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Abstract

This thesis presents a novel technique for localizing the Sub-

thalamic Nucleus (STN) during Deep Brain Stimulation (DBS)

surgery. DBS is an accepted treatment for individuals living with

Parkinson’s Disease (PD). This surgery involves unilateral or bi-

lateral implantation of a permanent electrode inside the STN to

deliver electrical current to neural tissue. The STN is a very

small grey matter structure within the brain, which makes accu-

rate placement a challenging task for the surgical team. Prior to

placement of the permanent electrode, intraoperative microelec-

trode recordings (MERs) of neural activity are used to localize

the STN. The placement of the permanent electrode and the suc-

cess of the stimulation therapy depend on accurate localization.

In this study, an objective approach was implemented to help the

surgical team in localizing the STN. This is achieved by process-

ing the MER signals and extracting features during the surgery to

be used in a Machine Learning (ML) algorithm for defining the



electrophysiological borders of the STN. A new classification ap-

proach that can detect the dorsal borders of the STN during the

operation is proposed. MER signals from 100 PD patients were

recorded and used to validate the performance of the proposed

method. The results show that by extracting wavelet transforma-

tion features from MER signals and using a deep neural network

architecture, it is possible to detect the border of the STN with

an accuracy of 92%. The proposed method can be implemented

in real-time during the surgery to assist the surgical team with

the goal of enhancing the accuracy and consistency of electrode

placement in the STN while reducing the operation time.

Keywords: Deep Brain Stimulation, Intraoperative Localiza-

tion of the STN, Machine Learning, Deep Neural Network, Sub-

thalamic Nucleus, Parkinson’s Disease.
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Chapter 1

Introduction

1.1 Introduction

1.1.1 Parkinson’s Disease: Symptoms and Etiology

Parkinson’s disease (PD) is a chronic and progressive neurological disease that affects 1% of

people over 60 years of age [1, 2]. PD belongs to the movement disorder disease group, and it

is 1.5 times more likely to present in the male population [3].

Most of the clinical motor features can be divided into hypokinesia and bradykinesia. Hy-

pokinesia is the reduction in the frequency of regular movements such as arm swing, stride

length, and blinking rate. Bradykinesia is the slowness of movements and fatigability of repet-

itive movements [4]. In the early stages of the disease, the most common motor symptoms

are tremor, rigidity, bradykinesia, postural instability and shuffling of gait. Typically, tremor

occurs during rest and involves the hands, legs, jaw, and lips [5]. Apart from these motor symp-

toms as the disease progresses nonmotor symptoms arise as well. Depression, dementia, and

apathy are the most common neuropsychiatric comorbidities for individuals living with PD.

Motor and nonmotor symptoms significantly affect the quality of life in individuals living with

PD [3].

Motor features of PD result from the neurodegeneration of dopamine producing neurons in

substantia nigra pars compacta (SNc) within the Basal Ganglia (BG). These neurons project

their unmyelinated axons rostrally via the medial forebrain bundle to the striatum, where they

1



2 CHAPTER 1. INTRODUCTION

normally release dopamine [6]. Another pathophysiological sign of PD, although not present

in every individual with PD, is the presence of Lewy bodies (aggregates of alpha-synuclein).

While the exact cause of PD is unknown, genetic and environment factors could be among the

causes [3].

1.1.2 Basal Ganglia, Dopamine and the Control of Movement

The BG is a group of subcortical nuclei within the brain, having a critical role in voluntary

movement, control and cognitive behaviors [7]. The BG are on both sides of the brain, deep

in cerebral the cortex, with no direct sensory inputs and no direct motor output to the spinal

cord. As a result, the BG has no control over the specific movements of muscles directly. The

BG indirectly controls movement mainly through the neurotransmitter dopamine, which plays

a key role in the execution of desired movement [8].

The BG receives input signals from the cerebral cortex. Dopaminergic inputs in the SNc

process and modulate this information and send the signal back to the cortex through the tha-

lamus.

The BG has five major components which are (1) striatum, which is divided by the internal

capsule into the caudate nucleus and putamen, it is also the largest component of the BG

and has an important role in processing the inputs. (2) The globus pallidus (GP), which is

divided into two segments by the medial medullary lamina; globus pallidus pars interna (GPi)

and globus pallidus pars externa (GPe). (3) The substantia nigra (SN), which is also divided

into the substantia nigra reticulata (SNr) and (SNc). (4) The final component of the BG is

the subthalamic nucleus (STN), which is the structure that produces the largest amount of

excitatory neurotransmitter glutamate [8]. Figure 1.1 shows the relative locations of these

nuclei components inside the brain.

Most of the information processing in the BG happens within the striatum. In the striatum,

most of the neurons in this part are of the medium spiny variety [9]. These neurons are respon-

sible for receiving input from corticostriatal axons and releasing the neurotransmitter GABA.

The neurons send projections through two important pathways named the direct pathway and

the indirect pathways [9].

It is essential that both direct and indirect pathways of the BG be tightly balanced for vol-
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Figure 1.1: The basic anatomy of the brain showing the major regions within the basal ganglia
area. Figure adapted from http://www.dana.org.

untary movement. If part of either pathway is impacted and unbalanced, a movement disorder

may arise [10].

The direct pathway involves the striatum sending convergent inhibitory projections to the

output nuclei. These neurons in the direct pathway have D1 dopamine receptors, which have

direct pathways to the GPi, the output nucleus of the BG. The thalamus then sends widespread

excitatory projections to the neocortex. These projections are vital for the initiation of move-

ment; therefore, activation of the direct pathway stimulates movement.

Within the indirect pathway, the neurons contain D2 dopamine receptors and co-express the

protein enkephalin. These cells project to the GPe and this in turn, inhibits neurons within the

STN [11]. The indirect pathway neurons send signals to the output nuclei indirectly through the

GPe and the STN. The activation of the indirect pathway acts to inhibit movement. Therefore,

these two circuits have different effects on the output nuclei. Direct pathway stimulates and

excited the output nucle while the indirect pathway inhibits the output from the striatum to

the GPe [11, 12]. The output signal from the GPi is sent to the cortex through thalamus. The

GPi and the SNr are the main outputs of the BG, and the STN transmit information from the

striatum to the output of the BG [11].

Within the PD brain, there is a reduction in the number of SNc neurons that produce
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Figure 1.2: Basal ganglia-thalamo-cortical circuit schematic in a healthy brain state. Neural
signal transmission for movement control, begins at the SNc. The SNc projects the output
to the striatum, which travels via direct and indirect pathways to the GPi/SNr. The GPi/SNr
output signal projects to the thalamus, which directly communicates with the motor cortex.

dopamine. Compared to a healthy brain, individuals living with PD have a dopamine de-

ficiency, which reduces the activity of neurons in the direct pathway and over activates the

neurons in the indirect pathway [13]. The imbalanced signal transmission in the direct and

indirect pathway leads to PD symptoms. Figure 1.2 shows the BG neural circuit in a healthy

brain state and Figure 1.3 shows the BG neural circuit in a PD brain.

It should be mentioned that the BG system is far more complex than what it is described

here, and the pathophysiology of PD is not yet fully understood. However, this basic circuit

model has helped clinicians find treatment options for PD.

1.1.3 Pharmacological Treatments for Parkinson’s Disease

At the beginning stages of PD, the brain dynamically adapts to the dopamine depletion and

by the time the cardinal symptoms of PD are present, patients have lost 80% of their striatal

dopamine neurons and 50% of their SNc neurons [14]. Two main treatment options for individ-
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Figure 1.3: Basal ganglia-thalamo-cortical circuit schematic in the PD brain. The thickness of
the arrows describes the strength of the connection. Due to the degeneration of dopaminergic
neurons in SNc, the signal transmission in both direct and indirect pathways are altered. The
hyper-active STN signal is sent to the GPi, which leads to the increased inhibition of signals
sent to the cortex.
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uals living with PD are pharmacotherapy and neurosurgery. Pharmacotherapy involves using

oral medications and it usually precedes the surgical interventions for the beginning years of

the disease [15].

Most PD patients show significant improvements initially with medical therapy, partic-

ularly, levodopa. Levodopa is a dopamine precursor, which can cross the blood-brain bar-

rier, and is converted to dopamine in the brain. As a treatment for PD, levodopa restores the

dopamine concentrations, which are reduced in the disease state [16, 17]. This works to al-

leviate the motor symptoms of PD such as rigidity, tremor and bradykinesia [17]. However,

it can also cause some side effects for patients like nausea, abdominal discomfort, and vom-

iting; other medications may be taken to reduce these unpleasant side effects. Many patients

experience increasing motor fluctuations and levodopa induced dyskinesias (LID) after a few

years of using levodopa [5]. Levodopa is best started with a minimum dose (typically 50-100

mg/day) [18]. However, since PD is a progressive disease, the medication needs to be increased

as the symptoms worsen. Although levodopa is the most effective medication to treat the motor

symptoms of PD, it is not a cure for the disease [5, 16, 18].

For most patients, the response to levodopa progressively becomes more unpredictable

with some severe side effects. These side effects have a significant impact on the quality of

their life. Thus, for patients experiencing levodopa fluctuations, an alternative therapy, such as

neurosurgical intervention, might be more beneficial [5, 16].

1.1.4 Neurosurgical treatments for PD: Deep Brain Stimulation

Deep brain stimulation (DBS) is a neurosurgical treatment for advanced PD and other kinds

of movement disorders. This surgery is selected for patients who are responsive to levodopa,

but suffer from severe fluctuations in the pharmacological response, despite optimal medical

treatment [5,16]. DBS can help to alleviate motor symptoms, such as tremor and can decrease

bradykinesia, rigidity, and gait impairment [19, 20]. It also can reduce the amount of medi-

cations PD patients take on daily basis. This in turn helps to reduce the side effects patients

may have been experiencing with the medications. During DBS surgery, a permanent electrode

is implanted inside the brain to deliver high-frequency electrical pulses to either the STN or

the internal segment of the GPi. These current pulses are most often monopolar at 130 Hz
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Figure 1.4: This figure shows the implanted DBS electrode and its connection to the pulse
generator.

or 185 Hz, with a typical pulse width of 60 µs and a voltage around 3V. The electrodes are

connected to a pulse generator that is located subcutaneously below the clavicle as shown in

Figure 1.4 [19].

Electrical stimulation of the brain has been studied since 1870 to investigate brain function

and the first report of cortical stimulation was published by Bartholow [21]. In 1987 Alim

Benabid discovered that high-frequency stimulation of the brain had some clinical benefits for

treatment of motor impairments [22]. These clinical benefits were like lesioning procedures

used in the treatment of movement disorders previously [23]. However, DBS is now a more

accepted treatment of movement disorders than lesioning procedures due to the reversibility of

DBS. In addition, DBS allows the clinician to change the stimulation parameters such as volt-

age and frequency. Thus, DBS can be personalized for the optimal setting to each individual

patient over time. Furthermore, DBS has minimal tissue damage in comparison to lesioning

procedures and surgical ablation [23, 24].

The reason for the efficacy of DBS surgery in the treatment of PD is still unknown. There is

no complete theory regarding the mechanism of sending high-frequency electrical currents to
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deep brain structures [25]. A popular theory, presented by Temel et al. [26], is that DBS reduces

neuronal activities through a depolarization block, which will interrupt spontaneous activities

within the neurons. Another hypothesis is that DBS can cause the activation of inhibitory

afferents, which leads to the release of inhibitory neurotransmitters [26, 27].

1.1.5 STN-DBS Surgical Procedure

The DBS surgery varies slightly between different health care centers, but it is often composed

of two parts. The first part is the implantation of a small electrode inside the motor region of the

STN, and the second part is to connect the electrode to a pulse generator under the collarbone

of the patient. These two parts are usually done on separate days, the electrode is implanted

first followed by the connect to the pulse generator through a thin wire under the skin. The

first part, implanting the electrode usually takes about 6-8 hours of operation [25, 26, 28]. All

patients withhold the short-acting Parkinson medications 12 hrs prior to the surgery.

The first step before electrode implantation in DBS surgery is the trajectory determination.

The proper trajectory needs to be identified before the operation through medical images. A

preoperative magnetic resonance imaging (MRI) sequence is obtained to determine the coor-

dinates of the Anterior Commissure (AC), Posterior Commissure (PC) and the STN. An axial

T2-weighted MRI image is usually used to identify the STN structure (Signa, 1.5T, General

Electric, Milwaukee, Wis). The center of the STN is used as the surgical zero-point. Following

stereotactic placement of the surgical Leksell frame on the patients’ head (Elekta Instruments,

Sweden), a stereotactic CT is obtained and fused with the preoperative MRI (StealthStation,

Medtronic Corp, MN). The initial stereotactic STN coordinates are: 12.0 mm lateral, 2.0 mm

posterior and 4.0 mm ventral to the midcommissural point (middle of AC and PC). Adjust-

ments are then made according to the anatomy of the patient. The stereotactic head frame on

the patient helps to guide the proper placement of the DBS electrodes [28].

The trajectory is determined before the surgery with respect to the anatomical landmarks

AC and PC for the optimal placement of electrodes and reducing the risk of penetrating other

parts of cerebral tissue. Although the MRI helps with estimating the location of the surgical

target (STN), there may still be error that is introduced. The STN is a very small nucleus,

located in the gray matter region of the brain. Furthermore, the optimal surgical target location
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for STN stimulation differs between patients. Therefore, the MRI may not be accurate enough

for locating the motor region of the STN. Thus, there is a need to record electrophysiological

signals from the surgical target prior to DBS electrode implantation [28, 29].

The patient is brought to the operating room, a sterile field is established, and a burr hole is

drilled anterior to the coronal suture. A computer-controlled microelectrode drive is mounted

to the Leksell frame (StarDrive, FHC Inc., Bowdoinham, ME) to record electrophysiological

signals. Some centers record through one track at a time, others investigate multiple tracks at

once. In DBS surgeries that are performed at University Hospital, London, Ontario, up to five

tracks are lowered down to record the activity of neurons toward the STN surgical target.

Five cannulas, with stylets, are lowered to 10.0 mm above the surgically planned target.

The stylets are removed and replaced with five tungsten microelectrodes (60 µm diameter)

with an impedance of 0.5-1.0 mΩ at 1kHz (FHC Inc., Bowdoinham, ME). Microelectrode

signals are then captured from 10.0 mm to 5.0 mm above the target in 1.0 mm steps. From 5.0

mm onwards, a step size of 0.5 mm is used. The neurosurgical team projects and monitors the

microelectrode recordings to find the borders of STN taking into account the fact that neuron

activities inside the STN have asymmetrical spiking pattern at a high frequency with bursting

patterns.

Once the ventral border of the STN is found, the recordings are completed (generally

around 4.0 mm to 5.0 mm below the surgical target). When all the microelectrodes are im-

planted, a stimulation symptom review is done by the neurosurgeon on the patient. The goal

of this is to identify the the most optimal target location for the final electrode implantation,

which reduces the symptoms with fewest side effects. Tremor and rigidity are the most com-

mon symptoms that the neurosurgical team uses for optimal electrode positioning.

In the end, the neurosurgeon and electrophysiologist decide on the best microelectrode

track; all microelectrodes are removed, and the final therapeutic electrode is introduced down

the selected optimal trajectory. All the steps are repeated on the other side of the brain if the

patient is receiving bilateral surgery. In Figure 1.5, an MRI of the trajectory of microelectrodes

inside the brain is shown.
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Figure 1.5: Microelectrode trajectory reconstruction. The red lines indicate the depths that
the neurosurgeon decided the microelectrodes are inside the STN. The reconstructions and
visualizations were performed using custom Python codes, the Visualization Toolkit, and 3D
Slicer v4.8 (https://www.slicer.org). T2-weighted 7T images were co-registered to the pre-
operative CT image containing the Leksell frame. Images were converted to the NIFTI file
format using dcm2niix [30]. Co-registration was performed using rigid registration tools in
Niftyreg [31]. The coordinates of the microelectrode trajectories were extracted from Stealth-
station (Medtronic Corp, MN).

Microelectrode Recordings (MER)

In the brain, neurons transmit signals by generating electrical fields. Microelectrodes can

record neural activity up to a radius of 200 microns. In DBS surgery, up to five microelec-

trodes are inserted. These microelectrodes are named based on their anatomical place; central,

medial, lateral, anterior, and posterior [28].

Neural signal characteristics of each brain structure is different. The STN nucleus is iden-

tified by an abrupt increase in background neural activity and spiking rate. The spike patterns

are also different in this nucleus as it is shown in the Figure 1.6. Therefore, recording the MER

signals from different nuclei can assist the neurosurgeon to identify the STN target during the

DBS surgery.

Also, a sample MER signal from a right-side anterior trajectory of the patient number 49

is shown in Figure 1.7. This figure demonstrates the difference in electrophysiological signal

inside and outside the STN.
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Figure 1.6: 3D image of STN (right) with MER recordings (left) in a typical trajectory. (A)
Upon entering the subthalamic nucleus, there is an increased compound firing rate and neural
noise background, which decreases upon exiting the STN. (B) The typical DBS trajectory will
traverse the thalamus (TH), followed by zona incerta (ZI), arriving at the subthalamic nucleus
(STN), exiting into white matter (WM), and ending at the substantia nigra (SN) (Figure adapted
from [32]).
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Figure 1.7: MER trace from an anterior microelectrode trajectory from an STN-DBS case at
University Hospital, London Health Sciences Center. The microelectrodes were advanced from
10.0 mm to 5.0 mm in 1.0 mm intervals. From 5.0 mm to the end of the trajectory, the unit was
advanced in 0.5 mm increments. The green line indicates the dorsal border of the STN and the
red line indicates the ventral border of the STN, as decided by the neurosurgeon.
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Challenges of Deep Brain Stimulation surgery

The outcome of DBS surgery is highly dependent on the accurate placement of the DBS elec-

trode inside the STN. Since the STN is a very small (4-7mm) and it is in a deep anatomical

region, precise and accurate implantation of the electrode is a difficult, challenging and time-

consuming task. Accurate STN target localization also requires a high level of proficiency and

expertise in the surgery. Due to the sensitivity and importance of implantation, significant intra-

operative time is spent on localizing the borders of the STN. Sub-optimal positioning of DBS

electrodes accounts for 40% of cases of inadequate efficacy of stimulation post operation [33].

In current practice, an MRI is used to locate the STN according to a visual atlas [34].

However, the exact location of the motor territory of the STN cannot be determined from MRI

images [35]. Thus, intraoperative MERs can be used to localize the STN using electrophys-

iological properties of the brain tissue surrounding the STN and within the STN itself. In a

typical DBS surgery, up to five microelectrodes are inserted through a burr hole in the skull.

The microelectrodes record the electrophysiological activity along a track as they are sequen-

tially advanced into the brain by the electrophysiologist [36]. Since each structure in the brain

has its own characteristic neural activity (such as spike firing counts and patterns), the STN can

be recognized over the background noise level. As a result, based on monitoring these electro-

physiological activities, the neurosurgeon can decide when the microelectrode has entered the

STN [34, 37].

1.1.6 Application of Machine Learning for localization of STN- Litera-

ture Review

The topic of STN localization accuracy using electrophysiology has been studied in the liter-

ature, and several techniques have been implemented (e.g., [38–41]). An in-depth review has

been published recently on all the studies conducted so far that used different feature extraction

techniques and machine learning algorithms for localizing the STN nucleus [32]. In [32], Wan

et al., have provided a complete summary of the state-of-the-art algorithms that have achieved

good accuracies. It was mentioned that most of the existing results are not robust enough for

clinical implementation and further research is needed on the topic of detecting the STN nu-
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cleus. Some major issues of localizing the STN during DBS surgery in the literature have

been elaborated in [32]. One of the most important issues is the real-time implementation of

localizing the STN. Postoperative processing steps are needed (such as some critical normal-

ization) to prepare the feature space to be used for classification. These methods cannot be

used intraoperatively [32].

In [39], multiple computational features have been suggested to identify the dorsal border

of the STN using an unsupervised machine learning algorithm. This work was completed in

2015 [41] with the development of a new feature selection and normalization method that is

based on the previously-suggested features. In [41], ten features were suggested as the best

features to use in the classification problem. In addition, four classifiers were evaluated in [41].

Among the suggested algorithms, the Logistic Regression (LR) algorithm was reported as the

most accurate scheme.

In [40], four features were selected from [39], and a Support Vector Machine (SVM) tech-

nique was used as the classifier. This work was continued in 2016 using a similar feature set

from five PD patients and a neural network was used as the classification method [42].

Although high performance has been reported in some of the articles, the existing high

performance techniques cannot be implemented in the operating room and during surgery.

The reason is that the extracted features used in conventional techniques require post-operative

processing steps (such as spike sorting and a specific normalization algorithm that requires

information from the whole insertion trajectory) [39], [41].

However, the existing approaches can be used as post-operative validation techniques (which

can help to evaluate the quality of the conducted operation after completion of the surgery).

However, they do not allow for STN localization in an intraoperative manner. As a result, they

cannot be used as a tool to provide feedback to the surgical team intraoperatively for enhancing

the quality of concurrent surgery.

Moran et al. [43] have shown the feasibility of estimating entry and exit points of the STN

based on normalized Root Mean Square (RMS) values. They have collected data from 27

PD patients and used Bayesian posterior probability to calculate the location of the electrode

based on the normalized RMS values. In this study [43], Moran et al. have reported the

error in predicting the STN entry and exit point, which is 0.30 ± 0.28 mm deviation from the
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neurosurgeon’s target result.

In [38], some visualization techniques of MER signals have been suggested to help identify

the STN. In this study [38], Falkenberg et al. have used MER from 14 PD patients and have ap-

plied a few visualization methods such as Power Spectral Density (PSD), Marginal Probability

Density function (mPDF) and Energy. It is reported that these visualization methods can im-

prove patient outcome by helping neurosurgeons to identify target structures more accurately

and quickly [38]. However, while this technique can be an assistive tool for the neurosurgeons,

it is not feasible for use intraoperatively to automate the process.

In a preliminary study, based on data from five patients, Cardona et al. [44], evaluate the

idea of using features without normalization and creating an online platform for STN localiza-

tion. They suggest against normalization of features since the normalization process results in

loss of high-frequency components of the signals, which can be informative in detecting the

STN. However, they have reported that due to the challenging nature of locating the STN during

DBS surgery, the accuracy of online techniques is significantly lower than offline techniques.

It is mentioned in the paper that high accuracies are not guaranteed, and further analysis should

be conducted on more data to enhance the accuracy of online systems [44].

In a recent paper [45], Valsky et al., have used Normalized Root Mean Square (NRMS)

and PSD to detect the ventral border of STN (the ending border) using an SVM and a Hidden

Markov Model. In this paper, high accuracy is reported for the exit boundary of STN (0.04 ±

0.18 mm) on 131 microelectrode trajectory recordings. The proposed method in [45] requires

NRMS which indicates that it is not feasible to implement intraoperatively for both entry and

exit borders of STN.

To summarize, using the most advanced and most-recent techniques, the challenge of de-

signing a data-driven model for detecting both the entry and exit borders of STN in an intra-

operative manner is an unmet need. The existing problems are: (a) limited data to be used for

generation of the model; (b) the need for using offline techniques and normalized features that

require critical post-operative manipulation; and (c) limited machine learning power due to the

use of classical techniques for the generation of the data-driven physiological model that can

represent the borders of STN.
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1.1.7 Thesis Objective

MER is used for identifying STN borders during DBS surgeries along with pre-planned tra-

jectories. In current practice, the border detection of the STN nucleus is done manually by

the neurosurgeon and electrophysiologist using the MERs. The accurate placement of the fi-

nal electrode is critical for the optimal clinical outcome of this surgery. However, due to the

small size of this nucleus, it is a highly challenging task for the surgical team. Furthermore,

post-operative programming of the DBS device requires the neurologist’s experience and time.

Thus, an assistive tool for automating the localization of the STN target is an unmet need. The

objective of this work is to develop an online algorithm for automating the process of detecting

borders of the STN in DBS surgery.

For this purpose, the first step is to collect a rich and unique data-set to be used for eval-

uating the possibility of reaching high accuracy in the operating room. The second step is

extracting features that can be calculated intraoperatively from MER signals with no require-

ment for postoperative normalization. Thus, the implementation of the proposed method can

be feasible in the operative room during the DBS surgery. In the final step, different supervised

and unsupervised machine learning algorithms are used to model the nonlinear neurophysiol-

ogy to obtain the borders of the STN.

This study reports, for the first time, that using data-driven models, it is feasible to get an ac-

curacy higher than 90% for localization of STN intraoperatively. All the methods implemented

in this work had less than two seconds of execution time.

The structure of this thesis is as follows: In Chapter two, feature extraction methods are

introduced, and two unsupervised machine learning algorithms are used for clustering MER

signals without the neurosurgeon’s labeling. In Chapter three, evaluation of multiple supervised

classifiers is presented to locate the dorsal and ventral borders of the STN nucleus. Chapter four

presents a new feature extraction method for better representation of microelectrode signals.

An ensemble of four supervised classifiers and a deep neural network are implemented to

automate the STN target localization process in DBS surgery. Chapter five provides concluding

remarks for the thesis and includes a discussion of possible future directions and potential for

the development of a supportive tool for assisting a neurosurgical team in order to achieve

better outcomes for DBS surgery. A workflow of the study is shown in Figure 1.8.
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Figure 1.8: Work flow diagram showing methods for data processing, feature extraction, and
learning algorithms for STN localization.



Bibliography

[1] G. E. Alexander, “Biology of Parkinson’s disease: pathogenesis and pathophysiology of

a multisystem neurodegenerative disorder,” Dialogues in Clinical Neuroscience, vol. 6,

no. 3, p. 259, 2004.

[2] D. G. Healy, M. Falchi, and e. a. O’Sullivan, “Phenotype, genotype, and worldwide ge-

netic penetrance of LRRK2-associated Parkinson’s disease: a case-control study,” The

Lancet Neurology, vol. 7, no. 7, pp. 583–590, 2008.

[3] L. M. De Lau and M. M. Breteler, “Epidemiology of Parkinson’s disease,” The Lancet

Neurology, vol. 5, no. 6, pp. 525–535, 2006.

[4] A. Delval, P. Krystkowiak, J.-L. Blatt, E. Labyt, K. Dujardin, A. Destée, P. Derambure,

and L. Defebvre, “Role of hypokinesia and bradykinesia in gait disturbances in Hunting-

ton’s disease,” Journal of Neurology, vol. 253, no. 1, pp. 73–80, 2006.

[5] J. Jankovic, “Parkinsons disease: clinical features and diagnosis,” Journal of Neurology,

Neurosurgery & Psychiatry, vol. 79, no. 4, pp. 368–376, 2008.

[6] R. E. Burke and K. O’malley, “Axon degeneration in Parkinson’s disease,” Experimental

Neurology, vol. 246, pp. 72–83, 2013.

[7] R. L. Albin, A. B. Young, and J. B. Penney, “The functional anatomy of basal ganglia

disorders,” Trends in Neurosciences, vol. 12, no. 10, pp. 366–375, 1989.

[8] A. B. Nelson and A. C. Kreitzer, “Reassessing models of basal ganglia function and

dysfunction,” Annual Review of Neuroscience, vol. 37, pp. 117–135, 2014.

18



BIBLIOGRAPHY 19

[9] L. R. Squire, “Declarative and nondeclarative memory: Multiple brain systems support-

ing learning and memory,” Journal of Cognitive Neuroscience, vol. 4, no. 3, pp. 232–243,

1992.

[10] E. J. Brunenberg, P. Moeskops, and e. a. Backes, “Structural and resting state functional

connectivity of the subthalamic nucleus: identification of motor stn parts and the hyper-

direct pathway,” PloS One, vol. 7, no. 6, p. e39061, 2012.

[11] M. R. DeLong, “Primate models of movement disorders of basal ganglia origin,” Trends

in Neurosciences, vol. 13, no. 7, pp. 281–285, 1990.

[12] S. Tekin and J. L. Cummings, “Frontal subcortical neuronal circuits and clinical neu-

ropsychiatry: an update,” Journal of Psychosomatic Research, vol. 53, no. 2, pp. 647–

654, 2002.

[13] A. L. Bartels and K. L. Leenders, “Parkinson’s disease: the syndrome, the pathogenesis

and pathophysiology,” Cortex, vol. 45, no. 8, pp. 915–921, 2009.

[14] J. M. Fearnley and A. J. Lees, “Ageing and Parkinson’s disease: substantia nigra regional

selectivity,” Brain, vol. 114, no. 5, pp. 2283–2301, 1991.

[15] F. Tarazi, Z. Sahli, M. Wolny, and S. Mousa, “Emerging therapies for Parkinson’s disease:

from bench to bedside,” Pharmacology & therapeutics, vol. 144, no. 2, pp. 123–133,

2014.

[16] C. Curtze, J. G. Nutt, P. Carlson-Kuhta, M. Mancini, and F. B. Horak, “Levodopa is a

double-edged sword for balance and gait in people with Parkinson’s disease,” Movement

Disorders, vol. 30, no. 10, pp. 1361–1370, 2015.

[17] Parkinson Study Group et al., “Pramipexole vs levodopa as initial treatment for Parkin-

son’s disease: a randomized controlled trial,” Jama, vol. 284, no. 15, pp. 1931–1938,

2000.

[18] R. Pahwa and K. E. Lyons, “Treatment of early Parkinson’s disease,” Current Opinion in

Neurology, vol. 27, no. 4, pp. 442–449, 2014.



20 BIBLIOGRAPHY

[19] A. L. Benabid, “Deep brain stimulation for Parkinson’s disease,” Current opinion in Neu-

robiology, vol. 13, no. 6, pp. 696–706, 2003.

[20] C. W. Olanow, M. F. Brin, and J. Obeso, “The role of deep brain stimulation as a surgical

treatment for Parkinson’s disease.” Neurology, vol. 55, no. 12 Suppl 6, pp. S60–6, 2000.

[21] R. Bartholow, “Art. i.–experimental investigations into the functions of the human brain.”

The American Journal of the Medical Sciences (1827-1924), no. 134, p. 305, 1874.

[22] A.-L. Benabid, P. Pollak, A. Louveau, S. Henry, and J. De Rougemont, “Combined (tha-

lamotomy and stimulation) stereotactic surgery of the vim thalamic nucleus for bilateral

Parkinson disease,” Stereotactic and functional Neurosurgery, vol. 50, no. 1-6, pp. 344–

346, 1987.

[23] K. A. Follett, F. M. Weaver, and e. a. Stern, Matthew, “Pallidal versus subthalamic deep

brain stimulation for Parkinson’s disease,” New England Journal of Medicine, vol. 362,

no. 22, pp. 2077–2091, 2010.

[24] C. Sidiropoulos, R. Walsh, C. Meaney, Y. Poon, M. Fallis, and E. Moro, “Low-frequency

subthalamic nucleus deep brain stimulation for axial symptoms in advanced Parkinsons

disease,” Journal of Neurology, vol. 260, no. 9, pp. 2306–2311, 2013.

[25] M. L. Kringelbach, N. Jenkinson, S. L. Owen, and T. Z. Aziz, “Translational principles

of deep brain stimulation,” Nature Reviews Neuroscience, vol. 8, no. 8, p. 623, 2007.

[26] Y. Temel, A. Blokland, L. Ackermans, P. Boon, V. H. van Kranen-Mastenbroek, E. A.

Beuls, G. H. Spincemaille, and V. Visser-Vandewalle, “Differential effects of subthala-

mic nucleus stimulation in advanced Parkinson disease on reaction time performance,”

Experimental Brain Research, vol. 169, no. 3, p. 389, 2006.

[27] M. L. Janssen, A. A. Duits, A. M. Tourai, L. Ackermans, A. F. Leentjes, V. van Kranen-

Mastenbroek, M. Oosterloo, V. Visser-Vandewalle, and Y. Temel, “Subthalamic nucleus

high-frequency stimulation for advanced Parkinson’s disease: motor and neuropsycho-

logical outcome after 10 years,” Stereotactic and functional Neurosurgery, vol. 92, no. 6,

pp. 381–387, 2014.



BIBLIOGRAPHY 21

[28] J. O. Dostrovsky and A. M. Lozano, “Mechanisms of deep brain stimulation,” Journal of

the Movement Disorder Society, vol. 17, no. S3, pp. S63–S68, 2002.

[29] C. C. McIntyre, M. Savasta, L. Kerkerian-Le Goff, and J. L. Vitek, “Uncovering the

mechanisms of action of deep brain stimulation: activation, inhibition, or both,” Clinical

Neurophysiology, vol. 115, no. 6, pp. 1239–1248, 2004.

[30] X. Li, P. S. Morgan, J. Ashburner, J. Smith, and C. Rorden, “The first step for neuroimag-

ing data analysis: Dicom to nifti conversion,” Journal of Neuroscience Methods, vol. 264,

pp. 47–56, 2016.

[31] M. Modat, D. M. Cash, P. Daga, G. P. Winston, J. S. Duncan, and S. Ourselin, “Global im-

age registration using a symmetric block-matching approach,” Journal of Medical Imag-

ing, vol. 1, no. 2, p. 024003, 2014.

[32] K. R. Wan, T. Maszczyk, A. A. Q. See, J. Dauwels, and N. K. K. King, “A review on

microelectrode recording selection of features for machine learning in deep brain stimu-

lation surgery for Parkinson’s disease,” Clinical Neurophysiology, 2018.

[33] M. S. Okun, M. Tagliati, M. Pourfar, H. H. Fernandez, R. L. Rodriguez, R. L. Alterman,

and K. D. Foote, “Management of referred deep brain stimulation failures: a retrospective

analysis from 2 movement disorders centers,” Archives of Neurology, vol. 62, no. 8, pp.

1250–1255, 2005.

[34] F. J. S. Castro, C. Pollo, O. Cuisenaire, J.-G. Villemure, and J.-P. Thiran, “Validation of

experts versus atlas-based and automatic registration methods for subthalamic nucleus

targeting on MRI,” International Journal of Computer Assisted Radiology and Surgery,

vol. 1, no. 1, pp. 5–12, 2006.

[35] T. Foltynie, L. Zrinzo, and e. a. Martinez-Torres, Irene, “MRI-guided STN DBS in Parkin-

son’s disease without microelectrode recording: efficacy and safety,” Journal of Neurol-

ogy, Neurosurgery & Psychiatry, p. 2010, 2010.



22 BIBLIOGRAPHY

[36] J. A. Saint-Cyr and A. Albanese, “STN DBS in PD selection criteria for surgery should

include cognitive and psychiatric factors,” Neurology, vol. 66, no. 12, pp. 1799–1800,

2006.

[37] C. Pollo, F. Vingerhoets, E. Pralong, J. Ghika, P. Maeder, R. Meuli, J.-P. Thiran, and J.-G.

Villemure, “Localization of electrodes in the subthalamic nucleus on magnetic resonance

imaging,” Journal of Neurosurgery, vol. 106, no. 1, pp. 36–44, 2007.

[38] J. H. Falkenberg, J. McNames, J. Favre, and K. J. Burchiel, “Automatic analysis and visu-

alization of microelectrode recording trajectories to the subthalamic nucleus: preliminary

results,” Stereotactic and Functional Neurosurgery, vol. 84, no. 1, pp. 35–45, 2006.

[39] S. Wong, G. Baltuch, J. Jaggi, and S. Danish, “Functional localization and visualization

of the subthalamic nucleus from microelectrode recordings acquired during DBS surgery

with unsupervised machine learning,” Journal of Neural Engineering, vol. 6, no. 2, p.

026006, 2009.

[40] P. Guillen, F. Martinez-de Pison, R. Sanchez, M. Argaez, and L. Velazquez, “Charac-

terization of subcortical structures during deep brain stimulation utilizing support vector

machines,” in Engineering in Medicine and Biology Society (EMBC), IEEE. IEEE, 2011,

pp. 7949–7952.

[41] V. Rajpurohit, S. F. Danish, E. L. Hargreaves, and S. Wong, “Optimizing computational

feature sets for subthalamic nucleus localization in DBS surgery with feature selection,”

Clinical Neurophysiology, vol. 126, no. 5, pp. 975–982, 2015.

[42] P. Guillén, “Deep learning applied to deep brain stimulation in Parkinsons disease,” in

Latin American High Performance Computing Conference. Springer, 2016, pp. 269–

278.

[43] A. Moran, I. Bar-Gad, H. Bergman, and Z. Israel, “Real-time refinement of subthalamic

nucleus targeting using bayesian decision-making on the root mean square measure,”

Movement disorders: official journal of the Movement Disorder Society, vol. 21, no. 9,

pp. 1425–1431, 2006.



BIBLIOGRAPHY 23

[44] H. D. V. Cardona, J. B. Padilla, R. Arango, H. Carmona, M. A. Alvarez, E. G. Estellés,

and A. A. Orozco, “NEUROZONE: On-line recognition of brain structures in stereotac-

tic surgery-application to Parkinson’s disease,” in Engineering in Medicine and Biology

Society (EMBC),. IEEE, 2012, pp. 2219–2222.

[45] D. Valsky, O. Marmor-Levin, M. Deffains, R. Eitan, K. T. Blackwell, H. Bergman, and

Z. Israel, “Stop! border ahead: A utomatic detection of subthalamic exit during deep

brain stimulation surgery,” Movement Disorders, vol. 32, no. 1, pp. 70–79, 2017.



Chapter 2

Supervised Classification Method for

Locating Borders of STN

2.1 Introduction

Parkinson’s disease (PD) is the second most common neurodegenerative disorder [1]. PD is

caused by deficiency of dopamine in substantia nigra pars compacta of the basal ganglia (BG).

Motor symptomatology includes: tremor, rigidity, bradykinesia, and postured instability [2].

Deep brain stimulation (DBS) has been used in severe cases to alleviate these symptoms. The

most common surgical target is the subthalamic nucleus (STN) of the BG.

DBS surgery involves permanent implantation of therapeutic electrodes that deliver elec-

trical current to the motor region of the STN [3]. The motor region of the STN is a very small

target and the surgical outcome depends highly on the accuracy of the therapeutic electrodes.

Sub-optimal positioning of DBS electrodes accounts for 40% of cases of inadequate efficacy

of stimulation post operation [4]. Localizing the borders of STN for accurate placement of

electrodes is a challenging, time consuming and sensitive surgical task [5].

Preoperative Magnetic Resonance Imaging (MRI) is the most common modality which has

been used to plan the insertion trajectory of the electrodes [6]. During the surgery, a surgical

frame is attached to the patient’s head and the neurosurgeon drills a burr hole in the skull to

allow passage of the electrodes. Generally, five microelectrodes are inserted and lowered into

the STN. The target is the center of the STN and is obtained using preoperative MRI.
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The final stage, prior to implantation of the therapeutic electrode, involves selecting which

microelectrode is positioned most optimally within the STN. Most centers do not have the tech-

nology required to capture intraoperative images and they rely on interpretation of the MERs.

Disparate electro-physiological activities exist between different brain structures, which is uti-

lized when interpreting the MER data [6, 7]. Currently, neurosurgeons monitor the raw neural

spiking data to determine the microelectrodes that entered the STN and at which depth.

This study presents a novel intraoperative learning algorithm to assist the neurosurgeon in

determining the optimal placement of electrodes. This has the potential to (a) save time during

the surgery, and (b) enhance the accuracy of electrode placement which directly enhances the

quality of treatment. Over the past few years, researchers have tried to find the signature of

STN using MER signals. The most significant criteria of STN are the increase in spike firing

rate and changes in the spike firing patterns [8]. State-of-the-art techniques have been reported

in [9–11].

In this regard, [9] has suggested thirteen MER features to identify the dorsal border of the

STN using an unsupervised machine learning algorithm. This work was completed in 2015

with the development of a new feature selection and normalization method that is based on

the previously-suggested thirteen features [11]. In [11], ten out of the thirteen features were

suggested as the best features to use in the classification problem. In addition, in the literature,

four classifiers are evaluated in [11]; among them the Logistic Regression (LR) algorithm is

reported as the most accurate scheme. In addition to the above, in [10], four features were

selected from [9], and a Support Vector Machine (SVM) technique was used as the classifier.

Although in [11] and [10], high accuracy was reported for classifying the STN based on a

specific data set, the technique was not designed to be used in an intraoperative manner.

In this regard, it should be mentioned that for calculation of the features designed in [11], in-

formation about the whole insertion trajectory is required. Thus, the algorithm in [11] and [10]

can be used as a postoperative validation method. However, it cannot guide the neurosurgeon

during the DBS surgical procedure.

To address the above-mentioned issue, in this study we present a new method of feature

selection using a short-time Fourier transform that can be extracted from the MER signals

in an intraoperative manner. The Fourier transform has been widely used in the literature to
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extract frequency features from brain signals.

To evaluate the performance of the proposed technique, in comparison to the most recent

accurate existing methods in the literature (published in [11]) we have conducted a retrospec-

tive clinical study. In the study, we extracted MER signals for 20 patients with PD who had

previously undergone the DBS procedure. The data was collected during DBS surgeries per-

formed in University Hospital, London Health Sciences Center, London, ON, Canada. To

conduct the comparison, the ten best features (which need to be calculated in a postoperative

manner) proposed in [11] were calculated and used to implement the method proposed in [11]

based on the LR algorithm.

The performance of the method proposed in this study is also evaluated based on the col-

lected clinical data. The results of the comparative study support the effectiveness of the de-

signed technique in comparison to the existing methods in the literature. It was shown that the

method proposed in this study significantly improved the accuracy of STN localization while

using MER features that can be collected during surgery intraoperatively. As a result, the pro-

posed technique has the potential to be used in the operating room for assisting neurosurgeons,

while reducing the operating time.

2.2 Methods and Materials

2.2.1 Demographic Data and Data Acquisition

In this part, we used MER signals from 20 PD patients who had previously undergone DBS

implantation. The average age was 59± 8 yrs (13 male and 7 female). Most of the patients

have 5 implanted microelectrodes bilaterally. The total number of implanted electrodes that

were used in this study was 180. The study was approved by the Human Subject Research

Ethics Board (HSREB) at the University of Western Ontario.

All patients discontinued short-acting Parkinson medications 12 hrs prior to the surgery.

A preoperative MRI was obtained to determine the coordinates of the Anterior Commissure

(AC), Posterior Commissure (PC) and the STN using an axial T2-weighted image (Signa, 1.5T,

General Electric, Milwaukee, Wis). The center of the STN was used as the surgical zero-point.

Following stereotactic placement of the surgical Leksell frame on the patients’ head (Elekta
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instruments, Sweden), a stereotactic CT was obtained and fused with the preoperative MRIs

(StealthStation, Medtronic Corp, MN).

In the operating room, a burr hole was drilled just anterior to the coronal suture. The dura

mater was opened and the pial surface was coagulated. The Leksell arc was attached to the head

frame and set to the planned coordinates. The StarDrive (FHC Inc., Bowdoinham, ME) was

mounted at 30.0 mm above the surgical target and 5 cannulas with stylets were lowered to 10.0

mm above the target. The stylets were then removed and five 60 µm diameter tungsten micro-

electrodes were inserted with an impedance of 0.5-1.0 mΩ at 1kHz (FHC Inc., Bowdoinham,

ME).

Signals were recorded from 10.0 mm above the preoperatively determined target to well

below the ventral border of the STN, generally looking for activity indicative of the substantia

nigra (4.0 - 5.0 mm below the zero-point). The advancement of the microelectrode unit was

performed with a computer-controlled motor drive (FHC Inc., Bowdoinham, ME). The micro-

electrodes were advanced in 1.0 mm increments from 10.0 mm to 5.0 mm above the target.

From 5.0 mm to the end of the trajectory the microelectrodes were advanced in 0.5 mm in-

crements. At each depth, advancement was paused to allow any drive or neural artifact to be

resolved. in Figure 2.1, an MRI of electrode implantation and their trajectory toward the STN

target is shown.

Once a clean recording was visualized a 10 second recording was collected prior to ad-

vancing the microelectrodes further. The signals were sampled (24kHz, 8-bit), amplified (gain:

10000) and digitally filtered (bandpass: 500-5000 Hz, notch: 60 Hz) with the Leadpoint record-

ing station (Leadpoint 5, Medtronic). All the computational analyses were conducted in MAT-

LAB. A sample MER signal from a right-side anterior trajectory is shown in Figure 2.2 . This

figure demonstrates the difference in electrophysiological signal inside and outside of the STN.

2.2.2 Feature Extraction: State-of-the-art Technique

To compare the performance of the technique proposed in this study with that of previous

studies, we have extracted the most effective ten state-of-the-art features reported in [9], [11],

and [10]. A list of these features for one 10-second interval is given below (the definitions are
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Figure 2.1: (a) DBS electrode reconstruction, b) microelectrode trajectory reconstruction. T2-
weighted preoperative MRI was co-registered to postoperative T1-weighted MRI.The images
were brought into DARTEL (Diffeomorphic Anatomical Registration Through Exponentiated
Lie) space using a non-linear registration. The images were then brought into MNI space,
electrode positioning was estimated, and the 3D reconstruction was performed using the STN
subdivision atlas by [12].
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Figure 2.2: MER trace from an anterior microelectrode trajectory from a STN-DBS case at
University Hospital. The microelectrodes advance from 10.0 mm to 5.0 mm in 1.0 mm inter-
vals. From 5.0 mm to the end of the trajectory the unit is advanced in 0.5 mm increments. The
green line indicates the dorsal border of the STN and the red line indicates the ventral border
of the STN, as decided by the neurosurgeon.
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taken from [10, 11]):

1) Number of spikes per the 10-second interval;

2) Standard deviation of time differences between the spikes of the 10-second interval;

3) Pause index: the ratio between the number of spikes greater than 50 ms to the number of

spikes less than 50 ms;

4) Pause ratio: the ratio between the total time of inter spike intervals greater than 50ms to

the total time of those less than 50ms;

5) Root Mean Square (RMS) value of the signal amplitude in the 10-second interval;

d =

√
∑

N
i=1 x2

i
N

; (2.1)

where, each xi corresponds to a sample in the dataset (xi ∈ X = {x1,x2.....xn}) and N is

the number of samples in each signal;

6) Spiking rate: number of spikes per unit time.

7) Teager Energy, which is used for estimating the instantaneous frequency of a signal and

can be calculated as follows:

E =
N−1

∑
i=2

x2
i − xi−1xi+1; (2.2)

8) Zero crossing: the number of zero crossings in each 10-second interval:

k =
1
2

N−1

∑
i=1
|sgn(xi+1)− sgn(xi)|; (2.3)

where, the function sgn(x) returns 1 for x > 0, -1 for x < 0, and 0 for x = 0.

9) Curve length: the sum of consecutive distances between points in the 10-second interval

L =
N−1

∑
i=1
|xi+1− xi| (2.4)
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10) Threshold (γ):

γ =
3

N−1

√
N

∑
i=1

(xi− X̄) (2.5)

where X̄ is the average of the 10(s) time interval.

It is important to note that the technique proposed in [9] and the improved version of it

reported in [11], require a specifically-designed normalization and standardization process be-

fore classification. This is due to the possibility of instability in feature calculation (very small

denominator) resulting in significant errors in classification. Because these features may have

different dynamic ranges, we might have some extremely large or extremely low values in

the calculated features in one signal. Feature normalization is thus required to approximately

equalize the ranges of the features so that they have approximately the same effect in the com-

putation of similarity. However, it is not possible to conduct the needed normalization steps,

used in [9] and [11] during the surgery. This makes the techniques proposed in [9] and [11] as

approaches which can be used for postoperative assessment. As suggested in [11], the above-

mentioned features are subtracted by the mean and divided by standard deviation of features in

one trajectory. Thus, this method requires the MER data from one trajectory prior to implanta-

tion, which is not feasible intraoperatively.

2.2.3 Feature Extraction: short-time Fourier Transformation

Feature extraction can be form of dimensional reduction of signal processing which is tightly

connected with pattern recognition process. One of the frequency analysis methods for ex-

tracting features from the signals is the discrete Fourier Transformation (DFT). The frequency

features can be highly informative in this problem since the frequency content of neural activ-

ities in each structure is different. Thus, these features can highlight the differences between

signals from inside the STN versus those from outside.

DFT has been widely used to extract features from biomedical stationary signals; short-

time Fourier Transform (STFT) has been used for non-stationary signals. Many biomedical

signals like microelectrode recordings from neurons are not constant over time and have abrupt

changes through their period. Therefore, in this study, we have used STFT. The STFT intro-

duced by Gabor applies the DFT on a fixed-size time window [13]; this way both time and
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frequency components of the signals are retrained in the extracted feature space. Mathemati-

cally for a signal x(n), the STFT is given by:

ST FT [x(n)](m,k)⇒ X(m,k) = ∑
n

h(n−m)x(n)e j2πnk/N (2.6)

where k is the frequency sample parameter, h is the analysis window function, and N is the

total number of frequency samples. In this study we have used a window size of 0.02 ms for

the STFT algorithm which gave us 1000 frequency features in the time period of the signal.

When the microelectrode is within the STN, there is a shift in the frequency domain of the

MER signal. Thus, the STFT coefficients can provide valuable information about when the

microelectrode enters the STN. Importantly, there is no need to normalize STFT coefficients,

so these features can be extracted in an intraoperative manner from the MER signals during the

operation. Also, there is no concern regarding stability.

2.3 Classifiers

After extracting features from MER signals, two classifiers, Logistic Regression and Support

Vector Machines were applied to the signals. Each of these signals was labeled as zero or

one. Label zero indicates that the electrode was outside of the STN and label one means

that electrode was inside the STN. These labels were determined by the neurosurgeon and the

electrophysiologist during the surgical procedure. Both of these specialists has performed more

than 200 DBS surgeries.

2.3.1 Logistic Regression

Logistic Regression (LR) has been widely used in statistical analysis and this classifier is espe-

cially useful for problems with continuous features and discrete target outputs. The LR model
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calculates the class membership probability in the data set [14] as shown below.

P(1|x,θ) = 1
1+ e−θx

P(0|x,θ) = 1−P(1|x,θ)

(2.7)

In (4.6), P is the probability of the class, x is the sample signal and θ is determined based on

the dataset, usually by maximum-likelihood estimation.

2.3.2 Support Vector Machine

The Support Vector Machine (SVM) separates boundaries of data sets by solving an optimiza-

tion problem. Depending on the kernel function of SVM, this separation can be linear or

nonlinear with different degrees of nonlinearity and flexibility [15, 16]. Due to the complexity

and nonlinearity of our data set; different kernel functions were used. In this study, we have

tried different kernels including Linear, Quadratic and Cubic polynomials to separate our two

classes. Kernel functions can map the original dimension of the data to a higher dimension, so

that the SVM algorithm can find the hyperplane to separate the classes.

Let xi ∈ R, i = 0,1, ...,N (N is size of the training set) be the input vector and yi ∈ 0,1 be

the corresponding labels. Label zero indicates the signals were outside the STN and label one

corresponds to signals inside the STN.

y(x) = sign(
N

∑
i=1

αiyiφ(x,xi)+b) (2.8)

where αi are positive real constants and b is a real constant. φ(x,xi) indicates the kernel of the

classifier which can be linear: φ(x,xi) = xT
i x or polynomial: φ(x,xi) = (xT

i + 1)d in which d

indicates the degree of the polynomial. The sign(x) function returns 1 for x > 0, -1 for x < 0,

and 0 for x = 0. In Quadratic and Cubic kernels, d is equal to two and three respectively. A

sample of the optimum hyper plane which provides the maximum margin between classes is

shown in Figure 2.3.
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Figure 2.3: Optimum hyper plane and support vectors for linearly separable data.



2.4. RESULTS 35

2.4 Results

As mentioned in section 2.2.1, each signal was a 10 second recording from a specific depth.

On average we had signals for 25 depths for each electrode. Furthermore, an average of ten

microelectrodes were used for each patient. This study used MER data from 20 patients who

had undergone DBS surgery previously. Most of the patients had bilateral DBS, while only

a few had unilateral. The total number of samples was 3986. We extracted the ten features

explained in Section 4.2.2 in addition to the STFT coefficients from the electrophysiological

signals. Table (3.1) contains the results of ten-fold cross validation. The ten-fold cross valida-

tion method divides the training set into ten equally sized sections randomly. It takes out one

section for validation or testing the classifier and uses the other nine sections for training. The

same method is repeated ten times on the input data and the accuracy is calculated each time.

At the end, the final accuracy of the classifier is equal to the average of ten accuracy result from

the ten folds of the data set.

As can be seen, the highest accuracy has been achieved using STFT features and the SVM

classifier with a Cubic kernel. As a result, we proposed this combination for detection of STN

during DBS surgeries. Based on the achieved results, we can conclude that STFT features may

be more informative than conventional features used in the literature.

This might be due to the capability of STFT features in highlighting the differences in spike

activities in the frequency domain. Also, as mentioned above, unlike conventional techniques,

using STFT, (a) there is no concern of instability in feature calculation, and (b) there is no need

for post-normalization of the features; thus, the features can be calculated during the surgery

and this makes it possible to help the neurosurgeon during the DBS procedure. In addition,

based on the results, SVM with the Cubic kernel function is recommended as a nonlinear

classifier with acceptable computational cost.

Table 2.1: Accuracy of Classifiers for Localizing STN

Features\classifiers LR SVM (Linear Kernel) SVM (Quadratic Kernel) SVM (Cubic Kernel)

The 10 extracted features used in [11] 71% 70% 72% 76%

STFT coefficients 81% 80% 82% 85%
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2.5 Conclusion

This chapter presented a new technique that can be used to assist the neurosurgeon during the

DBS procedure by providing an objective assessment of the STN location.

Based on the conducted study, a combination of STFT-based features and a Cubic kernel

SVM algorithm was suggested as a high-performance approach that can localize STN during

surgery.

The results showed that (a) the proposed approach can localize the STN with an accuracy

of 85%; (b) it has superior performance over current clinical techniques; and (c) the technique

proposed in this study can be used as a cueing tool in the operating room to assist neurosurgeons

with STN surgical targeting.
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Chapter 3

Unsupervised Clustering Approach for

Localization of STN

3.1 Introduction

Parkinson’s disease (PD) is one of the most common neurodegenerative diseases that is caused

by loss of dopaminergic neurons in the substantia nigra pars compacta [1]. Movement disorders

associated with PD are characterized by tremor, rigidity, postural instability, bradykinesia, and

gait issues [2]. Deep Brain Stimulation (DBS) surgery is an effective treatment for advanced

PD patients. During DBS surgery, continuous high-frequency electrical current is delivered to

the subthalamic nucleus (STN) of the basal ganglia to manage some motor symptoms [3]. The

surgical outcomes highly depend on the accuracy of the placement of the electrode inside the

STN. Since the STN is a very small region (5-7 mm) of the basal ganglia, accurate placement

of the stimulating electrode is a challenging task for the surgical team [4].

A technique to target the STN is the use of preoperative Magnetic Resonance Imaging

(MRI) [5]. However, the exact location of the motor region of the STN cannot always be

identified accurately using MRI. As a result, intraoperative Micro-Electrode Recording (MER)

has been used for localizing the STN.

In general, up to five microelectrodes are inserted through a burr hole in the skull on each

side of the brain. The microelectrodes record the electrophysiological activities of the neurons

along the insertion trajectory. Typically, MER signals are observed visually by the surgical

39
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team during the operation. Electrophysiological activities vary along the insertion trajectory

when the electrode passes through different structures of the brain. This variation is interpreted

by the experienced surgical team to localize the STN. The neurosurgeon then determines the

border of the STN and selects one of the five electrodes for permanent implantation of the

stimulating electrode [5, 6]. Several important criteria are considered by the surgical team to

localize STN, such as an increase in the background noise level, spike firing count, and changes

in the spike firing patterns. Based on these criteria, neurosurgeons determine the choice of

microelectrodes (and their depths) for permanent stimulation [7].

The purpose of this chapter is to design an autonomous algorithm (trained based on a clin-

ical dataset) that can assist neurosurgeons in localizing the STN during DBS surgery. An au-

tonomous STN localization that can provide feedback to a neurosurgeon during the procedure

can help to reduce the time during the DBS procedure and can have several clinical benefits.

The technique can also be beneficial for enhancing the quality of outcomes by reducing pos-

sible placement errors. In Chapter 2, supervised machine learning algorithms were used to

build the predictive model which means that the labels acquired from the neurosurgeons were

used in training. However, in this chapter, we show that even without using the labels (that

mark the STN) provided by a neurosurgeon, the proposed technique is capable of localizing

the STN with an accuracy of 80%. For this, we designed a composite unsupervised machine

learning algorithm to localize the STN and assist the neurosurgeon in determining the optimal

placement of electrodes.

In this part of the study, similar to Chapter 2, instead of using the conventional feature

space, we evaluate the performance of short-time Fourier Transformation (STFT) as the tool to

populate the feature space for the clustering approach. The STFT-based feature space can be

obtained during surgery and does not need any pre- or post- processing information.

In the second step, we initially evaluate the performance of two unsupervised learning

methods: K-means clustering and Self Organized Map (SOM) Neural Network, on the dataset

that we collected during DBS surgeries from 50 PD patients. We compared the output clusters

generated by the above-mentioned two clustering algorithms with the labels provided by an

experienced neurosurgeon who has done more than 200 DBS surgeries. The results show that

using the STFT-based features, the unsupervised algorithms can detect the signature of STN
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and localize it with an accuracy about 75%.

In the third step, a composite approach is evaluated that includes both K-means and SOM

clustering as two sequential layers of processing. The first layer is a K means clustering tech-

nique which is used to reduce the size of the feature space through locating the sub-centers of

the input data (STFT-based feature space). The second layer is an SOM neural network that is

used to separate the two main clusters (STN versus outside of STN). We have shown that the

proposed composite technique can localize the STN with an accuracy of 80%. It also reduces

the training complexity, and therefore the clustering time.

3.2 Methods and Materials

3.2.1 Demographic Data

For this part, we collected and used MER signals from 50 individuals with PD who had previ-

ously undergone DBS implantation. The average age was 60± 6 yrs ( 34 male and 16 female).

On average, each patient had 10 microelectrodes inserted into their brain. Details of the data

acquisition procedure are provided in the next subsection. All the participants had been di-

agnosed with PD and had begun to lose efficiency of drug treatment. These patients suffered

from severe motor fluctuations despite the optimal dosage of medication. These patients were

eligible to DBS procedure recording to the requirements determined by the neurosurgical team

at London Health Science Center.

Most of the PD patients received bilateral implantations of quadripolar electrodes (Medtronic

Inc., Minneapolis, MN, USA) into the subthalamic nucleus of both the left and right cerebral

hemispheres during DBS surgery. All these STN-DBS surgeries took place at Western Uni-

versity Hospital in London, Ontario, Canada. The retrospective review was approved by the

local Human Subject Research Ethics Board (HSREB) office at the University of Western On-

tario (REB # 109045). All participants provided written informed consent before this study

participation.
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3.2.2 Surgical Procedure and Data Acquisition

All patients discontinued short-acting Parkinson medications 12-hours prior to surgery. Pre-

operative MRI was obtained to determine the coordinates of the anterior commissure (AC),

posterior commissure (PC) and the STN. An axial T2-weighted image and postgadolinium

(Gd) volumetric axial T1-weighted sequence was used for the coordinate localization (Signa,

1.5T, General Electric, Milwaukee, Wis). STN target planning was carried out using the mid-

point between the AC and PC points and the standard stereotactic coordinates: 12.0 mm lateral,

2.0 mm posterior and 4.0 mm ventral. The center of the STN was used as the surgical zero-

point. Trajectory planning for the microelectrodes was done using the post-Gd volumetric

T1-weighted sequence, ensuring avoidance of the ventricles and blood vessels. All surgical

planning was done using the StealthStation (StealthStation, Medtronic Corp, MN). A burr-hole

was drilled in the skull. The StarDrive (FHC Inc., Bowdoinham, ME) was mounted to the

arc at 30.0 mm above the surgical target and five cannulas with stylets were lowered to 10.0

mm above the target. The stylets were then removed from the cannulas and five 60 µm di-

ameter tungsten microelectrodes were inserted into the cannulas with an impedance of 0.5-1.0

mΩ at 1kHz (FHC Inc., Bowdoinham, ME). Signals were recorded from 10.0 mm above the

preoperatively determined target zero point to well below the ventral (bottom) border of the

STN, generally looking for activity indicative of the substantia nigra (4.0 - 5.0 mm below the

zero-point). The drive was advanced in 1.0 mm increments and 0.5 mm increments within the

target nucleus. At each depth, advancement was paused to allow any artifact to be resolved.

Once a clean recording was observed a 10-second recording was collected prior to advancing

the electrodes further. The signals were sampled (24kHz, 8 bit), amplified (gain: 10,000) and

digitally filtered (bandpass: 500-5000 Hz, notch: 60Hz) using the Leadpoint recording station

(Leadpoint 5, Medtronic). A sample MER signal from a right-side anterior trajectory is given

in Figure 3.1. As shown in Figure 3.1, some differences in electrophysiological activities can

be seen when comparing signals from the inside and outside of the STN.

3.2.3 Feature Extraction: short-time Fourier Transformation

In this study, we calculated the STFT of the electrophysiological signals and use the STFT

coefficients as the feature space for the clustering approach. As can be seen in Figure 3.2, an
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Figure 3.1: MER from an anterior electrode trajectory collected during an STN-DBS case.
Negative depth values indicate above the nucleus and positive values indicate below. The
green line indicates the dorsal border of STN and the red line indicates the ventral border of
STN, as decided by the neurosurgical team.
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Figure 3.2: The figure shows power from the Short Time Fourier transform (STFT) in the
frequency of 1000-3000Hz indicating a single-unit activity. The purple shaded area indicates
where the nucleus was determined to be located based on the recordings. Red highlighted depth
indicates which channel the surgeon decided to use. Each dotted line represents a recording
depth. The power values are discrete and connected with a line for better representation. The
negative depth values are above the nucleus and the positive values are below.

increase in the magnitude of the STFT coefficients can be visually observed when the electrode

is inside the STN. An STFT-based feature space can provide valuable information about the

location of the microelectrodes since they encode the frequency context of the neural activities

and the corresponding variation along the insertion path. The STFT-based feature space can

be populated during the surgery when the neurosurgeon guides the electrodes toward the target

(i.e., the STN). This means that the feature space can be calculated during the operation and no

post-operative processing (e.g., spike sorting, normalization along the path) is needed. This is

an advantage of the STFT-based feature space in comparison to the ones used in the literature

(such as [8], [9]).
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3.2.4 Feature Extraction: Conventional Offline Features

As mentioned earlier, the techniques reported in the literature mainly rely on a specific offline

feature space designed for the supervised classification of the STN. In this study, to evaluate

the performance of the proposed online unsupervised technique in comparison with those in

the existing literature, the same feature space is also implemented in addition to the proposed

STFT-base feature space.

For this purpose, to populate the offline feature space based on the most effective ten state-

of-the-art features reported in [8], [9], and [10] are calculated. The offline features as follows:

1) Number of spikes per the 10-second interval;

2) Standard deviation of time differences between the spikes of the 10-second interval;

3) Pause index: the ratio between the number of spikes greater than 50 ms to the number of

spikes less than 50 ms;

4) Pause ratio: the ratio between the total time of inter spike intervals greater than 50ms to

the total time of those less than 50ms;

5) Root Mean Square (RMS) value of the signal amplitude in the 10-second interval;

d =

√
∑

N
i=1 x2

i
N

; (3.1)

where, each xi corresponds to a sample in the dataset (xi ∈ X = {x1,x2.....xn}) and N is

the number of samples in each signal;

6) Spiking rate: number of spikes per unit time.

7) Teager Energy, which can be calculated as follows:

E =
N−1

∑
i=2

x2
i − xi−1xi+1; (3.2)
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8) Zero crossing: the number of zero crossings in each 10-second interval:

k =
1
2

N−1

∑
i=1
|sgn(xi+1)− sgn(xi)|; (3.3)

where, function sgn(x) returns 1 for x > 0, -1 for x < 0, and 0 for x = 0.

9) Curve length: the sum of consecutive distances between points in the 10-second interval

L =
N−1

∑
i=1
|xi+1− xi| (3.4)

10) Threshold (γ):

γ =
3

N−1

√
N

∑
i=1

(xi− X̄) (3.5)

where X̄ is the average of the 10-second time interval.

It should be noted that the offline feature space reported in [8], [9], [10] requires a specifi-

cally designed normalization and standardization process which can only be done post-operatively.

As explained in [9], the offline features should be normalized considering the standard devi-

ation of the calculated features in the entire insertion trajectory. Thus, this requires the MER

data from the entire trajectory, which is not feasible during online processing of the neural

activities. The above-mentioned process is required due to the possibility of instability in fea-

ture calculations [8]. This makes the existing approaches post-operative validation techniques

which can help to evaluate the quality of the conducted operation. However, it does not allow

for STN localization during the operation.

3.3 Classifiers

After extracting features from MER signals, the performance of our clustering algorithms, K-

means, SOM Neural Network, and composite K-means-SOM was evaluated in locating the

STN. A dataset was collected from 50 PD patients during DBS surgery. The output of our

clustering algorithms was compared to the labels provided by a neurosurgeon (with experience

of more than 200 DBS surgeries).
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3.3.1 K-means

K-means algorithm was first introduced by Macqueen, [11] and is the most popular clustering

algorithm. K-means clustering is commonly used to partition signals into k clusters. First, it

initializes cluster centers randomly or according to the user’s specifications and then iteratively

refines the new cluster centers. If the given data set is X = x1, ...xN ,xn ∈ Rd(real number).

K-means separates k clusters such that a clustering criterion is optimized. The optimization

objective function is as follows:

E(m1,m2, ...,mM) =
N

∑
i=1

M

∑
k=1

I(xi ∈Ck)|xi−mk|2 (3.6)

In (3.6) , m1,m2, ...,mM are cluster centers and I(X) = 1 if X is true and 0 otherwise.

Minimizing this cost function gives the best cluster.

The steps of the K-means clustering algorithm are given below:

• Initialization step

1. Pick k cluster centers randomly.

2. Assign each sample to the closest center.

• Iteration step

1. Compute the means in each cluster.

2. Re-assign each sample to the closest mean.

• Iterate until the cluster center values stop changing. The number of clusters depends on the

problem, and for our data, we set k to two since we want to cluster signals from outside and

inside of STN.

3.3.2 Self Organized Map

The SOM is an unsupervised learning neural network method which was presented by Kohonen

et al. in 1982 [12]. The aim of this network is to give a similarity graph of input data and map

it to a low dimensional output space [12]. It also has the capability to cluster similar features in
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the input data in different groups. It is a great tool for comprehensive visualization of the data

in a lower dimensional space; where the clusters can be clearly identified. The SOM usually

has two layers; an input layer and an output layer which are directly connected, which means

that each node in the output layer is fully connected to each node in the input layer but the

nodes in each layer have no connection to each other [13]. The SOM consists of neurons on a

low dimensional grid; usually two dimensional (2-D).

The input of the first layer consists of feature vectors xi = [xi1,xi2, ...,xid] ∈ Rd . Each

neuron has a dimensional weight vector wu = [wu1,wu2, ...,wud] ∈ Rd . At the beginning of

the training, wu is initialized randomly from the input vector domain. The Euclidean distances

from xi and all wu are computed. The winning neuron or best match unit (BMU) is the one that

has the wu closest to xi [14]. Weights of the nodes will update In Figure 3.3, an example of the

BMU and winning neurons is shown.

The SOM has been widely used in dimension reduction classification problems. Figure 3.4

shows the Hit Map of the STFT features with two neurons.

Figure 3.3: An example of the Best Unit Map or winning neurons for the sample data set
with two clusters. Blue dots are the example data and red dots are the winning neurons which
separated the dataset.
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Figure 3.4: Hit Map units of the Self Organized Map with two neurons for STFT features. It
shows the two clusters from the data. 3868 signals were labeled as zero and 1815 were labeled
as class one.
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3.3.3 Composite K-means-SOM

Combinations of K-means and SOM have been commonly used to achieve a better performance

than using the individual methods [15]. In this work, we used a composite of K-means and

SOM as two layers of processing to increase the clustering accuracy. In the first step, K-means

clustering is applied on the signals to reduce the dimension of the feature space. Then, in the

second step, the SOM Neural Network is used on the reduced-order feature space to combine

and fuse the sub-centers, detect the connections, and form the two main clusters (inside and

outside of STN). By using this combination, we achieved a higher accuracy and reduced the

training complexity and time.

3.4 Results

In our dataset, we had a ten-second recording from up to 25 depths. On average, each patient

had 10 microelectrodes inserted into their brain. The number of signals that we used from 50

patients was 5683. In this study, we have two sets of features (the STFT-based space and the

off-line based spaces) and three unsupervised clustering algorithms (K-means, SOM Neural

Network, Composite K-means-SOM), and two clusters.

To calculate and evaluate the performance of the proposed composite technique in compari-

son to the other mentioned approaches [8], [9], we used the labels provided by the neurosurgeon

during the operation. The results of this comprehensive comparative study are given in Table

1. As can be seen in the table, using the STFT-based feature space, the K-mean clustering

technique was able to localize the STN with an accuracy of 76.7%. However, using the offline

feature space results in a significant drop in the accuracy to a range of 58.4%-61.8%. It should

be noted that the proposed composite technique, when using the STFT-based feature space,

represented the highest accuracy (80%) in comparison to the other approaches. Thus, from the

results shown in Table I, the STFT feature space extracted from the MER signals provides rich

features for the clustering algorithms and the composite K-means-SOM is a strong unsuper-

vised tool for clustering the STN.
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Table 3.1: Accuracy of Unsupervised Clustering Algorithms

Features \ Clustering method SOM Neural Network K-means Composite K-mean-SOM Clustering

10 extracted features 58.4% 61.8% 64%

STFT coefficients 74% 76.7% 80%

3.5 Conclusion

This chapter presented a new technique that can be used to assist neurosurgeons during Deep

Brain Stimulation (DBS) procedure by providing online feedback regarding the location of

the electrode with respect to the STN. For this purpose, an unsupervised machine learning

algorithm was proposed. In this study, we showed that the STFT features extracted from MER

signals during DBS surgery can be very informative about the location of electrodes. Based on

the results, we showed that we can cluster the signals from inside and outside of STN without

requiring any labeling from the neurosurgeon. To validate the performance, we retrospectively

extracted MER data from 50 patients with Parkinson’s disease. A total number of 5683 signals

were recorded to build the data set. To be able to compare the results, we extracted the most

known features used in the literature. We have shown that the proposed unsupervised machine

learning method (Composite K-means-SOM) is capable of localizing STN with an accuracy of

80% using STFT features.
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Chapter 4

Ensemble of Supervised Classifiers and

Deep Neural Network Results on

Detecting the STN

4.1 Introduction

Parkinson’s disease (PD) is a progressive neurological disease that affects 1% of people over

60 years of age [1, 2]. Motor features of PD result from the death of dopamine neurons in

substantia nigra pars compacta of the Basal Ganglia (BG). Oral pharmacotherapy and surgical

intervention are both accepted as treatments. Deep Brain Stimulation (DBS) surgery is used

especially in those that have advanced PD [3].

During DBS surgery, a permanent electrode is implanted inside the brain to deliver high-

frequency electrical pulses to the subthalamic nucleus (STN) [4]. The outcome of DBS surgery

is highly dependent on the accurate placement of the electrode inside the STN. Since the STN

is a very small (4-7mm) and deep anatomical region, appropriate and accurate implantation of

the electrode is a difficult, challenging and time-consuming task that requires a high level of

proficiency and expertise. Due to the sensitivity and importance of implantation, significant

intraoperative time is spent on localizing the borders of the STN. In fact, sub-optimal position-

ing of DBS electrodes accounts for 40% of cases of inadequate efficacy of stimulation post

operation [5]. In current practice, preoperative Magnetic Resonance Imaging (MRI) is used to

54
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locate the STN according to a visual atlas [6]. However, the exact location of the motor region

of the STN cannot be determined from MRI images [7]. Thus, intraoperative Micro Electrode

Recordings (MERs) are also used to localize the STN using electrophysiological properties

of the brain tissue surrounding the STN and within the STN itself. In a typical DBS surgery,

up to five microelectrodes are inserted through a burr hole in the skull. The microelectrodes

record the electrophysiological activity along a track as they are sequentially advanced into the

brain by the neurosurgeon [8]. Since each part in the brain has its own characteristic neural

activity, that of the STN (such as spike firing counts and patterns) can be recognized over the

background noise level. As a result, based on monitoring of this electrophysiological activity,

the neurosurgeon decides when the microelectrode has entered the STN [6, 9].

Chapter 1 gave a complete literature review of previous studies in the topic of STN localiza-

tion using MER signals. Based on the studies that were mentioned in Chapter 1, the challenge

of designing a data-driven model for detecting both the entry and exit borders of STN in an

intraoperative manner is an unmet need. The existing problems are: (a) limited data to be used

for generation of the model; (b) the need for using offline techniques and normalized features

that require critical post-operative manipulation; and (c) limited machine learning power due

to the use of classical techniques for the generation of the data-driven physiological model that

can represent the borders of STN.

Thus, in this study, we propose to address the challenge through: (a) collection of a rich

and unique data-set to be used for evaluating the possibility of reaching high accuracy intra-

operatively; (b) using features that can be calculated intraoperatively with no need of critical

postoperative normalization; and (c) relying on the power of the collected dataset and using

a state-of-the-art strong machine learning algorithm (i.e. deep neural network) to model the

nonlinear neurophysiology in order to model the borders of the STN. This study, reports, for

the first time, that using data-driven models it is feasible to get an accuracy higher than 90%

for localization of STN intraoperatively.

In this chapter, we attempt to improve the output performance by considering the results

from Chapter 2 and 3. An ensemble of supervised classifiers that was presented in Chapter 2 is

used here to enhance the result. Also, we have enlarged the dataset compared to the previous

chapters to achieve a more robust and generalized model. For this purpose, 713 microelectrode
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tracks were collected from DBS surgeries of 100 PD patients. To the best of our knowledge, this

is the largest dataset collected for this purpose, which allows us to evaluate the possibility of

using complex machine learning algorithms for modeling the neurophysiology based on which

we can detect the borders of the STN. Currently, such an assessment is performed entirely

visually by the clinician looking at the record and listening to the sound of the activity. Such

an approach introduces significant subjectivity to the interpretation and can introduce error

in localization. An autonomous STN localization tool that can provide objective feedback to

neurosurgeons during the procedure would expedite the surgical procedure, improve placement

consistency and accuracy.

The proposed learning technique utilizes a sizable database of clinical data collected and

labeled in this study by expert neurosurgeons, which ensures its accuracy. In other words,

the knowledge of placement locations and the corresponding MER recordings acquired during

100 surgeries is encapsulated in the training algorithm of the proposed technique. When imple-

mented in the OR, the algorithm can reduce subjectivity of STN localization thereby directly

having an impact on placement accuracy.

In this study, we evaluated the performance of several classical and modern classification

methods for separating the signals that are from inside and outside the STN to detect its border

based on electrophysiological activity. Three sets of different features were extracted from

MER signals of 100 PD patients who had previously undergone DBS implantation. The first

set of features are the conventional feature space which was used in [10, 11]. The second

set of features are the short-time Fourier Transformation (STFT) features, and the third are

wavelet transformation features. The main advantage of using STFT and wavelet features over

conventional features is that they can be extracted intraoperatively since no postoperative step

is needed. In [12], Snellings et al., mention that wavelet-drived background levels on STN

were significantly higher than other regions and they can be a reliable source of information to

identify the border of STN intraoperatively.

Deep neural networks and four classical machine learning algorithms (Support Vector Ma-

chine, Logistic Regression, Weighted k-Nearest Neighborhood and Decision Tree) were used

for classification. In addition, to improve the accuracy a new design of an ensemble classifier

consisting of four machine learning approaches was also applied to classify and predict the



4.2. METHODS AND MATERIALS 57

STN border.

The results of the comparative study support the effectiveness of the designed technique in

comparison to the existing methods in the literature. We show that the methods proposed in

this study not only significantly improve the accuracy of STN localization using MER signals,

but they can also be implemented intraoperatively to provide feedback for the surgical team.

In this study, an accuracy of 92% was reported for STN border localization using wavelet

transformation features and deep neural networks. As a result, the proposed technique has the

potential to be used in the operating room for assisting neurosurgeons during DBS surgery to

localize the STN.

4.2 Methods and Materials

4.2.1 Demographic Data and Data Acquisition

Microelectrode recordings were retrospectively acquired from 100 individuals with PD (38

female and 62 male), who had undergone DBS implantation. In total, 713 microelectrode

tracks were used in this study as most patients received bilateral implantation of their DBS

device. The retrospective review was approved by the local Human Subject Research Ethics

Board (HSREB) office at the University of Western Ontario (REB # 109045). Prior to the

surgery, all patients received T1 and T2 weighted MRI scans for surgical planning (Signa 1.5T,

General Electric, Milwaukee, Wis). Target coordinates were calculated by first defining the

anterior commissure and posterior commissure. The midline point was then used to plan the

STN target; the initial stereotactic coordinates were: 12.0 mm lateral, 2.0 mm posterior and

4.0 mm ventral to the midline. Adjustments were then made according to the anatomy of the

patient. All patients withheld their Parkinsonian medications for 12 hours before surgery.

On the day of surgery, the patients received a CT scan with the Leksell frame in place

(Elekta Instruments, Sweden). Transferring the preoperative plan to the frame space was car-

ried out by fusion of the stereotactic CT to the preoperative MRIs (StealthStation, Medtronic

Corp, MN). The patients were then brought to the operating room, a sterile field was estab-

lished, and a burr hole was drilled anterior to the coronal suture. A computer-controlled micro-

electrode drive was mounted to the Leksell frame (StarDrive, FHC Inc., Bowdoinham, ME),
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and 5 cannulas with stylets were lowered to 10.0 mm above the surgically planned target. The

stylets were removed and replaced with 5 tungsten microelectrodes (60 µm diameter) with

an impedance of 0.5-1.0 mΩ at 1kHz (FHC Inc., Bowdoinham, ME). Microelectrode signals

were then captured from 10.0 mm to 5.0 mm above the target in 1.0 mm steps. From 5.0 mm

onwards, a step size of 0.5 mm was used. Once the ventral border of the STN was found the

recordings were completed (generally around 4.0 mm to 5.0 mm below the surgical target.

The neurosurgeon and electrophysiologist decided on the best microelectrode track, all micro-

electrodes were removed, and the final therapeutic electrode was introduced down the selected

optimal trajectory. In Figure 4.1 the trajectory of microelectrodes inside the brain is shown. At

each recording site, data was collected for 10 seconds, which resulted in∼25-30 recordings for

each microelectrode. The signals were sampled (24kHz, 8-bit), amplified (gain: 10000) and

digitally filtered (bandpass: 500-5000 Hz, notch: 60 Hz) using the Leadpoint recording station

(Leadpoint 5, Medtronic). All the computational analyses were conducted using custom scripts

in Python and MATLAB. A sample MER signal from a right-side anterior trajectory is shown

in Figure 4.2. This figure demonstrates the difference in electrophysiological signal inside and

outside the STN.

4.2.2 Feature Extraction

Feature extraction plays an important role in biomedical signal processing. The features should

provide meaningful information to the machine learning algorithms and be efficient in the com-

putational step. In this chapter we implemented three different feature extraction methods: (a)

conventional post-operative features, (b) fast fourier transformation, and (c) wavelet transfor-

mation. A brief explanation of each method is as follows:

Feature Extraction: Conventional Post-Operative Features

To compare the performance of the technique proposed in this study with that of previous

studies, we have extracted the most effective ten state-of-the-art features reported in [10], [11],

and [15]. A list of these features for one 10-second interval is given below:

• Number of spikes per the 10-second intervals;
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Figure 4.1: Microelectrode trajectory reconstruction. The red lines indicate the depths that
the neurosurgeon decided the microelectrodes are inside the STN. The reconstructions and
visualizations were performed using custom Python codes, the Visualization Toolkit, and 3D
Slicer v4.8 (https://www.slicer.org). T2-weighted 7T images were co-registered to the pre-
operative CT image containing the Leksell frame. Images were converted to the NIFTI file
format using dcm2niix [13]. Co-registration was performed using rigid registration tools in
Niftyreg [14]. The coordinates of the microelectrode trajectories were extracted from Stealth-
station (Medtronic Corp, MN).
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Figure 4.2: MER trace from an anterior microelectrode trajectory from an STN-DBS case at
University Hospital, London Health Sciences Center. The microelectrodes were advanced from
10.0 mm to 5.0 mm in 1.0 mm intervals. From 5.0 mm to the end of the trajectory the unit was
advanced in 0.5 mm increments. The green line indicates the dorsal border of the STN and the
red line indicates the ventral border of the STN, as decided by the neurosurgeon.
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• Standard deviation of time differences between the spikes of the 10-second intervals;

• Pause index: the ratio the number of spikes greater than 50 ms to the number of spikes

less than 50 ms;

• Pause ratio: the ratio of the total time of inter spike intervals greater than 50ms to the

total time of those less than 50ms;

• Root Mean Square (RMS) value of the signal amplitude in the 10-second intervals;

• Spiking rate: number of spikes per unit time (one second).

• Teager Energy, which can be calculated as follows:

E =
N−1

∑
i=2

x2
i − xi−1xi+1; (4.1)

where, xi ∈ X = {x1,x2.....xn} and N is the number of samples in each signal;

• Zero crossing: the number of zero crossings in each 10-second interval;

• Curve length: the sum of consecutive distances between points in the 10-second interval,

as calculated below:

L =
N−1

∑
i=1
|xi+1− xi| (4.2)

• Threshold (γ):

γ =
3

N−1

√
N

∑
i=1

(xi− X̄) (4.3)

where X̄ is the average of the 10-second time interval.

As reported in [10], [11], the above-mentioned features need to be normalized because of po-

tential instability in feature calculation. In the normalization procedure, the mean is subtracted

from the values of the calculated features and divided by the standard deviation of features in

one trajectory. As a result, it is not possible to use these features intraoperatively.

To apply the normalization step, recorded signals from the entire trajectory are required,

which is not available while implanting the electrodes. Thus, these features can only be used



62 CHAPTER 4. ENSEMBLE OF CLASSIFIERS AND DNN RESULTS

Figure 4.3: The purple shaded area indicates where the nucleus was determined to be based on
the recordings. The red highlighted depth indicates which channel the surgeon decided to use.
Each dotted line represents a recording depth. Negative depth values are above the nucleus,
and positive values are below. The black horizontal dashed line indicates the mean of zero
crossing value in each trajectory.
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as a postoperative validation method and cannot help to localize the STN during surgery. One

of the features, Zero Crossing, is shown in the Figure 4.3 and shows that the difference between

the values from inside and outside of the STN nucleus is visible and clear.

Feature Extraction: Fast Fourier Transformation

Fourier Transformation (FT) is one of the methods which can provide valuable information in

the frequency domain and is computationally efficient. Frequency data provides information

about where the power of signals is concentrated. This is important since it is believed that the

frequency content of neuron activities of each structure of the brain is distinctive. Also, since

the microelectrode signals from the brain are non-stationary signals and have sudden changes

through time, short-time Fourier Transformation (STFT) is selected. STFT applies the Discrete

Fourier Transform (DFT) on a fixed-size time window, so frequency and time component of

the MER signals can be preserved in the features.

Extracting STFT features from the MER signals can give us meaningful information about

the location of the electrode inside the brain. As shown in Figure 4.4, an increase in the power

spectral density of DFT is visible when the electrode is inside the STN. It should be noted that

by using STFT features, there is no need for the post-normalization step. STFT based features

can be used intraoperatively.

As a result, STFT-based feature space can be calculated while recording the MER signals

during the operation while the neurosurgeon is implanting the electrodes. This is an advantage

of the STFT-based feature space in comparison to the ones used in the literature (such as [10],

[11]).

Feature Extraction: discrete Wavelet Transformation

Discrete Wavelet Transformation (DWT), like to the FT, gives the frequency content of the

signal and overcomes the drawback of losing time content in DFT. As a result, the extracted

wavelet coefficients provide the energy distribution of the signal in time and frequency [16].

Furthermore, there are different types of wavelet mother functions which give us more options
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Figure 4.4: Power from DFT in two distinct frequency bands. The upper figure shows the fre-
quency of 500-1000Hz indicating multi-unit activity, and the other figure shows the frequency
of 1000-3000Hz indicating single-unit activity. Negative depth values are above the nucleus,
and positive values are below. The green line indicates the dorsal border of the STN and the
red line indicates the ventral border of the STN, as decided by the neurosurgical team.
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Figure 4.5: The discrete Haar mother Wavelet function.

to extract features from signals. Mathematically, DWT is given by

W (u,2 j) =
∞

∑
n=−∞

s(n)
1

2 j/2 ψ(
n−u

2 j ) (4.4)

where ψ is the mother wavelet (basis function), u represent time and 2 j is the scale parameter

for the frequency axis. The signal is down-sampled by 2 to the power level of (2 j). In our

work, Haar wavelet mother functions were used with 4-level decomposition. Haar is a discrete

wavelet mother function (shown in Figure 4.5) which is given by

ψ(t) =


1 0≤ t < 1/2,

−1 1/2≤ t < 1,

0 otherwise.

The Haar function is used for analysis of signals with sudden transitions, in this case spikes

in the microelectrode signals [17].

4.3 Classifiers

After the feature extraction step, the performance of an ensemble of multiple supervised clas-

sifiers and deep neural network was evaluated in locating the STN. The data was collected

from 100 PD patients, and the outcome of the classifiers shows the label of the MER signals

which is either zero or one. The signals labeled zero indicate that the microelectrode recordings
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are from outside of the STN nucleus and those labeled one are recorded from inside the STN.

These outcomes were compared with the labels provided by the neurosurgeon (with experience

of more than 200 DBS surgeries) for evaluating the accuracy.

4.3.1 The Ensemble of Multiple Classifiers

As an alternative to the modern classifier, in this study, we have evaluated a specific ensemble

of conventional classifiers consisting of

1) Support Vector Machine (SVM)

The goal of SVM classifier is to find a hyperplane that can separate the different classes

of data. This separation is done by solving an optimization problem and finding the

hyperplane which has the largest margin distance of support vectors. Depending on the

kernel function of SVM, this separation can be linear or nonlinear with different degrees

of nonlinearity and flexibility [18].

Let xi ∈ R, i = 0,1, ...,N (N is size of the training set) be the input vector and yi ∈ 0,1 be

the corresponding labels.

y(x) = sign(
N

∑
i=1

αiyiφ(x,xi)+b) (4.5)

Where αi are positive real constants and b is a real constant. φ(x,xi) indicates the kernel

of the classifier which can be linear or polynomial.

2) Logistic Regression (LR)

LR classifier is especially useful for problems with continuous features and discrete

target outputs. The LR model calculates the class membership probability in the data

set [19] as shown below.

P(1|x,θ) = 1
1+ e−θx

P(0|x,θ) = 1−P(1|x,θ)

(4.6)

In (4.6), P is the probability of the class, x is the sample signal and θ is determined based

on the dataset, usually by maximum-likelihood estimation.
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3) Weighted k-Nearest Neighbor (WkNN)

The general idea of kNN classifier is quite simple. It finds the k nearest neighbors of

a sample data point xi. Then it assigns the membership of x based on the distance of

it to the k closest neighbors. The Euclidean distance function is typically used in the

kNN algorithm. The standard kNN may not work well for imbalanced datasets where

the number of examples for some classes are more dominant. For such cases, weighted

kNN are more useful which computes the inverse of distance as the weight for each data

point. So, the closer points have higher weights than more distant ones.

wi =
1

d(xq,xi)2 (4.7)

Where, wi is the weight of sample xi, xq is the neighbor sample, and d(x) is the distance

function. A big advantage of kNN is that it has no cost of training and it weights can be

updated online.

4) Decision Tree (DT):

DT uses a sequential approach for assigning labels to the data. There are different types

of decision trees such as ID3, C4.5, CART. Most of them work by partitioning the input

data along the dimensions which have the most information. In a decision tree, each

node represents a feature, the branches are the decision rules, and each leaf represents

the label or the target value.

There are some ensemble techniques which construct a multitude of decision trees with

a goal to achieve more productivity and overcome the overfitting problem of the DT

algorithm. Random forest is one of these ensemble methods which can build multiple

DTs by repeatedly re-sampling random subsets of features from input space. Thus, in

this study a series of DTs were used by implementing the random forest technique.

• Using the ensemble of these four classifiers can help to enhance the accuracy and better deal

with nonlinearity in the data. We also evaluated the performance of each classifier used in the

ensemble technique separately.

There are different strategies for combining classifiers. Among the existing techniques,
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”majority vote” is a commonly used approach. There are also other combination strategies such

as ”boosting” and ”bagging” based on the majority vote method [20]. A weighted majority vote

method is used for combining the classifiers here.

Weighted Majority Vote Rule

In the majority vote scheme, the final decision goes with the one that has consensus for it or

the one for which more than fifty percent of the individual techniques agree. If each of the

classifiers does not give identical classification accuracy, then it is reasonable to attempt to

give the more competent classifiers greater weight in making the final decision. This method

is called ”weighted majority vote rule” The formula for a weighted majority vote is:

y = argmax
i

m

∑
j=1

w jχA(C j(x) = i), (4.8)

where χA is the characteristic function [C j(x) = i ∈ A], and A is a set of unique class labels. w j

is the weight assigned to classifier j based on its accuracy.

As a result, in this study, we evaluated the performance of an ensemble classifier approach

which is based on the weighted majority vote rule and is composed of SVM, LR, WkNN, and

DT. All results, including the performance of the proposed ensemble technique in addition to

the performance of each classifier used in the ensemble technique are given in Section 4.4.

4.3.2 Deep Neural Networks

Artificial Neural Networks (ANNs) have become a popular classifier due to their inherent char-

acteristics such as self-learning, robustness, adaptivity and generalization capability. ANNs are

useful especially when there is enough data for training to obtain a good network. They denote

a nonlinear mapping between inputs and outputs through multiple layers of neurons that are

fully connected to each other. In the training phase, the ANN adjusts to get proper weights and

bias to fit the database and produce the desired mapping between inputs and outputs. Process-

ing information is as follows: each neuron in the input layer takes a sample from the dataset,

multiplies it by weight, adds a bias value and then passes it to the hidden layer. The hidden

layer transforms this data by applying an activation function. In Figure 4.6, a sample of a
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Figure 4.6: A sample of fully connected feedforward neural network with one hidden layer.

neural network with one hidden layer is shown. Here is the mathematical representation:

h = f

(
n

∑
p=1

Wp
2 f
( m

∑
q=1

W 1
pqXq +b1

p

)
+b2

)
, (4.9)

Where Wpq(q = 1,2, ...,m; p = 1,2, ...,n) is the matrix of weights which expresses the weights

between a neuron in the input layer and another in the hidden layer, n is the total number of

hidden neurons and m is the number of input neurons. Also, X is a vector of values in the input

layer, b is the bias and f is the activation function.

A Deep Neural Network (DNN) is a multilayer neural network with several hidden layers

capable of discovering unknown feature coherences of input signals. It works best with a large

amount of data. There are different parameters for each DNN which need to be chosen for the

best performance. In this section, a quick description of these parameters is given.

Deep Learning Parameters

1. Number of hidden layers and the number of nodes in each layer:

Choosing the right number of hidden layers and the number of nodes in each layer is an

important step for every type of neural networks as well as DNN. By choosing a higher
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number, a more generalized model for the data is achievable but it might lead to some

problems like overfitting and overcomplexity of the model. Thus, it is important to select

the right numbers for these parameters. Using k-fold cross-validation can be a helpful

tool for choosing the proper initial values for these parameters.

2. Regularization and Dropout:

DNNs can be strong classifier models but they have the potential of overfitting due to

many hidden layers which also affects their complexity. Therefore, using a regularization

method is necessary to avoid or reduce overfitting. Regularization is also called the

Weight Decay term since it tries to decrease the magnitude of weights by adding a penalty

to the error function. The regularization method that is used in this study is called Ridge

Regression or L2.

L2 regression adds the square value of weights to the loss function:

L2 = λ ∑
i

w2
i , (4.10)

where wi is the weight of a hidden layer and λ is the regularization term. Tuning or

finding the right value for λ can avoid the overfitting.

Dropout is also another regularization technique that is used in this study to avoid over-

fitting. This technique randomly ignores several neurons during training in each layer.

In other words, the dropout method disconnects some random nodes from previous and

next layers in a neural network. For our problem, a dropout rate of 0.3 was used which

means 30% of neurons in every layer were dropped during the training. This method

makes the network to be less sensitive to the weights and avoid overfitting the training

data. Figure 4.7 shows a simple neural network with two hidden layers before and after

applying the dropout.

3. Activation function:

Activation function determines if a neuron is activated of not. It converts the input signal

of each node to the output. Various linear and nonlinear activation functions are used for

deep learning. In the DNN designed for this problem, the activation functions are Relu
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Figure 4.7: Neural Network before and after dropout. (a) is a normal fully connected network.
(b) is a network after the dropout. The crossed nodes have been dropped [21].

and Tanh; the formula for these functions is below:

• Tanh

tanh(x) =
sinh(x)
cosh(x)

=
1− e−2x

1+ e−2x (4.11)

• Relu

f (x) = max(0,x) (4.12)

These two activation functions were used for the hidden layer nodes. For the output layer,

since our problem output is binary, a Sigmoid activation function was used as follows:

• Sigmoid

f (x) =
1

1+ e−x (4.13)

All these activation functions are plotted in Figure 4.8.

4. Loss function and Optimizer

In most networks, training starts with initializing all the weights to a small, random,

near zero value at each layer. The objective of training is to update the weights’ value

and other parameters of the network in order to minimize the cost function. Gradient

descent is one way to find the best parameters for the network and it works by updating

the parameters in the opposite direction of the derivative of the cost function. In this

study, a more efficient version of gradient descent, Stochastic Gradient Descent (SGD)
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Figure 4.8: Relu, Tanh, and Sigmoid activation functions.

is used. The SGD updates the weights for each sample dataset separately while the with

gradient descent all the weights get updated in each iteration. It is important to use a

small learning rate when using SGD to reduce the fluctuation in the training since only a

single dataset is used in the updating process. The SGD can increase the training speed

and it is more efficient than gradient descent because of less computational cost.

RMSprop optimizer is another more efficient way of gradient descent. RMSprop uses

the gradient descent with momentum, which makes it converge faster. RMSprop is also

used in this study in the training of the DNN model.

In this study, due to the uniqueness and the size of collected data, we have collected over nine

thousand microelectrode recordings as ten-second epochs from 100 patients. The DNN was

used to model the nonlinear neurophysiology based on which, the STN was localized. To find

the most optimal DNN architecture for our problem, several different neural networks were

trained and tested. We have chosen the parameters based on the ten-fold cross-validation set.

The architecture of the neural network that we chose in this study is a twelve-layer network

with ten hidden layers. The number of nodes in each hidden layer was 55 with a dropout rate

of 0.3. All these parameters of the chosen DNN were achieved by tracking the accuracy on the

test set of ten-fold cross-validation. All the computational analyses were conducted in Python
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3.6 (TensorFlow & Keras library).

4.4 Results

The dataset used in this part was enlarged to MER signals from 100 PD patients obtained

during DBS surgery. Each recorded MER signal was a ten-second record from each trajectory

and depth. On average, up to five microelectrodes were inserted on each side of a patient’s

brain and in each, trajectory signals were recorded from 25 depths. As a result, the number of

signals used in this study was large enough to support the use of a DNN architecture. All three

feature sets (conventional postoperative features, STFT-base features, and wavelet features)

were extracted from the signals. In the next step, the classifiers (SVM, LR, WkNN, DT) were

applied to separate the two classes (inside versus outside the STN). As mentioned, a DNN

and combination of classical classifiers were used in this study. To calculate and evaluate the

performance of the proposed composite technique, the labels provided by the neurosurgeon

during the operation were used. The results of this comprehensive comparative study are given

in Figure 4.9. As can be seen in the Figure, the ensemble classifier outperforms the single

classical classifiers. For example, using STFT-based features, the accuracy of SVM alone is

85%, and this is the highest accuracy among the classical techniques, while using the proposed

ensemble of all four classifiers, the accuracy can be improved to 90%.

The best results for this problem were achieved using the wavelet transformation and a

DNN. This combination was able to separate the signals intraoperatively in terms of inside

and outside the STN with an accuracy of 92%. The confusion matrix for this trained DNN is

shown in Table 4.1. The confusion matrix is a tool for performance analysis and it has four

cells which report the rates of true positives, true negatives, false positives, and false negatives.

In this problem, the false positive rate can be very important since the neurological team would

rather be confident that the electrode is inside the STN target than out. By using the presented

model (combination of DWT features and DNN classifier), we have achieved a low value of

false positive equal to 3%. Also, the precision of this algorithm is calculated as follow:

Mprecision( f ) =
T P

T P+FP
, (4.14)
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Table 4.1: Confusion Matrix for the DNN Model

and the precision for this model is 95.7% which indicates the robustness of this model.

All the trained algorithms were tested on new test MER signals and this showed that online

real-time implementation allows input data to be processed within a short frame of time (less

than 1.35 seconds), and provides feedback on location of the electrodes at each depth with

respect to the STN. As mentioned before, the major problem with conventional features is that

they cannot be used during surgery because they need some postoperative normalization steps.

As a result, although these features can provide postoperative validation, they cannot be used

during the surgery to localize the STN. However, STFT-based features and wavelet features

do not need a post-processing step and can be extracted in real-time during surgery. Thus,

from the results shown in Table 4.2, the wavelet feature space extracted from the MER signals

provides rich features for the DNN algorithm to assist the neurosurgeon in localizing the STN

intraoperatively.

In addition, it is important to note that regardless of the problem with intraoperative imple-

mentation of the conventional techniques, they do not have the accuracy of the ones proposed

here. In this study, two main approaches were proposed, (a) wavelet feature space used in a

DNN, and (b) STFT-based feature space used in an ensemble SVM-LR-WkNN-DT fused using

a weighted majority vote. The accuracy of both approaches for localizing the STN was higher

than conventional techniques. Unlike conventional techniques [10], [11], both approaches can

be implemented intraoperatively with the wavelet-DNN having the highest accuracy.

Thus, from the results shown in Table 4.2, the wavelet feature space extracted from the

MER signals provides rich features for a DNN algorithm for assisting neurosurgeons in local-

izing the STN intraoperatively.
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Figure 4.9: Accuracy of Classical Classifiers and Ensemble method for localizing STN.

Table 4.2: Accuracy of Deep Neural Network and Ensemble method

Features\Classifiers Ensemble of Classical methods Deep Neural Network

10 extracted features 74% 89%

STFT coefficents 89% 90%

Wavelet Transformation features 88% 92%
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4.5 Conclusion

This chapter presented new techniques that can be used to assist the neurosurgeon during

DBS surgery by providing accurate localization of the STN. For this purpose, Microelectrode

Recording (MER) signals were processed and used in a machine learning algorithm. Based

on this study, a combination of discrete wavelet transformation features and a Deep Neural

Network algorithm was suggested as a highly accurate approach to localize the STN during

DBS surgery with an accuracy of 92%. To validate the performance of this approach, MER

data from 100 patients living with Parkinson’s disease was used. A total of 9365 signals were

recorded to construct the data set. A comparative study was conducted to evaluate the accuracy

of the method with that of existing state-of-the-art techniques. The results showed that (a) the

proposed approach can localize the STN with an accuracy of 92%; and (b) the technique de-

scribed in this study can be used as a cueing tool in the operating room to assist neurosurgeons

to reach the STN target during DBS surgery in real-time. able
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Chapter 5

Concluding Remarks and Future Work

5.1 Concluding Remarks

The goal of this thesis was to design an automated platform for intraoperative localization of the

subthalamic nucleus (STN) in deep brain stimulation (DBS) surgery. DBS is a neurosurgical

treatment for Parkinson’s disease (PD) patients. The main goal of the DBS operation is to

implant an electrode inside the STN nucleus to deliver high-frequency electrical current to the

motor region of the STN. Implantation can be unilateral or bilateral depending on the severity

of PD motor symptoms. In this study, an assistive approach for this localization of the STN

target was designed. To this end, the performance of different feature extraction methods and

machine learning algorithms was investigated. All these methods were trained and tested on a

rich unique dataset collected from DBS surgeries done at University Hospital, London Health

Sciences Center, Ontario, Canada.

The platform resulting from this study can be used as a guidance tool during the DBS sur-

gical procedure to show the location of the electrode intraoperatively. This trained learning

platform can assist the neurosurgical team to localize the STN nucleus with more accuracy

and consistency than is currently possible. Furthermore, the automation of intraoperative elec-

trophysiology analysis reduces the time required for interpretation, which in turn reduces the

overall operation time. The next section discusses the contributions in more detail.
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5.1.1 Contributions

This thesis introduced and demonstrated different methods for improved localization of the

STN nucleus during DBS surgery. The main contributions of the thesis are as follows.

Novel feature extraction methods were presented which allow the method to be used in-

traoperatively. In the literature, various feature extraction methods have been used; however,

most of them cannot be used during surgery since they require post-processing steps. One of

these post-processing steps is normalization. In order to normalize the extracted features, all

the MER signals from one trajectory are needed. Thus, normalization requires information

that is not available in an online manner. In this work, two new feature extraction methods

are presented which do not require post-processing. Thus, these features can be extracted and

used intraoperatively, which is an important improvement on past methods. In addition, these

features can distinguish different firing patterns and signal characteristics of microelectrode

recordings. Therefore, the methods can provide valuable input information for the machine

learning algorithms.

Also, in this study, different learning algorithms were investigated to automate the process

of localization of the STN nucleus. In Chapter 2, the logistic regression algorithm and support

vector machine algorithm with various kernel functions were used. In Chapter 3, the perfor-

mance of some unsupervised machine learning methods was analyzed. The results show that,

even without using any labels in the dataset, the STN borders were detectable with high ac-

curacy. This demonstrates the richness of input features in identifying and distinguishing the

signal characteristic of microelectrode recording from outside and inside the STN. In Chap-

ter 4, more complex models were investigated such as deep neural networks and an ensemble

of four classifiers. Also, a new feature extraction method was presented in this chapter, i.e.,

wavelet transformation. For this part, the size of the dataset was increased to train the deep

learning model. Performance analysis was conducted using the confusion matrix and the high-

est accuracy was achieved by using wavelet features and deep neural networks.

Overall, the methods that were investigated in this project have shown that the intraopera-

tive automation of STN localization is feasible. The results show that the technique described

in this study can be used as a cueing tool in the operating room to assist neurosurgeons to reach
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the STN target during DBS surgery in real-time.

In this thesis, the best performance was achieved using the wavelet transformation as the

feature extraction tool and implementing a deep neural network as the learning algorithm. This

combination can localize the STN with an accuracy of 92%.

5.2 Future Directions

Based on the work described in this thesis, various research directions can be explored to

continue this work in the future. The following sections discuss these future directions.

5.2.1 Collecting Intra-operative Data

In DBS surgery, when all the microelectrodes are implanted inside the patient’s brain, the

neurosurgeon identifies the dorsal and ventral borders of the STN based on the microelectrode

recordings. The neurosurgeon will then conduct stimulation testing with each microelectrode,

at various currents, to asses patient symptom improvement. The neurosurgeon chooses the best

microelectrode based on the patients responses to these tests. Thus, the patients responses to

the tests have a significant role in the final choice of the microelectrode trajectory to use for

DBS electrode implantation. Collecting the stimulation testing data would help to improve the

learning algorithm and enrich the dataset for future predictions.

5.2.2 Collecting Post-operative Data

The results of the DBS surgery are highly dependent on the location of the electrode inside

the STN. Postoperative follow-up with the patients and looking into their postoperative MRI

images can add helpful and important data to this study.

The neurosurgical team cannot be certain about the exact location of the implanted elec-

trode until they perform postoperative imaging and turn the DBS device on. Thus, collecting

this postoperative data can help with the learning algorithm input. The trajectory recordings

for the electrodes that are not precisely located in the STN can be excluded from the dataset.

This will help the machine learning algorithm to learn from the correct input dataset and make

accurate future predictions.
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5.2.3 Choosing the Best Channel

Finding the exact depth of entry and exit of borders of the STN is an ongoing problem; se-

lecting the most optimally positioned microelectrode is also challenging in DBS surgery. As

mentioned in the thesis, up to five microelectrodes are inserted into each side of the patient’s

brain. These microelectrodes are named based on their anatomical place; central, medial, lat-

eral, anterior, and posterior. At the end of the surgery, one of these five microelectrodes will be

chosen for permanent implantation of the DBS electrode.

Therefore, a possible future step would be to add an extension to the learning algorithm

in the proposed method which can distinguish different firing patterns on each microelectrode,

thereby enabling the choice of the most optimal microelectrode trajectory.

5.2.4 Localization of Globus Pallidus Pars interna (GPi)

Even though both STN and GPi are the potential targets in DBS surgery [1], few studies have

been conducted on the localization of the GPi nucleus. Therefore, future research could be

carried out to improve the surgical accuracy of GPi DBS targeting. Research is needed to

identify the signal characteristics of neurons inside the GPi. Also, implementation of an online

automated algorithm for localizing the GPi nucleus is an unmet need.

5.2.5 Models and Hyperparameters

Many different neural network architectures, of varying sizes and parameters have been in-

vestigated in this study. However, there is always room for improving the neural network

algorithms to be faster and more robust. Techniques such as Bayesian optimization algorithms

may identify better models in less time. Moreover, using other types of neural networks such

as recurrent neural network and deep belief neural network may help to achieve better results.
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