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Abstract

Software testing plays a critical role in the software development lifecycle. A well-
developed test strategy can effectively evaluate the correctness of a piece of software
and find bugs. One of these test strategies is randomized unit testing. Randomized
unit testing allows a tester to randomly generate a sequence of method calls that can
cause faulty behaviours in a program (i.e. a failing test case). This thesis focuses on
using Genetic Algorithms (GAs) to help make randomized unit testing more useful
and easier to use. We use GAs in failing test case minimization, which can facilitate
the debugging process for software testers. We also use GAs to help finding optimal
input values for randomized test case generation, which acts as a foundation that can

enhance the randomized test case generation process.

Keywords: Software Testing, Unit Testing, Randomized Testing, Test Case Mini-
mization, Genetic Algorithm
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Chapter 1

Introduction

1.1 Introduction

The software development lifecycle is the process that software must go through dur-
ing its development time. The cycle consists of the following major phases: require-
ment analysis and specification, design, implementation, testing, and maintenance.
The overall quality of the developed software depends heavily on the quality of the
execution of each phase in the lifecycle. This thesis focuses on building improvements
within the software testing phase. We will discuss problems that software testers
encounter in the course of testing a piece of software. These problems are major
concerns to a type of software testing methodology called randomized unit testing.
We have developed solutions to these problems using algorithms drawn from a partic-

ular class of algorithms that use techniques inspired by evolutionary biology, namely

Genetic Algorithms (GAs).



1.2 Testing and Unit Testing

Software testing plays a critical part in the software development lifecycle. It is used
to evaluate correctness, completeness and quality of a piece of software and facilitates
making any improvements which are deemed to be necessary. Although we can never
be sure that a program is completely free of problems (bugs), we can create a well

developed testing strategy that can increase the chance of finding a fault if one exists.

There are many different approaches to software testing [9]. Depending on the type
of the software implementation, different testing approaches yield different results
and have different objectives. Black-box teéting focuses on verifying the correctness
of the functionality of the software; white-box testing validates the correctness and
completeness of the logic represented by the actual source code. System testing is
a thorough testing of the entire system while regression testing attempts to confirm
the correctness of the functionality of the existing software after new features have
been integrated. Finally, unit testing helps to validate the correctness and complete-
ness of a particular module of the source code. Unit testing provides a foundation
to system testing since it checks for correctness of each module that is included in
the software package, making sure that they are working according to specification
when they are running separately. After that, integration testing can be carried out
in which modules are brought together to confirm validity. Finally, system testing
can also be carried out based on the assumption that all basic underlying modules

are free of errors.



1.3 Code Coverage

Code coverage is the measurement of the portion of the code that has been run (cov-
ered) when the program executes. When code coverage is applied in software testing,
it 1s an excellent indication of the completeness of the test that is being carried out.
The more code that is covered by running a test, the more thoroughly the code is

being tested, and the higher the possibility of finding a bug if it exists.

Coverage can be measured in various ways. Line coverage measures the total num-
ber of lines covered in the code; decision coverage checks to see whether a true and
false decision has been made at each decision point; path coverage can help indicate
whether every possible route through the code has been executed. While there are
many different types of coverage measurement, some of them are considered to be
stronger than others. For example, path coverage is considered to be stronger than
line coverage because covering all possible paths of code execution also means cover-
ing all lines in the code; but covering all lines in the code does not necessarily mean

covering all paths of code execution.

The degree of completeness of each type of coverage measurement depends on the
feasibility of developing test scripts that achieve them given a limited amount of re-
sources. Systems which can cause critical problems when they fail tend to use stronger
coverage measurements to test the system and achieve very high code coverage; exam-
ples are flight control systems, life support systems and nuclear power plant control
systems. Throughout the research, we have made use of code coverage measurement

together with GAs to develop our solutions. Cobertura is the coverage tool that we



have decided to use.

1.3.1 Cobertura

Cobertura is an open-source Java covefage tool. It reports the amount of line cover-
age and branch coverage after executions of a program. After the Java bytecode (i.e.
class files) has been instrumented and the program executed, Cobertura can generate
reports in HTML or XML formats. The line and branch coverage for each source file
whose corresponding class files have been instrumented, will be shown in the report.
Details about the number of times each line has been executed is also available for
further examination. This gives users an idea of the part of the code that is executed
more often which is possibly more complex and critical to the unit under test, and
the part of the code that is executed fewer times, possibly meaning that it is less

important or dead code (i.e. code that can never be reached).

1.4 Randomized Unit Testing

This thesis focuses on a technique called randomized unit testing. Running a test
case in randomized unit testing consists of executing a sequence of calls to methods
in the unit we would like to test. It requires randomization in both selecting the
methods to be called and selecting the parameters to be passed into the particular

chosen method call. The results obtained by executing the test case can be compared



to expected results after each method call is made. Any discrepancies between the
obtained results and expected results can identify a possible fault within the unit
under test. When it is utilized properly, we have found that randomized unit testing

is efficient and easy to carry out.

1.4.1 RUTE-J

RUTE-J, a Randomized Unit Testing Engine for Java [2], is an automated software
testing tool that utilizes the randomized unit testing methodology in order to search
for faults embedded in the unit under test. To use RUTE-J, the tester creates a
subclass of a class called TestFragmentCollection. Each method in this subclass is
referred to as a “test fragment” and starts with a prefix tf_ followed by a method
name. Each of these test fragments calls the method that the tester would like to test
in the original unit under test. Java assertions allow testers to confirm correctness
at different points of the code and can be inserted into the test fragments. RUTE-
J makes use of this TestFragmentCollection subclass that the tester has created to
randomly execute the test fragments within this subclass. At the same time, the
parameters required by a randomly chosen test fragment are also chosen randomly
during the fragment’s execution. The assertions in the test fragments can then help
to identify unexpected results generated by executing the sequence of test fragments.
Once an unexpected result has been identified, RUTE-J quits the test case generation

process and reports to the tester the failing test case that causes the unexpected result.

In order to test the unit more efficiently, RUTE-J provides the ability for testers to



define the frequency that each test fragment is chosen for a test case. Since methods
within a unit vary in their importance according to the usage of the unit, setting the
frequency of executing each test fragment properly can increase the chance of finding
a fault within a unit if it exists. For example, a method which is comparatively more
important than the other methods will require more executions to cover all code logics
made within it; on the other hand, a comparatively less important method require
fewer executions within a test case to cbver all code logics made within 1t. RUTE-J
also allows testers to choose the test case length(number of method calls) and the
number of test cases to generate. This allows the tester to balance thoroughness and

efficiency in the randomized unit testing process.

1.5 Genetic Algorithms

Genetic Algorithms (GAs) are a class of algorithms that is typically used to find
maximum or minimum solutions to problems. They are popular because of their ran-
domness and robustness [7]. GAs work with probabilistic transition rules rather than
deterministic rules, such that multiple solutions can be identified and global minima

and maxima are more likely to be reached than they are by random search.

A GA consists of a population of chromosomes in which each chromosome is an ar-
ray of genes, similar to a human chromosome representation. A summary of the
GA process is shown in Figure 1.1. The process begins by initializing a population

of chromosomes such that each chromosome is a representation of a solution to the



problem that is being solved. Next, the chromosomes are evaluated by a fitness func-
tion to see how good a solution each one of them is representing. The GA then looks
for either a higher or lower score result from the fitness function depending on the
problem that it is trying to solve. After that, the GA process can then decide to ei-
ther stop or continue. If the process has chosen to continue, the chromosomes which
tend to have a better representation of a good solution will be chosen as “parents”
and they can perform an operation calle‘d crossover that gives GAs an advantage over
random search. The left-hand side of figure 1.2 describes the operation of crossover,
in which a pair of selected parent chromosomes exchange gene values at a randomly
chosen position. The operation gathers the solutions represented by the pair of par-
ent chromosomes to simulate multiple children chromosomes in the hope that they
will represent better solutions to the problein than their parents. In the mean time,
mutation operations can also be carried out in the chromosomes representing good
solutions. The right-hand side of figure 1.2 also describes the operation of mutation
which involves a random change of gene values at random positions within a sin-
gle selected chromosome. With mutation operations, GAs maintain a possibility of
reaching the global minima or maxima by randomly assigning randomized values to

the genes.

Finally, a population of new chromosomes has been generated by the crossover and
mutation operations, and the GA process iterates until a stopping condition is reached.
At the end, the chromosome with the highest score evaluated by the fitness function
will represent the best solution found to the problem being solved. Since GAs work
with probabilistic transition rules, running GAs multiple times on the same problem

can possibly yield different solutions.



? Figure 1.1 Summary of the GA process
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1.6 Thesis Focus

Because of the fact that randomized testing performs a non-deterministic strategy in
finding possible faults in a test case, the failing test cases generated by randomized
testing can be lengthy and cause great difficulty for testers in pinpointing only the
necessary method calls that contribute to the faulty behaviour. As a result, failing test
case minimization is necessary. RUTE-J makes use of the Delta Debugging algorithm
[14] to minimize failing test cases. This algorithm can deterministically generate a
test case which is locally minimal in the sense that removing any method calls will not

be able to produce the original faulty behaviour. We will discuss applying Genetic



Figure 1.2 Crossover and Mutation of chromosomes
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Algorithms to achieve efficient failing test case minimization. Using a deterministic
test case minimization algorithm like the Delta Debugging algorithm, only a single
identical minimized test case can be obtained; but by using a GA for failing test case
minimization, we may be able to obtain multiple minimized failing test cases, each
of which indicates different faulty behaviours of the program. Therefore, software
testers can obtain more information from a single failing test case where one or more

faulty behaviours might be embedded within.

Our evaluation results have shown that using GAs to solve the failing test case mini-
mization problem gives significantly shorter test cases in some cases and significantly
longer test cases in other cases when compared with the Delta Debugging minimiza-
tion approach. With that being said, GAs are able to give us multiple minimized test

cases, which provide testers more information about the problems within the code.
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We will also talk about the search for optimal input values for randomized test case
generation. Randomized test case generation can randomly generate test cases based
on some certain input values such as the frequency of method calls and the length of
the test cases to be generated. Choosing these input values for randomized testing
tools like RUTE-J is sometimes considered problematic since testers find it difficult
to choose values that fit their testing purposes. Testers need to estimate the optimal
input values such that a failing test case can be generated efficiently if it exists. We
have therefore been motivated to ask whether using the properties of GAs and inte-

grating with coverage measurement can help them in achieving this goal.

Using GAs for solving this problem has proven to give testers insight about the rel-
ative importance of the method calls within a unit being tested. At the same time,

it provides us clear guidance on the input values needed by randomized test case

generation.

1.7 Thesis Organization

Introduction and other relevant background information has been highlighted in chap-
ter 1. We shall talk about some related work that has been done concerning both
randomized unit testing and GAs in chapter 2. We shall discuss the approach in
solving the failing test case minimization problem in chapter 3 and the idea of find-

ing optimal input values for randomized test case generation in chapter 4. Both
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of these chapters contain a set of statistical analyses which evaluate the efliciency
and effectiveness of their corresponding proposed strategies. Chapter 5 provides a
conclusion of materials discussed in the thesis and possible future work that can be

implemented.
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Chapter 2

Related Work

In this chapter, we give some basic definitions, and then discuss related work in ran-

domized testing, genetic algorithms and test case minimization.

2.1 Definitions

Here we define some terms that will be useful through the rest of this thesis.

A failing test case is a test case which will cause the unit under test to fail, either
by making it crash (Bus Error, arithmetic exceptions etc.), or by causing a running

error (infinite loop or unexpected results).

A passing test case is a test case which does not cause the unit under test to fail.
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In some situations, test case input can be broken up into individual units, such as
lines of input, commands or characters. In these cases, we define a minimized test

case as a failing test case such that, removing any single line will make it a passing

test case.

2.2 Randomized Testing

Randomized testing is the simple strategy of generating randomized input and feed-
ing it to the software under test. It is mentioned as early as Myers in 1979 [13]. Past
research on randomized testing included that of Claessen and Hughes on QuickCheck
15]. QuickCheck is a testing tool that utilizes randomized testing to test Haskell
programs. Using formal specifications, QuickCheck allows testers to define certain
properties of the functions under test that should be expected and check whether
the properties hold after running some test cases. The tool also has the ability to
automatically generate test cases based on random inputs or based on custom defined

test data generators.

Miller et al. [12] has also proven the effectiveness of random testing to end users. By
simply randomly generating strings of characters using a program called fuzz, they
found that a surprisingly large number of UNIX utility programs either terminate
abnormally, loop infinitely or terminate without a clear description of what has hap-

pened, totaling to more than 24% of the basic UNIX utility programs.

Randomized unit testing is a specific type of randomized testing which automates the
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testing by randomly generating sequences of function calls. Andrews [1] focused on
coverage-checked random unit testing (CRUT), which applies randomized unit test-
ing methodology to a given unit under test, continuously testing it until predefined
coverage goals are achieved. Andrews concluded that CRUT has proven to be efficient
in finding faults within the code and it can act as a complement to other types of

structural and functional testing methodologies.

2.3 RUTE-J

The Randomized Unit Testing Engine for Java (RUTE-J) [2] was developed to ran-
domly generate sequences of function calls based on tester preferences. It allows the
tester to specify the length of the test case and the number of test cases to be gen-
erated and also to specify a time limit for continuously generating test cases. The
engine stops generating test cases when the stopping condition has been satisfied, or
1t can stop once a fault is found, providing the failing test case and a log file as one

of the outputs.

2.3.1 Using RUTE-J

To generate a test case in RUTE-J, the tester will first need the TestFragmentCollec-
tion of the unit that they are interested to test. Then the command to initiate the

application can be as follows:
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java TextDriver TestFragmentCollection

By doing this, the default process of randomly generating test cases is selected, which
will generate one test case of length 50 test fragment calls. To set the desired length

of test case to be generated to 500 and the number of runs desired to 10, the user can

use the following command:
java TextDriver -repeat 500:10 TestFragmentCollection

There are also other methods for controlling the number of test cases and the corre-
sponding length, such as continuously incrementing the length of test cases until a
certain length limit is reached. Another well developed functionality of RUTE-J is

test case minimization. If the user gives the command:
java TextDriver -repeat 500:10 -min TestFragmentCollection

then once a failing test case is found, RUTE-J will automatically minimize the test

case using Zeller and Hildebrandt’s algorithm. (see Section 2.5)

In terms of setting the weights for the test fragments, it is possible to do so by adding
a few lines to the TestFragmentCollection class that the tester needs to create. The
setWeight() method can help the tester to set the appropriate weight for the method
specified. In case the tester is not interested or does not have the intention to set
appropriate weights to the test fragments, all test fragments have a default weight of

100, meaning they are assumed to have equal importance in the subject unit.
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RUTE-J also provides a graphical user interface for the ease of usage. It enables
users to choose their desired method of generating test cases. Users can also view
the generated or failed test cases, and minimize them if necessary. Saving and load-
ing test cases is also possible, which helps users better organize their test plans. A
feature that has not yet been implemented in the text interface in RUTE-J is the
“break” button in the GUI version. This is necessary when the process of randomly
generating test cases has forced the uﬁit under test into an infinite loop. The break

button allows the stoppage of the process without crashing the entire application.

2.3.2 Failing Test Cases

Consider the TreeMap class of the standard Java library java.util.TreeMap, which
implements a red-black tree data structure for storing keys and associated data. Red-
black trees are binary trees such that every node is colored either red or black, every
red node that is not a leaf has only black children and every path from the root to a
leaf contains the same number of black nodes. These node colouring properties ensure
that a red-black tree is balanced and thus efficient, but the code for maintaining these
properties is complex. If TreeMap had a fault in it, the fault might be revealed by a
sequence of method calls as shown in Figure 2.1. It consists of calling a sequence of

functions involving the size() method, put() method and getFirst() method.

Since RUTE-J automatically stops generating function calls when a test case fails,
this failing test case implies that, by calling the last put(20, 30) method, the test case
fails. Keep in mind that it does not necessarily mean that every function call plays a

role in contributing to the fault. Some of the function calls in the test case might not



17

Figure 2.1 An example of a failing test case using the TreeMap unit.

treemap.size()
treemap.put(3, 10)
treemap.put(5, 7)
treemap.getFirst()
treemap.put(20, 30)

be needed in reproducing the fault. We will also use this example for later chapters

in order to explain the ideas more clearly.

As an example of the effectiveness of RUTE-J, it has successfully found a previously
undiscovered fault in the IMoney example; the main example distributed with the
JUnit Java unit testing framework [3]. The IMoney example includes the Money
class and the MoneyBag class which both implement the IMoney interface. They help
to represent money in different currencies and contain methods such as for adding
and subtracting currencies. Andrews et al. [2] found that the following test case,

minimized from a longer failing test case of about 50 method calls, is able to force a

failure in IMoney:

e add 205
e negate 5 7

e appendTo 7 2

e checkValue 2

The test case description refers to the TestFragmentInfo that has been written for
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IMoney. The IMoney TestFragmentInfo maintains an array of IMoney objects. In
the test case, first the index 2 element and the index 0 element are added, and the
result is put in the fifth position in the array. Then the result is negated and put in
the seventh position, and then the object stored at the seventh position is appended
to the one stored at second position (it is unclear what appendTo() method does but
it merges the monetary value for all currencies together in most cases). Finally the
value of element stored in position 2 is checked. The expectation after executing the
test case is to have a Money object stored in position 2, but the actual outcome is a

MoneyBag object which creates a discrepancy and causes the test case to fail.

2.4 Genetic Algorithms

GAs can be applied to solve a variety of problems, generally to find maximum or mini-
mum solutions. GAs are particularly applicable for solving scheduling and timetabling

problems, but they have been also applied to testing in the past.

2.4.1 Comparision to other search algorithms

Random search is a simple algorithm that is used to look for a solution to a given
problem. It explores the possible solution space by randomly selecting solutions and
evaluating their fitness. GAs perform better than random search in the sense that

each evolution tries to pass down its their good solutions to the next evolution in an
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attempt to find even better solutions. This is made possible by performing crossovers
and mutations on selected chromosomes. Since GAs help in giving a direction in re-
trieving a solution to the given problem, they have a higher probability of converging

to a solution faster than random search.

Hill-climbing is a search algorithm which attempts to maximize a function. It tries to
obtain the best solution by looking for solutions in the immediate neighbour set. If
there is a better solution in the neighbour solution set, then that neighbour is chosen
and the algorithm will continue the process of searching for better solutions from the
new neighbour set; if there is no better solution in the surrounding neighbour set,
then the solution is found and the current node will be the solution that is returned.
The process of hill-climbing might take a shorter time than using GAs, but GAs have
a higher probability of finding global maxima and minima; therefore, we have decided

to use GAs for that reason.

Simulated annealing is also an algorithm for searching for an optimal solution to a
given problem. It begins with finding a single random solution within the search space
and assigns it as the best solution so far. Then it randomly tries other solutions in
the space which are better and can replace the best solution so far. Whenever there
is a better solution to replace the current best solution, the algorithm will restrict
the part of the search space in which it looks for solutions. The best approach for
achieving the global maxima or minima is to lengthen the time between replacements
of the current best solution, allowing the search of a larger problem space before
the solution converges too quickly. The same applies to GAs as well, but GAs con-

tain a population of chromosomes to represent different solutions, together with the
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crossover and mutation operations, so GAs always retain a possibility of reaching the
global maxima and minima. At the same time, with a large population of chromo-
somes, the problem space can be explored faster, causing a shorter convergence time

than for simulated annealing.

2.4.2 Previous work on GAs and testing

Guo et al.[8] applied GAs to the problem of generating test data based on finite state
machine models of the software under test. Finite state machines have character-
istic unique Input/Output sequences (UIOs) and it is known that computing UIOs
is NP-hard. Guo et al. have found that using GAs to construct UIOs outperforms
using random search to do so; and with the help of these UIOs, it can be determined
whether the I/O behavior of a particular finite state machine conforms to another
given finite state machine, thus accomplishing a black box test on the system. Guo
et al. define a “do not care” value when mutation occurs in the genes, which can help

improve the diversity of the chromosomes in the GA.

Michael et al. [11] and Berndt et al. [4] applied GAs to generate data for numeric
input parameters. Michael et al. developed a test data generator known as GADGET
(the Genetic Algorithm Data GEneration Tool), designed to work on large programs
written in C and C++. GADGET uses condition-decision coverage as a criterion for
the GA evaluation process. It tries to cover as many branches as possible within a
given program. This is possible since GADGET maintains a coverage table and helps

to determine whether extra input data generation is needed. Michael et al. compare
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their findings on GAs to that of gradient descent, which aims to achieve local max-
1ma and minima. They have found out that using GA to generate test data achieves

higher coverage than gradient descent and random search.

Berndt et al. use GAs to help develop test cases that can help uncover as many faults
as possible. The distinguishing idea is the dynamic changes on the fitness function
based on historic results of the chromosomes. The triangle program written in Java
(a standard small example in the software testing literature) is used for analysis and

only numeric test data is considered since Berndt et al. focus on testing boundary

conditions on the triangles.

This thesis focuses on two main problems; one is minimizing failing test cases, the
other is finding optimal input values for randomized test case generation. In terms
of minimizing a test case, we have a different focus with the previous research on
software testing with GAs. Rather than generating a test case or set of test cases,
we try to minimize a test case if it is found to reveal faults in a unit. We have de-
veloped an application based on Java, and we have defined a static fitness function
to evaluate the goodness of a solution. The development of TestFragmentInfo by the
tester can achieve conformance testing based on a comparison between expected and

actual variable values, instead of comparison between two finite state machines.

In terms of finding optimal input values for randomized test case generation, we have
developed an application in Java that has a similar scope as that of Michael et al.

Instead of using condition-decision as a evaluation criteria, we have used line coverage
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for chromosome evaluation in GA since this is the coverage criterion available to us in
the coverage tool we used. While the other research attempts to develop single test
cases for covering specific coverage elements using GAs, our presented solution aims
to provide a better environment for randomized unit test case generation using GAs.
While analyzing the effectiveness of our solutions, we have evaluated three units from
the Java standard library which are widely used in the public. The units that were
chosen to participate in the analysis pi‘ocess vary in their data structures, methods
and their intended usages. We believe that using the three units under test gives

better support for our findings and conclusions.

2.4.3 JDEAL

JDEAL [6] is a Java language library of Evolutionary Algorithms. GAs are a par-
ticular class of Evolutionary Algorithms. Using JDEAL, programmers can reuse and
extend the library components to fit their own purposes. The library provides a flexi-
ble environment to adjust variables within the GAs, such as population size, crossover
and mutation rate, and define the fitness function for evaluating the chromosomes.
JDEAL also provides a default value that the developers have found to be most effec-
tive for some of these variables, if the programmer prefers not to adjust these values.
JDEAL has facilitated our research and development and we have found it to be very

useful.
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2.5 Failing Test Case Minimization

In randomized unit testing and in other situations, failing test case inputs can be of
various lengths. Generally, a longer failing test case is less useful for debugging than
a shorter one, because a longer test case generally excutes more code that is irrelevant
to the actual fault. Therefore it is desirable to try to decrease the size of a failing

test case as much as possible. Recently, research has explored automatic techniques

for doing this.

Zeller and Hildebrandt [14] defined the Delta Debugging Algorithm which determin-
istically minimizes a given failing test case. The algorithm applies an approach that is
similar to the divide and conquer method, in which the test case will be divided into
smaller granules depending on the failing or passing of the previous larger granule.
The algorithm involves four major operations, test granule, test complement granule,

increase granularity and reduce test case.

An example of minimizing a test case is shown in Figure 2.2. Assume we have a test
case of length 8. The algorithm starts with the original failing test case assigned to
be the first granule. The granule is tested and fails and it is then divided equally
into two granules. The granules are tested (steps 1-2) and are not able to recreate
the failure, so the granules are divided equally into half again, increasing granularity.
Once again, the granules and their complements will be tested. None of the smaller
granules causes the software to fail, so the complement granules (test cases formed by
leaving out a granule) are tested (steps 7-8). The second complement (step 8) causes

the software to fail, so we have found a smaller failing test case.
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The algorithm proceeds by continuing to test granules and complements at granule
size 2, sometimes finding a shorter failing test case, until no granule or complement
fails. It then increases the granularity (reduces the granule size) and repeats. When

no granule or complement fails and the granule size is 1, the latest failing test case is

returned.

Yong and Andrews [10] have studied Zeller and Hildebrandt’s [14] test case minimiza-
tion algorithm in the context of randomized unit testing. The study has shown that
the algorithm provides an efficient way of reducing irrelevant method calls within a
failing test case. The results have shown an average reduction of 71% to 93% in the

length of the failing test cases.

While the scope of the problem we are solving is similar to that of Zeller and Hilde-
brant, we have used a different approach for minimizing failing test cases. We use
GAs to minimize test cases non-deterministically, which means that the resulting
minimized test case may differ each time. Zeller and Hildebrandt’s algorithm is de-
terministic and attempts to divide test cases systematically until a minimized test
case is found; thus every run will result in the same minimized test case. At the same
time, since GAs perform crossover and mutation to achieve wider varieties of solutions
and maintain a diversified solution space, they have a better chance to find global
minima, although that can not be guaranteed. Using GAs to solve this problem also

has the possibility of finding more than one local minimum.
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Figure 2.2 An example of minimizing a test case using the Delta Debugging algo-

rithm
Step Test Case Result Description
1 3|4 .| . | . | unknown | Testing and Testing Complement
2 5|16 |7 8| unknown Increase granularity
3 L unknown Testing
4 314 . pass Testing
5 5|16 .|. pass Testing
6 : . 7 | 8 | unknown Testing
7 314(5|6]|7]| 8| unknown Testing Complement
8 516 |78 fail Testing Complement and Reduce
9 : unknown Testing
10 516 .. pass Testing
11 . | 7| 8 | unknown Testing
12 5|6 7| 8| unknown Testing Complement
13 718 fail Testing Complement and Reduce
14 . { . | unknown Testing
15 7 | 8 | unknown Increase granularity
16 unknown Testing
17 : pass Testing
18 7 1 . | unknown Testing
19 . | 8 | unknown Testing
20 7 | 8 | unknown Testing Complement
21 7|8 fail Testing Complement and Reduce
22 7 | 8 | unknown Testing
23 7 | . | unknown Testing
24 . | 8 | unknown Testing
25 7 | 8 | unknown Testing Complement
26 . | 8 | unknown Testing Complement
27 7 | . | unknown Testing Complement
7|8 Finished
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Chapter 3

Test Case Minimization

In this chapter, we look into details about using genetic algorithms to help minimize
failing test cases. With a minimized failing test case, a tester can efficiently identify
the problematic sequence of method calls that generates faulty behaviour from the
code. We describe the design and implementation of our GA solution, and empirically
compare that solution with another existing failing test case minimization algorithm,

using an experiment.

3.1 Background and Motivation

As mentioned in the Introduction section, randomized unit testing often generates
lengthy failing test cases, making it difficult for a software tester to trace the fault.

Although calling the very last method produces the failure in the test case, it does not
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necessarily mean that the last method contains the fault contributing to the failure. It
can be equally likely that the previous sequence of method calls have been incorrectly
implemented, but only the last method call makes the fault apparent. There can be
one erroneous method call but there can also be more than one erroneous method call
within the failing test case. The longer the test case is, simply analyzing the entire
failing test case and looking for the root of the problem is going to be a more time
consuming process. Being able to minirhize the failing test cases will make a tester’s
life easier; at the same time, using a GA to minimize a failing test case, we expect
to give testers more information about the fault(s) than any deterministic algorithm
can achieve. This is made possible since a GA works in a probabilistic way and has

the ability to reach global minima.

3.2 Algorithm Design

In order to utilize GAs in solving the failing test case minimization problem, we en-
code the problem using GA terminology. With a given failing test case, each method
call is represented by a single gene and, thus, a test case is represented by a chro-
mosome. A simple bit string chromosome is used; that is, each gene is a single bit,
corresponding to a method call of the original test case, and identifies whether that

method call should appear in the minimized test case (Figure 3.1).

For example, suppose TreeMap (See Section 2.3.2) is the unit that we would like to

test, and the methods that we are interested in testing are size(), put(int, int) and
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Figure 3.1 Representation of method calls in an original failing test case using a
chromosome.

Original failing test case || Chromosome || Reduced test case

treemap.size()
treemap.put(3, 10)
treemap.put(5, 7)
treemap.getFirst()
treemap.put(20, 30)

treemap.put(3, 10)
treemap.put(5, 7)

= O =) = O

treemap.put(20, 30)

getFirst(). Suppose further that our failing test case is the one shown in cohimn 1
of Figure 3.1. During the process of running GAs, a chromosome might become the
sequence of bits represented in the middle column. With that particular chromosome,
the actual sequence of method calls represented would be the test case shown in the
right hand column. The new sequence of method calls represented by the chromo-
some might not cause a failure, and might not be the smallest possible; the overall

GA handles this by its evaluation of the chromosomes.

3.2.1 Initial Population

As we have introduced in Chapter 1, a GA requires initializing a population of chro-
mosomes before running. We initialize each chromosome in the entire population
to contain a value of 1 in all genes (i.e. all methods will be called). By using this
approach, we can start the minimization process from the original failing test case
provided by the tester, and together with crossover and mutation operations, the
possibility of reducing the length of the failing test case is increased. We considered

randomly initializing the value in each gene to either 1 or 0 in the entire chromosome
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population. However, doing so would require a random search for a failing test case
before it can be minimized and the process would become more inefficient. The initial
population of chromosomes has a size of 400 instead of the JDEAL default value of

200 because we would like to see a set of more diversified results at the end of running

the GA.

3.2.2 Evaluation

As we have discussed in chapter 1, it is necessary to define a fitness function for the
evaluation of chromosomes when running GAs. The fitness function will calculate a
score for each chromosome, which represents the goodness of the chromosome and its
associated solution to the problem. The fitness function that we have used gives a
score of 0 for a chromosome which represents a non-failing test case, and 1000/ (num-
ber of 1s in the chromosome) for a chromosome which represents a failing test case.
Using this fitness function, we encourage shorter test case length, but only for the

test cases which fail.

In order to determine whether the test case represented by a chromosome fails, the
TCRunner class from the Rute-J implementation is used to automate the testing
process for each chromosome to achieve this goal. The class contains a method called
runOld() which runs a saved test case and checks if it fails. By reading each gene
value in a given chromosome, we are able to recreate a test case object to be given
to TCRunner. TCRunner will then respond either true, indicating that the test case

passes, or false, indicating that the test case fails. The resulting boolean value can
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then help in calculating the fitness function that we have defined earlier.

It is important to note that, since the evaluation process for each chromosome involves
creating a test case and feeding it into the TCRunner class and finally calculating
the fitness score, the evaluation process contributes the most to the overall running
time of the GA compared to the rest of the processes such as initialization, selection,

crossover and mutation.

3.2.3 Crossover and Mutation

Crossover is the switching of a certain part of a sequence of genes between two par-
ent chromosomes that would result in two new child chromosomes. The parents are
chosen because of their high fitness value, meaning that they represent comparatively
shorter failing test cases. The length of the child chromosomes will still remain the
same as their parents’, but they have a high probability of representing even shorter
failing test cases than their parents since they inherit the goodness from both parents.
We have set the crossover rate at 0.9, the default crossover rate given by JDEAL,
which means that there is a 90% chance that the selected parents will perform the
crossover. If it happens that the parents fall into the remaining 10%, their children
will be the exact clones of their corresponding parents, and remain in the population

for the next evaluation.

Mutations that happen in each evolution in the GA as well will assign randomly a 1
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or O to the target gene. The mutation operation can be carried out by only one single
chromosome. The mutation rate is set to be 0.01 as given by JDEAL, so that each
gene in the selected chromosome will have a 1% chance to mutate. That being said,
we have also created a new mutation strategy for solving our problem in an efficient
manner. Doing so gives us the ability to assign the frequency of a gene to mutate to a
0 if a mutation is going to occur. By assigning 0.8 to the rate of mutation likelihood
to zero, we are saying that if a mutat‘ion i1s going to occur to a particular gene in
a chromosome, there is an 80% chance that this gene will contain a value of 0 after
the mutation operation; and obviously, there is a 20% chance that it will turn to 1
after the mutation occurs. The reason for doing so is that we are trying to shorten
the given failing test case, so there is definitely a higher need of shortening the test
case by assigning more Os than lengthening it by assigning more 1s to a chromosome;
and at the same time, we do not want to entirely ignore the advantage of mutating a
gene into 1, since by doing so, we maintain a possibility of finding the global minimal

solution, which can be an even shorter failing test case.

To find our chosen 0.8 rate of mutation likelihood to zero, we performed a detailed
analysis. We believe that in addition to the impact that the rate of mutation likeli-
hood to zero has on the qualities of the results generated, the replacement percentage
has an impact as well. The replacement percentage determines the percentage of
chromosomes that are to be carried on to the next evolution. We paired up the two
variables and executed the GA application with 81 combinations of them, ranging
from 10% to 90% in a step of 10% each. We ran GA using each combination of the
two variables once and measured the effectiveness and efficiency of each combination
based on the highest fitness score achieved in the evaluation process and the overall

time taken.
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Figure 3.2 Scores distribution with different combinations of replacement percentage
and mutation likelihood to zero

Scores With Variation in
Replacement Percentage and Mutation Likelihood to zero

'"GASettingsAnalysis.table' using 1:2:4 ———

‘
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%,
%
%
:o
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Replacement Percentage

As shown in Figure 3.2, we have a reason to believe that 80% is the optimal rate
of mutation likelihood to zero which will give us the most efficient result when solv-
ing the test case minimization problem. The replacement percentage seems to work
the best at 25% for the problem. In terms of overall time efficiency for running the
algorithm (Figure 3.3), the result does not display much variation among different

combinations of the two variables.
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Figure 3.3 Speed distribution in milliseconds with different combinations of replace-
ment percentage and mutation likelihood to zero

Speed Performance With Variation in
Replacement Percentage and Mutation Likelihood to zero

'‘GASettingsAnalysis.table’ using 1:2:3 ——
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3.2.4 Running the Algorithm

During the course of running GAs to solve our problem, the process will go through
a series of evolutions. Each evolution will have a higher possibility of finding some
shorter test cases that still cause failures using the mutation and crossover operations.
In our studies, we have set the GA process to continue for 10000 evolutions; based
on numerous executions of the GA on different failing test cases, we have found that
most minimized test cases converge before 10000 evolutions. The chromosome with

the best score at the end of 10000 evolutions represents the minimized test case.
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3.3 Experiment Design

We have paired up the two failing test case minimization strategies, our GA and Zeller
and Hildebrandt’s algorithm, in order to evaluate and compare their effectiveness and
efficiency. There are two important result variables that we are interested in obtain-
ing from the experiment: the length of the minimized failing test cases obtained by
the two algorithms given the same failing test case, and the time required for running
the two algorithms given the same failing test case. Having obtained these data, we
can perform a paired t-test statistical analysis to see if there is a significant difference
between the two algorithms in terms of the length of the minimized test case and the

time required to obtain it.

3.3.1 Subject Unit Preparation

Before we can start generating the necessary data for analysis, we have to prepare
TestFragmentCollections for some subject units in order to run the application. We
have chosen three subject units for the experiment: the TreeMap unit, the HashMap
unit and the BitSet unit. These units are chosen from the Java standard library
java.util and have been widely used in real life practices. The three units vary in

their implementations and the complexities of their data structuring algorithms.

Interestingly, in the course of creating the TestFragmentCollection for the three sub-
ject units, we were able to discover a fault within the BitSet unit. The unit is an

implementation of a vector of bits. These bits contain boolean values and can be set
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or cleared. The method set(int, int) is implemented to set a range of bits, bounded
by the parameters, to “true”. The two parameters represent the starting index and
the ending index of the range of bits to be set. The parameters should both be
non-negative, and the ending index should be greater than the starting index for any
bits to actually be set. There were several special cases that the method was able to
handle. It was able to handle gracefully when the integer parameters are negative;
it was also able to handle the situatioﬂ where the range has a smaller ending index
than the starting index; unfortunately, it was not able to handle the situation where
the starting index and the ending index are the same. We later found that this defect
had been reported and appeared on Java’s defect database for BitSet. Though the
defect has been fixed in a later version, the version of BitSet that we were using still
contained the problem. As a result, we had to fix the error before moving on to the

next step of our experiment setup.

3.3.2 Mutant Generation

After the TestFragmentCollection for the subjects were ready, we generated a set of
mutants corresponding to each subject. Mutants are variations of the original source
code such that a certain part of the code is being altered intentionally. For instance,
by replacing “<” by “<=" or replacing a constant with 0. Most mutants are expected
to be faulty, i.e. to fail on some test cases. We need to generate mutants in order to

generate failing test cases using RUTE-J.

Andrews [2] had previously generated mutants of TreeMap. Using Andrews’ muta-
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tion generator, we successfully created mutants for the HashMap unit and the BitSet
unit and obtained compilable mutants of TreeMap from the development of RUTE-J.
There are a total of 174 compilable mutants for the TreeMap unit; there are 513
mutants generated for the HashMap unit and 358 of them are compilable; and within
2640 mutants for the BitSet unit, 2429 are compilable. We only consider compilable
mutants in our experiment since Java will not be able to execute any of the source

code if it is not yet compiled.

After obtaining all compilable mutants for the three subject units, we use RUTE-J
to help us in generating a failing test case for each mutant if possible, since not every

mutant necessarily fails and we are only interested in those that fail.

3.3.3 Test Case Minimization

After generating a failing test case for a mutant, we immediately minimize it using
Zeller and Hildebrandt’s algorithm. We record the minimized test case and its length,
and move on to minimize the same failing test case using GAs. Since GAs can pro-
duce different solutions in different runs, we perform GA minimization on the failing
test case for 10 runs; on the other hand, it is not necessary to perform Zeller and
Hildebrandt’s algorithm 10 times as well, since the algorithm is deterministic and will
give the same solution for every run. We also record the minimization time required
for the two algorithms so that we can evaluate whether there is a significant difference

in the efficiency of the algorithms.
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We encountered certain difficulties while automating the script to run the experiment.
Sometimes, when a minimized failing test case is converging on a very short length,
say a length of 1 or 2, GA minimization has a high possibility to turn the 1s in the
chromosome into Os by mutation or crossover. This is reasonable since the resulting
chromosome may be evaluated with a higher score. However, this caused errors when
we tried to execute empty test cases using TCRunner. With this given situation, we

“therefore give a score of 0 immediately to chromosomes with all Os without executing

them in TCRunner.

The most difficult problem that we encountered in running the script is infinite loops
in three possible places. Infinite loops can occur while automatically generating fail-
ing test cases, and they can occur while minimizing the test cases, using either Zeller
and Hildebrandt’s algorithm or the GA. The infinite loops are not the result of a bug
in our algorithms, but rather of the mutants. Some mutants fail by crashing or giving

incorrect output, and some fail by going into infinite loops.

Although there is a capability for RUTE-J to automatically kill off infinite loops
when running Zeller and Hildebrandt’s algorithm, it increases the minimization time
tremendously by using an extra thread to kill off the loops. It is not feasible to do so
since it results in an unfair comparison of the time required to minimize test cases. As
a result, we have used some shell scripts that can help to keep track of the time used
by the three processes. When a process exceeds a certain time limit, it will be killed
and the process will re-run until it does not encounter an infinite loop. There were
a small number of mutants that continuously cause infinite looping when generating

a failing test case; since the number of those mutants is small, we did not include
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them in the final results. For each of the other mutants, we were able to obtain a
failing test case, a minimized test case using Zeller and Hildebrandt’s algorithm, and

10 minimized test cases using GAs.

3.4 Results and Analysis

After retrieving all the results, we performed a paired t-test analysis on the length of
the minimized test case obtained by running GA and running Zeller’s algorithm. A
t-test assesses whether the means of two groups are statistically different from each
other. The null hypothesis was to say that the average lengths of the minimized test
cases obtained by running the two algorithms are the same. As shown in Figure 3.4,
the second and third column are the averages for the minimized test case length;
column 4 is the p-value (significance) resulting from the #test, where p<0.10 indi-
cates moderate support for rejecting the null hypothesis, and p<0.05 indicates strong
support. Boldface numbers indicate any averages that are statistically significantly
lower. For the HashMap and TreeMap subject units, we were unable to obtain any
significant differences between minimizing test cases using GA or Zeller’s algorithm.
But for the BitSet subject unit, the result shows that using Zeller’s algorithm to
minimize failing test cases obtained significantly shorter test cases than using GA to

minimize.

In cases where the test case can be minimized to 1 by Zeller and Hildebrandt’s algo-

rithm, the GA cannot do better than that, but the mutants resulting in such failing
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test cases might be criticized as unrealistic. To account for this, we also did a paired
t-test analysis by using only mutants where the minimized test case length was greater
than one. If the minimized failing test case obtained by running Zeller’s algorithm is
one, there is really no other way to generate a shorter failing test case. Interestingly,
the result shows that the TreeMap subject unit, using the GA to minimize failing test

cases gave us a significantly shorter failing test cases than using Zeller’s algorithm,

as shown in Figure 3.5.

As shown in Figure 3.6 and as expected, using GA to minimize failing test case takes
significantly more time than using Zeller and Hildebrandt’s algorithm. The most
important contribution to the length of time taken using GA minimization is the
evaluation process. It involves creating a new test case, executing it using RUTE-J,
and finally calculating the fitness score. Moreover, the evaluation is performed on all
chromosomes in every evolution. Although the evaluation time for the chromosome
tends to decrease when the test case lengths become shorter, GA minimization still

takes a significantly longer time than Zeller and Hildebrandt’s algorithm as a whole.

From the result, it is difficult to conclude that GA minimization algorithm will achieve
a significantly shorter minimized test case than Zeller and Hildebrandt’s algorithm.
There is a reason to believe that different levels of code complexity might affect the
result, and the code complexity of the TreeMap unit might be more favourable in
running GA minimization of test cases. To support the theory that the complexity
of the code does have a direct effect on the length of the minimized test cases, it is
likely that we will need to perform a more in-depth study and acquire a wider range

of subject units for evaluation.
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Figure 3.4 Length of minimized test case - All test cases

ZH GA p-value

BitSet 2.0850 | 2.0934 | <0.0001
HashMap || 1.8246 | 1.8246 OO*
TreeMap || 3.7874 | 3.7649 | 0.2484

Figure 3.5 Length of minimized test case - only test cases minimized to size > 1 by
Zeller and Hildebrandt’s algorithm

ZH GA p-value

BitSet 2.2508 | 2.2636 | <0.0001
HashMap || 1.8246 | 1.8246 OO*
TreeMap || 4.1090 | 4.0603 | 0.0184

At the same time, minimizing failing test cases using GA gives us more information
on certain occasions. During the course of performing the analysis, longer failing test
cases tend to have different minimized test cases in several runs. That is reasonable,
since longer failing test cases contain more combinations of TestFragment sequences
which possibly identify a fault that can be caused by different sequences of method
calls, or multiple faults embedded within the code. In either of the cases, GA mini-
mization can possibly give testers more information about faults within a failing test
case. Figure 3.7 shows the percentage of failing test cases which the GA minimized

to more than one test fragment for the three subject units.

* All results were identical for the subject unit.
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Figure 3.6 Time taken to minimize - All test cases

ZH GA p-value

BitSet 1005.5585 | 7289.4523 0
HashMap || 1006.1930 | 4028.3175 | <0.0001
TreeMap || 1029.9357 | 6688.0485 | <0.0001

Figure 3.7 Percentage of test cases minimized to more than 1 test fragment using
GAs

Number of test cases | Number of test cases yielding | corresponding

>1 minimized test cases %
BitSet 1486 85 5.72
HashMap 57 0 0

TreeMap 174 43 24.71
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Chapter 4

Finding Optimal Values for

Randomized Test Case Generation

In this chapter, we shall examine the problem of finding optimal values for random-
ized test case generation. With the ability to obtain these values, testers can develop
an insight into the relative importance of the methods to be tested. Testers can ap-
ply this knowledge to efficiently generate test cases that pose a higher probability of
finding any existing bugs. We will explain the design of the solution and evaluate the

overall design through experiments.
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4.1 Background and Motivation

Randomized unit testing can be an efficient and effective way of discovering a bug
if it exists. To randomly generate test cases, the tester is required to provide some
important variables such as the length of the test case to be generated, the number
of times to generate a test case, and the frequency of each method call to be selected
within a test case. The weights of the method calls are a critical factor contributing
to the thoroughness of a test; this is because there are methods within a unit that

are comparatively more important than the others.

For example, for a given data structure, methods for adding elements into the data
structure may be more important than checking the size of the structure; this may
be because the adding methods execute more code and have a greater number of
possible paths through the code. At the same time, methods for adding an element
to a queue may be considered less important than methods for adding an element
to a tree structure because the code for adding an element to a queue less complex.
As a result, especially for software testers, finding the appropriate weights for the
method calls can be a difficult task since methods vary their importance among dif-
ferent program functions and sizes. We believe that we can utilize GAs together with

a coverage measurement tool to help testers solve this problem.
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4.2 Algorithm Design

The general approach is to evaluate different combinations of test case lengths, num-
ber of runs, and method call weights, and check for their corresponding code coverage
using GAs. We believe that the higher the code coverage, the more thorough the test
case Is testing. Although high code coverage might not guarantee thoroughness, it is

a good first approximation that can be measured automatically.

Once again, using GAs to solve a problem requires us to encode the problem into
GA terminology. Unlike failing test case minimization, we use integer chromosomes
to represent the necessary input values for rahdomized test case generation, namely
the length of each test case to be generated, the number of runs (i.e. number of times
to generate a test case), and the weights of each method call (i.e. frequency of the
methods to be generated within a test case). We will use the first gene of each chro-
mosome to represent the length of the test case to be generated; the second gene will
represent the number of runs; finally, the rest of the genes will represent the relative
weights of the different method calls in the unit under test. Figure 4.1 shows a simple

example of the representation of a chromosome.

The representation of the weights of the method calls takes the form as shown in
Figure 4.1 because doing so is compatible with the RUTE-J application. We wanted
to utilize some of the functionality in RUTE-J by which a test case can be generated
randomly. Because our goal is now high code coverage, we do not require the test case
to be evaluated to be passing or failing since it is irrelevant to solving our problem.

Therefore, we have created a TCRunnerCov class which contains slight modifications
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Figure 4.1 Representation of the length of test case to be generated, number of runs,
and method calls’ weights using an integer chromosome.

Chromosome | Chromosome Meaning
number value
1 500 Generate a test case with 500 method calls
2 10 Generate 10 of these test cases
3 40 The weight of the first method call is 40
4 80 The weight of the second method call is 80
5 30 The weight of the third method call is 30

to the original RUTE-J TCRunner class. We will describe TCRunnerCov in detail

when we talk about evaluating chromosomes using this class.

The weights of method calls in Figure 4.1 can be understood as follows. If we were
to generate a total of 150 method calls in a test case (150 = 40 + 80 + 30), 40 of
them will be calling the first method; 80 of them will be calling the second method;
and 30 of them will be calling the third method. This also implies that the second
method will be called twice as often as the first method and indicates that it may be
relatively more important to achieving high coverage of the unit being tested; on the

other hand, the third method call is relatively less important for the unit under test.

4.2.1 Initial Population

We initialize the chromosome by randomly assigning integer values into each gene.
The first gene in each chromosome will contain a randomly generated integer ranging
from 1 to 1000, and the second gene will contain a randomly generated integer be-

tween 1 to 50. These numbers reflect past experience with randomized unit testing.
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We have found that test cases of 1000 method calls are the longest we typically need
for testing units of the size that we consider, and that 50 runs is usually enough to
expose any faults that exist. The weights will contain any integer between 0 to 1000.
Since the weights are relative, the actual upper bound is irrelevant, but we want to

leave open the possibility that some method has a very low relative weight.

There is an advantage of randomly assigning a start-off value for each gene over
assigning an exact value for every chromosome. With all chromosomes assigning the
same integer values in each gene at start off, there is going to be little variance in the
result even with crossover and mutation operations. This is because the result would
have converged before having an opportunity to explore the entire solution space
to look for possible global maxima. On the other hand, assigning all genes in all
chromosomes randomly within an appropriate boundary gives a better opportunity
for GA to look for possible global maxima. As a result, we have chosen to randomly

assign the integer values in all genes within every chromosome.

4.2.2 Evaluation

The evaluation process for the chromosome is the most critical part in solving our
problem since we have to make use of a code coverage measurement tool, Cobertura
as described in section 1.3.1, together with part of the RUTE-J capability to calculate
the fitness scores. We first collect the integer values in a chromosome. Using these
values, we feed them into a class called TCRunnerCov that is a slight modification of

the RUTE-J TCRunner class. TCRunner is originally used in RUTE-J to randomly

generate a sequence of methods and necessary parameters, execute them and evaluate
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whether the method calls result in a failure in the test case. With TCRunnerCov,
we only require it to randomly generate test cases based on the length of test case
required, number of runs and the weights of the method calls, represented by the

chromosome. We need not evaluate whether the test case failed or not.

However, TCRunnerCov uses Cobertura to return the total number of lines covered
in the source code by executing a particular test case. It does this by calling a static
Cobertura method that returns the coverage information, and extracting the relevant
information about the class under test. With the coverage information in hand, we

calculate the fitness score for evaluation as represented by the following equation.

fitness = (lines of code covered x 1000) - (length of test case to be generated X

number of runs)

In this equation, the term (length of test case to be generated x number of runs)
represents the total number of method calls executed; as a result, we are encouraging
fewer method calls to be executed while still achieving high code coverage. To be
precise, we are willing to execute 1000 more method calls to achieve one more line
of code to be covered. After evaluation, the coverage information has to be cleared
from Cobertura in order to provide accurate coverage information for the next chro-
mosome’s evaluation. Within the algorithm, time is mostly used in the evaluation

process.
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4.2.3 Crossover and Normalization

The crossover operation in this application is similar to the one in test case min-
imization. Parent chromosomes are chosen based on their fitness score calculated
during evaluation. There is a 90% chance that the parents will perform a crossover

and generate child chromosomes. But there is one special thing to be noted, as follows.

The problem here is that while the method weights within chromosomes are meaning-
ful relative to each other, they might not be meaningful relative to weights in another
chromosome. This is a problem when crossover is being performed on a chosen pair
of parents, since the parents contain the relative weights of the method calls, from
the third gene to the last gene. These relative weights of the method calls are only
“relative” before the crossover is being performed; after the crossover is performed,
the child chromosomes will contain weights for the method calls that are not relative

to each other anymore.

For example, in Figure 4.2, there are two chromosomes chosen as parents and are
ready to perform crossover to generate children chromosomes; one has found out that
giving 10 times less weight to the second method call can achieve a better solution, the
other believes that giving 10 times less weight to the fourth method call can achieve
a better solution. However, the weights in one chromosome are much higher than in
the other. If crossover is to be performed between these parents, say by switching
their last two genes, it can result in two possible children chromosomes as shown in
the figure. Unfortunately, both of the children do not represent a better solution than

their parents since they did not inherit the good properties from their parents. One
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child chromosome is now considering that the last method call should be called more
often than any other methods, which neither of the parents represent; as a result,
rather than using the effectiveness of GA to converge on a certain solution, we would

be performing something similar to a random search on the optimal values.

4.2.3.1 Normalization of Chromosomes

Because of the problem mentioned above, normalization is needed. Normalization can
help us make the parent chromosomes contain weights that are meaningful relative
to each other after crossovers. If the weights are relative to each other across the two
parents, than the weights for their children will be relative to each other as well. To
achieve this, we apply the following equation to re-adjust the gene values representing

the weights of method calls before crossover is performed:

gene integer value = (gene integer value x 1000) / (sum of the weights of all method

calls)

Figure 4.3 shows us a pair of possible child chromosomes generated by the same
parent chromosomes but where normalization is performed before crossover. With
normalization of the parent chromosomes, the child chromosomes can now inherit the
properties from their parents: One child chromosome is now considering a possibility
that both the second and fourth method calls to be called less often than the others.

As a result, normalization has helped to enhance the efficiency and effectiveness of



Figure 4.2 Problems with crossover on method calls’ weights when two “good” parent

chromosomes produce bad children chromosomes

Parent Chromosomes 20 2 20 [ 20| 20
Parent Chromosomes 400 | 400 | 400 | 40 | 400
Possible Children Chromosomes | 20 2 20 | 40 | 400
Possible Children Chromosomes | 400 | 400 | 400 | 20 | 20

Figure 4.3 Normalizing the genes representing the method calls weights gives better

children chromosomes

Parent Chromosomes 20 2 20 | 20 | 20
Parent Chromosomes 400 | 400 | 400 | 40 | 400
Normalized Parent Chromosomes | 243 | 24 | 243 | 243 | 243
Normalized Parent Chromosomes | 243 | 243 | 243 | 24 | 243
Possible Children Chromosomes | 243 | 24 | 243 | 24 | 243
Possible Children Chromosomes | 243 | 243 | 243 | 243 | 243

the crossover operation in solving our problem.

4.3 Mutation

In terms of the mutation operation, we maintain the default JDEAL mutation rate
of 0.01, so that any selected genes will have 1% chance to mutate. But the mutation
method is more complex in this problem compared to that for minimizing failing test
cases. We are now dealing with a range of integers across each gene; moreover, the
genes in different positions represent different input values to the randomized testing

process. As a result, we apply different mutation methods to genes in different posi-
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Figure 4.4 Various combinations of mutation method for acheiving optimal input

values for randomized test case generation

Combination | First Gene | Second Gene | Third Gene to Last Gene
1 +[-200,200] +[-5,5] +[-200,200]
2 +{-200,200 +(-5,5] +[-500,500]
3 +{-200,200 +[-10,10] +[-200,200]
4 +[-200,200] +[-10,10] +[-500,500]
5 +[-500,500] +[-5,5] +[-200,200]
6 +(-500,500 +[-5,5] +[-500,500]
7 +(-500,500] +(-10,10] +(-200,200]
8 +(-500,500] +[-10,10] +[-500,500]

tions.

We have decided to randomly pick an integer ranging from -500 to 500 and add it

to the first gene if it decides to mutate; we randomly pick an integer ranging from

-10 to 10 and add it to the second gene if it decides to mutate; and for the rest of

the genes representing the weights of the method calls, they will mutate by adding

a randomly chosen integer ranging from (-1000 + number of method calls) to (1000

<+ number of method calls). Although these numbers are arbitrary, we did perform

some exploratory studies to identify some good values. We performed 10 runs of the

GA using each of the 8 combinations of mutation amounts shown in Figure 4.4. The

combination we picked (combination 8) was the one that led to the fastest covergence

of the GA.
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4.3.1 Running the Algorithm

Before starting to run the algorithm, some preparation is needed in order to allow the
GA to work properly. Since we are using integer chromosomes, we are required to put
an upper and a lower limit on the range of possible values they can take; otherwise,
mutation can produce undesired integer values such as negative integers. Although
there is no exact boundary that is proven to be the best for solving this problem,
there are certain values the genes should not take. For example, the first and the
second gene can not contain a value less than zero since it does not make any sense to
have a test case with a negative length, or to generate a test case a negative number
of times. At the same time, the weights that we are trying to achieve are relative
between method calls, and there is little chla,nce that the weights will go above a

certain limit. Therefore, we have set the following boundary for the genes after some

exploratory research.

e [1,5000] for the first gene

e [1,2000] for the rest of the genes

The upper bounds for the genes act as a security line such that the results generated
would be more reasonable; that being said, it is unlikely for the genes to go off the
upper bound since the evaluation process of GA takes care of them nicely by driving

out unreasonable chromosomes.
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During each evolution step taken by running the algorithm, the chromosomes will
represent a better combination of the three kinds of input values, namely length of
test case to be generated, the number of test cases to generate and the method call
weights, such that they will be able to cover more lines in the original source code.
The number of evolutions necessary to generate the solution is 5000. Again, we have
performed sample runs on various units under test and have concluded that most
solutions would have converged before 5000. Needless to say, the number of evolu-
tions needed to converge to a reasonable solution varies across units and the number
of method calls involved. The more method calls we are interested in finding the
optimal weights of, the longer the chromosomes, hence longer evaluation time, and
more crossover and mutation operations. But we have found that 5000 evolutions is

usually enough time for the solutions to convérge.

4.4 Results of GA on Subject Units

We applied the resulting GA to the units studied in section 3.3.1, namely, the TreeMap
unit, the HashMap unit and the BitSet unit. We are interested to see the resulting
method weights in response to the execution of our GA. We, therefore, have performed

30 runs of the GA on the three subject units, and have obtained the results as follows.

Figure 4.5 shows a list of TreeMap method calls which have participated in the anal-
ysis. The first column lists the name of the method, the second column is the average

weight of the corresponding method, and the third column is the standard deviation
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Figure 4.5 The averages and standard deviation of the weights of the TreeMap
methods

Method Average weight | Standard Deviation
clear() 18.067 18.358
containsKey(int) 90.267 69.753
containsValue(int) 92.567 60.648
size() 105.933 71.840
firstKey() 111.300 64.512
get(int) 121.300 74.071
lastKey() 125.233 70.537
remove(int) 165.200 51.377
put(int, int) 166.333 59.704

of the weight obtained. The figure shows that the clear() method has a very low
average weight compare to the other method calls weight, and at the same time,
remove() and put() have a very high average weights. This is reasonable since the
clear() method clears all data in the TreeMap data structure. By calling clear(), the
TreeMap has to start from scratch and build up a more complex structure, which can
possibly help execute some other complex lines of code that require switching and
deleting branches within the TreeMap. As a result, the clear() method achieved the
lowest average weight. On the other hand, remove() and put() methods are weighted
highest in average which is also very reasonable as well. Removing and putting ob-
jects into a TreeMap require switching and deleting tree branches, re-calculating and
re-structuring the TreeMap structure. As a result, the two methods can help execute
complex code that other methods might not be able to do so. Other methods within
the TreeMap unit seem to achieve about the same average weights, that is probably

because they do not pose a huge effect on the data structure after execution.

The average weights and standard deviations for the HashMap methods are shown in
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Figure 4.6 The averages and standard deviation of the weights of the HashMap

methods

Method Average weight | Standard Deviation

clear() 21.367 19.009

containsValue(int) 117.600 78.993

size() 124.600 71.354

remove(int) 125.367 64.312

containsKey(int) 129.733 67.592

isEmpty() 140.567 75.505

get(int) 149.133 91.768

put(int, int) 188.200 57.089

Figure 4.6. Once again, it is obvious that clear() has the lowest average weight among
all the methods weights we are interested in analyzing in HashMap, which is possibily
caused by the same reason as it is in TreeMap. Since the clear() method clears all data
in the structure, this requires the structure to be rebuilt again using other methods
such as put() and remove() that can possibly help executing other complex lines of
code. Therefore, executing too many repetitions of the clear() method is not desired.
The average weight for the put() method is very high as well; this is because in order
to put an object into HashMap, it needs to calculate the proper index before adding
the actual object, and calculating the proper index is complex and requires the exe-
cution of more methods and more lines of code. It is unclear to us why the remove()
method does not have a high average weight compare to the rest of the methods. We
expected to achieve a higher average weight for remove() since it requires calculation
of the proper index and searching for the object to be removed. It is possible that
the large gap between the average weight of remove() and put() in HashMap comes
from the fact that remove() does not need to take care of the expansion of the hash

table size but put() does, making put() weights more than remove().
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Figure 4.7 The averages and standard deviation of the weights of the BitSet methods

Method Average weight | Standard Deviation
size() 52.833 34.059
length() 53.467 32.513
set(int, int) 54.467 35.760
isEmpty() 54.500 37.212
set(int) 55.000 35.639
clear(int) 55.933 29.299
get(int) 56.967 27.408
nextSetBit(int) 61.500 29.044
cardinality() 62.600 31.848
set(int, boolean) 65.533 33.371
set(int, int, boolean) 65.533 31.926
nextClearBit(int) 66.267 28.900
clear() 69.000 30.253
clear(int, int) 69.433 37.733
flip(int, int) 72.333 28.620
flip(int) 76.800 27.290

The result for BitSet is shown in Figure 4.7. BitSet implements a vector of bits that
grows as needed. The result as shown in the figure is different from other two sets
of result obtained from the TreeMap and HashMap. The average methods weights
do not vary much in BitSet. This is the case since BitSet might be a simpler data
structure compared to the TreeMap and HashMap structures. Most of the methods
in BitSet require setting bits to either a 1 or a 0. Sometimes it requires a range of
bits to be set such as methods set(int, int), clear(int, int) and flip(int, int), which
might be considered a little more complex if they require an expansion of the vector
size as well. Some methods have the same effect on the data structure; if set(int, int,
boolean) is setting a range of bits to be false (so the third argument is “false”), then
the method will have the same effect as executing the method clear(int, int) if the

given ranges are the same. Method flip(int, int) and flip(int) have the highest average
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method weights possibly because it needs to check the value of the bits before setting
them to their opposite values. Since the effect of the methods on the BitSet structure
do not vary much, we believe that is the reason why the average methods weights do

not vary much as well.

4.5 Empirical Evaluation of Effectiveness

In this section, we present the results of an experiment done to evaluate the effective-

ness of the GA in finding optimal input values.

4.5.1 Motivation

We don’t know for sure whether the GA is doing anything really effective. It could
be just randomly exploring. In particular, it might be that the test case length and
number of runs are the main contributors to the coverage, and the weights are simply
random. If this is the case, then the weights that it arrives at might not give any

better result than equal weights.

We therefore set up an experiment where the null hypothesis was that there is no

difference between the weights arrived at by the GA and equal weights.
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4.5.2 Experiment Design

One run of the experiment consisted of the following. We ran the GA on a subject
unit, and recorded the length, number of runs, and coverage obtained by the solution
chromosome. We then ran RUTE-J on the unit using the length and number of runs
obtained from the GA, but using equal weights for all methods. We measured the

coverage obtained by executing test cases generated by both the solution chromosome

and RUTE-J.

We performed thirty runs for each subject unit, and performed a paired t-test, where
the null hypothesis was that the mean coverage from the GA result is the same as
that obtained from RUTE-J. The results, summarized in Figure 4.8, show that we
can reject the null hypothesis for all units studied with at least 99.99% confidence,
indicating that the mean coverage obtained by the solution chromosomes is consis-

tently higher than that obtained by RUTE-J.

4.5.3 Discussion

The results support the conclusion that the GA is doing something eftective. It is not
only finding an optimal run length and number of runs, but method weights that work
with those values in order to achieve high coverage. It also supports the conclusion
that the GA is a useful tool that automatically provides something that testers would

have to otherwise guess at by trial and error.
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Figure 4.8 Coverage achieved by running the GA application with optimal weights
applied and running RUTE-J with equal weights applied

Optimal weights Equal weights p-value
applied in GA | applied in RUTE-J

BitSet 228 222.567 <0.0001
HashMap 112 74.900 <0.0001
TreeMap 259 234.133 <0.0001
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Chapter 5

Conclusion

5.1 Conclusion

In this thesis, we have examined closely randomized unit testing and two of the asso-
ciated problems. We have described the necessity for minimizing failing test cases for
randomized unit testing. A GA application has been developed for minimizing failing
test cases and the details of the implementation have been discussed. After comparing
the effectiveness and efficiency of the GA application with an existing minimization
algorithm created by Zeller and Hildebrandt, we have found out that both algorithms

are able to achieve significantly shorter average test case length in different situations.

Although we can not conclude that one algorithm can achieve significantly shorter
test cases, we can conclude two other points. We can be sure that Zeller and Hilde-

brandt’s algorithm can minimize test cases with a significantly shorter time than
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GAs. The speed efficiency for both algorithms has been evaluated by performing the
minimization on three subject units of different data structures and code complexity,
namely the TreeMap unit, the HashMap unit and the BitSet unit from the Java stan-
dard library. By performing several experiments on these units, we can also conclude
that the GA is able to achieve different minimized test cases in different runs, but
Zeller and Hildebrandt’s algorithm gives the same minimized test case every time.
The GA has the ability to provide even niore minimized test cases when the original
failing test case is lengthy. This property of GA can provide testers more information
on the fault(s) embedded within the test case, since there can be more than one fault

within a failing test case, and there can be more than one way to reveal a single fault.

We have also discussed our research on finding optimal values for randomized test
case generation. We have presented our GA application development and discussed
certain problems that we have encountered during the implementation. With the help
of a coverage tool, the GA application is successful in finding the most appropriate
test case length and number of test cases to be generated. More importantly, the op-
timal weights obtained from the GA has shown to be effective in helping more code
to be covered, which greatly helps testers to identify methods that are relatively more
important than the others. Our experiment demonstrated that the weights obtained
from the GA are not merely just random numbers but, in fact, they play an important

role in helping to achieve high coverage.
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5.2 Future Work

In this thesis, we have presented a solution to finding optimal input values for ran-
domized test case generation using GAs. With that information handy, software
testers can now understand better about the importance of different method calls
that they are interested in testing. Testers can also estimate the approximate num-

ber of method calls needed to generate in order to test the unit thoroughly.

We are looking forward to seeing improvements be made tn the application. One of
the things we can consider is the integration of this application into RUTE-J. At this
present time, RUTE-J does not have the funétionality to suggest to testers the opti-
mal length of test case to be generated, the number of runs needed and the weights of
each method call. With the help of GAs, it is now possible to prompt testers whether

they would like to analyze the unit under test before randomly generating test cases.

Obviously, if our application is to be integrated into RUTE-J, there are certainly
places that need adjustment. For example, the GA produces a set of optimal values
based on the number of lines being covered in the original source code. In terms of
the number of method calls needed, covering all lines in the original source code does
not necessarily mean that it will be able to find a bug if it exists; but it gives testers
an insight of approximately how many method calls needed to cover all lines in the
source code, so that the testers can adjust the input values accordingly. For instance,
if they would like to test the unit so that all lines of code will be covered approximately
5 times, then they can use the optimal length of test case to be generated and the

optimal number of runs needed, and multiply them by 5 before actually feeding them
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into RUTE-J. Another way of improving the accuracy of the method calls needed
is that we can also consider taking into account stronger coverage measures such as
condition coverage in the evaluation process in GAs. This is because using condition
coverage can help GAs to cover more possibilities that the code execution paths can
take. The length of the test case to be generated and the number of runs needed will

increase accordingly, to try to cover all conditions at each evaluation point.

One drawback of our application is that it takes a long time to evaluate the chromo-
somes, since it needs to execute randomly generated method calls and also retrieve
the corresponding line coverage. It is going to be interesting to see whether adjusting
GA parameters such as population size, crossover and mutation methods can help in

reducing the overall time needed. Further research on this topic is necessary.
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