
Western University Western University

Scholarship@Western Scholarship@Western

Electronic Thesis and Dissertation Repository

4-18-2019 2:30 PM

Haptics-enabled, GPU augmented surgical simulation platform for Haptics-enabled, GPU augmented surgical simulation platform for

glenoid reaming glenoid reaming

Vlad Popa, The University of Western Ontario

Supervisor: Tutunea-Fatan, Ovidiu-Remus, The University of Western Ontario

A thesis submitted in partial fulfillment of the requirements for the Master of Engineering

Science degree in Biomedical Engineering

© Vlad Popa 2019

Follow this and additional works at: https://ir.lib.uwo.ca/etd

 Part of the Medical Education Commons, Software Engineering Commons, and the Systems

Architecture Commons

Recommended Citation Recommended Citation
Popa, Vlad, "Haptics-enabled, GPU augmented surgical simulation platform for glenoid reaming" (2019).
Electronic Thesis and Dissertation Repository. 6143.
https://ir.lib.uwo.ca/etd/6143

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F6143&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1125?utm_source=ir.lib.uwo.ca%2Fetd%2F6143&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ir.lib.uwo.ca%2Fetd%2F6143&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/144?utm_source=ir.lib.uwo.ca%2Fetd%2F6143&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/144?utm_source=ir.lib.uwo.ca%2Fetd%2F6143&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/6143?utm_source=ir.lib.uwo.ca%2Fetd%2F6143&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

ii

Abstract

Surgical simulators are technological platforms that provide virtual substitutes to the current

cadaver-based medical training models. The advantages of exposure to these devices have

been thoroughly studied, with enhanced surgical proficiency being one of the assets gained

after extensive use. While simulators have already penetrated numerous medical domains,

the field of orthopedics remains stagnant despite a demand for the ability to practice

uncommon surgeries, such as total shoulder arthroplasty (TSA).

Here we extrapolate the algorithms of an inhouse software engine revolving around

glenoid reaming, a critical step of TSA. The project’s purpose is to provide efficient

techniques for future simulators, and the methods developed address the challenges of

achieving real-time performance with high-volume computations and haptics input rates. The

core of the engine revolves around the management and manipulation of voxels, which

handle the representation of virtual objects, the collision between them, and the removal of

material upon interaction. A partitioning (“Chunk”) system was implemented for performant

voxel organization and collision handling. Compared to object-wide single voxel buffers or

3D textures, chunks enable empty-space memory savings and optimized collision testing

through region isolation. Overall, the engine can replicate the interaction between a ~30

million voxel scapula and a drill at 60 Hz visual, 1 kHz haptics, and 333 Hz collisions. We

anticipate that the techniques developed will further the development of current and future

simulators.

Keywords: Virtual Reality, Surgery, Simulator, Engine, Haptics, Voxels, Collision

Detection, GPGPU

iii

Acknowledgments

I express my humblest and most sincere thanks to my supervisor Dr. Ovidiu-Remus Tutunea-

Fatan, whose guidance and direction have enabled the realization and success of this project.

I am grateful for the opportunity provided by him, which has led to the development of the

engine, and the improvement of my skillset as a programmer. I would also thank my

colleague, Dr. Reza Faieghi, whose contributions to the project have shaped the project to

where it is today, achieving its goals of real-time material removal.

iv

Contents

Abstract ... ii

Acknowledgments.. iii

List of Figures ... vii

List of Tables ... ix

List of Algorithms ... x

List of Abbreviations, Symbols, and Nomenclature .. xi

Introduction ... 1

1.1 Importance of practicing surgical operations .. 1

1.2 Haptics-augmented VR surgical simulation platforms ... 2

1.3 Surgical simulators in clinical settings .. 2

1.4 The shoulder joint.. 3

1.5. Glenoid reaming in total shoulder arthroplasty .. 5

1.6 Motivation and project goals ... 6

1.7 Simulation engine techniques and development ... 6

1.7.1 Voxels for model representations ... 6

1.7.2 The chunk system ... 7

1.7.3 Entity-component system ... 8

1.7.4 Custom software development ... 9

1.7.5 Model Voxelization .. 10

v

1.7.6 Computed tomography scan data processing ... 11

1.7.7 Graphics rendering techniques ... 12

1.7.8 Engine loops and collision detection algorithms .. 15

1.8 Specific aims and thesis outline. ... 17

Engine Specifics.. 18

2.1 Initialization and object design ... 18

2.2 Chunks and the chunk system ... 20

2.2.1 Chunk voxel grid dimensions reasoning .. 22

2.3 Model voxelization and STL file to voxel grid conversion .. 22

2.4 Chunk grid construction using computed tomography scans.. 24

2.5 The haptics loop .. 27

2.6 The render loop ... 31

The chunk system ... 33

3.1 Memory optimizations .. 33

3.1.1 Against single buffer/texture data structures .. 33

3.2 Material removal ... 37

3.2.1 Collision testing with chunks ... 37

3.2.2 Baseline chunk collision performance with various tools and sizes 39

3.2.3 Chunk system collision testing performance compared to single-buffer-based

algorithms .. 45

3.2.4 Chunk system complexity .. 50

vi

3.2.5 Chunk system vs. octrees.. 51

3.2.6 Independency from tool voxel resolution ... 52

3.3 Chunk voxel rendering .. 52

3.3.1 Neighbor-aware triangle mesh generation .. 52

3.3.2 Ray-box intersection voxel rendering... 54

3.3.3 Comparison of the voxel rendering methods .. 56

Thesis closure.. 63

4.1 Summary ... 63

4.2 Future work ... 64

4.3 Conclusion ... 64

Bibliography ... 66

Curriculum Vitae .. 80

vii

List of Figures

Figure 1.1: Replacement of the glenohumeral joint in TSA ... 4

Figure 1.2: Process of glenoid resurfacing ... 4

Figure 1.3. Scapula bone voxel representation. .. 12

Figure 1.4: Voxel representations of (a) cellular foam, (b) trabecular bone core 2, (c)

trabecular bone core, (d) scapula, and (e) glenoid samples, which were used for tests. 15

Figure 2.1 Chunk partitioning system of voxelized scapula bone. ... 20

Figure 2.2: Before (A) and after (B) “RectGridToCubicGridTransfer” processing 25

Figure 2.3: OOBB intersection test and intersecting chunks identification............................ 30

Figure 2.4: Flowchart of the engine’s render and haptics loops. .. 31

Figure 3.1: Visual representation of active (red) vs. inactive (grey) chunks in generated

Scapula chunk grid. ... 34

Figure 3.2: Active voxels stored in memory across test models and data structures.............. 36

Figure 3.3: Visualization of the chunk system collision testing mechanism. Chunk voxels

(voxels in red WF) are iterated and compared against tool voxels ... 38

Figure 3.4: Visualization of tool-to-bone voxel collision testing. Tool voxels (green WF) are

iterated through, transformed, and collision checked against bone voxels (red WF) 39

Figure 3.5. Demonstration of the real time collision and material system. 39

Figure 3.6: Static collision event using reamer tool for testing effect on performance of chunk

sizes during collision testing. .. 40

Figure 3.7: Static collision event using peg-hole cylinder tool for testing effect on

performance of chunk sizes during collision testing... 41

viii

Figure 3.8: Chunk collision task computation time using the peg-hole cylinder tool with

varying PC configurations .. 44

Figure 3.9: Voxel processing time of various collision algorithms on Windows 10, Intel i5

8600, Nvidia GTX 1070 PC. Chunk collision was performed with reamer. 46

Figure 3.10: Chunk system collision timings using peg-hole cylinder tool vs Reza et. al’s

timings at varying tool and model voxel resolutions. ... 48

Figure 3.11: Chunk system collision timings using peg-hole cylinder tool against those

measured when using Zheng et. al’s method .. 49

Figure 3.12: Chunk system collision timings using peg-hole cylinder tool against those

measured when using Yau et. al’s method.. 49

Figure 3.13: 720p render timings for triangle mesh voxel rendering of 323 chunks across

tested models on Windows 10, Intel i5 8600, Nvidia GTX 1070 PC 57

Figure 3.14: 720p render timings for GL_POINT based voxel rendering of 323 chunks across

tested models on Windows 10, Intel i5 8600, Nvidia GTX 1070 PC 58

Figure 3.15: Ratio of active to inactive voxels across tested models 59

Figure 3.16: 720p render timings for GL_POINT based voxel rendering for “Cellular Foam”

model across varying Windows 10 PC configurations ... 61

ix

List of Tables

Table 2.1: Timings (in ms) of model voxelization for models tested 23

Table 2.2 Timings (in ms) of CT scan chunk grid construction phases for models tested. 26

Table 3.1: General voxel grid characteristics of the CT scanned objects used for testing 35

Table 3.2: Chunk grid characteristics of the CT scanned objects used for testing 35

Table 3.3: Static collision event timings for various chunk dimensions using the reamer 41

Table 3.4: Static collision event timings for various chunk dimensions using peg-hole

cylinder tool .. 42

Table 3.5: Static collision event timings at chunk dimensions of 323 using the Reamer tool

while varying tool voxel-sizes .. 42

Table 3.6: Specifications for the Windows 10 PCs used over the course of engine testing ... 43

Table 3.7: Various statistics of the voxel rendering methods used. .. 56

Table 3.8: Breakdown of the runtime for different phases of chunk triangle mesh generation

... 60

x

List of Algorithms

Algorithm 1.1: 1D index to 3D grid position (and reverse) calculations 8

Algorithm 2.1: Calculation of STL model voxel grid properties .. 23

Algorithm 2.2: CT scan voxel data structure .. 24

Algorithm 2.3: Calculation of parameters for rectangle and cubic CT scan voxel grid 24

Algorithm 2.4: Raw data OpenCL kernel pseudocode ... 24

Algorithm 2.5: Rectangle grid to cubic grid voxel transfer OpenCL kernel pseudocode 26

Algorithm 2.6: Cubic voxel grid to chunk voxel buffer OpenCL kernel pseudocode 26

Algorithm 2.7: Entity collision check pseudocode ... 28

Algorithm 2.8: Entity intersection volume calculation pseudocode 29

Algorithm 2.9: Min/max intersecting chunk coordinates calculation based on intersection

volume... 29

Algorithm 2.10: Intersection chunk collision detection OpenCL kernel setup pseudocode... 29

xi

List of Abbreviations, Symbols, and Nomenclature

AABB Axis Aligned Bounding Box

CPU Central Processing Unit

CT Computed Tomography

GPGPU General Purpose Graphic Processing Unit

GPU Graphics Processing Unit

OOBB Object Oriented Bounding Box

OpenCL Open Computing Library

OpenGL Open Graphics Library

RAM Random Access Memory

SAT Separating Axis Theorem

TSA Total Shoulder Arthroplasty

VAO Vertex Array Object

VOI Volume of Interest

VPS Voxmap Point-Shell

VR Virtual Reality

VRAM Video Random Access Memory

WF Wireframe

1

Chapter 1

Introduction

1.1 Importance of practicing surgical operations

Continuous repetition of surgical training programs has been thoroughly demonstrated to

increase the patent care of participating surgeons. Indeed, there exists a concise correlation

between the successful outcome of a procedure and the familiarity that a surgeon has with an

operation [1-3]. Furthermore, studies investigating the relationship between a surgeon’s

intimate knowledge of an operation and the rate of medical errors have verified that mortality

rates dramatically decrease when a surgeon has previously encountered the surgical task to

some capacity [4-7]. Clearly, surgical proficiency requires practice to obtain, as with any

skill. Regrettably, a lack of skill is the leading cause of patient death [6-11]. There is thus a

growing emphasis that surgeons should train whenever the opportunity presents itself [12,

13].

Surgical training extends beyond menial motor exercises, however. While performing mock

procedures on synthetic models may enhance one’s dexterity, for instance, human bodies are

complex, and providing a realistic learning environment is complicated [14]. Traditional

cadaver-based models (animal/human) and live patients currently fulfil said role, though

these options are limited, costly, and pose safety risks [15]. Work hour restrictions, where

surgeons aren’t at times available, also impede surgeons from obtaining the experience they

desperately need [12]. Considering the nature of these setbacks, a suitable alternative must

provide a platform where surgeons may improve their competency at consistent intervals, at

2

their discretion, and at a reasonable degree of realism. Surgical simulators are believed to be

a solution that addresses all concerns [16].

1.2 Haptics-augmented VR surgical simulation platforms

Surgical simulators are advanced technological platforms that provide realistic virtual

training models to medical professionals [17-19]. Through software and hardware

peripherals, these simulators mimic the hospital environment within virtual reality and

replicate the operating room experience for its users [20]. Being virtual, simulated operations

are customizable, repeatable, and performed at the discretion of the user, all of which are

advantages over traditional cadavers [21, 22]. There are two major components that

encompass surgical simulators: the haptics-enabled hardware tool peripherals, and the

software rendering engine [23]. Haptics devices provide the interface for which the user

interacts the virtual space with, and they enable tactile information to be relayed back to the

user, giving the sensation of a real operation. The visualization of the virtual space is

controlled by a computer workstation running an advanced software physics and graphics

rendering engine [24].

1.3 Surgical simulators in clinical settings

Modern VR surgical simulators are designed to conform to a narrow scope of use cases and

specialize to deliver specific procedures rather than be a general-purpose tool that

encompasses the entirety of the human body. Essentially, surgical simulators are finely

turned to accelerate competency of problematic surgeries and provide precise qualitative

feedback on a step-by-step basis [16, 24]. There are numerous examples of simulators that

are extensively used in various fields, and several studies have reported an upsurge in

3

residential program efficiency as a result [25, 26]. The Karlsruhe Endoscopic Surgery

Trainer, a VR laparoscopy simulator, is a device capable of roughly imitating the human

abdomen, and has been implemented with great success at the University Hospital of

Tuebingen since 1996 [21]. A Rhinoplasty simulator created by Lee et al. utilizes image

processing to facilitate the study of patient facial structures, ultimately easing pre-operative

planning for plastic surgery [27]. Within dental care, amongst many examples [28-30], Wu et

al. have written a VR simulator that models the process of dental grinding [31]. Finally, a

few contemporary companies offer commercial solutions that incorporate pre-operative

planning, VR patient data viewing, and psycho-motor skill education modules [32].

Together, these products mark a growing trend in the medical field where technology is

being leveraged to assist the advancements made towards surgical procedures [33].

1.4 The shoulder joint

While there are a variety of simulators in circulation, the most common being for

laparoscopy [34-38], there are few that address orthopaedics, which results in the field

relying on the apprenticeship model for training [39]. With orthopedic surgeons experiencing

setbacks, invested development in orthopaedic simulators would greatly benefit doctors [40-

45]. Current work focuses on minimally invasive operations (arthroscopy), since such tasks

are easier to program compared to more complex operations [46]. Even so, there is interest in

developing simulators that replicate uncommon surgeries relating to arthritis [47-49]. As of

2013, over 15% of Canadians aged 15 and up were diagnosed with some form of arthritis

[50]. However, despite an incidence rate increase, shoulder replacement surgeries remain

infrequent enough that residents have few opportunities to observe or practice [51]. With

bone machining simulators making strides within the field [24, 52], total shoulder

4

arthroplasty (TSA) is a prime target to be addressed by surgical simulators [53], and is the

focus of this project.

TSA is a medical procedure that restores shoulder joint function to patients who have

experienced trauma or are suffering from glenohumeral arthritis. The shoulder is made of

muscles, the Humerus, the shoulder blade (Scapula), and the collarbone (Clavicle) [54].

Figure 1.1: Replacement of the glenohumeral joint in TSA

Figure 1.2: Process of glenoid resurfacing

Prepared glenoid surface

Glenoid component

Humeral head

Stem

Scapula

Glenohumeral joint

Humerus

Scapula
Reamer

Drill shaft

Bone removal

5

Pathological disease usually occurs at the Glenohumeral joint (GHJ) of the shoulder

(Fig. 1.1). When a patient is afflicted with osteoarthritis, the articular cartilage lining the

surface of the humerus and the glenoid of the Scapula wears down and erodes [55]. Without

a frictionless surface between them, the bones experience direct contact, and the resulting

rubbing between the two leads to discomfort and pain [54, 56]. To correct this, the diseased

portions of the bones are removed, and artificial implants are inserted into the humerus and

glenoid [57, 58]. Correct placement and fixation of the implant into the cavity of the glenoid

is critical to restoring the joint, avoiding loosening or breakage, and preventing further

patient distress [59-65].

1.5. Glenoid reaming in total shoulder arthroplasty

During TSA, prosthetic replacement of all or part of the glenohumeral joint is performed in

two major steps. First, the glenoid component of the implant is inserted into a resurfaced

glenoid cavity, and second, the humeral component of the implant is lodged into a hollowed

out humerus bone (Fig 1.1 – 1.2) [59, 66, 67]. The difficulty of the operation lies in preparing

the glenoid surface through a process known as glenoid reaming [59]. The task involves the

removal of 2 mm of glenoid cartilage layer, and then gently removing the subchondral plate

without touching the cancellous bone. This resurfacing, performed with a drilling device

known as the reamer, ends in a convex surface that holds the glenoid implant in place (Fig.

1.2). Prior to this procedure, however, a peg-hole is drilled into the glenoid cavity to assist in

guiding the reamer [54, 59]. The problem here lies in the visualization. Due to the interposed

position between the reamer and the glenoid, there is limited sight of the tool-bone interface

during reaming [63, 68-71]. Combined with the necessity of correct implant application,

glenoid reaming requires skill and practice.

6

1.6 Motivation and project goals

Two factors contributed to the motivation behind this project. Firstly, the practical goal of the

engine was to simulate, in real-time and to a degree of accuracy, the process of glenoid

resurfacing, such that surgeons can use the simulator to prepare for the task. Secondly, the

methods and algorithms developed over the course of the project should positively contribute

to existing and future simulator code bases, increasing their efficiency and performance. One

of the necessities for accomplishing these requirements is the addition of force feedback

through an input device [72-77]. Given this restriction, on top of delivering real-time

rendering, haptics was also integrated into the engine.

1.7 Simulation engine techniques and development

1.7.1 Voxels for model representations

The engine developed for this project was designed to achieve a 1:1 correspondence between

user input via a haptics device and the movement and interaction of the virtual objects being

rendered on the screen. This simultaneous update between cause and effect is known as real-

time [78-80]. More precisely, the term “Real-time” signifies that the visual refresh rate of the

engine matches the monitor’s refresh rate (i.e.: 60 Hz), and that the update/input refresh rate

matches that of the haptics input device, which is typically 1 kHz [74, 81, 82]. Achieving

high frequencies is a common and challenging bottleneck for simulation engines as any code

executed during the program’s runtime must perform at sub-millisecond speeds. To address

the demands, developers have borrowed design patterns from game engines, which typically

contain the latest advancements in graphics and in handling numerous detailed objects in

virtual space [83]. The normal approach to representing objects in most surgical simulators,

7

including this one, is voxels [84-87]. Voxels are discrete units of space containing metadata

that describes the properties of the space the voxel occupies [88]. For visualization purposes,

the object being represented by voxels can be perceived as one made entirely out of a set

cubes, with some that are filled, and some that are empty. Voxels contain several advantages

over alternative means of representing virtual objects. Voxels are easily queried given their

grid-like structure, and any point of interest can be quickly identified. Compare this to

triangle meshes, whose vertices must be arranged according to a node-map prior to any sort

of search [89]. When it comes to collision detection, this ability translates into being able to

easily identify areas where an intersection takes place. Furthermore, once a change occurs

during an intersection, the difference can be visualized by simply changing the metadata of

the voxels affected. With this new identifier, the rendering system can then choose whether

to continue displaying the voxels on screen or remove them from view if it has detected that

they are no longer supposed to be there (i.e.: the voxels now represent void space). Contrast

this simplicity with that of triangle meshes, where not only do all the vertices that are in the

intersection volume need to be identified, but must be re-triangulated to reflect the change,

involving mathematics more complex than simply changing a density value [30, 89-91].

1.7.2 The chunk system

Of course, voxel representations of models need to be stored in memory and organized to

some sort of custom data structure. Existing engines utilize either a single buffer or a 3D

texture to house voxels [84, 92-94]. For 3D textures, they have the advantage of already

being laid out as a 3D matrix, wherein a voxel can be queried by supplying a relative XYZ

coordinate to the texture. For a 1D single buffer, the voxels may either be stored sparsely,

where all model voxels are compacted into a linear array, but each contain metadata that

8

indicates their position, or arranged according to a 3D lattice using a 3D XYZ to 1D index

mathematical conversion algorithm (Alg. 1.1).

inline int3 IndexToZYXGridPos(int i, int3 dims) {
 return (int3)(i % dims.x, (i / dims.x) % dims.y, i / (dims.x * dims.y));
}

inline int ZYXGridPosToIndex(int3 pos, int3 dims) {
 return pos.x + (pos.y * dims.x) + (pos.z * dims.x * dims.y);
}

Algorithm 1.1: 1D index to 3D grid position (and reverse) calculations

The latter contains what are known as “empty” or “void” voxels, voxels that represent empty

space in the 3D matrix where there is no presence of model material. Either way, these data

structures are self contained into a single span of memory. The main feature of the engine

developed for this project is the deviation from this norm, and the introduction of an

alternative means of storing and processing voxels. The system is a partitioning scheme that

subdivides uniform portions of the voxel representation into a grid of large units known as

“Chunks”. Chunks are subsections of the overall voxel representation containing 32x32x32

voxels each. Like voxels, chunks are arranged as an axis-aligned 3D grid that encompasses

the entirety of the model they represent. The chunk system was introduced to address two

main concerns with voxel-based model dynamics. First, to reduce the increasing memory

cost of higher resolution voxel models, and second, to lower the amount of computations

required to process a collision event. The results of this system are described in chapter 3.

1.7.3 Entity-component system

Other techniques have also been adapted from game engines for the benefit of surgical

simulators. The entity component system is one such example of a typical game engine

optimization that has been ported over to this project. Entities are essentially scaffolds

9

containing objects (“Components”) which house generic behaviours and properties that

describe entities. The combination of components within an entity describe how an entity

behaves and how it’s rendered in virtual space. Entities allow for modularity and easy

customisability when creating simulation objects [83].

1.7.4 Custom software development

Performance and efficiency, as opposed to graphical fidelity, remained a priority for this

project. The work performed remains minimal in the aspect of rendering virtual objects and

instead focuses on the interaction and behaviour between objects. There exist game engines,

such as the Unreal Engine, that have been utilized in the context of VR research [83].

However, such platforms have limited support for voxel-based physics, collisions, and visual

rendering. Furthermore, performance enhancements using GPGPU means (ex: OpenCL) are

not natively supported and require a non-trivial plugin to add functionality [83]. Creating an

in-house engine from scratch allows the engine to be specialized for voxels and ends up

being much easier to implement custom behaviours without having to learn the intricacies of

a commercial engine beforehand.

 C++ was chosen as the engine’s language as C++ enables finer grained tuning for

performance optimizations, and it offers a plethora of 3rd party libraries to assist in

development. Features such as manual memory management, classes, and access to APIs that

are native to the platform, ease the development of graphically rich applications. These

libraries include the Open Graphics Library (OpenGL), Open Compute Library (OpenCL),

and OpenHaptics [95-97]. OpenCL, and its Nvidia counterpart CUDA, are APIs that enable

general purpose programming on graphics cards. The main advantage is the notable speed up

in task execution from using thousands of GPU cores in parallel [98, 99]. The choice to use

the graphics card was made primarily due to the properties that are inherent to voxels [100].

10

Being discrete and grid-like, voxels are mostly independent entities from one another, and

thus can be worked upon individually. As such, work involving voxels can be spread out

across numerous cores/threads, of which the GPU has far more of than the CPU [101]. The

result is a speed up in compute times when performing voxel-related tasks on the GPU

compared to the CPU. OpenCL was chosen given its hardware support. Whereas CUDA runs

only on Nvidia made graphics cards, OpenCL supports Nvidia, AMD, and Intel products, and

is supported on all 3 major operating systems, Windows, Mac OSX and Linux. GPU APIs

have also already been used in simulators with great effect, making writing software that

takes advantage of the graphics card worth the effort [99, 102-107]. The visualization toolkit

(VTK) is a C++ library that contains functions relating to the management and manipulation

of voxels. It was considered briefly in early versions of the engine. However, it was

ultimately dropped since creating the engine from scratch would enable precise development

of the chunk system and allow a dependency free generic approach for voxel manipulation to

be developed for current and future surgical simulators to use.

1.7.5 Model Voxelization

For voxel-voxel collision detection and material removal, the models that are to be used in

the simulation must have a backing data structure that holds a voxelized representation of the

model itself, which is queried and worked on during collision testing. Data for the models

comes from various files. For bone models, their data come from computed tomography (CT)

scans, which, while still requiring processing, are already in a voxel-like format where each

line in the file represents 1 voxel. As such, the transition from file to voxel grid

representation is straightforward. For the tools used in the simulation, however, their data is

derived from STL files. STL is a file format that describes the surface geometry of a 3D

object. Essentially, an STL file contains the triangulated surface of a model without any

11

additional information such as color or texture UVs. When generating a voxel representation

from an STL file, the algorithms described here are used [108, 109]. ASSIMP, a model

extraction library, is used to read the file and obtain the model vertices, normals and indices.

This data is also transferred to OpenGL buffers so that the triangle mesh of the model can be

rendered during scene drawing. The triangle mesh, as opposed to the voxel representation, is

drawn because the tool model’s geometry remains static over the course of the simulation.

This is opposite of the bone’s geometry, which gets continually resurfaced. As such, there is

no need to regenerate the tool’s triangle mesh, so it gets used to save compute cycles as static

triangle meshes are faster to compute than voxel geometries (see Chapter 3, 3.3).

1.7.6 Computed tomography scan data processing

Bone models derive their data from CT scans, and thus, have a more straightforward means

of generating a voxel representation given that CT scans already come in the form of voxels.

The main process is to convert the linear array of voxels in the file into a virtual 3D voxel

grid. There are several steps to do so. The first is to read the data from the CT scan text file

into a dynamic array of a custom data structure containing the voxel’s 3D position vector and

density. The next is to convert the positional data and density into a 3D matrix that is equal to

the computed bounds of the CT scanned object. The 3D matrix is the voxel grid of the model,

where each voxel is an int16_t containing the density. Transferring the CT scanned voxel to

this grid requires subtracting the voxel’s position with the minimum computed position in the

object and then dividing by the CT scan voxel size. From there, the position is floored to the

nearest integer, and then converted to a 1D index, which becomes the voxel’s index in the 3D

matrix (Alg. 1.1). With voxels being in a 3D matrix, it becomes easier to query their 3D

position relative to the grid by using an index conversion algorithm. Overall, this saves 12

bytes of memory per voxel since storing a 3-component float vector is no longer required.

12

The next step is to convert this 3D matrix to the chunk grid, which is essentially performed

through a series of range checks and subdivisions (see Chapter 2).

Figure 1.3. Scapula bone voxel representation.

1.7.7 Graphics rendering techniques

To achieve the target visual refresh rate of 60 Hz, a variety of rendering techniques were

investigated. As the virtual representation of the tools remains static throughout the

simulation, a simple triangle mesh shader was enough to draw them to the screen. To set up

the tools, mesh data from STL files were loaded, using the ASSIMP importer library, into

memory, and the vertex positions, normals and indices of the triangles were transferred into

OpenGL buffers. At scene drawing, these buffers were bound, and a shader was executed.

For each vertex, the gl_Position was computed by multiplying the camera’s view-projection

matrix, the model matrix, and the vertex position. The model’s shadow was computed using

the vertex normal and a directional lighting algorithm [110, 111]. Finally, the color was set

stainless steel.

13

A different approach had to be taken for the representation of the bone model. Unlike

the tool models, the bone’s model would be subject to arbitrary and dynamic deformation

over the course of the simulation, as material would be removed by the tool. As such, an

algorithm would be required that could quickly update the visual representation of the bone

model such that the engine could maintain a visual refresh rate of 60 Hz. Furthermore, the

techniques to be used had to be compatible with the chunk system. Being a partitioning

system, the algorithm would have to render each chunk individually, while still maintaining

visual coherence across all chunks. Essentially, the final image would have to look as one

continuous model that resembled, to some degree of accuracy, the bone it’s representing.

A triangle mesh generation algorithm was the first to be introduced into the engine to

render chunks. To summarize, the method would generate a series of vertices that combine to

create cubes, where 1 voxel would result in one cube. Together these cubes would form the

“voxelized” shape of the object (Figure 1.3). As an optimization, the algorithm would

remove obscured cube faces (i.e.: faces that were not adjacent to a void/empty voxel), which

would dramatically reduce the number of vertices to be rendered and speed up object

drawing. The cubic mesh would be generated on a chunk-by-chunk basis and would take into

consideration neighboring chunks. In observing neighbouring chunks, a continuous mesh

could be generated, and the meshes would appear seamless when combined. While the

method would produce the desired visual result, the issue would be the time required to

regenerate chunk meshes after a collision event. Ultimately, any number of chunk mesh

regeneration queries per visual refresh tick would come at a cost and would be provably

slower than the alternative currently used.

Recently, a new technique has been developed to allow for direct rendering of voxel

models using an OpenGL feature that enables the drawing of points with certain commands

14

[112]. The method, referred to as the GL_POINT based method, is as follows. For each voxel

to be rendered, a box is created at the world coordinate of the voxel (transformed with the

model matrix of the model it represents and the camera projection and view matrices), and

then rasterized. Next, for every pixel of the rasterized box, a ray is traced through it. If the

ray intersects the box at the pixel, then the pixel is drawn to the screen with the correct

lighting based on the face of the box hit. The end visual result is the same as if using the

triangle mesh generated from voxels. The key difference is that creating the final picture

using this method does not require any triangle meshes to accomplish, but instead only the

voxel buffer that you want to render. As such, the intermediary process of creating, and more

importantly regenerating, a triangle mesh is completely skipped, drastically improving

performance when the engine is under load via collision testing. The results of using this

method over the traditional triangle mesh method is recounted in chapter 3, 3.3.

Other rendering techniques were investigated, such as generating triangle meshes

using marching cubes or performing voxel-based volume rendering. However, marching

cubes presents the same mesh regeneration problem, and the ray-tracing through volume

rendering could not be adequately adapted for the chunk system. The key problem is that the

ray-tracing of volume rendering would have to occur multiple times, once per chunk. This in

contrast to the normal use of volume rendering, which is performed once per visual tick, as

the voxels are stored in a singular buffer/3D texture and the rays would be able to check

against every voxel in one pass [113]. The cost of performing the ray-tracing multiple times

per frame would be very expensive, and so volume rendering was not further investigated.

15

Figure 1.4: Voxel representations of (a) cellular foam, (b) trabecular bone core 2, (c)

trabecular bone core, (d) scapula, and (e) glenoid samples, which were used for tests.

1.7.8 Engine loops and collision detection algorithms

The engine consists of two main loops, the render loop and the haptics loop, which are

initiated once all simulation models are loaded and connected to entities, the shaders are

created, the camera is created, and various uniform buffers are generated. The uniform

buffers include various properties about the current scene, such as the camera’s projection

and view matrices, the model matrix of the current entity being rendered, and variables for

directional lighting (i.e.: light direction, intensity, ambiance). The render loop updates the

(b) (a)

(c) (d) (e)

16

virtual camera based on user input and makes draw calls to render the virtual objects on

screen. The haptics loop collects input data from the connected PhantomOmni haptics device

and applies the device transformation matrix to the current tool being used. Doing so, there is

a 1:1 correspondence between the user’s motion with the device and the movement of the

tool being displayed. After the tool is transformed, the engine makes an OOBB-OOBB

intersection check between the tool and the bone. If the check passes, then an intersection

volume is calculated, and the engine moves on to collision testing. The collision algorithm

used to determine intersection voxels is based on an algorithm developed by Reza et al., and

adapted to work with the partitioning system created for this engine [114]. The adapted

collision algorithm runs reasonably well and can reach a stable 333 Hz update rate on a

Windows 10, GTX 1070, Intel i5 8600, 8 GB RAM work station PC. Several tests were

performed to assess the effectiveness of the chunk system against competing voxel-based

collision testing algorithms. The algorithms analyzed were those developed by Zheng et. al,

Yau et. al, and Reza et. al [75, 114, 115]. Each of these algorithms share 2 properties that

contrast the voxel partitioning scheme of the engine. Firstly, these algorithms work on single

1D sparse voxel buffers that contain either the entire tool or bone voxel representation. This

engine, on the other hand, subdivides the bone model into multiple discrete buffers, but still

retains 1 voxel buffer for the tool. Secondly, the competing algorithms iterate from the tool

voxels to the bone voxels. When performing collision testing, intersecting voxels must be

identified, and the voxels from the bone must be updated to reflect any collisions that occur.

When checking for intersections, one method is to take the coordinates and metadata of the

tool voxels, transform them to the object space of the bone voxels, and then check for voxel-

voxel overlap, which is what the single buffer algorithms do. The opposite procedure,

transforming bone voxels to the tool’s object space, is what this engine does, due to the

17

chunk system implementation. The results of the two philosophies on voxel-based collision

testing are displayed in Chapter 3.

1.8 Specific aims and thesis outline.

Overall, the engine was created:

• To simulate the complex interactions that occur during glenoid reaming, from the

creation of the peg-hole to the resurfacing of the glenoid via a reamer.

• To develop techniques for current and future simulators that assist in the realization

of real-time simulation of virtual surgeries.

• To develop techniques that optimize memory management of voxels and boost the

performance of high-volume computations commonly associated with voxel-based

tasks, specifically with collision testing and material removal.

In the end, the engine was able to succeed in achieving real-time speeds using a combination

of a GL_POINT based voxel rendering technique and utilizing a voxel partitioning and

management system known as the chunk system. Chunks usually had a smaller memory

footprint compared to single buffers, and enabled performance optimizations that were only

possible though partitioning a CT scanned object into discrete sections. We anticipate that the

techniques and observations found over the course of the development of the engine will

provide a valuable foundation and guide for future surgical simulators. Note that while this

engine is focused on glenoid reaming, the loading of bones and tools is arbitrary, meaning

that this engine is applicable to any joint.

18

Chapter 2

Engine Specifics

2.1 Initialization and object design

On initialization, the engine creates a Win32 window, initializes OpenGL 4.4 via GLEW 2.0,

creates an OpenCL/OpenGL shared context, initializes objects relevant to the glenoid

reaming simulation, and then launches a haptics loop and a rendering loop. The objects used

for the simulation are the scapula bone, the head of a reaming drill (reamer), and a cylinder

used to make a peg-hole in the glenoid. Before detailing the engine architecture any further, a

note must be made on the design of the objects.

Interactable objects (i.e.: scapula, reamer, cylinder) are derived from the “Entity”

class. Entities, within the context of the engine, are scaffolds that contain “components”,

which are data structures that describe an object’s properties and behaviours within virtual

space. By default, all entities contain 4 components, those being: an object-oriented bounding

box (OOBB) component, an input component, a triangle-mesh component, and a Voxel-Grid

(VG) component. The OOBB contains vectors and matrices that hold the box’s extents,

center position, and rotation. The center position and rotation are used as the entity’s current

position and rotation in virtual space, respectfully. The OOBB also contains several methods

to facilitate collision detection between entities. The method to test OOBB intersection

utilizes separating axis theorem (SAT) and is used to determine if two entities are “close

enough” before proceeding with further collision tests [116].

The variables within the OOBB are modified by the input component, which

processes user input from either the WinProc function, or from the haptics device, and

19

adjusts the entity’s position/rotation accordingly. The triangle-mesh component is a data

structure containing various OpenGL buffers for rendering the triangle mesh representation

of an Entity. The reamer and cylinder (i.e. the surgical tools) are drawn with triangle meshes

since their models remain static over the course of the simulation. For models whose

representation is consistently updated, such as the Scapula, the VG component is used

instead.

 Interaction, collision, and, sometimes, rendering within the engine revolves around

voxels. Voxels are discrete units of space containing metadata describing the contents of said

space. The engine utilizes voxels to internally represent its objects because voxels enable a

more precise and simplified means of simulating materials and, more importantly, material

removal. Changes in a 3D voxel grid simply involve changing the metadata of affected

voxels. For example, one could set the density values of collided voxels to 0 to signify

removal. Compare this to triangle meshes, which involve complex mathematics to reposition

triangle vertices in response to a change [30]. Voxels are also naturally suited for speedup via

parallelism, given that they can be treated as discrete units. In the end, voxels end up being

easier to work with, and much more performant.

The VG component houses OpenCL buffers that hold all the voxels used to represent

an entity. All voxels are stored in GPU VRAM to avoid unnecessary CPU to GPU memory

transfers, as all voxel manipulation tasks are run on OpenCL kernels. Additionally, voxels

within the buffers are arranged in according to a 3D matrix. This is so that their 3D position

in space, relative to the grid, can be queried using their array index and the voxel grid’s

dimensions (Alg. 1.1). The VG component is created differently depending on the file data

used to create the Entity. The voxel grid is the result of either a voxelization process of an

STL file (surgical tools), or of a data transfer from a CT scan file (scapula). In the case of the

20

surgical tools, the component contains a single OpenCL buffer that contains the object’s

voxels in a 3D matrix arrangement. However, the component for the scapula bone contains

several OpenCL buffers that together make up the entity. These buffers have their own

organization and query system and are known as “Chunks”.

2.2 Chunks and the chunk system

A “Chunk” is a 32 × 32 × 32 grid of voxels stored in an OpenCL buffer, and the system

designed to access and manipulate chunks is one of the main features of this engine. Chunks

are essentially a means of partitioning the voxel representation of an object into uniform

sectors (Fig 2.1), and were introduced to address certain limitations when representing

models using a single buffer or 3D texture, a common practice found in similar projects [74,

114].

Figure 2.1 Chunk partitioning system of voxelized scapula bone.

21

When performing material removal, the underlining voxel and rendering data behind the

affected model must be updated to show that a change has occurred. Here, a few scenarios

can occur. If a single buffer is used to store the model’s voxels, and the buffer is sparse,

meaning that no memory is wasted on voxels representing empty space, then the voxels of

the buffer must be shifted to new positions after each removal to reflect the change. The cost

in time is dependent on the initial buffer size, and the number of voxels removed per update.

Additionally, extra memory would have to be allocated for the voxel’s 3D world space

position as it couldn’t be calculated from a buffer index (i.e.: voxels aren’t stored in a 3D

matrix arrangement). If a single, non-sparse, buffer is used to hold a model’s voxels, then

voxels may be arranged in a 3D matrix, 3D positions may be extrapolated from buffer

indices, and no shifts would be required after updates since empty voxels are allowed in the

buffer. Chunk voxel buffers are not sparse and hold this property. However, single buffers

that encompass the bounds of an object may waste a lot of memory depending on the

dimensions and contents of the object being represented. The scapula CT scan used for the

simulation has chunk voxel grid dimensions of 256 * 256 * 224 (Table 3.2), with most of the

voxels representing empty space. Chunks are a means of partitioning the model into multiple

buffers, making it possible to allocate chunks only for active voxels, and omitting those that

contain only empty space voxels without affecting the rest of the grid. Finally, if a single

buffer is used to generate a triangle mesh representation of the object, then the entire triangle

mesh must be regenerated after an update. Chunks do not have this problem as each chunk

can be rendered to the screen separately from one another. As such, individual chunks come

together like puzzle pieces to display the whole object they represent. On a final note, a

single 3D Texture could be used instead of a single buffer to store the voxel representation of

a model. Unfortunately, until OpenCL 2.0, 3D textures, unlike buffers, could not be read and

22

written to within the same kernel [98]. There would have to be an extra step during collision

detection where voxels are read in one kernel execution, and then collision changes are

written in another kernel execution, which is slower. In conclusion, there are many

advantages to partitioning voxels into uniform sectors, hence the introduction of chunks, and

a system to correctly access them when needed.

2.2.1 Chunk voxel grid dimensions reasoning

Dimensions of 32 × 32 × 32 were determined to be a sweet-spot for chunk size when

analysing performance during collision testing and material removal. Compared to the other

dimensions tested, such as 163 and 643, 323 chunks minimize both the number of chunk

collision tests required to complete a collision event, and the maximum number of voxels

parsed per event. A more thorough analysis on the matter is explained in Chapter 3, which

also details the chunk system more in depth.

2.3 Model voxelization and STL file to voxel grid conversion

After creating a Win32 window, the engine initializes the scapula, reamer and peg-hole

cylinder entities. Surgical tool entities derive their data from .STL files, which are processed

through a voxelization algorithm to generate a voxel representation. The voxel representation

is used for the material removal stage of the simulation. The voxelization process is as

follows. A .STL file containing mesh data for the tool is read and processed using ASSIMP

4, an open-source asset import library for C++ [117]. From the vertices extracted, the

minimum and maximum coordinates are computed. These 3D vectors are then used to

calculate various components of the model’s voxel-grid representation, given a user inputted

voxel size, which defaults to 0.5 mm3. The OOBB created for the entity is centered at the

23

origin, and its extents are set to 1 VoxelSize greater than calculated model bounds to avoid

the voxelization algorithm throwing an array out-of-bounds exception (Alg. 2.1).

CaclModelVoxelGridComponents
MinVoxelCoords <= round(MinVertexCoords – HalfVoxelSize, VoxelSize) –VoxelSize);
MaxVoxelCoords <= round (MaxVertexCoords + HalfVoxelSize, VoxelSize) + VoxelSize);
EntityOrientedBox <= OOBB(MinVoxelCoords, MaxVoxelCoords);
VoxelGridDims <= ceil((MaxVoxelCoords - MinVoxelCoords) / VoxelSize);
TotalVoxelCount <= VoxelGridDims.x * VoxelGridDims.y * VoxelGridDims.z;

Algorithm 2.1: Calculation of STL model voxel grid properties

Vertices, normals, and indices are then transferred to OpenGL vertex and element

buffers that are bound to a vertex array object (VAO). The VAO is used later during scene

rendering to draw the triangle mesh representation of the model. The vertex and index

buffers are also used to create shared OpenCL buffers. These shared buffers are used for the

voxelization process. Two additional OpenCL buffers are created to hold voxel-grid

information (i.e.: VoxelSize, MinVoxelCoords, EntityOrientedBoxExtents,

VoxelGridDims, and VoxelCount), and the entity’s computed voxels, respectfully. Note

that voxels are int16_t primitives. These integers hold density values, which vary from 0

(empty) to 1 (solid) for surgical tools.

After all buffers are created and initialized, the arguments for an OpenCL

voxelization kernel are set, and the voxelization kernel is launched. The voxelization

algorithm is taken from the following papers [108, 109, 114, 118, 119]. Once the process is

complete, buffers containing the entity’s voxels and voxel grid information are transferred to

the entity.

Table 2.1: Timings (in ms) of model voxelization for models tested

Tasks Reamer timings (ms) Cylinder timings (ms)

Voxelize model 0.753728 0.559584

Adjust X-Axis voxel densities 0.442368 N/A

24

2.4 Chunk grid construction using computed tomography scans

Interactable entities whose voxels are not static over the course of the simulation have their

voxels organized into a chunk grid (stored inside the VG component) for easier voxel

manipulation. The scapula uses a chunk grid, and its data is derived from a CT scan file.

First, raw data from a CT scan file is converted to a 1D array of structs containing the object-

relative position of each voxel and its associated density (Alg. 2.2).

Data structure used to hold raw CT scan voxel data
struct CTScanVoxel
{
 vec3 Position;
 float Density;
};

Algorithm 2.2: CT scan voxel data structure

CalcVoxelGridParams: MinVoxelCoords, MaxVoxelCoords, RectVoxelSize
RectMinVoxelCoords <= floorMultiple(MinVertexCoords, RectVoxelSize)
RectMaxVoxelCoords <= ceilMultiple(MaxVertexCoords, RectVoxelSize)
RectVoxelGridDims <= round((RectMaxVoxelCoords – RectMinVoxelCoords) /
RectVoxelSize);
RectVoxelCount <= RectVoxelGrid.x * RectVoxelGrid.y * RectVoxelGrid.z;
CubicVoxelSize <= vec3(RectVoxelSize.x, RectVoxelSize.x, RectVoxelSize.x)
CubicVoxelGridDims.x <= RectVoxelGridDims.x
ubicVoxelGridDims.y <= RectVoxelGridDims.y
CubicVoxelGridDims.z <= ceil((RectMaxVoxelCoords.z – RectMinVoxelCoords.z) /
CubicVoxelSize.z);
CeilCubicVoxelGridDims <= ceilMultiple(CubicVoxelGridDims, ChunkDims)
CeilVoxelCount <= CeilCubicVoxelGridDims.x * CeilCubicVoxelGridDims.y *
CeilCubicVoxelGridDims.z
ChunkGridDims = CeilCubicVoxelGridDims / ChunkDims

Algorithm 2.3: Calculation of parameters for rectangle and cubic CT scan voxel grid

RawCTScanDataToRectGridTransfer: global float4* RawCTDataArray
// CT data is stored as float4, where .xyz is voxel position, and .w is
voxel density
I <= get_global_id(0)
P <= convert_int3_rtz(RawCTDataArray[I].xyz – RectMinVoxelCoords) /
VoxelSize)
J <= 3DGridPosToIndex(P, RectVoxelGridDims)
VoxelArrayOut[J].Density = convert_short(RawCTDataArray[I].w)

Algorithm 2.4: Raw data OpenCL kernel pseudocode

25

Second, the list is converted to a 1D int16_t array with a size equal to the calculated

volume of the CT scanned object in voxel units. The dimensions of the voxel grid are

calculated from the min and max position coordinates divided by scan voxel size (Alg. 2.3).

Each element within this 1D array contains the density, while voxels are placed in the array

according to their object-relative position minus the min position coordinates. A conversion

equation transforms this 3D position into a 1D index (Alg. 2.4).

Figure 2.2: Before (A) and after (B) “RectGridToCubicGridTransfer” processing

RectGridToCubicGridTransfer
// adjusting only Z dimension!
// global_work_size <= CubicVoxelGridDims
// local_work_size <= 1
X <= get_global_id(0)
Y <= get_global_id(1)
Z <= get_global_id(2)
PrevRectGridIndex <= convert_int_rtz(((Z – 1)*
CubicVoxelSize.z)/RectVoxelSize.z)

A B

26

CurrRectGridIndex <= convert_int_rtz((Z * CubicVoxelSize.z) /
RectVoxelSize.z)
RectGridDepthRatio = (Z*CubicVoxelSize.z) – (PrevRectGridIndex *
RectVoxelSize.z)
RectGridDepthRatio /= CubicVoxelSize.z
Int I = RectGridDepthRatio >= 0.5 ? CurrRectGridIndex : PrevRectGridIndex
Int J <= 3DGridCoordsToIndex(X, Y, Z, CubicVoxelGridDims)
Int K <= 3DGridCoordsToIndex(X, Y, I, RectVoxelGridDims)
CubicVoxelArray[J] = RectVoxelArray[K]

Algorithm 2.5: Rectangle grid to cubic grid voxel transfer OpenCL kernel pseudocode

Third, if the dimensions of the CT scan voxel are not equal (as is the case with the

Scapula model used, which are 0.47 mm x 0.47 mm x 1.0 mm), then voxels are copied into a

separate 1D array, and filler voxels are added at precise locations such that, in the end, all

voxels in the array have equal dimensions and the same density per volume is retained (Fig

2.2, Alg. 2.5). This is done to accommodate a limitation with GL_POINT based voxel

rendering (see Chapter 3, 3.3). The initial array is known as the RectVoxelGrid, while the

final array is known as the CubicVoxelGrid (the names referring to the shape of the voxels

they store) (Alg. 2.3).

CubicVoxelGridToChunkTransfer
// global_work_size <= ChunkDimsInVoxels
// local_work_size <= 1
X <= get_global_id(0)
Y <= get_global_id(1)
Z <= get_global_id(2)
VoxelPosRelChunkGrid <= (int3)(X, Y, Z) + ChunkMinPosInUnitVoxels
Int I = 3DGridCoordsToIndex(X, Y, Z, ChunkDims)
Int j = 3DGridCoordsToIndex(VoxelPosRelChunkGrid, CubicVoxelGridDims)
ChunkVoxelArray[I] = CubicVoxelArray[J]
If (CubicVoxelArray[J].Density >= 120) atomic_inc(ActiveVoxelsCounter)

Algorithm 2.6: Cubic voxel grid to chunk voxel buffer OpenCL kernel pseudocode

Table 2.2 Timings (in ms) of CT scan chunk grid construction phases for models tested.

Tasks (measured in ms) Cellular

foam

Trabecular

bone core 1

Trabecular

bone core 2

Scapula Glenoid

Load raw data from CT text file 6930 936 13379 295 31

Raw data to rect. voxel grid 26 3.5 51 1.2 0.13

Rect. voxel grid to cubic voxel grid 175 23 106 78 0.67

Cubic voxel grid to chunk grid 141 17 76 62 1.2

27

Finally, the CubicVoxelGrid is subdivided into chunks, and placed into a chunk grid,

which is a 1D array of chunk pointers arranged in a 3D matrix fashion. Note that chunks that

have no active voxels (i.e.: voxels with densities less than or equal to 120) inside them have

their buffers deleted to save memory, and a flag set to indicate that they are empty (Alg. 2.6).

2.5 The haptics loop

With the simulation objects initialized, the engine then allocates 2 CPU threads, where 1

thread is responsible for the rending loop, and the other maintains the haptics/update loop.

The rendering thread is v-sync locked and runs at 60 Hz. The haptics thread is created with

highest priority, runs at 1 kHz, and was written according to example code provided by the

OpenHaptics SDK [95]. The haptics thread is a required component of the engine, given that

this thread is responsible for deriving input from the connected PhantomOmni haptics device.

As such, physics updates and collision testing are preformed within the haptics loop. Entities

that are controlled with the haptics device are updated at 1 kHz, along with OOBB collision

detection. The algorithm for material removal runs at 1/3 of the speed, or 333 Hz, due to the

amount of time 1 execution of a collision test takes (~0.05 – 0.06 ms), and the number of

tests taken per collision event between the reamer and the scapula (1 – 20 events) (Table 3.3).

Its limited to allow for a stable experience, as the number of chunks processed per collision

event is variable and could cause lag spikes if left without restriction. These values were

taken from a Windows 10 workstation running an intel i5 8600, Nvidia GTX 1070, and 8 GB

of RAM. At 1 kHz entity movement updates, 333 Hz material removal updates, and 60 Hz

rendering, the surgeon will not see a discrepancy between their input with the haptics device

and what’s shown on screen. The final initialization step, after the objects, is to initialize the

camera, which has its own uniform buffer for camera variables (i.e.: view and projection

28

matrices, aspect ratio, FOV, near and far plane), the geometry buffer, and the shaders, one for

voxels, one for triangle meshes, and one for the final composite pass. The GBuffer is used for

deferred rendering. Lighting in the engine uses a basic directional lighting algorithm [110].

With all objects set up, the haptics thread is launched, and the simulation begins.

 At the start of the haptics loop, raw haptics input data (i.e.: position vectors and

transformation matrix) is collected. This data is then mapped to the OOBB of current surgical

tool being used. The initial tool is the peg-hole cylinder and is used to create a peg-hole in

the glenoid. Upon pressing a hotkey, the tool switches to the reamer to finish the operation.

The surgical tool being used has a 1:1 correspondence with the haptics device, meaning that

the current center position and rotation of the entity’s OOBB is equal to the position and

transformation of the haptics device.

Algorithm 2.7: Entity collision check pseudocode

Once the surgical tool entity is updated, the engine checks whether the OOBB of the

tool (ToolEntity) collides with the scapula (BoneEntity) (Alg. 2.7).

ComputeIntersectionBox: BoneEntity, ToolEntity
vec3 Min(FLT_MAX)
vec3 Max(-FLT_MAX)
For Corner in ToolEntity.OBBox.Corners {
 if (BoneEntity.OBBox.PointInBox(Corner)) {
 Min <= min(Min, Corner)
 Max <= max(Max, Corner)

} else {
 Vec3 Point <= BoneEntity.Box.GetPointClosestTo(Corner)
 Vec3 BoxCenter <= BoneEntity.Box.Center;
 Mat3 Rotation <= BoneEntity.Box.Rotation;
 Vec3 Extents <= BoneEntity.Box.Extents;
 Vec3 Delta <= Corner - BoxCenter
 Vec3 ClosestPoint <= BoxCenter
 For (I = 0; I < 3; ++I) {

ClosestPoint += clamp(dot(delta, Rotation[I]), -Extents[I],
Extents[I]) * Rotation[I]

CheckForCollisions: BoneEntity, ToolEntity, deltaTime, hapticsReadData
ToolEntity.Update(deltaTime, hapticsReadData)
If (BoneEntity.CollidesWith(ToolEntity))
 PerformCollisionDetection()

29

}
 Min = min(Min, ClosestPoint)
 Max = max(Max, ClosestPoint)

}
}
IntersectionBox <= ObjectBoundingBox(Min, Max)

Algorithm 2.8: Entity intersection volume calculation pseudocode

ObtainIntersectingChunkGridRanges
mat3 InvBoneRotation <= inverse(BoneEntity.OBBox.Rotation)
ivec3 ChunkMinPosInUnitChunks(INT_MAX)
ivec3 ChunkMaxPosInUnitChunks(-INT_MAX)
For (Corner in IntersectionBox.Corners) {

TransformedCornerPoint <= (InvBoneRot * (Corner – BoneEntity.OBBox.Center)) + BoneEntity.OBBox.Center

 PointInUnitVoxels <= (TransformedCornerPoint + BoneEntity.Box.Extents) /
BoneEntity.VoxelSize;

 MinPointInUnitChunks<= floorMultiple(PointInUnitVoxels,CHUNK_SIZE)/CHUNK_SIZE;
 MaxPointInUnitChunks<= ceilMultiple(PointInUnitVoxels,CHUNK_SIZE)/CHUNK_SIZE;
 ChunkMinPosInUnitChunks <= min(ChunkMinPosInUnitChunks, MinPointInUnitChunks);
 ChunkMaxPosInUnitChunks <= max(ChunkMaxPosInUnitChunks, MaxPointInUnitChunks);
}

Algorithm 2.9: Min/max intersecting chunk coordinates calculation based on

intersection volume

SetupChunkCollisionKernel: BoneEntity, ToolEntity
Mat4 BoneToObjTransform = BoneEntity.GetTransformTo(ToolEntity)
For XYZ = ChunkMinPosInUnitChunks -> ChunkMaxPosInUnitChunks {
 Index = XYZGridCoordsToIndex(XYZ, BoneEntity.VoxelGrid.GridDims)
 Chunk = BoneEntity.ChunkGrid.Chunks[I]
 If (!Chunk.Empty) {
 SetupChunkCDKernelArgs()
 EnqueueChunkCDKernel()

 }
}

Algorithm 2.10: Intersection chunk collision detection OpenCL kernel setup

pseudocode

30

Figure 2.3: OOBB intersection test and intersecting chunks identification.

If the OOBBs intersect, then the material removal algorithms are executed (Alg. 2.8-

2.10). Before that, however, the scapula chunks that are involved in the collision between the

two entities must be identified and collected. To do so, an intersection bounding box is

computed (Alg. 2.8). The intersection bounding box’s volume encapsulates all the chunks

that are involved in the collision event (Fig 2.3).

From the corners of the intersection volume, chunks are collected (Alg. 2.9), and then

their OpenCL voxel array buffers are run through an OpenCL kernel (Alg. 2.10). This kernel

identifies colliding voxels and removes them by setting the voxel’s density to 0. The chunk

material removal kernel is based on the algorithm found here [114]. The algorithm was

adapted for chunks. Where the original method would iterate though the sparse voxel buffer

of the tool entity, the chunk variant iterates though all the voxels of the chunk’s voxel buffer.

Essentially, it is the reverse operation. The voxel’s in the chunk buffer have their values

updated if the algorithm determines an overlap between the transformed position of the tool

voxel and the chunk voxel. This change is then immediately reflected in rendering as the

31

render process uses the Chunk’s OpenCL/OpenGL shared voxel buffer to draw the chunk

(see Chapter 3, 3.3).

2.6 The render loop

Figure 2.4: Flowchart of the engine’s render and haptics loops.

The render loop for the engine is straightforward, considering that only the surgical tool

models and chunks of the scapula are rendered (Fig 2.4). At the start of the loop, the

camera’s view and projection matrices and uniform buffer are updated based on user input.

Next the geometry framebuffer (GBuffer) is bound. Currently, the GBuffer contains a R32

depth 2D texture attachment (for vertex position extraction), and 2 RGBA32 color 2D texture

attachments (1 for vertex normals, and the other for vertex colors). With the GBuffer being

bound, the entities in the simulation are then rendered.

The scapula is rendered chunk-by-chunk using an adapted GL_POINT based voxel

rendering technique [112]. The technique enables voxels in a buffer to be directly rendered

without the need to create a triangle mesh, greatly increasing framerate performance (see

32

Chapter 3.3). When rendering a chunk, the chunk’s OpenCL/OpenGL shared voxel array

buffer is bound to the context via an associated single attribute VAO (i.e.:

glVertexAttribIFormat(0, 1, GL_SHORT, 0)). A uniform buffer is then bound

and updated with the current chunk’s voxel grid position in voxel units. This allows proper

calculation of the chunk’s voxel 3D world position. After calling

glDrawArrays(GL_POINTS, 0, 32 * 32 * 32), the voxel vertex and fragment

shaders, taken and adapted from [112], are invoked. The changes from the original shaders

are minor. Inside the vertex shader, the position of the voxel that is used for the projection

algorithm is computed as follows:

VoxPos = IndexTo3DGridCoords(gl_VertexID, ChunkDims) + ChunkPositionInUnitVoxels

Furthermore, the model matrix used for the projection function is the scapula’s

OOBB model matrix. Finally, in the fragment shader, the computed normal and voxel color

are copied to the GBuffer’s normal and color 2D texture attachments, respectfully. The color

of bone voxels is #e3dac9. Bone voxels with densities less than 120 are discarded by setting

gl_Position to vec4(-1).

To render the surgical tools, their triangle meshes are run through a simple shader

where each vertex is transformed by the model view projection matrix made from the camera

matrices and the tool’s model matrix. In the fragment shader, the vertex normals and colors

are transferred to the correct GBuffer 2D texture attachments. With all entities rendered to

the GBuffer, the GBuffer is unbound, its 2D texture attachments are bound, the screen’s

framebuffer is cleared, and a full-screen triangle is rendered. Position, normal, and color data

are extracted from the bound texture attachments and basic directional lighting is applied,

giving the final image on the screen [110, 111].

33

Chapter 3

The chunk system

3.1 Memory optimizations

3.1.1 Against single buffer/texture data structures

The chunk system addresses two concerns simulation engines face when attempting to

achieve optimal runtime performance. The first is minimal memory overhead when loading

high resolution CT scans. The second is mitigation of high-volume computations performed

during the collision testing and material removal stages. The chunk system confronts these

challenges through a grid partitioning scheme, where units, a.k.a. chunks, of said grid act

independently of one another. Through this discrete property, chunks allow “empty” (i.e.:

inactive) sections of a model’s representative voxel grid to be omitted for space efficiency.

Additionally, chunks enable collision processing tasks to query, and work on, specific

segments of the model as needed, which bypasses numerous unnecessary voxel collision

participation checks.

Regarding memory management, it is important to note several observations that are

apparent when converting a CT scanned object to a representative 1D voxel buffer organized

as a 3D matrix (i.e.: where buffer indices are convertible to object-relative 3D grid positions).

To start, CT scans are text files that contain a list of data entries, each of which hold two

pieces of information, a 3D float vector position and an integer density. These entries are, for

all intents and purposes, object voxels that were generated by a real-world CT scanner, and

are of a size pre-set by said machine. Generating virtual voxels from CT scans is thus a

34

matter of reorganizing voxels into a 3D matrix (see Chapter 2, 2.4). With voxel query

improvements, and 12 bytes of memory being saved per voxel, 3D matrices hold properties

that make them process efficient, especially when compared to the list format of CT scan

files. However, the problem with this approach is that extra memory is needed to create a 3D

matrix that completely encompasses a CT scan object’s bounds. Essentially, when

representing areas of empty space, the associated buffer locations must be filled with voxels

containing “uninteresting” data.

A voxel that is considered to contain data of interest (i.e.: one that is “active”) is one

that has a non-zero density value indicating the presence of material. Inactive voxels,

therefore, don’t hold any useful information other than to denote that there is empty space at

their coordinates. However, these voxels still take up memory by being present in the 3D

matrix.

Figure 3.1: Visual representation of active (red) vs. inactive (grey) chunks in generated

Scapula chunk grid.

35

When creating a 3D matrix from a CT scanned object, there will often be a lot of

memory that describes empty space due to the object’s mass being unevenly distributed, or

its geometry having an irregular shape. For a single 3D matrix, there is no optimization

possible to avoid consuming memory for this empty space, as you cannot create a 3D

rectangular matrix that tightly wraps around the surface of the object. To accurately represent

an object, the 3D matrix must stretch across the object’s XYZ bounds. However, if you were

to have multiple 3D matrices, arranged in a grid-like fashion, to represent the object, then it’s

likely that certain matrices would contain nothing but empty space. Those matrices could

then be freed from memory without affecting the others, thus saving memory. To indicate

that the matrix in the grid doesn’t have a backing voxel buffer, a simple flag could be added

at that grid position. This is logic behind how the chunk system operates compared to a

single encompassing voxel buffer or 3D texture approach (Fig. 3.1).

Table 3.1: General voxel grid characteristics of the CT scanned objects used for testing

Model Voxel size Voxel grid

dimensions

Voxel

Count

Active Memory

(2B/Voxel)

Text file size

on disk

Cellular foam 1 32µm isotropic 314 × 320 × 604 60,689,920 121.4 MB 764.1 MB

Trabecular 2 32µm Isotropic 314 × 316 × 360 35,720,640 71.4 MB 1.4 GB

Trabecular 1 32µm isotropic 156 × 156 × 313 7,617,168 15.2 MB 101.4 MB

Scapula (0.47, 0.47, 1) mm 256 × 234 × 201 12,040,704 24.1 MB 34.3 MB

Glenoid (0.47, 0.47, 1) mm 49 × 81 × 41 162,729 0.3 MB 3.7 MB

Table 3.2: Chunk grid characteristics of the CT scanned objects used for testing

Model Voxel grid dims

after chunk gen

Chunk grid

dimensions

Chunk

count

Active chunk

count

Raw memory

(2B/Voxel)

Active memory

(2B/Voxel)

Cellular foam 320 × 320 × 608 10 × 10 × 19 1900 1669 124.5 MB 109.4 MB

Trabecular 2 320 × 320 × 384 10 × 10 × 12 1200 1060 78.6 MB 69.5 MB

Trabecular 1 160 × 160 × 320 5 × 5 × 10 250 250 16.4 MB 16.4 MB

Scapula 256 × 256 × 448 8 × 8 × 14 896 202 58.7 MB 13.2 MB

Glenoid 64 × 96 × 96 2 × 3 × 3 18 18 1.2 MB 1.2 MB

Tables 3.1-3.2 show various characteristics of the voxel grids generated for the 5 CT

scanned objects used for testing and analysis (Fig. 1.4). Of importance are the “Voxel grid

36

dimensions” and “active memory” categories. The voxel grid dimensions of Table 3.1

describe the computed minimum lengths of a voxel grid that could be generated to

completely encompass the bounds of the associated CT scanned object. These would be the

dimensions of the 3D matrix of the single buffer voxel representation techniques, and from

these values, it possible to calculate the amount of memory occupied by the buffer, assuming

each voxel consumes 2 bytes to store material density. Table 3.2 shows the same 5 CT

scanned objects, expect with chunks as their backing voxel representation instead. Note that

here, voxel dimensions are ceiled to the nearest chunk to avoid partial chunks within the grid,

thus being larger compared to the values present in Table 3.1. Although there are indeed

filler layers of voxels added to accommodate the chunk system, it is evident that memory is

still being saved, as in most instances, the number of active chunks (i.e.: chunks with at least

1 active voxel present) is, sometimes, dramatically less than the total chunk count.

Figure 3.2: Active voxels stored in memory across test models and data structures.

When analysing the memory consumption of the chunk system against a traditional

single buffer arrangement to store an CT scanned object’s voxel representation, the chunk

system wins in 3 of the 5 cases, excelling when the geometry of the CT scan is non-uniform

0

10

20

30

40

50

60

Scapula Glenoid Trabecular

Core 2

Cellular

foam

Trabecular

Core 1

N
u

m
b

er
 o

f
a
ct

iv
e

v
o
x
el

s

(m
il

li
o
n

s)

Using chunks

Using single buffer

37

or has uneven mass distribution. Under this condition, memory savings can be up to 50% (ex:

Scapula) over using a traditional single buffer or 3D texture (Tables 3.1 - 3.2, Fig 3.2).

Interestingly, a reduction in memory is not always guaranteed when using the chunk system,

as is the case with the glenoid and trabecular core 1 (Table 3.1 - 3.2, Fig. 3.2). The reason for

this has to do with the geometries of these objects. With these objects being cubic and

uniform in mass (Fig. 1.4), a 3D matrix tightly encompassing object bounds could be created.

As a result, when adapting these objects to the chunk system, the lack of empty chunks

(Table 3.2), and the extra layers generated by the chunk grid creation algorithm would cause

the chunk system to occupy more memory.

3.2 Material removal

3.2.1 Collision testing with chunks

Real-time collision detection and material removal were the forefront features considered

when designing and implementing the chunk system. The idea was that, if the bone model to

be worked upon was partitioned into uniform sectors, it would then be possible to identify

and segregate only sections that are involved in a collision event. Work could then be done

on those tool-intersecting volumes, which may, theoretically, lead to fewer voxels being

processed, and, in turn, reduce computation time. Considering that the time allocated for

collision updates is extremely short due to the 1 kHz requirement by the haptics device

(where 1 update refresh must be equal to or less than 1 ms), any boost in performance

compared to the current collision algorithms would be considered a success. Alternatively,

achieving parity would also be welcome, as it would demonstrate that the chunk system is a

viable candidate for effective collision testing that is also deserving of further investigation.

38

There are two stages of any collision detection mechanism (see Chapter 2, 2.5). The

first stage is the identification of the volume where the virtual tool and bone models intersect.

The second stage is the intersection testing of individual bone and tool voxels, and the

updating of colliding bone voxels to signify a change (i.e.: setting density to 0 to denote

voxel is now empty). The bottleneck of this procedure is the processing of individual voxel

intersections, and thus the algorithm to be used for this testing must be performant enough

such that collision events are able to be completed in real-time. While the chunk system

allows for narrowing down the scope of the intersection volume, the algorithm used to

compute voxel intersections is adapted from a method developed by Reza et. al [114]. In the

chunk variant, active voxels from the intersecting bone chunks are iterated through, and their

grid positions are transformed, first relative to the origin by subtracting the bone model’s

OOBB extents, and then using a bone-to-tool transformation matrix. These transformed

coordinates are then compared to the tool’s OOBB extents. If they are inside the extents, they

are then converted into an index relative to the tool’s voxel grid. If the tool voxel at that

index is active (i.e.: has density of 1), the bone voxel’s density is set to 0. This effectively

removes voxels from the scene, which visually shows material removal.

Figure 3.3: Visualization of the chunk system collision testing mechanism. Chunk voxels

(voxels in red WF) are iterated and compared against tool voxels

39

Figure 3.4: Visualization of tool-to-bone voxel collision testing. Tool voxels (green WF)

are iterated through, transformed, and collision checked against bone voxels (red WF)

Figure 3.5. Demonstration of the real time collision and material system.

The differences between the chunk variant and the algorithm developed by Reza et. al

are minimal, as they follow the same steps for voxel intersection testing. The exception is

that, rather than iterate and transform bone voxels (bone-to-tool), Reza et. al’s method does

the opposite, and runs through the tool voxels instead (tool-to-bone) [114] (Fig 3.4).

Regardless, the developments achieved by the engine demonstrate a proof-of-concept that a

partitioning system can achieve real-time collision detection and material removal (Fig 3.5).

40

3.2.2 Baseline chunk collision performance with various tools and sizes

Before comparing the performance of the chunk system against known voxel-based collision

detection algorithms, it is important to set the standard for which the chunk system will be

judged upon. Essentially, for any one collision event, there will be a set number of chunks

that participate in collision testing. Since each of these chunks contain 323 voxels, the time

required to process a chunk remains relatively consistent between chunks, and across

collision events. Therefore, statistics on individual chunk performance, and how computation

time changes as more chunks are processed, should be investigated. Of importance is the set

size of individual chunks, as the number of voxels worked on per chunk determines the

computation time. Setting chunks to 323 was a deliberate choice based on several collision

based-tests, where chunk sizes were varied during a static collision event (Fig 3.6).

Figure 3.6: Static collision event using Reamer tool for testing effect on performance of

chunk sizes during collision testing.

Of the dimensions tested (163, 323, and 643), 323 was shown to be a sweat-spot in

general cases, followed closely by 163 under certain circumstances. On the other hand, sizes

of 643, and likely larger, have noticeable drawbacks (Table 3.3).

41

Table 3.3: Static collision event timings for various chunk dimensions using the reamer

Chunk Dimensions 163 323 643

Chunks Collided 84 18 5

Processing time per chunk (ms) 0.012 0.055 0.405

Total processing time (ms) 1.024 0.970 2.023

For chunks with dimensions of 643, it is easy to understand why those would take

longer when taking into consideration that the intersection surface between the tool and the

bone does not change between tests (Fig. 3.6). Essentially, 643 chunks are less subdivided

than 323 and 163, meaning that, although less chunks are hit during a collision event, the

larger encompassing volume of these individual chunks causes significantly more voxels to

be parsed (since chunks are parsed entirely or not at all based on the algorithm). Thus, the

amount of computations increases, resulting in more time needed to parse a chunk.

Interestingly, the performance between 163 chunks and 323 chunks is very similar despite

more chunks being processed per collision event in the case of 163 chunks (Table 3.3). Even

more interesting, however, is that the choice of tool during a collision event also plays a part

in computation time.

Figure 3.7: Static collision event using peg-hole cylinder tool for testing effect on

performance of chunk sizes during collision testing.

42

When this test was repeated with the peg-hole cylinder tool (Fig. 3.7), while the

results confirmed that 643 is the least performant of the chunk sizes, it showed that the 163

sized chunks performed better overall (Table 3.4).

Table 3.4: Static collision event timings for various chunk dimensions using peg-hole

cylinder tool

Chunk Dimensions 163 323 643

Chunks Collided 80 18 8

Processing time per chunk (ms) 0.012 0.065 0.405

Total processing time (ms) 0.964 1.172 3.234

The discrepancy between the two tools is difficult to explain. Logically, since the

algorithm iterates through the bone voxels to make its comparisons, the tool’s voxel grid

should not influence the intersection testing process. Indeed, that is one of the benefits of

using the chunk system, since it is possible to vary properties of the tool’s voxel grid without

affecting the performance. This is further confirmed when varying the voxel-size (and by

extension the voxel resolution) of the Reamer tool during a static collision event (Fig 3.6,

Table 3.5). With this benefit, it is possible to increase the resolution of tool’s voxel grid and

increase the precision of the cutting tool without any performance loss.

Table 3.5: Static collision event timings at chunk dimensions of 323 using the Reamer

tool while varying tool voxel-sizes

Tool Voxel sizes 1.03 0.753 0.53

Chunks Collided 18 18 18

Processing time per chunk (ms) 0.982 0.975 0.967

Total processing time (ms) 0.0545 0.0542 0.0538

Number of voxels 33212 75000 232286

43

However, when switching tools, from reamer to peg-hole cylinder, it appears that the

average processing time for 323 chunks goes from 0.055 to 0.065 (Table 3.3 - 3.4). This

shouldn’t occur, but it does regardless. One possible theory is that branch prediction in the

collision kernel and the tool geometry are responsible. In the chunk collision kernel, there is

a check to determine whether a tool voxel is active at a certain position. Perhaps, with branch

prediction, there is an optimization that assumes that this check is strongly taken, meaning

that it will succeed more than it fails. As such, the code inside the check is executed before

the check occurs. If the check evaluates to true, then time is saved since the code has already

been executed. If not, the hardware must correct the mistake. In the case of the peg-hole

cylinder, due to its small surface area and elongated shape, maybe this check fails more often

than it succeeds compared to when the reamer is used. Ultimately, what this means is that if

working with tools with small surface areas, chunk sizes of 163 should be used. Otherwise,

for larger tools, 323 chunks are more appropriate, but no larger. On a final note, only power

of 2 sizes were investigated, as these lengths enable index-to-3D grid position conversion

optimizations (i.e.: using bit shifts rather than modulo to calculate x, y, z coordinates).

Having decided on a chunk size of 323 for general purpose use, the chunk collision

system was put under load and run through various Windows 10 PC configurations. The

complete specifications for the PCs tested are found in Table 3.6 below.

Table 3.6: Specifications for the Windows 10 PCs used over the course of engine testing

CPU GPU RAM

Processor Base/Boost

freq. (GHz)

GPU Base/Boost

freq. (MHz)

Cores VRAM

(GDDR5)

Intel Core i5 8600 3.1 / 4.3 Nvidia GTX 1070 1506 / 1683 1920 8 8 GB

Intel Core i7 6700K 4.0 / 4.2 Nvidia GTX 970 1050 / 1178 1664 4 16 GB

Intel Core i7 8700K 3.47 / 4.7 Radeon RX 580 1257 / 1340 2304 4 16 GB

Intel Core i5 6300u 2.4 / 3.0 Intel HD Graphics

520

300 / 1000 N/A N/A 8 GB

44

Figure 3.8: Chunk collision task computation time using the peg-hole cylinder tool with

varying PC configurations

Several conclusions can be extrapolated from the results of figure 3.8. Firstly, discrete

GPUs clearly outperform integrated graphics units (Intel HD Graphics 520), signifying that

dedicated graphics cards are necessary for peak performance. Secondly, the GPU, and not the

CPU, is what determines the relative processing performance of the chunk system, which is

to be expected considering all voxel-related tasks are OpenCL accelerated (i.e.: ran on the

GPU). As such, the PC equipped with an Intel Core i7 8700K (i.e.: the strongest tested CPU),

did not have the best compute times because its GPU, the Radeon RX 580, was not as

powerful as the Nvidia GTX 1070 and Nvidia GTX 970. Unexpectedly, the Nvidia GTX

1070 and Nvidia GTX 970 had almost identical compute performance, despite the 1070

being 970’s successor. Being only one generation apart, perhaps the hardware did not evolve

enough to drastically impact raw compute power.

0

5

10

15

20

25

30

0 20 40 60 80 100

G
P

U
 c

o
m

p
u

te
 t

im
e

(m
s)

Number of chunks processed

Intel i5 8600 / Nvidia GTX 1070

Intel i7 6700K / Nvidia GTX 970

Intel i5 6300 / Intel HD Graphics 520

Intel i7 8700K / Radeon RX 580

45

3.2.3 Chunk system collision testing performance compared to single-

buffer-based algorithms

The chunk system is an approach that was designed to address a common problem in

collision testing for voxel-based simulations, which is high-volume computation strain. The

sheer number of voxels present during any given collision event requires that the algorithms

used to perform intersection checks and removals between individual voxels must perform at

sub millisecond speeds, especially when taking haptics input at 1 kHz. While the chunk

system is capable of meeting target speeds at low chunk numbers (Fig. 3.8), it is one of many

algorithms that have been created to address this problem. Other algorithms exist that have

offered solutions to OpenCL accelerated voxel-based collision testing. These algorithms

differ from the chunk system in that they iterate through, and work on, tool voxels contained

in single sparse buffers. For these algorithms, the bone voxels are also contained in a single

buffer, although organized as a 3D matrix that covers the bone’s object bounds [75, 114,

115].

To assess the relative performance of the chunk system, collision test timings were

compared against those generated by the methods developed by Zheng et. al, Yau et. al, and

Reza et. al [75, 114, 115]. When comparing the performance of chunks in terms of sheer

voxels processed per millisecond, the chunk system struggles to reach parity. For instance, at

raw voxel processing counts of 643, if there is a collision event between the reamer and the

bone (Fig 3.6), the chunk system runs at 0.44 ms, while the leading algorithm, Reza et. al’s,

runs at 0.19 ms. Performance is substantially worse when processing voxel counts of more

than 1283 (Fig. 3.9).

46

Figure 3.9: Voxel processing time of various collision algorithms on Windows 10, Intel

i5 8600, Nvidia GTX 1070 PC. Chunk collision was performed with reamer.

The explanation for this discrepancy is due to the fundamental way the chunk system

handles collisions, in that the chunk system processes voxels from the bone voxels to tool

voxels (Fig 3.3), rather than the reverse, which is the case for the alternative algorithms (Fig

3.4) [75, 114, 115]. In both methods, tool voxels are stored as a single continuous array of

elements, although in this engine, tool voxels are arranged as a 3D matrix, meaning that there

are empty voxels present. The alternatives utilize a sparse voxel buffer, which is a linear

array of only active voxels that aren’t necessarily in spatial order. Sparse buffers have the

advantage of removing inactive voxels, thereby minimizing the number of voxels to process

during collision testing. These algorithms can store tool voxels this way because they iterate

through the tool voxels during collision events. It is not possible to have a sparse array for

tool voxels in a bone chunk system since the world position of the tool voxel is no longer tied

to a buffer index that can be used to calculate a coordinate in a grid space that is relative to

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

64^3 128^3

G
P

U
 c

o
m

p
u

te
 t

im
e

(m
s)

Number of voxels processed

Chunk Processing

Reza et. al

Zheng et. al

Yau et. al

47

the tool. Determining the tool voxels that are involved in a collision intersection volume

would thus require additional metadata per voxel to house a 3D world position. It would also

necessitate iterating through the tool’s sparse voxel buffer during collision detection since

these voxels aren’t in a predictable order (i.e.: would vary from tool to tool), which would be

extremely costly in terms of computation. In these types of algorithms, a sparse voxel buffer

is allowed for only one of the two colliding entities (the one who’s voxels are being iterated

through to check for collisions against the other), but not both since grid positional

information is lost when using a sparse organisation. Now, understanding the nature of sparse

buffers is important because, although the algorithms claim to process 643 voxels, those

numbers instead indicate the volume represented by the buffers. The total number of voxels

processed is much lower since most of the void space present in the tool objects was stripped

away during the voxelization process. On top of that, the voxelization algorithm used only

considers the surface of the object, leading to fewer voxels being generated to represent the

tool [75, 114, 115]. Chunks, on the other hand, derive their data from volumetric sources

(i.e.: CT scans), meaning that, overall, they contain more voxels, which results in more

computation time required to parse multiple chunks.

However, rather than raw voxel processing, it is better to compare the chunk system

on a chunk-by-chunk basis. Since it is possible to have a variable number of chunks during

collision events, it is better to analyze how the chunk system scales as more chunks are

processed and note the conditions in which the chunk system wins, achieves parity, and

plateaus compared with the alternatives. Starting with the method developed by Reza et. al, it

is clear that Reza et. al’s method is dependent on the voxel resolutions of both the tool and

bone objects being used (Fig 3.10) [114].

48

Figure 3.10: Chunk system collision timings using peg-hole cylinder tool vs Reza et. al’s

timings at varying tool and model voxel resolutions.

The takeaway of figure 3.10 is that the chunk system matches or beats Reza’s

algorithm only under certain conditions, which are dictated by however many chunks are

being processed at the time of a collision event, and the resolutions of the virtual objects. For

instance, at the highest tool and model (bone) resolutions measured (i.e.: 10243), the chunk

system performs better if 12 or fewer chunks are being processed (Fig 3.10). Otherwise, Reza

et. al’s algorithm wins since it takes less time to complete a collision event. In comparing the

chunk system against Zheng et. al and Yau et. al, a similar trend is observed (Fig 3.11-3.12).

The chunk system does not necessarily outperform any existing method, but rather, there are

instances where it matches performance, and where it surpasses.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

64^3 Tool Res.128^3 Tool Res.256^3 Tool Res.512^3 Tool Res.1024^3 Tool Res.

Number of chunks processed

G
P

U
 c

o
m

p
u

te
 t

im
e

(m
s)

128^3 Model Res.

256^3 Model Res.

512^3 Model Res.

1024^3 Model Res.

Chunk Processing

49

Figure 3.11: Chunk system collision timings using peg-hole cylinder tool against those

measured when using Zheng et. al’s method

Figure 3.12: Chunk system collision timings using peg-hole cylinder tool against those

measured when using Yau et. al’s method

0 10 20 30 40 50 60 70 80 90 100 110 120

0

1

2

3

4

5

6

7

8

9

64^3 Tool Res. 128^3 Tool

Res.

256^3 Tool

Res.

512^3 Tool

Res.

1024^3 Tool

Res.

Number of chunks processed

G
P

U
 c

o
m

p
u

te
 t

im
e

(m
s)

128^3 Model Res.

256^3 Model Res.

512^3 Model Res.

Chunk Processing

0 20 40 60 80 100 120 140 160 180 200 220 240

0

2

4

6

8

10

12

14

16

18

Number of chunks processed

G
p

u
 c

o
m

p
u

te
 t

im
e

(m
s)

128^3 Model Res.

256^3 Model Res.

512^3 Model Res.

1024^3 Model Res.

Chunk Processing

50

In practicality, the chunk system achieves performance that is comparable to the

single-buffer based algorithms. The collisions that occurred during testing were located on

the periphery of the bone object, meaning that the bone-tool intersection volume remained

relatively small. Given this, the number of chunks that were processed during collision

testing were normally between 1 – 20 (Table 3.4). At these numbers, the time required to

compute a collision event varied between 0.065 ms and 1.17 ms, which is within the

acceptable range of the target time allotted for 1 kHz haptics updates. While the chunk

system isn’t a perfect solution, it can achieve real-time material removal with results that are

comparable with the alternatives. In the end, the chunk system performs best if the number of

chunks to be processed is low.

3.2.4 Chunk system complexity

The complexity of the collision system in the context of chunks is O(n * m) where n is the

number of voxels within a chunk (all of which must be processed per chunk collision test)

and m is the number chunks that need to be processed per collision event. Although the size

of the chunk is constant and is set at compilation, since it can be varied ahead of time, it is

still variable. Now, it is important to take into consideration the complexity of an algorithm

to obtain a rough estimate of the computation power required to perform a task. Looking at

the single buffer approach, the complexity is O(n), were n is the number of tool voxels being

processed per collision event. What is key is how the growth of the chunk system compares

with that of the single buffer approach. As shown in figures 3.10 – 3.12, assuming the highest

voxel resolution of both tool and bone objects, the chunk system grows much more slowly in

terms of computing power required compared to the single buffer approaches, providing

better performance despite being more complex. Finally, the chunk system offers efficiency

51

over a naïve approach of checking every possible combination of intersecting bone-to-tool

voxels. Doing so would increase the computation cost exponentially (O(nm)) and wouldn’t be

feasible regardless of hardware power.

3.2.5 Chunk system vs. octrees

The chunk system is an alternative to the single-buffer based approach of storing voxels.

However, it shares similarities with another data structure known as octrees [29]. Octrees are

a tree data structure where each node contains either no child nodes or exactly 8. Essentially,

octrees subdivide voxel space into regions of 8 units. Because nodes can have no children,

inevitably, there will exist sections in the octree that are more subdivided than others. The

reason for this subdivision is due to the metadata of the voxels within that region. Voxels of

equal or similar metadata are grouped under one node while others are pushed into

subdivisions until the node is homogenous in content [29]. This is done as a memory

optimization wherein large groups of voxels can be represented by a few nodes, which,

individually, do not occupy a lot of memory. Like the chunk system, octrees partition voxels

into sections, and the chunk system can even be thought of as an octree with a fixed height of

1 and unlimited nodes. Therein lies the key difference. The chunk system does not subdivide

voxels any further. In practicality, this means several things. Lookups in the chunk system

are O(1) since there is no tree traversal to find a voxel anywhere in the voxel representation

of the model. This, however, comes at a cost of memory storage as chunks do not subdivide

as optimality as the octree structure to merge similar voxels. Additionally, chunks do not

restructure themselves. An octree has the option to refresh nodes based on current state of the

voxel representation after a collision event. This intermediary step could prove beneficial in

later collision events as the traversal of the tree may end up being shorter with more and

52

more voxels being removed. However, this intermediary step would still cost computing

time, time which is saved using the chunk system. Overall, the chunk system was used as the

voxel data structure for this engine for its fast lookup times despite a potential increase in

memory usage.

3.2.6 Independency from tool voxel resolution

A benefit of the chunk system, compared to the alternatives, is that the performance of

collision testing is independent of the voxel resolution of the tool object (Table 3.5). As the

chunk system’s collision algorithm goes from bone chunk voxels to tool voxels, the time

required to perform a complete collision event is entirely dependent on the number of bone

chunks being processed. Increasing the tool’s voxel resolution does not affect performance,

as the physical size of the tool object remains the same. Thus, the intersection volume, along

with the number of colliding chunks, remains constant (Table 3.5). However, whether this

property enables more accurate collision results with a finer grained tool voxel representation

is untested. Still, contrast this property to the alternatives, which show a gradual increase in

the computation time required to perform a collision event as the tool’s voxel resolution

increases (Fig 3.10-3.12).

3.3 Chunk voxel rendering

3.3.1 Neighbor-aware triangle mesh generation

Early in development, triangle meshes were created, and refreshed, for each chunk to act as

their visual representation in virtual space. The chunk triangle mesh creation process

culminated in a mesh that appeared to be composed of a series of cubes, wherein each cube

represented one voxel (Fig 1.3). As a performance enhancement, a preprocessing step would

53

occur were cube faces were culled from the final mesh if they were obscured by an adjacent,

opaque voxel face. The algorithm worked on a chunk-by-chunk basis and would create a

seamless mesh across chunks by considering the voxels of neighbouring chunks (Fig 2.2).

Essentially, for voxels that are on the external layers of the query (i.e.: central) chunk, the

algorithm would look to the first layer of voxels in the neighbouring chunk immediately

adjacent to the current voxel and decide whether a quad should be added into the chunk’s

triangle mesh vertex buffer based on the presence, or absence, of the neighbour voxel. For

quick access, each chunk would have an array of 6 pointers to its neighbours. However, if a

neighbouring chunk was not present (i.e.: the query chunk is located on the outer layers of

the chunk grid), then the pointer would point to a global “empty” chunk, a specialized read-

only chunk where all voxel densities are zero. This enabled the algorithm to work as

expected. Neighbor chunk pointers would be setup during chunk grid creation in the CT scan

data transfer task. Each chunk triangle mesh would then stored with its respective chunk and

would be updated when the chunk’s voxel contents were changed due to a collision event.

The triangle mesh creation process is performed entirely on the GPU through

OpenCL and is as follows. Voxel data from the query chunk and its neighbors are transferred

to a 34 × 34 × 34, R16, 3D texture called the “SuperChunk”. The SuperChunk has extended

dimensions to add the 6 immediately adjacent neighbouring chunk layers, and to avoid

unnecessary conditional branches when performing neighbour voxel lookups to determine

whether a quad face should be added to the mesh. When copying data to the SuperChunk, all

the voxels from the query chunk are transferred, starting from index 1 × 1 × 1 to 32 × 32 ×

32. Then, voxel data from neighbouring chunks are added. Essentially, one 32 × 32 face layer

of voxel data from each neighbouring chunk is added to the SuperChunk. The layer of chunk

data added depends on the face of the neighbour chunk that is directly adjacent to query

54

chunk. In the end, the SuperChunk contains all the voxel data needed to go through voxels 1

× 1 × 1 to 32 × 32 × 32, while being neighbor aware.

After writing to the SuperChunk, a parallel prefix sum and stream compaction

operation is performed. Generation of the triangle mesh is performed on the GPU to avoid

unnecessary transfer of vertex data to the CPU and back OpenGL vertex buffers. To reduce

workload and be able to properly index into the output vertex buffer, active voxel (i.e.:

voxels that have at least one visible face, meaning a neighbour with < 120 density) and active

face (to determine the number of quads needed to generate per active voxel) indices are

identified in one kernel, summed in another kernel, and then stream compacted to buffers in a

third kernel. The active voxel identification, parallel prefix sum, stream compaction

algorithms are taken from the Marching Cubes sample in Nvidia’s OpenCL SDK, with the

difference being that active voxels and face indices are identified based on the absence of

active neighbouring voxels. Once the compacted active voxel and face indices arrays have

been computed, if there are any active voxels, the buffers are iterated through in a final

OpenCL kernel to generate the triangle mesh. For every active voxel, the 6 neighbors of the

voxels are checked, and for each neighbor that is empty, the vertex coordinates of the face

are computed at the offset of the current compacted face index + 4 * the index of the face

currently being checked. In the end, a triangle mesh of cubes is generated. A final step is to

transfer the OpenCL buffer output to the Chunk’s OpenGL mesh buffer.

3.3.2 Ray-box intersection voxel rendering

Recently, a novel method has been released by Majercik et. al that offers an alternative to the

mesh-based approach of rendering voxel-based models [112]. The algorithm gives the same

visual result as the triangle-mesh method, although the performance differs heavily,

55

especially when viewed in conjunction with the added computational stress of collision

testing. To summarise the technique, a bounding box is rasterized from a GL_POINT axis-

aligned square for each model voxel in a vertex shader, and then a ray-box intersection test is

performed on every pixel within that box in the accompanying fragment shader. If the test

passes, the pixel is shaded according color of the voxel and bounding-box face hit. If the test

fails, the pixel is discarded, giving the final image. To accommodate this technique for the

chunk system, several changes had to be made. First, in terms of the shaders, the vertex and

fragment shader were changed to be called per chunk, and each voxel had to have its position

computed based on the chunk’s relative grid offset and the current model matrix of the

voxelized object. Second, the CT data used for the chunks had to be modified to be

compatible with the algorithm. The GL_POINT based technique assumes that every voxel

has equal dimensions, given that OpenGL’s GL_POINTS and GL_POINT_SIZE functions

manipulate square points, which can only represent cubes. However, the Scapula and

Glenoid CT scans used for engine testing were generated with an irregular voxel size (0.47

mm × 0.47 mm × 1.0 mm). Given the restriction, one would have either alter the CT scan

data, or the algorithm itself. The solution chosen was to introduce “filler” voxels along with

the CT scan data, essentially subdividing the existing voxels, but occupying the same volume

(see Chapter 2, 2.4, Fig 2.2). The triangle-mesh approach does not have this problem since

the triangle vertices can be scaled to the voxel size of the CT scanned object in the vertex

shader. Interestingly, this method does not incur any additional memory cost over the triangle

mesh method, since instead of memory being occupied by filler voxels, memory is instead

taken up by the triangle mesh buffer (Table 3.7).

56

Table 3.7: Various statistics of the voxel rendering methods used.

 Scapula (Triangle mesh) Scapula (GL_POINTS)

Voxel Size 0.47 × 0.47 × 1.0) mm (0.47 × 0.47 × 0.47) mm

Number of chunks 448 896

Number of Active chunks 99 199

Active voxel memory (2B/voxel) 6.48 MB 13.04 MB

Triangle mesh memory 6.93 MB 0.00 MB

Total memory 13.41 MB 13.04 MB

3.3.3 Comparison of the voxel rendering methods

The rendering algorithms were tested with 5 CT scanned objects (Fig 1.4), and timing data

was collected when the engine was at idle, and when it experienced a collision event.

Additionally, the rendering times of chunks were recorded in increments of 1 to determine

the base time required to render a set number of chunks using each method. The results are

shown in figures 3.13 - 3.14. It was found that the triangle-mesh method had lower rendering

times (up to 6x) per chunk than the GL_POINT based approach. Perhaps the reason for this

is due with the varying number of vertex elements processed between the methods. In the

GL_POINT method, each voxel in a chunk is processed in the shaders (32,768 voxels for

chunk sizes of 323), meaning that every chunk rendered has consistent vertex shader

invocations. On the other hand, a triangle-mesh is much more likely to contain fewer

elements to process, given that only the surface of the voxelized object is being drawn. Inner

voxels that are obscured by neighbouring voxels have their quads omitted, while all voxels in

a Chunk are processed in the GL_POINT method. The shaders used for the triangle mesh are

also simpler, requiring fewer matrix transforms, and no ray-tracing in the fragment shader.

57

Figure 3.13: 720p render timings for triangle mesh voxel rendering of 323 chunks across

tested models on Windows 10, Intel i5 8600, Nvidia GTX 1070 PC

0

1

2

3

4

5

6

0 200 400 600 800 1000 1200 1400 1600

R
en

d
er

 t
im

e
(m

s)

Number of chunks rendered

Scapula

Glenoid

Trabecular Core 2

Cellular Foam

Trabecular Core 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 50 100 150 200 250

R
en

d
er

 t
im

e
(m

s)

Number of chunks rendered

Scapula

Glenoid

Trabecular Core 2

Cellular Foam

Trabecular Core 1

58

Figure 3.14: 720p render timings for GL_POINT based voxel rendering of 323 chunks

across tested models on Windows 10, Intel i5 8600, Nvidia GTX 1070 PC

0

5

10

15

20

25

30

0 200 400 600 800 1000 1200 1400 1600

R
en

d
er

 t
im

e
(m

s)

Number of chunks rendered

Scapula

Glenoid

Trabecular Core 2

Cellular Foam

Trabecular Core 1

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 50 100 150 200 250

R
en

d
er

 t
im

e
(m

s)

Number of chunks rendered

Scapula

Glenoid

Trabecular Core 2

Cellular Foam

Trabecular Core 1

59

 On figure 3.13, there appears to be performance spikes that occur periodically when

rendering a high number of chunks. These spikes are consistent across several runs

measuring the rendering timings of the triangle-mesh algorithms. V-Sync does not appear to

affect these spikes. The current hypothesis is that the spikes are caused by cache misses.

However, figure 3.13 is more of a visual aid to get an estimate of the expected time required

to render a set number of chunks using the triangle-mesh method. The same for figure 3.12

with the GL_POINT based approach.

Before continuing, a note must be made on why chunks have different render times

between the CT scanned objects tested, despite each chunk having the same number of

voxels (i.e.: 322). In the shaders, an optimization is made to skip over inactive voxels, and

only continue if the voxel is active.

Figure 3.15: Ratio of active to inactive voxels across tested models

The more active voxels a voxelized object has, the longer it will take to render chunks

of that object. The ratio of active-to-inactive voxels plays a role in the render times (Fig

0

5

10

15

20

25

Scapula Glenoid Trabecular

Core 2

Cellular foam Trabecular

Core 1

P
er

ce
n

t
o
f

a
ct

iv
e

v
o
x
el

s

60

3.15). This, along with the variability of the active voxel ratios across the CT scanned

objects, would explain the trends observed in figures 3.13-3.14.

Given how the triangle mesh method performs, one would expect it to be the logical

choice when implementing a rendering scheme in a simulation engine. However, figures 3.13

- 3.14 show render timings at idle. The more important comparison is how both methods

perform when the engine undergoes collision testing. The key difference here is that the

triangle-mesh method must regenerate chunk meshes to accurately reflect the changes made

during a collision update, while the GL_POINT based method does not have any additional

intermediary steps. Effectively, this means that for every unique chunk whose data has been

changed due to a collision event, the triangle-mesh generation algorithm must be re-executed,

which comes at a cost (Table 3.8).

Table 3.8: Breakdown of the runtime for different phases of chunk triangle mesh

generation

Task GPU compute time (ms)

Copy chunk cluster data to padded Chunk 0.077047

Classify active voxels in padded chunk 0.067482

Generate sparse active voxels buffer with parallel prefix scan 0.081673

Generate triangle mesh and transfer to global mesh buffer 0.018723

Copy global mesh buffer data to chunk mesh buffer 0.007131

Total triangle mesh computation time 0.252056

For every 4 chunks that require an update after a collision event, ~1 ms is required to

refresh the triangle meshes of those chunks. Recall that the target visual refresh rate is 60 Hz

and the target haptics update rate is 1 kHz. Since the mesh regeneration process is too costly

to be done in the update loop, it is performed in the render loop instead. With an allocation of

~16 ms per frame, minus the amount of time required to render the tool models, allowing

room for future graphics enhancements, and using the Scapula model as an example (0.58 ms

61

to render all the chunks), roughly 56 (14 ms * 4 chunk per ms) total regeneration events can

occur before performance degrades. However, this cost is on top of the time needed for the

update loop, and since anywhere from 1 – 20 unique chunks are affected per collision event

(Table 3.3), the number of refreshes allowed is too low. More importantly, this method is not

scalable if using tools that cover larger surfaces that would increase the number of collided

chunks to process. Given these restraints, the GL_POINT base method was chosen as the

default voxel rendering technique for the engine.

Having chosen the GL_POINT method as the voxel rendering method of choice,

timing data was collected to assess the performance of the algorithm across various PC

configurations (Table 3.6).

Figure 3.16: 720p render timings for GL_POINT based voxel rendering for “Cellular

Foam” model across varying Windows 10 PC configurations

Again, the determining factor for performance was the GPU, with the Nvidia GTX

1070 performing the best, the Nvidia GTX 970 coming in second, and the Radeon RX 580

ending in 3rd (Fig 3.16). The cause for the spikes on the Radeon GPU is unknown.

0

10

20

30

40

50

60

70

80

0 200 400 600 800 1000 1200 1400 1600

R
en

d
er

 t
im

e
(m

s)

Number of chunks rendered

Intel i5 8600 / Nvidia GTX 1070

Intel i7 6700K / Nvidia GTX 970

Intel i7 8700K / Radeon RX 580

62

On a final note, it is worth mentioning that there do exist isosurface extraction

methods (ex: Marching Cubes) that can generate smooth triangle meshes out of voxels [120].

However, the fact remains that rebuilding meshes will cost some amount of compute time

regardless of the number of refreshes required. Ultimately, the GL_POINT based method

gives the same visual result without an intermediary step. Volume rendering is used in

medical applications to rendering voxels without meshes, but the technique wasn’t explored,

as there were difficulties adapting the process to be compatible with the chunk system [113].

63

Chapter 4

Thesis closure

4.1 Summary

 The focus of this project was to develop a simulation engine platform whose code and

techniques may be integrated into current and future simulators for the benefit of the medical

community. Over the course of the engine’s development, a partitioning scheme, known as

the “Chunk” system, had been introduced to address common bottlenecks when attempting to

simulate the complex interactions between objects of arbitrary voxel resolutions, those being

memory consumption and high-volume workloads. The chunk system has successfully

resolved the issue of memory management, given that, on average, there was a reduction in

the amount of memory allocated by voxels, sometimes up to 50 % (Tables 3.1-3.2). As for

the performance of collision testing, the results of the chunk system, when compared to

alternative methods, varied depending on the size of the workload. To summarize, the chunk

system is not the ideal solution that will outperform all methods in all conditions. Rather it is

more of a proof-of-concept that a voxel partitioning scheme can match the performance of

single buffer algorithms at various settings. In most cases, the chunk system will perform

adequately given that most surgical scenarios involve surface remodeling and small

intersection volumes between the cutting tool and the bone. As such, the system is unlikely to

be processing high amounts of chunks at any one time, and thus the simulator will run at the

expected real-time refresh rates of 60 Hz visual, and 1 kHz haptic update.

64

4.2 Future work

Performance enhancements are a continual focus for simulation engine development. Key

areas are reducing the number of collision detection tests to a minimum and implementing

more efficient rendering techniques. In terms object-to-object interaction, a switch from the

current broad-phase collision detection scheme to a more refined means collision detection

would greatly speedup the haptics/update loop [121]. The issue is that the computed

bounding box intersection volume sometimes overestimates the number of chunks that

collide with the reamer, causing an unnecessary amount of chunk collision test executions.

Using capsule colliders or convex hull colliders, objects that more tightly wrap around

models than bounding boxes, would be worth investigating to alleviate the problem. The best

rendering optimization is to reduce the number of objects rendering at any time. Frustum

culling could be introduced so that chunk’s that are outside the camera’s frustum are not

rendered [110]. However, another form of culling, occlusion culling, can also be

implemented [122]. Occlusion culling with software rasterization can identify chunks that are

obscured by other chunks, or otherwise hidden from the camera’s view, and prevent those

chunks from rendering. These chunks most likely include those that are on the inside an

object, or on the side of the object opposite of the camera. Finally, as a feature enhancement,

adding VR headset (ex: HTC Vive) compatibility to the engine would greatly improve the

user experience, as the user would be able to physically re-enact the surgery in 3D virtual

space.

4.3 Conclusion

The simulation engine described here has achieved its goal of replicating the complex

interaction between an arbitrary cutting tool and a CT scanned object in real-time. We

65

believe the algorithms developed will contribute to the foundation of current upcoming

surgical simulators, accelerating the progression of these training modules.

66

Bibliography

1. Halm, E.A., C. Lee, and M.R. Chassin, Is volume related to outcome in health care? A

systematic review and methodologic critique of the literature. Annals of internal

medicine, 2002. 137(6): p. 511-520.

2. Luft, H.S., S.S. Hunt, and S.C. Maerki, The volume-outcome relationship: practice-

makes-perfect or selective-referral patterns? Health services research, 1987. 22(2): p.

157.

3. Bell Jr, R.H., et al., Operative experience of residents in US general surgery programs:

a gap between expectation and experience. Annals of surgery, 2009. 249(5): p. 719-

724.

4. Flood, A.B., W.R. Scott, and W. Ewy, Does practice make perfect? Part I: The relation

between hospital volume and outcomes for selected diagnostic categories. Medical

care, 1984: p. 98-114.

5. Flood, A.B., W.R. Scott, and W. Ewy, Does practice make perfect? Part II: The

relation between volume and and outcomes and other hospital characteristics. Medical

care, 1984: p. 115-125.

6. Luft, H.S., The relation between surgical volume and mortality: an exploration of

causal factors and alternative models. Medical care, 1980: p. 940-959.

7. Birkmeyer, J.D., et al., Hospital volume and surgical mortality in the United States.

New England Journal of Medicine, 2002. 346(15): p. 1128-1137.

8. Taylor, H.D., D.A. Dennis, and H.S. Crane, Relationship between mortality rates and

hospital patient volume for Medicare patients undergoing major orthopaedic surgery

of the hip, knee, spine, and femur. The Journal of arthroplasty, 1997. 12(3): p. 235-242.

67

9. Luft, H.S., J.P. Bunker, and A.C. Enthoven, Should operations be regionalized? The

empirical relation between surgical volume and mortality. New England Journal of

Medicine, 1979. 301(25): p. 1364-1369.

10. Brennan, T.A., et al., Incidence of adverse events and negligence in hospitalized

patients: results of the Harvard Medical Practice Study I. New England journal of

medicine, 1991. 324(6): p. 370-376.

11. Leape, L.L., et al., The nature of adverse events in hospitalized patients: results of the

Harvard Medical Practice Study II. New England journal of medicine, 1991. 324(6):

p. 377-384.

12. Ericsson, K.A., Deliberate practice and the acquisition and maintenance of expert

performance in medicine and related domains. Academic medicine, 2004. 79(10): p.

S70-S81.

13. Duvivier, R.J., et al., The role of deliberate practice in the acquisition of clinical skills.

BMC Medical Education, 2011. 11(1): p. 101.

14. Thomas, G.W., et al., A review of the role of simulation in developing and assessing

orthopaedic surgical skills. The Iowa orthopaedic journal, 2014. 34: p. 181.

15. McGaghie, W.C., et al., Does simulation-based medical education with deliberate

practice yield better results than traditional clinical education? A meta-analytic

comparative review of the evidence. Academic medicine: journal of the Association of

American Medical Colleges, 2011. 86(6): p. 706.

16. Kunkler, K., The role of medical simulation: an overview. The International Journal of

Medical Robotics and Computer Assisted Surgery, 2006. 2(3): p. 203-210.

17. Froelich, J.M., et al., Surgical simulators and hip fractures: a role in residency

training? Journal of surgical education, 2011. 68(4): p. 298-302.

68

18. Issenberg, S.B., et al., Simulation technology for health care professional skills training

and assessment. Jama, 1999. 282(9): p. 861-866.

19. Lam, C.K., K. Sundaraj, and M.N. Sulaiman, Computer-based virtual reality simulator

for phacoemulsification cataract surgery training. Virtual Reality, 2014. 18(4): p. 281-

293.

20. Chan, S., et al., High-fidelity haptic and visual rendering for patient-specific simulation

of temporal bone surgery. Computer Assisted Surgery, 2016. 21(1): p. 85-101.

21. Kühnapfel, U., H.K. Cakmak, and H. Maaß, Endoscopic surgery training using virtual

reality and deformable tissue simulation. Computers & graphics, 2000. 24(5): p. 671-

682.

22. Ho, A.K., et al., Virtual reality myringotomy simulation with real‐time deformation:

Development and validity testing. The Laryngoscope, 2012. 122(8): p. 1844-1851.

23. Kusumoto, N., et al., Application of virtual reality force feedback haptic device for oral

implant surgery. Clinical oral implants research, 2006. 17(6): p. 708-713.

24. Hsieh, M.-S., M.-D. Tsai, and Y.-D. Yeh, An amputation simulator with bone sawing

haptic interaction. Biomedical Engineering: Applications, Basis and Communications,

2006. 18(05): p. 229-236.

25. Gordon, M.S., et al., “Harvey,” the cardiology patient simulator: pilot studies on

teaching effectiveness. American Journal of Cardiology, 1980. 45(4): p. 791-796.

26. Seymour, N.E., et al., Virtual reality training improves operating room performance:

results of a randomized, double-blinded study. Annals of surgery, 2002. 236(4): p. 458.

27. Lee, T.-Y., C.-H. Lin, and H.-Y. Lin, Computer-aided prototype system for nose

surgery. IEEE Transactions on Information Technology in Biomedicine, 2001. 5(4): p.

271-278.

69

28. Razavi, M., et al., A GPU‐implemented physics‐based haptic simulator of tooth

drilling. The International Journal of Medical Robotics and Computer Assisted

Surgery, 2015. 11(4): p. 476-485.

29. Yau, H., L. Tsou, and M. Tsai, Octree-based virtual dental training system with a

haptic device. Computer-Aided Design and Applications, 2006. 3(1-4): p. 415-424.

30. Wang, D., et al., Cutting on triangle mesh: local model-based haptic display for dental

preparation surgery simulation. IEEE Transactions on Visualization and Computer

Graphics, 2005. 11(6): p. 671-683.

31. Wu, J., et al., Toward stable and realistic haptic interaction for tooth preparation

simulation. Journal of Computing and Information Science in Engineering, 2010.

10(2): p. 021007.

32. Bowyer, M.W. and R.B. Fransman, Simulation in General Surgery, in Comprehensive

Healthcare Simulation: Surgery and Surgical Subspecialties. 2019, Springer. p. 171-

183.

33. Vaughan, N., et al., A review of virtual reality based training simulators for

orthopaedic surgery. Medical engineering & physics, 2016. 38(2): p. 59-71.

34. Peters, J.H., et al., Development and validation of a comprehensive program of

education and assessment of the basic fundamentals of laparoscopic surgery. Surgery,

2004. 135(1): p. 21-27.

35. Neyret, F., R. Heiss, and F. Sénégas, Realistic rendering of an organ surface in real-

time for laparoscopic surgery simulation. The Visual Computer, 2002. 18(3): p. 135-

149.

36. Wilson, M., et al., MIST VR: a virtual reality trainer for laparoscopic surgery assesses

performance. Annals of the Royal College of Surgeons of England, 1997. 79(6): p. 403.

70

37. Kothari, S.N., et al., Training in laparoscopic suturing skills using a new computer-

based virtual reality simulator (MIST-VR) provides results comparable to those with

an established pelvic trainer system. Journal of laparoendoscopic & advanced surgical

techniques, 2002. 12(3): p. 167-173.

38. Vassiliou, M., et al., The MISTELS program to measure technical skill in laparoscopic

surgery. Surgical Endoscopy And Other Interventional Techniques, 2006. 20(5): p.

744-747.

39. Sperling, J.W., R.H. Cofield, and C.M. Rowland, Minimum fifteen-year follow-up of

Neer hemiarthroplasty and total shoulder arthroplasty in patients aged fifty years or

younger. Journal of shoulder and elbow surgery, 2004. 13(6): p. 604-613.

40. Mabrey, J.D., K.D. Reinig, and W.D. Cannon, Virtual reality in orthopaedics: is it a

reality? Clinical Orthopaedics and Related Research®, 2010. 468(10): p. 2586-2591.

41. Wiet, G.J., et al., Virtual temporal bone dissection: an interactive surgical simulator.

Otolaryngology—Head and Neck Surgery, 2002. 127(1): p. 79-83.

42. Sui, J., et al., Mechanistic modeling of bone-drilling process with experimental

validation. Journal of Materials Processing Technology, 2014. 214(4): p. 1018-1026.

43. Lin, Y., et al., Development and validation of a surgical training simulator with haptic

feedback for learning bone-sawing skill. Journal of biomedical informatics, 2014. 48:

p. 122-129.

44. Peng, X., et al. Bone surgery simulation with virtual reality. in ASME 2003

International Design Engineering Technical Conferences and Computers and

Information in Engineering Conference. 2003. American Society of Mechanical

Engineers.

71

45. Morris, D., et al. A collaborative virtual environment for the simulation of temporal

bone surgery. in International conference on medical image computing and computer-

assisted intervention. 2004. Springer.

46. Shantz, J.A.S., et al., The internal validity of arthroscopic simulators and their

effectiveness in arthroscopic education. Knee Surgery, Sports Traumatology,

Arthroscopy, 2014. 22(1): p. 33-40.

47. Mabrey, J.D., et al., Virtual reality simulation of arthroscopy of the knee. Arthroscopy:

the journal of arthroscopic & related surgery, 2002. 18(6): p. 1-7.

48. Heng, P.-A., et al., Application to anatomic visualization and orthopaedics training.

Clinical Orthopaedics and Related Research®, 2006. 442: p. 5-12.

49. Vankipuram, M., et al., A virtual reality simulator for orthopedic basic skills: a design

and validation study. Journal of biomedical informatics, 2010. 43(5): p. 661-668.

50. Health indicators, annual estimates. Table 13-10-0451-01 2010-2014 2019-03-03;

Available from:

https://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=1310045101&pickMembers%

5B0%5D=1.1&pickMembers%5B1%5D=2.1&pickMembers%5B2%5D=3.1.

51. Kim, S.H., et al., Increasing incidence of shoulder arthroplasty in the United States.

JBJS, 2011. 93(24): p. 2249-2254.

52. Tsai, M.-D., M.-S. Hsieh, and C.-H. Tsai, Bone drilling haptic interaction for

orthopedic surgical simulator. Computers in Biology and Medicine, 2007. 37(12): p.

1709-1718.

53. Kusins, J.R., et al., Development of a vibration haptic simulator for shoulder

arthroplasty. International journal of computer assisted radiology and surgery, 2018:

p. 1-14.

72

54. Karelse, A., et al., A glenoid reaming study: how accurate are current reaming

techniques? Journal of shoulder and elbow surgery, 2014. 23(8): p. 1120-1127.

55. Weishaupt, D., et al., Posterior glenoid rim deficiency in recurrent (atraumatic)

posterior shoulder instability. Skeletal radiology, 2000. 29(4): p. 204-210.

56. Matsen III, F.A., et al., Glenoid component failure in total shoulder arthroplasty. JBJS,

2008. 90(4): p. 885-896.

57. Radnay, C.S., et al., Total shoulder replacement compared with humeral head

replacement for the treatment of primary glenohumeral osteoarthritis: a systematic

review. Journal of shoulder and elbow surgery, 2007. 16(4): p. 396-402.

58. Wang, W., Y. Ouyang, and C.K. Poh, Orthopaedic implant technology: biomaterials

from past to future. Annals of the Academy of Medicine-Singapore, 2011. 40(5): p.

237.

59. Saltzman, M.D., et al., Shoulder hemiarthroplasty with concentric glenoid reaming in

patients 55 years old or less. Journal of shoulder and elbow surgery, 2011. 20(4): p.

609-615.

60. Bohsali, K.I., M.A. Wirth, and C.A. Rockwood Jr, Complications of total shoulder

arthroplasty. JBJS, 2006. 88(10): p. 2279-2292.

61. Nuss, K.M. and B. von Rechenberg, Biocompatibility issues with modern implants in

bone-a review for clinical orthopedics. The open orthopaedics journal, 2008. 2: p. 66.

62. Williams Jr, G.R., et al., The effect of articular malposition after total shoulder

arthroplasty on glenohumeral translations, range of motion, and subacromial

impingement. Journal of shoulder and elbow surgery, 2001. 10(5): p. 399-409.

73

63. Szabo, I. and G. Walch, Factors affecting cemented glenoid component loosening in

total shoulder arthroplasty. International Journal of Shoulder Surgery, 2007. 1(1): p.

23.

64. Walch, G., et al., Patterns of loosening of polyethylene keeled glenoid components after

shoulder arthroplasty for primary osteoarthritis: results of a multicenter study with

more than five years of follow-up. JBJS, 2012. 94(2): p. 145-150.

65. Brewer, B.J., R. Wubben, and G. Carrera, Excessive retroversion of the glenoid cavity.

A cause of non-traumatic posterior instability of the shoulder. JBJS, 1986. 68(5): p.

724-731.

66. Pritchett, J.W., Shoulder Resurfacing.

67. Torchia, M.E., R.H. Cofield, and C.R. Settergren, Total shoulder arthroplasty with the

Neer prosthesis: long-term results. Journal of Shoulder and Elbow Surgery, 1997. 6(6):

p. 495-505.

68. Nguyen, D., et al., Improved accuracy of computer assisted glenoid implantation in

total shoulder arthroplasty: an in-vitro randomized controlled trial. Journal of shoulder

and elbow surgery, 2009. 18(6): p. 907-914.

69. Lewis, G.S. and A.D. Armstrong, Glenoid spherical orientation and version. Journal

of shoulder and elbow surgery, 2011. 20(1): p. 3-11.

70. Chin, P.Y., et al., Complications of total shoulder arthroplasty: are they fewer or

different? Journal of shoulder and elbow surgery, 2006. 15(1): p. 19-22.

71. Wirth, M.A. and C.A. Rockwood Jr, Complications of total shoulder-replacement

arthroplasty. JBJS, 1996. 78(4): p. 603-616.

74

72. Danda, A., M.A. Kuttolamadom, and B.L. Tai, A mechanistic force model for

simulating haptics of hand-held bone burring operations. Medical engineering &

physics, 2017. 49: p. 7-13.

73. Forsslund, J., E.-L. Sallnas, and K.-J. Palmerius. A user-centered designed FOSS

implementation of bone surgery simulations. in EuroHaptics conference, 2009 and

Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems.

World Haptics 2009. Third Joint. 2009. IEEE.

74. Arbabtafti, M., et al., Physics-based haptic simulation of bone machining. IEEE

Transactions on Haptics, 2011. 4(1): p. 39-50.

75. Zheng, F., et al., An analytical drilling force model and GPU-accelerated haptics-

based simulation framework of the pilot drilling procedure for micro-implants surgery

training. Computer methods and programs in biomedicine, 2012. 108(3): p. 1170-1184.

76. Pourkand, A., N. Zamani, and D. Grow, Mechanical model of orthopaedic drilling for

augmented-haptics-based training. Computers in biology and medicine, 2017. 89: p.

256-263.

77. Ghasemloonia, A., et al., Evaluation of haptic interfaces for simulation of drill

vibration in virtual temporal bone surgery. Computers in biology and medicine, 2016.

78: p. 9-17.

78. Petersik, A., et al., Realistic haptic interaction in volume sculpting for surgery

simulation, in Surgery Simulation and Soft Tissue Modeling. 2003, Springer. p. 194-

202.

79. Agus, M., et al., Real-time haptic and visual simulation of bone dissection. Presence:

Teleoperators & Virtual Environments, 2003. 12(1): p. 110-122.

75

80. Wang, Q., et al., Real-time mandibular angle reduction surgical simulation with haptic

rendering. 2012, Chinese University of Hong Kong.

81. Morris, D., et al., Visuohaptic simulation of bone surgery for training and evaluation.

IEEE Computer Graphics and Applications, 2006. 26(6).

82. Sagardia, M., et al. Improvements of the voxmap-pointshell algorithm-fast generation

of haptic data-structures. in 53rd IWK-Internationales Wissenschaftliches Kolloquium,

Ilmenau, Germany. 2008.

83. Engine, U., “What is Unreal Engine 4. Unity3D Engine, 2016.

84. Wu, J., et al. Voxel-based interactive haptic simulation of dental drilling. in ASME

2009 International Design Engineering Technical Conferences and Computers and

Information in Engineering Conference. 2009. American Society of Mechanical

Engineers.

85. Renz, M., et al. Stable haptic interaction with virtual environments using an adapted

voxmap-pointshell algorithm. in In Proc. Eurohaptics. 2001. Citeseer.

86. Ramezanzadehkoldeh, M. and B.H. Skallerud, MicroCT-based finite element models

as a tool for virtual testing of cortical bone. Medical engineering & physics, 2017. 46:

p. 12-20.

87. Mor, A., S. Gibson, and J. Samosky. Interacting with 3-dimensional medical data:

Haptic feedback for surgical simulation. in Proceedings of phantom user group

workshop. 1996. Citeseer.

88. Tsai, M.-D. and M.-S. Hsieh, Accurate visual and haptic burring surgery simulation

based on a volumetric model. Journal of X-ray Science and Technology, 2010. 18(1):

p. 69-85.

76

89. Molino, N., Z. Bao, and R. Fedkiw. A virtual node algorithm for changing mesh

topology during simulation. in ACM Transactions on Graphics (TOG). 2004. ACM.

90. Seiler, M., et al., Robust interactive cutting based on an adaptive octree simulation

mesh. The Visual Computer, 2011. 27(6-8): p. 519-529.

91. Baker, T.J., Mesh generation: Art or science? Progress in Aerospace Sciences, 2005.

41(1): p. 29-63.

92. Torre, J., et al., WebGL-based Visualization of Voxelized Brain Models. 2012.

93. Eisemann, E. and X. Décoret. Single-pass GPU solid voxelization for real-time

applications. in Proceedings of graphics interface 2008. 2008. Canadian Information

Processing Society.

94. Eisemann, E. and X. Décoret. Fast scene voxelization and applications. in Proceedings

of the 2006 symposium on Interactive 3D graphics and games. 2006. ACM.

95. Itkowitz, B., J. Handley, and W. Zhu. The OpenHaptics/spl trade/toolkit: a library for

adding 3D Touch/spl trade/navigation and haptics to graphics applications. in First

Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual

Environment and Teleoperator Systems. World Haptics Conference. 2005. IEEE.

96. Ruthenbeck, G.S. and K.J. Reynolds, Virtual reality surgical simulator software

development tools. Journal of Simulation, 2013. 7(2): p. 101-108.

97. Chan, L.S.-H. and K.-S. Choi. Integrating PhysX and OpenHaptics: Efficient force

feedback generation using physics engine and haptic devices. in Pervasive Computing

(JCPC), 2009 Joint Conferences on. 2009. IEEE.

98. Scarpino, M., OpenCL in action: how to accelerate graphics and computations. 2011.

99. Pratx, G. and L. Xing, GPU computing in medical physics: A review. Medical physics,

2011. 38(5): p. 2685-2697.

77

100. Taylor, Z.A., M. Cheng, and S. Ourselin, High-speed nonlinear finite element analysis

for surgical simulation using graphics processing units. IEEE transactions on medical

imaging, 2008. 27(5): p. 650-663.

101. Fang, S. and H. Chen. Hardware accelerated voxelisation. in Volume Graphics. 2000.

Springer.

102. Dick, C., J. Georgii, and R. Westermann, A real-time multigrid finite hexahedra method

for elasticity simulation using CUDA. Simulation Modelling Practice and Theory,

2011. 19(2): p. 801-816.

103. Zheng, F., et al., Graphic processing units (GPUs)-based haptic simulator for dental

implant surgery. Journal of Computing and Information Science in Engineering, 2013.

13(4): p. 041005.

104. Courtecuisse, H., et al., GPU-based real-time soft tissue deformation with cutting and

haptic feedback. Progress in biophysics and molecular biology, 2010. 103(2-3): p. 159-

168.

105. Li, W., et al., GPU-Based flow simulation with complex boundaries. GPU Gems, 2003.

2: p. 747-764.

106. Comas, O., et al. Efficient nonlinear FEM for soft tissue modelling and its GPU

implementation within the open source framework SOFA. in International Symposium

on Biomedical Simulation. 2008. Springer.

107. Neylon, J., et al., A GPU based high‐resolution multilevel biomechanical head and

neck model for validating deformable image registration. Medical physics, 2015.

42(1): p. 232-243.

78

108. Faieghi, M., O.R. Tutunea-Fatan, and R. Eagleson, Fast and cross-vendor OpenCL-

based implementation for voxelization of triangular mesh models. Computer-Aided

Design and Applications, 2018. 15(6): p. 852-862.

109. Akenine-Möllser, T., Fast 3D triangle-box overlap testing. Journal of graphics tools,

2001. 6(1): p. 29-33.

110. Wright Jr, R.S., et al., OpenGL SuperBible: comprehensive tutorial and reference.

2010: Pearson Education.

111. Shreiner, D. and B.T.K.O.A.W. Group, OpenGL programming guide: the official guide

to learning OpenGL, versions 3.0 and 3.1. 2009: Pearson Education.

112. Majercik, A., et al., A Ray-Box Intersection Algorithm and Efficient Dynamic Voxel

Rendering. Journal of Computer Graphics Techniques Vol, 2018. 7(3).

113. Rubin, G.D., et al., Perspective volume rendering of CT and MR images: applications

for endoscopic imaging. Radiology, 1996. 199(2): p. 321-330.

114. Faieghi, M., Virtual Reality Simulation of Glenoid Reaming Procedure. 2018.

115. Yau, H.T., L.S. Tsou, and Y.C. Tong, Adaptive NC simulation for multi-axis solid

machining. Computer-Aided Design and Applications, 2005. 2(1-4): p. 95-104.

116. Ericson, C., Real-time collision detection. 2004: CRC Press.

117. Schulze, T., et al., Open asset import library (assimp), January 2012. Computer

Software, URL: https://github. com/assimp/assimp.

118. McNeely, W.A., K.D. Puterbaugh, and J.J. Troy, Voxel-based 6-dof haptic rendering

improvements. 2006.

119. McNeely, W.A., K.D. Puterbaugh, and J.J. Troy. Six degree-of-freedom haptic

rendering using voxel sampling. in ACM SIGGRAPH 2005 Courses. 2005. ACM.

79

120. Cirne, M.V.M. and H. Pedrini, Marching cubes technique for volumetric visualization

accelerated with graphics processing units. Journal of the Brazilian Computer Society,

2013. 19(3): p. 223.

121. Mirtich, B., Efficient algorithms for two-phase collision detection. Practical motion

planning in robotics: current approaches and future directions, 1997: p. 203-223.

122. Coorg, S. and S. Teller. Real-time occlusion culling for models with large occluders.

in Proceedings of the 1997 symposium on Interactive 3D graphics. 1997. ACM.

80

Curriculum Vitae

Name: Vlad Popa

Post-secondary The University of Western Ontario

Education and London, Ontario, Canada

Degrees: 2012-2016 Bachelor of Medical Sciences

The University of Western Ontario

London, Ontario, Canada

2017-2019 Masters in Engineering Science

Honours and Province of Ontario Graduate Scholarship

Awards: 2012

Related Work Teaching Assistant

Experience The University of Western Ontario

2017-2019

Publications:

Vlad Popa, Danielle A. Trecroce, Robert G. McAllister, and Lars Konermann. (2016). “Collision-

Induced Dissociation of Electrosprayed Protein Complexes: An All-Atom Molecular Dynamics Model

with Mobile Protons.” J. Phys. Chem. B. 120(23): 5114–5124.

Haidy Metwally, Robert G. McAllister, Vlad Popa, and Lars Konermann. (2016). “Mechanism of

Protein Supercharging by Sulfolane and m-NBA: Molecular Dynamics Simulations of the

Electrospray Process.” Anal. Chem. 88(10): 5345–5354.

Tilo D. Schachel, Haidy Metwally, Vlad Popa, Lars Konermann. (2016). “Collision-Induced

Dissociation of Electrosprayed NaCl Clusters: Using Molecular Dynamics Simulations to Visualize

Reaction Cascades in the Gas Phase.” J. Am. Soc. Mass Spectrom. 27(11): 1846–1854.

81

Vlad Popa, Danielle A. Trecroce, Robert G. McAllister, and Lars Konermann. (2016). “Mobile-

Proton MD Simulations for Modeling the Dissociation of Electrosprayed Protein Complexes.”

Proceedings of 64TH ASMS Conference on Mass Spectrometry and Allied Topics. 64TH ASMS

Conference on Mass Spectrometry and Allied Topics, Conference Date: 2016/6

Lars Konermann, Haidy Metwally, Robert G. McAllister, Vlad Popa. (2018). “How to Run Molecular

Dynamics Simulations On Electrospray Droplets and Gas Phase Proteins: Basic Guidelines and

Selected Applications.” Methods. 114: 102–112

	Haptics-enabled, GPU augmented surgical simulation platform for glenoid reaming
	Recommended Citation

	tmp.1556735382.pdf.yEwDt

