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Abstract

In the information theory, the channel capacity states the maximum amount of in
formation which can be reliably transmitted over the communication channel. In 
the specific case of multiple-input multiple-output (MIMO) wireless systems, it is well 
recognized that the instantaneous capacity of MIMO systems is a random Gaussian 
process. Time variation of the capacity leads to the outages at instances when it 
falls below the transmission rate. The frequency of such events is known as outage 
probability.

The cross-layer approach proposed in this work focuses on the effects of MIMO 
capacity outages on the network performance, providing a joint optimization of the 
MIMO communication system. For a constant rate transmission, the outage prob
ability sensibly affects the amount of information correctly received at destination. 
Theoretically, the limit of the ergodic capacity in MIMO time-variant channels can be 
achieved by adapting the transmission rate to the capacity variation. With an accu
rate channel state information, the capacity evolution can be predicted by a suitable 
autoregressive model based on the capacity time correlation. Taking into consider
ation the joint effects of channel outage at the physical layer and buffer overflow at 
the medium access control (MAC) layer, the optimal transmission strategy is derived 
analytically through the Markov decision processes (MDP) theory. The adaptive pol
icy obtained by MDP is optimal and maximizes the amount of information correctly 
received at the destination MAC layer (throughput of the system). Analytical results 
demonstrate the significant improvements of the optimal variable rate strategy com
pared to a constant transmission rate strategy, in terms of both system throughput 
and probability of data loss.

in



Table of Contents

Certificate of Examination ............................................................................  ii

A b s tr a c t ..................................................................................................................  iii

Acknowledgm ents..................................................................................................  iv

List of ta b le s ........................................................................................................  ix

List of f ig u r e s ..................................................................................................... x

List of A cro n y m s..................................................................................................xiv

1 In tro d u ctio n ...................................................................................................  1
1.1 Basics of MIMO systems............................................................... 1
1.2 Cross Layer Design....................................................................... 3
1.3 Thesis contributions ....................................................................  5
1.4 Thesis structure............................................................................  7

2 Capacity of MIMO C hannel......................................................................  8
2.1 Fundamental capacity limits.........................................................  9
2.2 The MIMO channel capacity.........................................................  10
2.3 Time-varying channel....................................................................  12
2.4 Capacity in correlated fading.........................................................  13
2.5 MIMO capacity distribution.........................................................  17

2.5.1 Outage probability............................................................  22
2.6 Conclusion.................................................................................... 23

3 Effects of MIMO Capacity on Network P erform ance......................  24
3.1 M/D/l/N: steady states probabilities............................................  25
3.2 Effects of MIMO capacity on network performance .......................  27

3.2.1 System and queue delay for MIMO system............................. 27
3.2.2 Total probability of failure for a MIMO system ..................  30

3.3 Conclusion....................................................................................  38

vi



Table of Contents

4 Estimation of the Channel State Information ...................................  39
4.1 Model of time-variant wireless fading channel ................................ 40

4.1.1 Correlated fading model....................................................  40
4.2 Time-variant channel estimation with Discrete Prolate Spheroidal Se

quences ......................................................................................  46
4.2.1 Basis expansion.................................................................  46
4.2.2 Bandlimited processes and prolate spheroidal sequences . . . .  48
4.2.3 Discrete Prolate Spheroidal Sequences ...............................  49
4.2.4 Signal model for flat-fading time-variant channels................ 51
4.2.5 Time-variant flat fading channel estimation..........................  52
4.2.6 DPSS basis MSE analysis .................................................. 53

4.3 Modulated Discrete Prolate Spheroidal Sequences..........................  57
4.4 Conclusion.................................................................................... 62

5 Variable Rate T ransm ission ......................................................................  64
5.1 Contributions..............................................................................  66
5.2 System Model............................................................................... 67
5.3 Theory of Discrete Finite Markov C hain .......................................  67
5.4 Theory of Markov Decision Processes............................................  69

5.4.1 Expected Total Earning function .......................................  69
5.4.2 Alternatives and policies....................................................  72
5.4.3 The Policy-Iteration Method for the Solution of Sequential De

cision Processes.................................................................  74
5.5 Finite State Markov model for radio communication channels..........  76
5.6 FSMC for MIMO channel capacity ...............................................  80
5.7 Two-dimensional cross layer optimization.......................................  85

5.7.1 Policy domain performance optimization............................. 87
5.7.2 Numerical simulations.......................................................  89

5.8 Complexity Issues.........................................................................  94
5.9 Conclusion.................................................................................... 95

6 C o n clu sio n ......................................................................................................  96

R eferen ces............................................................................................................  99

Appendices

vii



Table of Contents

A Simulation of single server queuing s y s te m ......................................... 103
A.l Discrete time simulations..............................................................  103
A.2 The M/M/l Queue: derivation of basic equations..........................  104
A.3 M/D/l queue m odel...................................................................  108
A.4 M/D/l/N: Analytical solution......................................................  110

A.4.1 Derivation of steady state probabilities...............................  110
A.4.2 Results..............................................................................  Ill

B Estimation by Pilot Symbols for a General Transmission Model . 116

Curriculum V it a e .................................................................................................. 118

viii



List of Tables

5.1 System Parameters 93

IX



List of Figures

1.1 The OSI model for protocol stack design and operation. In classical 
layer design, adaptivity is independent of other layers. The interest in 
cross-layer design lies in the possibility of layer adaptivity in relation
to other layers conditions................................................................ 4

2.1 Difference between ergodic capacity and outage capacity. Ergodic ca
pacity is the result of the analytical expression in Eq. 2.3, outage 
capacity is defined as the signalling rate that can be supported by the 
channel in (100 — p)% of the fading realizations of the channel. Outage 
capacity is always lower than ergodic capacity.................................. 14

2.2 Numerical and theoretical CDF of channel capacity for different num
bers of antennas. The theoretical distribution is obtained by the mean 
and variance in Eq.s 2.8,2.9. The numerical distribution is obtained by
the values of Eq. 2.3....................................................................... 18

2.3 Mean capacity Vs. SNR. The numerical results from Eq. 2.3 are
compared with the analytical Eq. 2.8. The analytical equation is 
shown to be very accurate..............................................................  19

2.4 Variance of capacity Vs. SNR. The numerical results from Eq. 2.3 are 
compared with the analytical Eq. 2.9 and the approximation in Eq.
2.13. The two analytical equations are almost equal, the separation 
with the numerical results is due to the limited simulation length. . . 20

3.1 System Model..............................................................................  25
3.2 Critical arrival rate Ac [bits/s] vs. SNR. The limit on Ac is imposed 

by the maximum service rate r to satisfy a specific outage probability.
This graph shows the results obtained by Eq. 2.21. An important 
result is that a finite set of arrival rates can be supported for a given 
average SNR, in order to guarantee reliable transmissions.................  28

3.3 Average system delay (solid) and queue delay (dash) for different p and
Pout'- a smaller Pout leads to a smaller service rate which turns into 
an higher average system time for the whole set of utilization p. The 
average queue delay for small p is not sensible to the outage probability: 
the queue is almost empty therefore the service rate has a very little 
effect on the delay. ......................................................................  29

x



List of Figures

3.4 Probability of buffer overflow for different buffer sizes. SNR = 10 dB, 
Pout = 10-2. p = A/r where r = 7.9 [bits/s/Hz] is the maximum 
service rate supported by the system. For a given arrival rate Ac and 
desired outage, the buffer size has an evident influence on the overflow
probability.....................................................................................  31

3.5 Total failure probability for different buffer sizes N [bits]. SNR = 10
dB, P0Uf = 10-2. p = A/r where r = 7.9 [bits/s/Hz] is the maximum 
service rate supported by the system. For small utilization factors p, 
the fixed outage probability is dominant. Increasing the utilization 
factor p, the buffer overflow probability becomes relevant depending
on the buffer sizes..........................................................................  32

3.6 Probability of buffer overflow for different desired probabilities of out
age. SNR = 10 dB, N = 10 [bits]. The arrival rate A [bits/s] is increased 
until the critical value Ac is met......................................................  33

3.7 Total failure probability for different outage probabilities. The arrival
rate A [bits/s] is increased until the critical arrival rate Ac is met. The 
different behaviour dependent on the required Pout is evident...........  34

3.8 Total failure probability for different buffer sizes. For large buffers, the 
only contribution to the failure probability is given by outage. Given 
a desired threshold, a suitable buffer size can be chosen to fulfill that 
requirement. The desired outage imposes the system service rate r
and, consequently, a maximum arrival rate. System parameters: SNR
10 dB, P ^  = 10~3, p = 0.8, A = 5.6 [bits/s].................................... 35

3.9 Total failure probability for different utilization factors. The arrival 
rate A = 5.6 [bits/s] is fixed while the service rate is decreased mono- 
tonically maintaining the utilization factor p = A/r < 1. The average 
SNR is 10 dB. For low p the outage is the dominant effect due to a
high service rate that is not supported by the channel SNR. High p 
leads to high probability of buffer overflow since the service rate r is 
lower. The figure shows the behaviour of the total failure probability 
for different buffer size N. Notice the possible tradeoff in terms of p. 37

4.1 Channel in-phase correlation and I/Q cross-correlation in non-isotropic
simulation examples for different k ............................................... 43

4.2 In-phase channel correlation Rjj for isotropic scattering. Compari
son among the theoretical Bessel correlation, the AR filtering output 
correlation obtained from Eq. 4.5 and Eq. 4 .4 ...............................  44

4.3 Channel in-phase correlation and I/Q cross-correlation resulting from 
the AR filtering procedure. The matching between numerical and the
oretical curves prove the validity of the closed analytical form in Eq.
4.5................................................................................................  45

xi



List of Figures

4.4 Eigenvalues for Discrete Prolate Functions. The prolate sequences are
designed for a block length N = 256 and a normalized Doppler fre
quency of 3.8 x 10-3  Hz; the bandwidth parameter is D = 2NW = 2. 50

4.5 Bias‘s  for the Fourier and Prolate expansions, both with dimension
D = 5 and number of pilots J = 10 in a block of N = 256 sym
bols. In the whole block duration, the prolate Bias‘d  is more than two 
magnitudes lower than the Fourier Bias.......................................... 55

4.6 MSEn  of the Prolate and Fourier basis for different SNR,number of
c\

pilots J = 10 and normalized Doppler W = 0.0038. The BiasN of 
the Fourier basis affects significantly the estimation performances and 
it is responsible of the saturation of MSEpj at high SNR values. The 
prolate estimation is unbiased in the interest range .......................  56

4.7 Comparison of the bandwidth for a DPSS (solid line) and a channel
(dashed line): (a) both have the same bandwidth; (b) both have narrow 
bandwidth; (c) DPSS has a wide bandwidth, while the channel band
width is narrow and centered around uq > 0; (d) both have narrow 
bandwidth, but centered at different frequencies............................... 58

4.8 bias‘d per symbol for MDPSS (solid) and DPSS (dashed) mobile chan
nel estimator for the noise-free case.................................................  60

4.9 Dependence of the MSE on the angular spread A, AoA 45 degrees and
SNR 20 dB. The MDPSS show a significant increase in the estimation 
accuracy using the same number of functions of the DPSS method. . 61

5.1 Communication system scheme with feedback channel..................... 66
5.2 Diagram of state transitions for different actions. Each action taken

modifies the process structure in terms of transition probabilities and 
rewards.......................................................................................... 73

5.3 Gain of constant rate transmission and adaptive rate transmission for
different arrival rates A. The gain is the system throughput per time 
frame Tj. The buffer of the system is B = 20 packets....................... 91

5.4 Total packet loss rate of constant rate transmission and adaptive rate 
transmission for different arrival rates A. The buffer of the system is
B = 20 packets..............................................................................  92

A.l Average number of packets in the system (in queue and under service) 
for the M/M/l model. Comparison between the theoretical curve and 
the numerical simulation results. The discrepancy for high utilization 
p is due to the strong asymptotic behaviour of the theoretical curve, 
the numerical results could be closer to theory for a very high number 
of packets sent...............................................................................  105

xii



A.2 Probability of packet loss due to the overflow of a finite buffer. Com
parison between the estimated probability from a M/M/l model and 
the actual results of numerical simulations. The queue size (buffer) is
10 packets...................................................................................... 107

A.3 Average delay in queue for M/D/l system. For comparison purposes,
the buffer size is assumed infinite.................................................... 108

A.4 Comparison between the analytical queue size distribution probability 
Pn (N) and the numerical probability of packet loss. Pjy(N) is the 
probability of having the system queue full, the packet loss probability 
is computed by the number of packets lost due to the queue full. . . 112

A.5 Average number of customers in the system: comparison between the 
closed form presented in [22] and the numerical results. The match be
tween the two curves is high, validating the closed equations presented.
.................................................................................................... 113



List of Acronyms

ACF
AFD
AMC
AoA/AoD
AWGN
CDF
CDI
CSI
CSIT
DAR
DFT
DPSS
FER
FSMC
IID
LCR
MAC
MDP
MDPSS
MIMO
MISO
MSE
PDF
PER
PHY
PSD
PSS
QoS
QPSK

Autocorrelation Function
Average Fade Duration
Adaptive Modulation and Coding
Angle of Arrival/Angle of Departure
Additive White Gaussian Noise
Cumulative Distribution Function
Channel Distribution Information
Channel State Information
Channel State Information at the Transmitter
Discrete Autoregressive
Discrete Fourier Transform
Discrete Prolate Spheroidal Sequences
Frame Error Rate
Finite State Markov Chain
Independent Identically Distributed
Level Crossing Rate
Medium Access Control layer
Markov Decision Process
Modulated Discrete Prolate Spheroidal Sequences
Multiple-Input Multiple-Output
Multiple-Input Single-Output
Mean Square Error
Probability Density Function
Packet Error Rate
Physical layer
Power Spectral Density
Prolate Spheroidal Sequences
Quality of Service
Quadrature Phase Shift Keying

XIV



Acronyms

SIMO Single-Input Multiple-Output
SISO Single-Input Single-Output
SNR Signal to Noise Ratio
WCDMA Wideband Code Division Multiple Access
WSS Wide Sense Stationary

xv



1

Chapter 1 

Introduction

This chapter provides an overview of the thesis. Firstly, the definition of multiple 
antennas systems and their importance are discussed, along with the explanation of 
the main improvements introduced by these systems. Secondly, a brief overview on 
the meaning of cross layer design is presented, leading to the main contributions of 
the thesis. Finally, the structure of the thesis is briefly described.

1.1 Basics of MIMO system s

Multiple-input multiple-output (MIMO) are communication wireless systems in which 
the transmitter and receiver are equipped with Np transmitting antennas and Nr 
receiving antennas. Special cases of MIMO are single-input multiple-output (SIMO), 
where Np = 1 and Nr  > 1, multiple-input single-output (MISO), where Np > 1 
and Nr  = 1 and single-input single-output (SISO) in which Np = Nr  = 1. In the 
recent years, the attention around these systems has been growing rapidly because of 
their potential improvement in spectral efficiency, which is the amount of information 
bits that can be transmitted per second per Hertz [bits/s/Hz], The advantages of 
MIMO communications can be divided in three main categories: transmit diversity 
using space-time coding for enhancing transmission robustness, spatial multiplexing 
for enhancing the data-transmission rate and beamforming for improving the received 
signal and reduce the interference from other users.

• Transmit Diversity: transmit diversity is a transmission technique in which 
similar data signals are transmitted from multiple antennas to improve the 
signal to noise ratio (SNR). This kind of gain can be quantified as Nr Nr  and 
can be achieved by using multiple antennas at the receiver (diversity reception) 
and/or by using multiple antennas in transmission (transmit diversity).
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• Spatial Multiplexing: spatial multiplexing is a MIMO transmission technique 
in which independent and separately encoded data signals, called streams, are 
transmitted from multiple antennas. This technique requires multiple anten
nas at both the sides of the communication link. Ideally, the knowledge of 
the channel is required at the transmitting antenna to exploit the orthogonal 
transmission paths. However, if the transmitted streams arrive at the receiver 
with sufficiently different spatial signatures, the receiver can separate them lead
ing to an increase in the channel capacity. Under spatial multiplexing mode, 
the achievable capacity gain is referred to the maximum multiplexing order 
Ns =  mm{Np, Nr }.

• Beamforming: beamforming is a signal-processing technique that is used to 
control the directionality of the radiation pattern of a multiple antennas system. 
In reception, beamforming can increase the receiver sensitivity in the direction 
of the desired signals and decrease the sensitivity to interference and noise. 
In transmission, beamforming can increase the radiated power in the intended 
direction. The change compared with an omnidirectional receiving/transmitting 
pattern is known as the directional gain. Those changes are performed by 
creating nulls and beams in the radiation pattern of the antennas [1].

In the 1990s, the term “smart antennas” introduced the idea of exploiting beam
forming at the base station of a cellular network, where the antenna beam adaptively 
follows the movement of a mobile user. The result of beamforming is the increasing of 
the signal gain in a specific direction, both focusing the signal strength and excluding 
the interference from other directions. One limitation of beamforming is that in a 
urban environment, the directional signal can be scattered because of buildings and 
moving objects. By the late 1990s, this drawback was turned into an advantage when 
space-time coding and spatial multiplexing were developed. These methods exploit 
the multipath phenomena to increase the system throughput. Spatial multiplexing 
allows to increase the communication spectral efficiency, with a larger amount of in
formation that can be transmitted over the channel. However, the transmission rate 
is not an absolute parameter. The key performance metrics associated with any com
munication system are the transmission rate and the frame error rate (FER). With 
respect to the channel SNR, a fundamental trade-off exists in any communication 
system between the transmission rate and FER. In the context of MIMO systems,
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this trade-off is often referred to as the diversity - multiplexing trade-off [2, 3], with 
diversity signifying the FER reduction and multiplexing signifying an increase in the 
transmission rate. The diversity-multiplexing trade-off is central in MIMO commu
nications theory.

MIMO techniques are mostly used in conjunction with orthogonal frequency 
division multiplexing (OFDM), showing a strong relationship and compatibility with 
the flat-fading channel models. Emerging examples of MIMO systems on OFDM 
structure are the wireless networks as defined by the IEEE 802.16e standard and 
IEEE 802.1 In high-throughput standard. There are also efforts to standardize MIMO 
in wideband code division multiple access (WCDMA) systems, which are a form of 
third-fourth generation cellular networks.

1.2 Cross Layer Design

MIMO techniques have rapidly become the new frontier of wireless communications. 
The investigation of MIMO system is driven by the limited available bandwidth and 
the increasing demand for high data rate transmission systems. Substantial attention 
has been given to multiple antenna systems due to their potential high spectral effi
ciency in rich scattering wireless environments [4, 5]. While most of the efforts have 
focused on characterizing the MIMO channel at the physical layer, joint study of the 
MIMO physical layer and the network model, known as a cross-layer approach [6], is 
gaining momentum and significant interest.

Current ad hoc wireless network protocol design is largely based on a layered 
approach, as shown in Fig. 1.1. In this model each layer is designed and operated 
independently, with interfaces between layers that are static and independent of the 
the individual network constraints and applications. This paradigm has greatly sim
plified network design and led to robust scalable protocols in the Internet. However, 
research efforts on independent layers have mainly targeted isolated components of 
the overall network design, thereby ignoring important interdependencies. Inflex
ibility and sub-optimality of this paradigm result in poor performance for ad hoc 
wireless networks in general, especially when applications impose specific constraints 
(e.g. delay, energy, bandwidth) are present. To meet these requirements, a cross layer 
protocol design that supports adaptivity and optimization across multiple layers of 
the protocol stack is needed. Adaptation capabilities at each layer of the protocol
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C lassica l L aye r design C ro ss-layer design

A daptiv ity A daptiv ity

Figure 1.1: The OSI model for protocol stack design and operation. In classical layer 
design, adaptivity is independent of other layers. The interest in cross-layer design 
lies in the possibility of layer adaptivity in relation to other layers conditions.

stack should compensate for variations at that layer, based on the time-scale of these 
variations. Specifically, variations in link SNR are very fast, on the order of microsec
onds for vehicular mobile users. The network layer timescale is based on the frame 
duration of few milliseconds [7] and then is prone to the channel SNR variations. A a 
general compensation between the physical (PHY) and medium access control (MAC) 
becomes necessary in the perspective of an optimization analysis. Information about 
the time variation of single layers should be exchanged between the two layers in order 
to obtain a more general response. PHY-MAC cross-layer performance optimization 
for single-input single-output (SISO) wireless communications has been studied by 
many researchers [7, 8, 9, 10].
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1.3 Thesis contributions

The cross layer approach proposed in this work focuses on the effects of MIMO ca
pacity on network performance and analyze a joint optimization of the MIMO com
munication system. Specifically, the PHY layer is characterized by multiple antennas 
at both sides of the communication link, which results in a significant channel ca
pacity increase. At the PHY layer, the amount of information sent over the MIMO 
channel per unit time/bandwidth is defined as the signalling rate of the transmitter. 
The MAC layer of the system is characterized by a single finite buffer, in which data 
arriving from the higher application layers are enqueued. The dependance between 
the PHY and MAC layers lies in the PHY signalling rate, which represents the num
ber of bits (or packets) which are de-queued from the buffer and transmitted over 
the MIMO channel per unit time/bandwidth. This definition states the equivalence 
between the signalling rate at the PHY layer and the buffer service rate at the MAC 
layer.

According to the definition of Shannon’s channel capacity, the signalling rate 
need to be lower than the channel capacity value to ensure reliable transmissions. 
Because of this definition, the channel capacity covers a primary role in the mod
eling of the communication system, when there are no constraints on energy and 
coding/decoding complexity at the transmitter/receiver side. In this conditions it 
is possible to focus on the MIMO channel capacity, which represents the maximum 
amount of information that is supported by the MIMO channel.

The main challenges of MAC-PHY cross-layer design for wireless communi
cation are twofold. At the physical layer, on one side, the MIMO wireless mobile 
channel is characterized by a time-variant capacity which introduces the possibility 
of no reliable transmission (outage probability). If the signalling rate is not adapted 
to the channel capacity, outage events occur when the signalling rate is higher than 
the capacity value. At the MAC layer, on the other side, the limited buffer space 
is significantly vacated or exhausted from time to time, due to bursty arrivals from 
upper layers. For these reasons, both MAC and PHY layers introduce a probability 
of data loss, either because of buffer overflow or because of channel capacity outage. 
As a consequence, a joint consideration of the buffer and capacity states is necessary 
for a complete system understanding and efficient system design.

When transmission is performed with a constant signalling rate, the outage
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probability is shown to be a significant component of the total data loss probability 
of the system. The amount of information reliably transmitted is sensibly affected by 
the outage events. In general, the capacity subject to outage is lower than the ergodic 
channel capacity, which represents the maximum amount of information supported 
by the channel [2]. The limit of the ergodic capacity can be achieved by adapting 
the transmission rate to the capacity evolution. Prom this perspective the role of the 
channel state information (CSI) becomes a primary issue not only for efficient decod
ing at the receiver, but also for exploiting adaptive rate strategies at the transmitter.

In order to fully exploit the MIMO spectral efficiency, an accurate knowledge 
of the CSI must be made available at the transmitter. Considering a mobile flat fad
ing channel, the characteristics of the channel process suggest the use of a particular 
basis estimation method [11] to obtain the CSI. An appropriate channel estimation 
is obtained by the use of pilot symbols and a set of functions called discrete prolate 
spheroidal sequences (DPSS). The estimation accuracy shows that this basis set is 
appropriate for the representation of the mobile flat fading channel in isotropic scat
tering environments. More realistic environments subject to directional scattering are 
also investigated, showing that the accuracy of DPSS decreases significantly in those 
environments. A solution to this limitation is proposed with a new set of functions 
called modulated prolate spheroidal sequences (MDPSS).

With an accurate CSI at the transmitter side, the choice of a specific signalling 
rate has significant effects on the system throughput. Moreover, the optimal signalling 
rate must be chosen according to both the instantaneous channel capacity and the 
buffer occupancy, in order to minimize the probability of data loss at both layers. 
The process under analysis is defined by the pair of capacity and buffer state. If the 
knowledge of the capacity time correlation is available, it is possible to predict the 
capacity variation into a specific time interval. Specifically, a prediction method for 
the channel capacity evolution is proposed based on a discrete autoregressive model 
(DAR), which assigns a Markov nature to the capacity process. Consequently, a 
finite state Markov chain (FSMC) is developed to model the instantaneous channel 
capacity evolution. Considering the finite buffer at MAC layer, both capacity and 
buffer evolution in time can be modeled by two different FSMC. Introducing the 
concept of reward for each possible signalling rate, the optimal transmission strategy 
is analyzed through the Markov decision processes (MDP) theory. The result is a 
set of optimal signalling rates for each process state: the transmission rate is chosen
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according to the buffer state and channel capacity to maximize the throughput of 
the system, namely the number of packets correctly received at the destination MAC 
layer.

1.4 Thesis structure

This work is organized as follows. In Chapter 2 the definition of channel capacity 
for a MIMO communication system is discussed. Particular attention is dedicated to 
the capacity gain of MIMO system, to the definition of ergodic capacity and outage 
capacity. Different definitions of capacity are proposed according to what kind of 
channel state information is available at the transmitter. Latest published results on 
the capacity time correlation are presented and, based on those results, a discrete 
autoregressive (DAR) model is proposed to predict the channel capacity evolution.

In Chapter 3 the effects of the MIMO capacity distribution on network perfor
mance are investigated. The case of a constant rate transmission is analyzed, showing 
the effects of the outage probability on the overall system performance. Some sys
tem design issues are addressed: the buffer size for a specific service rate, or the 
service rate for a given buffer size can be derived to fulfill the requirement on the 
total probability of data loss. Numerical solutions to those issues are obtained and 
analyzed.

Chapter 4 describes the powerful channel estimation method based on the use 
of pilot symbols and the set of DPSS functions. The accuracy of this basis expansion 
is discussed in detail, with numerical results showing the mean square error (MSE) 
of the estimation in both isotropic and non-isotropic environments.

In Chapter 5 the improvements of the variable rate over the constant rate 
transmission are presented. The optimal rate transmission strategy is investigated 
through the theory of MDP, which ensures the choice of the optimal signalling rate 
taking into account both the capacity state and the buffer occupancy. Numerical 
simulations show the improvement of variable rate transmissions over the constant 
rate transmission previously discussed. Benefits in terms of system throughput and 
total failure probability are evident.
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Chapter 2

Capacity of MIMO Channel

Introduction

This chapter focuses on the definition of channel capacity in the particular case of 
MIMO wireless systems. The main results present in the literature are carefully 
described and supported by numerical simulations, to provide the understanding of 
the MIMO capacity process in wireless mobile channels.

For a MIMO system, the Shannon capacity limit dictates the maximum data 
rate that can be transmitted over the MIMO channel with asymptotically small error 
probability, assuming no constraints on the delay or the complexity of the encoder 
and decoder. Much of the attention on MIMO systems was due to the initial work 
by [4] predicting a remarkable capacity growth for wireless system with multiple an
tennas, when the channel exhibits rich scattering and its variations can be accurately 
tracked. For mobile wireless communication, the fading process due to the user mo
bility introduces a strong time variation of capacity. On one side, if the channel state 
information (CSI) is available to both the transmitter and the receiver, the channel 
ergodic capacity can be achieved by adaptive transmission strategies. On the other 
side, if no CSI is available at the transmitter, the best solution is a constant rate 
transmission based on the channel distribution information (CDI). In this case the 
channel ergodic capacity cannot be reached and capacity outage must be taken into 
consideration. The two cases lead to a different definition of channel capacity, which 
is the maximum information rate the channel can support.

Recent results on MIMO capacity are presented, indicating that the capacity 
gain obtained from multiple antennas heavily depends on the available channel infor
mation at either the transmitter or receiver, the channel signal to noise ratio (SNR) 
and the correlation between the channel gains on each antenna element. Tempo
ral and spatial correlation are discussed, showing their effects on channel capacity. 
Moreover, the use of the general uncorrelated channel model is justified according to
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the principle of maximum entropy, showing that spatially correlated channel can be 
described as a lower-dimensional uncorrelated channel. Finally, referring to [12], it is 
shown that the capacity time-correlation in fading environments is closely related to 
the channel time-correlation, meaning that the evolution in time of the two processes 
is comparable.

2.1 Fundamental capacity limits

In this section the definition of Shannon channel capacity and some fundamental 
assumptions beyond that model are discussed.

Channel capacity under average or peak power constraints has been subject of 
intense research for many years. The research was pioneered by Claude Shannon in 
1948. He showed that capacity, defined to be the maximum rate at which reliable 
communication is possible, can be characterized in terms of the mutual information 
between the input and output of the channel. Shannon proved that the channel 
capacity is equal to the mutual information of the channel maximized over all possible 
input distribution. In case of an additive white Gaussian noise (AWGN) channel, the 
channel capacity is given by:

C — B log2(l + 7 ), bits/s (2.1)

where B is the channel bandwidth in Hz and 7 is the received SNR within this 
bandwidth. The capacity of a channel dictates the maximum rate at which reliable 
communication can be performed, without any constraints on the transmitter and 
receiver complexity. Shannon showed that for any rate r < C, there exists a suitable 
channel code which achieve an arbitrarily small probability of block (or symbol) error. 
In general, the capacity achieving codes for wireless channels have asymptotically 
large block lengths. They can be used when there are no constraints in term of energy 
resources or information delay. This optimal coding scheme drives the probability of 
error to zero for any data rate below capacity, but the complexity of these schemes 
makes them hard to approximate with practical implementations. Moreover, Shannon 
showed that codes operating at r > C cannot achieve an arbitrarily small error 
probability, in that case the error probability is bounded away from zero. Therefore, 
the channel capacity is truly the fundamental limit to communication.
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Although it is theoretically possible to communicate at any rate below capac
ity, it might be a difficult task to design channel codes (or codes with a reasonable 
block length and encoding/decoding complexity) at rates close to capacity. In the 
specific case of MIMO systems, practical space-time coding and decoding techniques 
are shown to achieve near capacity limits in some scenarios [2]. Capacity investiga
tions provide a theoretical information limit against which performance of different 
MIMO transmission and reception strategies can be compared.

A different capacity formulation arises when the energy resources are limited. 
Ad hoc wireless networks with limited energy must deal with capacity under energy 
constraints, as opposed to peak or average power constraint. With finite energy it 
is not possible to transmit any number of bits per unit energy with asymptotically 
small error probability. Capacity per unit energy is explored in [13, 14], which obtain 
the capacity of finite-energy channels in terms of bits. The capacity of a finite-energy 
channel in bits is an important concept, since it indicates that ad hoc wireless net
works with finite energy nodes only have a finite number of bits that a given node can 
transmit before exhausting its energy. Allocating those bits to the different require
ments of the network information transmission, exchange of routing information or 
channel estimation, becomes a challenging optimization problem that clearly requires 
cross-layer design.

The analysis of finite-energy channel constraints goes beyond the purposes of 
this work and represents an open issue in certain practical situations.

2.2 The MIMO channel capacity

Capacity for a communication channel is the maximum, asymptotic (in block length) 
error free transmission rate that can be achieved. For the specific case of multiple- 
input multiple-output (MIMO) channel, it is a complicated function of the channel 
conditions and transmit/receive processing constraints. In recent years, there has 
been great effort in obtaining capacity expressions for channel models that better 
reflect the channels characteristics underlying those systems. Recent results in this 
area include the capacity of channels with multiple antennas at both the transmitter 
and receiver [5]. Geometric scattering description leads to the definition of one-ring 
or two-ring model for MIMO wireless systems, which end in different expression for 
capacity [12]. The results described in the pioneering work [4] indicate that in rich
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scattering propagation environment, the capacity of MIMO channels increases lin
early with min(Nt, Nr), where Ay, Ay are respectively the number of antennas at 
the transmitter and receiver side. Scattering and propagation conditions define the 
entries of the channel matrix H, which characterizes the channel gains. In practice, 
a wireless channel is never simple: the received waves are a superposition of waves 
generated by reflections, scattering and the diffraction of the environment surround
ing the transmitter and receiver. The superposition of all these effects cannot be 
characterized in a deterministic sense, for this reason the wireless channel must be 
described by statistical models. The use of independent identically distributed (i.i.d.) 
channel entries for the channel matrix is justified in [15] in accordance with the max
imum entropy principle. The independence of the channel matrix components is the 
result of imposing only the condition of a fixed norm of the channel matrix. Assuming 
perfect channel knowledge at the receiver, the ergodic capacity of a Ay x Ay MIMO 
channel with input covariance matrix Q = E(xx^) is [15]

C = maxQ = E{C'(Q)} (2.2)

with
C(Q) = log2det ( lNr + ^H Q H h (2.3)

where 7 is the SNR over the channel. The maximization is over the set of positive 
semidefinite Hermitian matrices Q satisfying the power constraint tr(Q) < P and the 
expectation is with respect to the random channel matrix H. In the case of Gaussian 
i.i.d. H entries, ergodic capacity is achieved with Q = I [4], Moreover, the increasing 
of capacity for multiple antennas can be shown by a single value decomposition of 
the channel matrix H. The channel matrix can be decomposed in multiple parallel 
independent sub-channels, whose number is equal to gm = rriin(Ayv Nr ). gm is 
the multiplexing gain of the MIMO system and represents the asymptotic increasing 
of the channel capacity. Through an opportune data coding, the sub-channels can 
be exploited for independent data stream, leading to a linear increase of capacity 
according to gm.
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2.3 Time-varying channel

When the communication channel is time-varying the channel capacity has multiple 
definitions, depending on what is known about the channel state as well as the time 
scale of the underlying channel fading process. Considering a time scale based on 
the system frame duration Tf, the fading process is described by the block-fading 
model, in which the channel gains hold constant for the duration of the transmission 
frame Tf. From Eq. 2.3, it can be inferred that each channel realization defines a 
specific capacity level. When the instantaneous channel gains are known perfectly 
both at the transmitter and the receiver, the transmitter can adapt its transmission 
strategy (i.e. the signalling rate) relative to the instantaneous channel state. From 
now on, the information about the instantaneous channel gains will be referred as the 
channel state information (CSI). The Shannon capacity in this case is the maximum 
mutual information averaged over all the channel states. Ergodic capacity means 
that a reasonably long time sample of the capacity realizations has a distribution 
similar to the statistical distribution of the capacity process. Ergodic capacity is 
an appropriate capacity metric for channels that varies quickly in the time scale 
of interest: the channel is said to be ergodic in the time period of interest. With 
CSI at the transmitter (CSIT) ergodic capacity can be achieved using an adaptive 
transmission policy. This possibility will be explored in Chapter 5. If an adaptive 
rate is used, the signalling rate varies with the instantaneous capacity state and the 
ergodic capacity refers to the maximum possible long-term average of instantaneous 
rates.

An alternate capacity definition for time-varying channels is outage capacity
[2]. Defining 7 as the channel SNR and p as a percentage value, the outage capac
ity Cout^pi'j) is defined as the transmission rate in bps/Hz that can be supported 
by (100 — p)% of the fading realizations of the channel. This means also that the 
probability of correctly decoding at the receiver is equal to (100 —p)% for a signalling 
rate r = C0UtiP{7 ) and, consequently, the frame error rate (FER) is pe(7 , r) = p. 
Given a constant signalling rate transmission, with perfect transmitter and receiver 
CSI, the signalling rate r does not depend on the channel variations except in outage 
states, in which no data is transmitted. As a result, the average rate associated with 
outage is typically smaller than the ergodic capacity. Outage capacity is an appro
priate capacity metric in slowly varying channels, when the channel coherence time
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exceeds the duration of the frame. If the channel state is not good enough to support 
the desired rate, an outage event is declared and no data is transmitted, since the 
transmitter knows that the channel is in outage. When only the receiver as perfect 
CSI, the transmission strategy must rely on the CDI instead of the instantaneous 
channel state. The transmitter must maintain a fixed-rate transmission strategy op
timized with respect to its CDI. This means that knowing some statistic distribution 
of the fading process, the transmitter chooses a fixed rate, with no feedback from the 
receiver and no adaptive strategy. Without CSI available, the transmitter might send 
data at a rate that is not supported by all the channel states. Whenever the channel 
enters a deep fade the receiver declares an outage and the data are lost, since no 
reliable communications are possible. In this outage scenario, each transmission rate 
has an outage probability associated with it so capacity is parameterized by outage 
probability. This case will be considered and carefully described in Chapter 3.

Prom above, it is clear that the CSI and CDI play a major role in the definition 
of channel capacity under fading processes. The ergodic capacity in a fading environ
ment represents the maximum amount of information that can be transmitted over 
the MIMO channel. It is achieved by knowing the CSI in transmission and adapting 
the signalling rate consequently. Knowing only the CDI in transmission results in a 
generally lower capacity utilization. Fig. 2.1 shows the difference between ergodic 
and outage capacity for an outage probability of p = 0.05.

In order to exploit the MIMO increasing in spectral efficiency, the analysis of 
the MIMO channel capacity distribution is required, as well as an appropriate method 
of obtaining the CSI that will be presented in Chapter 4.

2.4 Capacity in correlated fading

The impact of channel correlations on the capacity of MIMO channel is of interest 
because the channels encountered in practice invariably exhibit non-zero correlations 
in time and space. The correlation is the second order statistic of a random pro
cess, it describes the time interval (coherence interval) in which the process shows a 
dependance with the past samples. The coherence interval may also be referred as 
memory interval [2]. Temporal correlations are those that exist between the channel 
matrix realizations at different time instants. Spatial correlations are those that exist 
between the elements of the channel matrix for each realization.
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Ergodic capacity Vs. Outage capacity

Figure 2.1: Difference between ergodic capacity and outage capacity. Ergodic capacity 
is the result of the analytical expression in Ecp 2.3, outage capacity is defined as the 
signalling rate that can be supported by the channel in (100 — p)% of the fading 
realizations of the channel. Outage capacity is always lower than ergodic capacity.
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First, the impacts of temporal correlation are introduced. A general flat fading 
mobile wireless channel exhibits a temporal correlation dependent on the mobile ve
locity and the time scale underlying the system evolution. In a block fading model, 
the fading process is assumed to hold constant for the duration of the time frame Tf. 
The mobile velocity is characterized by a Doppler frequency in Hz, the relation 
between the Doppler frequency and frame duration leads to the definition of the nor
malized Doppler frequency fm = fyTf- If no CSI is available at the receiver, temporal 
correlation will increase the capacity. This is because the channel correlation allows 
some amount of channel estimation that is not possible in a memoryless channel. This 
means that with no channel estimation, a prediction can be possible if the channel 
correlation is known. This prediction possibility will be exploited in Chapter 5, to 
adapt the transmission rate to the capacity evolution on a frame by frame time scale. 
When the CSI is known at the receiver (CSIR), the temporal correlation does not 
affect ergodic capacity: at every time the receiver knows the channel state and any 
information on the past channel samples is useless.

A different analysis is required in understanding the effects of spatial correlation. 
In MIMO systems, spatial correlation is introduced by the system geometry, which 
includes the multiple antennas at the transmitter and receiver sides and scattering 
environment. Intuitively, spatial correlation between fades decreases as the density 
of scatterers in the vicinity increases or the antennas spacing increases. The most 
commonly used model for spatial correlation is the Kronecker product form

H = R ^ H ^ R ^ 2 (2.4)

where H® is an i.i.d. Rayleigh fading channel and R^,Rr are the transmit and 
receive correlation matrices respectively. This model has been shown to be reasonably 
tractable and accurate through field measurements [2], To understand the impact of 
spatial correlation, different consideration must be carried for high and low SNR. For 
high SNR, substituting Eq. 2.4 in Eq. 2.3, capacity can be approximated as [16]

C “ l0«2de‘ + + l0g2 ( w y ) + log2 ( ' (2'5)

from which can be inferred that spatial correlation decreases the capacity of uncorre
lated channels. Intuitively, a strong spatial correlation reduces the multiplexing gain,
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which is maximum in i.i.d. channels. For low SNR some geometrical considerations 
are needed. Consider a single cluster scenario, in which the received signal comes 
from a limited narrow area around a specific direction f>R. The distribution of angles 
of arrival (AoA) and angles of departures (AoD) can be modeled as a uniform narrow 
spread Ar and Ap around some mean AoA f>R and AoD <fp respectively. In this 
case the spatial covariance function is approximately a sine function, as it will be 
deeply analyzed in Chapter 4. As a consequence, the covariance matrices on both 
sides have a few approximately equal eigenvalues, with the rest very close to zero. In 
other words,

R = U 0

0 0
(2.6)

where f3N is the number of non-zero eigenvalues of the corresponding covariance 
matrix1:

/? = |WA|sin0 |J + 1; (2.7)

Ig is the unity matrix of size @N x f3N and the unitary matrix U is composed 
of modulated discrete prolate spheroidal sequences (DPSS) [17]. The DPSS will be 
deeply investigated in Chapter 4 as they represent an appropriate basis expansion 
for the wireless mobile channel fading. Particularly, it will be shown that the co- 
variance matrix eigenvalues exhibit the property described above: a small number of 
them is clustered near 1 and the remaining number falls to zero very quickly. This 
analysis shows that a strong spatial correlated fading can be approximated by a lower
dimensional uncorrelated covariance matrix Nj<ef f  x Â>eyy, whose dimensions are 
defined by the set of highest eigenvalues of the channel matrix. The same conclusion 
is obtained in [2], in which is underlined that the spatial correlation can make the 
channel matrix rank-deficient. This means that, in a low SNR case, only a subset of 
channels can be efficiently used with the limited available signal power.

A deep understanding of these considerations is beyond the purposes of this 
work, but they suggest that the study of channel matrices with i.i.d. entries can 
bring interesting results also in practical correlated fading environment.

frV = Nt for transmit and N = Nr for receive side.



Chapter 2: Capacity of MIMO Channel 17

2.5 MIMO capacity distribution

In the literature, many studies deal with the statistical properties of the MIMO wire
less capacity. Some of those statistical properties are the probability density function 
(PDF), the cumulative distribution function (CDF), the level crossing rate (LCR) and 
the average fade duration (AFD) of the channel capacity. However, deriving exact 
analytical expressions for all those statistical properties appears a complicated task. 
Assuming that elements of the channel matrix are i.i.d. zero mean Gaussian process, 
MIMO capacity is approximately Gaussian for large number of transmitting and re
ceiving antennas Np,Nji [18]. The mean and the variance of the capacity process are 
given by [18]:

C
N

= /51n
R A H i ’*

+ In
i + T - H i ’* - M i 1*) <2-8>

ac  = ~ ln I 1 -  P rA A (2.9)

where

F(x,z) \Jx (l + yfz)2 + 1 - y/x (l - x/i)2 +

For small values of SNR 7 these equations could be simplified to produce

(2.10)

C
n r

1/5 + 1
2 (3 ■r

crc = 1
1/5 + 2 2 

2— '7

(2.11)

(2.12)

while for large SNR 7 the following approximations are valid for /5 = 1 [3]
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(2.13)

0.193; (2.14)
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CDFfortoei.i.d. model-SNR = 16dB

Figure 2.2: Numerical and theoretical CDF of channel capacity for different numbers 
of antennas. The theoretical distribution is obtained by the mean and variance in 
Eq.s 2.8,2.9. The numerical distribution is obtained by the values of Eq. 2.3.

Interestingly, authors of [5] considered the case of a reasonable number of antennas 
Np, Nr , proving that the Gaussian distribution holds in the case of small numbers of 
antennas and i.i.d. channel coefficients. High accuracy in the capacity distribution is 
obtained even for 2 x 2 MIMO systems. The Gaussian approximation becomes more 
and more accurate for high number of Np and Nr . Fig. 2.2 show the accuracy of the 
Gaussian distribution for different numbers of antennas. The SNR for the numerical 
simulations is 16 dB.

From this analysis it is clear that the MIMO channel capacity is a random 
process dependent on the system geometry and SNR. Fig. 2.3 and Fig. 2.4 show the 
numerical results obtained from Eq. 2.3 and the analytical forms in Eq.s 2.8, 2.9.

In the case of a time variant MIMO channel, capacity evolves in time according 
to the fading process [12], Referring to the block fading model, the time variation of 
the channel is described by the normalized Doppler frequency f m = fyTf, where fy



Chapter 2: Capacity of MIMO Channel 19

Ergodic capacity -  Comparison between numerical and analytical results -  Ny = NR = 4

Figure 2.3: Mean capacity Vs. SNR. The numerical results from Eq. 2.3 are compared 
with the analytical Eq. 2.8. The analytical equation is shown to be very accurate.
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Capacity variance -  Comparison between numerical and analytical results -  NT = NR = 4

Figure 2.4: Variance of capacity Vs. SNR. The numerical results from Eq. 2.3 are 
compared with the analytical Eq. 2.9 and the approximation in Eq. 2.13. The two 
analytical equations are almost equal, the separation with the numerical results is 
due to the limited simulation length.
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is the Doppler frequency in Hz and Tj is the system frame duration. The value of fm 
does not affect the statistical channel description, once a proper observation interval 
is set to derive the statistical characteristics. If the process exhibits a long autocorre
lation function, the need of independent samples to achieve accurate statistics leads 
to a long process observation time. The time variation of the instantaneous capacity 
could be described in terms of a discrete autoregressive (DAR) models, as presented 
in [19, 20]. In the simplest case of DAR-1 model, the capacity evolution equation is
given by ____

AC(n + 1) = pAC{n) + ^ 1 -  p2£(n + 1) (2.15)

where AC(n + 1) = (C(n + 1) — C) / gq is the normalized deviation of capacity 
C(n + 1) at the discrete time n + 1 from its time average C\ £(n + 1) is a sequence 
of i.i.d. zero mean Gaussian variables with unit variance. The correlation coefficient 
p could be estimated from experimental data or its value could be deduced based 
on some theoretical development. Although a complete analytical description of the 
MIMO channel capacity is still under research, the study in [12] suggests that the 
instantaneous capacity evolves with the same statistical characteristics of the chan
nel. Starting from the Gaussian wide sense stationary (WSS) uncorrelated scattering 
model used in Chapter 4, the autocorrelation sequence for ideally generated in-phase 
and quadrature Gaussian processes at discrete time is given by

R[n] = J0(2nfm\n\) (2.16)

Once the discrete prediction interval nTj is set, the value of p can be derived from 
Eq. 2.16.

The DAR-1 model assigns Markov nature to C(n). A more sophisticated DAR- 
2 model can also be developed based as follows. Let p\ = C{n)C{n — 1) and P2 = 
C(n)C(n — 2) be correlation coefficients at lag 1 and 2 respectively. In this case the 
DAR-2 model is given by

AC{n) = aiLC(n -  1) + a2AC(n -  2) + (df{n) (2.17)

where parameters aq, a2, and f3 are given by

p \ ( l - p 2) _  P2 — P\ a2 _  ( 1 - P 2 ) ( l  +  P 2 - 2 p f
Ol\ _ 2 ) . 2 ’ P

1~Pl l ~Pl 1 P\
(2.18)
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as the solution of the following (normal)

Pi P2 1

1 Pi 0

Pi 1 0

The DAR model of capacity will be 
allow the adaptive rate transmission.

matrix equation

OL\ 1

OL 2 — Pi
_/?2 . _ P2 .

used in Chapter 5 as a prediction model to

2.5.1 Outage probability

Capacity specifies how much information the channel can support, which turns into a 
maximum amount of information the system can reliably transmit. In MIMO system 
capacity is a Gaussian random process [3, 18]; the probability of outage describes 
the frequency at which capacity falls under a given value: in that case no reliable 
transmissions are possible. Let a certain maximum probability of outage Pout is 
required for the constant data rate transmission over the MIMO channel. The outage 
appears when the signalling information rate r exceeds the instantaneous capacity 
Cn at time n, therefore

r
Pout = Prob(C'n < r) = [  Pc{x)dx = Q(——-) (2.20)

J aC— 00

where Q(x) is the well known Q-function [1] and C and ctq can be calculated using 
Eq. 2.8 and Eq. 2.9. Solving Eq. 2.20 for r in terms of desired Pout allows one to set 
a proper information rate on the channel. If Pout 1, which is usually a case, one 
can obtain a simple approximation

r ~ max — yj—2a ĵ In 2Pout, 0 j- / ln(2) [bits/s/Hz] (2.21)

where r is the maximum signalling rate the channel can support given a desired 
probability of outage, C is the average channel capacity per antenna specified in Eq. 
2.8, Pout is the desired outage probability and In is natural logarithm.
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2.6 Conclusion

The MIMO channel capacity is a random process not only because of user mobility but 
also because of the system geometry. Analytical expression for the mean and variance 
of capacity are available in the literature [18] and allow to defined analytically the 
concept of outage probability [2, 3]. The speed of variation of the capacity process can 
be described by its autocorrelation function, analytically described in [12]. With the 
knowledge of the capacity time correlation, a prediction method based on a AR model 
is proposed to describe the capacity process evolution. In the next chapter the effects 
of capacity variation and outage on the transmission performance are discussed.
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Chapter 3

Effects of MIMO Capacity on Network

Performance

Introduction

The analysis carried in this chapter considers a transmission system as shown in 
Fig. 3.1. A single finite queue is served with constant transmission rate defined by 
the physical parameters and the MIMO channel. The nature of the capacity process 
in the MIMO channel leads to the definition of probability of outage, presented in [3]. 
The possibility that the fading channel cannot support the transmission rate must 
be considered in a complete analysis of the transmission system, which takes into 
account the system queue. Referring to the system model in Fig. 3.1, data arrive at 
the server according to the Poisson model [21]. Data in the queue are served with 
a constant signalling rate r (service rate at the MAC layer) and sent over a MIMO 
channel characterized by a given average SNR. The use of constant signalling rate 
permits the application of known queuing theories such as M/D/l and M/D/l/N, 
[21, 22],

From the analysis presented in Chapter 2, the outage probability in Eq. 2.20 
defines the possibility of no reliable transmission over the MIMO channel. The prob
ability of outage and the probability of buffer overflow define the possibility of loosing 
data in the system, therefore they must be combined to obtain the total probability 
of failure in the system. This analysis investigates the effect of the MIMO channel 
on the queuing system, taking into account the probability of outage to derive the 
system behaviour in terms of delay in the system and total probability of failure. A 
joint consideration of the error rate due to the queuing system and MIMO channel is 
provided, including the outage probability in the classical M /D /l/N  model. Numer
ical solutions to some system design issues are presented, with particular attention 
to the signalling rate that minimize the joint probability of failure of the system.
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A : arrival rate

Network model

r :  constant 
signalling rate

N: Buffer size 
(queue length)
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Figure 3.1: System Model

The chapter structure is the following. Firstly, the queuing behaviour for the 
M/D/l/N model is introduced referring to the main analytical results present in the 
literature. Next, the analysis of the MIMO channel capacity is included in the model. 
The joint consideration of outage probability and buffer overflow probability is deeply 

- analyzed with a first set of results obtained by numerical simulations.

3.1 M /D /l/N :  steady states probabilities

■The system in Fig. 3.1 can be referred to the network theory of M/D/l/N  queuing 
' , systems [21]. The relevant performance characteristics of the M/D/l/N  queuing 

models are presented in this section. The closed-form analytical equations present in 
the literature are confirmed by numerical simulations in App. A, Sec. A.4.

\, The M/D/l/N  model is a finite capacity queuing system, with a queue length
of N — 1 packets. The maximum number of packets the system can hold is N: N — 1 
in queue and one under service. Packetŝ arrive according to a Poisson process with 
parameter A (arrival rate). Packets which upon arrival see a full system are rejected 
and do not further influence the system. The time needed to serve a packet is constant 
T — 1/r, where r is defined as service rate. The utilization factor p = A/r defines
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the service capability of the system; a general assumption is that a stable system is 
described by p < 1. The average state probabilities Pj (N) represents the probability 
of having j  packets in the system given a queue size of N. Authors of [22] have defined 
a set of coefficients bn

n

= £
k=0

( - 1)'
k\

(n - k ) ket-n- k')i’pk (3.1)

which allows derivation of the probability distribution of the number of packets in 
the system [22]:

T
P°(N) = r + ^

PN(N) = 1 bN- k:
1 + pbN_ 1

. bn ' bn_1
Pj(N) = -i-1

1 + fiN -l

(3.2)

(3.3)

(3.4)

These equations represent the steady, state results in terms of state probabilities:
Pj(N) represents the probability of having j  packets in the system for a queue size
of N packets. The probability Pn (N) describes the probability of a full queue: when
the system holds N packets a new arrival will be lost (overflow). In [23] it is proved
that the probability Pjy (IV) can be considered as a good description of the packet loss
probability due to the buffer overflow. The mean number of packets in the M/D/l/N
queue is derived as [22]: ■

. , y -iV -1  h ■ .■

k ................. (3-5)• 1 -T P»N-l

where is the average number of packets in the queue. By Little’s Theorem the 
average delay in the system Tjy is given by:

■TN =
XN

Mi - pn (n )Y
(3.6)

_ c

The average waiting time in the queue is defined as:

■ iyjY =  rw - r  = ( A f - i - £ t =g h ~ N
PbN-l ,

)T. (3.7)
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3.2 Effects of MIMO capacity on network 

performance

3.2.1 System and queue delay for MIMO system
'j

Given the MIMO wireless channel, the whole transmission system includes a single 
finite buffer of size N —1 bits in which data arrive with a certain arrival rate A [bits/sj. 
The data is processed with a fixed signalling rate, which represents the amount of 
information the system can process and send on the channel per unit of time. Given 
a MIMO channel and a probability of outage defined as in [3], the maximum service 
rate can be derived from the channel capacity distribution. Data are sent on a MIMO 
channel with a specified number of transmitting and receiving antennas, iVy and Nr 
respectively, with a fixed signalling rate r defined by Eq. 2.21. For the simulations 
in this section the number of antennas is iVy = Nr = 4, which represent a practical 
system dimension [5]. The system described above can be modeled according to the 
theory of M/D/l/N queuing systems [21, 22]: the arrival process is modeled as a 
Poisson random process with parameter A, the service rate is constant and equal to 
r, the buffer is one with finite size N — 1. The M/D/l/N model allows to derive 
important information about the size of the queue, delay in the queue and delay 
in the system for data bit. Closed-form equations for the queue size, delay and 
state probability have been presented in Sec. 3.1. The theory of queuing systems 
states that in a stable system, the service rate r (amount of information the system 
transmits) must be higher than the incoming amount of information that need to 
be sent. In other words, the service rate r must be higher than the arrival rate 
A, leading to a utilization factor p . = A/r < 1. If the service rate r is limited by 
the channel capacity, there will be a maximum arrival rate Ac which will ensure the 
system stability. The critical arrival rate is defined as the limit arrival rate for which 
P = Ac/r = 1. Therefore, given the channel capacity process, Ac is the maximum 
arrival rate the system can support. Fig. 3.2 shows the relationship between the 
SNR in dB and the critical arrival rate Ac in [bits/s] for different probabilities of

c

outage. The maximum service rate r is provided by Eq. 2.21. Different probabilities 
of outage impose different restrictions to the achievable service rate and to maximum 
arrival rate that can be supported.

Equations presented in Sec. 3.1 allow to evaluate the average system delay for
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Critical arrival rate X Vs. SNR -  MIMO 4x4
c

Figure 3.2: Critical arrival rate Ac [bits/s] vs. SNR. The limit on Ac is imposed 
by the maximum service rate r to satisfy a specific outage probability. This graph 
shows the results obtained by Eq. 2.21. An important result is that a finite set of 
arrival rates can be supported for a given average SNR, in order to guarantee reliable 
transmissions.
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Average delay in the system (solid) and in queue (dash) -  Analytical derivation -  N = 10 [bits]

Figure 3.3: Average system delay (solid) and queue delay (dash) for different, p and 
Pout'- a smaller Pout leads to a smaller service rate which turns into an higher average 
system time for the whole set of utilization p. The average queue delay for small p 
is not sensible to the outage probability: the queue is almost empty therefore the 
service rate has a very little effect on the delay.

different outage probabilities. The system delay is defined as the sum of the average 
time spent waiting in the queue and the average time needed to process the data 

(service time) [21], As before, the number of antennas is IVy = Np = 4 with an SNR 

equal to 10 dB. The service rate r is computed to satisfy the outage probability P0Uf in 
three different cases: Pout = 10 , 10 , 10 . The system works at the service rate
r for different arrival rates, according to the utilization factor p = A/r < 1. Fig. 3.3 
shows how different outage probabilities affect the average time per bit spent in the 

system and in queue. A strict requirement in terms of outage probability leads to a 
lower service rate, which turns into higher average system time. The time difference is 
appreciable for the whole set of utilization factor p. For small probabilities of outage 
the time spent in the system, which is the delay in transmission, is considerably 
higher: more reliable transmissions require a larger transmission delay. In case of
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delay sensitive traffic, it is important to minimize the average transmission time and, 
therefore, the effects of outage must be taken into account. The same conclusion can 
be obtained by the study of the average time per bit spent in the queue (delay in 

queue), shown in Fig. 3.3 (dash line). For high utilization factor p the average time 
per bit spent in queue is sensible to the required probability of outage. When p is 
small, the queue is almost empty and the probability of outage does not affect the 

delay.

3 .2 .2  T otal p rob ab ility  o f  failure for a M IM O  sy stem

In this section, the performance of the whole transmission system described in Fig.3.1 
are studied in terms of the data loss probability. The model under analysis is a single 
queueing system with a finite buffer. The physical layer is characterized by a constant 
data rate transmission over a MIMO channel.

The two sources of data loss are the probability of outage Pout at the physical 

layer and the probability of buffer overflow Poverflow at the MAC layer. In order 
to describe the whole system behaviour, the total probability of failure is defined as 

the sum of those two components: PfaiL — Pout + Poverflow Note that the sum of 
the two probabilities is the upper bound of the successful transmission probability, 
defined as

n = (1 — Pout)( 1 ~ Poverflow)- (3-8)

The buffer overflow and the outage events are independent, the first one is related to 
the arrival process and buffer size, the second one depends on the channel capacity 
random process. We assume that a certain maximum outage probability Poû  needs 
to be met for the constant data rate MIMO transmission. Eq. 2.21 provides the 
system service rate r to satisfy the requirement on the outage probability, r also 
represents the critical arrival rate Xq in [bits/s] that the system can support in the 
case of a finite buffer: if the arrival rate exceeds the service capability of the system, 
the buffer will rapidly become full and buffer overflow will be inevitable. Our interest 

is in defining the system probability of data loss Poverflow due to the finite buffer. In 
the following example, we consider a 4 x 4 MIMO system, a fixed buffer size N = 10 
[bits] and average SNR of 10 [dB], If the desired probability of outage is 10-2 , the 
maximum service rate r will be 7.9 [bits/s/Hz] obtained by Eq. 2.21. Fig. 3.4 shows 
the probability of overflow for different buffer sizes N against the utilization factor
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Probability of buffer overflow -  Analytical derivation -  MIMO 4x4, SNR=10 [dB], Pout = 1CT2, Xc = 7.9 [bps]

Figure 3.4: Probability of buffer overflow for different buffer sizes. SNR = 10 dB, 
pout — 10-2 . p = \/r  where r = 7.9 [bits/s/Hz] is the maximum service rate 
supported by the system. For a given arrival rate Ac and desired outage, the buffer 
size has an evident influence on the overflow probability.

p = X/r. The buffer sizes are specified according to the arrival process, the values are 

N = 5,10,15 bits.
According to the definition of total failure probability PpAIL presented above, 

sum of the probabilities of outage and buffer overflow is considered to describe the 
whole system behaviour. Fig. 3.5 shows the total failure for the specified system. 
The outage probability is Pout = 10-2 and the buffer overflow probability is specified 
in Fig. 3.4. For small utilization factors p, the fixed outage probability is dominant. 

Increasing the utilization factor p, the buffer overflow probability becomes relevant 

depending on the buffer sizes.
Next, a fixed buffer size of IV = 10 [bits] is considered. Fig. 3.6 shows the 

probability buffer overflow for different outage requirements. The desired probability 
of outage has a direct effect on the service rate and plays an important role on the 
buffer overflow probability. Probability in Fig.3.6 is plotted versus the range of arrival
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Total Failure Probability -  Analytical derivation -  MIMO 4x4, SNR = 10 [dB], Pout = 1CT2, Xc = 7.9 [bps]

Figure 3.5: Total failure probability for different buffer sizes N [bits], SNR = 10 
dB, Pout = 10 . p = A/r where r = 7.9 [bits/s/Hz] is the maximum service rate
supported by the system. For small utilization factors p, the fixed outage probability is 
dominant. Increasing the utilization factor p. the buffer overflow probability becomes 
relevant depending on the buffer sizes.
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Figure 3.6: Probability of buffer overflow for different desired probabilities of outage. 
SNR = 10 dB, N = 10 [bits]. The arrival rate A [bits/s] is increased until the critical 
value Ac is met.

rates A [bits/s] the system can support: values of A grow until the critical arrival rate 
Xc = 9.3 [bit/s] is met. For A > Aq the outage probability requirement is no longer 
satisfied. Fig. 3.7 shows the total failure probability for a fixed buffer size N [bits] 

and different outage requirements. The maximum service rate r is defined by the 
outage probability, which also affects the maximum arrival rate Ac the system can 

support.
From a design point of view, it is interesting to derive some system parameters 

to fulfill specific performance requirements. Let Ptp be the required total failure 

probability in the system. Failure in the system happens either when the buffer 
overflows or outage occurs. One possible goal is to design the buffer size to achieve the 
desired total failure probability. To answer this question, a desired outage probability 
must be specified, in order to derive the system service rate r as a function of the 
MIMO channel parameters and SNR. The arrival rate in the system is then related
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Figure 3.7: Total failure probability for different outage probabilities. The arrival rate 
A [bits/ s] is increased until the critical arrival rate Ac is met. The different behaviour 
dependent on the required Pout is evident.
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Figure 3.8: Total failure probability for different buffer sizes. For large buffers, the 
only contribution to the failure probability is given by outage. Given a desired thresh
old, a suitable buffer size can be chosen to fulfill that requirement. The desired outage 
imposes the system service rate r and, consequently, a maximum arrival rate. System 
parameters: SNR 10 dB, Pout = 10~3, p = 0.8, A = 5.6 [bits/s].
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to r through the system utilization factor 0 < p < 1. Fig. 3.8 shows the total failure 
probability for different buffer sizes N. Given a desired threshold, i.e. Pt  ̂= 5 • 10~3, 
the buffer size N can be derived numerically to fulfill the requirement. In Fig. 3.8 the 

desired outage is Pout = 10~3. Given a MIMO channel with SNR 10 dB, the outage 
probability value Pout corresponds to a maximum signalling rate of 7 [bits/s/Hz], 
The system utilization factor is set to p — 0.8 leading to the arrival rate of 5.6 

[bits/s]. Both outage and buffer overflow probabilities depend on the service rate r. 
An optimal value of N can be computed numerically to fulfill the requirement on the 
total failure probability. In the case shown in Fig. 3.8, for buffer sizes greater than 

N = 20 the buffer overflow becomes negligible and the only component of Pfail is 
the capacity outage.

From another point of view, a possible goal would be to obtain the optimal 
system service rate according to the system buffer size N and a specific A. The 

optimal service rate should minimize the total probability of failure in the system. 
Fig. 3.9 shows the behaviour of the total probability of failure versus the system 
utilization factor, for a fixed arrival rate and MIMO channel state. The channel 

SNR is 10 dB and the arrival rate is 5.6 [bits/s]. The total failure probability is 
the sum of the two components shown in figure 3.9, which have an opposite trend 
with respect to the utilization factor p = X/r. For low p the primary contribution to 
the failure probability is given by outage, as the service rate r is not supported by 
the channel state. By increasing p (which means decreasing r) the outage becomes 

negligible while the probability of loosing data because of the buffer overflow becomes 
predominant (the service rate r is not enough to support the incoming data in the 
system). The main result is the presence of a trade-off point between the outage and 
buffer overflow probabilities. Figure 3.9 suggests the existence of an optimal service 
rate ropt and corresponding utilization factor p which minimizes the total system 
failure probability for a specific arrival rate A. Figure 3.9 shows the behaviour of the 
total failure probability (solid line) for different buffer size N. A lower total failure 
probability can be achieved by increasing the buffer size, which shifts the tradeoff 
point toward higher values of the utilization factor p. The reason is that the buffer 
size N affects only the probability of data loss due to overflow: the outage does not 
change since the channel state is the same. From a service rate point of view, the 
optimal r tends to be lower as the buffer size increases, following the asymptotic 
behaviour of outage probability: for N equal to infinity the only component of the
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Figure 3.9: Total failure probability for different utilization factors. The arrival rate 
A = 5.6 [bits/s] is fixed while the service rate is decreased monotonically maintaining 
the utilization factor p = X/r < 1. The average SNR is 10 dB. For low p the outage 
is the dominant effect due to a high service rate that is not supported by the channel 
SNR. High p leads to high probability of buffer overflow since the service rate r is 
lower. The figure shows the behaviour of the total failure probability for different 
buffer size N. Notice the possible tradeoff in terms of p.
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failure probability would be the outage.

3.3 Conclusion

The random nature of the MIMO channel capacity introduces a probability of outage 
which translates into a probability of no reliable transmission. This study showed 
that this outage has a significant effect on the network performance, particularly on 
the probability of data loss. For high service rates, the outage is the dominant effect, 
while buffer overflow is the dominant effect for smaller service rates. A good trade
off between outage and buffer overflow probabilities is therefore necessary. Optimal 
service rates and system buffer sizes have been discussed using numerical examples. 
According to the queue size and taking into account the MIMO PHY layer, an optimal 
constant signalling rate can be chosen to minimize the total failure probability of the 
system. The study of the queuing behaviour with variable transmission rates is the 

next step of the work.
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Chapter 4

Estimation of the Channel State 

Information

Introduction

The capacity analysis developed in Chapter 2 relies on an accurate channel knowledge. 
Specifically, MIMO links promise very high data rates with low error probability 
when the wireless channel response in known at the receiver. The receiver is able 
to obtain the channel state information (CSI) with the use of pilot symbols sent 
by the transmitter. A precise evaluation of the channel capacity is a fundamental 
information for the transmitter, as discussed in Chapter 2. It is recognized that the 
error in the channel estimation can be modeled as a noise component in the system, 
which leads to an effective SNR lower than the actual one [24] and consequently 
reduces the channel capacity. Therefore, in this chapter a specific channel estimation 
technique is described, with particular attention to its estimation error.

In the specific case of time-variant channel due to user mobility, a promising 
estimation technique is based on the use of a set of functions known as discrete 
prolate spheroidal sequences (DPSS). The use of DPSS basis set allows an accurate 
channel estimation even in the case of moderately fast fading channels, with the use 
of an affordable number of pilots. Generally speaking, an accurate representation 
of a moderately fast fading channel using bases functions is achievable when both 
channel and bases bands align. If a mismatch exists, usually a larger number of bases 

functions is needed to achieve the same accuracy.
In this chapter it is shown that the DPSS based estimation is a powerful tech

nique in case of isotropic scattering environments. The mean square error (MSE) of 
the estimation is deeply discussed and compared with the Fourier basis expansion, 
to show the significative improvement. However, real world measurements reveal 
that the scattering angle distribution can deviate significantly from the uniform case.
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In those cases a large number of DPSS functions is needed to achieve the desired 
accuracy, but numerical problems related to the nature of those basis set are un
avoidable. A possible solution consists in the definition of a new set of modulated 
DPSS (MDPSS). Numerical simulations are used to show the better accuracy of this 
new basis set for directional scattering environments.

4.1 M odel of time-variant wireless fading channel

A mobile environment, the Doppler shift in the frequency domain is a finite quantity 
that is proportional to the mobile velocity. For this reason, the bandlimited Rayleigh 
fading process, whose power spectral density (PSD) is zero past the maximum Doppler 
frequency, appears in many physical models of mobile radio channels. On one hand, 
because of its complexity, real data measurements of mobile radio channel are expen
sive and not easy to obtain; on the other hand the design and optimization of modern 
communication systems cannot be carried out without computer simulations which 
take into account the behaviour of the channel. The classical fading simulation appli
cation is to generate a single sequence of correlated Rayleigh variates in accordance 
with Clarke’s wide-sense stationary (WSS) isotropic model [25].

4 .1 .1  C orrela ted  fad ing m odel

The Gaussian WSS uncorrelated scattering fading model is a complex Gaussian pro
cess. The variability of the wireless channel over time is reflected in its auto-correlation 
function (ACF). In the assumption that the radio propagation path consists of a two 
dimensional isotropic scattering, the theoretical PSD associated with either in-phase 
or quadrature portion of the received fading signal shows a U shaped bandlimited 
form given by

S(f)
l/l < fd

elsewhere
(4.1)

where fy is the maximum Doppler frequency in Hertz [Hz], derived by the user velocity 
v and the carrier wavelength A according to fy = v/X. The corresponding normalized 
(unit variance) continuous-time autocorrelation of the received signal under these
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conditions is R(t) = Jo(27r/^r), in which Jq(.) is the zeroth-order Bessel function of 
the first kind [1], For the purposes of a discrete-time simulation, the autocorrelation 
sequence becomes

R[n\ = Jo(2nfm\n\) (4.2)

where fm = ffT  is the normalized Doppler frequency. One method to simulate the 
channel gain is the sum-of-sinusoids approach also known as Jakes’ model. Authors 

of [26] implemented a careful design to obtain the low-pass discrete fading process. In 
[26] it is shown that the statistical properties of the fading process approach those of 
Clarke’s isotropic model as the number of sinusoids considered Ns approaches infinity. 
A good approximation of the ensemble statistics has been reported for Ns > 8.

One of the main assumptions of the WSS isotropic model is the uniform dis
tribution of the angle of arrival (AoA) of multipath components at the mobile re
ceiver. It has been demonstrated by experimental investigations that the scattering 
encountered in many environments is non-isotropic, condition that strongly affects 
the second order statistics and the power spectrum of the channel complex envelope. 
In directional fading scenarios, real and imaginary Gaussian sequences underlying the 
Rayleigh channel can exhibit cross-correlations. As a consequence, the PSD in non- 
isotropic environments can be bandlimited but not symmetric. In [27] it is shown that 
the received signal correlation and power spectra depend on the probability density 
function (PDF) of the AoA of the scattered wave. The Von Mises PDF is shown to be 
a versatile and powerful instrument to describe a directional scattering environment. 
Introduced in 1918 to study the deviations of measured atomic weights from integral 
values, the Von Mises PDF for the scattered component of x in direction 9 is

« ■»

where Iq(.) is the zeroth-order modified Bessel function, (p £ [—7r, 7t) accounts for the 
mean direction of AoA of scattered components and k > 0 controls the width of AoA 
of the scattered components, k = 0 corresponds to a uniform distribution of phase 
and large values of k correspond to a concentration of angles around a given direction 
0 in a Gaussian fashion with variance a2 = 1/k. The Von Mises PDF, also known 
as Tikhonov PDF, can be seen as a circular analog of a Gaussian distribution: if the 
unwrapped phase is distributed normally, its wrapped version is distributed according 
to the Von Mises PDF [28]. The normalized autocorrelation function pr of the mobile
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channel is associated to the distribution of AoA px(0) as [29]

7T

p(r) = J  exp(j2nfdT cos 6)p(9)dd. (4.4)
7T

The discrete-time autocorrelation is derived analytically in [27] and proved to be

J0 (\ A 2 — z2 +  j2 /czcos
R[n] = i2jj[n] + ji?/g[n] = -------------- --------------------; (4.5)

where z = 27r/m|n|, A//[n], i?gg[n] denote the sampled autocorrelation of the real 
in-phase and quadrature Gaussian process respectively, and Rjq [n] denotes the cross

correlation function.
Authors of [30] proposed an autoregressive (AR) modelling approach for the 

accurate generation of correlated Rayleigh process, in which the process covariance 
matrix is obtained by the Cholesky factorization. The exact generation of N Gaussian 
variables with the desired correlation can be achieved in principle by decomposing the

1 1 rj tt
desired N x N covariance matrix R = R2R2 where R indicates the Hermitian

l
transpose of R, then multiplying N independent variables by R2. Given the desired 
ACF sequence, the AR filter coefficients can be determined by solving the set of p 
Yule Walker equations. Those equations can be solved efficiently by the Levinson- 
Durbin recursion. Since Rxx is an autocorrelation function, it is positive semidefinite 
and can be shown to be singular only if the process is purely harmonic and consists 
of p — 1 or fewer sinusoids. In all the other cases, the inverse R “^ exists and the 
Yule-Walker equations are guaranteed to have a unique solution a = R^jv. The 

generated AR(p) process has the ACF

Rxx(k) —
E-xx{h), 0 < k < p
-  Ef»=l <bnRzx[k ~ m], k > p

(4.6)

The simulated process has the attractive property that its sampled ACF perfectly 

matches the desired sampled ACF up to lag p.
The following figures show the autocorrelation of the fading process obtained by 

the AR filtering described in [30]. The filter order is p = 50, the time autocorrelation 
is evaluated in case of isotropic scattering (k = 0) and directional scattering (k = 5).
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k=0

Figure 4.1: Channel in-phase correlation and I/Q cross-correlation in non-isotropic 
simulation examples for different k

The normalized Doppler frequency is f m = for a mobile velocity v = 19.4 m/s. 
The carrier frequency is f c = 2 GHz. Both those values are chosen for numerical 
comparison with the results in [30]. Fig. 4.1 shows the process correlation for isotropic 
and directional scattering. In the latter case the autocorrelation is characterized by 
a significative imaginary component. The theoretical correlation in Eq. 4.5 is plotted 
over the numerical results obtained by the AR filtering. Fig. 4.2 shows the channel 
correlation in isotropic environments. Fig. 4.2 compares the theoretical channel 

correlation, the AR filtering output from the theoretical correlation in Eq. 4.5 and 
the AR filtering output obtained by the numerical integral in Eq. 4.4. The results of 
the AR filtering show a high matching, proving the validity of the analytical closed 
form in Eq. 4.5. The matching with the theoretical correlation is accurate up to 

the filter order p, as clear from Eq. 4.6. In case of strong directional scattering, the 
matching between the real and imaginary components of Eq. 4.5 is shown in Fig. 4.3. 
A model which generates the correct second-order statistics of the fading channel is 

the first step to the problem of channel estimation in MIMO systems
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Correlation comparison for AR (50) -  k = 0 -  Single realization

Figure 4.2: In-phase channel correlation Rjj for isotropic scattering. Comparison 
among the theoretical Bessel correlation, the AR filtering output correlation obtained 
from Ecp 4.5 and Eq. 4.4
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Correlation comparison for AR(50) -  k = 5 -  Single realization

Figure 4.3: Channel in-phase correlation and I/Q cross-correlation resulting from 
the AR filtering procedure. The matching between numerical and theoretical curves 
prove the validity of the closed analytical form in Ecp 4.5.
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4.2 Time-variant channel estim ation with

Discrete Prolate Spheroidal Sequences

4.2 .1  B asis  exp an sion

The theory of basis expansion states that a general process can be expanded as 
a sum of deterministic functions, eventually weighted by random coefficients if the 
interested process is random [31]. The functions used to expand the process are 
usually orthonormal on a specified domain, the coefficients are chosen to minimize a 
specific convergence function, i.e. the MSE between the process and its expansion. 
Given a process x(f), the aim is to describe the process as a sum of specific functions 

weighted with appropriate coefficients:

oo
x{t) = Y  ak<t>h;(t) 0 < t < T (4.7)

k=1

where T is a specified time interval. The purpose is to understand if the process x(t) 
can be described by a composition of known functions in a limited time window, ak 
are the weights for each single function, defined according to the following relation:

T

ak = J  x(t)<t>*k(t)dt (4.8)

0

which is a projection of the basis function <fk over the process on the time interval T. 
In general, the mean square (MS) convergence of the sum in Eq. 4.7 is the objective 

function:

limn—Kx> E{\x(t) -  = 0, 0 <t <T.  (4.9)
k

Now the question is which set of functions should be chosen, so which basis is good to 
describe the process. The logical choice of the set <j)k leads to uncorrelated coefficients 

ak, which means:

E { a k) =  mk

E { (a k -  mk)(a j  -  m j ) * }  =  Ak6kj
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Assuming mk = 0, E{\ak\̂ } = is the expected value of energy along <f>k(t) and 
Xk > 0. The hypothesis of uncorrelated coefficients leads to the definition of a 
particular integral equation:

T

Xk6kj = E{akaj} = E{j x{t)<j)k(t)dt J  x{u)(j)j(u)du) = J  <f>k(t) j Kx(t,u)<f>j(u)dudt,

(4.10)
0 0

for all the values k,j; then to:

T

A = /  Kx(t,u)(f)j(u)du 0 <t<T]  (4-11)

0

where Kx(t,u) is the covariance matrix of the process x{t). Eq. 4.11 is called Fred
holm equation, A are the eigenvalues of the covariance matrix Kx and 0 are the 
eigenvectors. By definition, Kx is symmetric and non-negative. Eq. 4.11 has K 
real non-negative values of A as solutions, obtained by solving an homogeneous linear 
integral equation. The only assumption about the process x{t) is that its energy is 
limited, thus the following relation must be satisfied:

0 0 0

< oo. (4.12)

The integral in Eq. 4.11) has some properties, deeply described in [31]. The sum 
of the eigenvalues is the expected value of the energy of the process in the interval 
(0, T). This property guarantee that is possible to find a set of functions <f>k that 
leads to uncorrelated coefficients. Moreover, since Kx(t,u) is non-negative defined, it 

can be expanded in the series:

oo
Kx(t,u) = ^2  Xkf)k(t)(f)k(u) 0 <t,u<T-  

k=1
(4.13)
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with this expression, the expectation of the mean square error can be evaluated and 
the convergence of the expansion for N —> oo can be proved [31]:

The procedure described is called Karhunen-Loeve expansion. It provides a second 
moment characterization of the process x(t) in terms of uncorrelated coefficients. If 
x(t) is a random process, the coefficients will be random variables and nothing change 
in the basis set, that will be deterministic in time. For the particular case of Gaussian 
random processes, the expansion coefficients are statistically independent Gaussian 
random variables.

4 .2 .2  B a n d lim ited  p rocesses and p rolate spheroidal 

seq u en ces

A particular case arises when the process under analysis has a limited spectrum in 
the frequency domain. Considering the simple model where the process has a uniform 
spectrum Sx(u>) defined as:

N
limN^oo E{(x(t) -  Y  ak4>k(t))2} = 0-

k=1
(4.14)

Sx(lu) = -— |u;| < W, 0 elsewhere; (4.15)

the corresponding covariance function is the Fourier transform of Sx(uj):

Kx(t,u) = P
sin(W [t — u)) 

W(t -  u) (4.16)

and the integral equation of interest becomes:

T/2

(4.17)

-T/2

In [31], the procedure to solve Eq. 4.17 is to find the related differential equation 
and to examine its solution. The associated differential equation in the normalized
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interval — 1 < t < 1 is :

(1 -  t2)j)(t) -  2tj>(t) + (A -  c2t2)<j)(t) = 0 (4.18)

where A is the eigenvalue and c is called bandwidth parameter equal to c = =
nfmaxT, with fmax the maximum frequency of the spectrum in Hz. This equation 
has continuous solutions called angular prolate spheroidal functions, obtained for a 
discrete set of values A(c) . These functions are tabulated in [32]. This set of function 
is characterized by a very compact set of eigenvalues: for values of k larger than 

(2 fm axT  + 1) the values of A/j rapidly approach zero. When a bandlimited process 
is observed for T seconds, there are only {2fmaxT + 1) significant eigenvalues, that 
means that the energy of the process is concentrated in this little set of coefficients. 
Moreover, this means that a good description of the process can be achieved with a 
little number of coefficients, which can be determined following the procedure exposed 
in the previous section. In conclusion, the prolate spheroidal sequences (PSS), also 
known as Slepian functions, are an appropriate basis set for the expansion of ban
dlimited processes. Prom this property arises the interest in using this functions for 
the estimation and prediction of a time-varying channel, whose spectrum is limited 
by the Doppler frequency value.

4 .2 .3  D iscrete  P ro la te  Spheroidal S eq uences

The discrete prolate spheroidal sequences (DPSS) represent the discrete version of the 
PSS described in the previous section. Throughout this section and the rest of the 
chapter, it is assumed that only N discrete samples of the channel are available and 
that they were obtained with a sampling period T. Hence , the discrete frequency 
v represents the continuous frequency /  normalized by the sampling time: v = fT. 
Given N  the kth DPSS vk(n, N, W) for k = 0,1,..., N - 1 is defined as the real solution 
of the system of equations [17]

N - 1

E
m=0

sin(2nW (n — m))
7 r ( n  —  m )

• vk(m, N, W ) = Ak(N, W) ■ vk(n, N, W) (4,19)
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Figure 4.4: Eigenvalues for Discrete Prolate Functions. The prolate sequences are 
designed for a block length N = 256 and a normalized Doppler frequency of 3.8 x 10~3 
Hz; the bandwidth parameter is D = 2NW = 2.

where Xk(N, W) are the ordered non-zero eigenvalues of Eq. 4.19

Ao(N, W) > A} (N, W) , ..., Â y-_i (N, W) > 0 (4.20)

The first 2NW eigenvalues are very close to 1, while the rest rapidly decay to zero [17]. 
Fig, 4.4 shows the eigenvalues A/, for the prolate sequences. The largest eigenvalues 
are concentrated in the first few sequences, meaning that the process energy is well 

described by the first few basis functions. The DPSS are doubly orthogonal: they 
are orthogonal on the infinite set {—oc,...,oc} and orthonormal on the finite set
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{0,1, N  — 1}:

00
Y,Vi(n,N,W)vj {ntNtW) = XlSij (4.21)
—oo

N -1
Vi(n, N, W)vj(n, N,W) = (4.22)

n=0

where i,j = 0 ,1 , N — l. This property enables parameter estimation that performs 
better than other methods. In the following simulations the prolate basis expansion 
is compared with the Fourier expansion to prove the previous statement.

4 .2 .4  S ignal m o d el for flat-fad ing tim e-varian t channels

Following the same notation of [33], the model under analysis is the transmission of 
data symbols d[n], where the index [n] denotes the discrete time. The symbol rate 
is Rs = 1 /Ts and symbols are transmitted over a flat fading time-variant channel. 
The flat fading assumption is fulfilled for a symbol duration Ts much longer than the 
delay spread of the channel Tjy, looking at the frequency domain this means that the 
channel bandwidth is larger than the symbol one, leading to the case of a non selective 
channel. With this assumptions, the received sequence y[n] is obtained by multiplying 
the symbol sequence with the sampled time-variant channel h[n] = h(nTs, 0), with 
the addiction of complex white Gaussian noise z[n] ^  jV(0, cr?).

y[n\ = h[n]y[n] + z[n], n e{0,..., TV — 1}. (4.23)

The transmitted sequence is a block of N symbols. In each data block, J pilot sym
bols are sent in order to allow the channel estimation at the receiver side. Each block 
consists of N — J data symbols b[n] with J interleaved pilot symbols p[n]. Data 
symbols are chosen from a QPSK alphabet, so they satisfy the following relation: 
b[n\ € {± l,± j} /\/2 . The pilot positions are uniformly distributed in the block ac
cording to the following relation, which provides a regular pilot placement as function 

of the number of pilots itself:

N N
(4.24)
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The pilot sequence is made by a sequence of orthogonal complex symbols, with nor
malized energy Es = 1. Author of [34] suggest an optimal training sequence for 
the particular case of MIMO systems, building the pilot sequences from a discrete 
Fourier Transform (DFT) matrix. The pilot sequences used for the simulations are 
built according to this technique.

4 .2 .5  T im e-varian t flat fading channel estim a tio n

According to figure 4.4, the eigenvalues A/j are clustered near 1 for k < 2NW  and 
rapidly drop to zero for k > 2NW. Considering D' = 2NW  + 1 the minimum signal 
dimension to have a good description of the process, the time variant channel can be 
described in terms of prolate functions as:

1
h[n] «  = ^2  ^ [ nbfcS\  (4.25)

fc=0

where n £ {0,..., N — 1}. The dimension of the basis expansion fulfills:

D' < D ^  < N. (4.26)

According to [33], by choosing D ^  it is possible to control the mean square error of 
the basis expansion defined as:

N - 1

MSEN = V  E  -  M«]lt (4.27)
n=0

The channel estimation is based on the use of pilot symbols. The pilot pattern p 
allows to obtain the channel knowledge at the discrete time n £ P. The estimation 
is performed defining the basis vector

f[n] = [v0[n\, ...,vD_i[n]]T £ RD, (4.28)

which contains the instantaneous values of the basis functions and the autocorrelation 
matrix of the basis function

G = E w w ff-
leP

(4.29)
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The vector of coefficients 7  to weight the basis set in Eq. 4.25 can be obtained by the 
least square estimation, knowing the pilot pattern p[n] and the received signal y [n]:

7 = fWfF[n]|p[n]|2)-1 • ^2  y[n\p*[n\f*[n] (4.30)
neP neP

where 7  = {70,..., ^d- \ ) T ■ The pilot sequence is made by a set of DFT coefficients 
with |p[n]| = \/Es = 1, according to [34], For a complete explanation of the least 
square estimation that leads to Eq. 4.30 see App. B.

The following numerical simulations show the performance of the prolate basis 
estimation, with particular attention on the variance of the basis estimation. The 
parameters used for the simulations are the following. The carrier frequency is fc = 2 
GHz, the symbol duration is Ts = 20.571CP® s, the speed of the user is vmax — 27.8 
m/s corresponding to a maximum normalized Doppler frequency of W — 0.0038, 
the data block length is N = 256 symbols. With these system parameters, the 
approximate dimension of the signal space is D' = 2NW + 1 = 3. The following 
figure shows the comparison between the prolate basis expansion and the Fourier 
expansion. The Fourier basis is built according to [33]:

uj^[n] = -±=e(i2n(i~(D~1̂ 2')n/N\  fori= l,...,D  (4-31)

The dimension D' is the minimum number of basis functions required to approximate 

the channel. Referring to figure 4.4, D' = 3 are the most high eigenvalues of the 
channel autocorrelation matrix. In [33] the authors propose the use of the minimum 
dimension of the signal space D'. Although, the energy not covered by the first D' 
bases is considerable, equal to the sum of all the eigenvalues from A4 to Aqo. For 
this reason, in order to obtain a good estimation of the process, the basis dimension 
should be slightly larger than D'.

4 .2 .6  D P S S  basis M SE  an alysis

By definition in [31, 33], the mean square error (MSE) is the composition of the 
square bias of the estimator and its variance:

o

MSEn = biasjy + varqq (4.32)
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where N is the time length of the process. Authors of [33] prove that DPSS perform 
better than the Fourier basis set. The Fourier expansion made with a truncated 
discrete Fourier transform (DFT) is not appropriate to describe a bandlimited process 

due to its infinite support. Truncating the spectrum created with the Fourier functions 
introduces spectral leakage which leads to significant phase and amplitude errors in 
the estimation. As shown in the following figures, the DPSS estimation offers better 
performances with the same grade of complexity of the Fourier expansion.

Following [33, 11], the squared bias can be described analytically as function of 
the basis error characteristic and the power spectral density of the channel h[n\.

1/2

bias2[n] = J  E[n,W]Shh(W)dW, (4.33)

- 1/2

defining the block squared bias as:

1 N-l
bias‘d = — bias2[n] (4.34)

n=0

Fig. 4.5 shows the squared bias of the DPSS basis and the Fourier basis, as function of 
the discrete time n. The prolate basis offers a significative increase in the estimation 
accuracy compared to the Fourier basis set. The graph shows clearly that the bias‘d  
is higher at the beginning and at the end of the frame, where the basis functions try 
to extrapolate the channel behavior only from one pilot available. Both the DPSS 
and Fourier basis work with the same complexity, equal to a the problem dimensions 

D = 5.
The analytic expression for the estimator variance is [11]: 1

1 N — T
varN « a2— ^  {H[«]G~lf[n] « a2—— , (4.35)

71=0

where (N — J)/J  is the ratio between the number of data symbols and pilot symbols. 
Thus, increasing the number of pilots the variance of the estimation should decrease, 
as the noise effect is limited to a shorter interval between two consecutive pilots. 
Moreover, a strong dependance on the noise power a2 is expected. Fig. 4.6 shows 
the basis MSE dependance on the SNR, for the DPSS and Fourier expansion. The
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Figure 4.5: Bias^j for the Fourier and Prolate expansions, both with dimension 
D = 5 and number of pilots J = 10 in a block of = 256 symbols. In the whole 
block duration, the prolate Bias\ is more than two magnitudes lower than the Fourier 
Bias
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Figure 4.6: MSEjy of the Prolate and Fourier basis for different SNR,number of pilots 
J = 10 and normalized Doppler W = 0.0038. The Bias‘d  of the Fourier basis affects 
significantly the estimation performances and it is responsible of the saturation of 
MSEjsf at high SNR values. The prolate estimation is unbiased in the interest range
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Fourier expansion is biased since at high SNR the MSEjq saturates at a specific 

value. On the other hand the prolate basis is practically unbiased and the MSEjy 
decreases uniformly increasing the SNR. The behavior of the MSEjy for the Fourier 
basis expansion can be explained according to Eq. 4.32: with high SNR the variance 
injected by the noise is very little and the bias‘d  of the estimator becomes predominant 
as it does not depend on the SNR. The DPSS basis revealed to be an appropiate basis 
estimation set for wireless mobile flat fading channels. The performance analysis has 
been carried out in the case of isotropic scattering, which leads to a baseband limited 
channel spectrum.

4.3 M odulated Discrete Prolate Spheroidal 

Sequences

The channel spectrum presented in Sec. 4.1 resembles a uniform spectrum for most 
of the frequencies, therefore its Karhunen-Loeve basis expansion [31] is close to the 
one defined by a sine type covariance function. For this reason, the representation 
in terms of discrete prolate spheroidal sequences (DPSS) suggested in [33] is shown 
to be very accurate for isotropic environments. When the angle of arrival (AoA) 
distribution deviates significantly from the uniform case in [—7r 7t], the received signal 
is well represented by a sum of sinusoids arriving from a narrow band of angles, 
corresponding to individual clusters [35]. If the DPSS are used for channel estimation, 
then usually accurate and sparse representations are obtained when both the DPSS 
and channel under investigation occupy the same frequency band [33]. Some problems 

may arise when the channel band is centered around some frequency | r'o I > 0 and the 
occupied bandwidth is smaller than 2W, as depicted in Fig. 4.7.

In such situations, a larger number of DPSS is required to approximate the 
channel with the same accuracy, despite the fact that such narrowband channel is 

more predictable than a wider band channel. In order to find a suitable basis, the 
modulated discrete prolate spheroidal sequences (MDPSS) are defined as:

Mk{n, N, W ; um) = exp(jujmn)vk(n, N, M); (4.36)

where = 27xvm is the modulating frequency. It is easy to show that MDPSS 
are bandlimited to the frequency band [-W + um : W + vm], obey Eq. 4.19 and
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Figure 4.7: Comparison of the bandwidth for a DPSS (solid line) and a channel 
(dashed line): (a) both have the same bandwidth; (b) both have narrow bandwidth; 
(c) DPSS has a wide bandwidth, while the channel bandwidth is narrow and centered 
around vq > 0; (d) both have narrow bandwidth, but centered at different frequencies.
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are doubly orthogonal. The next question is how to properly choose the modulating 
frequency um. In the simplest case in which the spectrum of channel S(v) is confined 

in a known band [v\\ 1/2], i.e.

f  »  0, W  £ [ v i \V 2 [a n d \v i \  < |ẑ21

I ~  0 , elsewhere
(4,37)

the modulating frequency um and the bandwidth of the DPSS basis is defined by

v\ + 2̂
vm —

w  =

2
^2 ~ M 

2

(4.38)

(4.39)

as long as both satisfy

Wm\ + W <±  (4.40)

In practical applications, the exact frequency band is known only with a certain 
degree of accuracy. Especially in mobile communications, the channel time evolution 
suggests that only a relative band defined by the mobile velocity and carrier frequency 
is known. To improve the estimation robustness, the concept of frames has been 

introduced in [36].
The performance of the MDPSS estimator is compared with the DPSS basis 

expansion in the next figures. The mobile channel has been modeled following the 
AR approach in Sec. 4.1, with correlation properties described by Eq. 4.5. The 
parameters of the simulated system are the same as in Sec. 4.2. The carrier frequency 
is f c = 2 GHz, the symbol duration is Ts = 20.5710-6 s, the speed of the user is 

Vmax = 27.8 m/s corresponding to a maximum normalized Doppler frequency of 
W = 0.0038, the data block length is N = 256 symbols and the number of pilots is 
J=  10. The number of DPSS used in estimation is given by D' = [2AW| + 1. Fig. 4.8 
shows the MSE of the estimation in a noise-free case, i.e. the bias‘d  component of Eq. 

4.32. The angle profile of the considered channel has a central AoA </>o = 5 degrees 
and spread A = 20 degrees. Fig. 4.8 shows the average over 1000 realizations. The 

MSE for both MDPSS and DPSS estimators have the highest values at the edge of the 
data block. However, the MSE for MDPSS estimator is several orders of magnitude 
lower than the value of the DPSS basis. Fig. 4.9 shows the MSE of the estimation for 
different angle spread. The SNR is 20 dB and the central AoA is 45 degrees. The angle
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Figure 4.8: bias‘d per symbol for MDPSS (solid) and DPSS (dashed) mobile channel 
estimator for the noise-free case.



Chapter 4- Estimation of the Channel State Information 61

Figure 4.9: Dependence of the MSE on the angular spread A, AoA 45 degrees and 
SNR 20 dB. The MDPSS show a significant increase in the estimation accuracy using 
the same number of functions of the DPSS method.
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spread A describes the width of the incoming scattering component, for high spread 
the scattering gets closer to the isotropic case. The MSE of the modulated basis set 
MDPSS is significantly lower, especially for limited spreading angles (20 < A < 80). 

The difference between the two basis sets decreases as the scattering becomes similar 
to the isotropic case. For very small A, the scattering can be assumed to be composed 
by few sinusoidal components and the performance of the two basis sets in that case 
is almost equivalent.

In conclusion, the MDPSS show an higher estimation accuracy in the realistic 
case of directional scattering environments, with the same numerical complexity (same 
number of functions for the channel expansion). The complexity of this solution lies 
in the need of estimating the mobile velocity to perform an efficient modulation. 
However, this task does not seem to be prohibitive at least in the case of average 
vehicular speeds.

4.4 Conclusion

The characteristics of a flat fading time variant wireless channel can be well described 
by an AR model once the process autocorrelation is available. Simulation results 
showed that the fading process obtained by the AR filtering is very accurate, with a 
high matching between the desired and generated second order statistic of the process.

The bandlimited characteristic of the fading spectrum suggests that it can be 
well expanded by a set of deterministic functions with a similar limited bandwidth. 
Using a set of pilot symbols spread in the data sequence, the DPSS basis expansion 
allows to model a time-variant channel for the duration of the data block. The DPSS 
expansion offers major performance gains compared to other basis expansion for the 
same numerical complexity (number of unknowns D). The analysis of the MSE of 
the prolate basis expansion shows that this particular expansion is not biased: the 
bias2 is several magnitudes less than the Fourier basis one in the whole data block 
duration.

This optimal accuracy is lost when the scattering environment is not isotropic. 

A directional scattering leads to a mismatch between the channel and DPSS band
width. The MDPSS basis set is proposed for estimation of fast fading channels to 
preserve the sparsity of the representation and enhance the estimation accuracy. The 
members of the basis set are obtained by modulation and bandwidth variation of the
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original DPSS functions in order to reflect various scattering scenarios. The results 
obtained by numerical simulations showed that the MDPSS method provides more 
accurate estimation than the DPSS scheme.
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Chapter 5

Variable Rate Transmission

Introduction

Chapter 4 showed that an accurate channel state information (CSI) can be obtained 
at the receiver through the use of pilot symbols. Moreover, if the CSI is available 
not only at the receiver but also at the transmitter, a high multiplexing gain can 
be achieved in multi-antennas transmissions [5], increasing the spectral efficiency. 
Specifically, with the knowledge of the CSI, the theoretical limit denoted by the 
channel ergodic capacity can be achieved in transmission by adapting the signalling 
rate to the capacity evolution. As stated in Chapter 3, the signalling rate is defined 
as a percentage of the channel capacity. The knowledge of the channel state at the 
transmitter can be obtained by a feedback channel [37], as depicted in Fig. 5.1. The 
channel capacity seems to be the more appropriate feedback: feeding the predicted 
channel capacity to the transmitter would allow to choose the right modulation, 
coding and power to suit the wireless channel, with a reasonable amount of feedback 
information. In this scenario it is assumed that delay in the feedback loop is negligible. 
However, this approximation is not always realistic: if the delay loop was considerable, 
it would become necessary to study the changes in the channel capacity during the 
feedback loop interval, so that the transmitter can take them into account 1.

A possible solution is to predict the capacity variation in a specific time interval 
through a prediction model. Particularly, the investigation on the MIMO capacity 
correlation in [12] allows to describe its time evolution through the autoregressive 
model (AR) described in Chapter 2. The capacity evolution can be predicted frame 
by frame and the actual CSI can be made available at the transmitter on a larger 
time scale, reducing the complexity of the feedback system.

1This investigation goes beyond the purposes of this work and will be left for a future 
work



Chapter 5: Variable Rate Transmission 65

The AR-1 model discussed in Chapter 2 assigns a Markov nature to the in

stantaneous capacity process. Dividing the continuous capacity process into a finite 
number of discrete states, a finite state Markov chain model (FSMC) for the in

stantaneous MIMO capacity is obtained. The principle of FSMC is to discretize a 
continuous process into a finite number of states, over which the process itself can 
be qualified separately. The FSMC is a well accepted block fading channel model for 
slow-varying flat fading channels, where the channel is assumed to stay in the same 
state within one block period. In wireless communication, the markovian assumption 
is widely used to model the channel fading and the SNR variation [7, 38, 39]. The 
FSMC model and adaptive modulation and coding (AMC) strategies are commonly 
accepted as the fundamental techniques for developing effective cross-layer protocols 

and algorithms.
Assuming that the instantaneous channel capacity distribution is Gaussian [18], 

in this chapter the FSMC model is derived analytically for the MIMO channel capac
ity. The purpose of this study is to investigate the optimal approach to the signalling 
rate control problem for a MIMO wireless channel, improving the performance of the 
constant rate transmission described in Chapter 3. Considering the whole transmis
sion system, higher layer data packets are enqueued into a finite size buffer space 
before being released onto the time-variant wireless channel. The choice of the op
timal signalling rate must take into account the buffer state: over the PHY layer, 
the buffer at the MAC layer is itself a FSMC dependent on the arrival process. The 
joint consideration of the capacity state and buffer state leads to a two-dimensional 
optimization process, where the optimal signalling rate should be chosen according 
to the state of the instantaneous capacity and how many packets are present in the 
buffer. The choice of the signalling rate at every time frame must maximize the per
formance at each state: the probability of successful transmission (throughput) at 
that specific signalling rate. With the outage definition provided in Chapter 3, the 
objective of this analysis is to minimize the average joint packet loss rate due to both 
outage and buffer overflow. In this case there are two design objectives (outage and 
buffer overflow) that jointly define the optimization target: minimizing the end-to-end 
packet loss. The optimal transmission policy design is investigated analytically with 
the application of dynamic programming (DP) and Markov decision process (MDP) 

theories.



Chapter 5: Variable Rate Transmission 66

Figure 5.1: Communication system scheme with feedback channel

5.1 Contributions

This study addresses the cross-layer optimization issues by jointly considering adap
tive transmission scheduling and wireless channel capacity evolution to achieve better 
performance gain. The major contributions of this work are summarized as follows:

1. this chapter proposes an analytical definition of FSMC for the MIMO channel 
capacity;

2. this chapter develops an analytical model of the proposed algorithm for evalu
ating Quality of Service (QoS) performance metrics at the MAC layer, such as 
the system throughput and probability of packet loss;

3. combined with previous research, here is proposed an efficient method for cross
layer performance optimization.
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5.2 System  M odel

Fig. 5.1 illustrates the general structure of the system model used for this study. At 
the transmitter side, packets arriving from upper layers are enqueued into a finite 
MAC buffer space. Backlogged packets are de-queued, on first-come-first-serve basis, 
and further processed by the digital modulator before being transmitted. Undergo
ing distortion and attenuation by the wireless fading channel, received symbols are 
sequentially passed through demodulator and decoder, with uncorrectable codewords 
being dropped, to retrieve MAC layer packets. At the PHY layer, AMC is applied to 
achieve adaptive multirate transmission over the time-variant MIMO channel.

The physical layer is characterized by a MIMO wireless channel subject to 
fading and noise: the instantaneous SNR is a random process described by the Nak- 
agami’s law [1], The instantaneous channel capacity can be well approximated by a 
Gaussian process [5, 18]. Recalling the analysis presented in Chapter 3, Sec. 2.1, the 
channel capacity can be interpreted as the maximum amount of information that can 
be reliably transmitted on the MIMO channel, disregarding the code and modulation 
scheme at the PHY layer of the system. Considering delay tolerant traffic, the instan
taneous capacity represents the limit of information that can be transmitted by the 
system. The channel spectral efficiency (bits/s/Hz) is related to the signalling rate 
(packets/s) by the bandwidth required by the system [1] and the packet size. The 
system works with time frames of fixed duration Tj. Data packets of size bits are 
collected in a finite buffer of B packets.

5.3 Theory of Discrete Finite Markov Chain

The two most important parameters which characterize a finite state Markov chain 
are the transition probability matrix P and the state probability vector n. In this 
section the theoretical definition of those two parameters is presented. Transition and 
state probabilities are evaluated in Sec. 5.6 to model the MIMO channel capacity as 
a finite state Markov chain .

For the purpose of this study, our attention is focused on discrete time processes 
x(n) with the time index n = 0,1,.... If the process x can assume a finite set of values 
(or states) x = Sj with 0 < i < K — 1, it is said to be Markov chain if, whenever it is
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in state i, there is a fixed probability P{j that it will next be in state j, regardless of 
the process history before the state i:

Pij = Pr{x(n) — j\x(n — 1) = i, x{n — 2) = i{n — 2 ) , x(0) = ?(0)}

= Pr{x{n) = j\x(n — 1) = i}. (5.1)

The values p̂ j for 0 < i, j  < K — 1 are called transition probabilities between the two 

states i, j
A finite Markov chain is a Markov process such that the transition probabilities 

Pij{n) do not depend on the time index n [40]. In network theory, this property 
leads to the definition of memoryless model, in which the current behaviour does 
not depend on the history of the process and the current time index. A probability 
distribution {pj |j > 0} is said to be a stationary distribution for the Markov chain if

Pj =  E ^ o 1 PiPiJ> j  = 0,1,..., K -  1 (5.2)

which, in a continuous domain is equal to the marginal distribution

P{j) = J  p(*)p(i, j)di. (5.3)

For an irreducible and aperiodic Markov chain can be shown that

Pj = limn—oo Pr{x(n) = j|x(0) = *}, i = 0,1,..., K -  1. (5.4)

When it exists, the stationary distribution is unique according to the following The

orem [41]:

in an irreducible, aperiodic Markov chain there are two possibilities for 

the scalars pj — limn .̂oo Pr{x{n) = j|r(0) = i}

• pj = 0 for all j  > 0 in which case the chain has no stationary 

distribution.

• pj > 0 for all j  > 0 in which case {pj \ j  > 0} is the unique stationary 
distribution of the chain.

The state probabilities pj for j  = 0,1,..., K — 1 are arranged in the row vector n. 
All the transitions among the finite states can be arranged into the K x K transition
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matrix P, with its elements Pij defined as in Eq. 5.1. Referring to the independence 
of the transition probabilities from the time index n, the n-steps transition matrix 
is proved to be the n™ power of the single step transition matrix P [40]. A state 

transition probability matrix has the property that the sum of the elements on each 
row is equal to 1:

K - 1

= (5.5)
3=0

Eq. 5.2 can be extended to all the states in the vector equation

=  T , ie S ni =  1- (5 -6 )

Eq. 5.6 shows that 7r is left eigenvector of the matrix of transition probabilities P 
corresponding to the eigen-value 1. This condition will be used later on to confirm 
the transition probability matrix obtained by different simulation models.

5.4 Theory of Markov Decision Processes

In the single buffer communication system under analysis, a reasonable strategy for 
variable rate transmission would adapt the signalling rate to the state of the capacity 
process and the buffer occupancy. The optimal signalling rate would minimize the 
failure in transmission due both to the buffer overflow and outage events, as shown by 
the analysis presented in Chapter 3. The rate adaptation is a sequential process, in 
which the signalling rate is optimized frame by frame according to a set of reference 
metrics. In case of Markov processes, a way to solve this optimization problem is 
found in the theory of dynamic programming and Markov decision processes [41]. 
The purpose of this section is to explain the main steps to solve the optimization 
process presented.

5.4 .1  E x p ec ted  T otal E arning fun ction

Given a finite Markov chain x, the knowledge of the transition probabilities, state 
probabilities and rewards is assumed. The reward can be any metric of interest 
(money, profit, space) and must be associated with each state and transition. The 
idea beyond the optimization procedure is that the total expected reward must be
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maximized after a finite number of iterations or in the perspective of an indefinite 
working horizon. The expected total earning function V{(n) is defined as the expected 
total earning starting from the state i in the next n steps in time. Knowing the 
transition probability pj j  and the transition reward r^j associated to the transition 
from state i to state j, the expected total earning can be written in the iterative form 
[41]:

wi(n) = 52f=oPij[rij + V j ( n -  i)], i = 0 ,...,K - 1, n= 1,2,... (5.7)

The quantity (p
K - 1

Qi =  ^ 2  Pi ,jr i,j 

3=0

is called the expected immediate reward for the state i (or one-step reward) 
fore, the total expected reward in the next n steps is:

Vi(n) = qi + Y,fjo1Pi,jVj(n-l), i = 0, K -  1, n= 1,2,... (5.9)

The extension to all the possible starting states leads to the vector form equation:

v(n) = q + Pv(n — 1) (5.10)

in which v(n) is a column vector with K components Uj(n). The vector v(n) is the 
total expected reward in n steps.

Let consider the Markov process with rewards by means of the z-transform. 
This analysis is useful to underline the behaviour of v for a large number of steps 
n. The z-transform of the total-value vector v(n) will be called v(z) where v(z) = 

v(n)̂ n- The z-transform of Eq. 5.10 leads to:

v(z) = — (I -  zP)_1q + (I -  zP)—1 v(0), (5.11)
1 z

that requires the inverse of the matrix (I — zP), which also appeared in the solution 
of the state probabilities from Eq. 5.6. This means that the presence of rewards does 
not affect the probability structure of the process. As in Eq. 5.6, 7q(n) represents the 
state probability for state i at time index n. Considering the vector of all the possible

(5.8) 

. There-
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states, the state probabilities at step n + 1 is given by:

7r(n + 1) = 7r(n)P, (5.12)

from which, taking the z-transform

z_1[7r(z) -  7r(0)] = 7r(2)P, (5.13)

7t(0) = 7r(z)(I — 2P). (5.14)

Recalling that
7r (n) = 7r(0)H(n) = 7r(0)Pn, (5.15)

the following equality is obtained:

H(n) = I -  ^P)-1} = Pn- (5.16)

H(n) is the inverse z-transform of (I — ;zP)-1, the elements Hi jiri) are the probabil
ities that the system will be in state j  at time n given it was in state i at time 0. In 
[41] is proved that the matrix (I — 2P )-1 can always be expressed in the form

(I -  zV)~l = —̂—S + F(z) (5.17)1 — z

which shows two main components. The matrix S is a stochastic matrix [41] and its 
identical rows are the limiting-state probability vector of the process, independent of 
n. The term shows that the determinant of (I — zP) always vanish for 2 = 1 and 
then one eigen-value of the matrix is always \  = 1, as in Eq.5.6. The other term in 
Eq. 5.17 is F(z) and it represents the transient behaviour of the process. Taking the 
inverse z-transform of F(z), the result appears as a probability matrix weighted by 
a geometric coefficient an with |q| < 1. The transient matrix represents the decreas
ing geometric sequences of probability components typical of Markov processes. In 
conclusion the transient probability matrix H(n) appears always in the form:

H(n) = S + (an, nan, n2an, ...)T(n). (5.18)

For an ergodic process, \a < 1| and rows of the matrix T(n) sums to zero. In [41], 
T(n) is called differential matrix.
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The asymptotic behaviour of the total expected earning, which is the study of 
the earning of the process in a long time duration, can be studied according to the 
results shown above. Starting from Eq. 5.17, the expected total earning in Eq. 5.11 
can be rewritten as

v(z) = —-—Sq + ■■■.-1- - F(z)q + Sv(0) + Fv(0). (5.19)
1 — z 1 — z 1 — z

The asymptotic form for large n is shown in [41] to be:

v(n) = nSq + F(l)q + Sv(0), (5.20)

where Sq is the column vector whose elements gt are the sum of the immediate 
rewards weighted by the limiting state probabilities if the system started in state i:

K —l

9i =  Si>iqr  (5-21)
3=1

In the case of a completely ergodic process, all the rows of the stochastic matrix S 
are equal to the limiting state probabilities 7r of the process. Then all the starting 
states i have the same gain g

K —l

9 = ^2  mi- (5-22)
i= l

The remaining term in Eq. 5.20 is the sum F(l)q + Sv(0), which represents the 
intercepts at n = 0 of the asymptotes of v(n), leading to the simple expression valid 
for large n:

v(n) = ng + v. (5.23)

The Markov processes with rewards have been analyzed with special attention 
to the asymptotic behaviour of the expected total earning function, which is important 
to proceed in the study of sequential decision problems.

5 .4 .2  A ltern a tiv es  and po lic ies

Till now, the time-discrete process x is described by a finite Markov chain with 
rewards associated with each transition. If x is ergodic, the evolution of the process 
is driven by a stationary probability distribution for the states and transitions, with
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Present state Succeding state
of the system p002, r0o2 of the system

Figure 5.2: Diagram of state transitions for different actions. Each action taken 
modifies the process structure in terms of transition probabilities and rewards.

vector 7r and transition matrix P. If different actions can be taken at any state, 
the transition matrix and the reward structure will change according to the chosen 
action. At each state, a specific action has effects on the probability distribution of 
transitions and on the rewards, since each action reasonably introduces a specific cost 
and result. The structure of the process with different actions is shown in Fig. 5.2. 
The number of alternative actions at each state must be finite, even if it is possible 
that the number of alternatives is different among states. A policy /j is obtained 
when an action in the set of the possible a; £ A{ao, ai , ..., am } is specified for all 
the states i = 1,..., K — 1 [41]. Here A is a finite set of M possible actions for the 
specific state i. The optimal policy /a0 is the one that maximizes the total expected 
return for each state i in a working horizon of n transitions. In [41], two methods are 
presented to obtain an optimal policy, respectively in the case of a finite or indefinite 
time horizon n. For the communication system considered for this study, it is not 
possible to predict a finite working horizon. The process can evolve for a long time
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and the decision policy must maximize the reward in a long-duration perspective. 
For this reason here is presented the policy-iteration method [41] for the solution of 
sequential decision processes, which defines the optimal policy /liq for a long-duration 
process.

5 .4 .3  T h e P o licy -Itera tio n  M eth o d  for th e  S o lu tion  o f  

S eq u en tia l D ec is io n  P ro cesses

Consider a completely ergodic K-states Markov process described by a transition 
probability matrix P and a reward matrix R. The process is allowed to evolve for 
a very long time and the parameter of interest is the total expected earning of the 
process. Since the process is completely ergodic, the limiting steady state probabilities 
7q j  are independent of the staring state, the gain of the process is defined as

K —l

9 = ^ 2  niQi (5.24)
z=0

where the quantity qj is the immediate reward in state i defined in Eq. 5.8. It 
is important to note that every ergodic Markov process with reward will have a 
gain defined as in Eq. 5.24. The same equation can be arranged in a vector form 
considering all the states i = 0,..., K — 1:

g = 7T x qr  (5.25)

The analysis of the process total earning refers to the quantity fj(n) expressed in Eq. 
5.9. Since the process is allowed to evolve for a long time, it is reasonable to consider 
its asymptotic behaviour. The system of Eq. 5.9 and Eq. 5.23 leads to

K - 1

g + Vi = qi + ^2  Pi,jvj ■ (5.26)
3=0

The linear system in Eq. 5.26 is composed by K equations for the K + 1 unknown 
variables. The solution proposed in [41] sets the expected total earning of one state to 
zero (i.e. v^-i = 0) so that the vector v contains the relative earning values respect 
to = 0. In this way the number of unknown variable is K for K equations. As
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explained in [41], shifting from the absolute expected earning to the relative expected 
earning does not influence the evaluation of different policies, mainly because the 
total expected earning is already a relative value to the earning at the end of the 
process v(0), as clear from Eq. 5.20.

The policy iteration method works on the relative values Uj, which hold the 
key for finding better and better policies. Suppose that for a given state i a set of 
actions a G {A} is available. The question is which action must be taken to maximize 
the total expected earning of the process. If an optimal policy has been used up to 
stage n, the best action for the state i at stage n + 1 is found by maximizing the test 
quantity

K - 1
it + E  vlivi <5-27)

3= 0

for each state z, the action a which maximizes the test quantity can be found using 
the relatives values of the old policy. From here the iteration cycle is composed by 
two states.

1. Value determination operation This operation uses pi j and qi for a given 
policy to solve the system

9 + Vi =qi + E jL'o1 Pi,jvj > i = 1,2,..., AT- 1 (5.28)

For all the relatives values Wj and the gain g. As stated before, = 0 by
assumption. The value determination operation yields Uj and g corresponding 
to a given choice of pi j and qi, which are specified by a current policy //.

2. Policy improvement routine for every state i  =  0 , 1 , K  — l  this operation 
find the best alternative a' solving

max
ae{A}

K- 1

w  + E
3=0

Pi,jv3> (5.29)

and using the relatives values i>j of the previous policy. When the maximum is 
found, the following parameters are set

di = a', qi = qf, Pi,j=Pi,j (5.30)
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This routine yields the probability p^j and immediate reward q% which increase 
the gain for a given set of V{. It returns a policy starting from the values V{ of 
the previous one.

The iteration procedure can be entered in either states, respectively by setting 
a initial policy p or a set of initial values Vj. Choosing to enter in the policy improve
ment routine and setting Vj = 0 for j  = 0,1, K — 1, the routine will find the best 
alternatives for all the states z, defining a first policy to enter the value determination 
state. In [41] is proved that each succeeding policy found in the iteration cycle has 
higher gain that the previous one. If a policy returns the same gain of the previ
ous one, the previous stays as optimal to avoid useless updates. The optimal policy 
is reached when two successive iterations are identical and the optimization process 
stops. The final result is the optimal policy /zq, which univocally defines a Markov 
process with the values of transition probability and reward r̂  j for each possible 
state.

5.5 Finite State Markov model for radio 

communication channels

The literature reveals many attempts to model the fading envelope of a time variant 
communication channel and the resulting error flow using finite Markov chains. In 
this section the meaning and importance of FSMC as a model of radio communication 
channels is discussed, in order to introduce the problem of the FSMC model for the 
MIMO channel capacity.

The study of the FSMC to model a communication channel emerges from the 
early work of Gilbert [42] and Elliott [43]. They studied a two-states Markov channel 
known as the Gilbert-Elliott channel. Their model is composed of a good state G and 
a bad or burst state B , the transition probabilities are made in order to simulate the 
burst error conditions. More complex Markov models followed this first one, in the 
attempt of modelling more accurately the communication error statistical behaviour 
[44]. When the channel quality varies significantly, the two-state Gilbert-Elliott model 
is not adequate. A straightforward solution is to increase the possible states of the 
model to a finite set S = {so, s i , i f  the process under analysis is ergodic, the 
resulting Markov process {5(n)}, for n = 1,2,... will be a constant Markov process
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with the properties described in Sec. 5.3. Looking at wireless communications in 
fading environments, many works such as [38, 39, 45] suggested the idea of creating 
a FSMC for the channel state, obtained by partitioning the SNR at the receiver side 

in K possible states. The transition probabilities between two channel states depend 
on the statistical description of the random fading process. Authors of [45] proposed 
a well known analytical model to calculate the transition probabilities by looking at 
the fading process and SNR statistics. The core of this model is the evaluation of 
the Level Crossing Rate (LCR) for the SNR process. Given a random process x, the 
LCR of a specific value x in a time interval At is defined as:

t+At

I Pr{x > x}dt (5.31)

and it is dependent on the duration of the observation interval At. The LCR is defined 
as the number of crossing per second of a given threshold. Defining Ax = xAt, a 
possible way to obtain the LCR is to derive the statistical distribution of the first 
derivative x, which represents the velocity of the process, and then evaluate the 
probability of x being around the threshold x with all the possible velocities:

oo
LCR(x) = j  xPr{x,x}dx (5.32)

0

where Pr{x, x} is the joint density of the process x and its first derivative x. In the 
case of Gaussian process this integral can be solved in a closed form which involves the 
second derivative of the correlation coefficient pxx(At) of the process x under analysis. 
Knowing the statistics of the received SNR, the probability inside the integral can 
be expressed in a closed form. The study of the LCR allows to approximate the 
transition probabilities to the adjacent channel states in the simple form :

Pij+1 ~ L<lm+1 ’ * = 0,1,-, K -  2 (5.33)
Rt

(j/\
where LCR^i is the number of up-crossing rate per second and R\ = R,f X pt is the 
symbol transmission rate weighted by the state probability p%. The LCR is derived
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analytically from the received SNR distribution [45]

Lc,ua>= (5.34)

where 7  = E{A} denotes the mean value of the received SNR and fy = v/X is 
the Doppler frequency of the mobile user normalized to the carrier wavelength A. Eq. 
5.33 is referred as the Wang-Moayeri model for adjacent states transition probabilities. 
They can be determined as:

Pk,k+1 

Pk,k—1

Nk+lTf
Pk

NkTf
Pk ’

k = 0,..., K — 1 

k = 1 (5.35)

in which Nj. is the cross rate for state k, either upward or downward. By the assump
tion in the model [45], the probability of remaining in the same state k is defined
as:

1 ~ Pk,k+t ~ Pk,k-1, if  0 < k < K 
Pk,k = < l~Po,l, i f k  = 0 (5.36)

i 1 “ Pr ,K- 1) i f  k = K

The Wang-Moayeri method for the evaluation of transition probabilities of a 
random process has been used in [7] to generate a FSMC of the channel state based 
on the received SNR. In [7], the modulation and coding at the transmitter sides are 
adapted to the variation of the signal to noise ratio (SNR) of the communication 
link, which is modeled as a FSMC. The proposed CPM maintains a certain level of 
average packet error rate (PER) over the time-variant channel when corresponding 
AMC mode is applied for each channel state. When the target PER is not fixed a 
priori, the overall packet loss at PHY and MAC layers can be minimized through cross

layer analysis. The use of LCR for MIMO capacity first appeared in [19], in which 
the estimation of LCR is a good parameter to obtain the transition probabilities.

The framework just discussed provides a simple way to obtain the transition 
probabilities only between adjacent states. Consequently it can be inferred that this 
model works well for slow varying processes, which evolve only to adjacent states in 

the time observation interval At. For high normalized Doppler frequency fm = fJTf,
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the process could jump to far states and the crossing probability between the adjacent 
states may turn in very low values. This is confirmed by simulation results for low 
and high varying processes, which will be discussed in the next section. In order to 
overcome this limitation a different approach to the problem must be taken.

The main disadvantage of most proposed models is the fact that, while the 
elements of the transition matrices can be analytically calculated, it is especially 

difficult to obtain analytical expressions for eigenvalues and eigenvectors of the matrix 
of transitional probabilities. The model proposed in [46] allows to determine the 
transition probability matrix for a K state Markov chain with the knowledge of the 
process correlation interval d, which is the second largest eigenvalue of the generated 
process [28]. The exact knowledge of eigenvalues greatly reduces the complexity 
and accumulation of numerical error. Let P = \pij\ be a matrix of transitional 
probabilities of the DAR-1 K-states Markov chain. It is shown in [46] that P is 

defined as
P = Q + d x ( I - Q ) ,  0 < d < 1 (5.37)

where I is the identity matrix and Q is composed of the steady state probabilities as 
shown:

PO PO ■■■ PO

Q = Pl Pl " • Pl

_ PK-l PK- 1 • • • PK- 1

where {Pk}k=0,...,K-l are the stationary probabilities. The resulting Markov process 
l at discrete time k, =  0 , 1,... has an exponential autocorrelation function

Ru(k) = Ru(0)dK. (5.39)

which match the desired autocorrelation of an AR-1 generated process. The value 
d corresponds to the autocorrelation of the process at time k = 1,2,.... In the case 
of a mobile wireless communication system, the channel autocorrelation between two 
frames of duration Tj is p = Jq(2tvf^Tf) [1], where fa is the Doppler frequency of the 
mobile user and Tf is the time frame duration. In [46], the product f^Tj is referred 
as fading bandwidth.

The method proposed in [46] provides the transition probabilities among all the 
possible states K and not only between adjacent states. For this reason, especially

(5.38)
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for significant fading bandwidth fdTf, the transition probabilities obtained by this 
model are to be preferred to the ones based on LCR in Eq.s 5.35 and 5.36.

5.6 FSMC for MIMO channel capacity

As in [3, 15], instantaneous capacity is well described by a random Gaussian process 
C — N(C,Oq). Referring to the analysis in Sec. 2.5, the AR-1 evolution model of 
the channel capacity process in Eq. 2.15 assigns a Markov nature to the process, in 
the specific case of the first order. In this model, the information on the next state 
is gained only from the current state, assuming that information corresponding to 
previous states is negligible. Following the idea proposed in Sec. 5.5, a Finite State 
Markov Chain can be obtained by partitioning the instantaneous capacity process 
into a finite numbers of intervals or states S = {0,1,..., K — 1}. We consider a finite 
set of capacity states S = {so,si, with corresponding thresholds {ck}^„.
Capacity is said to be in state sk, k = 0,1,..., K — 1 if the value C of the process is 
in the interval [ck,ck+1):

ck < C < ck+1. (5.40)

As discussed in [46], partitioning must be performed such that the highest state 
probability is assigned to the state which contains the average value of the capacity 
process, by selecting boundaries [c£,c£+1) such that:

C = -CA..̂ + i . (5.41)

The states surrounding s£ on the left and right of the process pdf must have decreasing 
probabilities with respect to s£. If the partitioned process is ergodic, the Markov 
process Sk is a stationary process, with the property that transition probabilities in 
Eq. 5.1 are time invariant as discussed in Sec. 5.3.

The evolution of the capacity process is related to a fixed time scale defined by 
the frame duration Tj of the system. According to the general block fading model, the 
channel capacity is assumed to remain constant within one block period, with block 
length equal to Tj. The instantaneous capacity evolution model has been presented 
in Eq. 2.15. Given the value of capacity at time index nTj with n = 0,1,..., the 
capacity process at time n + 1 is a Gaussian random variable related to the original
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process by the correlation coefficient p(Tf) (from now on the parameter Tj will be 
omitted). Specifically, the Gaussian process at one step prediction is characterized 
by the following first two moments:

Cn+1 = (1 -p)Cn + pC(n)

4+1 = (1 -  M V m  (5.42)

For a FSMC model the two probabilities of main interest are the steady state prob
ability, which describes the asymptotic probability of being in a given state and 
the transition probability, which drive the transitions among different states.

• Steady State Probabilities: the probability p£ that the instantaneous ca
pacity is in state is defined as

ck+1

TTjfc = J  p(C)dC
ck

(5.43)

for k = 0,1,..., K — 1. For Gaussian random variables, the steady state probabil
ity is easily expressed by Q ^ )  — where Q(x) represents the well-known
Q-function [1]. The steady state probabilities can be arranged in the following 
vector form:

* = Pr(s(n) = sk), (5-44)

for time index n = (0,1, 2...) and for k = (0,1,..., K — 1).

• Transition Probabilities: the probability of transitions between two states is 
a conditional probability which can be obtained by the joint probability density 
function of the state distribution, according to the Bayes’ rule:

p{b\a) = p(b, a) 

P(a)
(5.45)

The two variables under attention are the capacity values C at time n and n-f 1. 
According to Eq. 2.15, the capacity evolution C(n) is still a Gaussian variable. 
For the particular case of two Gaussian random variables, the joint probability
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is given by:

exp f  1 \  2p6xiSx2
\2(1 ~P2) ) \ c r j  crl°’2 o\ )

dx\dx2 (5.46)

where 5x is defined as x — px and p is the correlation coefficient between x\ 
and X2 at the sampling time Ty. The transition probability is then the joint 
probability density function weighted by the marginal density of one of the two 
variables. Transition probabilities are arranged in a matrix P with property 
specified in Eq. 5.5.

The steady state probabilities and the transition probabilities should satisfy the equi
librium conditions proper of any Markov chain described in Sec. 5.3. The steady 
state and transition probabilities can be evaluated numerically once a set of thresh
olds {cfc}̂ Q has been defined. The steady state probabilities of the capacity process 
are evaluated by Eq. 5.43 as the probability of being a specified state:

ck+l
Pr{C e s k}= J  pc (x)dx (5.47)

ck

where Pc(%) is the Gaussian probability density function of the instantaneous capac
ity. The transition probabilities can be arranged as follows [20]:

Yk,k+1 = X(k)T{k, k + l) = Pr(C(n) G sk, C{n + 1) G sk+1) (5.48)

where k = 0,1, ...K — 1 is the state index and n = 1, 2,... represents the discrete time 
evolution. Eq. 5.48 is a joint density function of two Gaussian random variables. 
Knowing the thresholds {ck}k=Q of the capacity states and referring to the model in 
Eq. 2.15 the following result is obtained:

Yk,k+1 = P r [ck< C[n) < ck+1
ck+l -  pC{n)

< £(n + 1) <
aV 1 ~ P1<Jy/l -  p2

(5.49)
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recalling that f(n + 1) is a Gaussian random variable with zero mean and unitary 
variance, the transition probability between the adjacent states (sk, sk+i) is given by:

Yk,k+1 = J  J  Pr{C(n) G s k , C(n + 1) G sk+l)dC(n)dC(n + 1)
ck+1

= J  f(C(n+ 1))
r f̂c+2 ~P<?(n)  ̂_ r f k+1 -pC{n)^

aC\ / l -  p2 <7(7 V*
dC{n + 1)

(5.50)

where <tq is the standard deviation of the capacity Gaussian process C(n), p is the 
correlation coefficient for the capacity evolution at time Tj and F(x) denotes the 
cumulative distribution function (CDF) of the Gaussian random variable C(n).

This approach has been compared to the other frameworks proposed in the 
literature and briefly introduced in Sec. 5.5. Referring to the Wang-Moayeri model 
in Eq. 5.33, the evaluation of the LCR is subject to the second derivative of the 
process correlation coefficient p(r) |r=o, which depends on the process under analysis. 
In the proposed AR-1 model, the correlation coefficient is exponential (Eq. 5.39) and 
the second derivative cannot be calculated for r = 0. From here the need of a different 
approach to the LCR evaluation problem. Given a threshold ck, one upcrossing event 
is defined as the joint probability

Pr (C{n + 1) > ck, C(n) < = Pr(£(n + 1) > °k , , C(n) < ck)
V1 ~ P

OO ck

= J  f f a )  J  fc(y)dvdx
a —oo
00

= J  f((x)Fc(ck)dx (5.51)
a

where a = b p ) Following the same calculation, the downward crossing of the 
vi ~P

same threshold is given by

a
Pr{C{n + 1) < cfc, C(n) > ck) = F (̂a) -  J  f^(x)Fc (ck)dx. (5.52)

— OO
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These quantities can be numerically obtained once the thresholds have been decided 
and the correlation parameter p is obtained. The adjacent states transition probabil
ities can be determined by the Wang-Moayeri model [7]:

Pk,k-1-1

Pk,k—1 =

Nk+lTf
Prk

NkTf
Prk ’

k = 0 ,.. . ,K - l  

k = 1 (5.53)

in which Nj~ is the cross rate for state k, either upward or downward. By the assump
tion in the model [45], the probability of remaining in the same state k is defined 
as:

1 ~ pk,k+l ~ Pk,k-h i f  0 < k < K 
Pk,k = l 1-Pb,i, i f k  = 0 (5.54)

l 1 “  pK,K-1) i f  k = K

As discussed in Sec. 5.5, the LCR based method limits the transitions only to the 
adjacent states. This limitation is realistic only for a slow varying process, for which 
the transition to far states in a prediction interval Tj is very small. The main result 
of Wang-Moayeri model for high values of / m is a high probability of remaining in the 
same state, clearly shown by Eq. 5.36. In order to have a good representation of the 
variability of the process for all the possible values of / m, the transition probability 
matrix is evaluated by the eigenvalue framework presented in [46].

One way to test the transition probabilities obtained by the different methods 
is to verify if they satisfy the Markov property of state and transition probabilities 
described in Eq. 5.6. Numerical results showed that the method based on the joint 
probability density function in Eq. 5.46 is easily subject to numerical error due 
to the precision of the integral evaluation, which can be only solved numerically. 
As expected, the LCR method is accurate only for low varying processes with low 
normalized Doppler / m, showing for high f m an unrealistic high probability remaining 
in the same capacity state. The eigenvalue framework proposed in [46] has shown the 

best behaviour, matching with high accuracy the Markov property in Eq. 5.6.
In conclusion, once the transition probabilities are computed, the FSMC for 

the channel capacity is modeled as a (K + 1) x (AT + 1) transition probability matrix,
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with the form:
p0,0 po,i

p i , o  p i , i

0

0 0

Pr -\,K-2 Pk -1,K- 1 Pr —1,K 
Pr ,R-1 Pr ,R .

(5.55)

0

5.7 Two-dimensional cross layer optimization

The knowledge of the evolution of the instantaneous capacity process leads to describe 
the evolution of the maximum amount of information that can be sent over the 
channel. In particular, outage occurs when the signalling rate at a specific time 
instant is above the instantaneous channel capacity. Given the duration frame TV, 
the signalling rate can be adapted following the capacity evolution at discrete steps 
Tj. Once a set of possible signalling rates is available at the PHY layer, the question 
of which rate must be chosen according to the capacity state becomes of primary 
importance. Authors of [8] underline that the optimal choice of the signalling rate 
must take into consideration not only the channel state evolution but also the system 
buffer state. This leads to a deep cross-layer analysis, whose purpose is the use of the 
optimal signalling rate given the conditions of the buffer and communication channel. 
This kind of problem is referred in the literature as a two-dimensional optimization 
problem, which can be investigated by the application of dynamic programming (DP) 
and Markov decision process (MDP) theories for the optimal transmission policy 
design. To avoid a deep analysis of the modulation and code scheme at the physical 
layer, this work proceeds with the assumption that the information level described by 
the channel capacity can be achieved by a proper code and modulation scheme. The 
optimization target turns into the MAC layer throughput for the optimal transmission 
policy design.

Consider the FSMC model of the capacity evolution described in Sec. 5.6. The 
frame duration Tj represents the time interval in which the system transmits with 
a fixed information rate, established at the beginning of the time frame. Once the 
channel capacity mean value and variance have been estimated according to Eq. 2.8 
and Eq. 2.9, the AR prediction model discussed in Sec. 2.5 is used to obtain the 
next values of instantaneous capacity. Consider the knowledge of the instantaneous
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capacity C(n) at time n. C(n + 1) is the predicted instantaneous capacity at the next 
time step according to the specific AR-1 evolution model in Eq. 2.15. The probability 
distribution of the predicted instantaneous capacity is given by p(j{C{n + l)|C(n)): 

it is conditioned to the previous value C(n) and it is still Gaussian. The mean value 
and variance of prediction are obtained by taking the expectation of the AR model, 
resulting in Eq. 5.42. The transmitter station predicts the instantaneous state of 
the channel capacity C(n + 1) based on the knowledge of the previous state C(n) 
and establish a possible information rate r(n + 1) < C(n + 1). The corresponding 

probability of outage is given by [3]:

R

Pout = Prob(C(n + 1) < r(n + 1)) = J  pc(x)dx = Q ^
C(n + 1) — r{n + 1) 

crn+1
—oo

(5.56)
For any given rate r(n + 1) the corresponding outage probability can be calculated 
with the use of the mean and variance of the AR-1 predicted capacity. As from Eq. 
5.42, the moments of the distribution depend on the correlation coefficient p of the 
capacity process. For a long prediction interval the correlation coefficient decays to 
zero resulting into the mean and variance of prediction equal to the mean and variance 
of the original process: no additional information is available for the prediction. If a 
specific outage is required in the transmission, the corresponding rate can be derived 
according to [3]:

r as max j c n+l -  yj-2a^+1 ln(2Pout) |  (5.57)

where Pout is the desired outage probability and Cn_)_i,(x̂ +1 are the mean and variance 
of the AR-1 prediction.

From a MAC layer point of view, deciding for a specific rate r(n + 1) has 
two effects: on one side a value of ip(n + 1) packets will be transmitted in the next 
Tj, allowing to free a precise space in the buffer; on the other side a price will be 

paid in terms of probability of loosing packets due to outage. The FSMC of the 
instantaneous capacity defines the transition probability matrix of the process. The 
capacity transition in the next time step is driven by the values of the transition 
matrix, with each arriving state associated with a probability value. For each one 
of the capacity states we define a proper set of permitted information rates R =
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{rk)kLo1’ where
i~k — cki rk G R, o < k < K -  1; (5.58)

For each one of the possible rates, the outage probability would be the probability that 

capacity at the predicted state is under the rate value. Knowing the moments of the 
Gaussian distribution of the predicted capacity, the outage probability for a specific 
rate r  ̂ is given by Eq. 5.56. When outage occurs no reliable transmission are possible 
since the channel do not support and carry the information that is being sent. If the 
signalling rates r*. are expressed in packets/s, the packet error rate (PER) is given by 
r(n + 1) x Pout while a successful data transmission is obtained for r(n+ l) x (1 — Pout)-

5.7 .1  P o licy  dom ain  p erform an ce o p tim iza tion

The set of available signalling rates constitutes the action space A(s) for each capacity 
state s € S. A policy is defined when one specific action a € A has been defined for 
each state of the model. Bringing into the model the system buffer, a convenient 
signalling rate can be chosen according to both the capacity state and the queue 
buffer state. Suppose that the system has a single buffer of B packets. The buffer 
state defines how many packets are waiting in the buffer and it is itself a FSMC 
dependent on the arrival process. The higher-level arrival process is described by a 
Poisson model [21]:

Pr{A(r) = m} = -— > m = 0,1,... (5.59)

where A(r) = m denotes the event of m arrivals in the time interval r. A is the 
average arrival rate in packets/s. The capacity transitions and the arrival process 
are considered two independent processes due to their different nature. Considering 
both the capacity and buffer states leads to a two-dimensional problem, in which the 
system is completely characterized by the state pair s(k,q), where k is the capacity 

state index and q is the MAC layer queue length.
In order to refer to the Markov Decision Processes theory, the state transition 

probability matrix and the reward matrix must be specified, as discussed in 5.3. 
Referring to [7, 8] the following matrices are defined.

1. State Transition Probability matrix T: is a three dimensional matrix which 
orders the possible actual states, the possible succeeding states and the possible
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actions (or alternatives) which can be chosen in each state. Each ” slice” Qa 
corresponds to the set of all possible states (k,q)(kr ,q') for k = 0,1, K — 1, 

9 = 0,1

P(0,0);(0I0) ■ ■ ■ p(0 ,0);(l,0) • • • *foiO);(A--l>B - l )

C a =  P (0,l);(0,0)

. ^ - 1 ,B -1 ) ; (0 ,0 )  • • • ^ -1 ,B -1 ) ; (1 ,0 )  ’ ' ’ P(K-VB-iy,(K-l,B-l) .
(5.60)

The transition probability pf, w ,, A is function of the parameters (a, k, q, k', q') 
and represents the probability of passing from the state (k, q) to the new state 
configuration (kq' )  in terms of capacity and buffer size. The value ‘a’ specifies 
the action to take at time Tf, in this case the choice of the signalling rate for 
the current block. The optimal choice of ‘a’ is the optimization problem which 
requires the knowledge of the rewards for each action. The value of ^  ^ ^  

in T is defined for any possible action in the current a E *4(s(fc,g))> as:

• if (q -  min(q, <fmax) < q' < B),then

P(k,q),(k\q') = PiA(Tf) = -  [9 -  min(q, ̂ 01)]} x Pk;k1 (5-61)

• if (q -  min(q, Vmax) < 9# = 5),then

B- 1

P(k,q),(k',q') = 1 -  Y j  PiA(Tf ) = 9 -  [9 -  min(q, y^ax)]} x Pk;lfed (5-62)
q'=0

where v̂ max *s the maximum number of packets that can be served in the time 
interval Tf when a specific action a is taken. A(Tf) denotes the expected 
number of packets that will arrive in the next interval Tf according to the 

arrival process. The probability of arrival are modeled according to the Poisson 
arrival process, the capacity transition probabilities are derived for every state 

transition according to the FSMC of channel capacity.

2. State Transition Reward Matrix R: each element specifies the reward associ
ated with a state transition (k,q), (k',q') for a given action ‘a’. The definition
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of ” reward” refers to a specific performance metric. The decision of working 
with rewards should bring to the same conclusions obtained by minimizing the 
process costs. Costs and rewards involve different process analysis: a smart 
solution is to choose the metric which simplifies the process analysis and then 
minimize/maximize it according to the costs/rewards description. In this study 
the value of ’’reward” is defined as the number of packets correctly received at 
the destination MAC layer. With this definition, elements of R are function of 
the set {a, k, q, k' , q'} and defined as:

a =  ( A«z) X [1 - -ClM] . / 0 , ,

9) f  0 , otherwise

where PgUt(k) denotes the probability of outage on the channel, which is the 
probability of no reliable transmission as seen in Sec. 2.5.1.

The optimization problem works on the variable a, which denotes the possible 
actions to take at every decision epoch Tj. In an optimal model, at each step Tj the 
transmitter predicts the instantaneous capacity and obtains a set of possible signalling 
rates associated with outage probability. The action ‘a’ is the decision of a specific 
rate to use in the next time interval Tf. A decision on the signalling rate will have 
consequences on the buffer queue (how many packets the system will serve) and on 
the outage probability in transmission. When the optimal action is decided for every 
possible state, a policy p is obtained. From the matrices T and R, the optimal policy 
for signalling rate selection can be solved by the policy iteration method discussed 
in Sec. 5.4. The resultant policy pq is a vector d, which specifies the best action ‘a’ 
to take at each state. Each policy p specifies a unique Markov process with rewards, 
with specific state probability ^  ^  and reward ^  for each process
state.

5.7 .2  N u m erica l sim u la tion s

In this section the improvement in the system performance brought by the two- 
dimensional optimization is analyzed. The possibility of adapting the signalling rate 
to the channel capacity state and the buffer state should reduce the total probability 
of failure in the system, defined as the sum of the probability of buffer overflow and
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capacity outage. The starting point for this analysis are the final results obtained 
in Chapter 3. Fig. 3.9 showed the possible tradeoff between the buffer overflow 
and capacity outage probability, for a MIMO system with constant signalling rate 

derived from the outage capacity. The study proposed in this chapter suggests that, 
if the signalling rate can be adapted to the buffer and capacity states, the ergodic 
channel capacity can be achieved by an optimal adaptive signalling rate strategy. The 
optimal strategy is found analytically by the MDP analysis. The optimal solution is 
characterized by the maximum expected earning or highest process gain defined in 
Eq. 5.25. In the model specified in the previous section, the reward structure of the 
problem is defined as the number of packets which are correctly received on the other 
side of the communication link, as specified in Eq. 5.63. For this reason and recalling 
Eq. 5.8, the process gain g can be related directly to the throughput rj of the system 
through the time frame duration:

A second parameter of interest is the packet loss rate at the source. Disregarding the 
origin of the loss, the total packet loss rate is the complementary part of the total 
packet arrived at the source and the packet correctly received. For this reason, the 
source packet loss rate is defined as

The gain of the constant rate transmission must be obtained in order to compare

Eq. 5.63, the reward matrix for the constant rate transmission is a matrix of equal 
elements since the signalling rate is constant for all the states. The signalling rate 
is obtained by the numerical analysis presented in Chapter 3, Sec. 3.2.2, as the 
rate which minimize the joint effects of outage and buffer overflow. Once the rate is 

specified, the corresponding outage probability is used for the process reward. The 
following figures show the difference of process gains and data loss probability for the 
constant rate transmission and the adaptive rate transmission obtained by the MDP 
analysis. The simulations parameters are presented in the following table.

In the case of constant signalling rate, the rate is chosen as the optimal solution

V = 9/Tf (5.64)

(5.65)

it with the optimal adaptive rate solution. Using the same definition of reward of
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Optimal adaptive rate policy Vs. constant rate -  buffer B = 20 packets

Figure 5.3: Gain of constant rate transmission and adaptive rate transmission for 
different arrival rates A. The gain is the system throughput per time frame Tj. The 
buffer of the system is B — 20 packets.
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Optimal adaptive rate policy Vs. constant rate -  buffer B = 20 packets

Figure 5.4: Total packet loss rate of constant rate transmission and adaptive rate 
transmission for different arrival rates A. The buffer of the system is B = 20 packets.
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Description Parameter Value

Signal to Noise Ratio SNR 10 dB
Band W 1.25 MHz
Tx,Rx Antennas n t > Nr 4
Bits per packet Nb 1080
Carrier frequency fc 2 GHz
User speed V 10 m/s
Frame duration Tf 0.002s
Buffer size (packets) B 20

Table 5.1: System Parameters

obtained by solving the analytical equations of buffer overflow and outage presented 
in Chapter 3, Sec. 3.2.2. Increasing the arrival rate A, the tradeoff solution of Fig.
3.9 shifts toward high values of outage, due to the increase in the required signalling 
rate. The optimal policy obtained by the MDP analysis adapts the signalling rate to 
the state of buffer and capacity at every time frame Tf, forcing the system to work at 
high values of signalling rate only when the buffer is full. Moreover, a target outage 
probability Pout will lead to the choice of a suitable set of signalling rate to match 
the requirement.

Fig. 5.3 shows the process gain of constant rate transmission and adaptive rate 
transmission for different arrival rates A. The gain represents the system throughput 
per time frameTy. The buffer of the system is B = 20 packets. For the adaptive 
rate scheme, the results in terms of packets correctly received at the destination 
are significantly better than the constant rate solution. Particularly, the constant 
signalling rate is subject to a strong decrease in gain as the arrival rate is allowed to 
increase. The reason of this behaviour is the high outage that becomes predominant 
for high signalling rates. Adapting the rate according to the optimal policy pp, the 
heavy effect of outage is avoided for high arrival rates: the gain curves of adaptive 
rate show an asymptotic stability toward the maximum allowed signalling rate. A 
more strict requirement in terms of outage imposes a lower signalling rate which turns 
into a lower gain: the number of packet per time frame correctly received is lower 
and an increase in the buffer overflow probability is expected.

The study of the total packet loss rate in Fig. 5.4 confirms the better perfor
mance of rate adaptation through the MDP. From Fig. 5.4 it is also clear that the 

outage probability for high arrival rates becomes the main component of the packet
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loss rate, since the system is forced to work at high signalling rates to minimize the 
buffer overflow. The packet loss rate for adaptive rate transmission lies under the 
constant rate solution for almost all the values of arrival rate A. Especially for high 

rates, the constant rate solution imposes a high signalling rate to decrease the buffer 
overflow but this choice turns into a high outage probability, which appears to be pre
dominant in the total packet loss rate. The adaptive rate transmission, limiting the 
allowed signalling rates to match a specific outage requirement, works with a lower 
rate but results in overall better performance: results show a controlled increase of the 
packet loss rate. Again in this case, a more strict requirement on the target outage 
probability results into an increased packet loss probability: with a lower signalling 
rate the buffer overflow probability is higher for a given arrival rate.

5.8 Com plexity Issues

The analysis of the complexity for the proposed algorithm should take into consid
eration the set of possible signalling rates and how often rates are adapted to the 
capacity and buffer states. From a PHY layer point of view, a fixed set of possible 
signalling rates would be available according to the specific modulation technique of 
the transmission system. The optimization algorithm proposed can easily include 
specific signalling rates and derive the outage probability for each one of them ac
cording to the capacity distribution. The resulting decision policy would lead to a 
sub-optimal process gain but would perform better than the constant signalling rate 
solution. Another complexity issue is how often a CSI estimation can be available at 
the transmitter to match the actual channel capacity state. The results shown in this 
chapter are based on the possibility of tracking the capacity process at every time 
frame TV through the prediction model in Eq. 2.15. According to the normalized 
Doppler fm of the process, the prediction can be exploited for more than one frame. 
In the worst case of very high user mobility, at the time frame Tj the correlation of 

the capacity evolution could be zero and the prediction for the next frame would be 
useless. In those cases the only solution is the use of a constant rate transmission 

based on the capacity CDI.
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5.9 Conclusion

In this chapter the possibility of adapting the signalling rate to the actual channel 
capacity and the buffer state has been presented. If it is possible to have a feedback 
information about the channel capacity, the transmitter can adapt the signalling 
rate to the actual capacity state to minimize the outage. Moreover, this analysis 
is not optimal [8] without considering the buffer state, i.e. how many packet are 
in the buffer and if the buffer can experience overflow. The joint consideration of 
the capacity evolution and the buffer state leads to a two-dimensional optimization 
problem. The possibility of modelling the MIMO channel capacity as a FSMC allows 
to refer to the theory of MDP to tackle this optimization problem. In the specific 
case, the solution must be the optimal transmission signalling rate for every possible 
state of capacity and buffer. In the proposed model, the channel capacity is allowed 
to evolve in a finite set of states and the transition probabilities among states are 
investigated. Referring to widely accepted model like the Wang Moayeri [45] for 
the FSMC of fading channel, an extension became necessary to allow the transition 
not only to adjacent states but also to far states. The framework proposed in [46] 
has revealed to be useful for this task. Considering the optimal case in which the 
transmitter can choose a proper transmission rate to match the capacity state, the 
MDP theory returns the optimal policy /xq which must be followed to maximize the 
process gain, i.e. the throughput of the system, defined as the number of packet 
correctly received at the destination MAC layer. Assuming a specific frame duration 
Tj-, the signalling rate is adapted at every frame according to the capacity transition 

behaviour and buffer state. The choice of the time scale for adapting the rate must 
take into consideration the evolution of the process, which can be described by its 
second order statistic (autocorrelation parameter p). Once the optimization problem 
is solved, the optimal policy //q drives the choice of the most suitable rate according 
to the joint state of buffer and capacity. The performance of the optimal policy have 
been compared with the constant rate transmission proposed at the end of Chapter 3, 
showing a significant increase in the system performance, in terms of both throughout 

per frame and packet loss rate.
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Chapter 6 

Conclusion

Capacity for MIMO wireless channels is currently an open research subject, investi
gated in many different scenarios. Great effort has been spent to describe analytically 

the MIMO channel capacity under different conditions and system geometries [15]. 
The main reason for this attention is the considerable capacity increase of these sys
tem, predicted in the pioneering work [4], supported later on by [5, 15]. Capacity, also 
described in terms of spectral efficiency, represents the theoretical maximum amount 
information which can be transmitted with asymptotically small probability of error. 
The capacity gains of MIMO systems is the main reason of the attention about this 
promising technology [3]. Important achievements accounts the description of MIMO 
channel capacity correlation and behaviour in time. Especially, it was shown that 
instantaneous capacity can be modeled as a Gaussian random process, for which the 
first two statistical moments are analytically described [18].

That great effort in characterizing the channel features cannot be exploited 
without a serious cross layer approach to the transmission problem [6]. The joint study 
of the MIMO physical layer and the network model has recently gained momentum 
and significant interest. This research work focused on the impacts of MIMO channel 
capacity on network performance, both for constant and adaptive rate transmission.

Firstly, it was shown that the random nature of the MIMO channel capacity 
introduces a probability of outage which translates into a probability of no reliable 
transmission. The capacity outage has a significant effect on the network performance, 
particularly on the probability of data loss. Considering a finite buffer system and 
a constant rate transmission, the signalling rate represents the amount of data that 

can be taken from the buffer and transmitted over the MIMO channel. For high 
signalling rates, the outage is the dominant effect in the data loss probability, while 
buffer overflow is the dominant effect for smaller signalling rates. A good trade
off between outage and buffer overflow probabilities is therefore necessary. Optimal 
signalling rates and system buffer sizes have been discussed using numerical examples.
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According to the queue size and taking into account the MIMO PHY layer, it was 
shown that an optimal constant signalling rate can be chosen to minimize the total 

failure probability of the system.
The maximum limit of information that the channel can support is represented 

by the ergodic capacity. Ergodic capacity can be achieved when the transmission 
rate is adapted to the random evolution of channel capacity [2], The target of achiev

ing the ergodic channel capacity poses two main tasks: the evolution of the channel 
must be accurately tracked and this information must be made available at the trans
mitter. An accurate channel state information (CSI) can be obtained by training 
pilot symbols [37]. An appropriate estimation technique was chosen according to 
the specific characteristics of a flat-fading time-variant wireless channel, which were 
described with particular attention to the channel second-order statistic. The ban- 
dlimited characteristic of the fading spectrum suggests that it can be well expanded 
by a set of deterministic functions with a similar limited bandwidth. An appropriate 
basis expansion is found in discrete prolate spheroidal sequences (DPSS), firstly in
troduced in [33]. It was shown that DPSS are very accurate and efficient method of 
channel estimation with a reasonable number of pilots and isotropic scattering model. 
Realistic measurements shown instead that the scattering encountered real scenarios 
is non-isotropic. The case of non-isotropic scattering environment was considered and 
a modulated version of the DPSS basis set was introduced to improve the estimation 
performance of the original basis set. The members of the new basis set are obtained 
by modulation and bandwidth variation of the original DPSS functions in order to 
reflect various scattering scenarios. The results obtained by numerical simulations 
showed that the modulated DPSS method provides more accurate estimation than 

the DPSS scheme.
Finally, the possibility of adapting the signalling rate to the actual channel ca

pacity and the buffer state has been presented. The knowledge of the correlation of 
the capacity process [12] allows to model its evolution by an autoregressive predic

tion model. Based on the prediction model, the transmitter can adapt its signalling 
strategy to the capacity evolution. Moreover, this analysis is not optimal without 
considering how many packet are in the buffer and if the buffer can experience over
flow [8]. The joint consideration of the capacity evolution and the buffer state leads 
to a two-dimensional optimization problem. The possibility of modeling the MIMO 
channel capacity as a finite state Markov chain (FSMC) allows to refer to the theory
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of Markov decision processes (MDP) to tackle this optimization problem. Consider
ing the optimal case in which the transmitter can choose a proper transmission rate 
to match the capacity state, the MDP theory returns the optimal policy po which 
must be followed to maximize the process gain, defined as the number of packets 
correctly received at the destination MAC layer (the system throughput). Once the 
optimization problem is solved, the optimal policy po drives the choice of the most 
suitable rate according to the joint state of buffer and capacity. The performance of 
the optimal variable rate strategy has been compared with the constant rate transmis
sion subject to outage. Numerical results showed a significant increase in the system 
performance, in terms of both throughput per frame and packet loss rate.

Future directions include the analysis of energy/delay constraints on the pro
posed work. Capacity when energy is limited assumes a completely different meaning 
since the number of bits (or amount of information) which each user can send is 
limited. This case becomes relevant in ad hoc networks, in which energy is seen as 
an important resource to be maximized. Also, a possible extension is the analysis 
of more realistic conditions, such as a fixed set of signalling rate at the transmitter. 
A fixed set of rates imposed by the modulation constellation would lead to a lower 
achievable spectral efficiency since rates cannot match exactly the channel capacity 
values. Although this represents a limitation, the optimality of the MDP algorithm 
is still guaranteed by the analytical framework: given a set of possible signalling rate, 
the rate decision will be optimal in those system specifications.
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Appendix A

Simulation of single server queuing system  

A .l Discrete tim e simulations

In this section a description of the algorithm used to simulate a single server queuing 
system is presented. The theoretical framework goes under the name of discrete 
events simulation and is deeply described in [47]. Given a single queue system, at 
time t — 0 the simulation starts with no packet in the system and with the server in 
idle state. The first arrival will happen at time ApThe simulation stops when the ntl% 
packet is served. The simulation time is not fixed but is dependent on the arrival and 
service processes, it can be considered a random variable. The algorithm follows the 
model of a discrete time simulation, in which the arrival and service processes must 
be specified: inter-arrival times follow a Poisson process with parameter A and the 
service times for each packet can be either exponentially distributed (Poisson process 
with parameter n) or deterministic [21]. In the last case the service time is equal to 
T = l/fi for all the packets. The purpose of this simulation process is to provide 4 
main statistical results, which are described below.

• Average delay in queue: for each packet the time interval between its arrival 
in the system and the actual starting of the service is recorded. The average 
delay in queue is given by the sum of all those time intervals divided by the 
number of packets served. Must be underlined that this information is subject 
to random variables different for each simulation (inter-arrival times and service 
duration), the expectation over a certain number of simulation is necessary to 

obtain a meaningful result.

• Average number of packets in queue: the average queue length is defined as

oo

9(n) =
i=0

(A.l)
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it is the product between the number of packets i and the proportion of time 
the queue spends at length i. Numerically the estimated average queue length 
is

«(«)
E, iTj
T(n) ’

(A.2)

where Tj/T/n) is the observed proportion of time during the simulation in which 
there were i customers in the queue. The same expression can be written for 
the continuous time with the following result:

q{n) foT(n) Q(t)dt 
T(n)

(A.3)

• Probability of packet loss (buffer overflow) Ppj(N): it is the percentage of time 
the system experiences an overflow status over the total duration of the simula
tion. The time the system experiences overflow status is related to the event of 
buffer full and the arrival of a new packet in the system, which is rejected and 
lost. The probability of overflow is expressed by the discrete sum

Taver t K ,\
Paver = 7 (A-4T{n)

where T{n) is the duration of the simulation and Tover is the time spent with 
the system full rejecting new arrivals.

A .2 The M /M /l  Queue: derivation of basic 

equations

The M/M/l queuing model is based on two main assumptions. Firstly the packets 
arrival pattern from different sources can be approximated by negative exponential 
inter-arrival times. This is the same as saying that the arrivals are described by a 
Poisson process with a given parameter A (arrival rate). The second assumption is 
that the service time associated with the packets is described by a negative exponential 
distribution with parameter p (service rate). A good question is how large should be 
the buffer of the system. The M/M/l model assumes infinite buffer space, but it is 
possible to derive some results by considering the number or packets in the system,
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Average number of packets in the system -  M/M/1 infinite buffer

Figure A.l: Average number of packets in the system (in queue and under service) 
for the M/M/1 model. Comparison between the theoretical curve and the numer
ical simulation results. The discrepancy for high utilization p is due to the strong 
asymptotic behaviour of the theoretical curve, the numerical results could be closer 
to theory for a very high number of packets sent.

which for a M/M/1 system is given by [21]:

Nsys = Z “ 5 (A.5)
1 - p

where p is defined as the system utilization factor: it is the ratio between the 
arrival rate A and the service rate p. Looking at Figure A.l, which shows the average 
number of packets in the system against the utilization factor p, the key characteristic 
is the ’’knee” around 0.8 — 0.9 p, which suggests that it is best to operate the system 

below the 0.8 utilization factor to avoid large queues building up. In order to have 
some ideas about the buffer size, the next step is to look at the probability distribution
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of the number of packets in the system, which is given by [23]:

Pr{n = x} = (1 — p)px‘, (A.6)

where n is the number of packets in the system. Eq. A.6 describes the probability of 
having a specific number of packets in the system. If the system has a finite buffer 
which can hold N — 1 packets, Eq. A.6 can be helpful to derive the probability of 
having a queue full, thus having N packets in the system (one under service and N-l 
waiting in queue). This assumes that an infinite buffer model is a good model for a 
finite buffer, and that Pr{n = x} is a reasonable approximation of the probability 
of loosing packets from a finite queue of size x. Authors of [23] worked with this 
assumption, deriving from the M/M/l model the probability of exceeding a system 

size x, which is given by [23]:

Pr{n > a:} = px+1, (A.7)

If the system has a finite queue of length N packets, the M/M/l  model looses 
the assumption of infinite buffer and turns into the M/M/l /N case. Equation A.7 is 
obtained by the sum of the probability of having more than x packets in the system. 
To confirm the reliability of the M/M/l model for finite queue length, Figure A.2 
shows the probability of packet loss for different utilization factor p. The solid curve 
is the plot of Equation A.6 , the dotted curve is the numerical result of a finite queue 
system, where the packets are lost if the queue is full. The dimension of the queue 
( or buffer ) is set to 10 packets. In the simulation, the probability of packet loss is 
obtained by checking for how much time the system experiences an overflow status 
compared to the total simulation time. The results show a good matching between 
the curves, the oscillation at small p is due to the finite number of packets sent in 
the system: for small utilization factor the probability of overflow is very little and 
difficult to be identified exactly with a small number of simulations. The results in 

Figure A.2 are confirmed by [23], which obtained similar curves for the estimated 
probability of packets loss from M/M/l model and the results for a finite queue 

system M/M/l/N.
The results in Fig.A.2 are achieved averaging 10 trials with different Poisson 

arrivals and 106 packets sent in each trial.
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Probability of packet loss Pn(N) -  M/M/1/N -  N= 10 packets

Figure A.2: Probability of packet loss due to the overflow of a finite buffer. Compar
ison between the estimated probability from a M/M/l model and the actual results 
of numerical simulations. The queue size (buffer) is 10 packets.
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Average packet delay in queue -  M/D/1 -  Infinte Buffer

Figure A.3: Average delay in queue for M/D/1 system. For comparison purposes, 
the buffer size is assumed infinite.

A .3 M /D /1  queue model

In this section the main results and extensions for an M/D/1 model are presented. 
In the case of M/D/1 queuing model, the arrival assumptions are the same as for 
M/M/l,  while the service time in this case is deterministic. It is the case of a system in 
which the service time for different users is constant: constant time slots are available 

for each user in the system. In many communication systems, the physical layer is 
based on a fixed frame duration, from this point of view the behaviour of the system 
can be compared to a M/D/1 model. The deterministic service is described by the 
service rate p and the service time T = 1/p. First of all, a validation of the numerical 
simulations according to the theory of the M/D/1 model is needed. Figure A.3 shows 

the average delay per packet in queue under the assumption of infinite buffer. The 
analytical curve is derived using the Pollaczek - Khinchin equation [21], adapted for 

the particular case of deterministic service. Defining W the average waiting time in 
the queue, it can be expressed as function of the arrival rate A, the utilization factor 
p = A//t and the second moment of the service time, which for a deterministic process
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is = 1/p? [21]. The result, know as Pollaczek - Khinchin formula is:

(A.8)

From the average waiting time in queue, the average number of packets in the queue

of packets in queue Nq is given by the product between the arrival rate and the average 
waiting time: Nq = XW. The average number of packets in the system Nsys is related 
to the average number in queue through the utilization factor p [21]:

of service time, A and p respectively the arrival rate and utilization factor. The 
simulation results for the M/D/l  model with infinite buffer matches very well the 

analytical equation derived above.
Considering now a finite buffer size N , we are interested in deriving the packet 

loss probability studying the system size distribution, following the same procedure 
presented for the M/M/l  case. The first step will be to present the analytical solution 
for the probability of having a certain number of packets in the system, from which 

the probability of packets loss can be derived. The model we will refer to is called 
M/D/l /N, underlining the finite queue length of N packets. When the system 
holds N packets, the queue is full and an eventual new arrival will be lost and will 
not influence the system state. The main result we we would like to derive is the 
probability Pjg(N) of having N packets in the system, which corresponds to the 
probability of having the queue full. As for the case of M/M/l/N,  that probability 
can be interpreted as the probability of packet loss in the system due to the buffer 
overflow. The analytical solution for the M/D/l /N system is presented in the next 

section.

can be derived by the Little’s theorem [21]. For an infinite buffer, the average number

Nsys = p +
A2* 2

2(1 -  p) (A.9)

where Nsys is the average number of packets in the system, AT2 the second moment
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A .4 M /D / l /N :  Analytical solution

A .4 .1  D erivation  o f  s tea d y  s ta te  prob ab ilities

The M/D/l /N model is a finite capacity queuing system, with a queue length of 
N — 1 packets. The maximum number of packets the system can hold is N: N — 1 in 
queue, 1 under service. Packets arrive according to a Poisson process with parameter 
A packets/s. A is called arrival rate in the system. By model assumption, packets 
which upon arrival see a full buffer are rejected and do not further influence the 
system. An overflow event happens when a packet is rejected because of full buffer. 
In this model the service rate p in packets/s is constant. Since the packet length in 
bits is fixed, the time needed to serve a packet is constant T = 1/p. The utilization 
factor p — X/p defines the service capability of the system, a general assumption is 
that a stable system is described by p < 1. Our interest is in a computational scheme 
for the average state probabilities Pj(N), which represents the probability of having j  
packets in the system given a queue size of N packets. According to [22] a description 
of the transition probabilities can be computed by the 2-transform of the transition 
matrix for the M/D/l/N system. The most important result are a set of coefficients 

bn, defined as [22]:
Tt / 1 A A/

bn = Y j ^ 7 ]M n -  (A.10)
k=0

The probability distribution of the number of customer in the system is then derived 
as [22]:

Po(N)

Pn (N)

Pj(N)

1

1 +  pbjg_ i

i _  fyv-i
1 +  pbN _ !

fy fy-1
1 + pfr/V-1

j  = 1,..., A — 1;

(A.ll)

(A.12)

(A.13)

The previous equations show the steady state results in terms of state probabilities: 

Pj(N) represents the probability of having j  packets in the system for a queue size 
of N packets. The probability Pqg(N) describes the probability of a queue full: when 
the system holds N packets a new arrival will be lost and overflow will occur. In [23] 

is proved that the probability Pjg(N) can be considered as a good description of the
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packet loss probability due to the buffer overflow. This consideration has been used 
to derive the probability of overflow for a M/M/l/N system in Sec. A.2. The mean 
number of packets in the M/D/l/N queue is derived as [22]:

XN = N —
1 + p b ft- i

(A. 14)

where Xjg is the average number of packets in the queue. The relation between Xjy 
and the average delay in the system T/y is given by the Little’s Theorem:

XN = A(1 -  Pn (N))Tn ; (A.15)

in which the probability of having the queue full becomes relevant for high values of 
the utilization factor p. Finally, the average waiting time in queue is defined as the 
difference between the average system time T/y and the constant service time T, with 

the following closed equation [22]:

y ' A  — 1 ^   j y

Wn  = Tn - T = ( N - 1 -  ---------)T. (A.16)
P°N- 1

Wjg is the average packet delay in queue for the M/D/l /N system.

A .4.2  R esu lts

Figure A.4 shows the analytical probability Pjg(N) of a full queue of N packets com
pared with the probability of packet loss derived by numerical simulations. Despite of 
the little distance between the analytical queue probability distribution and the nu
merical results, the two curves shows the same trend. The reason for that discrepancy 
is the little number of independent simulations averaged. In the simulation process, 
the probability of packet loss is computed by measuring the time the system spends 
in the state N compared to the total simulation time, which means for how much 
time the system is full compared with the total simulation time. As the curves shows 
the same behaviour, the analytical Pjg(N) can be considered as a good upper bound 
for the packet loss probability. This means that the analytical results of [22] can be 
used to derive the system behaviour for different service rates. Figure A.5 shows the 
average number of packets in the system for the closed form presented in [22] and the
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Figure A.4: Comparison between the analytical queue size distribution probability 
Pn (N) and the numerical probability of packet loss. P/y(Ar) is the probability of 
having the system queue full, the packet loss probability is computed by the number 
of packets lost due to the queue full.
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Average number of packets in the system for M/D/1/N -  N = 10 packets

Figure A.5: Average number of customers in the system: comparison between the 
closed form presented in [22] and the numerical results. The match between the two 
curves is high, validating the closed equations presented.
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numerical results of simulations. For small p the number of customers in the system 
can be less than 1 according to the arrival Poisson process: there might be a time 
interval in which the system is empty. In [22] the average number of customers in the 
system is computed by solving the following equation:

N

XN = '£ k P k(N) (A.17)
fc=0

which is a normal average operation for all the possible number of packets in the 
system. The final result is [22]:

" n 1 h
x » - ( A ' 1 8 )

where Xjq is the average number of packets in the system and N is the maximum 
number of packets the system can hold. As clear from the figure, the behaviour of 
Equation A. 18 follows the numerical results of the average number of packets in the 
system. This is an important conclusion since it means that the model presented in 
[22] is valid, with the possibility of using the closed equations presented as a good 
behaviour model for the M/D/l/N system. Given the average number of customers 
in the system, the average amount of time spent in the system and in queue can be 
derived by applying the Little’s theorem. For a buffer size of N — 1 packets, the 

application of the Little’s theorem yields:

XN = A(1 -  Pn (N))Tn  (A.19)

where Xjg is the average number of packets in the system, Pjg(N) is the probability 
of having the queue full and T/y is the average time spent in the system per packet. 
The term Pjq(N) becomes relevant for high utilization factor p, when the probability 
of having the buffer full is significant. From a simple inversion, the average time spent 
in the system per packet T/y is given by:

XN .
N A(l-P/y(A0)’

(A.20)
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the time spent in queue per packet Wjg can be derived by the previous equation by 
taking into consideration the constant service time T:

wn = tn - t (A.21)

where T = p/A = l//x.
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In this section we describe the Least Square estimation for the series coefficients in 
the context of channel basis expansion. The following algorithm is an extension to 
the MIMO case of the one described in ([11], Ch. VI) for SISO systems. Let consider 
a frame of N samples in a general N r  x N r  MIMO channel. P symbols of the frame 

are used as pilots at the moments 1 < t\ < £2 < ••• < tnp < N, T = {tj}. If the 
transfer function of the channel at time t € T is H(i) and the pilot signal sent is p (£), 
then the received signal is given by:

r(t) = H(t)p(t) + z(t), (B.l)

with the gaussian noise z(£). Using the vectorial notation, eq. B.l can be rewritten 
as

r (t) = [INr ® p(£)]h(£) + z(£), (B.2)

where h (t) = uec(H). Using the basis expansion notation, the channel vector can be 
expanded in the form h (t) = Ce(t), where e(t) is the vector of basis function with 
size D  x 1 and C is the matrix of coefficients with size NrNr x D. Then Eq. B.2 
can be expanded in

r(*) = [INr ® P(t)]Ce(t) + z(t), (B.3)

and, using vectorization, in

(B.4)r (^) =  [INr  ® P (t) ® e(t)]c  +  z ( t ) ,
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with c = vec(C). Performing the Least Square estimation of vector c in the general 
system r(t) = Ac + z, with A = [IjyR <g) p(t) ® e(t)], we obtain:

c = (Y^llNR®P(t)®e(t)][1NR®P(t)®e(t)]H)~1 (%2\lNR®P(t)®e(t)]Hr(t)) (B.5) 
teT teT

(for all the passages refer to [11], Ch. VI). Using the Kronecker products, eq. B.5 
can be simplified the following equation:

c = I n r ® (% 2[p(t)p(t)H ® eW e (^ ]_1 ( In r ® Y l\p H (t) ® eF (t)]r(i)). (B.6) 
teT teT

This final equation, in the case of a SISO system, can be simplified assuming NR, Np = 
1. Finally, assuming also that the pilot sequences are orthonormal, the product 
p(t)p(t)H becomes |p(t)|2 = 1, obtaining Eq. 4.30 in chapter 4.
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