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Abstract

Predictive Maintenance (PdM) performs maintenance based on the asset’s health status in-

dicators. Sensors can measure an unusual pattern of these indicators, such as an increased

motor’s vibration level or higher energy consumption, and, in most cases, failures are preceded

by an unusual pattern of these measurements. The increasing number of sensors are generating

a massive amount of data. Machine Learning (ML) techniques can capture and learn patterns

from the data and create models to evaluate the required health indicators. These health in-

dicators are obtained by sensors, which are becoming more present every day. Convolutional

Neural Network (CNN) is a Machine Learning technique capable of extracting data represen-

tation. This ability means that less feature engineering needs to be done when compared with

conventional ML techniques. This thesis presents a CNN framework to tackle assets predictive

maintenance problem and a method to transform 1-dimensional (1-D) data into an image-like

representation (2-D). A data transformation step is very important to make the use of CNN fea-

sible. To evaluate the proposed framework two datasets were obtained from fans, with distinct

electrical pattern, from the CMLP building at Western University. The data was preprocessed,

transformed in a image-like representation and fed to a tuned classifier. The results presented

by the CNN-PdM framework showed that the combination of CNN with the proposed data

transformation method outperformed traditional machine learning techniques (Random For-

est, Support Vector Machine, and Multi-Layer Perceptron). Statistical tests were performed

to ensure that the results are statistically different from each other. The model created by the

CNN-PdM framework achieved accuracy rates as high as 98% for one of the datasets and 95%

for the other.

Keywords: Predictive Maintenance, Machine Learning, Deep Learning, Convolutional

Neural Networks, CNN, Data Transformation.
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Chapter 1

Introduction

1.1 Motivation

Nowadays, asset maintenance plays a vital role in companies and countries [1], because, if

an asset breaks, it can cause long downtimes that may affect companies’ production costs or

the comfort level of building occupants. Asset management consumes a large portion of the

budget established by countries and companies. In Canada, the Federation of Canadian Mu-

nicipalities (FCM) has created a five-year, $50 Million program to support municipalities to

make decisions on infrastructure investment based on sound asset management practices [2];

Europe reached a record high of EUR 25.2 trillion spent in asset management in 2017 [3]. As-

set management is more than just asset maintenance, it considers strategy, safety, environment,

and human factors as well [4]; however, maintenance and terotechnology (ability to maintain

the assets operating optimally) are among the most important competencies for assets manage-

ment, having a substantial impact in a cost perspective [5]. Consequently, a solution that can

improve the handling of asset maintenance can have a considerable impact on the budget of

companies and governments.

There are three main approaches to address the issue of asset maintenance: corrective (also

known as run-to-failure, henceforth R2F) [6]; preventive (or time-based) [7]; and predictive
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2 Chapter 1. Introduction

maintenance (PdM or status based) [8]. In R2F, maintenance only takes place after a failure

occurs. A critical asset failure, such as a broken heating pump in the winter, can lead to

pipes bursting, and may cause severe damage to a building. Preventive maintenance works

under a pre-existing maintenance schedule usually provided by the asset’s manufacturer [7,

9]. The drawback of this approach is that the asset may not present any problem but the

maintenance will be made regardless, resulting in “unnecessary” costs. On the other hand,

PdM performs maintenance based on the asset’s health status indicators. Sensors can measure

an unusual pattern of these indicators, such as an increased motor’s vibration level or higher

energy consumption, and, in most cases, failures are preceded by an unusual pattern of these

measurements [10]. This thesis will investigate the use of PdM in buildings.

In order to apply PdM, two approaches are commonly used: a mathematical model [11] and

machine learning (ML) techniques [8, 10]. A model is a representation of a given phenomenon

or system, which can be made using a set of equations (mathematical) or an ML technique.

A mathematical model usually requires a domain specialist that understands the asset and its

environment. The creation of a mathematical model for an asset is a very specific task; its main

drawback is that the same model cannot be used for different assets. Two distinct mathematical

models had to be created by Bujak [12] and Zhang et al. [13], for example, in order to represent

two different boilers. ML techniques can capture and learn patterns from the data and create

models to evaluate the required health indicators. As buildings have numerous pieces of assets

that must be monitored, the usage of ML is more suitable because it enables the creation of a

specific model for each one of the assets using the same ML techniques.

An important aspect of modeling is to work with the available features. Features are the

different data inputs (individual measurable properties), such as temperature or energy con-

sumption [14]. Dealing with these inputs may be a challenge by itself if two or more highly

correlated features are available because they may introduce bias to the model [14]. The fea-

ture selection step is also significant in order to determine which of the available data inputs are

relevant to the PdM; the most suitable set of features must be selected for a particular problem.
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In a scenario in which two different maintenance teams work with the same asset, for instance,

one team may be interested in one set of features and handle only electrical issues with the

asset, while another team may be interested in mechanical features, such as vibration, and be

specialized in mechanical problems.

Different ML techniques perform better under different scenarios. There are ML techniques

that work better with a smaller amount of data, but are outperformed in situations in which the

amount of data drastically increases [15]. Neural Networks (NNs) [16] are one class of ML

techniques that are a combination of cells called neurons, which are organized in layers. The

number of layers of an NN relates to the NN’s depth. The deeper the NN is, the more layers

(and also neurons) the NN will have. A particular type of NN is the Convolutional Neural

Network (CNN) [15]. The CNNs try to mimic the human brain ability to classify objects by

their shape. For this reason, CNNs are most commonly used for image classification problems.

In other domains, data can be represented as an image through a feature transformation process.

In this research, data transformation methods are used to represent data as images.

1.2 Contribution

This work proposes the Convolutional Neural Network Predictive Maintenance (CNN-PdM)

framework. The CNN-PdM aims at tackling the PdM problem using CNN as its core. The us-

age of CNN is a crucial factor because this technique is capable of creating data representation

from the data’s features, which is a significant advantage when compared to traditional ma-

chine learning techniques as it removes the need to perform feature engineering. Since PdM

is an approach that have the assets’ health status constantly monitored, a drift from normal

behavior indicates that the asset needs maintenance. This study shows that CNN can better

identify abnormal patterns from the data and provide more accurate advice about the need to

perform PdM in assets.

Nowadays, there is a collection of sensors in assets that can offer a vast amount of data,
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from which CNN can benefit and outperform previous state-of-the-art ML models. More data

represent the possibility to have deeper CNN models, which leads to higher level feature maps

that can be created by the CNN layers; this feature map representation is the main reason why

they outperform conventional ML models as the amount of data increases. A lack of research

in this area suggests that there is no previous usage of Convolutional Neural Networks (CNN)

with electrical data and also in the PdM domain. A data transformation method has also been

proposed to represent 1-dimensional data (1-D) into 2 dimensions (2-D). The multiplication

method, introduced in this research, was able to represent the data in a more heterogeneous

way than the previous data transformation methods; this transformation method combined with

the feature representation from CNNs outperformed conventional ML approaches.

The proposed framework in this thesis was evaluated in two case studies. These case studies

compared CNN-PdM framework using two different image transformation methods and CNN

with well-known ML techniques that have been applied in the PdM domain. For each case

study, one dataset was used for all the experiments. Each one containing data from different

assets (SF103B and RF101) from Claudette MacKay-Lassonde Pavilion (CMLP) building at

Western University, London, Canada. Each dataset contains data from February 1, 2018 to

January 31, 2019.

The results highlight the following observations:

• For comparison purposes, 8 experiments were conducted in this research to assess how

well the CNN-PdM framework would perform when compared with traditional ML tech-

niques used in the PdM domain (Support Vector Machine and Random Forest). Since

CNN is a type of neural network (NN), we are comparing it with Multi-Layer Percep-

tron, which is one of the most commonly used NNs. The evaluation was performed

under 30 simulations for each experiment in two case studies. For each case study, 30

simulations using the same data were performed for each experiment; the CNN com-

bined with the data transformation technique proposed in this work outperformed the

other ML approaches. In the first case study, the CNN-PdM framework outperformed
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the other approaches by at least 1.91% after, while in the second one, it outperformed the

other approaches by at least 1.5% using also the same data for the experiments.

1.3 Organization of the Thesis

The remainder of this thesis is organized as follows:

• Chapter 2 covers relevant background topics that are necessary to comprehend the re-

maining content of this work. First, this chapter provides information related to machine

learning algorithms used in this work; second, this chapter includes a literature review

on current studies that use CNN for various domains other than image classification and

research that discusses PdM. Finally, it offers distinctions between this thesis and previ-

ously published scholarship.

• Chapter 3 discusses the stages of the CNN-PdM framework, which consists of four

stages: Data Collection, Data Preprocessing, Data Transformation, and CNN Model

Creation. This chapter presents the steps used in each of these stages.

• Chapter 4 describes the implementation performed for the CNN-PdM framework. This

chapter also includes the libraries and methods used for the implementation used in this

research. It also presents the experiments conducted using the CNN-PdM framework

along with a comparison with other ML techniques. Two experiments were performed

that considered two distinct assets: two fans from the CMLP building at Western Univer-

sity that are used for different purposes; therefore, these assets’ electric profile (energy

consumption, amps, real power, and so on) varies from one to another.

• Chapter 5 provides the outcomes of this thesis, as well as discussion regarding Predictive

Maintenance and directions for possible future work.



Chapter 2

Background and Literature Review

This chapter has two main objectives: first, it focuses on providing key background information

to help in the understanding of the CNN-PdM framework; second, it presents the literature

review that discusses what has been done on topics related to CNN and PdM.

2.1 Background

This section presents basic concepts of machine learning techniques used in this work: Con-

volutional Neural Networks (CNN), Data Transformation Tecnniques, Random Forest (RF),

Support Vector Machine (SVM), and Multi-Layer Perceptron (MLP). This section also pro-

vides information related to feature transformation and Deep Learning.

2.1.1 Machine Learning

Machine learning (ML) is a field of Artificial Intelligence (AI). ML systems can extract knowl-

edge from data [17] through one of four main learning paradigms: supervised, semi-supervised,

unsupervised, and reinforcement learning [18].

In supervised learning problems, the available data contain the examples (inputs) and also

the target values (outputs), while in semi-supervised problems only a portion of the data con-

6



2.1. Background 7

tains the expected outputs. The two most common types of supervised and semi-supervised

learning problems are classification and regression. In classification problems, the ML model’s

output is one of a finite number of classes for a given input. In image classification, one possi-

ble problem could be, for example, to detect if an object is a cat or not. In this case, it is also

called a binary classification problem, because there are only two possible classes as an output.

Another classic classification example could be to perform the classification of the iris flower

dataset, in which the possible outputs are setosa, virginica or versicolor. This type of problem

is known as a multi-class classification problem. On the other hand, in regression problems,

the ML model’s output is characterized by one or more continuous values. Possible examples

of regression problems are to perform the prediction of energy consumption of an asset for the

next day or to predict Microsoft’s stock value within the next week. To evaluate classifica-

tion problems, some metrics are commonly used, such as accuracy (Equation 2.1), precision

(Equation 2.2), recall (Equation 2.3) and f1 score (Equation 2.4). These metrics are described

below:

accuracy =
1

nsamples

nsamples∑
i=1

(ŷi = yi) (2.1)

precision =
tp

tp + f p
(2.2)

recall =
tp

tp + f n
(2.3)

f 1 score = 2 ∗
(precision ∗ recall)
(precision + recall)

(2.4)

where ŷi is the predicted class, yi is the expected class, tp stands for true positives, f p for false

positives, and f n for false negatives.

Unsupervised learning is characterized by the absence of labels on the training data. Clus-

tering and density estimation are the most common unsupervised learning problems. Clustering

is based on the act of grouping examples that share similarities and are usually used as a way

to present insight about the data. Density estimation relates to finding the data distribution in

the space. The iris flower dataset can also be handled as a clustering problem if the examples’
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classes are not provided.

Finally, reinforcement learning relates to unsupervised learning in the sense that ideal

outputs are not provided. The reinforcement learning focuses on finding the optimal output

through a trial and error process. Instead of predicting values, the output of reinforcement

learning techniques is actions. These actions are evaluated by an agent that interacts with the

environment in which it is placed. The evaluation of these actions on the environment works

as a feedback for the model, that can be a reward or a punishment. Volodymyr et al. [19]

presented a reinforcement learning framework that was tested on multiple ATARI games, in

which the pixels from the screen are fed to the agent which learns how to play those games.

Deep Learning is a particular type of ML that presents a unique capability of extracting data

representation. This ability signifies a big step for ML data preprocessing, as a person may not

perform the feature engineering step when using deep learning techniques. Some well-known

deep learning techniques are Convolution Neural Networks, Recurrent Neural Networks, Deep

Belief Network, and Stacked Auto-Encoders [20].

As the name suggests, Machine Learning techniques need to learn (from the data). The

learning stage is called training stage. The data is usually split into two or three subsets:

training, validation (optional), and testing sets. The ML model will learn from the training set,

be affirmed from the validation set, and evaluated within the testing portion of the data. One

could use 80% of the data to train the model and 20% to test (evaluate) it, for instance. This

would be refereed as a 80/20 training/testing data split. Another example would be to have a

validation step. In this case, the data could be split as 60/20/20, that is 60% of the data would

be used to train, 20% to validate, and 20% to test the model.

2.1.2 Convolutional Neural Networks

Deep Learning (DL) is a subset of ML techniques. The main advantage of deep learning tech-

niques is that there is almost no need to perform feature engineering, which is to create features

by hand, usually by a domain expert [21]. This advantage emerges from the capability of per-
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forming representation learning, which means extracting knowledge from raw data. The most

commonly used DL technique for image classification is the Convolutional Neural Network

(CNN).

Inspired by animals’ visual cortex, they have the capability of extracting strong spatially

local correlation to create high-order features information from the raw data [22]. It is possible

to arrange CNN neurons in a three-dimensional structure to capture information regarding

width, height, and depth; therefore, CNNs are commonly used to perform image classification.

CNNs usually present a structured pattern of layers, combining successive convolutional

(conv) layers with ReLU (rectified linear unity as activation function, sometimes seen as a

layer by itself) and pooling layers, represented as a box in the hidden layers stage in Figure

2.1.

Figure 2.1: Commonly used CNN architecture: input layer, combinations of conv and pooling
(hidden) layers and output layer.

The convolution operation performed by the convolutional layer is the feature extractor,

which is a filter (also known as a kernel) that slides over data, combining information. Each

subsequent layer increases the abstraction level of the features captured by the filters. The
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filters in the first layer, for instance, would be responsible for detecting the presence of edges,

while the second layer would be in charge of detecting the combination of edges. The third

convolutional layer should be able to detect parts of familiar objects. Note that the abstraction

level increases from layer to layer [21].

The sliding step distance of the filter is known as stride [23]. Usually, the convolution

operation uses stride equals to one, which means that the kernel was shifted by one position.

The output of this filter is the dot product from the filter elements and the data within the kernel

boundaries. This operation can be interpreted as a forced merging of similar features into one

single feature [21].

To avoid overfitting, a very effective technique is used: dropout. A dropout layer is respon-

sible for randomly changing the output of a fraction of neurons to zero, a fraction is known as

dropout rate. An input array [0.1, 0.5, 0.7, 0.3, 0.4] submitted to a dropout rate of 0.2 (20%),

for example, would present one of its value set to zero. Dropout is performed only during

the training stage. During testing, the output values are scaled down by a factor equal to the

dropout rate in order to balance the fact that more units are being used than during the training

period.

2.1.3 Data Transformation

As it was previously presented, CNN was created and outperforms conventional machine learn-

ing techniques in image classification problems. Data transformation is a step performed usu-

ally to present data in an easier way to be visualized. A common use of data transformation

is to perform dimensionality reduction, in which large volumes of high-dimensional data are

reduced to 2 or 3-dimensional (2-D and 3-D, respectively) to provide a better understanding of

the data [24, 25]; however, sometimes one needs to perform the opposite task of dimensionality

reduction: to increase the number of dimensions. Mapping the 1-dimensional (1-D) data into

2-D, or even 3-D, is an important step if one considers using a CNN model. Wang and Oates

[26] proposed Grammian Angular Field (GAF) to transform time-series into images aiming on
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improving classification and data imputation.

• Grammian Angular Field (GAF): Given the input example d = { f1, f2, ..., f49}, the GAF

data transformation output can be obtained by applying Equation 2.5:

GAF =


< f1, f1 > · · · < f1, f49 >

...
. . .

...

< f49, f1 > · · · < f49, f49 >

 (2.5)

where < fi, f j > stands for fi · f j −
2
√

1 − f 2
i ·

2
√

1 − f 2
j . An example of GAF features’

transformation can be seen in Figure 2.2.

Figure 2.2: An example of sensor data represented as an image (GAF).

Chen et al. [27] proposed other two techniques to perform data transformation: Moving

Average Mapping (MAM) and Double Moving Average Mapping (DMAM). For a comparison

purpose, the authors have compared the proposed methods with GAF.

• Moving Average Mapping (MAM):

Moving Average is a well-known technical analysis indicator in the financial domain.

The purpose of moving average is to create a smoother curve for the time-series; this
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increases the temporal dependency. The authors translated this idea into a mapping al-

gorithm. Their primary goal was to capture multiple moving average values considering

different time frames for each input, as illustrated in Equation 2.6:

MAM =


MAt−D+1,1 · · · MAt,1

...
. . .

...

MAt−D+1,D · · · MAt,D

 (2.6)

where MAi, j is the average stock closing price from period i to j.

• Double Moving Average Mapping (DMAM):

The authors wanted to benefit from more information than only one feature (closing

price) over time. Instead of using the closing price, the authors utilized the average value

from opening and closing prices were used. The aim was that the average value from

opening to closing aggregated more information than only the last one.

MAM and DMAM apply the concept of Moving Average, which represents the variation

over time of a single feature (in DMAM’s case, the average value of two features). Those

techniques are not applicable to the PdM domain when considering different features, such as

energy consumption, amps, or a motor’s vibration level. GAF seems to be the most appropriate

technique to use in the PdM domain. Instead of capturing the correlation among a single feature

over time, it could be used to capture the relationship among features from a specific time; it

is possible to observe, however, that the image representation presented by GAF is dark and

might be a problem, as it presents low contrast among the transformed features (the subtraction

term 2
√

1 − f 2
i ·

2
√

1 − f 2
j decreases the pixel intensity). In order to prevent it, a multiplication

features’ transformation has been proposed in this research.
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2.1.4 Random Forest

Proposed by Breiman [28], Random Forest (RF) is a technique which creates a set of N decision

trees {T1(F),T2(F), ...,TN(F)}, where F is a feature dimension vector of size m given by F =

{ f1, f2, ..., fm}. Each tree is trained by different subsets of the dataset. Usually, decision trees

are created by splitting each node with the best possible variable, while in RF the node is

split using a subset of features randomly generated for that specific node [29]. This extra

randomness makes RF less prone to overfitting than decision trees. In a classification problem,

the output class is given by the majority vote of the trees in the ensemble, while in a prediction

problem the output is the average value of each tree prediction [30].

2.1.5 Support Vector Machine

Support Vector Machine (SVM) is a commonly used approach in binary classification problems

[8]. Given a training set denoted by S = {xi, yi}
n
i=1, SVM is responsible for mapping the input

data into a higher dimensional space (greater than n), where it is easier to separate the examples

with a hyperplane [31]; the examples that are closest to the hyperplane are called support

vectors. The hyperplane is surrounded by a margin, which represents how fat this hyperplane

can be without misclassifying the examples; the larger the margin, the better it is, because new

examples can be within the margin without being misclassified.

2.1.6 Multi-Layer Perceptron

Multi-Layer Perceptron (MLP) is a type of feed-forward Neural Network. Its main component,

called neuron, is grouped in layers. Each neuron can receive multiple inputs from the previous

layer, and each input has a weight. The sum of the weighed inputs is modified by a non-linear

function, called activation function. The output of the activation function is used as an input

by the neurons in the subsequent layer. The non-linearity of the activation function allows

the MLP to approximate non-linear functions [32]. MLP presents at least three layers: input,
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hidden and output. MLPs may present more than one hidden layer [22].

2.2 Literature Review

This section provides a literature review and is divided in three parts. The first covers works

in which CNN is used to perform different tasks other than image classification. The second

present works that use mathematical models in the PdM domain, while the last one offers

researches that investigate the creation of ML models in PdM domain.

2.2.1 CNN in Different Domains

CNN was built mostly to perform image classification; however, it has been applied to other

domains [33, 34, 27]. Seo and Cho [33] used CNN to perform offensive sentence classification

as this domain is susceptible to data imbalance. The authors benefited from the transfer learning

capability of CNN and perform its training using an artificial dataset to avoid imbalance issues.

They showed that even though CNN does not perform well in offensive classification as datasets

are usually not enough to train the features (CNN filters), training on an artificial dataset makes

it possible to overcome this issue.

Muckenhirn et al. [34] presented a classification model to deal with voice presentation

attack detection. The authors used a CNN as a feature extractor followed by an MLP with only

one hidden layer that works as a classifier. They concluded that their research is complementary

to a spectral statistics-based approach and its main advantage is that their proposed method does

not use prior assumptions related to speech signals.

Chen et al. [27] proposed a CNN based method to analyze financial time-series. In their

work, they had over one million samples of data from January 2, 2001, to April 24, 2015, and

the sampling period was one minute. The objective of their research was to create a method

that could detect the trend of the time series. The authors used a time-window of size 20 and

compared 3 data transformation methods to represent the 1-D data into 2-D: Gramian Angu-
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lar Field (GAF), Moving Average Mapping (MAM), and Double Moving Average Mapping

(DMAM). The best results were achieved by the combination of GAF and CNN, with an aver-

age of 54.86% accuracy.

2.2.2 Predictive Maintenance using Mathematical Models

Authors have used mathematical models to deal with PdM [11, 35, 36]. Borgi et al. [11] pro-

posed a mathematical model to deal with predictive maintenance for industrial robots. This

method relied on the data analytics of the robot power time-series to predict the robots ma-

nipulator accuracy error. The data used in this work were a set of 21 features (7 for each of

the 3-phase current) and 155 examples. Their work showed that a set of electrical features

presented a high correlation with 3-phase current and the robots accuracy values.

Cauchi et al. [35] presented a mathematical model to describe the user discomfort as a

consequence of degraded temperature control, which advised for maintenance of a boiler. The

authors proposed two models: linear and exponential. The following features were considered

as input for both models: building inside and outside temperatures, boiler efficiency, the ideal

range of comfort temperature, the thermal resistance of the zone envelope, heat gained from

solar radiation, and the heat gained due to occupants. Their methodology aimed to advise for

the boilers maintenance or their replacement.

Olde Keizer et al. [36] offered a mathematical model to tackle problems of systems with

multiple components. The authors demonstrated that the simple fact of duplicating policies

from a single-component into multi-components systems might not be useful. Their method-

ology was based on a Markov Decision Process with a focus on minimizing costs. The model

took into consideration state space, action space, transition probabilities, and the expected

costs. The state space represented the state of each component, status of spare orders and the

number of spare components. The action space represented the decisions made about compo-

nents replacement. The transition probabilities would take into consideration if any component

was replaced to calculate the transition to a new state. Expected costs were calculated by the
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sum of operating, replacement, order, and holding costs. The results showed that ordering

decisions had a higher impact on the costs than replacement decisions.

The difference between the studies above [11, 35, 36] and the proposed research is that the

CNN-PdM framework uses an ML algorithm; therefore, it is simpler to accommodate different

assets and even asset types than if using a mathematical model. Different ML models can be

trained using the same steps and the same ML technique to work with PdM for a boiler or an

HVAC, for example, while the same mathematical model would not be able to represent both

assets.

2.2.3 Predictive Maintenance using Machine Learning

In contrast with the usage of mathematical models in PdM, machine learning models are also

used [8, 37, 38, 39, 40, 41, 42, 43]. Susto et al. [8] presented an ensemble approach to

detect when tungsten filaments must be replaced during ion implantation, one of the steps

in the semiconductor manufacturing fabrication. The authors had access to 33 maintenance

R2F cycles approach, recording 3671 examples of both normal and faulty data, containing

31 features each (9 for current, 3 for pressure, 7 related with voltage and so on). Susto et

al. tested SVMs ensembles (PdM-SVM) and KNN ensembles (PdM-KNN); the PdM-SVM

slightly outperformed the other approach.

Coraddu et al. [37] proposed a study on ML models that performed PdM on gas turbines

(GT). The authors focused on Regularized Least Square (RLS) and SVM to predict the ideal

maintenance time of the GT based on three variables: speed, compressor decay, and GT decay.

The experiments were performed using an artificial dataset created by a simulator. The results

showed that the SVM outperformed the RLS model.

Ma et al. [38] presented a Discriminative Deep Belief Network (DDBN) with its parame-

ters optimized using Ant Colony Optimization (ACO) algorithm to deal with predictive main-

tenance on a gas turbine (GT). The authors used 100 different R2F datasets, containing 14

independent variables regarding the assets’ health condition. The assets were classified ac-
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cording to their health status into 5 categories, based on how many cycles the GT would work

before it failed: 0%−20%, 20%−40%, 40%−60%, 60%−80%, and 80%−100%. In this study,

the ACO-DDBN model was compared with an ACO-SVM (SVM optimized by ACO) model,

and the ACO-DDBN presented the best results achieving 97% accuracy on the classification

over the 5 classes.

Leahy et al. [39] proposed an SVM approach to perform PdM on wind turbine. The

authors’ dataset was created from SCADA data and presented 45000 datapoints. Leahy et

al. tried to perform 6 different fault classification: fault/no-fault, feeding faults, aircooling

faults, excitation faults, generator heating faults, and mains failure. The authors used SVM

hyperparameter optimization by randomized search. They achieved better results on detecting

generator heating faults, classifying correctly 100% of the cases, but they obtained only 90%

recall and 8% precision on the fault/no fault dataset.

A predictive maintenance for photovoltaic systems using Multi-Layer Perceptron (MLP)

neural network and Triangular Moving Average (TMA) was proposed by De Benedetti et al.

[40]. Their work is based on the prediction of the power generated by the photovoltaic system,

considering the produced power as a function f (I,T ), where I is the solar irradiance and T is

the environment temperature.

Baptista et al. [41] presented a framework that uses data-driven techniques and Auto-

regressive Moving Average (ARMA) to deal with the predictive maintenance for a valve for

an aircraft engine. The feature extraction module uses ARMA to provide a forecast of the next

event. This prediction is used as input for a predictive model in a further step. 13 statistical

features that are created from historical data and are combined with the ARMA’s forecast as a

new set of features. PCA transforms these 14 features, and the output of this transformation is

fed to train the data-driven model. The authors tested f-nearest neighbors, RF, NN, SVMs, and

also linear regression for the data-driven model. The SVM outperformed the other models.

Kulkarni et al. [42] proposed an ML base approach to perform early detection of issues on

refrigeration and cold storage systems. The authors have applied a feature extraction step which
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consisted of seasonality decomposition and pattern learning by using dynamic time wrapping

and clustering. After that, an RF classifier was used to detect if the pattern was abnormal or

not. Their method was able to achieve 89% precision.

Paolanti et al. [43] presented an ML model to perform PdM on a cutting machine. The

authors used an RF to perform a classification among possible rotor status of the cutting ma-

chine. They had 15 available features and 530731 examples. The authors’ RF model was able

to achieve 95% of overall accuracy.

In contrast with the studies described above [8, 37, 38, 39, 40, 41, 42, 43], the proposed

research makes use of CNN, a model that is capable of extracting feature representation to

outperform classic ML techniques. With a higher number of features, finding an optimal subset

of features can be hard. Only Susto et al. [8] presented a high number of features (31). All

other approaches presented less than 14 features. CNNs are capable of creating relevant feature

representation with a high level of abstraction to perform the classification and in Internet of

Things’ (IoT) era, where more and more data become available every day, being able to deal

with massive amount of features is relevant to any ML problem.

2.3 Summary

This chapter presented an overview of ML models that are key to the understanding of the

CNN-PdM framework, in particular, RF, SVM, MLP, and CNN. Works that use CNN in do-

mains that are not related directly to image classification were also presented in this chapter.

This chapter also presented numerous studies that aim at dealing with PdM by using mathe-

matical or machine learning models.
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CNN-PdM Framework

This thesis proposes the Convolutional Neural Network Predictive Maintenance (CNN-PdM)

framework, which is presented in Figure 3.1. The CNN-PdM framework uses historical data

gathered by sensors, generates temporal features, performs data transformation, and realizes

model tuning to identify possible degradation of the equipment and advice for maintenance.

The CNN-PdM framework consists of four main stages: the Data Collection, the Data

Preprocessing, the Data Transformation, and the CNN Model Creation. Data transformation

can be seen as a part of the data preprocessing stage, but as the Data Transformation is partic-

ular due to the CNN model, the Data Transformation is represented as a separate stage. The

framework division into these stages makes the CNN-PdM easier to understand as its respon-

sibilities are well defined among each stage. The following sections describe the stages used

in this research.

3.1 Data Collection

This stage presents different sets of data that can be available from an asset. The features can

be categorized as Electrical, such as energy consumption or current; Mechanical, for instance,

vibration or oil level; Contextual and Temporal, which add information about the conditions

(contextual) and time (temporal) in which the asset is working, respectively. When the asset

19
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Figure 3.1: CNN-PdM framework.

performs far from what was expected under those conditions, it becomes possible to detect a

problem. Outside temperature and day of the week provide information about the context in

which the equipment was working in that specific time. Lower energy consumption is expected

from a heating pump during the summer than during the winter, for example.

The data may be acquired by using an API (Application Programming Interface), a SCADA

(Supervisory Control and Data Acquisition) system, or from any other source; sometimes mul-

tiple sources may be used, as contextual features may be collected from external sources, such

as the Historical Climate Data [44], from the Government of Canada. Information such as

temperature, relative humidity, wind speed, and wind direction are available in this domain.

3.2 Data Preprocessing

The preprocessing stage can be divided into multiple steps. This section presents the steps used

in this work.

3.2.1 Dataset Construction

The first step of the data preprocessing is to construct the dataset with all the available data

values from different features. Contextual, electrical, and mechanical features are grouped. If

any other types of features are available, they should be considered in this step. In this work, a
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single dataset is considered as input for the models; therefore, this step is crucial to gather all

available data. The features are grouped by their timestamps to create a matrix that gathers all

the data.

3.2.2 Data Imputation

The next step is to find possible missing values from the previous data matrix. Sometimes,

there are missing values for some features in the data matrix. In this case, the dataset must be

filled for each one of the features. It is essential to be able to fill these values in order to not

discard any available example [45]. Several methods can be used in this step. Two approaches

are more commonly used: to fill the missing values with average, median, or zero, or to use an

interpolation technique, such as linear, time, quadratic, or cubic interpolation.

3.2.3 Feature Creation

At this step, features are created from the timestamps (date and time) information from each

example of the dataset. The Feature Creation step adds temporal information that may be

relevant to the PdM problem. In some scenarios, information regarding the day of the week

or season can add value to the CNN model. The feature creation is also known as feature

engineering. In 2012, Domingos [17] said that “... one of the holy grails of machine learning

is to automate more and more of the feature engineering process.”.

To add temporal information, Equations 3.1 and 3.2 were used to add information regarding

the month, while Equations 3.3 and 3.4 provided knowledge regarding the hours of the day.

month cos = cos
(
2 · π ·

month
12

)
(3.1)

month sin = sin
(
2 · π ·

month
12

)
(3.2)
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hour cos = cos
(
2 · π ·

hour
24

)
(3.3)

hour sin = sin
(
2 · π ·

hour
24

)
(3.4)

3.2.4 Normalization

The next step is to normalize the data. This step is important to bring every feature to the same

range; depending on the technique used, it is possible to center the data around zero and have

variance in the same order. Some techniques are sensitive to different features ranges (neural

networks, for example). Performing data normalization can make the model less sensitive to

bias. Normalizing the data is the last well-known preprocessing step used in this work.

The two most commonly used techniques to perform data normalization are to scale the

data between an interval (MinMax scaling) or to standardize the data and center it around 0.

The MinMax operation is performed accordingly to the Equation 3.5:

S caled =
ei − Emin

Emax − Emin
· (max − min) + min (3.5)

where ei is the value to be scaled, Emin is the minimum value for the feature, Emax is the

maximum value for the feature, min is the minimum scale limit (in this research it is -1), and

max is the maximum scale limit (in this research it is 1). On the other hand, the standard scale

effect is to center the feature in zero and scale it to the unit variance. Equation 3.6 presents how

the standardization process is performed:

S caled =
(X − µ)

s
(3.6)

where X is the value that is going to be scaled, µ is the mean of the samples, and s is their

standard deviation.
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3.3 Data Transformation

After the normalization process is completed, the Data Transformation stage begins. CNNs

were created to handle image classification problems; therefore, it is ideal that the data exam-

ples are represented as images.

The data transformation stage is used to represent the single-dimensional (1-D) data (a fea-

ture array) as a two-dimensional (2-D) data (a feature matrix). This 2-D data can be interpreted

as an image. The goal of an image-like feature representation is to capture the correlation

among features of each specific example from the dataset.

Wang and Oates [26] proposed GAF, a data transformation method, which uses a single fea-

ture during an interval of time. Chen et al. [27] tested GAF and proposed two other methods,

Moving Average Mapping and Double Moving Average Mapping, to perform feature repre-

sentation in financial time-series domain. In Chen’s work, a window would slide over the

same feature through time. The difference between the data transformation performed in their

work and what is proposed in this research is that while in their work the authors captured

the correlation of one feature through time, this research considers one time step only and the

correlation among different features is captured using a data transformation method proposed

in this work: the multiplication method.

3.3.1 The Multiplication Method

The multiplication method was proposed to create more heterogeneous image-like data repre-

sentation than the ones created when using GAF. These heterogeneous patterns in the image

representation can help the creation of different filters by the CNN model, increasing its ability

to correctly classify the data as normal or faulty. Given the example d = { f1, f2, ..., fn}, the

transformed example Dm is given by a matrix created by the multiplication of the fi features by

the whole example d, as presented by Equation 3.7:
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Dm =



f1 · f1 f1 · f2 · · · f1 · fn

f2 · f1 f2 · f2
. . . f2 · fn

...
...

. . .
...

fn · f1 fn · f2 · · · fn · fn


(3.7)

where fi · j j stands for the multiplication of fi times f j.

3.4 CNN Model Creation

This section presents how the CNN model should be tuned, trained and tested. The tuning

step is important to find the most suitable hyperparameters for the ML problem. The training

should be performed using the hyperparameters found in the previous step. Lastly, the model

should be evaluated in the test step.

3.4.1 CNN Model Parameter Tuning

This step must occur to perform hyperparameter tuning for the CNN model. Different methods,

such as greedy search or randomized search, can be used. In greedy search optimization, all the

possible combinations of hyperparameters for the CNN model are tested, while in randomized

search a randomly generated set of combinations is considered and evaluated. This step is

crucial to obtain an optimized CNN model to handle the PdM problem.

3.4.2 CNN Model Training

As soon as the most suitable hyperparameters are identified, a tuned model is trained. In

real applications, all the available data should be used for training the model. For research

purposes, the data are split to evaluate the model performance. There are different ways to split

the dataset between the training and test sets. Some common ways are 60/40, 70/30, 75/25 or

80/20 percent for training and test sets. The way to split the dataset can vary from sequential to
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shuffling data. The training set should be used in this step to perform the model training, while

the test set should be used to evaluate the model.

3.4.3 CNN Model Testing

The test set generated in the previous step should be used in this step. In this work, the CNN

model is evaluated accordingly to four metrics described in Section 2.1.1: accuracy (Equation

2.1), precision (Equation 2.2), recall (Equation 2.3) and f1 score (Equation 2.4). The confusion

matrix is also generated. Confusion matrix presents information related to the classification

process. This matrix provides information regarding the number for tn, f p, f n, and tp, where:

• tn are negative examples classified correctly (as normal)

• f p are negative examples classified incorrectly (as faulty)

• f n are positive examples (faulty) classified incorrectly (as normal)

• tp are positive examples classified correctly.

In the PdM domain, the worst mistake is to classify a faulty example as normal ( f n). If a

datapoint is classified as abnormal, a warning must be created. This notification can be created

and sent out in various ways, such as e-mail, SMS, or even in a dashboard. The a high-level

algorithm of the CNN-PdM framework comprehends steps from the data collection until the

new examples classification. More formally:

3.5 Summary

This chapter has introduced the CNN-PdM framework and discussed each of its core stages:

Data Collection, Data Preprocessing, Data Transformation, and the CNN Model Creation.

The discussion explained the responsibilities of each step and their components, and also how

they interact with each other.
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Algorithm 1: CNN-PdM algorithm.
Data: Hyperparameters (HP), List of Data Sources (DS)
Result: Trained Model, Metrics
// Data Collection line 1

1 raw data← collect data(DS);
// Data Preprocessing lines 2-5

2 aggregated data← perform data aggregation(raw data) ;
3 filled data← perform data imputation(aggregated data);
4 completed data← perform feature creation(filled data);
5 normalized data← perform data normalization(completed data);
// Data Transformation line 6

6 transformed data← perform data transformation(normalized data);
// CNN Model Creation lines 7-10

7 training data, testing data← split dataset(transformed data);
8 best hyperparameters← perform hyperparameter tuning(HP, training data);
9 trained model← train model(best hyperparameters, training data);

10 metrics← evaluate model(trained model, testing data)
11 return trained model, metrics
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Implementation and Evaluation of the

CNN-PdM Framework

This chapter presents the implementation of the CNN-PdM framework. Each section offers a

stage of the framework, the libaries (libs), and methods used in this research. The implementa-

tion of the CNN-PdM framework can be performed for the usage of data from multiple sources.

All the implementation of this work was made using python 3. The following libraries were

used: numpy, pandas, Keras + tensorflow, scikit-learn (sklearn), requests, time, and json.

This chapter also provides the evaluation of the proposed framework. A description of

the data used in each one of the case studies used in this research and also the evaluation of

the CNN-PdM framework. The data used in this research has been collected in the Claudette

MacKay-Lassonde Pavilion (CMLP) at Western University, London, Canada. The data were

collected by two WebMeters 36F, an accurate equipment able to capture real-time energy data

and which configuration is able to accommodate single, dual, and three phase assets. The

Webmeters were connected to 8 assets from CMLP and their data have been captured. The

installation of these meters was possible because of a partnership between Western Univer-

sity and T-innovation Partners (TiP). TiP provides CircuitMeter devices for measuring various

electricity attributes and CircuitMonitor software which collects data from the meters, stores

27
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them in the cloud, and presents the received data. TiP works with clients to lower their elec-

tricity cost through the use of innovative products for monitoring and controlling of electrical

systems.

The data are derived from two assets: Supply Fan 103B (SF103B) and Return Fan 101

(RF101). These assets were selected because they present very different electrical patterns from

each other. SF103B presents an average energy consumption of 8.31 kW/h and average amps

of 8.67 A, while RF101 presents 0.44 kW/h and 0.54 A average values for energy consumption

and amps, respectively. 1 year of hourly data was collected from February 1, 2018 to January

31, 2019.

4.1 Implementation

This section presents the implementation of the CNN-PdM framework. Details regarding the

libraries (libs) used in each one of the stages and steps are provided in this section.

4.1.1 Data Collection

For this stage, libraries (libs) such as json, request and time were used. The lib requests was

used to perform multiple API requests. time was used to sleep the thread for 1 second before

the next request due to an API’s constraint. The result of the request is stored in a json file,

adding also the date of the requested day.

4.1.2 Data Preprocessing

This stage contains 4 steps: Dataset Construction, Data Imputation, Feature Creation, and

Normalization. The libs used in each one of the stages are provided with details of their usage.



4.1. Implementation 29

Dataset Construction

After all the data are gathered in a single file, the Dataset Construction module is responsible

for grouping all the features. If external data is used, it must be combined with the asset’s data

by this module. The implementation was made by using json lib to read each line of the file and

convert them into json objects. A parser was created to read each row and create entries into a

pandas dataframe that contained information regarding the measurement name, measurement

value, and date and time (timestamp). The following step was to group the feature values and

name by timestamp.

Data Imputation

The Data Imputation module is responsible for filling all the missing values. In this research,

linear interpolation was used in each column to perform this step. Linear interpolation was

used because it is a method accurate enough if the values are closely spaced (which is the

case in this research). The pandas dataframe object has a method interpolate that was used to

perform the interpolation for each one of the columns using the method ‘linear’.

Feature Creation

In this research, features are created from the timestamp to add temporal information, such as

information regarding the day (if it is a weekday or a weekend), hour, and month. This step is

essential because the temporal features add relevant information, such as seasonality.

To create the information regarding the type of the day (if it is a week-day or weekend

day) from the timestamp, it was only needed to access the date part. At pandas dataframe, the

datetime object contains information regarding the number of the day of week (0 represents

Monday and 6 Sunday). The information regarding the month (month cos and month sin)

were obtained using the Equations 3.1 and 3.2. The information regarding the hour of the day

(hour cos and hour sin) follows an analogue pattern, shown in Equations 3.3 and 3.4, presented

in Section 3.2.3.
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Normalization

After all the data are together, the Normalization module used the MinMax Scaler to perform

normalization. To do so, the sklearn method MinMaxScaler was used and the normalization

interval was (-1, 1).

4.1.3 Data Transformation

For the Data Transformation stage, two approaches were tested: Gramian Angular Field

(GAF), presented in Section 2.1.3, and Multiplication, introduced in 3.3.

The feature transformation is performed by using either a method to perform the multipli-

cation of an array by each one of the elements, resulting in a matrix instead of the array or a

method to transform the data using GAF is used. This process is applied to the entire input

dataset by using the method apply along axis from numpy lib.

An example of this transformation through multiplication can be seen in Figure 4.1. It is

possible to observe that the subtraction makes the image too dark if one compares the trans-

formation by GAF (Figure 2.2) with the data transformed by multiplication (Figure 4.1). The

problem with a very dark image is that it becomes more homogeneous (more black pixels),

therefore the CNN model is not able to detect the change of pattern in the homogeneous re-

gion. Both images are transformations applied over the same example of the SF103 asset’s

dataset.

4.1.4 CNN Model Creation

This stage contains 3 steps: CNN Model Parameter Tuning, CNN Model Training and CNN

Model Testing.
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Figure 4.1: An example of sensor data represented as an image (multiplication).

CNN Model Parameter Tuning

The CNN Model Parameter Tuning works in the following flow: the dataset is randomly

sampled in a 5-fold cross-validation schema, splitting 80% for training and 20% for testing.

Then the parameters are randomly combined (otherwise it would be an exhaustive search) and

the 5-fold cross-validation sets are used at this step. Accuracy (Eq. 2.1) is the metric used to

evaluate how well a parameter combination performs. This step produces an optimized set of

parameters for the model.

In order to perform the random sampling, the method train test split from sklearn is used.

To perform the randomized search, an object of the RandomizedSearchCV class from sklearn

is created. As the PdM problem, in this case, is considered a classification one and there are

features to capture the seasonality, the data shuffle causes no drawback. This randomized sam-

pling approach was also used by Leathy et al. [39]. As parameters we used keras lib to create

a Sequential model using a wrapper from keras to sklearn lib. This wrapper is responsible for

creating the CNN model using as input a set of hyperparameters (number of layers, number of

kernels, kernel size, number of epochs and so on). The RandomizedSearchCV object is used

to fit the training test input to the output with a list of possible hyperparameters. After the fit

is finished, it is possible to access the hyperparameters combination that provided the better
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results.

CNN Model Training

In this research, 30 simulations considering both CNN Model Training and CNN Model

Testing are made for each experiment, considering 80% of the data as training set and the

remaining 20% as testing set, respectively. These sets are randomly sampled from the whole

dataset, and this data split process is repeated for each one of the simulations.

The data are split using the train test split method and using the best parameters from the

previous step, the CNN model is created through the wrapper function and the fit method is

used to train the data.

CNN Model Testing

The test set created in the previous step is evaluated in the CNN Model Testing by calculating

four metrics described in Section 3.4.3 and also the confusion matrix. The sklearn lib has a

package with numerous test functions. In this work, accuracy, precision, recall and f1 score

were used. The confusion matrix was also calculated for each experiment.

4.2 Evaluation

This section provides information common to both case studies. The data from both assets

contain the same features. The steps used in both case studies are the ones presented in Chapter

3.

4.2.1 Data Collection

The data are acquired using an API (Application Programming Interface) that has no concept

of raw data. Therefore, data are considered a combination of datapoint and operator. The
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datapoints collected are described in Table 4.1. With advice from Western’s Facilities Manage-

ment, data from a specific asset (SF103 - Supply Fan 103) have been used in the experiments.

Another asset (RF101 - Return Fan 101) was selected because they offer diverse data; there-

fore, it is important to evaluate if the CNN-PdM framework is able to perform well in both

scenarios.

Table 4.1: List of available datapoints.

Feature Description
Current in A
Energy Consumption in kWh
Power Factor how efficiently the device is working
Outside Humidity %
Outside Temperature in Celcius
Reactive Power power absorbed by a circuit
Real Power power dissipated by a circuit
Apparent Power sum of reactive and real power
Impedance in ohms

Over the datapoints presented in Table 4.1, it is necessary to apply one of the operators

presented in Table 4.2. These operators are applied according to a given time window. For

this work, the time window was 1 hour. From the combination of datapoints and operators, the

sum of the energy consumption for a given hour, or the maximum value of the current for the

last hour, are examples of possible values that can be requested using the API. For both case

studies, 1 year of data were collected from February 1, 2018 to January 31, 2019.

Table 4.2: List of available operators.

Operator Description
avg Average value
sum Sumation of the values
max Maximum value
min Minimum value
sd Standard Deviation
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4.2.2 Data Preprocessing

This stage contains 5 steps: Dataset Construction, Data Imputation, Feature Creation, Anomaly

Creation, and Normalization. The importance of this stage is to improve the quality of the data

that will be fed into the CNN models.

Dataset Construction

After all the data are gathered in a single file, the Dataset Construction step is responsible for

grouping all the features. A parser was created to perform this task. The parser groups all the

features from the previous stage by date and time (timestamp). The output of the parser is a

large matrix containing the timestamp plus the 45 possible features.

Data Imputation

The Data Imputation is performed using linear interpolation to fill the missing values for each

one of the available features. Linear interpolation was used because it is a method accurate

enough if the values are closely spaced (which is the case in this research).

Feature Creation

As soon as the missing values are filled, this step is responsible for using the date (timestamps)

column to create five more contextual features. The timestamp contains two types of informa-

tion: date and time. From the date, it is possible to determine if the example is a weekday or

not. It is also possible to add information about the month of the year (two new features are

generated - sin(month
12 ) and cos(month

12 ), which provide knowledge regarding seasonality. From

the time, two more features are created: sin( hour
24 ) and cos(month

24 ) [46]. Every feature that uses

sine and cosine to perform a smooth transition from one day to another (in the case of features

created from the hour) or one year to another (in the case of features created from the date).

The feature creation step is important since it adds more temporal information to the data.
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Anomaly Creation

To evaluate the framework, anomalous data had to be created. When the building is new, or

the sensors have only been recently installed, faulty data are not available. The anomalous data

emulates the existence of faulty data, allowing the usage of supervised learning techniques. It

also helps in scenarios when the dataset is unbalanced. A dataset is known as unbalanced if

the interest class represents a small portion of the data. This may occur in cases which it is

rare to observe assets failing. This lack of faulty data may cause traditional ML techniques to

perform poorly [47]. The creation of anomalous data can help with problems with small and

unbalanced datasets.

One assumption made in this research is that the device does not present any faulty data.

As the WebMeters 36Fs were recently installed and no information regarding faulty data was

provided, abnormal data must be created. This step generates anomalies by combining avail-

able features, in this case, electrical features, with different contextual features shifted by 9

hours. Another assumption made was that the University is more crowded from 9 am to 6 pm

(9 hours interval), so it seemed reasonable to have a 9 hours shift to combine electrical and

contextual features. Doing this makes it possible to reproduce a higher energy consumption

with a crowded building to a time in which a reduced number of people should be there. A

pattern that is expected to happen on a Monday at 1 pm, for instance, with plenty of people in

the building, would be simulated to occur on Monday at 10 pm by mixing the electrical fea-

tures from 1 pm with temporal features from 10 pm. The faulty data are added to the previous

dataset. The normal data were labeled with 0, while the anomalous data were labeled with 1.

Normalization

The Normalization step is performed to normalize the data in the [−1, 1] interval, accordingly

to the Equation 3.5. This step is important to bring all the data to the same range, which can

make the model less sensitive to bias.
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4.2.3 Data Transformation

Two data transformation methods were tested: multiplication and GAF. The GAF was used

before to perform financial time-series analysis by Chen et al. [27]. This approach was pre-

senting dark and homogeneous images, which could be a problem for CNNs (Figure 2.2),

since CNNs rely on learning different patterns from shapes, and a homogeneous image would

present a smaller number of forms to be learned. The multiplication method, proposed in this

research, was able to represent the data in a more heterogeneous way (Figure 4.1). An exam-

ple of the difference between multiplication and GAF is here presented: given two features

energy consumption − avg = 0.1 and amps − sd = 0.2, for instance, transformed using GAF

outputs −0.9548, while transformed using the multiplication method outputs 0.02. Therefore,

the GAF output is much darker than the multiplication output.

4.2.4 CNN Model Creation

The CNN Model Creation stage contains 3 steps. The CNN Parameter Tuning occurs by

selecting the most suitable set of hyperparameters. With possession of the most suitable hyper-

parameters, 30 simulations are performed. For each one of the simulations the data is randomly

split in two sets: 80% is used in the training step (CNN Model Training) and 20% used in the

testing step (CNN Model Testing).

4.3 Case Study 1: Supply Fan 103B (SF103B)

The SF103B asset was selected after meetings with the Facilities Management department from

Western University. It was described as the most important asset to monitor. SF103B presents

an average energy consumption of 8.31 kW/h and average amps of 8.67 A. Figure 4.2 presents

how these two features behave from February 1, 2018 to January 31, 2019. This dataset was

used for all experiments performed in this Case Study. Some features presented missing data.

The number of missing values for each one of these features are presented in Table 4.3.
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Figure 4.2: Amps and energy consumption - SF103B.

Some features presented missing data. The number of missing values for each one of these

features are presented in Table 4.3.

Regarding the data presented in Figure 4.2, it is possible to observe that from June, 2018

until mid July, 2018, it starts a trend of increase, then it drastically decreases and reaches

its lower values by September, 2018. Although this is an unusual pattern, it is not possible

to affirm that it is a failure state mainly because the WebMeter 36F never presented a 0A or

0kWh measurement. There are 3 other supply fans in the building, therefore, this change in the

behavior may be just a load distribution among the assets.

4.3.1 Evaluation

This section presents the evaluation of the CNN-PdM framework. Two experiments were per-

formed using different data transformation methods: Multiplication and GAF.

Convolutional Neural Network

Multiplication and GAF feature transformation methods were tested. After the feature transfor-

mation, one must generate an optimized architecture of the CNN. Each convolutional (conv)
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Table 4.3: Number of missing values for each one of the features - SF103B.

Number of
Missing Values Features

3
Outside Temperature - min
Outside Temperature - sd

10

Amps - min
Amps - sd
Apparent Power - min
Apparent Power - sd
Energy Consumption - min
EnergyConsumption - sd
PowerFactor - min
PowerFactor - sd
Impedance - max
Impedance - min
Impedance - sd
Impedance - avg
Impedance - sum

layer is followed by a dropout layer. After a sequence of convs and dropouts, one flattened

layer is used to gather the information of all the filters from the last conv layer, and a final

neuron which would represent the example’s class. Six parameters are tuned for this approach:

• number of conv layers (n hidden layers): from 1 to 5

• number of filters (n filters): 15, 20, 25, 30, 35, 40, or 45

• kernel size (kernel size): from 3 to 8

• number of epochs (n epochs): 100, 150, 200, 250, 300, 350

• learning rate (lr): from 10−4 to 5 · 10−3

• optimizer: sgd, adam, or adadelta

The number of conv layers was selected based on the number of examples and number of

filters. Higher number of conv layers would represent more neurons (and also higher number

of filters and kernel sizes). Based on the number of examples available (only 1 year of data), it
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does not seem feasible to have CNNs with more than 5 conv layers. In fact, Table 4.4 shows that

3 conv layers presented the best results. The batch size parameter is fixed to 100, the dropout

rate is fixed to 20% of the neurons, and the loss function used is binary cross entropy. Cheng

et al. [48] performed experiments aiming at the impact of batch size and number of threads for

the serving latency of recommender systems. They showed that there is almost no difference

from 100 to 50 examples in the batch size. The dropout rate was selected after literature review

[49]. The number of conv layers could be increased if more data was available. The learning

rate range, which is the most important parameter, was picked taking in consideration courses

made by Jeremy Howard, from fast.ai [50]. In the second lesson of his course, he explained

that the default learning rate used in fast.ai library is 3 · 10−3 because it works fine for most of

the cases; therefore, a range around this value was selected. Regarding the optimizers, Adam

is an optimization of SGD (Stochastic Gradient Descent) that considers momentum, i.e. a way

to take into consideration previous examples of the batch. The most suitable parameters found

by random search for both feature transformation methods are presented in Table 4.4. After

model optimization, 30 simulations are performed as described in Section 4.1.4.

Table 4.4: Parameters for CNN MULT and CNN GAF experiments - SF103B.

Parameter Value
n hidden layers 3
n filters 45
kernel size 8
n epochs 350
lr 3 · 10−3

optmizer sgd

The CNN GAF experiment presented an overall accuracy slightly over 0.933, while the

CNN MULT approach presented the best results for each one of the metrics evaluated, achiev-

ing slightly over 0.953 accuracy, presented in Table 4.11. This difference represents an im-

provement of 2% (2.08%) over the CNN GAF experiment. The lower sd (presented in Table

4.12) implies that the solution is reliable and that there is little difference between the 30 sim-

ulations of this experiment.
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Comparison

In this research, six more experiments have been performed for each asset to compare with the

ones that used CNN. Three different ML techniques were considered: SVM, RF, and MLP;

these experiments were performed with and without considering feature selection as an extra

step (6 experiments).

I Random Forest:

Two different experiments were performed using random forest: one with and another

one without considering a feature selection step. Since Random Forest computes the fea-

tures’ importance, it is possible to select which features are more relevant to the problem.

The features could be selected based on their importance for the RF model; the features

that presented importance greater than 0.8 · average feature importance were selected.

The selected features were: hour (cos), hour (sin), weekend, outside humidity (max),

outside humidity (sum), outside temperature (max), outside temperature (sum), power

factor (min), power factor (sum), reactive power (max), reactive power (min), reactive

power (sd), and reactive power (sum). The selected features present a combination of

contextual features describing the environment, power factor, which represents how ef-

ficient the equipment is working, and reactive power, which represents the voltage drop

caused by inductors and capacitors.

After performing the feature selection process, the stage of RF model tuning begins. The

random search algorithm considers statistical distribution over the possible parameters

and the algorithm uses accuracy as a score function. Again, the data is randomly split,

and the maximum depth (max depth) of the trees and the number of estimators (n trees)

are selected:

• max depth: from 5 to 15

• n trees: 6, 7, 8, 9, 10, 15, 20, or 25
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Table 4.5 presents the best parameters for the RF experiment without feature selection

(RF NFS). The experiment that considers feature selection (RF FS) presented the pa-

rameters shown in Table 4.6 as the best ones. After the most suitable parameters were

found, 30 simulations are performed and evaluated as described in Section 4.1.4.

Table 4.5: Parameters for RF NFS experiment - SF103B.

Parameter Value
max depth 8
n trees 13

Table 4.6: Parameters for RF FS experiment - SF103B.

Parameter Value
maximum depth 25
number of trees 12

From Table 4.11 it is possible to observe that the RF NFS experiment presented an over-

all accuracy above 0.835 for the test examples. Since recall (Equation 2.3) presents a

higher value, it is possible to infer that the normal data are correctly classified for most

of the cases. It is also possible to observe that the RF FS presents an improvement if

compared with the RF NFS experiment. It’s accuracy is above 0.873 for the test exam-

ples. The accuracy was increased by over 4% when compared to the previous experiment.

Since the precision presents a higher value, one can infer that only 10% of the examples

classified as normal were false positives.

II Support Vector Machine:

Similarly to the Random Forest experiments, two experiments were conducted, with

and without considering feature selection as an extra step. When considering feature

selection, the same features selected by the Random Forest experiment were used, as the

SVM algorithms do not provide information about feature importance. Two parameters

were selected to tune:
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• kernel: rbf, polynomial, or sigmoid

• coef0: from 0.05 to 1.00 with increments of 0.5

The most suitable parameters found for the SVM without considering feature selection

(SVM NFS) are presented in Table 4.7, while Table 4.8 shows the best parameters for the

SVM considering feature selection (SVM FS). After the ideal parameters were found,

the 30 simulations are performed and evaluated as described in Section 4.1.4.

Table 4.7: Parameters for SVM NFS experiment - SF103B.

Parameter Value
kernel rbf
coef0 0.85

Table 4.8: Parameters for SVM FS experiment - SF103B.

Parameter Value
kernel rbf
coef0 0.50

The SVM NFS achieved the best result so far, besides the CNN ones, for all the evalu-

ated metrics: around 5% improvement on overall accuracy (0.921) when compared with

RF FS experiment. The presented results were slightly worst (0.869) when comparing

to the RF FS experiment. These results are presented in Table 4.11.

III Multi-Layer Perceptron:

Similarly to SVM and RF, two experiments were conducted, considering feature selec-

tion or not as another stage of the process. Five parameters were selected to be tuned:

• n layers: from 1 to 7

• n neurons: 15, 20, 25, 30, 35, 40

• n epochs: 100, 200 or 300

• lr: from 10−4 to 5 · 10−3
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• optimizer: sgd, adam, adadelta

The most suitable parameters found for this problem without considering feature selec-

tion (MLP NFS) are presented in Table 4.9, while the most suitable parameters when

using feature selection (MLP FS) are shown in Table 4.10. After the model tuning for

this experiment, the 30 simulations are performed as described in Section 4.1.4.

Table 4.9: Parameters for MLP NFS experiment - SF103B.

Parameter Value
n layers 5
n neurons 30
epochs 300
lr 10−3

optmizer adam

Table 4.10: Parameters for MLP FS experiment - SF103B.

Parameter Value
n layers 2
n neurons 35
epochs 300
lr 2 · 10−3

optmizer adam

The MLP NFS experiment presented a 1.5% increase on the accuracy when compared to

the SVM FS, as can be observed in Table 4.11. This experiment achieved the second best

result (0.935). On the other hand, the MLP FS presented almost 0.869 accuracy. The

effect of the RF feature selection for the MLP was disastrous, even worse than for the

SVM experiment. The accuracy decreased more than 9%, as can be observed in Table

4.11.

4.3.2 Discussion

This section presents the results from eight different experiments. Tables 4.11 and 4.12 show

the average and standard deviation for each experiment. Figure 4.3 presents the same results
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that are presented in Table 4.11. However, both are presented for a matter of better visualization

that the graph offers. Table 4.13 presents the confusion matrix for each one of the experiments.

As can be seen in all three tables, CNN MULT presents better results compared to the other

approaches. The CNN MULT approach outperforms the conventional ML techniques because

of the conv layers’ capability of extracting information automatically. The CNN MULT out-

perform the CNN GAF approach probably because of the absence of the subtraction term from

GAF. The transformation by multiplication does not generate a very dark image, and it helps

the CNNs capability to extract data representation.

Among the Random Forest experiments, the RF FS presents better results (a 4% improve-

ment if compared with the RF NFS), which shows that the feature selection method works fine

with this technique. With fewer features, the model could learn with a lower level of confusion,

allowing the model to perform a lower number of errors.

For the SVM experiments, it is possible to see that the features selected using Random

Forest features’ importance did not work well, as the SVM NFS presented better results than the

SVM FS experiment (0.921 and 0.869 accuracy, respectively). This probably happens because

SVM and RF handle data differently from each other.

It is possible to observe that the same effect happens in the MLP experiments. The MLP NFS

experiment was able to extract the relationship among the features better than the RF and SVM

approaches. The MLP NFS results (0.935) are comparable to the CNN GAF (0.933), as their

accuracy difference is lower than 0.16%. If one must choose between them, the MLP approach

is preferable because it is a simpler and faster model to train and run. As the CNN MULT

outperformed the other models, it should be used to generate warnings advising that an asset

needs maintenance.

In order to evaluate if the results for each one of the experiments are statistically differ-

ent, two tests were performed: Kruskal-Wallis H-test for independent samples and Wilcoxon

signed-rank test [51]. The Kruskal-Wallis test is applied considering all the 8 experiments at

once. If they present a p-value lower than 0.05, the Wilcoxon test should be performed consid-
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Figure 4.3: Comparison among experiments - SF103B (average values).

ering each pair of experiments. The Kruskal-Wallis test presented a p-value of 9.2576 · 10−44,

therefore the Wilcoxon test was needed. Its results are shown in Table 4.14. Since there are 28

possible combinations of experiments, the Bonferroni correction [52] must be used. In this sce-

nario, the p-value to represent statistically different results should be 0.05
28 = 0.0018 = 1.8 ·10−3.

The only experiments that presented non-statistically difference were (SVM NFS, MLP NFS),

with a p-value equals to 0.3085. Therefore, the results obtained from the CNN MULT experi-

ment are statistically different from the others. This leads to the conclusion that they represent

an improvement.
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Table 4.11: Metrics comparison among experiments - SF103B (average % values).

Accuracy F1 Score Precision Recall
RF NFS 83.4626 79.5351 81.6448 77.5802
RF FS 87.2758 84.2374 85.6175 82.9389

SVM NFS 92.0833 90.2731 90.5198 90.0451
SVM FS 86.9225 84.1037 84.4617 83.7828

MLP NFS 93.4705 92.1019 91.7214 92.5619
MLP FS 85.8492 82.7033 82.7834 82.7454

CNN GAF 93.3228 91.9225 92.0055 91.8577
CNN MULT 95.2611 95.9129 96.0051 95.9558

Table 4.12: Metrics comparison among experiments - SF103B (sd % values)

Accuracy F1 Score Precision Recall
RF NFS 1.9718 2.4035 2.6267 2.9241
RF FS 0.8050 1.1554 1.4916 1.9503

SVM NFS 1.0131 1.2314 1.4912 1.5589
SVM FS 1.5464 1.7964 2.1787 2.1514

MLP NFS 1.0369 1.2620 2.4000 2.0861
MLP FS 1.1297 1.5687 2.9023 2.6512

CNN GAF 0.9188 1.1523 1.5812 1.3691
CNN MULT 0.6155 0.7046 1.2487 1.2196
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Table 4.13: Confusion Matrix for all experiments - SF103B.

Predicted: 0 Predicted: 1

Actual: 0

RF NFS: 648
RF FS: 672
SVM NFS: 698
SVM FS: 661
MLP NFS: 698
MLP FS: 656
CNN GAF: 697
CNN MULT: 712

RF NFS: 91
RF FS: 72
SVM NFS: 49
SVM FS: 79
MLP NFS: 44
MLP FS: 89
CNN GAF: 41
CNN MULT: 30

RF NFS: 739
RF FS: 744
SVM NFS: 747
SVM FS: 740
MLP NFS: 742
MLP FS: 745
CNN GAF: 738
CNN MULT:742

Actual: 1

RF NFS: 117
RF FS: 88
SVM NFS: 51
SVM FS: 85
MLP NFS: 39
MLP FS: 89
CNN GAF: 43
CNN MULT: 30

RF NFS: 406
RF FS: 430
SVM NFS: 464
SVM FS: 437
MLP NFS: 481
MLP FS: 428
CNN GAF: 481
CNN MULT: 490

RF NFS: 523
RF FS: 518
SVM NFS: 515
SVM FS: 522
MLP NFS: 520
MLP FS: 517
CNN GAF: 524
CNN MULT: 520

RF NFS: 765
RF FS: 760
SVM NFS: 749
SVM FS: 746
MLP NFS: 737
MLP FS: 745
CNN GAF: 740
CNN MULT: 742

RF NFS: 497
RF FS: 502
SVM NFS: 513
SVM FS: 516
MLP NFS: 525
MLP FS: 517
CNN GAF: 522
CNN MULT: 520
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Table 4.14: p-values among experiments - SF103B.

p-value pair

1.7311 · 10−6

(MLP FS, CNN GAF)
(SVM NFS, CNN MULT)
(RF NFS, CNN MULT)
(RF NFS, MLP NFS)
(RF NFS, SVM NFS)

(SVM FS, CNN MULT)
(SVM FS, CNN GAF)
(SVM FS, MLP NFS)
(SVM NFS, SVM FS)
(RF FS, CNN MULT)
(RF FS, SVM NFS)

(RF NFS, CNN GAF)
(RF NFS, SVM FS)

(MLP NFS, CNN MULT)
(MLP NFS, MLP FS)
(SVM NFS, MLP FS)
(RF FS, MLP NFS)

(MLP FS, CNN MULT)
(RF FS, CNN GAF)

2.3505 · 10−6 (RF NFS, RF FS)
3.8991 · 10−6 (SVM FS, MLP FS)
4.5502 · 10−6 (SVM NFS, CNN GAF)
4.7886 · 10−6 (CNN GAF, CNN MULT)
5.7697 · 10−5 (RF NFS, MLP FS)
1.4767 · 10−4 (MLP NFS, CNN GAF)
3.8783 · 10−4 (RF FS, MLP FS)
5.7007 · 10−4 (RF FS, SVM FS)

0.3085 (SVM NFS, MLP NFS)

4.4 Case Study 2: Return Fan 101 (RF101)

The RF101 asset was selected because it was the asset which electric profile varies the most if

compared with the SF103B. The goal of selecting this asset’s data was to show that the CNN-

PdM framework is capable of handling the predictive maintenance problems with different

assets. RF101 presents 0.44 kW/h and 0.54 A average values of energy consumption and

amps, respectively. Figure 4.4 presents how these two features behaved from February 1, 2018
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Table 4.15: Number of missing values for each one of the features - RF101.

Number of
Missing Values Features

1

Amps (avg, max, sum)
Apparent Power (avg, max, sum)
Energy Consumption (avg, max, sum)
Outside Humidity (avg, max, sum, sd, min)
Outside Temperature (avg, max, sum)
Power Factor (avg, max, sum)
Reactive Power (avg, max, sum)
Real Power (avg, max, sum)

4 Outside Temperature (min, sd)
29 Reactive Power (min, sd)
32 Real Power (min, sd)

45
Amps (min, sd)
Apparent Power (min, sd)
Impedance (avg, max, min, sd, sum)

48
Power Factor (min, sd)
Energy Consumption (min, sd)

to January 31, 2019. Some features presented missing data. The number of missing values for

each one of these features are presented in Table 4.15.

Figure 4.4: Amps and energy consumption - RF101.
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4.4.1 Evaluation

This section presents the evaluation of the CNN-PdM framework. The same two methods to

perform data transformation are tested: Multiplication and GAF.

Convolutional Neural Network

The model tuning performed has the same parameters as the ones tested for the SF103B asset:

• number of conv layers (n hidden layers): from 1 to 5

• number of filters (n filters): 15, 20, 25, 30, 35, 40, or 45

• kernel size (kernel size): from 3 to 8

• number of epochs (n epochs): 100, 150, 200, 250, 300, 350

• learning rate (lr): from 10−4 to 5 · 10−3

• optimizer: sgd, adam, or adadelta

The combination that presented the better results are shown in Table 4.16.

Table 4.16: Parameters for CNN MULT and CNN GAF experiments - RF101.

Parameter Value
n hidden layers 3
n filters 40
kernel size 8
n epochs 350
lr 2 · 10−3

optmizer adam

The CNN using GAF (CNN GAF) experiment presented an overall accuracy slightly over

0.962. The CNN MULT approach presents the best results for each one of the metrics evaluated

and achieved 0.981 accuracy, presented in Table 4.23. This difference represents an improve-

ment of 2.00% over the CNN GAF experiment. The lower sd (presented in Table 4.24) implies
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that the solution is reliable and that there is little difference between the 30 simulations of this

experiment.

Comparison

In this research, six more experiments have been performed for each asset to compare with the

ones performed using CNN. Three different ML techniques were considered: SVM, RF, and

MLP. These experiments were performed with and without considering feature selection as an

extra step (6 experiments).

I Random Forest:

As was performed for the SF103BT, two different experiments were performed: one with

and another one without considering a feature selection step. The selected features are:

amps (avgall), amps (sum), apparent power (min), energy consumption (max), outside

temperature (sum), power factor (max), reactive power (max), real power (avgall), real

power (sum), weekend, hour (sin), and hour (cos).

The selected features present a combination of contextual, temporal and electrical fea-

tures. This selection corroborates with the thought that time related features and the

environment conditions are important to the PdM problem.

For the model tuning step, the different values of maximum depth and number of trees

were tested:

• max depth: from 5 to 15

• n trees: 6, 7, 8, 9, 10, 15, 20, or 25

Table 4.17 presents the most suitable parameters for the RF experiment without feature

selection (RF NFS). The experiment that considers feature selection (RF FS) presented

the parameters shown in Table 4.18 as the most suitable ones. After the ideal parameters

were found, the 30 simulations are performed and evaluated as described in Section 4.1.4.
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Table 4.17: Parameters for RF NFS experiment - RF101.

Parameter Value
max depth 7
n trees 14

Table 4.18: Parameters for RF FS experiment - RF101.

Parameter Value
max depth 20
n trees 6

From Table 4.23 it is possible to observe that the RF NFS experiment presented an over-

all accuracy above 0.936 for the test examples. The RF FS presents an improvement

when compared with the RF NFS experiment. It’s accuracy is above 0.954 for the test

examples. The accuracy was increased by 1.9% when compared to the previous experi-

ment.

II Support Vector Machine:

Similarly to the Random Forest experiments, two experiments were conducted, with and

without considering feature selection as another stage of the process. When considering

feature selection, the same features selected by the Random Forest experiment were

used, as the SVM algorithms do not provide information about feature importance. Two

parameters were selected to tune: kernel and coef0 (independent term in kernel function

that is used if the kernel is polynomial or sigmoid).

• kernel: rbf, polynomial, or sigmoid

• coef0: from 0.05 to 1.00 with increments of 0.5

The most suitable parameters found for the SVM without considering feature selection

(SVM NFS) are presented in Table 4.19, while Table 4.20 shows the parameters for the

SVM considering feature selection (SVM FS). After the ideal parameters were found, 30

simulations are performed and evaluated as described in Section 4.1.4.
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Table 4.19: Parameters for SVM NFS experiment - RF101.

Parameter Value
kernel rbf
coef0 0.75

Table 4.20: Best parameters for SVM FS experiment - RF101.

Parameter Value
kernel rbf
coef0 0.55

The SVM NFS approach achieved the best result so far, besides the CNN ones, achiev-

ing a very similar result to the RF FS experiment: 0.955 accuracy rate. The SVM FS

presented results slightly worst than the SVM NFS experiment (0.952). These results are

presented in Table 4.23.

III Multi-Layer Perceptron:

Similarly to SVM and RF, two experiments were conducted, considering feature selec-

tion or not as another stage of the process. Four parameters were selected to be tuned:

the number of hidden layers, number of epochs, the number of neurons in each layer and

the optimizer. The values for each parameters can be seen below:

• n layers: from 1 to 7

• n neurons: 15, 20, 25, 30, 35, 40

• n epochs: 100, 200 or 300

• lr: from 10−4 to 5 · 10−3

• optimizer: sgd, adam, adadelta

The most suitables parameters found for this problem without considering feature se-

lection (MLP NFS) are presented in Table 4.21, while the parameters selected if using
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feature selection (MLP FS) are shown in Table 4.22. After the definition of the best pa-

rameters for this experiment, the 30 simulations are performed as described in Section

4.1.4.

Table 4.21: Parameters for MLP NFS experiment - RF101.

Parameter Value
n layers 3
n neurons 35
epochs 300
lr 1.1 · 10−3

optmizer adam

Table 4.22: Parameters for MLP NFS experiment - RF101.

Parameter Value
n layers 3
n neurons 30
epochs 300
lr 1.4 · 10−3

optmizer adam

The MLP NFS experiment presented almost 0.966 accuracy rate, as can be observed in

Table 4.23. This experiment achieved the second best result. The MLP FS experiment

presented almost 0.947 accuracy. The effect of the RF feature selection for the MLP was

not as bad as it was in the SF103B experiment, but it was also worse to have feature

selection than not have it in this case.

4.4.2 Discussion

This section presents the results from eight different experiments. Tables 4.23 and 4.24 show

the average and standard deviation for each experiment. Figure 4.5 presents the same results

that are presented in Table 4.23. However, both are presented for a matter of better visualization

that the graph offers. Table 4.25 presents the confusion matrix for each one of the experiments.
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The RF101 dataset was easier for every single ML technique when compared to the SF103B

dataset. Every ML technique was able to achieve better results probably because the asset is

always being turned off, as is possible to observe in Figure 4.4. If one compares Figure 4.4 with

Figure 4.2, the one related to the RF101 seems to be more filled. It represents that it is being

turned on and off repeatedly. Nevertheless, RF101 behavior seems to be more homogeneous

than the SF103B, which facilitates the task of using machine learning on its data.

The CNN MULT experiment presents a better result for accuracy, f1 score, and recall,

while MLP NFS presents better precision. Precision (Equation 2.2) calculates the rate of true

positives among every example classified as positive. Higher precision means that the smaller

number of false alarms were created by MLP NFS experiment. In the predictive maintenance

scenario, a lower amount of false negatives should be considered better, therefore, recall (Equa-

tion 2.3) is a more important metric. A lower false negative means that fewer anomalies (as-

sets’ faults) were not confused as normal behavior. It is possible to observe in Table 4.25 that

CNN MULT presented the smaller number of false negatives. The two experiments with lower

false negative values are the ones that use CNN.

The SVM NFS experiment outperformed both RF FS and the MLP NFS experiments, while

CNN GAF presented similar results to SVM NFS experiment. MLPs can capture the relation-

ship of features using the weights from the neural networks’ layers. GAF transformation, in

this case, has an issue with the creation of a dark image. Again, the capability of creating

a feature representation of CNN combined with the feature transformation by multiplication

allows its CNN MULT to outperform other techniques.

In order to evaluate if the results for each one of the experiments are statistically differ-

ent, two tests were performed: Kruskal-Wallis H-test for independent samples and Wilcoxon

signed-rank test [51]. The Kruskal-Wallis test is applied considering all the 8 experiments at

once. If they present a p-value lower than 0.05, the Wilcoxon test should be performed consid-

ering each pair of experiments. The Kruskal-Wallis test presented a p-value of 2.7760 · 10−42,

therefore the Wilcoxon test was needed. Its results are shown in Table 4.26. Since there are 28
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Figure 4.5: Comparison among experiments - RF101 (average values).

possible combinations of experiments, the Bonferroni correction [52] must be used. In this sce-

nario, the p-value to represent statistically different results should be 0.05
28 = 0.0018 = 1.8 ·10−3.

The only experiments that presented non-statistically difference were (RF FS, SVM FS) and

(RF FS, SVM NFS), with p-values of 1.3974 · 10−2 and 2.8485 · 10−2, respectively. There-

fore, the results obtained from the CNN MULT experiment are statistically different from the

others. Consequently, it is possible to conclude that the CNN MULT outperformed the other

approaches, since it presented higher accuracy and recall, and the experiments results are sta-

tistically different from each other.
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Table 4.23: Metrics comparison among experiments - RF101 (average % values).

Accuracy F1 Score Precision Recall
RF NFS 93.6133 81.2339 84.4920 78.2178
RF FS 95.3631 81.6831 91.1602 86.1619
SVM NFS 95.5381 85.6459 89.5000 87.5306
SVM FS 95.1881 77.0731 95.1807 85.1752
MLP NFS 96.5879 90.2255 95.7447 85.3080
MLP FS 94.7506 85.0000 89.0052 81.3397
CNN GAF 96.1504 89.3720 89.8058 88.9423
CNN MULT 98.0752 94.7115 94.7115 94.7115

Table 4.24: Metrics comparison among experiments - RF101 (sd % values).

Accuracy F1 Score Precision Recall
RF NFS 1.4137 1.6826 17.5461 17.8435
RF FS 1.1764 1.3545 1.6743 16.5196
SVM NFS 1.2743 1.4531 1.3576 1.38843
SVM FS 1.3419 1.5348 1.8261 1.6716
MLP NFS 0.8764 1.5483 1.3592 1.4152
MLP FS 0.9746 1.2687 1.3610 1.2364
CNN GAF 0.7176 0.7514 0.8145 0.7651
CNN MULT 0.5735 0.6231 0.6231 0.6231

4.5 Summary

This chapter presented the experiments used to validate the CNN-PdM framework. The results

show that the CNN-PdM framework with the multiplication data transformation method out-

performed all other approaches, achieving almost 0.953 accuracy rate for the SF103B’s dataset

and over 0.980 accuracy rate when using the RF101’s dataset. This proves that the CNN-PdM

framework is a reliable method to deal with predictive maintenance.
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Table 4.25: Confusion Matrix for all experiments - RF101.

Predicted : 0 Predicted: 1

Actual: 0

RF NFS: 929
RF FS: 925
SVM NFS: 913
SVM FS: 930
MLP NFS: 924
MLP FS: 913
CNN GAF: 914
CNN MULT: 924

RF NFS: 29
RF FS: 16
SVM NFS: 21
SVM FS: 8
MLP NFS: 8
MLP FS: 21
CNN GAF: 21
CNN MULT: 11

RF NFS: 958
RF FS: 941
SVM NFS: 934
SVM FS: 938
MLP NFS: 932
MLP FS: 934
CNN GAF: 935
CNN MULT: 935

Actual: 1

RF NFS: 44
RF FS: 37
SVM NFS: 30
SVM FS: 47
MLP NFS: 31
MLP FS: 39
CNN GAF: 23
CNN MULT: 11

RF NFS: 158
RF FS: 165
SVM NFS: 179
SVM FS: 158
MLP NFS: 180
MLP FS: 170
CNN GAF: 185
CNN MULT: 197

RF NFS: 202
RF FS: 202
SVM NFS: 209
SVM FS: 205
MLP NFS: 211
MLP FS: 209
CNN GAF: 208
CNN MULT: 208

RF NFS: 973
RF FS: 962
SVM NFS: 943
SVM FS: 960
MLP NFS: 955
MLP FS: 942
CNN GAF: 937
CNN MULT: 935

RF NFS: 187
RF FS: 181
SVM NFS: 200
SVM FS: 166
MLP NFS: 188
MLP FS: 191
CNN GAF: 206
CNN MULT: 208
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Table 4.26: p-values among experiments - RF101.

p-value pair

1.7344 · 10−6

(RF NFS, RF FS)

(CNN GAF, CNN MULT)
(MLP FS, CNN MULT)

(MLP NFS, CNN MULT)
(MLP NFS, MLP FS)

(SVM FS, CNN MULT)
(SVM FS, MLP NFS)

(SVM NFS, CNN MULT)
(SVM NFS, MLP NFS)
(RF FS, CNN MULT)
(RF FS, MLP NFS)

(RF NFS, CNN MULT)
(RF NFS, CNN GAF)
(RF NFS, MLP FS)

(RF NFS, MLP NFS)
(RF NFS, SVM FS)

(RF NFS, SVM NFS)
3.5152 · 10−6 (SVM FS, CNN GAF)
3.8821 · 10−6 (SVM NFS, MLP FS)
4.2856 · 10−6 (RF FS, CNN GAF)
8.4660 · 10−6 (SVM NFS, CNN GAF)
4.4493 · 10−5 (MLP NFS, CNN GAF)
5.3069 · 10−5 (RF FS, MLP FS)
1.1494 · 10−4 (SVM NFS, SVM FS)
1.8909 · 10−4 (SVM FS, MLP FS)
1.3974 · 10−2 (RF FS, SVM FS)
2.8485 · 10−2 (RF FS, SVM NFS)



Chapter 5

Conclusions and Future Work

This chapter presents a summary of the conclusions achieved trough the implementation and

evaluation of the Convolutional Neural Network Predictive Maintenance framework (CNN-

PdM) presented in this research. Possible future works for the CNN-PdM are also provided.

5.1 Conclusions

This work presents the CNN-PdM framework and a novel method to perform data transforma-

tion. Since finding the ideal subset of features is a challenge in ML and the number of available

features is increasing over time with the advance of IoT, CNNs can be used to tackle these is-

sues; however, to exploit the CNN potential, a data transformation method is also proposed

in this work. The multiplication method converts data from 1-D to 2-D, allowing the user to

benefit from the CNN ability to perform feature extraction and decrease the amount of previous

feature engineering needed.

Accordingly to Lin and Tsen [10], almost 99% of the equipment failures present some sort

of indicators that can be tracked to determine if the asset is not working properly. Therefore,

the CNN-PdM framework proposed in this research is able to detect indicators that precede

failures and advise for maintenance. In the cases of study presented in Section 4.3 for two

exhaust fans from CMLP building at Western University, the proposed framework combination

60
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of CNN with multiplication as data transformation method outperformed the others approaches

and presented results at least 1.5% better than the second best approach. The contributions of

this work are listed below:

• PdM is a maintenance approach in which the asset’s health is continuously monitored.

This research proposes the usage of CNN to monitor the asset’s health status; based on it,

a decision can be made regarding if an asset needs maintenance or not. The CNN-PdM

framework presented higher accuracy and lower number of false negatives for both case

studies, showing its feasibility to be used as an advisor in the PdM domain.

• There was a lack of research using CNN with electrical data. In this work, different

electrical features, such as power factor, energy consumption, and amps are used.

The CNN performed well using electrical data; the fact that the CNN-PdM framework

outperformed the other approaches testify in favor of the usage of CNN with electrical

data as well.

• A novel data transformation method is also proposed: the multiplication method. The

usage of the proposed method was crucial to achieving higher accuracy rates, as one can

observe in the case studies performed in this work. The transformation through multi-

plication presented two benefits if compared with GAF: lighter and more heterogeneous

images. An example of the difference between multiplication and GAF is here presented:

given two features energy comumption − avg = 0.1 and amps − sd = 0.2, for instance,

transformed using GAF outputs −0.9548, while transformed using the multiplication

method outputs 0.02. The CNN was able to perform better on data transformed by the

multiplication technique than on data processed by GAF.

• There was a lack of research on CNN in the PdM domain. In this work, the CNN-PdM

framework is proposed to fill this gap. To represent data as an image was a key-factor

to benefit most from the CNN’s feature representation capability. The CNN was able
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to create feature representations that helped in the classification of normal and “faulty”

data, being able to outperform the other methods and present a superior accuracy rate.

By choosing predictive maintenance over preventive maintenance, companies can avoid

spending a significant part of their budget on equipment that is still in a healthy state, preventing

unnecessary costs or downtime of their asset.

5.2 Future Work

This research focused on the possibility of advising building managers about their assets’ main-

tenance schedule. Possible areas for future work would be:

• Since the amount of available data grows with time, deeper CNNs can be generated,

which means that higher level of features representations can be achieved. If this is

possible, the model’s accuracy can be increased.

• If real faulty data become available, it would be possible to predict the remaining time

before the next failure occurs. In order to perform this kind of predictions, lots of faulty

information must be available. Each maintenance information should be stored in a

database to allow the maintenance advisor (PdM system) to calculate how many cycles

remaining before each one of the failures. Only with that kind of information, the system

would be able to perform predictions based on the current asset’s health status regarding

the number of cycles remaining until the next failure occurs.

• Another possible problem to tackle would be to predict the asset’s component that is

going to fail. To allow the PdM system to perform this type of prediction, more specific

data regarding the fault type would be needed. Information regarding particular com-

ponents that were replaced in the maintenance would be required, so the PdM system

would be able to learn from it; given the asset’s health status, the PdM system would

provide information regarding which asset’s component is going to fail next time. This
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prediction would be helpful to provide insights related to what parts an asset manager

should purchase in advance and to better prepare the maintenance team to take action.
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Appendix A

Data information

This chapter present all the 50 possible features. The features are listed below:

• amps-avgall

• amps-max

• amps-min

• amps-sd

• amps-sum

• apparent power-avgall

• apparent power-max

• apparent power-min

• apparent power-sd

• apparent power-sum

• energy consumption-avgall

• energy consumption-max
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• energy consumption-min

• energy consumption-sd

• energy consumption-sum

• hour cos

• hour sin

• impedance-avgall

• impedance-max

• impedance-min

• impedance-sd

• impedance-sum

• is weekend

• month cos

• month sin

• outside humidity-avgall

• outside humidity-max

• outside humidity-min

• outside humidity-sd

• outside humidity-sum

• outside temperature-avgall

• outside temperature-max
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• outside temperature-min

• outside temperature-sd

• outside temperature-sum

• power factor-avgall

• power factor-max

• power factor-min

• power factor-sd

• power factor-sum

• reactivepower-avgall

• reactivepower-max

• reactivepower-min

• reactivepower-sd

• reactivepower-sum

• real power-avgall

• real power-max

• real power-min

• real power-sd

• real power-sum
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