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Abstract 

Dental caries remains one of the most common chronic diseases worldwide. Salivary proteins 

such as histatins have demonstrated biological functions directly related to tooth homeostasis 

and prevention of dental caries. However, histatins are susceptible to the high proteolytic 

activities in the oral environment. Therefore, pH-sensitive chitosan nanoparticles (CNs) have 

been proposed as potential carriers to target major oral diseases that occur under acidic 

conditions (e.g. dental caries and dental erosion). Four different types of chitosan polymers 

were investigated and the optimized CNs successfully loaded histatin 3 and released it 

selectively under acidic conditions. Through loading the survival time of histatin 3 was 

increased by two-fold in diluted whole saliva. Results from biofilm experiment have 

demonstrated both blank and histatin 3-loaded CNs were able to reduce biofilm growth of 

Streptococcus mutans. The results of this study have demonstrated the potential of using blank 

CNs alone as antibacterial agent for oral applications in addition to the potential of CNs as 

protein carriers, especially for diseases occurring at acidic conditions.  
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Chapter 1  

1.     Introduction 

1.1 Dental Caries and Their Prevalence  
Dental caries, also known as tooth decay, remains one of the most common chronic 

diseases worldwide (Kassebaum et al. 2015; Frencken et al. 2017). Globally, 

approximately 2.4 billion people (32% of the world population) have experienced dental 

caries in their permanent teeth (James et al. 2018). The severity of dental caries is 

dependent on many factors including susceptibility of the tooth surface, the frequency of 

sugar intake, oral hygiene behavior, and the presence of cariogenic bacteria (Garcia et al. 

2017). Untreated dental caries has often been associated with a negative impact on quality 

of life, such as discomfort caused by toothache, pain-induced lack of appetite, foul breath, 

prolonged exposure to oral inflammation, and other symptoms.  

 

 

Figure 1.1 Major components of the tooth are displayed. Enamel is the surface layer 

covering the dentin. Dentin in turn covers the pulp. Extending down to the root, 

dentin is covered by the cementum. (K.D. Schroeder, human tooth diagram-en.svg 

from Wikimedia Commons. Licensed under CC BY-SA 4.0.) 
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The structure of the tooth is presented in Figure 1.1. Enamel is the outermost layer 

covering the dentin, which covers the pulp. Moving down to the root, the dentin is now 

covered by the cementum. A caries lesion has penetrated into the dentin from the enamel 

layer, as labelled on Figure 1.1. There are many stages of dental caries.  The carious 

dissolution of dental hard tissue always starts with the tooth surface. The surface is not 

limited to enamel surface. Root cementum and exposed dentin are also possible surfaces 

for caries to develop. However, in most cases, caries usually affects the enamel layer first. 

At this stage, the damage is still reversible. When the caries reaches into dentin, current 

treatment requires a filling procedure to be performed. If the caries penetrates deeper into 

the root of the teeth, this could lead to possible damage of the tooth nerve, which may result 

in tooth loss and infection (Cochrane et al. 2010; Wong et al. 2017).  

Dental caries is a complex multifactorial disease that results in mineral dissolution 

of the dental hard tissues (enamel, dentin and cementum) by acidic by-products of bacteria 

through fermentation of dietary carbohydrates. Caries is a dynamic process between 

pathological and protective factors, as presented in Figure 1.2. Pathological factors include 

acidogenic bacteria that ferment dietary carbohydrates into different types of acids. These 

acids then diffuse into the enamel, dentin, or cementum, leading to partial mineral 

dissolution. Dissolved mineral content (calcium and phosphate) diffuses out of the tooth 

and the resulting loss in mineral content is known as demineralization (Marsh 2009). This 

eventually leads to cavitation if the process progresses. Other factors include reduced 

salivary functions such as reduced saliva flow and imbalanced salivary composition. 

Increased frequency of carbohydrate intake also increases the risk of caries development. 

Demineralization can be reversed by the diffusion of minerals like calcium, phosphate, and 

fluoride. They can be deposited back onto the remaining mineral remnants caused by 

demineralization (Featherstone 2004). The process of mineral gains is referred to as 

remineralization (Tung and Eichmiller 2004) and it is promoted by protective factors such 

as saliva, proteins and fluoride.  

The acidic by-products can be neutralized by saliva due to its bicarbonate/carbonate 

buffering capacity. Fluoride solution or fluoride containing oral products may also promote 

remineralization (Kanduti et al. 2016).   The dynamic process of demineralization and 
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remineralization happens many times a day, usually after carbohydrate intake from food or 

drinks. Dental caries occurs when the demineralization process initiated by the pathological 

factors dominates, and as a result there is a net loss of mineral content. If the balance is 

shifted towards the remineralization process promoted by protective factors, development 

of caries stops or reverses.  

 

 

Figure 1.2 Schematic representation of the balance between protective factors and 

pathological factors and how they affect the development of caries. Reprinted with 

permission from Featherstone 2004. Copyright 2004 SAGE Publications.   

For demineralization to occur, the salivary pH needs to drop below a certain level. 

The Stephan curve – first described by Stephan and Miller in the 1940s – depicts salivary 

pH changes in the mouth after rinsing with glucose, corresponding to the pH changes 

observed in saliva following sugar intake (Bowen 2013). As presented in Figure 1.3, the 

resting salivary pH without exposure to sugar usually has a pH value between 6 and 7. This 

varies  for each individual, but remains stable until carbohydrate intake (Sissons et al. 

1998). The salivary pH was observed to drop rapidly following carbohydrate consumption. 

The critical level was defined at pH 5.5 where demineralization of the enamel will begin 
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to occur. The pH level may remain below this critical level for approximately 20 minutes, 

and recovery to resting pH may take about 30 to 60 mins. 

 

 

Figure 1.3 Stephan curve illustrating the change in pH following carbohydrate 

ingestion. The critical level is defined at pH 5.5 and is represented by the pink line. 

At/below the critical level, demineralization will occur, consequently increasing caries 

risk.  

The most common preventive approach is good oral hygiene practices, including 

brushing twice a day and the use of dental floss. Regular visits to the dentist for mechanical 

removal of dental plaque is another effective way to reduce caries risk (Finkelstein et al. 

1990). Fluoride treatment is often provided in conjunction with mechanical cleaning, which 

reduces the demineralization process and promotes remineralization of enamel by 

absorbing onto the enamel to form fluorohydroxyapatite. The resulting enamel is 

strengthened and becomes more resistant to demineralization (Buzalaf et al. 2011). 

Fluoride containing toothpaste is already common in North America and Europe, but it is 

only effective at concentrations higher than 1,000 ppm. However, the new challenge that 

arises is the increased frequency of daily sugar consumption. As illustrated in Figure 1.4, 
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frequent snack/coffee breaks between meals result in increased exposure to cariogenic 

(acidic) environments. The extended duration of exposure to pH under the critical level 

(pH 5.5) can promote demineralization, which increases the risk of caries development. A 

potential effective preventive approach would be to inhibit bacterial activity to prevent or 

shorten the demineralization process. 

 

 

Figure 1.4 Frequent sugar intake increases exposure to acidic conditions, which can 

increase caries risk. 

 

1.2 AEP and its Role in Regulating Biofilm Formation 
Saliva is another protective factor that was mentioned in the previous section. It is 

a complex fluid composed of proteins, enzymes, and a variety of electrolytes. Many 

physiological functions are regulated by saliva, such as chewing, initial digestion of food, 

wetting, and lubrication (Humphrey and Williamson 2001; Siqueira and Dawes 2011). 

Saliva also plays an active role in the maintenance of oral health, including partial 

protection against microbial activities, the maintenance of both salivary pH and tooth 

integrity (Mandel 1987). The inorganic ions present in saliva are mainly calcium and 

phosphate. They remain at a supersaturation state with respect to hydroxyapatite (HA) 
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crystal, the major component of tooth enamel. This supersaturation of calcium and 

phosphate ions promotes remineralization of the tooth enamel by allowing the diffusion of 

these ions into the HA. However, the remineralization process is mainly regulated by 

salivary proteins which constitute the acquired enamel pellicle (AEP) (Valente et al. 2018).  

AEP is a thin proteinaceous film formed on the tooth surface by selective adsorption 

of salivary proteins and other molecules present in the oral fluids. Its formation is initiated 

within seconds of exposure to whole saliva after oral cleaning (Siqueira et al. 2012). AEP 

serves as a platform which allows bacterial adhesion for the development of biofilm. The 

oral cavity harbors many different types of microorganisms. Some of the primary 

colonizers which attach themselves to the AEP are the Streptococcus species, Actinomyces 

species and Haemophilus species (Dige et al. 2009; Huang et al. 2011; Dorkhan et al. 

2013). Secondary colonizers such as Fusobacterium nucleatum, Treponema species, and 

Tannerella forsythensis, bind onto already attached primary bacteria by co-adhesion or co-

aggregation (Kolenbrander et al. 2002; Foster and Kolenbrander 2004). The composition 

of the biofilm becomes more diversified. The mature biofilm is commonly known as a 

dental plaque. The dental plaque remains relatively stable over time under microbial 

homeostasis. However, when the microbial composition favors acidogenic species such as 

Streptococcus mutans (S. mutans) (Marsh 2006), the extended exposure to acidic 

conditions initiates demineralization and paves the way for the development of caries. 

AEP serves multiple functions due to its physical structure and salivary proteins. 

The physical structure prevents direct contact between acids produced by acidogenic 

bacteria and the tooth surface. This intervention reduces mineral dissolution of the tooth 

(Moreno and Zahradnik 1979; Hannig et al. 2004; Hara et al. 2006). The physical structure 

also plays a crucial role in regulating the attachment of early microbial colonizers. 

Therefore, it is reasonable to propose that modulation of the composition or structure of 

the AEP is a potential preventive approach for dental caries. In previous research, salivary 

proteins identified from the AEP such as histatin (HTN) and statherin have demonstrated 

strong affinity for HA. The ability of the proteins to prevent the precipitation of calcium 

and phosphate on tooth enamel (Valente et al. 2018) in addition to modulation of the AEP 

structure could also potentially affect attachment of cariogenic bacteria. 
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1.3 Discovery of Salivary Proteins and Their Functions 
Salivary proteins play a crucial role in regulating oral homeostasis, either by 

directly exerting antimicrobial effects or interference with microbial colonization. 

Examples of these antimicrobial peptides (AMPs) include cathelicidin peptide LL-37, 

alpha-defensins, beta-defensins, HTN and statherin. Other salivary proteins that are present 

include major glycoproteins (mucins, proline-rich proteins and immunoglobulins) and 

minor glycoproteins (agglutinin, lactoferrin, cystatins and lysozyme) (Hemadi et al. 2017).  

In particular, AMPs have received attention due to their innate immunity. They are 

often thought of as the first line of defense against oral infection (Brogden 2005). The HTN 

family is of great interest because these proteins are multifunctional. They have 

demonstrated biological functions including the inhibition of calcium and phosphate 

precipitation on enamel, and antimicrobial activities which are directly related to the 

regulation of oral homeostasis (Oppenheim et al. 2007; Siqueira et al. 2010; Walter L. 

Siqueira et al. 2012). HTN family proteins are characterized by histidine-rich structures 

ranging from 7 to 38 amino acids (Johnson et al. 2000). The most commonly expressed 

forms are HTN1, HTN3, and HTN5, which have molecular weights of 4929, 4063, and 

3037 Daltons respectively. Each form comprises about 20-30% of the total HTN pool 

(Gusman et al. 2004). HTN1 is postulated to play a role in reducing bacterial binding 

because it is one of the salivary proteins that constitutes the AEP. Previous studies have 

demonstrated its potential in reducing S. mutans adhesion onto HA discs by inhibiting the 

adsorption of S. mutans-binding salivary glycoproteins (Shimotoyodome et al. 2006; 

Vitorino et al. 2008). HTN5 has the most potent antifungal activity against Candida 

albicans, which is a pathogenic yeast (Puri and Edgerton 2014) that can survive under 

highly acidic environments and has a high affinity for HA substrates. It also can promote 

demineralization by dissolving HA through loss of calcium ions (Klinke et al. 2009). HTN3 

was demonstrated to be the most effective in killing S. mutans (Basiri et al. 2017), which 

is the most common cariogenic bacterial species present in dental plaque. Through 

metabolization of dietary sucrose S. mutans can produce sticky polysaccharides which 

function as platforms for further bacterial attachment on the tooth surface. Other simple 
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sugars can also be digested to produce acidic products. The acidic environment causes the 

mineral-rich tooth enamel to become susceptible to mineral dissolution. HTN3 has the 

potential to inhibit bacterial activities, possibly preventing or shortening the 

demineralization process, and therefore decreasing caries risk. 

 Statherin is another salivary protein derived from the AEP, and has been observed 

to have a strong binding affinity and fast adsorption to HA (Zimmerman et al. 2013). 

Previous studies have demonstrated its ability to regulate calcium phosphate homeostasis. 

The presence of a covalently linked phosphate group at residues 2 and 3 in statherin 

peptides can modulate the effect of crystal growth inhibition on HA. This ability makes it 

a significant contributor to the maintenance of the supersaturation states of calcium and 

phosphate in saliva (Xiao et al. 2015). Supersaturation of calcium and phosphate is 

important because it allows enamel to remineralize after transient mineral loss, and inhibits 

the formation of dental calculus (Hay et al. 1984). Notably, due to proteolytic degradation, 

statherin levels are substantially lower in whole saliva than in salivary gland secretion 

(Oppenheim et al. 2007). Therefore, this prevents statherin from being used directly for 

protein-mediated homeostasis therapeutic.  

 

1.4 Polymer-based Delivery Systems 
Despite the multifunctionality of salivary proteins, they are often present in low 

concentrations (Fábián et al. 2012) due to their susceptibility to the high proteolytic activity 

in the oral environment (Helmerhorst et al. 2006). Therefore, to use these proteins as 

potential therapeutics, a delivery system is needed to encapsulate them thereby affording 

protection against enzymatic degradation.  

The utilization of stimulus-responsive polymeric nanoparticles to deliver 

therapeutics has gained substantial attention in the past decade. Smart delivery systems 

offer many advantages over conventional dosage forms. Polymeric delivery systems have 

the potential to improve overall stability, prolong circulation time, and modulate 

pharmacokinetics, often with reduced toxicity and enhanced efficacy (Mihu et al. 2010; 
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Yang et al. 2010; Shen et al. 2012; Xiong et al. 2012). Ideally, therapeutics of interest 

would remain stable inside the delivery system in the absence of a stimulus. Upon stimulus 

exposure, the delivery system will trigger the release of encapsulated therapeutics. As 

illustrated in Figure 1.5, stimuli are often categorized based on their properties. Biological 

cues include enzymes and receptors. Chemical stimuli consist of pH, ionic strength, and 

electrochemical signals. Lastly, physical stimuli include light, temperature, magnetic field, 

and ultrasound. Different stimuli-responsive systems can be designed to selectively 

respond to transient environmental changes that reflect the pathogenic state (Lee et al. 

2003; Basel et al. 2011; Chen et al. 2014). 

 

Figure 1.5 Stimuli utilized in drug delivery applications are categorized based on their 

properties. For example, physical stimuli include temperature, light and ultrasound. 

Reprinted with permission from Delcea et al. 2011. Copyright 2011 Elsevier. 

Many polymeric materials have been explored to prepare a nanoparticle-based 

delivery system. Two main categories are natural and synthetic polymers (Blasi et al. 2007; 

Kumari et al. 2010). In particular, naturally occurring polymers are of great interest because 

of their unique physical and biological properties. This category includes polysaccharides, 
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proteins, and polyisoprenes (Ravve 2000). Polysaccharides are polymers of 

monosaccharides that are abundant in nature. They have a variety of functional groups, 

which contribute to their diversified structures and properties. In recent years, research has 

demonstrated the suitability of polysaccharides, including alginate, chitosan and starch as 

potential candidates for applications in a nanoparticle-based drug delivery system 

(Anirudhan et al. 2017; Choudhary et al. 2019; Zheng et al. 2019). 

  As the only naturally occurring polycationic polysaccharide discovered so far and 

with its ability to interact with anionic molecules, chitosan and its derivatives have been 

studied extensively for applications in the agricultural, medicinal and pharmaceutical 

industries (Souza et al. 2014; Bugnicourt and Ladavière 2016; Olivera et al. 2016). 

Chitosan is a copolymer composed of N-acetyl-D-glucosamine and β (1-4) linked D-

glucosamine. It is prepared by treating natural polymer chitin with alkaline chemicals, 

through a process called deacetylation. Chitin is a primary structural component found in 

the cell walls of fungi, exoskeletons of crustaceans, and is one of the most abundant 

polysaccharides existing in nature (Ravi Kumar 2000). Chitosan also offers other 

advantages including biodegradability (Kean and Thanou 2010), biocompatibility 

(Thandapani et al. 2017), and pH-dependent solubility (Cha et al. 2006). As demonstrated 

in Figure 1.6, under high pH conditions, the amino group becomes deprotonated, resulting 

in a low solubility in water. Consequently, the polymer chains will cluster together to form 

a more compact structure.  When the amino group is protonated under low pH conditions, 

the increased solubility in water allows the polymer chain to exhibit a more extended 

structure.  
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Figure 1.6 Structural changes of chitosan affect its solubility. When the amino group 

is protonated under low pH conditions, it becomes more soluble. Solubility is low 

when the amino group becomes deprotonated under high pH conditions. Reprinted 

with permission from Ali and Ahmed 2018. Copyright 2018 Elsevier.  

Chitosan-based delivery systems have been explored due to their aforementioned 

advantageous properties. Chitosan has been formulated into different carriers such as 

microspheres (Zhang et al. 2013), hydrogels (Sadat Ebrahimi and Schönherr 2014), beads 

(Chandy and Sharma 1992) and nanoparticles (Sarmento et al. 2007). For the delivery of 

small proteins/peptides, nanoparticles are more advantageous because of their high surface 

area to volume ratios. There are many different methods to synthesize chitosan 

nanoparticles (CNs). Some common approaches are ionic gelation, covalent cross-linking, 

emulsification solvent diffusion and self-assembly.  

Ionic gelation occurs through electrostatic interactions between chitosan or its 

derivatives with an ionic cross-linking agent of opposite charge.  Among polyanionic cross-

linking agents, the most commonly used is sodium tripolyphosphate (TPP), which is non-

toxic and widely used as a preservative in the food industry (Kawashima et al. 1985). In 

this method, chitosan polymer is dissolved in acetic acid, while TPP is dissolved in 

Millipore water. The TPP solution is then added into the chitosan solution in a drop-wise 

manner under constant mechanical stirring. Positively charged chitosan polymer chains 

interact electrostatically with the negatively charged TPP under mechanical stirring, as 

illustrated in Figure 1.7. The advantages of this method include its simplicity to perform 

and scale up, as it can be performed at room temperature without the use of any organic 
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solvent. Previous studies have investigated the ability of CNs prepared via ionic gelation 

to encapsulate peptides/proteins, oligonucleotides, and drugs for potential pharmaceutical 

applications (Sezer and Akbuǧa 1995; Aydin and Akbuǧa 1996; Shu and Zhu 2000).  

 

 

Figure 1.7 CNs prepared by ionic gelation with TPP, TPP solution was added to 

chitosan solution in a drop-wise manner under constant mechanical stirring, CNs will 

form based on the electrostatic interactions between the two oppositely charge 

species. Reprinted from Wang et al. 2016. Licensed under CC BY 4.0.  

Another technique for preparing CNs is through covalent cross-linking (Prabaharan 

and Mano 2005). This involves the formation of a covalent bond between the chitosan 

polymer chain with a cross-linking agent. Some functional groups that could be covalently 

attached to the amino groups on the chitosan chain include polyethylene glycol, 

dicarboxylic acid, and glutaraldehyde (Bodnar et al. 2005; Goldberg et al. 2007). This 

method was first used to prepare chitosan nanoparticles by cross-linking with 

glutaraldehyde to encapsulate 5-fluorouracil (Ohya et al. 1993).  

CNs can also be prepared by emulsification solvent diffusion method. An emulsion 

is prepared by injecting an organic solvent into chitosan solution under high-pressure 

homogenization. Subsequently, a large amount of water is added to the emulsion. Polymer 

precipitation occurs following the diffusion of organic solvent into water, consequently 

leading to the formation of CNs (El-Shabouri 2002). This method is desirable to 
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encapsulate hydrophobic drugs with a high encapsulation efficiency. However, the major 

disadvantages are the use of organic solvent and high shear forces (Wang et al. 2016).  

Self-assembly of nanoparticles refers to the process of spontaneous formation of 

nanoparticles when amphiphilic compounds are dispersed in water. A core-shell structure 

will be formed with a hydrophilic moiety on the periphery and a hydrophobic moiety 

clustered in the core. The main advantage of this method is that poorly water-soluble 

molecules, such as anticancer drugs, can be successfully loaded into the hydrophobic core 

of modified CNs. One previous study used chemically modified glycol chitosan with 

hydrophobic cholinic acid and prepared nanoparticles via self-assembly after dispersion in 

water solution. The hydrophobic core successfully encapsulated the poorly water-soluble 

anticancer drug cisplatin with a drug loading of 80%. Through encapsulation, cisplatin was 

released in a sustained manner for a week, and the toxicity profile was also improved (Kim 

et al. 2008).  Another study involved modified chitosan polymer with alkyl chains as the 

hydrophobic moiety and glycol groups as the hydrophilic moiety. The synthesized CNs 

were able to improve the solubility of the poorly water-soluble antitumor drug paclitaxel 

by 500-fold, at a drug loading of 35% (Huo et al. 2010).  

 CNs can encapsulate a variety of cargo aside from anticancer drugs, which include 

gene therapeutics, protein drugs, and more (Sarmento et al. 2007; Han et al. 2010). CNs 

can be administered orally, nasally, and intravenously. Most cargo cannot survive for very 

long when administered on their own. For example, gene silencing mediated by siRNA has 

demonstrated potential for treating diseases caused by genetic defects. However, when 

delivered alone, it faces challenges including rapid degradation and poor cellular uptake. 

Through encapsulation of CNs prepared via ionic gelation between chitosan and TPP, CNs 

were able to protect siRNA against degradation by nucleases. The positive charge of 

siRNA CNs also improved adsorption onto the cell surface. However, gene transfection 

efficiency was low as a result of encapsulation (Katas and Alpar 2006). This was later 

addressed by optimizing the properties of chitosan, including molecular weight and degree 

of deacetylation. With chemical modification of chitosan using folic acid, the optimized 

folic acid modified CNs were able to demonstrate an equivalent transfection efficiency 

compared against the positive control group (Lavertu et al. 2006) .   
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 Protein drugs are susceptible to enzymatic degradation and therefore have poor 

overall stability and short survival time. In the past, insulin and a cationic β-cyclodextrin 

complex has been encapsulated into alginate-CNs. The delivery system was not only able 

to protect insulin against degradation from simulated gastric fluid, but it also cumulatively 

released approximately 40% of the encapsulated insulin under simulated intestinal fluid 

(Zhang et al. 2010).  

 

1.5 Rationale and Focus of this Work 
In the current work, HTN3 has been selected as the protein of interest due to its 

antibacterial property against S. mutans. Through loading of HTN3 within CNs, the 

delivery system should remain stable at physiological salivary pH to protect the loaded 

HTN3 against enzymatic degradation. The pH-responsive property of CNs should allow 

selective release of HTN3 under acidic conditions, as shown below in Figure 1.8.  

The pH-responsive behaviour of HTN3-loaded CNs is important, because the 

salivary pH drops every time after carbohydrate intake. The acidic conditions promote 

major oral complications such as dental caries and dental erosion (Nikaido et al. 2004). 

The drop in pH should trigger the immediate release of loaded HTN3. The released HTN3 

may inhibit bacterial fermentation of ingested carbohydrate, possibly preventing or 

shortening the exposure to acidic environment and reducing demineralization. 
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Figure 1.8 A schematic representation of the pH-sensitive release mechanism 

exhibited by CNs. HTN3 remains inside of CNs under physiological salivary pH. The 

CNs will swell selectively under acidic conditions to release loaded HTN3.  

 

1.6 Thesis Outline 
The central hypothesis of this thesis is that I can develop a pH-sensitive CN delivery 

system, which can be utilized to load multifunctional salivary proteins for targeting major 

oral complications that occur under acidic conditions. 

Chapter 2, describes the study of different types of chitosan polymers to select the 

optimal CNs formulation. The optimized CNs formulation was characterized by dynamic 

light scattering and visualized by transmission electron microscopy. The pH-responsive 

property of the CNs was also assessed through pH-dependent swelling and pH cycling 

studies. Secondly, the protein of interest, HTN3 was loaded into CNs and different protein 

loading ratios were studied thoroughly. Cumulative and pH cycling release profiles under 

different pH conditions were also evaluated. Additionally, a protein degradation study was 

performed to evaluate the protection offered by loading against enzymatic degradation. 

Lastly, the therapeutic effect of HTN3-loaded CNs against S. mutans biofilm formation on 
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hydroxyapatite discs was evaluated based on biofilm weight and bacterial cell viability. 

The results were compared against four other treatment groups: PBS (control), free HTN3, 

unloaded CNs, and gold standard fluoride solution.  

 In chapter 3, a general conclusion is presented based on the collected data. The 

significance, possible improvements, and future work regarding this project are also 

discussed.  

The ultimate goal of this project is to formulate CN-based dental hygiene products 

like toothpaste and mouthwash. With the development of HTN3-loaded CNs, the results of 

this work could potentially advance the delivery of salivary proteins as a preventive 

measure to address dental caries. 
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Chapter 2  

2 A pH-sensitive Delivery System for the Prevention of 
Dental Caries Using Salivary Proteins 

 

2.1 Introduction  
Saliva is a complex fluid composed of proteins, enzymes, and a variety of 

electrolytes. Many physiological functions, such as chewing, initial digestion of food, 

wetting and lubrication are regulated by saliva (Humphrey and Williamson 2001; Siqueira 

and Dawes 2011). It also plays an active role in oral homeostasis, including partial 

protection against microbial activities, the maintenance of both salivary pH and tooth 

integrity (Mandel 1987). The concentration of proteins present in the saliva can be used as 

an indicator to monitor oral health, as the severity and occurrence of oral diseases have 

been associated with composition and quantitative changes in salivary proteins (Scarano et 

al. 2010). Many of the salivary proteins are active in the regulation of tooth homeostasis, 

either by directly exerting antimicrobial effects or interference in regard to microbial 

colonization. Examples include statherin, histatins (HTNs), defensins, lactoferrin and 

mucin (Hemadi et al. 2017) .  

In particular, the HTN are of great interest because these proteins are 

multifunctional. They have demonstrated biological functions including the inhibition of 

calcium and phosphate precipitation on enamel and antimicrobial activities which are 

directly related to the regulation of oral homeostasis (Oppenheim et al. 2007; Siqueira et 

al. 2010; Siqueira et al. 2012). The HTNs mainly consist of HTN1, HTN3, and HTN5, 

which have molecular weights of 4929, 4063, and 3037 Dalton respectively. Each supplies 

about 20-30% of the total HTN pool (Gusman et al. 2004). HTN1 is the only 

phosphorylated HTN (McDonald et al. 2011) and previous studies have demonstrated its 

effectiveness in reducing bacterial colonization on tooth surfaces (Shimotoyodome et al. 

2006; Vitorino et al. 2008). HTN5 has the most potent antifungal activity against Candida 

albicans, which is a pathogenic yeast (Puri and Edgerton 2014). HTN3 was demonstrated 

to be the most effective in killing against Streptococcus mutans (S. mutans) (Basiri et al. 
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2017), which is commonly found in the oral cavity and is a significant contributor towards 

dental caries.  

These proteins are often present in low concentrations (Fábián et al. 2012) inside 

the oral cavity due to the high proteolytic activity of saliva (Helmerhorst et al. 2006). 

Therefore, we proposed a delivery system to load and protect these proteins for their use 

as inhibitors of tooth decay. The use of stimulus-responsive polymeric nanoparticles 

synthesized from natural polymers has recently gained substantial attention, as such smart 

delivery systems have the potential to improve the overall colloidal stability of the loaded 

molecules and modulate pharmacokinetics, often resulting in reduced toxicity and 

enhanced efficacy (Mihu et al. 2010; Yang et al. 2010; Shen et al. 2012; Xiong et al. 2012). 

The loaded cargo can be released in a stimulus-responsive manner. Examples of stimuli 

include changes in pH, ionic strength, temperature, UV light, magnetic field or the presence 

of specific biological molecules (Lee et al. 2003; Basel et al. 2011; Chen et al. 2014; Fan 

and Gillies 2017). In particular, for applications involving the delivery of drugs to the oral 

cavity. It would be ideal for the delivery system to remain stable at physiological salivary 

pH and selectively release the loaded cargo under acidic conditions. The pH-responsive 

property is crucial because the oral environment acidifies following carbohydrate intake, 

as a result of the consumption of food and beverages. These are the conditions which 

promote major oral disorders such as dental caries and dental erosion (Nikaido et al. 2004). 

Many polymer-based materials have been studied for applications in controlled 

drug delivery, including naturally-occurring biopolymers. For instance, chitosan is a 

copolymer composed of N-acetyl-D-glucosamine and β(1-4) linked D-glucosamine (Dash 

et al. 2011). It is mainly obtained through the deacetylation of chitin under alkaline 

conditions (Raafat and Sahl 2009). Chitin is a biopolymer found in the exoskeletons of 

crustaceans, insects, and some fungi. (Tang et al. 2015). As the only known naturally 

occurring polycationic polysaccharide and with its ability to interact with anionic 

molecules, chitosan and its derivatives have been studied extensively for applications in 

the agricultural, medicinal and pharmaceutical industries (Souza et al. 2014; Bugnicourt 

and Ladavière 2016; Olivera et al. 2016).  
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Previous studies have utilized chitosan in toothpaste as an antimicrobial agent due 

to its broad antimicrobial spectrum, covering both Gram-negative and Gram-positive 

bacteria as well as fungi (Carvalho and Lussi 2014; Costa et al. 2014). Aside from its 

antimicrobial effect, chitosan also offers other advantages including biodegradability 

(Kean and Thanou 2010) and biocompatibility (Thandapani et al. 2017). It also exhibits 

pH-dependent solubility due to the presence of amino groups on the polymer chains (Cha 

et al. 2006). The functional amino groups can serve as platforms for interactions with other 

anionic molecules to form nanoparticles, where the choice of anionic molecules depends 

on the intended applications. The resulting nanoparticles should have small particle 

diameters (~200 nm) to ensure a high surface area to volume ratio. Size distribution, also 

known as the polydispersity index (PDI) of the nanoparticles should also be minimized (< 

0.3) to obtain a uniform size distribution. Colloidal stability is equally as important, and it 

is directly related to the surface charge (zeta potential) of the nanoparticles. These 

parameters will be measured by dynamic light scattering (DLS), which measures the 

Brownian motion of small particles in suspension and relates it to the size of the particles. 

The particles will be illuminated by a laser and the intensity fluctuations in the scattered 

light will be analyzed to determine particle size. 

In the current work, we propose pH-sensitive chitosan nanoparticles (CNs) for 

salivary proteins delivery. We hypothesized that salivary protein-loaded CNs can i) 

selectively release the loaded proteins under low pH environments, ii) offer protection 

against proteolysis at the physiological salivary pH, and iii) reduce S. mutans biofilm 

formation on hydroxyapatite. To test these hypotheses, HTN3 was selected as the target 

protein, and our objectives were to: 1) optimize CN formulation via ionic gelation with 

four different types of chitosan polymers; 2) characterize both blank and HTN3-loaded 

CNs; 3) quantify loading and release profiles of HTN3; 4) assess the protection offered by 

loading against enzymatic degradation in 10-fold diluted human saliva; 5) evaluate the 

effectiveness of HTN3-loaded CNs in reducing S. mutans biofilm formation on 

hydroxyapatite discs.  
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2.2 Materials and Methods 

Materials 

Ultra-low molecular weight (MW) chitosan and low MW chitosan (2) were purchased from 

Glentham Life Sciences (Corsham, UK). The other low MW chitosan (1), medium MW 

chitosan, and ZipTip C18 pipette tips were acquired from Millipore Sigma (Oakville, ON). 

All filters, including Acrodisc 0.45 and 0.2 µm syringe filters with Supor Membrane and 

10k Dalton Nanosep filters were purchased from Pall Corporation (Mississauga, ON). 

HTN3 was acquired from Synpeptide Co., Ltd. (Shanghai, China). S. mutans UA159 was 

kindly donated by the University of Toronto (Toronto, ON). Hydroxyapatite discs with 5 

mm diameter and 2 mm thickness were obtained from Clarkson Chromatography Products 

Inc. (South Williamsport, PA). Bicinchoninic acid assay kit was acquired from Thermo 

Fisher Scientific (Mississauga, ON). All other chemicals, including sodium 

tripolyphosphate (TPP), were purchased from Millipore Sigma (Oakville, ON).  

Table 2.1 Summary of different types of chitosan polymers. 

Type MW (Dalton) Degree of Deacetylation  

Medium 190,000 – 310,000 75 – 85% 

Low (2) 250,000 (Average) 91% 

Low (1) 50,000 – 190,000 75 – 85% 

Ultra-Low 20,000 (Average) 91% 
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Optimized CNs Preparation  

Unloaded CNs. CNs were prepared by a modified version of the ionic gelation procedure 

described previously (Calvo et al. 1997). Preliminary work that studied the effect of 

chitosan molar mass and degree of acetylation (Table 2.1), pH of chitosan/TPP solutions, 

and chitosan to TPP ratios on CN characteristics was performed to optimize CN synthesis 

as follows. 100 mg of ultra-low MW chitosan was dissolved in 100 mL of 0.4% v/v 

concentrated HCl. The pH of the chitosan solution was adjusted to 5.9 with 1 M NaOH, 

then filtered using a 0.45 µm syringe filter. 100 mg of TPP was dissolved in 100 mL of 

Millipore water, its pH was adjusted to 6.0 and it was filtered through a 0.22 µm syringe 

filter. 0.36 mL of TPP solution was added dropwise into 2.5 mL of chitosan solution under 

constant stirring at 700 rpm, such that the mass ratio of chitosan to TPP is 6.94:1. 

Preparation of HTN3-loaded CNs. HTN3 was mixed with chitosan solution before ionic 

gelation with TPP. 0.29 mL of the 0.1% w/v TPP solution was introduced dropwise into 2 

mL of 0.1% w/v chitosan and 0.0025% w/v HTN3 under constant stirring at 700 rpm. The 

loading ratio of chitosan to HTN3 by mass was 40:1, and 0.45 mL of the suspension 

contained 10 μg of HTN3. HTN3 loading ratios could be changed to load more or less 

HTN3 as needed. Each preparation was performed in triplicate. 

 

Characterizations of CNs 

DLS. Particle diameter, PDI and zeta potential were measured by DLS (Smoluchowski 

equation, wavelength of 630 nm at 25°C) using a Malvern Zetasizer Nano ZS instrument 

(Malvern Instruments Ltd, Malvern UK). 1 mL of the CNs suspension was loaded into a 

disposable polystyrene cuvette for particle size and polydispersity index measurement. 

0.75 mL of the same suspension was injected into a folded capillary cell for zeta potential 

measurement. Measurements were performed in triplicate.  

Transmission electron microscopy (TEM). The morphology of the CNs was visualized 

by TEM with the Philips CM10 (Philips, Amsterdam, Netherlands) at 80 kV. To remove 

salts, 3 mL of the CNs suspension was loaded into a 50 kg/mol MW cut-off regenerated 
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cellulose dialysis tubing (Spectrum Labs, New Brunswick, NJ) and dialyzed in 1 L of 

deionized water for 3 hours under constant stirring. TEM samples were prepared by placing 

one drop of the dialyzed CNs suspension onto the Formvarâ-coated copper grid, and the 

sample was dried overnight under an air atmosphere. Images were captured in triplicate. 

pH-dependent swelling.  To investigate the pH-dependence of CN size, initial particle 

size measurements were taken at a starting pH of 6.3 (time = 0 minutes).  The pH of the 

suspension was then adjusted to different pH values: 3, 4 and 5 directly with 1 M HCl. 

After the pH adjustments, particle size, PDI and zeta potential were observed by DLS at 

10, 20, 30, 60, 120, and 240 minutes in triplicate at each pH value. The CNs were not re-

suspended in buffers due to possibility of salt accumulation.  

Stability. CNs were stored at 4°C for 61 days to evaluate colloidal stability. Particle size 

and zeta potential were measured by DLS on days 1, 10, 15, 22, 30, 35, 45, 52, and 61 in 

triplicate. 

 

Loading and Release of HTN3  

pH-dependent release study. 0.05 mL of pH 6.8, 25 mM phosphate buffer/500 mM NaCl 

solution was added to 0.45 mL of HTN3-loaded CNs. The 0.5 mL suspension was then 

centrifuged at 14462 g for 10 minutes using a 10 kg/mol cut-off Nanosep filter. Only the 

free HTN3 (4063 Dalton) is small enough to pass through the filter. The filtrate was 

collected to determine loading efficiency by gel electrophoresis. The pH of the retentate on 

top of the filter was adjusted to pH 3, 4, or 5 using 1 M HCl and incubated at 37°C for 30 

minutes. The suspension was centrifuged again, allowing the passage of released HTN3 

through the filter. Subsequently, the filtrate was collected to determine the extent of protein 

release. Both loading and release filtrates, and a HTN3 standard of 5 μg were vacuum dried. 

The release study was performed in triplicate. 

Cationic polyacrylamide gel electrophoresis (PAGE). Cationic-PAGE was performed 

as previously described (Siqueira et al. 2010). Lyophilized samples were dissolved in 

sample loading buffer composed of 0.04% w/v methyl green and 20% w/v sucrose. 
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Electrophoresis separation was performed at a constant voltage of 120 V. Subsequently, 

the gels were stained overnight with 0.1% w/v coomassie-blue dye in 7% v/v acetic acid 

and 8% v/v methanol. The following day, the gels were de-stained with 40% v/v methanol 

and 10% v/v acetic acid.   

Loading Efficiency. HTN3-loaded CNs with 2%, 5%, and 10% w/w (HTN3 to chitosan) 

loading ratios were prepared as previously described with modifications to the mass ratio 

of chitosan to HTN3. 0.05 mL of pH 6.8, 25 mM phosphate buffer/500 mM NaCl solution 

was added to 0.45 mL of HTN3-loaded CNs at each loading ratio. The 0.5 mL suspension 

was then centrifuged at 14462 g for 10 minutes using a 10,000 g/mol cut-off Nanosep filter. 

Since the un-loaded HTN3 (4063 Dalton) is small enough to pass through the filter, the 

filtrate could be used to calculate loading efficiency. The filtrate was collected, and vacuum 

dried together with a HTN3 standard of 5 μg for use as control. Cationic-PAGE was 

performed as described previously. The loading efficiency was determined by Image Lab 

(BioRad) via relative quantity tool.  The relative quantity is the ratio of the band volume 

and intensity divided by the reference band volume and intensity. A HTN3 standard band 

was set as the reference and the other bands were compared against the reference band. 

The loading experiment was performed in triplicate for each loading ratio. 

Cumulative Release. HTN3-loaded CNs were prepared as previously described. 0.05 mL 

of pH 6.8, 25 mM phosphate buffer/500 mM NaCl solution was added to 0.45 mL of 

HTN3-loaded CNs. The 0.5 mL suspension was then centrifuged at 14462 g for 10 minutes 

using a 10 kg/mol cut-off Nanosep filter. Retentate on top of the filter was kept constant at 

6.8 or adjusted to pH 3, 4, or 5 using 1 M HCl, then incubated at 37°C for 30 minutes. It 

was then subjected to centrifugal ultrafiltration at 14462 g for 10 minutes to separate the 

released protein. Subsequently, the filtrate was collected. The retentate was replenished 

back to 0.5 mL with the buffer at the same pH. The filtrate and a HTN3 standard of 5 μg 

were analyzed by PAGE as previously described. The separation and quantification of 

released protein was repeated at 30, 60, 90, 120, 150, 180, and 210 minutes. Cumulative 

release was performed in triplicate at each pH value. 
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pH Cycling Release. pH of HTN3-loaded CNs was cycled between pH 4 and 6.8 to reflect 

pH changes in the oral cavity. 0.05 mL of pH 6.8, 25 mM phosphate buffer/500 mM NaCl 

solution was added to 0.45 mL of HTN3-loaded CNs. The 0.5 mL suspension was then 

centrifuged at 14462 g for 10 minutes using a 10 kg/mol cut-off Nanosep filter. The 

remaining retentate on top of the filter was adjusted to pH 4 with 1 M HCl and subjected 

to centrifugal ultrafiltration at 14462 g for 10 minutes to separate the released protein. The 

filtrate was collected and the retentate was replenished with pH 6.8 buffer to a volume of 

0.5 mL. The pH cycling release followed the adjustments order of pH 4, 6.8, 4, 6.8, 4, 6.8, 

4. Cationic-PAGE was performed on all filtrates and a HTN3 standard of 5 μg as previously 

described. pH cycling was performed in triplicate. 

 

Protein Degradation Study 

Saliva Collection. Whole saliva samples were collected 2 hours after breakfast between 

9:00 am to 11:00 am to minimize the effect of circadian rhythm. Samples included 3 

healthy participants ranging from 24 to 32 years old. Stimulated whole saliva was obtained 

by masticating on a piece of parafilm. 3 to 5 mL of saliva was collected on ice. Immediately 

after collection, whole saliva samples were centrifuged for 10 minutes at 14462 g at 4 °C 

to separate the bacteria, cells and other debris. The supernatant is referred to as whole saliva 

supernatant (WSS). Salivary proteins were quantified using a bicinchoninic acid assay kit.  

Degradation of Free HTN3 in WSS. The degradation experiments were carried out in 

10-fold diluted WSS. 50 μg of free HTN3 was added to diluted WSS (100 mg salivary 

protein/mL) in a final volume of 1 mL. The pH was adjusted to 6.8 using 1 M HCl or 1 M 

NaOH, depending on the pH of collected saliva. An aliquot of 100 μL was collected and 

boiled for 5 minutes to terminate proteolytic activity after incubation at 37 °C for 0, 0.5, 1, 

2, 3 or 6 hours. Samples were dried and desalted. Cationic-PAGE was performed to study 

the degradation samples. The extent of degradation was quantified by Image Lab using the 

relative quantity tool. 
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Degradation of HTN3-loaded CNs in WSS. The degradation experiments were carried 

out with 10-fold diluted WSS. 0.5 mL of the HTN3-loaded CNs (containing 50 μg of 

HTN3) was added to diluted WSS (100 mg salivary protein/mL) to reach a final volume of 

1 mL. The final pH was standardized to 6.8 with 1 M HCl or 1 M NaOH, depending on the 

initial pH of saliva. An aliquot of 100μL was collected after incubation at 37°C at the 

following time points: 0, 0.5, 1, 2, 3 and 6 hours. The pH was adjusted to 3 to release all 

of the HTN3 within the delivery system. After centrifugation with a 10,000 g/mol Nanosep 

filter, the filtrate was retrieved and boiled for 5 minutes to terminate proteolytic activity. 

Samples were dried and desalted, followed by Cationic-PAGE. The extent of degradation 

was quantified by Image Lab through relative quantity tool. Each degradation study was 

performed in triplicate. 

 

S. mutans Killing Assay and Biofilm Formation 

S. mutans Growth. 10 colonies of S. mutans (UA 159) were grown for 14 hours in 10 mL 

of Tryptone Yeast Extract Broth (TYEB) supplemented with 1% glucose at 37 °C and 10% 

CO2. After incubation, the bacterial suspension was washed with 0.9% NaCl twice and the 

supernatant was discarded after each wash.  The pellet was resuspended in 1.2 mL of 

phosphate-buffered saline (PBS). 0.8 mL of the suspension were used for optical density 

(OD) measurement at 600 nm, then diluted with PBS if needed to obtain a reading of 

approximately 1.5, corresponding to the bacterial concentration of 109 colon forming units 

(CFU)/mL based on the calibration curve.  

Killing Assay. From the suspension with 1.5 OD reading, 0.1 mL was added to 9.9 mL of 

PBS to obtain a bacterial concentration of 107 CFU/mL. 50 μL of the 107 CFU/mL 

suspension was added to an equal volume of a serial dilution series of HTN3 in a 96-well 

polypropylene microtiter plate. The samples were then incubated at 37 °C for 1.5 hours. 

After incubation, each sample was diluted 103 and 104-fold in PBS, and 20 μL of each 

dilution was plated onto Todd Hewitt Broth (THB) agar plates. Bacterial viability was 

assessed by colony counting using comparisons against control samples incubated without 
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HTN3. The IC50 value was calculated based on the dose-response curve. The killing assay 

was performed in triplicate. 

S. mutans Biofilm Formation on Hydroxyapatite Discs. Hydroxyapatite discs were 

fixed on the interior of a 24-well polypropylene microtiter plate cover, where the discs 

were carefully positioned so that the plate cover fits both 24 and 96-well plates. The plate 

cover was placed to immerse all discs in a 96-well plate filled with 200 μL of 5 different 

treatment solutions: control (PBS), 0.03 mg/ mL HTN3, 0.1% w/v unloaded CNs, 0.1% 

w/v CNs containing 6 μg of loaded HTN3, and 12300 ppm fluoride solution for two hours. 

Three discs were assessed per treatment group. Subsequently, the plate cover was placed 

on a 24-well plate with 2 mL of 0.9% w/v NaCl to wash the discs. Afterwards the discs 

were immersed into 2 mL of TYEB supplemented with 1% w/v glucose and 107 CFU/mL 

of bacteria. The discs were then incubated at 37°C in 10% CO2 for 8 hours. After 

incubation, the discs were washed again with NaCl, followed by further incubation for 16 

hours immersed in 2 mL of TYEB supplemented with 0.1 mM glucose.  Over the next 4 

days, the discs were incubated in a repeating cycle between solution 1 and 2 where solution 

1 is TYEB supplemented with 1% w/v sucrose for 8 hours, and solution 2 is TYEB 

supplemented with 0.1 mM glucose for 16 hours. On the 6th day, all discs were transferred 

to separate tubes filled with 1 mL of PBS, followed by sonication to remove the biofilms 

off the discs. 0.5 mL of the suspension was transferred to pre-weighed tubes and 

centrifuged at 14400 g for 5 minutes. The supernatant was removed, and the weight of wet 

biofilm was measured. The same suspension was diluted 106 and 107 times in PBS, and 20 

μL of each dilution was plated onto THB agar plates. Bacterial viability was assessed by 

colony counting. This experiment was performed with a sample size of 6. 

Statistical Analyses 

Statistical analyses were performed using software Prism 7.0 GraphPad. Biofilm mass and 

bacterial viability were analyzed by ordinary one-way ANOVA followed by Tukey’s 

multiple comparisons test between each treatment group. The level of significance (α) was 

set at 0.05 (95% confidence interval).  
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2.3 Results 

2.3.1 Optimization of CN Formulation 

Chitosan samples with different MWs and degrees of acetylation were investigated 

initially to determine which would provide the best particles. We sought a diameter of less 

than 200 nm, a zeta potential of > 15 mV to afford colloidal stability, and a low 

polydispersity index of < 0.3 to have well-defined materials. 

Medium MW. The effect of chitosan to TPP mass ratio was studied by varying the 

mass ratio from 3.5:1 to 10:1. The particle diameter decreased up to a ratio of 3.7:1, then 

increased (Figure 2.1a). The PDI followed a similar trend with an initial decrease in PDI 

up to 3.7:1 chitosan:TPP, followed by an increase at higher ratios (Figure 2.1b). Lastly, as 

shown on Figure 2.1c, zeta potential increased steadily with a corresponding increase in 

chitosan to TPP ratio. This was expected due to increased cationic polymer presence in the 

CNs. Taking all three parameters into consideration, the optimal formulation for medium 

MW chitosan was at the mass ratio of 4.17:1 (chitosan:TPP). Nanoparticles at this ratio 

had a diameter of 188 ± 2 nm in diameter, a PDI of 0.275 ± 0.007, and a zeta potential of 

18 ± 3 mV. 

Low MW (1). Similar trends were observed in low MW chitosan (1). Particle 

diameter and PDI continued to decrease with an increase in chitosan:TPP mass ratio until 

5:1. Zeta potential increased as chitosan:TPP increased due to increased cationic polymer 

presence.  The optimum formulation was chosen at 5.88:1 chitosan to TPP with a size of 

160 ± 10 nm in diameter, a PDI of 0.28 ± 0.01, and a zeta potential of 17.9 ± 0.5 mV. 

Low MW (2). Similar to the previous chitosan polymers, low MW (2) chitosan 

demonstrated the same trend. Particle diameter and PDI continued to decrease with a 

corresponding increase in chitosan:TPP until the ratio of 6.94:1. Zeta potential increased 

steadily as chitosan:TPP increased because of the presence of increased amount of cationic 

chitosan. The optimal ratio was selected at 6.94:1 chitosan to TPP. At this ratio, the 

resulting nanoparticles had a diameter of 320 ± 16 nm, a PDI of 0.39 ± 0.02, and a zeta 

potential of 23 ± 1 mV. 
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Figure 2.1 The effect of chitosan to TPP ratio on a) Z-average diameter. The particle 

diameter decreased when the ratio was increased until a certain threshold, beyond 

which particle diameter steadily increased. b) PDI followed a similar trend as particle 

diameter. c) Zeta potential increased with increasing chitosan:TPP ratio. Error bars 

correspond to the standard deviations of triplicate samples. 

Ultra-low MW. Because of the lower MW and the higher degree of deacetylation, 

ultra-low MW chitosan was able to form nanoparticles across a wide range of chitosan to 

TPP mass ratios with similar particle diameters and PDI values. The optimal ratio was 

selected at 6.94:1 chitosan to TPP. At this ratio the nanoparticles had a diameter of 144 ± 

6 nm, a PDI of 0.15 ± 0.04, and a zeta potential of 18 ± 4 mV. Ultra-low CNs were selected 

as the optimal formulation based on smallest particle diameter and lowest PDI at a 

relatively stable zeta potential.  
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2.3.2 Characterization of Unloaded and HTN3-loaded CNs by DLS 

The CNs prepared from ultra-low MW chitosan were characterized by DLS. The 

unloaded CNs had a Z-average diameter of 144 ± 6 nm, a PDI of 0.15 ± 0.04, and a zeta 

potential of 18 ± 4 mV at pH 6.3, the pH of the initially prepared particle suspension. The 

protein of interest, HTN3, was loaded into the CNs at various loading ratios (Table 2.2). 

The HTN3-loaded particles had similar diameters, PDI, and zeta potential to the unloaded 

particles. Figure 2.2 shows the volume distribution of the HTN3-loaded CNs at pH 6.3 and 

at pH 3. At pH 3, the Z-average diameter increased to 260 nm, showing the pH-responsive 

swelling behavior of the CNs. 

Table 2.2 DLS data for unloaded and HTN3-loaded CNs prepared from ultra-low MW 

chitosan. Error bars correspond to the standard deviations of triplicate samples. 

Protein Loading Ratio (w/w%) Z-Avg Diameter (nm) PDI  Zeta (mV) 

0 (unloaded) 144 ± 6 0.15 ± 0.04 18 ± 4 

2 142 ± 6 0.16 ± 0.05 18 ± 2 

5 134 ± 7 0.15 ± 0.03 19 ± 3 

10 136 ± 6 0.16 ± 0.04 20 ± 3 

 

 

Figure 2.2 DLS volume distribution of blank CNs at pH 3 and pH 6.3 showing a 

representative increase in diameter at acidic pH due to swelling.  
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2.3.3 TEM Images of Unloaded and HTN3-loaded CNs 

The CNs were then visualized with TEM. As shown in Figure 2.3, the CNs had a 

spherical morphology, and the observed diameters were in reasonable agreement with the 

data obtained from DLS. 

 

Figure 2.3 TEM images of CNs: a) Unloaded; b) HTN3-loaded at a 2% w/w loading 

ratio; c) HTN3-loaded at a 5% w/w loading ratio; d) HTN3-loaded at a 10% w/w 

loading ratio. The particles appeared spherical and the diameters were in reasonable 

agreement with the DLS results.  
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2.3.4 Stability of Unloaded CNs 

The unloaded CNs were stored at 4 °C and DLS measurements were taken routinely 

over the course of 61 days. On day 1, the CNs had a particle diameter of 143 ± 4 nm, a 

PDI of 0.16 ± 0.02 at a zeta potential of 17.4 ± 0.4 mV. On day 61, they had a Z-average 

diameter of 152 ± 4 nm, a PDI of 0.16 ± 0.02 at a zeta potential of 17 ± 2 mV (Figure 2.4). 

These results indicate that the CNs are stable for at least 2 months when stored at 4°C. 

 

Figure 2.4 DLS data for CNs stored at 4°C for 61 days: a) Z-average diameter; b) 

PDI; c) Zeta potential. No changes were observed, suggesting that the nanoparticles 

are stable under these conditions. Error bars correspond to the standard deviations 

of triplicate samples. Some error bars are too small to be seen because the standard 

deviations are smaller than the data points.) 
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2.3.5 pH-dependent Swelling CNs 

The pH-responsive properties of the unloaded CNs were examined first by 

adjusting the pH from the initial pH of 6.3 for the formulation to pH 3, 4, or 5. DLS 

measurements of the Z-average diameters at each pH indicated greater swelling at lower 

pH values (Figure 2.5a). The CNs swelled from 146 nm to 260 nm at pH 3. The swelling 

was rapid at each pH, reaching an equilibrium diameter at 10 minutes. We also subjected 

the CNs suspension to pH cycling between 6.3 to 4. Measurements of the Z-average 

diameter suggested that the CNs were able to selectively swell under acidic conditions and 

then to contract when the pH was increased upon removal of the stimulus (Figure 2.5b). 

However, there was a general trend towards larger diameters with repeated swelling cycles. 

 

Figure 2.5 pH-responsive behavior of the CNs: a) Z-average diameters over time at 

different pH values from 3 to 6.3. The results suggest the degree of swelling is 

proportional to the acidity of the suspension. The swelling behavior was also rapid, 

and reached equilibrium 10 minutes after pH adjustment. b) The pH-responsive 

behavior was further examined through pH cycling between pH 6.3 and 4 at a 10-

minute interval. The CNs were able to swell and contract accordingly based on the 

suspension pH. Error bars correspond to the standard deviations of triplicate 

samples. 
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2.3.6 Loading Efficiency  

The protein of interest, HTN3 was loaded into CNs at three different loadings: 2, 

5, and 10% w/w and after separation of the un-loaded protein by centrifugal ultrafiltration, 

it was quantified by Cationic-PAGE. The absence of protein bands shown on Figure 2.6 

suggested that all of the HTN3 was successfully loaded into the CNs at each loading ratio. 

 

Figure 2.6 Loading ratios of 2%, 5%, and 10% w/w HTN3 to chitosan were 

investigated. The absence of the protein bands in the representative gel after isolation 

of unloaded protein by centrifugal ultrafiltration suggests the protein at each loading 

ratio was fully loaded into the nanoparticles. The experiment was repeated in 

triplicate. 

 

2.3.7 pH-dependent Release of HTN3 from CNs 

The release kinetics of HTN3-loaded CNs were investigated at different pH values 

over a period of 210 minutes, with protein release measured every 30 minutes. Figure 2.7a 

shows the Cationic-PAGE for the cumulative release at pH 3. For this particular experiment 

the CNs released ~90% of the loaded HTN3 over the 7 time points (210 minutes). pH 

cycling was also performed to reflect the pH changes that happen many times in the oral 
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cavity throughout the day. HTN3 loaded CNs were subjected to pH treatments in the 

following sequence: 6.8, 4, 6.8, 4, 6.8, 4, 6.8, and 4. After isolation of released protein and 

Cationic-PAGE at each pH change, protein bands of HTN3 were only observed at pH 4 

and were absent at pH 6.8 (Figure 2.7b). This result shows the pH selective release for the 

CNs. 

 

 

Figure 2.7 The cumulative and pH cycling release of HTN3-loaded CNs were 

investigated under different pH conditions with released protein displayed using 

Cationic-PAGE (representative example shown). a) Cumulative release at pH 3 over 

7 time points obtained at 30-minute intervals. b) pH cycling from pH 4 to pH 6.8 at 

30-minute intervals, showing that the CNs selectively released the loaded protein at 

pH 4 but not at 6.8. The experiment was repeated in triplicate. 

a) 

b) 
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The cumulative release experiment was repeated at pH 4, 5, and 6.8, the results 

were quantified using Image Lab and plotted in Figure 2.8a. The highest cumulative 

amount of HTN3 release was observed at pH 3, and there was minimal release at pH 6.8. 

On average, at pH 3, the CNs were able to release ~84 ± 7% of the loaded HTN3, ~58 ± 

9% at pH 4, ~36 ± 3% at pH 5, and ~2 ± 2% at pH 6.8 over 7 separate releases. The pH 

cycling release was also quantified and presented in Figure 2.8b. The CNs were able to 

respond to the environmental pH changes and release the protein selectively at acidic pH. 

 

Figure 2.8 a) Release of HTN3 from CNs at different pH values were quantified using 

Image Lab. The highest extent of release and most rapid release was observed at pH 

3, and there was minimal release at pH 6.8. On average, at pH 3, the CNs were able 

to release ~84 ± 7% of the loaded HTN3, ~58 ± 9% at pH 4, ~36 ± 3% at pH 5, and ~2 

± 2% at pH 6.8. b) pH cycling release at 30-minute intervals between pH 6.8 and 4 

show that the CNs can adapt to environmental pH changes and release HTN3 

selectively at pH 4 over 3 pH cycles. Error bars correspond to the standard deviations 

on triplicate samples. 



44 

 

2.3.8 HTN3 Degradation Study in WSS  

In order to assess the protection offered through loading against enzymatic 

degradation in the oral cavity, a protein degradation study was conducted in 10-fold diluted 

human saliva to compare the degradation kinetics of free HTN3 and HTN3 loaded CNs. 

Figure 2.9a shows Cationic-PAGE for free HTN3 at different time points in contact with 

WSS. Figure 2.9b shows the Cationic-PAGE for HTN3 loaded into CNs. The protein bands 

of free HTN3 disappeared more rapidly, suggesting faster degradation without the 

protection offered by CNs. 

                     

                     

Figure 2.9 Protein degradation in WSS, evaluated by Cationic-PAGE (representative 

example shown, N = 3): a) free HTN3 and b) HTN3 loaded CNs. Most of the protein 

was degraded at the 2-hour mark for the control group, supported by the faded 

protein bands of HTN3. At the same time point, the protein band of HTN3 loaded 

within CNs remained relatively strong.  

a) 

b) 
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The degradation over time was quantified for both free HTN3 and HTN3 loaded 

CNs (Figure 2.10). For free HTN3, only 6 ± 5 % of the free HTN3 remained after 2 hours, 

whereas 47 ± 8 % of HTN3 was intact when it was loaded in the CNs delivery system. 

Protection provided by the CNs were plotted as the difference in degradation kinetic 

between free HTN3 and HTN3-loaded CNs. 

 

Figure 2.10 Protein degradation over time for free HTN3 and HTN3-loaded into CNs. 

For free HTN3, most HTN3 was degraded in 2 hours. At the same time point, about 

half of HTN3 was still intact in the CNs delivery system. The dashed line represents 

the protection offered by the CNs, displayed as the difference in degradation 

percentage between free HTN3 and HTN3-loaded CNs. Error bars correspond to the 

standard deviations on triplicate samples. 
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2.3.9 S. mutans Killing Assay 

To evaluate the effectiveness of HTN3 loaded CNs against biofilm formation by S. 

mutans on hydroxyapatite discs, the amount of HTN3 required to be loaded was first 

determined from a killing assay. First, a correlation was established between absorbance at 

600 nm and colony-forming unit (CFU)/mL for S. mutans, where CFU is a unit commonly 

used in microbiology to estimate the number of viable bacterial cells in a given sample. 

This is shown in Figure 2.11, where a linear relationship between absorbance and CFU/mL 

was observed.  

  

Figure 2.11 Relationship between optical absorbance at 600 nm and S. mutans CFUs. 

(N = 3), error bars cannot be seen because the standard deviations are smaller than 

the data points) 

The antibacterial effect of pure HTN3 was evaluated through a killing assay against 

107 CFU of S. mutans. 107 CFU was chosen because it is the bacterial population required 

to form a complete biofilm, and the IC50 was calculated to be 7.4 μM for pure HTN3 (Figure 

2.12). IC50 is the concentration required to inhibit a biological process by half. The same 

concentration of HTN3 was used in the CN-loaded form for subsequent experiments and 

tested against biofilm formation of S. mutans.  
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Figure 2.12 Killing assay results of pure HTN3 against 107 CFU S. mutans. Here, IC50 

= 7.4 μM. Error bars correspond to the standard deviations on triplicate samples. 

Some error bars cannot be seen because the standard deviations are smaller than the 

data points (95% CI: 5.4 to 10.1 μM)  

 

 

2.3.10 Biofilm Formation  

Wet biofilm mass was measured to test the effectiveness of 4 different treatment 

groups including 7.4 μM HTN3, 0.1% w/v unloaded CNs, 7.4 μM HTN3 in CNs, and the 

gold standard 12300 ppm fluoride solution. They were compared against PBS as a control 

group. As presented in Figure 2.13, the control group had an average wet biofilm mass of 

16 ± 2 mg, while the mass was 12 ± 1 mg for HTN3, 8 ± 2 mg for fluoride, 6 ± 1 mg for 

unloaded CNs, and 5.3 ± 0.9 for HTN3-loaded CNs.  

Bacterial cell viability was also evaluated and presented in Figure 2.14. The PBS 

control led to 5.25 x 109  ± 1 x 108 CFU/mL of viable bacteria, while free HTN3 had 4.7 x 

109  ± 0.2 x 109 CFU/mL, fluoride had 4.0 x 109  ± 0.4 x 109 CFU/mL, unloaded CNs had 

3.0 x 109  ± 0.2 x 109 CFU/mL, and HTN3-loaded CNs had 2.3 x 109 ± 0.5 x 109 CFU/mL. 
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Figure 2.13 a) Wet biofilm masses for 4 treatment groups were compared against the 

control group PBS. All 4 treatment groups led to significantly lower biofilm mass than 

PBS. Fluoride, blank and HTN3-loaded CNs performed significantly better than free 

HTN3 in minimizing biofilm formation, but no significant difference in biofilm mass 

was observed between these treatment groups. Error bars correspond to the standard 

deviations on 6 samples. b) Tukey’s multiple comparisons test was performed at 95% 

confidence intervals. The two groups were significantly different from each other only 

if the difference between group means ± upper and lower limits did not cross zero 

(dotted line).  
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Figure 2.14 a) Bacterial viability for the 4 treatment groups were compared against 

the control group treated with PBS only. While free HTN3 did not control bacterial 

growth, fluoride treatment significantly decreased bacterial growth. Blank and 

HTN3-loaded CNs were the most effective at decreasing bacterial population but are 

insignificantly different from each other. Error bars correspond to the standard 

deviations on 6 samples. b) Tukey’s multiple comparisons test was performed at 95% 

confidence intervals. The two groups were significantly different from each other only 

if the difference between group means ± upper and lower limits did not cross zero 

(dotted line).  



50 

 

2.4 Discussion  
Chitosan polymers with different properties were studied to optimize nanoparticle 

formulation via ionic gelation. The mechanism behind ionic gelation involves interactions 

between the positively charged chitosan polymer chains and the negatively charged cross-

linking agent TPP under mechanical stirring. MWs and degrees of deacetylation were 

studied in this work because these factors determine how the chitosan polymer chain 

interacts with the cross-linker agent TPP (Zhang and Neau 2001; Schiffman and Schauer 

2007). The degree of deacetylation determines how many deacetylated sites are available 

for cross-linking, while MW regulates how accessible these deacetylated sites are. 

Based on previously reported work, CNs can be prepared at various concentrations, 

ranging from 0.1 – 1 mg/mL (Dudhani and Kosaraju 2010; Sullivan et al. 2018), and given 

a higher concentration formulation is desirable due to greater efficacy, 1 mg/mL for both 

chitosan and TPP was used for all experiments. Chitosan to TPP mass ratio was studied 

extensively in an attempt to optimize the formulation. Initially, the average particle 

diameter of the CNs decreased with increased chitosan to TPP ratio, which can be 

explained with the increased cross-linking density between chitosan and TPP. However, 

beyond a certain ratio threshold, CNs started to form aggregates. This could be due to 

bridging of the nanoparticles by excess chitosan chains. The PDI also followed a similar 

trend since as chitosan to TPP ratio increased, higher cross-linking density promoted a 

more uniform size distribution of CNs. However, beyond the critical ratio, the CNs started 

to aggregate as described above, resulting in higher PDIs. For the zeta potential, a steady 

increase was observed with increasing chitosan to TPP ratios, since chitosan is positively 

charged and excess chitosan leads to more cationic nanoparticles. The findings are in 

agreement with many studies in the literature (Fan et al. 2012; Jonassen et al. 2012). 

However, the critical ratios differed depending on the MW and degree of deaceytalation of 

the chitosan polymer. 

The optimal formulation was selected based on particle diameter, PDI and zeta 

potential. The particle diameter is important, because smaller particles have a higher 

surface to volume ratio, which can therefore adhere to the tooth surface more readily and 

also swell and contract more easily (Liu et al. 2007). Secondly, PDI is another crucial index 
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to characterize nanoparticles. It is a dimensionless value generated from a cumulants 

analysis (2 parameter fit), scaled, and ranges from 0 to 1 for nanoparticles. Values smaller 

than 0.05 are rare except for highly monodisperse standards. Values greater than 0.7 

suggests the size distribution is very broad and means that DLS may not be the best 

technique to analyze the sample of interest. In general, a lower PDI is better as it indicates 

a more monodisperse, well-defined sample. Lastly, zeta potential exists between the 

particle surface and the dispersing liquid. It measures the extent of electrostatic 

repulsion/attraction between particles and provides insight into the overall stability of 

nanoparticle suspension and its tendency to aggregate. In general, highly 

positively/negatively charged nanoparticles form more stable suspensions due to 

electrostatic repulsions, compared to nanoparticles with zeta potentials close to zero. The 

optimal formulation will have the best balance of all three parameters. Ideally, it is best to 

have a formulation with a sub-200 nm nanoparticles in diameter, with a relatively low PDI 

and a high zeta potential. Through a colloidal stability study by time-course of particle size 

and PDI measurements by DLS, we found that the nanoparticles maintain their average 

size and PDI when the zeta potential is above 15 mV. Therefore the ultra-low MW chitosan 

formulation at a ratio of 6.94:1 (chitosan to TPP) was chosen as it has the smallest particle 

diameter of 144 ± 6 nm,  with the lowest PDI of 0.15 ± 0.04 at a zeta potential of 18 ± 4 

mV. The optimized CNs were visualized by TEM and the average particle diameter 

estimated from the TEM images was in good agreement with the average particle diameter 

obtained from DLS. Since HTN3 is a low MW salivary protein, the loading of it into the 

CNs didn’t affect the particle diameter. As shown by the TEM images, there was no general 

variance in size or dispersity between the unloaded CNs and those with different HTN3 

loading ratios.  

The pH-responsive properties of the optimized CNs were also investigated. The 

extent of swelling under different pH conditions was studied. The highest degree of 

swelling was observed at pH 3 and the CNs remained unchanged at pH 6.3. The results 

also demonstrated the degree of swelling was proportional to the acidity of the suspension. 

The swelling response elicited by the pH stimulus was rapid, suggesting that CNs were 

able to quickly respond to pH changes. The versatility of this pH-responsive property was 
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further examined through pH cycling between 6.3 and 4, and the results suggested the CNs 

delivery system was capable of swelling selectively at acidic pH and reversed the swelling 

process upon removal of the pH stimulus.  

The loading loading efficiency of HTN3 was studied at 2%, 5%, and 10% w/w 

loading ratios of HTN3 to chitosan. The absence of unloaded protein suggested that HTN3 

was quantitatively loaded in the delivery system at all ratios, which is beneficial, as the 

loading can therefore be tuned. Cumulative release studies at different pH values including 

3, 4, 5, and 6.8 were also conducted to assess the extent of release of loaded HTN3 from 

the delivery system. These values were chosen because they reflect the cariogenic 

conditions promoting different oral diseases. For instance, dental caries initiate at pH 5 and 

dental erosion occurs at pH 3. In accordance with the demonstration of the pH-responsive 

property shown previously, the extent of HTN3 release was proportionate to the acidity of 

the environment. A maximum cumulative release of ~84 ± 7% was achieved at pH 3 over 

7 time points, while a minimum release of ~2 ± 2% was observed at pH 6.8. In order to 

better mimic the pH changes in the oral cavity throughout the day, pH cycling release was 

performed between pH 6.8 and 4. As presented in the results section, HTN3-loaded CNs 

were able to selectively release loaded HTN3 at pH 4, and retain the HTN3 at the salivary 

pH of 6.8. The ability to selectively release HTN3 under acidic conditions is crucial 

because throughout the day the salivary pH fluctuates many times from the consumption 

of food or beverages (Bowen 2013). As saliva becomes acidic following carbohydrate 

intake, the drop in pH could trigger the release of HTN3, which promotes oral homeostasis 

by inhibiting the demineralization process. Salivary pH would gradually recover to its 

physiological value due to the buffer capacity of saliva, which would halt HTN3 release 

from the CNs. Further release of HTN3 would require another incident of sugar ingestion, 

which would drop salivary pH.   

Salivary proteins are known to be susceptible to the high proteolytic activity in the 

oral cavity, which prevent them from being utilized as potential therapeutics on their own. 

To evaluate the protection offered by CN against enzymatic degradation, a protein 

degradation study was performed in 10-fold diluted human saliva. Saliva was diluted to 

better capture the degradation kinetics of proteins, since at the original concentration the 
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degradation would have happened too rapidly to allow easy measurement of the process. 

As presented in the results section, only 6 ± 5 % of the free HTN3 remained at the 2-hour 

mark. At the same time point, about 47 ± 8 % of HTN3 was still present in the CN delivery 

system. At the 6-hour mark, only 7 ± 1 % of HTN3 remained in the delivery system, which 

could be due to the potential breakdown of the CNs by amaylase. Nevertheless, the delivery 

system prolonged the protein survival time by two-fold. The increase in survival time is 

important because it allows less frequent administration of the formulation. 

Ultimately, a biofilm model was applied to evaluate the therapeutic effect of HTN3-

loaded CNs against S. mutans biofilm formation on hydroxyapatite discs. S. mutans was 

chosen because it is a major contributor responsible for the initiation and development of 

tooth decay (Garcia et al. 2017). It metabolizes sucrose to produce sticky polysaccharides 

which allow the bacteria to aggregate and adhere to the tooth enamel, forming a biofilm. 

The biofilm, together with frequent sugar intake promotes fermentation of dietary sugar 

into acidic products. Persistence of the resulting acidic conditions favors the proliferation 

of acidogenic bacteria. The low pH environment in the biofilm initiates the dental caries 

process (Argimón and Caufield 2011). Hydroxyapatite is a mineral composed of calcium 

phosphate, which greatly resembles human hard tissues including bone and tooth enamel 

in composition and morphology (Wei and Ma 2004). It is also the most stable calcium 

phosphate mineral under physiological conditions (Kalita et al. 2007). Therefore it has been 

extensively used in oral applications, such as pellicle formation and biofilm formation 

(Vacca Smith and Bowen 2000; Takeshita et al. 2015). 

Two key factors used to evaluate biofilm growth are biofilm mass and bacterial cell 

viability. Effective treatment should result in low biofilm mass and reduced bacterial cell 

viability. For biofilm mass measurements, based on the ANOVA analysis and Tukey’s 

multiple comparisons test, all four treatment groups resulted in significant lighter biofilms 

than the control group. Fluoride, together with unloaded and HTN3-loaded CNs were 

significantly more effective than free HTN3. However, no significant difference was 

observed between the treatment groups. These treatment groups successfully lowered the 

biofilm mass by at least half. Bacterial cell viability was also determined for all treatment 

groups. Free HTN3 was not effective at reducing bacterial cell viability and did not perform 
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better than the control group. Fluoride, unloaded, and HTN3-loaded CNs significantly 

reduced cell viability when compared against the control group. However, when compared 

against HTN3, fluoride was not significantly more effective, even though it is significantly 

more effective than the control group. Unloaded and HTN3-loaded CNs were the most 

competent treatment groups. They reduced cell viability in half, but their performance in 

reducing bacterial population were not significantly different from one another. These 

results suggest that CNs alone can potentially reduce biofilm growth, which could be 

explained with the functional amino group attacking the cell wall of S.mutans. This opens 

up the possibility of integrating blank CNs directly into dental hygiene products such as 

mouth wash to prevent dental caries. However, toxicity of these CNs still needs to be 

determined.  Even though HTN3-loaded CNs didn’t outperform blank CNs as 

hypothesized, it is still worth investigating with the optimization of current biofilm model. 

Future studies can load greater amount of HTN3, or reduce the amount of CNs while 

maintaining HTN3 concentrations. In addition, CNs are known to exhibit antimicrobial 

effects against S.mutans (Chávez de Paz et al. 2011). Another possible explanation would 

be CNs alone already prevented the initiation of demineralization, therefore there was no 

steep drop in pH to trigger HTN3 release from the CNs.  
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2.5 Conclusion 
The results of this study have demonstrated the pH-responsive property of the CNs. 

The CNs were also able to offer protection against enzymatic degradation in comparison 

to free HTN3. While HTN3-loaded CNs had successfully reduced biofilm growth as 

reflected by reduced biofilm mass and bacterial cell viability, it did not significantly 

outperform unloaded CNs. Future studies should include using the biofilm model to 

characterize the contribution of HTN3 within CNs and CNs alone in controlling bacterial 

population. Nonetheless, this work has shown that CNs can be utilized as a protein carrier 

for oral applications, especially for complications involving acidic environments. This 

delivery system can also be applied to load other salivary proteins for oral delivery. For 

instance, HTN1 and HTN5 can be readily loaded into the CNs as they share similar 

properties as HTN3. Anionic proteins can also be loaded into the CNs with a modified 

loading protocol. The ultimate goal of this project is to develop a formulation which could 

be integrated into daily dental hygiene products like toothpaste and mouthwash to provide 

a preventative approach to address dental caries. Even though blank CNs have 

demonstrated the potential at reducing biofilm growth, multifunctional salivary proteins-

loaded HTN3 is still worth investigating. The results presented in this chapter show that a 

pH-sensitive delivery system that can release salivary proteins under acidic conditions can 

be achieved by utilizing a biodegradable, biocompatible, and naturally-derived polymer 

like chitosan. 
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Chapter 3  

3 Conclusions and Future Work 

3.1 Conclusions 
We have developed a reproducible method that yields cationic CNs that 

successfully loaded HTN3. The HTN3-loaded CNs were able to selectively swell under 

acidic pH conditions, releasing the loaded HTN3. The amount of HTN3 released was 

proportional to the acidity of the environment. The observed pH-responsive release is 

important because the oral cavity acidifies every time after dietary carbohydrate intake. 

The released protein may promote oral homeostasis to prevent dental caries. Protection of 

loaded HTN3 against enzymatic degradation was evaluated under the presence of 10-fold 

diluted human saliva. The delivery system provided a two-fold increase in survival time 

compared against free HTN3. The prolonged survival time allows the formulation to be 

administered less frequently, and releases protein to offer protection every time after sugar 

consumption that happens numerous times a day. Preliminary results have suggested the 

blank and HTN3-loaded CNs have the potential to reduce biofilm growth, supported by 

lowered biofilm mass and reduced bacterial cell viability. The most intriguing finding is 

the blank CNs performed on par with the gold standard fluoride. Results from the biofilm 

experiment suggested blank CNs alone are sufficient in reducing biofilm growth. One 

possible application would be to incorporate blank CNs formulation directly into a mouth 

wash as a preventative measure to address dental caries. Some advantages of using blank 

CNs alone are the simplified preparation protocol, and reduced cost without HTN3.  

There are some limitations to this study. Firstly, the HTN3-loaded CNs were 

visualized by TEM. However, the 2D-visualization could not explicitly illustrate if HTN3 

was loaded inside of the CNs or outside across the surface of CNs. Secondly, the whole 

saliva was diluted by 10-fold to better capture the degradation kinetics of HTN3, since the 

degradation would have happened too rapidly at the original concentration, making it a 

challenge to study. However, this does not simulate the real proteolytic environment. 

Lastly, the quantity of CNs absorbed onto the HA discs was not quantified due to 

limitations in methodology.    
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3.2 Future Work 
Future studies can take on two directions. First the possibility of integrating blank 

CNs into dental hygiene products to prevent dental caries could be further explored. The 

toxicity profile of the blank CNs needs to be evaluated. Coverage of CNs on tooth surface 

also needs to be determined.  

The second focus would be to continue investigating HTN3-loaded CNs. Saliva 

collected from caries-active patients will be used to characterize the extent of release from 

CNs and the kinetics of protein release. Modifications to the preparation of CNs will be 

attempted to enhance the protection offered against enzymatic degradation. Biofilm 

experiments will include a larger sample size to compensate for the high sample variability. 

Treatment time will also be optimized, as only a 2-hour treatment time was evaluated so 

far. 2 hours is the time required for pellicle formation, but it may not be the optimized time 

for the attachment of CNs onto the discs. The amount of protein loaded was based on the 

IC50 obtained from the killing assay. More HTN3 can be loaded, and/or lower chitosan 

concentration should be studied to better distinguish between unloaded and HTN3-loaded 

CN treatment groups. Another potential treatment group worth investigating would be a 

combination treatment of HTN3 loaded CNs and fluoride. The newly proposed treatment 

group is inspired by previous studies in the chemotherapy field that have achieved 

synergistic effects through combination treatments (Ren et al. 2009; Cai et al. 2015; 

Mukherjee et al. 2017). A synergistic effect occurs when two or more therapeutic agents 

combine to create an effect that is greater than the sum of their individual effects. Lastly, 

the delivery system could also be applied to load other functional salivary proteins, such 

as HTN1 and HTN5. Other functional salivary proteins could also be loaded through 

modified loading protocol. A variety of proteins could be loaded to formulate a 

multifunctional delivery system.   
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