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Abstract 

The objective of this study is to develop a quantitative method of evaluating the risk of third 

party damage (TPD) on natural gas distribution pipelines using available industry data and 

practical engineering experience. A risk model for TPD of gas distribution pipelines is 

developed to allow for a more robust decision making process and better prioritization of the 

allocation of resources for operators of natural gas distribution pipelines. The model consists 

of likelihood and consequence classification procedures to estimate the severity of TPD 

events within an area.  

The TPD model consists of a fault tree (FTA) model to estimate the probability of hit of a 

given distribution pipeline by third party excavation activities. The distribution FTA model is 

developed using TPD and locate records from 2014-2016 and survey data from transmission 

FTA models. This model is then validated by comparing the predicted and actual 2017 

damage records in three municipalities in southwestern Ontario with populations varying 

from 200,000 to 350,000.   

Based on a historical analysis of distribution pipeline TPD consequence, a procedure is 

developed to classify the consequence of a TPD event within a given area. Methods of 

collecting and classifying data from sources available to distribution companies are used to 

allow this procedure to be implemented straightforwardly in an industry setting. In a case 

study a compromise solution method of evaluation is used to identify areas where focusing 

damage prevention resource would be most effective.  
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1 Introduction 

 Background 

Natural gas is commonly transported by a series of pipeline systems from the site of 

extraction to use by the consumer. Distribution pipelines are the final step in the delivery 

of natural gas to the end users (e.g. residential homes and industrial sites). Distribution 

pipeline networks are generally fed from long distance, large-diameter, high–pressure 

transmission pipelines, typically with a 3450 to 6160 kPa maximum operating pressure 

(MOP) which are fed by gathering lines from production wells. They are typically linear 

systems with few connections [1]. Distribution systems are usually interconnected 

networks where gas can be received from various sources in branch or tree configurations 

[1]. This allows for a portion of the system to be taken offline for repair while 

minimizing the number of customers affected.  Back feeding these distribution systems is 

especially important in natural gas distribution because loss of service requires pilot 

lights to be relit for every affected customer, which can be costly [2].  

In Southwestern Ontario, Canada, most of the distribution systems operates at 420 kPa 

MOP, with 80% of distribution main consisting of NPS2 or smaller pipes, a majority of 

which are made of polyethylene plastic (PE). Third-party damage (TPD), damage caused 

by work unrelated to the pipeline operation, is a leading cause of failure for gas 

distribution systems [3]. An analysis of the US Pipeline and Hazardous Material Safety 

Administration (PHMSA) data since 1984 shows that TPD accounted for over 50% of 

incidents on distribution pipelines. Analyses of reported TPD in the continental United 

States and five Canadian provinces (Quebec, Ontario, Saskatchewan, Alberta, and British 

Columbia) in 2016 showed that of 91,539 reported incidents, 99.6% occurred on 

distribution and service lines [4].   

The Common Ground Alliance (CGA), founded in 2001[4], is a non-profit organization 

that established best practices for the underground utility industry (natural gas, electricity, 

telecommunications, etc.) which are now reviewed and implemented through CGA 

organizations in Canada and the United States. These CGA organizations, like the 
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Ontario Regional Common Ground Alliance (ORCGA) provide best practices regarding 

TPD prevention after pipe installation. Most TPD damage is a failure of these best 

practices and is broken down by root cause:   

 

Figure 1.1 2015-2017 TPD Incidents in Ontario by Root Cause 

The ORCGA publishes the Damage Information Reporting Tool (DIRT) report annually 

which outlines the major causes of TPD and prevention information in Ontario. This 

report breaks down the last three years of TPD data for all utility types, with 47% of all 

incidents in the 2015-2017 period being attributed to natural gas pipelines. In 2017 the 

Toronto area saw a 30% increase in TPD events, which may explain the significant 

increase in 2017 excavation practices not sufficient category. This data includes 

19,973,512 locate requests and 14,441 TPD incidents over the three year period.  

Figure 1.1 indicates that the two most likely contributing factors to TPD are a failure of 

excavation best practices or a failure to notify OneCall. The miscellaneous root cause 

category includes deterioration of facility, previous damage, OneCall center error, or root 

cause not listed. 89% of all miscellaneous category reports in 2017 were caused by 

missing data. Locating practices not sufficient refers to errors in facility records, maps, 

and errors in the marking of facility locations.  In Ontario, there were 2,741 incidents on 

natural gas distribution lines and connected services that led to customer disruptions in 
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2016 [4].  One major utility company in Ontario currently has over 65,000 km of in-

service distribution pipelines, for which TPD is a leading cause of pipeline damages.  

 Objective 

The objective of this project is to provide a quantitative method of evaluating the risk of 

third-party damage (TPD) on natural gas distribution pipelines and to develop a practical 

tool to identify third-party damage hot spots, develop proactive third-party damage 

prevention measures, and prioritize damage repair activities using a risk-based approach.  

TPD is any activity not related to the pipeline, such as residential construction, that 

causes damage to the distribution pipeline. Distribution assets are the last stage of the 

natural gas delivery process and generally range from NPS1¼ to NPS16 diameter and 

usually operate at maximum operating pressure (MOP) between 2.5 -1900 kPa. For the 

purpose of this analysis risk is defined as the likelihood of an event occurring and the 

consequence of that event should it occur.  

 Scope and Format 

This thesis is presented in an Integrated- Article Format thesis as specified by the School 

of Graduate and Postdoctoral Studies at the University of Western Ontario, London ON, 

Canada. Chapter 1 gives a brief introduction of the background, objective and scope of 

the study. The main body of the thesis includes Chapters 2, 3, which is presented in an 

integrated-article format without an abstract, but with its own references. Chapter 4 

presents the summary and conclusions of this thesis, and recommendations for future 

study. A quantitative method of evaluating risk is focused on providing a method for 

defining risk through available industry data and practical engineering experience. 

Publicly available data was combined with Ontario distribution gas utility records and 

developed in conjunction with industry experts in an attempt to formulate techniques that 

are both practical and useful for engineers in industry.  

Chapter 2 will outline the procedure for evaluating the likelihood of a TPD event 

occurring on a distribution pipeline using a fault tree analysis, published at the 

International Pipeline Conference 2018, and includes a validation of the model using 
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predictions of TPD incident frequency in three cities. Chapter 3 will outline a procedure 

to evaluate the consequence of those events based on pipeline attributes classified by an 

analysis of the TPD events. These two procedures will then be combined into a risk 

model and shown in a case study which evaluates the risk in a city and presents it in a 

GIS environment to aid in the presentation and decision making of distribution utility 

TPD mitigation efforts. Recommendations will be presented based on a compromise 

programing analysis of the indices developed by this model.  

 References 

[1] Mike Musial, Glenn DeWolf, Doug Orr, Julie Martin, and Pilar Odland. “Safety 

Performance and Integrity of the Natural Gas Distribution Infrastructure.” URS 

Corporation, Chicago, IL. 2005. 

[2] Canadian Common Ground Alliance. “National Report on Damage to Underground 

Infrastructure”. Damage Prevention Symposium 2015. 

http://www.canadiancga.com/resources/Documents/2015%20DIRT%20Committee%20D

ocuments/2015.DIRTReport.pdf  

 [3] Julie K. Maupin. “Plastic Pipe Failure Analysis”. Proceedings of IPC2008. IPC2008-

64355.  

[4] Common Ground Alliance. “Damages Reported by State- Ontario 2016.” DIRT 2016 

- Interactive Report. http://commongroundalliance.com/dirt-2016-interactive-report 
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2 Fault Tree Analysis of TPD Frequency  

 Introduction 

2.1.1 Overview of Natural Gas Transmission 

Natural gas is commonly transported by a series of pipeline systems from the site of 

extraction to use by the consumer. Distribution pipelines are the final step in the delivery 

of natural gas to the end users (e.g. residential homes and industrial sites). As shown in 

Fig. 2.1, distribution pipeline networks are generally fed from long distance, large-

diameter, high–pressure transmission pipelines, typically 3450 to 6160 kPa maximum 

operating pressure (MOP) which are fed by gathering lines from production wells. They 

are typically linear systems with few connections [1]. Distribution pipelines are 

connected to transmission systems by regulator stations that control the pressure of the 

downstream system [1]; there may be several regulator stations in a given distribution 

system. Distribution pipelines generally range from NPS1¼ to NPS16 diameter and 

operate at MOP between 2.5 -1900 kPa.  

Distribution systems are usually interconnected networks where gas can be received from 

various sources in branch or tree configurations [1]. This allows for a section of the 

system to be isolated in an event of damage, therefore minimizing the number of 

customers affected.  Back feeding these distribution systems is especially important in 

natural gas distribution because loss of service can have a substantial economic impact on 

distribution utilities and their customers [2]. Each customer is connected to the 

distribution main by a service main (considered to be part of the distribution system) and 

meter, which brings the gas to the building where usage is recorded and reduces the gas 

pressure before it enters the premises.  
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Figure 2.1 Typical Path of Natural Gas from Production to Customer 

In Canada and the US, pipelines used in the natural gas industry consist of steel and 

polyethylene (PE) pipes.  PE pipes account for a significant portion of the gas distribution 

systems with MOP less than 550 kPa and pipe diameters smaller than or equal to NPS4. 

In the US, the proportion of PE pipes in the gas distribution system increased from 35 to 

51% from 1995 to 2006 [3].  In Southwestern Ontario, Canada, most of the distribution 

systems operates at 420 kPa MOP, with 80% of distribution main consisting of NPS2 or 

smaller pipes, a majority of which are made of PE.  

Third-party damage (TPD) is a leading cause of failure for gas distribution systems [3]. 

An analysis of the US Pipeline and Hazardous Material Safety Administration (PHMSA) 
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data since 1984 shows that TPD accounted for over 50% of all incidents causing damage 

to distribution pipelines. Analyses of reported TPD in the continental United States and 

five Canadian provinces (Quebec, Ontario, Saskatchewan, Alberta, and British 

Columbia) in 2016 showed that of 91,539 reported incidents, 373 occurred on 

transmission and gathering lines, with the remaining on distribution and service lines [4].  

In Ontario, there were 2,741 incidents on natural gas distribution lines and connected 

services that led to customer disruptions in 2016 [4].  One major utility company in 

Ontario currently has over 65,000 km of in-service distribution pipelines, for which TPD 

is a leading cause of pipeline damages. 

2.1.2 Common Ground Study and Third Party Damage Prevention 

The Common Ground Alliance (CGA), founded in 2001[4], is a non-profit organization 

that is the direct result of the Common Ground Study sponsored by the United States 

Department of Transportation Office of Pipeline Safety, as authorized by the 

Transportation Equity Act for the 21st Century (TEA 21)[5]. It established best practices 

for the underground utility industry (natural gas, electricity, telecommunications, etc.) 

which are now reviewed and implemented through CGA organizations in Canada and the 

United States. These CGA organizations, like the Ontario Regional Common Ground 

Alliance (ORCGA) provide best practices regarding TPD prevention after pipe 

installation and can be broken down into the following process: 

1. Contractor/resident calls Ontario OneCall or submits a form providing dig 

information at least 5 business days before dig is to take place. 

2. OneCall takes collected utility data and compares known locations of 

underground infrastructure to specified area in request. 

3. If area contains underground infrastructure, a utility service representative 

(USR) will come to the worksite and locate infrastructure using an 

electromagnetic tool and mark the lines using some combination of flags and 

spray paint. These marks are color coated by type of utility, for example natural 

gas lines will be marked using yellow. 
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4. During construction the area within 1m of these marks are hand dug, to avoid 

accidental damage. 

Most TPD damage is a failure of one of these steps to occur properly.  

 Review of TPD Models for Transmission Pipelines 

The reliability based approach has been used to quantify the likelihood of TPD on 

transmission pipelines [1,2]. This was accomplished by using a fault tree model to 

estimate the probability of a pipeline being hit by third-party excavation activities, and a 

puncture resistance model to determine the probability of failure given hit. The process of 

developing a fault tree model is commonly completed by starting at the top level event of 

interest, in this case a pipeline being hit during excavation, and breaking down that event 

into the necessary inputs required for that event to occur. This process is then repeated on 

each event in the subsequent level of the fault tree until all base level events can be 

characterized using relevant available data.  The main variables contributing to a 

puncture include the wall thickness, equipment bucket tooth size, and yield strength.   

However, the TPD model for the transmission pipelines is not applicable to distribution 

pipelines due to the differences in the characteristics of the pipe attributes and typical 

preventative measures employed for these two types of pipeline systems.  Many of the 

base events used in the transmission pipeline fault tree model are not applicable to 

distribution pipelines, a full list of which can be found in Appendix 2A.  As far as the 

authors of this paper are aware, the quantification of the TPD likelihood for distribution 

systems has not been reported in the literature.  The objective of this research is to 

develop a model that is suited for qualifying the likelihood of TPD for distribution 

pipelines and facilitate risk-based integrity management of distribution pipelines with 

respect to TPD. 

The fault tree analysis (FTA) is a top down, deductive failure analysis method that uses 

Boolean logic to combine a series of basic events to analyze the state of a system. This 

model uses a series of AND and OR relationship gates to combine independent 

probabilities using Eq. (1) and Eq. (2), respectively: 
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𝑃𝑎𝑛𝑑 = 𝑃1 • 𝑃2 … • 𝑃𝑛         (2.1) 

𝑃𝑜𝑟 = 1 − [(1 − 𝑃1) • (1 − 𝑃2) • … (1 − 𝑃𝑛)]     (2.2) 

where Pand and Por are the probabilities of the AND and OR gates, respectively, and P1, 

P2, …, Pn are the probabilities of n basic events combined using the AND/OR gates.  

Prior research demonstrated the ability of FTA to quantify the probability of natural gas 

transmission pipelines being hit by third party excavation activities [5,6]. These models 

allow for a quantitative analysis of the effectiveness of preventative measures and, in 

conjunction with current practices, facilitate a predictive method to plan and optimize 

resource allocation for damage mitigation and emergency preparedness. This modeling 

technique is applied to natural gas distribution pipeline systems in the present study, and 

a predictive model is developed and validated based on available industry data.   

The base level should include factors that contribute to the top level event, and allow for 

the collection of data and assumptions made in conjunction with experts to estimate the 

probability of occurrence. Basic events included in the FTA model for gas transmission 

pipelines [1] are 

• excavation activity rate; 

• depth of cover; 

• effectiveness of notification practices; 

• patrol activities; 

• right of way (ROW) recognition; 

• permanent and temporary markers; 

• malicious intent, and 

• physical resistance to damage. 

The probabilities of basic events are estimated based on the results of an industry-wide 

survey.  The FTA model in Ref [1] was combined with a puncture resistance model that 

quantifies the impact force of the excavator as a function of its weight and the puncture 

resistance of the pipeline as a function of its wall thickness, yield strength, and 

excavator’s bucket tooth size. Probability distributions of the impact force and puncture 

resistance, respectively, are then developed. The probability of puncture is then the 
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probability of the impact force of the excavator exceeding puncture resistance of the 

pipeline.  

 TPD Model for Distribution Pipelines 

2.3.1 FTA Model for Probability of Hit 

The FTA model for transmission pipelines described in the previous section is used as a 

starting point in the construction of a TPD model for distribution pipelines. The initial 

development process of each event in the transmission pipeline fault tree model is 

evaluated for its applicability to distribution systems. Input from engineers in a major 

distribution pipeline operator in Ontario is used to justify the elimination of variables that 

do not play a significant role in distribution systems. These include:  

• patrol frequency;  

• use of buried or permanent markers, and  

• right of way signage.  

Malicious intents towards pipelines, such as gas being siphoned illegally or deliberate 

damage, are also excluded due to a lack of evidence that this is a prevalent issue in 

Canada. Variables influenced by factors such as the OneCall process and awareness, 

excavation activity rate around pipelines, and failures involving preventative measures 

are included as these processes are common to all natural gas pipelines. The Damage 

Information Reporting Tool (DIRT) report [3] separates the cases of third-party damage 

in Ontario by root cause and sub-category.  This allows for the estimation of the basic 

event probabilities that define the failure of preventative measures section of the 

distribution fault tree. A full list of considered variables is summarized in Appendix 2A.   

A fault tree for evaluating the probability of hit, PHit, of a distribution pipeline due to a 

given third-party excavation activity (see Figure 2.2 and Table 2.1) is developed and 

implemented in the statistical computing language and environment R using the R-forge 

fault tree library. The FTA assumes that the event of the pipeline being hit by the third-

party excavation activity results from a failure of the preventative measures in place to 

prevent TPD, the excavation activity being in the vicinity of a pipeline, and the 
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excavation depth exceeding the burial depth of the pipeline. Based on the developed fault 

tree model, PHit is evaluated as follows:  

 𝑃𝐻𝑖𝑡 = 𝑃𝑃𝐹 • 𝑃𝐷𝐸𝐶 • 𝑃𝐴        (2.3) 

 𝑃𝑃𝐹 = 1 − [(1 − 𝑃𝑁𝐿) • (1 − 𝑃𝐹𝑜𝐶) • (1 − 𝑃𝐼𝑀)]     (2.4) 

 𝑃𝑁𝐿 = 𝑃𝑁𝐿𝑈 • 𝑃𝑁𝐿𝐶         (2.5) 

 𝑃𝑁𝐿𝑈 = 1 − [(1 − 𝑃𝑁𝐶) • (1 − 𝑃𝐷𝐵𝐿)]       (2.6) 

 𝑃𝑁𝐶 = 1 − [(1 − 𝑃𝑁𝐶𝑁) • (1 − 𝑃𝑁𝐶𝑈)]        (2.7) 

where PPF is the probability of failure of all preventative measures; PDEC is the probability 

of the excavation depth exceeding pipe burial depth, and PA is the probability that the 

activity is in the vicinity of pipeline.  Note that all basic events involved in the fault tree 

are assumed to be mutually independent of each other.   

The probability of failure of all preventative measures is determined from Eq. (2.4) using 

the probability of no locates on site (PNL), probability of construction error (PFoC), and 

probability of temporary markers being placed incorrectly (PIM). The value of PNL is 

determined from Eq. (2.5) using the probability that an excavator will not use OneCall 

(PNLU), and probability of the third-party not properly locating the pipeline (PNLC). The 

value of PNLU is determined from Eq. (2.6) using the probability of digging before locate 

is completed (i.e. the third party contacts OneCall but fails to wait for the pipeline 

operator to locate the pipeline before digging) (PDBL) and the probability that OneCall is 

not contacted (PNC). The value of PNC is determined from Eq. (2.7) using the probability 

that no call made as a result of unawareness of OneCall (PNCU) and the probability no call 

made as a result of the third party neglecting OneCall (PNCN). The evaluation of the basic 

event probabilities are described in detail in later sections. 
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Figure 2.2 TPD Fault Tree Model 
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2.3.2 Probability of Failure Given Hit 

Transmission pipelines have relatively thick walls and high yield strengths that offer 

resistance if hit.  However, distribution pipelines are mostly small diameters and have 

thin wall thickness.  It can therefore be inferred that the puncture resistance of 

distribution pipelines is much lower than that of transmission pipelines and can be 

considered negligible. It follows that the probability of failure given hit is assumed to be 

unity in this study.  This is justified by both the pipe incident and attribute data collected 

from a major distribution pipeline operator in Southwestern Ontario.  The incident data 

collected indicates that 97% of TPD incidents occurred on pipelines smaller than NPS4.  

Between 2014 and 2016 there were no cases reported where a NPS2 PE pipe was not 

punctured when hit. The breakdown by pipe diameter of the overall length 

(approximately 6,134 km) of distribution pipelines owned by the above-referred pipeline 

operator is shown in Figure 3; as shown in Figure 3, over 80% of distribution pipelines in 

this system are NPS 2 or less, a vast majority of which are PE pipes.   

 

Figure 2.3 Distribution of NPS by Length 
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 Quantification of Probabilities of Basic Events 

2.4.1 Digging Depth Exceeding Depth of Cover 

The minimum depth of cover is estimated based on requirements for installations of 

new distribution pipelines in Ontario. It is assumed that a majority of the in-service 

distribution pipelines still meet or exceed the minimum cover depth for new installations.  

In Southwestern Ontario, the minimum depth of cover requirements for non-agricultural, 

non-rock excavated buried pipelines operated at below 30%-SMYS hoop stresses are 

1000 mm for mainlines and 500 mm for service lines.  Based on these requirements and 

input from pipeline engineers, a deterministic depth of cover of 450 mm is conservatively 

assumed in this study. 

The probability distribution of the excavation depth is derived using the estimated 

maximum excavation depths presented in the locate requests information for 

Southwestern Ontario between 2014 and 2016.  By eliminating unrealistic estimated 

excavation depths (0 and above 4 m), a total of 43,414 estimated excavation depths have 

been collected.  The corresponding histogram and cumulative distribution function (CDF) 

of the collected data are shown in Figures 4 and 5 respectively.  A lognormal distribution 

with a mean value of 1.29 m and a standard deviation of 0.86 m is found to be the best-fit 

distribution for the data.  The CDF of this fitted distribution is shown in Figure 5; given 

that the burial depth is assumed to be a deterministic value of 0.45 m, it follows that the 

probability of the excavation depth exceeding the burial depth equals 0.80.   
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Figure 2.4 Histogram of submitted digging depths in OneCall tickets 

 

 

Figure 2.5 Cumulative distribution functions of the excavation depth 
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2.4.2 Probability of Activity above Pipeline 

Only those third-party activities that are in the general vicinity of distribution 

pipelines have the potential to lead to TPD.  PA is the assumed probability of a given 

third-party activity being located above or adjacent to a distribution pipeline, in a way 

such that should the preventative measures fail with a sufficient digging depth, a pipeline 

would be hit.  This probability is assumed based on the relatively low TPD rate of 2.3 hits 

per 1000 notifications (0.23%) for all utilities in Ontario [5]. It is assumed that 1% of all 

third party activities occur directly over distribution pipelines. The frequency of 

excavation activities that may lead to TPD (ATPD) then equals the frequency of all 

excavation activities in a region (𝐴𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦) multiplied by PA as follows: 

𝐴𝑇𝐷𝑃 = 𝑃𝐴 • 𝐴𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦          (2.8) 

2.4.3 Failure of Preventative Measures 

The Ontario Regional Common Ground Alliance (ORCGA) is an organization 

designed to reduce TPD through collaboration between utility companies, safety 

organizations, regulators, builders, and equipment suppliers by offering tools and 

public awareness of best practices regarding underground infrastructure. The DIRT 

report is a summary of data gathered by voluntary submission of underground utility 

third-party events submitted by the ORCGA industry stakeholders. Although the 

DIRT report contains data from a variety of underground utilities, a majority of 

reported incidents over the past three years have been submitted by the gas 

distribution pipeline operators [5]. Using available data from the ORCGA, Ontario 

OneCall, and access to utility damage prevention data, an analysis of common causes 

of preventative measure failure was conducted. Basic events that determine the failure 

of preventative measures were then assigned probabilities based on the survey data 

collected in Ref [1]. 

PFoC is the probability of damage occurring due to failure to follow standard 

construction operating procedures associated with excavation around underground 

utilities. Common causes include but are not limited to  
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• failure to maintain clearance; 

• failure to maintain marks; 

• failure to use hand tools when required; 

• improper backfilling, and 

• failure to support exposed assets.  

PFoC is estimated to be 17%, the probability of failure of common practices in excavation 

using the common locate and mark method found in the survey data reported in Ref [1]. 

This method includes using a tool to locate the pipe and then marking the line using 

either flags or paint. 

      It is noted that Ontario OneCall requires five business days notice to submit a request.  

Therefore, it is inferred that the likelihood of a third party starting the excavation before 

the operator responds to the locate request is fairly low.  Therefore, PDBL is assumed to be 

2% based on relevant survey data reported by Chen et al.[1]. 

      In the city where digging depths were investigated incorrect markers were the 

primary cause of only one incident from 2014 to 2016. PIM is determined to be 1% based 

on the survey data reported in [1]. This value was chosen based on the low frequency of 

reported damages due to incorrect markers. 

      PFAN is determined using the survey data reported in [1], which indicates that the 

probability that a third party aware of a pipeline but neglecting to notify OneCall has 

approximately a 66% probability of avoiding the pipeline during the excavation. On the 

other hand, the probability of a third party unaware of a pipeline has a negligible 

probability of avoiding the pipeline during the excavation; therefore, PFAU is assumed to 

equal one. It is further reported in [1] that 15% of the time they were unaware that there 

was a pipeline in the area (PUoP). PNCL is taken as 43% and is the average probability of 

PFAU and PFAN using Eq. (2.9): 

   𝑃𝑁𝐶𝐿 = ((1 − 𝑃𝑈𝑜𝑃) • 𝑃𝐹𝐴𝑁) + (𝑃𝑈𝑜𝑃 • 𝑃𝐹𝐴𝑈)      (2.9) 

       In cases where TPD events could be characterized as falling into multiple categories, 

such as both a failure of construction practices and incorrect markers, the event is placed 

into one root cause category to maintain independence between variables and to avoid 
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double counting events. Based on the above discussions, the probabilities of basic events 

in the fault tree shown in Figure 2.2 are evaluated and summarized in Table 2.1 (see the 

last column).  

Table 2.1 Fault Tree Model Events 

Event Name Type Probability 

1 Probability of Hit (PHit) AND Gate 0.0029 

2 Failure of Preventative Measures (PPF) OR Gate 0.36 

3 Locates Failure (PNL) AND Gate 0.22 

4 No Locates by Utility (PNLU) OR Gate 0.50 

5 No Call (PNC) OR Gate 0.49 

6 Digging Depth Exceeds Depth of Cover (PDEC) Basic Event 0.80 

7 Activity Near Pipeline (PA) Basic Event 0.01 

8 Failure of Construction Practices (PFoC) Basic Event 0.17 

9 Incorrect Markers Placed (PIM) Basic Event 0.01 

10 No Locate by Contractor (PNLC) Basic Event 0.43 

11 Dig Before Locate is Completed (PDBL) Basic Event 0.02 

12 No Call Made, Neglect (PNCN) Basic Event 0.33 

13 No Call Made, Unaware (PNCU) Basic Event 0.24 
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 Model Validation 

2.5.1 Defining Activity Rate 

The rate per km of distribution pipeline per year of third-party excavation activities 

within a region, AActivity, is determined indirectly using the locate data.  It is noted that the 

activity rate should include both notified (i.e. through OneCall) and unnotified activities.  

The latter must be estimated indirectly due to a lack of data.    

 

Figure 2.6 Possible Outcomes of Third-Party Activity 

Figure 5 shows the possible outcomes of an excavation event. As shown in the figure, 

the number of activities that are not notified and do not lead to TPD is unknown. Chen et 

al. [5] suggested that AActivity be estimated from the frequency of notified activities, ALocate, 

as follows:  

𝐴𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =
𝐴𝐿𝑜𝑐𝑎𝑡𝑒

(1−𝑃𝑁𝐶𝑁)(1−𝑃𝑁𝐶𝑈)
          (2.10) 

where PNCN and PNCU are the probabilities of a third-party neglecting to notify OneCall 

and unaware of OneCall, respectively, as listed in Table 1. Chen et al. reported from 

survey data that in 24% of excavation events third-parties are unaware of OneCall and in 

33% of excavation events third-parties neglect to contact OneCall. Utility locate records 

and estimates of awareness from Ontario OneCall place the total probability of OneCall 

not being notified between 50-60%, which is line with Chen et al.’s findings. Based on 

these findings it is assumed that the probabilities from Ref [1] are valid assumptions for 
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distribution pipelines.  By substituting PNCN = 0.33 and PNCU = 0.24 into Eq. (2.10), 

AActivity = 1.96ALocate. 

2.5.2 Comparison of Predicted and Reported TPD  

The proposed TPD model is validated using the 2017 locate data from three different 

cities (A, B and C) in Southwest Ontario. The predicted number of TPD ( 𝑁𝑇𝑃𝐷) are 

compared with the recorded number of TPD in A, B and C, respectively, in Table 2.  The 

predicted number of TPD is obtained by using the following equation: 

𝑁𝑇𝑃𝐷 = 𝑃𝐻𝑖𝑡 • 𝐴𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 • ℓ𝐷𝑖𝑠𝑡 𝑃𝑖𝑝𝑒       (2.11) 

where ℓ𝐷𝑖𝑠𝑡 𝑃𝑖𝑝𝑒 is the length (km) of distribution pipeline systems in a given city.  Note 

that AActivity = 1.96ALocate as explained in Section 5.1 with ALocate being directly evaluated 

from the number of locate requests in each city.  In 2017, there were 12719, 5049 and 

7104 locate requests in A, B and C, respectively.  

As shown in Table 2.2, the predicted number of TPD agree very well with the recorded 

number of damages for A, B and C in 2017.  This suggests that the TPD model proposed 

in this study is a viable tool for the integrity management of distribution pipelines with 

respect to TPD.   

Table 2.2 Model validation using 2017 damage records 

City Approx. 

Population 

(1000) 

Pipe 

Length 

(km) 

𝑨𝑨𝒄𝒕𝒊𝒗𝒊𝒕𝒚 

(km-year) 

Predicted # 

of TPD 

Recorded # 

of TPD 

A 350 2615.4 9.55 71 71 

B 350 2259.4 2.23 28 33 

C 200 1199.7 10.96 40 41 
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 Conclusions 

In the present study, a TPD model is developed to quantify the probability of failure of 

the distribution pipeline due to third party excavation activities.  The TPD model consists 

of an FTA model to estimate the probability of hit of a given distribution pipeline by third 

party excavation activities, but conservatively assumes that the pipeline will fail with 

certainty once hit by excavation activities given that distribution pipelines are typically 

small-diameter thin-walled pipes with very low puncture resistance.  The distribution 

FTA model is developed using TPD and locate records from 2014-2016 and survey data 

from transmission FTA models. This model is then validated on the comparison of 

predicted and actual 2017 damage records of three municipalities in southwestern Ontario 

with populations varying from 200,000 to 350,000.  The TPD model developed in this 

study can be a viable tool for the reliability- and risk-based integrity management of 

distribution pipelines with respect to TPD.  
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3 Risk Assessment of TPD on Natural Gas Distribution 
Pipelines Using Historical Data 

 Introduction 

3.1.1 Significance of Quantitative Risk Assessment of TPD on 
Distribution Pipelines 

Third-party damage (TPD) is a leading cause of failure for gas distribution systems [1]. 

An analysis of the US Pipeline and Hazardous Material Safety Administration (PHMSA) 

data since 1984 shows that TPD accounted for over 50% of incidents on distribution 

pipelines. Analyses of reported TPD in the continental United States and five Canadian 

provinces (Quebec, Ontario, Saskatchewan, Alberta, and British Columbia) in 2016 

showed that there were over 91,000 reported incidents of TPD on distribution and service 

lines [2].  As the dominant cause of failure for distribution pipelines the ability to 

quantify the risk associated with TPD can help distribution pipeline operator prioritize 

maintenance planning and devote resources to improve public awareness of TPD. 

3.1.2 Literature Review of Quantitative Risk Assessment on 
Distribution Pipelines 

Pipelines are the safest method of transporting natural gas [3], though serious failures do 

occur and an accurate assessment of risk allows for a more informed assessment of the 

likelihood and consequence of these failures. The Alberta Energy Regulator (AER) uses a 

qualitative rating system in which incidents are ranked as low, medium, or high based on 

impacts to the public, wildlife, or environment [3].  The British Columbia Oil and gas 

Commission uses a similar approach ranking accidents on a scale of 1-3 with an 

additional category for minor incidents with no potential impacts to anyone but the 

permit holder.   

On a national level, in Canada the National Energy Board (NEB) regulates only inter-

province pipelines accounting for 9% of oil and gas pipelines in Canada. None of these 

regulated pipelines are distribution pipelines. In comparison the PHMSA regulates 76% 

of all pipelines in the United States and provides a substantial database of distribution 

incidents to the public. A National Research Council review recommends improving 
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Canadian data collection to better understand the impact of pipeline accidents [3], 

however the current lack of public Canadian data requires partnership with other 

stakeholders to gather the necessary information to provide meaningful quantitative 

analysis of TPD risk to Canadian distribution pipelines.   

Distribution pipelines are usually only discussed when incidents occur [4] however, the 

economic damage from distribution pipeline in the United States was 70% higher than 

transmission pipelines between 2015-2018. There were also 123 deaths associated with 

distribution pipelines and 29 deaths associated with transmission pipelines during that 

period. Transmission pipeline research is not always directly applicable for use on 

distribution systems. Risk analysis on damage given a hit and the probability of delayed 

failure are important factors in the analysis on transmission pipelines [5] but, as shown in 

Chapter 2, the resistance to puncture of distribution pipelines can be assumed to be 

negligible. Transmission risk assessment research has also been completed using 

Bayesian modeling [6], but in addition to not all of the parameters being applicable to 

distribution pipelines these analyses often use software packages that are uncommon in 

industry, increasing the barriers to implementation. Analysis based on historical data 

requires a relatively large database of failure incidents [7]. Such data are difficult to 

obtain in Canada due to a lack of publicly available centralized pipeline incident 

database. To complete a distribution pipeline historical incident analysis, partnership with 

the utility operators responding to these incidents is required.  

Risk management of natural gas pipelines is primarily accomplished using two methods, 

objective and perspective [8]. In the objective method a historical analysis of risk is 

completed to attempt to determine future risk, usually using the likelihood of an event 

occurring and the magnitude of the consequence. Perspective risk management uses a 

more subjective approach and often is based on the experience of experts to determine 

risk. Experimental modeling is also performed to determine the consequence of some 

risks related to pipelines, such as leaks [9], but it is often difficult to recreate TPD in this 

setting.  In practice, the risk associated with the failure of natural gas distribution systems 

is generally evaluated qualitatively using the risk matrix approach [10]. This approach 

evaluates the risk as a numerical index. Typically this numerical index is created by a 
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qualitative ranking of both the likelihood and severity of consequences as very low, low, 

moderate, high, or very high based on predetermined criteria, and then assigning a score 

(e.g. 1 through 5) for each of the likelihood and severity of consequences. Risk is then 

defined using Eq.3.1: 

𝑅𝑖𝑠𝑘 = 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 • 𝐶𝑜𝑛𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒                                                                                      (3.1) 

Using this definition of risk events can be categorized and ranked in order of priority. 

These risk index scores are typically grouped into four categories (i.e. Lowest, Moderate, 

High, and Highest). A representation of these categories is shown in Figure 3.1 below: 

 

Figure 3.1 Example Risk Index Matrix 

These scores, if likelihood and consequence are expressed based on an analysis of 

previous events, can be used as a basis of risk assessment. However, there have been few 

studies on the consequences and likelihood of TPD-caused failures of distribution 

pipelines and using this matrix method in conjunction with additional indicators such as 

the cost and frequency of damages. By combining this existing method with an analysis 

of historical data a more quantitative method of risk assessment can be developed. 

3.1.3 Objective and Scope  

The objective of this study is to develop a risk assessment model for distribution 

pipelines regarding TPD. An approach to quantify the consequence of distribution 

pipeline failures due to TPD is developed and used in conjunction with the likelihood 
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model developed in Chapter 2, which can be directly employed in the risk assessment. 

This assessment is then applied to the distribution pipeline network in London, Ontario as 

a case study. 

 Risk assessment approach 

As a result of the relatively low probability of any specific section of pipe being damaged 

by TPD, it is advantageous to group portions of the distribution network into areas and 

assign risk based on the characteristics of the area, rather than each individual section of 

pipelines. As these networks are typically owned by a single stakeholder, areas can be 

adjusted to meet the needs of the organization. The method of area analysis is commonly 

used in pipeline analysis, such as the class location assessment using the population 

density surrounding the pipeline, to allow for a greater understanding of the risk to the 

community.   

To define the risk associated with the failure of distribution pipelines due to TPD in an 

area (e.g. a city or municipality), the distribution pipeline network within the region is 

divided by sub-regions, and for each sub-region a risk value is evaluated for the 

distribution pipelines included in the region.  The fault-tree model developed in Chapter 2 

will be used to evaluate the likelihood of TPD failure for the pipelines in a sub-region, 

and the consequence model described in Section 3.3 is used to quantify the failure 

consequences due to TPD.   

 Quantification of Failure Consequences of Distribution 
Pipelines due to TPD 

3.3.1 General approach 

Based on the recommendations of experienced engineers and referencing the 

consequence matrix developed by Union Gas, various criteria are adopted as the basis for 

assessing consequences of failures of distribution pipelines as shown in Table 3.1.  
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Table 3.1 Consequence Criteria 

Criteria Consequence Severity 

C1 C2 C3 C4 C5 

Injury Minor Injury 

(First Aid) 

OSHA 

Recordable, 

Restricted work 

Loss of time, 

hospitalization 

Long Term 

Disability or 

Public Health 

Hazard 

Fatality or large 

Public Health 

Hazard 

Environmental Low impact to 

land only 

Moderate impact 

to land/air. 

Remediation 

done by onsite 

employees 

Impact to 

land/air offsite. 

Remediation 

requires support. 

Major impact to 

water course or 

ground water. 

Considerable 

cleanup required 

Severe 

environmental 

impact. Local 

species 

destruction and 

long recovery 

period 

Direct Monetary 

Impact 

<$10,000 $10,000-99,999 $100,000-

999,999 

$1M-5M >$5M 

Number of 

Customers 

Impacted 

<100 Customers 100-499 

Customers 

500-999 

Customers 

1000-5000 

Customers 

>5000 

Customers 

Table 3.1 allows for events containing a wide variety of circumstances to be grouped into 

similarly serious levels of impact. Assigning these levels also allows for a monetary value 
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to be estimated for consequences that are difficult to attribute finical estimates, such as 

environmental impact or injury. These definitions can be modified to suit organizational 

need, or new categories, such as public relations impact, could be added to increase the 

dimensions in which the risk level is classified.  

A given distribution pipeline incident is assigned a single consequence severity index 

based on Table 3.1 and the sorting algorithm depicted in Fig. 3.2.   

 

Figure 3.2 Consequence Level Sorting Process 

In Fig. 3.2, x is the direct monetary cost and Homes is the number of customers impacted. 

This sorting algorithm allows for a determination of the highest consequence index based 

on the defined definitions in each case in Table 3.1.  An example of this is a TPD event in 

which there is a fatality (C5) and the total cost is $120,000 (C3). Using this process the 

incident is sorted based on the C5 fatality classification before it is evaluated on a cost 

basis. This method includes the indirect costs (such as loss of life) of TPD to provide a 

more accurate overall impact. 

As larger diameter pipelines usually feed lower diameter pipelines, it is assumed that the 

failure consequence is mainly correlated with the pipe diameter. To reduce the data 

sparsity, four diameter groups are created (Table 3.2).  These categories were chosen 

based on the typical use of the Nominal Pipe Size (NPS) in each category. For reference 
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Table 3.3 relates NPS to actual outer diameter (OD).  Pipes in category D1 (NPS2 and 

smaller) are typically used in services and streets off main branches of distribution line. 

D2 category pipes are mainly used to tie larger mains together and feed D1 pipes. D3 and 

D4 are typically found on major streets and feed from a regulating station [11]. The flow 

of gas typically flows from larger to smaller diameter pipelines is illustrated in the sample 

distribution main shown in Figure 3.3.   

Table 3.2 Diameter Classification 

Diameter Code NPS 

D1 NPS ≤ 2 

D2 2 < NPS ≤ 6 

D3 6 < NPS ≤ 12 

D4 NPS > 12 

Table 3.3 NPS to OD 

NPS OD (mm) 

2 66.33 

4 114.30 

6 168.28 

8 219.08 

12 323.85 

For each diameter group, as defined in Table 3.2, a single weighted average consequence 

severity index can be calculated from Eq. (3.2): 

𝐶𝑖 = ∑ 𝑃𝑖𝑗 ∙ 𝑗 𝑚=5
𝑗=1          (3.2) 
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where Ci is the weighted average consequence severity index for the ith (i = 1, 2, 3 or 4) 

diameter group, and Pij is the percentage of distribution pipelines within the ith diameter 

group that are associated with the failure consequence severity index of j (j = 1, 2, …, 5). 

For all the distribution pipelines within a given area, a single weighted average 

consequence index, CTotal, is then evaluated as follows: 

𝐶𝑇𝑜𝑡𝑎𝑙 = ∑
ℓ𝑖

ℓ𝑇𝑜𝑡𝑎𝑙

𝑛=4
𝑖=1 ∙ 𝐶𝑖                                                                                   (3.3) 

where ℓ𝑖 is length (km) of distribution pipelines within the ith (i = 1, 2, 3 or 4) dimeter 

group, and CTotal is the total length (km) of the distribution pipelines within the area. For 

example, in Figure 3.3 a portion of a hypothetical distribution network is divided into the 

two areas with the yellow area (60% D1, 40% D2, 0% D3, 0% D4) and the purple area 

(30% D1, 30% D2, 15% D3, 25% D4) indicated by the colored shading. It is assumed 

that the same pipe length is included in the two areas: 

 

Figure 3.3 Sample Distribution Network with Area Polygons 

Area two should be considered to be associated with higher failure consequences as it 

encompasses portions of the network that supply other customers downstream of the area 

(assuming gas flows away from the regulating station), providing it with the potential to 

affect significantly more customers. To aid in the comprehension of this evaluation an 

estimated cost was determined based on the financial consequence criteria in Table 3.1. 
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Figure 3.4 Consequence to Cost Translation 

Figure 3.4 shows a fitted power-law curve using the midpoint values in C1 through C4 

catogories of the Direct Monetary Impact criterion shown in Table 3.1 to assign a cost, 

i.e. C1 through C4 corresponding to $5,000, $50,000, $500,000, $2,500,000, respectively, 

and assigning a cost of$5,000,000 to C5.  The cost associated with an incident is the 

highest consequence level as defined by the categories outlined in Table 3.1.  For 

example, a TPD event in which there is a fatality (C5) and the total monetary cost is 

$120,000 (C3) the cost of this incident would be taken as that of a C5 incident with a cost 

of $5,000,000 to more accurately reflect the overall cost of an incident of this magnitude. 

Financial implications are assumed to be an important consideration in the evaluation of 

risk, as a result cost is considered a relevant index when assessing TPD on distribution 

systems. The total expected cost of failure of distribution pipelines, CostTotal, in an area is 

calculated as follows: 

𝐶𝑜𝑠𝑡𝑇𝑜𝑡𝑎𝑙 = ∑ 𝐶𝑜𝑠𝑡𝑖 ∙ 𝑁𝑖
𝑛=4
𝑖=1                                                                                        (3.4) 

𝐶𝑜𝑠𝑡𝑖 = 3828.4 ∙ 𝐶𝑖
4.46                                                                                           (3.5) 

y = 3828.4x4.4627
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where Costi is the cost of a failure of a distribution pipeline in the ith diameter group 

estimated using the power-law fitting equation shown in Fig. 3.4, and Ni is the expected 

number of TPD failures for the distribution pipelines in the ith diameter group within a 

given time period, e.g. one year, and can be evaluated using the fault tree model 

described in Chapter 2.  

3.3.2 TPD Consequence Analysis Based on Historical Incident 
Data 

3.3.2.1 Union Gas Data 

The Union Gas incident data and PHMSA incident data are analyzed to investigate the 

relationship between the failure consequences and diameter.  Union Gas’s historical TPD 

failure incident records included 931 TPD-caused distribution incidents in Ontario over 

the period from 2014 to 2016 on approximately 65,000 km of distribution pipeline. A 

sample of distribution network is shown in Figure 3.5.  By applying the approach 

described in Section 3.3.1, the consequence severity levels for the 931 Union Gas 

incidents are determined.  The breakdown of the consequence severity level by the 

diameter group is shown in Table 3.4.: 

 

Figure 3.5 Sample Distribution Network 
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Table 3.4 Union Gas TPD Incident Breakdown by Diameter Group 

 D 

1 2 3 4 

C 

1 893 21 0 1 

2 4 1 0 0 

3 0 1 0 0 

4 0 0 0 0 

5 0 0 0 0 

Of the Union Gas incidents, 897 of the 931 incidents occurred on D1 category pipes. This 

data lacks a significant sample of TPD on larger diameter pipes. To account for this, the 

Union Gas data was supplemented with additional records from the United States. 

3.3.2.2 PHSMA Distribution Records 

Due to the relatively low frequency of large diameter damage events in the Union Gas 

incident data, distribution records from PHMSA were analyzed from 2004-2016. In the 

United States the code of federal regulations (CFR) governs the report-ability of incidents 

involving natural gas release. 49 CFR § 171.16 requires: 

“incidents to be reported through PHMSA within 30 days of the incident, and a follow-up 

written report within one year of the incident, based on certain circumstances, to be 

reported to PHMSA through the Hazardous Materials Incident Report Form DOT F 

5800.1” [12] 

The operators of these pipeline facilities report this data in accordance with Part 191 and 

Part 195 of PHMSA's pipeline safety regulations [12]. Information on these incidents is 

publicly available and provides detailed information on the causes and consequences of a 

variety of incidents, including TPD. The information within the period of collected data 

includes: 

• Geographic information (street address, latitude, longitude) 

• Gas release, ignition, and explosion 

• Evacuation, injury, and fatality 

• Pipe attributes (material, diameter, MOP) 
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• Root cause 

• Third party practices followed (markers, notification, accurate information 

provided) 

The PHMSA database (https://www.phmsa.dot.gov/data-and-

statistics/pipeline/distribution-transmission-gathering-lng-and-liquid-accident-and-

incident-data ) contains all reported records on damage caused to distribution natural gas 

pipelines that resulted in greater than US$50,000 of damage in the United States [13]. 

After removing non-TPD incidents there were 503 recorded incidents from 

approximately 1.2 million km of distribution pipe over the period of 2004-2016. Based 

on this information, TPD events were classified into different consequence values (Table 

3.5) using the same sorting process described for the Union Gas data as shown in Fig. 

3.2.  

Table 3.5 PHMSA TPD Incident Consequences Breakdown by Diameter Group 

 D 

1 2 3 4 

C 

1 0 0 0 0 

2 87 98 60 6 

3 64 34 9 5 

4 96 20 2 1 

5 19 2 0 0 

The minimum reporting dollar value of $50,000 USD in this database results in only 

events of C2 and greater (as the C1 maximum is $10,000), however smaller consequence 

incidents are captured in the utility data obtained through Union Gas distribution records. 

Combining these two sources of information provides a sample of the consequence of a 

TPD incident. The PHSMA data was included to capture the projected consequence of 

the less frequent but often more impactful damage on larger pipelines. Including 

regionally specific data only, the lack of examples of these incidents would underestimate 

the potential consequence associated with larger diameter pipelines. After characterizing 

the available TPD incidents by consequence and dimeter, they are combined with the 

Union Gas records for a total of 1424 incidents: 

https://www.phmsa.dot.gov/data-and-statistics/pipeline/distribution-transmission-gathering-lng-and-liquid-accident-and-incident-data
https://www.phmsa.dot.gov/data-and-statistics/pipeline/distribution-transmission-gathering-lng-and-liquid-accident-and-incident-data
https://www.phmsa.dot.gov/data-and-statistics/pipeline/distribution-transmission-gathering-lng-and-liquid-accident-and-incident-data
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Table 3.6 Combined TPD Event Breakdown by Diameter 

 D 

1 2 3 4 

C 

1 893 21 0 1 

2 91 99 60 6 

3 64 35 9 5 

4 96 20 2 1 

5 19 2 0 0 

Using this data the distribution of consequence indices for each diameter group can be 

developed as shown in Fig. 3.6. The average consequence index for a given diameter 

group can then be evaluated using Eq. (3.2).   

 

Figure 3.6 Consequence Probability by Diameter 

 Quantification of Failure Likelihood of Distribution 
Pipelines due to TPD 

Based on the Union Gas’s practice, a likelihood index (Table 3.7) is assigned to the 

distribution pipelines in a given area based on the probability of failure (i.e. hit) for a 

given excavation activity.  Note that the probability of failure is evaluated using the fault 

tree model described in Chapter 2.  
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Table 3.7 Likelihood Criteria 

Criteria L1 L2 L3 L4 L5 

Qualitative 

Evaluation 

Remote, remote 

chance of 

happening 

Rare, may occur 

during facility 

lifetime 

Occasional, 

expected to 

occur once 

during lifetime 

Likely, expected 

to occur several 

times during 

lifetime 

Almost Certain, 

expected to 

occur several 

times during 

lifetime 

Probability P < 0.0001 0.0001-.001 .001-.01 .01-.5 0.5-1 

Based on the results of Chapter 2, the probability of failure given an activity is the same 

for pipelines in different diameter groups, but the frequency of TPD incidents within a 

time period (e.g. one year) is dependent on the rate of activity and the length of pipelines 

in the area (Eq. 3.6). As a result, the risk indices for different areas, determined from the 

risk matrix approach, vary due only to the variations of the consequence indices in 

different areas. The risk index is most often used in the industry to classify the risk of a 

single incident or to evaluate the relative risk of various situations, which is reflected by 

the constant likelihood and is more focused on the impact of an incident in reference to 

the currently used risk index. By evaluating the areas using the risk index, frequency of 

TPD incidents, and total expected cost in an area, the traditional risk matrix is enhanced 

to provide a more comprehensive evaluation of the risk due to TPD in each area.   

 Risk Assessment Case Study 

3.5.1 Defining Area Polygons 

The city of London, Ontario, Canada is used as a case study for the risk assessment 

approach described above. London is a city with a population of approximately 380,000 

and is sub-divided into 14 municipal wards (Fig. 3.7) [14]. These boundaries are 

generally defined by major planning features, such as roads, or physical boundaries, such 

as the Thames River, as these features also play a role in the design of distribution 

systems and contain similar populations they are a convenient method of dividing the city 

for analysis.  
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Figure 3.7 Ward Map of London, ON[14] 

London has 2,717 km of distribution piping within the city boundaries. The lengths and 

diameters of the distribution pipeline system in London was determined using GIS 

mapping exports. GIS models are standard operating practice by most gas utilities. Using 

this information in combination with the spatial activity information the expected 

frequency and consequence of TPD can be identified for each municipal ward. The 

breakdown of the distribution pipeline length by ward and the diameter group is shown in 

Figure 3.8 
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Figure 3.8 Distribution Pipe by Ward 

3.5.2 Area Likelihood and Consequence Data Collection 

The fault tree model described in Chapter 2 predicts that the probability of failure of the 

distribution pipeline given an activity is 0.0029, which corresponds to a likelihood index 

of L3 for all wards.  To determine the frequency of TPD incidents in each ward, a spatial 

distribution of the locate requests within the city is required.  Using Ontario OneCall 

ticket data for 2014-2016 the submitted street information was geocoded to assign a 

latitude and longitude. This data is used in the locate process and therefore should be 

available in most jurisdictions. For this period 20,640 tickets were geocoded (Fig. 3.9), 

providing an estimate of the spatial distribution of activities in London 
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Figure 3.9 Spatial Distribution of Locate Tickets in London, ON 

Overlaying these locations with the ward boundaries the frequency of activity in each 

ward (i.e. polygon) can be determined. Figure 3.10 shows the spatial distribution of 

locate requests overlaid onto ward polygons in ArcGIS, and Figure 3.11 shows the 

distribution of submitted locate requests by ward. 

 

Figure 3.10 Spatial Distribution of Locate Requests with Ward Polygons 
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Figure 3.11 Distribution of Submitted Locate Requests by Ward 

3.5.3 Area TPD Frequency Classification 

The expected number of TPD incidents per year, NTPD, in a given ward is evaluated using 

Eq. 3.6  

𝑁𝑇𝑃𝐷 = 𝑃𝐻𝑖𝑡 ∙ 𝐴𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 ∙ ℓ𝑇𝑜𝑡𝑎𝑙                                                                                      (3.6) 

where PHit is the probability of failure (i.e. 0.0029) given an activity as determined by the 

fault tree analysis; ℓ𝑇𝑜𝑡𝑎𝑙 is the length (in km) of distribution pipeline systems in the 

ward, and AActivity is the number of activities per km-year in the ward, which equals 

1.96ALocate as explained in Chapter 2 with ALocate being directly evaluated from the 

number of locate requests in the ward. A greater frequency of incidents requires a 

distribution company to respond more often, could possibly affect public perception, and 

indicates some combination of greater length or activity (as the probability of a hit 

remains constant), as a result frequency is considered a relevant consideration when 

assessing TPD on distribution systems.    

3.5.4 Analysis and Results 

Based on the approach described in the previous section, the evaluated risk indices based 

on the risk matrix approach, expected total cost and expected TPD frequency per year for 

all the wards are evaluated and summarized in Table 3.8.  
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Table 3.8 Indices by Ward 

 

To aid in the interpretation these results the ArcGIS polygons of the areas can be used to 

create heat maps of the various indicator categories in Table 3.8. These maps can be used 

to show both the relative risk between the evaluated areas and the absolute risk in 

frequency and cost.   

Ward Area Properties Consequence, likelihood, cost and risk 

Distribution 

of Locate 

Requests 

Length of 

Pipe(km) 

Locates Predicted 

Total 

Activity 

C L Risk NTPD (# 

per year) 

Cost 

1 4.84% 180.19 616 1208 1.67 3 5.01 3.50 $132,226 

2 5.31% 177.14 675 1323 1.73 3 5.19 3.84 $169,504 

3 5.32% 198.09 676 1325 1.75 3 5.25 3.84 $178,752 

4 4.79% 141.76 609 1193 1.73 3 5.19 3.46 $152,925 

5 8.60% 208.2 1094 2145 1.62 3 4.86 6.22 $205,017 

6 5.97% 124.03 760 1489 1.72 3 5.16 4.32 $186,011 

7 14.78% 278.18 1880 3685 1.64 3 4.92 10.69 $372,078 

8 6.19% 185.61 787 1543 1.64 3 4.92 4.47 $155,765 

9 9.90% 345.09 1259 2468 1.67 3 5.01 7.16 $270,144 

10 8.12% 171.23 1033 2025 1.64 3 4.92 5.87 $204,472 

11 7.33% 156.4 933 1828 1.62 3 4.86 5.30 $174,739 

12 6.96% 194.38 885 1735 1.72 3 5.16 5.03 $216,660 

13 4.74% 126.23 603 1182 1.75 3 5.25 3.43 $159,507 

14 7.14% 230.66 909 1781 1.74 3 5.22 5.16 $234,173 
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Figure 3.12 TPD Event Frequency (Total) 

 

  

Figure 3.13 Risk Matrix Index Score 
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Figure 3.14 Total Area Cost 

Figures 3.12-3.14 allow decision makers to visualize the areas within the city that would 

most benefit from TPD prevention resources; however, the relative weight of each of the 

three indicators (i.e. risk index, expected total cost per year and expected TPD frequency 

per year) can impact the final decision. For example, one decision maker may use the 

expected total cost per year as the only decision criterion (Figure 3.14), while another 

may use the risk index as the only decision criterion (Figure 3.13).  The two decision 

makers may come to different conclusions.  The compromise programing [15], as 

implemented in the COMPRO software package, uses an operational definition such as 

Eq. (3.7) to identify the wards that would most benefit from additional resources: 

𝐿𝑝𝑗
= [∑ 𝛼𝑖

𝑃 (
𝑧𝑖

∗−𝑧𝑖𝑗

𝑧𝑖
∗−𝑧𝑖

∗∗)𝑟=3
𝑖=1

𝑝

]1/𝑝                                                  (3.7) 

𝑧𝑖
∗ = max

𝑗
{𝑧𝑖𝑗}            (3.8) 

𝑧𝑖
∗∗ = min

𝑗
{𝑧𝑖𝑗}          (3.9) 
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Eq. 3.7 calculates the distance in the indicator space (i.e. the risk index, expected cost and 

expected TPD frequency) between a given ward and a reference point, i.e. a hypothetical 

ward with the highest value for each of the three indicators.  In Eq. (3.6), 𝐿𝑝 is the 

distance between ward j (j = 1, 2, …, 14) and the reference point; i is the relative weight 

assigned to criterion i (i = 1, 2, 3) with 1 + 2 + 3 = 1, and p is a value a value greater 

than or equal to unity, and in this study is assumed to equal 2 [13].  The ward with the 

minimum value of Lp among all the wards is then considered the ward with the highest 

priority for resource allocations corresponding to the relative weight (i.e. i) assigned to 

each decision criterion.  By varying the values of i, different scenarios in terms of the 

relative importance of different decision criteria can be further considered.  

A compromise solution evaluation was completed using a variety of weights for each 

criteria as summarized in Table 3.9: 

Table 3.9 Normalized Ranking of Compromise Criteria 

Weighting 

Scenario 

Weighting factor 

# of TPD Risk Cost 

1 0.333 0.333 0.333 

2 0.417 0.167 0.417 

3 0.200 0.600 0.200 

4 0.600 0.200 0.200 

5 0.200 0.200 0.600 

6 0.167 0.417 0.417 

7 0.417 0.417 0.167 

These rankings simulate a variety of interest groups placing various levels of importance 

on the individual indices. Using this method the ranking of ward priority in each weight 

is shown in Table 3.10: 
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Table 3.10 Compromise Programing Priory Ranking 

Ward Weighting Scenario 

1 2 3 4 5 6 7 

1 14 14 11 14 14 12 13 

2 7 10 4 11 9 7 7 

3 6 9 3 10 8 5 6 

4 10 13 7 13 12 9 9 

5 11 4 13 3 6 11 11 

6 5 8 5 8 7 6 5 

7 1 1 9 1 1 4 2 

8 13 11 12 9 13 13 12 

9 2 2 8 2 2 3 4 

10 8 5 10 4 5 10 10 

11 12 7 14 7 10 14 14 

12 4 6 2 6 4 2 3 

13 9 12 6 12 11 8 8 

14 3 3 1 5 3 1 1 

Using this method allows for risk-based integrity management that provides a robust 

quantitative justification for the distribution of preventative measures using available data 

and simulating the needs of various stakeholders. Recommendations can now be made 

based on the results in the rankings.   

Based on the compromise solution method of evaluation, it is recommended that Wards 

7, 14, 9, and 12 receive priorities in terms of the allocation of damage prevention 

resource as they are consistently ranked as the highest priority within the various 

rankings. Referencing the ward map in Figure 3.8 these wards comprise the south and 

west boundaries of the city, suggesting that focusing resources on the outer, less 

developed regions of the city would be more efficient than the city center areas (Wards 4, 

6, 11, and 13) for this particular community. In future work expanding the scope of the 

study to encompass a variety of municipalities could verify if this trend extends to other 

municipalities and would allow a more general set of recommendations to be made. 
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 Conclusions 

In the present study, a risk-matrix model for TPD of gas distribution pipelines is 

developed to allow for a more robust decision making process and better prioritization of 

the allocation of resources for operators of natural gas distribution pipelines. The model 

consists of a consequence classification procedure to estimate the severity of TPD events 

within an area based on an analysis of previous TPD events and combined with a 

previously developed likelihood model. Methods of collecting and classifying data from 

sources available to distribution companies are used to allow this procedure to be 

replicated in an industry setting. 

This method is applied to estimate the TPD-posed risk to the gas distribution pipeline 

systems in London, Ontario, as a case study.  Based on this case study a compromise 

solution method of evaluation is used to suggest areas where focusing damage prevention 

resource would be most effective. The wards which consistently ranked highly on this 

analysis comprised the south and west boundaries of the city, suggesting that focusing 

resources on the outer, less developed regions of the city would be more efficient than the 

city center areas for this particular community. The risk assessment approach developed 

in this study can be a viable tool for the risk-based integrity management of distribution 

pipelines with respect to TPD and other failure threats such as corrosion.  
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4 Conclusions and Recommendations 

 Summary  

The main goal of this thesis is to develop a quantitative risk model of TPD to allow for a 

more robust decision making process and better prioritization of the allocation of 

resources for operators of natural gas distribution pipelines. The model consists of a FTA 

model, outlined in Chapter 2, developed based on previous studies of transmission 

pipelines to estimate the probability of hit of a given distribution pipeline by third party 

excavation activities, but conservatively assumes that the pipeline will fail with certainty 

once hit by excavation activities given that distribution pipelines are typically small-

diameter thin-walled pipes with very low puncture resistance.  The distribution FTA 

model is developed using TPD and locate records from 2014-2016 and survey data from 

transmission FTA models. This model is then validated on the comparison of predicted 

and actual 2017 damage records of three municipalities in southwestern Ontario with 

populations varying from 200,000 to 350,000.   

In Chapter 3, a consequence classification procedure to estimate the severity of TPD 

events within an area based on an analysis of previous TPD events is combined with the 

previously developed likelihood model. This method is tested to demonstrate the 

practicality of implementation in a case study of London, Ontario and recommends 

techniques for data collection and decision analysis.  The TPD model developed in this 

study can be a viable tool for the reliability- and risk-based integrity management of 

distribution pipelines with respect to TPD. 

 Conclusions  

The following conclusions have been reached with regard to the quantification of risk of 

TPD on natural gas distribution pipelines: 

1. The frequency of TPD events on a distribution system can be estimated using a fault-

tree analysis method. 
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2. Distribution pipelines have a relatively low resistance to puncture, and a TPD 

frequency model assuming resistance to be zero is a valid approach. 

3. Natural gas distribution companies have sufficient data available to use a quantitative 

risk approach to assess TPD risk, but much of that information is unavailable to 

researchers due to Canadian reporting policies. 

4. The consequence of a TPD event can be estimated based on the pipeline attributes 

within that area.    

The methodology described in this thesis is intended to be easily adaptable to other 

regions and the required data to carry out an analysis of this type should be available to 

most utility companies. Likelihood and consequence definitions can be modified to suit 

an organizations needs and definitions of risk. Additionally, the historical approach of 

defining consequence probabilities can be readily modified for a variety of utility types. 

This technique has the potential to be used as a basis for additional studies within natural 

gas distribution planning, as well as expanding its implementation to other sectors such as 

water, telecommunications, and electricity distribution.    

 Recommendations 

Based on presented studies the several recommendations will be presented to improve the 

scope of knowledge regarding TPD on distribution pipelines:   

1. Improving data regarding the amount of activity occurring over distribution pipelines. 

As discussed in Chapter 2 only those third-party activities that are in the general 

vicinity of distribution pipelines have the potential to lead to TPD.  In this study an 

assumed probability was stated that a given third-party activity is located above or 

adjacent to a distribution pipeline, in a way such that should the preventative 

measures fail with a sufficient digging depth, a pipeline would be hit. A study to 

better determine this probability would increase the confidence of the fault tree 

approach.  

2. Increase in publicly available data from Canadian sources. In Canada the National 

Energy Board (NEB) regulates only inter-province pipelines accounting for 9% of oil 
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and gas pipelines in Canada. None of these regulated pipelines are distribution 

pipelines. In comparison in the United States PHMSA regulates 76% of all pipelines 

and provides a substantial database of distribution incidents to the public. If Canadian 

authorities provided a similar level of public data to what is available from United 

States sources, more geographically specific recommendations and analysis could be 

completed by researchers. 

3. Based on this case study the case study in Chapter 3, the compromise solution method 

of evaluation recommends that Wards 7, 9, 12, and 14 are worth focusing damage 

prevention resource as they are consistently ranked as the highest priority within the 

various rankings. These wards comprise the south and west boundaries of the city, 

suggesting that focusing resources on the outer, less developed regions of the city 

would be more efficient than the city center areas for this particular community. In 

future work expanding the scope of the study to encompass a variety of municipalities 

could verify if this trend extends to other municipalities and would allow a more 

general set of recommendations to be made. 

4. As shown in Chapter 3, utility companies have sufficient records to use these 

modeling techniques, however they are contained in a variety of independent 

databases. If this information is integrated into the GIS platform, then analysis of 

TPD risk could be evaluated faster. 

5. Working with other types of utility providers, such as water, electricity, and 

telecommunications companies could prove these modeling techniques effective 

across all utility distribution types, not exclusively Natural Gas. 
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Appendices 

Appendix 2A: Justification for Common Transmission Base Events 

Possible Events Included or 

Excluded 

Justification 

Excavation on 

pipeline 

alignment 

Included Must be on alignment for possibility of damage 

Third-party 

unaware of 

OneCall 

Included OneCall is responsible for both transmission 

and distribution tickets 

ROW signs not 

recognized 

Excluded ROW signage not typically on distribution 

systems 

No permanent 

markers 

Excluded Permanent markers not typically on distribution 

systems 

Third-party 

chooses not to 

notify 

Included Same notification system (OneCall) for both 

transmission and distribution systems 

Third-party fails 

to avoid 

alignment 

Included Similar for both transmission and distribution 

systems 

No patrol during 

activity 

Excluded Distribution pipelines are not patrolled  

Activity not 

reported by other 

employees 

Excluded Encompassed in no call probabilities 

Excavation prior 

to operators 

response 

Included Same process for all pipelines 

Temporary 

markers incorrect 

Included Same locate tools for both transmission and 

distribution systems 
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Accidently 

hitting marked 

pipeline 

Included Accidents happen to all utility types 

Excavation depth 

exceeds depth of 

cover 

Included Must happen for any utility to have the 

possibility of damage 

Law Factors Excluded Negligible impact in consideration of 

distribution pipelines 

Public Relations Excluded Negligible impact in consideration of 

distribution pipelines 

Natural 

Conditions 

Excluded Minimum depth of cover specifications include 

soil type considerations  

Alarm Systems Excluded Notification of damage by mercaptan smell. No 

preventative alarms. 

 

 

 

 

 

 

 



54 

 

Curriculum Vitae 

 

Name:   Joseph Shumka Santarelli 

 

Post-secondary  The University of Western Ontario 

Education and  London, Ontario, Canada 

Degrees:   2013-2017 BESc Mechanical Engineering 

 

   The University of Western Ontario 

    London, Ontario, Canada 

   2017-2018 STEM Teaching Certificate 

 

Honours and   Graduate Teaching Assistant 

Awards:   The University of Western Ontario 

   2017-2019 

    

Graduate Research Assistant 

The University of Western Ontario 

2017-2019 

 

Related Work  Intern, Distribution Operations 

Experience   Union Gas Ltd  

2017-2019 

 

EIT 

Pow Peterman Consulting Engineers 

2017-2019 

 

Intern, Distribution Planning 

Union Gas Ltd. 

2015-2016 

 

 

Publications: 

J Santarelli, W Zhou, C Dudley-Tatsu, (2018). Third-Party Damage Models for Gas 

Distribution Pipelines. ASME Proceedings of the 12th International Pipeline Conference. 

 


	Risk Analysis of Natural Gas Distribution Pipelines with Respect to Third Party Damage
	Recommended Citation

	tmp.1556801719.pdf.uc7i5

