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Abstract 

Surgical simulators are technological platforms that provide virtual substitutes to the current 

cadaver-based medical training models. The advantages of exposure to these devices have 

been thoroughly studied, with enhanced surgical proficiency being one of the assets gained 

after extensive use. While simulators have already penetrated numerous medical domains, 

the field of orthopedics remains stagnant despite a demand for the ability to practice 

uncommon surgeries, such as total shoulder arthroplasty (TSA).  

Here we extrapolate the algorithms of an inhouse software engine revolving around 

glenoid reaming, a critical step of TSA. The project’s purpose is to provide efficient 

techniques for future simulators, and the methods developed address the challenges of 

achieving real-time performance with high-volume computations and haptics input rates. The 

core of the engine revolves around the management and manipulation of voxels, which 

handle the representation of virtual objects, the collision between them, and the removal of 

material upon interaction. A partitioning (“Chunk”) system was implemented for performant 

voxel organization and collision handling. Compared to object-wide single voxel buffers or 

3D textures, chunks enable empty-space memory savings and optimized collision testing 

through region isolation. Overall, the engine can replicate the interaction between a ~30 

million voxel scapula and a drill at 60 Hz visual, 1 kHz haptics, and 333 Hz collisions. We 

anticipate that the techniques developed will further the development of current and future 

simulators.   

 

Keywords: Virtual Reality, Surgery, Simulator, Engine, Haptics, Voxels, Collision 

Detection, GPGPU 
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Chapter 1 

Introduction 

1.1 Importance of practicing surgical operations  

Continuous repetition of surgical training programs has been thoroughly demonstrated to 

increase the patent care of participating surgeons. Indeed, there exists a concise correlation 

between the successful outcome of a procedure and the familiarity that a surgeon has with an 

operation [1-3]. Furthermore, studies investigating the relationship between a surgeon’s 

intimate knowledge of an operation and the rate of medical errors have verified that mortality 

rates dramatically decrease when a surgeon has previously encountered the surgical task to 

some capacity [4-7]. Clearly, surgical proficiency requires practice to obtain, as with any 

skill. Regrettably, a lack of skill is the leading cause of patient death [6-11]. There is thus a 

growing emphasis that surgeons should train whenever the opportunity presents itself [12, 

13]. 

Surgical training extends beyond menial motor exercises, however. While performing mock 

procedures on synthetic models may enhance one’s dexterity, for instance, human bodies are 

complex, and providing a realistic learning environment is complicated [14]. Traditional 

cadaver-based models (animal/human) and live patients currently fulfil said role, though 

these options are limited, costly, and pose safety risks [15]. Work hour restrictions, where 

surgeons aren’t at times available, also impede surgeons from obtaining the experience they 

desperately need [12]. Considering the nature of these setbacks, a suitable alternative must 

provide a platform where surgeons may improve their competency at consistent intervals, at 
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their discretion, and at a reasonable degree of realism. Surgical simulators are believed to be 

a solution that addresses all concerns [16].  

1.2 Haptics-augmented VR surgical simulation platforms 

Surgical simulators are advanced technological platforms that provide realistic virtual 

training models to medical professionals [17-19]. Through software and hardware 

peripherals, these simulators mimic the hospital environment within virtual reality and 

replicate the operating room experience for its users [20]. Being virtual, simulated operations 

are customizable, repeatable, and performed at the discretion of the user, all of which are 

advantages over traditional cadavers [21, 22]. There are two major components that 

encompass surgical simulators: the haptics-enabled hardware tool peripherals, and the 

software rendering engine [23]. Haptics devices provide the interface for which the user 

interacts the virtual space with, and they enable tactile information to be relayed back to the 

user, giving the sensation of a real operation. The visualization of the virtual space is 

controlled by a computer workstation running an advanced software physics and graphics 

rendering engine [24].  

1.3 Surgical simulators in clinical settings  

Modern VR surgical simulators are designed to conform to a narrow scope of use cases and 

specialize to deliver specific procedures rather than be a general-purpose tool that 

encompasses the entirety of the human body. Essentially, surgical simulators are finely 

turned to accelerate competency of problematic surgeries and provide precise qualitative 

feedback on a step-by-step basis [16, 24]. There are numerous examples of simulators that 

are extensively used in various fields, and several studies have reported an upsurge in 
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residential program efficiency as a result [25, 26]. The Karlsruhe Endoscopic Surgery 

Trainer, a VR laparoscopy simulator, is a device capable of roughly imitating the human 

abdomen, and has been implemented with great success at the University Hospital of 

Tuebingen since 1996 [21]. A Rhinoplasty simulator created by Lee et al. utilizes image 

processing to facilitate the study of patient facial structures, ultimately easing pre-operative 

planning for plastic surgery [27]. Within dental care, amongst many examples [28-30], Wu et 

al. have written a VR simulator that models the process of dental grinding [31]. Finally, a 

few contemporary companies offer commercial solutions that incorporate pre-operative 

planning, VR patient data viewing, and psycho-motor skill education modules [32]. 

Together, these products mark a growing trend in the medical field where technology is 

being leveraged to assist the advancements made towards surgical procedures [33]. 

1.4 The shoulder joint 

While there are a variety of simulators in circulation, the most common being for 

laparoscopy [34-38], there are few that address orthopaedics, which results in the field 

relying on the apprenticeship model for training [39]. With orthopedic surgeons experiencing 

setbacks, invested development in orthopaedic simulators would greatly benefit doctors [40-

45]. Current work focuses on minimally invasive operations (arthroscopy), since such tasks 

are easier to program compared to more complex operations [46]. Even so, there is interest in 

developing simulators that replicate uncommon surgeries relating to arthritis [47-49]. As of 

2013, over 15% of Canadians aged 15 and up were diagnosed with some form of arthritis 

[50]. However, despite an incidence rate increase, shoulder replacement surgeries remain 

infrequent enough that residents have few opportunities to observe or practice [51]. With 

bone machining simulators making strides within the field [24, 52], total shoulder 
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arthroplasty (TSA) is a prime target to be addressed by surgical simulators [53], and is the 

focus of this project. 

TSA is a medical procedure that restores shoulder joint function to patients who have 

experienced trauma or are suffering from glenohumeral arthritis. The shoulder is made of 

muscles, the Humerus, the shoulder blade (Scapula), and the collarbone (Clavicle) [54].  

 

Figure 1.1: Replacement of the glenohumeral joint in TSA 

 

Figure 1.2: Process of glenoid resurfacing 
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Pathological disease usually occurs at the Glenohumeral joint (GHJ) of the shoulder 

(Fig. 1.1). When a patient is afflicted with osteoarthritis, the articular cartilage lining the 

surface of the humerus and the glenoid of the Scapula wears down and erodes [55]. Without 

a frictionless surface between them, the bones experience direct contact, and the resulting 

rubbing between the two leads to discomfort and pain [54, 56]. To correct this, the diseased 

portions of the bones are removed, and artificial implants are inserted into the humerus and 

glenoid [57, 58]. Correct placement and fixation of the implant into the cavity of the glenoid 

is critical to restoring the joint, avoiding loosening or breakage, and preventing further 

patient distress [59-65]. 

1.5. Glenoid reaming in total shoulder arthroplasty  

During TSA, prosthetic replacement of all or part of the glenohumeral joint is performed in 

two major steps. First, the glenoid component of the implant is inserted into a resurfaced 

glenoid cavity, and second, the humeral component of the implant is lodged into a hollowed 

out humerus bone (Fig 1.1 – 1.2) [59, 66, 67]. The difficulty of the operation lies in preparing 

the glenoid surface through a process known as glenoid reaming [59]. The task involves the 

removal of 2 mm of glenoid cartilage layer, and then gently removing the subchondral plate 

without touching the cancellous bone. This resurfacing, performed with a drilling device 

known as the reamer, ends in a convex surface that holds the glenoid implant in place (Fig. 

1.2). Prior to this procedure, however, a peg-hole is drilled into the glenoid cavity to assist in 

guiding the reamer [54, 59]. The problem here lies in the visualization. Due to the interposed 

position between the reamer and the glenoid, there is limited sight of the tool-bone interface 

during reaming [63, 68-71]. Combined with the necessity of correct implant application, 

glenoid reaming requires skill and practice.  
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1.6 Motivation and project goals  

Two factors contributed to the motivation behind this project. Firstly, the practical goal of the 

engine was to simulate, in real-time and to a degree of accuracy, the process of glenoid 

resurfacing, such that surgeons can use the simulator to prepare for the task. Secondly, the 

methods and algorithms developed over the course of the project should positively contribute 

to existing and future simulator code bases, increasing their efficiency and performance. One 

of the necessities for accomplishing these requirements is the addition of force feedback 

through an input device [72-77]. Given this restriction, on top of delivering real-time 

rendering, haptics was also integrated into the engine.  

1.7 Simulation engine techniques and development 

1.7.1 Voxels for model representations 

The engine developed for this project was designed to achieve a 1:1 correspondence between 

user input via a haptics device and the movement and interaction of the virtual objects being 

rendered on the screen. This simultaneous update between cause and effect is known as real-

time [78-80]. More precisely, the term “Real-time” signifies that the visual refresh rate of the 

engine matches the monitor’s refresh rate (i.e.: 60 Hz), and that the update/input refresh rate 

matches that of the haptics input device, which is typically 1 kHz [74, 81, 82]. Achieving 

high frequencies is a common and challenging bottleneck for simulation engines as any code 

executed during the program’s runtime must perform at sub-millisecond speeds. To address 

the demands, developers have borrowed design patterns from game engines, which typically 

contain the latest advancements in graphics and in handling numerous detailed objects in 

virtual space [83]. The normal approach to representing objects in most surgical simulators, 
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including this one, is voxels [84-87]. Voxels are discrete units of space containing metadata 

that describes the properties of the space the voxel occupies [88]. For visualization purposes, 

the object being represented by voxels can be perceived as one made entirely out of a set 

cubes, with some that are filled, and some that are empty. Voxels contain several advantages 

over alternative means of representing virtual objects. Voxels are easily queried given their 

grid-like structure, and any point of interest can be quickly identified. Compare this to 

triangle meshes, whose vertices must be arranged according to a node-map prior to any sort 

of search [89]. When it comes to collision detection, this ability translates into being able to 

easily identify areas where an intersection takes place. Furthermore, once a change occurs 

during an intersection, the difference can be visualized by simply changing the metadata of 

the voxels affected. With this new identifier, the rendering system can then choose whether 

to continue displaying the voxels on screen or remove them from view if it has detected that 

they are no longer supposed to be there (i.e.: the voxels now represent void space). Contrast 

this simplicity with that of triangle meshes, where not only do all the vertices that are in the 

intersection volume need to be identified, but must be re-triangulated to reflect the change, 

involving mathematics more complex than simply changing a density value [30, 89-91].   

1.7.2 The chunk system 

Of course, voxel representations of models need to be stored in memory and organized to 

some sort of custom data structure. Existing engines utilize either a single buffer or a 3D 

texture to house voxels [84, 92-94]. For 3D textures, they have the advantage of already 

being laid out as a 3D matrix, wherein a voxel can be queried by supplying a relative XYZ 

coordinate to the texture. For a 1D single buffer, the voxels may either be stored sparsely, 

where all model voxels are compacted into a linear array, but each contain metadata that 
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indicates their position, or arranged according to a 3D lattice using a 3D XYZ to 1D index 

mathematical conversion algorithm (Alg. 1.1).  

inline int3 IndexToZYXGridPos(int i, int3 dims) { 
 return (int3)(i % dims.x, (i / dims.x) % dims.y, i / (dims.x * dims.y)); 
} 
 
inline int ZYXGridPosToIndex(int3 pos, int3 dims) { 
 return pos.x + (pos.y * dims.x) + (pos.z * dims.x * dims.y); 
} 

Algorithm 1.1: 1D index to 3D grid position (and reverse) calculations 

The latter contains what are known as “empty” or “void” voxels, voxels that represent empty 

space in the 3D matrix where there is no presence of model material. Either way, these data 

structures are self contained into a single span of memory. The main feature of the engine 

developed for this project is the deviation from this norm, and the introduction of an 

alternative means of storing and processing voxels. The system is a partitioning scheme that 

subdivides uniform portions of the voxel representation into a grid of large units known as 

“Chunks”. Chunks are subsections of the overall voxel representation containing 32x32x32 

voxels each. Like voxels, chunks are arranged as an axis-aligned 3D grid that encompasses 

the entirety of the model they represent. The chunk system was introduced to address two 

main concerns with voxel-based model dynamics. First, to reduce the increasing memory 

cost of higher resolution voxel models, and second, to lower the amount of computations 

required to process a collision event. The results of this system are described in chapter 3. 

1.7.3 Entity-component system 

Other techniques have also been adapted from game engines for the benefit of surgical 

simulators. The entity component system is one such example of a typical game engine 

optimization that has been ported over to this project. Entities are essentially scaffolds 
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containing objects (“Components”) which house generic behaviours and properties that 

describe entities. The combination of components within an entity describe how an entity 

behaves and how it’s rendered in virtual space. Entities allow for modularity and easy 

customisability when creating simulation objects [83].  

1.7.4 Custom software development 

Performance and efficiency, as opposed to graphical fidelity, remained a priority for this 

project. The work performed remains minimal in the aspect of rendering virtual objects and 

instead focuses on the interaction and behaviour between objects. There exist game engines, 

such as the Unreal Engine, that have been utilized in the context of VR research [83]. 

However, such platforms have limited support for voxel-based physics, collisions, and visual 

rendering. Furthermore, performance enhancements using GPGPU means (ex: OpenCL) are 

not natively supported and require a non-trivial plugin to add functionality [83]. Creating an 

in-house engine from scratch allows the engine to be specialized for voxels and ends up 

being much easier to implement custom behaviours without having to learn the intricacies of 

a commercial engine beforehand.   

 C++ was chosen as the engine’s language as C++ enables finer grained tuning for 

performance optimizations, and it offers a plethora of 3rd party libraries to assist in 

development. Features such as manual memory management, classes, and access to APIs that 

are native to the platform, ease the development of graphically rich applications. These 

libraries include the Open Graphics Library (OpenGL), Open Compute Library (OpenCL), 

and OpenHaptics [95-97]. OpenCL, and its Nvidia counterpart CUDA, are APIs that enable 

general purpose programming on graphics cards. The main advantage is the notable speed up 

in task execution from using thousands of GPU cores in parallel [98, 99]. The choice to use 

the graphics card was made primarily due to the properties that are inherent to voxels [100]. 
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Being discrete and grid-like, voxels are mostly independent entities from one another, and 

thus can be worked upon individually. As such, work involving voxels can be spread out 

across numerous cores/threads, of which the GPU has far more of than the CPU [101]. The 

result is a speed up in compute times when performing voxel-related tasks on the GPU 

compared to the CPU. OpenCL was chosen given its hardware support. Whereas CUDA runs 

only on Nvidia made graphics cards, OpenCL supports Nvidia, AMD, and Intel products, and 

is supported on all 3 major operating systems, Windows, Mac OSX and Linux. GPU APIs 

have also already been used in simulators with great effect, making writing software that 

takes advantage of the graphics card worth the effort [99, 102-107]. The visualization toolkit 

(VTK) is a C++ library that contains functions relating to the management and manipulation 

of voxels. It was considered briefly in early versions of the engine. However, it was 

ultimately dropped since creating the engine from scratch would enable precise development 

of the chunk system and allow a dependency free generic approach for voxel manipulation to 

be developed for current and future surgical simulators to use. 

1.7.5 Model Voxelization 

For voxel-voxel collision detection and material removal, the models that are to be used in 

the simulation must have a backing data structure that holds a voxelized representation of the 

model itself, which is queried and worked on during collision testing. Data for the models 

comes from various files. For bone models, their data come from computed tomography (CT) 

scans, which, while still requiring processing, are already in a voxel-like format where each 

line in the file represents 1 voxel. As such, the transition from file to voxel grid 

representation is straightforward. For the tools used in the simulation, however, their data is 

derived from STL files. STL is a file format that describes the surface geometry of a 3D 

object. Essentially, an STL file contains the triangulated surface of a model without any 
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additional information such as color or texture UVs. When generating a voxel representation 

from an STL file, the algorithms described here are used [108, 109]. ASSIMP, a model 

extraction library, is used to read the file and obtain the model vertices, normals and indices. 

This data is also transferred to OpenGL buffers so that the triangle mesh of the model can be 

rendered during scene drawing. The triangle mesh, as opposed to the voxel representation, is 

drawn because the tool model’s geometry remains static over the course of the simulation. 

This is opposite of the bone’s geometry, which gets continually resurfaced. As such, there is 

no need to regenerate the tool’s triangle mesh, so it gets used to save compute cycles as static 

triangle meshes are faster to compute than voxel geometries (see Chapter 3, 3.3). 

1.7.6 Computed tomography scan data processing  

Bone models derive their data from CT scans, and thus, have a more straightforward means 

of generating a voxel representation given that CT scans already come in the form of voxels. 

The main process is to convert the linear array of voxels in the file into a virtual 3D voxel 

grid. There are several steps to do so. The first is to read the data from the CT scan text file 

into a dynamic array of a custom data structure containing the voxel’s 3D position vector and 

density. The next is to convert the positional data and density into a 3D matrix that is equal to 

the computed bounds of the CT scanned object. The 3D matrix is the voxel grid of the model, 

where each voxel is an int16_t containing the density. Transferring the CT scanned voxel to 

this grid requires subtracting the voxel’s position with the minimum computed position in the 

object and then dividing by the CT scan voxel size. From there, the position is floored to the 

nearest integer, and then converted to a 1D index, which becomes the voxel’s index in the 3D 

matrix (Alg. 1.1). With voxels being in a 3D matrix, it becomes easier to query their 3D 

position relative to the grid by using an index conversion algorithm. Overall, this saves 12 

bytes of memory per voxel since storing a 3-component float vector is no longer required. 
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The next step is to convert this 3D matrix to the chunk grid, which is essentially performed 

through a series of range checks and subdivisions (see Chapter 2).  

 

Figure 1.3. Scapula bone voxel representation. 

1.7.7 Graphics rendering techniques 

To achieve the target visual refresh rate of 60 Hz, a variety of rendering techniques were 

investigated. As the virtual representation of the tools remains static throughout the 

simulation, a simple triangle mesh shader was enough to draw them to the screen. To set up 

the tools, mesh data from STL files were loaded, using the ASSIMP importer library, into 

memory, and the vertex positions, normals and indices of the triangles were transferred into 

OpenGL buffers. At scene drawing, these buffers were bound, and a shader was executed. 

For each vertex, the gl_Position was computed by multiplying the camera’s view-projection 

matrix, the model matrix, and the vertex position. The model’s shadow was computed using 

the vertex normal and a directional lighting algorithm [110, 111]. Finally, the color was set 

stainless steel.  



13 
 

 

A different approach had to be taken for the representation of the bone model. Unlike 

the tool models, the bone’s model would be subject to arbitrary and dynamic deformation 

over the course of the simulation, as material would be removed by the tool. As such, an 

algorithm would be required that could quickly update the visual representation of the bone 

model such that the engine could maintain a visual refresh rate of 60 Hz. Furthermore, the 

techniques to be used had to be compatible with the chunk system. Being a partitioning 

system, the algorithm would have to render each chunk individually, while still maintaining 

visual coherence across all chunks. Essentially, the final image would have to look as one 

continuous model that resembled, to some degree of accuracy, the bone it’s representing.  

A triangle mesh generation algorithm was the first to be introduced into the engine to 

render chunks. To summarize, the method would generate a series of vertices that combine to 

create cubes, where 1 voxel would result in one cube. Together these cubes would form the 

“voxelized” shape of the object (Figure 1.3). As an optimization, the algorithm would 

remove obscured cube faces (i.e.: faces that were not adjacent to a void/empty voxel), which 

would dramatically reduce the number of vertices to be rendered and speed up object 

drawing. The cubic mesh would be generated on a chunk-by-chunk basis and would take into 

consideration neighboring chunks. In observing neighbouring chunks, a continuous mesh 

could be generated, and the meshes would appear seamless when combined. While the 

method would produce the desired visual result, the issue would be the time required to 

regenerate chunk meshes after a collision event. Ultimately, any number of chunk mesh 

regeneration queries per visual refresh tick would come at a cost and would be provably 

slower than the alternative currently used.   

Recently, a new technique has been developed to allow for direct rendering of voxel 

models using an OpenGL feature that enables the drawing of points with certain commands 
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[112]. The method, referred to as the GL_POINT based method, is as follows. For each voxel 

to be rendered, a box is created at the world coordinate of the voxel (transformed with the 

model matrix of the model it represents and the camera projection and view matrices), and 

then rasterized. Next, for every pixel of the rasterized box, a ray is traced through it. If the 

ray intersects the box at the pixel, then the pixel is drawn to the screen with the correct 

lighting based on the face of the box hit. The end visual result is the same as if using the 

triangle mesh generated from voxels. The key difference is that creating the final picture 

using this method does not require any triangle meshes to accomplish, but instead only the 

voxel buffer that you want to render. As such, the intermediary process of creating, and more 

importantly regenerating, a triangle mesh is completely skipped, drastically improving 

performance when the engine is under load via collision testing. The results of using this 

method over the traditional triangle mesh method is recounted in chapter 3, 3.3. 

Other rendering techniques were investigated, such as generating triangle meshes 

using marching cubes or performing voxel-based volume rendering. However, marching 

cubes presents the same mesh regeneration problem, and the ray-tracing through volume 

rendering could not be adequately adapted for the chunk system. The key problem is that the 

ray-tracing of volume rendering would have to occur multiple times, once per chunk. This in 

contrast to the normal use of volume rendering, which is performed once per visual tick, as 

the voxels are stored in a singular buffer/3D texture and the rays would be able to check 

against every voxel in one pass [113]. The cost of performing the ray-tracing multiple times 

per frame would be very expensive, and so volume rendering was not further investigated.  
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Figure 1.4: Voxel representations of (a) cellular foam, (b) trabecular bone core 2, (c) 

trabecular bone core, (d) scapula, and (e) glenoid samples, which were used for tests. 

1.7.8 Engine loops and collision detection algorithms 

The engine consists of two main loops, the render loop and the haptics loop, which are 

initiated once all simulation models are loaded and connected to entities, the shaders are 

created, the camera is created, and various uniform buffers are generated. The uniform 

buffers include various properties about the current scene, such as the camera’s projection 

and view matrices, the model matrix of the current entity being rendered, and variables for 

directional lighting (i.e.: light direction, intensity, ambiance). The render loop updates the 

(b) (a) 

(c) (d) (e) 
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virtual camera based on user input and makes draw calls to render the virtual objects on 

screen. The haptics loop collects input data from the connected PhantomOmni haptics device 

and applies the device transformation matrix to the current tool being used. Doing so, there is 

a 1:1 correspondence between the user’s motion with the device and the movement of the 

tool being displayed. After the tool is transformed, the engine makes an OOBB-OOBB 

intersection check between the tool and the bone. If the check passes, then an intersection 

volume is calculated, and the engine moves on to collision testing. The collision algorithm 

used to determine intersection voxels is based on an algorithm developed by Reza et al., and 

adapted to work with the partitioning system created for this engine [114]. The adapted 

collision algorithm runs reasonably well and can reach a stable 333 Hz update rate on a 

Windows 10, GTX 1070, Intel i5 8600, 8 GB RAM work station PC. Several tests were 

performed to assess the effectiveness of the chunk system against competing voxel-based 

collision testing algorithms. The algorithms analyzed were those developed by Zheng et. al, 

Yau et. al, and Reza et. al [75, 114, 115]. Each of these algorithms share 2 properties that 

contrast the voxel partitioning scheme of the engine. Firstly, these algorithms work on single 

1D sparse voxel buffers that contain either the entire tool or bone voxel representation. This 

engine, on the other hand, subdivides the bone model into multiple discrete buffers, but still 

retains 1 voxel buffer for the tool. Secondly, the competing algorithms iterate from the tool 

voxels to the bone voxels. When performing collision testing, intersecting voxels must be 

identified, and the voxels from the bone must be updated to reflect any collisions that occur. 

When checking for intersections, one method is to take the coordinates and metadata of the 

tool voxels, transform them to the object space of the bone voxels, and then check for voxel-

voxel overlap, which is what the single buffer algorithms do. The opposite procedure, 

transforming bone voxels to the tool’s object space, is what this engine does, due to the 
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chunk system implementation. The results of the two philosophies on voxel-based collision 

testing are displayed in Chapter 3.  

1.8 Specific aims and thesis outline.  

Overall, the engine was created: 

• To simulate the complex interactions that occur during glenoid reaming, from the 

creation of the peg-hole to the resurfacing of the glenoid via a reamer.  

• To develop techniques for current and future simulators that assist in the realization 

of real-time simulation of virtual surgeries.  

• To develop techniques that optimize memory management of voxels and boost the 

performance of high-volume computations commonly associated with voxel-based 

tasks, specifically with collision testing and material removal.  

In the end, the engine was able to succeed in achieving real-time speeds using a combination 

of a GL_POINT based voxel rendering technique and utilizing a voxel partitioning and 

management system known as the chunk system. Chunks usually had a smaller memory 

footprint compared to single buffers, and enabled performance optimizations that were only 

possible though partitioning a CT scanned object into discrete sections. We anticipate that the 

techniques and observations found over the course of the development of the engine will 

provide a valuable foundation and guide for future surgical simulators. Note that while this 

engine is focused on glenoid reaming, the loading of bones and tools is arbitrary, meaning 

that this engine is applicable to any joint.  
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Chapter 2 

Engine Specifics 

2.1 Initialization and object design 

On initialization, the engine creates a Win32 window, initializes OpenGL 4.4 via GLEW 2.0, 

creates an OpenCL/OpenGL shared context, initializes objects relevant to the glenoid 

reaming simulation, and then launches a haptics loop and a rendering loop. The objects used 

for the simulation are the scapula bone, the head of a reaming drill (reamer), and a cylinder 

used to make a peg-hole in the glenoid. Before detailing the engine architecture any further, a 

note must be made on the design of the objects.  

Interactable objects (i.e.: scapula, reamer, cylinder) are derived from the “Entity” 

class. Entities, within the context of the engine, are scaffolds that contain “components”, 

which are data structures that describe an object’s properties and behaviours within virtual 

space. By default, all entities contain 4 components, those being: an object-oriented bounding 

box (OOBB) component, an input component, a triangle-mesh component, and a Voxel-Grid 

(VG) component. The OOBB contains vectors and matrices that hold the box’s extents, 

center position, and rotation. The center position and rotation are used as the entity’s current 

position and rotation in virtual space, respectfully. The OOBB also contains several methods 

to facilitate collision detection between entities. The method to test OOBB intersection 

utilizes separating axis theorem (SAT) and is used to determine if two entities are “close 

enough” before proceeding with further collision tests [116].  

The variables within the OOBB are modified by the input component, which 

processes user input from either the WinProc function, or from the haptics device, and 
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adjusts the entity’s position/rotation accordingly. The triangle-mesh component is a data 

structure containing various OpenGL buffers for rendering the triangle mesh representation 

of an Entity. The reamer and cylinder (i.e. the surgical tools) are drawn with triangle meshes 

since their models remain static over the course of the simulation. For models whose 

representation is consistently updated, such as the Scapula, the VG component is used 

instead.  

 Interaction, collision, and, sometimes, rendering within the engine revolves around 

voxels. Voxels are discrete units of space containing metadata describing the contents of said 

space. The engine utilizes voxels to internally represent its objects because voxels enable a 

more precise and simplified means of simulating materials and, more importantly, material 

removal. Changes in a 3D voxel grid simply involve changing the metadata of affected 

voxels. For example, one could set the density values of collided voxels to 0 to signify 

removal. Compare this to triangle meshes, which involve complex mathematics to reposition 

triangle vertices in response to a change [30]. Voxels are also naturally suited for speedup via 

parallelism, given that they can be treated as discrete units. In the end, voxels end up being 

easier to work with, and much more performant. 

The VG component houses OpenCL buffers that hold all the voxels used to represent 

an entity. All voxels are stored in GPU VRAM to avoid unnecessary CPU to GPU memory 

transfers, as all voxel manipulation tasks are run on OpenCL kernels. Additionally, voxels 

within the buffers are arranged in according to a 3D matrix. This is so that their 3D position 

in space, relative to the grid, can be queried using their array index and the voxel grid’s 

dimensions (Alg. 1.1). The VG component is created differently depending on the file data 

used to create the Entity. The voxel grid is the result of either a voxelization process of an 

STL file (surgical tools), or of a data transfer from a CT scan file (scapula). In the case of the 
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surgical tools, the component contains a single OpenCL buffer that contains the object’s 

voxels in a 3D matrix arrangement. However, the component for the scapula bone contains 

several OpenCL buffers that together make up the entity. These buffers have their own 

organization and query system and are known as “Chunks”.  

2.2  Chunks and the chunk system 

A “Chunk” is a 32 × 32 × 32 grid of voxels stored in an OpenCL buffer, and the system 

designed to access and manipulate chunks is one of the main features of this engine. Chunks 

are essentially a means of partitioning the voxel representation of an object into uniform 

sectors (Fig 2.1), and were introduced to address certain limitations when representing 

models using a single buffer or 3D texture, a common practice found in similar projects [74, 

114]. 

 

Figure 2.1 Chunk partitioning system of voxelized scapula bone. 
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When performing material removal, the underlining voxel and rendering data behind the 

affected model must be updated to show that a change has occurred. Here, a few scenarios 

can occur. If a single buffer is used to store the model’s voxels, and the buffer is sparse, 

meaning that no memory is wasted on voxels representing empty space, then the voxels of 

the buffer must be shifted to new positions after each removal to reflect the change. The cost 

in time is dependent on the initial buffer size, and the number of voxels removed per update. 

Additionally, extra memory would have to be allocated for the voxel’s 3D world space 

position as it couldn’t be calculated from a buffer index (i.e.: voxels aren’t stored in a 3D 

matrix arrangement). If a single, non-sparse, buffer is used to hold a model’s voxels, then 

voxels may be arranged in a 3D matrix, 3D positions may be extrapolated from buffer 

indices, and no shifts would be required after updates since empty voxels are allowed in the 

buffer. Chunk voxel buffers are not sparse and hold this property. However, single buffers 

that encompass the bounds of an object may waste a lot of memory depending on the 

dimensions and contents of the object being represented. The scapula CT scan used for the 

simulation has chunk voxel grid dimensions of 256 * 256 * 224 (Table 3.2), with most of the 

voxels representing empty space. Chunks are a means of partitioning the model into multiple 

buffers, making it possible to allocate chunks only for active voxels, and omitting those that 

contain only empty space voxels without affecting the rest of the grid. Finally, if a single 

buffer is used to generate a triangle mesh representation of the object, then the entire triangle 

mesh must be regenerated after an update. Chunks do not have this problem as each chunk 

can be rendered to the screen separately from one another. As such, individual chunks come 

together like puzzle pieces to display the whole object they represent. On a final note, a 

single 3D Texture could be used instead of a single buffer to store the voxel representation of 

a model. Unfortunately, until OpenCL 2.0, 3D textures, unlike buffers, could not be read and 
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written to within the same kernel [98]. There would have to be an extra step during collision 

detection where voxels are read in one kernel execution, and then collision changes are 

written in another kernel execution, which is slower. In conclusion, there are many 

advantages to partitioning voxels into uniform sectors, hence the introduction of chunks, and 

a system to correctly access them when needed.  

2.2.1 Chunk voxel grid dimensions reasoning 

Dimensions of 32 × 32 × 32 were determined to be a sweet-spot for chunk size when 

analysing performance during collision testing and material removal. Compared to the other 

dimensions tested, such as 163 and 643, 323 chunks minimize both the number of chunk 

collision tests required to complete a collision event, and the maximum number of voxels 

parsed per event. A more thorough analysis on the matter is explained in Chapter 3, which 

also details the chunk system more in depth. 

2.3 Model voxelization and STL file to voxel grid conversion 

After creating a Win32 window, the engine initializes the scapula, reamer and peg-hole 

cylinder entities. Surgical tool entities derive their data from .STL files, which are processed 

through a voxelization algorithm to generate a voxel representation. The voxel representation 

is used for the material removal stage of the simulation. The voxelization process is as 

follows. A .STL file containing mesh data for the tool is read and processed using ASSIMP 

4, an open-source asset import library for C++ [117]. From the vertices extracted, the 

minimum and maximum coordinates are computed. These 3D vectors are then used to 

calculate various components of the model’s voxel-grid representation, given a user inputted 

voxel size, which defaults to 0.5 mm3. The OOBB created for the entity is centered at the 
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origin, and its extents are set to 1 VoxelSize greater than calculated model bounds to avoid 

the voxelization algorithm throwing an array out-of-bounds exception (Alg. 2.1).   

CaclModelVoxelGridComponents 
MinVoxelCoords <= round(MinVertexCoords – HalfVoxelSize, VoxelSize) –VoxelSize); 
MaxVoxelCoords <= round (MaxVertexCoords + HalfVoxelSize, VoxelSize) + VoxelSize);  
EntityOrientedBox <= OOBB(MinVoxelCoords, MaxVoxelCoords);  
VoxelGridDims <= ceil((MaxVoxelCoords - MinVoxelCoords) / VoxelSize); 
TotalVoxelCount <= VoxelGridDims.x * VoxelGridDims.y * VoxelGridDims.z; 

Algorithm 2.1: Calculation of STL model voxel grid properties 

Vertices, normals, and indices are then transferred to OpenGL vertex and element 

buffers that are bound to a vertex array object (VAO). The VAO is used later during scene 

rendering to draw the triangle mesh representation of the model. The vertex and index 

buffers are also used to create shared OpenCL buffers. These shared buffers are used for the 

voxelization process. Two additional OpenCL buffers are created to hold voxel-grid 

information (i.e.: VoxelSize, MinVoxelCoords, EntityOrientedBoxExtents, 

VoxelGridDims, and VoxelCount), and the entity’s computed voxels, respectfully. Note 

that voxels are int16_t primitives. These integers hold density values, which vary from 0 

(empty) to 1 (solid) for surgical tools.  

After all buffers are created and initialized, the arguments for an OpenCL 

voxelization kernel are set, and the voxelization kernel is launched. The voxelization 

algorithm is taken from the following papers [108, 109, 114, 118, 119]. Once the process is 

complete, buffers containing the entity’s voxels and voxel grid information are transferred to 

the entity. 

Table 2.1: Timings (in ms) of model voxelization for models tested 

Tasks Reamer timings (ms) Cylinder timings (ms) 

Voxelize model 0.753728 0.559584 

Adjust X-Axis voxel densities 0.442368 N/A 
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2.4 Chunk grid construction using computed tomography scans 

Interactable entities whose voxels are not static over the course of the simulation have their 

voxels organized into a chunk grid (stored inside the VG component) for easier voxel 

manipulation. The scapula uses a chunk grid, and its data is derived from a CT scan file. 

First, raw data from a CT scan file is converted to a 1D array of structs containing the object-

relative position of each voxel and its associated density (Alg. 2.2).  

Data structure used to hold raw CT scan voxel data 
struct CTScanVoxel 
{ 
 vec3 Position; 
 float Density; 
}; 

Algorithm 2.2: CT scan voxel data structure 

CalcVoxelGridParams: MinVoxelCoords, MaxVoxelCoords, RectVoxelSize  
RectMinVoxelCoords <= floorMultiple(MinVertexCoords, RectVoxelSize) 
RectMaxVoxelCoords <= ceilMultiple(MaxVertexCoords, RectVoxelSize) 
RectVoxelGridDims <= round((RectMaxVoxelCoords – RectMinVoxelCoords) / 
RectVoxelSize); 
RectVoxelCount <= RectVoxelGrid.x * RectVoxelGrid.y * RectVoxelGrid.z;  
CubicVoxelSize <= vec3(RectVoxelSize.x, RectVoxelSize.x, RectVoxelSize.x) 
CubicVoxelGridDims.x <= RectVoxelGridDims.x  
ubicVoxelGridDims.y <= RectVoxelGridDims.y 
CubicVoxelGridDims.z <= ceil((RectMaxVoxelCoords.z – RectMinVoxelCoords.z) / 
CubicVoxelSize.z);  
CeilCubicVoxelGridDims <= ceilMultiple(CubicVoxelGridDims, ChunkDims) 
CeilVoxelCount <= CeilCubicVoxelGridDims.x * CeilCubicVoxelGridDims.y * 
CeilCubicVoxelGridDims.z 
ChunkGridDims = CeilCubicVoxelGridDims / ChunkDims 

Algorithm 2.3: Calculation of parameters for rectangle and cubic CT scan voxel grid 

RawCTScanDataToRectGridTransfer: global float4* RawCTDataArray  
// CT data is stored as float4, where .xyz is voxel position, and .w is 
voxel density 
I <= get_global_id(0) 
P <= convert_int3_rtz(RawCTDataArray[I].xyz – RectMinVoxelCoords) / 
VoxelSize)  
J <= 3DGridPosToIndex(P, RectVoxelGridDims) 
VoxelArrayOut[J].Density = convert_short(RawCTDataArray[I].w) 

Algorithm 2.4: Raw data OpenCL kernel pseudocode 



25 
 

 

Second, the list is converted to a 1D int16_t array with a size equal to the calculated 

volume of the CT scanned object in voxel units. The dimensions of the voxel grid are 

calculated from the min and max position coordinates divided by scan voxel size (Alg. 2.3). 

Each element within this 1D array contains the density, while voxels are placed in the array 

according to their object-relative position minus the min position coordinates. A conversion 

equation transforms this 3D position into a 1D index (Alg. 2.4). 

 

Figure 2.2: Before (A) and after (B) “RectGridToCubicGridTransfer” processing  

RectGridToCubicGridTransfer 
// adjusting only Z dimension!  
// global_work_size <= CubicVoxelGridDims 
// local_work_size <= 1 
X <= get_global_id(0) 
Y <= get_global_id(1) 
Z <= get_global_id(2) 
PrevRectGridIndex <= convert_int_rtz(((Z – 1)* 
CubicVoxelSize.z)/RectVoxelSize.z) 

A B 
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CurrRectGridIndex <= convert_int_rtz((Z * CubicVoxelSize.z) / 
RectVoxelSize.z) 
RectGridDepthRatio = (Z*CubicVoxelSize.z) – (PrevRectGridIndex * 
RectVoxelSize.z) 
RectGridDepthRatio /= CubicVoxelSize.z 
Int I = RectGridDepthRatio >= 0.5 ? CurrRectGridIndex : PrevRectGridIndex 
Int J <= 3DGridCoordsToIndex(X, Y, Z, CubicVoxelGridDims) 
Int K <= 3DGridCoordsToIndex(X, Y, I, RectVoxelGridDims) 
CubicVoxelArray[J] = RectVoxelArray[K] 

Algorithm 2.5: Rectangle grid to cubic grid voxel transfer OpenCL kernel pseudocode 

Third, if the dimensions of the CT scan voxel are not equal (as is the case with the 

Scapula model used, which are 0.47 mm x 0.47 mm x 1.0 mm), then voxels are copied into a 

separate 1D array, and filler voxels are added at precise locations such that, in the end, all 

voxels in the array have equal dimensions and the same density per volume is retained (Fig 

2.2, Alg. 2.5). This is done to accommodate a limitation with GL_POINT based voxel 

rendering (see Chapter 3, 3.3). The initial array is known as the RectVoxelGrid, while the 

final array is known as the CubicVoxelGrid (the names referring to the shape of the voxels 

they store) (Alg. 2.3).  

CubicVoxelGridToChunkTransfer  
// global_work_size <= ChunkDimsInVoxels 
// local_work_size <= 1 
X <= get_global_id(0) 
Y <= get_global_id(1) 
Z <= get_global_id(2) 
VoxelPosRelChunkGrid <= (int3)(X, Y, Z) + ChunkMinPosInUnitVoxels 
Int I = 3DGridCoordsToIndex(X, Y, Z, ChunkDims) 
Int j = 3DGridCoordsToIndex(VoxelPosRelChunkGrid, CubicVoxelGridDims)  
ChunkVoxelArray[I] = CubicVoxelArray[J] 
If (CubicVoxelArray[J].Density >= 120) atomic_inc(ActiveVoxelsCounter)  

Algorithm 2.6: Cubic voxel grid to chunk voxel buffer OpenCL kernel pseudocode 

Table 2.2 Timings (in ms) of CT scan chunk grid construction phases for models tested.  

Tasks (measured in ms) Cellular 

foam 

Trabecular 

bone core 1 

Trabecular 

bone core 2 

Scapula Glenoid 

Load raw data from CT text file 6930 936 13379 295 31 

Raw data to rect. voxel grid 26 3.5 51 1.2 0.13 

Rect. voxel grid to cubic voxel grid 175 23 106 78 0.67 

Cubic voxel grid to chunk grid 141 17 76 62 1.2 
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Finally, the CubicVoxelGrid is subdivided into chunks, and placed into a chunk grid, 

which is a 1D array of chunk pointers arranged in a 3D matrix fashion. Note that chunks that 

have no active voxels (i.e.: voxels with densities less than or equal to 120) inside them have 

their buffers deleted to save memory, and a flag set to indicate that they are empty (Alg. 2.6). 

2.5 The haptics loop  

With the simulation objects initialized, the engine then allocates 2 CPU threads, where 1 

thread is responsible for the rending loop, and the other maintains the haptics/update loop. 

The rendering thread is v-sync locked and runs at 60 Hz. The haptics thread is created with 

highest priority, runs at 1 kHz, and was written according to example code provided by the 

OpenHaptics SDK [95]. The haptics thread is a required component of the engine, given that 

this thread is responsible for deriving input from the connected PhantomOmni haptics device. 

As such, physics updates and collision testing are preformed within the haptics loop. Entities 

that are controlled with the haptics device are updated at 1 kHz, along with OOBB collision 

detection. The algorithm for material removal runs at 1/3 of the speed, or 333 Hz, due to the 

amount of time 1 execution of a collision test takes (~0.05 – 0.06 ms), and the number of 

tests taken per collision event between the reamer and the scapula (1 – 20 events) (Table 3.3). 

Its limited to allow for a stable experience, as the number of chunks processed per collision 

event is variable and could cause lag spikes if left without restriction. These values were 

taken from a Windows 10 workstation running an intel i5 8600, Nvidia GTX 1070, and 8 GB 

of RAM. At 1 kHz entity movement updates, 333 Hz material removal updates, and 60 Hz 

rendering, the surgeon will not see a discrepancy between their input with the haptics device 

and what’s shown on screen. The final initialization step, after the objects, is to initialize the 

camera, which has its own uniform buffer for camera variables (i.e.: view and projection 
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matrices, aspect ratio, FOV, near and far plane), the geometry buffer, and the shaders, one for 

voxels, one for triangle meshes, and one for the final composite pass. The GBuffer is used for 

deferred rendering. Lighting in the engine uses a basic directional lighting algorithm [110]. 

With all objects set up, the haptics thread is launched, and the simulation begins. 

 At the start of the haptics loop, raw haptics input data (i.e.: position vectors and 

transformation matrix) is collected. This data is then mapped to the OOBB of current surgical 

tool being used. The initial tool is the peg-hole cylinder and is used to create a peg-hole in 

the glenoid. Upon pressing a hotkey, the tool switches to the reamer to finish the operation. 

The surgical tool being used has a 1:1 correspondence with the haptics device, meaning that 

the current center position and rotation of the entity’s OOBB is equal to the position and 

transformation of the haptics device.  

Algorithm 2.7: Entity collision check pseudocode 

Once the surgical tool entity is updated, the engine checks whether the OOBB of the 

tool (ToolEntity) collides with the scapula (BoneEntity) (Alg. 2.7). 

ComputeIntersectionBox: BoneEntity, ToolEntity 
vec3 Min(FLT_MAX)  
vec3 Max(-FLT_MAX) 
For Corner in ToolEntity.OBBox.Corners { 
 if (BoneEntity.OBBox.PointInBox(Corner)) { 
  Min <= min(Min, Corner) 
  Max <= max(Max, Corner) 

} else { 
  Vec3 Point        <= BoneEntity.Box.GetPointClosestTo(Corner) 
  Vec3 BoxCenter    <= BoneEntity.Box.Center; 
  Mat3 Rotation     <= BoneEntity.Box.Rotation; 
  Vec3 Extents      <= BoneEntity.Box.Extents; 
  Vec3 Delta        <= Corner - BoxCenter 
  Vec3 ClosestPoint <= BoxCenter 
  For (I = 0; I < 3; ++I) { 

ClosestPoint += clamp(dot(delta, Rotation[I]), -Extents[I], 
Extents[I]) * Rotation[I] 

CheckForCollisions: BoneEntity, ToolEntity, deltaTime, hapticsReadData 
ToolEntity.Update(deltaTime, hapticsReadData) 
If (BoneEntity.CollidesWith(ToolEntity)) 
 PerformCollisionDetection() 
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} 
  Min = min(Min, ClosestPoint) 
  Max = max(Max, ClosestPoint) 

} 
} 
IntersectionBox <= ObjectBoundingBox(Min, Max) 

Algorithm 2.8: Entity intersection volume calculation pseudocode 

ObtainIntersectingChunkGridRanges 
mat3 InvBoneRotation <= inverse(BoneEntity.OBBox.Rotation) 
ivec3 ChunkMinPosInUnitChunks(INT_MAX) 
ivec3 ChunkMaxPosInUnitChunks(-INT_MAX) 
For (Corner in IntersectionBox.Corners) { 

TransformedCornerPoint <= (InvBoneRot * (Corner – BoneEntity.OBBox.Center)) + BoneEntity.OBBox.Center 

 PointInUnitVoxels <= (TransformedCornerPoint + BoneEntity.Box.Extents) / 
BoneEntity.VoxelSize; 

 MinPointInUnitChunks<= floorMultiple(PointInUnitVoxels,CHUNK_SIZE)/CHUNK_SIZE; 
 MaxPointInUnitChunks<= ceilMultiple(PointInUnitVoxels,CHUNK_SIZE)/CHUNK_SIZE; 
 ChunkMinPosInUnitChunks <= min(ChunkMinPosInUnitChunks, MinPointInUnitChunks); 
 ChunkMaxPosInUnitChunks <= max(ChunkMaxPosInUnitChunks, MaxPointInUnitChunks); 
} 

Algorithm 2.9: Min/max intersecting chunk coordinates calculation based on 

intersection volume 

SetupChunkCollisionKernel: BoneEntity, ToolEntity 
Mat4 BoneToObjTransform = BoneEntity.GetTransformTo(ToolEntity) 
For XYZ = ChunkMinPosInUnitChunks -> ChunkMaxPosInUnitChunks  { 
 Index = XYZGridCoordsToIndex(XYZ, BoneEntity.VoxelGrid.GridDims) 
 Chunk = BoneEntity.ChunkGrid.Chunks[I] 
 If (!Chunk.Empty) { 
  SetupChunkCDKernelArgs() 
  EnqueueChunkCDKernel() 

 } 
} 

Algorithm 2.10: Intersection chunk collision detection OpenCL kernel setup 

pseudocode 
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Figure 2.3: OOBB intersection test and intersecting chunks identification. 

If the OOBBs intersect, then the material removal algorithms are executed (Alg. 2.8-

2.10). Before that, however, the scapula chunks that are involved in the collision between the 

two entities must be identified and collected. To do so, an intersection bounding box is 

computed (Alg. 2.8). The intersection bounding box’s volume encapsulates all the chunks 

that are involved in the collision event (Fig 2.3). 

From the corners of the intersection volume, chunks are collected (Alg. 2.9), and then 

their OpenCL voxel array buffers are run through an OpenCL kernel (Alg. 2.10). This kernel 

identifies colliding voxels and removes them by setting the voxel’s density to 0. The chunk 

material removal kernel is based on the algorithm found here [114]. The algorithm was 

adapted for chunks. Where the original method would iterate though the sparse voxel buffer 

of the tool entity, the chunk variant iterates though all the voxels of the chunk’s voxel buffer. 

Essentially, it is the reverse operation. The voxel’s in the chunk buffer have their values 

updated if the algorithm determines an overlap between the transformed position of the tool 

voxel and the chunk voxel. This change is then immediately reflected in rendering as the 
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render process uses the Chunk’s OpenCL/OpenGL shared voxel buffer to draw the chunk 

(see Chapter 3, 3.3).  

2.6 The render loop  

 

Figure 2.4: Flowchart of the engine’s render and haptics loops. 

The render loop for the engine is straightforward, considering that only the surgical tool 

models and chunks of the scapula are rendered (Fig 2.4). At the start of the loop, the 

camera’s view and projection matrices and uniform buffer are updated based on user input. 

Next the geometry framebuffer (GBuffer) is bound. Currently, the GBuffer contains a R32 

depth 2D texture attachment (for vertex position extraction), and 2 RGBA32 color 2D texture 

attachments (1 for vertex normals, and the other for vertex colors). With the GBuffer being 

bound, the entities in the simulation are then rendered.  

The scapula is rendered chunk-by-chunk using an adapted GL_POINT based voxel 

rendering technique [112]. The technique enables voxels in a buffer to be directly rendered 

without the need to create a triangle mesh, greatly increasing framerate performance (see 
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Chapter 3.3). When rendering a chunk, the chunk’s OpenCL/OpenGL shared voxel array 

buffer is bound to the context via an associated single attribute VAO (i.e.: 

glVertexAttribIFormat(0, 1, GL_SHORT, 0)). A uniform buffer is then bound 

and updated with the current chunk’s voxel grid position in voxel units. This allows proper 

calculation of the chunk’s voxel 3D world position. After calling 

glDrawArrays(GL_POINTS, 0, 32 * 32 * 32), the voxel vertex and fragment 

shaders, taken and adapted from [112], are invoked. The changes from the original shaders 

are minor. Inside the vertex shader, the position of the voxel that is used for the projection 

algorithm is computed as follows: 

 

VoxPos = IndexTo3DGridCoords(gl_VertexID, ChunkDims) + ChunkPositionInUnitVoxels 

 

Furthermore, the model matrix used for the projection function is the scapula’s 

OOBB model matrix. Finally, in the fragment shader, the computed normal and voxel color 

are copied to the GBuffer’s normal and color 2D texture attachments, respectfully. The color 

of bone voxels is #e3dac9. Bone voxels with densities less than 120 are discarded by setting 

gl_Position to vec4(-1). 

To render the surgical tools, their triangle meshes are run through a simple shader 

where each vertex is transformed by the model view projection matrix made from the camera 

matrices and the tool’s model matrix. In the fragment shader, the vertex normals and colors 

are transferred to the correct GBuffer 2D texture attachments. With all entities rendered to 

the GBuffer, the GBuffer is unbound, its 2D texture attachments are bound, the screen’s 

framebuffer is cleared, and a full-screen triangle is rendered. Position, normal, and color data 

are extracted from the bound texture attachments and basic directional lighting is applied, 

giving the final image on the screen [110, 111]. 
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Chapter 3 

The chunk system 

3.1 Memory optimizations 

3.1.1 Against single buffer/texture data structures 

The chunk system addresses two concerns simulation engines face when attempting to 

achieve optimal runtime performance. The first is minimal memory overhead when loading 

high resolution CT scans. The second is mitigation of high-volume computations performed 

during the collision testing and material removal stages. The chunk system confronts these 

challenges through a grid partitioning scheme, where units, a.k.a. chunks, of said grid act 

independently of one another. Through this discrete property, chunks allow “empty” (i.e.: 

inactive) sections of a model’s representative voxel grid to be omitted for space efficiency. 

Additionally, chunks enable collision processing tasks to query, and work on, specific 

segments of the model as needed, which bypasses numerous unnecessary voxel collision 

participation checks.  

Regarding memory management, it is important to note several observations that are 

apparent when converting a CT scanned object to a representative 1D voxel buffer organized 

as a 3D matrix (i.e.: where buffer indices are convertible to object-relative 3D grid positions). 

To start, CT scans are text files that contain a list of data entries, each of which hold two 

pieces of information, a 3D float vector position and an integer density. These entries are, for 

all intents and purposes, object voxels that were generated by a real-world CT scanner, and 

are of a size pre-set by said machine. Generating virtual voxels from CT scans is thus a 
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matter of reorganizing voxels into a 3D matrix (see Chapter 2, 2.4). With voxel query 

improvements, and 12 bytes of memory being saved per voxel, 3D matrices hold properties 

that make them process efficient, especially when compared to the list format of CT scan 

files. However, the problem with this approach is that extra memory is needed to create a 3D 

matrix that completely encompasses a CT scan object’s bounds. Essentially, when 

representing areas of empty space, the associated buffer locations must be filled with voxels 

containing “uninteresting” data.  

A voxel that is considered to contain data of interest (i.e.: one that is “active”) is one 

that has a non-zero density value indicating the presence of material. Inactive voxels, 

therefore, don’t hold any useful information other than to denote that there is empty space at 

their coordinates. However, these voxels still take up memory by being present in the 3D 

matrix.  

 

Figure 3.1: Visual representation of active (red) vs. inactive (grey) chunks in generated 

Scapula chunk grid. 
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When creating a 3D matrix from a CT scanned object, there will often be a lot of 

memory that describes empty space due to the object’s mass being unevenly distributed, or 

its geometry having an irregular shape. For a single 3D matrix, there is no optimization 

possible to avoid consuming memory for this empty space, as you cannot create a 3D 

rectangular matrix that tightly wraps around the surface of the object. To accurately represent 

an object, the 3D matrix must stretch across the object’s XYZ bounds. However, if you were 

to have multiple 3D matrices, arranged in a grid-like fashion, to represent the object, then it’s 

likely that certain matrices would contain nothing but empty space. Those matrices could 

then be freed from memory without affecting the others, thus saving memory. To indicate 

that the matrix in the grid doesn’t have a backing voxel buffer, a simple flag could be added 

at that grid position. This is logic behind how the chunk system operates compared to a 

single encompassing voxel buffer or 3D texture approach (Fig. 3.1).  

Table 3.1: General voxel grid characteristics of the CT scanned objects used for testing 

Model Voxel size Voxel grid 

dimensions 

Voxel 

Count 

Active Memory 

(2B/Voxel) 

Text file size 

on disk 

Cellular foam 1 32µm isotropic 314 × 320 × 604 60,689,920 121.4 MB 764.1 MB 

Trabecular 2 32µm Isotropic 314 × 316 × 360 35,720,640 71.4 MB 1.4 GB 

Trabecular 1 32µm isotropic 156 × 156 × 313   7,617,168 15.2 MB 101.4 MB 

Scapula (0.47, 0.47, 1) mm 256 × 234 × 201 12,040,704 24.1 MB 34.3 MB 

Glenoid (0.47, 0.47, 1) mm   49 ×   81 × 41      162,729 0.3 MB 3.7 MB 

Table 3.2: Chunk grid characteristics of the CT scanned objects used for testing 

Model Voxel grid dims 

after chunk gen 

Chunk grid 

dimensions 

Chunk 

count 

Active chunk 

count 

Raw memory 

(2B/Voxel) 

Active memory 

(2B/Voxel) 

Cellular foam 320 × 320 × 608 10 × 10 × 19 1900 1669 124.5 MB 109.4 MB 

Trabecular 2 320 × 320 × 384 10 × 10 × 12 1200 1060 78.6 MB 69.5 MB 

Trabecular 1 160 × 160 × 320 5 ×   5 × 10 250 250 16.4 MB 16.4 MB 

Scapula 256 × 256 × 448 8 ×   8 × 14 896 202 58.7 MB 13.2 MB 

Glenoid 64 ×   96 ×   96 2 ×   3 ×   3 18 18 1.2 MB 1.2 MB 

 

Tables 3.1-3.2 show various characteristics of the voxel grids generated for the 5 CT 

scanned objects used for testing and analysis (Fig. 1.4). Of importance are the “Voxel grid 
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dimensions” and “active memory” categories. The voxel grid dimensions of Table 3.1 

describe the computed minimum lengths of a voxel grid that could be generated to 

completely encompass the bounds of the associated CT scanned object. These would be the 

dimensions of the 3D matrix of the single buffer voxel representation techniques, and from 

these values, it possible to calculate the amount of memory occupied by the buffer, assuming 

each voxel consumes 2 bytes to store material density. Table 3.2 shows the same 5 CT 

scanned objects, expect with chunks as their backing voxel representation instead. Note that 

here, voxel dimensions are ceiled to the nearest chunk to avoid partial chunks within the grid, 

thus being larger compared to the values present in Table 3.1. Although there are indeed 

filler layers of voxels added to accommodate the chunk system, it is evident that memory is 

still being saved, as in most instances, the number of active chunks (i.e.: chunks with at least 

1 active voxel present) is, sometimes, dramatically less than the total chunk count. 

 

Figure 3.2: Active voxels stored in memory across test models and data structures.  

When analysing the memory consumption of the chunk system against a traditional 

single buffer arrangement to store an CT scanned object’s voxel representation, the chunk 

system wins in 3 of the 5 cases, excelling when the geometry of the CT scan is non-uniform 
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or has uneven mass distribution. Under this condition, memory savings can be up to 50% (ex: 

Scapula) over using a traditional single buffer or 3D texture (Tables 3.1 - 3.2, Fig 3.2). 

Interestingly, a reduction in memory is not always guaranteed when using the chunk system, 

as is the case with the glenoid and trabecular core 1 (Table 3.1 - 3.2, Fig. 3.2). The reason for 

this has to do with the geometries of these objects. With these objects being cubic and 

uniform in mass (Fig. 1.4), a 3D matrix tightly encompassing object bounds could be created. 

As a result, when adapting these objects to the chunk system, the lack of empty chunks 

(Table 3.2), and the extra layers generated by the chunk grid creation algorithm would cause 

the chunk system to occupy more memory.    

3.2 Material removal 

3.2.1 Collision testing with chunks 

Real-time collision detection and material removal were the forefront features considered 

when designing and implementing the chunk system. The idea was that, if the bone model to 

be worked upon was partitioned into uniform sectors, it would then be possible to identify 

and segregate only sections that are involved in a collision event. Work could then be done 

on those tool-intersecting volumes, which may, theoretically, lead to fewer voxels being 

processed, and, in turn, reduce computation time. Considering that the time allocated for 

collision updates is extremely short due to the 1 kHz requirement by the haptics device 

(where 1 update refresh must be equal to or less than 1 ms), any boost in performance 

compared to the current collision algorithms would be considered a success. Alternatively, 

achieving parity would also be welcome, as it would demonstrate that the chunk system is a 

viable candidate for effective collision testing that is also deserving of further investigation.  



38 
 

 

There are two stages of any collision detection mechanism (see Chapter 2, 2.5). The 

first stage is the identification of the volume where the virtual tool and bone models intersect. 

The second stage is the intersection testing of individual bone and tool voxels, and the 

updating of colliding bone voxels to signify a change (i.e.: setting density to 0 to denote 

voxel is now empty). The bottleneck of this procedure is the processing of individual voxel 

intersections, and thus the algorithm to be used for this testing must be performant enough 

such that collision events are able to be completed in real-time. While the chunk system 

allows for narrowing down the scope of the intersection volume, the algorithm used to 

compute voxel intersections is adapted from a method developed by Reza et. al [114]. In the 

chunk variant, active voxels from the intersecting bone chunks are iterated through, and their 

grid positions are transformed, first relative to the origin by subtracting the bone model’s 

OOBB extents, and then using a bone-to-tool transformation matrix. These transformed 

coordinates are then compared to the tool’s OOBB extents. If they are inside the extents, they 

are then converted into an index relative to the tool’s voxel grid. If the tool voxel at that 

index is active (i.e.: has density of 1), the bone voxel’s density is set to 0. This effectively 

removes voxels from the scene, which visually shows material removal.  

 

Figure 3.3: Visualization of the chunk system collision testing mechanism. Chunk voxels 

(voxels in red WF) are iterated and compared against tool voxels 
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Figure 3.4: Visualization of tool-to-bone voxel collision testing. Tool voxels (green WF) 

are iterated through, transformed, and collision checked against bone voxels (red WF) 

 

Figure 3.5. Demonstration of the real time collision and material system. 

The differences between the chunk variant and the algorithm developed by Reza et. al 

are minimal, as they follow the same steps for voxel intersection testing. The exception is 

that, rather than iterate and transform bone voxels (bone-to-tool), Reza et. al’s method does 

the opposite, and runs through the tool voxels instead (tool-to-bone) [114] (Fig 3.4). 

Regardless, the developments achieved by the engine demonstrate a proof-of-concept that a 

partitioning system can achieve real-time collision detection and material removal (Fig 3.5). 
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3.2.2 Baseline chunk collision performance with various tools and sizes 

Before comparing the performance of the chunk system against known voxel-based collision 

detection algorithms, it is important to set the standard for which the chunk system will be 

judged upon. Essentially, for any one collision event, there will be a set number of chunks 

that participate in collision testing. Since each of these chunks contain 323 voxels, the time 

required to process a chunk remains relatively consistent between chunks, and across 

collision events. Therefore, statistics on individual chunk performance, and how computation 

time changes as more chunks are processed, should be investigated. Of importance is the set 

size of individual chunks, as the number of voxels worked on per chunk determines the 

computation time. Setting chunks to 323 was a deliberate choice based on several collision 

based-tests, where chunk sizes were varied during a static collision event (Fig 3.6). 

 

Figure 3.6: Static collision event using Reamer tool for testing effect on performance of 

chunk sizes during collision testing. 

Of the dimensions tested (163, 323, and 643), 323 was shown to be a sweat-spot in 

general cases, followed closely by 163 under certain circumstances. On the other hand, sizes 

of 643, and likely larger, have noticeable drawbacks (Table 3.3). 
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Table 3.3: Static collision event timings for various chunk dimensions using the reamer  

Chunk Dimensions 163 323 643 

Chunks Collided 84 18 5 

Processing time per chunk (ms) 0.012 0.055 0.405 

Total processing time (ms) 1.024 0.970 2.023 

    

For chunks with dimensions of 643, it is easy to understand why those would take 

longer when taking into consideration that the intersection surface between the tool and the 

bone does not change between tests (Fig. 3.6). Essentially, 643 chunks are less subdivided 

than 323 and 163, meaning that, although less chunks are hit during a collision event, the 

larger encompassing volume of these individual chunks causes significantly more voxels to 

be parsed (since chunks are parsed entirely or not at all based on the algorithm). Thus, the 

amount of computations increases, resulting in more time needed to parse a chunk. 

Interestingly, the performance between 163 chunks and 323 chunks is very similar despite 

more chunks being processed per collision event in the case of 163 chunks (Table 3.3). Even 

more interesting, however, is that the choice of tool during a collision event also plays a part 

in computation time. 

 

Figure 3.7: Static collision event using peg-hole cylinder tool for testing effect on 

performance of chunk sizes during collision testing. 
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When this test was repeated with the peg-hole cylinder tool (Fig. 3.7), while the 

results confirmed that 643 is the least performant of the chunk sizes, it showed that the 163 

sized chunks performed better overall (Table 3.4). 

Table 3.4: Static collision event timings for various chunk dimensions using peg-hole 

cylinder tool 

Chunk Dimensions 163 323 643 

Chunks Collided 80 18 8 

Processing time per chunk (ms) 0.012 0.065 0.405 

Total processing time (ms) 0.964 1.172 3.234 

 

The discrepancy between the two tools is difficult to explain. Logically, since the 

algorithm iterates through the bone voxels to make its comparisons, the tool’s voxel grid 

should not influence the intersection testing process. Indeed, that is one of the benefits of 

using the chunk system, since it is possible to vary properties of the tool’s voxel grid without 

affecting the performance. This is further confirmed when varying the voxel-size (and by 

extension the voxel resolution) of the Reamer tool during a static collision event (Fig 3.6, 

Table 3.5). With this benefit, it is possible to increase the resolution of tool’s voxel grid and 

increase the precision of the cutting tool without any performance loss.  

Table 3.5: Static collision event timings at chunk dimensions of 323  using the Reamer 

tool while varying tool voxel-sizes 

Tool Voxel sizes 1.03 0.753 0.53 

Chunks Collided 18 18 18 

Processing time per chunk (ms) 0.982 0.975 0.967 

Total processing time (ms) 0.0545 0.0542 0.0538 

Number of voxels 33212 75000 232286 
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However, when switching tools, from reamer to peg-hole cylinder, it appears that the 

average processing time for 323 chunks goes from 0.055 to 0.065 (Table 3.3 - 3.4). This 

shouldn’t occur, but it does regardless. One possible theory is that branch prediction in the 

collision kernel and the tool geometry are responsible. In the chunk collision kernel, there is 

a check to determine whether a tool voxel is active at a certain position. Perhaps, with branch 

prediction, there is an optimization that assumes that this check is strongly taken, meaning 

that it will succeed more than it fails. As such, the code inside the check is executed before 

the check occurs. If the check evaluates to true, then time is saved since the code has already 

been executed. If not, the hardware must correct the mistake. In the case of the peg-hole 

cylinder, due to its small surface area and elongated shape, maybe this check fails more often 

than it succeeds compared to when the reamer is used. Ultimately, what this means is that if 

working with tools with small surface areas, chunk sizes of 163 should be used. Otherwise, 

for larger tools, 323 chunks are more appropriate, but no larger. On a final note, only power 

of 2 sizes were investigated, as these lengths enable index-to-3D grid position conversion 

optimizations (i.e.: using bit shifts rather than modulo to calculate x, y, z coordinates).  

Having decided on a chunk size of 323 for general purpose use, the chunk collision 

system was put under load and run through various Windows 10 PC configurations. The 

complete specifications for the PCs tested are found in Table 3.6 below. 

Table 3.6: Specifications for the Windows 10 PCs used over the course of engine testing 

CPU GPU RAM 

Processor Base/Boost 

freq. (GHz) 

GPU Base/Boost 

freq. (MHz) 

Cores VRAM 

(GDDR5) 

 

Intel Core i5 8600 3.1 / 4.3 Nvidia GTX 1070 1506 / 1683 1920 8 8 GB 

Intel Core i7 6700K 4.0 / 4.2 Nvidia GTX 970 1050 / 1178 1664 4 16 GB 

Intel Core i7 8700K 3.47 / 4.7 Radeon RX 580 1257 / 1340 2304 4 16 GB 

Intel Core i5 6300u 2.4 / 3.0 Intel HD Graphics 

520 

300 / 1000 N/A N/A 8 GB 
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Figure 3.8: Chunk collision task computation time using the peg-hole cylinder tool with 

varying PC configurations 

Several conclusions can be extrapolated from the results of figure 3.8. Firstly, discrete 

GPUs clearly outperform integrated graphics units (Intel HD Graphics 520), signifying that 

dedicated graphics cards are necessary for peak performance. Secondly, the GPU, and not the 

CPU, is what determines the relative processing performance of the chunk system, which is 

to be expected considering all voxel-related tasks are OpenCL accelerated (i.e.: ran on the 

GPU). As such, the PC equipped with an Intel Core i7 8700K (i.e.: the strongest tested CPU), 

did not have the best compute times because its GPU, the Radeon RX 580, was not as 

powerful as the Nvidia GTX 1070 and Nvidia GTX 970. Unexpectedly, the Nvidia GTX 

1070 and Nvidia GTX 970 had almost identical compute performance, despite the 1070 

being 970’s successor. Being only one generation apart, perhaps the hardware did not evolve 

enough to drastically impact raw compute power.  
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3.2.3 Chunk system collision testing performance compared to single-

buffer-based algorithms 

The chunk system is an approach that was designed to address a common problem in 

collision testing for voxel-based simulations, which is high-volume computation strain. The 

sheer number of voxels present during any given collision event requires that the algorithms 

used to perform intersection checks and removals between individual voxels must perform at 

sub millisecond speeds, especially when taking haptics input at 1 kHz. While the chunk 

system is capable of meeting target speeds at low chunk numbers (Fig. 3.8), it is one of many 

algorithms that have been created to address this problem. Other algorithms exist that have 

offered solutions to OpenCL accelerated voxel-based collision testing. These algorithms 

differ from the chunk system in that they iterate through, and work on, tool voxels contained 

in single sparse buffers. For these algorithms, the bone voxels are also contained in a single 

buffer, although organized as a 3D matrix that covers the bone’s object bounds [75, 114, 

115]. 

To assess the relative performance of the chunk system, collision test timings were 

compared against those generated by the methods developed by Zheng et. al, Yau et. al, and 

Reza et. al [75, 114, 115]. When comparing the performance of chunks in terms of sheer 

voxels processed per millisecond, the chunk system struggles to reach parity. For instance, at 

raw voxel processing counts of 643, if there is a collision event between the reamer and the 

bone (Fig 3.6), the chunk system runs at 0.44 ms, while the leading algorithm, Reza et. al’s, 

runs at 0.19 ms. Performance is substantially worse when processing voxel counts of more 

than 1283 (Fig. 3.9). 
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Figure 3.9: Voxel processing time of various collision algorithms on Windows 10, Intel 

i5 8600, Nvidia GTX 1070 PC. Chunk collision was performed with reamer. 

The explanation for this discrepancy is due to the fundamental way the chunk system 

handles collisions, in that the chunk system processes voxels from the bone voxels to tool 

voxels (Fig 3.3), rather than the reverse, which is the case for the alternative algorithms (Fig 

3.4) [75, 114, 115].  In both methods, tool voxels are stored as a single continuous array of 

elements, although in this engine, tool voxels are arranged as a 3D matrix, meaning that there 

are empty voxels present. The alternatives utilize a sparse voxel buffer, which is a linear 

array of only active voxels that aren’t necessarily in spatial order. Sparse buffers have the 

advantage of removing inactive voxels, thereby minimizing the number of voxels to process 

during collision testing. These algorithms can store tool voxels this way because they iterate 

through the tool voxels during collision events. It is not possible to have a sparse array for 

tool voxels in a bone chunk system since the world position of the tool voxel is no longer tied 

to a buffer index that can be used to calculate a coordinate in a grid space that is relative to 
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the tool. Determining the tool voxels that are involved in a collision intersection volume 

would thus require additional metadata per voxel to house a 3D world position. It would also 

necessitate iterating through the tool’s sparse voxel buffer during collision detection since 

these voxels aren’t in a predictable order (i.e.: would vary from tool to tool), which would be 

extremely costly in terms of computation. In these types of algorithms, a sparse voxel buffer 

is allowed for only one of the two colliding entities (the one who’s voxels are being iterated 

through to check for collisions against the other), but not both since grid positional 

information is lost when using a sparse organisation. Now, understanding the nature of sparse 

buffers is important because, although the algorithms claim to process 643 voxels, those 

numbers instead indicate the volume represented by the buffers. The total number of voxels 

processed is much lower since most of the void space present in the tool objects was stripped 

away during the voxelization process. On top of that, the voxelization algorithm used only 

considers the surface of the object, leading to fewer voxels being generated to represent the 

tool [75, 114, 115]. Chunks, on the other hand, derive their data from volumetric sources 

(i.e.: CT scans), meaning that, overall, they contain more voxels, which results in more 

computation time required to parse multiple chunks.  

However, rather than raw voxel processing, it is better to compare the chunk system 

on a chunk-by-chunk basis. Since it is possible to have a variable number of chunks during 

collision events, it is better to analyze how the chunk system scales as more chunks are 

processed and note the conditions in which the chunk system wins, achieves parity, and 

plateaus compared with the alternatives. Starting with the method developed by Reza et. al, it 

is clear that Reza et. al’s method is dependent on the voxel resolutions of both the tool and 

bone objects being used (Fig 3.10) [114]. 
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Figure 3.10: Chunk system collision timings using peg-hole cylinder tool vs Reza et. al’s 

timings at varying tool and model voxel resolutions. 

The takeaway of figure 3.10 is that the chunk system matches or beats Reza’s 

algorithm only under certain conditions, which are dictated by however many chunks are 

being processed at the time of a collision event, and the resolutions of the virtual objects. For 

instance, at the highest tool and model (bone) resolutions measured (i.e.: 10243), the chunk 

system performs better if 12 or fewer chunks are being processed (Fig 3.10). Otherwise, Reza 

et. al’s algorithm wins since it takes less time to complete a collision event. In comparing the 

chunk system against Zheng et. al and Yau et. al, a similar trend is observed (Fig 3.11-3.12). 
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Figure 3.11: Chunk system collision timings using peg-hole cylinder tool against those 

measured when using Zheng et. al’s method 

 

Figure 3.12: Chunk system collision timings using peg-hole cylinder tool against those 

measured when using Yau et. al’s method 
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In practicality, the chunk system achieves performance that is comparable to the 

single-buffer based algorithms. The collisions that occurred during testing were located on 

the periphery of the bone object, meaning that the bone-tool intersection volume remained 

relatively small. Given this, the number of chunks that were processed during collision 

testing were normally between 1 – 20 (Table 3.4). At these numbers, the time required to 

compute a collision event varied between 0.065 ms and 1.17 ms, which is within the 

acceptable range of the target time allotted for 1 kHz haptics updates. While the chunk 

system isn’t a perfect solution, it can achieve real-time material removal with results that are 

comparable with the alternatives. In the end, the chunk system performs best if the number of 

chunks to be processed is low. 

3.2.4 Chunk system complexity 

The complexity of the collision system in the context of chunks is O(n * m) where n is the 

number of voxels within a chunk (all of which must be processed per chunk collision test) 

and m is the number chunks that need to be processed per collision event. Although the size 

of the chunk is constant and is set at compilation, since it can be varied ahead of time, it is 

still variable. Now, it is important to take into consideration the complexity of an algorithm 

to obtain a rough estimate of the computation power required to perform a task. Looking at 

the single buffer approach, the complexity is O(n), were n is the number of tool voxels being 

processed per collision event. What is key is how the growth of the chunk system compares 

with that of the single buffer approach. As shown in figures 3.10 – 3.12, assuming the highest 

voxel resolution of both tool and bone objects, the chunk system grows much more slowly in 

terms of computing power required compared to the single buffer approaches, providing 

better performance despite being more complex. Finally, the chunk system offers efficiency 
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over a naïve approach of checking every possible combination of intersecting bone-to-tool 

voxels. Doing so would increase the computation cost exponentially (O(nm)) and wouldn’t be 

feasible regardless of hardware power. 

3.2.5 Chunk system vs. octrees 

The chunk system is an alternative to the single-buffer based approach of storing voxels. 

However, it shares similarities with another data structure known as octrees [29]. Octrees are 

a tree data structure where each node contains either no child nodes or exactly 8. Essentially, 

octrees subdivide voxel space into regions of 8 units. Because nodes can have no children, 

inevitably, there will exist sections in the octree that are more subdivided than others. The 

reason for this subdivision is due to the metadata of the voxels within that region. Voxels of 

equal or similar metadata are grouped under one node while others are pushed into 

subdivisions until the node is homogenous in content [29]. This is done as a memory 

optimization wherein large groups of voxels can be represented by a few nodes, which, 

individually, do not occupy a lot of memory. Like the chunk system, octrees partition voxels 

into sections, and the chunk system can even be thought of as an octree with a fixed height of 

1 and unlimited nodes. Therein lies the key difference. The chunk system does not subdivide 

voxels any further. In practicality, this means several things. Lookups in the chunk system 

are O(1) since there is no tree traversal to find a voxel anywhere in the voxel representation 

of the model. This, however, comes at a cost of memory storage as chunks do not subdivide 

as optimality as the octree structure to merge similar voxels. Additionally, chunks do not 

restructure themselves. An octree has the option to refresh nodes based on current state of the 

voxel representation after a collision event. This intermediary step could prove beneficial in 

later collision events as the traversal of the tree may end up being shorter with more and 
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more voxels being removed. However, this intermediary step would still cost computing 

time, time which is saved using the chunk system. Overall, the chunk system was used as the 

voxel data structure for this engine for its fast lookup times despite a potential increase in 

memory usage.   

3.2.6 Independency from tool voxel resolution 

A benefit of the chunk system, compared to the alternatives, is that the performance of 

collision testing is independent of the voxel resolution of the tool object (Table 3.5). As the 

chunk system’s collision algorithm goes from bone chunk voxels to tool voxels, the time 

required to perform a complete collision event is entirely dependent on the number of bone 

chunks being processed. Increasing the tool’s voxel resolution does not affect performance, 

as the physical size of the tool object remains the same. Thus, the intersection volume, along 

with the number of colliding chunks, remains constant (Table 3.5). However, whether this 

property enables more accurate collision results with a finer grained tool voxel representation 

is untested. Still, contrast this property to the alternatives, which show a gradual increase in 

the computation time required to perform a collision event as the tool’s voxel resolution 

increases (Fig 3.10-3.12). 

3.3 Chunk voxel rendering 

3.3.1 Neighbor-aware triangle mesh generation  

Early in development, triangle meshes were created, and refreshed, for each chunk to act as 

their visual representation in virtual space. The chunk triangle mesh creation process 

culminated in a mesh that appeared to be composed of a series of cubes, wherein each cube 

represented one voxel (Fig 1.3). As a performance enhancement, a preprocessing step would 
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occur were cube faces were culled from the final mesh if they were obscured by an adjacent, 

opaque voxel face. The algorithm worked on a chunk-by-chunk basis and would create a 

seamless mesh across chunks by considering the voxels of neighbouring chunks (Fig 2.2). 

Essentially, for voxels that are on the external layers of the query (i.e.: central) chunk, the 

algorithm would look to the first layer of voxels in the neighbouring chunk immediately 

adjacent to the current voxel and decide whether a quad should be added into the chunk’s 

triangle mesh vertex buffer based on the presence, or absence, of the neighbour voxel. For 

quick access, each chunk would have an array of 6 pointers to its neighbours. However, if a 

neighbouring chunk was not present (i.e.: the query chunk is located on the outer layers of 

the chunk grid), then the pointer would point to a global “empty” chunk, a specialized read-

only chunk where all voxel densities are zero. This enabled the algorithm to work as 

expected. Neighbor chunk pointers would be setup during chunk grid creation in the CT scan 

data transfer task. Each chunk triangle mesh would then stored with its respective chunk and 

would be updated when the chunk’s voxel contents were changed due to a collision event.  

The triangle mesh creation process is performed entirely on the GPU through 

OpenCL and is as follows. Voxel data from the query chunk and its neighbors are transferred 

to a 34 × 34 × 34, R16, 3D texture called the “SuperChunk”. The SuperChunk has extended 

dimensions to add the 6 immediately adjacent neighbouring chunk layers, and to avoid 

unnecessary conditional branches when performing neighbour voxel lookups to determine 

whether a quad face should be added to the mesh. When copying data to the SuperChunk, all 

the voxels from the query chunk are transferred, starting from index 1 × 1 × 1 to 32 × 32 × 

32. Then, voxel data from neighbouring chunks are added. Essentially, one 32 × 32 face layer 

of voxel data from each neighbouring chunk is added to the SuperChunk. The layer of chunk 

data added depends on the face of the neighbour chunk that is directly adjacent to query 
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chunk. In the end, the SuperChunk contains all the voxel data needed to go through voxels 1 

× 1 × 1 to 32 × 32 × 32, while being neighbor aware. 

After writing to the SuperChunk, a parallel prefix sum and stream compaction 

operation is performed. Generation of the triangle mesh is performed on the GPU to avoid 

unnecessary transfer of vertex data to the CPU and back OpenGL vertex buffers. To reduce 

workload and be able to properly index into the output vertex buffer, active voxel (i.e.: 

voxels that have at least one visible face, meaning a neighbour with < 120 density) and active 

face (to determine the number of quads needed to generate per active voxel) indices are 

identified in one kernel, summed in another kernel, and then stream compacted to buffers in a 

third kernel. The active voxel identification, parallel prefix sum, stream compaction 

algorithms are taken from the Marching Cubes sample in Nvidia’s OpenCL SDK, with the 

difference being that active voxels and face indices are identified based on the absence of 

active neighbouring voxels. Once the compacted active voxel and face indices arrays have 

been computed, if there are any active voxels, the buffers are iterated through in a final 

OpenCL kernel to generate the triangle mesh. For every active voxel, the 6 neighbors of the 

voxels are checked, and for each neighbor that is empty, the vertex coordinates of the face 

are computed at the offset of the current compacted face index + 4 * the index of the face 

currently being checked. In the end, a triangle mesh of cubes is generated. A final step is to 

transfer the OpenCL buffer output to the Chunk’s OpenGL mesh buffer.  

3.3.2 Ray-box intersection voxel rendering 

Recently, a novel method has been released by Majercik et. al that offers an alternative to the 

mesh-based approach of rendering voxel-based models [112]. The algorithm gives the same 

visual result as the triangle-mesh method, although the performance differs heavily, 
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especially when viewed in conjunction with the added computational stress of collision 

testing. To summarise the technique, a bounding box is rasterized from a GL_POINT axis-

aligned square for each model voxel in a vertex shader, and then a ray-box intersection test is 

performed on every pixel within that box in the accompanying fragment shader. If the test 

passes, the pixel is shaded according color of the voxel and bounding-box face hit. If the test 

fails, the pixel is discarded, giving the final image. To accommodate this technique for the 

chunk system, several changes had to be made. First, in terms of the shaders, the vertex and 

fragment shader were changed to be called per chunk, and each voxel had to have its position 

computed based on the chunk’s relative grid offset and the current model matrix of the 

voxelized object. Second, the CT data used for the chunks had to be modified to be 

compatible with the algorithm. The GL_POINT based technique assumes that every voxel 

has equal dimensions, given that OpenGL’s GL_POINTS and GL_POINT_SIZE functions 

manipulate square points, which can only represent cubes. However, the Scapula and 

Glenoid CT scans used for engine testing were generated with an irregular voxel size (0.47 

mm × 0.47 mm × 1.0 mm). Given the restriction, one would have either alter the CT scan 

data, or the algorithm itself. The solution chosen was to introduce “filler” voxels along with 

the CT scan data, essentially subdividing the existing voxels, but occupying the same volume 

(see Chapter 2, 2.4, Fig 2.2). The triangle-mesh approach does not have this problem since 

the triangle vertices can be scaled to the voxel size of the CT scanned object in the vertex 

shader. Interestingly, this method does not incur any additional memory cost over the triangle 

mesh method, since instead of memory being occupied by filler voxels, memory is instead 

taken up by the triangle mesh buffer (Table 3.7).  
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Table 3.7: Various statistics of the voxel rendering methods used.  

 Scapula (Triangle mesh) Scapula (GL_POINTS) 

Voxel Size 0.47 × 0.47 × 1.0) mm (0.47 × 0.47 × 0.47) mm 

Number of chunks 448 896 

Number of Active chunks 99 199 

Active voxel memory (2B/voxel) 6.48 MB 13.04 MB 

Triangle mesh memory 6.93 MB 0.00 MB 

Total memory 13.41 MB 13.04 MB 

3.3.3 Comparison of the voxel rendering methods 

The rendering algorithms were tested with 5 CT scanned objects (Fig 1.4), and timing data 

was collected when the engine was at idle, and when it experienced a collision event. 

Additionally, the rendering times of chunks were recorded in increments of 1 to determine 

the base time required to render a set number of chunks using each method. The results are 

shown in figures 3.13 - 3.14. It was found that the triangle-mesh method had lower rendering 

times (up to 6x) per chunk than the GL_POINT based approach. Perhaps the reason for this 

is due with the varying number of vertex elements processed between the methods. In the 

GL_POINT method, each voxel in a chunk is processed in the shaders (32,768  voxels for 

chunk sizes of 323), meaning that every chunk rendered has consistent vertex shader 

invocations. On the other hand, a triangle-mesh is much more likely to contain fewer 

elements to process, given that only the surface of the voxelized object is being drawn. Inner 

voxels that are obscured by neighbouring voxels have their quads omitted, while all voxels in 

a Chunk are processed in the GL_POINT method. The shaders used for the triangle mesh are 

also simpler, requiring fewer matrix transforms, and no ray-tracing in the fragment shader.  
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Figure 3.13: 720p render timings for triangle mesh voxel rendering of 323 chunks across 

tested models on Windows 10, Intel i5 8600, Nvidia GTX 1070 PC 
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Figure 3.14: 720p render timings for GL_POINT based voxel rendering of 323 chunks 

across tested models on Windows 10, Intel i5 8600, Nvidia GTX 1070 PC  
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 On figure 3.13, there appears to be performance spikes that occur periodically when 

rendering a high number of chunks. These spikes are consistent across several runs 

measuring the rendering timings of the triangle-mesh algorithms. V-Sync does not appear to 

affect these spikes. The current hypothesis is that the spikes are caused by cache misses. 

However, figure 3.13 is more of a visual aid to get an estimate of the expected time required 

to render a set number of chunks using the triangle-mesh method. The same for figure 3.12 

with the GL_POINT based approach. 

Before continuing, a note must be made on why chunks have different render times 

between the CT scanned objects tested, despite each chunk having the same number of 

voxels (i.e.: 322). In the shaders, an optimization is made to skip over inactive voxels, and 

only continue if the voxel is active.  

 

Figure 3.15: Ratio of active to inactive voxels across tested models 
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3.15). This, along with the variability of the active voxel ratios across the CT scanned 

objects, would explain the trends observed in figures 3.13-3.14. 

Given how the triangle mesh method performs, one would expect it to be the logical 

choice when implementing a rendering scheme in a simulation engine. However, figures 3.13 

- 3.14 show render timings at idle. The more important comparison is how both methods 

perform when the engine undergoes collision testing. The key difference here is that the 

triangle-mesh method must regenerate chunk meshes to accurately reflect the changes made 

during a collision update, while the GL_POINT based method does not have any additional 

intermediary steps. Effectively, this means that for every unique chunk whose data has been 

changed due to a collision event, the triangle-mesh generation algorithm must be re-executed, 

which comes at a cost (Table 3.8).  

Table 3.8: Breakdown of the runtime for different phases of chunk triangle mesh 

generation 

Task GPU compute time (ms) 

Copy chunk cluster data to padded Chunk  0.077047 

Classify active voxels in padded chunk 0.067482 

Generate sparse active voxels buffer with parallel prefix scan 0.081673 

Generate triangle mesh and transfer to global mesh buffer 0.018723 

Copy global mesh buffer data to chunk mesh buffer 0.007131 

Total triangle mesh computation time 0.252056 

  

For every 4 chunks that require an update after a collision event, ~1 ms is required to 

refresh the triangle meshes of those chunks. Recall that the target visual refresh rate is 60 Hz 

and the target haptics update rate is 1 kHz. Since the mesh regeneration process is too costly 

to be done in the update loop, it is performed in the render loop instead. With an allocation of 

~16 ms per frame, minus the amount of time required to render the tool models, allowing 

room for future graphics enhancements, and using the Scapula model as an example (0.58 ms 
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to render all the chunks), roughly 56 (14 ms * 4 chunk per ms) total regeneration events can 

occur before performance degrades. However, this cost is on top of the time needed for the 

update loop, and since anywhere from 1 – 20 unique chunks are affected per collision event 

(Table 3.3), the number of refreshes allowed is too low. More importantly, this method is not 

scalable if using tools that cover larger surfaces that would increase the number of collided 

chunks to process. Given these restraints, the GL_POINT base method was chosen as the 

default voxel rendering technique for the engine.  

Having chosen the GL_POINT method as the voxel rendering method of choice, 

timing data was collected to assess the performance of the algorithm across various PC 

configurations (Table 3.6).  

 

Figure 3.16: 720p render timings for GL_POINT based voxel rendering for “Cellular 

Foam” model across varying Windows 10 PC configurations 
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On a final note, it is worth mentioning that there do exist isosurface extraction 

methods (ex: Marching Cubes) that can generate smooth triangle meshes out of voxels [120]. 

However, the fact remains that rebuilding meshes will cost some amount of compute time 

regardless of the number of refreshes required. Ultimately, the GL_POINT based method 

gives the same visual result without an intermediary step. Volume rendering is used in 

medical applications to rendering voxels without meshes, but the technique wasn’t explored, 

as there were difficulties adapting the process to be compatible with the chunk system [113].  
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Chapter 4 

Thesis closure 

4.1 Summary 

 The focus of this project was to develop a simulation engine platform whose code and 

techniques may be integrated into current and future simulators for the benefit of the medical 

community. Over the course of the engine’s development, a partitioning scheme, known as 

the “Chunk” system, had been introduced to address common bottlenecks when attempting to 

simulate the complex interactions between objects of arbitrary voxel resolutions, those being 

memory consumption and high-volume workloads. The chunk system has successfully 

resolved the issue of memory management, given that, on average, there was a reduction in 

the amount of memory allocated by voxels, sometimes up to 50 % (Tables 3.1-3.2). As for 

the performance of collision testing, the results of the chunk system, when compared to 

alternative methods, varied depending on the size of the workload. To summarize, the chunk 

system is not the ideal solution that will outperform all methods in all conditions. Rather it is 

more of a proof-of-concept that a voxel partitioning scheme can match the performance of 

single buffer algorithms at various settings. In most cases, the chunk system will perform 

adequately given that most surgical scenarios involve surface remodeling and small 

intersection volumes between the cutting tool and the bone. As such, the system is unlikely to 

be processing high amounts of chunks at any one time, and thus the simulator will run at the 

expected real-time refresh rates of 60 Hz visual, and 1 kHz haptic update.  
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4.2 Future work  

Performance enhancements are a continual focus for simulation engine development. Key 

areas are reducing the number of collision detection tests to a minimum and implementing 

more efficient rendering techniques. In terms object-to-object interaction, a switch from the 

current broad-phase collision detection scheme to a more refined means collision detection 

would greatly speedup the haptics/update loop [121]. The issue is that the computed 

bounding box intersection volume sometimes overestimates the number of chunks that 

collide with the reamer, causing an unnecessary amount of chunk collision test executions. 

Using capsule colliders or convex hull colliders, objects that more tightly wrap around 

models than bounding boxes, would be worth investigating to alleviate the problem. The best 

rendering optimization is to reduce the number of objects rendering at any time. Frustum 

culling could be introduced so that chunk’s that are outside the camera’s frustum are not 

rendered [110]. However, another form of culling, occlusion culling, can also be 

implemented [122]. Occlusion culling with software rasterization can identify chunks that are 

obscured by other chunks, or otherwise hidden from the camera’s view, and prevent those 

chunks from rendering. These chunks most likely include those that are on the inside an 

object, or on the side of the object opposite of the camera. Finally, as a feature enhancement, 

adding VR headset (ex: HTC Vive) compatibility to the engine would greatly improve the 

user experience, as the user would be able to physically re-enact the surgery in 3D virtual 

space.  

4.3 Conclusion 

The simulation engine described here has achieved its goal of replicating the complex 

interaction between an arbitrary cutting tool and a CT scanned object in real-time. We 
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believe the algorithms developed will contribute to the foundation of current upcoming 

surgical simulators, accelerating the progression of these training modules.  
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