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Abstract

Software-defined networking overcomes the limitations of traditional networks by splitting
the control plane from the data plane. The network logic is moved to a component called the
controller that manages devices in the data plane. To implement this architecture, it has become
the norm to use the OpenFlow protocol, which defines several counters that are maintained by
network devices. These counters are the starting point for Traffic Engineering activities. Traffic
Engineering monitors several network parameters, including network bandwidth utilization. A
great challenge for Traffic Engineering is to collect and generate statistics about bandwidth
utilization for monitoring and traffic analysis activities. This becomes even more challenging if
fine-grained monitoring is required. Network management tasks such as network provisioning,
capacity planning, load balancing, and anomaly detection can benefit from this fine-grained
monitoring. Because the counters are updated for every packet that crosses the switch, they
must be retrieved in a streaming fashion. This scenario suggests the use of Big Data techniques
to collect and process counter values.

The benefits of Big Data techniques for collecting and processing counter values are two-
fold. First, Big Data techniques provide streaming processing tools that can deliver outputs
in near real time, which can help early detection of anomalous traffic behaviour and possible
proactive actions toward resolving the issue. Second, Big Data techniques provide batch pro-
cessing tools that can deal with a large amount of historical data, which enable the use of Big
Data analytics techniques to achieve a better understanding of traffic behaviour over time.

This research proposes an approach based on a fine-grained Big Data traffic monitoring
method to collect and generate traffic statistics using counter values. This research work can
significantly leverage Traffic Engineering. The approach can provide a more detailed view of
network resource utilization because it can deliver individual and aggregated statistical analy-
ses of bandwidth consumption. In the context of the proposed monitoring method, this research
proposes a new approach to estimate the Traffic Matrix, a repository that maintains information
about the traffic volume between all host origin-destination pairs. This research also proposes a
traffic analysis method based on batch processing of historical traffic data. Experimental results
show the effectiveness and potential of the proposed methods.

Keywords: Software-Defined Network (SDN), OpenFlow, Network Monitoring, Traffic
Engineering, Traffic Matrix, Big Data Streaming, Traffic Analysis.
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Chapter 1

Introduction

Software-defined networking (SDN) is a paradigm designed to overcome the limitations of
traditional networks [1, 10]. This approach makes the network more programmable and easier
to configure. The problem with traditional networks is that the control plane and the data plane
are embedded in the same device. As a result, no point in the network has a global view of the
network. Such a design also makes it difficult to change the network configuration. Basically,
each device must be manually configured to reflect a new configuration. This process becomes
even more challenging for large networks. Implementing a new configuration can take large
amounts of time and resources [10]. Several protocols have been proposed to implement SDN
[11–14], but OpenFlow (OF) [15] is the industry standard nowadays.

A critical activity in SDN is traffic engineering (TE), which measures and manages network
traffic [2]. TE plays an important role in network performance optimization by analyzing real-
time traffic, predicting traffic, and designing routing mechanisms to improve network resource
utilization [16, 17]. To carry out all these activities, network monitoring is crucial. One of
the aspects of good monitoring is the design of network parameters. Network parameters are
values that reflect current network status [17]. A widely used parameter to measure network
performance is bandwidth utilization, which is sometimes referred to as network throughput.

One of the features introduced by the OF protocol is the use of counters [15]. Counters
are maintained for a variety of objects in an OF switch. The introduction of counters enables
a more direct approach to collecting traffic statistics. There are basically two approaches for
collecting counter values: (1) indirectly using the SDN controller and (2) directly sending
specific messages to the switches. The common approach is to use an SDN controller, which
usually, in addition to collecting counter values, provides a wide range of configuration and
service request APIs.

The starting point for TE in SDN is to collect counters provided by OF devices. These col-
lected values enable monitoring tools to measure bandwidth utilization. In recent years, several

1
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monitoring tools have been proposed to measure bandwidth utilization [18–22]. However, a
fine-grained measurement tool that leverages TE is still lacking. A fine-grained measurement
provides details of network traffic and can be used as input to more advanced tasks such as
finding traffic patterns and trends on routes and links.

OF counters can be retrieved in a streaming fashion. Because large networks usually consist
of hundreds of hosts generating a huge amount of traffic, acquiring and processing this stream
of data can be very challenging. This scenario strongly suggests the use of Big Data streaming
techniques to address this issue because Big Data streaming is characterized by data streams
in which data are received as a continuous, infinite, rapid, unpredictable, and time-varying
sequence [23].

A significant output of traffic monitoring is a traffic matrix (TM). A TM provides the traffic
volume going between any origin-destination (OD) pair of nodes in the network over a specific
time interval [24]. This information is essential for several activities in traffic engineering
(TE), such as switch load balancing and fault tolerance. For example, if a link fails, a new
route between the OD pair affected by this failure needs to be selected among the available
routes that connect these nodes. To select the best route, the volume of traffic in each possible
route needs to be available for an optimal decision.

Due to the large number of combinations of OD pairs present in large networks, an accurate
measurement of the TM becomes a hard task. One of the most significant challenges is the
number of links between any pair of OD nodes. As the number of links increases, providing
an accurate measurement becomes even harder. The traffic of each link in the path has to be
retrieved to aggregate the traffic volume between A and B at a specific time. Collecting link
traffic information at the same time is extremely difficult because of the lack of measurement
infrastructure [25].

Using the appropriate APIs, an application can retrieve counter values for any switch con-
nected to the SDN controller and use them to estimate the TM. However, even when counters
had been introduced by the OF protocol, two challenges for TM estimation still remained: i)
which approach to use to collect the traffic data (direct measurement or inference techniques),
and ii) how to aggregate the traffic values to produce the estimated TM.

Direct measurement can lead to small errors in the estimated TM [26] because this tech-
nique aims to collect the traffic information in all devices and all links between the OD pairs
in the network, but, as previously stated, this technique requires a measurement infrastructure.
Inference techniques collect traffic samples and use specific methods to estimate the TM based
on these samples. Both techniques provide the values that will be used to estimate the TM.
However, the problem is how to aggregate these values. It is expected that the amount of data
collected using direct measurement is larger than with inference techniques. If the collected
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data are going to be used for batch processing, this aggregation may not pose a challenge, but
this is not the case for real-time processing. Due to the volume of data and to time constraints,
especially for large networks, this aggregation can be challenging.

In addition to the traffic monitoring task, the data provided by the OF counters can be used
to provide traffic analysis to deliver a wide range of insights about network usage to drive TE
activities such as flow management, fault tolerance, and topology update. Figure. 1.1 provides
the design of a TE approach based on Big Data techniques. Two modules compose the TE
approach: the Big Data Streaming module and the Traffic Engineering module.

Figure 1.1: TE approach based on Big Data techniques.

As previously mentioned, the data coming from an OF switch can be collected in a stream-
ing fashion because of the fast changes in the counters due to dynamic traffic crossing the
switches. The Big Data Streaming module collects network data and forwards it to process-
ing according to the data purpose (Flow Data, Topology Data, Controller Data, and Traffic

data).

The Traffic Engineering module performs TE activities. The Traffic Analysis/Characteri-

zation activity processes the data coming from the Big Data Streaming module and performs
the traffic Monitoring and Analysis tasks. The Flow Management activity carries out load bal-
ance on switches and controllers, the Fault Tolerance activity provides fast recovery in case
of component failures, and the Topology Update activity works on network topology update
for planned changes. These activities make decisions based on the data provided by the Traffic

Analysis/Characterization activity.

This research proposes a Big Data traffic monitoring method (Figure 1.1 (a)) that provides
on-line measurements of traffic throughput. The proposed method encompasses the Big Data
Streaming module and the Monitoring activity to process streaming data and provide results
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in real time. Based on Topology Data and Traffic Data, the proposed method delivers fine-
grained measurements of traffic throughput at the flow, port, link, path, and switch levels.
”Fine-grained” means the throughput of every switch, every port in each switch, every link,
and every host origin-destination pair. The proposed method provides an approach for on-line
TM estimation. To produce all the mentioned measurements a Big Data programming model
called MapReduce [6, 7, 27] was used. The counter values collected from the SDN controller
were processed by the MapReduce approach to generate the estimated TM for all the OD pairs
in the network every t seconds.

This study also proposes a Big Data traffic analysis method (Figure 1.1 (b)). The Big Data
traffic analysis method encompasses the Analysis activity and the Historical Data database to
process historical data and reveal traffic trends and behaviour. Unlike the Big Data traffic mon-
itoring method, the traffic analysis method is based on batch processing because it is expected
a large volume of traffic data over time. The proposed method provides switch, switch port,
link, and path traffic analysis.

To validate the Big Data traffic monitoring method, this study has provided an implemen-
tation following the design guidelines presented in Chapter 4. To validate the Big Data traffic
analysis method this study provided an implementation following the design guidelines pre-
sented in Chapter 7.

1.1 Motivation

TE is an essential activity for SDN. The good health of the network depends on the activities
performed by TE, such as load balancing and fault tolerance. The availability of real-time
traffic statistics and historical traffic analysis will leverage TE to adapt to traffic changes and to
ensure balanced usage of network resources.

Real-time traffic statistics play an important role in network monitoring for early detec-
tion of link and route congestion, enabling network administrators to take proactive actions to
resolve congestion.

The design and implementation of a real-time traffic monitoring method face several chal-
lenges due to the need to process large amounts of data. This statement can be confirmed by
reviewing a series of previous monitoring methods that usually selected a specific link, switch,
and route to monitor.

A common problem faced by previous traffic monitoring methods was aggregating the col-
lected statistics. For real-time measurement, depending on the amount of collected data, cal-
culating aggregated link, switch, and route statistics may be time-consuming, making methods
unable to meet real-time constraints. The aggregation process starts by storing the collected
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data, which arrive in a streaming fashion while previous data are still being processed. The
stored data are then grouped by a predetermined key as they arrive in random order. The de-
sired outputs are computed according to the grouped keys. Each one of the previous steps must
be addressed by any approach, and in most cases, these approaches are application-dependent.

Big Data techniques provide robust and stable tools to tackle the aggregation problem.
These tools provide a standardized, but flexible approach that can be used in a wide range of
applications that must deal with streaming data and real-time processing. These tools provide
a wide range of APIs to deal with different requirements and manage infrastructure horizontal
scalability. Using Big Data techniques, large amounts of data can be processed seamlessly, and
statistics can be provided in near real time.

The benefits of using Big Data techniques can also be extended to traffic analysis because
the same type of aggregation used in traffic monitoring can also be applied to traffic analysis,
with the difference being the amount of data. Traffic analysis requires more data because it
searches for traffic characteristics such as traffic pattern. Traffic aggregations, as performed in
traffic monitoring, are the basis for more advanced calculations.

1.2 Contributions

This research provides the following contributions to traffic monitoring and analysis tasks in
the TE Traffic Analysis/Characterization activity for SDN:

• Big Data traffic monitoring method.

– A novel method for monitoring network traffic based on Big Data techniques is
presented. The proposed method defines various processes and a data model. Both
the processes and the data model can be implemented using a variety of Big Data
tools.

– A fine-grained statistical analysis of network resources, such as the ratio of each
port to the switch load and the throughput capacity used on each port, path, and
switch, is provided. The deployment of the implementation is presented and pro-
vides a roadmap for a distributed environment that can run various Big Data tools.

– An approach to the TM estimation problem using Big Data processing techniques
and tools is presented, which to the best of our knowledge is the first attempt to use
this approach. The proposed approach can produce the estimated TM between all
OD pairs in the network in near real time, as well as the traffic volume in each active
link in the network. Using the power of Big Data processing tools, the proposed
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approach also produces what is called here the actual TM between all OD pairs.
The actual TM is the difference between the currently calculated throughput and
the last calculated throughput for each OD pair [18]. This TM enables network
managers to keep track of the traffic evolution between any OD pair in near real
time.

– A direct measurement infrastructure to collect and process traffic data generated
by the OF switches. The Big Data traffic monitoring method shows that direct
measurement can be feasible if an appropriate infrastructure is provided, not only
for collecting the counters, but also for aggregating the collected data.

• Big Data traffic analysis method.

– A novel method for traffic analysis based on Big Data batch processing is presented.
The method establishes the data dependency between the network resource statis-
tics and traffic analysis of the resources. The generated traffic analysis can also be
used to provide the historical behaviour of the network resources.

The methods proposed in this research work can help network administrators and mon-
itoring applications to analyze the behaviour of network traffic and resource utilization. In
general, these users perform TE activities to maintain healthy behaviour in the network traffic.
The decisions made are based on information about the traffic in the devices and on resource
utilization. This information plays a crucial role in decision-making. The more detailed the
information, the better is the chance of a good response to an unexpected event. The proposed
traffic monitoring and analysis methods provide a detailed view of network traffic and can help
to improve both manual and automatic decisions.

For data center environments that can be reconfigured by ”autonomic managers”, the pro-
posed methods provide continuous online traffic statistics and historical traffic analysis. These
operations provide two main benefits to autonomic managers: (i) a wide range of traffic data
are available to make decisions on dynamic reconfiguration, and (ii) once the decisions have
been made and deployed in the network, the autonomous system can validate reconfiguration
results by continuously incorporating the data provided by the proposed methods. This loop
can operate without human intervention if the system requirements are met. The TE approach
presented in Figure 1.1 shows that the proposed methods work together to provide data for
the Flow Management, Fault Tolerance, and Topology Update activities to perform decision-
making.



1.3. Thesis Organization 7

1.3 Thesis Organization

This thesis is organized as follows:

• Chapter 2 presents necessary background concepts to understand the scope of the re-
search. It starts by presenting a review of software-defined networking and introduc-
ing the OpenFlow protocol and the activities of traffic engineering. In sequence, it
presents the Big Data concepts used in this research, such as processing of streaming
data, MapReduce, and Lambda Architecture.

• Chapter 3 presents an extensive review of research studies related to SDN traffic moni-
toring and traffic matrix estimation, which are the main contributions of this thesis.

• Chapter 4 presents the Big Data traffic monitoring method. The activities that compose
the monitoring method are presented in detail. The description and definition of the data
used to provide the statistics and the algorithms that collect these data are also presented.

• Chapter 5 presents the implementation of the Big Data traffic monitoring method. The
SDN controller and the components of the implementation are described, as well as the
deployment environment.

• Chapter 6 presents the MapReduce approach to estimating the TM. The approach in-
cludes the definition of basic data structures as well as the data collected to estimate the
TM.

• Chapter 7 presents the proposed Big Data traffic analysis method. An activity diagram
is presented based on the hierarchical data dependency needed to generate the traffic
analysis.

• Chapter 8 presents an evaluation of the results obtained by implementing the proposed
methods.

• Chapter 9 summarizes the thesis contributions and presents future work.



Chapter 2

Background

This section presents background concepts used in this thesis. The first section provides an
introduction to SDN, describes the OF protocol and the activities of traffic engineering. Sec-
tion 2.2 introduces Big Data concepts related to the streaming process and the MapReduce
programming paradigm, which is the basis for the solution presented in Chapters 4, 6, and 7.
Section 2.2 also introduces the concept of Lambda Architecture, an architectural solution used
in Chapters 4, 6, and 7.

2.1 Software-Defined Networking

Current hardware-centric networks pose several operation and management challenges [1, 28].
The core of such a network’s infrastructure contains forwarding devices like switches and
routers. These have two logical components for traffic management: the control plane (which
decides how to handle network traffic) and the data plane (which forwards traffic based on deci-
sions made by the control plane) [3, 10, 29]. This approach makes management of traffic flows
very time-consuming especially for large networks, because any new configuration has to be
implemented manually in each device. Furthermore, different vendors have their own sets of
rules to configure their devices, making the management task even harder.

A new network architecture has been proposed to overcome the problems and limitations
of traditional networks. Software-defined networking (SDN) can be defined as ”an emerging

architecture that is dynamic, manageable, cost-effective, and adaptable, making it ideal for

the high-bandwidth, dynamic nature of today’s applications. This architecture decouples the

network control and forwarding functions enabling the network control to become directly

programmable and the underlying infrastructure to be abstracted for applications and network

services.” [30]. The main idea of SDN architecture is to split the control plane from the data
plane (which just does forwarding). One consequence of this approach is that the control logic

8
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is implemented in a logically centralized controller and that network switches simply forward
packets. The controller is now programmable, making it possible to establish dynamic routes
for network packets. Figure 2.1 shows the deployment of control and data planes in traditional
networks and SDN.

Compared with traditional networks, SDN provides the following advantages:

1. Global control. The controller has a global view of the network topology, network status,
and application requirements.

2. Programmability and flexibility. The data plane can be dynamically programmed to
improve network resource allocation.

3. Openness. Communications between the controller and forwarding devices do not de-
pend on the device suppliers.

Figure 2.1: High-level illustration of control and data plane deployment (adapted from [1]).

SDN structure is presented in Figure 2.2. The components are described below [1, 3, 10,
29, 31]:

• Data-Plane Layer. Represents the interconnected forwarding devices. These devices
have a set of instructions that specify actions to be taken on incoming packets (e.g.,
forward to specific ports, forward to the controller, rewrite header, drop temporarily or
permanently).

• South-Bound Open APIs. Defines the set of instructions used for interaction between
control-plane elements and forwarding devices. These also defines the communication
protocol between them.

• Control-Plane Layer. Manages the forwarding devices using a controller (a network
operating system (NOS) [4, 32]) to achieve specific application goals, and also provides
an abstract view of the entire network infrastructure.
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• North-Bound Open APIs. SDN Controllers provide services for applications by means
of APIs. These APIs represent the northbound interface.

• Application layer. Applications benefit from decoupling between the control and data
planes. They can use the northbound API to implement special purpose operations such
as routing, monitoring, and traffic engineering.

Figure 2.2: Basic SDN architecture [2].

A flow, in general terms, is a sequence of packets that traverse the network and that share
a set of header field values such as the same source and destination IP addresses, the same
VLAN identifier, and the same MAC address [10, 31]. Each new flow needs permission from
the controller, which checks the flow against network policy. The SDN controller determines
which flows are allowed to go through the data plane. More specifically, the first packet of
every new flow is sent to the controller by the data plane to obtain permission to continue in
the network and also to obtain its route across all the forwarding devices established.

SDN supports a centralized and distributed architecture. In a centralized architecture, one
single controller manages the entire network. This controller must have a global view of the
network topology and keeps track of all information about flows and loading on each forward-
ing device [33]. This centralized controller offers a single point of management for all network
devices, but also presents several limitations such as lack of scalability and fault tolerance. Be-
cause the first packet of every new flow is forwarded to the controller, if the number of flows
or the number of devices increases, the controller can easily become a bottleneck. Moreover,
if the controller fails, the entire network can become unstable.
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A distributed architecture shares the control function among several controllers (Figure 2.3).
This solves the single point of failure problem and offers the following benefits [31]:

• Scalability. The number of devices that a single controller can manage is limited. Using
multiple controllers helps distribute the load.

• Privacy. A set of devices can be assigned to customers who want to implement their
own privacy policies. In this case, the controller managing these devices can protect
information that customers do not want disclosed.

• Incremental deployment. Dividing device management among several controllers en-
ables flexible incremental device deployment.

The distributed architecture introduces the need for controllers to communicate with each
other. For this purpose the east and west bound APIs are used. Currently, the implementation
is not standardized, and therefore each controller implements its own APIs [3]. The Internet
Research Task Force has proposed a protocol called SDNi [34] to exchange information be-
tween SDN Domains Controllers. An SDN domain is a set of devices controlled by a single
controller.

Figure 2.3: Distributed architecture (Adapted from [3]).

2.1.1 OpenFlow

According to Stallings [31], to implement an SDN, two requirements must be met:

• A common logic architecture must be present in all network devices managed by the
controller. Even if different vendors implement this logic in different ways, the controller
must see a set of uniform functions.

• A standard secure protocol must be used for communication between the controller and
devices.
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OpenFlow has met these requirements by providing a specification of the logical format
of network switching functions and also by being a communication protocol between con-
trollers and devices. The OpenFlow architecture consists of switching equipment managed by
an OpenFlow controller (Figure 2.4). OpenFlow is defined by the Open Networking Founda-

tion (ONF) in the OpenFlow Switch Specification [5].

Figure 2.4: Basic OpenFlow architecture (Adapted from [4]).

The main activities of an OpenFlow switch are based on a flow table. In cases where more
than one flow table exists, they are organized as a pipeline (Figure 2.5). A flow table consists
of flow entries and each entry has six parts (Figure 2.5). Match fields are used to match against
incoming packets and consist of the ingress port and packet headers. Instructions modify the
action set of pipeline processing. Counters are updated when packets are matched. Timeouts

specify the maximum amount of total time or of idle time before a flow is expired by the
switch. Priority is used for matching precedence of flow entries. Cookie is the opaque data
value chosen by the controller. The controller can use Cookie to filter flow statistics, flow
modifications and flow detection.

Every flow table must accommodate a table-miss flow entry. This entry specifies the action
in case a packet does not match any of the entries in the table. In this case, the packet can be
forwarded to the controller, dropped, or directed to a subsequent table. The table-miss entry
has basically the same behavior as any other flow entry. It is not included by default, and the
controller can add or remove it at any time.

In terms of an individual OpenFlow switch, a flow is a sequence of packets that matches a
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Figure 2.5: OpenFlow device.

specific entry in a flow table [31].
The Instruction part is a set of instructions that is applied to all matching packets. With

these instructions, it is possible to modify the state of a packet, direct the packet to a specific
port, forward the packet to another table, and pass metadata across the pipeline. Each packet
is associated with an action set, which is a list of actions that are stored while the packet is
processed by each table and executed when the packet leaves the pipeline. Actions can drop,
modify, queue and forward packets [5].

When the device receives a packet, it proceeds in the following way [5, 31] (Figure 2.6):

1. Perform a table lookup in the first flow table, trying to find the highest-priority match. In
case there is no match and no table-miss entry, the packet is dropped. In case of a match
only on a table-miss entry, one of three procedures is specified:

(a) Forward the packet to the controller. In this case, the controller can create a new
flow for this packet or simply drop it.

(b) Forward the packet to another flow table in the pipeline.

(c) Drop the packet.
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2. In case of a match on one or more entries, the match selected is the one with the highest
priority value. The procedures specified for this case are:

(a) Update counters.

(b) Execute the instruction present in this entry. This instruction may update the action
set, update metadata, and execute actions.

(c) Forward the packet to a table in the pipeline or to an output port.

3. If the packet is sent to an output port, the action set is executed, and the packet is queued
for output.

Figure 2.6: Packet flow through an OpenFlow switch [5].

Counters are an important component of a flow table. They are available for each flow
table, flow entry, port, queue, group, etc. The OpenFlow 1.4 specification defines a set of
counters, but a switch is not required to support them all (Table 2.1).

The scope of this research is located in the application layer (Figure 2.2), more specifically
in traffic engineering. The next section provides an overview of this application.

2.1.2 Traffic Engineering

Traffic Engineering (TE) plays an important role in network performance optimization by an-
alyzing real-time traffic, predicting traffic, and designing routing mechanisms to improve uti-
lization of network resources [16, 17]. Using SDN in a network provides a more effective way
to perform TE and to improve network performance [35].
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Counter Bits
Per Flow Table

Reference Count (active entries) 32 Required
Packet Lookup 64 Optional
Packet Matches 64 Optional

Per Flow Entry
Received Packets 64 Optional
Received Bytes 64 Optional
Duration (seconds) 32 Required
Duration (nanoseconds) 32 Optional

Per Port
Received Packets 64 Required
Transmitted Packets 64 Required
Received Bytes 64 Optional
Transmitted Bytes 64 Optional
Receive Drops 64 Optional
Transmit Drops 64 Optional
Receive Errors 64 Optional
Transmit Errors 64 Optional
Receive Frame Alignment Errors 64 Optional
Receive Overrun Errors 64 Optional
Receive CRC Errors 64 Optional
Collisions 64 Optional
Duration (seconds) 32 Required
Duration (nanoseconds) 32 Optional

Per Queue
Transmit Packets 64 Required
Transmit Bytes 64 Optional
Transmit Overrun Errors 64 Optional
Duration (seconds) 32 Required
Duration (nanoseconds) 32 Optional

Table 2.1: List of counters.

SDN traffic engineering can benefit from SDN characteristics to help solve its problems,
which can be divided into flow management, fault tolerance, topology update, and traffic anal-
ysis and characterization [2]. Each of these topics presents several issues, including the ones
depicted in Figure 2.7.

According to the basic operation of packet flow management described in Section 2.1.1, if
a packet does not match any entry in the flow table other than the table-miss, this packet can
be directed to the controller. This is usually the case for the first packet of every new flow [3].
In this case, the controller sends a forwarding entry to be installed in the flow table so that all
subsequent packet of this flow can be forwarded without interacting with the control plane. If
the network traffic presents a high number of new flows, significant overhead can result in the
controller and in the data plane. The flow management component of TE should address this
issue by balancing the load between switches and controllers.

Network reliability is based on the capability for fast recovery in case of failures in network
components (controllers, switches, or links) [36]. Fast failure recovery is very challenging
because the controller must calculate new routes and broadcast them to all affected switches.
In addition, the limited flow-table resources at switches must be taken into account because
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Figure 2.7: Scope of traffic engineering [2].

new entries will be added to the flow table of the affected switches.

The topology function update manages planned changes such as updating network policy
rules instead of component failure. The controller dynamically configures the new global pol-
icy rules. This task must maintain the consistency of policy rules across switches because
during this update, packets may be handled by different rules in different switches. Moreover,
during the update, some packets may be dropped or delayed, causing poor network perfor-
mance. Updating topology is even harder for a large network because it must be accomplished
in near real time.

Traffic analysis plays an especially critical role in detecting network or link failures and
predicting link congestion or bottleneck. Monitoring tools are the basic elements of this critical
task. To achieve good monitoring, three aspects are important [17]:

1. Network parameter design and monitoring technologies

• Network parameters are values that reflect current network status. The choice of
these parameters is a precondition for good network management. Three types of
parameters are essential for monitoring: i) Network topology parameters represent
the number of nodes, link bandwidth, connections structures, and port status; ii)
Network traffic parameters represent the number or speed of the packets that cross
forwarding devices; and iii) Network performance parameters represent per-flow
metrics such as throughput, delay, packet loss, etc. [19].

2. Generic measurement framework
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• Several SDN measurement systems use traditional IP network traffic methods, ran-
domly sampling local packets to obtain traffic statistics.

3. Traffic analysis and prediction

• The goal is to identify anomalous traffic and analyze the possible presence of net-
work congestion. The data provided will help improve traffic scheduling and man-
agement.

This thesis focuses on monitoring technologies, generic measurement framework and traffic
analysis.

2.2 Big Data

The term Big data refers to various types of large and unstructured datasets that cannot be
processed with conventional data processing systems in a reasonable time [37]. Size is the first
characteristic used to understand big data [38], but it is not the only one. Laney [39] suggested
three dimensions to characterize big data: Volume, Variety, and Velocity (Three V’s). Volume
refers to the huge amount of data produced by applications. Variety relates to the presence
different data formats in a dataset. Different technologies enable the use of structured data
(spreadsheets, relational databases), unstructured data (text, images, audio, video), and semi-
structured data (XML). Velocity refers to the speed at which data are generated and analyzed.
In addition to these three dimensions, other V’s are also associated with big data: Veracity,
Variability, and Value [38]. Veracity (introduced by IBM) refers to the presence of imprecise
and uncertain data in some sources. Variability refers to the different flow rates of data. Value
(introduced by Oracle) expresses the concept that data received in their original form generally
presents low value relative to their volume.

2.2.1 Processing of Streaming Big Data

Batch and real-time are two types of data processing for big data. Choosing the more suit-
able type of processing for a specific application depends on the type and sources of data, the
processing time needed, and whether immediate action is required [40]. Real-time processing
involves continuous input, processing, and output of data and is needed when immediate action
must be taken based on the processed data.

Streaming Big Data is characterized by data streams in which data are received as a contin-
uous, infinite, rapid, unpredictable and time-varying sequence [23]. Some streaming Big Data
applications are monitoring (network traffic, sensor networks, health care, etc.), surveillance,
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and financial transactions. For these types of applications, response time and throughput are
critical. This means that most streaming Big Data applications have real-time requirements.

According to Stankovic et al. [41] there are eight misconceptions in real-time data man-
agement, of which one of the most important is ”real-time computing is fast computing”. Fast
processing does not mean that real-time constraints are satisfied. Moreover, the meaning of
”real-time processing” depends on the application. For some applications, real time means
milliseconds, whereas for others, it means microseconds [42].

According to Shahrivari [43] the term ”real-time” in Big Data is more related to interactivity
than to millisecond response. Real-time query processing in a Big Data environment should
return results in the order of seconds or minutes, as opposed to batch jobs that usually finish in
hours or days.

The monitoring method proposed in this thesis provides results in order of seconds, and,
therefore it can be considered as providing monitoring results in real-time.

2.2.2 MapReduce

MapReduce is a programming paradigm for processing large volumes of data [6, 27, 44] in
parallel. The idea behind MapReduce is to distribute the data and the processing among several
nodes for horizontal scalability. According to the name, the MapReduce model contains two
phases:

• Map phase. In this phase, multiple map jobs read blocks of data and process them to
produce key-value (〈K,V〉) pairs. Several map jobs can be executed to generate interme-
diate 〈K,V〉 pairs.

• Reduce phase. In this phase, reducer jobs read the 〈K,V〉 pairs generated from multiple
map jobs and aggregate or group them by key, producing the final output.

In the MapReduce flow (Figure 2.8), the data to be processed are first divided into splits,
and the master node assigns these splits to map workers’ nodes. Each worker processes its own
splits to generate intermediate files with 〈K,V〉 pairs. The reduce workers, driven by the master
node, process the intermediate 〈K,V〉 pairs according to their reduce functions to provide the
final output.

Figure 2.9 shows how to perform a word count on a sequence of words using MapReduce.
The goal is to find and count the number of occurrences of unique words in the sequence.

Initially, the sequence is divided into four splits. The map functions (M1...M4) act on each
split to generate a 〈K,V〉 pair, where each word is the K and the numeric constant 1, the number
of occurrences of the word, is the V . After the map phase, sorting and shuffling processes send
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Figure 2.8: MapReduce flow [6].

the tuples with the same key to the corresponding reducer (R1...R4). Now each reducer has a
list of unique keys with their corresponding values and adds all the values to get the final result.
The final result is provided in the output file.

Figure 2.9: MapReduce example (Adapted from [7]).

The MapReduce paradigm [44] can process a significant number of real-world problems. A
complex problem may involve several MapReduce operations and can be time- and resource-
consuming. To tackle this problem, two flavours of MapReduce implementations are available,
Hadoop and Spark. These tools differ from each other not only by their data flow operators [27]
but also by their approach to intermediate files. Hadoop keeps the intermediate files on disk,
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whereas Spark keeps them in memory. This difference suggests the use of Hadoop for batch
processing and Spark for real-time processing. Spark can also be used for stream processing
using a framework called Spark Streaming. Spark streaming processes stream data in micro-
batches, where every micro-batch contains the messages that arrived over the previous micro-
batch period. Spark and Spark streaming processing are the basis of the MapReduce approach
presented in this research.

2.2.3 Lambda Architecture

The Lambda Architecture (LA) is a Big Data system composed of a series of layers [8]. The
idea behind the LA is to build a system that can process and produce different views of the
data. A system built based on the LA can process stream and batch data. The LA consists of
three layers: the speed layer, the batch layer, and the serving layer, as shown in Figure 2.10.

The speed layer receives a stream of data, processes them, and updates the real-time views.
The speed layer performs incremental processing, does not keep historical records of the data,
and processes the incoming data using stream processing platforms. In contrast, the batch layer
repeatedly processes all the available data in the master dataset. Hence, when a batch job starts,
the entire set of data in the master dataset will be reprocessed. The idea is that the next job
will automatically process the data that do not arrive on time to be processed by the current
job. As a result, each batch job replaces all the batch views. The serving layer stores the views
produced by batch processing on the master dataset. The query processor collects data from
the real-time and batch views to reply to users’ queries.

The speed layer and the batch layer have different processing requirements, i.e. the speed
layer processes a small amount of data with quick response, whereas the batch layer processes
a large amount of data (historical data) with slower response. Consequently, they require dif-
ferent technologies to match their processing requirements. The serving layer demands tech-
nology for storing a large volume of data and producing a quick response to users’ queries. The
LA, being a design for Big Data processing, allows the use of various processing and storing
technologies.

2.3 Summary

This chapter has introduced the main concepts used in this thesis. The initial section presented
the concept of SDN, described this new approach for computer networking, and also described
the activities of traffic engineering which are the focus of this thesis. Next, Big Data processing
was presented, with a focus on the MapReduce approach and Lambda Architecture.
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Figure 2.10: Lambda architecture (Adapted from [8]).

The next chapter provides a broad review of the academic literature related to the contribu-
tion of this research.



Chapter 3

Literature Review

This chapter presents research studies related to this thesis, which are divided into two cate-
gories: Traffic monitoring and Traffic matrix estimation.

3.1 Traffic Monitoring

For traditional IP networks, monitoring techniques such as NetFlow [45] and sFlow [46] are
available. NetFlow, developed by Cisco, delivers statistics about individual IP flows by main-
taining a flow cache that tracks statistics for each flow. It provides detailed data about each
flow, such as source and destination IP addresses, byte count, packet count, and port number.
sFlow uses time-based sampling to estimate the number of packets and bytes in each flow by
multiplying the number of sampled packets and bytes by the sampling ratio.

Many traffic monitoring tools have been proposed for OpenFlow networks. OpenNet-
Mon [19] was developed to determine whether end-to-end QoS requirements are met and to
enable TE applications to compute appropriate paths. It is implemented as a module inside the
SDN controller and polls edge switches to collect flow statistics at an adaptive rate to determine
throughput, packet loss, and delay. OpenNetMon uses an adaptive rate for switch polling.

FlowSense [47] proposed a passive monitoring method by which the network informs the
application of performance changes instead of polling the switches on demand. To achieve
a low communication overhead, FlowSense uses PacketIn and FlowRemoved messages to
estimate per-flow link utilization. FlowSense works best in networks with small flows.

Lavanya et al. [48] proposed a measurement framework where OF switches match packets
against a small set of rules and update the counters for the highest-priority match. These
rules are dynamically updated by the controller to identify large traffic aggregates quickly.
Their solution programmed the switches to handle all incoming packets, to reduce controller
overhead.

22
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Planck [49], which is a network measurement architecture, used port mirroring to collect
network traffic information at 280µs-7ms timescales on a 1 Gbps commodity switch and 275µs-
4ms timescales on a 10 Gbps commodity switch. Port mirroring enables traffic monitoring by
replicating the traffic going to an output port to a designated monitor port. Planck configured
the switch such that the traffic going to multiple output ports was replicated to each monitor
port and was used to drive a TE application to reroute congested flows in milliseconds.

Chowdhury et al. [50] proposed Payless, a monitoring framework for SDN. Payless was
designed to use the OpenFlow controller’s northbound API to collect flow statistics from the
controller. To avoid continuous polling of switches for traffic statistics by the controller, Payless
proposed a flow statistics collection algorithm that polls the switches at variable frequency.
Payless sends, on average, 6.6 monitoring messages per second, in contrast with 13.5 messages
per second for periodic polling. This algorithm achieves accuracy as high as continuous polling
with lower network overhead. Furthermore, Payless provides a RESTful API for developing
network monitoring applications. This API provides interfaces for collecting flow statistics at
different levels (flow, packet, and port). The overhead imposed by Payless is low compared to
controller overhead.

OpenSample [51] leverages sFlow packet sampling to provide near real-time measurements
of both network load and individual flows. OpenSample captures packet header samples and
uses TCP sequence numbers from these packets to reconstruct flow statistics. At the same time,
OpenSample uses the packet samples to estimate port utilization.

OpenSketch [52] proposes a three-stage data plane pipeline for SDN. A measurement li-
brary for automatic data plane configuration is built. This library enables the development of
new stream algorithms to monitor flows in commodity switch components.

An available bandwidth measurement application was proposed by Megyesi et al. [18].
Their application can travel the network topology and track bandwidth utilization over net-
work links. As a result of this procedure, the application can calculate the available bandwidth
between any two points in the network. By periodically polling the SDN controller, the appli-
cation can calculate the current load on each link.

Luong et al. [20] proposed a solution for monitoring throughput of link traffic and a new
forwarding algorithm for the control plane. These are based on two modules for the SDN
controller. The Throughput Monitor module focusses on the number of packets and bytes that
cross the switch. The Packet Forwarding module implements the forwarding algorithm. The
statistics provided by the Throughput Monitor module are available for use by any monitoring
application. In the proposed approach, throughput statistics are used on each port to provide
aggregated statistics at different levels of resource monitoring. This makes it possible to pro-
vide this information to monitoring applications by persisting the computed aggregated values
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in a NoSQL database.

Sinha et al. [53] proposed an on-line per-flow and per-port monitoring and measuring ap-
proach to provide packet loss statistics in SDN. This study included experiments that monitored
flows between two pairs of origin-destination hosts, unlike the present study that monitors traf-
fic between all host origin-destination pairs in the topology.

Suárez-Varela and Barlet-Rois [54] presented a scalable flow-based monitoring solution
for OF switches like NetFlow/IPFIX. Two sampling methods were designed to reduce both
controller overhead and the number of entries in the flow tables. One basic difference between
their solution and the present one is that the approach proposed here monitors ports instead of
flows and does not use sampling methods.

SDN-Mon [55] was developed to monitor flows and free the controller from monitoring
activity, enabling the controller to insert more general forwarding rules with wildcards in the
switch. SDN-Mon contains two modules: a controller-side module, and a switch-side module.
The controller-side module enabled flexible monitoring in the SDN controller. The switch-side
module provided components to handle the monitoring functionality in the switches.

Suárez-Varela and Barlet-Rois [22] presented a flow monitoring and classification solution
for OF switches. Their flow monitoring system uses a sample-based approach. A set of entries
are installed in the switch to enable identification of the traffic to be sampled. When a packet
arrives in the switch, a match operation is performed to check whether the packet is in one
of the per-flow monitoring entries. If it matches, the packets and byte counters are updated.
Suárez-Varela and Barlet-Rois [56] also presented an alternative monitoring method based on
matching on ports for switches with no support for IP masks with suffixes. Their method
consisted of installing a set of entries in the switch to enable direct discrimination of the traffic
to be sampled. Consequently, only the first packets of these flows are sent to the controller, and
the controller installs reactive specific flow entries to sample these flows.

Hartung and Körner [57] proposed SOFTmon, a traffic monitoring application that could
provide charts and statistics up to flow level. SOFTmon supports flow monitoring only for
the network layer, which means that a flow needs to have valid IPV4 entries in the source
and destination addresses as well as Ethernet source and destination addresses to become a
selectable item in SOFTmon.

Hendriks et al. [58] also used a per-flow statistical measurement approach. They evaluated
the quality of measurements of OF devices from multiple vendors to show that it was imprac-
tical to deploy the OF device measurement-based approach in a network containing devices
from multiple vendors.

FlowMon [59] provided a sample-and-fetch-based mechanism to detect large flows. Flow-
Mon consists of two stages: a sampling stage and a counting stage. The sampling stage, using
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packet sampling, finds suspiciously large flows. The counting stage uses the flow table count-
ing method to determine the truly large flows among the suspicious ones.

Afek et al. [60] developed a packet sampling mechanism and algorithms to detect large
flows with a good and practical trade-off between switch and controller traffic. Their paper
presented various methods to sample packets in an SDN switch that could be used indepen-
dently of the large flow detection algorithm. The sample methods define the rate for creating
counting rules in the switches and the rate for sampling packets from the switches.

Tahaei et al. [21] proposed an architecture to pull statistics using local controllers and for-
ward them to an upper-layer application to aggregate counters and model a universal flow
measurement in the network. According to their design, several controllers connect to the OF
devices, and these controllers install wildcards for all requested flows in a single group. After-
wards, aggregated pull requests are used to collect statistics and send them to a coordinator for
aggregation of network traffic.

Frunza et al. [61] developed and implemented a monitoring tool for SDN. Their monitoring
station is not part of the SDN topology, i.e., it does not connect to the SDN controller, but rather
is part of a traditional TCP/IP network. The monitoring station sends requests for statistics
messages directly to the OF switch and receives the requested data through a tunnel. In this
case, the monitoring station is acting as an SDN controller in the sense that the sent messages
are OF messages and not API messages.

Rezende et al. [62] proposed SDNMon to monitor the data plane and to improve topology
information at the control plane. The goal of SDNMon is to provide bandwidth and latency
at two granularity levels, Per-Port and Per-Flow. SDNMon is implemented as an extension
module of the SDN controller. Based on the network topology, SDNMon exploit threads to
collect selected port and flow statistics and uses two monitoring approaches: (i) the sFlow pro-
tocol and (ii) a polling mechanism. SDNMon enables the implementation of other monitoring
approaches through a Monitoring Interface.

Cheng et al. [63] proposed a compressive traffic monitoring method to collect real-time
load information on network links in hybrid SDN. The idea behind their proposal was to col-
lect the traffic information for a small subset of essential links and then to estimate the traffic
information for the remaining links. They initially showed that traffic information in all links
could be represented by what they called basic links. They created a method to identify the
basic links in a network. Once the basic links had been identified, the next step was to connect
the basic links to SDN switches and collect their traffic information from the SDN controller.

Lin et al. [64] proposed DTE-SDN, a TE engine to schedule the transfer of delay-sensitive
traffic. DTE-SDN was implemented in the application layer using the northbound API to com-
municate with the SDN controller and contains three modules: (i) a topology-aware module
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that discovers the network topology, (ii) a monitoring module that, based on the network topol-
ogy provided by the previous module, monitors the bandwidth and link delay of each network
link, and (iii) a scheduling module that, based on the statistics collected by the monitoring
module, performs multi-path routing of delay-sensitive traffic based on QoS metrics.

Shen [65] proposed a monitoring application, called SDN-monitor, to monitor selected OF
switches with the aim of reducing resource consumption. His solution provides an algorithm
divided into two phases. The first phase, the monitoring point selection phase, selects the
switches to monitor by scanning all switches in the network and counting their flows. The
algorithm sorts the switches in descending order according to their number of flows. Iteratively,
the algorithm selects the switches with the highest number of flows, which collectively cover
more flows. At the end of this process, the algorithm removes the covered flows from the
unselected switches. The second phase, the flow re-routing phase, tries to combine the switches
with the lowest re-routing cost to re-route the flows covered by the selected switches.

Wang and Su [66] proposed FlexMonitor, a flexible monitoring framework. FlexMonitor
was implemented as an SDN controller module and contains four modules. The first module
interprets requests from the upper applications and chooses an appropriate monitoring strategy
based on application needs. The second module carries out monitoring tasks by deploying
specific monitoring strategies in the network. The third module collects monitoring data from
the network or hosts using various monitoring approaches. The last module aggregates the
raw monitoring data coming from the previous module. FlexMonitor provides the following
monitoring strategies: switch selection, OD host pair selection, and event definition.

Madanapalli et al. [67] designed and implemented a solution for detecting and monitoring
elephant flows. Their solution contains three stages, of which the first one monitors traffic
flows. The traffic flow monitoring stage is designed to be a ”bump-in-the-wire”1 on the mon-
itored link. A software inspection engine receives the packets that need to be inspected, thus
protecting the SDN controller from overload, and the software inspection engine performs link
monitoring.

Cohen and Moroshko [68] proposed a sampling-on-demand monitoring framework that
enables the SDN controller to establish the sampling rate of each flow at every switch. The
network operator sets this rate according to the monitoring goal. The proposed framework
consists of three components. The first component, the Sampling Management Module, is
deployed as an SDN controller module. The OF switches host the second component, which
is the Sampling Module. The third component is a Collecting Server located in the network to
collect and process the sampled packets. Their framework defines a new OF message called

1a communications device inserted into existing systems to enhance integrity, confidentiality, or reliability
without altering the communications endpoints.
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OFPT RATE MOD, which is sent by the Sampling Management Module to the switches. This
message informs the switch of the sampling rate for each flow. The Sampling Module deployed
in the switches samples the flows based on the specified rate, and the Collecting Server collects
and processes the sampled packets.

Wang et al. [69] proposed Woodpecker, a system to detect and mitigate link-flooding attacks
in SDN. To locate congested links, Woodpecker installs flow rules as measurement triggers in
the OF switches. When a packet crosses the OF switch, the counters are updated, and the
switch computes the byte rate of some specified flows based on the counter values. When the
flow values activate the triggers, the switch sends a message to the controller.

Tsai et al. [70] proposed an adaptive flow measurement method to monitor SDN-based
cellular core networks. Their proposed method starts observing the appearance and expiration
of flows, and a table keeps track of the active flows. The next operation groups flows by their
polling frequency, which can be set to static or dynamic. A log collector sends queries to
collect flow status at a specific polling frequency and stores the retrieved data in a database.
Lastly, a flow analyzer arranges and processes the stored data to provide useful information.

Tangari et al. [71] presented a self-adaptive and decentralized framework for resource mon-
itoring in SDN. The framework defines a set of Local Managers (LMs), distributed over the
network, with each LM monitoring a set of OF switches using the Monitoring Module (MM).
Monitoring applications use the MM to add new monitoring requirements and to receive the
measurement results. The MM uses a self-tuning adaptive monitoring approach to collect
statistics from the switches. The goal of adaptive monitoring is to achieve a good trade-off be-
tween accuracy and resource consumption by continuously adapting the time T , i.e., the time
between two consecutive measurements. The MM also stores the collected data in RAM and a
database and provides a synchronization interface for the LM exchange messages.

CA Technologies [72] and ExtraHop [73] provide commercial SDN monitoring systems.
The description of the features of their products provides a list of functionalities briefly high-
lighting some of the main monitoring components of the applications. The available documen-
tation does not provide enough details to perform a comparison on how their products collect
and generate the statistics on network resource utilization.

These previous efforts have provided a series of tools for SDN traffic monitoring. De-
spite their contribution, this research work has identified some gaps to be tackled. The tools
presented so far are not based on a monitoring method, but on algorithms to solve specific
monitoring problems such as monitoring flows and links. There is no process definition of how
to collect, organize, and process the collected data. Some primary activities, such as storing
the collected data for further processing and aggregating the generated statistics, are designed
according to their proposed application. These tasks are part of all proposed algorithms but are
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performed in a variety of distinct ways. One of the main problems with this approach is the
paucity of the results provided. The proposed algorithms cannot deliver monitoring at a fine-
grained level, and the results do not provide many insights into network performance. Usually,
one specific value is provided, such as throughput, link delay, or packet loss.

To overcome these problems, this research study has proposed a novel method for monitor-
ing network traffic based on Big Data techniques. The proposed method establishes a process
to collect counter data, store and process them to produce network statistics, and persist the
obtained statistics.

One of the main benefits of Big Data techniques is that, unlike previous efforts that usually
selected the resources to be monitored, the proposed approach focusses on collecting statistics
from all active devices in the network. In this differentiated approach, once these statistics have
been collected, a fine-grained statistical analysis of network resources, such as the ratio of each
port to the switch load and the throughput capacity used on each port, path, and switch, is
provided. This route-level aggregation provides an estimate of the network traffic matrix. All
these throughput utilizations are estimated every three seconds; no other method has proven to
be able to provide this information within this time constraint. Big Data streaming processing
tools are used to provide near real-time statistics, which, to the best of our knowledge, is the
first attempt to use this technology to generate this aggregation level.

This research study also identified that the values generated by previous monitoring appli-
cations were not used for traffic analysis, which provides a variety of information that can help
to identify problems such as traffic congestion and trends. This research study also proposes
a novel method for traffic analysis based on Big Data batch processing to scrutiny network
resources utilization based on historical data.

3.2 Traffic Matrix Estimation

For traditional IP networks, several approaches have been used to estimate TM. Soule et al. [74]
created a state space model to capture temporal and spatial correlations between a pair of hosts
and Kalman Filters used to estimate and predict TMs. Xie et al. [75] proposed a Sequential
Tensor Completion algorithm (STC) to recover missing Internet traffic data and also proposed
a Reshape-Align scheme [25] to reshape inconsistent traffic matrices and align these matrices
to form a tensor. Papagiannaki et al. [26] proposed a distributed measurement scheme based on
limited use of flow measurement data and discussed the topic of traffic matrix estimation using
direct measurement. They outlined the computation, communication, and storage overheads to
generate traffic matrices at different granularity levels.

Yuan et al. [76] presented ProgME, a Programmable MEasurement architecture based on
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the concept of flowset (an arbitrary set of flows) to overcome the scalability challenges faced
when measuring a large number of flows. ProgME can dynamically re-program the definitions
of flow set based on user queries and can derive the traffic matrix. Guo et al. [77] proposed
a framework to optimize the routing over multiple TMs in a hybrid SDN network. The basic
idea was to cluster historical TMs and calculate the weight coefficient of every representative
TM. After the weight coefficient calculation, an expected TM was calculated that combine the
representative TM and the optimized OSPF weights over the expected TM.

The OF specification defines some flow counters that can be used to increase the accuracy
of the TM estimate. Tootoonchian et al. [78] presented OpenTM, a traffic matrix estimator for
OF networks. OpenTM was implemented as an application for the SDN controller to monitor
active flows by polling the switches periodically. Their work also explored different algorithms
for choosing which switch to query.

Yu et al. [79] proposed DCM, a per-flow monitoring system. DCM is based on bloom
filters [80] and uses three steps to process packets in the data plane. The first step matches
a packet with a wildcard monitor rule. The second step, called the admission bloom filter,
represents the set of flows to be monitored, but does not have wildcard rules. The last step
determines the corresponding monitoring actions for the flows in the admission bloom filter.

Polverini et al. [81] addressed the improvement of traffic matrix estimation. They developed
a valid criterion based on the flow spread parameter, which is a way to find a subset of traffic to
be measured to improve TM estimation. The flow spread parameter was used to characterize
the weight of each flow traffic measurement in the TM estimation enhancement. Polverini et
al. [82] also investigated an approach in which OF switches were introduced into a traditional
IP network to understand how the new capabilities of these OF switches affected traffic matrix
estimation. Their work showed that enhanced estimation accuracy was obtained by introducing
only a few OF switches performing simple tasks.

Tian et al. [83] proposed a new framework for TM estimation in an SDN-based Ip network.
Their work shows that if a flow’s traffic can be derived from other flows in the network, adding
a new entry for this flow for traffic measurement does not provide new information about the
TM. Consequently, their traffic measurement scheme guarantees that when a controller selects
a source-destination flow for measurement, the traffic for this flow cannot be derived from the
existing flows in the flow table, improving the efficiency of the flow table.

OpenMeasure [84] provided an efficient inference framework based on adaptive measure-
ment with on-line learning. OpenMeasure initially identifies the most informative flows and
creates a set of rules to be installed in the switches. Using the controller’s global view of the net-
work, OpenMeasure dynamically decides what rules are to be installed and in which switches
these rules will be deployed. The last action is to collect traffic statistics from switches to
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estimate the TM.

Maldoubi et al. [85] proposed SNIPER, a framework that combines SDN programmability
with matrix completion techniques. SNIPER initially measures a subset of matrix entries for
the attributes of interest (per-flow, size, delay, throughput, packet loss) directly, and then uses
matrix completion techniques to estimate unobserved entries of the attributes of interest.

iSTAMP [86] used a well-compressed aggregated flow measurement and the K most in-
formative flows to infer the TM. iStamp partitions the flow tables into two parts: the first for
aggregate measurements, and the second for per-flow monitoring of selected flows. Using these
two distinct parts, iStamp estimates the traffic matrix.

Gong et al. [87] proposed two strategies to design traffic measurement rules to be installed
in the OF switch flow tables. They assumed that rules for routing flows in each SDN are
aggregated whenever possible. These aggregated routing rules can be used to estimate the TM.
In their work, the aggregated rules are disaggregated to improve estimation accuracy. Li et
al. [88] developed a method to determine which flows are most informative and to construct a
measurement flow set iteratively until an accuracy requirement is satisfied or a measurement
resource constraint is reached.

Jiang et al. [89] developed an algorithm to estimate and recover the network traffic ma-
trix at fine time granularity from sampled traffic traces. Their algorithm is based on fractal
interpolation, cubic spline interpolation, and the weighted geometric average algorithm. Frac-
tal interpolation describes the regularity of irregular systems. This theory was used to select
the points and the time to obtain the samples and reconstruct the end-to-end network traffic.
The curve provided by fractal interpolation is not smooth. Cubic spline interpolation is used
to make the interpolation curve smoother. Because reconstruction errors are inevitable when
using fractal and spline interpolation, the algorithm also uses the weighted geometric average
algorithm to combine the previously mentioned interpolation approaches.

The previous studies mentioned earlier estimated the TM based on modelling and optimiza-
tion procedures. For modelling, mathematical models are used to estimate the TM based on
sampling mechanisms. This research has proposed an approach to the TM estimation problem
using Big Data processing techniques. The MapReduce approach proposed here uses a direct
measurement infrastructure to collect and process traffic data generated by the OF switches
and, with the help of Big Data tools, tries to minimize the TM estimation error. To perform op-
timization, a search for the most informative flows is performed. The approach proposed here
instead monitors the switch ports. Using this method, all traffic that crosses a link between an
OD pair is used to estimate the TM.
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3.3 Summary

This chapter has presented a review of academic research related to the contributions provided
by this thesis. The first section reviewed the state of the art in research projects in the SDN
traffic monitoring field. The last section reviewed research projects related to TM estimation
because one of the contributions of this thesis is a new approach to TM estimation.

The next chapter describes the proposed Big Data traffic monitoring method.



Chapter 4

Big Data Traffic Monitoring Method

This chapter1 presents the proposed Big Data trafffic monitoring method. It starts by estab-
lishing the resources monitored by the proposed method. Section 4.1 describes the proposed
method with its associated activities using the BPMN notation on the process diagrams.

4.1 Introduction

An OF switch maintains several counters, each of which reflects its own traffic, and which
are updated at each new packet. The Big Data traffic monitoring method probes the SDN
controller periodically to obtain the counter values for the resources being monitored within
the switch. Counters are maintained for several resources [91], but in the scope of this research,
the following resources are monitored:

• Switch ports,

• Flow tables,

• Flow entries.

The basic values provided by the counters in an OF switch can be used to provide network
bandwidth utilization at port and flow levels.

The Big Data traffic monitoring method includes three main activities, as depicted in Fig-
ure 4.1:

1. Data Acquisition. Loads network inventory and traffic data from the control and data
planes by means of the SDN controller.

1The content of this chapter has been published as a journal paper [90].
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2. Data Aggregation. Processes the acquired data, calculating network parameters [17] in
near real time.

3. Data Persistence. Stores and provides network inventory and parameters to traffic anal-
ysis systems.

Figure 4.1: Big Data traffic monitoring method.

These three activities are further detailed in the following sub-sections.

4.2 Data Acquisition

The Data Acquisition activity collects all the data needed in the Big Data traffic monitoring
method. The collected data can be categorized as inventory and streaming data. The inventory
data populate a repository, whereas the streaming data are collected and immediately sent for
further processing. Inventory data provides basic data about network resources and can be
used for different types of functionalities depending on the implementation. For instance, to
calculate the percentage of its own available bandwidth that a port is consuming, data about the
available bandwidth are stored in the inventory data. Figure 4.2 shows the entity-relationship
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(ER) model for the inventory data repository. Inventory data are kept in the Host, Interface,
Switch Port, Switch, FlowTable, and Flow entities. Inventory data can be defined as data that
are less prone to changes over time because they are related to the basic identification and
configuration of the network hardware (hosts and switches). Streaming data are related to the
counters provided by the OF devices. According to the OF specification, these counters are
updated at every packet that crosses the switch, and therefore, their rate of change is higher
than that of inventory data. If these counters are used for monitoring or any other type of
analysis, their values must be collected periodically. This requirement suggests that these data
should not be persisted in any repository and, once collected, should be immediately forwarded
for processing.

Figure 4.2: ER model for inventory data.

The description of the entity types depicted in Figure 4.2 is given below :

• Host. Identifies all computers connected to a network.

• Interface. Describes all the network interfaces available in a network.

• Switch Port. Describes all the ports available in a switch.

• Switch. Represents all the switches in a network.

• Flow Table. Represents all flow tables available in a switch.

• Flow. Describes all flows created in a switch.

The model presented in Figure 4.2 identifies the following relationships between entities:

• Has. A Host can have installed and configured several network Interfaces to communi-
cate over the network. An Interface is connected to only one host. It is worth mentioning
that, even though the multiplicity of this relationship is defined as 1 x N, the actual
number of interfaces that a host can have installed is bounded by hardware limitations.
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• Connects to. An Interface is connected to only one Port, and a Port can be connected to
only one Interface.

• Links to. This recursive relationship implies that a Port can be connected to only one
other Port.

• Provides. A Switch can provide one or several Switch Ports to the network, and a Switch

Port can be provided by only one Switch.

• Maintains. A Switch can maintain one or several Flow Tables, and a Flow Table is
maintained by only one Switch.

• Defines. A Flow Table defines one or several Flows, and a Flow is defined by only one
Flow Table.

The attributes that describe each entity occurrence in the Host and Interface entities are not
defined by the OF specification. These attributes are SDN controller-dependent and hence are
not described in this section. The only attribute defined for these entities is the identification,
which uniquely identifies one occurrence of an entity. This attribute is set as primary key in
both Host and Interface entities. Table 4.1 provides the list of attributes defined for the Switch

entity according to the OF specification.

Switch
Attribute Description
Identification Switch unique identification in the network
MAC address Switch’s MAC Address
Buffers Maximum packets buffered at once
Tables Number of flow tables supported by the switch
Capabilities[1..9] Capabilities supported by the switch

Ex. Provide Flow Statistics
Provide Port Statistics

Table 4.1: Attributes for the switch entity.

The list of attributes defined for the Switch Port entity in the inventory category is shown
in Table 4.2.

The basic attributes for the Flow Table and Flow entities are their identification. Any other
attributes provided by the SDN controller can be added.

• Collect Inventory Data

The goal of this task is to collect an inventory of the network. In an OF network, the
inventory is composed of hosts and switches. This task also collects information about
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Switch Port
Attribute Description
Identification Port unique identification within the switch
Hardware Address Port MAC Address
Name Human-readable name
Configuration Port administrative settings
State Port internal state
Current Feature Current port speed and duplexity
Supported Features Supported port speed and duplexity
Peer Features Speed and duplexity advertised by the peer
Advertised Features Port advertised speed and duplexity
Current Speed Current bit rate in kbps
Maximum Speed Maximum bit rate in kbps

Table 4.2: Attributes for the switch port entity.

the interconnections between hosts and switches. These interconnections are represented
by the relationships Connects to and Links to, as presented in Figure 4.2.

The diagram presented in Figure 4.2 shows the relationship Provides between Switch and
Switch Port entities. This relationship implies the dependency of the Switch Port entity
on the Switch entity. The same applies to the relationship Maintains between Switch and
Flow Table entities. The relationship Defines between Flow Table and Flow implies de-
pendency of the Flow entity on the Flow Table entity. Based on these relationships, when
this task collects switch inventory data, it also collects port inventory data, flow tables,
and flow identifications. The pseudocode for this task is provided in Algorithm 4.1.

Algorithm 4.1: Collect Data algorithm
1 Procedure CollectData()
2 while TRUE do
3 CollectHostInventory()
4 CollectSwitchInventory()
5 CollectLinkInventory()
6 update Host, Switch, Switch Port, Flow Table, Flow repositories
7 sleep(n units of time)
8 end

This task regularly probes the SDN controller to update network inventory (lines 3–5).
This periodic operation will keep the repository updated with the most recent network
configuration. The time interval between two consecutive updates is specified by the
variable n (line 7).

• Collect Streaming Data
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The Collect Streaming Data activity, shown in Figure 4.3, uses the controller’s north-
bound APIs to collect data about the counters of the monitored resources in each switch.
This activity defines six tasks: namely, Start Collect Counters, Collect Port Counters,
Collect Flow Table Counters, Collect Flow Counters, Format Data, and Send Data,
which are described in the following sub-sections.

Figure 4.3: Collect streaming data.

• Start Collect Counters

This task periodically queries the inventory to start collecting counters for ports and flow
tables. For each port and flow table, a collect task is started. The number of counter
collectors is given by Equation 4.1:

C =

n∑
S =1

(p + f t), (4.1)

where C is the number of collectors, n the number of switches, p the number of ports in
the switch, and f t the number of flow tables in the switch.

The pseudocode for this task is shown in Algorithm 4.2. As this task continually reads
the inventory repository, it is expected that between two or more readings, the same port
and flow table will be in the repository and that only one task has to be initiated for
collecting the counters. To avoid more than one task collecting counters for the same
resource, lines 5 and 11 provide an if statement to ensure this constraint. For instance,
if port eth0 is present in two or more updates of the repository, only one task will be
collecting its counters. The same is valid for flow tables.

• Collect Port Counters
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Algorithm 4.2: Start Collect Counters Algorithm
1 Procedure StartCollectCounters()
2 while TRUE do
3 read Switch Port repository
4 for each switch port do
5 if collect counters not started then
6 start collect port counters task
7 end
8 end
9 read Flow Table repository

10 for each flow table do
11 if collect counters not started then
12 start collect flow table counters task
13 end
14 end
15 sleep (n units of time)
16 end

This task collects counter data for switch ports. The collected attributes are described in
Table 4.3.

Port Counters
Attribute Description
Timestamp Instant when the reading was collected
Packets Received Number of received packets
Packets Transmitted Number of transmitted packets
Bytes Received Number of received bytes
Bytes Transmitted Number of transmitted bytes
Collision Count Number of collisions
Over RunError Received Number of packets with RX overrun
Drops Transmitted Number of packets dropped by TX
Drops Received Number of packets dropped by RX
Frame Error Received Number of frame alignment errors
CRC Error Received Number of cyclic redundancy check errors
Seconds Number of seconds the port has been installed
Nanoseconds Number of nanoseconds in a second

Table 4.3: Attributes for port counters.

The pseudocode for this task is provided in Algorithm 4.3.

The CollectPortCounters(switch,port) (line 3) function probes the SDN controller ev-
ery n (line 5) time units to obtain the counter value for the port. The switch and port
parameters identify the specific port for the SDN controller.
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Algorithm 4.3: Collect Port Counters Algorithm
1 Procedure CollectPortCounters()
2 while TRUE do
3 CollectPortCounters(switch,port)
4 send counters to Format Data
5 sleep(n units of time)
6 end

• Collect Flow Table Counters

This task collects flow table counter data. The collected attributes are described in Ta-
ble 4.4.

Flow Table Counters
Attribute Description
Timestamp Instant in time when the reading was collected
Active entries Number of active flows
Packet Lookups Number of packets looked up in the table
Packet Matches Number of packets that matched in the table

Table 4.4: Attributes for flow table counters.

Because there is a dependency of the entity Flow on the Flow Table entity (relationship
Defines in Figure 4.2), this task starts a counter collector for each flow. The number of
flow counter collectors is given by Equation 4.2.

C f =

n∑
S =1

m∑
f t=1

f , (4.2)

where C f is the number of flow counter collectors, n is the number of switches, m is the
number of flow tables in the switch, and f is the number of flows in the flow table.

Algorithm 4.4 provides the pseudocode for this task.

The CollectFlowTableCounters(switch,flow table) (line 3) function probes the SDN con-
troller every n (line 10) time units to obtain the counter values for the flow table. The
switch and flow table parameters identify the specific flow table for the SDN controller.

• Collect Flow Counters

This task collects flow counter data. The collected attributes are described in Table 4.5.

The pseudocode for this task is shown in Algorithm 4.5.
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Algorithm 4.4: Collect Flow Table Counters Algorithm
1 Procedure CollectFlowTableCounters()
2 while TRUE do
3 CollectFlowTableCounters(switch,flow table)
4 send counters to Format Data
5 for each flow in the flow repository do
6 if collect counters not started then
7 start collect flow counters task
8 end
9 end

10 sleep(n units of time)
11 end

Flow Counters
Attribute Description
Timestamp Instant in time when the reading was collected
Received Packets Number of received packets
Received Bytes Number of received bytes
Seconds Number of seconds that the flow has been installed
Nanoseconds Number of nanoseconds in a second

Table 4.5: Attributes for flow counters.

Algorithm 4.5: Collect Flow Counters Algorithm
1 Procedure CollectFlowCounters()
2 while TRUE do
3 CollectFlowCounters(switch,flow table,flow)
4 send counters to Format Data
5 sleep(n units of time)
6 end

The CollectFlowCounters (switch, flow table, flow) (line 3) function probes the SDN
controller every n (line 5) time units to obtain the counter values for the flow. The
parameter switch, flow table, and flow identify the specific flow for the SDN controller.

• Format Data

All collected counter data are used for further processing. It is expected that the format
in which the data are collected is not the format in which they will be processed. It is
also expected that the layout in which they are collected is not the layout needed for
processing. This task formats the data before they are sent for processing. The format is
implementation dependent.
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The pseudocode for this task is shown in Algorithm 4.6.

Algorithm 4.6: Format Data Algorithm
1 Procedure FormatData()
2 while TRUE do
3 receive counters data
4 format data
5 forward data to the send data task
6 sleep(n units of time)
7 end

• Send Data

This task receives the formatted data from the Format Data task, tags it as a switch port,
flow table, or flow counters and forwards it to the Queue Messages sub-process.

As shown in Figure 4.4, a switch has ports and flow tables, and each flow table has flows.
For each port, flow table, and flow, the counter collectors’ tasks (Collect Port Counters,
Collect Flow Table Counters, Collect Flow Counters) probe the SDN controller to obtain
the data. This procedure is present in line 3 in algorithms 4.3, 4.4, and 4.5. The same
procedure is also present in lines 3, 4, and 5 in Algorithm 4.1. The procedure in the
counter collectors’ tasks is more computationally intensive for two main reasons: (1) the
number of items being monitored is much grater, and consequently, (2) the number of
requests to the SDN controller is also much greater. The rate of requests can be higher
or lower depending on the time interval between requests.

Figure 4.4: Switch hierarchy.

The time interval between requests is defined by the sleep statement present in all algo-
rithms mentioned in the previous paragraph. The value for n in Algorithm 4.1 must be
greater than the one in the counter collectors. As mentioned in Section 4.2, inventory
data tend to be relatively constant over time. The number of hosts and their config-
uration do not change very frequently, and the same applies to switches and network
connections. On the other hand, counter data constantly change due to the number of
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packets that traverse the switch. The number of requests sent to the SDN controller in
one iteration of the while loop in Algorithm 4.1 is three. This number assumes that the
SDN controller provides one request for each resource type (Hosts, Switches, or Links),
but this number depends on the northbound API provided by the controller. For instance,
one controller may return all the data with only one request. When the controller pro-
vides several options for requesting the data, the choice of which option to use may be
based on the request latency. A request that returns all the data may have higher latency,
whereas a request for each resource type may have lower latency, but more requests are
required. This trade-off must be addressed based on the chosen SDN controller.

4.3 Data Aggregation

This activity receives the data collected by the Data Acquisition activity, processes it generating
the expected statistics and sends the outcome to be stored. The process executed by this activity
defines the sub-processes Queue Messages and Generate Statistics, which are described next.

4.3.1 Queue Messages

The goal of this sub-process is to guarantee that the messages received from the Data Acquisi-

tion activity are stored and available for further processing as they are requested. Messages are
stored and forwarded in the same order that they arrive. The tasks shown in Figure 4.5 operate
based on this requirement.

Figure 4.5: Queue messages process.

• Receive Message

This task receives the messages coming from the Data Acquisition activity. The arriving
messages refer to switch port, flow table, and flow counters and must be identified as
such and forwarded for storage.
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• Store Message

This task stores all messages according to their tag (port, flow table, or flow) and provides
them as requested with the guarantee that messages are being provided according to their
arrival order and no message is missing.

• Forward Message

The goal of this task is to retrieve and forward the stored messages as they are requested
for further processing.

4.3.2 Generate Statistics

Statistics are periodically generated based on the available counter data stored by the previous
sub-process. This task requests these data (messages), processes them by computing the ex-
pected network parameters, and sends the results to storage. The pseudocode for this task is
presented in Algorithm 4.7.

Algorithm 4.7: Generate Statistics Algorithm
1 Procedure GenerateStatistics()
2 while TRUE do
3 request data
4 ComputeStatistics()
5 send statistics
6 sleep(n units of time)
7 end

Messages are processed in message sets. Each message set is composed of all messages
that arrived in the Queue Messages sub-process during one statistical computation. Figure 4.6
shows the Generate Statistics procedure. During processing of Batch 1, the messages that
compose Batch 2 arrive in the Queue Messages sub-process. At the end of Batch 1 processing,
the computed statistics are sent for storage. During processing of Batch 2, the messages that
compose Batch 3 are still arriving. This is a continuous process. The Compute Statistics

function computes statistics and aggregates them according to its purpose, which can be, for
instance, aggregation by switch, port, and flow table. The aggregated element and the network
parameters are application-dependent.
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Figure 4.6: Generate statistics procedure.

4.4 Data Persistence

The collected inventory and generated network parameters are persisted in this activity. These
data can be used by any monitoring, traffic analysis, or visualization system.

• Persist Inventory Data

This task persists the inventory of the network. These data can be used to recreate the
network topology by identifying all its components.

• Persist Statistics

The network parameters generated by the Data Aggregation activity are persisted by this
activity. It is a complex task to synchronize the moment when the system requests these
parameters and the moment when they are available. To overcome this situation, the
network parameters are persisted in a repository and are available when a consuming
system needs the latest computed values. The premise of a real-time monitoring system
significantly increases the speed at which these parameters are updated. Any client sys-
tem needs to request the stored values at a rate that is compatible with the rate that the
parameters are updated in the repository, with the risk of missing some updates.
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4.5 Summary

This chapter presents the Big Data traffic monitoring method and describes its three main ac-
tivities. Section 4.2 introduces the activity of collecting inventory and traffic data along with
a persistence model of the collected data. Section 4.3 details the data aggregation activity.
Section 4.4 describes the persistence of the collected and generated data from Sections 4.2 and
4.3.

The next chapter presents an implementation to validate the proposed monitoring method.
The chapter describes the implementation components and presents the component deployment
diagram.
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Implementation

This chapter presents an implementation of the Big Data traffic monitoring method and its
components. Section 5.1 provides the design of the interconnection between the components
and some details of the SDN controller used to manage the network. The components are
also described, and the deployment diagram of the components is provided, along with the
environment that receives the deployment. The deployment diagram also identifies the Big
Data tools used in the implementation.

5.1 Big Data Traffic Monitoring Implementation

This section describes a Big Data traffic monitoring implementation based on the method pro-
posed in Chapter 4. The designed components implement each activity and each task of the Big
Data traffic monitoring method presented in Figure 4.1. It is worth mentioning that the pro-
posed Collect Flow Table and Collect flow components have not been implemented because
the primary focus of the present implementation is on port throughput monitoring.

The implementation components are depicted in the component diagram presented in Fig-
ure 5.1. The assembly connectors specify the following links:

• Inventory. The collect streaming data component requires an interface to obtain the
topology data, and the SDN controller provides this interface.

• Counters. The collect streaming data component requires an interface to obtain the
Counters, and the SDN controller provides the required interface.

• Add message. The collect streaming data component needs an interface to send the
collected inventory and counter data to the queue, and the queue messages component
provides the necessary interface.

46
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• Get message. The generate statistics component retrieves the latest messages added to
the queue, and the queue messages component provides the appropriate interface.

• Insert. After generating statistics, the generate statistics component inserts them to the
persist statistics component using the interface provided.

Figure 5.1: Big Data traffic monitoring components.

The following sections describe each component presented in Figure 5.1.

5.1.1 SDN Controller

The SDN controller used for the Big Data traffic monitoring implementation is OpenDay-
light [9, 20, 22]. This controller is an open-source platform hosted by the Linux foundation
and sponsored by industry leaders such as IBM, Cisco, HP, Microsoft, Red Hat, and VMware.
These companies provide economic and engineering support for the development of the plat-
form. The OpenDaylight architecture is presented in Figure 5.2.

OpenDaylight is an application that runs on any operating system with a Java Virtual Ma-
chine (JVM) and provides a multi-layer architecture. The primary layer is the Controller Plat-

form, which manages switch flow traffic using flow tables. On the Southbound Interfaces and

Protocols, OpenDaylight can support multiple standard protocols defined by standardization
organizations such as IETF and ONF. Many contributors can add new protocols as modules
due to the multi-layer architecture. The Service Abstraction Layer (SAL) links new modules
dynamically. The OSGI framework provides a dynamic link between SAL and evolving South-
bound protocols.

The controller supports the OSGI framework and bidirectional REST for the Northbound
API. This feature enables new modules to be added to the Controller Platform with their re-
spective APIs for network applications.
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Figure 5.2: OpenDaylight architecture [9].

The Big Data traffic monitoring implementation belongs to the Network applications, or-

chestration, and services layer, and makes use of the REST APIs provided by OpenDaylight.
The required and provided interfaces are Inventory and Counters (Figure 5.1), which are im-
plemented by the REST APIs in the controller.

5.1.2 Data Acquisition

This component implements the data acquisition activity (Figure 4.1) and provides the collect
streaming data component to implement the collect inventory data and collect streaming data
sub-processes.

Collect Streaming Data
This component collects inventory and counters data using the Inventory and Counters

interfaces provided by OpenDaylight. The algorithms described in section 4.2 are implemented
in this component.

Algorithm 4.1 updates three repositories: Hosts, Switches, and Links. Internally each of
these repositories is stored in main memory as a HashMap, as shown in Figure 5.3.

Figure 5.3: Repositories.

OpenDaylight provides a series of attributes for Hosts, and Table 5.1 lists the ones stored
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in the repository.

Attribute Description
Identification Host unique identification in the network
<List of Interfaces> List of all network interfaces

Table 5.1: Host attribute description.

The List of interfaces attribute is a list that identifies all the network interfaces that are
configured in a host. Table 5.2 lists the attributes that identify a single network interface.

Attribute Description
IP IP address configured for the network interface
MAC MAC address of the network interface

Table 5.2: Network interface attribute description.

For the Switch repository, in addition to the attributes listed in Table 4.1, OpenDaylight
provides the attributes described in Table 5.3. Table 4.2 lists the attributes defined for each
port.

Attribute Description
<List of ports> List of ports available in the switch
<List of flow tables> List of flow tables available in the switch
<List of flows> List of current flows in the switch

Table 5.3: Switch attribute description.

The attributes provided for Links are listed in Table 5.4.
Links can be established between hosts and switches and between switches. For each link,

OpenDaylight identifies the termination points. If the source/destination node is a host, the
termination point provides the network card. If the source/destination node is a switch, the
termination point provides the port number.

Attribute Description
Identification Link unique identification
Source Node Source point of communication
Source Node Termination Point Termination point in the source node
Destination Node Destination point of communication
Destination Node Termination Point Termination Point in the destination node

Table 5.4: Link attribute description.

The following procedures are executed after the repositories are populated:

1. The inventory data are formatted and sent to the Queue Messages component.
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2. For every switch port, flow table and flow, counters are collected. This procedure follows
the switch hierarchy presented in Figure 4.4 in the following way:

• Collects counters for each switch port (Algorithms 4.2 and 4.3). Table 4.3 lists the
attributes.

• Collects counters for each flow table (Algorithms 4.2 and 4.4). Table 4.4 lists The
attributes.

– Collects counters for each flow in the flow table (Algorithms 4.4 and 4.5).
Table 4.5 lists the attributes.

Threads are used to collect the counters mentioned above. For each element (port, flow,
or flow table), one thread is started. The total number of threads is given by Equation 5.1:

t =

n∑
S =1

p + f t + f (5.1)

where t is the total number of threads, n is the number of switches, p is the number of
ports in the switch, f t is the number of flow tables, and f is the total flows.

Each message has a timestamp added to identify the time when the message was collected.
The messages related to counters have a switch identification field added.

Figure 5.4 shows the packages that implement the Collect Streaming Data component.

Figure 5.4: Collect streaming data package.
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The Main package sets the initial configuration of the implementation and starts the collect
data manager in the Control package. The Control package sends requests to OpenDaylight
via REST APIs (Links Inventory and Counters in Figure 5.1) to populate the three repositories.
The inventory data are immediately formatted and sent to the Queue Messages component. For
the counter data, the manager starts all the threads, and each thread sends the collected counters
to the Queue Messages component. These values are not persisted in the repositories. All the
collected data are sent using the Add Message link (Figure 5.1).

OpenDaylight replies to requests by sending messages in JSON format. The Gson package
provides all the classes that represent each of the response messages. These messages are
instantiated in the Data package for further formatting and sending.

5.1.3 Data Aggregation

The Data Aggregation component receives the messages from the Collect Streaming Data

component and generates statistics that describe the network traffic.

Queue Messages
Apache Kafka manages the messages generated by the Collect Streaming Data component.

In Kafka’s terms, the Collect Streaming Data component is defined as a producer. Because
Kafka works with the concept of topics, the following topics were created to accommodate the
incoming messages:

1. Host. Messages related to host description (Table 5.1).

2. Switch. Messages related to switch description (Table 4.1).

3. Link. Messages related to link description (Table 5.4).

4. SwitchPort. Messages related to port description (Table 4.2).

5. Traffic. Messages related to switch port counters (Table 4.3).

6. FlowTable. Messages related to flow table description (Table 4.4).

7. Flow. Messages related to flow counters (Table 4.5).

Generate Statistics
This component contains two packages, as shown in the package diagram presented in

Figure 5.5.

The Inventory package processes the inventory messages coming from the topics Host,
Switch, SwitchPort, Switch, and Link.



52 Chapter 5. Implementation

Figure 5.5: Generate statistics package.

The Counters package processes the streaming counter messages and generates the statis-
tics. Apache Spark streaming is used to process these messages coming from the Traffic,
FlowTable, and Flow topics.

An OF switch does not provide the throughput for each port or flow, this value can be
calculated using the values present in the message by means of the formula in Equation 5.2,
where T is the throughput, BR is the number of bytes received, BT is the number of bytes
transmitted, and S the number of seconds:

T =
(BR + BT )

S
(5.2)

A driver program (Counters package) launches the Map/Reduce operations to compute
throughput with the following keys:

• <Switch, Port, Timestamp>. The reducer generates the throughput for each port.

• <Switch, Timestamp>. The reducer generates the throughput for each switch.

• <Timestamp>. The reducer generates the throughput for the entire network.

• <Switch, Port, FlowTable, Flow, Timestamp>. The reducer generates the throughput for
each flow.

• <Switch, Port, FlowTable, Timestamp>. The reducer generates the throughput for each
flow table.

5.1.4 Data Persistence

This component persists the statistics generated by the Data Aggregation component.

Persist Statistics
The Elasticsearch database stores all the generated statistics. This component consists of

a series of classes used as an interface between the Generate Statistics component and the
database. Using the basic concepts of Elasticsearch, the following indexes were created: Host,
Link, Switch, SwitchPort, FlowTable, Flow, and Traffic, SwitchStats, and NetworkStats. These
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classes provide the methods to carry out all the necessary manipulation on the listed indices.
These classes are implemented in the Counters package (Figure 5.5).

5.1.5 Environment

Four machines were used to deploy the implementation. They are described in Table 5.5.

Id CPU RAM
Server 1 2 x Intel(R) Xeon(R) CPU E5-2630 v2 @ 2.60GHz 96 GB
Server 2 2 x Intel(R) Xeon(R) CPU E5-2630 v2 @ 2.60GHz 96 GB
Server 3 2 x Intel(R) Xeon(R) CPU E5-2620 v3 @ 2.40GHz 96 GB
Server 4 Intel(R) Core(TM) i7-4710MQ CPU @ 2.50GHz 16 GB

Table 5.5: Hardware environment.

Servers 1, 2, and 3 are connected to an HP MSA 2040 SAN 12 TB storage system. The
storage was divided into four logical partitions of 2.5 TB each.

All servers run Linux Ubuntu Server 16.04, and the same is valid for all configured contain-
ers. A feature called Multipath was configured in the servers, enabling them to have multiple
I/O paths to storage, which enables parallel access to the four configured partitions.

5.1.6 Deployment

All packages developed in the implementation were coded using the Java language. The fol-
lowing Java Archives (JAR) were built:

• CollectStreamingData.jar. This file contains the implementation of the Collect Streaming

Data Package (Figure 5.4).

• Inventory.jar. This file contains the implementation of the Inventory package (Figure 5.5).

• Counters.jar. This file contains the implementation of the Counters package (Figure 5.5).

From the description above, it is important to note that only one JAR file was generated for
the Collect Streaming Data package, but that for the Generate Statistics package ,the Inven-

tory and Counters files were generated. This difference in the number of files is because the
Counters file is a Spark application, but the Inventory file is not.

The entire implementation was deployed according to the diagram shown in Figure 5.6.
The Linux Server 1 hosts the CollectStreamingData JAR file and the Kafka containers; Linux
server 2 hosts the Inventory JAR file and the Elasticsearch containers; Linux Server 3 hosts
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Figure 5.6: Big Data traffic monitoring deployment.

OpenDaylight and the Spark streaming containers; and Server 4 hosts the SDN network simu-
lator (Mininet).

As mentioned in section 5.1.5, all servers (except Server 4) can connect in parallel to the
four partitions in storage. This feature enables each container to access all partitions in parallel
allowing the use of containers to simulate a cluster of servers.

5.2 Summary

This chapter has described the components of the Big Data traffic monitoring method im-
plementation and has also presented the deployment environment. The deployment diagram
provides the Big Data tools used in the implementation: Apache Kafka as the Queue Message

component, Apache Spark Streaming as the Generate Statistics component, and Elasticsearch
as the Persist Statistics component.

The implementation of the Big Data traffic monitoring method provided a considerable
number of statistics reflecting network traffic as highlighted in Chapter 8. One of these statistics
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is provided by TM, which is one of the main contributions of this thesis. The next chapter
introduces the proposed MapReduce method for TM estimation.



Chapter 6

MapReduce Traffic Matrix Estimation
Method

This chapter presents the proposed MapReduce method to estimate the TM. The estimation of
the TM is in the Big Data traffic monitoring method’s implementation scope, as described in
section 6.1. The chapter starts by describing the estimation method’s MapReduce functions.
The implementation of the proposed method requires the definition of some basic structures,
which are presented in section 6.2. Section 6.2.1 describes the algorithms that implement the
TM estimation method.

6.1 MapReduce Design

The MapReduce approach consists of four map functions and one reduce function, as shown
in Figure 6.1.

The Map Raw Data function receives raw data as messages and generates a key/value map,
where the timestamp of each message is the key and the data needed to calculate the throughput
are the value.

The Sort By Key function sorts the keys generated by the Map Raw Data function in as-
cending order. This step is necessary to calculate the current link throughput. The current link
throughput is used to calculate the current throughput between OD pairs of hosts.

The map functions shuffle the generated maps before the next function processes them. The
Sort By Key function generates a map that must be processed in ascending order by timestamp.
The function Coalesce prevents the shuffling in the map produced by the Sort By Key function.

The Generate Final Map function performs two tasks: (i) computing the current throughput
in every link, and (ii) computing the accumulated throughput in every link.

56
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Figure 6.1: MapReduce design.

The Reduce by Key function, which generates and persists the TM, processes the final map.

6.2 Basic Definitions

The first goal of the MapReduce approach is to identify and generate the keys that will be ag-
gregated and subsequently reduced. This procedure is part of the Map portion of the proposed
design (Figure 6.1). The proposed approach establishes that the keys will be composed of all
links in the route between OD pairs. To achieve this goal, all the necessary elements that will
be used to generate the keys must be identified. This section introduces the basic definitions of
all these elements and the structures that relate them.

The definitions are as follows:

• Set N = { x1, x2, · · · , xn }. This set represents the nodes network.

• Set H = { h1, h2, · · · , hm | hi ∈ N }. H ⊂ N. This set represents all hosts in the network.

• Set S = { s1, s2, · · · , sk | si ∈ N }. S ⊂ N. This set represents all switches in the network.
Each switch si has several ports, which can be represented as si1, si2, · · · , sil.

• Set U1 = { (hi, s j) ∨ (s j, hi) | hi ∈ H ∧ s j ∈ S }. U1 ⊂ H×S . This set represents host/switch
connections .

• Set U2 = { (si, s j) | s j ∈ S ∧ s j ∈ S ∧ i , j }. U2 ⊂ S×S . This set represents switch/switch
connections.

• Set U = U1
⋃

U2.
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• The network is represented by a graph G given by (N,U).

• L1 = { (hi, s j, s ja) ∨ (s j, hi, s ja) }. This set represents the links between host and switch
ports.

• L2 = { (si, sia, s j, s jb) | i , j }. This set represents the links between two switch ports.

• L = L1
⋃

L2.

• HC = { (hi, h j) | (hi, h j) ∈ H × H ∧ i , j }. This set represents the combinations of OD
hosts.

• A path P from hi → h j is a sequence 〈hi, s1〉,〈s1, s2〉,〈s2, s3〉,...,〈sk−1, sk〉,〈sk, h j〉 such that
each switch in the sequence s1, s2, · · · , sk is distinct.

• LP = {(si j, (h1, h2), · · · , (hn, hm)) | i = 1 · · · n, j = 1 · · · l}. This set represents all paths
that include the switch port si j.

To generate the TM, some basic prerequisites are required:

1. The sets H, S , and the graph G are given.

2. The set HC is built using a function f : H → HC. The cardinality of HC is given by the
combination of all elements of H (n) taken from r, as shown in Equation 6.1:

CardHC =

(
n
r

)
=

n!
(n − r)! · r!

(6.1)

Because each element in HC is a binary relation between members of H, the value for r

is 2.

3. The set L is given.

The LP set provides, for each switch port, the list of OD hosts for which this port is part of
the path. To build this set, the first step it to build the HC set, which contains all the possible
combinations of pairs of OD hosts. For each pair in HC, the path in P is retrieved. Each path
between the members of an OD pair consists of three types of links: (1) a link between the
origin host and the first switch, expressed as 〈hi, s1〉, (2) links between switches, expressed as
〈si, s j〉, and (3) a link between the last switch and the destination host, expressed as 〈sk, h j〉.
For each type of pair, the set L is searched to find the ports used in the link. For link types (1)
and (3), a match is sought for elements in L1. Elements in L1 are described as (hi, s j, s ja) or
(s j, hi, s ja). When a match is found, the switch port (s ja) is returned. For link type (2), the same



6.2. Basic Definitions 59

procedure is followed, with elements in L2 searched for matching. In this case, when a match
(si, s j) is found, both ports(sia, s jb) are returned. For each returned port, a pair (〈port〉, (O,D))
is added or updated in LP.

6.2.1 Implementation

The data available from the Queue Messages activity (Figure 4.1) represent the traffic informa-
tion on the network. These data, combined with the elements of the LP set, are used to generate
the keys in the Map portion of the MapReduce design (Figure 6.1). This section presents the
generation of the LP set and the procedure that combines the collected traffic data with the
LP set elements to generate the final map. As shown in Figure 6.1, four map functions are
executed in the map part.

The Map Raw Data function receives traffic statistics as messages; these messages have
the layout provided in Figure 6.2. The timestamp field is in the Unix format, where the last
three digits refer to the millisecond of the data collection time. the approach used here discards
the last three digits because it provides the throughput in seconds. This operation changes the
timpestamp 1522598210107 to 1522598210 and makes it possible to group statistics collected
in the same second.

1522598210107︸              ︷︷              ︸
timestamp

S2︸︷︷︸
switch id

S2:eth4︸  ︷︷  ︸
switch port

3368︸︷︷︸
bytes received

3368︸︷︷︸
bytes transmitted

3︸︷︷︸
second

458000000︸       ︷︷       ︸
nanosecond

Figure 6.2: Port statistics message layout.

The map generated by the Map Raw Data is sorted by the Sort By Key function. The sorted
key is composed of the timestamp and switch port fields.

The Generate Final Map function provides two algorithms that are needed to generate the
final map: The Generate LP set algorithm (Algorithm 6.1) generates the LP set, and the Gener-
ate 〈Key,Value〉 pairs algorithm (Algorithm 6.2), for every port statistics message, calculates
the throughputs of the link that include this port and generates the 〈Key,Value〉 for all the OD
pairs that include the port. The following sections describe these algorithms.

Generate LP Set Algorithm

Algorithm 6.1 shows the steps to generate the LP set. Topology information is collected from
the OpenDaylight SDN controller to build the sets H, S , U, and L. The response comes in a
JSON format, but is converted to an internal CSV format. Figure 6.3 shows the topology used
in the experiments, and Figure 6.4 shows its representation in OpenDaylight.
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Algorithm 6.1: Generate LP set
Input : H, S , L, P
Output: LP

1 globals: hosts list // Elements of H
2 hosts destination // Elements of H
3 path // path between two hosts
4 ports[2] = { null ,null } // link
5 hosts list← H
6 hosts destination← H
7
8 foreach hi in hosts list do
9 remove hi from hosts destination

10 foreach h j in hosts destination do
11 HC ← 〈hi, h j〉

12 end
13 end
14
15 foreach 〈hi, h j〉 in HC do
16 path← getPath(hi, h j)
17 foreach element 〈β0, β1〉 in path do
18 ports = { null ,null }
19 ports = getPorts(〈β0, β1〉)
20 if ports[0] not null then
21 if ports[0] not in LP then
22 LP.add(ports[0], 〈hi, h j〉)
23 else
24 LP.update(ports[0], 〈hi, h j〉)
25 end
26 end
27 if ports[1] not null then
28 if ports[1] not in LP then
29 LP.add(ports[1], 〈hi, h j〉)
30 else
31 LP.update(ports[1], 〈hi, h j〉)
32 end
33 end
34 end
35 end
36
37 Function getPath(hi, h j) : P
38 return 〈hi, s1〉, 〈s1, s2〉,〈s2, s3〉,...,〈sk−1, sk〉,〈sk , h j〉;
39 end
40
41 Function getPorts(〈β0, β1〉) : linkports[2]
42 linkports[2] = { null ,null }
43 if 〈β0, β1〉 ∈ L1 then
44 linkports[0] = L1.sia
45 else
46 if 〈β0, β1〉 ∈ L2 then
47 linkports[0] = L2.sia
48 linkports[1] = L2.s jb

49 end
50 end
51 return linkports
52 end
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Figure 6.3: Network topology.

Figure 6.4 identifies the elements of the set H, which contains all hosts in the network, as
fields starting with the string ”host” and identifies the elements of the set S , which contains all
switches in the network, as fields starting with the string ”Sn”, where n identifies the switch
number. Figure 6.4 also identifies the elements of U and L.

"1516218618282;S1:eth2;S1:eth2;S1;S4:eth3;S4",

"1516218618282;S2:eth1;S2:eth1;S2;S3:eth4;S3",

"1516218618282;S1:eth1;S1:eth1;S1;S3:eth3;S3",

"1516218618282;S1:eth4;S1:eth4;S1;S6:eth3;S6",

"1516218618282;S2:eth3;S2:eth3;S2;S5:eth4;S5",

"1516218618282;S1:eth3;S1:eth3;S1;S5:eth3;S5",

"1516218618282;S2:eth2;S2:eth2;S2;S4:eth4;S4",

"1516218618282;S3:eth4;S3:eth4;S3;S2:eth1;S2",

"1516218618282;S4:eth3;S4:eth3;S4;S1:eth2;S1",

"1516218618282;S6:eth1/host:07;S6:eth1;S6;host:07;host:07",

"1516218618282;S3:eth3;S3:eth3;S3;S1:eth1;S1",

"1516218618282;S2:eth4;S2:eth4;S2;S6:eth4;S6",

"1516218618282;S5:eth4;S5:eth4;S5;S2:eth3;S2",

"1516218618282;S6:eth3;S6:eth3;S6;S1:eth4;S1",

"1516218618282;S5:eth3;S5:eth3;S5;S1:eth3;S1",

"1516218618282;S4:eth4;S4:eth4;S4;S2:eth2;S2",

"1516218618282;S5:eth1/host:05;S5:eth1;S5;host:05;host:05",

"1516218618282;S6:eth4;S6:eth4;S6;S2:eth4;S2",

"1516218618282;S5:eth2/host:06;S5:eth2;S5;host:06;host:06",

"1516218618282;S4:eth2/host:04;S4:eth2;S4;host:04;host:04",

"1516218618282;S3:eth2/host:02;S3:eth2;S3;host:02;host:02",

"1516218618282;host:08/S6:eth2;host:08;host:08;S6:eth2;S6",

"1516218618282;S6:eth2/host:08;S6:eth2;S6;host:08;host:08",

"1516218618282;host:01/S3:eth1;host:01;host:01;S3:eth1;S3",

"1516218618282;host:03/S4:eth1;host:03;host:03;S4:eth1;S4",

"1516218618282;host:02/S3:eth2;host:02;host:02;S3:eth2;S3",

"1516218618282;S4:eth1/host:03;S4:eth1;S4;host:03;host:03",

"1516218618282;host:05/S5:eth1;host:05;host:05;S5:eth1;S5",

"1516218618282;host:04/S4:eth2;host:04;host:04;S4:eth2;S4",

"1516218618282;host:07/S6:eth1;host:07;host:07;S6:eth1;S6",

"1516218618282;S3:eth1/host:01;S3:eth1;S3;host:01;host:01",

"1516218618282;host:06/S5:eth2;host:06;host:06;S5:eth2;S5";

Figure 6.4: OpenDaylight topology representation.

Figure 6.5 shows the type of lines, from Figure 6.4, used to extract the elements of U1. The



62 Chapter 6. MapReduce TrafficMatrix EstimationMethod

host and switch fields form the elements of U1.

1516218618282︸              ︷︷              ︸
timestamp

host:01/S3:eth1︸             ︷︷             ︸
link id

host:01︸  ︷︷  ︸
host port

host:01︸  ︷︷  ︸
host

S3:eth1︸  ︷︷  ︸
switch port

S3︸︷︷︸
switch

Figure 6.5: Line for extracting U1 elements.

Figure 6.6 shows the type of lines, from Figure 6.4, used to extract the elements of U2. The
switch origin and switch destination fields form the elements of U2.

1516218618282︸              ︷︷              ︸
timestamp

S1:eth2︸  ︷︷  ︸
link id

S1:eth2︸  ︷︷  ︸
switch origin port

S1︸︷︷︸
switch origin

S4:eth3︸  ︷︷  ︸
switch destination port

S4︸︷︷︸
switch destination

Figure 6.6: Line for extracting U2 elements.

The elements of L are directly related to the elements of U because they provide a critical
piece of information, the port number in each switch used in a connection. The port number is
identified as a string of the form ”Sn:ethm”, where S stands for switch, n identifies its number,
eth indicates a switch port, and m identifies the port number. The port number is present
in Figure 6.5 (switch port) and Figure 6.6 (switch origin port and switch destination port).
Therefore, for each element of U1 (hi, s j), the switch port (s ja) is added to form the elements
of L1. Figure 6.7 shows an example of an L1 element. The host port is not used in L1 because
it is assumed that only one network interface is available in the host.

[host:07, S6, S6:eth1]

Figure 6.7: L1 element.

The elements of L2 are generated in the same way; for each element of U2 (si, s j), the ports
in the connection (sia,s jb) are then identified. Figure 6.8 shows an example of al L2 element.

[S6, S6:eth3, S1, S1:eth4]

Figure 6.8: L2 element.

The graph G is built using GraphStream [92], which is a dynamic graph library in Java.
The approach used here extracts the nodes (hosts (H), switches(S ), and links(U)) and feeds the
graph with these values.

Lines 8–13 from Algorithm 6.1 generate the HC set. For each OD pair (hi, h j) in HC, the
path connecting the two hosts is returned by the function getPath(hi, h j) (Lines 15–16). In the
topology presented in Figure 6.3, if an attempt is made to find the paths between any two hosts,
loops can be found in the network graph. To overcome this issue, the topology was divided
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into two parts: the first with S1 as the root, and the second with S2 as the root, as shown in
Figures 6.9 and 6.10, respectively. With this approach, the solution presented here provides the
TM between all possible combinations of OD traversing S1 or S2.

Figure 6.9: Topology traversing S1.

Figure 6.10: Topology traversing S2.

As an example, Figure 6.11 shows the return of the getPath(hi, h j) function if (h7, h5) and
(h8, h1) are passed as parameters in two separate calls. For (h7, h5), the graph with S1 (Fig-
ure 6.9) as the root is used. For (h8, h1), the graph with S2 (Figure 6.10) as the root is used.

[host:07, S6, S1, S5, host:05]

[host:08, S6, S2, S3, host:01]

Figure 6.11: Paths between (h7, h5) and (h8, h1).

The getPorts(〈β0, β1〉): linkports[2] function (lines 41–52) returns the 〈β0, β1〉 link ports. If
the 〈β0, β1〉 link is an element of the L1, the function returns only the switch port (lines 43–45).
If the 〈β0, β1〉 link is an element of the L2, the function returns both switch ports (lines 46–49).
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This function searches the set L to provide these data. Using them, the elements of LP can be
generated (lines 17–34). For each value returned from the getPorts() function, an entry in LP

is added. At the end of this procedure, each switch port LP will have the OD pairs that include
the switch port. Figure 6.12 provides an example giving the OD pairs that include the S3:eth3
switch port. The first line identifies the switch port. All the others have the following format:
”root/origin/destination”. On the second line, S1 is the root, ”host:01” is the origin host, and
”host:03” is the destination host.

S3:eth3

S1/host:01/host:03

S1/host:01/host:04

S1/host:01/host:05

S1/host:01/host:06

S1/host:01/host:07

S1/host:01/host:08

S1/host:02/host:03

S1/host:02/host:04

S1/host:02/host:05

S1/host:02/host:06

S1/host:02/host:07

S1/host:02/host:08

Figure 6.12: Port origin/destination pairs.

As previously mentioned, the approach used here divides the network topology into two
parts to avoid loops in the network graph. Loops in the network are not the only problem faced
when traversing a network graph. Another problem is to find the shortest path between an OD
pair of hosts. Even though the Dijkstra algorithm solves this problem, it is still possible to
find more than one shortest path between an OD pair of hosts. In this case, one of the shortest
paths can be selected for monitoring. The MapReduce approach proposed here enables the
monitoring of more than one shortest path. The solution is to add a different identifier to the
generated OD definition in LP. For instance, in a network with two shortest paths from host
Ha to host Hb, where the first shortest path includes switch port SAp1 and the second shortest
path includes switch port SBp2, the entries in LP for SAp1 and SBp2 can differentiate the two
shortest paths by creating OD definitions like those presented in Figure 6.13. The presence of
the strings PATH1 and PATH2 differentiates the OD definitions for the two shortest paths.

6.2.2 Generate 〈key, value〉 Pairs Algorithm

The goal of this algorithm is to generate the final map. This map contains the traffic data for
every link in the network. The link is not part of the key; only the OD pairs that are connected
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SAp1

PATH1/Ha/Hb

SBp2

PATH2/Ha/Hb

Figure 6.13: LP entries for two paths between the same OD.

through this link compose the key. The map consists of OD pairs as the key and the traffic data
of the link as the value. The pseudo-code provided in Algorithm 6.2 describes the Generate
〈key, value〉 pairs algorithm.

For each port statistics message (Figure 6.2), the message of the port pair with the same
timestamp is retrieved (Line 8). A port and its pair are an element of the set L. If the port is an
element of L1, the port and its pair have the same value because in L1 the link is formed between
a host port and a switch port, but the host port is not monitored. For L2 elements, (si, sia, s j, s jb),
if the fields second and nanosecond are exactly the same for (sia, s jb), the value of BR for sia

should be the same as the value of BT for s jb, and the other way around. However, collecting
statistics for (sia, s jb) at the same second and nanosecond is an unrealistic scenario. Hence,
one of the messages has the most up-to-date statistics for the link. To use the most up-to-date
statistics, the message with the larger value of (BR + BT) represents the throughput of the link
(Line 10). Figure 6.14 provides an example. The ”S1:eth1” and ”S3:eth3” ports form a link,
and the statistics of the ”S3:eth3” port are used as the throughput of the link in that timestamp.

For each message (Figure 6.2), two calculations are performed:

1. Current throughput in every link. The current throughput is calculated according to
Equation 6.2 [18]:

Ti(t) =
ci(t) − ci(t − T )

T
(6.2)

where Ti(t) is the current throughput of link i at instant t, ci(t) is the statistics value (Bytes

Received (BR) + Bytes Transmitted (BT)) at instant t, and T is the polling interval (Line
11). Lines 9 and 13 respectively retrieve and update ci(t − T ) for each link.

2. Accumulated throughput in every link. The accumulated throughput is calculated
according to Equation 6.3 (Line 12):

Ti(t) =
(BR + BT )

S
(6.3)

where Ti(t) is the accumulated throughput of link i at instant t and S is the number of
seconds for which the link is active.

The final step in Algorithm 6.2 is map generation. The LP set is queried to provide the
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1522598234107; S1; S1:eth1; 776966; 69572908; 27; 802000000

1522598234107; S3; S3:eth3; 75257774; 837686; 28; 773000000

Figure 6.14: Collected statistics on link S1:eth1/S3:eth3.

Algorithm 6.2: Generate 〈key, value〉 pairs
Input : Ports Statistics Messages, LP,L
Output: 〈key, value〉

1 globals: path list // List of all paths
2 locals: previousStat // Previous Statistics
3 throughput // Accumulated throughput
4 currThroughput // Current throughput
5 pair // pair of the current port
6 interval = 3 // interval between readings
7 foreach message do
8 pair = getPairStatistic(L.getPair(message.switchport),message.timestamp)
9 previousStat = getLinkStat(message.switchport, pair)

10 if ((message.BT + message.BR) > (pair.BT + pair.BR))) then
11 currThroughput = ((message.BT + message.BR) - previousStat) / interval
12 throughput = (message.BT + message.BR) / message.second
13 updateLinkStat(message.switchport,pair,(message.BT + message.BR))
14 path list = LP.getListPaths(message.switchport)
15 foreach element pl in path list do
16 key = concatenate(pl, message.timestamp)
17 value = (throughput,currThroughput)
18 generate 〈key, value〉
19 end
20 end
21 end

paths that include the selected port (Line 14). For every returned path, a 〈key, value〉 pair is
generated (Lines 15–19). Table 6.1 provides an example of the generated 〈key, value〉 pairs
for the S3-eth3 port in Figure 6.12. The key is composed of the path and timestamp, and the
value contains the calculated current (Cv, Equation 6.2) and accumulated (Av, Equation 6.3)
throughputs.

Key Value
Current Accumulated

S1/host:01/host:03 1522598234 Cv Av
S1/host:01/host:04 1522598234 Cv Av
S2/host:02/host:05 1522598234 Cv Av
S2/host:02/host:06 1522598234 Cv Av
S1/host:01/host:04 1522598234 Cv Av
S2/host:02/host:05 1522598234 Cv Av
S1/host:01/host:03 1522598234 Cv Av
S2/host:02/host:06 1522598234 Cv Av
S2/host:02/host:05 1522598234 Cv Av
· · · · · · 1522598234 Cv Av

Table 6.1: Generated 〈key, value〉 pairs.
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For all port statistics in the same timestamp, the same type of 〈key, value〉 pairs as those
generated for the S3-eth3 port and shown in Table 6.1 are generated.

The Reduce By Key function aggregates values with the same key. Table 6.2 shows the
reduce operation applied to some of the 〈key, value〉 pairs presented in Table 6.1. The TM
consists of records composed of the fields provided by Table 6.2 (Key, Current, Accumulated).

Key Value
Current Accumulated

S1/host:01/host:03 1522598234
∑

Cv
∑

Av
S1/host:01/host:04 1522598234

∑
Cv

∑
Av

S2/host:02/host:05 1522598234
∑

Cv
∑

Av
S2/host:02/host:06 1522598234

∑
Cv

∑
Av

· · · · · · 1522598234
∑

Cv
∑

Av

Table 6.2: Reduce by key applied to 〈key, value〉 pairs.

6.3 Summary

This chapter has presented the proposed MapReduce approach to estimate the TM and started
by delineating the process for obtaining the TM. The process consists of four Map functions
and one Reduce function. Furthermore, the chapter described the basic structures used as an
input to the algorithms that estimate the TM. Finally, this chapter presented the layout of the
network topology provided by the SDN controller and the two algorithms that implement the
described process.

Chapters 4, 5, and this chapter focus on the description of the Big Data traffic monitoring
method and its implementation. This thesis also proposes a traffic analysis method, and the
next chapter presents this method.
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Big Data Traffic Analysis

Traffic analysis processes a large amount of data to deliver a wide range of insights about
network usage. Processing a large amount of data is inherently a batch process. The lambda
architecture presented in Subsection 2.2.3 of this thesis defines a dedicated branch for batch
processing. Figure 2.10 shows the batch layer, which defines a Master Dataset that holds
stream data to be processed by batch jobs. The batch jobs run in the Batch Processing Platform

to feed the Serving layer with batch views. The batch views are the source of data for traffic
analysis and monitoring applications.

In this chapter, a batch-processing traffic analysis method is proposed to run on the Batch

Processing Platform and generate batch views that reflect different analyses of network traffic
and provide historical data. The traffic analysis involves the following levels of aggregations:
switch port, switch, link, path, and network. The MapReduce approach is recommended to
generate these different aggregation levels because of its ability to process a large amount of
data using parallel and distributed execution.

7.1 Traffic Analysis Method

Figure 7.1 depicts the advanced traffic analysis method as an activity diagram. The flow of
control presented in the activity diagram is established based on data dependency among the
activities to provide different levels of aggregation.

The Store Streaming Data activity receives raw data coming from the SDN controller,
which provide the starting point for statistics calculations. The Calculate Switch Port Traf-

fic Statistics activity calculates the basic level of statistics, which is the port traffic statistics.
Port traffic statistics enable several levels of aggregation to be generated, such as switch traf-
fic, network traffic, link traffic, and path traffic. The Generate Switch Traffic Statistics activity
aggregates switch statistics by timestamp. The switch statistics involve aggregating the traffic

68
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in the switch ports. The Generate Network Port Statistics activity aggregates network statistics
based on port statistics; these data are necessary to generate port traffic analysis. Even though
the Generate Switch Traffic Statistics and the Generate Network Port Statistics activities use the
same data source, they proceed in parallel because they output different levels of aggregation.
The Generate Network Switch Statistics activity aggregates network statistics based on switch
statistics. The values generated up to this point provide statistics calculated for switches, ports,
and the network and enable traffic analysis to be generated. The Generate Switch Traffic Anal-

ysis activity provides a traffic analysis of individual switches. The Generate Switch Port Traffic

Analysis activity provides a traffic analysis of each port in every switch. Because a pair of
switch ports forms a link, the activity Generate Link Traffic Analysis depends on the analysis
provided by the Generate Switch Port Traffic Analysis activity. This same level of dependency
also applies to the Generate Path Traffic Analysis activity, because the paths between hosts are
composed of links, and consequently to generate path traffic analysis, link traffic analysis must
be provided in advance.

The following sections detail the activities and objects presented in the activity diagram.

Figure 7.1: Traffic analysis method.
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7.1.1 Store Streaming Data

This activity collects raw traffic data coming from the SDN controller and stores them in the
raw traffic data object flow. The Master Dataset is the physical repository of the raw traffic

data object flow. The batch job processes the full content of the Master Dataset. Therefore,
this activity continuously appends new data, and never removes data. The data coming from
the SDN controller are not in the format in which they will be processed, and this activity
formats these incoming data for further processing.

7.1.2 Calculate Switch Port Traffic Statistics

Figure 7.2 shows the layout of the collected raw data stored by the Store Streaming Data

Activity. This layout differs from the one presented in Figure 6.2 because it adds the packets

received (PR) and packets transmitted (PT) attributes. The values provided represent counter
values for each switch port.

514516101215︸            ︷︷            ︸
timestamp

S2︸︷︷︸
switch id

S2:eth4︸  ︷︷  ︸
switch port

100︸︷︷︸
packets received

272︸︷︷︸
packets transmitted

11623︸︷︷︸
bytes received

27251︸︷︷︸
bytes transmitted

3︸︷︷︸
second

458000000︸       ︷︷       ︸
nanosecond

Figure 7.2: Traffic statistics message layout.

The timestamp attribute follows the same rule as presented in Section 6.2.1. Table 7.1
describes the throughput statistics that this activity generates for each port.

All other succeeding activities use the output generated in this activity to perform their
particular levels of aggregation. Figure 7.3 provides an example of the output row after the
calculations presented in Table 7.1 have been applied to the values in Figure 7.2.

514516101︸       ︷︷       ︸
timestamp

S2︸︷︷︸
switch id

S2:eth4︸  ︷︷  ︸
switch port

100︸︷︷︸
PR

272︸︷︷︸
PT

11623︸︷︷︸
BR

27251︸︷︷︸
BT

33.3︸︷︷︸
PRT

90.66︸︷︷︸
PTT

124︸︷︷︸
PTr

3874.33︸   ︷︷   ︸
BRT

9083.66︸   ︷︷   ︸
BTT

12958︸︷︷︸
BTr

Figure 7.3: Output generated by the calculate switch port traffic statistics activity.

7.1.3 Generate Switch Traffic Statistics

This activity performs MapReduce operations to generate switch statistics. The generated
statistics are necessary to calculate the switch traffic and perform the switch port traffic analy-
sis. Figure 7.3 shows the layout of the data processed by this activity. The composite key that
aggregates switch statistics at every timestamp contains the following attributes:
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Calculated Throughput Equation

Packet Received Throughput (PRT)
PR
S

(7.1)

Packet Transmitted Throughput (PTT)
PT
S

(7.2)

Packet Throughput (PTr)
(PT + PR)

S
(7.3)

Bytes Received Throughput (BRT)
BR
S

(7.4)

Bytes Transmitted Throughput (BTT)
BT
S

(7.5)

Bytes Throughput (BTr) Equation 6.3

Table 7.1: Calculated port throughputs.

• 〈switchid, timestamp〉

The following statistics are generated using this key:

• Summation. Each item in Table 7.1 has its values totalized. For instance, the equation
T PRT =

∑n
p=1 PRT summarizes the Packet Received Throughput (PRT), the equation

T PTT =
∑n

p=1 PTT summarizes the Packet Transmitted Throughput (PTT), and so on.
Packets and bytes received, and packets and bytes transmitted are also summarized.

• Mean. The mean of every item mentioned in the previous summation paragraph is also
calculated using the mean Equation 7.6:

M =
1
n
∗

n∑
i=1

pi (7.6)

where M is the mean, n is the number of ports in the switch, and p represents the base
value for the mean (PR, PT, BR, BT, PRT, PTT, PTr, BRT, BTT, Btr) in switch port i.

• Standard Deviation. The standard deviation of every item mentioned in the previous
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summation paragraph is also calculated using the standard deviation equation 7.7:

σ =

√∑
(x − M)2

n
(7.7)

where σ is the standard deviation, x is the individual value of each item mentioned in the
previous summation paragraph (PR, PT, BR, BT, PRT, PTT, PTr, BRT, BTT, and Btr),
M is the mean calculated in the previous Mean part for PR, PT, BR, BT, PRT, PTT, PTr,
BRT, BTT, and Btr, and n is the number of items.

7.1.4 Generate Network Switch Statistics

The statistics generated in this activity are an aggregation of the values produced by the pre-
vious activity (Section 7.1.3). Using switch-aggregated statistics enables the proposed method
to provide switch traffic analysis based on network traffic statistics.

This activity generates the same type of statistics as presented in Section 7.1.3 (summation,
mean, and standard deviation) with the difference that the generated values refer to the entire
network. The key used to aggregate these values contains the following attribute:

• 〈timestamp〉

7.1.5 Generate Network Port Statistics

This activity also generates the same type of statistics as those generated in Section 7.1.4 and
even uses the same key, the timestamp. The network statistics aggregation in this activity is
based on port statistics and is needed to generate switch port traffic analysis.

Even though this activity and the activity presented in Section 7.1.4 perform aggregation
using the same key, the main difference between them is the mean calculation. Table 7.2
provides an example of this difference. Table 7.2a shows the mean calculation based on port
statistics, and Table 7.2b shows the mean calculation based on switch statistics. Even though
the totals are the same, the means are different. This is why the proposed method defines two
distinct activities to generate network statistics.

7.1.6 Generate Switch Traffic Analysis

This activity provides a z-score switch traffic analysis. A z-score tells how many standard
deviations a value is away from the mean, and in which direction [93]. A positive z-score
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Timestamp Switch Port Throughput
1522598234 S2 S2:eth2 12590
1522598234 S1 S1:eth1 3450
1522598234 S3 S3:eth4 2550
1522598234 S2 S2:eth1 5620
1522598234 S3 S3:eth2 9740
1522598234 S4 S4:eth1 15420
1522598234 S5 S5:eth2 11560
1522598234 S4 S4:eth3 12590
1522598234 S1 S1:eth2 8456
1522598234 S2 S2:eth3 7458
1522598234 S5 S5:eth1 19854

Total 109288
Mean 9935.27

(a) Mean for port statistics

Timestamp Switch Throughput
1522598234 S2 25668
1522598234 S1 11906
1522598234 S3 12290
1522598234 S4 28010
1522598234 S5 31414

Total 109288
Mean 21857.6

(b) Mean for switch statistics

Table 7.2: Mean statistics

indicates that a value is above the mean, whereas a negative z-score indicates that a value is
below the mean. The z-score is calculated using Equation 7.8:

z =
x − µ
σ

(7.8)

where z is the z-score, x is the value of one specific value, µ is the mean of all values, and
σ is the standard deviation of all values.

A value with a z-score less than -3 or greater than +3 is called an outlier [93] and may be
an indication of abnormal behaviour. The traffic behaviour in any switch can be analyzed by
calculating the z-score of the following parameters:

• Packets Received (PR), Packets Transmitted (PT), Bytes Received (BR), Bytes Transmit-
ted (BT), Packets Received Throughput (PRT), Packets Transmitted Throughput (PTT),
Packets Throughput (PTr), Bytes Received Throughput (BRT), Bytes Transmitted Through-
put (BTT), Bytes Throughput (BTr).

A Join operation with the results of the activities described in Sections 7.1.3 and 7.1.4
generates the Switch Traffic Analysis object, as shown in Figure 7.4.

The Switch Traffic Analysis object stores the values generated in this section, Section 7.1.3,
and Section 7.1.4. For any application that needs to retrieve the statistical and historical be-
haviour of every switch in the network, the Switch Traffic Analysis object is the source of
these data. Each record in this object, in addition to the switch statistics, also contains the
network statistics. Consequently, every record replicates network statistics. Even though this
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Figure 7.4: Switch analysis generation.

approach demands more storage space, any additional analysis can benefit from it because
with one read operation, an application can retrieve switch and network statistics, immediately
speeding up the analysis process. Table 7.3 shows an example of the partial contents of the
Switch Traffic Analysis object.

1522598234 S1 statistics columns S1 traffic analysis columns network statistics columns
1522598234 S2 statistics columns S2 traffic analysis columns network statistics columns
1522598234 S3 statistics columns S3 traffic analysis columns network statistics columns
1522598234 S4 statistics columns S4 traffic analysis columns network statistics columns
1522598235 S1 statistics columns S1 traffic analysis columns network statistics columns
1522598235 S2 statistics columns S2 traffic analysis columns network statistics columns
1522598235 S3 statistics columns S3 traffic analysis columns network statistics columns
1522598235 S4 statistics columns S4 traffic analysis columns network statistics columns
· · · · · · · · · · · · · · · · · · · · ·

Table 7.3: Example of the switch traffic analysis object.

7.1.7 Generate Switch Port Traffic Analysis

This activity generates the z-scores of switch ports. The z-scores of each port within the switch
context and the network context are calculated. Executing a Join operation using the output
of sections 7.1.2, 7.1.3, and 7.1.5 enables the z-score calculation for all parameters listed in
Section 7.1.6. Figure 7.5 shows the Join operation.

The Switch Port Traffic Analysis object stores the result of the Join operation. Table 7.4
shows a partial example of the content of the Switch Port Traffic Analysis object.
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Figure 7.5: Port analysis generation.

1522598234 S1:eth1 statistics columns S1:eth1 traffic analysis columns S1 traffic statistics columns network statistics columns
1522598234 S2:eth3 statistics columns S2:eth3 traffic analysis columns S2 traffic statistics columns network statistics columns
1522598234 S1:eth3 statistics columns S1:eth3 traffic analysis columns S1 traffic statistics columns network statistics columns
1522598234 S3:eth2 statistics columns S3:eth2 traffic analysis columns S3 traffic statistics columns network statistics columns
1522598234 S4:eth4 statistics columns S4:eth4 traffic analysis columns S4 traffic statistics columns network statistics columns
1522598235 S1:eth1 statistics columns S1:eth1 traffic analysis columns S1 traffic statistics columns network statistics columns
1522598235 S2:eth3 statistics columns S2:eth3 traffic analysis columns S2 traffic statistics columns network statistics columns
1522598235 S1:eth3 statistics columns S1:eth3 traffic analysis columns S1 traffic statistics columns network statistics columns
1522598235 S3:eth2 statistics columns S3:eth2 traffic analysis columns S3 traffic statistics columns network statistics columns
1522598235 S4:eth4 statistics columns S4:eth4 traffic analysis columns S4 traffic statistics columns network statistics columns
· · · · · · · · · · · · · · · · · · · · ·

Table 7.4: Example of the switch port traffic analysis object.

7.1.8 Generate Link Traffic Analysis

Every link in the network is composed of two ports belonging to different switches unless the
switch port is connected to a host. In this case, the link is the switch port. The Links object
(Figure 7.1) is a container for the links formed in the network. The procedure to select a port
from one of the two ports in a link is similar to the procedure presented in Subsection 6.2.2, i.e.,
selecting the link with the maximum value of BR + BT . A Join operation is executed between
the output of the Generate Switch Port Traffic Analysis activity and the Links object. This
operation selects the maximum value for (BR + BT ) of each link at every timestamp and stores
the result in the Link Traffic Analysis object, as shown in Figure 7.6. The layout of the object
Link Traffic Analysis is the same as that presented in Table 7.4 with the addition of the link
ID.

7.1.9 Generate Path Traffic Analysis

The goal of this activity is to generate the traffic analysis of all OD pairs of hosts. This activity
uses the Paths object, which contains the set of all links between the OD pairs of hosts. The
procedure to build this set is presented in Algorithm 6.1. A Join operation is executed between
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Figure 7.6: Link analysis generation.

the output of the Generate Link Traffic Analysis activity and the Paths object to populate the
Path Traffic Analysis object, as shown in Figure 7.7.

Figure 7.7: Path analysis generation.

Table 7.5 shows an example of the partial content of the Path Traffic Analysis object. As
the Paths object is built by Algorithm 6.1, the idea of the root path is used in this activity, and
the root path attribute is part of the path identification.

7.2 Summary

This chapter has described a Big Data traffic analysis method based on MapReduce operations
to generate several levels of traffic statistics and traffic analysis aggregation. Besides the ca-
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1522598234 S1:h1-h7 S1:h1-h7 statistics columns S1:h1-h7 traffic analysis columns path statistics columns
1522598234 S1:h2-h5 S1:h2-h5 statistics columns S1:h2-h5 traffic analysis columns path statistics columns
1522598234 S2:h1-h7 S2:h1-h7 statistics columns S2:h1-h7 traffic analysis columns path statistics columns
1522598234 S2:h4-h6 S2:h4-h6 statistics columns S2:h4-h6 traffic analysis columns path statistics columns
1522598234 S2:h3-h8 S2:h3-h8 statistics columns S2:h3-h8 traffic analysis columns path statistics columns
1522598235 S1:h1-h7 S1:h1-h7 statistics columns S1:h1-h7 traffic analysis columns path statistics columns
1522598235 S1:h2-h5 S1:h2-h5 statistics columns S1:h2-h5 traffic analysis columns path statistics columns
1522598235 S2:h1-h7 S2:h1-h7 statistics columns S2:h1-h7 traffic analysis columns path statistics columns
1522598235 S2:h4-h6 S2:h4-h6 statistics columns S2:h4-h6 traffic analysis columns path statistics columns
1522598235 S2:h3-h8 S2:h3-h8 statistics columns S2:h3-h8 traffic analysis columns path statistics columns
· · · · · · · · · · · · · · · · · · · · ·

Table 7.5: Example of the path traffic analysis object.

pability for parallel and distributed execution, the MapReduce approach facilitates the process
of value aggregation by a diverse number of keys, enabling the generation of statistics and
analysis at several levels of aggregation.

The proposed method is made up of a series of activities and objects, and an activity dia-
gram describing activity flow control.

The Raw Traffic Data, Switch Traffic Analysis, Switch Port Traffic Analysis, Link
Traffic Analysis, and Path Traffic Analysis objects are persisted in secondary memory. These
objects not only provide traffic analysis and statistics, but they also provide a rich source of
historical information that can be used to verify traffic trends in links, paths, switches, and
ports and help in anomaly detection and network provisioning.

So far, this thesis has described the methods and implementations proposed for Big Data
traffic monitoring and traffic analysis. The next chapter provides the experimental results ob-
tained by implementing the methods proposed in Chapters 4, 6, and this chapter.



Chapter 8

Experimental Results

This chapter presents an evaluation of the methods proposed in this thesis. Section 8.1 de-
scribes the results of the Big Data traffic monitoring method experiments. Section 8.2 describes
the results of the MapReduce TM estimation experiments. Section 8.3 provides a performance
evaluation of Spark streaming for running the Big Data traffic monitoring implementation. A
point to reinforce is that the implementation of the MapReduce TM estimation is part of the
implementation of the Big Data traffic monitoring method. Section 8.4 describes the results of
the Big Data traffic analysis experiments.

8.1 Big Data Monitoring Results

Mininet was used to create the network topology and run the experiments. Using Iperf3, TCP
flows were created according to the scheduling diagram shown in Figure 8.1. This diagram
shows the traffic generated between pairs of hosts and the respective configured bandwidth.
Some flow table entries were added to change the default route configuration provided by
OpenDaylight. These flow entries define the IP routing, as shown in Table 8.1.

Figure 8.1: Monitoring scheduling diagram.

The experimental implementation probed the SDN controller every three seconds to col-

78
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lect traffic statistics. The collected data were processed by Spark streaming, and all statistics
were persisted in Elasticsearch every three seconds. Even though the implementation provided
all statistics in real-time, the graphics were generated off-line. The graphics provided in this
chapter show statistics for selected resources and elements, but the implementation provided
statistics for all monitored resources and elements. Except when explicitly stated, the statis-
tics generated by this implementation denotes cumulative throughput. The scheduling diagram
shown in Figure 8.1 displays the bandwidth selected for every unit of traffic generated. The
bandwidth value is expressed in Mbits per second.

Switch Source IP Destination IP Action

S1
10.0.0.1 10.0.0.5 output:eth3
10.0.0.2 10.0.0.8 output:eth4
10.0.0.3 10.0.0.7 output:eth4

S2
10.0.0.1 10.0.0.7 output:eth4
10.0.0.2 10.0.0.6 output:eth3
10.0.0.4 10.0.0.8 output:eth4

S3

10.0.0.1 10.0.0.5 output:eth3
10.0.0.1 10.0.0.7 output:eth4
10.0.0.2 10.0.0.6 output:eth4
10.0.0.2 10.0.0.8 output:eth3

S4
10.0.0.3 10.0.0.7 output:eth3
10.0.0.4 10.0.0.8 output:eth4

S5
* 10.0.0.5 output:eth1
* 10.0.0.6 output:eth2

S6
* 10.0.0.7 output:eth1
* 10.0.0.8 output:eth2

Table 8.1: IP routing table.

To validate the statistics provided, the packets on ports in the topology were captured using
tcpdump. Using tshark and a python script, the throughput was calculated at every three sec-
onds for each port and switch; the results were then plotted as graphics. This plot was intended
to show that the statistics calculated in this study followed the same pattern as those calculated
using tshark. With tshark, the statistics at every three seconds were calculated, and the counter
values provided by the OF standard included seconds and nanoseconds, which did not enable
exact matching of values at the nanosecond level. Hence, it cannot be expected that the values
calculated using tshark and those provided by the present implementation will be the same.

8.1.1 Switch and Port Throughput

Figure 8.2 shows the evolution over time of the throughput in switch S6 and in each of its ports
(eth1–eth4) during the simulation period. The graphic at the bottom provides the throughput
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for the switch.
The throughput for the switch was not originally provided by the SDN controller and is an

aggregation of the value of its ports. The expression for this aggregation is shown in Equa-
tion 8.1:

S =

N∑
n=1

Tn, (8.1)

where S is the switch throughput, Tn is the port n throughput, and N is the number of ports in
the switch.

Figure 8.2: Switch and port throughput.

According to the schedule in Figure 8.1, a 20s burst of traffic is started from h1 to h7 at
instant 10s. This is reflected on port eth1 where an increase in the throughput from instant 10
to 30 was observed. This increase continued until instant 30 because another burst of traffic at
instant 25 was started from h3 to h7. The eth2 port reflects both the 20s traffic started from h2
to h8, and the 30s traffic started from h4 to h8. The eth3 port shows the 20s traffic between h3
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and h7 and the 20s traffic from h2 to h8. The eth4 port shows the 20s traffic from h1 to h7 and
the 30s traffic from h4 to h8.

8.1.2 Switch Throughput Breakdown

Another statistic provided by the present implementation represents the contribution (percent-
age) of the port throughput to the switch throughput, as can be seen in Figure 8.3. The graph
shows the evolution over time of the contribution of each port to the switch load. For each port,
the percentage was calculated according to the expression in Equation 8.2:

P =
Tp

Ts
∗ 100, (8.2)

where Tp is the port throughput and Ts the switch throughput.

Figure 8.3: Port contribution to switch throughput.

Figure 8.2 shows that traffic starts after 10 seconds in S6. The percentage presented in
Figure 8.3 from 0 to 10s is related to packets from other protocols such as MDNS, LLDP,
ARP, and ICMP because the simulation included first pinging all machines to test connectivity.
Figure 8.3 shows that from instant 10 to 25s, ports eth1 and eth4 generated all the traffic in the
switch, which can be confirmed in Figure 8.2. Also, the eth2 port started its contribution to the
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switch load after instant 50s.

8.1.3 Switches Throughput

The throughput of every switch in the topology was calculated based on Equation 8.1. This
procedure enabled tracking of the throughput evolution of all switches at the same time. The
network topology contained six switches (S1–S6). Figure 8.4 shows the measured throughput
and the tshark validation for switches S1, S3, and S4. In the first 15s, switches S1 and S3 have
an increase in their throughput. S1 is in the route of the traffic from h1 to h5 for 15s. After 15s,
S1 throughput decreased for 10s, but started to increase after 25s because of the rise in traffic
from h1 to h5 and after 45s due to the (increased) traffic from h2 to h8 for 20s. S3 throughput
grew faster because it was driven by the traffic from h1 to h5 and from h1 to h7 at 10s and
again by the traffic from h1 to h5 at 25s. The traffic in S4 only started at 25s from h3 to h7 and
saw a slight increase at 50s due to the traffic between h4 and h8.

Figure 8.4: Switch throughput.

8.1.4 Port Capacity Usage

This study also examined the percentage of its own maximum throughput capacity that was
used by each port. These statistics are shown in Figure 8.5. The percentage was calculated
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according to Equation 8.3:

P =
Tp

Pc
∗ 100, (8.3)

where TP is the port throughput and PC the port throughput capacity. The PC variable is pro-
vided by the Switch Port and is described in Table 4.2 as Current Feature. The value provided
by OpenDaylight for the study environment was 1 Gbps. Because this value was too large for
the experiments, a value of 100 Mbps was used.

Figure 8.5: Port percentage capacity used.

Figure 8.5 shows the values of P calculated for all ports (eth1–eth4) in switch S6. The eth1
port reached its peak of utilization between 25 and 30s because of the traffic from h1 to h7
(10s) and h3 to h7 (25s). The eth2 port took more time to reach its peak because the traffic
that traversed it only started at 45s (h2 to h8 and h4 to h8). The percentage of use for eth3
was affected by the traffic from h3 to h7 and from h2 to h8. Finally, eth4 had almost the same
percentage of use as eth3 due to the traffic from h1 to h7 and h4 to h8.

8.1.5 Links Throughput

Because a network is composed of various links, the present implementation provides the
throughput for every link in the topology. This graphic is shown in Figure 8.6. Links are
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formed between hosts and switches and between ports in a switch. If a link is between a host
and a switch, the implementation simply collects the throughput of the switch port because the
SDN controller does not provide statistics for the network interface attached to the host. If
a link is established between switch ports, the implementation collects throughput from both
ports. As shown in Table 4.3, the OF protocol defines the fields Bytes Received and Bytes

Transmitted for port counters. If the implementation collects these counters for two ports that
form a link at the same Second and Nanosecond (also defined in Table 4.3), these values are
supposed to be the same, i.e., the Bytes Received of one port should be the same as the Bytes

Transmitted of its partner and vice versa. Hence, the implementation only needs the counters
of one of the ports in the link. Because the present implementation runs different threads to
collect counters for each port, it is expected that the readings between pairs will not collect
the same Second and Nanosecond. The following approach is used in this situation for a link
formed by S ai and S b j:

• Define S ai as port i of Switch a.

• Define S b j as port j of Switch b.

• Define BRai and BTai as Bytes Received and Bytes Transmitted respectively for the read-
ing of S ai .

• Define BRb j and BTb j as Bytes Received and Bytes Transmitted respectively for the read-
ing of S b j .

• if ((BRai + BTai) > (BRb j + BTb j)), use the reading of S ai; otherwise, use the reading of
S b j .

This approach provides the most recent statistics about link throughput.
Figure 8.6 shows the calculated throughput in the links formed by S2:eth4 and S6:eth4,

S1:eth1 and S3:eth3, S2:eth3 and S5:eth4, and S1:eth2 and S4:eth3. The throughput in link
S2:eth4/S6:eth4 increases during the traffic from h1 to h7, experiences a small decrease, and
then stops decreasing because of the traffic between h4 to h8. The throughput behaviour ob-
served in link S1:eth1/S3:eth3 is driven by the traffic between h1 and h5 and between h2
and h8. The traffic from h2 to h6 is the only instance that uses link S2:eth3/S5:eth4. Link
S1:eth2/S4:eth3 is used by the traffic from h3 to h7.

8.1.6 Current Link Throughput

The current throughput of a link is calculated according to equation 6.2. Figure 8.7 shows the
current estimated throughput at every t − T time interval in the links formed by S2:eth4 and
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Figure 8.6: Links throughput.

S6:eth4, S1:eth1 and S3:eth3, and S2:eth3 and S5:eth4. The link S2:eth4/S6:eth4 is used by
the traffic from h1 to h7 and from h4 to h8. S1:eth1/S3:eth3 carries the traffic from h1 to h5 (at
0 and 25s) and from h2 to h8. The traffic from h2 to h6 at instant 10s drives the throughput in
S2:eth3/S5:eth4.

8.2 MapReduce TM Estimation Results

This section provides the implementation results of the MapReduce TM estimation method.

8.2.1 Host-to-Host Throughput

The OD pair accumulated throughput is also an aggregation of the values of individual links
between the hosts. The MapReduce approach described in Chapter 6 provides an estimate
of the throughput between all possible combinations of OD traversing S1 or S2 according to
Table 8.2.

Figure 8.8 shows the estimated throughput between the following pairs of hosts: h1–h5
(root S1), h3–h8 (root S2), and h2–h4 (root S2). Table 8.1 provides the rules for verifying
which ports are used by each OD pair. For instance, the following links connect h3 to h8 using
S2 as a root: S4:eth1, S4:eth4/S2:eth2, s2:eth4/S6:eth4, and S6:eth2. The OD pair h1–h5 has
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Figure 8.7: Links current throughput.

S 1 S 2

h1 − h2 h1 − h2

h1 − h3 h1 − h3

h1 − h4 h1 − h4

· · · · · ·

h7 − h8 h7 − h8

Table 8.2: Origin-Destination roots.

two specific traffic states defined at instants 0 and 25s. No traffic occurred between h3 and
h8, meaning that the links that connect them were used to estimate throughput. In this case,
the following traffic flows were used in throughput estimation: h1–h7, h3–h7, and h4–h8. The
same situation applied to the OD pair h2–h4. In this case, the traffic between h1–h7, h2–h6,
and h4–h8 generated the throughput for this OD pair.

8.2.2 Host-to-Host Current Throughput

As shown in Table 6.2, the current throughput of an OD pair is an aggregation of the values of
individual links between the hosts. Figure 8.9 shows the estimated current throughput between
h3 and h8 (root S2). The first four top graphics show the throughput on each link that connects
the hosts, and the graphic on the bottom shows the aggregation of the individual links. The
links between h3 and h8 are: S4:eth1, S2:eth2/S4:eth4, S2:eth4/S6:eth4, and S6:eth2. The
only traffic flows in S4:eth1 is that from h3 to h7, which starts at 25s. The S2:eth2/S4:eth4 link
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Figure 8.8: Origin-Destination throughput.

is used by traffic from h4 to h8, which starts at instant 50s. The traffic from h1 to h7 at instant
10s and from h4 to h8 at instant 50s drives the S2:eth4/S6:eth4 link throughput. The S6:eth2
link carries traffic from h2 to h8 at instant 45s and from h4 to h8 at instant 50s.

Figure 8.9: Origin-Destination current throughput.

8.3 Performance Evaluation

The proposed MapReduce approach was executed inside an Apache Spark Streaming environ-
ment. A performance evaluation of the execution of the proposed approach based on several
metrics produced by the Spark Streaming monitoring system is now presented.

Figure 8.10 shows the record input rate statistics. The average value of 7.62 records per
second is shown on the left side of the figure. The graph in the centre shows the evolution
of the input rate over the simulation period. The first observed spike from left to right is
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related to the time that Spark takes to set up the environment, which causes an accumulation
of records. Subsequent spikes are produced by the records arriving every 3 seconds. Spark
streaming processes the input records in batches, and the histogram on the right side shows the
distribution of batches/records per second.

Figure 8.10: Record input rate.

Scheduling delay is the time between the instant that a collection of jobs for a batch was
submitted and the instant that the first job was started. The scheduling delay the present sim-
ulation is shown in Figure 8.11. According to the graph in the centre, the first value for the
scheduling delay was over 2 seconds because of the environment set-up, but the following
batches had values near zero, making the overall average 173 ms. The histogram graph on the
right shows that most of the batches had nearly zero scheduling delay time.

Figure 8.11: Scheduling delay.

Figure 8.12 shows the processing time for each batch of data. The average processing
time in the present simulation was 2.5 seconds. According to the graph in the centre and the
histogram in Figure 8.12, the most batches finished their execution in less than the time defined
to process each batch (3.5 seconds, as shows by the dotted line labelled stable). The reason
why this time is not the same for all batches is that the record input rate (Figure 8.10) is not the
same. The record input rate is related to the Apache Kafka record processing time and affects
the time that all MapReduce functions (Figure 6.1) take to run in a single batch. The time
needed to persist each set of calculated statistics is already included in the batch processing
time.

According to Spark Streaming documentation, the total delay parameter shows whether or
not the system is stable. The system is considered stable if it can keep up with its record input
rate. If the delay is maintained to be comparable to the batch size, the system is considered
stable, which is true in the approach proposed here as shown in Figure 8.13.
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Figure 8.12: Processing time.

Figure 8.13: Total delay.

8.4 Big Data Traffic Analysis Method Results

This section provides the Big Data traffic analysis method (chapter 7) implementation results.
The implementation followed the design guidelines presented in the right branch of the Lambda
Architecture, as shown in Figure 2.10. The Batch Layer stored the object Raw Traffic Data

(Figure 7.1), which contains the counter values collected from the SDN controller. The Batch

Processing Platform runs all activities presented in Figure 7.1, except for the Store Stream-

ing Data activity that processes the values stored in the Batch Layer and generated the traf-
fic analysis. The Serving Layer stores the generated traffic analysis using the Switch Traffic

Analysis, Switch Port Traffic Analysis, Link Traffic Analysis, and Path Traffic Analysis objects
(Figure. 7.1).

Figure 8.14 depicts the traffic scheduling diagram for the experiments. Iperf3 generated the
TCP flows and, Table 8.1 shows the route configuration entry flows that define the following
roots for host-to-host communication: h1–h5, h3–h7, and h2–h8 use S1 as root, and h2–h6,
h1–h7, and h4–h8 use S2 as root. Figure 6.3 presents the network topology.

Figure 8.14: Batch scheduling diagram.
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8.4.1 Switch Port Traffic Analysis

Figure 8.15 presents the z-score evolution in ports S3:eth1, S3:eth2, S4:eth1, and S4:eth2. The
calculated z-score refers to the accumulated throughput in the port based on the average accu-
mulated network throughput. Figure 8.15a provides the calculated z-score, and Figure 8.15b
shows the ports’ accumulated throughput and the network average accumulated throughput and
also helps to show the consistency between the ports’ calculated z-scores and their throughput.

(a) Switch ports Z-Score. (b) Network throughput average.

Figure 8.15: Switch port traffic analysis.

According to Figure 8.14, three bursts of traffic involving h1 (Figure 6.3) take place in
the first 25 seconds. Figure 8.15a shows the z-score for S3:eth1. From instant 0 to 10s, the
z-score has a high value because it is the only load on the network. Between 10 and 15s, the
z-score increases because of the burst of traffic between h1–h7. After instant 15s, the z-score
decreases for two reasons: first, the traffic between h1–h5 finishes, and second, a burst of
traffic between h2–h6 increases the average network throughput and also changes the network
throughput standard deviation. The S3:eth1 z-score keeps dropping up to instant 65s, when it
increases because new bursts of traffic starts from h1–h5 at instant 55s, from h1–h7 at instant
65s, and from h1–h5 at instant 80s.

S3:eth2 has an increase in its z-score value at instant 15s because of the burst of traffic
between h2 and h6 and also after instant 48s because of the traffic between h2–h8. Even though
a burst of traffic occurs between h2 and h6 at instant 65s, the z-score of S3:eth2 decreases
because this traffic throughput is 5 Mbps, which is much less than other throughputs in the
same simulation period. S4:eth1, most of the time, presents negative z-scores because of the
low throughput in the traffic burst from h3 to h7 at instant 25s and only reaches a positive value
when its throughput goes above the network average value with the traffic burst from h3–h7
at instant 90s. S4:eth2 also has negative z-scores most of the time because of a burst of traffic
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at instant 50s between h4 and h8, but has a positive z-score because of another traffic burst
between h4 and h8 at instant 115s and also because most of the other ports are decreasing their
accumulated throughput, making the traffic in S4:eth2 go above the network average.

A benefit of the analysis provided by Figure 8.15 is that the port throughput presented
in the graphs do not suggest anomalous behaviour according to the z-score outlier definition
(Section 7.1.6).

8.4.2 Switch Traffic Analysis

Figure 8.16 shows the z-score changes in the switches compared to the network throughput
average. Figure 8.16a shows the switches’ z-scores, and Figure 8.16b shows their accumulated
throughput and the average network accumulated throughput, and also helps to show the con-
sistency between the switches’ calculated z-scores and their throughput. unlike the previous
section where the source for the average network throughput was the ports’ accumulated traffic
throughput, the source for the average network throughput in this section is the accumulated
switch traffic throughput.

(a) Switch Z-Score. (b) Network throughput average.

Figure 8.16: Switch traffic analysis.

Figure 8.16a shows that the S1 z-score increases from 0 to 10s because of the traffic between
h1 and h5. The z-score decreases until instant 25s, when another burst of traffic starts from h1–
h5 and increases until instant 70s because of the burst of traffic between h2–h8 at instant 45s
and h1–h5 at instant 55s. After instant 70s, the z-score value decreases, but rises again after
instant 80s because of the traffic between h1–h5, h3–h7 at instant 90s and between h2–h8 at
instant 110s.

The S3 z-score value from 0 to 10s is greater than zero because of the burst of traffic
between h1–h5. At instant 10s, the S3 z-score increases because of the bursts of traffic between
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h1–h7, between h2–h6, and between h1–h5 at instant 25s. At instant 40s, the S3 z-score
decreases because all traffics ceases, but rises around instant 50s because of the bursts of traffic
between h2–h8 at instant 45, between h1–h5 at instant 55s, and between h2–h6 at instant 65s.
Around instant 80s, the z-score decreases because the remaining traffic in S3 is between h1–h5
and stabilizes between 0 and 0.5 because of the traffic between h2–h8 at 110s.

The burst of traffic between h2–h6 and h1–h7 at instant 10s increases the S2 z-score. At
instant 30s, the z-score decrease because traffic ceases between h1–h7. Despite the burst of
traffic between h4–h8 at instant 50s, the z-score value continues to drop because of the increase
in the network switch average. The bursts of traffic between h2–h6 and h1–h7 increase the S2
z-score, but at instant 80s, it decreases again because all traffic has ceased. At instant 115s, the
z-score increases again because of the burst of traffic between h4–h8.

The S6 switch deals with all traffic involving hosts h7 and h8. The bursts of traffic from
h1–h7 at instant 10s, h3–h7 at instant 25s, h2–h8 at instant 45s, and h4–h8 at instant 50s make
the z-score increase until instant 55s. After instant 55s, the z-score shows a slight decrease,
most likely because of the traffic between h1–h5 that increases the average network throughput
and then increases again because all the bursts of traffic after instant 90s have hosts h7 and h8
as their destination.

8.4.3 Link Traffic Analysis

Besides the z-scores provided in the previous section, the data generated by the proposed Big
Data traffic analysis method make it possible to analyze a variety of traffic phenomena, such as
the distribution of traffic throughput in the network links. This analysis helps activities such as
load balancing and fault tolerance.

Figure 8.17 shows the distribution of network traffic throughput, identifying the minimum,
median, and maximum values and the first and third quartile distributions. The median is the
number such that 50% of the ordered data is less than or equal to that number. The first quartile
is the number such that 25% of the data is less than or equal to that number, and the third
quartile is the number such that 75% of the data is less than or equal to that number [94]. The
symbol N inside the boxes represents the average value of the data set for each link, and the
symbol # represents outliers.

According to Figure 8.17, among the links present in the graphic, link S1:eth1/S3:eth3
presents the highest accumulated throughput value, but its average value is nearly the same
as link S2:eth4/S6:eth4. S2:eth2/S4:eth4 presents the lowest accumulated throughput because
traffic between h4–h8 crosses the link and has only two bursts of traffic (instants 50s and 115s).
Traffic between h4–h8 and h1–h7 crosses the link S2:eth4/S6:eth4, meaning that 25% of the
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Figure 8.17: Links throughput distribution.

accumulated throughput lies between 8 and 14 Mbps. The link S2:eth1/S3:eth4 deals with
the traffic between h1–h7 and h2–h6 and presents a better distribution of the accumulated
throughput.

8.4.4 Path Traffic Analysis

Path traffic analysis provides the average accumulated throughput between each host OD pair
according to the scheduling diagram presented in Figure 8.14. Equation 8.4 calculates the
average for each pair of host OD pair:

Avg =
1
N

N∑
N=1

Tn, (8.4)

where Avg is the average throughput, N is the number of calculated throughputs, and Tn is the
throughput of the n-th calculated throughput for the path.

Figure 8.18 shows the calculated average throughput. The path between h1 and h7 has
the highest average throughput. The following analysis explains this result: the path between
h1–h7 crosses links S3:eth1, S3:eth4/S2:eth1, S2:eth4/S6:eth4, and S6:eth1. Every unit of
traffic crossing these links adds load to the link and consequently adds traffic between h1–h7.
Table 8.3 shows the traffic that adds load to the links between h1–h7 (root S2).

Table 8.3 shows that, besides the traffic between h1–h7, the traffic from h1–h5, h2–h6, h3–
h7, and h4–h8 will add load to the path between h1–h7, and Figure 8.14 shows that the bursts
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Traffic Link
h1–h7 All in the path
h1–h5 S3:eth1
h2–h6 S3:eth4/S2:eth1
h3–h7 S6:eth1
h4–h8 S2:eth4/S6:eth4

Table 8.3: Links h1–h7.

of traffic between the mentioned links have high throughput and confirms the result presented
in Figure 8.18.

Figure 8.18: Path average throughput.

The path between h2–h6 has the lowest throughput average and crosses links S3:eth2,
S3:eth4/S2:eth1, S2:eth3/S5:eth4, and S5:eth2. Table 8.4 shows the traffic and links that add
load to the path between h2 and h6 (root S2). Figure 8.14 shows the bursts of traffic on the
links between h2 and h6, and the combination of few links and low throughput confirms the
obtained result.

Traffic Link
h2–h6 All in the path
h1–h7 S3:eth4/s2:eth4
h2–h8 S3:eth2

Table 8.4: Links h2-h6.
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8.5 Summary

This chapter has presented the experimental results obtained by implementing of the meth-
ods proposed in this thesis, namely, Big Data traffic monitoring method, the MapReduce TM
estimation method, and the Big Data traffic analysis method. Furthermore, the chapter has
presented a performance evaluation of Spark streaming to show the stability of the system
when processing the counte values that were received in a streaming fashion and generating
the statistics provided in Sections 8.1 and 8.2.

The results described in this chapter show that the proposed methods can deliver insights
into network traffic, but that the implementation has some limitations. The traffic bandwidth
used in the experiments has an Mbps scale, and the three-second interval to provide the statis-
tics seems appropriate. For traffic bandwidth with a Gbps scale, the interval becomes too long
because traffic congestion or imbalance can occur and not be promptly detected. The im-
plementation needs improvement to be able to collect and provide traffic statistics within an
interval of less than three seconds.

The experiments used one SDN controller, but the proposed methods can be extended to
use more than one. This approach impacts data acquisition (Figure 4.1) because more than one
controller must be polled, which affects the time between traffic data requests. The time interval
between sequential data collection needs to be increased to accommodate all data collection
threads. The time to process the collected data may not be affected if more than one processing
cluster is available to generate the statistics.

The main goal of this chapter was to demonstrate the ability of the proposed methods to
provide fine-grained statistics on network resources. Even though the statistics provided in
Sections 8.1 and 8.2 are depicted in separate graphics, they were all generated in the same
time interval, every three seconds, which proves the efficiency of the proposed monitoring
method. The results depicted in Section 8.4 also show the efficiency of the proposed traffic
analysis method. It was not the intention of this work to prove that the chosen statistics were the
most appropriate for traffic analysis, but that the proposed methods enable the use of different
statistics that can be application-dependent.

Despite the number of results presented in this chapter, the ideal scenario to provide a com-
plete evaluation of the proposed methods would be an environment where the results provided
in this chapter were used by other TE activities to make decisions about new policies and to de-
ploy these policies in the network. The new configuration provided by the new policies would
be evaluated to measure the benefits of the data provided by the proposed methods.

The next chapter concludes this thesis by reviewing its contributions and suggesting future
directions in this research area.
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Conclusions

This thesis has investigated the problem of traffic monitoring in SDN and provided a series of
contributions that can leverage TE activities. Among TE activities (Figure 2.7), traffic monitor-
ing and analysis provide information about the behaviour of network parameters in the network
components. For instance, to detect the need for switch load balancing, the amount of traffic
crossing that switch is critical information. The more information that is available, the better
will be the result of the action to solve the problem. Building on a number of studies tackling
the traffic monitoring problem, this thesis has investigated and proposed methods to address
following problems:

• Traffic Monitoring

– The lack of a monitoring method that enables fine-grained monitoring of network
resources. Fine-grained monitoring is beneficial, not only for network operators
but also for algorithms trying to solve problems such as switch load balancing,
controller load balancing, and fault tolerance for the control and data planes.

• Traffic Analysis

– The lack of a traffic data analysis method to reveal network traffic trends and be-
haviour over time. unlike monitoring, data analysis deals with historical network
data and consequently requires a different approach in terms of organizing and pro-
cessing traffic data.

These problems are closely related because the monitoring activity collects network data,
calculates the network parameter(s), and hands them over to an application or a network ad-
ministrator. The traffic data analysis activity will use these same collected data, but will focus
on dissecting their evolution over time to provide more advanced insights into network traffic.

96
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Consequently, both activities use the same data, but with distinct goals. This thesis signifi-
cantly advances the TE activity of traffic monitoring and analysis by proposing methods that
can manage both problems using Big Data tools that standardize both processes. These meth-
ods enable designers to focus on the type of monitoring, e.g. network parameter(s), and the
analysis desired instead of dealing with problems like how to aggregate data at different levels
of the hierarchy and how to distribute the tasks that process the aggregations.

9.1 Contributions

This thesis has delivered the following contributions toward solving previously mentioned
problems:

• Traffic Monitoring

– This research has proposed a Big Data traffic monitoring method that considers
the collection and processing of counter values related to flows, flow tables, and
ports. Because the counters are collected in a streaming fashion, Big Data stream-
ing processing tools can deal with the problem of temporarily storing and providing
counter values for further processing.

– The implementation of the proposed Big Data traffic monitoring method using Big
Data tools delivered statistical information such as the ratio of each port in the
switch load and the throughput capacity used on each port, path, and switch. One of
the most significant benefits of using Big Data tools is that during implementation,
the focus is on the procedure to calculate the statistics, not on how to aggregate the
calculated statistics per resource and parallelize the processing.

– A critical source of information about the traffic in the network is the TM. The
TM is generated during the calculation of statistical information. This thesis has
provided a MapReduce approach to estimate the TM in real time based on the
traffic crossing the links between the OD pairs of hosts. In addition to the TM
estimate based on the accumulated throughput in each link, this research has also
delivered the TM estimate obtained between two sequential traffic data collections,
which is called the current TM throughput. The estimate was by calculating the
current throughput in each link and then aggregating the calculated values for each
pair of OD hosts.

• Traffic Analysis



98 Chapter 9. Conclusions

– This research has proposed a traffic data analysis method based on Big Data tech-
niques. Because a large amount of data is required to perform traffic analysis, the
proposed method is designed to execute batch processing. The method establishes
a hierarchical data dependency starting from the basic statistics as calculated in the
Big Data traffic monitoring method, namely, the ratio of each port in its switch load
and the throughput capacity used on each port, path, and switch. Using these basic
statistics, the method starts to build up historical and more advanced traffic anal-
yses. The hierarchical data dependency is generic enough to be used for different
analyses as provided in the experiments described in Section 8.4. The contribution
of the proposed method is the standardized flow of steps to carry out traffic analysis
and analyze its data dependencies.

As a result of the contributions described above, two other contributions can be highlighted:

• The methods proposed in this thesis were implemented using direct measurement, an
approach that was not considered feasible because of the lack of infrastructure to collect
and process traffic data and the amount of data to be collected and processed. With
the delivered implementation, this research opens the possibility of direct measurement
because of the use of Big Data tools that were designed to deal with this type of approach.

• Both proposed methods have the same source of data, i.e., counter data collected from
the SDN controller. In this case, it is beneficial that the Big Data processing system for
both methods can use this source of data without the problem of collecting the same data
twice and the risk of data inconsistency. This research uses Lambda Architecture to carry
out both streaming and batch processing to solve the issue of redundant data collection
and inconsistency. The Lambda Architecture was designed for this specific purpose and
enables a diverse collection of Big Data tools to be combined to process the incoming
data.

9.2 Future Work

This research study has made significant contributions, but traffic monitoring and analysis in
SDN have several open challenges. TE can significantly benefit from the advances in the traffic
monitoring and analysis area, but both traffic monitoring and analysis are in their early stages
in SDN.

Figure 9.1 shows the TE scope and highlights the topics covered by this research study,
namely Traffic Analysis/Characterization (Monitoring, Traffic Analysis). The topics of check-
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ing network invariants and debugging programming errors are outside the scope of this re-
search. At this stage, the Topology Update activity does not benefit from the contributions
of this thesis, but the Flow Management and Fault Tolerance activities do benefit from the
methods proposed in this thesis.

Figure 9.1: TE scope.

The following sections propose future research topics that can extend this work.

9.2.1 Traffic Engineering

• Several research topics in the TE area propose algorithms to solve problems such as
switch load balancing and fault tolerance. These algorithms do not take into account the
historical behaviour of resources such as links, ports, and switches. Using the results
provided by the monitoring methods proposed in this researchn new algorithms for TE
problems can be suggested to obtain better results.

• New research areas are using machine learning algorithms to perform tasks such as traf-
fic prediction, traffic classification, and anomaly detection in SDN. These research topics
deal with a small range of features collected from the network, usually values collected
from the counters and traffic throughput. New machine learning algorithms can be sug-
gested using the insights delivered by the proposed methods by using them as a new set
of features.

9.2.2 Traffic Monitoring and Analysis

• The first task in the proposed methods is to collect counters from the SDN controller.
Threads collect these counters in a round-robin fashion, i.e, for each network resource,
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one thread collects the counter values and is run again only after all the other threads
collect their resource values. An adaptive algorithm can be designed based on the evo-
lution of traffic in that specific resource, enabling the collection procedure to adapt itself
according to the network traffic. Eventually, some resources can receive more traffic and
have priority in the collection task.

• The implementation of the monitoring methods provides results within a three second
range. For networks with high bandwidth availability, this time range may not be ideal
because of the rate at which packets are created. An investigation on how to decrease this
time range while keeping the same consistent results would be beneficial for high-speed
networks. Decreasing the time range is quite challenging because the proposed method
uses threads to send requests to the SDN controller. By decreasing the time interval
between counter readings, the number of requests sent by the threads to the controller
per unit of time will increase.

• Figure 6.2 shows the layout of the messages containing counter values. The field second

is of particular interest because it is used to calculate traffic throughput, and its regular
change keeps the changes in the statistics smooth, especially when calculating the current
values according to Equation 6.2. The idea is to collect values at a regular interval of
seconds, for instance, at second 3, 6, 9, 12, 15, and so on. During the experiments,
because of the round-robin nature of the thread scheduling, some reading sequences did
not provide a regular period, resulting in, for instance, a sequence of seconds of 3, 6,
12, 18, and so on. The uneven gap between the readings makes the transition change
abruptly and not be smooth. part of the counters’ collectors task should be to detect
this gap and create a record for the gap according to some rules using, for example, the
average values between the current reading and the last reading.

• The Data Acquisition component (Figure. 5.1) collects data using the northbound APIs
available in the SDN controller. An SDN controller performs a large number of tasks and
eventually can have its performance affected by the number of statistics requests issued
by the Collect Streaming Data component. Another approach to minimizing the adverse
effects of a high rate of statistics requests in the SDN controller would be to collect the
counters values for messages sent to the OF switches, bypassing the SDN controller.
This approach could enable more readings request and consequently improve the quality
of the statistics provided.

• The Data Acquisition component (Figure 5.1) logically belongs to the application layer
of the SDN architecture (Figure 2.2). Most SDN controllers nowadays make it possi-
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ble to add new features to the controller by attaching new modules to it. For instance,
OpenDaylight allows the attachment of new modules using the OSGi standard. The Data

Acquisition component can then be moved from the application layer to the control-plane
layer to decrease the number of layers crossed to reach the counters of an OF switch.

• The topology used to validate the proposed monitoring method is limited in the number
of hosts, switches, and ports; these numbers could be increased to verify the scalability
of the Big Data tools used in the proposed implementation.

• Network topologies using segments can be used to expand the proposed method. Net-
work segments will require at least one SDN controller to manage every segment, and
the output results from every segment, which are generated by a local monitoring appli-
cation, should be sent to a highly hierarchical monitoring application to summarize the
traffic for all segments.

• The proposed monitoring method considers the collection of counters for flow tables and
flows, but the implementation developed here collected only port traffic counters. A new
implementation should be developed to collect flow tables and flows to analyze the im-
pacts of these new values on the performance of the Data Acquisition, Data Aggregation,
and Data Persistence components (Figure 5.1).

• The proposed MapReduce TM estimation method was designed to be generic from the
network topology point of view. The topology used in the experiments provided some
challenges for the method, such as more than one root path between the same OD host
pair. The method overcame this problem by creating separate keys for each path. Despite
the flexibility of the MapReduce paradigm, the proposed method should be applied to
more network topologies to verify its capability to adapt to different network topologies
and its performance in delivering the estimated TM.

• In this research, the network parameter monitored was the throughput because its value
is easily obtained from the counter values. The proposed methods can also be applied to
other network parameters, with the difference that some parameters such as packet loss

and network delay are harder to obtain and could impact the performance of the Data

Acquisition, Data Aggregation, and Data Persistence components (Figure 5.1).

• The current implementation of the Big Data traffic monitoring method provided new
insights into network behaviour, such as the ratio of each port to its switch load and the
throughput capacity used on each port, path, and switch. This contribution opens up the
possibility of investigating whether, based on these insights or new ones, new network
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parameters can be suggested. New network parameters improve the quality of traffic
monitoring because of the increment in the number of network performance indicators.

• The methods proposed in this research provided real-time statistics and traffic analysis
based on batch processing. The Lambda Architecture design enables real-time values
to be compared with batch values with the aim of verifying whether a real-time value
lies in a healthy range compared with historical data or whether it is outside that range.
Activities such as anomaly detection would benefit from this comparison.
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Wander Jácome de Queiroz

EDUCATION

PhD Degree, Software Engineering
Western University, London, Canada

Master of Science, Computer Science
University of Brasilia, Brasilia, Brazil

HONORS & AWARDS

• Award for Outstanding Presentation in Graduate Symposium – Department of Electrical
and Computer Engineering, Western University, 2018.

• PhD Scholarship – CNPq (National Council for Scientific and Technological Development)
- Science without border program, Brazil, 2015-2019

• MSc Scholarship – CAPES (Coordination for the Improvement of Higher Education
Personnel) Brazil, 1997-1999

PUBLICATIONS

Journal papers

• Wander Queiroz, Miriam A.M. Capretz, Mario Dantas. ”An approach for SDN traffic

monitoring based on big data techniques”, Journal of Network and Computer Applications,
Volume 131, Pages 28-39, 2019.

RELATED WORK EXPERIENCE

Teaching Assistant Aug/2015 – Apr/2018
Department of Electrical and Computer Engineering, Western University, London, Canada

IT Assistant Aug/2014 – Apr/2015
Bank of Brazil, Brasilia, Brazil

Lecturer Feb/2013 – Feb/2015
UniCEUB, Brasilia, Brazil

Software Engineer Feb/2009 – Aug/2014
Social Development and Fight Against Hunger Ministry, Brasilia, Brazil

112


	Big Data for Traffic Engineering in Software-Defined Networks
	Recommended Citation

	tmp.1556652788.pdf.6fNAB

