parts of the world with dry climates weather and frozen area e.g. 

South Africa, Australia, Indian, and China (Dwari and Rao, 2007). Considering the 

aforementioned issues of hydraulic process and the recent progresses of dry beneficiation 

technologies, such as the air dense medium fluidized bed, air table, dry jigging, magnetic 

separator, and triboelectrostatic separator, the utilization of dry methods for the beneficiation of 

run-of-mine-coal seems to be inevitable in coal industries. 

Air Dense Medium Fluidized Bed (ADMFB) as an efficient dry coal beneficiation method has 

been investigated in bench and industrial scale separation systems for many years (Chen et al., 

2003; Sahu et al., 2009). It utilizes the pseudo-fluid behavior of gas-solid fluidized bed to create 

a uniform suspension of solid particles for dry coal separation as per their densities. So that the 

light component (clean coal) of feed coal can float on the top surface of the fluidized bed, and 

heavier ones (gangue and pyrite) would settle towards the bottom and thus can be removed. Thus, 

the fluidized bed density is the key factor for dry gravity separation in an ADMFB system. In 

order to achieve bed density adjustment and much better fluidization, binary mixtures of solid 

particles were frequently used as medium materials in the ADMFB for efficient gravity 

separation (Beeckmans et al., 1982; Chen et al., 2003; Sekito et al., 2006; Yoshida et al., 2008). 

Some basic principles and separation properties of the ADMFB can be found in earlier works 

(Luo et al., 2001; Mohanta et al., 2011). The ADMFB method is primarily used for dry gravity 

separation of relative coarse coal (> 6 mm), which targets the conventional wet processes of 

heavy medium cyclone and wet jigging (Zhao et al., 2011; Sahu et al., 2011). It has the intrinsic 

advantages of no water usage, lower construction and operating costs, comparable separation 
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efficiency as conventional hydraulic techniques, etc. In addition, an ADMFB also offers 

significant benefits in eliminating the needs for coal product dewatering and coal slurry 

thickening. Clearly, developing the ADMFB technology which has huge potential for efficient 

dry coal beneficiation is of great importance for the preparation and utilization of run-of-mine-

coal in arid, water-deficient, and frozen areas.  

Extensive investigations have been carried out by previous researchers to understand and 

practice the ADMFB technology for dry gravity separation (Luo et al., 2003; Sahu et al., 2009; 

Mohanta et al., 2013). However, there are still many challenges and difficulties, mainly due to 

the wake of understanding in fluidization hydrodynamics and separation mechanism of ADMFB. 

In addition, few research work on the fundamental theory and underlying principles of an 

ADMFB of binary mixtures has been conducted, and the knowledge related to binary systems for 

efficient dry coal separation is very limited. Therefore, systematical and fundamental studies are 

required to be undertaken for fully understanding the ADMFB with binary mixtures for efficient 

dry coal beneficiation and other similar applications. 
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1.2 Research objectives 

The objectives of this research work are to comprehensively study the fluidization characteristics 

and basic theory of the Air Dense Medium Fluidized Bed (ADMFB) containing both single and 

binary mixtures of solid particles for efficient dry coal beneficiation. The present research work 

consists of the following parts: 

(1) Develop a model to accurately predict the minimum fluidization velocity of binary mixtures of 

solid particles used in the ADMFB system.  

(2) Identify the effect of bed inventory on the minimum fluidization velocity of solid particles in the 

ADMFB system with consideration of industrial practices.  

(3) Modify the two-phase theory model for both single and binary mixtures of solid particles (Geldart 

Group B and/or D particles) and understand the distribution of gas flow in the ADMFB.  

(4) Investigate the mixing and segregation behavior of binary mixtures of solid particles for 

determining appropriate operating conditions for ADMFB operation.  

(5) Analyze the distribution of bed density in the ADMFB with single and binary mixtures of solid 

particles for efficient dry coal beneficiation.  

(6) Verify the fundamental research results found by continuous experiments of dry coal beneficiation 

using the semi-industrial ADMFB system.  
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1.3 Thesis structure 

This thesis follows the “Integrated-Article Format” as outlined in the UWO thesis regulation. 

Chapter 1 gives a general introduction of the present research background and specific research 

objectives.  

Chapter 2 gives a detailed literature review mainly on the evolution and development of the Air 

Dense Medium Fluidized Bed (ADMFB) technology.   

Chapter 3 provides detailed experimental results on the minimum fluidization velocity of binary 

mixtures of medium particles. The influences of particle size, particle density, and mixture 

composition of medium particles on the incipient fluidization are investigated. A comparison of 

various correlations for estimating the minimum fluidization velocity of binary mixtures of solid 

particles reported in the literature and the present work is discussed. A modified correlation 

based on the Cheung equation has been developed for predicting the minimum fluidization 

velocity of binary mixtures of medium particles in ADMFB system.  

Chapter 4 determines the bed inventory effect on the minimum fluidization velocity of single and 

binary mixtures of medium particles. An attempt has been made to develop an appropriate 

correlation for estimating the minimum fluidization velocity while considering the effect of bed 

inventory. The correlation proposed by Wen and Yu has been modified to predict the minimum 

fluidization velocity with the function of bed pressure drop. This correlation is very simple and is 

in reasonable agreement with almost all available experimental data in the literature and the 

present work.  

Chapter 5 improves the two-phase theory model for the single and binary mixtures of medium 

particles (Geldart Group B/D particles). The original two-phase theory has been proved to be an 

overestimation in most cases, and therefore a correction factor (Y) has been introduced for the 

modification. The contribution for accurately predicting the parameter Y for the single and binary 

mixtures of Geldart Group B and/or D particles is formulated based on the available 

experimental data in the literature and the present work. And then, the distribution of gas flow 

between the bubble phase and dense phase in ADMFB is clear.  
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Chapter 6 investigates the mixing and segregation behavior of binary mixtures of medium 

particles in an ADMFB system. The effects of particle density ratio, particle size ratio, mixture 

composition, superficial gas velocity, and fluidized bed height on the mixing and segregation 

pattern are examined in terms of axial solids distribution. The mixing index proposed by Chiba et 

al. is employed to evaluate the mixing and segregation performance, and the appropriate 

operating conditions for efficient dry coal beneficiation in ADMFB are identified.  

Chapter 7 exhibits the axial distribution of bed density in an ADMFB with single and binary 

mixtures of medium particles. The effects of particle size, particle density, superficial gas 

velocity, and mixture composition of medium particles on the bed density distribution are 

examined. An equation based on the modified two-phase theory has been derived to predict the 

axial density distribution of the fluidized bed, and this correlation successfully accounts for the 

estimation of density distribution in the ADMFB involving both single and binary mixtures of 

Geldart Group B and/or D particles. 

Chapter 8 reports the continuous operation of dry coal beneficiation in the semi-industrial 

ADMFB system with binary mixtures of magnetite and fine coal particles. The influences of feed 

coal size, operating gas velocity, and mixture composition of medium particles on the coal 

separation performance are investigated. The variation of ash content and calorific value of the 

separated coal samples are examined. These semi-industrial experiments of continuous dry coal 

beneficiation are used to validate the ADMFB with binary mixtures of medium particles.  
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 CHAPTER 2  

LITERATURE REVIEW 

2.1 Introduction 

Gas-solid fluidized bed technologies have achieved many industrial applications (Kunnii and 

Levenspiel, 1991; Rhodes, 2008), including fluid catalytic cracking, coal combustion, biomass 

gasification, mixing and drying, mineral beneficiation, etc. One of the most significant properties 

of gas-solid fluidized bed in the bubbling fluidization regime is connected with the uniform and 

stable density of gas-solid suspension (Davidson et al., 1985), which can be utilized for the dry 

gravity separation of particulate materials such as raw coal, lump iron, copper ores, etc. Fluidized 

bed separation also named Air Dense Medium Fluidized Bed (Chen et al., 2003(a)) has various 

advantages including high separation efficiency, less construction and operating costs, no water 

usage, and environmentally friendly, providing a better solution for mineral beneficiation and 

other similar applications (Mohanta et al., 2013). As one of the most important industrial 

practices, dry coal beneficiation using fluidized bed separation method has been extensively 

studied and exploited for decades (Lockhart et al., 1984), which creates a possible option for the 

preparation and utilization of coal resource in arid, water-deficient, and frozen areas. The first 

fluidized bed device for dry coal beneficiation was proposed occasionally by Fraser et al. in 1925 

(Fraser and Yancey, 1925). Since then, a large number of relevant works and practices have been 

carried out by investigators in many countries and regions around the world e.g. United States, 

Canada, China, Israel, India, and South Africa.  

In the present study, a review of the majority works conducted by different researchers has been 

summarized according to the evaluation and recent developments of fluidized bed separation 

technology. It is impractical and unnecessary to comprehensively cover all previous literatures; 

rather the important and meaningful progresses have been reported here. Much more attention 

has been paid to the continuous works and novel investigations made by these researchers, which 

will lead to a better understanding of the fluidized bed method. The objectives of this review are 

to comprehensively discuss and deeply analyze the fluidized bed separation for the efficient dry 

coal beneficiation and other similar industrial applications.   
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2.2 Evaluation of fluidized bed separation technology 

In 1925, the dry coal separation process using fluidized bed technology was firstly proposed by 

Fraser et al., who applied for the first Untied States Patent of fluidized bed dry separator 

(U.S.1534346) (Fraser and Yancey, 1925). The river sand with a bulk density of 1.45 g/cm3 was 

chosen as the medium material to achieve a uniform gas-solid suspension with a fluidized bed 

density of 1.20 g/cm3, and 10 ~ 50 mm coarse coal was successfully beneficiated in a bench scale 

fluidized bed dry separator (Fraser, 1926). The schematic diagram of this fluidized bed separator 

is shown in Figure 2.1. However, it has some apparent disadvantages. The most significant one is 

the insufficient separation efficiency, mainly due to the required bed density for coal separation 

is usually much higher than the density of fluidizing sand particles. A certain amount of clean 

coal may sink to the bottom of the fluidized bed and therefore be discharged mistakenly as 

tailings during the separation process. Another problem is that the final clean coal products could 

pollute the residual sand particles due to incomplete dense medium recycling. Although this 

fluidized bed technology has some shortcomings, the proposed method provides a potential way 

for efficient dry separation of raw coal or other particulate materials. Since then, extensive 

investigations of fluidized bed method for dry separation or sorting have been carried out in 

many counties, including the UK, USA, Germany, Canada, Russia, China, India, etc. 

 

Figure 2.1 The schematic diagram of first fluidized bed separator by Fraser et al.  
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Soon after, more efforts have been made in the design and process control of fluidized bed dry 

separator, leading to an abundance of patents and articles. For example, the method of cleaning 

coal and fluid separating medium was proposed by Levin et al. (Levin and Yost, 1938), and the 

schematic drawing is shown in Figure 2.2. The most prominent aspect of this invention is that the 

inclined wheel conveyors are employed to transport separated coal products, providing a stable 

product delivery rate. However, the immersed mechanism conveyors may also disturb the gravity 

separation process and lower the separation efficiency. Another fluidized bed coal cleaner was 

developed by Kendall et al. (Kendall and Moore, 1942), and the schematic diagram is displayed 

in Figure 2.3. The objectives of this design are to speed up the coal separation process and 

reduce the construction and operating costs. This fluidized bed coal cleaner is relatively small 

and inexpensive, which can be nearly standard constructed to adapt a great variety of operating 

conditions. The separation process in the apparatus can be sped up by feeding the raw coal into a 

rapidly fluidizing of sand and air, which can quickly float the clean coal away and drop the 

gangue to the bottom. Then, the clean coal and heavy refuse products can be readily withdrawn 

very soon. Furthermore, many other types of fluidized bed dry separators were developed for 

industrial practices (Holmes, 1934; Dickerson, 1935; Svensson, 1958). Their inventions focus 

more on the design and operation of fluidized bed dry separators, and the development of the 

basic principle and theory for the fluidized bed separation method was not studied in detail.  

 

Figure 2.2 The schematic drawing of fluid separating medium apparatus by Levin et al.  
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Figure 2.3 The schematic representation of fluidized bed coal cleaner by Kendall et al.  

Weintraub et al. at the Pittsburgh Energy Technology Center in the United States proposed to use 

magnetite powder as the medium material in the fluidized bed separator for efficient dry coal 

beneficiation in 1979 (Weintraub et al., 1979). There are main three reasons: (1) magnetite 

powder has a good flowability which can achieve uniform and stable fluidization; (2) the bed 

density of fluidizing magnetite powder (around 2.0 g/cm3) is close to the desired density for 

efficient coal separation; (3) the magnetic property of magnetite powder can be used to lower the 

consumption of medium particles through the magnetic recovery process. A large number of 

batch experiments were conducted in a cylindrical fluidized bed device with a diameter of 4-

inches, and many process variables had been experimental explored, including the feed rate, 

residence time, feed size, and the size fraction of magnetite particles. The results demonstrated 

that all of these operating parameters were of significant effects and interacted with each other, 

resulting in complex design and operation problems. Moreover, the 0.55 ~ 9.5 mm coarse coal 

particles can be separated effectively in 60 seconds, and the possible separation of finer coal 

particles will be up to 5 minutes. In addition, they also applied for a United States Patent for their 

fluidized bed separator (Weintraub and Deurbrouck, 1973), and the schematic drawing is shown 

in Figure 2.4. As can be observed that the design of this dry separator is very simple and the 

operation process is relatively easy.  
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Figure 2.4 The schematic diagram of fluidized bed dry separator by Weintraub et al.  

Researchers at Lehigh University in United States have focused on investigating fine coal dry 

cleaning using the shallow fluidized bed technology since 1987 (Levy et al., 1987). The 

segregation of different types of solid particles in the bubbling fluidized bed was utilized for fine 

coal dry beneficiation (Sahan, 1997). The shallow fluidized bed with different bed heights of 3 ~ 

12 cm were tested, and the results demonstrated that the coal particles of 0.1 ~ 0.6 mm can be 

cleaned with a higher separation efficiency. For fine coal of smaller than 0.1 mm, slugging and 

channeling occurred in the fluidized bed mainly due to high interparticle cohesive forces, which 

would result in a poor beneficiation performance. Moreover, superficial gas velocity and feed 

weight ratio between raw coal and dense medium particles were proven to be the most important 

process variables, and their optimum ranges were successfully pointed out. Although the shallow 

fluidized bed separator was only validated in the bench scale, the proposed method provides a 

possible solution for the global issue of fine coal dry beneficiation. Sarunac et al., at Lehigh 

University combined the thermal drying and density segregation processes into one fluidized bed 

device for the efficient upgrading of low-rank coals in 2009 (Sarunac et al., 2009). There are 

mainly two stages. The first stage happened at the front of fluidized bed was used to segregate 

the higher density materials such as rocks and stones to the bottom of the fluidized bed. The 

second stage was used to evaporate the coal moisture by heating the fluidizing air through an in-

bed heat exchanger. A low-temperature thermal drying were chosen to prevent the spontaneous 

combustion of the dried coal ores. Low-moisture and high-quality clean coal products were 

successfully produced, and the reduction in sulfur and mercury content were validated in this 

specially designed fluidized bed.  
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In Britain, researchers at the Wrightson Co. Ltd. have developed several fluidized bed dry 

separators since 1966, which were applicable to dry separation of raw coal and other similar 

particulate materials containing components of different densities (Eveson, 1966). A typical 

fluidized bed dry separator (Eveson and Thompson, 1969) is shown in Figure 2.5. In order to 

maintain a stable product delivery rate, the inclined conveyors immersed in the vessel are used to 

transport the separated clean coal and gangue products, and a series of turning baffles located at 

the top surface of the bed are designed to speed up the separated clean coal products. However, 

the immersed conveyors may impede the upward gas flow giving rise to a non-uniform gas-solid 

suspension, which would result in a relatively lower separation performance. Another fluidized 

bed separation apparatus was developed that comprised of an elongated vibratory trough for the 

treatment of fine coal dry cleaning (Eveson, 1968), as can be seen in Figure 2.6. The vibrated 

trough is constructed in the fluidized bed together with the air chamber and distributor, and a 

cleaning zone and a discharge zone are located at the same side of the fluidized bed. The fluidity 

of the bed in the discharge zone is manipulated to control the discharge rate of heavier product 

from the bottom of the fluidized bed, which is an innovative non-mechanism design for the 

discharge of separated products. Although the elongated vibratory trough in the fluidized bed 

separator may increase the energy consumption, this invention gives a possible solution to the 

global issues of fine coal dry beneficiation.   

 

Figure 2.5 The schematic drawing of fluidized bed separation apparatus by Eveson et al.  



Chapter 2 

14 

 

 

Figure 2.6 The schematic diagram of inclined trough separator by Eveson et al.  

Douglas et al., at the Warren Spring Laboratory in the United Kingdom developed a novel 

fluidized bed apparatus with an inclined vibratory trough for the dry separation of particulate 

materials according to the different specific gravities (Douglas and Walsh, 1966), and the 

schematic diagram is illustrated in Figure 2.7. It should be noteworthy that this novel fluidized 

bed separator can be applicable to both the dry and wet gravity separation cases depending on the 

medium material used. In general, the used medium is a suspension of solid particles in an air 

flow, and the separating environment being a gas-solid fluidized bed. However, the medium can 

also be a slurry of solid particles kept suspended in the water flow by vibration or agitation, and 

then it becomes a wet heavy medium separation. In addition, this fluidized bed separator contains 

an inclined vibratory trough which designed to combine the particle fluidization along with the 

vibrating table and the transportation of separated products (Douglas et al., 1972). Raw coal in 

the size range of – 75 + 0.7 mm was effectively beneficiated using the fluidizing sand particles. 

A commercial version of this fluidized bed separator was tested in the British Colliery (Sahu et 

al., 2009), but unfortunately the detail information of the separation process is not available. No 

more application of this separation process has been reported ever since, mainly due to the coal 

industry in United Kingdom gradual withdraw caused by the transformation of economic 

development and energy consumption structure.  
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Figure 2.7 The schematic diagram of Warren Spring fluidized bed separator by Walsh et al.  

In Canada, Beeckmans et al. at University of Western Ontario proposed and constructed a 

Counter-Current Fluidized Cascade (CCFC) system for dry gravity separation of particulate 

materials in 1977 (Beeckmans and Minh, 1977). Since then, several modifications have been 

made to this fluidized bed apparatus, and the original and three improved devices are addressed 

as CCFC-1, CCFC-2, CCFC-3, and CCFC-4 in this work, as can be seen in Figure 2.8. The 

authors mentioned that the fluidized bed cascade embodying the counter-current mass exchange 

principle was similar to those used in the chemical distillation or liquid-liquid extraction process. 

In a fluidized bed cascade system, the gravity separation performance can be enhanced by 

introducing two horizontal fluidized layers moving in the opposite directions, and the light and 

heavy components will segregate to upper and lower strata (Beeckmans, 1980), as displayed in 

Figure 2.8 (a). An endless baffled chain located at the upper surface of the bed is designed to 

create the fluidizing solids reflux and transport the separated products. The required gas velocity 

is only slightly above the minimum fluidization velocity for inducing the vertical segregation of 

solid particles according to density difference. The original fluidized bed cascade (CCFC-1) 

consists of a long rectangular trough (length × width × height = 2240 mm × 203 mm × 710 mm), 

and depth of the fluidized bed is approximately 300 mm. The CCFC-1 system was found to be a 

highly effective device for separating activated carbon (1330 µm) from sand particles (91 µm) 

(Beeckmans and Minh, 1977) and concentrating small quantities of cocoanut charcoal particles 

(342 µm) from salt particles (459 µm) (Muzyka et al., 1978). In 1982, the fluidized bed cascade 

device was modified for the removal of high-ash refuse from a run-of-mine coal (Beeckmans et 
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al., 1982), and the schematic drawing of CCFC-2 is shown in Figure 2.8 (b). In order to 

discharge the sunk objects at the bottom, the bed materials in the lower layer are conveyed by the 

motion of the endless baffled chain, and thus a return solids flow will occur in the upper layer 

and will be used for the transportation of floated products. The CCFC-2 system consists of an 

elongated shallow bed trough (length × width × height = 5487 mm × 190 mm × 609 mm), and 

raw coal of – 25 + 0.8 mm was effectively separated by the fluidizing mixture of limestone and 

hematite particles. Another modified fluidized bed cascade (CCFB-3) was introduced by Chan et 

al. (Chan and Beeckmans, 1982) and is presented in Figure 2.8 (c). The particle recycle system 

was developed and constructed for efficient gravity separation, and the concentration of pyrite 

and ash contents in the reject streams was achieved. Dong et al. developed another fluidized bed 

cascade (CCFC-4) with no moving parts and the solids reflux was induced by a current of air 

(Dong and Beeckmans, 1990), as shown in Figure 2.8 (d). A continuous feed and withdrawal 

using carbon and magnetite particles in salt particles was experimentally tested.  

 

 

Figure 2.8 The schematic drawing of counter-current fluidized cascades by Beeckmans et al. 
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In Israel, investigators at the Agricultural Research Organization have proposed and practiced 

the fluidized bed method for dry cleaning of agricultural products since 1983 (Zaltzman et al., 

1983). As is known that wetting agricultural products may decay and fermentation quickly, and 

thus the dry method is preferred than the wet method in agricultural product cleaning areas. 

Compared with the traditional dry separation methods, e.g. pneumatic separation and X-ray 

based separation, the fluidized bed technology has the advantages of higher density-based 

separation efficiency and lower energy consumption, which is desirable for agricultural products 

cleaning. A pilot unit of agricultural fluidized bed separation system was developed by Zaltzman 

et al. in 1983 (Zaltzman et al., 1983), and the schematic drawing (Zaltzman et al., 1985) is shown 

in Figure 2.9. It is a continuous operation system and has been scale-up for industrial practice 

(Zaltzman and Schmilovitch, 1986). The dry separator comprises of two fluidized bed sections 

connected by an opening area, and the light and heavy products enter the different sections and 

will be discharged separately. A perforated conveyor is used to remove the floated (light) 

component, and the medium particles picked up by the conveyor will pass through the fine holes 

in the conveyor and return to the bed. A rotating drum and an outlet conveyor are used to 

transport the sunk (heavy) component. River sand is employed as the medium particles due to 

good flowability and the appropriate particle density, as well as almost no pollution affecting the 

final agricultural products. The dry separating or sorting of agricultural products including 

potatoes, crops, flower bulbs, fruits and vegetables were tested experimentally with very 

satisfactory results (Zaltzman et al., 1987). A separation effectiveness of 99.9% was achieved for 

the potato cleaning with the processing capacity of 20 - 22 t/h in field conditions (Zaltzman and 

Schmilovitch, 1986). For the flower bulbs, a separation effectiveness of 90-95% was completed 

with the processing capacity of 4 t/h, and only approximately 1% of the flower bulbs were lost 

by damage in the separator (Zaltzman et al., 1985). They also developed another agricultural 

fluidized bed separation apparatus by introducing the multi-stage inclined troughs in 1993 

(Zaltzman, 1993), as can be seen in Figure 2.9. The fluidized bed is formed by forcing gas flow 

upwardly through the bottom of the trough and the medium particles, and feed materials can then 

be separated and transported in the inclined trough. Vertical oscillatory movement is imparted to 

the inclined trough to improve the density uniformity where a fluidization medium such as sand 

particles is suspended and fluidized. A series of inclined troughs can be combined to improve the 

separation effectiveness of the fluidized bed device.  
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Figure 2.9 The schematic diagram of agricultural fluidized bed separator by Zaltzman et al.  

 

Figure 2.10 The schematic drawing of agricultural fluidized bed device by Zaltzman et al.   
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2.3 Recent developments in fluidized bed separation technology 

In Japan, investigators at Okayama University have studied the fluidized bed medium separation 

for approximately 15 years (Oshitani et al., 2004), and a developed fluidized bed separator is 

displayed in Figure 2.11. This fluidized bed apparatus is a continuous separation system (length 

× width × height = 660 mm × 450 mm × 550 mm). An inclined rotating basket is utilized to 

collect the heavy product at the bottom of the bed, and a bucket elevator is used to remove the 

light product floated at the top surface. Solid mixtures of calcium carbonate (300 - 425 µm, 2.68 

g/cm3) and zircon sand particles (90 - 250 µm, 4.65 g/cm3) were chosen as the medium material 

in the separation system for coarse coal dry cleaning. The continuous discharging of floating and 

sinking products in the fluidized bed system was achieved with a feed rate of 1000 kg/h. A clean 

coal product with the yield of 60 - 70% and the ash recovery of 60 - 80% was achieved with the 

probable error of 0.04 - 0.05 g/cm3. Soon after, Yoshida et al. at Okayama University studied the 

apparent specific gravity of gas-solid fluidized bed with binary particle systems (Yoshida et al., 

2008). It was found that the apparent specific gravity of a fluidized bed can be changed by the 

mixing ratio of the binary system and superficial gas velocity. The fluctuation of specific gravity 

was proven to be determined by the extent of segregation of fluidized particles and fluidization 

intensity. After that, Firdaus et al. beneficiated the 5 ~ 31mm coarse coal ores in a fluidized bed 

medium separation system (Firdaus et al., 2012), and the coal separation efficiency had been 

proven to be affected strongly by the feed size and fluidized bed height.  

 

Figure 2.11 The schematic diagram of fluidized bed medium separation by Oshitani et al.  
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Oshitani et al. have attempted to extend the fluidized bed medium separation in other industrial 

applications including iron ore beneficiation, copper ore preparation, municipal waste separation, 

etc. A pilot unit of fluidized bed separation system was developed (Oshitani, et al., 2013), as 

shown in Figure 2.12. This particular separator is a continuous feeding and recovering system 

with a rectangular fluidized bed section (length × width = 1600 mm × 400 mm). In order to 

achieve a higher bed density for iron/copper ore beneficiation, binary mixtures of zircon sand 

and iron powder were selected as the medium particles. Continuous separation experiments were 

conducted for the 11.1 ~ 31.5 mm iron ore particles with a bed density of 2850 g/cm3 and a feed 

rate of 200 kg/h. The efficiency of iron ore separation was found to decrease with the decrease of 

feed ore size, and the iron ores with the particle density close to the bed density tend to scatter in 

the fluidized bed without floating or sinking (Oshitani et al., 2010). The fluidized bed separation 

of smaller sized particles (< 10 mm) can be improved as the fluctuations of fluidized bed surface 

are reduced by the decrease of fluidized bed height (Oshitani et al., 2012). Nearly perfect 

concentration of iron ore particles with a higher efficiency of 98.4% were attained, and the 

separation system produced an upgrade in iron content of 3.3 wt.% and reduced the Al and Si 

content by 44% (Oshitani et al., 2013), which shows a good beneficiation performance. In 

addition, the early rejection of gangue from copper ores was carried out by the fluidized bed 

medium separation with considerations of water and energy consumptions. Solid mixtures of 

iron powder, silica sand, and zircon sand particles were chosen as the medium materials for a 

wide bed density adjustment. Copper ores can be separated effectively at the bed density range of 

2200 – 3700 kg/m3 with the probable errors below 0.06 g/cm3 (Franks et al., 2013). An 

economical and reasonable method with the combined separation processes was proposed for 

efficient copper ore beneficiation (Franks et al., 2015). In detail, the heavy product with a higher 

copper content collected from the bottom of the fluidized bed is sent to the wet grinding and 

flotation circuits, which would lead to significant reduction in energy and water usage. Less 

copper is lost in the flotation tails as the feed has been upgraded. The light product with a lower 

copper content rejected from the fluidized bed separation system can be treated by the 

inexpensive heap leaching process for the recovery of low-grade copper ores. The combined 

processes with fluidized bed medium separation, wet grinding and flotation, and heap leaching 

have many advantages and can result in significant reduction in energy and water consumption 

with minimal ore loss for copper ore beneficiation.  
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Figure 2.12 The fluidized bed apparatus for iron/copper beneficiation by Oshitani et al.  

In addition, a rotating-type fluidized bed dry separator with silica sand as the dense medium was 

explored to decrease the Chlorine (Cl) content in municipal waste plastics (Yoshida et al., 2010). 

The waste plastics with Cl contents of 5.4 wt.% were used as the feedstock, and the Cl content of 

floated product was successfully decreased to 0.4 – 0.85 wt.% with an average recovery of 40~60% 

Cl-free plastics. The performance of waste plastics separation was affected by several parameters 

including operating air velocity, processing time, and the ratio of feed and medium particles. 

Sekito et al. at University of Miyazaki in Japan also attempted a batch separation of shredded 

municipal bulky waste by fluidized bed medium separation (Sekito et al., 2006 (a); Sekito et al., 

2006 (b)). Glass beads with the particle size of 290 µm were employed as the bed material to 

form an apparent bed density of 1.5 g/cm3. The shredded bulky waste could be separated into 

combustibles (wood, paper, and plastics) and incombustibles (metals and glass) with an overall 

separation efficiency of 0.93. After that, binary mixtures of nylon shot and glass beads were used 

to manipulate the apparent bed density to be between 0.63 and 0.99 g/cm3, and wood and paper 

components were recovered while plastics remained in the fluidized bed with a final overall 

efficiency of 0.88. The accumulation of bulky waste material at the bottom of the fluidized bed 

was proven to decrease the separation efficiency dramatically, and a stable stirring can help to 

prevent this accumulation for improving the separation efficiency. In addition, the flexible sheet 

materials such as paper and film plastics were found to significantly decrease the separation 

efficiency, which indicates that the shape of the feedstock is an important factor influencing the 

performance of fluidized bed medium separation.  
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In India, the researchers at the Institute of Minerals and Materials Technology have started the 

investigation of fluidized bed separation technology for dry coal beneficiation since 2009 (Sahu 

et al., 2009). A pilot scale Air Dense Medium Fluidized Bed with a processing capacity of 600 

kg/h was developed for the continuous processing of high-ash Indian coals (Sahu et al., 2011), as 

displayed in Figure 2.13. Magnetite powders of 7.26 and 21.7 µm were employed as the medium 

particles to create a uniform gas-solid fluidization with non-bubbling condition. A relatively 

lower bed density of 1.6 g/cm3 was achieved mainly due to a larger bed expansion by fluidizing 

fine magnetite powders belonging to the Geldart A group. High-ash non-coking coal of 6 ~ 25 

mm was beneficiated effectively with a separation density of 1.68 g/cm3 and a probable error of 

0.12 g/cm3, and the ash content of coal was reduced from 40% to 32% - 35.5% with a product 

yield of 60 - 72%. An attempt was made to study the stability of fluidized bed separator of 

different shapes (Sahu et al., 2013), and several parameters including the fluidization index, 

particulate expansion function, pressure drop of bed and distributor, and minimum fluidization 

and bubbling velocities were chosen and tested to characterize the operation stability. A fluidized 

bed of rectangular cross-sectional shape was found to provide a better stability than that of 

square or circular shape. To gain a better understanding of fluidized bed separation principle, the 

position of coal particles in the separator was investigated (Pallishree et al., 2015). The effective 

density of coal particles in the fluidized bed may increase as the additional weight due to the fine 

particles coating on the coal surface and the deposition at the dead zone area by medium particles.  

 

Figure 2.13 The Air Dense Medium Fluidized Bed for dry coal beneficiation by Sahu et al.  
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Recently, Mohanta et al. at the Indian Institute of Technology have studied the fluidized bed 

technology for the coal dry beneficiation from 2011 (Mohanta et al., 2011). The influence of feed 

coal size on the performance of gravity separation was carefully investigated in a bench scale 

fluidized bed separator. An attempt was made to quantify the optimum size range of feed coal 

over which the separation system can operate satisfactorily. Four coal samples from different 

Indian coal mines were used to verify the relation between the sharpness of separation and feed 

coal size, and the raw coal with the size range of 15 ~ 50 mm was proven to be beneficiated 

satisfactorily in the fluidized bed separator, regardless of the types of feed coals. The separation 

performance of different feed objectives of flat, blockish, and sharp-pointed prism shapes were 

tested in a batch fluidized bed separation system. It was found that feed materials of blockish 

shape that have the smallest surface area to volume ratio and thus are less subject to medium 

viscosity effects can be separated better than that of float and sharp-pointed shapes (Chikerma et 

al., 2012). Moreover, the minimum fluidization velocities of different magnetite powders used in 

the fluidized bed separation system were determined, and a semi-empirical correlation based on 

the basic particle properties was proposed for an accurate estimation without the knowledge of 

bed vodiage and shape factors (Mohanta et al., 2012).  

In Canada, Azimi et al. at University of Alberta carried out a comprehensive evaluation of the 

performance of low-ash coal dry beneficiation using fluidized bed separation technology in 2013 

(Azimi et al., 2013 (a); Azimi et al., 2013 (b)). Response surface methodology was utilized to 

explore the effects of operating parameters including superficial gas velocity, residence time, and 

bed height on the beneficiation performance. The influences of the feed coal size and sample 

weight on the gravity separation were also discussed individually. It was revealed that the 

effectiveness of operating parameters is in the order of residence time > bed height > superficial 

gas velocity. A clean coal product with an ash content of 10.6 and a recovery rate of 95.63% was 

obtained at an optimum operating condition predicted by the proposed mathematical method. 

Several advanced techniques were utilized to analyze the performance of coal beneficiation in a 

fluidized bed separation system. The immigration behavior of hazardous elemental components 

and main clay mineral components during the fluidized bed processing was synthetically 

investigated by the Inductively Coupled Plasma-Mass Spectrometry and X-ray Fluorescence, 

respectively. The reactivity variation of clean coal product containing the max rate of weight loss 
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and the peak temperature was analyzed by Differential Thermogravimetry. In order to achieve a 

deeper understanding of the fluidized bed separation method, CFD simulation and statistical 

analysis were used to study the fluidization hydrodynamics and beneficiation performance of the 

continuous fluidized bed operation system (Azimi et al., 2015; Azimi et al., 2017), and the 

schematic view of the fluidized bed operation system is shown in Figure 2.14. Furthermore, 

Chong et al. at University of Albert examined the possibility of the fluidized bed separation 

method for dry beneficiation of fine coal particles (Chong et al., 2006). Magnetite particles of 

different size fractions including 45 – 75 µm, 45 – 106 µm, and 150 – 300 µm were selected to be 

the medium materials. It was confirmed that good separation efficiencies can be only 

accomplished with a feed coal size of down to 1 mm. To be exact, feed coal of 3.35 - 5.66 mm 

can be beneficiated satisfactorily by fluidizing magnetite particles of 45 – 106 µm with a 

probable error of 0.03 g/cm3. Fine coal of 1 - 3.35 mm could be separated in a fluidized bed with 

magnetite particles of 45 -75 µm, and the corresponding probable error was only 0.10 g/cm3. 

Mak et al. inspected the potential of mercury rejection through dry coal beneficiation by 

fluidized bed separation method (Mak et al., 2008). It was demonstrated that the mercury can be 

co-rejected with mineral matter from the gangue product by the fluidized bed separation, and a 

strong linear relation between the mercury and mineral matter contents in the heavy product was 

confirmed. A gangue product with the mercury rejection of 58% and the mineral matter rejection 

of 60% was obtained with a total combustible loss of 13%.  

 

Figure 2.14 The schematic view of fluidized bed device for coal beneficiation by Azimi et al.  
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In China, the researchers in the Mineral Processing Research Centre at the China University of 

Mining and Technology focused on the dry coal beneficiation by fluidized bed technology for 

approximately 36 years (Chen et al., 1983). Continuous efforts have been made towards 

understanding the fluidization properties and separation mechanism of the fluidized bed 

separation system named Air Dense Medium Fluidized Bed (ADMFB). A schematic 

representation (Chen et al., 2003(a)) of ADMFB system is displayed in Figure 2.15. A 

trapezoidal shaped fluidized bed was employed as the gravity separation carrier, and an endless 

baffled chain was used to discharge both the heavy product at the bottom and the light product at 

the top surface. Magnetite particles of 150 – 300 µm were usually chosen as the medium material 

in the separation system with a bed height of 400 mm, and good separation efficiency can be 

achieved for feed coal of 6 ~ 50 mm with the probable error of 0.05 ~ 0.07 g/cm3 (Chen et al., 

2003(b)). It was also demonstrated that an efficient gravity separation in the ADMFB system 

requires a stable dispersion fluidization of medium particles with well distributed bed density, 

small bubbles, low viscosity, and high fluidity (Luo et al., 2001). A pilot scale ADMFB system 

was developed to exhaustively study the effects of operating parameters on the coal beneficiation 

performance in 1989, as can be seen in Figure 2.16. This continuous operation system contains 

the processes of raw coal pre-treatment, fluidized bed separation, medium solids recovery, air 

supply and dust collection. Magnetite particles were used in the separation system with a 

processing capacity of 5 – 10 t/h. An examination of ADMFB operation for 22 different raw 

coals from various Coal Mines was conducted with satisfactory results (Chen et al., 1993).  

 

Figure 2.15 The schematic drawing of Air Dense Medium Fluidized Bed by Chen et al.  
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Figure 2.16 The pilot scale Air Dense Medium Fluidized Bed system by Chen et al.  

The first commercial ADMFB plant was successfully constructed and operated at the Qitaihe 

Coal Co. in China since 1994 (Chen et al., 2005), as shown in Figure 2.16. The dimension of the 

fluidized bed separator was length × width × height = 660 mm × 450 mm × 550 mm, and the 

capacity of the separation system was 320, 000 t/a. Magnetite particles with the main size range 

of 150 – 300 µm were used as the medium material in the ADMFB system, and 6 ~ 50 mm raw 

coal from Qitaihe Coal Mine was beneficiated efficiently. It was found that the construction and 

operating costs of the ADMFB plant were only half of that of conventional wet preparation plant. 

Furthermore, the ADMFB system has the advantages of less energy consumption and without 

using water. Soon after, another ADMFB plant with the processing capacity of 700, 000 t/a was 

put into commercial application (Chen et al., 2003(a)).  

 

Figure 2.17 The first commercial ADMFB plant at the Qitaihe Coal Co.  



Chapter 2 

27 

 

Recently, Zhao et al. at China University of Mining and Technology developed a modularized 

industrial ADMFB system for efficient dry coal beneficiation in cooperation with the Tangshan 

Shenzhou Manufacturing Co. Ltd. in 2011 (Zhao et al., 2011). As can be observed in Figure 2.18, 

almost all the operation processes were integrated tightly in a modularized ADMFB unit, 

including raw coal pre-treatment, fluidized bed separation, separated product cleaning, medium 

particle circulation, air supply and dust collection, etc. Compared with the conventional ADMFB 

plant, the construction and labor costs required by the modularized ADMFB system have been 

reduced by 60% and 80%, respectively, which is also much less than that of the traditional wet 

preparation plant. An industrial modularized ADMFB plant was established and has been applied 

at the Xinjiang Energy Co. Ltd. in China since 2013 (Zhang et al., 2014; Zhao et al., 2017). The 

dimension of the modularized ADMFB system was length × width × height = 25 m × 8 m × 11 

m, and the capacity of coal beneficiation was 40 – 60 t/h. Run-of-mine coal with the size range of 

10 ~ 100 mm was beneficiated satisfactorily with a probable error of 0.055 g/cm3. The ash 

content of clean coal was decreased from 23.98% to 3.46% with an ash rejection of 85.57%, 

which can be used as the raw material of activated carbon. In addition, the medium particle 

consumption and operating cost were found to be less than 5 kg and $2 per ton of coal product, 

respectively. Therefore, the modularized ADMFB has the advantages of high separation 

efficiency, low construction and operating costs, and environmental friendly, which provides a 

solution for dry coal beneficiation.  

 

Figure 2.18 The commercial modularized Air Dense Medium Fluidized Bed by Zhao et al.  
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2.4 Conclusions and Outlook 

The Air Dense Medium Fluidized Bed is well known to be one of the most efficient tools for dry 

gravity separation of particulate materials according to density differences, especially for the 

coal beneficiation process. The above literature review summarizes the development and present 

status of the fluidized bed separation technology, which provides a sufficient background 

knowledge for the current research work. As can be observed that most of the previous efforts 

have been devoted to experimental and industrial practices of specific materials separation, and 

the fundamental theory and separation mechanism of the ADMFB method have been rarely 

studied in detail. In order to freely adjust the bed density, binary mixtures of solid particles were 

frequently used as the dense mediums in ADMFB system for various applications. However, not 

much work has been made to study the basic theory of fluidized bed separation with binary 

medium particles, and the understanding of binary fluidization system for the gravity separation 

is very limited. The objective of this work is to comprehensively study the hydrodynamic 

characteristics and basic mechanism of ADMFB technology with dense medium of both single 

and binary mixtures of solid particles.  
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CHAPTER 3 

MINIMUM FLUIDIZATION VELOCITY OF BINARY 

MIXTURES OF MEDIUM PARTICLES IN AN AIR DENSE 

MEDIUM FLUIDIZED BED 

Minimum fluidization velocity of binary mixtures is one of the most important parameters when 

applying an Air Dense Medium Fluidized Bed (ADMFB) system for dry coal beneficiation. 

Measurements of minimum fluidization velocities were carried out for binary mixtures of 

magnetite and sand/gangue/coal particles. The experimental results showed that the minimum 

fluidization velocity of binary mixtures remained almost unchanged when the volume fraction of 

magnetite particles was above 50%, whereas it varied significantly when the volume fraction of 

magnetite particles was below 50%. A new correlation based on the Cheung equation has been 

developed for predicting the minimum fluidization velocity of binary mixtures in terms of 

particle size ratio, volumetric composition and incipient fluidization velocity of each component. 

The extended Cheung equation is in reasonable agreement with almost all the available 

experimental data in the present work and the literature, and it can be used to accurately estimate 

the minimum fluidization velocity of binary mixtures of solid particles for ADMFB and other 

similar fluidized bed operations. 

3.1 Introduction 

Air Dense Medium Fluidized Bed is well known to be one of the most efficient methods for dry 

coal beneficiation (Chen and Yang, 2003; Mohanta et al., 2013; Sahu et al., 2009; Zhao et al., 

2011), and this technology has been used extensively for iron/copper ore separation (Franks et al., 

2015; Oshitani et al., 2011), agricultural products cleaning (Zaltman et al., 1983), municipal 

solid waste classification (Sekito et al., 2006; Yoshida et al., 2010), etc. For efficient separation, 

the understanding of fluidization characteristics of the ADMFB is very important (Oshitani et al., 

2012; Zhao et al., 2012), especially for modeling and operation purposes. Minimum fluidization 

velocity is one of the most crucial hydrodynamic parameters that strongly influences the 

behavior of ADMFB application, which reflects the lower limit of gas flowrate required for 
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fluidization. Moreover, an accurate prediction of the minimum fluidization velocity of medium 

particles is an essential prerequisite for the overall design and subsequent scale-up of the 

ADMFB applications (Choung et al., 2006; Mohanta et al., 2012).  

In general, magnetite particles are used as the medium material in ADMFB system for dry coal 

beneficiation due to the good flowability and magnetic property, which can reduce the 

consumption of medium particles through the magnetic recovery process (Dwari and Rao, 2007; 

Mohanta et al., 2011). However, the bed density of fluidizing magnetite particles is usually 

higher than expected for efficient dry coal beneficiation (Wei et al., 2003; Yoshida et al., 2008; ), 

since the ADMFB is a gravity-based separation method. To obtain the desired bed density, 

various binary mixtures of solid particles have been processed as medium materials, which may 

achieve the adjustable bed density and more uniform fluidization for efficient separation 

performance (Firdaus et al., 2012; Tang et al., 2009; Wei et al., 2003; Weintraub et al., 1979). 

Therefore, the knowledge of fluidization characteristics, particularly the minimum fluidization 

velocity, of binary mixtures of medium particles is of great importance for the ADMFB 

applications. 

There are mainly two types of approaches for estimating the minimum fluidization velocity of 

binary mixtures of solid particles (Asif, 2010; Chayang et al., 1989). The first approach is to treat 

the binary mixture as mono-component system by developing an equivalent particle diameter 

and density (Formisani, 1991; Jena et al., 2008; Li et al., 2005; Noda et al., 1986; Paudel and 

Feng, 2013; Renia et al., 2000), and submit the substituting parameters into the generalized 

Ergun-type equations that were obtained from the integration of force balance and bed pressure 

drop relations for single particles (Ergun, 1952). However, for binary fluidization systems, the 

bed pressure drop may not be equal to the apparent weight of solid particles per unit cross-

section area, since some particles only partially fluidized at the incipient fluidization state 

(Carsky et al., 1987; Formisani et al., 2013; Vaid and Gupta, 1978). Furthermore, unlike the 

mono-component particles, the bed voidage of binary systems vary significantly with the particle 

size ratio and size distribution of the two dissimilar solid materials involved (Asif, 2012; Stovall 

et al., 1986; Yu and Standish, 1991). Unavoidably, there are always some discrepancies between 

the theory and experiment by this approach, which may result in large error for estimating the 

minimum fluidization velocity of binary mixtures. The second approach is the use of empirical 
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correlations which were developed directly from the experimental data. Several formulas have 

been proposed in the literature (Asif, 2011; Cheung et al., 1974; Chiba et al., 1979; Obata et al., 

1982; Rincon et al., 1994), and most of these equations are all in good agreement with particular 

experimental data. Generally, empirical correlations have the advantage of being more accurate 

and considerably simpler. It is therefore better for the appropriate estimation of minimum 

fluidization velocity for binary mixtures of solid particles in limited range of involved variables. 

However, the validity of the empirical correlation for different binary particle systems needs to 

be further confirmed.  

In the present work, a comprehensive analysis of the minimum fluidization velocity of binary 

mixtures of medium particles in ADMFB has been studied for dry coal beneficiation. Different 

existing correlations have been compared for various binary particle systems from both the 

literature and this work. An attempt has been made to develop a suitable and applicable 

correlation for predicting the minimum fluidization velocity of binary mixtures based on the 

Cheung equation (Cheung et al., 1974), which is the most commonly used correlation so far. 

Almost all the available experimental data have been computed to enable this extended Cheung 

equation, and the calculated results have been compared with the experimental data in the 

literature and the present work. 

3.2 Experimental 

3.2.1 Experimental setup 

All experiments were carried out in a gas-solid fluidized bed at ambient condition, as shown in 

Figure 3.1. The experimental apparatus consists of mainly four parts: (1) air supply; (2) 

cylindrical bed column with the diameter of 152.4 mm. (3) U-shaped water monometers for the 

pressure-drop measurement; (4) dust collection device. After being filtered and compressed, the 

ambient air was sent to fluidize the solid particles in the bed through the air chamber and 

perforated distributor. The orifice diameter of the perforated distributor is 1.5 mm with the total 

open area of 11%. The flow rate of inlet air was regulated by a rotameter. A ruler was attached 

on the outside wall of the bed column to determine the bed height of solid particles. The pressure 

drop across the fluidized bed was measured by the U-shaped water piezometric pipes connecting 
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to axial pressure taps mounted on the bed column with the interval of 5 cm. Fine dust generated 

during fluidization was blown away and gathered by the dust collection device. 

 

Figure 3.1 The schematic diagram of experimental apparatus: 1. Air filter; 2. Roots blower; 3. Tank; 4. 

Pressure gangue; 5. Valve; 6. Rotameter; 7. Air chamber; 8. Perforated distributor; 9. Cylindrical bed column; 

10. Ruler; 11. U-shaped manometer; 12. Dust cover; 13. Dust collector. 

 

3.2.2 Experimental materials 

Experiments were performed with binary mixtures of magnetite and sand/gangue/coal particles 

at various particle compositions. Magnetite particles with the size fraction of 150 – 300 μm 

which have been found to be the appropriate medium in the ADMFB system (Chen and Yang, 

2003; Mohanta et al., 2013; Sahu et al., 2009; Weintraub et al., 1979) were employed as the core 

material. To achieve the adjustable bed density for efficient coal beneficiation (Tang et al., 2009; 

Wei et al., 2003; Yoshida et al., 2008), sand/gangue/coal particles with the size ranges of 150 – 

300, 300 – 425, 425 – 590, 590 – 710, and 710 – 850 μm were mixed individually with the 

magnetite to form various binary medium particles in this study. For convenience, binary 

mixtures of magnetite and sand/gang/coal particles are named as M-S, M-G, and M-C mixtures, 

respectively. All the solid particles used in the experiment belong to Geldart Group B/D particles, 

and the properties of these experimental materials are shown in Table 3.1. It should be 

mentioned that 15 types of binary mixtures were prepared, and 10 different mixture compositions 
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between vol.5% and vol.95% with the interval of vol. 10% were chosen for each type of binary 

mixture. Therefore, the total 150 different binary mixtures of medium particles were tested in the 

present study.  

Table 3.1. The properties of experimental materials. 

Material 
Size range 

(μm)  

Mean 

diameter 

(μm) 

Density 

(kg/m3) 

Umf 

(cm/s) 

AOR* 

(°) 
Ar Remf Notation 

Magnetite 150-300 232 4600 9.5 36.1 2266 1.6 M232 

Sand 150-300 224 2650 4.9 33.6 1175 0.8 S224 

Sand 300-425 368 2650 12.4 34.5 5208 3.3 S368 

Sand 425-590 485 2650 20.2 37.4 11923 7.1 S485 

Sand 590-710 636 2650 33.5 38.1 26885 15.4 S636 

Sand 710-850 807 2650 39.7 38.5 54924 23.1 S807 

Gangue 150-300 215 2100 4 36.5 823 0.6 G215 

Gangue 300-425 372 2100 10.9 39.3 4263 2.9 G372 

Gangue 425-590 486 2100 18.7 40.2 9505 6.5 G486 

Gangue 590-710 625 2100 24.6 41.7 20216 11.1 G625 

Gangue 710-850 808 2100 34.1 43.6 43681 19.9 G808 

Coal 150-300 245 1300 3.2 38.4 754 0.6 C245 

Coal 300-425 396 1300 8 39.3 3182 2.3 C396 

Coal 425-590 460 1300 13.5 40.1 4988 4.5 C460 

Coal 590-710 617 1300 17.8 42.2 12036 7.9 C617 

* Angle of repose (AOR) above 38º is considered cohesive. 

3.2.3 Characterization of binary mixtures 

The minimum fluidization point of gas-solid fluidized bed with binary mixtures represents the 

transition between the fixed and fluidized states, and the corresponding gas velocity is defined as 

minimum fluidization velocity (Umf) which is generally measured by the bed pressure drop 

against superficial gas velocity curve method (Chiba et al., 1979). A typical pressure-drop-

velocity curve of the fluidized bed with a binary mixture (M232-S485-45%) is shown in Figure 

3.2 together with the method for determining the minimum fluidization velocity of binary 

particle system. Compared with the single particle system, binary system has the other feature of 

incipient and total fluidization velocities (Uif /Utf) which have been shown in Figure 3.2. Among 

these fluidization velocities, the minimum fluidization velocity is much more important for 
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characterizing a binary system, especially for the modelling and design of various fluidized bed 

operations.  

In order to estimate the minimum fluidization velocity of a binary system, it is necessary to 

define its surface/volume average particle diameter and density, which are also important for 

characterizing a binary mixture. By giving the same total surface area per unit apparent weight of 

the binary system, the effective particle diameter and density can be defined as (Asif, 2011; 

Formisani et al., 2013; Goossens et al., 1971; Noda et al., 1986),  

  
1

𝜌̅
=

𝑤𝐹

𝜌𝐹
+

𝑤𝑝

𝜌𝑝
                             (3.1) 

1

𝑑̅𝜌̅
=

𝑤𝐹

𝑑𝐹𝜌𝐹
+

𝑤𝑝

𝑑𝑝𝜌𝑝
                   (3.2) 

where w is the weight fraction of each component of solid particles, and the subscripts, F and P, 

are used to distinguish the particle components which have the lower and higher minimum 

fluidization velocities, respectively. Based on the definitions of effective particle diameter and 

density, Archimedes number and Reynolds number of a binary mixture can be given by, 

𝐴𝑟̅̅̅̅  = 𝜌𝑔(𝜌𝑝̅̅ ̅ − 𝜌𝑔)𝑑̅3/𝜇2            (3.3) 

𝑅𝑒̅̅̅̅
𝑚𝑓 = 𝜌𝑔𝑈𝑚𝑓𝑑̅/𝜇                    (3.4) 

Since the binary system has two types of dissimilar particles, the minimum fluidization velocity 

of binary mixture is not only sensitive to the particle properties of each component, but also to 

the volumetric composition of binary mixtures. In a binary system, the volume fraction of each 

component of solid materials can be given by,  

   𝑥𝐹 = 𝑤𝐹
𝜌̅

𝜌𝐹

                              (3.5) 

   𝑥𝑃 = 𝑤𝑃
𝜌̅

𝜌𝑃

                              (3.6) 
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Figure 3.2 A typical pressure-drop-velocity curve of the M232-S485-45% mixture. 

 

3.3 Results and discussion 

3.3.1 Minimum fluidization velocity of binary mixtures 

Measurements of the minimum fluidization velocity of binary mixtures have been conducted in a 

gas-solid fluidized bed with the initial bed height of 15 cm. The bed pressure drop against the 

decreasing superficial gas velocity curve was employed to determine the minimum fluidization 

velocity to avoid the wedging effect. Binary mixtures of magnetite and sand/gangue/coal 

particles with various particle compositions have been tested, and the corresponding minimum 

fluidization velocities are shown in Figures 3.3, 3.4 and 3.5, respectively. It should be noted that 

all the solid particles involved in this experiment belong to Geldart Group B/D particles.  

The relation between the minimum fluidization velocity and the volume fraction of sand particles 

for M-S mixtures is illustrated in Figure 3.3. It can be seen that, when the volume fraction of 

sand particles is below vol.50%, the minimum fluidization velocity of M-S mixtures remains 

almost unchanged regardless of the size range of sand particles, and its value is very close to that 

of mono-component magnetite particles. However, above vol.50%, the minimum fluidization 

velocity of M-S mixtures varies significantly with increasing the volume fraction of sand 

particles and reaches the maximum/minimum value at pure sand particles. The same trend was 
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also observed for M-G and M-C mixtures, as can be seen in Figures 3.4 and 3.5, respectively. 

This is reasonable and can be attributed to the partial fluidization and bed voidage variation of 

binary systems at minimum fluidization state.  

Since the particle size of magnetite is smaller than (or equal to) that of sand, gangue and coal, the 

magnetite particles will play a dominant role in achieving the minimum fluidization velocity 

when its proportion is higher than that of sand/gangue/coal particles. It can be explained by the 

larger/heavier solid particles only partially fluidized at the minimum fluidization state for binary 

mixtures. At the other extreme, magnetite particles with the relatively smaller size will fill the 

interparticle voidage formed by the sand/gangue/coal particles when the concentration of 

magnetite particles is very low, and the minimum fluidization velocity of binary mixtures will 

decrease as the void fraction reduces. For the design and operation purposes, it is necessary to 

calculate the minimum fluidization velocity of binary mixtures of solid particles, thus avoiding 

experimental measurements. 
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Figure 3.3 The minimum fluidization velocity of binary mixtures of magnetite and sand particles. 
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Figure 3.5 The minimum fluidization velocity of binary mixtures of magnetite and coal particles. 
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3.3.2 Comparison of the correlations for binary mixtures 

A number of investigators have carried out experiments involving the gas-solid fluidization of 

binary mixtures, and details of the experimentally determined minimum fluidization velocities 

are shown in Table 3.2. The available experimental data in the literature includes both size-

difference and density-difference binary systems with the minimum fluidization velocity ranging 

from 0.1 to 145 cm/s. Based on the experimental data in the literature and the current work listed 

in Table 3.2, the comparison of different correlations for predicting the minimum fluidization 

velocity of binary systems is shown in Table 3.3.  

Five different correlations are used to estimate the minimum fluidization velocity of binary 

mixtures of solid particles in all cases. As shown in Table 3.3, the correlation proposed by 

Goossens et al. (Goossens et al., 1971), which treats the binary mixture as the mono-component 

particle system by introducing the effective particle size and density concepts ignores the 

significant variation of bed voidage in binary systems. Since the bed voidage is the key factor 

affecting the incipient fluidization of binary mixtures, this approach may be deficient for such 

estimation, especially in the case of large particle size ratio of binary mixtures. Besides, the 

Goossens equation can be applied in the laminar flow region only (Chyang et al., 1989; 

Goossens et al., 1971). The other four equations listed in Table 3.3 are all empirical correlations 

which require the knowledge of the minimum fluidization velocity of each particle component in 

binary systems. The advantages of empirical correlations are very simple and considerably 

accurate for the limited experimental data, but the validity of these correlations is uncertain when 

apply to other binary systems. Therefore, in order to obtain a universally applicable correlation, a 

large amount of binary mixtures covering various solid materials and different particle 

compositions have been employed to test the validity of these correlations in this work.  

Based on 150 data points in the present work and 221 data points listed in Table 3.2, the Cheung 

equation has been shown to be the most suitable one for the prediction among the correlations 

listed in Table 3.3, which gives the overall standard deviations of 11.27% and 22.62% for the 

experimental data in this work and in the literature, respectively. As pointed out by Cheung et al., 

the minimum fluidization velocity of solid mixtures shows an exponential trend with the mixture 

composition when the incipient fluidization velocity of each component is known, which should 
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be more reasonable and reliable for binary systems. Moreover, the Cheung equation has also 

been recognized as a good correlation for estimating the minimum fluidization velocity of 

various binary systems by many researchers (Asif, 2014; Carsky et al., 1987; Chyang et al., 

1989; Formisani, 1991; Kumoro et al., 2014; Rao et al., 2001; Turrado, et al., 2018). However, 

the correlation proposed by Cheung et al. has some limitations, and it could be further improved, 

because the ratio of particle sizes cannot be greater than 3 and the exponent 2 in the correlation 

was found by fitting the limited experimental data (Cheung et al., 1974).  

Table 3.2. Literature summary of the minimum fluidization velocity of binary mixtures. 

Reference 

Bed 

cross-

section 

(cm) 

Material 
ρp 

(kg/m3) 

dp 

(um) 

Umf 

(cm/s) 

Range of 

Ar 

Range of  

Remf 

Lockett  

et al. (1973) 
3.5 FCC 1150 45~95 0.23~0.27 4.4~25.4 0.007~0.019 

Cheung 

et al. (1974) 
14 

Glass powder 2520 195~461 2.5~15 737~9736 0.35~4.98 

Bronze 8540 388~550 39~51 19678~56052 10.9~20.2 

Ballotini 2520 271~642 8~36.5 1978~26296 1.56~16.89 

Rowe et al. 

(1975) 
- Catalyst 1150 29~81 0.1~0.5 1.1~24.3 0.002~0.029 

Chen et al. 

(1975) 
10 

Dolomite 2800 338~1125 11.5~78 4283~157436 2.8~63.3 

Char 702 718 38 10233 7.76 

Chiba et al. 

(1979) 
5 

Copper shot  8900 163~254 9.2~18.2 1520~5754 1.08~3.33 

Glass bead 2520 115~385 1.6~14.4 151~5671 0.13~3.99 

Hollow char  1080 775 22.5 19811 12.57 

Silica balloons 190 359 0.79 344.5 0.21 

Noda et al. 

(1986)  
16 

Glass bead 2520 45.4~84.3 13.9~45 9.3~59.5 0.45~2.73 

Sand 2600 45.4~139 16.9~76 9.6~275.4 0.55~7.61 

Rubber  1450 283 114 1296 23.25 

Soya bean 1220 785 145 23261 82.03 

Formisani 

et al. (1991) 
10.1 Glass bead 2530 153~483 2.4~21.2 357~11242 0.24~6.8 

Marzocchella 

et al. (2000) 
12 

Silica sand 2600 125 1.7 200 0.15 

Glass bead 2540 500 22 12521 7.92 

Olivieri 

et al. (2004) 
12 

Silica sand 2600 125~500 2.2~19 200~12817 0.2 

Silica gel 600 375 3.2 1246 0.87 

Polypropylene 900 500 11 4432 3.96 

Glass bead 2540 500 23 12521 8.29 

Formisani 

et al. (2008) 
10 

Glass bead 2480 154~612 2.5~32.5 357~22418 0.28~14.33 

Molecular 

sieves 
1460 624~800 21.5~35.5 13984~29468 9.67~20.47 
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Steel shots 7600 243~439 17.5~46 25366 14.55 

Ceramic 

spheres 
3760 701 44 51086 22.23 

Asif 

et al. (2010) 
6 

Sand 2664 550 3.6 17479 1.43 

Plastic 

particles 
1761 2550 26.5 1151254 48.7 

Formisani 

et al. (2011) 
10 

Glass bead 2480 172~593 2.8~30.8 357~24571 0.24~14.78 

Ceramic 

spheres 
3760 605 43.3 32841 18.88 

Steel shots 7600 243 17.3 4302~25366 3.03~15.09 

Paudel 

et al.(2013) 
14.5 

Sand 2630 241 7.4 1448 1.28 

Walnut shell 1200 856 55.3 29665 34.11 

Kumoro 

et al. (2014) 
10 

River sand 2630 241 9 1452~4142 1.56~4.54 

Corn cob 1080 1040 62 47876 46.47 

 

Table 3.3. Summary of the error analysis of various correlations for binary systems. 

Reference Correlation 
St. Dev. %  

- this work 

St. Dev. %  

- literature 
Notes 

Goossens et al., 

(1971) 

 0.00061 / ( )mf gU Ar d =   
 

14.63 

 

39.22 ( )
3

2/ppg gr dA g   −=  

Otero et al., 

(1971) 
 (1 )mf P P P FU x U x U= + −  

 

30.05 

 

107.49 
xp is the volumetric fraction of 

larger component 

Cheung et al., 

(1974) 

2

( / ) px

mf F P FU U U U=  
 

11.27 

 

22.62 
The exponent 2 was found by 

fitting limited experimental data 

Chiba et al., 

(1979) 

2( / )( / )mf F F FU U d d =  
 

19.07 

 

40.92 without the knowledge of Up 

Obata et al., 

(1982) 
 ( )

1

/ /mf F F p PU w U w U
−

= +  

 

18.08 

 

32.53 w is the weight fraction of  

mono-component 

 

  



Chapter 3 

47 

 

3.3.3 Modify the Cheung equation with the experimental data 

Compared with the other correlations listed in Table 3.3, the Cheung equation has shown to 

provide more accurate estimation of minimum fluidization velocity of binary systems in almost 

all cases. However, there is ample evidence, provided by some researchers (Chyang et al., 1989; 

Turrado, et al., 2018; Uchida et al., 1983), that the exponent number in the Cheung equation 

should be an adjustable parameter instead of the constant 2. By analyzing the force balance of 

binary gas-solid fluidization, the corresponding minimum fluidization velocity not only depends 

on the properties of solid particles but also sensitive to the bed void fraction which has not yet 

been included in the original Cheung equation (Asif, 2012; Stovall et al., 1986; Yu et al., 1991). 

Since the exponent number in the original equation was found by fitting limited number of 

experimental data, the Cheung equation can be further improved by extensively fitting the recent 

experimental data and involving the bed voidage effect. For these reasons, the extended Cheung 

equation is therefore proposed as follow, 

      𝑈𝑚𝑓  =  𝑈𝐹( 𝑈𝑃/ 𝑈𝐹)𝑥𝑝
𝑛
                  (3.7) 

where n is the adjustable parameter which depends on the bed voidage of binary systems at the 

incipient fluidization state. It is generally known that the ratio of particle sizes is the main factor 

that affects the bed voidage of solid mixtures, and it is hereby to study the relation between the 

adjustable parameter n and the particle size ratio.  

The relation between the parameter n and the particle size ratio (dp/df) for the M-S mixtures is 

shown in Figure 3.6 together with the predicting curve calculated by Equation (3.7). The n value 

was obtained by fitting Equation (3.7) with the experimental data. It can be seen that the n value 

increases from 0.8 to 2.3 with the increase of particle size ratio (dp/df) from 1.1 to 3.5. A similar 

trend was also observed for the literature data, as can be seen from Figure 3.7. An examination of 

all the available data reveals that the calculated n values generally increases with increasing 

particle size ratio of binary mixtures, and the published data precisely allow to establish a 

correlation for evaluating the particle size ratio effect. Based on almost all the available 

experimental data, the adjustable parameter n can be calculated from 

     𝑛 = 1.26 × (𝑑𝑃/ 𝑑𝐹)0.53                 (3.8) 
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Such particle size ratio is the basic parameter for characterizing a binary mixture, and can be 

easily obtained from the properties of solid particles. It should be mentioned that the minimum 

fluidization velocity of each component can be accurately estimated by the popular Ergun-type 

correlations for single particles, such as Wen and Yu equation (Wen et al., 1966) with the 

knowledge of average particle size and density. Substituting the Equation (3.8) into the Equation 

(3.7) and combining with the Wen and Yu equation for single particles, the following correlation 

for predicting the minimum fluidization velocity of binary mixtures can be obtained.  

   𝑈𝑚𝑓  =  𝑈𝐹( 𝑈𝑃/ 𝑈𝐹)𝑥𝑝
1.26×(𝑑𝑃/ 𝑑𝐹)0.53

         (3.9) 

where UP and UF can be calculated from the correlation proposed by Wen and Yu (Wen et al., 

1966). The Wen and Yu equation is defined as, 

 𝑅𝑒𝑚𝑓  = (33.72 + 0.0408𝐴𝑟)0.5 − 33.7     (3.10) 
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Figure 3.6 Comparison of the Umf calculated by Equation (3.9) with the experimental data in the 

present work. 
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Figure 3.7 Comparison of the Umf calculated by Equation (3.9) with the experimental data in the 

literature.   
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3.3.4 Error analysis of the proposed correlation 

A comparison of the minimum fluidization velocity of binary mixtures calculated using the 

proposed Equation (3.9) with almost all the available experimental data is shown in Figure 3.8. It 

can be seen that this correlation gives an overall standard deviation of 7.14% based on 150 data 

points with the minimum fluidization velocity ranging from 3.6 to 35.3 cm/s in the present work. 

Moreover, an overall standard deviation of 17.85% was obtained by this correlation based on 221 

data points with the minimum fluidization velocity ranging from 0.13 to 57.5 cm/s in the 

literature. The difference between the values of the above standard deviations is mainly due to 

the literature experimental data covers more than twenty different types of materials with a wider 

particle size/density ranging from 29 to 2250 μm/600 to 8900 kg/m3, while only four different 

types of materials with the particle size/density ranging from 215 to 808 μm/1300 to 4600 kg/m3 

were considered in this work. For the sake of comparison, the Cheung equation has been tested 

and has been found to only give the overall standard deviations of 11.27% and 22.62% for these 

150 and 221 data points, respectively, which is less accurate than that of Equation (3.9). Since 

the Cheung equation has already been deemed to be a good correlation for the prediction, the 

proposed Equation (3.9) shows better accuracy, and is to be preferred as a better method for 

estimating the minimum fluidization velocity of binary systems.  
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Figure 3.8 Comparison of the Umf calculated by Equation (3.9) with all available experimental data.   
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3.4 Conclusion 

Knowledge of the minimum fluidization velocity of binary mixtures is crucial for design and 

operation of Air Dense Medium Fluidized Beds for dry coal beneficiation. Minimum fluidization 

velocities of magnetite mixed with sand/gangue/coal particles were experimentally investigated. 

It was observed that, when the volume fraction of magnetite is above 50%, addition of 

sand/gangue/coal particles that is coarser than (or equal to) magnetite particles did not 

appreciably change the minimum fluidization velocity of binary mixtures, which may be 

exploited in the optimization of energy consumption for the ADMFB operation. On the contrary, 

the minimum fluidization velocity of binary mixtures varied significantly when the volume 

fraction of magnetite was below 50%. A new equation was derived for estimating the minimum 

fluidization velocity of binary mixtures by extending the correlation proposed by Cheung et al., 

which required the additional knowledge of particle size ratio (dp/df). Such particle size ratio is 

the basic parameter for characterizing a binary mixture. Almost all the available experimental 

data were used to test the validity of this correlation, and it gave an overall standard deviations of 

17.85% and 7.14% for the experimental data in the literature and the present work, respectively. 

Therefore, the proposed correlation based on the Cheung equation is to be preferred as a better 

method for estimating the minimum fluidization velocity of binary mixtures of solid particles for 

ADMFB and other similar fluidized bed applications. 
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Nomenclature 

Ar                Archimedes number, dimensionless 

Ar                Archimedes number of binary mixture, dimensionless 

d                 effective particle diameter of binary mixture, m 

Fd                diameter of particles with lower minimum fluidization velocity, m 

Pd                diameter of particles with higher minimum fluidization velocity, m 

n                  adjustable parameter, dimensionless 

ΔP               pressure drop of the fluidized bed, Pa 

Remf             Reynolds number at minimum fluidization state, dimensionless 

Remf             Reynolds number of binary mixture at minimum fluidization state, dimensionless 

Ug               superficial gas velocity, m/s 

Uif               incipient fluidization velocity, m/s 

Umf              minimum fluidization velocity, m/s 

Utf                total fluidization velocity, m/s 

Fw                weight fraction of particles with lower minimum fluidization velocity, % 

Pw                weight fraction of particles with higher minimum fluidization velocity, % 

Fx                volumetric ratio of particles with lower minimum fluidization velocity, % 

px                volumetric ratio of particles with higher minimum fluidization velocity, % 

Greek letters 

                 gas viscosity, kg/(m.s) 

                 effective particle density of binary mixture, kg/m3 

F               density of particles with lower minimum fluidization velocity, kg/m3 

g                gas density, kg/m3 

P                density of particles with higher minimum fluidization velocity, kg/m3   
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CHAPTER 4 

MINIMUM FLUIDIZATION VELOCITY GROWTH DUE TO 

BED INVENTORY INCREASES IN AN AIR DENSE MEDIUM 

FLUIDIZED BED 

Minimum fluidization velocity is one of the most important fluidization characteristics when 

applying Air Dense Medium Fluidized Bed (ADMFB) to dry coal beneficiation. Measurements 

were carried out for magnetite particles (150 – 300 μm) and binary mixtures of magnetite mixed 

with sand/gangue/coal particles (300 – 425 μm) to determine the influence of bed inventory on 

the characteristics at incipient fluidization state. The experimental results showed that minimum 

fluidization velocities of both single and binary mixtures of solid particles increase with 

increasing bed mass, which has not properly accomplished by the existing equations. The 

correlation proposed by Wen and Yu has been modified to predict the minimum fluidization 

velocity as a function of bed inventory. It only requires the knowledge of Archimedes number 

and the pressure drop of fluidized bed. This correlation is in reasonable agreement with almost 

all available data in the literature and the present work.  

4.1 Introduction 

Air Dense Medium Fluidized Bed technology, which utilizes the liquid-like flow behavior of 

gas-solid fluidized bed to achieve the coal dry beneficiation, was firstly proposed by T. Fraser et 

al (Fraser et al., 1925; Fraser, 1926). The raw coal constituents can be effectively separated 

according to their densities in a particular fluidized bed separator. This method has the inherent 

advantage of functioning without process water (Douglass et al., 1966; Iohn, 1971; Chen et al., 

2003; Houwelingen et al., 2004), which provides an efficient way for dry coal cleaning in arid 

and prolonged cold areas. Furthermore, this technology is widely applicable, and it has already 

extended to iron/copper ore beneficiation (Oshitani et al., 2013; Oshitani et al., 2013; Franks et 

al., 2013; Franks et al., 2015), agricultural products cleaning (Zaltman et al., 1983; Zaltzman et 

al., 1985; Zaltzman et al., 1987), municipal solid waste classification (Sekito et al., 2006; Sekito 

et al., 2006; Yoshida et al., 2010), etc. The separation performance of ADMFB is strongly 
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dependent on the uniformity and dynamic stability of gas-solid fluidized bed. Therefore, for an 

efficient separation, many factors related to the overall design and operation of this fluidized bed 

should be carefully investigated. 

Minimum fluidization velocity (Umf) is recognized as one of the most important parameters when 

characterizing an ADMFB, especially for proper design of the air supply system and control of 

the separation process. Since the fluidized bed separator is horizontally placed to extend the 

residence time of coal separation process, the accurate estimation of minimum fluidization 

velocity becomes increasingly important for the ADMFB operation due to the large bed cross-

section area. Moreover, an accurate prediction of the minimum fluidization velocity is also 

essential for the theoretical understanding of the fluidization hydrodynamics in various fluidized 

bed operations. In the past decades, a number of correlations (Wen and Yu, 1966; Richardson 

and Jeronimo, 1979; Phillai and Rao, 1971) have been proposed to predict the minimum 

fluidization velocity, which are almost all derived from the generalized Ergun-like equation 

(Ergun, 1952) that obtained from the integrating analysis of force balance and pressure drop 

relations. However, these correlations fail to incorporate the influence of bed inventory on the 

incipient fluidization, which is deemed to be of great importance for industrial scale fluidized 

bed operations, such as ADMFB and many other chemical reactors. In general, minimum 

fluidization velocity of the same material has been considered to be constant in the existing 

correlations (Wen and Yu, 1966; Richardson and Jeronimo, 1979; Phillai and Rao, 1971). As a 

matter of fact, the minimum fluidization velocity increases with the increasing of bed mass 

(Delebarre, 2004). The greater the Archimedes number (e.g., the greater the particle size or 

density), the greater the effect of bed inventory on the minimum fluidization velocity (Delebarre 

et al., 2004). It may be explained by the gas expansion phenomenon that delays the incipient 

fluidization of fluidized bed (Delebarre et al., 2004; Kusakabe et al., 1989; Delebarre et al., 

2002). In recent years, researchers (Granfield and Geldart, 1974; Denloye, 1982; Thonglimp et 

al., 1984; Tannous et al., 1994; Gunn and Hilal, 1997; Caicedo et al., 2002; Delebarre et al., 

2004; Rao et al., 2010) have carried out many experiments in dealing with the bed inventory 

influence on fluidization characteristics, which allow to estimate precisely the relevance of 

minimum fluidization velocity.  



Chapter 4 

61 

 

Comprehensive analyses of experimental data conducted in the present work as well as in the 

literature show that the minimum fluidization velocities of both monodispersed and binary 

mixture of solid particles are highly dependent on the bed pressure drop, which indicates the 

weight of bed inventory per unit cross-sectional area of the fluidized bed. An attempt has been 

made to develop a suitable correlation for predicting the minimum fluidization velocity 

considering the bed inventory effect. A new correlation based on Wen and Yu equation (Wen and 

Yu, 1966) has been proposed considering the available data. The calculated results using the 

proposed equation have been compared with almost all the available experimental data. 

4.2 Theory 

 

Figure 4.1 The schematic diagram of the minimum fluidization state. 

The minimum fluidization velocity, in a gas-solid fluidized bed, represents the transition velocity 

between the fixed and fluidized states, as shown in Figure 4.1. At the transition point, the 

pressure drop across the fluidized bed appears to be equal to the apparent weight of the solid 

particles per unit area of the cross-section, which can be written as 

∆𝑃 = 𝑊𝑏𝑒𝑑/ 𝐴 =  𝑔𝐻𝑚𝑓(1 − 𝜀)(𝜌𝑝 − 𝜌𝑔)       (4.1) 

The pressure drop through a porous fluidized bed can also be obtained from a force balance on 

the continuous phase 

                   ∆𝑃 = ∑ 𝐹 / (𝜀𝐴)                           (4.2) 
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where F  is the sum of the forces acting on the continuous phase. In a gas-solid fluidized bed, 

the F  is composed of the gas weight and the friction of solids on the gas flow. As is known 

that the friction of solids on the gas flow is equivalent to the friction of gas flow on the solid 

particles in the opposite direction. Thus, the forces acting on the continuous phase can be given 

by 

                  ∑ 𝐹 = 𝜌𝑔𝑔𝜀𝑉 − ∆𝐹                         (4.3) 

where F  is the frictional pressure drop. The frictional pressure drop on the solid results from 

the combination of skin friction (Fs) and form drag (Ff) (Ergun, 1952), where 

             𝐹𝑆 = 𝑘1𝜇𝑈𝑔∆𝑆/(𝜀𝐷ℎ)                          (4.4) 

                𝐹𝑓 = 𝑘2𝑈𝑔
2∆𝑆/𝜀2                               (4.5) 

Generally, the gas weight is small indeed and can almost be neglected in comparison with the 

frictional pressure drop. Then, the total pressure drop per unit bed height can be given as 

                        −∆𝑃/𝐻 = [𝑘1𝜇𝑈𝑔∆𝑆/(𝜀𝐷ℎ) + 𝑘2𝑈𝑔
2∆𝑆/𝜀2]/(𝜀𝐴𝐻)       (4.6) 

where the specific solid surface ( S ) is defined by 

               ∆𝑆 = 6(1 − 𝜀)𝐴𝐻/(𝜓𝑑𝑝)                  (4.7) 

and the hydraulic diameter ( hD ) is defined by 

           𝐷ℎ = (2/3)𝜓𝑑𝑝𝜀/(1 − 𝜀)                     (4.8) 

Substituting the specific solid surface and hydraulic diameter into Equation (4.6), the frictional 

pressure drop equation, thus, can be deduced to 

−∆𝑃/𝐻 = 𝑘1
′ 𝜇𝑈𝑚𝑓(1 − 𝜀)2/(𝜀3𝜓2𝑑𝑝

2) + 𝑘2
′ 𝜌

𝑔
𝑈𝑚𝑓

2 (1 − 𝜀)/(𝜀2𝜓𝑑𝑝)     (4.9) 

where '

1k  and '

2k  are empirical constants. Ergun has fitted this correlation with the help of 640 

experiments that carried out with various gases and solids introducing two constants whose 

values are 150 and 1.75, which is one of the most widely used equations for predicting the 
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minimum fluidization. By introducing the Reynolds number (Remf) and Archimedes number (Ar), 

the Ergun equation then becomes 

        𝐴𝑟 = 150𝑅𝑒𝑚𝑓(1 − 𝜀)/(𝜓2𝜀3) + 1.75𝑅𝑒𝑚𝑓
2 /(𝜓𝜀3)         (4.10) 

where  

     𝐴𝑟 = 𝜌𝑔(𝜌𝑝 − 𝜌𝑔)𝑔𝑑𝑝
3/𝜇2                          (4.11) 

     𝑅𝑒𝑚𝑓 = 𝜌𝑔𝑑𝑝𝑈𝑚𝑓/𝜇                                  (4.12) 

Despite the availability of the Ergun equation, it is still often difficult to accurately predict the 

minimum fluidization velocity, which can be attributed to the uncertainty associated with the bed 

voidage at the minimum fluidization state. Even a small error in its specification could result in a 

significant error. Therefore, proceeding from the fundamental Equation (4.10), several 

researchers have proposed particular simplified forms, replacing the shape factor ( ) and bed 

voidage at minimum fluidization (𝜀) by numerical values. By rearranging the Equation (4.10) 

leads to 

𝑅𝑒𝑚𝑓 = −𝐶1 + (𝐶1
2 + 𝐶2𝐴𝑟)0.5                      (4.13) 

where  

𝐶1 = 42.86(1 − 𝜀)/𝜓    𝐶2 = 0.571𝜓𝜀3        (4.14) 

Various values have been proposed for the empirical constants (C1/C2) by many investigators 

(Davies and Richardson, 1966; Richardson et al., 1979; Thonglimp et al., 1984.), and the 

corresponding correlations have been established. Among these, the Wen and Yu correlation 

introducing the constants of 33.7 and 0.0408 for C1 and C2 is the most commonly used 

correlation. However, these correlations considering the two coefficients as constants all neglect 

the effects of bed inventory on the fluidization characteristics. Thus, for more accurate and 

reliable prediction of minimum fluidization velocity, a comprehensive correlation is proposed as  

                              𝑅𝑒𝑚𝑓 = [−𝐶1 + (𝐶1
2 + 𝐶2𝐴𝑟)0.5] × 𝑓(∆𝑃)       (4.15) 

where 𝑓(∆𝑃)  is the influence of bed inventory on incipient fluidization, which has been 

experimentally determined in the present work.   
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4.3 Experimental 

4.3.1 Experimental setup 

Experiments were conducted in three cylindrical fluidized beds at ambient condition, as shown in 

Figure 4.2. The experimental setup consists of mainly four parts: (1) air supply including an air 

filter, a roots blower, and a tank; (2) fluidized bed columns with the inner diameters of 101.6, 

152.4 and 203.2 mm. (3) U-shaped monometer for pressure-drop measurement; (4) dust 

collection device. After being filtered, the ambient air was sent to fluidize the solids in the 

column through the air chamber and perforated distributor. The distributor is made of two plastic 

perforated plates with filter cloth in between, and the orifice diameter is 1.5 mm with the total 

open area of 11%. In order to investigate the fluidization characteristics of the fluidized bed, the 

U-shaped piezometric pipes were connected to the axial pressure taps on the side of the column. 

Fine dust generated during fluidization in the experiment was collected by the dust collector 

device. 

    

Figure 4.2 The schematic diagram of experimental apparatus: 1. Air filter; 2. Roots blower; 3. Tank; 4. 

Valve; 5. Rotameter; 6. Air chamber; 7. Bed distributor; 8. Fluidized bed column; 9. Ruler; 10. U-shaped 

manometers; 11. Dust cover; 12. Dust collector. 
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4.3.2 Experimental materials 

Measurements were made to study the variation in minimum fluidization velocity with 

increasing bed inventory for the medium particles in the ADMFB system. Magnetite, sand, 

gangue, and coal powders were used in these experiments. The magnetite powder (150 – 300 um) 

was found to be the appropriate core materials in ADMFB (Iohn, 1971; Chen and Wei, 2003). 

The three other materials with the same volume fraction of 25% were added separately to form 

binary mixtures for the bed density adjustment (Weintraub et al., 1979; Beeckmans et al., 1982; 

Yoshida et al., 2008; Luo and Chen, 2001; Tang et al., 2009). These added materials with the 

size range of 300 – 425 um were chosen to balance the density difference with magnetite powder 

during fluidization. For convenience, the three types of binary mixtures are named as: MS 

mixture (magnetite 150 – 300 um, vol. 75% with sand 300 – 425 um, vol. 25%), MG mixture 

(magnetite 150 – 300 um, vol. 75% with gangue 300 – 425 um, vol. 25%), MC mixture 

(magnetite 150 – 300 um, vol. 75% with coal 300 – 425 um, vol. 25%). The properties of the 

experimental materials and binary mixtures are shown in Tables 4.1 and 4.2, respectively.  

Table 4.1. The properties of experimental materials. 

Particle properties Magnetite Sand Gangue Coal 

Particle size range (um) 150 – 300 300 – 425 300 – 425 300 – 425 

Mean particle diameter (um) 221 351 386 366 

Particle true density (kg/m3) 4600 2530 2060 1425 

Aerated bulk density (kg/m3) 2630 1510 1250 875 

Angle of repose (°) 36.1 34.5 39.5 40.3 

Avalanche angle (°) 42.5 41.1 42.9 43.8 

Table 4.2. The properties of binary mixtures of solid particles. 

 Particle properties MS mixture  MG mixture MC mixture 

Particle size range (um) 150 – 425 150 – 425 150 – 425 

Mean particle diameter (um) 266 275 263 

Particle true density (kg/m3) 3980 3890 3770 

Aerated bulk density (kg/m3) 2280 2180 2090 

Angle of repose (°) 35.6 37.5 39.3 

Avalanche angle  (°) 41.5 42.3 43.9 
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4.4 Results and discussion 

4.4.1 The effect of bed inventory on the minimum fluidization 

Minimum fluidization velocity in gas-solid fluidized beds is generally determined using the 

graph of bed pressure drop against superficial gas velocity (Phillai and Rao, 1971). It has also 

been customary to use Reynolds number to represent the incipient fluidization where its 

definition is given in Equation (4.12). In the present work, different weighed amount of solids 

were charged to vary the pressure drop of fluidized bed ranging from 1 kPa to 7 kPa, and the 

plots of Reynolds number against the bed pressure drop in three different fluidized beds are 

illustrated in Figure 4.3. 

It can be seen that the magnetite powder as well as the MS/MG/MC mixtures all demonstrate an 

increasing trend of Reynolds number with increasing bed pressure drop. This rising Reynolds 

number indicates an increasing minimum fluidization velocity for the same material as the bed 

inventory increases. The same tendency for magnetite powder has also been claimed elsewhere 

(Sahu et al., 2011; Sahu et al., 2013). Some authors (Granfield and Geldart, 1974; Denloye, 1982) 

have attributed this to the increase of the ratio in pressure drop to particle weight per unit area of 

the bed cross-section. Others (Delebarre, 2002; Delebarre, 2004; Kusakabe et al., 1989; 

Delebarre et al., 2002) explained that it may be due to the gas expansion phenomenon, which 

delays the fluidization of particles at the bottom of bed whereas the upper part is already 

fluidized. For the design and operation purposes, it is very important to calculate the minimum 

fluidization velocity as a function of the bed inventory effect, thus avoiding experimental 

measurements. 
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Figure 4.3 Dependence of Reynolds number on the bed pressure drop. 
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4.4.2 The correlation for estimating minimum fluidization velocity 

The influences of bed inventory on fluidization characteristics have been extensively studied 

(Granfield and Geldart, 1974; Denloye, 1982; Thonglimp et al., 1984; Tannous et al., 1994; 

Gunn and Hilal, 1997; Caicedo et al., 2002, Delebarre et al., 2004; Rao et al., 2010; Tang et al., 

2009; Sahu et al., 2011), and Table 4. 3 shows the experimental details. An analysis of almost all 

available data reveals that the minimum fluidization velocity steadily increases with increasing 

bed mass. The increasing of bed inventory will lead to higher pressure drop at the bottom region, 

which may delay the overall minimum fluidization of fluidized bed. Then, the variation ratio of 

Reynolds numbers is employed, and is defined by 

𝜑 = (𝑅𝑒𝑚𝑓 − 𝑅𝑒𝑚𝑓
′ )/𝑅𝑒𝑚𝑓

′                (4.16) 

where 𝑅𝑒𝑚𝑓  and 𝑅𝑒𝑚𝑓
′  are the actual and reference Reynolds numbers, respectively. The 

relationship between the variation ratio of Reynolds number and the bed pressure drop is 

presented in Figure 4.4 together with the curve calculated using non-linear fitting method. Such 

fitting results can be described by a simple empirical expression 

  𝐼𝑛(𝜑) = −14.45∆𝑃−0.3                    (4.17) 

Substituting Equation (4.16) into the Equation (4.17) and combining with Wen and Yu equation 

(Wen and Yu, 1966), the following correlation for predicting the minimum fluidization velocity 

considering the influence of bed inventory has been obtained 

𝑅𝑒𝑚𝑓 = [(33.72 + 0.0408𝐴𝑟)0.5 − 33.7]/[1 − 𝑒𝑥𝑝(−14.45∆𝑃−0.3)]     (4.18) 

The Reynolds number at the static bed height of 5 cm was used as the reference Reynolds 

number for each experiment, as this is the lowest bed height away from the bubble jet zone. 

Moreover, the experimental data of binary mixtures were excluded in the calculation of the 

correlation.  
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Table 4.3. Literature summary of minimum fluidization velocity in the case of bed inventory. 

Reference 
Cross- 

section 
(cm) 

Particle properties Bed 

 height 
(cm) 

Umf  

(cm/s) 
Ar Remf 

Type ρp (kg/m3) dp (um) 

Granfield et al., 

1974 
61×2 

Alumina 1150 1520 5~30 
51~64 

159166  
47.1~70.1 

15  47 120.9 

Denloye et al., 

1982 
15 Sand 2600 1020 5~30 40~45 110903  29.4~33.8 

Thonglimp et 

al., 1984 
5~19.4 Glass bead 2500 

670 

2~60 

37~42 29652  17.9~20.3 

900 42~60 71871  27.2~38.9 

1425 83~88 285279  85.2~90.4 

2125 105~122 946024  161~184 

Caicedo et al., 

2002 
20×1.2 

Glass 

ballotini 
2550 

205 

2~60 

3~18 866  0.4~2.7 

375 16~38 3452  3.7~8.9 

595 34~90 21183  14.6~38.6 

Delebarre et al., 

2002 

19.2 

Alumina 2000 89 8.6~34.4 1.5~2.8 56  0.1~0.18 

Sand 2640 183 6.5~26.1 5~6.5 638  0.66~0.86 

Spent 
cracking 
catalyst 

1550 77 11.1~44.4 1.4~2.6 28  0.08~0.14 

9.6×9.6 Alumina 2000 89 8.6~17.4 1.2~1.8 56  0.08~0.12 

9.6×9.7 Sand 2640 183 6.5~13.2 5.6~6 638  0.74~0.79 

9.6×9.8 
Spent 

cracking 
catalyst 

1550 77 11.1~22.4 1.4~2.2 28  0.08~0.12 

Rao et al., 

2010 

1.6 

Glass 2500 116 

1.4~9.9 

1.8~4.2 154  0.15~0.35 

Glass 2500 231 3.9~7.2 1215  0.65~1.20 

Glass 2500 275 5.8~8.8 2050  1.15~1.75 

Glass 2500 385 9.6~13.3 5626  2.65~3.70 

Glass 2500 462 14.1~18.3 9722  4.70~6.10 

Glass 2500 550 16.9~21.4 16403  6.70~8.50 

Polystyrene 1250 275 3.5~8.3 1025  0.70~1.65 

Polystyrene 1250 328 4.2~7.2 1739  1.00~1.70 

2.4 

Glass 2500 116 1.7~2.5 154  0.14~0.21 

Glass 2500 231 4.1~6.6 1215  0.68~1.10 

Glass 2500 275 5.9~7.1 2050  1.16~1.40 

Glass 2500 385 9.4~10.5 5626  2.60~2.90 

Glass 2500 462 13.5~15.3 9722  4.50~5.10 

Glass 2500 550 19.2~20.4 16403  7.60~8.10 

Polystyrene 1250 275 3.3~4.04 1025  0.65~0.80 

Polystyrene 1250 328 4.0~5.3 1739  0.95~1.25 

Sahu et al., 8.9×8.9 Magnetite 4700 7.26 7~43.8 1.2~4.2 220  0.06~0.19 
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2011 
15.4×5 7~48 1.8~3.1 220  0.09~0.16 

Present work 

 
 

Magnetite 
 

4600 

 

232 

 

5~30 

 
 

2266  

 

10.16 8.7~10.4 1.46~1.81 

15.24     
8.9~9.9 

 
1.50~1.69 

20.32 8.4~9.6 1.39~1.62 

 

Magnetite 

and sand 
3980 266 5~30 

 

3301  

 

10.16 9.4~10.7 1.87~2.14 

15.24 8.9~10.2 1.76~2.03 

20.32 8.3~9.7 1.64~1.96 

 

Magnetite 

and gangue 
3980 275 5~30 

 

3226  

 

10.16 8.4~10.8 1.67~2.16 

15.24 8.9~10.4 1.78~2.01 

20.32 8.4~9.7 1.66~1.96 

 

Magnetite 

and coal 
3770 263 5~30 

 

3126  

 

10.16 8.0~9.8 1.59~1.96 

15.24 7.7~9.6 1.52~1.91 

20.32 7.2~8.8 1.42~175 
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Figure 4.4 Relations between the variation ratio of Reynolds number and bed pressure drop. 
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4.4.3 Error analysis of the correlation for minimum fluidization velocity 

The error analysis of the proposed correlation for minimum fluidization velocity with the 

available data in literature and the present work is shown in Figure 4.5. As can be seen that the 

Equation (4.18) gives an overall R-squared value of 0.91 based on 191 experimental data points 

in the superficial gas velocity range of 0.01 to 1.35 m/s, which shows a good agreement. For the 

sake of comparison, Wen and Yu equation has also been tested against the same 191 data points, 

and found to only give an average R-squared of 0.86. Hence, the proposed correlation has the 

advantage of being considerably simpler with greater accuracy over the Wen and Yu equation, 

and is to be preferred as a better method of prediction. Moreover, the experimental data of binary 

mixtures in the present work were included in the comparison for validation of Equation (4.18), 

and an average R-squared of 0.93 based on 120 points have been obtained. It is noted that, for 

binary mixtures, the combination of the Wen and Yu equation and the correlation by Cheung et 

al. (Cheung et al., 1974) was used to calculate the theoretical minimum fluidization velocity. 

Therefore, the proposed correlation is of wide application, which can be used to accurately 

predict the minimum fluidization velocity for both monodispersed and binary mixture of solid 

particles as a function of bed inventory.  
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Figure 4.5 Error analysis of the proposed correlation for the available experimental data. 
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4.4.4 Comparison with the experimental data 

A comparison of the minimum fluidization velocities calculated using Equation (4.18) with the 

literature data and the experimental data of the present work are shown in Figure 4.6. As can be 

observed that the bed inventory does have a diverse influence on the incipient fluidization of 

fluidized beds. The calculated minimum fluidization velocity by Equation (4.18) is able to 

describe the above trend and is in good agreement with experimental data in all cases. Therefore, 

the estimation of minimum fluidization velocity when considering the bed inventory influence is 

possible, and the proposed correlation based on Wen and Yu equation is clearly shown to give a 

reasonable prediction. 

 

0.0 1.5 3.0 4.5 6.0
0

20

40

60

80

 

 

 Magnetite − Present work

 River sand − A. Delebarre et al., 2004

 Alumina − D. Geldart et al., 1974

 Polyestyrene − A. Rao et al., 2010

 Glass bead − V. Thonglimp et al.,1984

           A. Delebarre et al., 2004

 Predicting curve using Eq. (4.18)

U
m

f (
cm

/s
)

P (kPa)  

Figure 4.6 Comparison of the Umf calculated using Equation (4.18) with the experimental data. 
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4.5 Conclusion 

Knowledge of the minimum fluidization velocity is crucial if the behavior of an Air Dense 

Medium Fluidized Bed is to be properly analyzed. It is observed that the measured minimum 

fluidization velocities increased with increasing bed inventory regardless of the type of solid 

particles used. A correlation has been derived for predicting the minimum fluidization velocity 

considering the bed inventory influence by extending the Wen and Yu equation 

𝑅𝑒𝑚𝑓 = [(33.72 + 0.0408𝐴𝑟)0.5 − 33.7]/[1 − 𝑒𝑥𝑝(−14.45∆𝑃−0.3)] 

It only requires the knowledge of Archimedes number (Ar) and the bed pressure drop (△P), 

which can be easily obtained from the calculation of the particle bulk density and the static bed 

height before fluidization. This extended Wen and Yu equation is further shown to well predict 

the minimum fluidization velocity reported by previous researchers and can be used to estimate 

the minimum fluidization velocity for both single and binary mixture of solid particles for all 

practical purposes.  
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Nomenclature 

A                 cross-sectional area of the fluidized bed, m2 

Ar               Archimedes number of particle, kg/m 

1C
               constant, dimensionless 

2C
               constant, dimensionless 

pd
               mean diameter of solid particles, m 

hD
               hydraulic diameter of solid particles, m 

sF
               skin friction, N 

fF
               form drag, N 

F                sum of the forces acting on the continuous phase, N 

F               frictional pressure drop of fluidized bed, N 

g                 gravitational acceleration, m/s2 

mfH
              fluidized bed height at minimum fluidization state, m 

k1                constant, dimensionless 

k2                constant, dimensionless 

'

1k
                empirical constant, dimensionless 

'

2k
                empirical constant, dimensionless 

ΔP               total pressure drop of the fluidized bed, Pa 

Remf             actual Reynolds number with increasing bed inventory, dimensionless 

'Remf             Reynolds number calculated by predicting equation, dimensionless 

S                specific solid surface, m2 

Ug                superficial gas velocity, m/s 

Umf               minimum fluidization velocity, m/s 
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V                 volume of the fluidized bed, m3 

bedW              weight of the loaded particles, kg 

Greek letters 

                  voidage of the fluidized bed, dimensionless 

g
               density of the gas flow, kg/m3 

                 viscosity of the gas flow, Pa.s 

                 shape factor of particle, dimensionless 

                 variation of the ratio of Reynolds numbers, dimensionless 
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CHAPTER 5 

ON THE TWO-PHASE THEORY OF FLUIDIZATION FOR 

GELDART GROUP B AND D PARTICLES 

Fluidized bed expansion behavior was carefully investigated in terms of the two-phase theory of 

fluidization which predicts the distribution of gas flow in bubbling fluidized beds. The two-phase 

theory, which suggested that the bubble flow rate being equal to the excess gas flow above the 

incipient fluidization, has been proved to be an overestimation in most cases. While the two-

phase theory has been modified by introducing a correction factor (Y), most previous studies 

were conducted for Geldart Group A powders. In the present work, the contribution to predict 

the parameter Y for Geldart Group B and D particles has been formulated based on almost all the 

available experimental data. The experimental results demonstrated that the Y value increases 

with decreasing particle size or density and increasing excess gas velocity. A new correlation has 

been developed to estimate the Y value for Geldart Group B and D particles 

𝑌 = 1.72𝐴𝑟−0.133(𝑈𝑔 − 𝑈𝑚𝑓)0.024 

with an overall standard deviation of 19%. It only requires the knowledge of Archimedes number 

and excess gas velocity. This correlation is in reasonable agreement with almost all the available 

data in literature and the present work. 

5.1 Introduction 

Bubbling gas-solid fluidized bed is commonly operated at relatively lower gas flow rate, 

characterized by the solid particles becoming individually suspended with interstitial gas flow 

and gas bubbles rising with coalescence (Kunnii and Levenspiel, 1991; Wen, 2003). As the gas-

solid contacting and gas residence time are usually different between the interstitial gas flow and 

bubble flow, the distribution of gas flow will play a critical role in the modelling and design of 

fluidized bed operations, especially for the gas-solid chemical reactions (Botero et al., 2009; 

Modekurti et al., 2013; Bakshi et al., 2013), combustion and gasification (Radmanesh et al., 

2006; Geng and Che, 2011; Basu, 2006), solids mixing and drying (Tahmasebi et al., 2012; 
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Kannan et al., Sun et al., 2005), fluidized bed separation (Wang et al., 2013; Zhang et al., 2017), 

etc. In general, it is considered that the bubbling fluidized bed is composed of the dense 

(emulsion) phase and bubble phase (Davidson and Clift, 1985; Geldart, 1986), and the 

comprehensive knowledge of the division of gas flow between these two phases is therefore 

crucial for the fluidized bed operations. The two-phase theory of fluidization (Toomey and 

Johnstone, 1952) suggested that all the gas flow in excess of that required for incipient 

fluidization is in the form of gas bubbles, which provides a possible way to analyze the 

distribution of gas flow. It is usually formulated as 

𝐺𝑏/𝐴 = 𝑈𝑔 − 𝑈𝑚𝑓                    (5.1) 

where Gb is the volumetric bubble flow rate, A is the cross-sectional area of fluidized bed, Ug is 

the superficial gas velocity, and Umf is the minimum fluidization velocity. The two-phase theory 

implies that the bed vodiage and the interstitial gas velocity in the dense phase remain almost the 

same as in the incipient fluidization state, which is of great importance for the modelling and 

operation purposes. Unfortunately, most of the experimental evidences (Nicklin, 1962; Turner, 

1966; Davidson and Harrison, 1966; Grace and Clift, 1974; Hepbasli, 1982; Geldart, 2004) have 

demonstrated that the original two-phase theory is only approximately true and tends to 

overestimate the visible bubble flow in most cases.  

There was considerable controversy over the reasons for the unreliable prediction of the original 

two-phase theory. Some authors (Grace and Clift, 2004; Botterill et al., 1966; Lockett et al., 

1967; Geldart, 1968; Grace and Harrison, 1969; Geldart, 1970; Geldart and Granfield, 1974; 

Rowe et al., 1978) have attributed the deficit of bubble flow to an increase in the interstitial gas 

flow in dense phase above that required for minimum fluidization. At the other extreme, a 

number of workers (Werther, 1978; Michael, 1982; Hilligardt and Werther, 1986) have ascribed 

this discrepancy to the through-flow of gas inside the bubble phase. Other investigators 

(Hepbasli, 1998; Geldart, 2004) claimed that the original two-phase theory postulate, even 

including through-flow in isolated bubbles, substantially over-predicted the visible bubble flow 

rate. Thus, many modifications to the two-phase theory of fluidization have been proposed in the 

literature, aiming to improve the accuracy and reliability for modelling and operation purposes.  
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The earlier form was known as n-type two-phase theory (Grace and Harrison, 1969), in the form 

of 

 𝐺𝑏/𝐴 = 𝑈𝑔 − 𝑈𝑚𝑓(1 + 𝑛𝛿)              (5.2) 

where n is the through-flow coefficient, and   is the fraction of the cross-sectional area occupied 

by gas bubbles. After then, they summarized the available data in the literature and gave an 

extensive compilation of the experimental value of n (Grace and Clift, 1974). Their results 

indicate that the factor n were reported to vary in the range of 8 ~ 140, respectively, which were 

shown to be too difficult to be estimated.  

Another form was developed by several workers (Hilligardt and Werther, 1986; Fryer and Potter, 

1976; Xavier et al., 1978; Geldart and Keairns, 1975) as 

 𝐺𝑏/𝐴 = 𝑌(𝑈𝑔 − 𝑈𝑚𝑓)                        (5.3) 

where Y is the correction factor. The parameter Y indicates the deviation of the visible bubble 

flow rate from the original two-phase theory, which was found to be usually below unity. The Y 

value for different types of powders of Geldart’s classification have been described as (Martin, 

2008)  

0.8 < Y < 1.0       Group A powders 

0.6 < Y < 0.8       Group B powders 

0.25 < Y < 0.6     Group D powders 

It is noteworthy that normal fluidization is extremely difficult for Geldart Group C powders, and 

thus the corresponding Y value is commonly excluded. For Geldart Group A powders, a number 

of works (Dry et al., 1983; Wang et al., 2009; Hong et al., 2016) have been conducted to 

investigate the gas flow distribution due to its importance for the chemical reactions. The results 

concluded that the range of the corresponding Y values is relatively narrow (0.8 – 1.0), and the 

numerical value of 0.85 was usually recommended (Martin, 2008). However, for Geldart Group 

B and D particles, there is no reasonable and suitable predicting equation. 
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Comprehensive analysis of almost all experimental data shows that the division of gas flow 

between the dense phase and bubble phase is highly dependent on the particle size, density and 

superficial gas velocity. An attempt has been made to develop a correlation for predicting the 

correction factor (Y) of two-phase theory for bubbling fluidized bed with Geldart Group B/D 

particles. Almost all available data on gas-solid systems have been correlated to validate this 

correlation, and the calculated results have been compared with the experimental data in 

literature and the present work. 

5.2 Theory 

                     

Figure 5.1 The schematic diagram of the two-phase theory of fluidization. 

According to the modified two-phase theory (Geldart, 1975), the parameter Y indicates the 

deviation of the visible bubble flow rate from the original two-phase model, which can be 

obtained from the estimation of the fluidized bed expansion. Accordingly, the volume occupied 

by gas bubbles per bed cross-sectional area can be expressed as 

    𝑑𝑉𝑏 = 𝐺𝑏𝑑ℎ/𝑈𝑏                              (5.4) 

where Vb is the volume occupied by bubbles, dh is the differential height of fluidized bed, and Ub 

is the visible bubble flow rate. Thus, the total volume occupied by gas bubbles in the bed is 

𝑉𝑏 = ∫ 𝐺𝑏𝑑ℎ/𝑈𝑏
𝐻

0
= 𝐺𝑏𝐻/𝑈𝑏

̅̅̅̅                (5.5) 
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where bU  is the average bubble flow rate, H is the fluidized bed height. The volumetric bubble 

flow rate (Gb) should be calculated from the modified two-phase theory, 

   𝐺𝑏 = 𝑌(𝑈𝑔 − 𝑈𝑚𝑓)𝐴                        (5.6) 

The important thing is to determine the average bubble flow rate, and it can be given by  

  𝑈𝑏
̅̅̅̅ = ∫ 𝑈𝑏𝑑ℎ/𝐻

𝐻

0
                              (5.7) 

For freely bubbling beds, the bubble rise velocity is usually estimated from an equation proposed 

by Davidson et al. (Davidson and Harrison, 1963). 

𝑈𝑏 = 0.71√𝑔𝐷𝑒 + (𝑈𝑔 − 𝑈𝑚𝑓)            (5.8) 

where De is the diameter of an isolated bubble. Various correlations have been proposed for the 

estimation of mean bubble size in bubbling fluidized beds, among which Darton equation 

(Darton, 1977) is one of the most commonly used correlations considering the effects of bed 

height, gas distributor and gas velocity, and is defined as  

                          𝐷𝑒 = 0.54(𝑈𝑔 − 𝑈𝑚𝑓)
0.4

(ℎ + 4𝐴𝐷
0.5)0.8/𝑔0.2        (5.9) 

Expansion of bubbling fluidized beds for Geldart Group B and D particles in general results from 

the volume occupied by gas bubbles, and total volume of bubbles can be written 

             𝑉𝑏 = (𝐻 − 𝐻𝑚𝑓)𝐴                       (5.10) 

Submitting Equations (5.5) and (5.6) into Equation (5.10), the fluidized bed expansion leads to 

     (𝐻 − 𝐻𝑚𝑓)/𝐻 = 𝑌(𝑈𝑔 − 𝑈𝑚𝑓)/𝑈𝑏
̅̅̅̅      (5.11) 

Combination of Equations (5.7), (5.8), (5.9) and (5.11), the parameter Y of the modified two-

phase theory can be calculated from 

𝑌 = 0.93
𝐻 − 𝐻𝑚𝑓

𝐻
[
(𝐻 + 4𝐴𝐷

0.5)1.4 − (4𝐴𝐷
0.5)1.4

𝐻(𝑈𝑔 − 𝑈𝑚𝑓)0.8
+ 1]       (5.12) 



Chapter 5 

86 

 

5.3 Experimental 

5.3.1 Experimental setup 

Experiments were conducted in a fluidized bed at ambient conditions, as shown in Figure 5.2. 

The experimental setup consists of mainly four parts: (1) air supply including an air filter, a roots 

blower, and a tank; (2) fluidized bed column with inner diameter of 152.4 mm. (3) U-shaped 

monometers for pressure-drop measurement; (4) dust collection device. After being filtered, the 

ambient air was sent to fluidize the particles in the column through the air chamber and a 

perforated distributor. The distributor is made of two plastic perforated plates with filter cloth in 

between, and the orifice diameter is 1.5 mm with the total open area of 11%. To investigate the 

expansion of fluidized bed, a ruler is attached on the side of the column and the U-shaped 

piezometric pipes are connected to the axial pressure taps on the other side of the column. Fine 

dust generated during fluidization was collected by the dust collector device. 

 

Figure 5.2 The schematic diagram of experimental apparatus: 1. Air filter; 2. Roots blower; 3. Tank; 

4. Pressure gangue; 5. Gas valve; 6. Rotameter; 7. Air chamber; 8. Perforated distributor; 9. Fluidized bed 

column; 10. Ruler; 11. U-shaped manometer; 12. Dust cover; 13. Dust collector. 
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5.3.2 Experimental materials 

Four types of solid materials have been employed in this work: magnetite, sand, gangue and 

glass beads. These samples were sieved into the following size fractions: 74 – 150 μm, 150 – 300 

μm, 300 – 425 μm, 425 – 590 μm, 590 – 710 μm. The particle properties of the experimental 

materials of each size fraction are shown in Tables 5.1, 5.2, 5.3, and 5.4. It is noted that the solid 

particles with the angle of repose above 38 is considered cohesive. The gangue sample, which is 

the heavy product (>1.85 g/cm3) of the coal separation process, is collected from HuaiBei Coal 

Mine, Ltd., Anhui, China. It may be noteworthy that the magnetite particles of 590 – 710 μm was 

excluded in the present work due to its limited flowability. 

Table 5.1. The particle properties of magnetite samples. 

Particle size fraction (μm) 74 – 150 150 – 300 300 – 425 425 – 590 

Mean particle size (μm) 121 213 348 457 

Particle true density (kg/m3) 4480 4650 4570 4540 

Aerated bulk density (kg/m3) 2460 2667 2687 2652 

Archimedes number (Ar) 303 1715 7349 16533 

Angle of repose (º)  35.7 36.1 37.4 38.3 

 

Table 5.2. The particle properties of glass bead samples. 

Particle size fraction (μm) 74 – 150 150 – 300 300 – 425 425 – 590 590 – 710 

Mean particle size (μm) 101 209 356 469 648 

Particle true density (kg/m3) 2550 2620 2650 2680 2640 

Aerated bulk density (kg/m3) 1560 1603 1611 1605 1612 

Archimedes number (Ar) 100 912 4561 10547 27403 

Angle of repose (º)  32.5 33.1 34.3 34.6 35.2 
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Table 5.3. The particle properties of sand samples. 

Particle size fraction (μm) 74 – 150 150 – 300 300 – 425 425 – 590 590 – 710 

Mean particle size (μm) 113 224 368 475 636 

Particle true density (kg/m3) 2430 2530 2410 2510 2500 

Particle bulk density (kg/m3) 1493 1544 1610 1602 1593 

Archimedes number (Ar) 134 1085 4581 10261 24534 

Angle of repose (º)  33.6 34.5 37.4 38.1 38.5 

 

Table 5.4. The particle properties of gangue samples. 

Particle size fraction (μm) 74 – 150 150 – 300 300 – 425 425 – 590 590 –710 

Mean particle size (μm) 118 215 372 486 625 

Particle true density (kg/m3) 2010 2050 2160 2120 2090 

Particle bulk density (kg/m3) 1180 1240 1290 1360 1330 

Archimedes number (Ar) 126 777 4241 9282 19462 

Angle of repose (º)  41.8 41.3 41.5 42.8 43.3 

 

5.4 Results and discussion 

5.4.1 The effects of particle property and excess gas velocity 

Measurements of the fluidized bed expansion have been carried out to determine the correction 

factor Y by using Equation (5.12). The pressure drop against distance above the distributor graph 

was employed to obtain the fluidized bed height at a certain superficial gas velocity. In the 

present work, the initial bed height was 20 cm and the excess gas velocity ranged from 0.5 cm/s 

to 4.5 cm/s. The Y value of magnetite, glass bead, river sand and gangue particles with the size 

range from 74 um to 710 um is reported as a function of the excess gas velocity in Figure 5.3.  

As can be observed from Figure 5.3, Y value was found to decrease with the increasing particle 

size for the same material. This trend may be explained that the greater the particle size, the 

greater the interstitial gas velocity in the dense phase, which may results in more deficit of 

bubble flow in the fluidized bed (Davidson and Harrison, 1966; Hepbasli, 1998). It can also be 

observed from Figure 5.3 that Y value of different types of solids with same particle size 
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decreases slightly with increasing particle density. This can also be attributed to the increasing 

gas velocity required to fluidize solid particles in the dense phase. Moreover, it can be seen that 

there is an increase in Y value with the increasing of excess gas velocity, which can be attributed 

to the tendency of the gas flow moves more into the bubble phase. For the modelling and 

operation purposes, it is important to predict the Y value for the modified two-phase theory, thus 

avoiding the experimental measurements. 
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Figure 5.3 Plot of Y value against the excess gas velocity for different types of solid particles. 
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5.4.2 The correlation for estimating the correction factor Y 

Experimental Y values of the present investigation have been summarized and plotted against 

Archimedes number and excess gas velocity in Figure 5.4. To consider the effect of particle 

properties in gas-solid fluidization systems, Archimedes number is employed and is defined by 

   𝐴𝑟 = 𝜌𝑔(𝜌𝑝 − 𝜌𝑔)𝑔𝑑𝑝
3/𝜇2            (5.13) 

As can be observed that the Y value was found to decrease with the increasing of Archimedes 

number. It can be explained that Archimedes number increases with the increasing of particle 

size or density, which may lead to an increase in interstitial gas velocity in the dense phase.  

In recent years, many investigators (Hepbasli, 1998; Geldart, 2004; Rowe, et al., 1978; Fryer and 

Potter, 1976; Xavier et al., 1978; Morse, 1949; Johnson et al., 1991; Tannous et al., 1994; Gunn 

and Hilal, 1997) have carried out experiments which allow to estimate the parameter Y from the 

measurements of fluidized bed expansion, and the experimental details are shown in Table 5.5. 

The experimental data in literature and the present work, which covers the excess gas velocity 

below 1 m/s and Archimedes number ranges from 100 to 30000, are presented in Figure 5.5. An 

examination of almost all the available data reveals that the Y value regularly increases with 

decreasing Archimedes number and increasing excess gas velocity, and these published data 

precisely allow to develop a correlation for evaluating the parameter Y. Accordingly, the 

experimental results obtained have been fitted to the following expression 

𝑌 = 1.72𝐴𝑟−0.133(𝑈𝑔 − 𝑈𝑚𝑓)0.024    (5.14) 

where 𝐴𝑟 is Archimedes number which is given in Equation (5.13) and the term (𝑈𝑔 − 𝑈𝑚𝑓) 

represents the excess gas velocity. It should be mentioned that the proposed correlation can be 

only used for Geldart B and D particles in conventional fluidized beds at ambient operating 

conditions. Based on a similar approach by employing the original two-phase theory assumption 

(Toomey and Johnstone, 1952), the modified two-phase theory for Geldart B and D particles, 

then, can be written in the form of 

𝐺𝑏 = 1.72𝐴𝑟−0.133(𝑈𝑔 − 𝑈𝑚𝑓)1.024𝐴    (5.15) 

where Gb is the volumetric bubble flow rate and A is the cross-sectional area of fluidized bed.  
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Figure 5.4 Effect of Archimedes number and excess gas velocity on parameter Y. 

 

Table 5.5. Literature summary of experimental data on the correction factor (Y). 

Reference 

Bed 

cross-

section 

(cm) 

Bed 

height 

(cm) 

Particles 
Umf   

(cm/s) 
Ar Remf Y  

Type 
ρp  

(kg/m3) 
dp 

 (um) 

Morse, 1949 

6.35 71.12 

Glass bead 2355 

569 25.26 

16566 

10.36 0.29~0.60 

6.35 26.92 569 27.01 11.08 0.10~0.80 

11.43 39.12 569 25.51 10.46 0.09~0.33 

6.35 63.5 452 18.29 

8304 

5.96 0.38~0.62 

6.35 63.5 452 18.59 6.06 0.16~0.83 

11.43 60.33 452 17.68 5.76 0.36~0.75 

6.35 63.5 285 7.92 
2082 

1.63 0.54~1.22 

11.43 29.54 285 8.08 1.66 0.12~0.44 

6.35 61.98 155 2.13 

335 

0.24 0.56~1.54 

6.35 75.57 155 0.76 0.08 1.13~1.82 

6.35 26.67 155 2.84 0.32 0.81~1.22 

11.43 61.45 155 2.59 0.29 0.10~0.63 

11.43 30.45 155 2.44 0.27 0.58~0.82 

6.35 60.96 101 0.43 

93 

0.03 1.14~1.55 

6.35 79.76 101 1.52 0.11 0.35~1.75 

11.43 56.52 101 1.52 0.11 0.90~1.18 

Geldart et 

al., 1974 
30.8 21.95 

Fine sand 

(narrow) 
2600 101 1.37 102 0.1 0.58~0.97 
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5.4.3 Comparison with the experimental data 

A comparison of the Y values calculated by using Equation (5.14) with the available 

experimental data in literature and the present work is illustrated in Figure 5.6. As can be 

observed, this correlation gives an overall standard deviation of 19% based on 156 data points in 

the literature and 133 data points in the present work, and the corresponding overall R-squared is 

0.86, which is in reasonable agreement with the experimental data. The proposed correlation 

only requires the knowledge of Archimedes number and the excess gas velocity, and it covers the 

widest Archimedes number range from 20 to 240000. Therefore, this correlation has the 

advantages of being considerably simpler with greater accuracy, and a more accurate and reliable 

method for estimating the parameter Y for the modified two-phase theory has been obtained. As a 

30.8 19.4 
Fine sand 

(wide) 
2600 128 1.4 208 0.13 0.59~0.82 

30.8 20 Coarse sand 2600 275 5.6 2063 1.11 0.38~0.59 

Flyer et 

al.,1976 

22.9 11 

Sand with 

iron oxide 

2650 117 1.7 

162 0.14 

0.68~0.80 

22.9 23 2650 117 1.7 0.73~0.80 

22.9 40 2650 117 1.7 0.74~0.80 

22.9 65 2650 117 1.7 0.73~0.79 

Xavier et 

al., 1978 

 34 
commercial  

silica base 

catalyst 

2500 84 2.6 

376 

0.16 0.17~0.73 

61 32 2500 158 2.6 0.3 0.28~0.98 

 25  84 2.6 0.16 0.69~0.90 

Rowe 

et al., 1978 

 32.7 
Silica 

catalyst 
2600 57 

2.9 

18 

0.12 0.17~0.48 

28 33.5 2.9 0.12 0.22~0.54 

 34.8 2.9 0.12 0.17~0.53 

Johnsson  

et al., 1991 
68×7 

40 

Silica sand 2600 

150 2 

17418 

0.22 0.55~0.61 

40 460 18 5.97 0.33~0.45 

40 790 40 22.77 0.31~0.45 

Tannous et 

al., 1994 
43.5 19.2 Polystyrene 1016 1840 60 241251 79.56 0.20~0.57 

Gunn  

et al., 1997 
30 40 Diakon 1228 290 3.8 536 0.79 0.69~0.85 

Hepbasli,  

61×61 

17.17 
Raw perlite 1836 593 

20.33 
14602 

8.69 0.33~0.52 

1998 10 20.33 8.69 0.16~0.52 
 

17.17 
Sand 2486 1233 

62.8 
177762 

55.8 0.24~0.36 

  10 62.8 55.8 0.23~0.39 
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result, it can be widely used to accurately predict the distribution of gas flow between the dense 

phase and bubble phase in a bubbling fluidized bed with Geldart Group B/D particles. 
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Figure 5.5 The summary of Y values of all available data in literature and the present work. 
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Figure 5.6 Comparison of Y values calculated using Equation (5.14) with all the available 

experimental data. 
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5.4.4 Further discussion of the correlation for correction factor Y   

By plotting the calculated Y values using Equation (5.14) against Archimedes number and the 

excess gas velocity, a convenient graphical form for the proposed correlation has been 

constructed and shown in Figure 5.7. In this graph, Archimedes number varied from 100 to 

30000 and the excess gas velocity ranged between 0.01 and 1 m/s. As can be observed that there 

is a sharp decrease in Y value from 0.9 to 0.5 with increasing Archimedes number from 100 to 

5000. However, above 5000, the Y value was found to decrease slowly from 0.5 to 0.35 with 

further increasing Archimedes number from 5000 to 30000. Moreover, the excess gas velocity 

also affects the correction factor Y. To be exact, the Y value, in relatively low flow rates, 

increases slightly with increasing excess gas velocity. With this knowledge, the correction factor 

Y can be quickly estimated for Geldart Group B and D particles. 
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Figure 5.7 A generalized description of the proposed correlation for predicting the correction factor 

(Y). 
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5.5 Conclusion 

The correction factor Y for the two-phase theory of fluidization was extensively studied for 

Geldart Group B and D particles. Experimental evidences indicate that the Y value increases with 

decreasing particle size or density and with increasing excess gas velocity. An equation has been 

derived to predict the parameter Y for Geldart Group B and D particles, and can be expressed as  

𝑌 = 1.72𝐴𝑟−0.133(𝑈𝑔 − 𝑈𝑚𝑓)0.024 

It only requires the knowledge of Archimedes number and the excess gas velocity, and gives an 

overall standard deviation of 19% for almost all available experimental data. Therefore, the 

proposed correlation has the advantages of being considerably simpler and more accurate. 

Furthermore, this correlation leads to a modified two-phase theory for Geldart Group B and D 

particles, and can be given by 

𝐺𝑏 = 1.72𝐴𝑟−0.133(𝑈𝑔 − 𝑈𝑚𝑓)1.024𝐴 

The above two correlations are shown to be as satisfactory for practical purposes, which can be 

used to accurately estimate the distribution of gas flow between the dense and bubble phases in 

the bubbling fluidized bed with Geldart Group B/D particles. 
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Nomenclature  

A                  cross-sectional area of the fluidized bed, m2 

DA                area of single hole on the plate, m2 

Ar                Archimedes number, dimensionless 

pd                 diameter of solid particle, m 

eD                 diameter of isolated bubble, m 

g                  gravitational acceleration, m/s2 

bG                 volumetric bubble flow rate, m3/s 

H                  fluidized bed height at operation condition, m 

mfH                fluidized bed height at minimum fluidization state, m 

n                   through-flow coefficient, dimensionless 

Remf              Reynolds number at minimum fluidization state, dimensionless 

bU                 visible bubble flow rate, m/s 

bU                 average bubble flow rate, m/s 

gU                 superficial gas velocity, m/s 

mfU                minimum fluidization velocity, m/s 

bV                  volume occupied by gas bubbles in fluidized bed, m3 

Y                  correction factor, dimensionless  

Greek letters 

                  fraction of the cross-sectional area occupied by gas bubbles, dimensionless 

g                density of the gas flow, kg/m3 

p                density of the solid particle, kg/m3 

                  viscosity of the gas flow, Pa.s   
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CHAPTER 6 

MIXING AND SEGREGATION BEHAVIOR IN AN AIR DENSE 

MEDIUM FLUIDIZED BED WITH BINARY MIXTURES FOR 

DRY COAL BENEFICIATION 

Mixing and segregation behavior of binary medium particles in an Air Dense Medium Fluidized 

Bed (ADMFB) were studied for dry coal beneficiation. Magnetite mixed with coal/gangue/sand 

particles belonging to Geldart B/D group were tested individually for the bed density adjustment. 

The effects of design and operating parameters including particle density ratio, particle size ratio, 

mixture composition of solid particles, superficial gas velocity, and fluidized bed height on the 

solids mixing and segregation were examined. The results showed that segregation becomes 

more severe with the increasing density difference of solids mixtures. An increase in particle size 

ratio may also leads to partial segregation. Mixing and segregation of binary systems are almost 

independent of the lower excess gas velocity and the initial bed height when it is over 15 cm. 

Moreover, a mixing index was employed to evaluate the mixing and segregation performance, 

and the criteria for good mixing to achieve bed density adjustment were identified.  

6.1 Introduction 

Bubbling gas-solid fluidized beds composed of binary mixture of solid particles are widely 

applied in many industrial processes (Martin, 2008; Yang, 1999; Davidson and Harrison, 1985), 

such as the Air Dense Medium Fluidized Bed for dry coal beneficiation (Mohanta et al., 2013; 

Sahu et al., 2009). For a binary system, the inevitable particle mixing and segregation behavior 

have a significant influence on fluidization properties and have been extensively investigated by 

many researchers (Formisani et al., 2013; Huang et al., 2017; Joseph et al., 2007; Turrado et al., 

2007; Olivier et al., 2004). It is known that the mixing and segregation processes in a fluidized 

bed will determine the solids distribution in the axial and radial directions, which in turn 

influences the bed density distribution, bubble coalescence and growth, bed expansion, heat and 

mass transfer rates, etc. (Peng et al., 2013; Rasul and Rudolph, 2000; Cui and Grace, 2007). 

Generally, the well mixing of solids mixture is required to ensure good separation properties and 
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uniform fluidization conditions for efficient dry coal beneficiation in an ADMFB (Oshitani et al., 

2011; Tang et al., 2009; He et al., 2013). However, the presence of binary mixtures with 

different physical properties (i.e. density, size, or shape) usually give rise to particle segregation, 

which may result in inefficient coal beneficiation performance. Therefore, a detailed knowledge 

of particle mixing and segregation behavior of binary systems is crucial for the application of 

ADMFB technology, as well as other similar fluidized bed processes.   

In a bubbling fluidized bed of binary mixtures, the steady state of solids distribution results from 

a dynamic equilibrium between the competitive mechanisms of particle mixing and segregation 

processes (Rowe et al., 1972). The bubbling behavior plays a very important role in mixing and 

segregation in the fluidized bed, which has been the emphasis in many research works (Donsi 

and Ferrari, 1988; Formisani et al., 2011; Rowe and Nienow, 1976; Wirsum et al., 2001). 

Fluidization of solid mixtures at relatively lower gas velocities typically leads to heterogeneous 

bubbling systems, characterized by gas bubbles forming just above the bed distributor or after 

the jetsam layer at the lower part of the bed (Hoffmann et al., 1993; Luo et al., 2013). The gas 

bubbles rise increasingly in the fluidized bed while bubble grow due to bubble coalescence and 

hydrostatic pressure reduction and then finally burst at the bed surface. The rising gas bubbles 

always gather solid particles in their wakes and carry them towards to the bed surface, 

meanwhile some particles in the wake region would spill over during transportation and other 

surrounding solids will be dragged into the bubble wake to fill the loss. This particle movement 

usually becomes more severe with the increasing bubble size and/or bubble rise velocity. On the 

contrary, solid particles in the bubble-free region of a fluidized bed tend to descend slightly 

because of the ascendant solids in the wake regions of rising gas bubbles. Consequently, the 

overall convective circulation of solid particles in the bubbling fluidized bed is achieved, which 

is of significant importance for the mixing and segregation pattern of binary systems.  

In general, the particle mixing and segregation processes may coexist during gas-solid 

fluidization, which gives rise to a complex solids distribution profile (Chen and Keairns, 1975; 

Girimonte et al., 2018; Rao et al., 2011). Fluidization of binary mixtures of similar particle 

properties always show uniform fluidization and good mixing performance. However, the partial 

or complete segregation of binary mixtures may appear when a fluidized bed consists of different 

particle sizes and/or densities. As pointed out by many researchers (Naimer et al., 1982; Olaofe 
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et al., 2013; Formisani et al., 2014; Gidaspow et al., 2013; Maio et al., 2013), the segregation 

behavior of solid particles differing in size or density is an intrinsic feature of such fluidization 

systems, and it is enhanced as the differences in size and density of particles increase. In 

principle, the mechanism of the segregation process is that solid particles are subjected to an 

imbalance of forces during gas-solid fluidization, particularly the gravity and drag forces 

(Zamankan, 1995; Fan and Fox, 2008; Azizi et al., 2010, Chao et al., 2012). For a binary system 

of dissimilar particles, the denser or larger particles that tend to concentrate at the bottom of 

fluidized bed are referred to as jetsam, while the lighter or smaller particles that show the 

opposite tendency are termed as flotsam (Rowe et al., 1972). The appearance of the segregation 

phenomenon is dominant at lower gas velocities, and the degree of segregation can be reduced or 

even eliminated by increasing gas velocity. A remarkable research effort has been made to 

improve the understanding of the mechanisms and transient of particle mixing and segregation 

(Maio et al., 2013; Gibilaro and Rowe, 1974; Carsky et al., 1987; Gilbertson and Eames, 2001; 

Mostafazadeh et al., 2013; Chiba et al., 1982), but a widely accepted theory to describe this 

phenomenon has not been yet developed. The apparent complexity of this problem is attributed 

to the large number of factors that may affect the distribution of solid particles, such as the 

particle properties, mixture composition, operating conditions, fluidized bed structure, etc. It is 

still somewhat obscure how these factors affect the particle mixing and segregation processes.   

In the present work, comprehensive analyses of axial solids distribution of binary mixtures of 

medium particles in an ADMFB were carried out to address the issues of mixing and segregation 

behavior. The design and operating parameters which may affect the axial solids distribution of 

medium particles were examined, including particle density ratio, particle size ratio, mixture 

composition, operating gas velocity, and initial bed height. Furthermore, the mixing index was 

employed to clearly exhibit the mixing and segregation pattern, and the appropriate operating 

conditions to achieve bed density adjustment for dry coal beneficiation in an ADMFB were 

investigated experimentally. 
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6.2 Experimental 

6.2.1 Experimental setup 

All the experiments were carried out in a gas-solid fluidized bed, and the schematic diagram of 

the experimental setup is shown in Figure 6.1. The experimental apparatus comprises a fluidized 

bed made from plexiglas column with an internal diameter of 150 mm and a height of 500 mm. A 

perforated distributor with an open area of 11% and orifice diameter of 1.5 mm was used and a 

fabric cloth was fixed to the distributor plate to avoid particles from falling through the 

perforated distributor. Ambient air was introduced through an air filter, roots blower, and 

pressure tank to fluidize the solid mixtures at the bottom of the bed column. A gas valve and 

calibrated rotameter were used to control the air flow rate. A ruler was attached on the column 

wall to measure the bed height of solid mixtures. The pressure drop of fluidizing particles was 

tested by U-shaped monometers to determine the minimum fluidization velocity. Fine dust 

generated during gas-solid fluidization was removed by the dust collection device. 

 

Figure 6.1 The schematic diagram of experimental apparatus: 1. Air filter; 2. Roots blower; 3. Pressure 

tank; 4.Pressure gangue; 5. Gas valve; 6. Rotameter; 7. Air chamber; 8. Bed distributor; 9. Fluidized bed 

column; 10. U-shaped manometer; 11. Dust cover; 12. Cyclone; 13. Dust collector; 14. Roots blower. 
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6.2.2 Experimental materials 

Binary mixtures of magnetite and sand/gangue/coal particles were tested individually as the 

medium particles in an ADMFB. The 150 – 300 μm magnetite particles with a density of 4600 

kg/m3 were employed as the core medium material, and three other types of solid materials were 

added separately to form various binary mixtures. The particle densities of sand/gangue/coal 

particles are 2650, 2100, and 1300 kg/m3, respectively. The size ranges of each solid material are 

150 – 300, 300 – 425, 425 – 590, 590 – 710 and 710 – 850 μm, respectively. The minimum 

fluidization velocity of both binary mixtures and single particles were determined by the 

pressure-drop-velocity method. For convenience, the three types of binary mixtures are referred 

to as: M-S mixtures (magnetite mixed with sand particles), M-G mixtures (magnetite mixed with 

gangue particles), and M-C mixtures (magnetite mixed with coal particles). The particle 

properties of experimental materials are displayed in Table 6.1.  

Table 6.1. The properties of experimental materials. 

Material 
Size range 

(μm)  

Mean size 

(μm) 

Density 

(kg/m3) 

Umf 

(cm/s) 
Ar Remf Notation 

Magnetite 150-300 232 4600 9.5 2266 1.6 M232 

Sand 150-300 224 2650 4.9 1175 0.8 S224 

Sand 300-425 368 2650 12.4 5208 3.3 S368 

Sand 425-590 485 2650 20.2 11923 7.1 S485 

Sand 590-710 636 2650 33.5 26885 15.4 S636 

Sand 710-850 807 2650 39.7 54924 23.1 S807 

Gangue 150-300 215 2100 4.0 823 0.6 G215 

Gangue 300-425 372 2100 10.9 4263 2.9 G372 

Gangue 425-590 486 2100 18.7 9505 6.5 G486 

Gangue 590-710 625 2100 24.6 20216 11.1 G625 

Gangue 710-850 808 2100 34.1 43681 19.9 G808 

Coal 150-300 245 1300 3.2 754 0.6 C245 

Coal 300-425 396 1300 8.0 3182 2.3 C396 

Coal 425-590 460 1300 13.5 4988 4.5 C460 

Coal 590-710 617 1300 17.8 12036 7.9 C617 

Coal 710-850 795 1300 20.3 25747 11.6 C795 
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6.2.3 Mixing and segregation evaluation 

Particle mixing and segregation of binary mixtures in a fluidized bed can be quantitatively 

evaluated by the axial distribution of solid particles through sampling and analysis. A simple 

measuring method was used for all the subsequent experiments. Weighted quantities of the 

particulate components are fluidized at a given gas velocity for an hour before shutting off the air 

supply abruptly. The solid particles in the fluidized bed, now at rest, are divided into several 

horizontal layers with equal bed height, and samples from each layer is collected and analyzed 

for their properties by measuring the weight of the different components. The separation of 

solids mixture can be achieved by using the magnet recovery method. Furthermore, a 

dimensionless mixing index (Im) can be used to evaluate the mixing and segregation behavior of 

binary mixtures in fluidized beds, and the definition is given by (Chiba et al., 1980) 

𝐼𝑚 =
∫ 𝑀ℎ𝑑ℎ 

𝐻

ℎ𝑀̅ 

𝑀̅ × (𝐻 − ℎ𝑀̅ )
                           (6. 1) 

where 𝑀ℎ is the mass ratio of denser component at the bed height ℎ above the base; 𝑀̅  is the 

average mass ratio of denser component; 𝐻 is the total fluidized bed height; and ℎ𝑀̅ is the bed 

height at the average mass ratio of denser component. It can be inferred from Equation (6.1) that 

when the binary mixtures are perfectly mixed in the fluidized bed, Im value is equal to 1. The 

increasing Im value represents severity of the mixtures segregation with denser component 

distributed at the upper part of the bed, whereas the decreasing M value means severe 

segregation, where the denser component concentrated at the bottom of fluidized bed. 
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6.3 Results and discussion 

6.3.1 Effect of particle density ratio 

The particle density of medium materials is the most significant factor affecting the adjustment 

of fluidized bed density for efficient coal beneficiation in binary ADMFB systems. Ideally, the 

large density difference of the two types of solid particles are required for wide range control of 

the bed density (Oshitani et al., 2011; Tang et al., 2009; He et al., 2013). However, fluidizing of 

binary mixtures of solid particles with significant density difference may give rise to non-

uniform axial solids distribution, which may make the bed density adjustment challenging. Since 

the solids distribution in the fluidized bed is related to particle density difference, the effect of 

particle density on the mixing and segregation behavior is best described in terms of particle 

density ratio. In this work, the influence of particle density ratio on the mixing and segregation 

behavior of the binary systems is investigated by using binary mixtures of 150 – 300 um 

magnetite and 300 – 425 um sand/gangue/coal particles with equal volume fractions. The larger 

particle size of less dense component was chosen to balance the density difference with 

magnetite particles during fluidization. Experiments were performed at the initial bed height of 

20 cm and excess gas velocity of 4 cm/s, and the results for three different types of binary 

mixtures are shown in Figure 6.2.  

It can be observed that the M232-S368 mixture does not show any segregation appreciably, 

except for a few partial segregations at the bottom of fluidized bed, which can be explained by 

the bubble jet effect. However, significant particle segregation occurs to the M232-C396 mixture, 

where the upper part of fluidized bed contains mostly coal particles and therefore magnetite 

particles almost all concentrate at the lower part of bed. Furthermore, the M232-G372 mixture 

exhibits partial segregation performance. To be exact, the concentration of gangue particles 

slightly increases with the increasing bed height, whereas the concentration of magnetite 

particles decreases. It is hereby concluded that the increasing density difference will enhance the 

particle segregation and inhibit mixing behavior for binary mixtures. This is reasonable for the 

gas-solid fluidization of binary systems. In general, solid particles of less density are more active 

than that of heavier ones under the same fluidization conditions, and a large difference in particle 

densities will give a non-uniform axial solids distribution, since the axial distribution of solid 
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mixtures results from a dynamic equilibrium between the competing processes of particle mixing 

and segregation (Formisani et al., 2011; Rowe and Nienow, 1976). 
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Figure 6.2 The effect of particle density ratio on axial solids distribution of binary mixtures. 

6.3.2 Effect of particle size ratio 

Particle size ratio of a binary mixture is an important factor in the selection of medium particles 

in an ADMFB system, especially for achieving uniform and stable fluidization for efficient coal 

beneficiation. In addition, the size range of medium materials which determines the production 

cost of medium particles is of great significance for industrial practices (Mohanta et al., 2013; 

Sahu et al., 2009). In the present work, the relations between particle size ratio and axial solids 

distribution for M-S, M-G, and M-C binary mixtures are shown in Figures 6.3, 6.4, and 6.5, 

respectively. For the sake of comparison, mixture compositions of vol. 25% and vol. 85% were 

chosen. As can be seen from Figure 6.3 (a) that M-S mixtures containing vol. 25% of sand 

particles exhibit good mixing behavior when the particle size ratio is below 2.1. However, above 

2.1, the M-S mixtures show some partial segregation with relatively fewer sand particles at the 

lower part of fluidized bed, which may be due to the decreasing drag force effect per unit particle 

weight with the increasing size of sand particles, which will lead to an unbalance of forces 

during fluidization. From Figure 6.3 (b), it can be observed that significant segregation occurs to 

the M-S mixtures with vol. 85% of sand particles when the particle size ratio is over 3.5. This 
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can be explained by a decrease in the buoyancy force caused by the increasing ratio of lighter 

component (sand particles) in the fluidized bed.  

It can be observed from Figure 6.4 (a) that, like the M-S mixtures, partial segregation occurs to 

the M-G mixtures containing vol. 25% of gangue particles at the larger size ratio. Moreover, a 

similar significant segregation was observed from Figure 6.4 (b) for the M-G mixtures with vol. 

85% of gangue particles when the particle size ratio was above 2.7, which is comparably less 

than that of M-S mixtures. The particle segregation of M-G mixtures occurs earlier than that of 

M-S mixtures with the decrease in particle size ratio, which can be attributed to the gangue 

particles being less dense than the sand particles, and the decrease in particle density will require 

less drag force to balance the gravity of solid particles per unit volume in the fluidized bed 

(Girimonte et al., 2018; Rao et al., 2011). As can be seen from Figure 6.5 (a) and (b), the axial 

solids distribution of M-C mixtures is not very sensitive to the particle size ratio of magnetite and 

coal materials. To be exact, the slight partial segregation occurs to all of the M-C mixtures 

containing vol. 25% of coal particles at various particle size ratios, and only a few more coal 

particles with relatively less density will segregate to the upper part of bed. This can be attributed 

to the large density difference between the magnetite and coal particles, which gives rise to the 

severe segregation, and this particle segregation may overcome the mixing caused by bubbling 

behavior in the fluidized bed. Furthermore, the complete segregation phenomenon appears to the 

M-C mixtures with vol. 85% of coal particles at various particle size ratios, and most of the coal 

particles segregate at the top of fluidized bed and therefore the magnetite particles mostly 

concentrate at the bottom part. It can also be explained by the decreasing buoyancy force with 

the increase of fine coal content, and the denser component tends to sink in the fluidized bed. 
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Figure 6.3 The effects of particle size ratio on the axial solids distribution of M-S mixtures at lower 

and higher volume fractions. 
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Figure 6.4 The effects of particle size ratio on the axial solids distribution for M-G mixtures at 

lower and higher volume fractions. 
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Figure 6.5 The effects of particle size ratio on the axial solids distribution for M-C mixtures at 

lower and higher volume fractions. 

6.3.3 Effect of mixture composition 

The mixture composition of binary mixtures of medium particles plays an important role in 

determining the control of bed density in the ADMFB system for efficient dry coal beneficiation. 

In this study, the effects of binary mixture composition on the axial solids distribution of M232-

S368, M232-G372, and M232-C396 mixtures are shown in Figures 6.6, 6.7, and 6.8, respectively. 

It can be seen from Figure 6 that an increase in the volume fraction of sand particles does not 

cause any significant change in the mixing and segregation of M232-S368 mixtures, and all of 

M232-S368 mixtures exhibit slight partial segregation at the bottom of the fluidized bed and the 

well mixing state at the upper part. This may be due to the two types of solid particles have 

nearly the same aerodynamic properties, which may require similar fluidization conditions and 

will result in good mixing during the fluidization, and the minimal segregation of M232-S368 

mixtures at the bottom part of bed can also be explained with the bubble jet effect.  

As can be observed from Figure 6.7 that significant partial segregation happens to all of the 

M232-G372 mixtures, and the increasing volume fraction of gangue particles will enhance the 

partial segregation of solid mixtures. This can be explained by an increase in interstitial gas 
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velocity in the fluidization system, since the minimum fluidization velocity of M232-G372 

mixtures will increase when the mass fraction of gangue particles increases. Gangue particles 

with relatively less density will become more active than the magnetite particles with the 

increase of interstitial gas velocity, which may result in more severe segregation of solid 

mixtures during fluidization. From Figure 6.8, it can be observed that the fluidization state of 

M232-C396 mixtures will transit from mixing to segregation state with the increasing fraction of 

coal particles. In details, the M232-C396 mixture exhibits particle mixing behavior when the 

fraction of coal particles is vol.25%, except for a few more coal particles concentrated at the top 

of fluidized bed. However, above vol.25%, complete segregation occurs to the binary systems 

with most of the coal particles concentrated at upper part of the bed and therefore most of the 

magnetite particles remain at the lower part.  
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Figure 6.6 Axial solids distribution of fluidized bed with M232-S368 mixtures at different mixture 

compositions. 
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Figure 6.7 Axial solids distribution of fluidized bed with M232-G372 mixtures at different mixture 

compositions. 
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Figure 6.8 Axial solids distribution of fluidized bed with M232-C396 mixtures at different mixture 

compositions. 

6.3.4 Effect of superficial gas velocity 

Superficial gas velocity is one of the most important and complex factors affecting the particle 

movement and bubbling behavior (Formisani et al., 2011; Wirsum et al., 2001), which in return 

affects the solid mixing and segregation of binary mixtures in the ADMFB system. Since the rate 
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of gas bubbling is proportional to excess gas velocity (U – Umf), the effect of superficial gas 

velocity on the particle mixing and segregation behavior shall be described in terms of excess 

gas velocity. With the increase of excess gas velocity examined from ranges of 2 to 8 cm/s, it can 

be observed that binary mixtures of magnetite and sand/gangue/coal particles could exhibit 

different solids distribution pattern, as shown in Figures 6.9, 6.10, and 6.11, respectively.  

It is found from Figure 6.9 that the M232-S368 mixture exhibits a strong level of particle mixing 

and its axial solids distribution is relatively less sensitive to the changes in excess gas velocity. 

On the contrary, the M232-G372 mixture shows that partial solids segregation and an increase in 

excess gas velocity can improve the particle mixing of M232-G372 mixture system, as can be 

seen from Figure 6.10. This observation is similar to reports in previous investigations (Rowe 

and Nienow, 1976; Girimonte et al., 2018; Sahoo and Roy, 2005). It can be explained by an 

increase in excess gas velocity, which facilitates the formation of larger and faster gas bubbles 

that will pick up more solids in their wakes from the bottom to top of the bed, which results in 

severe solids circulation and a higher degree of particle mixing in the fluidized bed. From Figure 

6.11, it can be observed that the M232-C396 mixture system is completely segregated and the 

axial solids distribution is almost independent of excess gas velocity at a relatively lower range. 

This may be due to the significant density differences between magnetite and coal materials in 

the M232-C396 mixture, which leads to a drastic segregation process during fluidization, and 

this severe particle segregation could overcome the particle mixing caused by the increase of 

excess gas velocity.  
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Figure 6.9 Axial solids distribution of fluidized bed with M232-S368 mixtures at various excess gas 

velocities (U - Umf). 
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Figure 6.10 Axial solids distribution of fluidized bed with M232-G372 mixtures at various excess 

gas velocities (U - Umf). 
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Figure 6.11 Axial solids distribution of fluidized bed with M232-C396 mixtures at various excess 

gas velocities (U - Umf). 

6.3.5 Effect of fluidized bed height 

It is known that fluidized bed height determining the effective sorting space also has a significant 

influence on the separation performance and processing capacity of dry coal beneficiation in the 

ADMFB. In addition, the deep bed height is required for the effective beneficiation of super 

coarse coal ores of larger than 50 mm (Chen and Yang, 2003). Thus, the effects of initial bed 

height on axial distribution of M232-S368, M232-G372 and M232-C396 mixtures particles were 

examined, and the corresponding results are shown in Figures 6.12, 6.13 and 6.14, respectively. 

The initial bed height has some negative effects on the segregation behavior of M232-G372 and 

M232-C396 mixtures, as shown in Figures 6.13 and 6.14. It can be concluded that the particle 

mixing and segregation in the ADMFB, regardless of the types of solid mixtures, is relatively 

less sensitive to the changes in initial bed height than in particle properties and excess gas 

velocity, which is very important for the design and operation purposes. This can be explained 

by an increase in initial bed height, which facilitates the formation of larger bubbles, will gives 

rise to a relatively higher degree of mixing at a given fluidizing velocity. However, the effect of 

large bubble diameter caused by increasing initial bed height on solids mixing is not as profound 

as particle properties and gas velocity.  
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Figure 6.12 Axial solids distribution of fluidized bed with M232-S368 mixtures at different initial 

bed heights. 
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Figure 6.13 Axial solids distribution of fluidized bed with M232-G372 mixtures at different initial 

bed heights. 
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Figure 6.14 Axial solids distribution of fluidized bed with M232-C396 mixtures at different initial 

bed heights. 

6.3.6 Mixing index of binary mixtures 

When a binary solids mixture is fluidized, the mixing and segregation processes may coexist 

during fluidization, and the mixing index is therefore developed to estimate the degree of particle 

mixing and segregation (Naimer et al., 1982; Chiba et al., 1980; Sahoo and Roy, 2005; 

Marzocchella et al., 2000). The calculated values of the mixing index (Im) by Eq. (6.1) for binary 

mixtures of magnetite and coal/gangue/sand particles are shown in Figures 6.15, 6.16 and 6.17, 

respectively. It is observed that practically perfect mixing of solids mixtures appears at lower 

mass factions of lighter particles (coal/gangue/sand), which is the desired conditions for the 

adjustment of bed density in the ADMFB systems (Oshitani et al., 2011; Tang et al., 2009; He et 

al., 2013). However, an increase in mass fraction of coal particles will lead to obvious decrease 

of Im value below 1, indicating the significant segregation with the denser component (magnetite) 

as the jetsam, as shown in Figure 6.15. As can be seen from Figure 6.16 that the values of Im are 

almost all marginally smaller than 1 with an increase of gangue particles, which reveals that 

partial segregation occurs with more magnetite particles distributed at the lower part of the bed. 

From Figure 6.17, it can be seen that good solids mixing exists until the mass fraction of sand 

particles reaches 60%, afterwards the particle segregation will turn out for the M-S mixtures.  
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The effects of excess gas velocity and initial bed height on the mixing index are shown in 

Figures 6.18 and 6.19, respectively. It can be seen from Figure 6.18 that the mixing index of 

solids mixtures with similar aerodynamic properties is not very sensitive to the increase of excess 

gas velocity at relatively lower ranges. This tendency is of great importance for the wide 

operating range of gas velocity for the coal beneficiation processing in an ADMFB system. 

Moreover, an increase in initial bed height also does not cause any significant changes in the 

mixing index of these binary mixtures, while fluidized bed reaches the certain initial bed height 

of 15 cm. This is meaningful for the design and scale-up of the ADMFB system in industrial 

practices, as well as the efficient dry beneficiation of coarse coal ores larger than 50 mm.  
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Figure 6.15 The mixing index (Im) of binary mixtures of magnetite and coal particles. 
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Figure 6.16 The mixing index (Im) of binary mixtures of magnetite and gangue particles. 
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Figure 6.17 The mixing index (Im) of binary mixtures of magnetite and sand particles. 
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Figure 6.18 The effect of excess gas velocity on the mixing index (Im). 
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Figure 6.19 The effect of initial bed height on the mixing index (Im). 
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6.4 Conclusion 

The present work aims to evaluate the mixing and segregation behavior of binary mixtures of 

medium particles in an ADMFB for dry coal beneficiation, and the results were interpreted in 

terms of axial solids distribution. The experimental results demonstrated that particle segregation 

becomes more evident with the increase of particle density ratio. Particle mixing and segregation 

behavior of binary mixtures is less sensitive to the changes in particle size ratio than in particle 

density ratio. An increase in mass fraction of coal particles in the M-C mixtures will lead to the 

transition from the mixing to segregation state. Moreover, the increases of both the excess gas 

velocity in a relatively lower range and the initial bed height above 15 cm do not cause any 

significant variation in the mixing and segregation pattern of binary systems, which may give 

rise to broad conditions for the ADMFB operation. To achieve the adjustment of bed density, a 

lower mass fraction of fine coal particles (< 10%) which results in almost perfect mixing of 

binary medium particles is recommended as the fine coal particles will be generated 

automatically during coal beneficiation process. Magnetite mixed with gangue particles is the 

secondary consideration due to the occurrence of marginally partial segregation. Moreover, 

binary mixtures of magnetite and sand particles may exhibit a strong mixing performance, but 

the recovery and purification of sand particles will be an obstacle for efficient coal beneficiation 

in an ADMFB.  
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Nomenclature  

ℎ                 fluidized bed height above the distributor, m 

ℎ𝑀̅                bed height at the average mass ratio of denser component, m 

𝐻                 total fluidized bed height, m 

𝐻𝑖                initial bed height, m 

𝐼𝑀                mixing index, dimensionless 

𝑀𝑓,𝑐            mass fraction of coal particles, % 

𝑀𝑓,𝑔            mass fraction of gangue particles, % 

𝑀𝑓,𝑚           mass fraction of magnetite particles, % 

𝑀𝑓,𝑠             mass fraction of sand particles, % 

𝑀ℎ               mass ratio of denser component at the bed height h, % 

𝑀𝑖,𝑐             initial mass fraction of coal particles, % 

𝑀𝑖,𝑔             initial mass fraction of gangue particles, % 

𝑀𝑖,𝑠             initial mass fraction of sand particles, % 

𝑀̅                average mass ratio of denser component, % 

𝑟                  particle size ratio of binary mixture, dimensionless 

𝑈                 superficial gas velocity, m/s 

𝑈𝑚𝑓             minimum fluidization velocity, m/s 

𝑉𝑓,𝑐              volume fraction of coal particles, % 

𝑉𝑓,𝑔             volume fraction of gangue particles, % 

𝑉𝑓,𝑠              volume fraction of sand particles, % 
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CHAPTER 7 

THE DISTRIBUTION OF BED DENSITY IN AN AIR DENSE 

MEDIUM FLUIDIZED BED WITH GELDART GROUP B 

AND/OR D PARTICLES 

The distribution of bed density in an Air Dense Medium Fluidized Bed (ADMFB) with single 

and binary mixtures of Geldart Group B and/or D particles has been studied both theoretically 

and experimentally. The influences of particle properties, superficial gas velocity, and mixture 

composition of solid particles on the bed density distribution were examined. The results showed 

that there is lower density region at the bottom of fluidized bed with single particles, whereas the 

bed density at the upper part remains almost consistent. The increasing excess gas velocity does 

not change this trend although decreasing the overall bed density, however the binary mixtures 

of solid particles can be utilized to balance this non-uniform distribution of fluidized bed density. 

Moreover, an equation has been derived to estimate the bed density distribution based on the 

modified two-phase theory, considering particle properties and fluidization characteristics. The 

proposed correlation successfully accounts for predicting the distribution of bed density in an 

ADMFB involving both single and binary mixtures of Geldart Group B/D particles. 

7.1 Introduction 

Bubbling gas-solid fluidized beds composed of single or binary mixtures of solid particles are 

widely applied to various industrial processes, including gas-solid reactions, combustion and 

gasification, mixing, drying, mineral dry processing, etc. (Modekurti, et al., 2013; Radmanesh, et 

al., 2006; Geng and Che, 2001; Tahmasebi, et al., 2013; Sun et al., 2005). One of the main 

practical advantages of bubbling fluidized bed is connected with the relatively stable density of 

fluidization system (Davidson et al., 1985; Kunnii and Levenspiel, 1991). Therefore, it is natural 

to utilize this fluidized bed technology for dry coal beneficiation, which enables the dry 

separation between the coal products according to their density differences towards the fluidized 

bed density (Mohanta et al., 2013; Sahu et al., 2009; Zhang et al., 2014; Zhao et al., 2011). This 

dry separation method is named as Air Dense Medium Fluidized Bed (ADMFB) (Chen and Wei, 
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2003) which is capable of floating the clean coal with relative less density than the fluidized bed, 

whereas the heavier one (gangue) sinks to the bottom of the bed and thus can be rejected. The 

ADMFB technology has the inherent advantages of without using water, lower construction and 

processing costs, and comparable separation efficiency over the conventional wet processes, 

which is deemed to be the desired method for coal beneficiation in water-deficient, permafrost, 

and prolonged cold weather areas (Dwari and Rao, 2007; Houwelingen and Jong; 2004). 

Moreover, the ADFMB is an advanced and universally applicable technology, which has already 

been extended to other industries, including iron/copper ore beneficiation (Oshitani et al., 2010; 

Oshitani et al., 2013; Franks et al., 2013; Franks et al., 2015), agricultural products cleaning 

(Zaltzman et al., 1983; Zaltzman et al., 1985; Zaltzman et al., 1987), municipal solid waste 

classification (Sekito et al., 2006; Sekito et al., 2006), etc. 

Since the ADMFB is a physical and gravity-based process, a detailed knowledge of the 

uniformity and stability of fluidized bed density is of great importance for its application, 

especially for improving the efficiency and accuracy of dry coal separation (Sahu et al., 2011; 

Firdaus et al., 2012). The density of fluidized bed is defined as the mass of solid particles per 

unit volume of the suspension (Zinov’ev, 1976), which is highly affected by the hydrodynamics 

of gas-solid fluidization system. As is known that the ADMFB is generally in the bubbling 

fluidization regime, characterized by rising gas bubbles and gas-driven moving particles. 

According to the two-phase theory of fluidization (Toomey and Johnstone, 1952), all the gas 

flow in excess of that required for incipient fluidization is in the form of gas bubbles, and a 

bubbling fluidized bed can be composed of the dense (emulsion) phase and bubbles phase. The 

dense phase consisting of suspended solid particles and interstitial gas flow remains almost 

consistent as the incipient fluidization state, and the bubble phase consisting of rising gas 

bubbles of various sizes and velocities is essentially free from solid particles. Hence, the density 

of fluidized bed can be determined by the mixture composition of these two phases, and the 

bubbling behavior and its associated effects have a significant influence on the bed density of an 

ADMFB, which have been investigated extensively by many researchers (Oshitani et al., 2011; 

Azimi et al., 2013; Schmilovitch et al., 1992; He et al., 2002; Chikerema and Moys, 2012). In 

details, typical gas bubbles are initially very small forming at the bottom region, just above the 

bed distributor, move upward and then burst finally at the upper surface (Davidson et al., 1985; 
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Kunnii and Levenspiel, 1991). While gas bubbles travel through the fluidized bed, the bubble 

size usually increases as the bed height increases mainly due to the coalescence behavior (Mori 

and Wen, 1975; Darton et al., 1977), and the rise velocity of gas bubbles growth with the 

increase of bubble size which can be attributed to an increase in buoyancy force with the increase 

of bubble volume (Rippin and Davidson, 1967; Davies and Taylor, 1950). Consequently, the 

distribution of gas bubbles in the fluidized bed is apparently non-uniform, which will change the 

solid concentration in the axial direction of the bed. As the density of fluidized bed is determined 

by the dispersed solid particles and gas bubbles, the uniformity and stability of bed density is 

therefore affected obviously by the fluidization characteristics, e.g. bubbling behavior, which 

require to be further investigated.  

Understandably, if a fluidized bed is to be utilized as a means of density separation process, the 

knowledge of the influences of particle properties and mixture composition on the uniformity 

and stability of bed density is crucial. Early experimental studies attempting to utilize the 

ADMFB with single particles, e.g. magnetite particles, mainly due to its good flowability and 

magnetic property which can lower the consumption of medium particles through the magnetic 

recovery process (Sahan, 1997; Luo and Chen, 2001; Mak et al., 2008). However, the bed 

density of fluidizing single particles is almost consistent and is usually not the desired one. For 

efficient dry coal beneficiation, the adjustable bed density is more preferred in the ADMFB 

operation. In order to achieve the bed density adjustment, various types of binary mixtures of 

solid particles have been processed as medium materials (Yoshida et al., 2008; Oshitani et al., 

2013; Luo and Chen, 2001; Wei et al., 2003), which have also been extensively studied in the 

fields of iron/copper ore separation and agricultural products cleaning. Although the binary 

fluidization system can manipulate freely the bed density by changing the mixture composition 

of solid particles, the uniformity and stability of bed density of binary fluidized beds cannot be 

guaranteed due to the complex fluidization and inevitable segregation behavior (Row et al., 1972; 

Gilbertson and Eames, 2001). An understanding of the effects of particle properties and mixture 

composition of solid particles on the bed density distribution in the ADMFB is therefore of 

considerable importance. For design and operation purposes, it is also necessary to calculate the 

bed density distribution in the ADMFB with single and binary mixtures of solid particles, thus 

avoiding experimental measurements. 
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It is the purpose of the present work to determine the distribution of bed density in an ADMFB 

with the Geldart Group B and/or D particles both theoretically and experimentally. An equation 

has been derived to evaluate how the process variables affect the distribution of fluidized bed 

density. Experiments were performed on several size fractions of four solid particles with various 

binary mixtures, involving magnetite, river sand, glass bead and fine coal particles. The process 

variables which affect the axial density distribution from the proposed model can be summarized 

as particle size, particle density, particle composition, and excess gas velocity. The proposed 

model has been verified with experimental data obtained in the present work involving both 

single and binary mixtures of Geldart Group B and/or D particles. 

7.2 Theory 

 

Figure 7.1 The schematic diagram of an Air Dense Medium Fluidized Bed. 

In general, Air Dense Medium Fluidized Bed system is in the bubbling fluidization regime, 

characterized by rising gas bubbles and disordered moving particles. Based on the two-phase 

theory of fluidization (Toomey and Johnstone, 1952), an ADMFB can be considerd to be 

composed of dense (emulsion) phase and bubble phase, as shown in Fig. 7.1. If ignoring the 

volume of solids dispersed in the gas bubbles, the density of fluidized bed at a certain level of 

bed height can be given by 

𝜌𝑏𝑒𝑑 = 𝜌𝑏𝐴𝑏/𝐴 + 𝜌𝑑𝐴𝑑/𝐴             (7.1) 
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where 𝜌𝑏 and 𝜌𝑑 are the densities of bubble phase and dense phase, respectively, 𝐴𝑏 and 𝐴𝑑 are 

the bed cross-sectional areas occupied by bubble phase and dense phase. As is known that the 

density of bubble phase is very close to gas density, and the density of dense phase can be taken 

as (Davidson et al., 1985) 

𝜌𝑑 = 𝜌𝑝(1 − 𝜀𝑚𝑓) + 𝜌𝑔𝜀𝑚𝑓            (7.2) 

where 𝜀𝑚𝑓 is the bed voidage at minimum fluidization state, 𝜌𝑔 and 𝜌𝑝 are the densities of gas 

and solid particles, respectively. The bed cross-sectional area (𝐴) can be given as 

            𝐴 = 𝐴𝑏 + 𝐴𝑑                         (7.3) 

To cacluate the distribution of bed density, it is important to determine the bed cross-sectional 

area occupied by gas bubbles at a certain level (Ab), which can be obtained from 

            𝐴𝑏 = 𝐺𝑏/𝑈𝑏                           (7.4) 

where Gb is the volumetic bubble flowrate, Ub is the rise velocity of gas bubbles.  

Combining of Eqs. (7.1), (7.2), (7.3) and (7.4), the correlation for estimating the distrbution of 

bed density in an ADMFB leads to 

𝜌𝑏𝑒𝑑 = (1 − 𝜀𝑚𝑓)(𝜌𝑝 − 𝜌𝑔)[1 − 𝐺𝑏/(𝐴𝑈𝑏)] + 𝜌𝑔        (7.5) 

It should be mentioned that the behavior of gas-fluidized system is closely dependent on the 

properties of solid particles, which needs to be carefully considered in the estimation of bed 

density. According to the Geldart’s particle classification (Geldart, 1973), there are four different 

types of solid particles, which termed as Geldart A, B, C and D Groups. It is noteworthy that all 

the cohesive powder, which are very difficult to be fluidized at normal condition, belong to 

Group C powders. Fluidized beds of Group A powders exhibit a particulate expansion before 

bubbling occurs, which will results in unpredictable bed voidage of dense phase during 

fluidization. Therefore, the Geldart Group B and D particles containing most of the coarse and 

dense particles are usually employed as the medium material in the ADMFB system. And then, 
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the invesitigation of fluidized bed density for both single and binary mixtures of Geldart B 

and/or D particles is carried out in this work.  

As decribed by the two-phase theory of fluidization, all the gas flow in excess of that required for 

incipient fluidization is in the form of gas bubbles in the bubbling fluidized bed. However, there 

is ample experimental evidence (Turner, 1966; Grance and Clift, 1974; Hilligard and Werther, 

1986; Hepbasli, 1998) which demonstrates that the original two-phase theory tends to 

overestimate the bubble flow rate in most cases. Thus, the modified two-phase theory (Hilligard 

and Werther, 1986) has been developed by introduce the correction factor Y, defined by 

    𝐺𝑏 = 𝑌(𝑈𝑔 − 𝑈𝑚𝑓)𝐴                               (7.6) 

where Gb is the volumetic bubble flow rate, Ug and Umf are the superficial gas velocities at 

operating condition and minimum fluidization, respectively. The parameter Y represents the 

deviation of the visble bubble flow rate from the original two-phase theory assumption, which 

was found to be generally below unity. For Geldart Group B and D particles, a reasonable 

correlation (Eq.(5.14)) has been proposed in the earlier work as follows 

𝑌 = 1.72𝐴𝑟−0.133(𝑈𝑔 − 𝑈𝑚𝑓)
0.024

             (7.7) 

where Ar is the Archimedes number. Practiclly, Archimedes number increases with the 

increasing of particle size or density, which is defined as 

𝐴𝑟 = 𝜌𝑔(𝜌𝑝 − 𝜌𝑔)𝑔𝑑𝑝
3/𝜇2                          (7.8) 

In order to determine the bed cross-sectional area occupied by bubbles, knowledge of the bubble 

rise velocity is needed. In general, the bubble rise velocity through a fluidized bed is related to 

the bubble size, and it is usually estimated by the relationship proposed by Davidson and 

Harrison (Davidson and Harrison, 1963) 

𝑈𝑏 = 0.71√𝑔𝐷𝑒 + (𝑈𝑔 − 𝑈𝑚𝑓)                 (7.9) 



Chapter 7 

136 

 

where De is the volume-equivalent bubble diameter. Various correlations have been developed to 

evaluate this bubble diameter, and Darton equation (Darton et al., 1977)] is one of the commonly 

used correlations 

𝐷𝑒 = 0.54(𝑈𝑔 − 𝑈𝑚𝑓)
0.4

(ℎ + 4𝐴𝐷
0.5)0.8/𝑔0.2           (7.10) 

where h is the bed height above the distributor, AD is the area of each orifice in perforated plate 

distributor and is equal to zero for a porous plate distributor. 

By submitting the Eqs. (7.6), (7.7), (7.9), (7.10) into Eq. (7.11), the distribution of bed density in 

an Air Dense Medium Fluidized Bed with Geldart B and/or D particles can be expressed by 

𝜌𝑏𝑒𝑑 = (1 − 𝜀𝑚𝑓)(𝜌𝑝 − 𝜌𝑔) [1 −
1.72𝐴𝑟−0.133(𝑈𝑔 − 𝑈𝑚𝑓)

0.024

1 + 1.3(ℎ + 4𝐴𝐷
0.5)(𝑈𝑔 − 𝑈𝑚𝑓)

−0.8]  + 𝜌𝑔     (7.11) 

It can be observed from Eq. (7.11) that the process variables which affect the bed density 

distribution can be summarized as the properties of solid particles, mixture composition, excess 

gas velocity, and fluidized bed height, which have been experimentally investigated in this work. 

For a rapid estimation, we have assumed approximately 𝜀𝑚𝑓= 0.45 for Geldart Group B and D 

particles, and the gas density could almost be neglected due to the large difference when 

compared with the particle density.  

  



Chapter 7 

137 

 

7.3 Experimental 

7.3.1 Experimental apparatus 

All experiments were conducted in a cylindrical fluidized bed of 152 mm in diameter at ambient 

conditions, as shown in Figure 7.2. After being filtered and compressed, the surrounding air was 

sent to fluidize the solid particles in the bed column through a perforated distributor. The air 

flowrate was controlled by a valve and measured by a rotameter. The diameter of each orifice on 

the distributor plate is 1.5 mm and the total open area is 11%. To investigate the axial distribution 

of bed pressure, U-shaped manometers were employed. The piezonmetric pipes of manometers 

are connected to the pressure taps along the bed column with the interval of 5 cm. First pressure 

tap is located at 1 cm above the distributor, which is designed to prevent the effects of bubble jets. 

Fine dust generated during particle fluidization was gathered by the dust collection device. It is 

noteworthy that the axial density distribution of bubbling fluidized bed was obtained and 

calculated from the time-averaged pressure drop. 

 

Figure 7.2 The schematic diagram of experimental apparatus: 1. Air filter; 2. Roots blower; 3. Tank; 

4. Pressure gangue; 5. Gas valve; 6. Rotameter; 7. Air chamber; 8. Bed distributor; 9. Plexiglas column; 

10. Rule; 11. U-shaped manometer; 12. Dust cover; 13. Dust collector. 
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7.3.2 Experimental materials 

Magnetite, glass bead, river sand and coal particles with the size range from 150 to 710 μm were 

used as the bed materials. These samples were classified into the specific size fractions of 150 – 

300 μm, 300 – 425 μm, 425 – 590 μm, and 590 – 710 μm by screening. The properties of these 

experimental materials are shown in Tables 7.1, 7.2, 7.3 and 7.4. Hosokawa Powder Tester was 

employed to measure the aerated bulk density and angle of repose. BT-2900 Particle Image 

Analysis system was used to test the mean particle diameter. The particle true density was 

measured by the Archimedean immersion method, and the minimum fluidization velocity of 

each material was determined using the graph of bed pressure drop against decreasing gas 

velocity. It is noteworthy that the solid particles of smaller than 150 um were excluded in this 

study as they may belong to Geldart A/C Group.  

Table 7.1. The particle properties of magnetite samples. 

Size range 

(um) 

Mean size 

(um) 

True density 

(kg/m3) 

Bulk density 

(kg/m3) 

 AOR 

 (°) 

Ar 

(kg/m) 

Umf 

(cm/s) 
Notation 

150 – 300 232 4650 2667 36.1 2215 9.1 M232 

300 – 425 348 4570 2687 37.4 7348 16.2 M348 

425 – 590 457 4540 2652 38.3 16533 34.5 M457 

590 – 710 651 4590 2560 38.8 48317 71.0 M651 

 

Table 7.2. The particle properties of glass bead samples. 

Size range 

(um) 

Mean size 

(um) 

True density 

(kg/m3) 

Bulk density 

(kg/m3) 

 AOR 

 (°) 

Ar 

(kg/m) 

Umf 

(cm/s) 

Notation 

 

150 – 300 209 2620 1630 33.1 912 6.9 G209 

300 – 425 356 2650 1611 34.3 4561 12.3 G356 

425 – 590 469 2680 1605 34.6 10547 18.5 G469 

590 – 710 648 2640 1612 35.2 27403 23.3 G648 
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Table 7.3. The particle properties of river sand samples. 

Size range 

(um) 

Mean size 

(um) 

True density 

(kg/m3) 

Bulk density 

(kg/m3) 

 AOR 

 (°) 

Ar 

(kg/m) 

Umf 

(cm/s) 

Notation 

 

150 – 300 224 2530 1544 34.5 1085 5.8 S224 

300 – 425 368 2410 1610 37.4 4581 14.9 S368 

425 – 590 475 2510 1602 38.1 10261 19.8 S475 

590 – 710 636 2500 1593 39.3 24534 30.3 
S636 

 

Table 7.4. The particle properties of fine coal samples. 

Size range 

(um) 

Mean size 

(um) 

True density 

(kg/m3) 

Bulk density 

(kg/m3) 

 AOR 

 (°) 

Ar 

(kg/m) 

Umf 

(cm/s) 

Notation 

 

150 – 300 236 1507 874 35.3 755 2.8 C236 

300 – 425 361 1545 896 37.1 2771 6.5 C361 

425 – 590 479 1476 856 39.5 6147 13.5 C479 

590 – 710 633 1465 845 40.6 14168 17.8 C633 

 

7.4 Results and discussion 

7.4.1 Effect of particle size and density 

The distribution of bed density of an ADMFB with various size fractions of different single 

particles within Geldart B and D Group are shown in Figure 7.3 together with the predicting 

curve calculated by Eq. (7.11). It should be mentioned that the predicting curve is based on the 

particle size range of 150 – 300 um for each material as the density difference of same material 

with different particle sizes is very small indeed. As can be observed from Figure 7.3 that for all 

the 16 different types of solid particles, there is always a lower bed density region at the bottom 

of fluidized bed, whereas the bed density at the upper part of bed remains almost unchanged. The 

same trend has also been claimed elsewhere (Granfield and Geldart, 1974; Korolev and 

Syromyatnikov, 1971; Ruzicka, 2006), which can be ascribed solely to the bubbling behavior of 

the fluidized bed. According to the two-phase theory, the bubbling fluidized bed is composed of 

gas bubbles (bubble phase) and suspended solid particles with interstitial gas flow (dense phase). 

The gas bubbles formed at the bottom area of fluidized bed, very close to the distributor, rise and 
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travel through the bed, growing due to bubble coalescence. Therefore, the retention of volumetric 

bubble flow at the lower part of fluidized bed is more than that at the upper part as the bubble 

rise velocity increases with increasing bubble size. The more the retention of volumetric bubble 

flow, the less the solid particle concentration, which will results in a lower bed density at the 

lower part of fluidized bed. Moreover, this tendency of lower bed density at the bottom of 

fluidized bed has been successfully predicted by the proposed model in this work.  

It can also be observed from Figure 7.3 that the distribution of bed density is almost independent 

of the size range of solid particles of the some material, but the tendency of decreasing bed 

density at the bottom of fluidized bed becomes more evident with the increase of particle density 

of different materials. This can be explained that the bed voidage in dense phase maintains 

almost the same for Geldart Group B and D particles (Geldart, 1973), and the bubbling behavior 

primarily relates to the excess gas velocity, both of them regardless of particle size and density. 

However, the bed density at the bottom part will decrease due to decreasing ratio of solid 

particles caused by increasing bubble volume. Therefore, the greater particle density of material 

will result in more decrease of bed density at the bottom of fluidized bed.  
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Figure 7.3 The distribution of bed density for different single particles of various size fractions. 

7.4.2 Effect of excess gas velocity 

The operating gas velocity playing an important role in determining both the performance of gas-

solid fluidization and the efficiency of dry coal beneficiation can be generally expressed in terms 

of the excess gas velocity, which indicates the superficial gas velocity over than the minimum 

fluidization velocity. The influences of excess gas velocity on the distribution of bed density in 

an ADMFB with typical Geldart Group B and D particles are shown in Figures 7.4 and 7.5, 

respectively, and compared to the calculated data using the Eq. (7.11). It can be seen that both 

the Geldart Group B and D particles demonstrate a decreasing trend of bed density with 

increasing excess gas velocity, and the decrement of bed density under the same excess gas 

velocity increases with increasing particle density. This is reasonable that the increasing excess 



Chapter 7 

142 

 

gas velocity generally gives rise to an increase in the volume of gas bubbles; as a result, the bed 

density decreases due to the expansion of fluidized bed. Furthermore, the influence of excess gas 

velocity was found to have definite effects on the axial distribution of bed density, which may be 

due to the relatively stable bubbling behavior in the gas-solid fluidized bed. It should be noted 

that the measured bed densities with varying degrees of excess gas velocity are in fairly good 

agreement with the results predicted from the proposed Eq. (7.11). Although some scattering can 

be observed, which may be attributed to the heterogeneous bubbling behavior, the proposed 

model has been verified as acceptable and applicable to describe the relations between the bed 

density distribution and excess gas velocity. 

0 10 20 30 40
1.6

2.0

2.4

2.8

3.2

Group B 


b

ed
 (

b
ed

 d
en

si
ty

, 
g
/c

m
3
)

h (height above the distributor, cm)

 Excess gas velocity - 1.2 cm/s

 Excess gas velocity - 2.4 cm/s

 Excess gas velocity - 3.6 cm/s

 Excess gas velocity - 4.8 cm/s

 Excess gas velocity - 6.0 cm/s

 Predicting curve by Eq (11)

 

 

Magnetite (150 − 300 m)

U
mf

 = 9.1 cm/s

1.2 cm/s

6.0 cm/s

0 10 20 30 40
0.70

1.05

1.40

1.75

2.10

Group B 

h (height above the distributor, cm)


b
ed

 (
b
ed

 d
en

si
ty

, 
g
/c

m
3
)

 Excess gas velocity - 1.2 cm/s

 Excess gas velocity - 2.4 cm/s

 Excess gas velocity - 3.6 cm/s

 Excess gas velocity - 4.8 cm/s

 Excess gas velocity - 6.0 cm/s

 Predicting curve by Eq (11)

 

 

U
mf

 = 6.9 cm/s

Glass beads: 150 − 300 m 

1.2 cm/s

6.0 cm/s

 

0 10 20 30 40
0.70

1.05

1.40

1.75

2.10

Group B 

 Excess gas velocity - 1.2 cm/s

 Excess gas velocity - 2.4 cm/s

 Excess gas velocity - 3.6 cm/s

 Excess gas velocity - 4.8 cm/s

 Excess gas velocity - 6.0 cm/s

 Predicting curve by Eq (11)


b
ed

 (
b

ed
 d

en
si

ty
, 
g

/c
m

3
)

h (height above the distributor, cm)

U
mf

 = 5.8 cm/s

River sand: 150 − 300 m 

 

 

1.2 cm/s

6.0 cm/s

0 10 20 30 40
0.25

0.50

0.75

1.00

1.25

Group B 


b

ed
 (

b
ed

 d
en

si
ty

, 
g

/c
m

3
)

 Excess gas velocity - 1.2 cm/s

 Excess gas velocity - 2.4 cm/s

 Excess gas velocity - 3.6 cm/s

 Excess gas velocity - 4.8 cm/s

 Excess gas velocity - 6.0 cm/s

 Predicting curve using Eq (11)

 

 

h (height above the distributor, cm)

U
mf

 = 2.8 cm/s

Fine coal: 150 − 300 m 

1.2 cm/s

6.0 cm/s

 

Figure 7.4 The distribution of bed density for Geldart Group B particles at various excess gas 

velocities. 
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Figure 7.5 The distribution of bed density for Geldart Group D particles at various excess gas 

velocities. 

7.4.3 Effect of mixture composition 

In order to control the bed density for efficient separation, different types of binary mixtures 

have been used as medium particles in the ADMFB system. In this study, binary mixtures of 

magnetite and sand/coal particles of various mixture compositions have been tested in an 

ADMFB for dry coal beneficiation. The mass distributions of magnetite mixed with sand/coal 

particles in the axial direction of fluidized bed are shown in Figures 7.6 and 7.7, respectively. It 

can be observed from Figure 7.6 that binary mixtures of magnetite and sand particles almost all 

demonstrate a uniform distribution of solid particles in the bed, and only the ratio of sand 
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particles at the bottom region is relatively less than that of the upper part of the bed. This can be 

explained by magnetite and sand particles have similar aerodynamic properties which will lead 

to good mixing performance during fluidization, and the slight partial segregation at the bottom 

of fluidized bed can be attributed to the bubble jets effect. However, for binary mixtures of 

magnetite and fine coal particles, the severe particle segregation behavior occurs, as can be seen 

clearly in Figure 7.7. In details, there is a significant trend of increased fine coal content at the 

upper part of fluidized bed with the increasing bed height, and this tendency becomes more 

evident with the increase of fine coal content in the feed material. This can be due to the large 

density difference between the magnetite and fine coal particles. 

The measured bed densities together with predicting curves for ADMFB with magnetite mixed 

with sand/coal particles are illustrated in Figures 7.8 and 7.9, respectively. It is noteworthy that 

all the predicting curves are based on the mass distributions of binary mixtures shown in Figures 

7.6 and 7.7. As can be seen in Figure 7.8, the distributions of bed density for magnetite mixed 

with sand particles are almost uniform in the axial direction. The tendency of lower bed density 

at the bottom of fluidized bed with single particles is almost overcome by the binary fluidization 

system, which can be explained by an increase in mass ratio of magnetite particles at the bottom 

region due to the bubble jets effect and density difference. For the binary mixtures of magnetite 

and coal particles, the non-uniform distribution of bed density appears, and this performance 

becomes more significant with the increase of fine coal content, as can be seen in Figure 7.9. It 

can be attributed to the severe particle segregation behavior during fluidization mainly caused by 

the large density difference between these two types of solid particles. However, for the fine coal 

content of wt.8%, a relatively uniform distribution of bed density surprisingly exists, which may 

be due to the solid back-mixing and gas bubbling behavior in the fluidized bed. This 

phenomenon is of great importance for the bed density adjustment in ADMFB for dry coal 

beneficiation since the fine coal particles will be generated automatically during the coal 

transportation and separation processes. In conclusion, the distribution of bed density for the 

ADMFB with binary mixtures of solid particles is mainly dependent on the axial solid 

distribution and bubbling behavior, and the experimental data for binary mixtures is in good 

agreement with the Eq. (7.11). 
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Figure 7.6 Axial mass distribution of fluidized beds with binary mixtures of magnetite and sand 

particles. 
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Figure 7.7 Axial mass distribution of fluidized beds with binary mixtures of magnetite and coal 

particles. 
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Figure 7.8 Effect of mixture composition on the bed density distribution for binary mixtures of 

magnetite and sand particles. 
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Figure 7.9 Effect of mixture composition on the bed density distribution for binary mixtures of 

magnetite and coal particles. 
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7.4.4 Comparison with the experimental data 

In order to examine the validity and applicability of Eq. (7.11), the error analysis of the proposed 

correlation with the available experimental data was carried out. The comparison of the axial bed 

densities of ADMFB with single and binary mixtures of solid particles calculated using Eq. 

(7.11) with experimental data of this work are shown in Figures 7.10 and 7.11, respectively. As 

can be observed that, for different types of single particles, this correlation gives an overall 

standard deviation of ± 8.1% based on 640 experimental data, which shows a good predicting 

performance. For various binary mixtures of solid particles, an average standard deviation of ± 

8.5% is obtained based on 160 data points tested, which indicates a good agreement. Hence, the 

proposed correlation has the advantages of comparably reliable and greater accuracy, and is to be 

preferred as an acceptable and practical method for predicting the bed density distribution of the 

ADMFB. Moreover, it is of wide application which can be used to accurately predict the axial 

distribution of fluidized bed density for both single and binary mixtures of solid particles. 

Although a few scattering may be observed in this correlation, a more accurate and reliable way 

for calculating the axial distribution of bed density for ADMFB is seen to exist.  
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Figure 7.10 Comparison of fluidized bed densities with various single particles calculated by Eq. 

(7.11) with the experimental data. 
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Figure 7.11 Comparison of fluidized bed densities with various binary mixtures of solid particles 

calculated by Eq. (7.11) with the experimental data. 
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7.5 Conclusion 

Knowledge of the distribution of bed density is crucial for the Air Dense Medium Fluidized Bed 

operation. Experimental evidences reveal that a comparable lower density is obtained at the 

bottom of fluidized bed with various single particles, whereas the bed density at the upper part 

remains almost consistent. The average bed density decreases with the increasing of excess gas 

velocity, but the influence of excess gas velocity was found to have definite effects on the 

tendency of axial density distribution. Moreover, the particle composition of binary mixtures 

have a significant influence on the axial density distribution due to the variation of axial particle 

distribution of mixture solid particles. An equation has been derived to predict the bed density 

distribution in the ADMFB based on the modified two-phase theory, and can be estimated by 

𝜌𝑏𝑒𝑑 = (1 − 𝜀𝑚𝑓)(𝜌𝑝 − 𝜌𝑔) [1 −
1.72𝐴𝑟−0.133(𝑈𝑔 − 𝑈𝑚𝑓)

0.024

1 + 1.3(ℎ + 4𝐴𝐷
0.5)(𝑈𝑔 − 𝑈𝑚𝑓)

−0.8]  + 𝜌𝑔  

and it requires knowledge of the excess gas velocity, and properties of solid particles and gas. 

The proposed equation has been verified by various single and binary mixtures of Geldart Group 

B and/or D particles at different excess gas velocities.  
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Nomenclature  

𝐴                 cross-sectional area of the fluidized bed, m2 

𝐴𝑏               bed cross-sectional area occupied by bubble phase, m2 

𝐴𝑑               bed cross-sectional area occupied by dense phase, m2 

𝐴𝐷               area of each orifice in perforated plate distributor, m2 

𝐴𝑟               Archimedes number of particle, kg/m 

𝑑𝑝               mean diameter of solid particles, m 

𝐷𝑒               volume-equivalent bubble diameter, m 

𝐺𝑏               volumetic bubble flow rate, m3/s 

𝑔                 gravitational acceleration, m/s2 

ℎ                 height above the bed distributor, m 

𝑈𝑏               rise velocity of gas bubbles, m/s 

𝑈𝑔               superficial gas velocity, m/s 

𝑈𝑚𝑓             minimum fluidization velocity, m/s 

𝑌                 correction factor for modified two-phase theory, dimensionless 

Greek letters 

𝜇                 viscosity of gas fluid, Pa.s 

𝜀𝑚𝑓             bed voidage at minimum fluidization state, dimensionless 

𝜌𝑏𝑒𝑑           density of fluidized bed, kg/m3 

𝜌𝑏               density of bubble phase, kg/m3 

𝜌𝑑               density of dense phase, kg/m3 

𝜌𝑔               density of gas fluid, kg/m3 

𝜌𝑝               density of solid particles, kg/m3 
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CHAPTER 8 

DRY COAL BENEFICIATION BY THE SEMI-INDUSTRIAL AIR 

DENSE MEDIUM FLUIDIZED BED WITH BINARY MIXTURES 

OF MAGNETITE AND FINE COAL PARTICLES  

Air Dense Medium Fluidized Bed (ADMFB) is deemed to be one of the most efficient methods 

for dry coal beneficiation. In the present work, a semi-industrial ADMFB system in continuous 

operation was utilized to study the effects of operating gas velocity, feed coal size, and mixture 

composition of medium particles on the coal beneficiation in industrial practice. Binary mixtures 

of magnetite and fine coal particles were used as the medium material, and four different feed 

coal samples with the size ranges of – 50 + 25, – 25 + 13, – 13 + 6, and – 6 + 2 mm were tested 

individually. The experimental results showed that the influence of excess gas velocity on the 

dry coal separation is relatively small in the lower flow rates. The separation density and 

probable error increase with the decreasing of feed coal size, regardless of the type of feed coal. 

The separation density can be continually reduced by further increasing the fraction of fine coal 

in the medium material, with the compromise of the increased probable error. Moreover, the ash 

content and calorific value of – 50 + 6 mm coarse coal can be effectively upgraded, but the 

beneficiation of – 6 + 2 mm fine coal was less efficient. 

8.1 Introduction 

Coal is one of the most important and available energy sources, which plays a significant role in 

the economic development of many countries all around the world (BP statistical review, 2017). 

In general, raw coal needs removal of ash-forming (inorganics) impurities through the coal 

beneficiation process, which can upgrade the carbon concentration, reduce the environmental 

impact of emissions, and decrease the transportation weight and waste disposal expenses 

(Lockhart, 1984; Houwlingen et al., 2004; Dwari and Rao, 2007). Air Dense Medium Fluidized 

Bed (ADMFB) is well known to be one of the most efficient methods for dry coal beneficiation, 

which utilizes the pseudo-fluid behavior of gas-solid fluidization to achieve the coal separation 

as per their densities (Sahu et al., 2009; Mohanta et al., 2013; Chen and Yang, 2003; Zhao et al., 
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2011). In the ADMFB, the clean coal with comparatively less density will float on the top of the 

fluidized bed, whereas the gangue product with heavier density will settle towards the bottom. 

The fluidization characteristics and basic principles of the ADMFB can be found in the literature 

(Luo and Chen, 2001; Wei and Chen, 2003; Mohanta et al., 2011; Chikerma and Moys, 2012). 

This technology has the advantages of excluding process water with comparable separation 

performance compared to the hydraulic methods (Sahan and Kozanoglu, 1997; Chen and Wei, 

2003; Firdaus et al., 2012), which provides an efficient way for coal beneficiation in arid and 

area with water shortage. Furthermore, the ADMFB technology is widely applicable and has 

already extended to the fields of iron/copper ore beneficiation (Oshitani et al., 2013; Franks et al., 

2013; Franks et al., 2015), agricultural products cleaning (Zaltman et al., 1983; Zaltman et al., 

1985; Zaltman et al., 1987), municipal solid waste classification (Sekito et al., 2006; Sekito et al., 

2006; Yoshida et al., 2010), etc.  

The ADMFB method was proposed firstly by T. Fraser (Fraser, 1926) for dry coal beneficiation 

using sand particles as medium material, with the bed density ranging from 1.2 to 1.4 g/cm3, 

followed by elsewhere (Dotson, 1959; Lohn, 1971; Weintraub et al., 1979; Zinov’ev, 1976; 

Mizrach et al., 1984; Rios et al., 1986) attempts to investigate its hydrodynamic characteristics 

and separation properties. Despite the advantages and practicality of this technology, challenges 

still remain when applied to industrial practice. As pointed out, the performance of coal 

beneficiation in ADMFB is highly dependent on fluidized bed conditions and feed coal 

properties (Chen and Yang, 2003; Luo and Chen, 2001; Mohanta et al., 2011; Chikerma and 

Moys, 2012). The separation mechanism of the ADMFB is not exactly the same as hydraulic 

dense medium separation, mainly due to the upward gas bubbles and disorderly solids flow in the 

fluidized bed (Mohanta et al., 2013; Mohanta et al., 2011). It is hereby that the superficial gas 

velocity which gives rise to the bubbling behavior in the fluidized bed will play an important role 

in determining the coal beneficiation. Additionally, the feed coal objects with smaller size or 

with relatively less difference in specific gravity are difficult to separate because of significant 

fluctuations of bed density caused by the fluidization behavior (Chen and Yang, 2003; Mohanta 

et al., 2011; Sahan and Kozanoglu, 1997). Therefore, the process variables such as operating gas 

velocity and feed coal properties should be carefully investigated, especially for industrial 

applications.  
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Since the ADMFB is a gravity-based separation method, it is therefore anticipated that the bed 

density is to be a critical parameter for dry coal beneficiation. As is known that the bed density 

of gas-solid fluidization is taken as that of the mass of solid particles per unit volume of 

suspension (Zinov’ev, 1976), and thus the particle properties and composition of medium 

materials are the key points for control the bed density. In order to obtain the desired bed density, 

various monodispersed and mixtures of solid particles have been processed as the medium 

material for bed density adjustment (Wei et al., 2003; Firdaus et al., 2012; Oshitani et al., 2013; 

Franks et al., 2013; Franks et al., 2015; Zaltman et al., 1983; Sekito et al., 2006; Weintraub et al., 

1979; Luo and Chen, 2001, Luo et al., 2010; Yoshida et al., 2011; Zhao et al., 2012). Among 

these, the binary mixtures of magnetite and fine coal particles are deemed to be the most 

appropriate and readily available medium materials (Sahu et al., 2009; Mohanta et al., 2013). 

Magnetite particles are chosen as they can be easily recycled using their magnetic property, thus 

avoiding medium particle loss. Fine coal particles are readily available, and a certain amount of 

fine coal will also be automatically generated during the coal separation process. Furthermore, 

the bed density of the ADMFB with the binary mixtures of magnetite and fine coal particles can 

be manipulated to be between 1.3 g/cm3 and 2.2 g/cm3 (Luo and Chen, 2001; Zhao et al., 2012), 

which is the desirable condition for efficient coal beneficiation. A number of researchers (Lohn, 

1971; Weintraub et al., 1979; Luo and Chen, 2001, Zhao et al., 2012; Tang et al., 2009) have 

carried out experiments to investigate the separation properties of the ADMFB with binary 

mixtures. However, almost all these experiments were conducted in batch or continuous 

laboratory devices, and it has been rarely investigated and not further confirmed by industrial 

practices.  

It is the purpose of the present work to determine the performance of coal beneficiation in the 

semi-industrial Air Dense Medium Fluidized Bed system with the binary mixtures of magnetite 

and fine coal particles. The influences of feed coal size, operating gas velocity, and particle 

composition of binary mixtures on the coal separation performance were experimentally studied 

with the continuous processing. Moreover, the variations of ash content and calorific value of the 

separated coal samples were also examined as part of the analysis. The experimental results of 

dry coal beneficiation in the semi-industrial ADMFB system were compared with the available 

data in the batch or continuous laboratory equipment stated in the literature. 
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8.2 Experimental 

8.2.1 Air Dense Medium Fluidized Bed system 

The schematic diagram of dry coal beneficiation in the Air Dense Medium Fluidized Bed is 

shown in Figure 8.1. Feed coal is introduced from the top of the fluidized bed separator. In the 

ADMFB, feed coal is separated according to their densities with respect to the density of the gas-

solid fluidized bed. After separation, the clean coal with relative less density floats on the top 

surface of fluidized bed, whereas the gangue with higher density sinks to the bottom. Then, the 

separated coal products are transported to different sides of the fluidized bed and are discharged. 

During coal separation, the medium particles are continually added to the fluidized bed to 

maintain a stable fluidization condition, and the fine dust generated during operation is collected 

to prevent dust pollution.  

All the experiments were conducted in a semi-industrial ADMFB system, as can be seen in 

Figure 8.2. The system consists of mainly five parts: (1) Air supply; (2) Fluidized bed separator. 

(3) Product transportation; (4) Medium particle recovery; (5) Dust collection. The size of the 

fluidized bed separator is: Length × Width × Depth = 10000 mm × 350 mm× 1200 mm. The 

processing capacity of this ADMFB system is 5 ~ 10 t/h. For separating each ton of feed coal, 

the power consumption and medium particle loss are 1.5 kw.h/t and 0.3 ~ 0.5 kg/t, respectively. 

Furthermore, the detailed flowsheet of the coal beneficiation process in the ADMFB can be 

found elsewhere (Luo and Chen, 2001). 
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Figure 8.1 The schematic diagram of dry coal beneficiation process in Air Dense Medium Fluidized 

Bed system. 

 

 

Figure 8.2 A semi-industrial Air Dense Medium Fluidized Bed system for dry coal beneficiation. 
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8.2.2 The properties of medium materials and feed coal samples 

Binary mixtures of magnetite and fine coal particles were used as medium material in the semi-

industrial ADMFB system. Magnetite particles were prepared from a sample of mineral 

magnetite obtained from Zhongtie Industry & Trade Co., Ltd. Fine coal particles were collected 

from Lijiahao Coal Mine, Ltd. Particle true densities of magnetite and fine coal are 4600 kg/m3 

and 1500 kg/m3, respectively. To avoid particle segregation during fluidization, the medium 

particles with relatively wide size distribution were used (Luo and Chen, 2001). Magnetite 

particles, which have been found to be the appropriate material in the ADMFB (Lockhart, 1984; 

Houwelingen et al., 2004; Dwari et al., 2007; Sahu et al., 2009; Mohanta et al., 2013; Chen and 

Yang, 2003), were considered as the core material. For the bed density adjustment, fine coal 

particles were mixed with magnetite in quantities to produce two types of binary mixtures with 

the fine coal content of wt.12.08% and wt.20.88%, respectively. For convenience, the two types 

of binary mixtures are named as binary medium A and B. The mass distribution of binary 

medium A and B are shown in Tables 8.1 and 8.2, respectively.  

Four coal samples were collected from four different collieries namely Changcun, Lijiahao, Jiahe, 

and Hecaogou Coal Mine in China. All of these raw coals belong to bituminous coal. The 

properties of these coal samples are shown in Table 8.3. Each coal sample was subjected to 

crushing and until the coal size below 50 mm. The coal sample was then classified by screening 

into four different size fractions: – 50 + 25, – 25 + 13, – 13 + 6, and – 6 + 2 mm. As many 

authors (Zaltman et al., 1985; Zaltman et al., 1987; Sekito et al., 2006; Sekito et al., 2006; 

Yoshida et al., 2010; Fraser, 1926) suggested, ADMFB technology experiences many difficulties 

and complications for fine coal beneficiation, thus fine coal particles below 2 mm were excluded 

in the present work, which is also necessary to maintain a stable fine coal content in the medium 

material. The mass distribution and ash content of the classified coal product samples are shown 

in Table 8.4. 
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Table 8.1. The mass distribution of binary medium A. 

Size fraction (mm) 

Mass fraction of each 

particle (%) 

Mass fraction of medium 

sample (%) 

Mass fraction of each size 

fraction (%) 

Magnetite Fine coal Magnetite Fine coal Magnetite Fine coal 

0.710 – 1.000 0.95  19.50  0.84  2.36  26.24 73.76 

0.425 – 0.710 5.86  13.43  5.15  1.62  76.05 23.95 

0.300 – 0.425 19.06  22.25  16.75  2.69  86.17 13.83 

0.150 – 0.300 26.44  13.55  23.25  1.64  93.42 6.58 

0.074 – 0.150 41.04  22.53  36.08  2.72  92.98 7.02 

0.045 – 0.074 5.89  5.10  5.18  0.62  89.37 10.63 

0 – 0.045 0.76  3.64  0.67  0.44  60.26 39.74 

Total 100.00  100.00  87.92  12.08  87.92 12.08 

 

Table 8.2. The mass distribution of binary medium B. 

Size fraction (mm) 

Mass fraction of each 

particle (%) 

Mass fraction of medium 

sample (%) 

Mass fraction of each size 

fraction (%) 

Magnetite Fine coal Magnetite Fine coal Magnetite Fine coal 

0.710 – 1.000 0.82 23.23 0.65 4.85 11.80 88.20 

0.425 – 0.710 5.70 12.90 4.51 2.69 62.61 37.39 

0.300 – 0.425 19.17 17.14 15.17 3.58 80.91 19.09 

0.150 – 0.300 27.56 20.72 21.81 4.33 83.44 16.56 

0.074 – 0.150 40.39 17.79 31.96 3.71 89.59 10.41 

0.045 – 0.074 5.45 5.53 4.31 1.16 78.88 21.12 

0 – 0.045 0.90 2.68 0.72 0.56 56.13 43.87 

Total 100 100 79.12 20.88 79.12 20.88 

 

Table 8.3. The properties of coal samples. 

Colliery 
Ash content  

(%) 

Calorific value 

(MJ/kg) 

Sulfur content  

(%) 
Coal type 

Changcun Mine 19.06  28.86  0.56  Meager Lean coal 

Lijiahao Mine 25.25  19.50  0.70  Non-caking coal 

Jiahe Mine 31.55  24.15  1.28  Lean coal 

Hecaogou Mine 34.26  21.77  0.88  Long flame coal 
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Table 8.4. Mass distribution and ash content of the classified coal samples. 

Size fraction 

(mm) 

Changcun mine Lijiahao mine Jiahe mine Hecaogou mine 

wt.% ash (%) wt.% ash (%) wt.% ash (%) wt.% ash (%) 

- 50 + 25 29.02  15.02  24.66  29.90  29.48  30.60  24.45  40.42  

- 25 + 13 26.44  17.50  23.14  28.99  27.88  30.71  29.61  38.00  

- 13 + 6 23.66  20.90  19.65  22.35  19.62  31.93  27.76  34.38  

- 6 + 2 20.88  20.83  32.55  22.97  23.02  30.83  18.19  29.18  

 Total 100 18.28  100 25.95  100 30.94  100 35.98  

 

8.2.3 Experimental procedure 

Binary mixtures of magnetite and fine coal particles were loaded into the semi-industrial 

ADMFB system up to a static bed height of 40 cm. After being filtered, ambient air was 

compressed and sent to fluidize the medium particles through a porous plastic distributor. The air 

flowrate was adjusted by the gas valve and measured by a vortex flowmeter. About 5 ~ 10 min 

was allowed to reach to steady state for the coal beneficiation. After stable fluidization, raw coal 

was introduced to the ADMFB system and was separated based on the density difference. After 

separation, the clean coal and gangue were transported to different sides of the fluidized bed and 

discharged. Samples of clean coal and gangue products were collected and subjected to float-sink 

analysis, using a range of liquid density from 1.3 to 2.0 g/cm3 with the interval of 0.1 g/cm3. The 

partition curve was used to evaluate the performance of coal beneficiation by producing the 

separation density and probable error. The separation density corresponds to the density at 

partition coefficient of 50% (Mohanta et al., 2011). The probable error which indicates the 

accuracy of gravity-based separation is defined by
75% 25%( ) / 2PE  = − , where ρ75% and ρ25% are 

the densities at the partition coefficients of 75% and 25%, respectively (Luo and Chen, 2001). A 

perfect gravity-based separation results in a vertical partition curve with an Ep value equals to 

zero, and the increasing Ep generally represents the decreasing of separation accuracy. Moreover, 

the variation of ash content and calorific value of clean coal and gangue samples were 

determined as parts of the analysis. 
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8.3 Results and discussion 

8.3.1 The effect of operating gas velocity 

The operating gas velocity is commonly expressed in terms of excess gas velocity, which 

represents the superficial gas velocity over the minimum fluidization velocity. In the present 

work, the influence of excess gas velocity on the separation performance of Lijiahao coal were 

investigated in semi-industrial ADMFB with binary medium A. The partition curves of the sunk 

products after coal separation at various excess gas velocities are shown in Figure 8.3, and the 

corresponding separation density and probable error are plotted against the excess gas velocity in 

Figures 8.4 and 8.5, respectively. As can be observed that, for – 50 + 2 mm Lijiahao coal, an 

increase in excess gas velocity from 2 to 8 cm/s does not cause significant change in the 

separation density and probable error. The results demonstrated that the effectiveness of coal 

separation in the ADMFB is not sensitive to the excess gas velocity in relatively low flow rates, 

which is important as the range of operating gas velocity is comparatively wide for a consistent 

coal separation performance, rather than an optimum operating gas velocity (Chen and Yang, 

2003; Chen and Wei, 2003). According to the two-phase theory of fluidization (Toomey and 

Johnstone, 1952), almost all the gas flow in excess of that required for the incipient fluidization 

will go to the bubble phase, and the dense phase remains almost unchanged with the increasing 

of excess gas velocity. Meanwhile, the separation of immersed objects in a bubbling fluidized 

bed is primarily determined by the dense phase rather than the bubble phase (Korolev et al., 1971; 

Nguyen and Grace, 1978; Rees et al., 2005), so that the performance of coal beneficiation in the 

ADMFB remains almost unchanged with the increasing of excess gas velocity in relatively low 

flow rates is reasonable. 
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Figure 8.3 The partition curves of sunk products of Lijiahao coals at various excess gas velocities. 
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Figure 8.4 The effect of excess gas velocity on the separation density. 
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Figure 8.5 The effect of excess gas velocity on the probable error. 

 

8.3.2 The effect of feed coal size 

Experiments were performed individually with – 50 + 25, – 25 + 13, – 13 + 6, and – 6 + 2 mm 

size fractions of four different coal samples in a semi-industrial ADMFB with binary medium A, 

and the excess gas velocity was 4 cm/s. The partition curves of the sunk products after coal 

separation in ADMFB are shown in Figure 8.6, and the corresponding probable error and 

separation density are summarized as a function of feed coal size in Figure 8.7. As can be 

observed that there is an almost vertical partition curve for – 50 + 25 mm coal with an Ep value 

approximately equal to 0.03 g/cm3, which shows an excellent separation performance. For – 25 + 

13 mm and – 13 + 6 mm coal, the Ep values are around 0.07 g/cm3 and 0.10 g/cm3, respectively. 

However, for - 6 + 2 mm coal, the Ep value was not obtained due to its partition coefficient of 75% 

being unavailable. Therefore, it can be concluded that the probable error increases with 

decreasing feed coal size, independent of the types of coal, indicating a decrease in degree of 

separation accuracy. The same tendency has also been claimed elsewhere in the bench or 

continuous laboratory apparatus (Zaltman et al., 1987; Sekito et al., 2006; Sekito et al., 2006; 

Yoshida et al, 2010). This may be due to the influence of rising gas bubbles: small coal particles 

may fall into the bubbles during beneficiation. Moreover, the separation density also shows an 
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increasing trend with the decreasing of feed coal size. In details, the separation densities of – 50 

+ 25, – 25 + 13, – 13 + 6, and – 6 + 2 mm feed coal particles are around 1.85, 1.90, 1.95, and 

2.05 g/cm3, respectively. It should be mentioned that with an increase in separation density there 

will be more impurities (ash-forming matters) remain in the float products, which may lower the 

quality of clean coal.  

The partition coefficients of the sunk products above 2.0 g/cm3 and below 1.3 g/cm3 are 

illustrated in Figure 8.8. It can be seen that the partition coefficient above 2.0 g/cm3 decreases 

sharply with the decreasing of feed coal size, which leads to a significant increase in impure 

content in the float products. Furthermore, there is an increase of partition coefficient below 1.3 

g/cm3 with the decreasing of feed coal size, and thus the loss of clean coal in the sink products 

increases as the feed coal size decreases. This could be attributed to the bubbling behavior and 

back-mixing of medium particles in the ADMFB (Luo and Chen, 2001; Mohanta et al., 2011), 

which may prevent the efficient separation of smaller coal particles. As a consequence, the 

efficiency of coal separation in ADMFB decreases with decreasing feed coal size, not only 

because of the probable error and separation density increase, but also due to the variation of 

partition coefficients above 2.0 g/cm3 and below 1.3 g/cm3. 
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Figure 8.6 The effect of feed coal size on partition curves of sunk products.  
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Figure 8.7 The effect of feed coal size on the separation density and probable error. 
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Figure 8.8 The partition coefficients of + 2.0 g/cm3 and – 1.3 g/cm3 coal as a function of feed coal 

size. 
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8.3.3 The effect of particle composition of binary mixtures   

The particle composition of medium material is the key factor that influences the bed density, 

which may further affect the effectiveness of dry coal beneficiation in the ADMFB. In this study, 

the comparison of the separation performance of Hecaogou coal in the semi-industrial ADMFB 

with two types of binary medium samples was experimentally investigated. The partition curves 

of the sunk products after coal separation by the ADMFB with binary medium A and B are 

shown in Figure 8.9, and the corresponding separation density and probable error are 

summarized in Figure 8.10. As can be observed that the separation density decreases 

approximately 0.05 g/cm3 using binary medium B comparing to binary medium A for all size 

fractions of Hecaogou coal, whereas the probable error increases by 0.03 g/cm3. This may be 

explained by an increase in non-uniform axial distribution of binary mixtures of solid particles 

with increasing fine coal content (Luo and Chen, 2001; Tang et al., 2009). It should be 

mentioned that the mass fractions of fine coal particles in binary medium A and B are 12.08% 

and 20.88%, respectively. Therefore, it can be concluded that the lower separation density can be 

achieved by further increasing the fraction of fine coal particles in the medium material, while 

compromising the increased probable error. 
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Figure 8.9 The partition curves of sunk products of Hecaogou coal by two types of binary mixtures 

of solid particles. 
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Figure 8.10 Comparison of the separation density and probable error by two types of binary 

mixtures of solid particles. 

8.3.4 The performance of coal beneficiation in semi-industrial ADMFB 

The ash content and calorific value are important criteria that reflect the quality of coal products 

and are generally used to evaluate the performance of the coal beneficiation process. Figure 8.11 

shows the ash content variation of different coal samples after dry separation by the semi-

industrial ADMFB. As can be observed that, for – 50 + 6 mm coarse coal, there is a significant 

increase of ash content in the sink products; as a result, the ash content of float products 

decreases significantly. To be exact, higher ash contents, around 59.6 ~ 89.1%, can be achieved 

in the sink products of coarse coal. However, for – 6 + 2 mm fine coal, the increase of ash 

content in sink products is comparatively less than that of coarse coal, and thus the decrement of 

ash content in the float products is very small. In detail, the ash contents of 39.8 ~ 46.8% are 

obtained in the sink products of fine coal. Moreover, it can also be seen from Fig. 8 that the 

decrement of ash content in the float products of Changcun and Lijiahao coals is less than that of 

Jiahe and Hecaogou coals, which may be explained with an increase in mass fraction of ash-

forming matters in the Jiahe and Hecaogou coals.  

Figure 8.12 shows the calorific concentration of different coal samples after dry separation by 

the semi-industrial ADMFB. For – 50 + 6 mm coarse coal, the calorific value of the sink 
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products decreases dramatically, and a significant calorific concentration appears in the float 

products. For – 6 + 2 mm fine coal, the decrement of calorific value in sink products is relatively 

less than that of the coarse coal, and thus the calorific value in float products is very close to raw 

coal. Furthermore, the calorific concentration in the float products of Changcun and Lijiahao 

coals is less than that of Jiahe and Hecaogou coals, which may also be explained by an increase 

in mass fraction of ash-forming matters in the Jiahe and Hecaogou coals. Consequently, efficient 

coal beneficiation can be achieved for – 50 + 6 mm coarse coal in the semi-industrial ADMFB, 

whereas the beneficiation of – 6 + 2 mm fine coal is relatively less efficient. This is reasonable; 

because the sharpness of partition curves of – 6 + 2 mm fine coal is very small compared to that 

of – 50 + 6 mm coarse coal as can be seen from Figure 8.6. 
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Figure 8.11 The variation of ash content of different feed coals with different coal size. 
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Figure 8.12 The variation of calorific value of different feed coals with different coal size. 

 

8.3.5 Comparison with the literature data 

Summary of data available in literature for dry coal beneficiation by the batch or continuous 

laboratory ADMFB is shown in Table 8.5 in comparison to the experimental results obtained 

from the present work by the semi-industrial ADMFB system. As can be observed that the 

effectiveness of coal separation in the semi-industrial ADMFB is almost consistent with those 

separation results in the literature. In detail, the general trend of decreasing separation efficiency 

(including the increasing of separation density and probable error) with decreasing feed coal size 

is verified (Firdaus et al., 2012; Oshitani et al., 2013; Franks et al., 2013; Franks et al., 2015). It 

is also confirmed that the separation density can be adjusted by varying the particle composition 
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of medium material (Luo and Chen, 2001; Tang et al., 2009). However, for the binary medium of 

magnetite and fine coal particles, the lower separation density can be achieved by further 

increasing the fraction of fine coal with the expense of the increased probable error. Additionally, 

the separation density in the semi-industrial ADMFB is relatively higher than that in the 

laboratory devices, which may be due to the influence of continuous coal separation processing. 

In conclusion, the sink coal products with extremely high ash content and low calorific value can 

be achieved by ADMFB; as a result, the quality of float coal products will be upgraded 

significantly, which leads to a good coal beneficiation performance. 
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Table 8.5 Literature summary of dry coal beneficiation by different Air Dense Medium Fluidized Bed systems. 

Reference 

Bed 

cross-

section 

(cm) 

Medium materials Feed coal 

H 

(cm) 

ρsep  

(g/cm³)  
Ep 

(g/cm³) 
Ash separation performance 

Type 
ρp 

(kg/m3
) 

dp 

(um) 
Type 

dp 

(mm) 

Choung J. et 

al., 2006 
4 Magnetite 4600 

45~106 
Sub- 

bituminous 

3.35~5.6 5 1.50 0.03 Feed coal = 14%, 21% 

45~75 1.00~3.35 2.6 - - Clean coal = 6%, 7% 

45~53 0.42~1.00 2.6 1.77 0.10 Reject = 86%, 54% 

Oshitani J. et 

al. , 2004 
30×22 

Zircon 4650 90~250 

Coal 20~45 20 

1.55 0.05 Feed coal = 24.6%, 

CaCO3 2680 300~425 1.47 0.04 Clean coal = 10% 
   1.42 0.05 Reject = 60% 

Firdaus M. et 
al., 2012 

29 

   

Bituminous 

coal 

5~10 15 1.46 0.19  
Zircon 4700 238 10~14 15 1.59 0.01 Feed coal = 22% 

   14~20 15 1.50 0.02 Clean coal = 9.94% 
   20~25 15 1.55 0.02 Reject = 70% 

Silica  2900 269 25~31 15 1.72 0.08  

Sahu A. K. et 
al., 2011 

    

Noncoking 6~25 40.3 1.68 0.12 

Feed coal = 40% 

150×10.8 Magnetite 4800 0.5~110 Clean coal = 32~35% 
    

Reject = 48~61% 

Azimi E. et al., 
2017 

    

Sub- 

bituminous 

2.8~5.6  20 - - Feed coal = 31.29%, 30.14%, 

240×98 Silica  2600 355~500     
Clean coal = 20.37%, 22.09% 

    5.6~13.2 20 - - Reject = 73.32%, 77.98% 

Luo Z. F. et 
al., 2001 

500×200 

Magnetite 4600 0~500 

Coal 6~50 31.5 

1.44 0.06 Feed coal = 45.57%, 39.11% 
     

Clean coal = 18.21%, 16.35% 

Fine coal 1500 0~1000 1.76 0.05 Reject = 63.81%, 67.5% 
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8.4 Conclusion 

Dry coal beneficiation by the semi-industrial ADMFB with binary medium of magnetite and fine 

coal particles was experimentally investigated for four different coals from Changcun, Lijiahao, 

Jiahe, and Hecaogou Coal Mines in China. The experimental results demonstrate that the 

performance of coal separation in the ADMFB is not sensitive to the excess gas velocity at the 

relatively low flow rates, and thus the range of operating gas velocity can be comparatively wide 

to maintain consistent coal beneficiation, rather than an optimal operating gas velocity. It is also 

found that the separation density and probable error increase with the decreasing of feed coal 

size, regardless the types of feed coal, indicating that the separation efficiency decreases as the 

feed coal size decreases. Moreover, the lower separation density in the ADMFB can be achieved 

by further increasing the fraction of fine coal particles in the medium materials, but with 

compromise of the decrease in separation accuracy. The separation results show that, for – 50 + 6 

mm coarse coal, there are considerable increase of ash content and decrease of calorific value in 

the sink coal products, and thus the quality of float coal products can be upgraded significantly, 

whereas the beneficiation of – 6 + 2 mm fine coal is relatively less efficient. 
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Nomenclature  

𝑑𝑝              particle diameter, m 

𝐸𝑝              probable error, kg/m3 

𝐻               fluidized bed height, m 

𝑃                partition coefficient, % 

𝑄                calorific value, MJ/kg 

𝑈𝑔              superficial gas velocity, m/s 

𝑈𝑚𝑓            minimum fluidization velocity, m/s 

𝑤𝑡.             weight fraction, % 

Greek letters 

𝜌𝑝               particle density, kg/m3 

𝜌𝑠𝑒𝑝            separation density, kg/m3 

𝜌𝑐𝑜𝑎𝑙           coal density, kg/m3 

𝜌50%           density at the partition coefficient of 50%, kg/m3 

∅𝑐𝑜𝑎𝑙          feed coal size, m 
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CHAPTER 9 

CONCLUSIONS AND RECOMMENDATIONS 

As a newly developed method, the Air Dense Medium Fluidized Bed (ADMFB) with binary 

mixtures for efficient dry coal beneficiation has been proposed and investigated in this work. 

Based on the experimental results so far, conclusions for the present study and recommendations 

for the future work are addressed as following. 

9.1 Conclusions 

The fluidization characteristics of the Air Dense Medium Fluidized Bed system containing single 

or binary mixtures of solid particles for dry coal beneficiation have been studied theoretically 

and experimentally, with the consideration of minimum fluidization velocity, two-phase theory 

of fluidization, mixing and segregation behavior, and bed density distribution. The efficient coal 

dry beneficiation has been successfully verified in a semi-industrial ADMFB system with binary 

mixtures of magnetite and fine coal particles as medium materials.  

Minimum fluidization velocities of binary mixtures of magnetite and sand/gangue/coal particles 

were tested individually. When the volume fraction of magnetite is above 50%, the addition of 

sand/gangue/coal particles that is coarser than (or equal to) magnetite particles would not 

appreciably change the minimum fluidization velocity of binary mixtures. On the contrary, the 

minimum fluidization velocities varied significantly when the volume fraction of magnetite was 

below 50%. A new equation (Eq. (3.9)) was derived for estimating the minimum fluidization 

velocity of binary mixtures by extending the correlation proposed by Cheung et al. This 

modified equation only requires the additional knowledge of particle size ratio which is a basic 

parameter for characterizing a binary mixture. Almost all available experimental data were used 

to test the validity of this modified correlation, and it gave an overall standard deviations of 

17.85% and 7.14% for the experimental data in the literature and this work, respectively.  

The influence of bed inventory on the minimum fluidization velocity was carefully studied in an 

ADMFB due to the consideration of industrial practices. It was found that the measured 
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minimum fluidization velocities increased with increasing bed inventory regardless of the type of 

solid particles used. A new correlation (Eq.(4.18)) was derived for predicting the minimum 

fluidization velocity considering the bed inventory effect by extending the Wen and Yu equation. 

The proposed correlation only requires the knowledge of Archimedes number (Ar) and the bed 

pressure drop (△P), which can be easily obtained from the calculation of the particle bulk density 

and the static bed height before fluidization. This extended Wen and Yu equation is shown to 

well predict the minimum fluidization velocity reported by previous researchers and can be used 

to estimate the minimum fluidization velocity for both single and binary mixtures of solid 

particles for all practical purposes.  

The understanding of the two-phase theory is of great significance for the design and operation 

of ADMFB systems. In this work, the correction factor Y for the two-phase theory model was 

extensively studied for Geldart Group B and D particles which was generally used as medium 

particles in ADMFB systems. Experimental evidences indicated that the Y value increases with 

decreasing particle size or density and with the increase of excess gas velocity. An equation 

(Eq.(5.14)) was derived to predict the parameter Y for Geldart Group B and D particles. It 

requires the knowledge of Archimedes number (Ar) and the excess gas velocity (U - Umf), and 

gives an overall standard deviation of 19% for almost all available experimental data. The 

proposed correlation could lead to a modified two-phase theory model (Eq. (5.15)), which can be 

used to accurately estimate the distribution of gas flow between the dense and bubble phases in 

the bubbling fluidized bed with Geldart Group B and D particles.  

The evaluation of the mixing and segregation behavior for binary mixtures of medium particles 

in an ADMFB was carried out, and the results were interpreted in terms of axial solids 

distribution. It was observed that the particle segregation of binary mixtures becomes more 

evident with the increase of particle density ratio, and the mixing and segregation behavior is less 

sensitive to the changes in particle size ratio. Increasing both the excess gas velocity in a 

relatively lower range and the initial bed height above 15 cm did not cause any significant 

change in the mixing and segregation pattern for binary systems, which may give rise to broad 

conditions for the ADMFB operation. To achieve the bed density adjustment, a lower mass 

fraction of fine coal particles (< 10%) which will result in almost perfect mixing pattern is 



Chapter 9 

 

186 

 

recommended for raw coal dry beneficiation, due to the fine coal particles automatically being 

generated during the fluidized bed separation process.  

The distributions of bed density in an ADMFB system with both single and binary mixtures of 

medium particles were theoretically and experimentally studied. The experimental evidences 

revealed that a comparable lower density was obtained at the bottom of fluidized bed with 

various types of single particles, whereas the bed density at the upper part remained almost 

consistent. The average bed density decreased with the increasing of excess gas velocity, but the 

influence of excess gas velocity was found to have definite effects on the tendency of axial 

density distribution. Moreover, the particle composition of binary mixtures was found to have a 

significant influence on the bed density distribution due to the variation of axial particle 

distribution of solid particles. An new equation (Eq.(7.11)) was derived to predict the distribution 

of bed density in the ADMFB based on the modified two-phase theory proposed in this work. 

The proposed correlation was verified successfully by various single and binary mixtures of 

Geldart Group B/D particles at different excess gas velocities. 

Dry coal beneficiation performed by a semi-industrial ADMFB system with a binary medium of 

magnetite and fine coal particles was experimentally studied for four different types of raw coals 

from Changcun, Lijiahao, Jiahe, and Hecaogou Coal Mines in China. The results demonstrated 

that the performance of coal beneficiation in the ADMFB is not very sensitive to the excess gas 

velocity at the relatively low flow rates, and thus the range of operating gas velocity can be 

comparatively wide to maintain consistent coal beneficiation, rather than an optimal operating 

gas velocity. The separation density and probable error were found to increase with the 

decreasing of feed coal size, regardless the types of feed coal, indicating that the separation 

efficiency decreases as the feed coal size decreases. A lower separation density in the ADMFB 

could be achieved by further increasing the fine coal fraction in medium materials, but with 

compromise to the separation accuracy. Moreover, the semi-industrial results showed that, for 6 

~ 50 mm coarse coal, there were considerable increase of ash content and decrease of calorific 

value in gangue products, and thus the quality of clean coal products can be upgraded 

significantly, whereas the beneficiation of 2 ~ 6 mm fine coal was relatively less efficient. 

Finally, the newly developed technology of ADMFB with binary mixtures for efficient dry coal 

beneficiation has been successfully proposed and verified in this work.   
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9.2 Recommendations 

This dissertation provides comprehensive experimental results and theoretical understanding on 

the newly developed technology of the Air Dense Medium Fluidized Bed with binary mixtures 

of medium particles for efficient dry coal beneficiation. However, there are still some areas 

where further research is required.  

The current study only focuses on the ADMFB with lower bed heights (< 0.5 m), where the gas 

bubbling and solids movement are relatively stable. Future work can be extended to the ADMFB 

with a higher bed height to improve the separation efficiency and process capacity, as well as 

achieve the dry beneficiation of extra-large coal ores (> 50 mm).  

Particle properties of medium materials have been shown to play a very important role in 

determining separation properties of ADMFB systems. Future work with more types of binary 

mixtures and varying particle size distribution are needed to broaden the knowledge of the 

particle property effects on the dry gravity separation.  

The visualization techniques have been applied to many fluidized bed operations, where the 

solids distribution and bubbling behavior are relatively stable. In future works, high-speed 

cameras can be used to detect the mixing and segregation pattern of binary systems, as well as 

the behavior of coal separation in the ADMFB.  

Since the ADMFB with a binary mixture is a general method for dry gravity separation with the 

advantage of free bed density adjustment, it can be further researched and exploited to various 

applications including: 

• Dry gravity separation of mineral ores, such as iron, copper, and so on. 

• Municipal solid waste classification. 

• Agriculture products cleaning.  

• Chemical reaction processes optimization.  
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Appendix A1. Curves for the improved Cheng Equation. 
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Figure (1). The example curves calculated by Cheung Equation with different n values. 
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Figure (2). The calculated n value by Eq. (3.8) at different particle diameter ratios. 
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Appendix A2. Modified two-phase theory for binary mixtures. 
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Figure (3). Fluidized bed expansions of MS binary mixtures at different excess gas velocities. 
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Figure (4). Fluidized bed expansions of MG binary mixtures at different excess gas velocities. 
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Figure (5). Fluidized bed expansions of MC binary mixtures at different excess gas velocities. 
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Table (1). Different equations for binary systems. 

Eq. (1) Eq. (2) Eq. (3) Eq. (4) 
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Table (2). Summary of error analysis of various equations for MS binary mixtures.  

Formula M232-S224 M232-S368 M232-S485 M232-S636 M232-S807 

Eq. (1) 8.13 10.65 13.76 19.34 29.55 

Eq. (2) 8.27 10.5 13.23 19.01 28.99 

Eq. (3) 8.32 10.38 11.06 18.22 23.64 

Eq. (4) 8.11 10.57 14.71 22.05 35.75 

 

Table (3). Summary of error analysis of various equations for MG binary mixtures.  

Formula M232-G215 M232-G372 M232-G486 M232-G625 M232-G808 

Eq. (1) 10.63 14.66 22.08 19.20 31.66 

Eq. (2) 9.95 13.82 20.94 18.44 30.47 

Eq. (3) 9.78 13.58 18.78 17.24 24.52 

Eq. (4) 10.89 14.08 22.08 20.74 36.15 
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Table (4). Summary of error analysis of various equations for MC binary mixtures.  

Formula M232-C245 M232-C396 M232-C460 M232-C617 M232-C795 

Eq. (1) 11.87 29.93 40.43 37.87 29.55 

Eq. (2) 12.55 25.37 35.78 33.66 28.99 

Eq. (3) 12.46 26.22 35.25 29.07 23.64 

Eq. (4) 11.93 26.55 37.04 35.71 35.75 
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Figure (6). Error analysis of the modified two-phase theory model for binary mixtures of 

magnetite and sand/gangue/coal particles. 
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Appendix A3. Flow sheet of industrial ADMFB system. 
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Figure (7). The flow sheet of Air Dense Medium Fluidized Bed for dry coal beneficiation. 
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