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Abstract 

Medical image segmentation is an important step to identify the shape and position of 

patient anatomy prior to surgical simulation, surgical rehearsal, and surgical planning. It is 

crucial that the facial nerve (FN) is segmented accurately as damage to this nerve can severely 

impact facial expression, speech, and taste. Manual segmentation provides accurate results but 

is time-consuming and labor-intensive; semi-automatic methods of segmentation are more 

feasible in a clinical setting and can provide accurate results with minimal user involvement. 

The objective of this work was to create a novel, open-source, multi-atlas based 

segmentation algorithm of the entire FN requiring minimal user intervention. 

Twenty-eight temporal bones were segmented producing an average Dice metric of 

0.76 and an average Hausdorff distance of 0.17 mm which is similar to previously published 

algorithms. These results indicate that this segmentation approach can accurately segment the 

FN and greatly reduce time spent with manual segmentation. 
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Chapter 1 

1 Introduction 

Hearing loss is a disabling condition affecting many individuals in Canada and world-wide. In 

2012, a Canadian survey on disability reported 4% of Canadians as having a hearing disability 

and 2.3% as being deaf or having no hearing at all (1). The most common treatment for hearing 

loss is the use of hearing aids, however some individuals are unable to use or do not attain 

sufficient improvement from hearing aids, for example in cases of profound deafness.  In these 

cases, a cochlear implant (CI) can be used to directly stimulate nerve fibers leading to the brain, 

creating the sensation of sound much like sound conduction occurs in air in a healthy cochlea. 

The most common method of implanting a CI is through a surgical procedure called a 

mastoidectomy, where the mastoid air cells are removed by drilling to allow the insertion of 

an electrode array through the round window into the cochlea (2,3). In performing a 

mastoidectomy, one of the difficulties encountered while drilling is to avoid damaging 

anatomy such as the facial nerve (FN), which is responsible for facial expression and taste. In 

order to avoid injury during a mastoidectomy, it is crucial that surgically significant anatomy 

is identified prior to surgery using surgical simulation and medical image segmentation.  

Medical image segmentation is the process of identifying the shape and position of 

anatomical structures in medical images, such as computed tomography (CT) images. A 

number of methods can be used to segment anatomy (4). Simple methods such as thresholding 

can be used when structures have consistent or distinct intensity values, however in images 

with varying intensities or indistinct boundaries, these methods fail to identify the distinctions 

among various structures. In cases where region boundaries are unclear, methods which 

consider shape information can provide more plausible segmentations, such as shape models. 
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However, the use of shape models still leads to difficulty in locally conforming and fully 

utilizing intensity information (5). To effectively segment anatomy, it is important that both 

image and shape information are utilized. 

This chapter provides relevant background material upon which this thesis work is based. 

 

1.1 Anatomy 

1.1.1 The Human Temporal Bone  

The temporal bone consists of four parts: the squamous, mastoid, and tympanic parts on the 

outside of the skull as shown in Figure 1.1, and the petrous part inside the skull. The squamous 

part is the largest part, located superior to the rest of the temporal bone. It connects posteriorly 

through the zygomatic process into the zygomatic bone (cheekbone) and also has the 

mandibular fossa which is a depression which the lower jaw connects to. The mastoid part is 

located posterior to the squamous part and it can be felt behind the ear. It is known to be a very 

pneumatized area, having a significant number of air cells and a high degree of variability with 

respect to the number of the air cells and their size (6). The tympanic part of the temporal bone 

is located inferior to the squamous part and surrounds the external part of the ear canal. The 

petrous part located within the skull houses the middle ear containing the tympanic cavity and 

ossicles and inner ear containing the cochlea and semicircular canals.  
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Figure 1.1: Anatomy of the temporal bone showing the squamous part (yellow), mastoid part 

(brown), and tympanic part (green). Image Courtesy of Stanford Otolaryngology, Head and 

Neck Surgery (7) 

1.1.2 The Facial Nerve  

The FN is a thin tubular structure which travels between several structures in the middle and 

inner ear as seen in Figure 1.2. The FN enters the temporal bone inferiorly at an orifice called 

the stylomastoid foramen located between the mastoid and squamous parts of the temporal 

bone. From here, the mastoid segment of the FN moves upward, moving behind the tympanic 

membrane (eardrum) and the malleus, incus, and stapes until it reaches a bend called the second 

genu. From here, the tympanic segment of the FN moves further into the ear superior to the 

cochlea until reaching the labyrinthine segment where it forks and the main nerve travels with 

the audiovestibular nerve while the petrosal nerve branches off toward the mouth, eyes, and 

nose to gather other sensory information. While the FN maintains these positional relationships 



4 

 

 

with other structures in the temporal bone, it still possesses significant variance which presents 

a challenge for surgeries (8). 

 

Figure 1.2: Anatomy of the outer, middle, and inner ears with facial nerve shown. Image 

courtesy of Stanford Otolaryngology, Head and Neck Surgery (7) 

 

1.1.3 Facial Nerve Variation 

The FN has significant anatomical variation which is later discussed in Chapter 2. The greatest 

variation of the FN exists in the angle that the mastoid segment forms with the tympanic 

segment (Figure 1.3). There is also significant variance perpendicular to the direction of the 

angle formed by the mastoid and tympanic segments as well variation in the length of the 

mastoid segment. Other noteworthy variances exist in the length of the tympanic segment. The 

labyrinthine segment, while having less overall variation, has the most variation with respect 
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to its size particularly in the length from the geniculate ganglion to the internal auditory meatus. 

Diameters of each segment also show some variability and branches of the FN such as the 

chorda tympani and the greater petrosal nerve also demonstrate variation in both the angle and 

point at which they exit the FN. Finally, the FN is commonly dehiscent (9), meaning that the 

bone surrounding it can often be discontinuous.  

 

Figure 1.3: Facial segments and surrounding anatomy. Image courtesy of Schulich School of 

Medicine & Dentistry, Western University (10). 

1.2 Hearing Loss and Treatments 

There are three main types of hearing loss: conductive hearing loss (CHL), sensorineural 

hearing loss (SNHL), and mixed hearing loss (MHL) (11). CHL occurs due to difficulties 

transferring sound waves along the pathway through the ear canal, the tympanic membrane 

(eardrum), or the ossicles (malleus, incus, and stapes). SNHL is caused by issues in the inner 

ear or cochlea and can often be caused by damaged hair cells which if functioning properly, 

would transform vibrations in the cochlea into electric signals and provide the brain with sound 
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information. MHL is a combination of CHL and SNHL. Different types of hearing loss require 

different treatments, but in the case of SNHL, devices such as CIs (Figure 1.4) or hearing aids 

could be used. Hearing aids are typically used in cases of minor hearing loss while CIs are used 

for profound deafness. CIs are used to directly stimulate the auditory nerve, bypassing the 

cochlear hair cells and sending sound information directly to the brain. 

 

Figure 1.4: Cochlear implant components showing components that are worn externally and 

those that are internal. Image courtesy of MED-EL GmbH (12) 

 

1.3 Mastoidectomy and Cochlear Implant Insertion 

To insert a CI, a surgical procedure called a mastoidectomy must first be performed by drilling 

away the mastoid air cells from the temporal bone. The mastoid bone can be accessed by 

pulling the ear forward and making an incision in the skin behind the ear. Once the mastoid 

bone has been exposed, the mastoid air cells are drilled away until reaching the middle ear. 
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When the mastoidectomy has been completed, the middle ear will be accessible. The surgeon 

must then drill through the facial recess, the gap between the FN and the chorda tympani 

branching off of the FN, which is typically less than 2 mm wide at the round window. This is 

done in order to gain access to the round window of the cochlea, the location where the CI 

electrode array is placed. Once the round window has been exposed, the CI’s electrode array 

can be threaded through the round window into the cochlea. Figure 1.5 illustrates the drilling 

trajectory. 

 

Figure 1.5: Facial recess before (left) and after (right) drilling towards the RW. Image 

courtesy of Schulich School of Medicine & Dentistry, Western University (10) 

In addition to inserting the CI’s electrode array, a receiver must be placed into a well drilled 

into the bone behind the ear. This receiver is connected to an external transmitter which sends 

a digitized signal of sound signals picked up by the external microphones. The receiver then 

collects the signals and converts them to electrical pulses which are sent to the electrode array. 

Finally, the electrode array directly stimulates the nerve fibers in the cochlea and the brain 

interprets these signals as if they were sound. 
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1.4 Surgical Simulation 

Surgical simulators are tools used in medical education to allow surgical trainees to learn and 

practice difficult surgical procedures such as mastoidectomy as well as the facial recess 

approach (13). Surgical simulators offer an alternative to practicing on real patients with 

associated risk, or on cadavers which are costly and difficult to obtain. Surgical simulators 

work by uploading specific surgical environments or scenarios into a simulator along with 

labelled anatomy. Trainees can then practice procedures in a virtual environment with minimal 

risk. Virtual -reality technologies such as stereoscopic displays and haptic feedback can help 

to enhance the learning experience and more closely represent real-life procedures. 

Additionally, with advances in technology, the cost of surgical simulators has significantly 

decreased (14).  

Another benefit of surgical simulators is that they are not simply limited to one example 

case with general anatomy, which may not represent real-life cases that will be encountered in 

the operating room. In surgical simulators, multiple different anatomical cases can be 

incorporated into simulators so that a surgeon can prepare for anatomy which is more 

representative of a real-life procedure. In addition, patient-specific anatomy can be uploaded 

allowing the surgeon to practice a procedure on a specific patient’s anatomy before performing 

the procedure on that patient. While surgical simulation of procedures with a patient’s specific 

anatomy is ideal, it requires difficult medical image segmentation and labelling.  

 

1.5 Medical Image Segmentation 

Medical Image segmentation is the process of partitioning an image in such a way that 

individual structures are labelled and are easily identifiable. In this work, we will consider 



9 

 

 

segmentations to be labelmaps or a 3D matrix representing every volumetric pixel (voxel) in a 

medical image volume and identifying it as a 1 if it is part of a structure of interest and a 0 if 

not. This is done to isolate structures of interest which can then be analyzed in terms of shape 

and position. Medical image segmentation is important for several reasons such as 

measurements, treatment planning, and in our work, the ability to incorporate a digital 

structural model into a surgical simulation environment.  

1.5.1 Segmentation Methods 

There are three main categories of segmentation methods: manual segmentation, semi-

automatic segmentation, and automatic segmentation; all methods have their own strengths 

and weaknesses. Manual segmentation is the most time-consuming method as it requires a user 

to use a three-dimensional (3D) medical image volume to manually label each structure in 

every slice of the image. The time required to manually segment images may not be feasible 

in a real-life surgical workflow. While this method is extremely time-consuming, typically the 

results produced are of high quality. Additionally, when dealing with difficult image volumes 

(i.e. images with low contrast, artifacts, and irregular anatomy), a user may be more likely to 

be able to segment the image properly by utilizing knowledge of shape and orientation as well 

as the position of structures with respect to others.  

In comparison, automatic segmentation can be used to provide image segmentations 

with minimal user involvement. This is highly desirable, as it requires significantly less user 

time which can then be used for surgical planning or rehearsal. Difficulties with automatic 

segmentation can come from the fact that users may not be certain of the segmentation quality 

of any new segmentation before inspecting it, and programming automatic segmentation tools 

requires knowledge of information which trained users use to manually segment image 

volumes as well as the ability to code it. Semi-automatic image segmentation offers a valuable 
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compromise between manual and automatic segmentation. In semi-automatic segmentation, a 

user initializes a segmentation by providing information about the desired segmentation and 

then the rest of the segmentation is automatically produced. Examples of initialization are 

partially segmenting a volume or placing identifier points along the path of the segmentation. 

Depending on the semi-automatic method used, the user involvement can vary from less than 

a minute to the same amount of time as manual segmentation based on the difficulty of the 

image volumes. A benefit of semi-automatic segmentation over automatic segmentation is that  

the user can be more assured of segmentation quality since they have helped to make sure that 

the segmentation has been initialized properly. The result is usually a quality segmentation 

while not sacrificing copious amounts of time.   

1.5.2 Segmentation Evaluation 

Medical segmentations are produced for various purposes such as surgical simulation, surgical 

rehearsal, and surgical planning.  Depending on what the segmentations are being used for, 

different levels of accuracy are acceptable. In order to evaluate the accuracy of the 

segmentations, various metrics are used to quantitatively evaluate items like volume overlap 

and closeness of boundaries (15). 

One common measure of segmentation accuracy is the Dice Similarity Coefficient 

(DSC). Equation 1 shows how the DSC is calculated between two segmentations A and B 

where bars around the segmentations represent the total voxels for segmentations A and B 

respectively in the denominator, while 𝐴 ∩ 𝐵 represents overlapping voxels. 

𝐷𝑆𝐶(𝐴, 𝐵) = 2 
|𝐴∩𝐵|

|𝐴|+|𝐵|
                                         Equation 1.1 

An ideal value for DSC would be 1.0 as that would imply that all of the voxels in 

segmentation A overlap with all of the voxels in segmentation B and that both segmentations 

contain the same number of voxels. 
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Other measures of segmentation accuracy are the Hausdorff Distance (HD) and average 

Hausdorff Distance (AHD). The directed HD representing the maximum distance from one set 

of points to the closest corresponding point in the other set is defined by Equation 1.2 where a 

represents the segmentation voxels in one image, b represents the closest segmentation voxels 

in the other image, and ‖𝑑(𝑎, 𝑏)‖ represents the maximum of the closest voxels. HD is the 

maximum of the two directed HDs and is given by Equation 1.3.  

ℎ(𝐴, 𝐵) = max
𝑎𝜖𝐴

min
𝑏𝜖𝐵

‖𝑑(𝑎, 𝑏)‖                                    Equation 1.2 

𝐻𝐷(𝐴, 𝐵) = max (ℎ(𝐴, 𝐵), ℎ(𝐵, 𝐴))                               Equation 1.3 

HD is an effective way of finding the maximum error between two segmentations, 

however, it is often more useful to consider the average error as the HD can be susceptible to 

outliers. To measure the average error, average HD (AHD) is used. AHD (Equation 1.5) is 

calculated using the directed average HD shown in Equation 1.4. 

𝑑(𝐴, 𝐵) =  
1

𝑁
∑ min

𝑏𝜖𝐵
‖𝑎 − 𝑏‖𝑎𝜖𝐴                                    Equation 1.4 

𝐴𝐻𝐷(𝐴, 𝐵) = max (𝑑(𝐴, 𝐵), 𝑑(𝐵, 𝐴))                             Equation 1.5 

The AHD metric is an indicator of the closeness of the boundary of each segmentation 

to the other. 

1.6 Image Registration 

Image registration is the process of aligning one image with another image. Registration can 

be useful for transferring labelmaps, or segmentations, from a labelled image to an unlabeled 

image and is the approach used in this thesis. The goal of registration is to make both images 

overlap each other in the most meaningful way possible by not just providing maximum 

overlap of the two images, but by attempting to maximize the overlap between features in one 

image with the same features in another image, regardless of how well the entire images 



12 

 

 

overlap. Typically, registration is an iterative process; a fixed image will be chosen as a target 

image and a second image will be chosen as the moving image which will be continuously 

transformed until it best fits the target image. The registration will occur in steps where the 

moving image is transformed using an optimizer. The fit of the registration is measured with a 

cost metric, and then if the cost is less than it previously was, the transformed image will be 

made permanent. This transformed image will be the new moving image and a new transform 

will be calculated to transform the transformed image to best match the fixed image. A series 

of transformations and cost calculations will be done until a maximum number of iterations 

has been reached, or until the improvement in the cost metric falls below a chosen threshold at 

which it is considered to be a negligible improvement.  

1.6.1 Optimizer Functions 

Optimizers are numerical tools for solving or achieving the best score for a given cost metric 

which evaluates the similarity between corresponding points in two images. This is done by 

moving one image such that features in that image overlap with the same features in the other 

image. Optimizers are used to determine how an image should be shifted around so that the 

cost metric measuring the overlap between the two images reaches a locally optimal value for 

the given cost metric. Some optimizers for determining how the image should shift are gradient 

descent (16), Newton’s method, and Quasi-Newton methods (17). While gradient descent 

moves along a gradient in order to find the locally minimal value and then updates and repeats, 

Newton’s Method uses the image gradient and a Hessian matrix of second derivatives of the 

function. Quasi-Newton methods are similar to Newton’s method but do not recompute the 

Hessian matrix at each iteration.  
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1.6.2 Cost Metrics  

To measure the overlap between the two images, or how well they match, quality or cost 

metrics are implemented (18,19). These metrics help to quantify and evaluate the current 

overlap by comparing intensities between overlapping regions or by comparing them in a 

probabilistic measure.  

Mean Squared Error (MSE) and Normalized Cross-Correlation (NCC) are examples of simple 

cost metrics which only consider differences in intensity between two overlapping regions. 

MSE (Equation 1.6) computes the squared differences in image volumes A and B with 

respective voxels located at (x, y, z) while NCC (Equation 1.7) is similar but insensitive to 

shifting and scaling by subtracting the means 𝐴̅ and 𝐵̅ and dividing by variances 𝜎𝐴 and 𝜎𝐵.  

𝑀𝑆𝐸(𝐴, 𝐵) =  
1

𝑁
∑ ∑ ∑ (𝐴(𝑥, 𝑦, 𝑧) − 𝐵(𝑥, 𝑦, 𝑧))2

𝑧𝑦𝑥                   Equation 1.6 

𝑁𝐶𝐶(𝐴, 𝐵) =
1

𝑁
∑ ∑ ∑

(𝐴(𝑥,𝑦,𝑧)−𝐴̅)(𝐵(𝑥,𝑦,𝑧)− 𝐵̅)

𝜎𝐴𝜎𝐵
𝑧𝑦𝑥                        Equation 1.7 

In the case of MSE, a perfect value would be 0, however, due to image noise and 

differences between images, a value of 0 is not typically achieved in practice. Instead, the 

optimizer function is used to iteratively minimize MSE. Unlike MSE, NCC is a measure of 

similarity between images, meaning that a higher value represents a better fit between two 

images. In the case of NCC, the optimizer iteratively seeks to increase the NCC to get as close 

as possible to a perfect correlation of 1.0.  

A more complicated measure, Mutual Information (MI) is used to assess how much 

can be known about one image given the information included in the other. While MSE and 

NCC are faster metrics to implement and execute, they fail to consider how intensities and 

intensity distributions can change from one image modality to another and therefore are less 

likely to converge to an optimal solution when registering image volumes produced with 
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different imaging modalities. MI takes into account intensity values and probabilistic 

information which makes it much more suitable for registering images with different 

modalities. MI is calculated using the entropy equation given in Equation 1.8 representing the 

entropy in a single image where the information gained, H(A), is given by calculating the 

negative sum of the probability of all voxels, or a values, multiplied by the log of that 

probability of those voxel values. Equation 1.9 represents entropy between two images.  

𝐻(𝐴) =  − ∑ 𝑝(𝑎) log2 𝑝(𝑎)𝑎                                    Equation 1.8 

𝐻(𝐴, 𝐵) = − ∑ ∑ 𝑝(𝑎, 𝑏) log2 𝑝(𝑎, 𝑏)𝑏𝑎                             Equation 1.9 

The entropy in a single image should approach 0 if the image has low entropy or the 

intensity values can be easily predicted. Equation 1.10 shows normalized MI (NMI) which is 

typically chosen because it avoids degenerate solutions where entropy is minimized by 

avoiding overlap, while at the same time, normalizes the results such that excessive overlap is 

not encouraged. An optimal value for NMI is 2 and a worst-case value is 1. 

𝑁𝑀𝐼(𝐴, 𝐵) =  
𝐻(𝐴)+𝐻(𝐵)

𝐻(𝐴,𝐵)
                                         Equation 1.10 

1.6.3 Image Transforms 

To achieve the best score for each cost metric, optimizers are used to determine how an image 

should be transformed such that the cost metrics are minimized or maximized. There are two 

broad categories of transforms which can be used to optimize the cost metric: linear transforms 

and non-rigid transforms (20). These transforms simply move or modify one image, the 

moving image, to optimally overlap the fixed or target image. The most common linear 

transforms are rigid transforms which will shift and rotate an image and affine transforms 

which will shift, rotate, scale, and shear images to maximize overlap. Non-rigid transforms 

instead locally warp images such that local shape variability can be more accurately 

represented.  
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1.6.3.1 Linear Transforms 

Linear transformations are often used to align two images. Figure 1.6 demonstrates a rigid 

transformation which is the simplest form of linear transform including only translation and 

rotation. Similarity transforms are more complex allowing for translation, rotation, and scaling. 

Affine transformations are even more complex than similarity transformations allowing for 

translation, rotation, scaling, and shear. In the case that you have two identical objects, a linear 

transformation could be used in order to make them align perfectly. In the case where two 

images are not the same, yet have some similarities, linear transformations can be useful to 

provide some overlap. In cases where one has two different images or objects, linear 

transformations are an effective way to ensure that both images start in the same physical space 

so that more sophisticated transforms such as non-rigid transforms can take place. 

 

Figure 1.6: Rigid transformation. Translation is shown (t) as well as rotation (R).  
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1.6.3.2 Non-rigid Transforms 

In cases where one has two approximately similar images and they have been aligned well, a 

non-rigid, or deformable transformation can be used to locally transform an image such that 

local differences are minimized. There are a significant number of methods which can be used 

to produce non-rigid transforms. Figure 1.7 demonstrates this concept with a B-Spline 

transformation whereby a grid made up of many control points is deformed until the two 

images overlap optimally.  

Non-rigid transformations are able to account for local details such as curves and can 

transform two images or objects with some similarity to become more similar. The drawbacks 

for non-rigid transforms are that they are far slower than rigid transformations due to the 

amount of computations required and they also present the risk of unrealistic deformation. In 

order to avoid undesirable deformation, registration parameters must be chosen carefully. 

 

 

Figure 1.7: Deformable registration.  
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1.6.4 Iterative Closest Point Registration 

The iterative closest point (ICP) transformation (20) is an example of a rigid registration 

technique. This technique does not consider images or intensities, but instead considers point 

clouds: a fixed or target point cloud, and a moving or source point cloud. It is discussed here 

as it is used in Chapter 3. ICP considers every point of the moving point cloud and matches 

those points to the closest points in the target point cloud. Once this is done, the algorithm 

measures the error between corresponding points and estimates both the rotation and 

translation which will best align every source point to the chosen matching point. Once the 

rotation and translation have been calculated, the moving point cloud is transformed using the 

transformation and the new error is measured. Then, the process is repeated for the moving 

cloud from its new position. This process is repeated until either a maximum number of 

iterations has been reached or until the improvement in error between transformations becomes 

smaller than a chosen tolerance meaning that the change is deemed insignificant. Figure 1.8 

demonstrates an example of the iterative closest point algorithm where on the left, 

corresponding points are found, and on the right, rotation and translation have taken place 

resulting in a moved point cloud and new closest points. 

 

Figure 1.8: Iterative Closest Point algorithm. Unregistered shown left and registered shown 

right. 
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1.6.5 Atlas-based Segmentation 

Atlas-based segmentation is a powerful segmentation technique. The principle behind this 

technique is that an atlas, or labeled image volume serves as an example segmentation, and 

this example segmentation is registered to a new unlabeled image volume. 

One of the benefits of using atlas-based segmentation is that the segmentation achieved 

is based on a manually segmented volume and as such, it takes image information and labels 

which have been verified to accurately represent realistic anatomy and image appearance. 

Therefore, during the registration process, the manual segmentation should be transformed in 

such a way that the segmentation produced for the new image volume should be realistic as 

well. 

Atlas-based segmentation performs well when the labeled and unlabeled regions in the 

atlas image volume and the image volume to be segmented have similar intensity distributions, 

and the anatomy represented in the atlas image volume is similar to the anatomy in the image 

volume to be segmented. In these cases, segmentations in the atlas can be easily transferred to 

the target image before non-rigid transformations. In cases where the atlas image volume and 

image volume to be segmented have differing intensity distributions and anatomy, atlas-based 

segmentations may produce unrealistic segmentations, so a single atlas may not effectively 

segment all new images (21). This can be mitigated by combining atlas-based approaches with 

other image segmentation techniques, or by using multi-atlas-based segmentation whereby 

multiple labeled atlas-volumes are used. 

Multiple atlases can be used in two different ways. The first is a computationally 

intensive method which registers every atlas image volume to the image to be segmented and 

then utilizes all of the segmentations to produce a final segmentation. The second method is 

much less computationally demanding and instead of registering every atlas image volume to 
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the image volume to be segmented, atlas candidates are chosen based on certain criteria and 

the atlas which is the best fit for these criteria is chosen as the atlas to be used for registration.  

 

1.6.6 Production of Atlas Sets 

To select the medical images volume to be used for an atlas or an atlas set, it is important to 

ensure that as much anatomical variability can be represented as possible. New image volumes 

to be segmented can be flipped if on the opposite side to the atlas set and then be segmented. 

Once the segmentation has been completed, the image volume and produced segmentations 

can simply be mirrored back to fit the original image volume.  

1.7 Objectives 

The primary objective of this work was (1) to develop a segmentation software tool to 

accurately segment the FN with minimal user involvement that could be used with a surgical 

simulation platform. The secondary objectives of this work were (2) to investigate the benefits 

of using high resolution micro-CT images to create atlases for atlas-based segmentation and 

(3) to investigate the benefit of providing multiple atlas candidates to overcome previous 

challenges when using atlas-based segmentation to segment the FN. 

1.8 Hypothesis 

It was hypothesized that previous challenges associated with atlas-based semi-automatic 

segmentation of the FN could be overcome by using two unique methods; the first method was 

to use micro-CT image volumes to create high resolution atlases, and the second method was 

to use multiple atlas candidates so that an ideal atlas image volume could be selected. 
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1.9 Novel Contributions 

The novel contributions of this work are that the proposed algorithm is the first algorithm to 

utilize multiple atlases and the first algorithm to use atlases formed with high-resolution micro-

CT images. Additionally, the most challenging regions of the intratemporal facial nerve to 

segment, the stylomastoid foramen and labyrinthine segment, which were not segmented in 

previous algorithms, are now segmented resulting in a segmentation of the entire intratemporal 

facial nerve. 
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Chapter 2 

2 Intrinsic Measures and Shape Analysis of the 

Intratemporal Facial Nerve 

2.1 Introduction 

The facial nerve is a fundamental structure in the study of head and neck anatomy. Being the 

seventh cranial nerve, it serves primarily by innervating the muscles of facial expression, and 

therefore is necessary for emotional expression, speech and mastication. Additionally, it 

contributes to taste, lacrimation, salivation, and some cutaneous sensation. The nerve initially 

emerges from the brainstem at the cerebellopontine angle and travels with the 

vestibulocochlear nerve in a short segment laterally to the internal auditory canal (IAC). From 

here, it begins its course through the fallopian canal of the temporal bone. This canal is notable 

as it is the longest bone-laden nerve canal in the body (1), is subject to great variation in its 

anatomical course (2), and shares intimate borders with many of the essential structures of the 

ear. Therefore, there is considerable importance in the knowledge and study of this path for 

both the anatomist and the otologic surgeon. 

The intratemporal path of the facial nerve has been described in a number of previous 

texts (1,3,4), and a graphic representation can be seen in Figure 2.1. Early quantitative analysis 

used computed tomography (CT) to measure the length of each segment, ranging from 2.5 to 

6mm, 8 to 11mm, and 8.9 to 16mm for the labyrinthine, tympanic, and mastoid, respectively 

(5). Diameter has been evaluated in several studies, with smaller canals being correlated to 

increasing incidences of Bell’s palsy (6). Fisch et al. (7) initially focused on the entrance of 

the facial nerve from the IAC at the meatal foramen,  as it is one of the smallest areas, averaging 
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only 0.68mm in diameter.  Nakashima et al. (8) later described a second bottleneck in the 

midtympanic segment. More recently, Vianna et al. (6) measured the diameter at this tympanic 

midpoint, along with the labyrinthine and mastoid, as 1.9, 1.7 and 2.6mm respectively. 

Significant differences between control and Bell’s palsy subjects were found in only the 

tympanic and mastoid measurements. Multiple studies have also evaluated the facial recess as 

it is implicated surgically in cochlear implantation and other mastoid surgeries.  A recent study 

by Calli et al. (9) demonstrated a range of 5.6mm to 18.4mm and a mean of 7.8mm between 

the takeoff of the chorda tympani and the incus buttress. Other objective studies of the intra-

temporal facial nerve have focused on imaging features, concluding that coronal and axial 

sections from high resolution CT are excellent for visualization of the bony canal (10), and that 

various magnetic resonance (MR) techniques provide the superior soft tissue delineation 

needed for diagnosis of many pathologies (e.g. schwannoma, malignancy, neuritis) (11).   
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Figure 2.1: 3D and CT representations of the intratemporal portion of the facial nerve. 

Figures A, C, and E demonstrate spatial orientation of the nerve (yellow) relative to the 

vestibulocochlear system (blue), ossicles (white), and stapedius muscle (red). Figures A and 

B demonstrate an axial view of the labyrinthine segment, with the vestibular, cochlear and 

facial nerves entering from the internal auditory canal. Figures C and D demonstrate a 

parasagittal view of the tympanic segment, with the nerve deep to the ossicles and near the 

semicircular canals. Figures E and F demonstrate the mastoid segment, with a clear view of 

the facial recess between the mastoid segment and the chorda tympani. 
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The incidence of iatrogenic injury of the facial nerve during mastoid surgery has been 

estimated to be as high as 1.7% (12). Along the labyrinthine segment, the facial nerve is in 

very close proximity to the basal turn of the cochlea, ranging from 0.06 to 0.8mm, and both 

structures can be vulnerable during surgery (13). Just distal to this, the geniculate ganglion has 

previously been shown to lack a bony covering in 15% of temporal bones (14), therefore 

requiring caution during middle fossa surgical approaches. Along the tympanic segment, the 

wall separating the nerve from the middle ear is thin and easily fractured, and in up to 33% of 

cases dehiscent (15), making it susceptible to pathologic processes of the middle ear, such as 

acute otitis media and barotrauma. Although the mastoid segment is generally predictable in 

orientation, and well-preserved surgically, rare anatomical variations in shape exist, such as 

bifurcation (10).  

One promising approach to minimizing the risk of facial nerve injury has been the 

recent introduction of image-guided minimally invasive (16) and robotic (17) surgical 

approaches. Another approach has been in enhancing the training environment for training 

otologic surgeons, by providing a more safe and effective method of developing operative 

skills and spatial awareness. This is a notable challenge, as previous evidence has demonstrated 

a reduction in the prevalence of cholesteatoma, and therefore a reduction in total 

mastoidectomies performed, leaving less opportunity for trainees to develop these skills in 

residency (18). To address this, there has been an emergence of virtual simulation platforms 

(19, 20), with a recent study by Locketz et al. demonstrating the effectiveness of virtual 

simulation in improving confidence among junior learners (21).  

Both the image-guided surgical techniques and virtual training environments rely on 

three dimensional volumes obtained from CT or MR scans. The process of segmenting these 

volumes is quite time-intensive if done manually. Instead, automated segmentation algorithms 
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are now being applied in otology to evaluate the inner ear (22, 23), facial nerve (24), and 

combined temporal bone structures (25). These segmentation algorithms have so far used 

multi-atlas segmentation (25) and statistical shape modelling (23, 24, 26), and deep learning 

remains a promising method demonstrated in many other organ systems (27, 28). However, 

developing effective image processing algorithms often requires large datasets, and collection 

of many high definition temporal bone scans is a noted challenge. Two groups have recently 

created publicly available data sets, with eight (29) and 51 temporal bone specimens (30), 

respectively, although there still remains some growth necessary to achieve the statistical 

power needed for algorithm training and validation. 

The present study will aim to expand the objective understanding of the facial nerve 

anatomy within the temporal bone using high-resolution micro-CT (µCT) and novel statistical 

shape analysis. Anatomical measurements of the nerve path will be evaluated, and regions of 

statistical variability in the shape of the facial nerve will be demonstrated. This study will 

provide statistical models for automated segmentation algorithms, and the models will be made 

publicly available to all researchers to foster collaborative research. 

2.2 Materials and Methods  

Ethics approval was obtained from the Department of Anatomy at the Schulich School of 

Medicine and Dentistry. Three-dimensional μCT images were collected from 40 cadaveric 

specimens. Specimens were taken from 21 donors, with an even distribution of 20 right and 20 

left ears. The temporal bone and its structures were removed from the body and brain for 

simplicity of the experimental method. The specimens were scanned using the GE Healthcare 

eXplore Locus μCT scanner (GE Healthcare, Chicago, IL). The scanner was operated with a 

voltage of 80 kV and current of 0.45 mA. Approximately 900 views were captured at an 
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incremental angle of 0.4 degrees. Images were reconstructed with an isometric voxel size of 

154μm. 

The open source software Slicer v4.6.2 (31) was used to analyze the imaging data. All 

images were aligned using a series of rigid registration steps. To begin, one master image 

volume was manually rotated into the standard anatomical position to ensure that multiple 

landmarks, including the semicircular canals, pinna, tragus and ossicles, were correctly 

oriented. All left-sided temporal bones were mirrored to match the right. Image volumes were 

aligned to the master volume using a rigid body fiducial registration (as implemented in the 

Slicer platform), with fiducials centered on the following landmarks: cochlear nerve at the 

entry point to the cochlea, center of the oval window, and center of the round window. 

A series of measurements were made in Slicer to quantify the dimensions of the facial 

nerve canal, a graphic representation of which can be seen in Figure 2.2. All measurements 

and segmentations were reached via consensus interpretation by three authors (T.J.H., B.G., 

and S.K.A.) to minimize interobserver variability. Some measurements were made based on 

those previously described in the literature, as mentioned above, including diameters at the 

minimum bottlenecks of the labyrinthine and tympanic segments, and the length of each 

segment. For the three nerves leaving the mastoid portion - the nerve to the stapedius, chorda 

tympani and Arnold’s nerve (auricular branch of the vagus nerve) – the height from the 

stylomastoid foramen was measured. Additionally, the angle between the chorda tympani and 

the facial nerve was recorded, as it is representative of the facial recess. Nerve branches were 

not traced past the first 2-3cm, as most could not be followed reliably into the surrounding 

architecture. The three branches from the geniculate ganglion – the greater, lesser and external 

petrosal nerves – were observed but not reported in the current study, as their position showed 

little variability and their measurements yielded little clinical significance. 
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Figure 2.2: Graphical representation of the diameters, lengths and angles of the facial nerve 

canal. L, D, h and θ represent the length, diameter, height and angle. Subscripts L, T, and M 

denote the labyrinthine, tympanic and mastoid segments, and subscripts 1 & 2 denote the first 

and second genu. Nerve to stapedius, Arnold’s nerve and Chorda tympani (NS, AN, CT) 

were defined by their height above the stylomastoid foramen, along with the angle with the 

angle between the chorda tympani and the facial nerve (representing the facial recess). A 

95% confidence interval was reported (two standard deviations). 

As part of the measurement analysis, an assessment of facial nerve dehiscence was also 

performed. Images were first visually inspected along the tympanic segment for apparent 

absence of bone between the fallopian canal and middle ear cavity. An example can be seen in 

Figure 2.3, where there is an apparent loss of CT signal in the tympanic segment just lateral to 

the geniculate ganglion. Images that showed signs of dehiscence were then evaluated further, 
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where voxel intensities along 2-4 segments travelling from the canal through the region of 

interest to the cavity were obtained. If at least two of the segments depicted a decrease in signal, 

with no spike in intensity at the interface, then the region was deemed dehiscent.  

 

Figure 2.3: Dehiscence between the facial canal and the middle ear cavity just lateral to the 

geniculate ganglion in one subject (A) on axial view, and a thin but intact bony separation in 

another (B). Dotted segments drawn in (A) were used to measure for a spike in intensity at 

the interface, implying presence or absence of bone. 

 

Shape variation of the facial nerve was analyzed using two different methodologies.  

First, a principle component analysis (PCA) was performed using mathematical calculations 

well described in the literature (32, 33). To perform a PCA on the facial nerve found in this 

dataset, 11 landmark fiducials were placed along the canal, as seen in Figure 2.5. Five separate 

sections of the nerve were analyzed – the labyrinthine, tympanic, and mastoid segments, along 

with the junctions at the geniculate ganglion and second genu.  

The second method created a statistical shape model (SSM) with the open source 

modelling platform Statismo (34). The nerve canals were initially segmented manually from 

the μCT data set. Within Statismo, a Gaussian process model was created to determine the 

mean facial nerve, with the gaussian kernel setting of σ = 50 and 200 basis functions. This 

mean nerve was used as the reference shape, and all other facial nerves were fit to it to attain 

a point-to-point correspondence. With this correspondence, a statistical analysis could be 
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performed using the platform’s mathematic computation, where all of the nerves were 

projected onto the reference shape to determine the overall shape variability. 

2.3 Results 

The measurements of the facial nerve canal and its branches can be seen in Figure 2.2. A 95% 

confidence interval (two standard deviations) was used for all measurements. Image analysis 

demonstrated that nine of the 40 facial nerves (22.5%) were dehiscent in the tympanic segment. 

Two came from opposite ears of the same cadaver, and both demonstrated dehiscence in the 

tympanic segment adjacent to the oval window.  The other seven came from individual 

cadavers, and demonstrated dehiscence just lateral to the geniculate ganglion, as demonstrated 

in Figure 2.3. 

The PCA performed on the 40 sets of landmark fiducials can be seen graphically in 

Figure 2.4.  All four images (2.4A to 2.4D) demonstrate the same mean nerve shape in yellow, 

and then project six more nerves according to the direction and magnitude provided by the 

component coefficients from the PCA calculation. Blue through red demonstrates seven shapes 

produced by 𝑛√𝝀𝒊 ,  where 𝑛 is the index for each shape (-3 in blue, -2 in teal, -1 in green, 0 

in yellow, 1 in orange, 2 in dark orange, and 3 in red) and 𝝀𝒊 is the eigenvalue for that 

component. The value, √𝝀𝒊, was the multiplier chosen as it is a value representing the amount 

of statistical deviation accounted for by that component, analogous to standard deviations in a 

Gaussian distribution. Note that these are constant diameter representations and do not capture 

the true diameters along the nerve. 
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Figure 2.4: Principle components 1-4 (A-Superior/Inferior, B-Anteromedial/Posterolateral, 

C-Medial/Lateral, D-Anterolateral/Posteromedial). Yellow surface represents the mean 

shape, with three additional surfaces in each direction demonstrating ±1√λi , ±2√λi , ±3√λi 

in variation. Cardinal directions for all figures demonstrated in A (Superior (S), Inferior (I), 

Anterior (A), Posterior (P), Medial (M), Lateral (L)). 

Although PCA does discover numerous modes of variation in complex data, most of 

the shape variability in this analysis came from the first four components, accounting for 75.3% 

of the net variation. Here, the first component in the superior/inferior distribution (Figure 2.4A) 

appeared to capture variability just proximal to the second genu, angling the tympanic segment 

from inferior to slightly superior in the extrema. The next three components appeared to 

capture variability primarily in the mastoid segment, where anteromedial/posterolateral 
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(Figure 2.4B), medial/lateral (Figure 2.4C), and anterolateral/posteromedial (Figure 2.4D) 

distributions were seen. 

Figure 2.5 shows all the component surfaces combined into one view, helping to 

illustrate the major regions of variability. The labyrinthine segment, geniculate ganglion and 

proximal tympanic segment remained relatively fixed, with the overall shape preserved and up 

to 2-3 millimeters of translation. The first major variation was found in the distal tympanic 

segment, as described above in the first principle component and seen again in Figure 2.5A 

(violet), where the slope angled from inferior to slightly superior in the extrema. The most 

variability, however, occurred in the distal mastoid segment and stylomastoid foramen, as seen 

most clearly in Figure 2.5B. Here, the second and third components (green and blue, 

respectively) demonstrated a strong tendency for the nerve to vary along their 

anteromedial/posterolateral and medial/lateral axes. The perpendicular axes demonstrated in 

components one and four (violet and orange) showed significantly less variation, and it can 

therefore be inferred that the possible locations of the stylomastoid foramen relative to the 

temporal bone varies in a cross distribution (seen graphically in Figure 2.5B).  
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Figure 2.5: All principle component surfaces from above, in diagonal (A) and axial view 

(from inferior). Component 1 shown in violet (superior/inferior), 2 in green 

(anteromedial/posterolateral), 3 in blue (medial/lateral), 4 in orange 

(anterolateral/posteromedial). Dotted red line demonstrates the cross distribution of the 

stylomastoid foramen. 
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The SSM created with the Statismo framework demonstrated similar variability 

patterns as described above in the PCA. Components one through four of the SSM can be seen 

in Figure 2.6(A)-(D). Component one of the SSM (Figure 2.6A) demonstrated a close match 

to the first component of the previous PCA (Figure 2.4A), showing a change in 

superior/inferior angulation of the tympanic segment, along with a moderate amount of 

anterior/posterior translation of the mastoid segment. Component two of the SSM (Figure 

2.6B) demonstrated an isolated variation in the superior/inferior length of the mastoid segment, 

a change seen partially in each of the first, third and fourth components (Figure 2.4A, 2.4C, 

2.4D, respectively) of the PCA. Component three of the SSM (Figure 2.6C) demonstrated a 

similar medial/lateral displacement of the mastoid as the second component of the PCA (Figure 

2.4B), along with some translation of the labyrinthine segment, as seen through all previous 

components. Component four of the SSM (Figure 2.6D) also demonstrated the 

anterior/posterior displacement of the mastoid segment as seen previously in the PCA. In 

summary, the anterior/posterior translation of the labyrinthine segment, the superior/inferior 

angulation of the tympanic, and the anterior/posterior, medial/lateral and superior/inferior 

displacements of the mastoid segment were re-demonstrated in the Statismo SSM. 
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Figure 2.6: Statistical shape model produced by the Statismo framework. This representation 

demonstrates the variability of components 1-4 (A = superior/inferior, B = 

anteromedial/posterolateral, C = medial/lateral, D = anterolateral/posteromedial) by showing 

facial nerves with +/- 2 standard deviations along each component and the distance (arrows) 

from points to their corresponding points on the mean facial nerve. Larger arrows and color 

approaching the red portion of the spectrum demonstrate regions of increased variability. 

One additional observation of the facial nerve was made from processing the imaging 

data, where the fallopian canal appeared to split into two at the second genu, and the facial 

nerve appeared to travel in two separate canals inferiorly through the mastoid bone. This was 

found in two of the 40 facial nerves (5%), from separate cadavers.  

2.4 Discussion 

Many of the quantities measured in this analysis were comparable to those found previously 

in the literature. Regarding the minimum diameters of the labyrinthine and tympanic segments 

(the bottlenecks), there was close agreement between those found in the current study and in a 

previous study by Nakashima et al. (8) (0.91 and 0.94mm compared to 0.89 and 0.92mm, 

respectively). Regarding lengths, reports from an early CT study (5) demonstrated ranges 2-
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6mm, 8-11mm, and 9-16mm which were comparable to the  2.11-5.36mm, 7.73-12.91mm, and 

11.09-19.63mm measurements found in the current study for labyrinthine, tympanic and 

mastoid segments, respectively. The ranges reported in the current study, however, were 

influenced by a small portion of outliers, and the overall mean and standard deviation tends to 

fit well within the previously reported ranges. Regarding dehiscence, the 22.5% reported in the 

current study is lower than the 33% quoted in a recent study (15), although a past compilation 

of surgical study data demonstrated that dehiscence is present in 25% of cases on gross 

dissection, and can range from 6-33% on histology (35). 

The use of μCT technology permitted several additional observations from what was 

found in the literature. The greater and lesser petrosal nerves were able to be reliably traced 

anteriorly to the meeting point with the deep petrosal and tympanic plexus branches, 

respectively. The external petrosal was a very thin branch, had the greatest degree of variation 

projecting in nearly any direction, and was not identifiable in three of the specimens. This was 

not surprising, as previous anatomical literature has cited that the external petrosal is an 

inconstant branch, in some instances joining the greater and lesser petrosal nerves directly from 

the carotid canal (36). Of the three branches exiting from the mastoid segment, the chorda 

tympani had the greatest variation in its exit height. Although this height has not been directly 

reported previously, the standard deviation of 2.33mm is comparable to the deviation of 

2.68mm reported for the facial recess width in the literature (9). Additionally, the same study 

demonstrated a recess angle of 23.58±6.84°, which matches closely the angle of 23.5±24.0° 

reported in the present study (note that the previous study reported a confidence interval of one 

standard deviation, while the present study reports two standard deviations). The nerve to the 

stapedius was the most predictable branch, and subjectively was almost always found 

branching antero-medially just below the second genu.  
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The statistical shape analysis added a new perspective to the study of the facial nerve, 

demonstrating the statistical distribution of nerve paths through the temporal bone. As 

mentioned, there were two areas with significant deviation: the first being at the distal tympanic 

segment, with variation on one statistical plane showing a superior to inferior change in 

angulation; the second being at the distal mastoid segment, with variation primarily along two 

statistical planes. Otherwise, nerve shape was relatively constant and only varied in position 

by approximately 2 to 3mm. From a surgical point of view, this distal tympanic site is of 

particular significance, as a recent case study has demonstrated that the intratympanic facial 

nerve is commonly injured around the tympanic segment and second genu (37). Iatrogenic 

facial nerve injury is a devastating complication of otologic surgery, and the reported incidence 

rate of 1.7% (12) could potentially be minimized through anatomic knowledge, surgical 

experience, nerve monitoring, and image guidance.  

One source of error in the current study was due to the process of manually selecting 

landmarks. Extensive image segmentation studies in the literature have demonstrated that 

inter-observer variability can be an issue in image identification. This was mitigated in the 

present study through consensus interpretation by multiple observers, and through the use of 

high-resolution images, which clearly delineated borders and areas of interest. Another 

potential source of error arose from the fiducials chosen for the initial rigid registration. The 

images were all aligned such that the three fiducials chosen – the cochlear nerve, the oval 

window, and the round window – were always in approximately the same position. Small 

variations in the true orientation may have influenced the variability in the models 

demonstrated; however, substantial portions of the nerve, including the proximal mastoid and 

tympanic segments, had little shape variability, therefore this likely had a minor effect. 
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Furthermore, the agreement of these results with those found in previous studies supports that 

the methods used here produced results within reasonable limits. 

Several studies have previously attempted to characterize features of the facial nerve 

path, including diameters, lengths and presence of dehiscence. This study aimed to expand on 

this knowledge through a cadaveric imaging analysis using μCT images, providing size 

measurements and adding new information about angulation, branching and dehiscence. 

Additionally, this study was the first to use a μCT dataset to create a PCA and SSM of the 

facial nerve, demonstrating in three dimensions how the facial nerve varies within the temporal 

bone. Along with providing valuable knowledge of the anatomy, the data processing and 

statistical models created here will be further used in the development of automatic 

segmentation algorithms. The images, data and models will be made available to the greater 

research community via the Auditory Biophysics Laboratory website (abl.uwo.ca). 
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Chapter 3 

3 Multi-Atlas Segmentation of the Facial Nerve from 

Clinical CT 

3.1 Introduction 

Mastoidectomy is a surgical procedure in which a portion of the temporal bone of the skull is 

removed using a high-speed otologic drill. This procedure is necessary to treat complications 

from ear infections; benign tumors such as cholesteatoma and acoustic neuromas; malignant 

tumors; and to insert cochlear implants to treat hearing loss. Although many delicate structures 

can be injured during this procedure, iatrogenic facial nerve (FN) injury is of most concern to 

otologic surgeons (1).  The FN is responsible for innervating muscles for facial expression and 

speech, as well as contributing to taste, and the loss of any of these functions can present issues 

in the social, psychological, and economical aspects of a person’s life (2,3). 

FN anatomy is conceptually divided into six segments, several of which are at risk of 

injury during mastoidectomy (Figure 3.1).  The FN leaves the brainstem and enters the internal 

auditory canal.  It then forms the labyrinthine segment (LS) and makes a hairpin turn at the 

geniculate ganglion (GG).  The nerve continues through the middle ear as the tympanic 

segment (TS), makes a turn inferiorly at the second genu (SG), and then travels inferiorly as 

the mastoid segment (MS) until it exits the skull at the stylomastoid foramen.  The anatomy of 

the FN can be quite variable and difficult to visualize on imaging (4,5).  An analysis of 14 

cases of iatrogenic FN injury due to mastoidectomy found six cases (43%) of injury around 

the tympanic segment, four cases (29%) of injury around the second genu and tympanic 
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segment, and four cases (29%) of injury in the mastoid segment (6).  This indicates the 

anatomic knowledge of the entire course of the FN is important for surgical trainees.        

 

Figure 3.1: Temporal bone anatomy. Red labels show FN anatomy for the mastoid segment 

(MS), second genu (SG), tympanic segment (TS), geniculate ganglion (GG), and the 

labyrinthine segment (LS). 

Given the risk of injury to the FN and other structures during surgery (7), a number of 

groups have developed virtual-reality (VR) simulators for practicing mastoidectomy 

(8,9,10,11). Compared to practicing in a cadaveric temporal bone lab or on patients in the 

operating room, surgical simulation is always available, minimizes risk, provides anatomic 

variation, and can offer automated feedback without expert intervention (12).  While traditional 

simulators used a database of anatomies, modern VR simulators can import patient-specific 

imaging to allow actual surgical rehearsal on a specific patient prior to the operation (13).   

However, the primary drawback is that these simulators require manual segmentation of the 
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temporal bone structures by an expert, which is time consuming and reduces the feasibility of 

using these simulators in actual surgical training programs (9,14). 

Several groups have worked on FN segmentation within the temporal bone.  Noble and 

colleagues (15,16,17,18,19) used a navigated optimal medial axis and deformable-model 

algorithm (NOMAD) framework to localize the tubular structure of the FN.  This used a 

combination of statistical intensity and shape information stored in a model, and atlas-based 

registration to align the model to their target computed tomography (CT) scan.  The CT scans 

of 15 temporal bones were used to create the model, and a set of 10 parameters were manually 

and heuristically set to minimize the error between their model and gold standard 

segmentations.  Only the parts of the FN involved in cochlear implant surgery, primarily 

around the second genu, were included in the automatic segmentation.  The model was then 

tested on 10 clinical CT scans and the maximum error was 0.838 mm (15).      

Powell and colleagues (20) used atlas-based segmentation to create gold-standard 

regions-of-interest (ROI) from 6 cadaveric temporal bone clinical CT scans.  Intensity-based 

segmentation was then used to segment the tympanic and mastoid portions of the FN.  The 

algorithm was validated on 20 temporal bone scans, and the results averaged between the right 

and left ears were Dice coefficient of 0.71, Hausdorff distance of 0.85, and volume similarity 

of 0.90.   

 The objective of this study was to develop a multi-atlas based FN segmentation 

algorithm which:  1) was based on high-resolution micro-CT atlases, 2) segmented the entire 

FN including the labyrinthine segment, 3) required minimal user input, and 4) could easily be 

deployed into an existing open-source toolkit for use in VR simulators.   
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3.2 Materials & Methods 

3.2.1 Image Acquisition of Micro-CT Data 

Three-dimensional (3D) micro-CT images were collected from 37 de-identified cadaveric 

temporal bones. Specimens were taken from 21 donors, with a distribution of 18 right and 19 

left ears. Three temporal bones used in the anatomical study were not included because one 

bone had a rare facial nerve bifurcation and the clinical CT scans of the other two temporal 

bones could not be obtained. Ethics approval was obtained from the Department of Anatomy 

and Cell Biology at Western University (Approval Number #19062014). The specimens were 

scanned using a GE Healthcare eXplore Locus scanner (GE Healthcare, Chicago, IL). The 

scanner was operated with a voltage of 80 kV and current of 0.45 mA. Approximately 900 

views were captured at an incremental angle of 0.4 degrees. Images were reconstructed with 

an isometric voxel size of 154 μm. 

3.2.2 Image Acquisition of Clinical CT Data 

All 37 specimens were also scanned at a clinical resolution of 600 μm using a Discovery CT750 

HD Clinical Scanner (GE Healthcare, Chicago, IL), equipped with GE’s Gemstone CT 

detector. The Scanner was set to a slice thickness of 625 μm and an x-ray voltage of 120 kV. 

The acquisition time for each of the 37 specimens was approximately 20 s. The reconstructed 

voxel size was 235 μm × 235 μm × 625 μm.  

3.2.3 Formation of Atlas Set 

The FNs on all 37 micro-CT were manually segmented using the 3D Slicer software (21).  A 

consensus interpretation of the segmentations was achieved by three authors, including one 

neurotologist (B.G., T.H., and S.A).  For each nerve, a labelmap, a centerline, and a 3D model 

were created.  Principal component analysis and statistical shape modelling was performed on 
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these segmentations (22), and 9 samples that incorporated the majority of the anatomical 

variation were chosen for atlas creation.  The atlas was created from the high-resolution micro-

CT scans of these samples. Using additional atlases didn’t improve segmentation metrics, 

however using less atlases adversely affected the segmentation accuracy.      

 The low-resolution clinical CT scans of the remaining 28 samples were then used for 

validation of the algorithm, and these specimens were not used in atlas formation.  The manual 

FN segmentations of the corresponding rigidly aligned micro-CT scans were used as the gold-

standard with which to compare the automated segmentations of the clinical CT scans.   

3.2.4 Segmentation Algorithm 

Figure 3 illustrates the overall flow of our atlas-based segmentation algorithm. To initialize the 

algorithm, the user selects 4 fiducials on the clinical CT image to be segmented (Step A in 

Figure 3.2); the image to be segmented will henceforth be referred to as the target image. The 

selection of these 4 points is the only part of the algorithm that requires user intervention with 

the remaining steps being fully automatic.  The algorithm approximates the centerline of the 

FN from these 4 points (Step B). Each atlas centerline is then rigidly registered to the centerline 

of the input image (Step C). The atlas that results in the best registration (i.e., closest match) 

to the new centerline is selected for further processing (Step D). The rigid-body transformation 

found in (Step C) is then applied to the atlas image volume selected in Step D to approximately 

align the volume to the target clinical CT image (Step E). Next, the rigidly aligned atlas volume 

is locally deformed so its FN boundaries better match those of the input image (Step F). Finally, 

in Step G the optimal rigid registration parameters found in Step C and the local deformation 

field computed in Step F are applied to the binary labelmap associated with the atlas selected 

in Step D, and this produces a labeling of FN voxels in the target clinical CT image. 
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Figure 3.2: Process flowchart. The top-left block ‘user involvement’ represents the 

clinician’s work. The bottom block ‘Algorithm Workflow’ represents the algorithm. 

A, B: Fiducial Placement and Centerline Generation 

The user is asked to place 4 fiducials approximating the beginning of the labyrinthine segment 

(meatal foramen), first genu (geniculate ganglion), second genu, and stylomastoid foramen.  

These locations define our region of interest (starting and ending points), as well as the two 

locations where the FN has significant curvature.  These points are easy to identify and the 

fiducials typically take less than a minute to place.   A sample of the four fiducials’ placement 

is given in Figure 3.3. 

The fiducials are then connected by straight-line segments to approximate the 

centerline of the FN.  This centerline is automatically linearly sampled to produce 250 

uniformly-spaced points along the FN; this is the same number of points used with the atlases. 

 

 



51 

 

 

 

 

Figure 3.3: Axial view of fiducial locations on a right ear. Fiducials to be placed are shown 

on the (a) Stylomastoid foramen (SF), (b) Second Genu (SG), (c) Geniculate Ganglion (GG) 

and Meatal Foramen (MF). Cochlea (C), ossicles (O), and semicircular canals (SC) are 

shown for reference. Orientation axes are included on image (a) with superior direction going 

into the image and inferior towards the reader. Bar for scale shown on bottom left of (a) 

represents 1 mm. 

C: Rigid Registration of Centerlines 

The iterative closest point (ICP) algorithm is an option to align point clouds, and this was used 

to automatically and iteratively rotate and translate each of the nine atlas centerlines to align 

them to the target clinical CT image.  Iterations were repeated until the atlas centerline moved 

no more than 0.001 mm in distance between iterations, or until 500 iterations were reached.  

Centerlines from each atlas were rigidly registered rather than the entire image volume as this 

is much less computationally intensive.   

D, E: Centerline Selection and Atlas Volume Registration 

On completion, ICP computes the root mean squared error (RMSE) of the Euclidean distance 

between each aligned atlas centerline and the target centerline. The atlas that produced the 

lowest RMSE was selected for further processing. The rigid transformation estimated for the 
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selected atlas centerline was then used to transform the associated atlas image volume. This 

step brings the atlas image volume into overall global alignment with the target image, however 

local differences in FN shape will still be present. 

F: B-Spline Registration 

To locally refine the fit of the atlas image volume to the target image, a deformable B-Spline 

registration was used.  B-Spline registrations move points in a grid to deform one image to fit 

another. Grid sizes of 12×12×12 and 20×20×20 are used for an initial coarse registration and 

a second fine registration, respectively. Other grid sizes were tested but they either overly 

restricted deformation or allowed for unrealistic deformation. In order to avoid considering 

extraneous image information which could both slow down the algorithm and could cause 

unnatural deformation, a mask was created by automatically dilating the associated atlas 

labelmap by 4 voxels as this was empirically found to contain all information relevant to the 

FN in the target image volume.   

 A second method to avoid unnatural deformation was imposing limits on the maximum 

displacement of control points to ensure that the displacement was not unrealistically large. 

These limits were imposed because in many cases, the tympanic segment of the FN can be 

dehiscent (23) and in dehiscent regions, the boundary of the FN is discontinuous which can 

result in a B-Spline registration where the atlas image volume locally deforms beyond normal 

FN anatomy. In the coarse registration, the displacement of control points was limited to a 

maximum of 0.8 mm, and in the fine registration, the displacement of control points was 

limited to a maximum of 0.4 mm. These values were found empirically to balance the amount 

of deformation needed for an accurate segmentation. In both coarse and fine registrations, 

mutual information was chosen as the cost metric (24) and the Limited-memory Broyden–

Fletcher–Goldfarb–Shanno (L-BFGS) algorithm (25) was used as the optimizer. The 
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optimization was iterative and terminated when the displacement was less than 0.001 mm, or 

a predetermined maximum number of iterations was reached.  In practice, the algorithm always 

converged well before 1500 iterations had taken place. 

3.2.5 Validation 

Evaluation of the segmentation algorithm was conducted by applying the algorithm to the 28 

clinical CT images that were not selected to form atlases; henceforth, these clinical images will 

be called the test images.  The algorithm was applied to each test image, and the resulting 

automatic segmentation was compared to the gold-standard manual segmentations.  In 

comparison to previous studies, high-resolution micro-CT segmentations were used to create 

a highly accurate “ground truth” for each of the test samples.   

Two metrics were used to compare the ground truth segmentation to the automated 

segmentation: the average Hausdorff Distance (AHD) and the Dice Similarity Coefficient 

(DSC) (26). The AHD is an indicator of the closeness between the two FN segmentations, 

whereas the DSC is an indicator of how well the two segmentations overlap.  The metrics were 

evaluated over the entire segmented FN, as well as under a cropped region of interest (ROI) 

consisting of the tympanic and mastoid portions of the FN.   As this was the first study to 

include the labyrinthine segment, this ROI was created to allow comparisons against previous 

studies which did not include this portion. 

Mean and standard deviation of the AHD and DSC were calculated.  The Shapiro-Wilk 

test was used to test variables for normality and differences between AHD and DSC for the 

entire FN compared with the ROI only were analyzed with the Mann-Whitney U test. Both 

tests were conducted using the Statistical Package for the Social Sciences (SPSS) version 25 

(SPSS, Inc, an IBM Company, Chicago, Illinois). A p value of <.05 was considered significant.  
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3.3 Results  

Figure 3.4 demonstrates the qualitative difference between segmentation methods. 3D surface 

models were used to visualize the differences between the ground truth and automated 

segmentation (Figure 3.4A and 3.4B). Cross-sections of the segmentation results are shown 

below (Figure 3.4C-F), which demonstrate the differences between the segmentation outlines.  

 

 

Figure 3.4: Segmentation results for manual and algorithm segmentations. 3D renderings of 

the segmentations are shown on the top (A, B). Cross-sections of the FNs are selected along 

the course of the FN as shown in panel (A) and the corresponding cross-sections are 

illustrated below (C-F) on top of the micro-CT image corresponding to the clinical CT image 

that was segmented by each algorthim. White represents the manually segmented ground 

truth while blue represents the algorithm segmentation. 

Arrows on left represent the side of the cross-section which is shown.  
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Figure 3.5 shows 3D representations of every ground-truth segmentation which have 

been shaded to display the Euclidean distance from the closest corresponding points in the 

ground-truth segmentation and the associated automatic segmentation.  In general, the largest 

distances were seen at the meatal foramen and at the stylomastoid foramen. 

 

 

Figure 3.5: Ground-truth segmentations color coded with distance in mm from 

corresponding points on algorithmic segmentation. Regions are shaded from blue meaning 

distances close to zero to red meaning distances greater than or equal to 1.5 mm. 
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Quantitative results are shown in Table 2.1 for the entire FN and over the ROI. When 

considering the cropped region, a DSC of 0.76 was found which was significantly higher than 

the DSC of 0.70 found when considering the entire FN, p < .001. The AHD also has a 

significant drop from 0.26 to 0.17 when considering the ROI only, p < .005, which is to be 

expected when the largest distances between corresponding points existed outside of the ROI.  

Table 3.1: Metrics comparing the algorithmic segmentations to ground-truth manual 

segmentations. DSC and AHD are considered for the entire segmentation as well as under a 

ROI. 

Segmentation Type DSC ± SD AHD (mm) ± SD 

Entire FN 0.70 ± 0.08 0.26 ± 0.10 

ROI (tympanic and mastoid segments) 0.76 ± 0.07 0.17 ± 0.05 

p-value .001 .005 

 

3.4 Discussion 

The results of this segmentation algorithm are favourable when compared to similar algorithms 

in the literature.   Powell et al (20) examined the tympanic and mastoid portions of the FN, 

which is similar to the ROI defined in this study.  The DSC in this study was slightly higher 

(0.76 vs. 0.71) and the AHD was slightly lower (0.17 vs. 0.20).  These improved results may 

be due to our use of local B-spline registration to identify contours as opposed to intensity-

based registration.  In addition, higher-resolution micro-CT atlases were used in this study, and 

these were chosen from a large sample size to incorporate much of the natural variation in FN 

anatomy.   
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Comparing results against Noble et al. (15) is more difficult as they did not report DSC, 

but reported the distance between structure voxels from automatic to manual segmentations, 

as well as from manual to automatic segmentations.   When averaging these results, their mean 

distance was 0.136 mm and maximum distance was 0.82 mm.   This is similar to the current 

study which had an AHD of 0.17 mm.  

This study is the first to describe an algorithm which segments the entire FN, including 

the labyrinthine segment.   This portion of the nerve is of importance in VR simulation, 

especially for patient-specific simulation of difficult skull-base cases.  The qualitative results 

of the automated FN segmentations were quite accurate in Figure 3.4 and 2.5.  The labelmaps 

in Figure 3.4C-F did show pixelation despite using high-resolution micro-CT atlases, however 

this could be refined in a post-processing step as described by Lu et al (27,28). 

When examining the DSC and AHD for the entire FN, the values were significantly 

worse than when limiting the segmentation to the ROI.  This is likely due to the significant 

variation seen at the meatal foramen and at the stylomastoid foramen in Figure 3.5.   This 

variation is not seen when an ROI is used, as there are specific start and stop points to the 

nerve.  Noble et al. (15) specifically describe cropping the automatic segmentations to match 

the manual segmentations in order to avoid biasing the quantitative analysis.   

Despite the worse quantitative results when considering the entire FN, the AHD was 

still less than a single voxel on average for a clinical CT scan.  Therefore, the automated 

algorithm would be comparable to manual segmentation by an expert, and provide a suitable 

starting point for surgical training purposes.  If the results were to be used to surgical planning 

or robotic surgery, the results could quickly be reviewed by an expert to ensure there are no 

errors.   
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This algorithm was implemented in 3D Slicer to allow for free, easy deployment to 

surgical trainees using VR simulation for rehearsal.  The initial registration of centerlines takes 

a few seconds, while a B-spline registration can take 2-3 minutes using a modern processor.                  

3.5 Conclusion 

This is the first automated algorithm to segment the entire FN, including the labyrinthine 

portion.  The algorithm is unique in its use of high-resolution micro-CT atlases, and the sub-

voxel accuracy when applied to low resolution scans was promising.  This algorithm will be 

deployed as part of an open-source toolkit to allow for easy incorporation in VR simulation 

and surgical rehearsal.   
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Chapter 4 

4 Conclusions and Future Work 

4.1 Conclusions 

The purpose of this work was to develop a semi-automatic segmentation algorithm to segment 

the facial nerve (FN) from clinical computed-tomography (CT) images that minimizes the 

amount of user involvement required. Previous work was done to model and to analyze the 

variability of the FN as discussed in Chapter 2. In the process of modeling and analyzing the 

FN, ground truth segmentations were formed which were used to evaluate the segmentations 

discussed in Chapter 3.  

In Chapter 3, a novel, fiducial-initialized, semi-automatic, multi-atlas based approach 

to FN segmentation was introduced which utilizes micro-CT atlas information. In previous 

segmentation approaches, fully atlas-based segmentation approaches were not used due to 

difficulties in segmenting the FN such as low contrast between the FN and surrounding air 

cells, as well as dehiscence or discontinuity of bone surrounding the FN. This work differs 

from previous work by utilizing micro-CT atlas information which offers improved contrast, 

helping to mitigate the aforementioned issues. Previous results did not include or discuss 

segmentation of the entire intra-temporal FN, most commonly considering only the mastoid 

and tympanic segments. The algorithm presented in this work segments the labyrinthine 

segment which, to the best of our knowledge, has not been segmented as reported previously. 

Another novelty of the algorithm presented here was the use of multiple atlases. Previous work 

had used multiple atlases to form an average atlas as well as to create models which could be 

used for segmentation, however in these processes individual atlas information was lost. The 

current work more closely represents a classic multi-atlas approach, but instead of producing 
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a segmentation with every atlas and merging segmentations at the end, the best atlas candidate 

was chosen for single-atlas segmentation.  

The segmentation results in this work were a DSC of 0.76 and an AHD of 0.17 mm for 

surface voxels within surgically relevant regions and all segmentations successfully followed 

the course of the FN, making them suitable for surgical simulation. We believe that the use of 

multiple atlas candidates bypassed previous issues with atlas-based segmentation by choosing 

an appropriate atlas for segmentation which reasonably represented image volumes to be 

segmented. Due to the variability of the FN, it is unlikely that a single atlas candidate could be 

used to provide segmentations which consistently follow the course of the FN. These results 

were comparable to what has been shown in the existing literature. It is however difficult to 

fairly compare our results to those reported in the literature due to the use of differing test sets. 

Previous algorithms were tested on different image volumes with differing anatomy and voxel 

size and imaging parameters were not always included or consistent with our own. While there 

is no standardized test set for FN segmentation, we believe our results are competitive since 

our test set has the largest voxel size of all test sets, meaning that we are producing 

segmentations with less image information than other algorithms. Considering the limited 

information used, the results presented here offer a good representation of results that may be 

seen for segmenting new FNs in a clinical setting. The computation time of this algorithm was 

approximately five minutes per temporal bone, which is significantly shorter than the time 

required to manually segment the FN.  
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4.2 Future Work 

To ensure that the present work is robust, future testing would be beneficial. In addition to our 

test set of image volumes, we have produced segmentations using images acquired from two 

other scanners. The results of these segmentations were not quantified for accuracy since there 

were no ground truth segmentations for these image volumes, but visual inspection of these 

segmentations demonstrated that the FN segmentations accurately followed the course of the 

FN. Additional testing on image volumes from these two scanners would be beneficial as well 

as testing on image volumes produced using other scanners in order to ensure that our results 

could be reproduced elsewhere. Furthermore, fixed cadavers may result in improved contrast 

when compared to living patients, and it is important that the algorithm is validated outside of 

fixed cadaveric specimens.  

Another direction for future work is investigation of pediatric cases. Children often 

undergo mastoidectomy to insert CIs, so it is important that the algorithm can handle pediatric 

cases as well. The primary differences between pediatric and adult FN morphology is that in 

pediatric temporal bones, the FN has a sharper turn at the second genu, causing the mastoid tip 

located at the stylomastoid foramen in adult temporal bones to be located inferiomedially to 

the mastoid tip in pediatric temporal bones. Despite the atlas set being developed to represent 

the variability of adult FNs, the aforementioned turn at the second genu is the primary feature 

considered in our atlas selection and it is thereby expected that some of the atlases chosen 

would be representative of pediatric cases. It is still possible that this atlas set may not perform 

well in all pediatric cases, and since acquisition of pediatric temporal bones to produce micro-

CT atlases for augmenting the current atlas set would be extremely difficult and impractical, it 

may be suitable to create a separate atlas set specifically for pediatric cases with clinical CT 

scans instead.   
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In addition to producing results on a wider test set and considering pediatric cases, 

future work may adapt our algorithm into a more user-friendly and streamlined process by 

coding our algorithm in C++ or Python while utilizing the Insight Toolkit. We could then 

incorporate the algorithm into a 3D Slicer module with a graphical user interface which would 

allow users to be guided through the process of using the algorithm.   
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