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ABSTRACT

Unique individual vocal signatures are widespread among animals living in 

colonies such as the maternity roosts of Eptesicusfuscus. Such individual signatures 

have been identified in the echolocation calls of E. fuscus in the laboratory, but have not 

been demonstrated in the wild. By recording known wild E. fuscus as they emerged from 

their roosts at dusk, I tested the hypothesis that individual and/or roost signatures exist in 

the echolocation calls of wild E. fuscus. Analyses of calls of 176 individuals recorded at 

six different locations indicate that temporal and spectral features appear to contain 

sufficient variation to identify both roost and individual vocal signatures. Overall, bats 

were correctly associated with their roosts 48%, and with individual identity 14-37%, of 

the time. The incidence of such signatures may be significant to wild E. fuscus 

population dynamics.

Keywords: Chiroptera, wild Eptesicus fuscus, echolocation calls, individual and/or 
roost signatures.
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Chapter 1: INTRODUCTION

1 .0 Vocal signatures

Unique signatures used for communication often occur in species where 

individuals live together in high densities (Searby and Jouventin 2004, Cortopassi and 

Bradbury 2006) or in conditions where olfactory and visual cues are limited (Crawford et 

al. 1997, Sousa-Lima et al. 2002). They are especially important under conditions where 

confusion among group members or individuals may result in decreased reproductive 

fitness or survival (Searby et al. 2004), and are logically more functional among colonial 

species (Leonard et al. 1997, Schmidt-French et al. 2006). Acoustic signals may have 

greater ranges of operation than olfactory ones, perhaps making them readily available to 

more receivers. Therefore, unique vocal signatures are commonly used in different 

situations. Vocal signatures can contain individual and/or group-specific identities 

(Crawford et al. 1997, Campbell et al. 2002, Searby et al. 2004, Radford 2005), prevent 

the misdirection of parental care (Searby and Jouventin 2004, O’Shea and Posche 2006) 

and aggressive behaviours (Jouventin 1982), and identify sex and age class of individuals 

(Sousa-Lima et al. 2002). Vocal signatures may also contain information regarding 

specific behaviours that can help establish and maintain territories and augment nesting 

and courtship behaviours (Crawford et al. 1986).

Acoustic communication signals must be variable and reliable so that a receiver 

obtains accurate information about the signaller or the situation. When acoustic signals 

are used in conjunction with visual and/or olfactory ones, signatures may be simple 

changes in one or two call features (Searby and Jouventin 2003). Others species, such as 

colonial penguins, some electric fish, and many bats that are more limited in their use of 
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different sensory channels produce more complex vocal signatures that vary in several 

elements including time and frequency (Scherrer and Wilkinson 1993, Crawford et al. 

1997, Searby et al. 2004). Many bat species, including E. fuscus, live in dense and highly 

mobile colonies and it would seem therefore plausible that they would benefit from the 

presence of unique group or individual vocal signatures.

1.1 Variation in Chiropteran social calls

Bat social calls (calls used for a purpose other than echolocation) are variable in 

both time and frequency characteristics (Fenton 1994, Barclay 1999). Because of this 

flexibility, social calls can carry information unique to social or familial groups (Scherrer 

and Wilkinson 1993, Pearl and Fenton 1996) and/or contain individual signatures (Brown 

et al. 1983, Behr et al. 2006). There is considerable diversity of inter- and intra-specific 

social calls that encode situation or behaviour specific information (Pfalzer and Kusch 

2003). Bat social calls are made during aggressive situations, mate attraction, screech 

calls, and isolation calls. Screech calls, vocalizations made by Phyllostomus hastatuas, 

appear to facilitate the recognition and maintenance of unrelated group mates before and 

during nightly foraging (Boughman 1997). Isolation calls are a distinct category of call, 

principally used by several species of colonial living bats, during mother-offspring 

interactions. Individually distinct calls made by pups allow mothers to identify their 

young during retrieval situations (Brown et al. 1983, Balcombe 1990, van Parijs and 

Corkeron 2002), or during a juvenile’s first flight, allowing the mother and newly volant 

young to maintain contact (Brown et al. 1983). Interestingly, isolation calls containing 

individual vocal signatures made by juvenile bats actually show the frequency modulated
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characteristics typical of adult echolocation sounds (Brown et al. 1983, Moss et al. 1997). 

As young bats mature the frequency and repetition rate increase and the duration 

decreases, it is hypothesized that these calls may be a precursor for echolocation calls 

(Brown et al. 1983, Moss et al. 1997).

1.2 Echolocation

Echolocation involves the echoes of sounds produced by an animal to collect 

information about its surroundings. Galambos and Griffin (1942) outlined our concept of 

echolocation in bats. Today we now know that it is used by a variety of organisms 

including toothed whales, most bats, some insectivores, and some birds (Altringham 

1996). Echolocation has reached a pinnacle of sophistication with bats in the suborder 

Microchiroptera; their calls tend to be simple frequency-modulated sweeps that are 

relatively short in duration. Echolocation calls made by these bats show structured 

changes in both time and frequency, and are used not only as a means of orientation but 

also for prey and obstacle detection and discrimination (Griffin 1958). The morphology 

of Microchiroptera has been highly influenced by echolocation. Bats have brains adapted 

for processing acoustic signals (Altringham 1996) and a wide variety of ear and nose, 

sizes and shapes to improve the focusing of transmitted and received sound waves 

(Zhuang and Müller 2006). Using the physical properties of sound bats can alter the 

frequency and timing of their echolocation calls to determine the range and fine structural 

details of their targets (Simmons 1973). Big Brown bats (Eptesicusfuscus) are able to 

detect 19mm spheres at a distance of 5.1m and 4.8mm spheres at a distance of 2.9m
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(Kick 1982), and Megaderma lyra using broadband calls are able to analyse textural 

depths in the range of 0.9-4.2mm (Schmidt 1988).

As specialized as echolocation calls are, prey detection and orientation may not be 

their only function. It is generally accepted that echolocation calls evolved from social 

calls, used to assess background environments by early echolocators, and may still 

contain enough information to additionally serve a communication function (Fenton 

1984). To date scientists have identified echolocation calls that possess sufficient 

variation as to identify the caller’s geographical location, foraging task, foraging habitat, 

sex, group membership, and identity.

1.3 Variation in Chiropteran echolocation calls

Differences in resource partitioning and geographic location among bat species’ 

have lead to morphological differences and ultimately differences in their echolocation 

calls. Both researchers and bats (observed through playback experiments) can identify 

different species of bats using temporal structure patterns and frequency changes of 

echolocation calls (Barclay 1982, O’Farrel and Miller 1999, Barclay et al. 1998, Parsons 

and Jones 2000, Macias et al. 2006, Jones and Holdreid 2007). Within most aerial­

feeding bats situation-specific behaviours are identifiable using their echolocation calls as 

they search, detect, and track prey while foraging (Griffin 1960, Faure and Barclay 

1994).

Intra-specific variation in echolocation calls occurs in several species of bats. 

Evidence for inter-individual echolocation calls during situation specific behaviours has 

been identified in emergence and foraging behaviour of several species ofbat. Evidence 
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for the presence of inter-individual signatures has been documented in the emergence and 

foraging echolocation calls of Euderama maculatum, E. fuscus, Lasiurus borealis, L. 

cinereus, and Otomops martiensseni (Obrist 1995, Fenton et al. 2004). Although the 

evidence was not as compelling, as variations in habitat were likely an interfering factor, 

the same occurrence of individual variation was observed in the echolocation calls of 

emerging Myotis bechsteinii (Siemers and Kerth 2006). Individuals also alter their 

echolocation emissions when flying with conspecifics (Habersetzer 1981, Obrist 1995). 

This occurrence is referred to as “jamming avoidance”, and is identified when individuals 

flying in the same airspace make changes in both their spectral and temporal call features 

of their echolocation calls (Obrist 1995, Ratcliffe et al. 2004, Bartonicka et al. 2007). 

Bats may be individually altering their echolocation so that they may recognize their 

returning echo thus avoiding the misinterpretation of their surroundings or the 

presence/absence of prey (Bartonicka et al. 2007). It is possible that these individual call 

signatures are maintained even among habitats. Ratcliffe et al. (2004) demonstrated 

evidence for the maintenance of individual signatures. They discovered that echolocation 

calls from more than one individual Tadarida brasiliensis flying together in the same 

habitat varied significantly more than the echolocation calls of individual T. brasiliensis 

flying alone but in two different habitats (Ratcliffe et al. 2004).

1.4 Inter-individual variation of Eptesicusfuscus echolocation calls

The strongest evidence for inter-individual variation has been documented in 

laboratory-based studies using the echolocation calls of E. fuscus. Here there is enough 

measurable variation within the echolocation calls of individuals to contain information 
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about the caller’s age class (juvenile vs. adult), and sex. (Masters et al. 1991, Kazial et 

al. 2001, Kazial and Masters 2004). Analyses of echolocation calls have revealed the 

presence of individual distinctive vocal signatures of captive E. fuscus (Masters et al. 

1991, Burnett et al. 2001, Kazial et al. 2001), and the presence of a family component 

(presumably either learned or inherited) (Masters et al. 1995). The presence of a family­

specific call signature is supported by Pearl and Fenton (1996), who found roost-specific 

call signatures in Myotis lucifugus.

Playback experiments have shown that bats can use this variation to obtain 

information concerning conspecifics (Kazial and Masters 2004). When female E. fuscus 

were presented with playback of echolocation calls of conspecifics, the vocalizations of 

the listening females were significantly different during and after playback periods 

(relative to pre-playback) depending upon the sex of the playback stimulus (Kazial and 

Masters 2004), indicating that the females may have been able to determine the sex of the 

caller through their vocalizations.

1.5 Statement of purpose

Bats flying in natural conditions show more call variation than bats flying in 

laboratory settings, as call features are altered depending on external factors such as their 

proximity to obstacles, environmental conditions, and the presence of other bats 

(Surlykke and Moss 2000). The purpose of my study was to determine if, under natural 

flight conditions, the echolocation calls of wild E. fuscus contain roost and/or individual 

signatures. The term colony and roost are sometimes difficult to distinguish between one 

another. For the purposes of this study, I shall refer to a roost as the physical structure



7
that bats inhabit, while the term colony describes a social grouping of the bats inside a 

roost. By characterizing echolocation calls, recorded from known bats as they emerge 

from their roost, I tested the hypothesis that it is possible to distinguish among individual 

wild E. fuscus and the maternity roosts to which they belong. Research documenting 

intra-individual and situation specific variation in echolocation calls has consistently 

identified significant differences in call duration and frequency parameters (Obrist 1995, 

Moss et al. 1997, Ratcliffe et al. 2004). I predicted that the echolocation calls wild E. 

fuscus would contain significant variation in both temporal and spectral features and that 

this variation will permit the distinction of individuals and roosts.
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Chapter 2: METHODS

2.0 Field site and study species

Eptesicus fuscus are medium sized (10-21 g) forest dwelling vespertilionids that 

roost in tree cavities but will frequently inhabit mines, caves, and buildings. Females are 

seasonal residents of Fort Collins, Colorado, USA where they roost in the many buildings 

and other man-made structures, using them as maternity roosts during the spring and 

summer months.

I collected data over two field seasons in the urban setting of Fort Collins (1 June 

- 29 July, 2004; 17 May - 8 August, 2005) in conjunction with a long term Fort Collins 

Bat/Rabies Project, jointly run by the United States Geological Survey (USGS), Colorado 

State University (CSU), and U.S. Centre for Disease Control (CDC). Over the course of 

the study, radio-telemetry was used to identify 142 potential roosting locations, 44 were 

classified as maternity roosts, and of these 23 were outfitted with Passive Integrated 

Transponder (PIT) tag readers. The PIT tag readers were placed over the entrance/exit 

points of a roost, consequently when any of the greater than 3,000 PIT tagged bats passed 

by a reader a unique time stamp was created identifying the bat (using a nine digit 

individual specific code), the time (to the one hundredth of a second), and date.

2.1 Recording sites

I selected eight recording sites within the city limits of Fort Collins (Appendix 1, 

Figure A.1). Selected sites had: roosts occupied by bats from May through August 

allowing for multiple recording opportunities, housed a minimum of approximately 30 

bats, and all emergence points from the roosts were surrounded by similar open-type 
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habitat. Among the eight recording sites roost sizes ranged from approximately 30 to 

greater than 1,000 individuals.

2.2 Recording equipment and set up

I recorded the echolocation calls of bats emerging from the roost using Avisoft 

UltraSoundGate (USG) 116 and 416 recording systems (Specht 1998-2003) with single 

and multi-array condenser microphones operating with the recording program Avisoft 

Recorder USG on a Compaq nx9600 laptop computer, using a sampling frequency of 250 

kHz. I positioned the microphone (at 45° angle from the ground) 3.7 metres away from 

the roosting structure and placed it on top of a 1.8 (if roost was in a single story building) 

or 3.0 (if roost was located in a building with more than one story) metre extender pole. 

This ensured that the recordings made at different roots were comparable to one another. 

Each night before the bats began to emerge I passed a known PIT tag by the reader three 

times. I documented the time of each pass so that the known PIT tag may act as a point 

of reference between reader and recordings when I identified individuals. I recorded 

consecutive 15 minute periods for an average of one and a half hours each night (6 

recording periods/night). Recordings started one half hour before dusk each night and 

lasted until emergence was complete. Emergence was considered complete after a 10 

minute period during which no bats were detected acoustically. I recorded at each roost 

for three consecutive nights before moving on to the next location. I maintained this 

cycle through out the summer. However, some sites were specifically selected if the 

readers indicated high levels of activity and some sites were specifically avoided if 
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readers indicated low levels of activity or netting was scheduled at a roost on a recording 

night.

2.3 Call analysis and variable extraction

Using BatSoundPro Sound Analysis 3.31b (1996-2001 Pettersson Elektronik AB), 

I visually identified call sequences using both the time domain and spectrogram views 

(Appendix 2, Figure A.1 and A.2). A call sequence had to be distinguishable from other 

call sequences (no overlap) and consist of five consecutive calls that are all above 10% 

and below 100% call amplitude in the time domain display. Calls less than 10% are too 

weak and calls greater than 100% are saturated providing false harmonies; in both cases, 

these calls do not permit extraction of accurate call information. In order to associate call 

sequences with a known individual, I used the unique time stamps created as PIT tagged 

individuals passed through the readers and matched them to times at which I recorded the 

call sequences. To assure accurate identification of an individual these times must have 

matched up to a tenth of a second. Once an individual was identified, it was assigned an 

individual bat and roost identification (ID). I analyzed sequences using Call Viewer 12 

(Skowronski 2007). Call Viewer is a sound analysis program that uses a visual 

representation of recorded echolocation calls and automatically extracts 53 variables 

associated with call time, frequency, amplitude, and shape (Appendix 3, Table A.1)

2.4 Statistics and variable reduction

Numerical call variables extracted (Appendix 3, Table A.1) from 

identified call sequences were used in multiple discriminant function analyses (SPSS v. 
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15. 0) to classify either roosts or individual vocal signatures. To avoid inflated 

classification accuracies when running the canonical discriminant function analyses 

(DFA) I maintained a maximum variable to observation ratio of 33% (Masters et al. 

1995). To reduce the number of variables I discarded all variables that involved any form 

of amplitude measurement, as amplitude is not a robust measurement under natural free 

flight conditions. Any variation identified in a canonical DFA using amplitude 

measurements may not be representative of roost or individual identity but instead 

represent a bat’s relative position to the microphone. Next, I omitted from the analyses 

any variables that contained greater than 10% of measurements with zero values.

Although the absence of such a measurement may be indicative of a vocal signature, it is 

difficult to quantify the absence of a measurement into a DF A. To reduce the remaining 

variables I tested their degree of correlation using a preliminary DF A. Variables that had 

a correlation Co-efficient of 0.750 or greater in the correlation matrix were considered to 

be highly correlated. For each pair of highly correlated variables I removed one from the 

analysis. The first variable identified in the correlated pair was always the variable 

removed from the analysis, unless it involved a minimum or maximum measurement in 

which case these were always the variables that were kept. Because I identified a 

different number of observations in the roost DFA and the individual DFA there were a 

different number of variables allowed in each respective analysis. Although the number 

of observations varied among the individual analyses, the number of allowable variables 

remained constant to ensure that individual analyses among roost locations were 

comparable.
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2.5 Roost signature identification and analyses

A single DFA was run using 17 call variables to classify 108 randomly chosen 

known individual call sequences among six of the eight recording sites. As no 

individuals were identified at the East Laurel and 720 Peterson sites, I excluded 

recordings that were made at these roosts. For 100 separate DFA triais, I randomly split 

data into a 50:50 test to training ratio, so that the analyses were run with both known and 

unknown data. Subsequently I performed one-sample, one-tailed T-tests to determine if 

each of the correct roost classification accuracies were significantly higher than the a 

priori prediction of 16% correct classification accuracy. I calculated the a priori 

prediction by dividing the largest number of observations belonging to the same group by 

the total number of observations. This prediction accounted for the probability of calls 

being randomly assigned to the correct grouping prior to the analysis. I then performed a 

one-way ANOVA comparing classification accuracies among the six roosts included in 

the DFA.

To avoid misinterpreting individual-specific variation as roost-specific variation, 

each individual entered into the DFA was represented by 17 variable averages calculated 

from the 17 variables measured from each of the five calls in an individual sequence.

I calculated mean, standard error of the mean, and the coefficient of variation 

(CV) for all variables that were important (determined using absolute standardized 

canonical discriminant function co-efficient values > 0.361) in predicting roost 

membership.
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2.6 Individual signature identification and analyses

I ran two sets of DFA, using the same 23 variables in each, to determine the 

presence of individual vocal signatures. For comparable results among the individual 

classification analyses, I used the same variables in each analysis. However, I identified 

a varying number of individuals at each roost location. Therefore, the call variables used 

in all individual DFA were determined through variable reduction using data from the 

roost with the smallest sample size (to maintain the maximum 33% variable to 

observation ratio). The first set of individual analyses included all individuals with two 

independent observations regardless of sample size.

To determine if the individual correct classification accuracies were a 

consequence of roost specific properties (i.e. roost size and/or roost fidelity) and not 

sample size, I ran a second set of DFA to identify individuals for each roost. These 

analyses differed from the first as each one included only nine known individuals with 

two separate observations per individual. Because I used individuals with two 

independent observations in the analyses, I included individuals recorded at five of the 

eight roosts during my first set of analyses, and individuals from four of the eight roosts 

in the second. To minimize the opportunity for unexplained variation within the 

echolocation calls I only compared individuals to other individuals recorded at the same 

roost.

As performed in the roost analysis I randomly split data into a 50:50 test to 

training ratio, and ran 100 triais for each individual DFA. I then ran independent one- 

sample, one-tailed T-tests for each roost’s individual correct classification accuracies, 

comparing each distribution to it’s corresponding apriori prediction. Finally, I ran two
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independent one-way ANOVAs for each set of analyses to determine if there were any

significant differences in individual classification accuracies among roost locations. To 

ensure that I measured all potential sources of individual variation, all five calls in an 

identified sequence were included in the individual DFA.
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Chapter 3: RESULTS

3.0 Recording summary and variable reduction

Overall, I recorded 2,619 call sequences and identified 311 known individual E. 

fuscus emerging from roosts (Appendix 4, Table A.1). I used only calls from individuals 

identified on two independent recording nights in the analyses. This meant that I used 

35% (108 individuals of a potential 311) of all identified bats when discriminating among 

roosts, 45% (140 out of 311) when discriminating among a varying number of individuals 

from each roost, and 12% (36 out of 311) when discriminating among the same number 

of individuals from each roost. I excluded sequences from the analyses when too few or 

no individuals could be identified, as a result, the 720 Peterson and East Laurel roosts 

were not included in any analyses. Through a process of variable analysis and a 

preliminary DFA (see methods), I reduced the number of variables from 53 to 17 in the 

roost DFA, and to 24 in all individual analyses (Appendix 3, Table A.1).

3.1 Discrimination of roosts

Using echolocation calls of emerging wild E. fuscus a DFA was able to 

distinguish among roosts (Figure 1). Overall, bats were correctly associated with roosts 

48% of the time. This classification was significantlyhigher(t99 = 32.635, P <0.001) 

than the 17% apriori prediction of randomly assigning bats to the correct roost. 

However, correct classification accuracies varied among roosts (Figure 2), and some 

roosts had significantly higher correct classification accuracies than others (F5, 594 = 

12.958, P<0.001). In general, larger roosts achieved lower classification accuracies than 

smaller roosts (Figure 2). Other factors besides roost size may have contributed to the 
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differences in colony classification accuracies, as OFC High School and Harmony roosts 

were an exception to this trend.

In this study, the discriminant functions were a linear combination of the 

independent call variables and were important in the classification of the dependent 

variables (roost or individual ID). The number of discriminant function axes used in a 

DFA was one less than the number of grouping variables. When identifying the grouping 

variable, each discriminant function included a different standardized weighting of each 

call variable. In the Roost DF A, all five functions combined described 100% of the 

variation among the call variables. However, three of the five discriminant function axes 

(axes 1, 2, and 3) were significant in the classification (Table 1). Cumulatively these 

three discriminant function axes described 87% of the variation found in roost specific 

echolocation calls (Table 1). The variables most important in predicting successful roost 

membership were duration, FOmax, Time_Fl, FME_F3, dFOmin, and ddF010, as 

demonstrated by their standardized canonical discriminant function co-efficients 

(SCDFC) (Table 1). The DFA was most often able to identify echolocation calls from 

individuals residing in the OFC High School roost (Figure 2). Bats recorded emerging 

from the OFC High School roost had longer fundamental and harmonic durations and 

employed lower frequency echolocation calls (Table 2). There was a high level of 

variation among all roosts in regards to the call variables. However, OFC High School 

despite having the highest classification accuracy (Figure 2) also had the highest 

coefficient of variation (CV) (Table 3).
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Figure l.Plot of Standardized Canonical Discriminant Function Co-Efficients of 108 
individuals based on means of 5 calls per individual, and identified by their a priori 
known roosts.
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Table 1.E. fuscus roost discriminant function analysis of data from echolocation calls, including duration (DUR), the maximum 
frequency of the fundamental (FO_max), length of the first harmonic (Time_F 1), frequency with the most energy of the first harmonic 
(FME_F1), minimum concavity of the fundamental (ddFOmin), and concavity of the 10th percentile of the fundamental (ddF010).

Discriminant
Function Axis DUR F0_max F1_max Time_F1 FME_F1 ddF010

Cummulative Wilk's
ddFOmin Eigenvalue % λ 2

X d.f. P value
Function 1 1.391 0.782 -1.178 -1.178 -0.427 0.187 0.333 2.951 56.1 0.044 208.39 85 < 0.001
Function 2 0.244 0.361 -0.630 -0.630 0.058 0.585 0.234 0.983 74.8 0.172 117.03 64 < 0.001
Function 3 1.502 0.113 0.062 0.062 -0.249 -0.399 -0.658 0.691 87.9 0.341 71.50 45 0.007
Function 4 0.936 -0.048 -1.689 -1.689 -0.674 -0.052 0.187 0.386 95.2 0.577 36.56 28 0.129
Function 5 0.048 0.414 -0.151 -0.151 0.077 0.115 0.754 0.251 100.0 0.800 14.87 13 0.316

P
O



Table 2.Call variables best at predicting roost membership when using echolocation calls of individual E. fuscus. N, number of 
individuals analyses, duration (DUR), maximum frequency of fundamental (F0_max), length of fundamental (Time_FO), length of 
first harmonic (Time_F 1 ), frequency with most energy of the first harmonic (FME F1), minimum concavity of the fundamental 
(ddFOmin), and concavity of the 10 percentile of the fundamental (ddF010) means ± SD. CV, coefficient of variation.

Colony
DUR (ms) FO max

Time_FO
(ms)

Time_F1 
(ms) FME F1 (Hz)

ddFOmin 
(kHz/ms/ms)

ddF010
(kHz/ms/ms)

N Mean CV Mean CV Mean CV Mean CV Mean CV Mean CV Mean CV

Laurel Hall South 18
4.91
±0.73 14.9

67675.79
± 4606.86 6.8

1.56
± 0.85 54.5

3.52 
±0.65 18.5

64073.35
±3873.06 6.0

-149.34 
±31.59 21.2

-50.13
±25.46 50.8

Holy Family 18
6.36 
±0.93 14.6

71766.49
± 5731.88 8.0

2.26 
±0.60 26.5

4.66 
±0.89 19.1

63541.66
±2796.25 4.4

-160.51
±39.47 24.6

-19.14
±15.64 81.7

Chinook 18
6.54

±1.11 17.0
72602.00
± 3896.93 5.4

1.81 
±0.43 23.8

4.41 
±0.79 17.9

63107.64
±2886.39 4.6

-162.92
±38.86 23.9

-27.76
±20.13 72.5

Harmony 18
5.67 
±1.07 18.9

69894.75
± 3183.66 4.6

1.79
±0.41 22.9

4.10 
±0.72 17.6

62207.03
±2715.02 4.4

-153.11 
±34.98 22.8

34.27
± 20.07 58.6

OFC High School 18
6.88 
±1.56 22.7

64208.98
± 3935.04 6.1

2.99 
±0.75 25.1

5.15 
±0.97 18.8

59993.49
±3761.54 6.3

-125.19
±28.23 22.5

-22.15
±17.35 78.3

County Rd. 40 18
6.12 
±0.65 10.6

66929.00
±4217.17 6.3

2.92 
±0.50 17.1

4.46 
±0.69 15.5

60839.84 
±4405.91 7.2

-143.34
±29.20 20.4

-19.38
±11.57 59.7
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3.2 Discrimination of individuals

Overall, the DFA correctly identified individual bats between 13.63 and 37.26% 

(Figure 3) for all individual analyses using a varying number of individuals for each 

roost, and between 28.76% and 34.38% (Figure 4) for all individual analyses using the 

same number of individuals for each roost. Although classifications appeared seemingly 

low in some instances, all mean classification accuracies were significantly above 

random chance (Table 3). Individual DFA where the same number of individuals were 

used from each colony (Test 1) and individual DFA where a varying number of 

individuals were used from each colony (Test 2) differed significantly from one another 

for each colony (Table 4). In all cases, except for the Chinook roost, individual DFA that 

included the same number of individuals for each colony had higher classification 

accuracies (Table 3). Despite the lower classification accuracies when varying numbers 

of individuals were used in the analysis, the overall ranking of a roost remained the same 

(with the exception of Laurel Hall; Figure 3 and 4).

The variables that were best at discriminating among individuals varied among 

the roosts (Appendix 5, Tables A.1-A.9). However, overall DUR, F020, F050, Time_F2, 

FME F2, and dF010 were best at discriminating among individuals at most if not all 

roosts (as indicated by SCDFC).
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Figure 3.Mean± SE individual classification accuracies (obtained from 100 trials) varied 
significantly (d.f. = 4, 495, F = 211.84, P < 0.001) among roosts when using a varying 
number of individuals in each DFA (Holy Family n = 80, Chinook n = 10, OFC High 
School n = 23, Laurel Hall South n = 11, Harmony n = 8). Individuals recorded at the 
Holy Family a roost were least often correctly classified (13.64%± 0.146). While 
individuals recorded at the Chinook D roost were classified significantly more often than 
individuals form other roosts (37.27%÷ 0.739). Roosts are listed in order of relative size 
(largest to smallest).
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Figure 4.Mean± SE individual classification accuracies (obtained from 100 triais) varied 
significantly (df = 3,396, F = 12.77, P <0.001) among roosts when using the same 
number (n = 9) of individuals in each DFA. The Holy Family AB and Laurel Hall South A 
roosts statistically had the lowest individual classification accuracies (30.27% ± 0.674 
and 28.76% ± 0.638 respectively). While, individuals from Chinook c roost were 
correctly classified significantly more often than individuals from other roosts 
(34.39%±0.746). Roosts are listed in order of relative size (largest to smallest).
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Table 3.Individual DFA classification accuracies, when using a varying number of 
individuals and when using the same number of individuals for each colony, were 
significantly higher than the highest possible chance of randomly correctly classifying 
individuals. Random chance is calculated by dividing the largest number of observations 
belonging to the same group by the total number of observations. This prediction 
accounts for the probability of calls being randomly assigned to the correct grouping 
prior to the analysis.

Colony Test # of Individuals included in 
Analysis

Classification 
Mean±SE (%)

Random Chance 
of Correct 

Classification (%)
t d.f. P value

Holy Family 1 9
30 

±0.674 11 28.38 99 <0.001

2 88
13 

±0.146 1 10.117 99 <0.001

Chinook 1 9
34 

±0.746 11 31.281 99 <0.001

2 10
37 

±0.7388 11 35.109 99 <0.001
OFC 

High School 1 9
31 

±0.624 11 32.779 99 <0.001

2 23
23 

±0.410 3 48.422 99 <0.001
Laurel 

Hall South 1 9
28 

±0.639 11 27.663 99 <0.001

2 11
24 

±0.716 5 33.125 99 <0.001

Harmony 1 N/A N/A N/A N/A N/A N/A

2 8
27 

±0.671 14.0 13.347 99 <0.001

1- Individual DFA where the same number of individuals were used from each roost
2- Individual DFA where a varying number of individuals were used from each roost
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Table 4. Individual DFA using the same number of individuals for each roost was 
significantly different from DFA classification accuracies calculated from the same roosts 
but using a larger number of individuals.

Colony
Test 1 

Classification 
Mean ± SE (%)

Test 2 
Classification 
Mean ± SE (%)

t d.f. P value

Holy 
Family

30 
±0.67

13 
±0.14 10.16 198 <0.001

Chinook 34 
±0.74

37 
±0.73 -2.193 198 0.029

OFC 
High 

School

31 
±0.62

23 
±0.41 11.496 198 <0.001

Laurel 
Hall South

28 
±0.63

23 
±0.71 2.206 198 0.029

1- Individual DFA where the same number of individuals were used from each roost
2- Individual DFA where a varying number of individuals were used from each roost
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Chapter 4: DISCUSSION

4.0 Roost and Individual Signatures

Using the echolocation calls of wild E. fuscus, a DFA was able to identify roost 

membership. The roost DFA had an overall classification accuracy of 48%, but in some 

roosts classification accuracies were as high as 63% (Figure 2). Group signatures have 

previously been identified among roosts of Myotis lucifugus (Pearl and Fenton 1996). 

There are individual fitness benefits to maintaining group faithfulness in colonial living 

bats (Kunz 1982), including reduced thermoregulation costs at maternity colonies and 

information transfer pertaining to reliable foraging and hibernations sites (Altringham 

1996, Pp 155). E.fuscus are faithful to maternity roosts (Brigham and Fenton 1986), and 

use a fission-fusion roosting pattern, utilising a number of smaller roosts but maintaining 

the same group membership among these sites (Willis and Brigham 2004). Roost 

signatures are important for maintaining group cohesion (e.g. Phyllostomus hastatus, 

Boughman 1997), and E. fuscus of Fort Collins could use roost vocal signatures in 

echolocation calls to maintain a stable group membership among the maternity roosts.

Masters et al. (1995) demonstrated a familial component to echolocation calls, 

demonstrating that the calls of mother and offspring are more similar in structure to one 

another than to an unrelated individual. However, there was no strong correlation 

between siblings, indicating that echolocation calls may have some plasticity and learning 

may play a role in the formation of their structure (Masters et al. 1995). This idea is 

supported by Boughman (1997), who suggested that group specific calls require a long­

term association of individuals through roost fidelity. Lower classification accuracies 
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may be a result of roost fidelity. Many of the roosts that had lower classification 

accuracies were located near roosts where bats had recently been excluded or roosts that 

were not actively monitored. Anecdotal evidence suggests that immigration between 

roosts occurs when bats are excluded from their roosts. That is when PIT tagged bats 

were excluded from a monitored roost they began to appear at nearby roosts where they 

previously had not been observed. It is possible that the roots that were accessible by 

bats from other colonies had higher immigration rates than colonies that were isolated. 

This could have an effect on a colony vocal signature, as bats that have recently 

immigrated would not have the time to modify their echolocation calls to match those of 

their new roost mates.

The number of bats living in a given roost may cause another source of variation 

in roost signatures. The roosts included in this study housed approximately 30 to 

thousands of bats (See Figure 2 for order of roost size). Large roosts that housed many 

individuals, such as Harmony, had significantly lower roost classification accuracies than 

smaller roosts, such as County Road 40 (Figure 2). Lower roost classification may be a 

result of the roosting structure. E. fuscus are forest-living species that inhabit tree 

cavities (Kurta and Baker 1990). However, E. fuscus is a common urban bat, frequently 

roosting in artificial structures. Despite the differences in the physical structures of 

artificial and natural roosts, E. fuscus maintain similar roosting behaviour. It has been 

suggested that urban E. fuscus treat a building as if it were the forest, and independent 

roosting areas within the building as individual trees (Brigham, personal comm.). This 

could explain why the larger roosts had lower classification accuracies. It is possible that 

one large roosting structure is inhabited by more than one colony of E. fuscus. Although 
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the bats use the same point of emergence when exiting or entering a roost, in large 

buildings they many be roosting in smaller independent groups.

Despite evidence for roost signatures I found high variation among call variables 

that were most important at predicting roost membership (as indicated by CV values; 

Table 2). Obrist (1995) when identifying behavioural specific echolocation calls within a 

species observed similarly high CV values that suggested individual variation. Call 

variation among the Fort Collins E. fuscus, indicate that echolocation calls that contain 

roost signatures may additionally contain individual signatures.

Individual vocal signatures found in the echolocation clicks of Oilbirds 

(Steatomis caripensis, Steatornithidae) suggest that adult birds could be an artefact of 

natural morphological variation (Suthers and Hector 1988). Individual signatures, found 

mostly in the isolation calls of mother-offspring interactions, are present in the social 

calls of some species of colonial living bats (Brown et al. 1983, Balcombe 1990, van 

Parijs and Corkeron 2002, Pfalzer and Kusch 2003, Behr et al. 2006). Echolocation calls 

most likely evolved from social calls and retain sufficient variation to additionally carry 

unique information (Fenton 1984) including individual identity. A DFA of echolocation 

call features found some evidence for an individual component in the echolocation calls 

of wild E. fuscus. Individual classification accuracies varied among roosts, ranging from 

14% to 37% (analyses using a varying number of individuals/roost) and 29% to 34% 

(analyses using the same number of individuals/roost). My results support this 

hypothesis, as do those of Masters et al. (1995), Burnett et al. (2001), and Kazial et al. 

(2001). However, although I obtained individual classification accuracies that were 

significantly higher than random (Table 3), indicating the possibility of unique 
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signatures, they were considerably lower than those found by Burnett et al. (2001) and 

Kazial et al. (2001). Differences in recording conditions are a probable explanation the 

differences in classification results. Burnett et al. (2001) and Kazial et al. (2001) 

determined the individual identities using trained bats whose echolocation calls were 

recorded in an anechoic chamber. Bats flying under laboratory-controlled conditions 

have significantly different echolocation calls (shorter call duration and higher 

frequencies) than those flying under natural conditions (Surlykke and Moss 2000). I was 

able to control for variation due to technical artefact by following similar recording 

protocol used by Pearl and Fenton (1996). I recorded echolocation calls only during 

periods of emergence, the microphone was placed at a consistent distance, height, and 

angle to the point of emergence, and only calls of similar signal-to-noise ratio were used, 

minimizing the effect of distance and direction of the bat relative to the microphone. 

However, I was unable to control for environmental conditions such as temperature, wind 

speed, or humidity that can result in the frequency variation of echolocation calls (Guillen 

et al. 2000). Additionally, the position of a bat relative to the microphone results in 

differences in the recorded echolocation call parameters, specifically call amplitude. 

Both varying environmental conditions and the position of a bat relative to the 

microphone will have an effect on a bat’s echolocation call, and may make it difficult to 

identify slight changes in echolocation call structure that would help researchers 

confidently identify individual signatures.

Siemers and Kerth (2006) identified individual differences in the echolocation 

calls of wild Myotis bechsteinii, but were unable to obtain high classification accuracies 

or identify a robust call parameter that described individual identity. Interestingly, 
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classification of individuals was higher when only a single call sequence from each 

individual (opposed to using more than one sequence per individual) was included in the 

DFA, demonstrating that echolocation calls are uniform within a sequence, but differ 

considerably between sequences. My analyses also included more than one sequence per 

individual while attempting to discriminate among individuals and found similarly low 

levels of classification accuracies. Unlike Siemers and Kerth (2006), I included 

individual DFA sequences recorded from the same individual on different nights (as I 

strictly recorded emergence calls). The lower individual classification accuracies that I 

obtained were more likely due to differences in recording conditions (i.e. the afore­

mentioned environmental conditions and bat to microphone position) between nights.

Echolocation calls are context-specific and are subject to variation depending on 

the flight situation (0brist 1995, Surlykke and Moss 2000, Siemers and Kerth 2006). 

Individual variation may not be present in echolocation calls during emergence, as it is 

not necessary for individuals to identify their own echoes in that flight situation. Under 

low levels of illumination under laboratory conditions the California leaf-nosed bat 

(Macrotus californicus) relies on visual cues to locate prey (Bell 1985). The eyesight of 

many bats appears to be as good as that of M. californicus or that of small nocturnal 

mammals, and that eyesight may play a large role in orientation (Altringham 1996 Pp 

107-108). As E. fuses leave their roosts they may be flying in “auto-pilot” already 

familiar with their surroundings and using their vision to navigate. Bats may be using 

echolocation at the roost as they emerge as a “warm-up” and not for orientation, instead 

adjusting their calls to the present environmental conditions (Skowronski, personal 

comm.). It is likely that vocal signatures would exist in the other types of echolocation 
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calls (i.e. foraging calls). In foraging situations, E. fuscus, forages independently from 

one another but in the same habitat as conspecifics and sympatric species, where it 

becomes important for a bat to recognize its own returning echo.

4.1 Future Work

There are many potential sources of variation in the echolocation calls of wild E. 

fuscus, including roost fidelity and size. Using immigration and emigration data of 

individual bats among roosts I would like to create a fidelity index that may offer further 

insight into the differences in roost classification.

It is also interesting to note that there may be roost specific call variables or 

“accents”. To ensure that DFA results were comparable to one another when identifying 

individuals the same call variables were used in each analysis. However, preliminary 

analysis indicates that important call variables for discrimination among individuals may 

be different for each roost location. For example, call duration and minimum frequency 

may be the most important call variables when identifying individuals at roost A, but at 

roost B frequency with most energy and maximum frequency are more important. 

Identification of the important call variables (or accents) at each roost would likely 

increase the success of correctly identifying wild E. fuscus individuals under natural 

flight conditions while still using our current recording systems and techniques.
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4.2 Conclusion

1. I found evidence for roost and individual vocal signatures in the echolocation 

calls of wild E. fuscus.

2. There are several potential sources of variation in the echolocation calls of 

wild E. fuscus . This variation can result in the presence of more than one signature 

within the same echolocation call.
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APPENDIX 1: Location of study sites within the city limits of Fort Collins, 
Colorado, USA.
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Figure A. 1.Recordings of individual E. fuscus were made at 8 independent locations 
within the city limits of Fort Collins, CO (A = Holy Family, B = Laurel Hall South, C= 
OFC High School, D = 720 Peterson, E = East Laurel, F = Chinook, G = Harmony, H = 
County Road 40).
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APPENDIX 2: Call sequence identification.
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Figure A.2.Two independent echolocation call sequences (A and B) produced by Eptesicus fuscus emerging from their roost.
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Figure A.3. An individual call sequence is made up of 5 consecutive calls recorded from an known E. fuscus individual.
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APPENDIX 3: Call variables used in DFA.

Table A.l.Call variables used in the roost and individual discriminant function analyses.

a- the 24 variables used to discriminate among individuals 
b-the 17 variables used to discriminate among roosts

DFA Variable Description

a, b Duration (ms) Call Duration
a, b FOmin (Hz) Minimum frequency of the fundamental

F010th (Hz) Frequency of the 10th percentile of the fundamental
a F020th (Hz) Frequency of the 20th percentile of the fundamental

F030th (Hz) Frequency of the 30th percentile of the fundamental
F040th (Hz) Frequency of the 40th percentile of the fundamental

a F050th (Hz) Frequency of the 50th percentile of the fundamental
F060th (Hz) Frequency of the 60th percentile of the fundamental
F070th (Hz) Frequency of the 70th percentile of the fundamental
F080th (Hz) Frequency of the 80th percentile of the fundamental
F090th (Hz) Frequency of the 90th percentile of the fundamental

a, b FOmax (Hz) Maximum frequency of the fundamental
a, b FME_FO (Hz) Frequency with the most energy-fundamental
a, b FME—F1 (Hz) Frequency with the most energy- 1st harmonic
a, b FME_F2 (Hz) Frequency with the most energy-2nd harmonic
a, b FME_F3 (Hz) Frequency with the most energy-3rd harmonic

FME-F4 (Hz) Frequency with the most energy-4th harmonic
FME_F5 (Hz) Frequency with the most energy-5th harmonic
Peak_A0 (dB) Peak amplitude of the fundamental
Peak_A1 (dB) Peak amplitude of the 1st harmonic
Peak_A2 (dB) Peak amplitude of the 2nd harmonic
Peak_A3 (dB) Peak amplitude of the 3rd harmonic
Peak_A4 (dB) Peak amplitude of the 4th harmonic
Peak—A5 (dB) Peak amplitude of the 5th harmonic

b Time_FO (ms) Duration of the fundamental
b Time_F1 (ms) Duration of the1st harmonic
a Time F2 (ms) Duration of the 2nd harmonic

Time_F3 (ms) Duration of the 3rd harmonic
Time F4 (ms) Duration of the 4th harmonic
Time F5 (ms) Duration of the1st harmonic

a, b ICI (ms) Inter-call interval
a, b dFOmin (kHz/ms) Minimum slope of the fundamental
a dF010th (kHz/ms) Slope of the 10th percentile of the fundamental

dF020th (kHz/ms) Slope of the 20th percentile of the fundamental
dF030th (kHz/ms) Slope of the 30th percentile of the fundamental
dF040th (kHz/ms) Slope of the 40th percentile of the fundamental
dF050th (kHz/ms) Slope of the 50th percentile of the fundamental

a dF060th (kHz/ms) Slope of the 60th percentile of the fundamental
dF070th (kHz/ms) Slope of the 70th percentile of the fundamental

a dF080th (kHz/ms) Slope of the 80th percentile of the fundamental
a dF090th (kHz/ms) Slope of the 90th percentile of the fundamental
a, b dFOmax (kHz/ms) Maximum slope of the fundamental
a, b ddFOmin (kHz/ms/ms) Minimum concavity of the fundamental
a, b ddF010th (kHz/ms/ms) Concavity of the 10th percentile of the fundamental
b ddF020th (kHz/ms/ms) Concavity of the 20th percentile of the fundamental

ddF030th (kHz/ms/ms) Concavity of the 30th percentile of the fundamental
ddF040th (kHz/ms/ms) Concavity of the 40th percentile of the fundamental
ddF050th (kHz/ms/ms) Concavity of the 50th percentile of the fundamental

a ddF060th (kHz/ms/ms) Concavity of the 60th percentile of the fundamental
ddF070th (kHz/ms/ms) Concavity of the 70th percentile of the fundamental

a ddF080th (kHz/ms/ms) Concavity of the 80th percentile of the fundamental
a, b ddF090th (kHz/ms/ms) Concavity of the 90th percentile of the fundamental
a, b ddFOmax (kHz/ms/ms) Maximum concavity of the fundamental
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APPENDIX 4: Recording dates.

Table A.2.Recording dates and number of individuals identified during the 2004 and 
2005 field season.

Location

Total No. 
Individuals 
Identified

Date of 
Recording

Total No. 
Individuals 
Identified

Date of 
Recording

OFC High School 40 3-Jun-04 
4-Jun-04 
11-Jun-04 
14-Jun-04 
21-Jun-04 
22-Jun-04 
23-Jun-04 
13-Jul-04 
14-Jul-04

28 1-Jun-05
6-Jun-05
7-Jun-05
8-Jun-05
9-Jun-05

10-Jun-05
14-Jun-05

Laurel Hall South 10 8-Jun-04 
9-Jun-04

10-Jun-04 
8-Jul-04 
9-Jul-04 
19-Jul-04 
20-Jul-04

15 15-May-05 
25-May-05 
27-May-05 
31-May-05 
21-Jun-05 
23-Jun-05 
24-Jun-05 
28-Jul-05 
29-Jul-05

Holy Family 42 24-Jun-04
28-Jun-04
29-Jun-04
2-Jul-04
15-Jul-04
16-Jul-04

107 18-May-05 
19-May-05 
20-May-05 
23-May-05 
24-May-05
26-May-05 
18-Jul-05 
22-Jul-05 
27-Jul-05 
12-Aug-05

720 Peterson 0 30-Jun-04
1-Jul-04
7-Jul-04

27-Jul-04
28-Jul-04

N/A

County Road 40 18 2-Jun-04 
25-Jun-04
5-Jul-04
6-Jul-04

11-Jul-04 
12-Jul-04 
21-Jul-04

N/A

Chinook N/A 31 13-Jun-05 
15-Jun-05 
16-Jun-05
17-Jun-05
20-Jun-05 
12-Jul-05 
19-Jul-05

Harmony House N/A 20 22-Jun-05
27-Jun-05
28-Jun-05
29-Jun-05

1213 East Laurel N/A 0 5-Jul-05
6-Jul-05
11-Jul-05



APPENDIX 5: Individual DFA axis significance and important call variables for analyses using varying number of individuals 
and the same number of individuals.

Table A.3.E. fuscus individual discriminant fonction analysis of using a varying number of individual echolocation calls recorded at 
Holy Family roosts. Including duration (DUR), maximum frequency of the fondamental (FO_max), frequencies of the 20th and 50th 
percentile of the fondamental (F020 and F050), length of the second harmonic (Time_F2), frequency with the most energy of the 
second harmonic (FME F2), slope of the 10th and 80th percentile of the fondamental (dF010 and dF080). Call variables most 
important in predicting successful group membership were identified using the absolute largest Standardized Canonical 
Discriminant Function Co-Efficients for significant fonctions.

Discriminant Function 
Axis DUR FO_max F020 F050 TimeJ2 FME-F2 dF010 dF080 Eigenvalue

Cummulative 
%

Wilk's 
λ 2

X d.f. P value
Function 1 0.101 0.020 -0.490 1.260 -0.139 -0.153 0.741 0.163 1.257 15.5 0.002 5189.51 2088 < 0.001
Function 2 0.130 -0.226 0.461 0.332 0.519 0.522 0.838 0.188 1.059 28.5 0.004 4440.59 1978 < 0.001
Function 3 1.453 -0.405 0.251 0.667 -0.528 -0.525 0.286 -0.160 0.924 39.9 0.005 3865.36 1870 < 0.001
Function 4 0.618 1.262 0.726 -0.822 0.016 0.219 0.854 0.074 0.654 47.9 0.015 3343.36 1764 < 0.001
Function 5 ∙0.646 -0.498 0.909 -0.834 -0.673 -0.204 0.280 0.031 0.602 55.3 0.025 2942.19 1660 < 0.001
Function 6 0.587 0.612 0.229 -1.247 -0.200 0.341 1.048 0.041 0.489 61.3 0.040 2566.41 1558 < 0.001
Function 7 ∙0.908 -0.246 -0.349 0.025 1.235 0.943 0.239 -0.018 0.470 67.1 0.060 2248.89 1458 < 0.001
Function 8 1.644 0.163 0.349 -0.748 1.434 1.204 0.252 -0.437 0.321 71.1 0.087 1941.66 1360 < 0.001
Function 9 •0.233 0.011 0.213 -0.544 0.540 0.092 0.064 -0.706 0.302 74.8 0.116 1719.56 1264 < 0.001

Function 10 0.017 0.372 -0.334 -0.269 0.565 0.052 0.722 -0.372 0.267 78.1 0.151 1509.27 1170 < 0.001
Function 11 0.451 0.359 -0.640 0.932 -1.792 -1.317 0.121 -0.296 0.255 81.2 0.191 1320.69 1078 < 0.001
Function 12 0.828 0.006 0.907 -0.003 -1.146 -0.850 0.287 0.019 0.204 83.7 0.239 1139.67 988 0.001
Function 13 -1.650 0.126 -1.035 0.484 0.919 0.756 0.480 0.874 0.185 86.0 0.288 941.44 900 0.018
Function 14 0.325 -0.007 -0.190 0.195 0.268 0.415 0.119 0.016 0.176 88.2 0.342 855.98 814 0.149
Function 15 -0.338 0.527 0.864 -0.768 -0.136 -0.586 0.237 0.771 0.169 90.3 0.402 726.66 730 0.528
Function 16 0.307 0.338 0.163 0.526 -0.699 -0.410 0.416 -0.477 0.137 92.0 0.470 602.21 648 0.901
Function 17 0.195 0.059 -0.359 -0.262 -0.055 0.337 -0.394 0.059 0.123 93.5 0.534 499.77 568 0.982
Function 18 -0.775 0.051 -0.962 -0.306 1.264 1.026 0.077 -0.010 0.112 94.9 0.600 407.12 490 0.997
Function 19 0.167 0.131 -0.226 -0.111 0.006 -0.208 0.419 -0.196 0.109 96.2 0.667 322.84 414 1.000
Function 20 0.326 -0.218 0.425 0.595 -0.551 -0.322 0.115 0.216 0.082 97.2 0.740 240.47 340 1.000
Function 21 0.335 -0.037 -0.036 0.237 -0.449 -0.128 -0.050 -0.113 0.071 98.1 0.800 177.75 268 1.000
Function 22 -0.181 -0.170 -0.128 0.074 0.059 0.005 0.027 -0.325 0.064 98.9 0.857 123.44 198 1.000
Function 23 0.011 -0.051 -0.010 0.611 -0.637 -0.620 0.212 0.344 0.050 99.5 0.911 73.92 130 1.000
Function 24 -0.650 0.136 -0.063 0.067 0.426 0.402 -0.061 0.437 0.045 100.0 0.957 34.87 64 0.999



Table A.4.E. fuscus individual discriminant function analysis of data using a varying number of individual echolocation calls recorded 
at Chinook roosts. Including duration (DUR), frequency of the 50th percentile of the fundamental (F050), length of the second 
harmonic (Time F2), slope of the 10th, 60th, 70th, and 80th percentile of the fundamental (dF010, dF060, dF070, and dF080). Call 
variables most important in predicting successful group membership were identified using the absolute largest Standardized 
Canonical Discriminant Function Co-Efficients for significant functions.

Discriminant
Function Axis

Cummulative Wilk's
DUR F050 Time_F2 dF010 dF060 dF070 dF080 Eigenvalue % λ χ2 d.f. P value

Function 1
Function 2
Function 3
Function 4
Function 5
Function 6
Function 7
Function 8
Function 9

- 2.952 -1.131 1.653 1.274 1.244 0.038 0.191 4.136 33.5 0.002 525.10 216 < 0.001
0.066 -0.281 0.717 -0.276 -0.357 0.313 1.160 3.414 61.2 0.008 392.57 184 < 0.001
1.882 0.453 0.071 -1.157 -0.256 0.181 -0.057 1.856 76.2 0.035 272.31 154 < 0.001
0.252 -1.005 1.464 0.907 -0.747 1.268 -0.283 0.803 82.7 0.099 187.30 126 < 0.001
- 1.285 -1.064 1.080 -0.129 -0.558 0.283 0.617 0.683 88.2 0.179 139.56 100 0.006
0.000 0.918 0.576 -0.812 1.187 0.012 -0.306 0.568 92.8 0.301 97.37 76 0.05
0.794 0.122 -0.377 -0.189 1.081 0.444 -1.048 0.507 96.9 0.471 60.96 54 0.24
0.063 0.529 0.292 -0.880 0.328 0.451 0.299 0.258 99.0 0.710 27.74 34 0.767
- 1.246 0.418 0.926 0.167 0.193 0.316 0.102 0.119 100.0 0.893 9.13 16 0.908



Table A.5.E. fuscus individual discriminant function analysis of data using a varying number of individual echolocation calls 
echolocation calls recorded at Laurel Hall South roosts. Including duration (DUR), maximum frequency of the fundamental (FO_max), 
frequency of the 20th and 50th percentile of the fundamental (F020 and F050), length of the second harmonic (Time_F2), frequency 
with the most energy in the second harmonic (FME F2), slope of the 10th and 60th percentile of the fundamental (dF010 and dF060), 
and concavity of the 10th, 70th , and 90th percentile of the fondamental (ddF010, ddF070, and ddF090). Call variables most important 
in predicting successful group membership were identified using the absolute largest Standardized Canonical Discriminant Function 
Co-Efficients for significant fonctions.

Discriminant
Function Axis DUR FOmax F020 F050 Time_F2 FME_F2 dF010 dF060 ddF010 ddF070 ddF090 Eigenvalue

CummuIative 
%

Wilk's 
A X d.f. P value

Function 1 -2.640 0.037 0.048 1.528 0.790 0.698 -0.062 1.075 0.495 0.246 -0.279 5.001 27.6 0.004 490.70 240 < 0.001
Function 2 -1.528 1.959 0.880 -2.500 1.904 1.284 2.427 -1.285 0.024 -0.676 1.106 3.857 47.5 0.014 382.06 207 < 0.001
Function 3 3.437 -0.414 0.631 0.848 -2.273 -1.917 0.778 -0.947 -1.022 1.386 -0.363 3.195 65.1 0.038 292.92 176 < 0.001
Function 4 -0.843 -0.406 -0.086 0.846 0.483 0.212 0.578 0.122 0.028 -0.573 0.176 1.762 75.2 0.095 210.65 147 < 0.001
Function 5 -2.342 0.192 -1.343 0.983 1.256 1.063 1.674 0.844 -0.233 0.868 0.278 1.197 84.2 0.177 154.83 120 0.018
Function 6 1.261 0.284 0.660 -0.315 -1.427 -0.897 -0.081 -0.717 -0.962 -0.460 0.591 0.884 90.7 0.313 103.82 95 0.252
Function 7 -1.867 0.069 -0.480 0.610 2.545 1.305 -0.264 0.957 0.057 0.817 -0.696 0.779 94.2 0.487 64.33 72 0.728
Function 8 -0.729 -0.415 0.439 -1.242 2.480 1.574 0.014 -1.304 0.015 0.008 0.153 0.513 97.4 0.635 40.67 51 0.849
Function 9 1.114 0.003 1.179 0.543 -0.455 -0.298 0.289 0.738 -0.529 0.725 1.133 0.254 99.0 0.807 19.24 32 0.963
Function 10 1.566 0.013 -0.095 0.410 -1.464 -0.834 -0.708 0.177 0.278 0.123 0.012 0.156 100.0 0.920 7.48 15 0.943



Table A.6.E. fuscus individual discriminant function analysis of data using a varying number of individual echolocation calls recorded 
at OFC High School roosts. Including duration (DUR), frequency of the 20th and 50th percentile of the fundamental (F020 and F050), 
slope of the 10th, 60th, and 80th percentile of the fundamental (dF010, dF060, and dF080). Call variables most important in predicting 
successful group membership were identified using the absolute largest Standardized Canonical Discriminant Function Co-Efficients 
for significant functions.

Discriminant
Function Axis DUR F020 F050 dF010 dF060 dF080 Eigenvalue

Cummulative 
%

Wilk's 
λ 2

X d.f. P value
Function 1 -1.738 0.072 0.659 1.668 -0.436 0.946 4.683 32.3 0.000 751.749 484 < 0.001
Function 2 -1.679 -1.277 0.682 1.163 1.736 -1.626 2.189 47.4 0.001 596.241 441 < 0.001
Function 3 1.117 -1.786 1.987 0.478 -0.996 -0.587 1.758 59.5 0.004 492.433 400 0.001
Function 4 -1.070 2.284 0.142 0.488 1.492 0.439 1.173 67.6 0.011 401.648 361 0.069
Function 5 2.216 -1.402 1.592 -0.802 -1.206 0.376 0.953 74.1 0.024 332.158 324 0.365
Function 6 0.434 -1.440 1.366 0.642 0.833 -0.002 0.911 80.4 0.048 272.292 289 0.752
Function 7 -0.655 0.697 -2.055 0.418 -1.216 0.601 0.757 85.6 0.091 214.344 256 0.970
Function 8 -0.641 0.970 0.445 0.404 0.905 0.378 0.513 89.2 0.160 163.924 225 0.999
Function 9 0.600 1.981 -1.213 0.785 -0.728 0.777 0.383 91.8 0.242 126.842 196 1.000

Function 10 -0.396 0.351 -0.164 -0.153 -0.131 -0.212 0.272 93.7 0.335 97.844 169 1.000
Function 11 0.744 -0.149 -0.241 0.351 1.350 -1.254 0.246 95.4 0.426 76.295 144 1.000
Function 12 0.849 -0.860 1.993 -1.264 -0.175 1.239 0.192 96.7 0.531 56.623 121 1.000
Function 13 0.595 -0.620 1.976 0.158 0.771 0.011 0.180 97.9 0.633 40.923 100 1.000
Function 14 -0.572 -2.552 2.233 0.852 0.798 0.545 0.106 98.7 0.747 26.109 81 1.000
Function 15 0.117 0.656 -0.553 0.907 -0.888 0.705 0.068 99.1 0.826 17.088 64 1.000
Function 16 0.503 -0.864 0.027 -0.310 -0.259 -0.156 0.047 99.4 0.882 11.238 49 1.000
Function 17 -0.159 0.475 0.642 -0.322 0.349 0.388 0.037 99.7 0.923 7.143 36 1.000
Function 18 -0.194 1.540 -0.584 -0.130 0.160 -0.429 0.023 99.9 0.958 3.860 25 1.000
Function 19 0.131 1.561 -1.593 0.584 -0.735 -0.191 0.013 100.0 0.980 1.806 16 1.000
Function 20 0.062 0.003 -0.160 0.136 -0.438 0.416 0.006 100.0 0.993 0.626 9 1.000
Function 21 -0.077 1.142 -0.439 -0.182 0.048 -0.026 0.010 100.0 0.999 0.999 4 1.000
Function 22 0.047 -0.428 -0.084 -0.081 -0.978 0.544 0.000 100.0 1.000 0.962 1 1.000



Table A.7.E. fuscus individual discriminant function analysis of data using a varying number of individual echolocation calls recorded +1 +1at Harmony roosts. Including duration (DUR), frequency of the 20 and 50 percentile of the fundamental (F020 and F050), slope of 
the 10th and 60th percentile of the fundamental (dF010 and dF060), and concavity of the 70thpercentile of the fondamental (ddF070). 
Call variables most important in predicting successful group membership were identified using the absolute largest Standardized 
Canonical Discriminant Function Co-Efficients for significant functions.

Discriminant
Function Axis DUR

Cummulative Wilk's
F020 F050 dF010 dF060 ddF070 Eigenvalue % λ χ2 d.f. P value

Function1 -0.550
Function 2 0.308
Function 3 1.168
Function4 -0.537
FunctionS 1.413
Function6 -1.393
Function 7 -0.604

- 1.143 1.910 -0.198 2.649 1.195 4.136 42.1 0.010 284.660 168 < 0.001
0.452 0.518 -0.787 0.852 -0.517 3.414 20.2 0.043 195.320 138 0.001
- 1.454 2.057 1.027 0.007 0.455 1.856 1 3.7 0.109 1 37.340 110 0.040
- 0.485 2.310 1.573 1.533 0.671 0.803 8.4 0.224 92.870 84 0.238
- 0.102 0.446 0.804 0.381 0.889 0.683 6.1 0.368 62.040 60 0.403
0.190 0.085 0.721 0.720 0.542 0.568 5.7 0.538 38.410 38 0.451
- 0.045 0.528 -0.452 -0.461 -0.318 0.507 3.8 0.772 1 6.010 18 0.592



Table A.8.E. fuscus individual discriminant function analysis of data using the same number of individual echolocation calls recorded 
at Holy Family roosts. Including duration (DUR), frequency of the 20th and 50th percentile of the fundamental (F020 and F050), length 
of the second harmonic (Time_F2), and slope of the 10th and 60th percentile of the fundamental (dF010 and dF060). Call variables 
most important in predicting successful group membership were identified using the absolute largest Standardized Canonical 
Discriminant Function Co-Efficients for significant functions.

Discriminant
Function Axis DUR F020 F050 Time_F2 dF010 dF060 Eigenvalue

Cummulative 
% Wilk's λ 2

X d.f. P value
Function 1 0.670 -2.305 2.006 0.447 0.684 -0.891 10.552 46.8 0.000 256.92 184 < 0.001
Function 2 2.198 -0.059 0.897 -1.306 -1.451 1.544 4.571 67.0 0.002 183.51 154 0.052
Function 3 -0.351 -1.031 -0.896 2.464 1.716 -0.935 2.970 80.2 0.012 131.98 126 0.340
Function 4 1.432 1.153 -0.394 -2.179 0.086 -0.226 1.768 88.2 0.049 90.62 100 0.738
Function 5 1.518 3.012 -0.459 -1.719 0.161 -0.087 1.071 92.8 0.135 60.07 76 0.910
Function 6 -0.092 0.917 0.225 1.973 -0.836 -0.803 0.842 96.5 0.280 38.23 54 0.949
Function 7 -1.455 -1.406 1.038 0.829 0.813 0.861 0.409 98.3 0.515 19.90 34 0.974
Function 8 0.536 0.537 -0.727 -0.66 0.292 -0.251 0.378 100.0 0.726 9.62 16 0.886

∞



Table A.9.E. fuscus individual discriminant function analysis of data using the same number of individual echolocation calls recorded 
at Chinook roosts. Including duration (DUR), minimum frequency of the fundamental (FOmin), frequency of the 20th and 50th 
percentile of the fundamental (F020 and F050), length of the second harmonic (Time F2), and slope of the 10th and 60th percentile of 
the fundamental (dF010 and dF060). Call variables most important in predicting successful group membership were identified using 
the absolute largest Standardized Canonical Discriminant Function Co-Efficients for significant functions.

Discriminant Function 
Axis DUR FOmin F020 F050 Time_F2 FME_F2 dF010 dF060 Eigenvalue

Cummulative 
%

Wilk’s 
λ 2 

X d.f. P value
Function 1 -6.871 0.942 -1.184 -3.238 5.144 4.311 2.908 1.205 12.304 46.5 0.000 300.60 184 < 0.001
Function 2 1.452 -1.064 1.330 1.029 -0.643 -0.125 -0.49 -1.619 6.595 71.5 0.001 215.20 154 0.001
Function 3 0.765 -0.566 0.359 0.152 0.358 0.207 -0.254 -0.106 2.754 81.9 0.011 148.29 126 0.085
Function 4 0.044 0.457 -0.147 -1.136 0.968 0.667 1.479 -0.376 1.693 88.3 0.042 104.63 100 0.356
Function 5 2.899 2.002 0.234 0.039 -2.022 -1.199 -0.418 0.574 1.434 93.7 0.113 7.93 76 0.611
Function 6 -0.331 -0.977 -0.525 1.355 0.335 0.306 -0.218 1.311 0.798 96.7 0.275 42.59 54 0.869
Function 7 1.849 1.108 0.132 -0.826 -0.189 0.121 -0.626 -0.046 0.590 99.0 0.495 23.23 34 0.918
Function 8 0.135 0.196 0.249 -0.566 0.065 0.166 0.688 0.542 0.272 100.0 0.786 7.93 16 0.951
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Table A.10.E. fuscus individual discriminant function analysis of data using the same number of individual echolocation calls 
+1 +1recorded at Laurel Hall South roosts. Including duration (DUR), frequency of the 20 and 50 percentile of the fundamental (F020 

and F050), length of the second harmonic (TimeF2), frequency with the most energy in the second harmonie (FME_F2), minimum 
slope of the fundamental (dFOmin), slope of the 10th and 60th percentile of the fundamental (dF010 and dF060), and concavity of the 
70th and 90th percentile of the fundamental (ddF070 and ddF090). Call variables most important in predicting successful group 
membership were identified using the absolute largest Standardized Canonical Discriminant Function Co-Efficients for significant 
functions.

Discriminant
Function Axis DUR F020 F050 Time_F2 FME_F2 dF0_min dF010 dF060 ddF070 ddF090 Eigenvalue

Cummulative 
%

Wilk’s 
λ 2

X d.f. P value
Function 1 2.180 -1.912 4.206 -1.155 -1.137 1.881 0.715 0.102 0.632 1.083 12.456 52.7 0.000 266.46 184 < 0.001
Function 2 2.310 1.261 -0.109 -0.728 -0.297 -0.992 2.994 -1.901 3.680 -1.904 5.375 75.4 0.004 180.68 154 0.07
Function 3 -0.603 -1.942 3.274 -2.632 -1.680 -1.174 2.159 1.744 2.357 -0.846 2.803 87.3 0.027 119.55 126 0.645
Function 4 -0.593 0.989 -1.142 0.831 1.320 -0.634 0.611 -0.392 0.522 -0.510 0.943 91.3 0.102 75.47 100 0.968
Function 5 0.633 -0.714 0.567 0.106 0.450 1.418 -0.450 0.650 -1.713 3.097 0.813 94.7 0.197 53.55 76 0.976
Function 6 0.022 -0.119 0.115 -0.517 -0.406 0.838 0.193 0.826 0.300 0.459 0.600 97.3 0.358 33.91 54 0.985
Function 7 -2.198 -1.679 1.411 2.052 2.139 -0.156 -0.669 0.786 0.710 -0.816 0.369 98.8 0.573 18.41 34 0.987
Function 8 0.018 0.384 -1.896 1.635 0.837 1.156 1.645 -2.149 0.348 1.628 0.276 100.0 0.784 8.05 16 0.947
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Table A.11.E. fuscus individual discriminant function analysis of data using the same number of individual echolocation calls 
recorded at OFC High School roosts. Including duration (DUR), minimum frequency of the fundamental (FOmin), frequency of the 
20th and 50th percentile of the fundamental (F020 and F050), frequency with the most energy in the second harmonic (FME_F2), slope 
of the 60th and 80th percentile of the fundamental (dF060 and dF080), minimum concavity of the fundamental (ddFOmin), and 
concavity of the 30th percentile of the fundamental (ddF030). Call variables most important in predicting successful group 
membership were identified using the absolute largest Standardized Canonical Discriminant Function Co-Efficients for significant 
functions.

Discriminant
Function Axis DUR FOmin F020 F050 FME_F2 dF060 dF080 ddFOmin ddF030 Eigenvalue

Cummulative 
%

Wilk’S 
λ X d.f. P value

Function 1 1.993 -1.753 -0.549 1.597 1.888 3.613 -2.318 -1.761 2.147 6.513 31.8 0.000 285.339 184 < 0.001
Function 2 2.703 1.032 -2.486 3.146 -0.031 -2.573 -0.438 -0.624 0.298 5.730 59.7 0.001 218.791 154 < 0.001
Function 3 -0.842 0.538 -3.500 2.055 1.292 -2.022 0.812 0.849 -1.042 2.712 72.9 0.009 155.957 126 0.036
Function 4 0.062 2.940 -6.050 1.212 -0.012 -2.114 1.261 -0.133 -1.261 2.191 83.6 0.033 112.675 100 0.182
Function 5 -0.214 0.579 -3.798 6.172 0.341 -0.245 3.662 -0.453 -0.632 1.646 91.7 0.105 74.383 76 0.531
Function 6 0.195 0.420 0.737 0.964 0.779 0.448 0.799 0.279 -0.563 0.973 96.4 0.278 42.268 54 0.876
Function 7 1.036 -1.025 2.935 -1.024 0.349 -1.922 0.907 -0.325 -0.085 0.574 99.2 0.548 19.843 34 0.975
Function 8 0.791 -0.761 -0.299 0.381 -0.075 -1.220 0.418 -0.200 -0.220 0.159 100.0 0.863 4.871 18 0.996
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