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Abstract 

Fire events represent one of the most severe loading scenarios for reinforced concrete (RC) 

buildings.  In lieu of intensive computational analysis, designers need simplified methods to 

assess RC members exposed to natural fires.  This thesis focuses on the development of a time 

equivalent (te) to replace a natural fire with an equivalent standard fire, allowing for the 

implementation of existing simplified analysis methods.   

 

The proposed te is based on the average internal temperature profile (AITP) that develops in a 

section during fire.  Two AITP te are proposed to accurately or conservatively approximate the 

AITP of natural fire exposed sections.  A size adjustment factor (φsize) is also proposed to 

account for the influence of section dimensions.  Suitability of the AITP te in the performance-

based fire design of RC beams and columns was examined based on the relationships of 

moment-curvature, axial load & axial strain, and moment capacity & axial load capacity.   

 

 

Keywords 

Reinforced Concrete, Fire, Performance-Based Design, Time Equivalent, RC Beams, RC 

Columns, Average Internal Temperature Profile. 

 

  



 

ii 

 

Co-Authorship Statement 

All numerical and analytical work presented in this thesis was performed by Robert Kuehnen.  

Work was reviewed by Dr. Maged Youssef and Dr. Salah El-Fitiany.  Chapters 3 of this thesis 

has been submitted to a scholarly journal as a manuscript co-authored by Robert Kuehnen and 

Maged Youssef.  The case study in Chapter 4 has been submitted as a conference paper co-

authored by Robert Kuehnen, Maged Youssef, and Salah El-Fitiany.  Chapter 5 and Chapter 

4, excluding the case study, will at a later date be submitted to a scholarly journal as a 

manuscript co-authored by Robert Kuehnen, Maged Youssef, and Salah El-Fitiany.   

 

  



 

iii 

 

Acknowledgments 

I would like to express my many thanks to Dr. Maged Youssef for his advice and guidance 

over these past years.  When I began searching for where to undertake my Master’s program, 

I had only one goal in mind, select the best advisor, and all else would work itself out.  Now, 

two years on, I believe even more strongly in that original thesis.  Dr. Youssef has given me a 

tremendous opportunity at Western University and broadened my knowledge on the previously 

unknown world of structural fire design.  I appreciate his support during my Master’s and look 

forward to what we will be able to accomplish ahead. 

 

My debts of gratitude to my fellow graduate students who have helped me during my thesis 

are enormous in both number and degree.  Their experience was of great assistance to my work, 

and their friendship essential to my perseverance.  Particular gratitude is due to Dr Salah El-

Fitiany, for whom this thesis would have been very different without.  Leaving Western, I will 

miss Salah’s thoughtful guidance and late-night conversations. 

 

Finally, this thesis would not have been possible without the love and support of my family.  

There is no doubt that the opportunities that have been created here will carry with me forever.  

Opportunities for my future, my education, my career, and my family.  These opportunities 

would not be possible without your sacrifices and dedication.   

 

 

 

  

 

 

 

  



 

iv 

 

Table of Contents 

Abstract ................................................................................................................................ i 

Keywords ............................................................................................................................. i 

Co-Authorship Statement.................................................................................................... ii 

Acknowledgments.............................................................................................................. iii 

Table of Contents ............................................................................................................... iv 

List of Tables ................................................................................................................... viii 

List of Figures .................................................................................................................... ix 

List of Abbreviations, Symbols, and Notations ............................................................... xiii 

 

Chapter 1 

1.0  Introduction ............................................................................................................. 1 

1.1  Research Objectives ................................................................................................ 2 

1.2  Methodology ........................................................................................................... 3 

1.3  Outline of Thesis ..................................................................................................... 3 

1.3.1  Chapter 2 ....................................................................................................... 3 

1.3.2  Chapter 3 ....................................................................................................... 3 

1.3.4  Chapter 4 ....................................................................................................... 4 

1.3.5  Chapter 5 ....................................................................................................... 4 

1.4  References ............................................................................................................... 5 

 

Chapter 2 

2.0  Literature Review .................................................................................................... 6 

2.1  Standard vs. Natural Fire Definition ....................................................................... 6 

2.2  Fire Influence on Concrete Stress-Strain Relationship ........................................... 8 

2.3  Experimental Work ................................................................................................. 9 

2.4  Effect of Natural Fire Stages on the Concrete Stress-Strain Relationship ............ 12 

2.4.1  Heating Rate................................................................................................ 12 

2.4.2  Maximum Temperature .............................................................................. 19 

2.4.3  Maximum Temperature Duration ............................................................... 21 

2.4.4  Cooling Rate ............................................................................................... 24 



 

v 

 

2.5  Discussion ............................................................................................................. 32 

2.6  Conclusion ............................................................................................................ 34 

2.7  References ............................................................................................................. 36 

 

Chapter 3 

3.0  Equivalent Standard Fire Duration to Evaluate Internal Temperatures                   

in Natural Fire Exposed RC Beams ...................................................................... 41 

3.1  RC Thermal Gradient ............................................................................................ 41 

3.2  Existing time equivalent Methods ......................................................................... 43 

3.2.1  Equal Area Method (Thermal) .................................................................... 43 

3.2.2  Maximum Temperature Method (Thermal) ................................................ 44 

3.2.3  Energy Method (Thermal) .......................................................................... 44 

3.2.4  Load Capacity Concept (Mechanical) ........................................................ 45 

3.2.5  Maximum Deflection Method (Mechanical) .............................................. 46 

3.3  Research Significance ........................................................................................... 46 

3.4  Time Equivalent Parametric Study ....................................................................... 47 

3.4.1  Parameters ................................................................................................... 47 

3.4.2  Methodology ............................................................................................... 52 

3.4.3  AITP Time Equivalent Values .................................................................... 54 

3.5  Size adjustment Factor .......................................................................................... 58 

3.5.1  Influence of Beam Width and Height ......................................................... 58 

3.5.2  AITP Size Adjustment Factor ..................................................................... 62 

3.6  Comparison with Existing Methods ...................................................................... 68 

3.7  Conclusion ............................................................................................................ 73 

3.8  References ............................................................................................................. 74 

 

Chapter 4 

4.0  Assessing the Flexural Response of Fire-Exposed RC Beams                            

using an Equivalent Standard Fire ........................................................................ 78 

4.1  Flexural Analysis .................................................................................................. 79 

4.1.1  Study Methodology ..................................................................................... 79 

4.1.2  Beam and Fire Parameters .......................................................................... 80 



 

vi 

 

4.2  Flexural Assessment ............................................................................................. 83 

4.3  Comparison with Existing Methods ...................................................................... 87 

4.4  Performance-Based Design of RC Beams Exposed to Natural Fire:                        

A Case study ......................................................................................................... 90 

4.4.1  Severity of the fire event ............................................................................. 90 

4.4.2  RC Internal Thermal Model ........................................................................ 91 

4.4.3  Sectional Flexure analysis........................................................................... 92 

4.4.4  Ellingwood and Lin (1991) ......................................................................... 95 

4.4.5  Simplified Performance-Based Analysis .................................................... 97 

4.4.6  FE Modelling ............................................................................................ 101 

4.4.7  Case Study Evaluation .............................................................................. 101 

4.5  Conclusion .......................................................................................................... 104 

4.6  References ........................................................................................................... 105 

 

Chapter 5 

5.0  Equivalent Standard Fire Duration to Evaluate Internal Temperatures                    

in Natural Fire Exposed RC Columns ................................................................ 108 

5.1  Application of the AITP for RC Columns .......................................................... 108 

5.2  Review of the AITP Time Equivalent ................................................................. 110 

5.3  Applicability of the AITP te for RC Columns ..................................................... 112 

5.3.1   Test Parameters ........................................................................................ 112 

5.3.2  Conservative AITP te Evaluation .............................................................. 113 

5.3.3  Mean AITP te Evaluation .......................................................................... 115 

5.4  Assessing the Moment-Axial Response of Fire-Exposed RC Columns               

using an Equivalent Standard Fire ...................................................................... 117 

5.4.1  Sectional Analysis Method ....................................................................... 117 

5.4.2  Study Methodology ................................................................................... 118 

5.4.3  Study Parameters ...................................................................................... 119 

5.4.4  Moment-Axial Assessment ....................................................................... 121 

5.5  Comparison with Existing Methods .................................................................... 124 

5.6  Conclusion .......................................................................................................... 127 

5.7  References ........................................................................................................... 128 



 

vii 

 

Chapter 6 

6.0  Thesis Conclusion ............................................................................................... 130 

6.1  Literature Review ................................................................................................ 130 

6.2  Equivalent Standard Fire Duration to Evaluate Internal Temperatures                   

in Natural Fire Exposed RC Beams .................................................................... 131 

6.3  Assessing the Flexural Response of Fire-Exposed RC Beams                           

using an Equivalent Standard Fire ...................................................................... 132 

6.4  Equivalent Standard Fire Duration to Evaluate Internal Temperatures                     

in Natural Fire Exposed RC Columns ................................................................ 133 

6.5  Thesis Limitations ............................................................................................... 134 

6.6  Recommendations for Future Work .................................................................... 135 

 

Appendix A ..................................................................................................................... 136 

Finite Difference Modelling ....................................................................................... 136 

Appendix B ..................................................................................................................... 139 

Finite Element Modelling (ABAQUS) ...................................................................... 139 

Curriculum Vitae ............................................................................................................ 142 

 

 

  



 

viii 

 

List of Tables 

Table 2.1 List of Evaluated Experimental Work with Test Parameters ................................. 11 

Table 3.1 Eurocode Fire Parameters for Design Fires ............................................................ 48 

Table 3.2 Representative Design Fire Characteristics ............................................................ 52 

Table 3.3 Coefficients for Equation 3.4 .................................................................................. 56 

Table 3.4 Coefficients for Equation 3.5 .................................................................................. 64 

Table 4.1 Parametric Study Beam Properties ......................................................................... 80 

Table 4.2 AITP te durations for the Seven Specified Design Fires ......................................... 82 

Table 4.3 Sagging Flexure Analysis for Concrete ................................................................ 100 

Table 4.4 Sagging Flexure Analysis for Steel ...................................................................... 100 

Table 4.5 Hogging Flexure Analysis for Concrete and Steel ............................................... 100 

Table 4.6 Moment Capacity Results ..................................................................................... 104 

Table 5.1 Coefficients for Equation 5.1 ................................................................................ 110 

Table 5.2 Coefficients for Equation 5.2 ................................................................................ 111 

Table 5.3 Parametric Study Column Properties .................................................................... 119 

Table 5.4 Conservative AITP te for Study Design Fires and Cross-Sections ....................... 120 

 

 

  



 

ix 

 

List of Figures  

Fig. 2.1: Standard vs. Natural Fire Temperature-Time Curve .................................................. 7 

Fig. 2.2: Illustrative Stress-Strain Relationship for Concrete under Elevated 

Temperatures (EN 1992-1-2, 2004) ................................................................................... 9 

Fig. 2.3: Typical Furnace Heating Profile during Specimen Testing ..................................... 10 

Fig. 2.4: Relative Residual Strength of Concrete after Exposure to Slow Rates of 

Heating and Natural Cooling ........................................................................................... 13 

Fig. 2.5: Relative Residual Strength of Concrete after Exposure to Rapid Rates of 

Heating and Natural Cooling ........................................................................................... 14 

Fig. 2.6: Relative Average Residual Strength of Concrete after Exposure to Slow or 

Rapid Heating and Natural Cooling ................................................................................. 14 

Fig. 2.7: Relative Hot Strength of Concrete after Exposure to Slow Rates of Heating and 

Natural Cooling ................................................................................................................ 15 

Fig. 2.8: Relative Hot Strength of Concrete after Exposure to Rapid Rates of Heating 

and Natural Cooling ......................................................................................................... 16 

Fig. 2.9: Relative Average Hot Strength of Concrete after Exposure to Slow or Rapid 

Heating and Natural Cooling ........................................................................................... 16 

Fig. 2.10: Effect of Heating Rate on Relative Hot Strain of Concrete ................................... 18 

Fig. 2.11: Effect of Heating Rate on Relative Residual Strain of Concrete ........................... 18 

Fig. 2.12: Relative Strength of Concrete for Hot and Residual Conditions ........................... 20 

Fig. 2.13: Relative Strain of Concrete under Hot and Residual Conditions ........................... 20 

Fig. 2.14: Relative Strength of Concrete over Long Term Exposure Periods ........................ 22 

Fig. 2.15: Relative Ultimate Strength of Concrete over Short Term Exposure Periods ......... 23 

Fig. 2.16: Relative Strength of Concrete under Ambient Cooling ......................................... 26 

Fig. 2.17: Relative Strength of Concrete under Rapid Cooling .............................................. 26 

Fig. 2.18: Relative Strength of Concrete under Slow Cooling ............................................... 27 



 

x 

 

Fig. 2.19: Average Relative Strength of Concrete Considering Three Cooling Regimes ...... 27 

Fig. 2.20: Relative Strain of Concrete Experienced at Ultimate Strength under varied 

Cooling Regimes .............................................................................................................. 30 

Fig. 2.21: Relative Strain of Concrete Experienced at Ultimate Strength by Jaesung et al. 

(2006) ............................................................................................................................... 31 

Fig. 2.22: Residual Condition Strength Loss of Concrete Under Various Influences from 

Specified Datum .............................................................................................................. 33 

Fig. 2.23: Hot Condition Strength Loss of Concrete Under Various Influences from 

Specified Datum .............................................................................................................. 33 

Fig. 3.1 Heat Transfer Modelling: (a) Heat Transfer Mesh, (b) Average Temperature 

Layers, and (c) AITP ....................................................................................................... 42 

Fig. 3.2 Thermal Equivalent Time Methods: (a) Equal Area Method and (b) Maximum 

Temperature Method ........................................................................................................ 43 

Fig. 3.3 Mechanical Equivalent Time Methods: (a) Minimum Load Capacity Method 

and (b) Maximum Deflection Method ............................................................................. 45 

Fig. 3.4 Natural Temperature-Time Curve from Cardington Full Scale Testing (Lennon, 

2014) ................................................................................................................................ 48 

Fig. 3.5 Identification of Key Points using (a) Eurocode Parameters and (b) Proposed 

Parameters ........................................................................................................................ 50 

Fig. 3.6 Representative Design Fire Profiles .......................................................................... 51 

Fig. 3.7 Approach Followed to Calculate AITP Time Equivalents ........................................ 53 

Fig. 3.8 Accuracy of AITP Mean Time Equivalent for Average Error and Maximum 

Error ................................................................................................................................. 55 

Fig. 3.9 Average Error as a Function of Section Depth .......................................................... 55 

Fig. 3.10 Accuracy of Time Equivalent Equations: (a) Mean Criterion and (b) 

Conservative Criterion ..................................................................................................... 57 

Fig. 3.11 Average Internal Temperature Profile due to 1-hr Standard Fire for Variable 

Cross-Sections ................................................................................................................. 58 



 

xi 

 

Fig. 3.12 Sensitivity of te to Section Width (a) Mean Criterion and (b) Conservative 

Criterion ........................................................................................................................... 59 

Fig. 3.13 Section Height versus Average Error for Mean Criterion ....................................... 61 

Fig. 3.14 Section Height versus Normalized Average Error for Mean Criterion ................... 61 

Fig. 3.15 AITP Mean Time Equivalent in Relation to (a) the Normalized Average Error 

and (b) the Maximum Error ............................................................................................. 63 

Fig. 3.16 Analytical vs. Equation ψsize for: (a) Mean Criterion and (b) Conservative 

Criterion ........................................................................................................................... 66 

Fig. 3.17 Analytical vs. Equation te for: (a) Mean Criterion (b) Conservative Criterion 

with and without ψsize ....................................................................................................... 67 

Fig. 3.18 Existing Methods for Moderate FR 1: (a) te, (b) Error for bc 250 mm, and (c) 

Error for bc 800 mm ......................................................................................................... 70 

Fig. 3.19 Existing Methods for Moderate FR 2: (a) te, (b) Error for bc 250 mm, and (c) 

Error for bc 800 mm ......................................................................................................... 70 

Fig. 3.20 Existing Methods for Large FR 3: (a) te, (b) Error for bc 250 mm, and (c) Error 

for bc 800 mm .................................................................................................................. 71 

Fig. 3.21 Existing Methods for Small FR 4: (a) te, (b) Error for bc 250 mm, and (c) Error 

for bc 800 mm .................................................................................................................. 71 

Fig 3.22. Existing Methods for Rapid Hot FR 5: (a) te, (b) Error for bc 250 mm, and (c) 

Error for bc 800 mm ......................................................................................................... 72 

Fig 3.23. Existing Methods for Long Cool FR 6: (a) te, (b) Error for bc 250 mm, and (c) 

Error for bc 800 mm ......................................................................................................... 72 

Fig. 4.1 Cross Section of Parametric Study RC Beam ........................................................... 81 

Fig. 4.2 Representative Design Fire Profiles .......................................................................... 82 

Fig. 4.3 Moment-Curvature Diagrams for B1 using Experimental Design Fires ................... 83 

Fig. 4.4 Moment-Curvature Diagrams for B1 using Eurocode Design Fires ......................... 84 

Fig. 4.5 Design vs. AITP te Response for: (a) MrT, (b) φiT, and (c) EIiT ................................ 86 



 

xii 

 

Fig. 4.6 Flexural Response of B2 for Existing Time Equivalent Methods ............................. 88 

Fig. 4.7 Ellingwood and Lin (1991) Beam Cross-Section ...................................................... 96 

Fig. 4.8 Ellingwood and Lin (1991) Applied Design Fire ...................................................... 97 

Fig. 4.9 Thermal Gradients due to (a) Natural Fire and (b) Conservative Time 

Equivalent Fire Exposure ............................................................................................... 102 

Fig. 4.10 AITP for Case Study Beam Based on Given Exposure Fires................................ 103 

Fig. 5.1 (a) 4-Sided Heating, (b) 3-Sided Heating, and (c) AITP of Column and Beam 

for 1-hr ISO Standard Fire ............................................................................................. 109 

Fig. 5.2 Change in Conservative te from 3-Sided to 4-Sided Exposure ................................ 113 

Fig. 5.3 Conservative Numerical vs. Equation te with and without ψsize .............................. 114 

Fig. 5.4 Change in Mean te from 3-Sided to 4-Sided Exposure ............................................ 116 

Fig. 5.5 Average Error due to (a) 3-Sided and (b) 4-Sided Exposure .................................. 116 

Fig. 5.6 Cross Section of Parametric Study RC Beam ......................................................... 119 

Fig. 5.7 Representative Design Fire Profiles ........................................................................ 120 

Fig. 5.8 (a) C1 Axial-Strain Relationship, (b) C1 Moment-Curvature Relationship, (c) 

C1 Moment-Axial Relationship ..................................................................................... 122 

Fig. 5.9 Design vs. Time Equivalent Influence on εT ........................................................... 123 

Fig. 5.10 Design vs. Time Equivalent Influence on φiT ........................................................ 123 

Fig. 5.11 Design vs. Time Equivalent Influence on PrT ........................................................ 123 

Fig. 5.12 Design vs. Time Equivalent Influence on MrT ...................................................... 124 

Fig. 5.13 M-P Response of C2 for Existing Time Equivalent Methods ............................... 126 

Fig. A.1 Heat Transfer Mesh Detail...................................................................................... 136 

Fig. B.1 Element Meshing in Cross-Section and Elevation View ........................................ 140 

 

  



 

xiii 

 

List of Abbreviations, Symbols, and Notations  

ac thermal diffusivity (m2s-1) 

Af floor area of the fire compartment (m2) 

As area of tension steel (mm2) 

b thermal absorptivity for the total enclosure (Jm-2s0.5K) 

bc beam width (mm) 

c depth of section neutral axis (mm) 

CcT resultant compression force at elevated temperature (kN) 

cs specific heat (Jkg-1K-1) 

d effective depth of the tension reinforcement (mm) 

EIiT initial stiffness at elevated temperature (Nm2) 

Fagg aggregate factor 

f'c concrete compressive strength at ambient temperature (MPa) 

f'cR residual concrete compressive strength after a heating cycle (MPa) 

f'cT concrete compressive strength at elevated temperature (MPa) 

FsT steel stress at elevated temperature (MPa) 

Fu steel ultimate strength (MPa) 

Fy steel yield strength (MPa) 

FyT steel yield strength at elevated temperature (MPa) 

hc beam height (mm) 

hmax coefficient of heat transfer (Wm-1K-1)  

k thermal conductivity (Wm-1K-1) 



 

xiv 

 

MbT balance moment resistance at elevated temperature (kNm) 

Mr moment resistance at zero axial load (kNm) 

MrT moment resistance at zero axial load and elevated temperature (kNm) 

O opening factor of the fire compartment (m0.5) 

PbT balance axial capacity at elevated temperature (kN) 

PrT axial resistance at zero moment and elevated temperature (kN) 

PT axial resistance at elevated temperature (kN) 

q heat flux (Wm-2) 

qf,d design fire load density related to the floor area Af  (MJm-2) 

t time (hr) 

T temperature (°C)  

Tav average concrete temperature at a given section height (°C) 

te time equivalent of a standard fire exposure (min) 

Tf temperature of the standard fire (°C) 

tfinal natural fire: overall fire duration (min) 

tmax natural fire: time of maximum temperature (min) 

Tmax natural fire: maximum temperature (°C) 

To ambient temperature (°C) 

TsT resultant tension force at elevated temperatures (kN) 

Va volume fraction of aggregates  

x 
distance from the section point under consideration to the closer of the left 

or right faces (mm) 

y distance from the section point under consideration to the bottom face (mm) 



 

xv 

 

α1 average stress block parameter  

α1T average stress block parameter at elevated temperature 

αs coefficient of thermal expansion 

β1 stress block depth parameter  

β1T stress block depth parameter at elevated temperature 

Δξ size of the FDM mesh block 

ε strain (mm/mm) 

ε0.3 transient creep strain at 0.3f’c 

εc concrete total strain at ambient temperature (mm/mm) 

εcR residual concrete total strain after a heating cycle (mm/mm) 

εcT concrete total strain at elevated temperature (mm/mm) 

εcu concrete ultimate strain (mm/mm) 

εcuT concrete ultimate strain at elevated temperature (mm/mm) 

εf effective emissivity 

εs steel total strain (mm/mm) 

εsT steel strain at elevated temperature (mm/mm) 

εth fire-induced thermal strain (mm/mm) 

εtr fire-induced transient strain (mm/mm) 

ηw ratio between surface and fire temperature 

ηx ratio between temperature at interior point x and Tf 

ηy ratio between temperature at interior point y and Tf 

ρ density (kgm-3) 

ρs steel reinforcement ratio 



 

xvi 

 

σ Stefan-Boltzmann constant (WmK-4) 

φ section curvature (rad/mm) 

φiT initial section curvature at elevated temperature (rad/mm) 

ψsize size adjustment factor  



1 

 

 

 

Chapter 1 

“Structural engineering is the art of modeling materials we do not wholly 

understand, into shapes we cannot precisely analyze, so as to withstand forces 

we cannot properly assess, in such a way that the public at large has no reason 

to suspect the extent of our ignorance." 

 

  A.R. Dyke, 1976  

 

1.0  Introduction 

There are few subjects for which the epigraph of this thesis enjoys greater reality than in 

the discipline of fire safety.  Despite decades of research, the extreme severity and 

variability of fire events has eluded our ability to even fundamentally understand fire’s 

influence on structures. From a material perspective, the low conductivity of reinforced 

concrete (RC) makes it a highly suitable material for fire protection; however, fire’s 

influence on concrete’s strength and strain is still not fully understood.  Large debates exist 

regarding the mechanisms of explosive spalling, cooling rates, exposure duration, and the 

host of available additives (Kodur, 2014).  From an analysis perspective, our ability to 

evaluate elements has vastly improved with the implementation of computational 

capabilities.  Performance-based models, such as that developed by El-Fitiany and Youssef 

(2009), promise simple and efficient analysis of RC members.  Yet still, the building code 

and standard practices rely on prescriptive fire ratings, focusing on temporary protective 

measures, as opposed to designing buildings to withstand fire.  And finally, from a force 

perspective, testing performed in furnaces during the early 1920’s is still considered as the 

standard for representing the development of building fires (CAN/ULS-S101, 2014).  

Rudimentary models for predicting the scale of realistic fire events do exist in the literature 

and design standards (EN 1991-1-2, 2002); but, the specifics of accurately modelling fire 

development and its spread within a building, is still largely untrodden ground 

(Dai et al., 2017). 
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From 2005 to 2014, Statistics Canada (2017) reported over 200,000 structural fires and 

1,490 structural fire-related fatalities.  Although these numbers are considered an 

improvement over the decades before, giving the public the impression of success, further 

innovation is still possible and necessary.  To overcome the gaps in our understanding, 

research into material mechanics, analysis, and fire development is needed in the field of 

fire safety.  This thesis examines the influence of fire development on RC sections, 

covering the later of the three research gaps. 

 

 

1.1  Research Objectives 

With the recent focus on performance-based structural fire design, engineers are in need of 

simple, but accurate methods of assessing concrete’s performance during fire events.  The 

proposed research aims to: 

 

1. Present a literature review detailing the influence of natural fire events on the stress-

strain relationship of normal strength concrete (NSC), 

2. Determine an equivalent standard fire duration (time equivalent) for a natural fire 

acting on RC beams, 

3. Evaluate the influence of variable RC beam dimensions on the average internal 

temperature profile and the time equivalent, 

4. Assess the accuracy of the proposed time equivalent in calculating the sectional 

moment-curvature response, 

5. Repeat steps 2 through 4 to determine and assess a time equivalent for RC columns. 
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1.2  Methodology 

The proposed research is performed using the computational models developed Alhadid 

(2017) and El-Fitiany and Youssef (2009).  Their models allow for analytical evaluation of 

the thermal and structural response of RC elements exposed to fire loading.  The current 

study adapts these programs to apply natural fire events and identify the effect on RC 

sections.  Models were developed in MATLAB, C++, and Fortran.  To validate results, an 

ABAQUS finite element model was utilized in Chapter 4. 

 

 

1.3  Outline of Thesis 

This thesis is prepared in an “Integrate-Article Format” following the guidelines described 

in the Western University – School of Graduate and Postdoctoral Studies (SGPS), General 

Thesis Regulations. 

 

 

1.3.1  Chapter 2 

A literature review is presented in this chapter exploring the effects of natural fires on the 

stress-strain response of concrete.  Background regarding standard and natural fire curves 

is presented detailing their usage and parameters.  The four main variabilities of fire: 

heating rate, maximum temperature, duration at maximum temperature, and cooling rate 

are individually explored.  The chapter summarizes the impact of each variable in 

comparison to one another and provides conclusions about ongoing work. 

 

 

1.3.2  Chapter 3 

In the first section of the chapter, a brief literature review is conducted providing the 

background and limitations of past time equivalent (te) methods.  Noting the shortcomings 

of the existing methods, this chapter introduces a new time equivalent method based on the 

actual internal thermal gradients that develop in a RC beam during fire exposure.  An 
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average internal temperature profile (AITP) is a technique used to simplify a section’s two-

dimensional thermal gradients into a one-dimensional profile.  Using a section’s AITP, 

time equivalency is determined based on mean or conservative criteria.  The mean criterion 

accurately matches the AITP of a design fire to that of a standard, while the conservative 

criterion selects the shortest duration standard fire that produces equal or larger 

temperatures at every point in the AITP.  Following a parametric study, two equations are 

presented to calculate the AITP te.  Further evaluation regarding the influence of section 

dimensions on the value of the te revealed the importance of accounting for section width.  

The section concludes with a study comparing the developed te against the existing 

methods for RC beam sections.   

 

 

1.3.4  Chapter 4 

A parametric study is presented to assess the proposed AITP te for RC beams.  Using a 

sectional analysis program developed by El-Fitiany and Youssef (2009), sample RC beam 

sections are modelled and tested.  The sectional moment-curvature responses of the beams 

are compared for given design fires and corresponding time equivalent fires.  The results 

were found to be in good agreement lending to the validity of the AITP method.  The work 

is further assessed in comparison to existing time equivalent methods to demonstrate the 

improved suitability of the AITP method.  Finally, a case study is presented demonstrating 

the application of the time equivalent in the use of performance-based design. 

 

 

1.3.5  Chapter 5 

The AITP time equivalent method is investigated for usage with RC columns.  The te from 

Chapter 3 is tailored for RC beams undergoing three-sided fire exposure.  RC columns 

typically undergo four-sided exposure, which greatly influences their internal thermal 

gradients.  A parametric study was undertaken to assess the AITP te methodology for the 

application of RC columns.  It was found that the conservative te is still valid four-sided 

heating, while the mean te is wholly unsuitable.  An alternative to the mean te is explored, 
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but ultimately found to be unfeasible due to the large errors that arise.  The conservative te 

is assessed based the mechanical response of RC columns and in view of existing time 

equivalent methods.   
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Chapter 2 

2.0  Literature Review 

In North America, the current practice for structural fire safety involves the implementation 

of prescriptive methods, requiring compliance with fire-resistance ratings and suppression 

system specifications.  Although this approach has been largely successful in delaying the 

propagation of fires, allowing for the safe evacuation of occupants, it provides no 

knowledge about the behavior of the fire-exposed structure.  To ensure structural integrity, 

the North American industry is moving towards performance based structural fire design; 

as included in the most recent publication of ASCE 7-16 (2016).  Implementation of 

performance design requires knowledge of the general stress-strain relationships for 

concrete at high temperatures, which are presented within EN 1992-1-2 (2004) and by 

Youssef and Moftah (2007).   However, the major deficiency of these relationships is that 

they were developed based on the application of standard fire scenarios, ignoring the 

variability of natural fire events.  To develop a clear understanding of these formulations 

and their application in the performance-based approach, this chapter summarizes the 

impact of natural fires on the stress-strain response of concrete. 

 

 

2.1  Standard vs. Natural Fire Definition 

To evaluate the fire ratings of different construction elements, standard temperature-time 

curves are prescribed as in ASTM E-119 (2018) and ISO 834 (2014).  These standard 

curves were generated in the early 1900’s based on observations of the temperature-time 

relationship measured in laboratory furnaces.  By their very nature, standard curves do not 

even remotely represent the trends of a naturally occurring fire.  Instead, they were adopted 

to simplify and standardize the representation of a severe heating scenario; which was 

deemed as a conservative assumption of the natural fire, and thus, suitable for design 

(Cooper and Steckler, 1996).   

 

 



7 

 

 

 

In contrast to the standard curves, natural fire curves represent the true temperature-time 

relationship for a compartment, which, ASCE 7-16 (2017) edicts as essential for 

conducting structural fire analysis.  Figure 2.1 compares the standard fire curve prescribed 

by ISO 834 (2014) with that of a typical natural fire profile.  Considering that every 

compartment is different, each natural fire curve has its own unique profile; however, the 

main three stages of growth, full development, and decay are always present 

(Purkiss, 2007).   EN 1991-1-2 (2002) provides a simplified approach for the development 

of natural fire curves based on a number of compartment specific parameters such as floor 

area, number of openings, and fuel load.  In contrast to the simplicity of standard curves, 

the extensive quantity of data required to generate natural relationships has been a large 

barrier to their implementation.  But with the advent and prevalence of modern computing 

power, the ability to evaluate every unique compartment is now highly feasible. 

 

 

Fig. 2.1: Standard vs. Natural Fire Temperature-Time Curve 
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2.2  Fire Influence on Concrete Stress-Strain Relationship 

Throughout a fire event, concrete properties continue to degrade at all stages.  Since 

standard curves are identical regardless of the structure or the fire, they fail to accurately 

represent the impact of a realistic fire on concrete's stress-strain relationship.  By contrast, 

the temperature-time curve of a natural fire has four main variabilities that affect the 

stress-strain relationship of concrete: rate of heating, maximum temperature, duration of 

maximum temperature, and rate of cooling (Zhang et al., 2001).  During the growth stage, 

variable rates of heating can occur, ranging from near instantaneous to very slow heating.  

At full development, the value of the maximum temperature as well as its duration play an 

important role in the degradation of concrete.  And finally, in the decay phase, variable 

rates of cooling can be present ranging from slow air cooling in a smoldering compartment 

to rapid water cooling from firefighting efforts.  Each of these four variabilities play a 

significant and different role in the deterioration of concrete. 

 

A typical ambient stress-strain relationship for NSC is presented in Figure 2.2.  The key 

points defining the curve are identified by the Eurocode (EN 1992-1-2, 2004) as the 

maximum compressive strength (f’c), the corresponding strain at max strength (Ɛc), and the 

ultimate strain (Ɛcu).  When the concrete is at elevated temperatures, these points are 

denoted as f’cT, ƐcT, and ƐcuT.  When the concrete specimen has undergone a full heating and 

cooling cycle back to ambient temperature, the residual concrete variables are denoted as 

f’cR, ƐcR, and ƐcuR.  Concrete properties at residual and hot conditions will exhibit notably 

different responses depending on the natural fire exposure.  Following the ambient profile 

given in Figure 2.2, the Eurocode provides tables to interchange the three key points at 

various temperatures for both residual and hot conditions.  Connecting the key points, the 

initial ascending portion of the curve can be calculated using equations found in the 

Eurocode and the declining portion of the curve can be modeled as a straight line joining 

the peak of the curve to the ultimate strain.   
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Fig. 2.2: Illustrative Stress-Strain Relationship for Concrete under Elevated 
Temperatures (EN 1992-1-2, 2004) 

 

 

2.3  Experimental Work 

Researchers have experimentally tested concrete at elevated temperatures for an extensive 

range of circumstances.  Naus (2005) identified fifteen main parameters that affect the 

response of concrete at elevated temperatures.  In this chapter, these parameters have been 

divided into two groups, variable and controlled.  During this chapter’s study, variable 

parameters were assessed at different levels while controlled parameters were locked into 

a specific state. 

 

Variable parameters were identified based on their critical impact on the properties of 

normal strength concrete (NSC) and/or the definition of the natural fire curve.  They are: 

(a) aggregate type (siliceous or calcareous), (b) heating rate, (c) cooling rate, (d) maximum 

temperature, (e) exposure duration, (f) mechanical testing time relative to the fire event, 

and (g) initial ambient compressive strength. 

 

Controlled parameters reflect: (a) unstressed tests, (b) unconfined tests, (c) unsealed 

moisture tests, (d) ordinary portland cement (OPC) specimens (no additives such as fly ash, 

silica, fibers, etc.), and (e) NSC.  NSC concrete is assumed to be defined as having a 

compressive strength up to 50 MPa.   
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Table 2.1 displays a list of the experimental tests investigated during this literature review.  

Figure 2.3 outlines the main parameters used in the table.  “Residual” testing time indicates 

that testing occurred after the specimen cooled back to ambient temperature.  The specific 

number of days from cooling to residual testing is provided for each experimental work.  

“Hot” testing occurs at maximum temperature after the heating duration has been applied.  

“Uniform” duration is defined as exposing the test specimen to the maximum temperature 

until a uniform internal temperature is achieved within the specimen.  Typically, cylinder 

specimens heated for longer than a 1-hr duration are considered to have reached a uniform 

internal temperature (Fu et al., 2005; Diederichs et al., 1988).  An “instant” heating rate 

indicates that the specimen was placed in a furnace preheated to the maximum temperature 

such that no rate of heating is experienced in the furnace or compartment.  Cooling rate is 

stated as either “slow”, “ambient”, or “rapid”; comprehensive definitions of those three 

rates are provided in Section 2.4.4.  It should be noted that the heating and cooling rates 

refer to the temperature change of the testing compartment, not the specimen itself. 

 

 

Fig. 2.3: Typical Furnace Heating Profile during Specimen Testing 
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Table 2.1 List of Evaluated Experimental Work with Test Parameters 

Author f’c  
(MPa) 

Aggregate Specimen Size Duration 
(hr) 

Testing Time Heating Rate 
(°C/min) 

Cooling Rate 

Abramowicz and Kowalski (2010) 30.0, 45.0 Siliceous 103x200 mm cylinder uniform  residual (0 days) 3.0 varied 

Abrams (1971) 27.0, 44.0 Both 75x150 mm cylinder uniform hot & residual (0 days) measured 1 natural 

Anderberg and Thelandersson (1976) 50.0 Siliceous 75x150 mm cylinder uniform hot  1.0, 5.0 null 

Bingol and Gul (2008) 20.0, 35.0 Calcareous 100x200 mm cylinder 3.00 residual (0 days) 12.0 - 20.0 varied 

Botte and Caspeele (2017) 50.0 Siliceous cube and cylinder 2 uniform residual (0 & 56 days) 2 1.0 varied 

Carette et al. (1982) 45.0 Calcareous 102x203 mm cylinder varied residual (0 days) 0.3 natural 

Castillo and Durrani (1990) 31.0 Calcareous 50x102 mm cylinder 0.17 hot 8.0 null 

Chang et al. (2006) 27.0, 40.0 Siliceous 150x300 mm cylinder 2.00 residual (30 days) 3.0 natural 

Culfik and Ozturan (2010) 37.5 Calcareous 100x200 mm cylinder 3.00 residual (0 days) 1.0 slow 

Diederichs et al. (1988) 32.9 Siliceous 80x300 mm cylinder 2.00 hot 2.0 null 

Fu et al. (2005) 35.0 Siliceous 75x100 mm cylinder 1.00 hot 2.0 null 

Furumura et al. (1995) 21.0, 42.0 Siliceous 50x100 mm cylinder 2.00 hot 1.0 null 

Harada et al. (1972) 30.0 Both 50x100 mm cylinder uniform residual (30 days) 1.5 natural 

Jaesung et al. (2006) 30.0 Siliceous 100x200 mm cylinder 4.00 residual (0 days) 2.0 varied 

Khaliq (2012) 50.0 Calcareous 75x150 mm cylinder 2.00 hot 2.0 null 

Li et al. (2004) 42.5 Siliceous 100 mm cube none residual (0 days) 10.0 varied 

Mohamedbhai (1987) 35.0 Siliceous 100 mm cube varied residual (14 days) varied varied 

Molhotra (1956) 25.0 - 50.0 Siliceous 100x200 mm cylinder 1.00 hot & residual (0 days) measured 3 natural 

Morita et al. (1992) 19.6 - 41.0 Unknown 100x200 mm cylinders 1.00 residual (0 days)  1.0 natural 

Nassif (2005) 45.0 Both 75x150 mm cylinders uniform residual (0 days) 9.0 varied 

Netinger et al. (2011) 45.0 Both 40x40x160 mm prism 1.50 residual (0 days) instant  natural 

Noumowe et al. (1996) 37.1 Calcareous 110x220 mm cylinder 1.00 residual (0 days) 1.0 natural 

Phan et al. (2001) 50.0 Calcareous 102x204 mm cylinder uniform hot & residual (0 days) 5.0 natural 

Savva et al. (2005) 34.7 Siliceous 150 mm cube 2.00 residual (0 days) 2.5 slow 

Shen (1991) 28.0 Siliceous 300x100 mm prism 0.50 residual (0 days) 8.0 rapid 

Tan (1990) 28.0 Siliceous irregular prism "T" section 0.50 residual (0 days) 2.0 natural 

Xiaoyong and Fanjie (2011) 35.0, 20.0 Siliceous 150x300 mm cylinder 2.00 residual (0 days) 5.0 natural 

Yao (1991) 40.0 Siliceous irregular prism "plus" section 0.50 hot 5.0 null 

Zhang et al. (2000) 50.0 Siliceous 100 mm cube varied residual (0 days) instant natural 

 
1. Heating was applied such that maximum difference in internal temperatures never exceeded 3%. 
2. Residual strength tests on 150 mm cubed specimens at 0 days.  Residual strain tests on 106x330 mm cylinder specimens at 56 days. 

3. Heating was applied such that maximum difference in internal temperatures never exceeded 100°C. 1
1 
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2.4  Effect of Natural Fire Stages on the Concrete Stress-
Strain Relationship 

In this section, the influence of natural fires on the stress-strain relationship of concrete is 

explored.  The stress-strain response is evaluated based on the four main variabilities of 

natural fires: heating rate, maximum temperature, duration at maximum temperature, and 

cooling rate.  The experimental tests from Table 2.1 are isolated to individually investigate 

the influence of each natural fire variability. Considering that residual and hot tested 

specimens record fundamentally different responses; experimental work is initially 

separated based on these two conditions, with later comparisons provided.  The 

stress-strain relationship is assessed based on the key points of f’cT/R and ƐcT/R.  The full 

stress-strain relationship is not considered due to limitations of experimental results in the 

literature.  Likewise, the ultimate strain is not commonly recorded prohibiting any 

meaningful assessment of its response during natural fire.   

 

 

2.4.1  Heating Rate 

At the onset of the heating phase, the temperature within a concrete element is uniform and 

equal to the ambient temperature, typically assumed to be 20°C.  As heating is undertaken, 

a temperature gradient arises between the outer concrete layers and the inner core.  This 

gradient induces thermal stresses, which in turn influences the section’s stress and strain 

response.  The formation and severity of the internal temperature gradient is largely based 

on the rate of heating (Phan and Carino, 2003).    

 

To evaluate and compare the effect of variable rates of heating, this chapter divides 

experimental work into slow and rapid rates.  The definition of slow and rapid heating was 

entirely based on the median heating rate of the available experimental work.  As such, a 

slow heating rate is defined as having a rate less than or equal to 2°C/min; while rapid 

heating is greater than 2°C/min up to instantaneous heating.  For comparison, the standard 

curve defined by ISO 834 (2014) has an average heating rate of 34°C/min between 0°C 

and 800°C.  Experimental work is further divided into hot tested specimens and residually 

tested specimens.  
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Figures 2.4 and 2.5 display the influences of slow and rapid heating on the residual relative 

strength of concrete.  The work is reported for siliceous aggregate samples, unless 

otherwise labelled as calcareous (cal.).  The profiles of these experiments for both slow 

and rapid heating were found to be in good agreement with one another.  Figure 2.6 displays 

the averaged results.  No significant disparity is observed between the two averages, with 

both rates indicating comparable strengths at all temperatures.  Considering the average 

loss across all temperatures, slow heating causes slightly greater average strength loss at 

38 %, compared to rapid heating at 35 %.  The largest disparity in strength loss occurs at 

800°C, wherein slow heating resulted in a strength reduction that is 11 % greater than rapid 

heating.  Figure 2.6 also shows the recommended strength by EN 1992-1-2 (2004) with 

values adjusted from hot to residual conditions as described in Implementation of 

Eurocodes (2005).  Results from Netinger et al. (2011) are presented to compare against 

instantaneous heating, the most sever heating rate possible.  The high correlation of 

Netinger’s work gives indication that even highly rapid heating of concrete will exhibit 

similar responses to that of slower rates. 

 

 

Fig. 2.4: Relative Residual Strength of Concrete after Exposure to Slow 
Rates of Heating and Natural Cooling 
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Fig. 2.5: Relative Residual Strength of Concrete after Exposure to Rapid 
Rates of Heating and Natural Cooling 

 

 

Fig. 2.6: Relative Average Residual Strength of Concrete after Exposure to 
Slow or Rapid Heating and Natural Cooling 
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Figures 2.7 and 2.8 present the relative strength versus temperature at slow and rapid 

heating under hot conditions.  The strength of the slow and rapid samples was found to be 

in reasonably good agreement with one other.  Greater fluctuation is observed as compared 

to the residual tests, possibly due to the greater difficulty of hot testing or larger variation 

in specimen specific properties.  Figure 2.9 features the averaged slow and rapid profiles, 

with EN 1992-1-2 (2004) provided as a baseline.  Similar to the residual results, the three 

curves follow a very similar path without significant deviation.  Slow heating still results 

in a slightly greater average strength loss of 28 %, as compared with rapid heating at 23 %.  

The largest and only notable disparity occurs at 400°C, wherein slow heating results in 

20 % higher strength loss as compared to rapid heating.  The exact cause of this 

proportionally high strength increase for the rapidly heated samples can be attributable to 

the short maximum temperature duration applied to all three evaluated samples. 

 

 

Fig. 2.7: Relative Hot Strength of Concrete after Exposure to Slow Rates of 
Heating and Natural Cooling 
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 Fig. 2.8: Relative Hot Strength of Concrete after Exposure to Rapid Rates 
of Heating and Natural Cooling 

 

 

Fig. 2.9: Relative Average Hot Strength of Concrete after Exposure to Slow 
or Rapid Heating and Natural Cooling 
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Figures 2.10 and 2.11 display the relative strain (ƐcT/R) for hot and residual testing 

conditions.  Under hot conditions, strain increases relatively linearly at all temperatures.  A 

similar trend appears for residual samples up until about 400°C, at which point greater 

fluctuation emerges.  Due to a shortage of applicable strain data, the development of slow 

and fast averages for both hot and residual was not feasible.  Although many experimental 

studies have been carried out on concrete under varying heating rates, strain and/or stress-

strain responses are very rarely reported in full detail.  With the limited strain records 

available, no clear relationship emerges differentiating the effect of heating rate on strain.   

 

Based on the observed literature, it can be concluded that heating rates have a minimal 

effect on the strength of concrete.  On average, slow heated samples had slightly lower 

strengths than fast heated specimens.  But at any given temperature, the effect of heating 

fluctuated, producing either higher or lower strength between the two heating regimes.   A 

justification for the changing impact of heating rates has been proposed by Mohamidbai 

(1986).  Slow heating rates apply temperatures over a longer duration, generating strength 

reduction by long term moisture loss.  Alternatively, higher heating rates result in large 

thermal gradients causing strength reduction by micro cracking.  These two phenomena 

result in similar degradation for slow rates as compared to faster rates.   

 

It appears then that the main influence of heating rate is not on the stress-strain response, 

but on explosive spalling.  Explosive spalling is a phenomenon in which exterior portions 

of a concrete specimen violently spall off during heating, greatly reducing the elements 

cross-section.  The full mechanisms of explosive spalling are still not fully understood; 

however, heating rate is often cited as a major influencer in the spalling process 

(Jansson, 2013).  Phan and Carino (2003), Castillo and Duranni (1990), and Diederichs et 

al. (1988) all reported notable explosive spalling in their HSC samples, but not in their 

NSC.  Noumowe et al. (1996) even observed explosive spalling in HSC specimens at a 

heating rates as low as 1°C/min.  It is well documented in the literature that NSC is often 

unaffected by spalling compared to HSC (Kodur, 2014).  However, due to the severity of 

explosive spalling on RC, further consideration is recommended with regards to heating 

rate. 
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Fig. 2.10: Effect of Heating Rate on Relative Hot Strain of Concrete 

 

 

Fig. 2.11: Effect of Heating Rate on Relative Residual Strain of Concrete  
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2.4.2  Maximum Temperature 

The effect of elevated temperatures on concrete is the most well documented of the four 

variabilities in the literature.  General consensus regarding its impact has been covered 

extensively in the literature (Kodur, 2014).  The averaged relative strength and strain based 

on the experiments evaluated in this chapter are presented in Figures 2.12 and 2.13.  

Considering relative strength, hot tested specimens observe minor decay in the lower 

temperature ranges up until 300-400°C.  Some experimental work, such as by 

Diederichs et al. (1988) and Castillo and Duranni (1990), even observe minor strength 

gains in the 200°C range for hot tested specimens.  This strength gain was identified by 

Castillo and Duranni (1990) to be a result of particle stiffening as moisture evaporates from 

the concrete.  This response only occurs for specific concrete mixes.  Residually tested 

specimens feature relatively linear decay, reaching comparable levels to the hot tested 

specimens past 400°C.  Maximum strength loss of 70 % and 80 % is reached at 800°C for 

hot and residual specimens, respectively.  This reduction illustrates the substantial impact 

that maximum temperature has on the stress-strain response of concrete. 

 

Strain remains largely unaffected at lower temperatures below 400°C.  Beyond this 

temperature, total strain increases exponentially reaching maximum strains at 700°C of 3.4 

times that of the initial strain at ambient temperatures.  Hot and residual conditions present 

comparable strain profiles and values across the entire temperature spectrum.  The 

Eurocode approximation provides a highly conservative profile for strain response at 

elevated temperature.  Shortages in the experimental literature have likely led to this 

adoption of a highly conservative profile.  In contrast, strength reduction is much better 

represented by the Eurocode, with a reasonable agreement at all temperatures and test 

conditions.   
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Fig. 2.12: Relative Strength of Concrete for Hot and Residual Conditions 

 

 

Fig. 2.13: Relative Strain of Concrete under Hot and Residual Conditions 
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2.4.3  Maximum Temperature Duration 

Overall temperature duration is unique, as it influences every stage of natural fire exposure.  

Depending on the rate of heating and cooling, overall duration varies greatly.  Therefore, 

maximum temperature duration is defined and reported in the experimental data as the 

period from when the compartment reaches maximum temperature (Tmax), until 

compartment cooling begins.  In a natural scenario, Harmathy (1993) defines maximum 

temperature duration as occurring from Tmax until 0.8Tmax on the cooling branch.  In both 

cases, this duration represents the fully developed period of the fire wherein minimal to no 

external temperature variation takes place. 

 

Due to a limitation in long term testing data, this section focuses on the work of 

Carette et al. (1982) and Mohamidbai (1987) with complimentary work interjected.  

Carette et al. undertook the residual evaluation of concrete after extreme long-term 

exposure periods.  Calcareous samples were placed in a furnace for one and four months 

to determine the impact of long-term heating on concrete.  Figure 2.14 presents these 

results compared with short-duration heating of one hour by Noumowee et al. (1996) and 

durations defining uniform internal temperature by Phan (2001). 

 

At the lowest temperature of 75°C, strength reduction is relatively constant across all four 

duration periods.  Phan (2001) noticed the largest reduction, but this is largely due to 

interpolation of recorded data.  With increased temperature to 300°C and 450°C, strength 

reductions occurred as typically observed for concrete heated in these ranges.  At both 

temperatures, results from Phan’s measured specimens present a similar reduction to the 

samples heated at the one-month and four-month duration.  At 450°C, a strength reduction 

of 14.8 % is experienced between one hour and uniform, with only a further 0.5 % between 

uniform and four months.  This trend indicates that once a uniform internal temperature is 

reached, negligible reduction occurs regardless of the duration of exposure beyond that 

point.   

 



22 

 

 

 

 

1-hr (Noumowe et al., 1996), measured (Phan et al., 2001), 1-month and 4-months (Carette et al., 1982) 

Fig. 2.14: Relative Strength of Concrete over Long Term Exposure Periods 

 

 

To identify the impact of short duration heating, Mohamidbai (1987) evaluated the residual 

response of concrete after 1-hr heating increments.  Figure 2.15 exhibits the relative 

strength reduction during the experiments.  Results from similar experiments are provided 

by Savaa et al. (2005) for 2-hr exposure to maximum temperature and Li et al. (2004) for 

0-hr duration.  Li et al.’s results represent the minimum possible exposure duration, 

wherein all of the degradation occurs during the heating and cooling periods.   

 

Similar to Figure 2.14, it can be seen that specimens exposed for a shorter duration exhibit 

higher relative strengths than those exposed for a longer duration.  Significant strength loss 

is noted between the 1-hr and 2-hr exposed specimens.  At the higher temperatures 

approaching 800°C; the 1-hr, 2-hr, and 3-hr exposed samples all begin to exhibit 

comparable strength loss.  As such, it again appears that the majority of strength reduction 

occurs at a very short duration (within the first hours), with extended exposure only 

contributing to relatively minor reductions.   
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The presented experimentation in Figure 2.15 were undertaken on cubed specimens of 100 

mm or 150 mm.  For standard cylinder specimens, it is typically considered that a uniform 

internal temperature gradient is reached after 1-hr of exposure (Fu et al., 2005; 

Diederichs et al., 1988).  Considering the smaller size of the cube specimens, it can be 

concluded that the limited strength reduction after the 1-hr and 2-hr exposure is due to the 

specimens reaching a uniform internal temperature.  Once this temperature gradient 

becomes uniform, no identifiable strength reduction occurs at prolonged periods.  The 

results also indicate the diminishing influence of duration as maximum temperature 

increases.  At lower temperatures, the discrepancies between instantaneous, 1-hr, and 2-hr 

durations are significantly more pronounced than at 800°C.   

 

 

0-duration (Li et al., 2004); 2-hr* (Savaa et al., 2005); 1-hr, 2-hr, and 3-hr (Mohamidbai, 1987) 

Fig. 2.15: Relative Ultimate Strength of Concrete over Short Term Exposure 
Periods 
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The impact of duration on strain at maximum strength is more difficult to determine.  

Although experimental work exists in the literature, significant discrepancies between 

testing conditions make meaningful comparisons impossible.  To properly draw 

conclusions regarding the impact of temperature duration on strain, further testing is 

required. 

 

 

2.4.4  Cooling Rate 

As previously explored in this chapter, concrete exhibits notably greater strength during 

hot conditions versus residually after cooling.  Considering the effects of a natural 

environment, variable rates of cooling can be present, ranging from slow cooling in a 

heated space to rapid cooling from firefighting events.  Similar to the degradation caused 

during heating, thermal gradients also arise during cooling, which depending on the rate, 

generate greater or lesser internal thermal stresses.  Therefore, the impact of cooling is of 

great importance to the overall stress-strain relationship. 

 

To evaluate the effect of cooling, the experimental testing is divided into three categories: 

ambient cooling, rapid cooling, and slow cooling.  Ambient cooling is defined as removing 

the specimen from its heated environment and allowing cooling to occur in ambient air 

(typically 20°C).  From the perspective of a realistic fire, this scenario of ambient cooling 

is far less likely as opposed to rapid or slow cooling within the fire exposed compartment.  

However, due to experimental standardization, considerable data is reported for this 

scenario.  Ambient cooling is typically identified as resulting in a cooling rate of circa 

1°C/min (Morita et al., 1996).   
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Rapid cooling is achieved in experimental work either by exposing the specimen to water 

during the cooling stage.  Quenching and spraying techniques are typically applied by 

submerging or spraying the specimen with ambient temperature water for a prolonged 

duration.  In the specific case of 150 mm cubed specimens, Botte and Caspeele (2017) 

identified that from an elevated temperature of 600°C, quenching is equivalent to a cooling 

rate of 30-40°C/min.  The results of this experiment demonstrate the magnitude of possible 

cooling rates that can occur during natural fire scenarios. 

 

Slow cooling is defined as allowing the cooling of specimens to occur within the heating 

environment, typically a furnace or oven.  This scenario is particularly likely to occur in a 

real-world scenario, as the slow cooling of concrete within its compartment is realistic for 

structural members.  Culfik and Ozturan (2010) and Savaa et al (2005) observed that slow 

cooling resulted in a cooling rate of 0.3°C/min and 0.4°C/min respectively.  Although the 

rate heavily depends on the specific compartment, a rate of less than 0.5°C/min can be 

generally adopted to define slow cooling. 

 

Figures 2.16, 2.17, and 2.18 display the relative strength versus temperature of specimens 

exposed to ambient, rapid, and slow cooling.  All presented tests feature siliceous 

aggregate.  The overall profile of the experiments under each cooling method were found 

to be in good agreement with one another.  To better compare the three methods, the results 

from each case were averaged as exhibited in Figure 2.19. 
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Fig. 2.16: Relative Strength of Concrete under Ambient Cooling  

 

 

Fig. 2.17: Relative Strength of Concrete under Rapid Cooling  
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Fig. 2.18: Relative Strength of Concrete under Slow Cooling  

  

 

 

Fig. 2.19: Average Relative Strength of Concrete Considering Three 
Cooling Regimes  
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By observation of Figures 2.16 to 2.19, the following conclusions can be made about the 

influence of cooling rate on the concrete strength: 

 

▪ Increased cooling rates result in a decline in the strength of the concrete.  Between 

slow to rapid cooling, a further average strength reduction of 25 % is experienced.   

 

▪ Cooling rate has the greatest effect on strength in the mid-temperature range of 

200°C to 400 °C.  At 400°C, changing the cooling rate from slow to rapid results 

in a further strength reduction of 36 %.  This trend indicates the importance of 

considering cooling rates in low to medium temperature fire events. 

 

▪ The impact of cooling rates on strength reduction diminishes with increasing 

cooling rate.  It can be seen that a large strength reduction occurs from slow to 

natural (0.5°C/min to 1°C/min), but the further degradation from natural to rapid 

cooling (1°C/min, and 40°C/min) is much less.  At 400 °C, changing the rate from 

ambient to rapid results in a further strength reduction of 7.6 %.  At the same 

temperature, it was previously identified that slow to rapid resulted in a 36 % further 

reduction.  It can be concluded that the impact of cooling is asymptotic, reaching a 

steady state with increasing cooling rates. 

 

▪ All three cooling regimes converge with increasing temperature, reaching a 

minimum parity at 800°C.  This trend is similarly seen with heating rate. 

 

▪ Slower cooling methods are capable of retaining strength at lower temperatures.  

Until 300°C slow cooling retained the majority of the concrete’s strength, before 

declining steeply.  At the higher cooling rates of ambient and rapid, strength 

degradation begins at a very low temperature and decreases relatively linearly.  

 

▪ Eurocode results were found to be in good agreement with the ambient cooling rate.  

Alternatively, slow cooling was very conservative approximated and rapid cooling 

was unconservative approximated; particularly in the mid-temperature range.   
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In addition to the aggregated figures, a number of unique conclusions about the effect of 

cooling on strength arise in specific papers.  Botte and Caspeele (2017) investigated the 

influence of cooling regimes on the long-term residual stresses.  Testing was conducted 

56 days after heating had occurred to capture the full effect of strength reduction with time.  

An interesting discrepancy arose wherein specimens cooled by quenching, demonstrated a 

minor strength gain over comparably sprayed or ambiently cooled specimens.  The authors 

proposed that the quenching process may have rehydrated cement particles resulting in the 

strength gain over long durations. 

 

Abramowicz and Kowalski (2010) explored the concept of short duration water cooling on 

concrete.  Their tests involved the quenching of samples for a ten second duration, followed 

by natural cooling.  It was found that the short time immersion produced no significant 

effect on the specimens strength, producing very similar results to that of their baseline 

ambient cooling tests.  These results validate the concept of using an average cooling rate 

for design purposes; because although cooling has significant effects, near instantaneous 

rapid cooling does not.  It should be noted that what constitutes as short duration is entirely 

dependent on the geometry and properties of the concrete being exposed.  

 

Bingöl and Gül (2008) and Cülfik and Özturan (2010) demonstrated the effect of cooling 

regimes on NSC with calcareous aggregate.  Although a shortage of experimental data on 

calcareous specimens makes a larger comparison impossible, the findings of these two 

publications matched the trends of the siliceous aggregate discussed earlier in this Section.  

Ambient cooling to quenched cooling resulted in reduced strength with greatest influence 

in the 350°C range and converging at higher temperatures.  Strain increased with faster 

cooling rates and maximum temperature. 

 

Figure 2.20 displays strain at maximum compressive strength under various cooling rates, 

but only up until 500°C due to the limitation of available data.  To see the full temperature 

range, Figure 2.21 exhibits results from only Jaesung et al. (2008) up to 800°C for all three 

cooling methods.  From the comparison, it is observed that strain increases with increased 

rates of cooling.  Below 400°C, the disparity between rates is fairly minimal.  Beyond that 
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point however, Jaesung et al. (2006) found that strain increases and diverges rapidly across 

all of the cooling regimes.   Unlike strength, strain does not converge at high temperatures.  

Jaesung et al. (2006) recorded a maximum differential at 800°C of 47 % between slow and 

rapid cooling.   

 

 

 

Fig. 2.20: Relative Strain of Concrete Experienced at Ultimate Strength 
under varied Cooling Regimes 
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Fig. 2.21: Relative Strain of Concrete Experienced at Ultimate Strength by 
Jaesung et al. (2006) 
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2.5  Discussion 

To compare the influence of each of the four natural fire variabilities, the recorded 

experimental data has been aggregated over the entire temperature spectrum.  The relative 

strength findings are summarized in Figures 2.22 and 2.23 for residual and hot conditions.  

The profiles on the graphs represent the possible degradation of each fire variability when 

increased from a datum state as defined: 

 

▪ Heating Rate    rapid (> 2°C/min) to slow (≤ 2°C/min) 

▪ Maximum Temperature  ambient (20°C) to an elevated temperature 

▪ Exposure Duration   0-hr exposure to 3-hr exposure 

▪ Cooling Rate   slow (≤ 1°C/min) to rapid (quenching) 

 

The values for heating rate were taken from Figures 2.6 and 2.9; values for maximum 

temperature from Figure 2.12; values for exposure duration from Figure 2.15; and values 

for cooling rate from Figure 2.19.  Due to a lack of data for exposure duration during the 

hot condition, the residual profile has been applied for the hot condition Figure 2.23.  

Although not accurate to the true response, it is likely conservative and provides a baseline 

for further analysis.  Due to the scarcity of strain data, particularly for duration and heating 

rates, generation of similar profiles is not reasonably possible for strain response.   

 

Figure 2.22 and 2.23 present a clear indication as to which fire variability has the greatest 

effect on concrete strength at each temperature range.  In the low temperatures below 

100°C, minimal degradation occurs with all four variabilities contributing relatively 

equally to strength loss.    In the mid-range of 200°C to 500°C, cooling rate appears to be 

the most significant factor affecting degradation.  Exposure duration also reaches its 

maximum influence during this range, with comparable effects to that of maximum 

temperature.  Reaching temperatures in excess of 600°C, the effects of the maximum 

temperature dominate the response of the concrete.  By 800°C, the influence of maximum 

temperature far out ways the effects of any of the other three variabilities.   
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Fig. 2.22: Residual Condition Strength Loss of Concrete Under Various 
Influences from Specified Datum 

 

  

Fig. 2.23: Hot Condition Strength Loss of Concrete Under Various 
Influences from Specified Datum 

-10%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 100 200 300 400 500 600 700 800

St
re

n
gt

h
 L

o
ss

 (
%

)

Temperature (°C)

EN 1992-1-2 (2004) (Residual) Heating Rate

Max Temperature Exposure Duration

Cooling Rate

-10%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

0 100 200 300 400 500 600 700 800

St
re

n
gt

h
 L

o
ss

 (
%

)

Temperature (°C)

EN 1992-1-2 (2004) (Hot) Heating Rate

Max Temperature Exposure Duration



34 

 

 

 

2.6  Conclusion 

Based on the reviewed literature, the following conclusions can be made regarding the 

impact of each variability on concretes stress-strain response: 

 

1. Heating rates have a minimal impact on the strength of concrete.  Slow heating 

(≤ 2°C/min) did present marginally higher average strength losses than rapid 

heating, but the findings were so close as to preclude any conclusive statements to 

this effect.  As for the effect on strain, no clear trend emerges.  Sometimes samples 

with faster rates result in slightly greater strains, and sometimes the reverse.   

 

2. Maximum temperature causes the most significant impact to concrete.  Major 

degradation begins at temperatures in excess of 300°C, with only minor losses 

present before this temperature.  Residual tests displayed greater strength reduction 

compared with hot testing, featuring a further average strength reduction of 14 %.  

At the highest evaluated temperature of 800°C, the literature averages 70 % and   

81 % strength loss for hot and residual specimens, respectively.  Strain observed 

similar responses, incurring minor changes at temperatures less than 400°C, but 

increasing rapidly at higher temperature.  By 800°C, strains reached on average 3.5 

times that of the initial strain at ambient temperature.  The difference between 

residual and hot testing had minimal impact on strains.  However, at higher 

temperatures, residual did display slightly greater strains over hot specimens, but 

not significantly so.  These findings are in line with many other publications on the 

effects of maximum temperature of concrete. 
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3. Maximum temperature duration is important in the early stages of fire events, 

particularly the first hours of exposure.  Beyond this time, once the internal 

temperature gradient becomes uniform, negligible further degradation occurs 

regardless of extended exposure.  Depending on the intensity of fire exposure and 

specimen dimensions, time to reach uniform temperature will vary greatly.  

Insufficient data is available to give any indication as to the impact of duration on 

strain.   

 

4. Cooling rate was found to have a considerable effect on concrete strength between 

slow (< 1°C/min) to ambient cooling (≥ 1°C/min).  The difference between ambient 

to rapid cooling was also noticeable at lower temperatures, but became negligible 

in excess of 400°C. This trend indicates that the impact of cooling decreases with 

increasing cooling rates, especially at higher temperatures.  At 800 °C, all three 

cooling regimes converge to less than 15 % difference.  Based on the limited data 

available, strain appears to increase with greater cooling rates and greater applied 

temperatures.  However, more data regarding the influence on strain is preferred 

for a more conclusive result. 

 

5. To expand the experimental work regarding the influence of natural fires on 

concrete’s stress-strain relationship, additional experimental work needs to be 

completed, specifically addressing: mix proportions, water content, aggregate size, 

curing age, additives, and aggregate to cement ratio. Particular focus should be 

taken to account for strain results, specifically under variable exposure durations 

and cooling rates. 
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Chapter 3 

3.0  Equivalent Standard Fire Duration to Evaluate Internal     

Temperatures in Natural Fire Exposed RC Beams 

In the pursuit of undertaking performance-based fire design, accurately determining the 

severity of a fire event is an essential step.  Historically, fire severity has been represented 

by standard temperature-time curves, as outlined in ASTM E119 (2018) and 

ISO 834 (2014).  These curves form the basis of the existing prescriptive fire design 

methods.  However, because standard fire curves fail to consider compartment specific 

parameters, they have no relationship with natural fire events, and thus, are not suitable for 

performance-based design.  To model natural fires, several temperature-time curve 

alternatives, varying greatly in complexity and implementation, have been proposed in the 

literature (Cooper and Steckler, 1996).  As a means of industry standardization, the fire 

severity generated by a natural fire needs to be related back to standard fires using time 

equivalency.  The major benefit of defining time equivalents (te), is that existing data, 

testing, and computer programs utilizing standard fire curves, can be directly related to 

natural events for conducting structural fire design (Buchanan, 2001).  Available methods 

to calculate the te duration have extensively focused on protected steel members, which 

deviate greatly from reinforced concrete (RC) sections because of their unique fire-related 

properties and expected internal thermal gradients.  This chapter demonstrates the 

importance of internal thermal gradients in RC members, summarizes the existing time 

equivalent approaches, and proposes a new method to determine the te for rectangular RC 

beams while accounting for section dimensions. 

 

 

3.1  RC Thermal Gradient 

When exposed to fire, RC cross-sections develop large thermal gradients, as the 

temperature level slowly transfers from the surface to the inner core.  To undertake 

performance-based design, the two-dimensional thermal gradients within an RC 

cross-section can be simplified to a one-dimensional average internal temperature profile 
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(AITP) (El-Fitiany and Youssef, 2009).  The AITP describes the temperature as a function 

of the section depth, allowing for analysis of beams experiencing uniaxial bending.  Figure 

3.1 provides a qualitative representation of the AITP for an RC beam exposed to fire on 

three sides.  The concrete section is first divided into a two-way mesh to conduct heat 

transfer analysis (Figure 3.1a).  Throughout the entire fire exposure period, the maximum 

temperature experienced at each location in the mesh is recorded.  The meshed units are 

subsequently grouped into horizontal layers (Figure 3.1b), and the average temperature for 

each layer is calculated.  The AITP, shown in Figure 3.1c, represents the maximum 

temperature experienced by each layer throughout the fire event.  For standard fires, 

because the temperature monotonically increases, the maximum temperature for each layer 

occurs at the end of the fire duration.  For natural fires, thermal inertia at the beginning of 

the cooling phase results in a temperature lag, where some interior layers will reach their 

maximum temperature shortly after the fire begins to decay (Purkiss, 2007).  As a result, 

the AITP does not represent a particular instance, but rather represents the most severe 

influence of the fire on the section.  Suitability of AITPs in representing section 

temperature gradients for performance-based design has been proven by El-Fitiany and 

Youssef (2017), Alhadid (2017), Youssef et al. (2015), El-Fitiany and Youssef (2014), and 

El-Fitiany and Youssef (2009).  The importance of evaluating internal thermal gradients 

during the performance-based design of RC members exposed to fire is highlighted by 

Wang et al. (2013) and Guo and Shi (2011). 

 

 

Fig. 3.1 Heat Transfer Modelling: (a) Heat Transfer Mesh, (b) Average 
Temperature Layers, and (c) AITP 
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3.2  Existing time equivalent Methods 

Beginning in the early 1900’s, time equivalent methods representing fire severity have been 

presented in the literature.  Eurocode broadly divides these methods into two categories: 

thermal and mechanical (EN 1993-1-2, 2005).  Thermal methods are based on the 

temperature or thermal energy experienced by an element exposed to fire, while 

mechanical methods are based on structural behavior.  A brief summary of three thermal 

and two mechanical methods is provided below.  Details about their implementation with 

worked examples are given by Wade et al. (2014).   

 

 

3.2.1  Equal Area Method (Thermal) 

Equal area method was the first widely recognized time equivalent theory, developed by 

Ingberg (1928).  The te is identified when the area under the standard fire curve is equal to 

the area under a chosen design fire curve, as shown in Figure 3.2a.  Although simple in 

implementation, by comparing the area under the curve, the relationship is not accurately 

accounting for the energy of the fire as it ignores the heating rate, maximum temperature, 

and cooling rate.  Therefore, short hot fires and long cold fires, which have the same area, 

could be represented by the same te, despite having highly different heat distribution 

profiles (Thomas et al., 1997).   

 

Fig. 3.2 Thermal Equivalent Time Methods: (a) Equal Area Method and (b) 
Maximum Temperature Method 

 

Fi
re

 T
em

p
er

at
u

re

Time

standard fire
design fire

te

equal area

El
em

en
t 

Te
m

p
er

at
u

re

Time 

standard fire
design fire

te

(a) (b) 



44 

 

 

 

3.2.2  Maximum Temperature Method (Thermal) 

Maximum temperature method was most notably developed by Law (1971), Pettersson 

(1975) and Schneider et al. (1990).  The te is defined as the exposure duration to the 

standard fire required to generate the same maximum temperature within an element as 

produced by the design fire (Figure 3.2b).   The methods developed by Pettersson (1975) 

and Schneider et al. (1990) have subsequently been implemented in the design standards 

CIB (1986) and EN 1991-1-2 (2002) (Buchanan, 2001).  Maximum temperature methods 

account for fuel load, compartment area, and ventilation; thus, providing far greater 

correlation to natural events than the equal area method.  It is generally accepted that the 

Eurocode method is applicable for steel and concrete elements (Buchanan, 2001).  

However, Thomas et al. (1997) and Xie et al. (2017) found the Eurocode approach to 

consistently produce unreliable results for concrete members.  Purkiss (2007) stated that 

the maximum temperature approach is only valid for sections that can be characterized by 

a single uniform temperature, which clearly excludes concrete cross-sections given the 

significant temperature gradients within them.   

 

 

3.2.3  Energy Method (Thermal) 

Energy methods are explored by Harmathy and Mehaffey (1987), Harada et al. (2000), 

Nyman (2002), and Kodur et al. (2010).  The te occurs when accumulated thermal energy 

from the standard fire matches that from a selected design fire.  Harmathy and Mehaffey 

(1987) estimated thermal energy based on normalized heat loads, Harada et al. (2000) 

considered the properties of compartment boundaries, Nyman (2002) used the thermal 

energy of a fire itself, and Kodur et al. (2010) focused on the cumulative energy transferred 

to an RC beam.  Energy methods do not typically account for the specific energy input 

needed to develop the internal thermal gradients of RC sections.    The only exception is 

Kodur et al.’s (2010) energy method, as it is based on a fire’s ability to transfer energy 

specifically to an RC beam.  It thus, results in a te which produces a close representation of 

the internal temperature gradients resulting from the design fire. 
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3.2.4  Load Capacity Concept (Mechanical) 

The load capacity concept focuses on the mechanical response of an isolated fire exposed 

element (Xie, 2017).  In this case, the te is the standard fire duration at which the capacity 

of an element matches its lowest capacity during exposure to a selected design fire 

(Figure 3.3a).  This concept provides a high level of accuracy in representing the severity 

of a fire on load capacity.  However, it requires significant experimental and/or 

computational effort for each specific section as capacity is greatly influenced by the cross-

section details.  It also prioritizes a single mode of failure as the basis for equivalency, 

leaving potentially large deviations in other load responses, deflections, and interactions at 

the system level.    A general method to calculate the te based on load capacity was not 

found in the literature.  The concept however has been used by Thomas et al. (1997) and 

Xie et al. (2017) to demonstrate that the Eurocode te (EN 1991-1-2, 2002) is unconservative 

for RC elements when assessing the load capacity as the primary response.  

 

Fig. 3.3 Mechanical Equivalent Time Methods: (a) Minimum Load Capacity 
Method and (b) Maximum Deflection Method 
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3.2.5  Maximum Deflection Method (Mechanical) 

Maximum deflection method (MDM) uses the deflection serviceability of an isolated 

element as its basis for equivalence (Buchanan, 2001).  The te for a specific element occurs 

when the deflection caused by a standard fire matches the maximum deflection caused by 

a selected design fire (Figure 3.3b).  This method entails a great deal of complexity 

compared to thermal methods, but it does provide highly accurate deflection predictions, 

which can be used to satisfy serviceability limits.    Similar to the load capacity concept, 

deflection accuracy comes at the expense of other mechanical responses.  Kodur et al. 

(2010) used this method to computationally evaluate 72 RC beams under fire exposure, 

resulting in an empirical equation to determine the te for RC beams. 

 

 

3.3  Research Significance 

The existing time equivalent methods are based on specific maximum temperature, energy, 

load capacity, or deflection criteria.  Although these methods have been successful in the 

case of steel members, the large cross-sections of RC members necessitate the 

consideration of internal thermal gradients.  Of the existing methods, none directly consider 

the effects of internal gradients, nor account for the influence of cross-section dimensions.  

 

In this paper, an average internal temperature profile method is proposed as an improved 

measure of fire severity for RC beams.  The AITP method is based on the actual internal 

temperature gradients that develop within a concrete section, allowing for an accurate 

evaluation of the effect of fire on RC beams.  Using this method, the te is defined as the 

duration of standard fire required to generate the same AITP in an RC section as 

experienced by a selected design fire.  The following sections provide details about the 

conducted parametric studies, the proposed AITP te, and a recommended size adjustment 

factor.   

 

 

 



47 

 

 

 

3.4  Time Equivalent Parametric Study 

3.4.1  Parameters 

To examine the AITP te, the standard fire equation and design fire parameters are first 

defined.  In North America, two standard fire curves are commonly used, as presented by 

Equations 3.1 and 3.2; where Tf is the fire temperature (°C), TO is the initial temperature 

(°C), and t is the duration of fire exposure (hr).  The first equation is prescribed by both 

EN 1991-1-2 (2002) and ISO 834 (2014); while the second was developed by Fackler 

(1959) to represent the temperature curve presented in tabular form in both 

ASTM E-119 (2018) and CAN/ULS-S101 (1982).  The AITP time equivalent, proposed in 

this chapter is based on the ISO standard fire given by Equation 3.1; however, it should be 

noted that both equations result in almost identical temperatures with negligible difference 

in severity (Lie, 1992; Kodur, 2010).   

 

𝑇𝑓 − 𝑇𝑂 = 345 𝑙𝑜𝑔10(480𝑡 + 1)  (3.1) 

𝑇𝑓 − 𝑇𝑂 = 750 [ 1 − 𝑒
(−3.79553 √ 𝑡  )] + 170.41 √ 𝑡  (3.2) 

 

To develop a natural fire curve, the Eurocode provides a process based on a variety of 

parameters, from which, four key parameters can be identified.  They are: floor area of the 

fire compartment (Af), opening factor of the fire compartment (Af), design fire load density 

as related to the floor area (qf,d), and thermal absorptivity of the compartment enclosure (b) 

(EN 1991-1-2, 2002).  A number of existing time equivalent methods are linked to these 

parameters, allowing them to be easily related to the Eurocode’s natural fire definition.  

However, doing so limits the applicability of the time equivalent to only a small range of 

design fires developed using the Eurocode approach.  Alternatively, a natural fire can be 

defined based on the key points of its fire curve.  Figure 3.4 shows the temperature-time 

profile of a natural fire from the Cardington research tests (Lennon, 2014).  This typical 

natural fire can be characterized by three key points: (i) the initial time at ambient 

temperature (To); (ii) the point of maximum temperature (Tmax) and its corresponding time 

(tmax); and (iii) the final fire duration (tfinal) upon cooling back to To.  Given that To can be 

typically taken as 20°C, only tmax, tfinal, and Tmax are needed to define the curve. 
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Fig. 3.4 Natural Temperature-Time Curve from Cardington Full Scale 
Testing (Lennon, 2014) 

 

To demonstrate the limitation of the Eurocode parameters, 1470 design fires were 

developed following the Eurocode approach.  Table 3.1 outlines the examined values for 

each of the used parameters.  Values of Af and O were chosen based on Equation A.2a of 

EN 1991-1-2 (2002); while qf,d and b were selected from the standard values given in Table 

E.4 of EN 1991-1-2 (2002) and Table 1.0 of Implementation of Eurocodes (2005).  

Additional factors were set consistent with the assumptions of no explosives in the fuel 

load and no on-site fire brigades or active firefighting measures. Compartment height was 

taken equal to 3.0 m.   

 

Table 3.1 Eurocode Fire Parameters for Design Fires 

Af qf,d b O 
m2 MJm-2 Jm-2s0.5K m0.5 

16 280 521 0.035 

25 347 961 0.050 

50 511 1341 0.070 

75 730 1697 0.090 

100 948 1918 0.110 

300 1217  0.150 

500   0.200 
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Based on the range of chosen parameters, it would seem reasonable to assume that a 

sufficient number of design fires have been produced to encompass every possible natural 

event.  However, when the key parameters of tmax, tfinal, and Tmax are identified and plotted 

on a 3-dimensional grid (Figure 3.5a), it becomes clear that the resulting profiles ignore 

large amounts of possible combinations.  As such, the suitability of any time equivalent 

based on the Eurocode parameters cannot be guaranteed for a wide variety of natural fires.  

To overcome this limitation, the parametric study and time equivalent presented in this 

chapter focus on the parameters of tmax, tfinal, and Tmax.  The valid range of the three key 

parameters were determined based on the natural fires presented by Dembsey et al. (1995), 

Byström et al. (2012), Lennon (2004), Kirby et al. (1999), and Implementation of 

Eurocodes (2005).  Within the valid ranges of 350°C ≤ Tmax ≤ 1200°C, 

15 min ≤ tmax ≤ 115 min, and 20 min ≤ tfinal ≤ 240 min; a sensitivity study was undertaken 

to determine the optimal intervals for each parameter such that the developed design fires 

are reasonably spaced.  Values for tmax were chosen at 5-min intervals until 30 min, then at 

17-min intervals until 115 min; values for tfinal were chosen at 20-min intervals throughout; 

and Tmax values were chosen starting from 350°C at 100°C intervals until 650°C, then at 

50°C intervals until 1200°C.  Any combination with tmax ≥ tfinal was immediately excluded, 

resulting in a total of 1290 design fires for evaluation, resulting in a total of 1290 design 

fires for evaluation (Figure 3.5b).   
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Fig. 3.5 Identification of Key Points using (a) Eurocode Parameters and (b) 
Proposed Parameters 
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Extrapolating the full design fire curve from the key points is a two-stage process.  Firstly, 

for the heating stage, Equation 3.3 is adapted from the Eurocode method (EN 1991-1-2, 

2002); where t is the time (min) and Tf is the fire corresponding temperature (°C).  The 

equation is subsequently multiplied by a factor such that at t = tmax, Tf = Tmax.  Secondly, 

for the cooling stage, a linear profile is used connecting the point of maximum temperature 

to the end of the fire.  This process was followed to assemble the temperature-time curve 

for each of the 1290 design fires used in this study. 

 

𝑇𝑓 − 𝑇𝑂 = 1325(1 − 0.324𝑒
(−0.2𝑡∗ ) − 0.204𝑒(−1.7𝑡

∗ ) − 0.472𝑒(−19𝑡
∗ ) ) (3.3) 

 

To provide in-depth discussion about the effect of fire loading on the proposed time 

equivalent, six design fires have been selected.  The fires were based on the Eurocode 

approach, their parameters are summarized in Table 3.2 and plotted in Figure 3.6.   The six 

fires were developed using the Eurocode approach demonstrating a range of possible 

natural fire profiles similar to those presented in the literature.   The design fires were 

broadly classified as: moderate, large, small, rapid hot, and long cool.    

 

 

Fig. 3.6 Representative Design Fire Profiles 
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Table 3.2 Representative Design Fire Characteristics 

Fire ID Af qf,d b O Class 

  m2 MJm-2 Jm-2s0.5K m0.5   

FR 1 50 347 1341 0.070 moderate 

FR 2 300 280 1341 0.050 moderate 

FR 3 100 1217 961 0.050 large 

FR 4 50 280 1918 0.090 small 

FR 5 100 1217 1697 0.150 rapid hot 

FR 6 40 511 1697 0.035 long cool 

 

 

The cross-section of the theoretical concrete beam was taken as 250 x 500 mm.  The effect 

of cross-section dimensions is examined in Section 6 of this chapter.  Normal strength 

concrete (NSC) with siliceous aggregate was specified based on its standard usage in the 

industry.  The thermal conductivity, density, and specific heat of siliceous aggregate were 

defined using the relationships provided by Lie (1991).   

 

 

3.4.2  Methodology 

Heat transfer analysis is completed for the full section using a finite difference method 

(FDM).  A detailed description of the implemented FDM is given in Appendix A.  The 

proposed AITP te is derived following the process summarized in Figure 3.7.  AITPs are 

developed for a selected design fire (AITP-D) and a standard fire (AITP-S) with duration 

of t.  Correlation between AITP-D and AITP-S is judged based on either mean or 

conservative criteria.  Mean criterion compares the absolute percent difference between 

AITP-D and AITP-S at every layer of the profile and records the average percent difference 

for all of the layers.  The duration t is incrementally increased until the lowest average 

percent difference is found.  Conservative criterion ignores error differences; the duration 

t is incrementally increased until AITP-S has equal or larger temperatures at every layer 

when compared to AITP-D.    Using the two criteria, a te can be found that provides either 

a best match or conservative value.  The results of the two AITP criteria are given in Section 

3.4.3. 
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Fig. 3.7 Approach Followed to Calculate AITP Time Equivalents 
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3.4.3  AITP Time Equivalent Values 

Figure 3.8 shows the AITP mean te versus the average and maximum error between the 

respective AITP-S and AITP-D.   Of the 1290 evaluated cases, none recorded an average 

error in excess of 8.5 %.  Maximum error is significantly greater for all considered cases, 

although the extent of the section affected by the high error is generally very small.  Figure 

3.9 displays a consolidation of the average error from the six design fires as function of 

section depth.  Maximum deviation between AITP-S and AITP-D arises at the lower 

surface of the beam, where temperatures are highest.  Moving away from the point of 

maximum difference, the discrepancy between AITP-S and AITP-D decreases rapidly.  

This trend can be defined by a highly-variable zone near the surface and a constant zone in 

the interior.  At a distance of just 52.5 mm into the section, the error falls below 10 %.  As 

such, even though the maximum error is large in value, its influence on the concrete section 

is relatively minor.  A small uptick in the error is experienced around 35 mm due to the 

AITP-S and AITP-D crossing paths, which causes a divergence and subsequent 

re-convergence in this region.  Depending on the design fire, the scale of divergence will 

differ.  Cases with the largest average and maximum error are typically attributed to small 

fires, with low temperature over a short duration.  Such fires are difficult to approximate 

given the intended purpose of the standard fire as a representation of a worst-case fire event.    

Considering that smaller fires are less likely to result in major structural damage, it is 

reasonable to accept higher errors for these types of fire events. 
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Fig. 3.8 Accuracy of AITP Mean Time Equivalent for Average Error and 
Maximum Error 

 

                                 

Fig. 3.9 Average Error as a Function of Section Depth 
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A calculation method for the mean and conservative te is proposed by the general Equation 

3.4, with coefficients A through J given in Table 3.4.  The equation and coefficients were 

determined using a least square regression analysis, common regression requirements of 

probability (p) < 0.001 and correlation (R2
adj) > 95 % were maintained.  In Equation 3.4, 

Tmax is the maximum fire temperature (°C), tmax is the corresponding time (min), and tfinal is 

the overall duration of the fire (min).  Following Eurocode guidelines, the time variables 

tmax and tfinal are measured from the point of flashover, and tfinal is measured to the end of 

the decay phase, ignoring the relatively negligible impact of a fire’s ignition and extinction 

periods.   

 

𝑡𝑒 = 𝐴 + 𝐵𝑡𝑚𝑎𝑥 + 𝐶𝑡𝑓𝑖𝑛𝑎𝑙 + 𝐷𝑇𝑚𝑎𝑥 + 𝐸𝑡𝑚𝑎𝑥
2 + 𝐹𝑡𝑓𝑖𝑛𝑎𝑙

2 + 𝐺𝑇𝑚𝑎𝑥
2  

               +𝐻𝑡𝑚𝑎𝑥𝑡𝑓𝑖𝑛𝑎𝑙 +   𝐼𝑡𝑚𝑎𝑥𝑇𝑚𝑎𝑥 + 𝐽𝑡𝑓𝑖𝑛𝑎𝑙𝑇𝑚𝑎𝑥  
   (3.4) 

 

Table 3.3 Coefficients for Equation 3.4 

V
al

id
 R

an
ge

   
   

 

 Mean Criterion Conservative Criterion 

tmax (min) 15 - 115 15 - 115 15 - 115 15 - 115 15 - 115 

tfinal (min) 20 – 240 20 – 240 20 – 240 20 – 240 20 – 240 

Tmax (°C) 350 – 1100 350 - 750 750 - 950 950 - 1100 1100 - 1200 

C
o

ef
fi

ci
e

n
ts

 

A 8.124 8.690 2.370 566.30 4404.0 

B -0.153 -0.0829 -0.0893 -0.465 -5.745 

C 0.0384 0.0324 0.0446 1.188 1.039 

D -0.0431 -0.0429 -0.0186 -1.332 -8.177 

E -8.53 x10-4 -4.74 x10-4 -9.42 x10-4 -20.00 x10-4 -80.87 x10-4 

F -6.46 x10-4 -4.16 x10-4 -7.39 x10-4 0.0 2.99 x10-4 

G 0.50 x10-4 0.66 x10-4 0.35 x10-4 7.95 x10-4 38.36 x10-4 

H 3.44 x10-4 1.57 x10-4 4.77 x10-4 -3.07 x10-4 -17.80 x10-4 

I 6.55 x10-4 5.33 x10-4 5.40 x10-4 12.05 x10-4 69.36 x10-4 

J 4.52 x10-4 3.70 x10-4 4.71 x10-4 -9.00 x10-4 -8.40 x10-4 
 

* Equation 3.4 is only valid for sections of 250 x 500 mm in size 
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The valid ranges given in Table 3.4 are based on the extents of the parametric study.  Fires 

outside of these valid ranges were not considered in this study.  The equation is only valid 

for 250 x 500 mm concrete sections; variable dimensions are considered in Section 6.  Due 

to the greater variability of the conservative te, four sets of coefficients are given, each is 

valid for the shown Tmax range.  These four ranges were determined by undertaking a 

sensitivity study to group design fires of similar severity.  Figure 3.10 plots the te calculated 

numerically versus that evaluated using the mean and conservative equations to 

demonstrate their suitability. 

 

 

  Fig. 3.10 Accuracy of Time Equivalent Equations: (a) Mean Criterion 
and (b) Conservative Criterion 
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3.5  Size adjustment Factor 

3.5.1  Influence of Beam Width and Height 

In this section, the effect of beam width (bc) and height (hc) on the AITP te is investigated.  

To the best of the author’s knowledge, none of the existing time equivalent methods have 

considered section dimensions, despite its importance on defining the internal temperature 

gradients.  Figure 3.11 displays the AITP of eight beams with bc of 250, 400, 600, and 

800 mm; and hc of 500 and 800 mm.  The sections were exposed on three sides to a 1-hr 

standard fire.  Width variation significantly influences the AITP.  Increasing the width from 

250 to 800 mm reduces the temperature values by an average of 81 % for this sample fire.  

In contrast, height can be seen to have little to no impact on the AITP.  The thermal profile 

recording the largest temperature values, corresponds to the beam with the smallest width.  

Wider elements, which have a larger interior to surface area ratio, experience a lower 

average internal temperature. 

 

  

Fig. 3.11 Average Internal Temperature Profile due to 1-hr Standard Fire for 
Variable Cross-Sections 
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Figure 3.12 demonstrates the impact of section width on the AITP mean and conservative 

te for five beams with bc of 250, 400, 600, and 800 mm; and an hc of 500 mm.  The sections 

are exposed to the six design fires defined in Section 5.1.  The results indicate that as width 

increases, an equal or greater te is required for the larger and longer duration fires.  

Therefore, despite the average temperature becoming lower with increasing width, it is 

inaccurate and unconservative to represent a wider beam with the te derived for a smaller 

cross-section.  The necessary increase in duration of the standard fire is highly dependent 

on the design fire.  For instance, the smaller and shorter fires (FR 1, FR 4, and FR 5), are 

only capable of significantly heating the exterior layers of a beam, and only require 

minimal alteration to the te when width increases.  Inversely, the larger and longer fires 

(FR 2, FR 3, and FR 6), require significant increases to the standard fire duration as these 

longer fires are able to slowly heat the entirety of a section.   

 

 

 

Fig. 3.12 Sensitivity of te to Section Width (a) Mean Criterion and (b) 
Conservative Criterion 
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A similar comparison was conducted studying the effect of variable heights on the AITP 

te.  Sections were evaluated with hc at 300, 400, 500, 700, and 800 mm; and bc held constant 

at 250 mm.  As previously determined, the height of RC beams had no impact on the mean 

or conservative te.  Despite this, when the section height is compared against the error 

between AITP-D and AITP-S (Figure 3.13), a notable influence can be observed.  As height 

increases, the correlation between the two profiles improves markedly.  This trend can be 

explained by examining the two zones of the AITP profile.  For taller beams, the constant 

zone dominates the average error calculation, while for shorter beams, the variable zone 

plays a more significant role.  As the error values are low in the constant zone, the average 

error will seem to be affected by the section height.  Thus, shorter beams will give higher 

error than taller beams, regardless of the fact that both have almost matching AITPs and 

identical te durations.  In this section, a study of 5160 RC cross-sections of variable 

dimensions and design fire exposures is considered.  It was found that the variable zone 

averages a height of 227 mm.  In the previous evaluation of the te, the section height was 

taken constant at 500 mm, allowing the constant and variable zones to contribute equally 

to the error calculation.  To account for different section heights, the errors can be 

normalized such that the constant and variable zones are having equal influence regardless 

of the section height.  Equation 2 is used for normalization.  The end of the variable zone 

was identified when the temperature difference between successive AITP layers was less 

than 1°C.  The 0.45 factor in Equation 3.5 was selected such that the normalized average 

error will be equal to the actual average error, for the moderate fire FR 2 when section 

height is 500 mm.   

 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝐸𝑟𝑟𝑜𝑟 = 𝐸𝑟𝑟𝑜𝑟 ÷ 
𝑇𝑟𝑎𝑛𝑠𝑖𝑒𝑛𝑡 𝑍𝑜𝑛𝑒 𝐻𝑒𝑖𝑔ℎ𝑡

0.45 𝑆𝑒𝑐𝑡𝑖𝑜𝑛 𝐻𝑒𝑖𝑔ℎ𝑡
    (3.5) 
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Fig. 3.13 Section Height versus Average Error for Mean Criterion 

 

 

Fig. 3.14 Section Height versus Normalized Average Error for Mean 
Criterion 
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To develop a general equation to account for beam dimensions, a parametric study was 

undertaken on sections with bc of 250, 400, 600, and 800 mm.  Height was held constant 

throughout the study at 500 mm, with normalized results used to evaluate the mean 

criterion.  The methodology presented in Section 3.4.2 was followed.  Standard and design 

fires were assembled consistent with the process outlined in Section 3.4.1, resulting in 1290 

cases per cross-section.  In total, considering all 4 cross-sections, 5160 cases were analyzed 

in this section. 

 

 

3.5.2  AITP Size Adjustment Factor 

Figure 3.15 presents the mean te for the 5160 considered cases versus (a) the normalized 

average error and (b) the maximum error.  Considering all four section widths, 322 out of 

the 5160 test cases resulted in an average error greater than 10 %.  In determination of the 

size adjustment factor (ψsize), all 5160 cases were utilized for the conservative criterion; 

while for the mean criterion, cases with error greater than 10 % were highlighted and 

manually excluded.  The high error data points can be identified as belonging to fires with 

low temperature and duration.  To eliminate these fires, the valid range of the data was 

altered to exclude fires with Tmax < 600°C and fires with Tmax < 750°C reached during a 

tmax < 60 min.  The design fires passing and failing this new range are highlighted on Figure 

3.15 in grey and black, respectively.  Applying the condition completely eliminates the 

high error data points, but also eliminates a variety of passable data points, resulting in 

4704 cases used in the determination of the mean ψsize. 
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Fig. 3.15 AITP Mean Time Equivalent in Relation to (a) the Normalized 
Average Error and (b) the Maximum Error 
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The general equation for the ψsize is presented in Equation 3.6; wherein bc is the section 

width (m), Tmax is the maximum fire temperature (°C), tmax is the time when maximum 

temperature occurs (min), and tfinal is the overall duration of the fire (min).  The coefficients 

for Equation 3.6 can be found in Table 3.5.  Both the mean and conservative criteria were 

developed using regression analysis, maintaining the common requirements of probability 

(p) < 0.001 and correlation (R2
adj) > 95 %.  Valid ranges are prescribed based on the range 

of design fires for which the parametric study was undertaken. 

 

𝜓𝑠𝑖𝑧𝑒 =

{
 
 
 
 

 
 
 
 

                                                                                                      

1.0 { 

𝑓𝑜𝑟 𝑏𝑐 < 300 𝑚                                                   
𝑓𝑜𝑟 𝑐𝑜𝑛𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑣𝑒 𝑡𝑒 𝑤ℎ𝑒𝑛 𝑇𝑚𝑎𝑥 > 1150℃
𝑓𝑜𝑟 𝑐𝑜𝑛𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑣𝑒 𝑡𝑒 𝑤ℎ𝑒𝑛 𝑡𝑒 > 180𝑚𝑖𝑛     

       

  𝐴 + 𝐵𝑡𝑚𝑎𝑥 + 𝐶𝑡𝑓𝑖𝑛𝑎𝑙 + 𝐷𝑇𝑚𝑎𝑥                                           

     + 𝑏𝑐(𝐸 + 𝐹𝑡𝑚𝑎𝑥 + 𝐺𝑡𝑓𝑖𝑛𝑎𝑙 +𝐻𝑇𝑚𝑎𝑥)  ≥ 1.0            

      
   

(3.6) 

 

Table 3.4 Coefficients for Equation 3.5 

 Mean Criterion Conservative Criterion 

Valid Range 

200 ≤ bc ≤ 800 mm 200 ≤ bc ≤ 800 mm 

300 ≤ hc ≤ 800 mm 300 ≤ hc ≤ 800 mm 

15 ≤ tmax ≤115 min 15 ≤ tmax ≤115 min 

20 ≤ tfinal ≤240 min 20 ≤ tfinal ≤240 min 

600 ≤ Tmax ≤1200°C 1 350 ≤ Tmax ≤1200°C 

A 1.022 0.819 

B -2.57 x10-4 3.78 x10-4 

C 2.69 x10-4 -2.23 x10-4 

D -0.22 x10-4 1.82 x10-4 

E 0.113 1.037 

F -8.23 x10-4 -27.00 x10-4 

G 14.01 x10-4 27.15 x10-4 

H -1.93 x10-4 -10.75 x10-4 
 

* Excluding Tmax < 750 °C reached during tmax < 60 min 
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The value of the ψsize is set equal to 1.0 for specific cases for the reasons given in this 

paragraph.  Firstly, given the increasing nature of the te with bc, the value of the ψsize should 

never be taken less than one.  Secondly, for small beams with bc < 300 mm, Equation 3.4 

is sufficient alone, and thus the value of the ψsize is one.  Lastly, a trend unique to the 

conservative te necessitates the addition of the final two constraints.  When beams are 

narrow, heating from both sides causes the internal temperatures to rise significantly.  In 

these cases, the critical point of the conservative te, where AITP-S is equal to AITP-D, is 

often at a height well away from the beams lower surface.  As bc increases, the effects of 

two-sided heating are diminished, reducing the internal temperatures, and causing the 

critical point to shift towards the lower surface.  Once the critical point is at the surface, bc 

has negligible influence on the te as the critical point is directly influenced by the surface 

temperature.  In this case, the ψsize remains at a value of 1.0 even as bc increases.  It is 

difficult to capture this constant value with the equation, therefore to alleviate the issue, 

condition terms (Tmax > 1150°C and te > 180°C) were manually derived by an iterative 

process, for which the ψsize is equal to one.  Results for the mean te are presented in Figure 

8, plotting the numerical versus equation-based te for results with and without the ψsize.  It 

can be seen that the te adjusted using the ψsize exhibits far superior fit and significantly less 

deviation, especially on the unconservative side.  A similar trend is noted for the 

conservative te.  Applying these conditions significantly improves the accuracy of the 

equation in matching the analytical data.  Figure 3.16 displays the numerical versus 

equation-based ψsize, demonstrating a suitable representation for the general equation.  

Final results of the study are presented in Figure 3.17, plotting the numerical versus 

equation-based te for results with and without ψsize.  It can be seen that for both criteria, the 

te with ψsize exhibits far superior fit, with significantly less deviation, especially on the 

unconservative side.   
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Fig. 3.16 Analytical vs. Equation ψsize for: (a) Mean Criterion and (b) 
Conservative Criterion 
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Fig. 3.17 Analytical vs. Equation te for: (a) Mean Criterion (b) Conservative 
Criterion with and without ψsize 
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3.6  Comparison with Existing Methods 

A comparison of existing methods is provided in Figures 3.18 to 3.23 for each of the six 

design fires. The referenced methods are sorted in pairs, featuring the early methods of 

Ingberg (1928) and Law (1971); the two code approaches of CIB (1986) and EN 1991-1-2 

(2002); the RC Energy and MDM methods of Kodur et al. (2010); and the two AITP 

criteria.  Each figure consists of three parts, displaying (a) the te, (b) the normalized average 

error for a 250 x 500 mm section, and (c) the normalized average error for an 800 x 500 mm 

section.  For the AITP criteria, the te for the 800 x 500 mm section with ψsize is indicated 

by the checkered bar.  All te durations are calculated based on the ISO standard fire.  It 

should be noted that the small fires FR 1 and FR 4 possess a Tmax < 600°C, and therefore 

do not meet the conditions of the mean ψsize.  FR 1 and FR 4 do however meet all of the 

requirements of the conservative criterion. 

 

A major trend is apparent between the methods tailored for RC elements (AITP mean 

criterion; Energy by Kodur et al., 2010; and MDM by Kodur et al., 2010) and those based 

on steel members or compartment boundaries (all others).  The non-RC methods result in 

significantly greater error than the RC methods for all six design fires, indicating their poor 

ability in representing the internal temperature gradients.  The only exception is Kodur et 

al.’s (2010) MDM, as it displays larger discrepancy for FR 1 and FR 4, this limitation for 

smaller fires is highlighted in the original publication.  In the case of the moderate and 

larger fires of FR 2 and FR 3 (Figures 3.19 and 3.20), the non-RC methods result in a te 

almost half that of the AITP mean, producing significantly unconservative estimates.  For 

the small fire FR 4 (Figure 3.21), the te of the non-RC approaches are more than double the 

AITP mean duration, resulting in massively conservative estimates of the fire’s severity.  

As noted earlier, the conditions of the AITP mean criterion exclude its application for fire 

FR 4.  Regardless, the mean criterion and the conservative criterion still exhibit far greater 

correlation between AITP-D and AITP-S than the existing methods. These discrepancies 

between the RC and non-RC methods highlight the importance of considering internal 

temperature profiles when developing and utilizing a time equivalent method for RC 

elements. 
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In comparison with the existing RC-methods by Kodur et al. (2010), AITP mean always 

results in the lowest error when representing the internal temperature profile.  Additionally, 

Kodur et al.’s Energy and MDM methods alternate on which is more accurate depending 

on the design fire and the section size.  This is most apparent when comparing differences 

between FR 1 and FR 2; and between 250 mm and 800 mm wide sections for FR 6.  Using 

the AITP mean criterion, the most accurate representation of the internal profiles is reliably 

developed for every design fire and every section size.  Some discrepancy in Kodur et al.’s 

(2010) results can be attributed to its development based on the ASTM standard fire, 

however this should play only a very minor role.   

 

In Figure 3.22, the conservative te results in an average error far greater than the AITP 

mean and existing methods.  The purpose of the conservative te is to produce equal or 

greater internal temperatures at every point in the section, which has been achieved for all 

cases.  For the rapid hot fire FR 5, high temperatures are produced at the section’s surface, 

but the internal temperatures are significantly lower due to the absence of a prolonged 

heating period.  In order for the conservative te to match the high temperatures on the 

section’s surface, it markedly over represents the internal temperatures, resulting in higher 

error.  It should be noted that the AITP conservative is the only method capable of 

predicting these high surface temperatures in the case of rapid hot exposure. 

 

The impact of the ψsize is most noticeable for the longer duration fires of FR 2, FR 3, and 

FR 6.  The long cool FR 6 demonstrates the most significant impact, as the conservative te 

is increased by almost 50 min between the 250 and 800 mm width sections (Figure 3.23).  

For FR 6, application of the ψsize allows the mean AITP to remain more accurate than Kodur 

et al.’s methods and the conservative AITP to be more reasonably conservative than the 

non-RC methods.  The ψsize plays a crucial role in ensuring the accuracy and 

conservativeness of the AITP methods in comparison to the existing approaches. 



 

 

 

 

 

Fig. 3.18 Existing Methods for Moderate FR 1: (a) te, (b) Error for bc 250 mm, and (c) Error for bc 800 mm 
 

 

Fig. 3.19 Existing Methods for Moderate FR 2: (a) te, (b) Error for bc 250 mm, and (c) Error for bc 800 mm 
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Fig. 3.20 Existing Methods for Large FR 3: (a) te, (b) Error for bc 250 mm, and (c) Error for bc 800 mm 
 

 

Fig. 3.21 Existing Methods for Small FR 4: (a) te, (b) Error for bc 250 mm, and (c) Error for bc 800 mm 
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Fig 3.22. Existing Methods for Rapid Hot FR 5: (a) te, (b) Error for bc 250 mm, and (c) Error for bc 800 mm 
 

 

Fig 3.23. Existing Methods for Long Cool FR 6: (a) te, (b) Error for bc 250 mm, and (c) Error for bc 800 mm 
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3.7  Conclusion 

To better facilitate performance-based design, time equivalent methods are needed to 

assess the severity of a natural fire in terms of the duration of a standard fire.  Using a time 

equivalent, engineers can easily relate natural fires to the wealth of available data, testing, 

and computer programs based on standard fire curves.  Existing time equivalent methods 

in the literature and design manuals have been proven to be largely inaccurate in 

representing the internal thermal gradient of RC elements exposed to fire.  To better address 

time equivalency for RC elements, a new AITP method was introduced, which bases 

equivalency on the actual internal temperature profiles of RC beams.   

 

To develop the AITP method, a parametric study was conducted on a 250 x 500 mm RC 

section exposed to 1290 design fires.  Two equations were developed for the AITP method: 

mean and conservative.  Mean criterion was based on accurately matching the internal 

temperature profiles of a design fire to that of a standard, while conservative criterion was 

based on selecting the shortest duration standard fire that produces equal or larger 

temperatures at every point in the section.  Further evaluation regarding the influence of 

section dimensions on the te revealed the importance of accounting for section width.  A 

size adjustment factor was proposed to be used in conjunction with the te.  In comparison 

with existing methods, the AITP mean criterion displayed far greater accuracy in 

representing the internal temperature gradient, and the AITP conservative criterion the only 

method capable of consistently being conservative.  The proposed te is valid for beams 

exposed to natural fire on three sides, within the ranges of 350°C ≤ Tmax ≤ 1200°C, 15 min 

≤ tmax ≤ 115 min, and 20 min ≤ tfinal ≤ 240 min.  Using the proposed AITP method, designers 

can quickly relate the severity of a natural fire to an equivalent standard fire, allowing them 

to utilize existing standard fire resources.  
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Chapter 4 

4.0  Assessing the Flexural Response of Fire-Exposed RC 

Beams using an Equivalent Standard Fire 

Performance-based design requires the development of structural solutions to meet specific 

performance requirements.  These performance requirements can be divided into 

serviceability and ultimate limit states; which are typically measured using deflection and 

load capacity (Purkiss, 2007).  In the case of reinforced concrete (RC) beams, both of these 

requirements can be best represented by the sectional moment-curvature (M-φ) response.   

 

A time equivalent (te) method was proposed in Chapter 3 to represent the severity of a 

natural fire using a standard fire duration.  The method determines a te duration by 

comparing the average internal temperature profile (AITP) that develops within a concrete 

section during natural and standard fire exposure.  The AITP te can be calculated using 

Equation 3.4 based on either mean or conservative criteria.  A standard fire with a mean 

AITP te produces an internal temperature profile closely matching that of the design fire.  

While a standard fire with a conservative AITP te results in a profile with equal or larger 

temperatures at every layer.  A size adjustment factor (ψsize) was also proposed (Equation 

3.6) to account for the influence of variable beam width (bc) and height (hc) on the AITP te 

duration.  In the previous chapter, it was proven that the mean and conservative time 

equivalent equations are superior to the existing methods in predicting the internal average 

temperatures of concrete beam sections exposed to natural fire from three-sides.  In this 

chapter, the use of the AITP method is examined for application in the performance-based 

fire design of RC beams.  A study is presented for a selection of RC cross-sections and 

natural fires to assess the suitability of the time equivalent in representing the M-φ 

response.  The following sections detail the analysis method to predict the M-φ relationship, 

outline the study methodology, and discusses the results.   
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In the final portion of this chapter, a case study is presented demonstrating a simplified 

approach to undertake performance-based flexural fire design for an RC beam.  The case 

study highlights the three main steps in the design process: (i) determination of the natural 

fire severity using the AITP te, (ii) calculation of element internal temperatures, and (iii) 

sectional flexure analysis.  The simplified analysis is validated with results from 

experimental testing and ABAQUS finite element (FE) modelling. 

 

 

4.1  Flexural Analysis 

A structural analysis program developed by El-Fitiany and Youssef (2009) was used in this 

chapter to produce the M-φ response of beams during fire exposure.  The program has three 

main steps: (1) determine the internal thermal gradients of the section, (2) evaluate the 

concrete thermal and transient strains at elevated temperatures, and (3) complete a sectional 

flexure analysis.  The section’s internal thermal gradient is calculated using the finite 

difference method (FDM) presented by Lie (1992).  Three-sided fire exposure is applied 

to the RC section from the two sides and lower face.  Concrete thermal and transient strains 

are estimated using the equations recommended by Youssef and Moftah (2007).  Sectional 

analysis is then carried out iteratively to determine the M-φ relationship.  The program 

makes the following assumptions: (1) plane sections remain plane during fire exposure, as 

previously validated up to 1200°C by El-Fitiany and Youssef (2011); (2) perfect bond 

exists between steel and concrete; (3) normal strength concrete (NSC) is used, and thus, 

explosive spalling can be ignored; (4) influence of concrete tensile cracks on heat flow is 

ignored; and (5) geometrical nonlinearity is not considered. 

 

4.1.1  Study Methodology 

For a given RC section, the M-φ response is calculated for both natural and standard fire 

exposure.  The natural fire curve is assembled based on experimentally recorded fire curves 

and theoretical profiles developed using the Eurocode approach (EN 1991-1-2, 2002).  The 

standard fire curve is applied following the ISO profile (ISO 834, 2014) for a given mean 

or conservative AITP te duration.  In total, each cross-section is evaluated for three fire 
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events: the design fire, the AITP mean standard fire, and the AITP conservative standard 

fire.  Comparison of the three M-φ profiles are presented to demonstrate the suitability of 

the AITP te in representing the natural fire.  Due to the impracticality of displaying the full 

M-φ diagram for a large range of design fires and cross-sections, three key responses are 

identified for comparison.  They are: the maximum moment at elevated temperature (MrT), 

the initial curvature at elevated temperature (φiT), and the initial stiffness at elevated 

temperature (EIiT).  These three points are crucial to defining the M-φ relationship, and in 

turn, the serviceability and ultimate limit states needed for performance-based design. 

 

 

4.1.2  Beam and Fire Parameters 

Seven rectangular sections were selected to examine the M-φ response.  Table 4.1 displays 

the section properties.  The studied parameters are: concrete strength (f’c), section width 

(bc), section height (hc), tension reinforcement ratio (ρs), and aggregate type (agg.) of either 

siliceous (sil.) or calcareous (cal.).  Figure 4.1 exhibits general details of the studied 

cross-sections.  At ambient conditions, the value of f’c is specified as either 30 or 40 MPa, 

and the steel yield strength (Fy) is held constant at 400 MPa.  Longitudinal steel area was 

equally split into 3 bars, spaced symmetrically about the centerline and with 55 mm of 

cover on all sides.  Thermal properties for normal strength concrete (NSC) with siliceous 

and calcareous aggregate are applied from Lie (1992).  The consideration of compression 

reinforcement and stirrup confinement was neglected for simplicity.   

 

Table 4.1 Parametric Study Beam Properties 

Beam # Fy fc’ bc hc ρs agg. 
Studied 

Parameter 

  MPa MPa mm mm % ---  

B1 

400 

30 
250 500 

1.0 

sil. 

p 

B2 1.5 p 

B3 2.0 p 

B4 1.0 cal. agg. 

B5 40 1.0 

sil. 

fc' 

B6 
30 

400 800 1.0 bc, hc 

B7 600 800 1.0 bc, hc 
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Fig. 4.1 Cross Section of Parametric Study RC Beam 

 

 

Seven design fires are specified for the study (Figure 4.2).  The first five were developed 

using the Eurocode approach to demonstrate a range of possible natural fire events.  They 

can be broadly categorized as moderate, large, small, rapid hot, and long cool.  The 

remaining two fires were taken from the experimental literature presented by Kirby et al. 

(1994) and Lennon (2014).  Kirby et al. (1999) conducted testing in a 23 x 6 m concrete 

compartment filled with wood cribs.  The large compartment, high density of fuel load, 

low emissivity boundaries, and good ventilation resulted in a large fire event.  Lennon 

(2014) presents a fire curve from the Cardington Fire Tests completed by the Building 

Research Establishment (BRE) on a full-scale composite steel structure.  The compartment 

spanned 11 x 7 m with fire resistant plasterboard walls, concrete floors, and uniformly 

spaced wood cribs for the fuel load.  The two experimental programs provide a good 

representation of typical natural fires that can occur in a concrete structure. 

 

The critical points of the fire curve needed to calculate the AITP te can be interpreted 

graphically from Figure 4.2.  When determining the critical fire durations, it is important 

to neglect the initial ignition and final exhaustion periods of the fire.  The low temperatures 

of these periods result in little influence on the surrounding concrete elements, but if the 

durations are included in the AITP te equation, they can have a significant impact on the te.  

The resulting values for the AITP te using the size adjustment factor (ψsize) for each fire and 

bc 

hc 

55 mm 
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beam width are presented in Table 4.2.  In total, the study consists of 147 test cases using 

the seven cross-sections, seven design fires, seven AITP mean standard fires, and seven 

AITP conservative standard fires.  It should be noted, that B6 and B7 possess a bc greater 

than 350 mm, and therefore do not meet the condition of the mean ψsize in the case of FR 

4, when Tmax is less than 600°C.  These two non-valid cases were excluded from the study 

for the mean te. 

 

 

Fig. 4.2 Representative Design Fire Profiles 

 

 

Table 4.2 AITP te durations for the Seven Specified Design Fires 

 AITP Mean te (min) AITP Conservative te (min) 

bc =  250 mm 400 mm  600 mm 250 mm 400 mm 600 mm 

FR 2 58.63 61.44 62.20 63.41 68.89 72.72 

FR 3 170.49 183.37 187.28 195.47 195.47 195.47 

FR 4 7.27 Not Valid 9.51 11.07 12.39 

FR 5 79.62 79.62 79.62 128.43 128.43 128.43 

FR 6 74.65 87.03 91.03 78.63 96.21 108.17 

FR 7 78.30 81.11 81.69 89.99 93.93 96.04 

FR 8 98.42 101.54 102.23 109.45 113.76 115.68 
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4.2  Flexural Assessment 

Figure 4.3 and 4.4 display the full M-φ diagrams for B1 during the various fire exposure 

regimes.  The ambient temperature profile is also provided as a baseline.  All of the fire 

events led to the expected response of lowering the moment capacities and increasing the 

curvatures.  The small fire (FR 4) results in only minimal thermal gradients within the 

section, and as such, virtually no visible change occurs to the M-φ diagram during fire 

exposure.  For all seven fire events, the mean te presents a good fit with the design response.  

The highest deviation occurs for the large fire (FR 3), but the accuracy of the moment 

capacity remains at most within 6.7% of the actual.  The conservative te produced a 

conservative profile, with lower moment capacity and larger curvatures for all seven design 

fires.  For the rapid hot fire (FR 5), the conservative te is significantly longer in duration 

than the mean te, allowing it to capture the high surface temperatures that occur during 

rapid hot events.  The M-φ response of FR 5 reflects this fact, showing a very conservative 

estimate for the conservative te.  The experimental design fires of FR 7 and FR 8 likewise 

correlate well with the AIT te approximations.   

 

 
 

 

Fig. 4.3 Moment-Curvature Diagrams for B1 using Experimental           
Design Fires 
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Fig. 4.4 Moment-Curvature Diagrams for B1 using Eurocode Design Fires 
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Comparison of the remaining test cases is conducted based on the MrT, φiT, and EIiT 

(graphically depicted on Figure 4.3a).   Figure 4.5 displays the results of the design fire 

predictions versus the time equivalent fire predictions.  The conservative criterion achieves 

its intended objective, resulting in conservative approximations for every test case.  The 

mean criterion presents a reasonable fit along the line of equality.  The MrT is captured with 

a high degree of accuracy by the mean te, with error less than 10 % for every section and 

design fire.  The φiT and EIiT generally fall within 10 % error; however, because both 

responses are highly sensitive to small changes in thermal strains, some outliers yield much 

higher errors.  Furthermore, in contrast with moment capacity, curvature and stiffness 

calculations at ambient and elevated temperatures are far more approximate.  Given the 

approximate and sensitive nature of the calculations, it is difficult for the AITP te to provide 

highly accurate predictions for φiT and EIiT.  It should be noted however, that the higher 

error predictions of φiT and EIiT associated with the mean te are on the conservative side.  

The maximum error for the unconservative mean te predictions are within 10 %.   
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Fig. 4.5 Design vs. AITP te Response for: (a) MrT, (b) φiT, and (c) EIiT 
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4.3  Comparison with Existing Methods 

There are two existing time equivalent methods that are specifically applicable for RC 

beams.  The first is presented in the Eurocode (EN 1991-1-2, 2002) and the second by 

Kodur et al. (2010).  The Eurocode method was derived using the maximum temperature 

method for steel sections.  As such, its applicability to evaluate the load capacity of RC 

elements has been disputed by Thomas et al. (1997) and Xie et al. (2017).  Regardless, 

given the Eurocode’s clear statement of applicability for concrete elements and its 

prominent standing as a design standard, it serves as a solid method for comparison.  Kodur 

et al.’s (2010) method was derived based on the energy transfer of a natural fire to an RC 

beam.  Kodur’s results were found in Chapter 3 to be reasonably accurate in representing 

section internal temperatures; moment-curvature comparison will provide greater insight 

about the accuracy of the method. 

 

Figure 4.6 shows the comparison between the mean AITP te, EN 1991-1-2 (2002), and 

Kodur et al. (2010).  The comparison is made based on the moment-curvature responses of 

MrT, φiT, and EIiT.  The three responses are recorded as a percent error from the value 

calculated using the design fire.  A positive error indicates the time equivalent results in a 

conservative estimate of the actual design fire response, and a negative error indicates the 

opposite.  The evaluation was undertaken for the beam section B2.  Fire exposure was 

applied consistent with the seven design fires in Figure 4.2, allowing for assessment of the 

methods over a range of possible natural fire events.  
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Fig. 4.6 Flexural Response of B2 for Existing Time Equivalent Methods 
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From Figure 4.6, the mean AITP te represents a high degree of accuracy in comparison 

with the existing methods.  The Eurocode approach produces significantly deviant results 

across all three responses.  The φiT in particular is poorly approximated by the Eurocode, 

with results ranging from 82 % unconservative for FR 1, to 74 % conservative for FR 4.  

Considering the inaccuracy of the Eurocode, it is evident that the consideration of internal 

concrete temperatures is critical to the determination of a te for RC elements.   

 

Kodur’s method presents a good level of accuracy, often producing comparable results to 

those developed by the AITP te.  Although, in general, the AITP te produces slightly more 

accurate results.  It should also be noted that the AITP te is often conservative when 

compared to Kodur’s results.  This is most evident for the EIiT approximation during 

exposure to the experimental fires of FR 7 and FR 8.  In this case, both methods record 

errors greater than 10 %, but the predictions of the AITP te are conservative, while those 

of Kodur’s method are unconservative.   

 

The conservative AITP te is not displayed on the figures.  However, it should be noted, that 

given the same testing parameters, the conservative AITP te is the only method that 

consistently records conservative results for all responses and fire exposures. 
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4.4  Performance-Based Design of RC Beams Exposed to   

Natural Fire: A Case study 

In this section, a case study is presented demonstrating a simplified approach to undertake 

performance-based flexural fire design of RC beams.  The methodology proceeds in three 

sequential steps.  Firstly, the severity of the fire event is determined by developing a natural 

temperature-time curve for a given compartment.  The AITP te method is used to find an 

equivalent standard fire to define the severity of the natural fire event for an RC beam.  

Next, using a simple thermal model presented by Wickström (1986) and the equivalent 

standard fire from the previous step, the two-dimensional thermal gradients that develop 

within a RC section are determined.  Lastly, flexural analysis is preformed to satisfy 

concrete equilibrium for both sagging and hogging conditions.  The end result of the 

simplified analysis is the calculation of the sectional moment capacity (MrT) during fire 

exposure.  Application of the case study is performed on a section previously tested by 

Ellingwood and Lin (1991).  The simplified analysis is validated using experimental results 

and an ABAQUS finite element (FE) model. 

 

 

4.4.1  Severity of the fire event 

Severity of a fire event is best represented by a temperature-time curve, which records a 

fire’s temperature rise with time.  The Eurocode provides a simple and well-documented 

approach to calculate a natural temperature-time curve based on a variety of compartment 

specific parameters (EN 1991-1-2, 2002).  For smaller compartments, the Eurocode 

approach provides a reasonable and simple representation of fire severity (Buchanan, 

2001).  When considering larger floor areas, more numerous openings, or increased fuel 

loads; it is necessary to evaluate the effects of travelling fires (Dai et al., 2017).   

 

In view of the fact that natural temperature-time curves are compartment specific, a time 

equivalent is used to relate the natural fire to the industry standard fire.  By defining an 

equivalent standard fire duration, the wealth of experimental testing and material models 

derived using the standard fire, can be applied to a specific compartment.  For RC beams, 
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time equivalency can be determined using the AITP te proposed in Chapter 3.  Although 

there are several existing time equivalent methods, the AITP method is tailored specifically 

for RC beams, and to the best of the author’s knowledge, it is the only method that accounts 

for RC section dimensions (φsize).  Equation 3.4 and 3.6 can be used to calculate the AITP 

te and φsize.   

 

 

4.4.2  RC Internal Thermal Model 

The simplest and best documented thermal model is provided by Wickström (1986).  Using 

Equation 4.1, the temperature rise (T ) can be calculated at any location (x, y) within a 

concrete beam exposed to a standard fire.  It should be noted that this version of the 

equation is only valid for three-sided heating from the bottom and two sides. A more 

comprehensive version for 4-sided heating is presented by El-Fitiany (2013).   

 

𝑇 = 𝑇𝑓 [𝜂𝑤(𝜂𝑥 + 𝜂𝑦 − 2𝜂𝑥𝜂𝑦) + 𝜂𝑥𝜂𝑦] (4.1a) 

𝜂𝑤 = 1 − 0.616(
1550

√𝑘𝑐𝜌
 𝑡𝑒)

−0.88

 ≥ 0 (4.1b) 

𝜂𝑥 = −2.18 + 0.23𝑙𝑛 [ (
𝑘

𝑐𝜌𝑎𝑐
 𝑡𝑒)

2 1

𝑥2(𝑏𝑐 − 𝑥)
2
 ]  ≥ 0 (4.1c) 

𝜂𝑦 = 0.23𝑙𝑛 [ (
𝑘

𝑐𝜌𝑎𝑐
 
𝑡𝑒
𝑦2
) − 1.09 ]  ≥ 0 (4.1d) 

 

Where Tf is the standard fire temperature (ISO 834, 2014) of the compartment (°C) at 

duration te (hr), bc is the beam width (mm), x is the distance of the point under consideration 

to the left or right face (mm), and y is the distance from the bottom side (mm).  The 

dimensionless terms ηw, ηx, and ηy are the ratios of the beam’s surface temperature to that 

of the fire temperature, the temperature at interior point x, and the temperature at interior 

point y, respectively.  To account for variable concrete properties: k is the thermal 

conductivity (Wm-1K-1), p is the concrete density (kgm-3), cs is the specific heat of concrete 

(Jkg-1K-1), and ac is the thermal diffusivity of concrete (m2s-1).  
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4.4.3  Sectional Flexure analysis 

Fire induced strains consist of three terms (Equation 4.2): stress-related strain (εfT), 

free-thermal strain (εth), and transient strain (εtr) (Youssef and Moftah, 2007).  Concrete’s 

stress-related strain is a function of the applied stress and temperature.  For ambient 

conditions, a stress-related strain (εf) of 0.0035 defines the ultimate compressive strain (εcu) 

at failure (CSA A23.3, 2014).  For elevated temperatures, El-Fitiany (2013) found it 

reasonable to predict the ultimate compressive strain (εcuT) at a value of 0.0035 + εtr.  

Free-thermal strains define the expansion of concrete and steel when exposed to elevated 

temperatures.  Simple equations to determine εth of siliceous and calcareous aggregate are 

presented in Equation 4.3 (Youssef and Moftah, 2007).  For steel, the εth can be determined 

using the reinforcement temperature and the steel coefficient of thermal expansion (αs).  

Equation 4.4 displays a relationship for αs taken from Lie (1992).  Transient strain develops 

during first heating of the concrete.   

 

𝜀 = 𝜀𝑓 + 𝜀𝑡𝑟 + 𝜀𝑡ℎ (4.2) 

 

Siliceous Aggregate: 

𝜀𝑡ℎ = −1.8 × 10
−4 + 9 × 10−6(𝑇 − 20) + 2.3 × 10−11(𝑇 − 20)3        

≤ 14 × 10−3 

(4.3a) 

 

Calcareous Aggregate: 

𝜀𝑡ℎ = −1.2 × 10
−4 + 6 × 10−6(𝑇 − 20) + 1.4 × 10−11(𝑇 − 20)3        

≤ 12 × 10−3 

(4.3b) 

 

∝𝑠 = 0.004𝑇 + 12 × 10
−6                𝑇 < 1000℃ (4.4a) 

∝𝑠 = 16 × 10
−6                                   𝑇 ≥ 1000℃ (4.4b) 
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𝜀𝑡𝑟 = 𝜀0.3  (0.032 + 3.226
𝑓𝑐
𝑓𝑐
′)

𝑉𝑎
0.65

               (4.5a) 

𝜀0.3 = −43.87 × 10
−6 + 2.73 × 10−8 𝑇 + 6.35 × 10−8 𝑇2        

             −2.19 × 10−10 𝑇3 + 2.77 × 10−13 𝑇4 
(4.5b) 

 

For the above equations: T is the element temperature (°C); Va is the volume fraction of 

aggregate, which can be taken as 0.65 (Purkiss, 2007); ε0.3 is the transient strain for an 

initial stress of 0.3f’c, given in Equation 4.5b; and fc / f’c is the ratio of current to maximum 

concrete stress, at the point of failure this relationship can be simplified as fc / f’c = 1.0. 

 

Three material models are needed in the proposed simplified analysis: concrete 

compressive strength at elevated temperature (f’cT), steel yield strength at elevated 

temperature (FyT), and the steel stress-strain relationship at elevated temperature (FsT).  A 

relationship for f’cT developed by Hertz (2005) is presented in Equation 4.6, where: T is the 

concrete temperature (°C) and f’c is the concrete strength at ambient temperature (MPa).  

The coefficients for siliceous aggregate are T1 = 15,000, T2 = 800, T8 = 570, and 

T64 = 100,000; and for calcareous aggregate are T1 = 100,000, T2 = 1080, T8 = 690, and 

T64 = 1000.  When concrete is loaded prior to fire, f’cT can be increased by 25 %, to a 

maximum of f’c.   

 

𝑓𝑐𝑇
′ = 𝑓𝑐

′  

[
 
 
 1

1 +
𝑇
𝑇1
+ (

𝑇
𝑇2
)
2

+ (
𝑇
𝑇8
)
8

+ (
𝑇
𝑇64

)
64

]
 
 
 
 (4.6) 

 

Equations 4.7 and 4.8 display the FyT and FsT (Lie, 1992).  In these equations: T is the steel 

temperature (°C), Fy is the steel yield strength at ambient temperature (MPa), εsT is the steel 

total strain, and εp is the ambient yield strength (MPa) divided by 25 x 104
 MPa. 
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𝐹𝑦𝑇 = [1 +
𝑇

900 𝑙𝑛 (
𝑇

1750
)
] 𝐹𝑦                         0 < 𝑇 ≤ 600 ℃ (4.7a) 

𝐹𝑦𝑇 = [
340 − 0.34𝑇

𝑇 − 240
] 𝐹𝑦                                     600 < 𝑇 ≤ 1000 ℃ (4.7b) 

 

𝐹𝑠𝑇 =
𝑓(𝑇, 0.001)

0.001
𝜀𝑠𝑇                                                                                   𝜀𝑠𝑇 ≤ 𝜀𝑝 (4.8a) 

𝐹𝑠𝑇 =
𝑓(𝑇, 0.001)

0.001
𝜀𝑝 + 𝑓[𝑇, (𝜀𝑠 − 𝜀𝑝 + 0.001)] − 𝑓(𝑇, 0.001)        𝜀𝑠𝑇 > 𝜀𝑝 (4.8b) 

𝑤ℎ𝑒𝑟𝑒 𝑓(𝑇, 𝜆) = (50 − 0.04𝑇) × [1 − (𝑒−30+0.03𝑇√𝜆  )] × 6.9 (4.8c) 

 

At ambient temperatures, flexural equilibrium conditions can be easily satisfied using the 

equivalent stress-block parameters (α1 and β1).  This concept can also be applied to RC 

beams at elevated temperatures.  El-Fitiany and Youssef (2011) proposed Equations 4.9 

and 4.10 to calculate α1T and β1T for sagging and hogging conditions at elevated 

temperatures.  In Equation 4.9 and 4.10: te is the duration of the ISO-standard fire (hr), ps 

is the reinforcement ratio, and Fagg accounts for aggregate type wherein siliceous aggregate 

should be taken as zero and calcareous aggregate should be taken as 1.0. 

 

Sagging Condition: 

𝛼1𝑇 = 𝛼1 − 1.533 × 10
−2 + 24.397 × 10−3𝑡𝑒 + 15.758 × 10

−4𝑓𝑐
′        

             −10.089 × 10−5𝑏𝑐    

(4.9a) 

𝛽1𝑇 = 𝛽1 − 2.907 × 10
−2 + 20.734 × 10−3𝑡𝑒

2 − 94.794 × 10−3𝑡 

             −75.057 × 10−5𝑓𝑐
′ + 15.413 × 10−5𝑏𝑐           

(4.9b) 

 

Hogging Condition: 

𝛼1𝑇 = 𝛼1 − 2.735 × 10
−2 − 1.497 × 10−1𝑡𝑒 + 7.579 × 10

−2𝐹𝑎𝑔𝑔             
(4.10a) 

𝛽1𝑇 = 𝛽1 − 1.965 × 10
−1 − 4.054 × 10−2 (

𝑡𝑒

𝜌
)
2
+ 2.448 × 10−1 (

𝑡𝑒

𝜌
)      

            −3.456 × 10−2𝐹𝑎𝑔𝑔 + 3.687 × 10
−3𝑓𝑐

′ + 2.342 × 10−4𝑏𝑐          
(4.10b) 
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Equation 4.11 displays the equilibrium equations, which are identical in form to the 

ambient, but substituted with the material stresses and stress-block parameters at elevated 

temperature.  Sectional moment capacity at elevated temperature can likewise be solved 

for by resolving the moment induced by the internal forces (Equation 4.12).   

 

𝐶𝑐𝑇 = 𝛼1𝑇 × 𝑓𝑐𝑇
′ × 𝛽1𝑇 × 𝑐 × 𝑏𝑐            (4.11a) 

𝑇𝑠𝑇 = 𝐹𝑠𝑇 × 𝐴𝑠  (4.11b) 

𝐶𝑐𝑇 = 𝑇𝑠𝑇  (4.11c) 

𝑀𝑟𝑇 =  ∑𝑇𝑠𝑇  (𝑑 − 
𝛽1𝑇 × 𝑐

2
) (4.12) 

 

Where: CcT is the compression force in the concrete at elevated temperature, c is the depth 

of the neutral axis, bc is the width of the compression zone, TsT is the tension force in the 

steel at elevated temperature, As is the area of steel, and d is the effective depth of the 

tension force element.   

 

 

4.4.4  Ellingwood and Lin (1991) 

The case study is undertaken for a cross-section and natural fire matching the work of 

Ellingwood and Lin (1991).  Their work focused on section internal temperatures during 

exposure.  Failure was not induced during testing, and as such, no ultimate capacity was 

recorded.  To the best of the author’s knowledge, no testing has been published recording 

RC beams tested to capacity failure during exposure to natural fire.  Therefore, the results 

from Ellingwood and Lin (1991) are used to validate the internal temperature 

approximations, while validation of the flexural capacity is done using ABAQUS FEM. 
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Figure 4.7 shows the section details of the experimental beam, measuring 228 x 533 mm 

in cross-section.  Concrete mix design stipulated the use of NSC with Type I Portland 

cement and calcareous gravel aggregate.  Lower longitudinal reinforcement consists of 

4-22 mm bars, while upper reinforcement consists of 4-25 mm bars.  In the analysis, only 

lower reinforcement will be considered for the sagging condition, and only upper 

reinforcement for the hogging condition; therefore, ignoring the effect of compression 

steel.  Shear reinforcement is provided by 10 mm stirrups spaced at 215 mm intervals.  

Concrete cover to traverse reinforcement stirrups is 38 mm.  Ambient material properties 

specified a f’c of 33.7 MPa and Fy of 420 MPa. 

 

 

Fig. 4.7 Ellingwood and Lin (1991) Beam Cross-Section  
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4.4.5  Simplified Performance-Based Analysis 

Severity of the fire event is represented as a temperature-time relationship.  For a 

compartment fire this can be done using the Eurocode method, but in the case of 

Ellingwood and Lin (1991), the design fire was experimentally recorded (Figure 4.8).   The 

key points for the AITP te are identified on the figure as: Tmax = 1011°C, tmax = 37.4 min, 

and tfinal = 145 min.  The final duration (tfinal) is found by linearly extending the cooling 

branch, ignoring the long cool-down period.  Using Equation 3.4, the AITP conservative te 

is found to be 96 min (1.60 hr) and the AITP mean te 93 min (1.56 hr).  There is only a 

small change between the mean and conservative durations, however, it should be noted 

that this is not generally the case and should not be inferred as such.  Due to the similarity 

between the two, worked examples and figures are only shown for the conservative te, with 

final results presented in text for both the mean and conservative te.  The width of the 

section is less than 350 mm, and therefore the φsize does not need to be applied to the te. 

 

 

Fig. 4.8 Ellingwood and Lin (1991) Applied Design Fire 
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Section internal temperatures are calculated using Equation 4.1.  Considering the selected 

NSC with calcareous aggregate, the values for the concrete thermal properties are taken as: 

k = 1.0 Wm-1K-1, p = 2400 kgm-3, cs = 1000 Jkg-1K-1, and ac = 417x10-9 m2s-1 (Lie, 1992).  

Depending on the mix design and aggregate, these values can vary greatly.   

 

For the steel bars, temperature is found within the section at the x and y locations of the 

reinforcement.  Because heating is assumed to occur evenly from the two sides, both the 

left and right bars in a given row exhibit the same temperature.  The bar temperatures for 

the conservative te are as follows: row 1, 528°C; row 2, 331°C; row 3, 297°C; and row 4, 

297°C.  For the mean te, the bar temperatures are only slightly lower at: row 1, 518°C; row 

2, 320°C; row 3, 290°C; and row 4, 290°C.  Wickström’s (1986) method assumes that 

temperature gradients will become linear at some height, hence rows 3 and 4 having the 

same temperature.  

 

Determining the concrete temperature is less straight forward than the reinforcement, as it 

varies significantly throughout the section.  Material and strain models however require a 

single input temperature.  El-Fitiany and Youssef (2017) have proven that the thermal 

effects of a fire can be estimated with sufficient accuracy using a concrete average 

temperature (Tav).  For the sagging scenario, Tav can be found by taking the temperature 

average along the section’s width at a given depth.  At the depth of the compression zone, 

the temperature gradient becomes almost constant with height since heat flow in that region 

is governed by the two vertical sides.  Therefore, by taking the Tav within the compression 

zone, a single concrete temperature can be identified.  Using Equation 4.1, Tav was 

calculated by sampling internal temperatures along the section’s width at a constant height.  

Samples were taken at 12 width increments and a height of 0.8hc.  The selected height 

represents a location where the thermal distribution is assumed to be constant.  Taking a 

weighted average of the samples finds Tav as 412°C for the conservative te and 405°C for 

the mean te.   
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For the hogging condition, temperature gradients at the bottom face vary greatly and do 

not exhibit the same constant profile experienced near the upper face.  As such, calculation 

of a single Tav can not be achieved for a simplified analysis.  The resulting equilibrium 

calculation for hogging is entirely based on steel temperature and does not require a 

concrete temperature.  The effect of non-linear concrete temperature is implicitly included 

in the stress-block parameters. 

 

Flexural analysis is laid out for the sagging load in Tables 4.3 and 4.4.  For simplicity, the 

tension capacity of concrete, effects of concrete confinement, and compression 

reinforcement are omitted.  Results in the tables are only displayed based on the 

conservative te temperatures.  Material properties and fire induced strains are first 

calculated for the concrete section based on Tav.  Assuming the c value as 102.2 mm, the 

force in the compression block is found as 441 kN.  Based on a linear strain distribution, 

Equation 4.13 provides the geometric relationship needed to interpolate the concrete strain 

at the height of the reinforcing rows.  Fire-induced strains and steel stresses at elevated 

temperatures are likewise calculated for each layer of steel reinforcement.  The c value is 

iterated until equilibrium between the concrete and steel occurs. 

 

𝜀𝑡𝑜𝑡𝑠 =
𝑑

𝑐
𝜀𝑐𝑢𝑇 − 𝜀𝑡𝑜𝑡𝑐   (4.13) 

 

Hogging analysis is presented in Table 4.5.  Because a Tav could not be determined, 

concrete strains, and subsequently steel strains, are not required.  Steel yield stress is used 

in place to find the tension force at each row of reinforcement.  The assumed c value is 

iterated until equilibrium is satisfied at 146.2 mm.  For both sagging and hogging scenarios, 

Equation 4.12 finds the maximum MrT based on the conservative te exposure to be 

178.5 kNm and 257.6 kNm, respectively.  By the same approach, the mean te finds sagging 

MrT as 181.0 kNm and hogging Mr as 259.9 kNm. 
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Table 4.3 Sagging Flexure Analysis for Concrete  

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

Tav f’cT α1T β1T εtr εcuT εth εtotc c Cc 

(Eq.4.1) (Eq.4.6) (Eq.4.9a) (Eq.4.9b) (Eq.4.5) (5)+0.0035 (Eq.4.3) (6)-(7) assume (Eq.4.11a) 

°C MPa --- --- x 10 -3 x 10 -3 x 10 -3 x 10 -3 mm kN 

412 28.9 0.85 0.77 11.11 14.61 3.33 11.28 102.2 441 

 

Table 4.4 Sagging Flexure Analysis for Steel  

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

ID T As αs εtots εth εsT FsT Ts 

--- (Eq.4.1) --- (Eq.4.4) (Eq.4.13) (2)x(4) (5)-(6) (Eq.4.8) (3)x(8) 

--- °C mm2 x 10 -5 x 10 -3 x 10 -3 x 10 -3 MPa kN 

A, B 528 387 1.42 56.49 7.45 49.04 239 93 

C, D 331 387 1.33 49.05 4.42 44.64 331 128 

 

Table 4.5 Hogging Flexure Analysis for Concrete and Steel  

(1) (2) (3) (4)  (1) (2) (3) (4) (5) 

α1T β1T c Cc  ID T As FyT Ts 

(Eq.4.10a) (Eq.4.10b) assume (Eq.4.11a)1  --- (Eq.4.1) --- (Eq.4.7) (3)x(4) 

--- --- mm kN 
 

--- °C mm2 MPa kN 

0.61 1.02 146.2 696  E, F, G, H 297 509 342 174 
 

1 In lieu of f’cT, f’c for ambient temperatures should be used during hogging analysis 
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4.4.6  FE Modelling 

An ABAQUS FE model is used to validate the flexural capacity and compliment the 

experimental temperature results from Ellingwood and Lin (1991).  A detailed description 

of the ABAQUS model is provided in Appendix B.  The beam was modelled using solid 

elements to facilitate the heat transfer analysis, which is not possible using the wire 

reinforcement approach.  To ensure flexural failure, the section outlined in Figure 4.8 was 

given an arbitrary length of 6 m to ensure flexural failure.  Simple support conditions were 

specified at the ends.  Heat transfer was applied based on the given design fire with material 

properties specified for NSC calcareous aggregate by Lie (1992).  Evaluating the fire event 

as an uncoupled load, the heat transfer profile of the beam was input into the strength 

analysis as a predefined condition.  Uniform loading was applied at various intervals until 

failure was observed based on strain non-convergence in ABAQUS.   

 

 

4.4.7  Case Study Evaluation 

Comparing the simplified analysis with the experimental and ABAQUS results 

demonstrates the accuracy of the proposed methodology.  Figure 4.9 presents the internal 

temperatures for the section based on natural fire (Figure 4.9a) and conservative te fire 

exposure (Figure 4.9b).  The general isotherm profiles were developed using ABAQUS.  

Labelled reinforcement temperatures are based on Ellingwood and Lin’s (1991) 

experimental results for the natural fire (Figure 4.9a) and based on Wickström’s (1986) 

method for the conservative te fire (Figure 4.9b).   

 

The conservative te records moderately conservative temperatures at just about every 

location within the section.  The only exception occurs in the lower middle region, where 

the time equivalent results in a maximum negative differential of 56°C.  This formation is 

due to the natural fire, with its long duration, being able to slowly heat the internals of the 

section.  The time equivalent fire is not able to match this slow heating effect, and therefore 

small deviations will always arise in the lower middle region.  Wickström’s method found 

the reinforcement temperatures with a reasonable degree of accuracy.  The largest error 
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from the experimental results occurred in row 1 at 32 %.  Despite the error, the simplified 

analysis resulted in a conservative temperature estimate for the reinforcement.  Using the 

natural fire profile from ABAQUS, calculation of Tav at a height of 0.8hc yields 325°C.  

The simplified analysis using the conservative te found Tav as 412°C, representing a 27 % 

conservative result to the FEM. 

 

 
 

Fig. 4.9 Thermal Gradients due to (a) Natural Fire and (b) Conservative Time 
Equivalent Fire Exposure 

 

 

 

 

 

 

 

 

 

 

0

100

200

300

400

500

-120 -80 -40 0 40 80 120

H
ei

gh
t 

(m
m

)

Width (mm)

225°C

265°C

341°C

400°C

225°C

265°C

341°C

400°C

40
0°

C

70
0°

C

0

100

200

300

400

500

-120 -80 -40 0 40 80 120

H
ei

gh
t 

(m
m

)

Width (mm)

297°C

297°C

331°C

528°C

297°C

297°C

331°C

528°C

20
0°

C

40
0

°C

80
0°

C

(a) (b) 



103 

 

 

 

Figure 4.10 presents the AITPs of the section during exposure to the experimental design 

fire and the time equivalent standard fires.  The AITP profiles were developed using the 

methodology of Section 3.2.  The mean te profile indicates a good correlation with the 

design fire, and the conservative te generates higher temperatures throughout.   

 

 

Fig. 4.10 AITP for Case Study Beam Based on Given Exposure Fires 

 

 

The final moment capacities calculated by the simplified analysis and using ABAQUS are 

recorded in Table 4.6.  For all cases, the simplified analysis records a lower, and thus 

conservative capacity to the FE analysis.  The capacity found using the mean te is within 

10 % for both the sagging and hogging conditions.  Considering the similarity of the mean 

and conservative te durations, the two criterions result in only minor capacity differences.  

However, it should once again be noted that this minor difference is not generally the case, 
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Table 4.6 Moment Capacity Results 

ABAQUS Analysis Simplified Analysis  Absolute Difference 

Conservative te Sagging  

198 kNm 179 kNm 10 % 

Conservative te Hogging  

284 kNm 258 kNm 9 % 

Mean te Sagging  

198 kNm 181 kNm 8 % 

Mean te Hogging  

284 kNm 260 kNm 8 % 

 

 

At ambient temperatures, standard sectional analysis finds the sagging capacity of the 

section to be 263 kNm and the hogging capacity as 328 kNm.  In comparison with the 

moment capacities of the fire exposed section found by ABAQUS, this represents a 27 % 

and 14 % capacity reduction for the sagging and hogging conditions respectively.  The 

marked change in moment capacity from ambient to fire exposed, strongly demonstrates 

the impact of fire events on RC beams and the necessity of undertaking a simplified 

analysis as proposed here.   

 

 

4.5  Conclusion 

The AITP te method, introduced in Chapter 3 of this thesis, was assessed based on the 

flexural response of beam sections.  Using finite difference software developed by Youssef 

and El-Fitiany (2007), the M-φ relationship of RC beams during fire exposure was 

developed.  A parametric study was undertaken to compare the M-φ response of beams 

exposed to a range of design fires and standard fires with an AITP te duration.  To assess 

the AITP method for a larger number of cases, three key responses from the M-φ 

relationship were selected for evaluation: maximum moment, initial curvature, and initial 

stiffness.  Evaluation of the key responses displayed good correlation between the AITP 

mean te and the design fire.  Additionally, the conservative time equivalent produced a M-φ 
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profile with lesser moments and larger curvatures for every test case.  Further comparison 

was undertaken with relation to existing time equivalent methods.  The study demonstrated 

the improved accuracy of the AITP te in approximating the flexural response of RC beams. 

 

The section concluded with a case study to present the application of the AITP te in 

performance-based design.  For a given compartment, fire severity is determined as a 

temperature-time relationship and related using the AITP te to the standard fire.  In leu of 

complex computational programs, a simple thermal model is used to determine the internal 

temperature at critical locations within the exposed RC element.  Substituting material and 

strain models for RC at elevated temperatures, the equilibrium condition is resolved using 

the equivalent-stress block method.  Internal temperatures and flexural capacity were found 

to be in good agreement with validation based on experimental and computational analysis.   
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Chapter 5 

5.0  Equivalent Standard Fire Duration to Evaluate Internal     

Temperatures in Natural Fire Exposed RC Columns 

In Chapter 3 and 4 of this thesis, a time equivalent method was proposed for the application 

of reinforced concrete (RC) beams.  This chapter presents a continuation of that work, 

focusing on the development of a time equivalent (te) for RC columns.  The average internal 

temperature profile (AITP) te is derived by comparing the actual internal temperatures that 

develop in a concrete section exposed to natural and standard fire.  During fire exposure, a 

typical beam undergoes heating from three sides, while a typical column undergoes heating 

on all four faces.  Although a seemingly minor difference, the interaction of 4-sided heating 

has a significant effect on the internal temperature gradients, and in turn the section 

behaviour.  Existing time equivalent methods have failed to make the distinction between 

the different heating scenarios, and to the best of the author’s knowledge, no general 

method is available to evaluate the time equivalent for RC columns undergoing 4-sided 

natural fire exposure.  In this chapter, the suitability of the proposed AITP te is assessed for 

the application of 4-sided heating by examining section internal temperatures and 

mechanical responses. 

 

 

5.1  Application of the AITP for RC Columns 

The application of AITPs was first proposed by El-Fitiany and Youssef (2009) as a 

simplified technique to evaluate the two-dimensional thermal gradients that develop within  

RC cross-sections during fire exposure.  An AITP describes a section’s internal 

temperatures as a function of depth, allowing for the analysis of RC elements resisting axial 

loading and uniaxial bending.  To develop an AITP, a concrete section is first divided into 

a fine two-way mesh.  Heat transfer is conducted using any acceptable method such as the 

finite difference method provided by Lie (1992).  Throughout the heat transfer process, the 

maximum temperature experienced in each mesh block is recorded.  At the end of the fire 

exposure, the meshed units are grouped into horizontal layers of equal height, and the 
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average temperature for each layer is calculated.  Subsequently, the AITP represents the 

maximum temperature experienced by each layer throughout the fire event.   Figure 5.1 

displays an example of the AITP developed for a 400 x 400 mm column and a 

400 x 400 mm beam during exposure to a 1-hr ISO standard fire (ISO 834, 2014).  Column 

4-sided heating and beam 3-sided heating is undertaken consistent with Figure 5.1a and 

5.1b.  The AITP consists of two zones: highly-variable (non-linear) zones near the surface 

where temperatures are rapidly changing, and a constant zone (linear) near the core where 

temperatures are relatively consistent.  For columns, the presence of heating along the top 

surface of the element creates a profile with two variable zones.  As a result, the AITP for 

columns deviates markedly from that of beams.  

 

 
 

Fig. 5.1 (a) 4-Sided Heating, (b) 3-Sided Heating, and (c) AITP of Column 
and Beam for 1-hr ISO Standard Fire  
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5.2  Review of the AITP Time Equivalent 

The AITP te is derived based on the correlation of the AITP developed by a selected design 

fire (AITP-D) and a standard fire with a specific duration (AITP-S).  There are two criteria 

for correlation, mean and conservative.  The mean criterion compares the percent 

difference between AITP-D and AITP-S at every layer of the profile and records the 

average percent difference for all of the layers.  The duration of the standard fire is 

incrementally increased until the lowest absolute average percent difference is found.  The 

conservative criterion ignores error differences, iterating the duration of the standard fire 

until the AITP-S has equal or larger temperatures at every layer when compared to AITP-D.  

Using the two criteria, the AITP te can be found to accurately or conservatively represent 

the severity of a fire event on an RC section. 

 

Using the AITP methodology, Equation 5.1 was derived in Chapter 3 to evaluate the AITP 

te for 3-sided fire exposure.  The maximum fire temperature, Tmax (°C); the corresponding 

time, tmax (min); and the overall duration of the fire, tfinal (min);  were selected to define the 

general equation.  The valid range and coefficients for Equation 5.1 are presented in Table 

5.1.  Equation 5.1 is only valid for concrete sections with width (bc) of 250 mm and height 

(hc) of 500 mm.  To account for other section dimensions, the calculated te shall be 

multiplied by a size adjustment factor (ψsize) given by Equation 5.2.  The valid range for 

application of the ψsize is detailed in Table 5.2 along with the coefficients of Equation 5.2. 

 

𝑡𝑒 = 𝐴 + 𝐵𝑡𝑚𝑎𝑥 + 𝐶𝑡𝑓𝑖𝑛𝑎𝑙 + 𝐷𝑇𝑚𝑎𝑥 + 𝐸𝑡𝑚𝑎𝑥
2 + 𝐹𝑡𝑓𝑖𝑛𝑎𝑙

2 + 𝐺𝑇𝑚𝑎𝑥
2  

               +𝐻𝑡𝑚𝑎𝑥𝑡𝑓𝑖𝑛𝑎𝑙 +   𝐼𝑡𝑚𝑎𝑥𝑇𝑚𝑎𝑥 + 𝐽𝑡𝑓𝑖𝑛𝑎𝑙𝑇𝑚𝑎𝑥  
   (5.1) 

𝜓𝑠𝑖𝑧𝑒 =

{
 
 
 
 

 
 
 
 

                                                                                                      

1.0 { 

𝑓𝑜𝑟 𝑏𝑐 < 300 𝑚                                                   
𝑓𝑜𝑟 𝑐𝑜𝑛𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑣𝑒 𝑡𝑒 𝑤ℎ𝑒𝑛 𝑇𝑚𝑎𝑥 > 1150℃
𝑓𝑜𝑟 𝑐𝑜𝑛𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑣𝑒 𝑡𝑒 𝑤ℎ𝑒𝑛 𝑡𝑒 > 180𝑚𝑖𝑛     

       

  𝐴 + 𝐵𝑡𝑚𝑎𝑥 + 𝐶𝑡𝑓𝑖𝑛𝑎𝑙 + 𝐷𝑇𝑚𝑎𝑥                                           

     + 𝑏𝑐(𝐸 + 𝐹𝑡𝑚𝑎𝑥 + 𝐺𝑡𝑓𝑖𝑛𝑎𝑙 +𝐻𝑇𝑚𝑎𝑥)  ≥ 1.0            

         (5.1) 

Table 5.1 Coefficients for Equation 5.1 
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 Mean Criterion Conservative Criterion 

tmax (min) 15 - 115 15 - 115 15 - 115 15 - 115 15 - 115 

tfinal (min) 20 – 240 20 – 240 20 – 240 20 – 240 20 – 240 

Tmax (°C) 350 – 1100 350 - 750 750 - 950 950 - 1100 1100 - 1200 

C
o

ef
fi

ci
e

n
ts

 

A 8.124 8.690 2.370 566.30 4404.0 

B -0.153 -0.0829 -0.0893 -0.465 -5.745 

C 0.0384 0.0324 0.0446 1.188 1.039 

D -0.0431 -0.0429 -0.0186 -1.332 -8.177 

E -8.53 x10-4 -4.74 x10-4 -9.42 x10-4 -20.00 x10-4 -80.87 x10-4 

F -6.46 x10-4 -4.16 x10-4 -7.39 x10-4 0.0 2.99 x10-4 

G 0.50 x10-4 0.66 x10-4 0.35 x10-4 7.95 x10-4 38.36 x10-4 

H 3.44 x10-4 1.57 x10-4 4.77 x10-4 -3.07 x10-4 -17.80 x10-4 

I 6.55 x10-4 5.33 x10-4 5.40 x10-4 12.05 x10-4 69.36 x10-4 

J 4.52 x10-4 3.70 x10-4 4.71 x10-4 -9.00 x10-4 -8.40 x10-4 
 

* Equation 5.1 is only valid for sections of 250 x 500 mm in size 

 

Table 5.2 Coefficients for Equation 5.2 

 Mean Criterion Conservative Criterion 

Valid Range 

200 ≤ bc ≤ 800 mm 200 ≤ bc ≤ 800 mm 

300 ≤ hc ≤ 800 mm 300 ≤ hc ≤ 800 mm 

15 ≤ tmax ≤115 min 15 ≤ tmax ≤115 min 

20 ≤ tfinal ≤240 min 20 ≤ tfinal ≤240 min 

600 ≤ Tmax ≤1200°C 1 350 ≤ Tmax ≤1200°C 

A 1.022 0.819 

B -2.57 x10-4 3.78 x10-4 

C 2.69 x10-4 -2.23 x10-4 

D -0.22 x10-4 1.82 x10-4 

E 0.113 1.037 

F -8.23 x10-4 -27.00 x10-4 

G 14.01 x10-4 27.15 x10-4 

H -1.93 x10-4 -10.75 x10-4 
 

1 Excluding Tmax < 750 °C reached during tmax < 60 min 
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5.3  Applicability of the AITP te for RC Columns 

In this section, the methodology of the AITP te is assessed in view of 4-sided fire exposure.  

A parametric study was conducted to assess its suitability for a wide range of possible 

design fire exposures and cross-section dimensions as follows.   

 

 

5.3.1   Test Parameters 

Design fires were constructed using the defining parameters of tmax, tfinal, and Tmax.  The 

accepted values for each parameter were selected at intervals such that the developed 

design fires are reasonably spaced.  Values for tmax were chosen at 5-min intervals until 

30 min, then at 17-min intervals until 115 min; values for tfinal were chosen at 20-min 

intervals throughout; and Tmax values were chosen starting from 350°C at 100°C intervals 

until 650°C, then at 50°C intervals until 1200°C.  Any combination with tmax ≥ tfinal was 

immediately excluded, resulting in a total of 1290 design fires.  Knowing the defining 

parameters, the full design fire curve was developed using the Eurocode approach for the 

heating branch and a linear profile for the cooling branch (EN 1991-1-2, 2002).  The 

derived te duration is based on the ISO standard fire (ISO 834, 2014). 

 

Similar to the study in Chapter 3, cross-sections were evaluated with width and height 

combinations of 250 x 500, 400 x 500, 600 x 500, and 800 x 500 mm.  Additionally, four 

square cross-sections were evaluated having dimensions of 250, 400, 600, and 800 mm.  

Normal strength concrete (NSC) with siliceous aggregate was consistently used throughout 

the study.  The thermal properties of NSC with siliceous aggregate were taken as defined 

in Lie (1992).  Considering the 1290 design fires and eight cross-sections, 10,320 test cases 

were analyzed based on the AITP mean and conservative criteria.   
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5.3.2  Conservative AITP te Evaluation 

The conservative te for 4-sided exposure was found to be highly similar in duration to that 

of the previously identified 3-sided te.  Figure 5.2 displays the percent difference in the te 

duration between 3-sided and 4-sided exposure versus the column te duration in minutes.  

The values on the figure were numerically derived using the methodology of Section 5.2.  

A positive percentage change indicates the column te is longer, while a negative change 

indicates the opposite.  From the figure, the column te can be seen to exhibit a relatively 

similar duration to the beam te.  Of the evaluated cases, none required a decrease in the te 

duration.  Although, several test cases do require a minor increase to the column te. 

 

 

Fig. 5.2 Change in Conservative te from 3-Sided to 4-Sided Exposure 

 

 

The necessary increase in the column te is attributed to the presence of the two variable 

zones on the AITP profile.  In general, the two variable zones have no impact on the 

conservative te duration; as the column profile is identical in temperate to the beam profile, 

and simply symmetrical about the neutral axis.  However, when a section is short in height, 

or a design fire is long in duration, the variable zones can overlap at the section’s interior.  

In such a case, the AITP will experience higher internal temperatures, requiring an increase 

in the te duration.  Of the evaluated cases, 27 % experienced the overlapping effect.  Despite 

this overlapping presence, it’s impact on the AITP te duration is relatively minor.  On 
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average, cases experiencing overlap required only a 0.29 % increase to the column te.  

Likewise, the maximum required change presented on Figure 5.2 is only 4.13 %, 

representing an addition of 5.5 min.   

 

Given the similarity of the numerically derived conservative te for columns and beams, the 

AITP te equation derived for 3-sided heating is proposed for application with RC columns 

undergoing 4-sided exposure.  Figure 5.3 highlights the suitability of the AITP te and ψsize 

given in Equation 5.1 and 5.2 by examining the 5160 test cases undertaken on the four 

square cross-sections.  The numerical and equation results indicate a good fit, satisfying 

the use of the existing AITP te equation.  Application of the ψsize results in a te with far 

superior fit, demonstrating the validity of the existing ψsize and the importance of 

considering section dimensions when determining a time equivalent for RC elements.  

 

 

Fig. 5.3 Conservative Numerical vs. Equation te with and without ψsize 
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5.3.3  Mean AITP te Evaluation 

Figure 5.4 displays the percent change in the column versus the mean te duration.  Unlike 

the conservative results, the mean te displays far greater variation between 3-sided and 

4-sided exposure.  From the test cases, 10 % recorded no significant change, 6 % recorded 

a decrease in the te duration, and 84 % recorded an increase in the te duration.  At the most 

significant extent, the column te required a 33.8 % increase from the beam te.  The presence 

of the second variable zone is the cause of the change in the te duration.  For the mean te, 

the influence of the variable zone varies greatly depending on the design fire and cross-

section dimensions.  Given the results presented in Figure 5.4, the existing mean te equation 

(Equation 5.1) is deemed unsuitable for the application with RC columns undergoing 

4-sided fire exposure. 

 

Before deriving a new equation to calculate the column te, considerations should be made 

for the average error.  The average error was defined in Section 5.2 as the absolute average 

of the percent difference between AITP-D and AITP-S at every layer of the section.  The 

average error for the 3-sided exposure is displayed in Figure 5.5a.  For 3-sided exposure, 

error was found to be greater than 10 % for 12 % of the evaluated cases.  To ensure accuracy 

of the mean time equivalent, Table 5.2 outlines the conditions that were placed on the valid 

range of the beam te to eliminate the high error data points when applying Equation 5.1.  A 

similar error analysis is presented for 4-sided exposure in Figure 5.5b.  In contrast to the 

3-sided results, the average error is found to vary significantly, with 36 % of the test cases 

recording an error greater than 10 %.  More importantly however, for 3-sided exposure the 

high error points corresponded to smaller fires, as indicated by lower te durations.  The 

4-sided exposure results do not display this same error congregation, with high error data 

points existing through the entire range of design fires.  Due to this error spread, 

development of new conditions to eliminate the high error data points is unfeasible.  The 

introduction of two transient zones simply proves unrealistic for the standard fire to 

accurately approximate.  As such, no mean te is proposed for the analysis of RC columns. 
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Fig. 5.4 Change in Mean te from 3-Sided to 4-Sided Exposure 

 

 

  
 

Fig. 5.5 Average Error due to (a) 3-Sided and (b) 4-Sided Exposure 
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5.4  Assessing the Moment-Axial Response of Fire-Exposed 
RC Columns using an Equivalent Standard Fire 

A study is presented to assess the application of the conservative AITP te equation in the 

performance-based design of RC columns undergoing natural fire exposure.  Performance-

based requirements are often defined by serviceability and ultimate limit states.  For RC 

columns, these two limit states can be best satisfied by the calculation of a section’s 

moment-curvature (M-φ) relationship at difference axial load levels and the axial-strain 

(P-ε) relationship.   

 

 

5.4.1  Sectional Analysis Method 

The M-φ and P-ε relationship of RC columns during fire exposure can be simply 

established using a structural analysis program developed by El-Fitiany and Youssef 

(2009).  The analysis is based on a finite difference method (FDM) and has three main 

steps: (1) determine the internal thermal gradients of the section, (2) evaluate the concrete 

thermal and transient strains at elevated temperature, and (3) complete a sectional analysis.  

Considering the axial-moment relationship of columns, a section can be evaluated at a 

given axial load by first determining the section’s P-ε relationship, then using the axial 

strains to determine the subsequent M-φ response.  The program makes the following 

assumptions: (1) plane sections remain plane during fire exposure, as previously validated 

up to 1200°C by El-Fitiany and Youssef (2011); (2) perfect bond exists between steel and 

concrete; (3) normal strength concrete (NSC) is used, and thus, explosive spalling can be 

ignored; (4) influence of concrete tensile cracks on heat flow is minor and can be ignored; 

and (5) geometrical nonlinearity is not considered. 
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5.4.2  Study Methodology 

Using the structural analysis program of Section 5.4.2, RC columns were evaluated during 

both natural and standard fire exposure.  The natural design fire is defined by the Eurocode 

approach using selected compartment parameters (EN 1991-1-2, 2002), and the standard 

fire is applied at a given conservative AITP te duration.   

 

Comparison of a section’s M-φ and P-ε relationships during natural and standard fire 

exposure is used to assess the accuracy of the AITP te.  Considering the impracticality of 

presenting full M-φ and P-ε relationships for a large number of cross-sections and fire 

exposures, four key responses are identified from the relationships for general evaluation.  

These responses are the equivalent thermal induced strain recorded at section mid-height 

(εT), the axial capacity at elevated temperature (PT), the moment capacity at elevated 

temperature (MT), and the initial curvature at elevated temperature (φiT).  For each section, 

these four responses are identified from the M-φ and P-ε relationships.  It is necessary when 

analyzing columns to consider various axial load levels, of which, there are three load 

levels of particular importance: pure axial (1.0P), pure bending (0.0P), and the balanced 

condition (0.4P).   It was identified by Yemen et al. (2008) that the balance condition at 

ambient temperature falls within a range of 30 % and 50 % of the maximum axial load.  

El-Fitiany and Youssef (2018) observed a similar range for columns evaluated at elevated 

temperatures.  In this study, the balance condition is taken as approximately 40 % of P.  

Evaluation of a section at these three load levels allows for determination of the pure axial 

capacity (PrT) at 1.0P, the balance condition axial capacity (PbT) at 0.4P, the corresponding 

balanced condition moment capacity (MbT) at 0.4P, and the pure moment capacity (MrT) at 

0.0P.  Knowing these responses, a section’s moment-axial (M-P) relationship can be 

approximated defining the section’s load capacity.  Considering the four responses and the 

three axial load levels, twelve responses are recorded in total for each cross-section and 

fire exposure. 
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5.4.3  Study Parameters 

Five column sections were selected for evaluation, Table 5.3 displays their properties.  The 

studied parameters are: concrete strength at ambient temperature (f’c), section width (bc), 

section height (hc), steel reinforcement ratio (ρs), and aggregate type (agg.) of either 

siliceous (sil.) or calcareous (cal.).  Thermal properties for normal strength concrete (NSC) 

with siliceous and calcareous aggregate are applied from Lie (1992).  The steel ratio was 

represented as six bars, with three on the top and three on the bottom.  The bars were spaced 

symmetrically about the centerline at 55 mm on center from the column edge surfaces.  A 

general cross-section detail is presented in Figure 5.6. 

 

Table 5.3 Parametric Study Column Properties 

ID Fy f'c bc hc ρs agg. 

 MPa MPa mm mm % --- 

C1 

400 

30 
300 300 2.0 

sil. C2 400 400 1.5 

C3 
40 

600 600 1.5 

C4 600 600 1.5 
cal. 

C5 30 500 800 1.0 

 

 

Fig. 5.6 Cross Section of Parametric Study RC Beam 

 

 

 

 

bc 

hc 

55 mm 
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For the fire exposure conditions, five design fires are identified in Figure 5.7.  The five 

fires were developed using the Eurocode approach (EN 1991-1-2, 2002) to represent a 

range of possible natural fires as presented by Dembsey et al. (1995), Kirby et al. (1994), 

Lennon (2014), and Implementation of Eurocodes (2005).  The fires can be broadly 

classified as medium, big, small, rapid hot, and long cool.  To determine the conservative 

AITP te, the key points of tmax, tfinal, and Tmax can be graphically identified from the fire 

curves in Figure 5.7 and substituted into Equations 5.1 and 5.2.  Table 5.4 records the AITP 

te duration with the applied φsize for the given design fires and cross-section dimensions.  In 

total, the study considers 125 test cases using the five column sections, five design fire 

exposures, five time equivalent standard fire exposures, and three axial load levels. 

 

 

Fig. 5.7 Representative Design Fire Profiles 

 

Table 5.4 Conservative AITP te for Study Design Fires and Cross-Sections 

 Conservative te (min)  

 300 x 300  400 x 400  600 x 600  500 x 800  

FR 2 67.0 68.9 72.7 70.8 Moderate 

FR 3 195.5 195.5 195.5 195.5 Large 

FR 4 10.4 11.1 12.4 11.7 Small 

FR 5 128.4 128.4 128.4 128.4 Rapid Hot 

FR 6 90.2 96.2 108.2 102.2 Long Cool 
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5.4.4  Moment-Axial Assessment  

Figure 5.8 displays the full results for C1 exposed to the medium design fire FR 2 and the 

conservative te standard fire.  The ambient response is also provided as a baseline.  The 

figure shows good correlation between the two fire events.   

 

For the P-ε response, the two fires induce a near identical trend and value throughout.  At 

the initial point when no axial load is applied, the thermal strain (εT) is found as -0.005 for 

both exposure fires.  Strain increases with axial load similarly for both fires until the 

maximum axial load is identically reached at 2440 kN.  For the M-φ response, the 

relationship at 0.0P shows a strong correlation with the AITP te recording only minorly 

conservative values throughout.  At 0.4P, the AITP te deviates from the design fire 

response, but does so conservatively with lesser moment capacity and larger curvature.  

The final M-P relationship defines the load capacity of the section.  The four responses 

used to approximate the curve are identified and labelled.  The AITP te closely 

approximates the response of the design fire, with minorly conservative moment and axial 

responses.   

 

Figures 5.9 to 5.12 display the comparison of the design fire and time equivalent standard 

fire in view of the four responses of εT, φiT, PT, and MT.  For each of the 125 test cases, the 

AITP te conservatively approximates the design fire result.  This entails lesser moment and 

axial capacities, and larger initial curvatures and fire induced strains.  The εT displays the 

greatest variability, as concrete strain is highly susceptible to small changes in temperature.  

These figures confirm the application of the conservative AITP te in approximating the 

mechanical response of RC columns undergoing four-sided fire exposure. 
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Fig. 5.8 (a) C1 Axial-Strain Relationship, (b) C1 Moment-Curvature 
Relationship, (c) C1 Moment-Axial Relationship 
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Fig. 5.9 Design vs. Time Equivalent Influence on εT 

 

 

Fig. 5.10 Design vs. Time Equivalent Influence on φiT 

 

 

Fig. 5.11 Design vs. Time Equivalent Influence on PrT 
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Fig. 5.12 Design vs. Time Equivalent Influence on MrT 

 

 

5.5  Comparison with Existing Methods 

There are a number of time equivalent methods already existing in the literature; the earliest 

of which was proposed by Ingberg (1928).  These methods vary greatly in their 

methodology, basing time equivalency on maximum element temperature, energy transfer, 

and load capacity.  Chapter 3 of this thesis presents a brief literature review on the existing 

time equivalent methods.  Despite the range of existing methods, few are applicable for 

reinforced concrete sections, and to the best of the author’s knowledge, none consider the 

effect of 4-sided fire exposure.  In this section, a comparison is provided with two major 

existing time equivalent methods to demonstrate the accuracy of the AITP te and the 

importance of considering the unique effects of 4-sided fire exposure for RC columns.   

 

The existing methods presented by the Eurocode (EN 1991-1-2, 2002) and by Kodur et al. 

(2010) were selected for comparison.  The Eurocode method was derived based on the 

work of Pettersson (1975) for protected steel columns.  A modification factor is provided 

in the code for application to RC sections.  Despite the code’s stated applicability to RC 

sections, Thomas et al. (1997) and Xie et al. (2017) have proven the method provides 

unreliable time equivalent values for RC members when assessing load capacity during 

natural fire exposure.  In Chapter 3, the suitability of the method in representing the AITP 

of RC beams was found to be unacceptable.  Regardless, the wide spread use of the 
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Eurocode makes it a highly suitable method for comparison.  Kodur et al.’s method (2010) 

was derived for RC beams based on the energy transfer of a fire event.  This method was 

found in Chapter 3 to be reasonably accurate in representing the AITP of sections 

undergoing 3-sided fire exposure.  Comparison with Kodur’s method will best demonstrate 

the importance of considering 4-sided fire exposure when determining a time equivalent 

value.   

 

Figure 5.13 displays the comparison between the conservative AITP te, EN 1991-1-2 

(2002), and Kodur et al. (2010).  The comparison was made for column C2 (400 x 400 

mm) based on exposure to the five design fires given in Figure 5.7.  Each of the four key 

responses is assessed at the axial load levels of 1.0P, 0.4P, and 0.0P.  The key responses 

are recorded as a percent error from the value calculated using the design fire.  A positive 

error indicates the time equivalent overestimates the actual design fire response, and a 

negative error indicates the opposite.  It should be noted that some of the responses do not 

apply for every load level, therefore the figure is left blank for those cases.  Furthermore, 

the εT response is identical for each load level because it is only affected by temperature, 

not load.  

 

The results presented in Figure 5.13 highlight the conservative nature of the AITP te in 

relation with the existing methods.  For every section response, design fire and axial load 

level; the AITP te resulted in a conservative estimate of the design fire severity.  In contrast, 

the Eurocode method rarely produced conservative results, often significantly over-

approximating the section capacity and under-approximating the developed stains.  Given 

the derivation of the Eurocode method for steel section’s, this lack of applicability for RC 

columns is expected.  Kodur’s method is far more accurate than the Eurocode, but still 

demonstrates a fair number of unconservative results.  There does not appear to be any 

pattern in Kodur’s method for when it conservatively or un-conservatively approximates a 

design fire.  As such, the method cannot be used to reliable approximate the severity of a 

concrete section undergoing 4-sided fire exposure. 
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Fig. 5.13 M-P Response of C2 for Existing Time Equivalent Methods 
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5.6  Conclusion 

During a fire event, typical interior RC columns undergo 4-sided fire exposure.  The 

existing time equivalent methods are entirely focused on protected steel members or 

concrete beams undergoing 3-sided fire exposure.  Due to the unique thermal properties of 

concrete, the methods derived for protected steel members, such as given in 

EN 1991-1-2 (2002), are highly unreliable.  Also, the methods developed for RC beams 

undergoing 3-sided exposure, are equally inaccurate in representing fire severity as they 

ignore the additional thermal gradients that develop during 4-sided heating.  To address the 

gap in the literature, a new AITP time equivalent method is proposed.  The method is based 

on the actual internal gradients that develop within a concrete column section during 4-

sided fire exposure.  Using a section’s AITP, which defines the sections average 

temperature as a function of height, the AITP te is identified as the shortest duration 

standard fire that generates equal or greater average temperatures at every layer along the 

section’s height.  Following a parametric study, a general equation is presented to calculate 

the AITP te within the valid fire ranges of 350°C ≤ Tmax ≤ 1200°C, 15 min ≤ tmax ≤ 115 min, 

20 min ≤ tfinal ≤ 240 min.  To account for variable RC column dimension, a size adjustment 

factor was proposed to be used in conjunction with the te within the valid size ranges of 

200 ≤ bc ≤ 800 mm and 200 ≤ hc ≤ 800 mm.  The suitability of the AITP method was 

evaluated using a sectional analysis method.  When assessing the moment-curvature, axial 

load-axial strain, and moment-axial load relationships; the AITP te always produced 

conservative results in comparison to the true design fire response.  Based on the results of 

the study, it is concluded that the proposed time equivalent method allows designers to 

reliably approximate the severity of a natural fire on an RC column for performance-based 

design. 
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Chapter 6 

6.0  Thesis Conclusion 

Performance-based fire design provides engineers with the means to design structures to 

withstand fire events without the need for prescriptive measures.  This thesis presented 

simple, practical, and rational methods to facilitate the evaluation of reinforced concrete 

(RC) elements during natural fire exposure.  Considering the internal temperature gradients 

that develop within RC sections, a time equivalent (te) has been proposed to approximate 

the severity of a given natural fire event in terms of an equivalent standard fire duration.  

The methodology of this process was assessed for a range of natural fires, RC beam-

sections, and RC column-sections.  The proposed method has been assessed in view of 

existing experimental work and finite element analysis.  In the following sections, the work 

completed in each chapter of this thesis is summarized, highlighting the important 

conclusions.  The author’s recommendations for future work are also included at the end 

of this chapter. 

 

 

6.1  Literature Review 

A literature review was conducted to investigate the influence of natural fires on the stress-

strain relationship of concrete.  Natural fire events were identified to have four main 

variabilities that influence the response of concrete: heating rate, maximum temperature, 

fire duration, and cooling rate.  From the existing literature, experimental work was 

selected to evaluate the influence of each of the four variabilities.  Given the large range of 

reported testing scenarios and mix designs, collected experimental work was limited to the 

following criteria: (a) unstressed tests, (b) unconfined tests, (c) unsealed tests, (d) ordinary 

portland cement (OPC) specimens (no additives such as fly ash, silica, fibers, etc.), and (e) 

normal strength concrete (NSC) specimens.  The conclusions of the literature review found 

that maximum temperature has the most significant impact on the stress-strain relationship 

of concrete.  At lower temperatures, circa 500°C, cooling rate has a comparable influence 

as maximum temperature, but, this impact diminishes greatly with increasing temperature.  
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Exposure duration only impacts strength until a uniform internal temperature gradient is 

reached.  Long term exposure was not found to lead to further degradation.  Heating rate 

was identified to have no noticeable impact on the stress-strain response.  Given the impact 

of natural fires on the stress-strain relationship of concrete, properly identifying and 

accounting for these four fire variabilities will assist engineers in the future evaluation of 

concrete at elevated temperatures. 

 

 

6.2  Equivalent Standard Fire Duration to Evaluate Internal     

Temperatures in Natural Fire Exposed RC Beams 

A new time equivalent method was proposed in this chapter based on the internal 

temperatures that develop within an RC beam exposed to a natural fire event.  The basis of 

the proposed method lays in the evaluation of a section’s average internal temperature 

profile (AITP).  AITP’s record a section’s average temperature as a function of section 

depth.  Using AITP’s, two-dimensional temperature gradients can be simply approximated 

by a single profile, greatly simplifying sectional analysis.  The AITP time equivalent 

method is derived following two criteria: mean and conservative.  Mean criterion was 

based on accurately matching the internal temperature profiles of a natural fire to that of a 

standard; while the conservative criterion was based on selecting the shortest duration 

standard fire that produces equal or larger temperatures at every point in the section.  A 

parametric study was conducted to numerically determine the AITP te for a variety of 

natural fires.  The study resulted in the development of two equations that allow for the 

simple calculation of the AITP te for mean and conservative criteria.  The influence of beam 

dimensions was also considered.  Beam height demonstrated no influence on the te 

duration, but beam width had a major effect on the required duration.  A size adjustment 

factor (ψsize) was subsequently derived to be used in conjunction with the AITP te.  The 

thermal predictions of the proposed AITP te was then compared to those of existing time 

equivalent methods.  To the best of the author’s knowledge, the AITP te is the only time 

equivalent that considers the influence of cross-section dimensions.  The comparison 

demonstrated the existing methods’ lack of suitability for RC beams and the importance of 

considering beam dimensions.  Using the proposed AITP te and size adjustment factor, 

designers will be capable of quickly evaluating the severity of a natural fire for a RC beam. 
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6.3  Assessing the Flexural Response of Fire-Exposed RC 

Beams using an Equivalent Standard Fire 

To assess the suitability of the proposed AITP te in representing the severity of a natural 

fire event, selected flexural responses were evaluated using natural fire properties and the 

AITP equivalent standard fire.  A simple sectional analysis method, developed by El-

Fitiany and Youssef (2009), was used to calculate the moment-curvature relationship of 

RC beams during fire exposure.  A parametric study was undertaken for a variety of natural 

fires and RC sections.  For each test case, three key points from the moment-curvature 

profile were recorded for comparison: maximum moment, initial curvature, and initial 

stiffness.  These points were identified as the critical points to define the relationship and 

allow for performance-based design.  The study found the predictions based on the mean 

te to be in good agreement with the responses calculated using the design fire exposure.  

The initial curvature and stiffness demonstrated greater variability, but their error on the 

conservative side was less than 10 %.  The conservative time equivalent led to conservative 

predictions for all cases.  The chapter concluded with a case study demonstrating the 

application of the AITP te in the simplified analysis of an RC beam.  The simplified analysis 

proceeded by determining the natural fire severity, calculating the section internal 

temperatures, and evaluating the sectional moment capacity.  The approach was validated 

using a finite element model and experimental findings from Ellingwood and Lin (1991).  

The conclusions of the chapter indicate the validity of the AITP te and its suitability in the 

performance-based design process.   
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6.4  Equivalent Standard Fire Duration to Evaluate Internal     

Temperatures in Natural Fire Exposed RC Columns 

In this chapter, the proposed time equivalent method for RC beams was assessed for RC 

columns.  During fire exposure, a major change arises for typical interior columns, as they 

are heated from all four faces, not just from the three lower faces as is experienced by a 

typical beam.  The additional exposure face was found to greatly influence the internal 

thermal gradients that develop within a section.  For RC columns, the mean criterion 

methodology was found to be no longer suitable for application, as the internal gradients 

that developed were too variable to be represented accurately by an equivalent standard 

time.  The conservative criterion methodology however, was found to work perfectly for 

RC columns.  A study was undertaken to assess the conservative te equation for column 

sections of 300 x 300, 400 x 400, 600 x 600, and 800 x 800 mm.  The study determined 

that the existing conservative time equivalent equation from Chapter 3 is still valid for RC 

columns.  Similar to Chapter 4, the mechanical response of columns during time equivalent 

exposure was assessed based on the sectional moment-curvature, axial load-axial strain, 

and moment-axial load relationship.  The three relationships were assessed at three load 

levels: pure axial; pure bending; and the balance condition, which was assumed to occur at 

40% of the maximum axial load.  For every section response, load case, cross-section, and 

natural fire considered, the conservative AITP te produced a conservative approximation 

of the natural fire result.  A comparison with existing methods was further provided 

demonstrating the improved suitability of the AITP te for RC columns undergoing four-

sided fire exposure.   
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6.5  Thesis Limitations 

The proposed AITP te and size adjustment factor were derived based on a parametric study.  

As such, the method has a well-defined valid range based on the extents of the study:   

 

The method is valid for natural fires within: 

▪ 350°C ≤ maximum temperature ≤ 1200°C,  

▪ 15 min ≤ time at maximum temperature ≤ 115 min 

▪ 20 min ≤ overall fire duration ≤ 240 min 

 

The method is valid for RC sections within: 

▪ 200 mm ≤ beam width ≤ 800 mm 

▪ 200 mm ≤ beam height ≤ 800 mm 

▪ 300 mm ≤ column width ≤ 800 mm 

▪ 300 mm ≤ column height ≤ 800 mm 

 

Furthermore, the AITP methodology is only applicable for elements resisting un-axial 

bending.  Columns resisting bi-axial bending were not considered in this study.  The 

parametric study was only undertaken considering NSC, which allowed for the omission 

of explosive spalling. 
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6.6  Recommendations for Future Work 

This thesis has revealed that additional experimental and analytical work is needed in the 

following subjects: 

 

1) Further experimental testing is needed on the stress-strain response of concrete 

during natural fire exposure. 

2) Experimental testing of RC elements exposed to natural fire exposure.  To the best 

of the author’s knowledge, no experimental work is readily available recording the 

flexural or shear failure of RC elements during natural fire exposure. 

3) Assessment of the AITP method for plane RC elements such as walls and slabs. 

4) Extending the AITP method for T or I shaped beam sections. 

5) Consideration of the AITP method for application with high-strength concrete 

(HSC), which will require consideration of explosive spalling. 
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Appendix A 

Finite Difference Modelling 

In this thesis, a simple heat transfer model from Lie (1992) was implemented to determine 

the section internal temperatures of a concrete element during fire exposure.  This appendix 

describes the implemented finite difference method (FDM), the validation approach, and 

method limitations.  A full description of the equations needed for the FDM is provided by 

Lie (1992).   

 

To calculate section temperatures, the cross-section is first divided into a fine two-

dimensional mesh (Figure A.1).  The mesh is oriented at 45 degrees, with square elements 

used in the interior and triangular elements used at the surface.  Heat retention and transfer 

is conducted at the center of the square mesh elements.  For the triangular elements, transfer 

is conducted at the center of the hypotenuse.  This location of the triangular elements 

represents the boundary nodes of the section.   

 

 

Fig. A.1 Heat Transfer Mesh Detail 
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Mesh size (Δξ) was determined by a sensitivity analysis.  Evaluating the internal 

temperatures of the section during standard fire exposure, the mesh size was iteratively 

decreased until a temperature change of less than 1% was observed.  Based on the 

sensitivity analysis, the number of required horizontal mesh divisions can be related to the 

section width using equation A.1; where bc is the section width in meters.  Individual mesh 

size can be subsequently determined assuming a square mesh shape.   

 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝑚𝑒𝑠ℎ 𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛𝑠 = 𝑏𝑐 ∗ 200  (A.1) 

 

Application of the FDM requires knowledge of several concrete thermal properties.  They 

include: the thermal conductivity (k), specific heat (cs), and density (ρ).  Temperature 

dependent relationships for these material parameters were implemented into the model 

based on equations presented in Lie (1992).  Additional constants such as the Stefan 

Boltzmann constant (σ), the conductivity constant (hmax), and the emissivity (εf) were also 

specified based on the recommendation of Lie (1992). 

 

Fire conditions are imposed on the section using a temperature-time relationship.  At a 

given time, the temperature of the fire is identified, and applied evenly to the desired 

boundaries of the element.  Depending on element geometry, the fire exposed boundaries 

(3-side heating, 4-side heating, etc.) are specified during implementation.  The maximum 

time step for fire iteration is specified in the method based on mesh size, section geometry, 

and material properties. 

 

Lie (1992) provides an Energy Equation to account for heat transfer due to conduction and 

radiation.  Heat flow (q) due to conduction and radiation is undertaken consistent with the 

general energy relationships presented in Equations A.2 and A.3.  Starting at the section 

boundaries, heat transfer is evaluated from the compartment fire to the exterior triangular 

mesh elements.  Subsequent interior elements are solved for by iteratively applying the 

head transfer until the full section is evaluated.  The time step is then increased, and the 

process continued until the final fire duration is reached. 
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𝑞𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 = 𝜀𝜎(𝑇𝑒
4 − 𝑇𝑟

4) (A.2) 

𝑞𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑜𝑛 = 𝑘(𝑇𝑒 − 𝑇𝑟) (A.3) 

 

Validation of the FDM was accomplished using the standard temperature profiles presented 

in the Implementation of Eurocodes (2005) handbook.  These standard profiles are 

provided for a variety of specific aggregate types, section dimensions, and fire exposures.  

Evaluation of the FDM using the same parameters of these studies validates the accuracy 

of the implemented method in determining section internal temperatures.  

 

The limitations of the proposed method are as follows: 

1. Moisture movement within the section is omitted.  This is a conservative 

assumption, as it leads to higher internal temperatures.  Furthermore, for an 

established concrete structure, it is reasonable to assume moisture levels would be 

negligible. 

2. The energy equation for radiation transfer is assumed for that of an ideal black 

body.  This was shown my Lie (1992) to produce only very minor errors. 

3. Fire is applied as a uniform temperature along the section’s boundaries.  This is 

consistent with the commonly implemented uniform compartment temperature.  

4. The valid temperature range of the method is governed by the limitations of the 

specified material properties.   

5. Heat transfer due to convection is ignored at the element’s surface.  This is proven 

be Lie (1992) to result in only very minor errors. 

6. A stability equation is provided by Lie (1992) as a general limitation for the 

method.  The equation accounts for mesh size, thermal properties, and iteration 

time step. 

7. Normal strength concrete (NSC) is assumed, thus allowing for the omittance of 

explosive spalling. 
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Appendix B 

Finite Element Modelling (ABAQUS) 

A finite element (FE) model was utilized in Section 4.0 as part of the presented case study.  

This appendix describes the FE modelling and validation techniques implemented as part 

of that work. 

 

The FE model was implemented in ABAQUS, a widely utilized FE software package.  In 

order to capture the variation in heat transfer within the RC-section, solid elements were 

specified in the model.  RC sections consist of both concrete and reinforcing steel.  These 

elements were modelled as separate solid parts, and subsequently merged together as a 

combined assembly.  Mechanical constraints were applied to the end faces of the element 

consistent with pin and roller connections.  The roller connection permits the release of 

thermal expansion stresses, allowing for the model and case-study to omit the influence of 

restrain actions.   

 

Material properties for the steel and concrete were implemented in ABAQUS consistent 

with values presented in Lie (1992).  Materials were defined as temperature-dependent, 

allowing for greater accuracy during the fire event.  Fire exposure was applied along the 

bottom and two side faces of the beam section.  Considering the assumption of a uniform 

compartment temperature, the fire event was applied uniformly over the selected 

boundaries.  Fire exposure was defined as a temperature-time relation.  Along the element 

boundaries, heat transfer between the compartment and the beam was specified for 

radiation and conduction conditions. 
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Final mesh layout and sizing was selected based on a sensitivity study.  Mesh size plays an 

important role in both the heat transfer and stress analysis, therefore both responses were 

evaluated in the sensitivity study.  Element temperature was evaluated at the location of 

the steel reinforcement and the maximum deflection was recorded during ambient 

conditions for a uniform surface load.   These responses were measured for a variety of 

mesh layouts, until a difference of less than 1 % was recorded between iterations.  The final 

selected mesh is presented in Figure B.1.  Due to stress concentrations at the steel location, 

a finer mesh is utilized in this region.   

 

 

 

Fig. B.1 Element Meshing in Cross-Section and Elevation View 
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Running the model involves a two-step process: heat-transfer and stress analysis.  In the 

heat-transfer step, the beam is exposed purely to the fire scenario and the internal 

temperatures are recorded with time.  Secondly, the internal temperatures are loaded into 

the model as a pre-define condition, and a stress analysis is completed.  In order to 

determine the moment capacity of the fire exposed section, a constant uniformly distributed 

load is applied to the top face of the element during the stress analysis.  This load is 

manually increased between runs until failure is observed based on strain non-convergence.  

ABAQUS does allow for a coupled loading event in which both heat transfer and stress 

analysis can be completed simultaneously.  However, both approaches provide identical 

results, and it is the author’s opinion that this two-step process provides better 

compartmentalization for error checking. 

 

Model validation was undertaken at both steps of the analysis.  In the heat-transfer step, 

validation was performed by comparing section temperatures with the finite difference 

model (FDM) from Appendix A and the experimental work performed by Ellingwood and 

Lin (1991).  In the stress analysis step, validation was undertaken with and without the fire 

exposed pre-defined condition.  Doing so allowed for the moment capacity of the section 

to be easily validated at ambient temperatures, and then subsequently validated during the 

fire-exposed condition.  At the fire exposed-condition, validation was achieved by 

comparison with the proprietary structural analysis program described in Section 4.1 of 

this thesis. 
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