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Abstract
A fundamental problem in scheduling is makespan minimization on unrelated parallel ma-

chines (R||Cmax). Let there be a set J of jobs and a set M of parallel machines, where every
job J j ∈ J has processing time or length pi, j ∈ Q

+ on machine Mi ∈ M. The goal in R||Cmax

is to schedule the jobs non-preemptively on the machines so as to minimize the length of the
schedule, the makespan. A ρ-approximation algorithm produces in polynomial time a feasible
solution such that its objective value is within a multiplicative factor ρ of the optimum, where
ρ is called its approximation ratio. The best-known approximation algorithms for R||Cmax have
approximation ratio 2, but there is no ρ-approximation algorithm with ρ < 3/2 for R||Cmax

unless P = NP. A longstanding open problem in approximation algorithms is to reconcile this
hardness gap. We take a two-pronged approach to learn more about the hardness gap of R||Cmax:
(1) find approximation algorithms for special cases of R||Cmax whose approximation ratios are
tight (unless P = NP); (2) identify special cases of R||Cmax that have the same 3/2-hardness
bound of R||Cmax, but where the approximation barrier of 2 can be broken.

This thesis is divided into four parts. The first two parts investigate a special case of R||Cmax

called the graph balancing problem when every job has one of two lengths and the machines
may have one of two speeds. First, we present 3/2-approximation algorithms for the graph
balancing problem with one speed and two job lengths. In the second part of this thesis we
give an approximation algorithm for the graph balancing problem with two speeds and two
job lengths with approximation ratio (

√
65 + 7)/8 ≈ 1.88278. In the third part of the thesis

we present approximation algorithms and hardness of approximation results for two problems
called R||Cmax with simple job-intersection structure and R||Cmax with bounded job assignments.
We conclude this thesis by presenting algorithmic and computational complexity results for a
generalization of R||Cmax where J is partitioned into sets called bags, and it must be that no two
jobs belonging to the same bag are scheduled on the same machine.

Keywords: Theoretical Computer Science, Approximation Algorithms, Scheduling The-
ory, Makespan Minimization, Unrelated Parallel Machines, Restricted Assignment Problem,
Graph Balancing Problem, Job-Intersection Graph, Bounded Job Assignments, Bag Constraints
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Chapter 1

Introduction

Parallel machine scheduling is an integral part of both industrial production and technology,
especially as automated scheduling and parallel computing continue to become more relevant.
Despite this, in many cases little is known mathematically as to why many hard parallel ma-
chine scheduling problems are indeed as difficult as they seem to be, and there is a need for
efficient algorithms that have rigourous performance guarantees in many situations. In this
thesis we focus on a classic problem in scheduling theory called makespan minimization on
unrelated parallel machines and several of its variants, and tread the boundaries between com-
putationally tractable and intractable problems from both an exact and approximate algorithmic
standpoint.

In Chapter 1.1 we provide background on optimization problems, computational complex-
ity theory, approximation algorithms, parallel machine scheduling problems, and present a
framework that many of the algorithms in this thesis use called a ρ-relaxed decision procedure.
Next, in Chapter 1.2 we provide the motivation of the research presented in this thesis, and
describe the relevant core scheduling problems that serve as the basis of our work. Finally, in
Chapter 1.3 we summarize the problems we investigated, our results, and give an overview of
this thesis.

1.1 Background

1.1.1 Optimization Problems and Some Complexity Theory

Parallel machine scheduling problems are optimization problems. An optimization problem [67]
has three parts:

• A non-empty set I of instances to be considered for the problem. For each instance x ∈ I,
let S x be the set of feasible solutions of x.

• A computable function ν : {(x, y) | x ∈ I, y ∈ S x} → Q called an objective function.

• A goal ∈ {min,max} that is to either minimize (min) or maximize (max) the objective
function.

1



2 Chapter 1. Introduction

Let OPT (x) := goal{ν(x, y) | y ∈ S x} be the optimal objective value of instance x ∈ I; as
shorthand, we often write OPT for the optimal objective value. The goal is to find a feasible
solution y′ ∈ S x with ν(x, y′) = OPT (x) called an optimal solution. As an example, R||Cmax is a
minimization problem where the goal is to find a feasible schedule whose makespan (objective
value) is of minimum size. Note that the decision variant of an optimization problem is a
decision problem that given a value β asks if there is a feasible solution with objective value at
most β (for a minimization problem) or at least β (for a maximization problem).

For an instance x ∈ I, let |x| be its input size, i.e., the number of bits required to represent
x in some fixed encoding. NP is the set of decision problems that can be solved in non-
deterministic polynomial time with respect to the input size. All optimization problems with
decision variants in NP are called NP-optimization problems (NPO); every problem we discuss
in this thesis is NPO. An optimization problem is NP-hard if it is at least as hard as the most
difficult problems in NP. That is, an optimization problem Π1 is NP-hard if all the decision
problems Π2 in NP polynomially reduce to it, i.e. for every Π2 ∈ NP, there is a polynomial-
time algorithm that can take any instance x2 of Π2 and transforms it into into an instance of Π1;
thus, if there is a polynomial-time algorithm for Π1, then there is a polynomial-time algorithm
for Π2. Many optimization problems of both practical and theoretic importance, including
R||Cmax, are NP-hard problems.

The decision variant of a NP-hard optimization problem is NP-complete if it is in NP. The
problems we study in this thesis have parameters that involve numbers e.g. job lengths, so there
are two other kinds of NP-hardness to discuss. An optimization problem is strongly NP-hard
if it remains NP-hard for instances I′ ⊆ I where, for each x′ ∈ I′, the sizes of the numbers
in x′ are bounded by a polynomial in |x′|. One can similarly define NP-complete problems in
the strong sense. All NP-optimization problems that are NP-hard but not strongly NP-hard are
called weakly NP-hard; this is sometimes referred to as NP-hard in the ordinary sense.

NP-complete problems are not polynomial-time solvable unless P = NP [67, Section 15.7].
It is widely believed that P , NP [30], but the P vs. NP problem still remains open. Under
the assumption that P , NP, researchers design approximation algorithms that efficiently find
approximate solutions for NP-hard optimization problems.

1.1.2 Approximation Algorithms
As all the problems we explore are minimization problems, we limit our discussion here strictly
to such problems. An approximation algorithm is a finite step-by-step procedure that returns
for all instances to a given problem an approximate solution in polynomial time. More for-
mally, let ALG(x) be the objective value of a feasible solution produced by the algorithm for
instance x ∈ I, and let OPT (x) be the optimum value of instance x. For any instance x ∈ I of
a minimization problem, a ρ-approximation algorithm produces a feasible solution in polyno-
mial time such that 1 ≤ ALG(x)/OPT (x) ≤ ρ, where ρ is called its approximation ratio. For
instance, a 2-approximation algorithm will return a feasible solution y with value ν(x, y), where
OPT ≤ ν(x, y) ≤ 2 · OPT (x) i.e., the value of a feasible solution is always within twice the
optimum. The goal is to find ρ-approximation algorithms where ρ is as small as possible.

A polynomial-time approximation scheme (PTAS) is a family {Aε} of approximation algo-
rithms, such that algorithm Aε is a (1 + ε)-approximation algorithm for every fixed ε > 0. Note
that there are two special classes of PTASs: a fully polynomial-time approximation scheme
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(FPTAS) has polynomial running time also in 1/ε; and an efficient polynomial-time approx-
imation scheme (EPTAS) has time complexity of the form f (1/ε) · poly(|x|), where f (1/ε) is
some computable function that is not necessarily polynomial. Note that all FPTASs are EP-
TASs, and all EPTASs are PTASs. For example, a PTAS can have running time O(n1/ε), but
this would not be a FPTAS because its running time is exponential in 1/ε. Finally, it is worth
noting that FPTAS do not exist for strongly NP-hard problems, unless P = NP [28].

1.1.3 Parallel Machine Scheduling Problems

We consider the problem of scheduling parallel machines. When jobs are scheduled on parallel
machines, the jobs are processed in parallel and the machines operate independent of one
another. We are interested in the case when each job is scheduled non-preemptively on a
machine, i.e. if a job is scheduled on a machine, then the job must complete without being
interrupted.

Let there be m machines M = {M1, . . . ,Mm} and n jobs J = {J1, J2, . . . , Jn}, where each
job J j is indexed j ∈ {1, 2, . . . , n} and machine Mi is indexed i ∈ {1, 2, . . . ,m}. Parallel machines
are called unrelated when given a job J j and machine Mi, the processing time for job J j when
scheduled on machine Mi is pi, j ∈ Z

+, and assume pi, j = ∞ implies J j cannot be scheduled
on Mi. One way of representing the processing times of the jobs on the machines is using a
m × n matrix P = (pi, j) called a processing matrix. For example, let there be m = 4 machines
and n = 7 jobs with the processing matrix

P =

J1 J2 J3 J4 J5 J6 J7


1 1 2 5 2 5 1 M1

2 3 2 6 1 1 2 M2

8 1 2 2 2 5 2 M3

3 2 2 3 3 5 2 M4

Job J4, for example, takes p2,4 = 6 time units on machine M2, but p3,4 = 2 time units on ma-
chine M3. We note that there are also two other widely studied parallel machine environments.
Parallel machines are called identical when every job J j has a length p j ∈ Z

+, where its pro-
cessing time is p j on any machine. When the parallel machines are uniform, every machine
has a speed si ∈ Z

+, and if J j is scheduled on machine Mi, its processing time is p j/si. Clearly,
the identical parallel machine environment is a special case of the uniform parallel machine
environment, and the uniform parallel machine environment is a special case of the unrelated
parallel machine environment.

A schedule assigns each job to a machine. Given a schedule, the completion time C j of a
job J j that finishes last is denoted as Cmax and it is called the length of the schedule or makespan.
While there are different metrics for measuring the quality of a schedule, the makespan is a
core metric because typically we desire schedules that complete the jobs as early as possi-
ble. More formally, the goal is to produce a schedule S : J → M such that the makespan,
max1≤i≤m

∑
J j |S (J j)=Mi

pi, j, is minimized. In Figure 1.1 we provide two examples of schedules,
the latter being a schedule with minimum makespan—an optimal schedule.
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Figure 1.1: Gantt charts showing two schedules for the instance given above. The makespan
of the schedules are 4 and 3, respectively. The schedule on the right is an optimal schedule.

We adopt the scheduling-theoretic notation of Graham et al. [39]. Graham’s notation de-
scribes scheduling problems by three fields, α|β|γ, where α specifies a machine environment,
β are the job characteristics, and γ is the optimality criterion. We summarize below in more
detail the first two of these fields. The third field, the optimality criterion, specifies the objec-
tive function or goal for a scheduling problem; in this thesis we look at the makespan (Cmax),
so γ = Cmax. Below let ◦ denote the empty symbol.

Machine environment. A machine environment α = α1α2 gives the type of machine α1 ∈

{◦, P,Q,R}, each defined in Table 1.1, and α2 is either ◦ or a positive integer. That is, if α2 = ◦

then the number of machines is variable; otherwise, either α2 is a positive integer or m:

• If α2 is a positive integer, then there is a constant number α2 of parallel machines.

• If α2 = m then the number of machines can be any number but is fixed, e.g. Rm||Cmax

is makespan minimization on unrelated parallel machines where the number of parallel
machines is constant, but R||Cmax assumes m is not a constant.

α1 Machine Environment Definition
R Unrelated Parallel Machines Processing times are given as processing ma-

trix P = (pi, j). If job J j can be scheduled on
Mi, it takes pi, j ∈ Z

+ time units.
Q Uniform Parallel Machines Every job J j has a length p j ∈ Z

+, and every
machine Mi has a speed si ∈ Z

+. If J j can be
scheduled on Mi, its processing time is p j/si.

P Identical Parallel Machines All machines have the same speed, so that s1 =

s2 = · · · = sm.
◦ Single Machine There is m = 1 machine and α2 = 1.

Table 1.1: Some machine environments in Graham’s notation. Machine environments are given
from most general to least.
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Job Characteristic Definition
bag Bag Constraints Jobs J are partitioned into b bags B =

(B1, B2, . . . , Bb), and no two jobs from the same
bag can be scheduled on the same machine.

Mj Eligibility Constraints Every job J j ∈ J has a subset Mj ⊆ M of machines
that J j can be scheduled on.

pmtn Preemptive Jobs Jobs can be interrupted, and can be processed on
either the same machine or another machine. If not
provided, it is assumed the jobs are to be scheduled
non-preemptively.

prec Precedence Constraints A partial-ordering is placed on the jobs. Given a
directed acyclic graph (DAG) G, an arc (J j, J j′) in
G implies J j must finish before J j′ starts.

pi, j ∈ A Restricted Processing Times Instances have processing times that are in set A.
Similar to this, if p j ∈ A is given then it means the
job lengths can be values in A.

p j = 1 Unit-Length Jobs Every job J j ∈ J has length p j = 1. All the jobs
have the same length.

Table 1.2: Job characteristics.

Job characteristics. The job characteristics specify constraints on the scheduling problem
with respect to the jobs, these may generalize the problem or may even restrict the processing
times of the jobs on machines1. We summarize the ones we use in Table 1.2.

We study in this thesis the problem of scheduling non-preemptively jobs on unrelated par-
allel machines so as to minimize the makespan. This problem is called makespan minimization
on unrelated parallel machines, and is abbreviated as R||Cmax. R||Cmax is a NP-hard prob-
lem [29] that has many applications such as in computer scheduling and scheduling production
systems with the goal of maximizing productivity.

1.1.4 A ρ-Relaxed Decision Procedure
Many times the algorithms presented in this thesis use algorithms called ρ-relaxed decision
procedures, these have been used in approximation algorithms for R||Cmax previously [72].
Let U ∈ Z+ be an upper bound on the optimum makespan. By default, we assume U = pmaxn
where pmax = maxpi, j |pi, j,∞ pi, j and n is the number of jobs2. We use binary search over the
interval [0,U] to determine the smallest value τ ∈ Z+ for which a ρ-relaxed decision algorithm
produces a schedule. A ρ-relaxed decision algorithm either:

1In [39] job characteristics are grouped into different categories. For brevity, we will ignore this.
2Note that U can also be computed for R||Cmax by a straight-forward greedy schedule (e.g. see the algorithm of

Ibarra and Kim in Chapter 2.2.1), or in machine environments where the machines are identical it is also sufficient
to use the sum of job lengths.
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• computes a schedule with makespan at most ρτ; or

• returns FAIL if there is no solution with value at most τ.

In the binary search, if the ρ-relaxed decision algorithm returns FAIL then the value τ is in-
creased, and if a schedule is returned the value τ is decreased. If we keep track of the schedule
with minimum makespan found, after O(log U) iterations the binary search guarantees that
τ ≤ OPT and a schedule with makespan at most τ ·OPT is found. Therefore, if the overall run-
ning time of the ρ-relaxed decision algorithm takes polynomial time, this is a ρ-approximation
algorithm. Thus, it is sufficient to present a ρ-relaxed decision algorithm for approximation
algorithms using this framework.

1.2 Motivation
We focus our research on R||Cmax to the design of approximation algorithms and the study of
inapproximability. Unlike general heuristics, approximation algorithms guarantee that, for any
instance of a given problem, the algorithm computes in polynomial time a feasible solution
with a guaranteed quality with respect to the optimum called its approximation ratio. We are
fundamentally interested in the existence of polynomial-time algorithms with such guarantees.
This thesis is not a general expository of heuristic algorithms, for some discussion on heuristic
approaches for R||Cmax we recommend the introduction section of Fanjul-Peyro and Ruiz [26]
for a brief but comprehensive summary of heuristics for R||Cmax

3.
Currently the best approximation algorithms for R||Cmax have approximation ratio 2, and

it is known that there is no approximation algorithm with approximation ratio less than 3/2
unless P = NP [72]. Thus a 3/2-to-2 hardness gap currently exists for R||Cmax. Reconciling
or narrowing this gap has remained an open problem for almost thirty years and is regarded as
one of the most challenging problems in approximation algorithms today (e.g. Open Problem
10 in Williamson and Shmoys [100], Open Problem 4 in Schuurman and Woeginger [91]).

Problem Design an approximation algorithm with constant approximation ratio less than 2
for R||Cmax or prove that there is no approximation algorithm with approximation ratio smaller
than ρ > 3/2, for any ρ > 3/2.

In this thesis, we are interested firstmost in shedding light on this famous problem. We
study special cases of R||Cmax which, only in recent years, have become central in investigations
into the 3/2-to-2 hardness gap. Two of these problems are known as the restricted assignment
problem and the graph balancing problem:

• Restricted Assignment Problem (P|Mj|Cmax). A special case of R||Cmax where the pro-
cessing matrix has every pi, j ∈ {p j,∞}, where each p j ∈ Z

+ is the length of J j ∈ J. This
problem can be viewed as makespan minimization on identical parallel machines with
the constraint that, for each job J j ∈ J, there is a set Mj of machines where J j can be
scheduled; we call Mj the eligibility constraints or processing sets of J j. Assigning each
job J j to an eligible machine in Mj is said to satisfy the eligibility constraints.

3According to Fanjul-Peyro and Ruiz, some of the most successful types of heuristic algorithms for R||Cmax

include cutting-plane algorithms [80], local search algorithms [25], and recovering beam search algorithms [32].
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• Graph Balancing Problem (P|Mj, |Mj| ≤ 2|Cmax): This is a special case of the restricted
assignment problem where the number of eligible machines for each job is at most 2.
An alternate way to interpret an instance of this problem is as a weighted multigraph
where the jobs are edges and the machines are vertices, and every edge must be directed
to one of its endpoints so as to minimize the maximum sum of the lengths of the edges
directed toward a vertex. More formally, let weighted multigraph G = (V, E,p,q) where
p = (pe1 , . . . , pe|E|) are the lengths for the edges with pe j ∈ Z

+ and q = (qv1 , . . . , qv|V |) are
the dedicated loads4 where qvi ∈ Z

+ ∪ {0}. The goal is to find an orientation σ : E → V
such that the maximal load (makespan) is minimized5, where the load of a vertex v ∈ V
is qv +

∑
e|σ(e)=v pe.

Note that if we refer to the above two problems “on uniform parallel machines” or “with
speeds”, this simply means that the machines have speeds and a job J j takes p j/si instead
of p j on machine Mi. Also, if we refer to problems “with two job lengths”, this means that
every job length p j ∈ {`s, `b}, where `s < `b.

1.3 Problems Investigated, Our Results, and Overview
The best-known approximation algorithm for the graph balancing problem is the algorithm
of Ebenlendr et al. [21] which has approximation ratio 7/4. It has also been established that
there is no ρ-approximation algorithm with ρ < 3/2 for the graph balancing problem with two
job lengths either 1 or 2, unless P = NP [2, 21]. The graph balancing problem is one of the
first-known special cases of R||Cmax that shares the same 3/2-inapproximability (3/2-hardness)
bound and for which there is an approximation algorithm with approximation ratio strictly less
than 2. Since then, there have been no improvements upon the approximation ratio for this
problem, but there still was an outstanding 3/2-to-7/4 hardness gap for the graph balancing
problem with two job lengths. In 2013, Kolliopoulos and Moysoglou [66] presented a 1.652-
approximation algorithm for the graph balancing problem with two job lengths. Our first goal
was to improve upon their approximation ratio and successfully close the hardness gap for the
graph balancing problem with two job lengths. In Chapter 3 we present two 3/2-approximation
algorithms for the graph balancing problem with two job lengths.

Naturally, upon successfully closing the hardness gap for the graph balancing problem with
two job lengths, we pursued other cases of the graph balancing problem. One aspect of the
3/2-to-2 hardness gap of R||Cmax that we know very little about is if there exist approximation
algorithms with approximation ratios less than 2 when the machines are uniform. Two special
cases of R||Cmax we consider in Chapter 4 are the following:

• Restricted assignment problem with two job lengths on uniform parallel machines (Q|Mj, p j ∈

{`s, `b}|Cmax): a job J j takes pi, j = p j/si time units on machine Mi ∈Mj where si ∈ Z
+ is

the speed of Mi and p j ∈ {`s, `b} with `s < `b, and pi, j = ∞ otherwise.

4Dedicated loads allow us to assume there are no self-loops in the multigraph. Sometimes, when explicitly
stated, we will assume there are self-loops present in the multigraph, implying that qv = 0, v ∈ V .

5Technically indexing edges and vertices by an edge or vertex directly is an abuse of notation, i.e. writing
“edge e with length pe” or “vertex v with dedicated load qv”, as opposed to writing “edge Ee with length pe” or
“vertex Vv with dedicated load v” and treating e and v as positive integers.



8 Chapter 1. Introduction

• Graph balancing problem with two speeds and two weights: every vertex v ∈ V has a
speed sv, where sv is one of two possible speeds ss, s f ∈ Z

+ with ss < s f , and if edge e
with length pe ∈ {`s, `b} is oriented towards v, it contributes to the load pe/sv. Note that
the dedicated load of v contributes qv/sv to the load of v, and `s < `b. We denote the
weighted multigraph G for this problem as G = (V, E,p,q, s), where s = (sv1 , . . . , sv|V |)
are the speeds of the vertices.

We present a (2 − `s/`b)-approximation algorithm for the restricted assignment problem with
two job lengths on uniform parallel machines, then we give a (

√
65 + 7)/8-approximation

algorithm for the graph balancing problem with two speeds and two job lengths.
We are also interested in identifying cases with very specialized structure where we can

still show that the 3/2-inapproximability of R||Cmax persists but there are 3/2-approximation
algorithms. Motivated by the work of Jansen et al. [53], we consider a job-intersection-graph-
based model with R||Cmax. In Chapter 5 we study the following two problems:

• R||Cmax with simple job-intersection structure. A job-intersection graph GJ = (J, EJ) has
a vertex for each job J j ∈ J, and for any two jobs J j, J j′ ∈ J, there is an edge {J j, J j′} ∈ EJ

if there is a machine Mi such that pi, j , ∞ and pi, j′ , ∞. A set of restrictions on which
machines can process a job can be represented as a job-intersection graph. We study
R||Cmax restricted to particular classes of job-intersection graphs. We give an example of
a job-intersection graph in Figure 1.2.

Instance: m = 3, n = 4

P =

J1 J2 J3 J4
1 2 1 ∞ M1

3 5 1 ∞ M2

∞ ∞ 1 4 M3

J1

J2 J3 J4

Figure 1.2: An instance of R||Cmax (left), and its job-intersection graph GJ (right).

• R||Cmax with bounded job assignments. Let Ji be the set of jobs that can be processed by
machine Mi, i.e., Ji = { j ∈ J | pi, j , ∞}. Let r > 0. We consider R||Cmax restricted to
instances when, for each machine Mi, |Ji| ≤ r. Clearly when r = n, it is R||Cmax.

A graph is triangle free if it does not contain any simple cycles of length 3—triangles. Note
that all bipartite graphs contain no odd-length cycles, thus all bipartite graphs are triangle free.
The diamond graph consists of four vertices and five edges, so it is K4 less one edge. We call
a graph diamondless if it does not contain the diamond graph as a subgraph. In contrast, a
diamond-free graph is defined as not having the diamond graph as an induced subgraph. An
induced subgraph H = (V ′, E′) of a graph G = (V, E) is such that V ′ ⊆ V and an edge e =

{u, v} ∈ E′ if both u, v ∈ V ′ and e ∈ E; all diamondless graphs are diamond-free, but not
all diamond-free graphs are diamondless. For example, the graph K4 is diamond free but is
not diamondless. In Figure 1.3 we give an instance of the graph balancing problem where its
job-intersection graph is both diamondless and diamond free.
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J1 J2 J3

J4 J5 J6 J7

J8 J9 J10

J1 J2 J3

J4 J5 J6 J7

J8 J9 J10

Figure 1.3: An instance of the graph balancing problem (left) and its job-intersection graph
(right).

In Chapter 5 we identify that the 3/2-inapproximability of R||Cmax persists when we allow
a few eligible jobs per machine. That is, even for the graph balancing problem with r = 3
and the graph balancing problem restricted to diamondless job-intersection graphs, there is no
ρ-approximation algorithm with ρ < 3/2 unless P = NP; we obtain a 3/2-approximation algo-
rithm in both cases for R||Cmax, and this approximation algorithm has approximation ratios 5/3
and 1 for R||Cmax with r = 4 and r = 2, respectively. It is worth noting that the same algo-
rithm is also a polynomial-time algorithm for R||Cmax restricted to triangle-free job-intersection
graphs. Among these results, we give a (2 − 1/(r − 1))-approximation algorithm for the re-
stricted assignment problem with two job lengths when r ≥ 3, and prove that R||Cmax restricted
to the following job-intersection graph classes is 3/2-inapproximable: complete graphs, thresh-
old graphs, interval graphs, cographs, split graphs, and house-free graphs.

Finally, we consider a generalization of R||Cmax where the jobs are partitioned into b sets B =

(B1, B2, . . . , Bb) called bags, and any feasible solution must satisfy the bag constraints: no
two jobs from the same bag can be scheduled on the same machine. This problem is called
makespan minimization on unrelated parallel machines with bags, and we denote it as R|bag|Cmax.
Notice that if b = |J|, then every job is in a distinct bag, and we get R||Cmax. As discussed in
[22], the bag constraints appear in settings such as in the scheduling of tasks for on-board com-
puters in airplanes. In these systems it is required for some tasks to be scheduled on different
processors so that the airplane continues to operate safely even if one of the processors were
to fail. Thus, parallel machine scheduling problems with bag constraints model fault-tolerant
scheduling needed in complex parallel systems where system stability is desired [17].

We study R||Cmax, the restricted assignment problem, and the graph balancing problem
when bags are introduced, with an emphasis on when the number b of bags is small. In addition
to this, we investigate R|bag|Cmax in the setting with so-called machine types. As discussed by
Gehrke et al. [31], a natural scenario in parallel machine scheduling is where the machines are
clusters of processors where each processor in a cluster is of the same type, e.g. clusters of
CPUs and/or GPUs. More formally, two machines Mi and Mi′ have the same machine type if
pi, j = pi′, j for all J j ∈ J. We study R|bag|Cmax with machine types, where the number δ of
machine types is constant.

In Chapter 6 we present a variety of algorithmic results, and we illustrate some complexities
of the problem by bridging the inapproximability results known for the problems such as the
graph balancing problem and the restricted assignment problem to these scheduling problems
using only a few bags. We present a b-approximation algorithm for R|bag|Cmax, a PTAS for
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R|bag|Cmax when both δ and b are constant, and a b/2-approximation algorithm for the graph
balancing problem with b ≥ 2 bags. In addition, we present polynomial-time algorithms for
the restricted assignment problem on uniform parallel machines with bags when all the jobs
have unit length (Q|bag,Mj, p j = 1|Cmax), and P|bag|Cmax with b = 2 bags. To complement
our results, we prove that there is no ρ-approximation algorithm with ρ < 3/2 for the restricted
assignment and graph balancing problems with b = 2 and b = 3 bags, unless P = NP, and that
both P|bag|Cmax with b = 3 bags and Q|bag|Cmax with b = 2 bags are strongly NP-hard.

While we ultimately do not resolve the 3/2-to-2 hardness gap of R||Cmax, we present some
examples of special cases of R||Cmax where 3/2-approximation algorithms do exist, and some
for broader classes of instances where there are approximation algorithms with approximation
ratios less than 2; many of our algorithms use the ρ-relaxed decision procedure given in Chap-
ter 1.1.4. We also illustrate through our study of R||Cmax with simple job-intersection structure
how, even in instances with very specific job-intersection structures, the 3/2-inapproximability
for R||Cmax persists. In addition, we demonstrate the polynomial-time solvability of a variety
of scheduling problems, and present results for R|bag|Cmax.

We list our approximation algorithm results in Table 1.3, polynomial-time solvability re-
sults in Table 1.4, and our computational complexity results in Table 1.5. When in the tables
below we state an algorithm is combinatorial, we mean that it does not use an algorithm to
solve a linear program nor does it employ methods from linear algebra or convex geometry; al-
gorithms of this kind might compute flows or matchings, and comparisons and basic arithmetic
operations are done over rational numbers. We make this distinction at times as algorithms in
this domain employ linear programming frequently, and combinatorial algorithms tend to be
simpler and easier to implement.

Most of the work presented in this thesis has been previously published. The work pre-
sented in Chapter 3.1 was first published in the journal Algorithms [84], and the work in Chap-
ter 3.2 has been unpublished until now. The results presented in Chapter 4 were accepted to the
Journal of Combinatorial Optimization [85]. The results given in Chapter 5 were presented at
the Twelfth International Conference on Combinatorial Optimization and Applications (CO-
COA 2018) [87], and the results in Chapter 6 were presented at the Twelfth International Con-
ference on Algorithmic Aspects in Information and Management (AAIM 2018) [86].

In Chapter 2 we present a literature review. Then, in Chapters 3–6 we present our results.
Finally, we summarize our results and present possible future research directions in Chapter 7.
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Ch. Problem Prev. Best New Notes
3 Graph balancing problem

with two job lengths
1.652 [66] 3/2 X Two 3/2-approximation

algorithms are pre-
sented, the algorithm in
Chapter 3.2 is purely
combinatorial.

4 Restricted assignment
problem with two job
lengths on uniform parallel
machines

2 2 −
`s

`b
Combinatorial. Al-
gorithm matches
bound 3/2 when `s = 1
and `b = 2. X

4 Graph balancing problem
with two speeds and two
job lengths

2

√
65 + 7

8

√
65 + 7

8
≈ 1.88278.

5 R||Cmax with bounded job
assignments (r = 4)

2 5/3 Combinatorial.

5 R||Cmax with bounded job
assignments (r = 3)

2 3/2 X Same as algorithm
above. This is a
3/2-approximation
algorithm for R||Cmax

restricted to diamond-
less job-intersection
graphs. X

5 Restricted assignment
problem with two job
lengths and r ≥ 3

2 2−
1

r − 1
Matches bound 3/2
when r = 3. X

6 R|bag|Cmax [17] claims
O
(

log n
log log n

)
, uses

randomized
rounding and is
not yet published.

b Combinatorial.

6 R|bag|Cmax with fixed δ and
b

- PTAS X Implies there is a
PTAS for Q|bag|Cmax

with fixed numbers of
machine speeds and b

(Corollary 6.3.2). X

6 Graph balancing problem
with bags

- b/2 For b ≥ 2 bags. Com-
binatorial, and matches
bound 3/2 for b = 3. X

Table 1.3: Summary of approximation algorithm results in this thesis in the order in which they
are presented. Results indicated with “X” match the best-known inapproximability bounds
previously established or proven in this thesis.
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Ch. Problem Notes
5 R||Cmax with bounded

job assignments (r = 2)
Combinatorial. This is also a polynomial-time algorithm
for R||Cmax restricted to triangle-free job-intersection
graphs (includes bipartite job-intersection graphs).

6 Graph balancing prob-
lem with b ≤ 2

Combinatorial. Takes O(m2n+n2m) time. Implied by b/2-
approximation algorithm, and there is a straightforward
algorithm for R|bag|Cmax with b = 1 bags (Chapter 6.1).

6 Q|bag,Mj, p j = 1|Cmax Combinatorial.
6 P|bag|Cmax with b = 2 Takes O(m log m) time.

Table 1.4: Summary of exact polynomial-time algorithms presented in this thesis. Results are
listed in the order in which they are presented.

Ch. Problem Result Notes
5 Graph balancing problem

restricted to diamondless
job-intersection graphs with
job lengths either 1 or 2

3/2-hardness X There is no ρ-approximation al-
gorithm with ρ < 3/2, unless
P = NP. Implies 3/2-hardness
for R||Cmax with r = 3.

6 Restricted assignment prob-
lem with b = 2 bags with
two job lengths either 1 or 2

3/2-hardness There is no ρ-approximation al-
gorithm with ρ < 3/2, unless
P = NP. Prior to our results,
it was known that there is no
constant-factor approximation al-
gorithm for arbitrary numbers of
bags and job lengths [17]. When
there is only one job length, it
is polynomial-time solvable on
uniform parallel machines (The-
orem 6.5.2).

6 Graph balancing problem
with b = 3 bags with two
job lengths either 1 or 2

3/2-hardness X There is no ρ-approximation al-
gorithm with ρ < 3/2, unless
P = NP.

6 P|bag|Cmax with b = 3 bags strongly NP-hard X Independently proven by
Dokka et al. [19]. Polynomial-
time solvable for b = 2 (Theo-
rem 6.5.3). Previously a PTAS
for P|bag|Cmax was known [17].

6 Q|bag|Cmax with b = 2 bags strongly NP-hard We also show Q|bag|Cmax with
b = 2 bags is strongly NP-
hard when the job lengths p j ∈

{1, 2, . . . ,m} (Corollary 6.6.7).

Table 1.5: Summary of complexity results presented in this thesis. For inapproximability
results, we indicate “X” when the inapproximability bound is matched by an approximation
algorithm for said problem or a generalization of it.



Chapter 2

Literature Review

Makespan minimization problems on parallel machines are some of the most studied problems
in all of scheduling and combinatorial optimization. Parallel machine scheduling has numerous
applications such as in mass production lines [94]. For example, Yu et al. [101] describes
one major bottleneck in printed wiring board (PWB) manufacturing: scheduling the drilling
operation. In the drilling operation, a group of parallel machines, the drilling machines, each
with different processing speeds and operating characteristics, process lots conveyed in as a
batch. For each lot, the drilling machines will drill holes as per required by the specifications
of the manufacturer. Note that an individual lot may be processed by a subset of the machines,
and each lot may be completed at different speeds due to characteristics between the lots and
machines e.g. lot size, board layout, drill hole requirements, general machine specifications.
Each time the scheduling system is started, a batch of lots is provided a time window τ to be
drilled. The goal is for the system to schedule the lots to drilling machines with the smallest
possible value for τ.

In this chapter we begin with makespan minimization on identical parallel machines (P||Cmax)
and uniform parallel machines (Q||Cmax) in Chapter 2.1, then R||Cmax and the main special cases
we are interested in within Chapter 2.2.1. Finally, in Chapter 2.3, we summarize the literature
for other scheduling problems relevant to Chapters 5–6, and for the sake of completeness we
include a basic discussion on preemptive scheduling and precedence-constraint scheduling.

2.1 Scheduling Identical and Uniform Parallel Machines (P||Cmax

and Q||Cmax)
It is known that P2||Cmax is NP-hard, and P||Cmax (i.e., m is not fixed) is strongly NP-hard [29].
Two of the earliest-known approximation algorithms in the literature are the approximation
algorithms presented by Graham et al. [37, 38] for P||Cmax.

• Graham’s list scheduling algorithm: For j = 1, 2, 3, . . . , n, schedule job J j on the machine
with least load. This algorithm has approximation ratio 2.

• Graham’s longest processing time algorithm (LPT): Sort the jobs from longest to short-
est, then apply the list scheduling algorithm. Sorting the jobs in this fashion improves
the approximation ratio to 4/3.

13
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Hochbaum and Shmoys [42] introduced the dual approximation approach for P||Cmax in order
to design a PTAS. Recently, Jansen and Rohwedder [60] presented an EPTAS for P||Cmax with
running time bounded by 2O((1/ε) log2 (1/ε)) + O(n).

There also is a PTAS for Q||Cmax due to Hochbaum and Shmoys [43], it has running
time (n/ε)O(1/ε2). In 2010, Jansen [49] presented an EPTAS for Q||Cmax that has running time
bounded by 2O(1/ε2 log3 (1/ε)) + poly(n). Presently the fastest-known EPTAS for Q||Cmax is given
by Jansen et al. [50], with running time 2O((1/ε) log4(1/ε)) + poly(n).

2.2 Scheduling Unrelated Parallel Machines
Here we discuss results for R||Cmax, and for special cases of R||Cmax that relate to the restricted
assignment problem and the graph balancing problem. For the sake of brevity, here we keep
our discussion of the literature narrow. For example, Rm||Cmax (i.e. R||Cmax with a fixed number
of machines) has FPTASs [55]; thus, this section does not discuss cases in which the number
of machines is constant.

2.2.1 Makespan Minimization on Unrelated Parallel Machines (R||Cmax)

Earlier Research

The first approximation algorithms for R||Cmax were given in 1977 by Ibarra and Kim [48]. Of
these, an m-approximation algorithm that does the following is given: For each job J j ∈ J,
schedule J j on the machine for which J j completes the earliest. Later, Davis and Jaffe [18]
gave a 2

√
m-approximation algorithm for R||Cmax. This is accomplished by extending the idea

of Ibarra and Kim but adding some preprocessing to estimate potential job assignments and in-
troducing thresholds that activate and deactivate the machines as a schedule is being produced,
and obtaining their desired approximation ratio through a fairly technical analysis. The first
constant-factor approximation algorithm for R||Cmax was given by Lenstra et al. [72], it has ap-
proximation ratio 2. Lenstra et al. also proved that there is no ρ-approximation algorithm with
ρ < 3/2 for the restricted assignment problem with two job lengths p j ∈ {1, 2} unless P = NP;
their reduction employs the 3-dimensional matching problem, similar to the one we provide in
Chapter 6.6.1.

2-Approximation Algorithm of Lenstra, Shmoys, and Tardos

One common but powerful technique used in approximation algorithms for R||Cmax and special
cases of it is linear program rounding (LP-rounding). In LP-rounding, the idea is to solve a
linear program (LP) that is the relaxation of an integer program (IP) formulation of the prob-
lem, then round the solution of the LP to obtain a feasible solution. The approximation ratio is
usually determined using properties of the LP and the problem, and how it is rounded. To illus-
trate this technique, we briefly describe the 2-approximation algorithm of Lenstra et al. [72];
this algorithm uses a 2-relaxed decision procedure.

Before we proceed, we formulate an IP formulation of R||Cmax. Let τ ∈ Z+ be an estimate
for the optimum makespan. We associate the IP with this value τ. Also we introduce binary
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indicator variables xi, j ∈ {0, 1} for 1 ≤ i ≤ m and 1 ≤ j ≤ n, where xi, j = 1 means job J j is
scheduled on machine Mi, and if xi, j = 0, then job J j is not scheduled on machine Mi.

Integer programming formulation of R||Cmax (IP1) for a given bound τ
on the makespan

m∑
i=1

xi, j = 1, for j = 1, 2, . . . , n

n∑
j=1

pi, jxi, j ≤ τ, for i = 1, 2, . . .m

xi, j ∈ {0, 1}, for all 1 ≤ i ≤ m, 1 ≤ j ≤ n.

The first set of constraints guarantee that a job is scheduled on one of the machines, and
the second set of constraints state that the load of a machine cannot exceed the value τ. Since
every job must be scheduled on a machine and the makespan does not exceed τ, if one finds the
smallest value for τ for which this IP has a feasible solution, then an optimal schedule can be
obtained by scheduling each job J j on machine Mi if xi, j = 1. Unfortunately, we know R||Cmax

is NP-hard and the problem of solving any IP is NP-hard [62], so this approach cannot be used
to yield a polynomial-time algorithm. Fortunately, a relaxation of an IP called a linear program
(LP) can be solved in polynomial time [61, 63]. In this relaxation (called a LP-relaxation) each
binary indicator variable xi, j ∈ {0, 1} is replaced with a variable that satisfies 0 ≤ xi, j ≤ 1. The
algorithm described here will use a specific type of solution to a LP called an extreme point
solution.

Observe that a feasible solution of a LP may have variables xi, j ∈ {0, 1}, but it may also
have some variables xi, j ∈ [0, 1]. To produce a feasible solution for R||Cmax the variables with
value 0 < xi, j < 1 need to be rounded to integer values. If one seeks out the smallest value
for τ for which the LP-relaxation of IP1 has a solution, one can show that the worst-case ratio
between the optimal solutions of IP1 and its LP-relaxation, its so-called integrality gap (defined
more carefully in Chapter 2.2.2) is at least m. This can be observed by considering an instance
with one job that has processing time m on any of the machines. Observe that an optimal
solution of IP1 has makespan τ = m, but the LP-relaxation can find a feasible solution when
τ = 1 by assigning each xi, j value 1/m. Hence, the above LP-relaxation has an unbounded
integrality gap and so a stronger LP-formulation is desired.

A problem with the LP-formulation above is that it does not encode the fact that if pi, j > τ,
then xi, j = 0. To formulate this constraint, we only consider entries of the processing matrix
for which pi, j ≤ τ. Hence, we only consider the machines and jobs given in pairs of the
set S τ = {(i, j) | pi, j ≤ τ}. Thus, we can restrict the machines and jobs used to |S τ| variables in
IP1, and obtain LP1 below.
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Assignment Linear Program (LP1)∑
i|(i, j)∈S τ

xi, j = 1, for j = 1, 2, . . . , n∑
j|(i, j)∈S τ

pi, jxi, j ≤ τ, for i = 1, 2, . . .m

xi, j ≥ 0, for all (i, j) ∈ S τ,

where
S τ =

{
(i, j) ∈ {1, 2, . . . ,m} × {1, 2, . . . , n} | pi, j ≤ τ

}
.

LP1 is used by Lenstra et al. to design a 2-approximation algorithm for R||Cmax. A feasible
solution for LP1 is called an extreme point solution if and only if |S τ| linearly independent
constraints in LP1 are tight (i.e., are satisfied with equality). An extreme point solution of LP1
can be found in polynomial time [40, 63]. There are n + m + |S τ| constraints, so an extreme
point solution of LP1 sets at least |S τ| − (n + m) variables in constraints of the form xi, j ≥ 0 to
zero. Each constraint of this form corresponds to a pair in S τ. Since there is a variable xi, j for
each pair in S τ, at most (n + m) of the variables are non-zero.

Given a feasible solution x of LP1, a job is integrally set if xi, j ∈ {0, 1}, and fractionally set
when 0 < xi, j < 1. Let us count the number of integrally set jobs and fractionally set jobs if x
is an extreme point solution; we will denote these as φ and β, respectively. By definition, each
fractionally set job is assigned to at least two machines. So in x, this corresponds to at least two
non-zero variables in x. As we described above, there are at most (n + m) non-zero variables in
x; hence, φ + 2β ≤ n + m. By definition, φ + β = n, and therefore φ ≥ n − m and β ≤ m. Thus,
if the algorithm finds an extreme point solution, then at least n − m jobs are integrally set, and
the variables for at most m jobs still need to be rounded.

Now we can describe the 2-relaxed decision algorithm. For estimate τ, the algorithm
computes an extreme point solution x of LP1. If no solution is found, there is no solu-
tion for value τ and return FAIL; otherwise proceed as follows. For each integrally set job
with xi, j = 1, schedule job J j on machine Mi. Next the algorithm constructs a bipartite
graph H = (M ∪ F, E), where F is the set of fractionally set jobs of x, M is the set of ma-
chines, and E = {(Mi, J j) | Mi ∈ M, J j ∈ F, xi, j > 0}. The algorithm computes such a perfect
matching M that matches every vertex in F to a vertex in M; the existence of a perfect matching
is proved by Lenstra et al. For each (Mi, J j) ∈M, job J j is scheduled on machine Mi.

We now determine the makespan of the schedule produced by this algorithm. Schedul-
ing the integrally set jobs of x causes the load of each machine to be at most τ by the con-
straints

∑
j|(i, j)∈S τ

pi, jxi, j ≤ τ. The perfect matching schedules at most one fractionally set job
per machine, and pi, j ≤ τ because (i, j) ∈ S τ. Hence, we obtain the following result.

Theorem 2.2.1 (Lenstra et al. [72]) Let pmax = maxpi, j |pi, j≤τ (pi, j). For makespan estimate τ,
the algorithm of Lenstra et al. for R||Cmax computes a schedule with makespan at most τ+ pmax,
and returns FAIL when there is no schedule with makespan at most τ.

Therefore, the makespan of the schedule is at most

τ + max
(i, j)∈S τ

(pi, j) = τ + max
pi, j |pi, j≤τ

(pi, j) ≤ τ + τ = 2τ.
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Now we show that the overall algorithm terminates in polynomial time. If pmax is the
largest valid entry in the processing matrix, a binary search combined with the above 2-relaxed
decision algorithm performs O(log n + log pmax) many iterations. Computing an extreme point
solution to LP1, constructing the bipartite graph H, and finding a perfect matching [44] can all
be done in polynomial time. Thus, the algorithm of Lenstra et al. terminates in polynomial
time and is a 2-approximation algorithm for R||Cmax.

Further Developments

Since the 2-approximation algorithm of Lenstra et al. [72], there has been little improvement
to this result. Shmoys and Tardos eliminate [93] the necessity of computing the extreme point
solution in the 2-approximation algorithm, the most expensive step in the algorithm. They de-
veloped an algorithm that takes any feasible solution of LP1 and using matching techniques
produces a schedule of the same length stated in Theorem 2.2.1. By refining the rounding
procedure, Shchepin and Vakhania [92] slightly improved the approximation algorithm of
Lenstra et al. by reducing the approximation ratio to (2 − 1/m). Later Gairing et al. [27]
gave a more efficient flow-based 2-approximation algorithm for R||Cmax.

2.2.2 Restricted Assignment Problem (P|Mj|Cmax)
Presently the best-known approximation algorithms for the restricted assignment problem are
also those for R||Cmax. Recent developments have led to polynomial-time algorithms that can
successfully estimate the value of the optimal makespan for the restricted assignment problem
within a multiplicative factor strictly less than 2. These results were made possible through
employing a stronger LP than LP1 called the configuration LP, described below.

For the restricted assignment problem with two job lengths `s, `b ∈ Z
+, `s < `b, Kolliopou-

los and Moysoglou [66] presented a flow-based (2 − `s/`b)-approximation algorithm when `s

divides `b. Later Chakrabarty et al. [10] showed there is a (2−α)-approximation algorithm for
some small value α > 0 and also gave a combinatorial (2 − `s/`b)-approximation algorithm;
we generalize in Chapter 4.1 this (2 − `s/`b)-approximation algorithm so that it also works for
uniform machines.

When every job has the same length, Lin and Li [79] presented an algorithm that solves the
restricted assignment problem when the parallel machines are uniform (Q|Mj, p j = 1|Cmax) in
O(n3 log nc) time, where c is the least common multiple of the machine speeds.

Researchers have also considered the restricted assignment problem when the eligibility
constraints Mj are not arbitrary. For example, consider an application described by Ou et
al. [83] for the so-called inclusive processing set case. Consider a vessel with cargo to load or
unload using cranes, where the cranes have the same operating speeds but each can only handle
a certain weight for a piece of cargo. Each piece of cargo has a weight, and it can be managed
by any crane with weight capacity at least the weight of the cargo. The loading/unloading time
taken by a crane to load/unload a piece of cargo is crane-independent as it depends on the size
and location of the cargo on a vessel. Every crane is a machine, and each piece of cargo is a
job where its eligibility constraints Mj are the machines that can lift that cargo. Problems such
as these are parallel machine scheduling with processing set restrictions; we briefly summarize
later some of the main results for these special cases of the restricted assignment problem.
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The Configuration Linear Program and Better Estimates of the Optimum Makespan

Another avenue of research into the restricted assignment problem along and other special
cases of R||Cmax has been attempts to utilize a stronger linear program called the configuration
LP (given as LP2, below). As we discuss below, there has been partial success in breaking
the approximation barrier of 2 for the restricted assignment problem using the configuration
LP. In LP1, jobs are assigned to machines so that the loads of the machines do not exceed
some makespan τ and this relationship is captured by having variables that represent an assign-
ment of jobs to machines. Instead, in LP2 the idea is to view the machines as each having a
configuration of jobs, a set of jobs that cause on a machine a load at most τ, and represent-
ing these configurations of jobs as the variables. Then it is just a matter of assigning exactly
one configuration to each machine, and ensuring that each job appears in exactly one of these
configurations.

Configuration Linear Program (LP2)∑
C∈Ci(τ)

yi,C = 1, for all Mi ∈ M∑
Mi∈M

∑
C∈Ci(τ)|J j∈C

yi,C = 1, for all J j ∈ J

yi,C ≥ 0, for all Mi ∈ M,C ∈ Ci(τ),

where the set of configurations for machine Mi are

Ci(τ) =

{
C ⊆ J |

∑
J j∈C

pi, j ≤ τ

}
.

The integral version (i.e. replace yi,C ≥ 0 with yi,C ∈ {0, 1}) of LP2 indeed captures R||Cmax:
The first set of constraints ensure that one configuration of jobs is assigned to each machine;
the second set of constraints guarantees that each job appears in exactly one of the selected
configurations; and each configuration of jobs must have total processing time at most τ on
each machine. Since there are an exponential number of possible configurations, the number
of variables in LP2 is also exponential; thus, solving LP2 in polynomial time is challenging.
However, given τ, Bansal and Sviridenko [6] showed that there is a polynomial-time algorithm
that either computes a solution to LP2 with value (1 + ε)τ for any constant ε > 0, or reports
that there is no solution of makespan at most τ.

As with LP1, a natural step then is to round the solutions found by solving LP2. For some
instance x ∈ I of a minimization problem, let OPTIP(x) and OPTLP(x) be the values of the
optimal solutions for an IP and its LP-relaxation, respectively. The integrality gap for a LP-
relaxation is maxx∈I OPTIP(x)/OPTLP(x). The integrality gap for LP1 is 2 [20], and for R||Cmax

the integrality gap of LP2 is also 2 [97]. In 2011, Svensson [96] showed that the integrality
gap of LP2 is 33/17 for the restricted assignment problem, and using the results in [6] gave a
polynomial-time algorithm that can estimate the optimal makespan within a factor 33/17 + ε
for any ε > 0. Jansen and Rohwedder [56] improved this bound to 11/6 + ε, and Jansen et
al. [51] improved it to 5/3 + ε when there are only two job lengths. We note that the result by
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Jansen and Rohwedder was also achieved later by the same authors [58] using a (weaker) LP
relaxation that has polynomial numbers of variables and constraints. While these works allow
us to estimate the optimal makespan better than a factor of 2, they do not produce a schedule in
polynomial time. Recently [57] showed that there is an algorithm that runs in quasi-polynomial
time (i.e. the running time of the algorithm is bounded by 2log nO(1)

) that produces a schedule
with makespan within a factor 11/6 + ε of the optimum for the restricted assignment problem.

Let us summarize a few other integrality gap results known with respect to LP2. Eben-
lendr et al. [20] showed that LP2 has integrality gap 2 for the graph balancing problem with
speeds. Verschae and Wiese [97] proved LP2 has integrality gap 2 for the so-called un-
related graph balancing problem, which holds even in the graph balancing case when ev-
ery pi, j ∈ {ε, 1,∞} for some ε > 0. Finally, Jansen and Rohwedder [59] proved that LP2 has
integrality gap of at most 1.749 for the graph balancing problem.

Scheduling Problems with Processing Set Restrictions

For every job J j ∈ J, the eligibility constraints Mj of J j are a subset of the machines where
J j can be scheduled. In the literature, the eligibility constraints are called various different
names, including processing sets. As discussed by Leung and Li [73, 74], there has been
recent interest in instances of the restricted assignment problem where the processing sets have
specific structure; the main appeal here is that in these cases we can evade the 3/2-hardness
lower bound known for the general problem, and yet still produce close-to-optimal solutions
for meaningful scheduling problems. The study of these classes of instances is commonly
referred to as P|Mj|Cmax with processing set restrictions, and below we abbreviate each special
case (·) as P|Mj(·)|Cmax.

• Inclusive (P|Mj(inclusive)|Cmax). The processing sets M1,M2, . . . ,Mn satisfy the prop-
erty that, for any two jobs J j, J j′ ∈ J, either Mj ⊆ Mj′ or Mj ⊇ Mj′ . Without
loss of generality we can assume that the machines are linearly ordered so that for
every job J j ∈ J there is a positive integer 1 ≤ a j ≤ m, such that each processing
set Mj = {Ma j ,Ma j+1, . . . ,Mm}. We note that inclusive processing sets are also known as
Grade of Service (GoS) processing sets in the literature [71].

• Nested (P|Mj(nested)|Cmax). A generalization of P|Mj(inclusive)|Cmax where, for any
pair of jobs J j, J j′ ∈ J, only one of the following statements is satisfied: Mj ⊆ Mj′ ,
Mj ⊇Mj′ , or Mj ∩Mj′ = ∅. As an aside, nested processing sets form a laminar family,
a commonly studied set system.

• Tree-hierarchical (P|Mj(tree)|Cmax). Every machine Mi ∈ M is a vertex in an in-tree.
Every J j ∈ J is associated with a machine Ma j and the processing set Mj consists of
the machines along the unique path from Ma j to the root of the in-tree. An example of
such an in-tree is given in Figure 2.1. P|Mj(inclusive)|Cmax is the special case when the
in-tree is a chain; an example is shown in Figure 2.2.

In Figure 2.3, we give the complexity hierarchy for all the scheduling problems described
above. Recall that P||Cmax is strongly NP-hard, thus all these problems are also strongly NP-
hard; however, unlike for the general restricted assignment problem, there are ρ-approximation
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{J4}

{ } M5

{J5, J6}

M3

M2

{J3}

M1

M4
{J1, J2}

Figure 2.1: An example in-tree representing tree-hierarchical processing sets. The processing
sets in this example are M1 = M2 = {M4,M5}, M3 = {M3,M5}, M4 = {M2,M3,M5}, and
M5 = M6 = {M1,M3,M5}.

{J2, J5}

{J4} M4

{J1, J3} M3

M1

{ } M2

Figure 2.2: The processing sets from an instance of P|Mj(inclusive)|Cmax represented as an
in-tree, where M4 = {M4}, M1 = M3 = {M3,M4}, M2 = M5 = {M1,M2,M3,M4}.

algorithms with approximation ratio ρ < 2 when the processing sets are not arbitrary. We
summarize the main approximation algorithm results for these problems in Table 2.1.

2.2.3 Graph Balancing Problem (P|Mj, |Mj| ≤ 2|Cmax)
According to Asahiro et al. [2], minimizing the maximal load of a weighted multigraph allows
one to build efficient dynamic data structures for multigraphs when the goal is to speed up the
performance of vertex-adjacency operations (e.g. see [9]). Let us consider an adjacency list
for a multigraph. Observe that determining if two vertices u and v are adjacent or not can be
done in an adjacency list by traversing either the adjacency list for vertex v or the adjacency
list for u, but checking both lists will also successfully do this. Notice that if we were to direct
some edge {u, v} in a multigraph so that u is directed toward v, the list of u decreases by one
element but the list of v has the same number of elements. By directing all the edges, each
vertex appears at most once among all the lists of the adjacency list and the lengths of the lists
in an adjacency list can be shortened; this may quicken query times as there are less elements
to traverse. Minimizing the maximal length of the lists in an adjacency list is equivalent to
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P |Mj(inclusive)|Cmax

P |Mj(nested)|Cmax

P |Mj |Cmax

P |Mj(tree)|Cmax

P ||Cmax

R||Cmax

P |Mj(nested)|Cmax

Figure 2.3: Complexity hierarchy of parallel machine scheduling problems with processing
sets, where, for two scheduling problems A and B, A→ B in the diagram implies A is a special
case of B.

Problem Result References
P|Mj(inclusive)|Cmax PTAS Ou et al. [83],

Li and Wang [76] (allows job
release times), and
Epstein and Levin [23]
(speed-hierarchical model).

P|Mj(nested)|Cmax 7/4-approximation Huo and Leung [46].
5/3-approximation Huo and Leung [47].
PTAS Muratore et al. [81], and

Epstein and Levin [23].
P|Mj(tree)|Cmax 4/3-approximation Huo and Leung [46], and

Leung and Ng [75] (speed-
hierarchical model for trees).

PTAS Epstein and Levin [46].

Table 2.1: Summary of main approximation algorithms for P|Mj|Cmax with processing set
restrictions.

minimizing the maximum load of the multigraph if all the edges have unit length: compute
an optimal orientation then simply reverse all the directions of the edges in the orientation.
See Figure 2.4 for an example. It is not hard to see that when the edges are weighted and
these weights represent a priority (e.g., frequency of use), higher-priority vertices for vertex-
adjacency operations can be placed in shorter lists.

Ebenlendr et al. [20] gave a 7/4-approximation algorithm for the graph balancing problem:
This is an LP-based algorithm with an elegant threshold-based rounding scheme that increases
the load of any vertex at most twice. We summarize this algorithm as we utilize ideas from
it. Ebenlendr et al. [20] also proved that there is no ρ-approximation algorithm with ρ < 3/2
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(iii)

2

3

1 v1, a v2, b v2, c v2, d

v1, b v1, c v1, d v3, e

v1, g v1, h v2, e

v3, g v3, h ∅
v3, f ∅

v2, f ∅

2

3

1 v1, a

v1, c v1, d

v2, f v1, g

v2, b ∅
v3, e ∅
v1, h ∅

(A)

(B)

Figure 2.4: Assume we are given a multigraph G as shown in (i), every edge has length 1
and an adjacency list representation of (i) is (A). An optimal orientation of the edges in (i) is
shown in (ii). Reversing the directions of the edges in (ii) we get (iii), an adjacency list of (iii)
representation is (B).

for the graph balancing problem unless P = NP; we present this reduction below. The best-
known approximation algorithm for the graph balancing problem has approximation ratio 7/4;
however, Wang and Sitters [99] designed a simpler 11/6-approximation algorithm based on the
LP-rounding approach of Shmoys and Tardos [93] for R||Cmax.

Prior to our work, the best-known approximation algorithm for the graph balancing problem
with two job lengths was a 1.652-approximation algorithm by Kolliopoulos and Moysoglou [66].
Their approximation algorithm employs binary search, and for a given estimation of the min-
imum makespan τ different approximation algorithms are used based on the values of the
weights with respect to τ. A core component of this approximation algorithm is a flow-network
based approximation algorithm for the two-valued case of the restricted assignment problem
introduced in the same paper.

There also has been some work studying the graph balancing problem when the input multi-
graph is simple; this problem is called the graph orientation problem. We summarize some of
these results later.

7/4-Approximation Algorithm of Ebenlendr, Krčál, and Sgall for the Graph Balancing
Problem

Here we summarize the 7/4-approximation algorithm of Ebenlendr et al. [20]. This algorithm
uses a 7/4-relaxed decision procedure. First, all the edge lengths and dedicated loads are
divided by the makespan estimate τ; hence, in the sequel it is assumed that τ = 1. Clearly if
there is some edge e ∈ E with pe > 1 or some vertex v ∈ V with dedicated load qv > 1, there is
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no orientation with makespan at most 1 and FAIL is returned.
Before we describe the algorithm, a stronger LP-formulation for the graph balancing prob-

lem is presented. An edge is called big if pe > 1/2 and is small otherwise. Let EB be
the set of big edges and let GB = (V, EB) be the subgraph of G consisting of big edges.
Let TB be the set of all possible trees consisting of big edges in GB. As shorthand, if v
is a vertex and e is an edge, v ∈ e means “v is incident to e”. For any tree T of G, let
L(T ) = {(v, e) ∈ V × E | v is a leaf of T , v ∈ e, and e ∈ T }, where each (v, e) is called a leaf
pair of T . Consider any big tree T ∈ TB. Assuming OPT ≤ 1, since T has one more vertex
than edges, at most one edge in the set of leaf pairs can be oriented away from its leaf. This
leads to what is called the tree constraint (Tree T ) in linear program LP3 shown below. A
variable xev is defined for each edge e ∈ E and endpoint v of e. If xev = 1, e is oriented towards
v. If 0 < xev < 1, we say that e is fractionally oriented towards v.

Graph Balancing Linear Program 1 (LP3)

xeu + xev = 1, for all e = {u, v} ∈ E (Edge e)

qv +
∑
e|v∈e

pexev ≤ 1, for all v ∈ V (Load v)∑
(v,e)∈L(T )

pexev ≥
∑

(v,e)∈L(T )

pe − 1, for each T ∈ TB (Tree T )

xev ≥ 0, for all e ∈ E, v ∈ e,

where the set of leaf pairs of tree T is

L(T ) =

{
(v, e) | v is a leaf of T, e ∈ T

}
.

Adding the tree constraints makes LP3 stronger than LP1. LP3 can have exponentially-
many constraints as there can be exponentially-many big trees, so Ebenlendr et al. showed
that solving LP4 below yields a feasible solution to LP3; LP4 has a polynomial number of
constraints. We dedicate more discussion to LP3 and LP4 in Chapter 4.2.3, where we introduce
generalizations of these LPs. Note that both LP3 and LP4 have integrality gap 7/4 for the graph
balancing problem.

Graph Balancing Linear Program 2 (LP4)

xeu + xev = 1, for all e = {u, v} ∈ E (Edge e)

qv +
∑
e|v∈e

pexev ≤ 1, for all v ∈ V (Load v)∑
e|v∈e,

pe>1/2

xev ≤ 1 for all v ∈ V (Star v)

xev ≥ 0, for all e ∈ E and v ∈ e,

Now we can present the 7/4-relaxed decision algorithm. First, solve LP4 to obtain a fea-
sible solution x to LP3. Let Ex = {e ∈ E | 0 < xeu < 1 for u ∈ e}. Also, let Gx = (V, Ex) and
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GB
x = (V, Ex ∩ EB). If a feasible solution is not found, then OPT > 1 and return FAIL. The al-

gorithm then considers fractionally oriented edges in Gx, and performs the rounding procedure
described below to determine their final orientations. It is assumed that as edges are oriented,
Gx and GB

x are updated accordingly. If there is a vertex v of degree 1 in Gx (i.e., there is a leaf
pair (v, e)) and 0 < xev < 1 for edge e = {u, v} then

• Leaf assignment: If pexeu ≤ 3/4, e is oriented towards the leaf v (see Figure 2.5);

v u

. . .

. . .
e

Figure 2.5: An example of a leaf assignment. Note that the edge oriented in a leaf assignment
can be big or small.

• Tree assignment: If pexeu > 3/4 note that e then must be a big edge and the connected
component of GB

x containing e must be a tree T . Orient all edges in T away from v (see
Figure 2.6).

v u
e

Figure 2.6: An example of edges being oriented in a tree assignment. The solid lines form the
tree T of big edges. The dashed lines represent small edges, which are not oriented by the tree
assignment.

If no vertex v as above is found then there must be a cycle C, we then perform a rotation.
Traverse Gx to find a cycle selecting big edges over small ones. Once a cycle C is found, apply
Rotate(x,C): Compute δ ← mine=(u,v)∈C (pexeu) and then for each e = (u, v) ∈ C, set xeu ←

xeu − δ/pe and xev ← xev + δ/pe. After performing Rotate(x,C), at least one edge e = {u, v} in
C has xeu = 0 and xev = 1 so e is oriented to v. Observe that rotations do not change the loads
of vertices. The algorithm terminates once Gx has no edges.

The rounding performed by a leaf assignment increases the load of a vertex u by at most 3/4
if the edge e under consideration is big or it increases by at most 1/2 if e is small. Furthermore,
a tree assignment can increase the load of a vertex u by at most 1/4. A vertex u can have its
load increased by either (i) only one leaf assignment or (ii) by a tree assignment plus a leaf
assignment involving a small edge. In either case the maximum load of a vertex is at most 7/4.
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3/2-Hardness of the Graph Balancing Problem

Here we present the 3/2-hardness lower bound for the graph balancing problem, even when
the jobs have lengths either 1 or 2. The reduction we present is by Ebenlendr et al. [21];
this reduction utilises a variant of the satisfiability problem called At-most-3-SAT(2L). At-
most-3-SAT(2L) is known to be NP-complete [2]. We note that a similar reduction was also
independently given by Asahiro et al. [2].

Problem: At-Most-3-SAT(2L)

Input: A propositional logic formula φ in conjunctive normal form (CNF), where there are
n′ boolean variables x1, . . . , xn′ and m′ clauses y1, y2, . . . , ym′ . There are at most three literals
per clause, each variable appears at most three times in φ, and each literal (a variable or its
negation) occurs at most twice in φ.

Output: Is there an assignment of values to the variables x1, . . . , xn′ such that φ is satisfied?

Given an instance of At-Most-3-SAT(2L), we build a weighted multigraph G as follows;
assume all vertices have zero dedicated load unless otherwise stated. Create one vertex for
each clause yi, and one vertex for each literal (xi and ¬xi) of every variable xi; let the former
be called clause vertices and the latter be called literal vertices. For each variable xi, add an
edge {xi,¬xi} with weight 2 called a tautologous edge; the dedicated load of clause vertex yi is
3 − |yi|, where |yi| is the number of literals in clause yi. Finally, for each clause yi and literal l,
add a clause edge {l, yi} if literal l is in clause yi.

To illustrate the reduction, we give an example. Let the propositional logic formula φ =

(x1 ∨ ¬x2) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3), where n′ = 3 and m′ = 2. Then y1 = (x1 ∨ ¬x2) and
y2 = (¬x1∨¬x2∨¬x3). Applying the reduction we obtain the multigraph G shown in Figure 2.7.
The formula φ can be satisfied and G has an optimal orientation with maximal load 2.

Theorem 2.2.2 (Ebenlendr et al. [21]) There is an orientation of G with makespan at most 2
if and only if φ can be satisfied.

Proof To prove the claim, we consider each direction separately.

(⇒) Given an orientation of G with makespan at most 2, set each variable x j as follows:
Set x j = 1 if tautologous edge {x j,¬x j} is oriented toward literal vertex ¬x j, and x j = 0
otherwise.

For any clause yi, there must be at least one literal l (for some variable x j′) such that its
clause edge {l, yi} is directed toward literal vertex l; otherwise, the load of clause vertex yi

exceeds 2 since the dedicated load of yi is 3−|yi|. Note that all other clause edges incident
on clause vertex yi can be directed toward yi without the load exceeding 2. Then, the
tautologous edge {x j′ ,¬x j′} is not oriented toward literal vertex l since the length of any
tautologous edge is 2. Thus, the orientation of clause edge {l, yi} toward l corresponds to
setting a value for x j′ so that yi is satisfied, and φ is satisfied.

(⇐) Given an assignment of values to variables x1, x2, . . . , xn′ , construct an orientation in
the following way: For each variable x j, direct tautologous edge {x j,¬x j} toward literal
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Figure 2.7: Given the formula φ = (x1∨¬x2)∧ (¬x1∨¬x2∨¬x3), the resulting graph balancing
instance applying the above construction is shown on the left. Its optimal orientation is given
on the right.

vertex x j if x j = 0, and toward literal vertex ¬x j if x j = 1. Next, each clause edge {l, yi}

of clause yi and literal l is oriented toward literal vertex l if l is true, and toward yi if l is
false.

Consider any literal vertex l. If literal l is false then a tautologous edge of length 2 is
directed toward literal vertex l, and if l is true then at most two clause edges, each of
length 1, are directed toward l. So the load of any literal vertex is at most 2. Since every
clause yi is satisfied, at least one clause edge is directed away from yi and the load of
clause vertex yi is at most (3 − |yi|) + (|yi| − 1) ≤ 2.

By Theorem 2.2.2, G has an orientation with makespan at most 2 if φ is satisfied, but the
makespan is at least 3 otherwise. Hence, if there were a ρ-approximation algorithm with ρ <
3/2, one could apply the above reduction and the ρ-approximation algorithm, then correctly
decide whether φ is satisfiable or not in polynomial time: If the makespan is less than 3 return
“yes”; otherwise, return “no”.

Corollary 2.2.3 (Ebenlendr et al. [21]) There is no ρ-approximation algorithm with ρ < 3/2
for the graph balancing problem with job lengths either 1 or 2, unless P = NP.
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Graph Orientation Problem (P|Mj, |Mj| = 2|Cmax)

There has been some attention given to the graph balancing problem when the input multigraph
is simple. That is, no more than one edge exists between two common endpoints, and there are
no self loops (i.e., the dedicated loads qv = 0). This case is referred to in the literature as the
graph orientation problem, and for this problem the 3/2-hardness lower bound still persists [2]
using a reduction similar to the one given previously. This problem was originally proposed by
Asahiro et al. [4], where the goal is to find an orientation for the edges so that the maximum
weighted outdegree of the vertices is minimized. It is not hard to see minimizing the maximum
weighted outdegree is equivalent to minimizing the maximum load of a vertex (the maximum
weighted indegree), by simply reversing the orientation of edges in an orientation.

Currently much of the contributions associated with this problem are found in papers by
Asahiro et al. [2, 3, 4]. The best-known approximation algorithms for the graph orientation
problem are those for the graph balancing problem. Asahiro et al. [2] gave a combinatorial
(2−`s/`b)-approximation algorithm for the graph orientation problem with two job lengths pe ∈

{`s, `b}, `s < `b, which is tight with the 3/2 lower bound when `s = 1 and `b = 2. It is also
worth noting that the graph orientation problem is polynomial-time solvable on trees and cacti,
it is weakly NP-hard on series-parallel graphs, and it is strongly NP-hard for planar bipartite
graphs [3].

2.3 Other Scheduling Problems

2.3.1 Scheduling Parallel Machines with Simple Job-Intersection Struc-
ture and Bounded Job Assignments

The concept of the job-intersection graph goes back to at least Glass and Kellerer [33] with
the study of so-called nested-structures (Chapter 2.2.2) and the restricted assignment problem.
Research on the restricted assignment problem when instances satisfy certain structural prop-
erties is extensive and has grown in interest in recent years [74]. In addition, there has been
investigation of scheduling problems on machine-intersection graphs where the machines are
the vertices and an edge exists between two vertices when a job can be scheduled on the two
corresponding machines [3, 53, 70]. Jansen et al. [53]1 proved that R||Cmax is fixed-parameter
tractable (FPT) in the treewidth tw of the job-intersection graph. That is, if the job-intersection
graph GJ has constant treewidth, R||Cmax can be solved in polynomial time. So when the job-
intersection graph belongs to graph classes such as trees (tw = 1), cactus graphs (tw ≤ 2),
outerplanar graphs (tw ≤ 2), and series-parallel graphs (tw ≤ 2), R||Cmax is solvable in polyno-
mial time. In Figure 2.8 we summarize both, computational complexity results found in this
thesis and results presently in the literature for R||Cmax with simple job-intersection structure.

For any 0 ≤ r ≤ n, it is trivial to determine if the set Ji of jobs that every machine Mi can
process has size at most r. Alon et al. [1] gave an algorithm that can test if a graph (V, E) is
triangle free in O(|E|1.41) time. We note that diamondless graphs can be recognized in O(|V |3)
time by a simple algorithm that looks for a pair of triangles with a common edge. Kloks et
al. [64] showed that one can recognize if a graph is diamond-free (and give a diamond in the

1In this paper the authors refer to the job-intersection graph as the primal graph.
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tree [51]

cactus [51]

general graphs [21,67]

triangle free [*]

diamond free [*]
outerplanar [51]

series-parallel [51]

constant treewidth [51]

Unbounded Treewidth

Bounded Treewidth

bipartite [*]complete [*]

threshold [*]

split [*]

cograph [*]

interval [*]

house free [*]

diamondless [*]

Figure 2.8: Summary of results for R||Cmax with simple job-intersection structure. The job-
intersection graphs restricting the machine assignments are grouped by graph class. For two
graph classes A and B, “A → B” in the diagram means that any graph in A is in graph class B.
Problems boxed with dashed lines are polynomial-time solvable, and problems with boxed
solid lines are strongly NP-hard. The number(s) in brackets are reference numbers, and graph
classes with [*] beside them refer to computational complexity results found in this thesis.

graph if it is not) in O(|V |c + |E|3/2) time, where O(|V |c) is the time complexity to compute the
square of a |V | × |V | 0-1 adjacency matrix.

To the best of our knowledge R||Cmax with bounded job assignments has not been previously
studied. Bounded job assignments have been considered in other types of scheduling problems,
such as in batch scheduling where a batch size bounds the number of jobs simultaneously
processed by a batching machine [12, 78]. A generalization of R||Cmax where every machine
has a positive integer called a machine capacity that bounds the maximum number of jobs each
machine can process has also been studied. For this generalization there is a 2-approximation
algorithm [90], and there exists an efficient polynomial-time approximation scheme when the
machines are identical [14].

2.3.2 Scheduling with Machine Types

Recently, Jansen and Maack [52] presented an EPTAS for R||Cmax with machine types when
the number of machine types is constant. Prior to this result, Gehrke et al. [31] gave a PTAS
for R||Cmax when the number δ of machine types is constant, its running time is bounded by

O(δn) + mO(δ/ε2) ·

(
log m
ε

)O(δ2)

.
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In addition, Knop and Kouteckỳ [65] showed that R||Cmax is fixed-parameter tractable in param-
eters maxi, j pi, j and δ, i.e. there is an algorithm with running time bounded by f (δ,maxi, j pi, j) ·
poly(|x|) that optimally solves R||Cmax, where f is some computable function and |x| is the in-
put size of instance x. For some more discussion on results for special cases of makespan
minimization with machine types see [31, 52].

In a similar vein, two jobs J j and J j′ have the same job type if pi, j = pi, j′ for all Mi ∈ M.
Goemans and Rothvoß [34] showed that P||Cmax is polynomial-time solvable when the number
of job types is constant. Later, Chen et al. [15] generalized upon this work to prove that R||Cmax

is polynomial-time solvable if both the number of job types and the number of machine types
are bounded by a constant.

2.3.3 Scheduling Parallel Machines with Bags

Makespan minimization with bags is a type of conflict scheduling problem, where two jobs
from the same bag conflict if they are scheduled on the same machine. A natural way to model
this type of conflict is with an incompatibility graph: There is a vertex for each job and an
edge {J j, J j′} if jobs J j and J j′ cannot be scheduled on the same machine. Then, makespan
minimization with b bags is when the incompatibility graph consists of b disjoint cliques.
Bodlaender et al. [7] developed several results for P||Cmax with incompatibility graphs. Even et
al. [24] studied a similar conflict scheduling problem where two conflicting jobs cannot be
scheduled concurrently. In addition, Dokka et al. [19] considered a related, but generalized
version of P|bag|Cmax called the multi-level bottleneck assignment problem, and gave a 2-
approximation algorithm for three bags.

In 2017, Das and Wiese [17] presented a PTAS for P|bag|Cmax, and an 8-approximation
algorithm for the restricted assignment problem with bags in the special case when for each
bag Bk all the jobs j ∈ Bk have the same eligibility constraints. In addition, for any ε > 0, they
proved there is no

(
(log n)1/4−ε)-approximation algorithm for the restricted assignment problem

with bags, unless NP ⊆ ZPTIME(2(log n)O(1)
)2. They accomplished this by reducing from vector

scheduling, which is known to have no constant-factor approximation algorithm [13], unless
NP = ZPP3. As pointed out by Das and Wiese, by applying the results of Zuckerman [103]
to [13], the same reduction implies that there is no constant-factor approximation algorithm
for the restricted assignment problem with bags, unless P = NP. Recently Grage et al. [36]
improved upon the PTAS of Das and Wiese by presenting an EPTAS for P|bag|Cmax. To the
best of our knowledge, R|bag|Cmax with a small number of bags has not yet been considered,
nor when all the jobs have unit length.

2.3.4 Preemptive Scheduling

In this thesis we focus on non-preemptive scheduling problems. That is, once a job begins
being processed it must continue being executed until it completes. In contrast, in preemptive
scheduling jobs may be interrupted and executed later; each time a job is interrupted is called
a preemption. It is assumed that there is no cost associated with a preemption.

2ZPTIME( f (n)) - Zero-error probabilistic f (n)-time.
3ZPP - Zero-error probabilistic polynomial time.
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Lawler and Labetoulle [69] showed that makespan minimization on unrelated parallel ma-
chines where the jobs are preemptively scheduled (R|pmtn|Cmax) is polynomial-time solvable;
their algorithm performs no more than O(m2) many preemptions. There are two steps in this al-
gorithm. First, the algorithm solves the following LP: τ is a variable representing the makespan
and the objective is to minimize τ. Let ti, j be a variable that represents the total amount of time
that a machine Mi spends executing job J j, where ti, j ≥ 0 for each Mi ∈ M and J j ∈ J; then
the LP has constraints

∑m
i=1 ti, j/pi, j = 1 for each job J j ∈ J (each job needs to be processed

entirely),
∑m

i=1 ti, j ≤ τ for each job J j ∈ J (no job can process longer than τ over all the ma-
chines), and

∑n
j=1 ti, j ≤ τ for Mi ∈ M (each machine has total processing at most τ). Then,

the algorithm constructs an optimal schedule from an optimal solution to this LP by solving an
instance of the so-called preemptive open shop scheduling problem (referred to as O|pmtn|Cmax

in the literature); this can be accomplished in O(r2)-time using the algorithm of Gonzalez and
Sahni [35], where r is the number of variables with ti, j > 0; note that r ≤ mn.

The algorithm described above is not very fast as it requires solving a linear program with
O(m + n) constraints and O(mn) variables. Faster FPTASs for R|pmtn|Cmax have since been
presented [55, 88].

2.3.5 Precedence-Constrained Scheduling
In this thesis we consider the setting where jobs can be processed in any order, but for complete-
ness here we discuss some results for scheduling problems when this is not true. In precedence-
constrained scheduling, the order in which jobs must be processed is given as a directed acyclic
graph (DAG), where the jobs are vertices in the graph and an arc (J j, J j′) implies job J j must
complete before job J j′ can start. Clearly the case when there are no precedence constraints is
a special case, as in its DAG is every J j is isolated.

The literature in this area is extensive, thus we only briefly discuss a few results here.
On identical parallel machines, an algorithm of Graham [37] is a (2 − 1/m)-approximation
algorithm for P|prec|Cmax. On the other hand, there is no ρ-approximation algorithm with con-
stant ρ < 2 even when the jobs have unit length (P|p j = 1, prec|Cmax), unless a stronger variant
of the unique games conjecture (see Bansal and Khot [5]) holds [95]. On uniform parallel
machines, Chudak and Shmoys [16] gave a O(log m)-approximation algorithm for Q|prec|Cmax

and recently Li [77] presented a O(log m/ log log m)-approximation algorithm. In the case of
unrelated parallel machines, not as much is known for R|prec|Cmax (see e.g. [68]).



Chapter 3

Graph Balancing Problem with Two Job
Lengths
In this chapter we present two approximation algorithms for the graph balancing problem with
two job lengths `s and `b, where `s, `b ∈ Z

+ and `s < `b; note that each dedicated load of a
vertex v ∈ V is a linear combination of `s and `b, i.e. qv = a`s + b`b, for a, b ∈ Z+ ∪ {0}. The
first algorithm presented in Chapter 3.1 relies on a combination of flow theory, matchings, and
linear programming, while the latter given in Chapter 3.2 is considerably simpler and is purely
combinatorial. As a full record of research completed, both algorithms are included. Both of
the approximation algorithms we present use 3/2-relaxed decision procedures (Chapter 1.1.4).

3.1 First 3/2-Approximation Algorithm
The 3/2-relaxed decision algorithm GB2W (Algorithm 1) presented below computes a sched-
ule with makespan at most 3τ/2 if a schedule with makespan at most τ exists. If no schedule
with makespan at most τ exists, the algorithm returns FAIL.

Algorithm 1: GB2W (G = (V, E,p,q), τ)
Input: Multigraph G, value τ.

Output: An orientation γ for the edges in E with makespan at most 3τ/2 or FAIL. If
FAIL is returned there is no orientation with makespan τ.

1. Divide `s, `b, edge lengths, and vertex dedicated loads by τ; set τ = 1.
2. If `b > 1 or qv > 1 for any v ∈ V then return FAIL.
3. If `s, `b ∈ (0, 1/2] then apply Theorem 2.2.1.
4. If `s, `b ∈ (1/2, 1] then apply the algorithm given in Lemma 3.1.1.
5. If `s ∈ (0, 1/2] and `b ∈ (1/2, 1] we consider three subcases.

Let k = b1/`sc, so 1/(k + 1) < `s ≤ 1/k.
5.1. If k/(k + 1) ≤ `b ≤ 1 then apply the algorithm in Lemma 3.1.2.

5.2. If (k − 1)/k ≤ `b < k/(k + 1) then apply the algorithm in Lemma 3.1.3.

5.3. If 1/2 < `b < (k − 1)/k then apply the algorithm in Lemma 3.1.4.

6. If any of the algorithms used in Steps 3–5 reports FAIL or if the solution computed by
them has value larger than 3/2 then return FAIL; otherwise return the solution
computed in the above steps.

31
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The remainder of this section gives Lemmas 3.1.1–3.1.4 which provide the subroutines
used by our algorithm, then in Theorem 3.1.6 we prove our algorithm is a 3/2-approximation
algorithm for the graph balancing problem with two job lengths. First, we present Lemma 3.1.1
which covers Step 4 of our algorithm. We define a big edge e to be an edge with length pe >
1/2; otherwise, we call an edge small. From this point forward, we assume that as edges are
oriented in Steps 4–5.3, they are removed from G.

3.1.1 Step 4
Note that in Step 1 the algorithm scales the job lengths so the estimation for the optimum
makespan is τ = 1.

Lemma 3.1.1 There is a polynomial-time algorithm for the graph balancing problem with two
rational lengths `s, `b ∈ (1/2, 1] that finds a solution of value at most 1 if OPT ≤ 1.

Proof Since `s, `b ∈ (1/2, 1], each edge of the input multigraph G is a big edge. If there
is an orientation for the edges with maximal load at most 1, then at most one edge can be
oriented towards a given vertex. Therefore, if any connected component C = (VC, EC) of G has
|EC | > |VC | then there is no solution for the graph balancing problem of value at most 1. The
algorithm to compute an orientation with makespan at most 1 for the graph balancing problem
with two lengths `s, `b ∈ (1/2, 1] is as follows (Big `s`b, Algorithm 2).

Algorithm 2: Big `s`b (G = (V, E,p,q))
Input: Multigraph G.

Output: An orientation γ for the edges in E with maximum vertex load at most 1 or
FAIL. If FAIL is returned there is no orientation for E with makespan at
most 1.

1. If any connected component C = (VC, EC) of G has |EC | > |VC |, then return FAIL.
2. While G has cycles do

2.1. Find a cycle C′ of G.

2.2. Mark the vertices in C′ and orient the edges in C′ in the same arbitrary direction
along the cycle. If C′ contains any vertex with qv > 0, then return FAIL.

2.3. else remove the edges in C′ from G.
3. For every maximal tree T in G do

3.1. If there is a vertex v in T with qv > 0 or that is marked, then set v as the root
of T

3.2. else choose any vertex v in T as the root.

3.3. Orient all the edges in T away from its root.

3.4. If any edge in T is oriented towards a vertex u with qu > 0 or that is marked
then return FAIL.

4. Return orientation for the edges of G.

Multigraph G must have at most |V | edges, and an optimal orientation matches each edge
to a unique vertex with no dedicated load. As each connected component C has |EC | ≤ |VC |,
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C contains at most one cycle. Thus, if Step 2 finds a cycle containing a vertex v with qv > 0,
no orientation with makespan at most 1 exists. Next, in Step 3 the algorithm selects a vertex v
as the root, then the edges in T are oriented away from v. If T does not contain any marked
vertex nor a vertex v with qv > 0, then any vertex v in T is selected as the root and all the
edges are directed so that the load of each vertex in T is at most 1. If the root v is marked
or has qv > 0 and the condition of Step 3.4 is satisfied, then it must be that either an edge is
directed toward a vertex u in T with qu > 0 or a marked vertex, implying there must be no
orientation with makespan at most 1. In the case when a root v is marked or has qv > 0 and the
condition of Step 3.4 is not satisfied, then every edge in T is oriented toward a vertex u that is
both unmarked and has qu = 0. Therefore, if a solution of value at most 1 exists, it must be
found when Step 4 is reached. The above algorithm runs in O(|V | + |E|) time.

3.1.2 Step 5.1
We consider here the case handled in Step 5.1 of the algorithm, namely when k/(k+1) ≤ `b ≤ 1,
where k = b1/`sc and so 1/(k + 1) < `s ≤ 1/k. In Lemma 3.1.2 below, we utilize the property
that `s + `b > 1, which means that if OPT ≤ 1 then no small edge can be oriented with a big
edge toward the same vertex.

Lemma 3.1.2 For any integer k ≥ 2, there is a polynomial-time algorithm for the graph bal-
ancing problem with two rational lengths `s, `b, where 1/(k + 1) < `s ≤ 1/k and k/(k + 1) ≤
`b ≤ 1 that finds a solution of value at most 3/2 if OPT ≤ 1.

Proof If OPT ≤ 1, since `s + `b > 1 for any optimal orientation either at most one big edge
is oriented towards a vertex, or at most k small edges are oriented towards a vertex. To find
an orientation for the edges of the input multigraph G = (V, E,p,q), we use a flow network N
similar to one used by Kolliopoulos and Moysoglou [66].

The flow network N is built as follows. First, we consider the dedicated loads of the ver-
tices. For each vertex v ∈ V , define a value βv ≥ 0 as follows: if qv ≥ `b, set βv = k; otherwise
set βv equal to the unique non-negative integer such that qv = βv`s, assign βv = pv. The flow
network N has a source s∗ and sink t∗. We will describe the network level by level. First, we
have a level of nodes in the network called edge nodes. These are nodes corresponding to the
edges in G. There are two types of edge nodes: big edge nodes for edges with length `b; and
small edge nodes for those with length `s. Add an arc from s∗ to each edge node, and set its
capacity to k if it is to a big edge node, and 1 otherwise.

The second level consists of buffer nodes, one for each vertex. The buffer nodes are added
to prevent excess flow from being carried through the big edge nodes. While this part of the
network is not important for proving the lemma, it will be vital for how we later use this
network in Lemma 3.1.3. For each big edge {u, v} ∈ E, add arcs with capacity k from its big
edge node to buffer nodes u and v.

For the next level of the network, create a vertex node that corresponds to each vertex in
G. Add an arc from the buffer node of each vertex v to its vertex node with capacity k. For
each small edge {u, v} ∈ E, include arcs with capacity 1 from its small edge node to vertex
nodes u and v. Finally, for each vertex v ∈ V , add an arc from vertex node v to sink t∗ with
capacity k − βv. The resulting flow network is shown in Figure 3.1.
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Figure 3.1: The flow network N for the case when 1/(k + 1) < `s ≤ 1/k and k/(k + 1) ≤ `b ≤ 1.
Shaded nodes represent big edge nodes, and each black node is a buffer node associated with
one vertex node. Arcs that are unlabelled have flow capacity 1.

Below we give the algorithm.

Algorithm 3: BigSmall `s`b (G = (V, E,p,q))
Input: Multigraph G.

Output: An orientation γ for the edges in E with makespan at most 3/2 or FAIL. If
FAIL is returned there is no orientation for E with makespan at most 1.

1. Build the flow network N. Set k = b1/`sc.
2. Compute an integral maximum flow f of N.
3. If all the arcs leaving the source are not saturated in f , then return FAIL.
4. Construct bipartite graph G′ = (Vbig ∪ Vrec, E′), where Vbig is the set of big edge nodes,

Vrec is the set of buffer nodes that receive at least dk/2e units of flow from a big edge
node, and

E′ = {(u, v) | u ∈ Vbig, v ∈ Vrec, f (u, v) ≥ dk/2e}.

5. Compute a matching M of G′ that matches nodes in Vbig with nodes in Vrec.
6. For each arc (u, ui) in M, orient big edge u towards vertex ui.
7. For each small edge node u and vertex node ui with f (u, ui) = 1, orient u towards ui.
8. Return orientation for the edges of G.

Both the flow network N and the bipartite graph G′ constructed by the algorithm consist of
O(|V | + |E|) nodes and arcs. In addition, computing an integral maximum flow can be done in
O((|V | + |E|)2) time using Orlin’s algorithm [82], and the matching in Step 5 can be computed
in O((|V | + |E|)3/2) time using the algorithm of Hopcroft and Karp [44]. Therefore, the time
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complexity of algorithm BigSmall `s`b (Algorithm 3) is polynomial.
Now we prove that this algorithm finds an orientation with maximal load at most 3/2 if

OPT ≤ 1. First we show that flow network N has the following property: If OPT ≤ 1, an
integral maximum flow on this network saturates all the arcs leaving s∗. Consider any optimal
orientation γ∗. We construct a flow function in which every small edge node receives 1 unit
of flow, and each big edge node receives k units of flow from the source s∗. For each big
edge {u1, u2} of G, if u is the big edge node for {u1, u2}, send k units of flow from u to buffer
node ui if γ∗(u1, u2) = ui, k units of flow from buffer node ui to vertex node ui, and k units of
flow from ui to the sink t∗. Similarly, for each edge {u1, u2} represented by small edge node u,
if γ∗(u1, u2) = ui, send 1 unit of flow from u to vertex node ui, and one unit of flow from ui to
t∗. It is not hard to see that this flow function is feasible and that no additional flow can be sent
through the network.

If OPT ≤ 1, then as shown above, every small edge node receives 1 unit of flow from s∗.
By flow conservation, each small edge node u sends its one unit of flow to a vertex node ui,
and the algorithm orients small edge u towards vertex ui. As a result, every small edge is
oriented by the algorithm. What remains to be shown is that all the big edges are oriented.
The orientation of each big edge is determined by the matching M computed by the algorithm.
We must show that M covers all big edge nodes. Consider any subset V ′big ⊆ Vbig, and denote
the neighbourhood in G′ of this subset of nodes as NG′(V ′big). Note that NG′(V ′big) ⊆ Vrec. To
show M exists, we use Hall’s Theorem [41], which requires us to prove that |V ′big| ≤ |NG′(V ′big)|.
Two key observations are that the outdegree of every edge node is 2, and every big edge node
receives at most k units of flow. Furthermore, by flow conservation every big edge node must
send at most k units of flow to the buffer nodes. We have two cases:

• If k is odd, a buffer node in NG′(V ′big) can receive at least dk/2e units of flow from only one
big edge node in V ′big because k < 2 · dk/2e. Furthermore, since k − dk/2e = bk/2c < dk/2e,
each big edge node in G′ has degree 1. Hence, |V ′big| = |NG′(V ′big)|.

• If k is even, then dk/2e = k/2, and so a buffer node can receive k/2 units of flow from at
most two big edge nodes. Partition NG′(V ′big) into two disjoint sets N1 and N2, where N1

contains the buffer nodes that receive more than k/2 units of flow from a big edge node,
and N2 has the buffer nodes that receive k/2 units of flow from a big edge node. Similar
to when k is odd, each big edge node in V ′big is adjacent to only one buffer node in N1, and
so each buffer node in N1 has degree 1 in G′. This leaves |V ′big| − |N1| vertices adjacent to
buffer nodes in N2. The indegree of each buffer node in N2 is at least one (and no more than
2), but the outdegree of every big edge node adjacent to the buffer nodes in N2 is exactly 2.
This implies that |V ′big| − |N1| ≤ |N2|. Thus, |V ′big| ≤ |N1| + |N2| = |NG′(V ′big)|.

Since |V ′big| ≤ |NG′(V ′big)|, by Hall’s Theorem, a matching M covering Vbig exists. Hence,
algorithm BigSmall `s`b computes an orientation if OPT ≤ 1 and reports FAIL otherwise.

Consider the orientation produced by the algorithm. If vertex v has βv = k, then the edge
from v to t∗ in N has capacity zero which implies that no edge is oriented towards v, so the load
of v is qv ≤ 1. Next we check when v has βv < k.

• First, let v be a vertex with a big edge oriented towards it. Since a big edge oriented towards
v implies a big edge node sends at least dk/2e units of flow to the vertex node for v, at most
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(k − βv) − dk/2e units of flow can be additionally sent to this vertex node by small edge
nodes; hence at most (k − βv) − dk/2e additional small edges are oriented towards v. The
load of vertex v is at most `b + `s((k − βv) − dk/2e) + βv`s.

• Second, if vertex v has no big edge oriented towards it, since the capacity from any vertex
node v to t∗ is k − βv, at most k − βv small edges are oriented towards it. Thus, the load of v
is at most `s(k − βv) + βv`s

Hence, the load of a vertex v is at most

βv`s + max{`s(k − βv), `b + `s((k − βv) − dk/2e)}
≤ max{`sk, `b + `s(k − k/2)}
≤ max{k/k, `b + k/(2k)}, as k = b1/`sc so `s ≤ 1/k
≤ 1 + 1/2 = 3/2.

3.1.3 Step 5.2
Here we cover the case when 1/(k + 1) < `s ≤ 1/k and (k − 1)/k ≤ `b < k/(k + 1). Note that it
is possible that `s + `b ≤ 1. If OPT ≤ 1, at most one big edge can be oriented along with one
small edge toward the same vertex, as

2`s + `b > 2
(

1
k + 1

)
+

k − 1
k

=
2

k + 1
−

1
k

+ 1 =
k − 1

k(k + 1)
+ 1 ≥ 1, for all k ≥ 1;

we exploit this property below.

Lemma 3.1.3 For any integer k ≥ 2, there is a polynomial-time algorithm for the graph bal-
ancing problem with two rational lengths `s, `b, where 1/(k + 1) < `s ≤ 1/k and (k − 1)/k ≤
`b < k/(k + 1) that finds a solution of value at most 3/2 if OPT ≤ 1.

Proof We consider two cases: `s + `b > 1, and `s + `b ≤ 1. Assuming OPT ≤ 1, if `s + `b > 1
either at most one big edge is oriented towards a vertex or at most k small edges are oriented
towards a vertex; apply Lemma 3.1.2 to obtain an orientation where each vertex has load at
most 3/2, if such an orientation exists.

From this point forward, assume `s + `b ≤ 1. Recall that 2`s + `b > 1. If OPT ≤ 1, an
optimal orientation either (i) has at most a big edge oriented along with a small edge towards
the same vertex, or (ii) at most k small edges are oriented towards a vertex. Like Lemma 3.1.2,
compute a value βv for the dedicated load of each v ∈ V . When qv ≥ `s + `b, set βv = k.
Otherwise, if qv ≥ `b set βv = k − 1, and if not, select βv such that qv = βv`s. The algorithm
builds a modified version of the flow network N of Lemma 3.1.2, which we describe now. First,
change the capacities on the arcs incident on the big edge nodes from k to k − 1. Second, for
each v ∈ V , set the capacity of the arc from buffer node v to vertex node v to k − 1 instead of k.
Leave the capacities from the vertex nodes to the sink t∗ as k−βv. We show this flow network in
Figure 3.2. It is straightforward to see that this modified network maintains the same property
that all the arcs leaving s∗ are saturated in an integral maximum flow if OPT ≤ 1.

We modify the algorithm from Lemma 3.1.2 as follows. We refer the reader to BigS-
mall `s`b (Algorithm 3). The modified flow network we described above is built for Step 1.
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Figure 3.2: The modified flow network constructed for the case when 1/(k + 1) < `s ≤ 1/k
and (k − 1)/k ≤ `s < k/(k + 1). Shaded nodes represent big edge nodes, and every black
node is a buffer node associated with a vertex node. Assume arcs that are unlabelled have flow
capacity 1.

Steps 2–3 are the same as before. In Step 4, when constructing the bipartite graph G′ between
the big edge nodes and buffer nodes, Vbig remains the same, but Vrec contains buffer nodes that
receive at least d(k − 1)/2e units of flow from a big edge node and

E′ = {(u, v) | u ∈ Vbig, v ∈ Vrec, f (u, v) ≥ d(k − 1)/2e}.

Steps 5–8 remain the same as before. Since the capacities of the arcs leaving the buffer nodes
and the incoming flow to the big edge nodes are one less than in the network in Lemma 3.1.2,
one can show a matching on G′ exists if OPT ≤ 1 by replacing k with k − 1 and switching the
even and odd cases of our original argument in Lemma 3.1.2.

Consider the load of a vertex v in the orientation produced by the algorithm. Clearly any
vertex v with qv ≥ `s + `b has βv = k and k − βv = 0. No flow is sent to these vertex nodes, so
the load of these vertices is at most 1. Now, examine vertices with 0 ≤ qv < `s + `b. If qv ≥ `b,
then at most one small edge can be oriented towards v. Hence, the load of v when qv ≥ `b is at
most qv + `s ≤ 1 + `s ≤ 3/2 since `s ≤ 1/2. Finally, consider when qv = βv`s < `b:

• Let v be a vertex with a big edge oriented towards it. At least d(k − 1)/2e units of flow are
sent from its big edge node to v. Then, at most (k − βv) − d(k − 1)/2e small edges can be
oriented along with the big edge towards v.

• Let v not have a big edge oriented towards it. At most k − βv small edges are oriented
towards v.
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Therefore, the load of v is at most

βv`s + max{`s(k − βv), `b + `s((k − βv) − d(k − 1)/2e)}
≤ max{`sk, `b + `s(k − (k − 1)/2)}
< max{k/k, k/(k + 1) + (k + 1)/2k}
= k/(k + 1) + 1/(2k) + 1/2
< (k + 1)/(k + 1) + 1/2 = 3/2.

3.1.4 Step 5.3
For the final case in Step 5 of algorithm GB2W, we apply a variant of the algorithm by Eben-
lendr et al. (Chapter 2.2.3).

Lemma 3.1.4 For every positive integer k ≥ 2, there is a polynomial-time algorithm for the
graph balancing problem with two rational lengths `s, `b, where 1/(k + 1) < `s ≤ 1/k and
1/2 < `b < (k − 1)/k that finds a solution of value at most 3/2 if OPT ≤ 1.

Proof We make the following modifications to the algorithm in Chapter 2.2.3. Consider any
tree T ⊆ TB. Every big edge e has length pe = `b, so we simplify the tree constraint of LP3 to

∑
(v,e)∈L(T )

`bxev ≥

( ∑
(v,e)∈L(T )

`b

)
− `b ⇔

∑
(v,e)∈L(T )

xev ≥ |L(T )| − 1. (3.1)

Also, in the rounding procedure, if there is a leaf pair (v, e) where e = {u, v}, we change the leaf
assignment and tree assignment in the following ways:

• Leaf assignment: if pexeu ≤ 1/2, e is oriented towards v.

• Tree assignment: if pexeu > 1/2, then e is a big edge and the connected component of GB
x

containing e is a tree T ∈ TB. Orient all edges in T away from v.

Graph Balancing Linear Program for Two Job Lengths

xeu + xev = 1, for all e = {u, v} ∈ E (Edge e)

qv +
∑
e|v∈e

pexev ≤ 1, for all v ∈ V (Load v)∑
(v,e)∈L(T )

xev ≥ |L(T )| − 1, for all T ∈ TB in G (Tree T )

xev ≥ 0, for all e ∈ E and v ∈ e,

We use the algorithm with the above modifications, and compute a feasible solution to the
above LP; this LP is a special case of a LP given in Chapter 4 called LP5, where feasible
solutions can be computed in polynomial time as stated in Lemma 4.2.2. If no fractional
solution is found then no orientation exists; report FAIL if this is the case. Since modifying the
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above thresholds of the leaf and tree assignments from 3/4 to 1/2 will allow all fractionally
oriented edges to be rounded, the algorithm still finds an orientation in polynomial time.

We can extend the arguments by Ebenlendr et al. [20] to show that the modified algorithm
produces orientations with makespan at most 3/2. The following conditions are maintained by
each vertex v ∈ V before and after each step in the rounding procedure.

(1) The load of v is at most 3/2.

(2) If e ∈ Gx is incident on v, then v has load at most 1 + (`b − 1/2).

(3) If eB is a big edge in GB
x incident on v, the load of v is at most 1.

(4) For any tree T that is a subgraph of GB
x , the tree constraint (Tree T ) is never violated.

It is not hard to modify the proof of Theorem 1 in [20] to prove that the above conditions.
For completeness we sketch the proof. At the beginning of the algorithm, after a feasible
solution for the LP is obtained, all the conditions above are satisfied and the load of each vertex
is at most 1. Next, we show Conditions (1)–(4) are preserved for any vertex that changes its
load during the rounding procedure.

• Tree assignment: In a tree assignment, only vertices in the tree T ⊆ GB
x containing big

edge e = {u, v} for which pexeu > 1/2 and v is a leaf of T have their loads modified.
Every vertex in T is incident with a big edge in Gx. Hence before this step is performed,
by Condition (3), each one of these vertices has load at most 1. Consider vertex u′ in T
after the tree assignment has been performed. If u′ = v, the load of v is decreased as a
big edge is oriented away from v. If u′ , v, there exists a path P in T from u′ to v. Say
this path begins at edge e′. As P is a subtree of T , it must satisfy our tree constraint (3.1)
and so

xev + xe′u′ ≥ |L(P)| − 1 = 2 − 1 = 1⇔ xe′u′ ≥ (1 − xev) = xeu.

All the edges in P are big, so `bxe′u′ ≥ `bxeu > 1/2. Hence, the load of u′ increases by at
most `b − `bxe′u′ < `b − 1/2, and Conditions (1) and (2) are satisfied for vertex u′. Note
that since fractional edge assignments in T have been eliminated, u′ cannot be incident
on a big edge following a tree assignment. Thus, Condition (3) does not apply to this
case and Condition (4) is satisfied.

• Leaf assignment: In a leaf assignment, edges are oriented towards a leaf vertex. Say
vertex v is a leaf. We consider two cases for edge e = {u, v} such that pexeu ≤ 1/2:
pe > 1/2, and pe ≤ 1/2.

If pe > 1/2, then v is incident on a big edge and so by Condition (3), the load of v is at
most 1 before the leaf assignment. Since pe − pexev = pexeu ≤ 1/2, then following the
leaf assignment the load of v is at most 1 + 1/2 = 3/2.

If pe ≤ 1/2, then pe = `s. By Condition (2), before the leaf assignment the load of v is at
most 1 + (`b − 1/2). So after the leaf assignment the load of v is at most

1 + (`b − 1/2) + `s ≤ 1 + (k − 1)/k − 1/2 + 1/k = 3/2.

In any case, after a leaf assignment, v becomes isolated in Gx and the load of v cannot be
increased any further, so Conditions (1)–(4) are satisfied.
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• Rotation: The rotation step does not change the vertex loads so Conditions (1)–(3) hold.
The argument showing that Condition (4) holds is the same as the argument given in the
proof of Lemma 4.2.4 in Chapter 4, so for the sake of brevity we omit it here.

Therefore, by Condition (1), the load of a vertex is at most 3/2.

3.1.5 Approximation Ratio
Finally we prove algorithm GB2W is a 3/2-relaxed decision algorithm for the graph balancing
problem with two job lengths.

Lemma 3.1.5 GB2W is a 3/2-relaxed decision algorithm for the graph balancing problem
with two job lengths.

Proof Recall that in Step 1, algorithm GB2W scales the edge lengths and vertex dedicated
loads by τ, then sets τ = 1. Step 3 of algorithm GB2W invokes the algorithm of Lenstra et al.
(Chapter 2.2.1) if `s, `b ∈ (0, 1/2]. By Theorem 2.2.1, either an orientation with makespan 1 +

max{`s, `b} ≤ 1 + 1/2 = 3/2 is found, or OPT > 1 and an orientation is not produced. For
Steps 4 and 5 of algorithm GB2W, Lemmas 3.1.1–3.1.4 ensure that either a solution of value at
most 3/2 is found if OPT ≤ 1. Therefore, if OPT ≤ 1, Step 6 of the algorithm GB2W returns
an orientation with maximal load 3/2; otherwise it returns FAIL.

As GB2W is a 3/2-relaxed decision algorithm, it follows that we can use the binary search
procedure described in Chapter 1.1.4. This binary search is guaranteed to find a value τ ≤ OPT
and an orientation with load at most 3τ/2. For a weighted multigraph G = (V, E,p,q), since
OPT ≤ |E|`b, the number of iterations of the binary search is at most O(log |E|+log `b) and since
algorithm GB2W has polynomial running time, the overall running time is also polynomial.

Theorem 3.1.6 There is a 3/2-approximation algorithm for the graph balancing problem with
two job lengths.

3.2 A Simpler 3/2-Approximation Algorithm
Two drawbacks of the algorithm presented in the previous section are that it is somewhat com-
plicated and it requires using linear programming. The algorithm we present here is combina-
torial, so it does not require any linear programming, and is simpler. The algorithm we give
utilizes a combination of two approaches: a rounding procedure by Ebenlendr et al. [20] for
the graph balancing problem, and a simple flow-based approach based on the flow network
construction of Kolliopoulos and Moysoglou [66].

We present a 3/2-relaxed decision algorithm Simpler GB2W (Algorithm 4) below. To
simplify our arguments, in Step 1 we rescale the edge lengths by 1/`s so that we let the edge
lengths be k = `b/`s and `s/`s = 1; we define an edge as a k-edge if it has length k, and as
a 1-edge otherwise. This shrinks the length of the schedule/orientation uniformly by a factor
of 1/`s. So, without loss of generality, let the edges have lengths 1 and k respectively, where
k > 1 need not be integer. Thus, when we consider τ below, τ need not be integer.
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One assumption we will make in this section is that dedicated loads are self-loops in G;
these self-loops have length either 1 or k. Clearly there is no feasible schedule when k > τ, so
in Step 2 the algorithm returns FAIL if k > τ. In addition, if any case below fails to produce an
orientation of the edges, the algorithm returns FAIL.

Algorithm 4: Simpler GB2W (G = (V, E,p,q), τ)
Input: Multigraph G, value τ.

Output: An orientation γ for the edges in E with makespan at most 3τ/2, or FAIL if
there is no orientation with makespan at most τ.

1. Divide `s, `b, and edge lengths by `s so lengths are 1 and k := `b/`s; set τ := τ/`s.
2. If there is an edge e ∈ E with length pe > τ then return FAIL
3. If τ ≥ 2k then apply the algorithm given in Lemma 3.2.1.
4. If τ < 2k then:

4.1. If τ is not an integer then apply the algorithm in Lemma 3.2.2.
4.2. Else apply the algorithm in Lemma 3.2.3.

5. If any of the algorithms used in Steps 3–4 do not compute a solution then return
FAIL; otherwise return the orientation computed in the above steps.

Lemma 3.2.1 Let k be a rational number, where 1 < k ≤ τ/2. There is a polynomial-time
algorithm for the graph balancing problem with two lengths 1, k, that finds a solution of value
at most 3τ/2 if OPT ≤ τ.

Proof Note that every edge has length at most k ≤ τ/2. First, produce a fractional solution in
the following way. Construct a bipartite flow network N′, where one side has one edge node
for each edge of the multigraph G = (V, E,p,q) and the other side has a vertex node for each
vertex of G as shown in Figure 3.3. There is an arc from each edge node e to a vertex node v
if e is incident with v in G, and the capacity of arc (e, v) is the length pe of edge e ∈ E; each
arc (s∗, e) leaving the source s∗ has capacity pe, and every arc of the form (v, t∗) where t∗ is the
sink has capacity τ.

Now we show that if OPT ≤ τ, then there is a maximum flow f that saturates all the arcs
leaving the source s∗. Consider an orientation γ∗ with makespan at most τ. We build a flow
function f based on this orientation: for each edge e ∈ E oriented toward vertex v, send flow
of value pe from s∗ to edge node e, then send pe units of flow from e to vertex node v. Now, we
must show that the total flow received at a vertex node v can be sent to sink t∗. The capacity
c(v, t∗) = τ for each vertex node v, and∑

f (e,v)>0

f (e, v) =
∑

e|γ∗(e)=v

pe ≤ τ,

thus the flow sent to v can be sent to t∗. Therefore, if OPT ≤ τ all the arcs leaving s∗ are
saturated in f ; no additional flow can leave s∗, so f is a maximum flow.

A fractional solution x has a variable xev ∈ [0, 1] for each e ∈ E and endpoint v of e; xev = 1
when edge e is directed toward vertex v. Compute a maximum flow f on flow network N′.
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Figure 3.3: A bipartite flow network N′ used to compute a fractional solution. The shaded
nodes correspond to edges of length k.

Set xev = f (e, v)/pe where pe is the length of e. For every edge e = {u, v} ∈ E, f (s∗, e) = pe,
and so xeu = f (e, u)/pe and xev = f (e, v)/pe. Note that all the edges are fractionally oriented as

xeu + xev =
f (e, u)

pe
+

f (e, v)
pe

=
f (e, u) + f (e, v)

pe
= 1.

Since the capacity c(v, t∗) = τ, for all vertex nodes v ∈ V , the resulting fractional solution has
makespan at most ∑

e|v∈e

pexev =
∑

f (e,v)>0

f (e, v) ≤ τ.

If any xev = 1, direct e toward v. All that remains is to round the variables with 0 < xev < 1.
While there is a cycle C in G consisting only of edges e with non-integral variables xev,

apply a rotation (as described in Chapter 2.2.3) to C. As was stated in Chapter 2.2.3, rotations
do not change the loads of any vertices, so x remains feasible. Once no more cycles exist, all
the edges that correspond to non-integral variables form a forest F. For each tree in this forest,
pick an arbitrary vertex as the root and orient all edges in the tree away from the root.

Prior to directing the edges in each tree, x was a feasible solution and the makespan was at
most τ. Directing in each tree of F the edges as described above orients at most one additional
edge toward each vertex. Thus the load of any vertex is no more than τ + maxe∈E pe = τ + k ≤
τ + τ/2 = 3τ/2.

If τ < 2k, then k > τ/2 and so in an orientation with makespan at most τ at most one
k-edge is oriented toward a vertex. We consider the two cases given by Step 4 of algorithm
Simpler GB2W, in Lemma 3.2.2 and Lemma 3.2.3. In both these cases, we build the flow
network N′′ of Kolliopoulos and Moysoglou [66] as shown in Figure 3.4. Flow network N′′

is similar to N′ from Lemma 3.2.1, except it adds a level of buffer nodes to ensure that vertex
nodes do not receive flow of value more than k from k-edge nodes.

Lemma 3.2.2 Let k be a rational number, where 1 < k ≤ τ. There is a polynomial-time
algorithm for the graph balancing problem with two lengths 1, k, where τ < 2k and τ is not an
integer, that finds a solution of value at most 3τ/2 if OPT ≤ τ.
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Figure 3.4: The flow network N′′ of Kolliopoulos and Moysoglou [66]. The shaded edge nodes
represent k-edges. Only nodes of k-edges are connected to buffer nodes. The buffer nodes limit
the flow so that no more than k units of flow can be received by a vertex node from k-edges in
the network.

Proof First, if τ is not an integer, then compute the largest non-negative integer p such that
0 ≤ τ − (k + p) < 1; p exists as τ ≥ k. Since all edges have length either 1 or k, the load of
every vertex v ∈ V in an orientation of G must be of the form ak + b, where a ∈ {0, 1} and b
is a non-negative integer such that 0 ≤ b ≤ p. Thus, if there is an orientation with makespan
at most τ, there must be an orientation with makespan at most k + p; so we set τ := k + p. A
vertex that has load at most τ is either a vertex with at most one k-edge and p 1-edges oriented
toward it, or has at most k + p many 1-edges directed toward it.

Build flow network N′′, and then compute a maximum flow f of N′′ as follows.

1. Round the capacity of each arc of N′′ with capacity k down to bkc and then compute an
integral maximum flow f . Note that the 1-edges get integral assignments, i.e. for each
1-edge e there is a vertex v such that f (s∗, e) = 1 and f (e, v) = 1. After computing the
maximum flow f , set the capacity of each arc changed in N′′ back to its original value.

2. Let L be the set of k-edges. Build a bipartite graph G′ = (L∪V, Eb) with the k-edges L and
vertices V; e ∈ L is adjacent in G′ to vertex v ∈ V if e is incident with v in G. Compute
a maximum matching M that pairs each k-edge e ∈ L with a unique vertex M(e). If
OPT ≤ τ, there is an orientation where each k-edge e ∈ L is oriented towards a unique
vertex v ∈ V and since there is an edge in the bipartite graph G′ with endpoints e and v
for each e ∈ L, then M must exist.

3. Let vM(e),k be the buffer node for vertex node M(e). Send additional flow f ′ of value k −
bkc along each path s∗, e, vM(e),k, M(e), t∗ for all e ∈ L. Note that the arcs in the above
path have enough residual capacity to carry this flow as f is integral and the first three
arcs have capacity k; the last arc has capacity τ, and since τ = k+p for some non-negative
integer p and f is integral, the last arc can carry this additional flow to t∗.

4. Set f := f + f ′. If OPT ≤ τ, each arc (s∗, e) is saturated in f , so no additional flow can
be sent from the source s∗ and f is a maximum flow.
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Now we use the maximum flow f to construct an orientation. Orient each 1-edge e toward
vertex v if 1 unit of flow is sent from e to v in flow f . For each k-edge e, direct e toward the
vertex v if the corresponding k-edge node sends flow of value more than k/2 to v.

If some k-edges send k/2 units of flow to two vertices, build a bipartite graph G′′ with edge
nodes corresponding to the k-edges sending exactly k/2 units of flow to two vertices on one
side and vertex nodes receiving the flow from these k-edges on the other side; there is an edge
from a k-edge node e to a vertex node v if e sends k/2 units of flow to v. Since the capacity
of every arc leaving the buffer nodes is k, every node in this bipartite graph must have degree
at most two, implying this bipartite graph consists only of disjoint paths and cycles. To orient
each k-edge e toward a vertex v, we proceed as follows: If there is a cycle C, assign a direction
along C to all the edges in C so that each node in C has at most one edge directed toward it,
for each directed edge (e, v) in C, in G direct edge e toward v (see Figure 3.5); if there is a
path P in G′′, select a node u′ with degree 1 in P and assign a direction to all the edges in the
path away from this node. If u′ is a vertex node, then for each (v, e) in P, in G direct edge e
toward v; otherwise, u′ is an k-edge node and orient in G edge e toward v if (e, v) is a directed
edge in P.

v1

v2

v3

e1

e2

e3

k-edge nodes vertex nodes

⇒

v1

v2

v3

e1

e2

e3

k-edge nodes vertex nodes

Figure 3.5: Example bipartite graph of k-edges and vertices when k-edges send exactly
k/2 units of flow to two vertex nodes in f (left), and the assignment of k-edge nodes to vertex
nodes given with solid lines (right). In this example bipartite graph, the assignment orients e1

toward v1, e3 toward v2, and e2 toward v3.

It follows from the way the flow f was modified that a vertex v for which the above process
on bipartite graph G′′ does not orient a k-edge toward it has load at most k + p = τ; so we
consider the load of a vertex v for which this process orients a k-edge e toward it.

After Step 4 of the algorithm, f (s∗, e) = k for every k-edge node e in N′′, i.e. every arc
(s∗, e) is saturated. In addition, every k-edge in G has at most two endpoints, this corresponds
to at most two outgoing arcs from each k-edge node in N′′. So, by flow conservation, there
must be a vertex node that receives at least k/2 units of flow from a k-edge node. If k-edge e is
oriented toward v in G, then either its corresponding k-edge node e sends flow of value more
than k/2 to vertex node v, or k-edge node e sends exactly k/2 units of flow to two vertices,
one of which is vertex node v. Regardless, as vertex node v receives at least flow of value k/2
from the k-edge node e, at most k − k/2 = k/2 additional flow (corresponding to 1-edges being
directed toward v) can be sent to v in N′′. By directing k-edge e toward vertex v in G, the load
of v increases by at most k/2 ≤ τ/2. Prior to orienting e, the load of v is at most τ. Therefore,
the load of a vertex is at most τ + τ/2 = 3τ/2.
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Lemma 3.2.3 Let k be a rational number, where 1 < k ≤ τ. There is a polynomial-time
algorithm for the graph balancing problem with two lengths 1, k, where τ < 2k and τ is an
integer, that finds a solution of value at most 3τ/2 if OPT ≤ τ.

Proof Here we use the same arguments present in the proof of Lemma 3.2.2. If τ is an integer
but k is rational, then an orientation that has makespan τ must have either some vertex with τ 1-
edges directed toward it or both a k-edge and τ − dke 1-edges directed toward it. Furthermore,
any vertex that has a k-edge oriented toward it must have load smaller than τ. Increase the
length of each k-edge to dke. Observe since dke ≤ τ, the makespan is still at most τ.

In the flow network N′′ described in the proof of Lemma 3.2.2 (see Figure 3.4), set the
capacity of every arc with capacity k to dke, and compute an integral maximum flow f . If
OPT ≤ τ, this flow saturates all arcs (s∗, e); this can be shown using an argument similar to the
one given for network N′ in the proof of Lemma 3.2.1.

Orient the edges of G using f as described in the proof of Lemma 3.2.2; with the k-edges,
replace k/2 with dke/2 when considering the value of flow received by a vertex node from a
k-edge node in N′′. As each arc (s∗, e) is saturated, dke units of flow are sent to each k-edge
node. Every edge in G can be oriented toward one of at most two vertices, so there are at most
two outgoing arcs from each k-edge node in N′′. If the algorithm orients a k-edge e toward
vertex v in G, flow of value at least dke/2 is received by vertex node v from k-edge node e.
Furthermore, each vertex node receives no more than dke units of flow from k-edge nodes via
its buffer node. So at most dke − dke/2 = dke/2 additional units of a flow can be received by
a vertex node v in N′′ if a k-edge is oriented toward v in G by the algorithm. Since dke ≤ τ
and each additional unit of flow can be an additional 1-edge being directed toward a vertex, the
makespan of the orientation is at most τ + dke/2 ≤ 3τ/2.

It follows from Lemmas 3.2.1–3.2.3 that algorithm Simpler GB2W is 3/2-relaxed deci-
sion algorithm. Therefore, there is a combinatorial 3/2-approximation algorithm for the graph
balancing problem with two job lengths.

Theorem 3.2.4 There is a combinatorial 3/2-approximation algorithm for the graph balanc-
ing problem with two job lengths.



Chapter 4

Graph Balancing Problem with Two
Speeds and Two Job Lengths

Recall that in the graph balancing problem with two speeds and two job lengths every job J j

can be processed by one of a subset Mj of at most two machines with processing time p j/si,
where p j is the length of J j and si is the speed of the machine Mi that processes J j, each
job length p j ∈ {`s, `b} and every machine speed si ∈ {ss, s f }, `s < `b and ss < s f . Like in
the previous chapter, we will intepret the graph balancing problem as a weighted multigraph
where the jobs are edges and the machines are vertices. That is, we are given a weighted
multigraph G = (V, E,p,q, s) with s = (sv1 , sv2 , . . . , sv|V |) being the speeds of the vertices and
the goal is orient all the edges of G so as to minimize the makespan.

In this chapter we present a (
√

65 + 7)/8-approximation algorithm for the graph balancing
problem with two speeds and two job lengths. As an ingredient for our algorithm, in Chap-
ter 4.1 we give a (2−`s/`b)-approximation algorithm for the restricted assignment problem with
two job lengths p j ∈ {`s, `b} when the parallel machines are uniform (Q|Mj, p j ∈ {`s, `b}|Cmax);
this extends a (2 − `s/`b)-approximation algorithm by Chakrabarty et al. [10] for the restricted
assignment problem with two job lengths on machines of speed 1. Then, we present our main
approximation algorithm in Chapter 4.2. In Chapter 4.3 we present integrality gap results for
the linear programs used for our approximation algorithm.

In both of the approximation algorithms presented in this chapter, we assume the job lengths
are rescaled so that any processing time p j/si for a job with length p j on a machine with speed si

is integral. One way to accomplish this is by multiplying each job length by the product of the
speeds s1s2 . . . sm. After this, the processing time of a job on a machine is integral, and thus
the makespan of a schedule is also guaranteed to be integral. Unless stated, we will assume the
job lengths `s and `b are their rescaled values.

Like in the previous chapter, the approximation algorithms in this chapter use ρ-relaxed
decision procedures (see Chapter 1.1.4).

4.1 Approximation Algorithm for Q|Mj, p j ∈ {`s, `b}|Cmax

For makespan estimate τ, our algorithm builds a single-source single-sink flow network N that
is comprised of job vertices and machine vertices. For each job J j, we include a small job

46
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vertex if p j = `s, and a big job vertex if p j = `b. For each machine there is a small machine
vertex and a big machine vertex. Add an arc with capacity 1 from the source to each job vertex.
If a job J j can be scheduled on machine Mi, we have two cases. If job vertex J j is small, then
add arcs with capacity 1 from J j to big machine vertex Mi and small machine vertex Mi. If
it is a big job vertex, then only add one arc from job vertex J j to big machine vertex Mi with
capacity 1. Finally, for each machine Mi, add an arc from big machine vertex Mi to the sink
with capacity b(τsi)/`bc and add an arc from small machine vertex Mi to the sink with capacity
b(τsi)/`sc − b(τsi)/`bc. We show flow network N in Figure 4.1.

Figure 4.1: Flow network N with source s∗ and sink t∗. The shaded vertices are big and the
non-shaded machine and job vertices are small.

Now we describe a (2−`s/`b)-relaxed decision algorithm for Q|p j ∈ {`s, `b},Mj|Cmax. Build
the flow network N and compute an integral maximum flow f of N. If not all the arcs leaving
the source are saturated by f then by Lemma 4.1.1 below there is no schedule of makespan at
most τ. Otherwise, for each job vertex J j and machine vertex corresponding to machine Mi

with flow f (J j,Mi) = 1, schedule job J j on machine Mi.

Lemma 4.1.1 In the flow network N given above, a maximum integral flow f saturates all the
arcs leaving the source if OPT ≤ τ.

Proof Consider a schedule S with makespan at most τ. We construct a flow function f that
saturates all the arcs leaving the source using this schedule: for each job vertex J j in N, send
1 unit of flow from the source to J j. If job J j is scheduled in S on machine Mi, we have two
cases:

1. p j = `b. Send 1 unit of flow from job vertex J j to the big machine vertex for machine Mi

and then to the sink.

2. p j = `s. If the arc leaving small machine vertex Mi is not saturated, then send 1 unit of
flow from job vertex J j to small machine vertex Mi and then to the sink. Otherwise, send
this unit of flow to big machine vertex Mi and then to the sink.
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Now we show that the capacity constraints are not violated. Let ni,`s and ni,`b be the number
of jobs of lengths p j = `s and p j = `b scheduled on machine Mi in S , respectively. If the
makespan of S is τ, then

ni,`s + ni,`b ≤
⌊τsi

`b

⌋
+

(⌊τsi

`s

⌋
−

⌊τsi

`b

⌋)
=

⌊τsi

`s

⌋
. (4.1)

The flow capacity of the arc leaving big machine vertex Mi to the sink is b(τsi)/`bc, and since
ni,`b ≤ b(τsi)/`bc, the flow from the big job vertices can be sent through the big machine vertices
to the sink. By (4.1), the sum of the capacities of the arcs from big and small machine vertices
corresponding to machine Mi to the sink minus the flow sent from big job vertices is

(⌊τsi

`b

⌋
− ni,`b

)
+

(⌊τsi

`s

⌋
−

⌊τsi

`b

⌋)
=

⌊τsi

`s

⌋
− ni,`b ≥ ni,`s .

Hence, the flow can be sent from the small job vertices through the machine vertices to the
sink. Since all the flow sent from the source must pass through the job vertices, no additional
units of flow can be sent through the flow network N. Therefore f is a valid maximum integral
flow that saturates all the arcs leaving the source.

Lemma 4.1.2 Our algorithm produces a schedule with makespan at most (2−`s/`b)τ if OPT ≤
τ.

Proof Consider a machine ML that finishes last in the schedule. The load of machine ML is at
most

`b

sL

⌊
τsL

`b
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+
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sL
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τsL
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τsL
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≤
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`s

`b

)
τ + τ =

(
2 −

`s

`b

)
τ.

Theorem 4.1.3 Let `s, `b ∈ Z
+, where `s < `b. There is a (2 − `s/`b)-approximation algorithm

for Q|Mj, p j ∈ {`s, `b}|Cmax.

4.2 Algorithm for the Graph Balancing Problem with 2 Speeds
and 2 lengths

Let ∆ = (
√

65 − 1)/8. For convenience we scale the speeds so that ss = 1 and s f > 1, s f ∈ Q
+.

Our approximation algorithm uses the (1+∆)-relaxed decision algorithm described below. Note
that in Step 1 all the edge lengths and dedicated loads are divided by τ so that the algorithm
looks for a solution with makespan at most 1 + ∆.
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Algorithm 5: GB2S2W(G = (V, E,p,q, s), τ)
Input : Multigraph G = (V, E,p,q, s), value τ.

Output: An orientation for the edges in E with makespan at most (1 + ∆)τ, or reports
FAIL if there is no orientation with makespan at most τ.

1. Divide edge lengths and vertex dedicated loads by τ; set τ = 1.

2. Refine G and apply preliminary processing, as given in Chapter 4.2.1.

3. Construct multigraph G′ as described in Chapter 4.2.2.

4. Solve linear program LP6 as described in Chapter 4.2.3 to obtain fractional
solution x; if no solution is found then report FAIL and go to Step 6.

5. Round x using the rounding procedure given in Chapter 4.2.4.

6. If any of the algorithms used in Steps 2–5 reports FAIL then return FAIL;
otherwise return the orientation found.

4.2.1 Refining G and Preliminary Processing
For each edge e of G, direct e towards one of its endpoints if orienting it towards the other
endpoint exceeds makespan 1. As each edge e is directed toward some vertex v, it is removed
from G and its length is added to the dedicated load of v. If G contains no edges and no vertex
load is larger than 1, then an orientation with makespan at most 1 is found. Report FAIL if any
vertex has load greater than 1; otherwise, qv/sv ≤ 1 for every v ∈ V , and pe/sv ≤ 1 for any
v ∈ V and v ∈ e.

Now, depending on the values of `s and `b, we may perform one of the steps below.

Lemma 4.2.1 There is a (1 + ∆)-approximation algorithm for the graph balancing problem
with two speeds and two lengths when either:

1. `s > 1,

2. 2 − `s/`b ≤ 1 + ∆,

3. `s/s f > 1/2, or

4. all edges e with v ∈ e satisfy pe/sv ≤ ∆.

Proof Below we consider each situation listed above by its respective number.

1. If `s > 1, then every edge must be incident to a vertex with speed s f , so this is just
an instance of the graph balancing problem with two lengths. Set the length of every
edge to pe/s f and each dedicated load to qv/s f . Use one of the 3/2-relaxed decision
algorithms in Chapter 3 using estimate of the makespan τ to try to compute an orientation
with makespan at most 3/2. If there is no such orientation, report FAIL.
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2. If 2− `s/`b ≤ 1 +∆, we use the algorithm of Chapter 4.1 with estimate of the makespan τ
to compute an orientation.

3. If `s/s f > 1/2, then pe/sv > 1/2 for every e ∈ E and v ∈ e. Hence, if OPT ≤ 1, at most
one edge can be oriented towards a vertex and so G must be a pseudoforest. So we can
employ a generalization of Algorithm 2 from Chapter 3. We can find an orientation with
makespan at most 1 or determine that OPT > 1 as follows:

(a) For each cycle C ⊆ G mark each vertex in C, then select from the two possible
orientations for its edges the one with minimum makespan. Remove the edges of
C from G.

(b) Now there are no more cycles in G. Consider each tree T ⊆ G; we have two
possibilities:

(i) If T contains one marked vertex, orient the edges in T away from that vertex.
(ii) Otherwise, choose in turn each vertex as the root and orient the edges in T

away from it. Select the orientation with minimum makespan.

If the selected orientation has makespan larger than 1, report FAIL.

4. If every edge e in G with v ∈ e satisfies pe/sv ≤ ∆, apply Theorem 2.2.1 to obtain an
orientation with makespan at most 1 + ∆ or to determine that there is no orientation with
makespan at most 1. In the latter case, report FAIL.

If an orientation is produced above, it has makespan at most max{3/2, 1 + ∆, 1} ≤ 1 + ∆.

4.2.2 Step 4: Building the Multigraph G′

We construct a weighted multigraph G′ = (V ′, E′,p′,q′, s′) from G as follows. First, set V ′ = V ,
s′ = s and E′ = ∅. Next, for all v ∈ V , set q′v = qv/sv, and for every edge e = {u, v} ∈ E in G:

1. if su = sv, then add to G′ an edge e′ = e with length p′e = pe;

2. if su , sv, then add to G′ an auxiliary node wuv and two twin edges e′ = {u,wuv} and
e′′ = {wuv, v}, both of length pe. Set q′wuv

= 0 and s′wuv
= 1.

We require that for each auxiliary node its twin edges must be oriented in the same direction:
one toward the auxiliary node and one away from the auxiliary node. The auxiliary nodes allow
us to treat edges which contribute different loads to its endpoints as two individual edges.

4.2.3 Step 5: Linear Programming Formulation
Consider an edge e = {u, v} in G when su = sv. Edge e is a big edge in G′ if pe/su > 1/2, and
is a small edge otherwise. Now consider when e = {u, v} and u and v have speeds su = 1 and
sv = s f in G, respectively; in G′, the edge e corresponds to an auxiliary node wuv with twin
edges e′ = {u,wuv} and e′′ = {wuv, v}. We say e′ is big if pe > 1/2, and is small otherwise. In
addition, e′′ is big if pe/s f > 1/2, and small otherwise. A tree T ⊆ G′ is big if all of its edges
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are big. Let TB be the set of big trees of G′. For any subgraph T ⊆ G′, define the set of leaf
pairs of T to be

L(T ) = {(v, e) ∈ V ′ × E′| v has degree 1 in T, v ∈ e, and e ∈ T }.

We formulate the auxiliary graph balancing linear program 1 (LP5) shown below based
on LP3 in Chapter 2.2.3. For each auxiliary node wuv in G′, we define four variables xe′u,
xe′′wuv , xe′wuv , and xe′′v, and two constraints xe′u = xe′′wuv and xe′wuv = xe′′v called auxiliary
constraints. Constraint (Load v) ensures that the load of each vertex v ∈ V in G is no more
than 1. Constraint (Edge e) guarantees that every edge is oriented. Consider any big tree T ∈ TB

in G′. Let κT ∈ {`s, `b} be the largest edge length in the big maximal tree T ′ that contains T .
Every edge in T is big, so at most one edge in T can be oriented towards some vertex in G′.
Furthermore, at most one big edge can be oriented away from a leaf in T . Hence, if the largest
edge length in big tree T is κT , we obtain the following generalization of the tree constraint
(Tree T ) of Chapter 2.2.3,∑

(v,e)∈L(T )

pexev ≥
∑

(v,e)∈L(T )

pe − κT , for all T ∈ TB in G′.

We will call this the tree constraint from this point forward.

Auxiliary Graph Balancing Linear Program 1 (LP5)

xeu + xev = 1, for all e = {u, v} ∈ E′ (Edge e)
qv

sv
+

∑
e|v∈e

pexev

sv
≤ 1, for all v ∈ V (Load v)∑

(v,e)∈L(T )

pexev ≥
∑

(v,e)∈L(T )

pe − κT , for all T ∈ TB in G′ (Tree T )

xe′u = xe′′wuv , for all {u, v} ∈ E, auxiliary node
xe′wuv = xe′′v, wuv and twin edges e′ and e′′(Auxiliary)

xev ≥ 0, for all e ∈ E′ and v ∈ e,

Observe that LP5 can have exponentially many tree constraints. Instead of solving LP5,
our algorithm solves another linear program that is very similar to LP4 called the auxiliary
graph balancing linear program 2 (LP6); LP6 has a polynomial number of constraints. Instead
of using the tree constraints as in LP5, LP6 has a constraint (Star v) for each vertex v ∈ V .
For each v ∈ V in G′, the star constraint of v states that in the star formed by the big edges
incident on v, at most one big edge can be oriented towards v. We show that by solving LP6,
we also obtain a feasible solution for LP5. We note that since the tree constraints of LP5 are
more general than those in LP3 and LP6 is a generalization of LP4 (as speeds are introduced),
our proof extends the one originally given by Ebenlendr et al. [20].
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Auxiliary Graph Balancing Linear Program 2 (LP6)

xeu + xev = 1, for all e = {u, v} ∈ E′ (Edge e)
qv

sv
+

∑
e|v∈e

pexev

sv
≤ 1, for all v ∈ V (Load v)∑

e|v∈e,
pe
sv
>1/2

xev ≤ 1 for all v ∈ V (Star v)

xe′u = xe′′wuv , for all {u, v} ∈ E, auxiliary node
xe′wuv = xe′′v, wuv and twin edges e′ and e′′(Auxiliary)

xev ≥ 0, for all e ∈ E′ and v ∈ e,

Lemma 4.2.2 Linear program LP6 has the following properties:

1. A feasible solution x of LP6 is also a feasible solution of LP5.

2. Consider the subgraph H of big edges in G′ where each big edge e satisfies 0 < xev < 1
for any v ∈ e. H is a disjoint union of trees and simple cycles.

Proof We prove each property separately. Consider any feasible solution x of LP6 for weighted
multigraph G′.

1. We must show that the tree constraint (Tree T ) of LP5 is satisfied for any big tree T ∈ TB

in G′. Pick any big tree T = (VT , ET ) ∈ TB, and let r be the number of vertices in T . Every
edge in e ∈ T satisfies constraint (Edge e) including any twin edges incident on auxiliary
nodes. At most one big edge can be oriented towards any internal vertex of T , so all the
internal vertices v of T must satisfy constraint (Star v). To obtain the fractional values at
the leaf pairs of T , sum xeu + xev = 1 for each e of T from the r − 1 (Edge e) constraints
of each e ∈ ET , then subtract the sum of the inequalities

∑
e|v∈e,

pe
sv
>1/2

xev =
∑

e∈ET |v∈e xev ≤ 1

of the r − |L(T )| (Star v) constraints over the internal vertices v of T . That is,∑
(v,e)∈L(T )

xev =
∑

e∈ET ,v∈e

xev −
∑
v∈VT |

degT (v)>1

∑
e∈ET |
v∈e

xev. (4.2)

As each (Edge e) constraint implies xeu + xev = 1 for each e ∈ ET , then∑
e∈ET ,v∈e

xev = r − 1,

and since each (Star v) constraint for an internal node v ∈ VT implies
∑
e∈ET ,

v∈e

xev ≤ 1,

∑
v∈VT |

degT (v)>1

∑
e∈ET |
v∈e

xev ≤ r − |L(T )|.
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Hence, ∑
e∈ET ,v∈e

xev −
∑
v∈VT |

degT (v)>1

∑
e∈ET |
v∈e

xev ≥ |L(T )| − 1,

and by (4.2), ∑
(v,e)∈L(T )

xev ≥ |L(T )| − 1. (4.3)

Recall that the largest edge of T has length no more than κT > 0, so∑
(v,e)∈L(T )

pexev =
∑

(v,e)∈L(T )

κT xev −
∑

(v,e)∈L(T )

(κT − pe)xev. (4.4)

By inequality (4.3) and xev ≤ 1 for all e ∈ ET and v ∈ e,∑
(v,e)∈L(T )

κT xev −
∑

(v,e)∈L(T )

(κT − pe)xev

≥ κT (|L(T )| − 1) −
∑

(v,e)∈L(T )

(κT − pe)

=
∑

(v,e)∈L(T )

pe − κT . (4.5)

Therefore, by (4.4) and (4.5) the tree constraint is satisfied for any big tree T ∈ TB.

2. We now show by contradiction that H is a disjoint union of trees and simple cycles.
Assume H contains a cycle C with r edges and there is an edge e′ < C, e′ ∈ H incident
to some vertex v′ ∈ C, where the other endpoint of e′ may or may not be in C. By taking
the sum of each xeu + xev = 1 of the (Edge e) constraints for all e ∈ C, we obtain∑

e∈C

∑
v∈e

xev = r. (4.6)

Next, by adding together the inequalities
∑

e|v∈e
pe/sv>1/2

xev ≤ 1 of the (Star v) constraints for

all the vertices v in C, we get ∑
v∈C

∑
e|v∈e

pe/sv>1/2

xev ≤ r. (4.7)

Observe that the edge e′ is in H and e′ is incident with vertex v′ in C. Then xe′v′ > 0, and
by applying (4.6) and (4.7),

r ≥
∑
v∈C

∑
e|v∈e

pe/sv>1/2

xev ≥ xe′v′ +
∑
e∈C

∑
v∈e

xev >
∑
e∈C

∑
v∈e

xev = r.

Therefore, by contradiction, H is a disjoint union of trees and simple cycles.

As an aside, we show in Chapter 4.3 that the integrality gaps of both linear programs above
are at least 5/3 for the graph balancing problem with two speeds and two lengths, and at
least 7/4 for the case of three lengths and two speeds.
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4.2.4 Step 6: Rounding the Fractional Solution

If LP5 does not have a solution, there is no orientation with makespan 1, and we report FAIL.
Otherwise, we compute a solution x and then round it with the following rounding procedure
that uses some ideas from Chapter 3 and Chapter 2.2.3. In Step 2 of our algorithm we consid-
ered certain situations for which we obtained an orientation whose makespan is at most 1 + ∆,
these situations are given in Lemma 4.2.1. Thus we only need to round x for instances not cov-
ered by Lemma 4.2.1. We organize below the remaining instances into three cases and prove
these are indeed the only instances left in Lemma 4.2.3. In these three cases the lengths of
`s and `b are not “close” and have the following key properties: (1) all the edges of length `b

incident on vertices of speed s f are small, and no big edge in G′ has length larger than 1; (2)
all the edges with length `b are big, and the big edges may have length larger than 1; and (3) all
the edges of length `b are big and can have length larger than 1, and each edge with length `s

either is big if it is incident on a vertex with speed 1 or small if it is incident on a vertex of
speed s f .

Lemma 4.2.3 After Step 2 of GB2S2W, there are only the following possible cases left:

1. (a) `b/s f ≤ 1/2, `b > 1, ∆ < `s ≤ 1, and `s/s f ≤ 1/2.

(b) `b/s f ≤ 1/2, ∆ < `b ≤ 1, and `s ≤ 1/2.

2. (a) 1/2 < `b/s f ≤ 1, `b > ∆, and `s ≤ 1/2.

(b) 1/2 < `b/s f ≤ 1, `b > 1, 1/2 < `s ≤ ∆, and `s/s f ≤ 1/2.

3. 1/2 < `b/s f ≤ 1, `b > 1, ∆ < `s ≤ 1, and `s/s f ≤ 1/2.

In addition if `s > 1/2, then ∆ < (3`b)/4.

Proof We first re-organize the cases given in Lemma 4.2.3 into a new equivalent list of four
cases, then we prove these new cases are the only ones left to be addressed by the algorithm.
Let us first combine Cases 2(b) and 3 into Case (iii) below. Next, split Case 2(a) into two
parts: when `b > 1 we get Case (ii) below, and when ∆ < `b ≤ 1 we combine this case with
Case 1(b) to get Case (i). Finally we carry over Case 1(a) as Case (iv) below. Thus, we obtain
an equivalent list of cases to those in Lemma 4.2.3:

(i) `b/s f ≤ 1, ∆ < `b ≤ 1, and `s ≤ 1/2;

(ii) 1/2 < `b/s f ≤ 1, `b > 1, and `s ≤ 1/2;

(iii) 1/2 < `b/s f ≤ 1, `b > 1, 1/2 < `s ≤ 1, and `s/s f ≤ 1/2;

(iv) `b/s f ≤ 1/2, `b > 1, ∆ < `s ≤ 1, and `s/s f ≤ 1/2.

It is important to note that `b/s f ≤ 1, otherwise an edge with length `b cannot be oriented
without the makespan exceeding 1. Now we show the above list is complete by exhaustively
considering all the possible values for `s and `b with respect to the speeds.
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• `b ≤ 1. If `s > 1/2, Case 2 of Lemma 4.2.1 applies as 2 − `s/`b < 2 − (1/2)/1 = 3/2 <
1 + ∆. Also, if `b ≤ ∆ every e ∈ E and v ∈ e in G has pe/sv ≤ `b/ss ≤ ∆, so Case 4 of
Lemma 4.2.1 covers this situation. Thus, if `b ≤ 1 the only case that we must address is
Case (i) above.

• `b > 1. When G is modified in Step 2 of our algorithm, any edges with length `b are
directed to vertices with speed s f . Case 3 of Lemma 4.2.1 covers when `s/s f > 1/2,
and Case 1 of Lemma 4.2.1 applies when `s > 1. If `b/s f ≤ 1/2 and `s ≤ ∆, Case 4
of Lemma 4.2.1 applies. Otherwise, when `b/s f ≤ 1/2 but ∆ < `s ≤ 1, is covered by
Case (iv) above.

Finally, if 1/2 < `b/s f ≤ 1, the cases left that are not covered by Lemma 4.2.1 are when
either `s ≤ 1/2 or both 1/2 < `s ≤ 1 and `s/s f ≤ 1/2; these are Case (ii) and Case (iii)
above.

Finally, we prove the remark at the end of Lemma 4.2.3. If `s > 1/2, then if ∆ ≥ (3`b)/4⇔
`b ≤ (4∆)/3, we apply Case 2 of Lemma 4.2.1 as

2 −
`s

`b
≤ 2 −

1
2

4∆
3

= 2 −
3

8∆
< 1 + ∆.

Thus, if `s > 1/2, then ∆ < (3`b)/4 for any remaining cases of Lemma 4.2.3.

Our rounding procedure ensures the load increase from rounding a solution of LP5 is no
more than ∆ by using both Lemma 4.2.3 and the tree constraint for each big tree T ∈ TB.
Unlike in the rounding given in Chapter 2.2.3, since speeds are introduced we cannot ensure
that every κT ≤ 1. As we justify later in our analysis of the makespan, when we invoke the
tree constraints in our analyses, the three cases of Lemma 4.2.3 correspond to three non-trivial
situations where: every κT ≤ 1; every κT = `b; and either κT = `s or κT = `b. We introduce two
thresholds ts f and tss whose values are set according to the cases stated in Lemma 4.2.3:

1. for Case 1 we set ts f = tss = 5/6;

2. for Case 2 we set ts f = tss = (3`b)/4; and

3. for Case 3 we set ts f = (3`b)/4, tss = ∆.

Let G′x be the subgraph of G′ where every edge is fractionally oriented—i.e. every edge e =

{u, v} ∈ G′x satisfies 0 < xeu < 1. Note that G′x has no leaves that are auxiliary nodes. It
is assumed below that once an edge is oriented in G′x, it is deleted from G′x. The rounding
procedure is as follows.

While G′x has an edge, do the following.

1. If there is a leaf pair (v, e), where e = {v, z}, do the following.

• Leaf assignment. If pexez ≤ tsv or e is a small non-twin edge, then orient e towards
the leaf v. If e is a twin edge incident on auxiliary node z = wvu, then direct e away
from wvu and direct the other twin edge e′ incident on wvu towards wvu.

• Tree assignment. If pexez > tsv , consider two cases:
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(a) if e is big, then let T be the maximal big tree rooted at v containing e;
(b) if e is small, then e is a twin edge incident on some auxiliary node z = wvu.

Orient e towards wvu. Let T be the maximal big tree rooted at wvu.

Orient the edges in T away from its root. If any leaves of T are auxiliary nodes,
then orient the small twin edges incident on them (which are not in T ) away from
these leaves.

2. Rotation. If there is no leaf pair, then find a cycle C by performing a walk starting at any
vertex and appending edges to the walk where big edges are selected over small edges
until a simple cycle C is found. Assign to C a direction consistent with the order in which
the edges in C were appended. Next apply Rotate(x,C) (from Chapter 2.2.3): recall that
it computes δ← mine=(u,v)∈C (pexeu) and then for each e = (u, v) ∈ C, set xeu ← xeu−δ/pe

and xev ← xev + δ/pe. After Rotate, at least one edge e = {u, v} in C has xeu = 0 and
xev = 1 so e is oriented to v.

Lemma 4.2.4 After any leaf assignment or tree assignment, the auxiliary constraints and the
tree constraints are satisfied. In addition, rotations preserve all the constraints of LP5.

Proof First we prove the claim for leaf assignments and tree assignments, then we consider
rotations. Assume the tree constraints and auxiliary constraints of LP5 are satisfied before a
leaf assignment or tree assignment occurs.

1. The auxiliary constraints are never violated by a leaf assignment or tree assignment.
Consider any pair of twin edges of some auxiliary node w in G′x. Either operation will
orient both twin edges in the same direction and they are removed from G′x, so these
auxiliary constraints are not relevant anymore.

2. After any leaf assignment or tree assignment, for any big tree T ∈ TB in G′x, the con-
straint (Tree T) is never violated. First consider when a leaf assignment occurs; this
orients a leaf edge towards a leaf vertex. Note that if this leaf edge is a twin edge, its as-
sociated twin edge also gets directed towards the leaf. After the algorithm removes these
edges, the tree constraints for any T ∈ TB in G′x are still satisfied as the tree constraints
were satisfied before the leaf assignment.

Next, consider when a tree assignment occurs. Let T ′ be the maximal big tree built by the
tree assignment. By the maximality of T ′, observe that the big edges incident on vertices
in T ′ are only directed toward vertices in T ′ by the tree assignment. All the big edges in
T ′ are oriented and so they are removed from G′x. Therefore, since the tree constraints
were satisfied before the tree assignment, the tree constraints for any T ∈ TB in G′x are
not violated after the tree assignment.

Assuming the constraints of LP5 are preserved before a rotation, we show that after a
rotation all the constraints of LP5 still are satisfied. A rotation begins by picking an arbitrary
vertex in G′, then performs a walk appending edges until a simple cycle C is found, where big
edges are picked over small edges. Then, algorithm Rotate is applied which sets xeu = xeu−δ/pe

and xev = xev + δ/pe for each e ∈ C if C is directed from u to v, where δ := mine=(u,v)∈C (pexeu).
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Pick any edge e = {u, v} ∈ E′ in C. Since xeu + xev = (xeu − δ/pe) + (xev + δ/pe), con-
straint (Edge e) is satisfied for every e ∈ C. Also, it is not hard to see that every xev ≥ 0. Now
we check the constraint (Load v) for each vertex v ∈ V in the cycle C in G′. Pick a vertex v ∈ V
in C, and check the load contributed to v by its incident edges e′, e′′ ∈ C. The load on v after a
rotation is

qv

sv
+

∑
e|v∈e

pexev

sv
+

pe′( δ
pe′

)

sv
−

pe′′( δ
pe′′

)

sv
=

qv

sv
+

∑
e|v∈e

pexev

sv
.

Let us check the auxiliary constraints of LP5. Consider any edge e = {u, v} in G where
su , sv. Then for e, there is an auxiliary node wuv in G′ with twin edges e′ = {u,wuv} and
e′′ = {wuv, v}. The orientation of both twin edges e′ and e′′ is determined by four variables xe′u,
xe′wuv , xe′′wuv , and xe′′v in LP5. If a twin edge is included in C, both twin edges must be in C as
auxiliary nodes have degree 2. After a rotation, xe′u = xe′u − δ/pe, xe′wuv = xe′wuv + δ/pe, xe′′wuv =

xe′′wuv − δ/pe, xe′′v = xe′′v + δ/pe. Therefore, xe′u = xe′′wuv and xe′wuv = xe′′v.
Finally we prove that the tree constraint is not violated after a rotation. Our argument is

based on the one given for this property by Ebenlendr et al. (Theorem 1 in [20]). Pick any big
tree T ∈ TB in G′x. We show that the tree constraint is not violated for T . First, observe that if
(v, e) ∈ L(T ), the value of xev changes if and only if e is in C. So if C changes the values of any
variables corresponding to the endpoints of internal vertices in T , then they do not affect the
tree constraint for T . Next, if a cycle C is directed towards v, the value of xev increases by δ,
which is not an issue. But, when C is directed away from v, the rotation decreases the value of
xev by δ, which is problematic as it decreases

∑
(v,e)∈L(T ) pexev by δ if C does not include another

leaf of T . We will be extending T to a tree T ′ we define later and show that the tree constraint
holds after a rotation for both T and T ′.

For a vertex t ∈ C, let et be the edge directed away from t in C. Let W be the set of
vertices t ∈ T ∩ C where et is not in T and t is not a leaf of T . Then, let T ′ = T ∪ {et | t ∈ W}.
We show that any et ∈ T ′ \ T is a big edge. A rotation is applied if there are no leaf pairs in G′x,
so every vertex in G′x has degree at least 2. Since t is not a leaf in T , there is another big edge
belonging to some big tree in TB \ T as big edges are taken in priority over small edges in G′x
and there are at least two big edges incident to t where no more than one is already part of the
path that includes t. Hence, et is big.

By Lemma 4.2.2, the connected components of big edges in G′x are either trees or cycles.
If T is a part of a connected component of big edges that is a cycle, then W = ∅, because
the algorithm will follow the cycle of the connected component of big edges through T . This
implies T ′ is a connected subgraph of a big tree in TB when T ′ , T , where each et is an edge
incident with a leaf of T ′. By the definition of et, edge et is directed towards a leaf vertex added
in T ′ in C. Observe that all the leaves in T are also leaves of T ′, and the value κT for tree T ′ is
the same for T . So by how T ′ is built, the number of leaf pairs directed towards a leaf in T ′ in
C is at least the number of leaf pairs directed away from a leaf in T ′. Hence the tree constraint
for T ′ is preserved, and ∑

(v,e)∈L(T ′)

pexev ≥
∑

(v,e)∈L(T ′)

pe − κT .

Rewrite both sides of this inequality as∑
(v,e)∈L(T )

pexev +
∑

(v,e)∈L(T ′)\L(T )

pexev ≥
∑

(v,e)∈L(T )

pe +
∑

(v,e)∈L(T ′)\L(T )

pe − κT .
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As pexev ≤ pe for each (v, e) ∈ L(T ′) \ L(T ), then the above inequality implies that∑
(v,e)∈L(T )

pexev ≥
∑

(v,e)∈L(T )

pe − κT .

Therefore, all the constraints of LP5 are preserved after a rotation.

Lemma 4.2.5 Using our rounding procedure, an orientation for G can be produced in poly-
nomial time.

Proof Every edge in G′x is directed toward one of its two endpoints by either a leaf assignment,
tree assignment, or a rotation. These three operations each take polynomial time and each
orients at least one edge. So after a linear number of iterations, all the edges in G′ are oriented.
For each auxiliary node in G′, by Lemma 4.2.4 both of its twin edges are directed in the same
direction.

Once the rounding procedure for G′ is completed, to obtain the final orientation for each
e = {u, v} ∈ E in G we proceed as follows:

1. if su = sv, then orient e the same as its corresponding edge in G′;

2. if su , sv, then there is an auxiliary node wuv with twin edges e′ and e′′ in G′. If e′ is
directed toward wuv and e′′ is directed to v, then orient e towards v, otherwise orient it
towards u.

This takes polynomial time, therefore, we obtain an orientation for G in polynomial time.

Analysis of Case 1 of Lemma 4.2.3

As stated in Chapter 4.2.4, for Case 1 of Lemma 4.2.3, ts f = tss = 5/6. We show that for this
case our rounding yields an orientation with makespan at most 11/6.

Lemma 4.2.6 Our algorithm produces an orientation with makespan no more than 11/6 if
`b/s f ≤ 1/2 and either: (i) `b > 1, ∆ < `s ≤ 1, and `s/s f ≤ 1/2, or (ii) ∆ < `b ≤ 1, and
`s ≤ 1/2.

Proof Let γ′ be the orientation for G produced by our algorithm. Before the rounding proce-
dure, we have a fractional solution x with load on each vertex v ∈ V at most 1. By Lemma 4.2.2
the subgraph of big edges in G′x is a disjoint union of simple cycles and trees. Since any edges
with xev ∈ {0, 1} have already been oriented, we consider any load increases caused by round-
ing fractionally oriented edges in G′x. Once a vertex becomes isolated in G′x, its load cannot be
increased any further.

We analyze the makespan of γ′ based on the number of load increases for a vertex v in G′.
By Lemma 4.2.4, rotations maintain all the constraints of LP5, so the load increases on the
vertices are only caused by leaf assignments and tree assignments.

1. Let (v, e) be a leaf pair, where e = {v, z}. If the load of v is increased only once through
a leaf assignment, then either pexez ≤ tsv or e is a small non-twin edge. Hence, the load
increases on v by at most max{tsv/sv, 1/2} ≤ tsv = 5/6, and then v becomes isolated in G′x.
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2. Consider now when the load of a vertex v is increased twice: once through a tree assign-
ment, and then by a leaf assignment. Let the tree assignment be started at vertex u′ from
leaf pair (u′, e) where e = {u′, z}. This tree assignment constructs a maximal tree T ∈ TB

of big edges that is rooted at u′ if e is big, and rooted at auxiliary node z if e is a small
twin edge. The tree assignment orients e and the edges in T away from u′. Note that if
any leaf l of T is an auxiliary node, the twin edge incident on l that is not in T will be
directed toward some vertex v′ not in T thus increasing the load of v′; we address this in
Case 3 below.

T

u′ z
e

e′
v

T

u′ z u
e e′′

e′

v

Figure 4.2: Two example situations of a tree assignment: a tree assignment that starts at a big
edge (left) and a tree assignment that starts at a small twin edge (right). The path P consists of
the edges from u′ to v.

The path P in T from the root of T to v contains at least one big edge. Let e′ be the
big edge in P oriented towards v by the tree assignment. If the path P starts at auxiliary
node z, let e′′ = {z, u} be the other twin edge incident on z, where u′ , u (see Figure 4.2).
The auxiliary constraints guarantee that pe′′ xe′′z = pexeu′ , pe′′ xe′′u = pexez. Hence, re-
gardless of whether the tree is rooted at z or u′, by applying the tree constraint to path P,
we get

pexeu′ + pe′ xe′v ≥ pe + pe′ − κT

and so
pe′ − pe′ xe′v ≤ −pe(1 − xeu′) + κT = κT − pexez.

Since a tree assignment at u′ is performed when pexez > tsu′ , then

pe′ − pe′ xe′v < κT − tsu′ . (4.8)

An important note is that we derived this inequality for any tree assignment in a manner
so that it applies for any case of Lemma 4.2.3; we will use this inequality several times
throughout our analysis.

In Case 1(a) of Lemma 4.2.3 the big edges have length `s ≤ 1 and in Case 1(b) they have
length `b ≤ 1, hence κT ≤ 1 for all T ∈ TB. Since tsu′ = 5/6, the load on v can increase
by at most

pe′ − pe′ xe′v

sv
<

(κT − tsu′ )
sv

≤
(1 − 5

6 )
sv

=
1

6sv
(4.9)

from the tree assignment. Next, if a leaf assignment also occurs on v, it must be from a
small edge because if it were from a big edge, such an edge would be in the maximal big
tree T built in the tree assignment. After the leaf assignment, the total load increase on v
is at most (1/6)/sv + 1/2 ≤ 2/3.
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3. Finally, we consider the case when the load of a vertex v is increased more than once
through tree assignments and then once through a leaf assignment. Note that in this case
there is at least one small twin edge ei incident on v and on some auxiliary node wi. The
other twin edge of ei incident on wi must be big and thus, the vertex v must have speed s f .
Also since `b/s f ≤ 1/2, v cannot be a part of a big tree in a tree assignment, and all the
twin edges directed towards v by tree assignments are small (see Figure 4.3).

v

T1

T2

...

TK

e2

e3

ek

u

. . .

. .
.

e
e4

w2

w3

w4

wk

w1

e1

u′
1

u′
2

u′
K

Figure 4.3: Case 3. Small edges e1, . . . , ek are directed towards v by tree assignments on big
trees T1, . . . ,TK . At most one leaf assignment can occur on v through a small edge e. Big edges
are solid lines, and small edges are dashed lines.

Let k be the number of small twin edges contributing to the load of v through tree as-
signments, and let K be the number of big trees involved in these tree assignments.
Let e1, . . . , ek be the edges connecting v to those big trees through auxiliary nodes w1, . . . ,wk,
and let e be the edge involved in the leaf assignment that further increases the load on v.
Let the first tree assignment be performed on T1 starting at vertex u′1, the second on T2

starting at vertex u′2, and so on. Let x( j) be the fractional solution just before the jth tree
assignment is performed. Observe that the other twin edge of any wi that is not ei is in
a path P from some u′j to wi. By (1) and the auxiliary constraints of each wi, just before
the first tree assignment is performed the following inequality holds

pei − pei x
(1)
eiv < κT − tsu′1

⇔ pei x
(1)
eiv > pei − (κT − tsu′1

) (4a)

for each ei incident on wi ∈ T1. By constraint (Load v),

k∑
i=1

pei x
(1)
eiv

s f
≤ 1.

The edges of T1 are removed from G′x, so the value of x(1)
eiv for each ei incident on wi ∈ T1

will not change any more. Similarly, just before the second tree assignment is performed,

pei x
(2)
eiv > pei − (κT − tsu′2

) (4b)
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for each ei incident on wi ∈ T2. Since a rotation does not modify the load on a vertex
then by constraint (Load v),

∑
ei |wi∈T1

pei x
(1)
eiv

s f
+

∑
ei |wi∈T2,...,TK

pei x
(2)
eiv

s f
≤ 1.

By the same argument, just before the last tree assignment is performed,

pei x
(K)
eiv > pei − (κT − tsu′K

) (4K)

for each ei incident on wi ∈ TK , and

K∑
j=1

∑
ei |wi∈T j

pei x
( j)
eiv

s f
≤ 1.

Hence, by inequalities (4a), (4b), . . . , (4K):

1 ≥
K∑

j=1

∑
ei |wi∈T j

pei x
( j)
eiv

s f
>

K∑
j=1

∑
ei |wi∈T j

pei −
(
κT − tsu′j

)
s f

. (4.10)

In case 1 of Lemma 4.2.3, every big edge has length greater than ∆. Two twin edges
incident on the same auxiliary node have the same length, so each small twin edge ei

directed towards v has length pei > ∆. Since every big tree T ∈ TB has κT ≤ 1, and
tss = ts f = 5/6,

1 >
K∑

j=1

∑
ei |wi∈T j

pei −
(
κT − tsu′j

)
s f

≥

K∑
j=1

∑
ei |wi∈T j

pei − (1 − 5
6 )

s f

>

k∑
i=1

(∆ − 1
6 )

s f
=

(∆ − 1
6 )k

s f
.

Therefore

s f >
(
∆ −

1
6

)
k. (4.11)

By (4.9) and the auxiliary constraints, a tree assignment directing one small twin edge
towards v increases the load of v by at most (1/6)/s f . Recall that in addition a leaf as-
signment can orient a small edge towards v. Since there are k small twin edges, by (4.11)
the total load increase on v caused by the tree assignments and a leaf assignment is at
most

1
6s f
· k +

1
2
<

k
6(∆ − 1

6 )k
+

1
2

=
1

6∆ − 1
+

1
2
<

1
6(5

6 ) − 1
+

1
2

=
3
4
.



62 Chapter 4. Graph Balancing Problem with Two Speeds and Two Job Lengths

Analysis of Case 2 of Lemma 4.2.3

Recall that for Case 2 of Lemma 4.2.3, we set ts f = tss = (3`b)/4.

Lemma 4.2.7 Our algorithm produces an orientation with makespan at most 1+∆ when 1/2 <
`b/s f ≤ 1 and either: (i) `b > ∆, and `s ≤ 1/2, or (ii) `b > 1, 1/2 < `s ≤ ∆, and `s/s f ≤ 1/2.

Proof First we consider Case 2(a) i.e. 1/2 < `b/s f ≤ 1, `b > ∆, and `s ≤ 1/2. Note that
every big edge has length `b, and so `b = κT for all big trees T ∈ TB. Since `b/s f > 1/2, a
tree assignment always constructs a maximal tree where none of the leaves are auxiliary nodes.
This implies that the load of a vertex cannot be increased more than once by a tree assignment,
which simplifies our analysis.

1. If a leaf assignment on leaf pair (v, e) where e = {v, z} increases the load of vertex v,
then if e is big, pexez ≤ (3`b)/4, and the load increase on v is at most (3`b)/(4sv) ≤ 3/4;
otherwise e is small, and the load increase on v is at most 1/2.

2. Next, we consider when the load of a vertex v ∈ V is increased twice: once through a
tree assignment caused by leaf pair (u′, e) where e = {u′, z} has length `b, and once by a
leaf assignment. Since pexez > (3`b)/4, by Inequality (4.8), the load increase on v from
a tree assignment is at most

pe′ − pe′ xe′v

sv
<
κT − tsu′

sv
=
`b −

3`b
4

sv
=

`b

4sv
≤

1
4
.

Additionally a small edge can be oriented towards v by a leaf assignment. Thus, the total
load increase on v is at most 1/4 + 1/2 = 3/4.

Now we analyze Case 2(b) i.e. 1/2 < `b/s f ≤ 1, `b > 1, 1/2 < `s ≤ ∆, `s/s f ≤ 1/2.
Since `s > 1/2, from the remark in Lemma 4.2.3 we get ∆ < (3`b)/4. Notice that each
connected component formed by big edges in G′ contains either edges of length `s incident
on vertices with speed 1 or edges of length `b incident on vertices with speed s f . Similar to
Case 2(a), a leaf pair (v, e) with pe = `s cannot cause a tree assignment as `s ≤ ∆ < (3`b)/4.
Edges with length `b are only incident on vertices with speed s f ; hence, a tree assignment on
a big tree with edges of length `b does not orient any small twin edges away from auxiliary
nodes, and so the load of a vertex cannot be increased several times by tree assignments. There
are two situations that need to be considered.

1. The load of a vertex v is increased by a leaf assignment. A leaf assignment that orients a
big edge increases the load of v by at most 3/4 if sv = s f , and by no more than ∆ when
sv = 1. A leaf assignment that orients a small edge increases the load of v by at most
1/2.

2. The other possibility is that a tree assignment plus a leaf assignment increase the load of a
vertex v with speed s f . Let e = {u′, z} be the edge directed away from the vertex u′ in the
tree assignment caused by leaf pair (u′, e) that increases the load of v. Also let e′ be the
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edge directed towards v by the tree assignment. Since pexez > (3`b)/4, Inequality (4.8)
implies the load increase on v from the tree assignment is at most

pe′ − pe′ xe′v

s f
≤
κT − pexez

s f
<
`b −

3`b
4

s f
=

`b

4s f
≤

1
4
.

A small edge can then be oriented towards v, so the total load increase on v is at most 3/4.

Analysis of Case 3 of Lemma 4.2.3

Recall that in Case 3 of Lemma 4.2.3, 1/2 < `b/s f ≤ 1, `b > 1, 1/2 < `s ≤ 1, and `s/s f ≤ 1/2
and we set tss = ∆ and ts f = (3`b)/4.

Lemma 4.2.8 Our algorithm produces an orientation with makespan at most 1+∆ when 1/2 <
`b/s f ≤ 1, `b > 1, ∆ < `s ≤ 1, and `s/s f ≤ 1/2.

Proof Similar to Case 2(b), each connected component formed by big edges in G′ contains
either only edges of length `s incident on vertices with speed 1 or only edges of length `b

incident on vertices with speed s f . Now, we bound the total load increase of each vertex.

1. If a leaf assignment orients a big edge towards a leaf v, then the load increase is at most
tss = ∆ if sv = 1 and (3`b)/(4s f ) ≤ 3/4 if sv = s f . If a leaf assignment directs a small
edge towards a leaf v, this causes a load increase of at most 1/2 on v.

2. The load of a vertex v can be increased twice: once through a tree assignment and then
through a leaf assignment. The setup in this case is the same as Case 2 in the proof of
Lemma 4.2.6. Let T be the maximal tree built in the tree assignment that caused the first
load increase on v, and let e′ be the edge directed towards v by the tree assignment. Ob-
serve that T either consists only of vertices with speed s f or T contains only vertices with
speed 1. If all the vertices in T have speed su′ and e = {u′, z}, applying Inequality (4.8)
and that pexez > tsu′ we get

pe′ − pe′v < κT − tsu′ . (4.12)

If v has speed 1, then `s = κT , and by (4.12) the load increase on v from the tree assign-
ment is at most `s − tss ≤ 1− tss . Otherwise, v has speed s f , and `b = κT , so by (4.12) the
load increase on v is at most (`b − (3`b)/4)/s f = `b/(4s f ) ≤ 1/4.

Additionally a leaf assignment can orient an edge towards v. Since v ∈ T and T is a
maximal tree formed by big edges, the edge directed towards v by the leaf assignment
must be small. Thus, the total load increase on v is at most 1 − tss + 1/2 ≈ 0.617217 if
sv = 1, and at most 1/4 + 1/2 = 3/4 if sv = s f .

3. It is also possible that several tree assignments direct small twin edges towards a vertex v
with speed s f . Observe that any edge incident on v that is small has length `s, hence
such tree assignments must be started at leaf vertices with speed ss. Unlike in the proof
of Lemma 4.2.6, either a tree assignment can still occur with big edges of length `b that
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further increases the load of v plus a leaf assignment that directs a small edge toward v,
or a leaf assignment can direct a big edge of length `b towards v.

Let e1, e2, . . . , ek be small twin edges that are directed towards v from tree assignments;
these twin edges are incident on auxiliary nodes w1, . . . ,wk connected to K ≥ 1 big
trees T1, . . . ,TK (see Figure 4.3). Let the algorithm perform the first tree assignment on
T1, the second on T2, and so on. Also, let x( j) be the fractional solution right before the
jth tree assignment. Using the same argument in Lemma 4.2.6 for Case 3 and that the
big trees T1, . . . ,TK all have edges of length `s = κT , we get

1 ≥
K∑

j=1

∑
ei |wi∈T j

pei x
( j)
eiv

s f
>

K∑
j=1

∑
ei |wi∈T j

pei − (κT − tss)
s f

=

k∑
i=1

`s − (`s − tss)
s f

=
tssk
s f
,

so s f > tssk. By (4.12) and the auxiliary constraints, one tree assignment directing a
small twin edge towards v increases the load of v by at most (1 − tss)/s f . Thus, when
k small twin edges are directed towards v, the total load increase on v is at most

(1 − tss)k
s f

<
(1 − tss)k

tssk
=

1
tss

− 1.

Now, we must consider two situations.

(a) A leaf assignment orients an edge toward v. This edge may be big or small.

(i) If the edge is small, the total load increase on v is at most (1/tss − 1) + 1/2 ≈
0.63278.

(ii) If the edge is big it has length `b. Then, the total load increase on v is no more
than 1/tss − 1 + 3/4 = ∆.

(b) A tree assignment orients a big edge of length `b towards v, then a leaf assign-
ment directs a small edge towards v. Since the tree assignment involves vertices
of speed s f , the total load increase is at most (1/tss − 1) + (1 − 3/4) + 1/2 =

1/tss − 3/4 + 1/2 = ∆.

Theorem 4.2.9 There is a (
√

65+7)/8-approximation algorithm for the graph balancing prob-
lem with two speeds and two lengths.

4.3 Integrality Gaps for Linear Programs LP5 and LP6
In this section, we discuss integrality gaps for LP5 and LP6. While there are integrality gap

results for linear program formulations of the unrelated graph balancing problem and the graph
balancing problem with speeds ([20, 97]), these integrality gap results do not cover the case
when there are only two speeds. For arbitrary numbers of machine speeds and job lengths
Ebenlendr et al. [20] showed that LP2 has integrality gap 2 for the graph balancing problem
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with speeds, and Vershae and Wiese [97] proved that LP2 has integrality gap 2 for the unrelated
graph balancing problem when there are processing times pi, j ∈ {ε, 1,∞} for some ε > 0. In
this section we show that linear programs LP5 and LP6 from Chapter 4.2 have integrality gaps
at least 5/3 and 7/4 when there are two job lengths and three job lengths, respectively; we use
an instance similar to the one derived for LP3 by Ebenlendr et al. [20].

Theorem 4.3.1 The integrality gap of LP5 for the graph balancing problem with two speeds
and two job lengths is at least 5/3.

Proof Let 0 < ε ≤ 1/3. Build the weighted multigraph G′ shown in Figure 4.4 with two
speeds s2 = 2 − 3ε and s1 = 1. Let L > 1, and the number of edges from each vertex ai to
vertex bi is 2L + 1. Note that G′ is comprised of three vertex-disjoint paths of equal but odd
length connected at two vertices, u and u′, such that the middle edge of each path is small.

. . .

. . .

. . .

u u′

a1

a2

a3

b1

b2

b3

Figure 4.4: Multigraph G′. Solid lines represent edges of length 1 − ε, the dashed lines are
edges of length 1/3, and the black vertices are auxiliary nodes. The lightly-shaded vertices u
and u′ have speed 2 − 3ε, and all others have speed 1. The auxiliary nodes have dedicated
load 0, and every other vertex has dedicated load 1/3.

First we show that there is a valid solution for LP5 assuming the three paths connected to
u and u′ in G′ are of sufficient length. Let c = (2 − 3ε)/(6 − 6ε). For each big edge e′ incident
on u or u′, set xe′u = c and xe′u′ = c, and then for each auxiliary node w adjacent to u and u′,
set xe′w = (1 − c). To preserve the auxiliary constraints, for each twin edge e′′ = {w, ai} or
e′′ = {w, bi}, i = 1, 2, 3, set xe′′w = c and xe′′z = (1 − c). Next, consider the remaining edges and
vertices in each of the three vertex-disjoint paths. Let em = {l0, r0} be the middle edge in one of
these paths Pi; as mentioned above, em has length 1/3. Let d ≥ 0, and let ld and rd be vertices
that are d vertices away from l0 and r0, respectively and let eld = {ld+1, ld} and erd = {rd, rd+1}.
Since in Pi the number of edges from ai to bi is 2L + 1 then lL = ai and rL = bi. Assign
xeml0 = 1/2 and xemr0 = 1/2, and then set xel0 l0 = (1/2)/(1 − ε) and xer0 r0 = (1/2)/(1 − ε). Now,
for each d = 0, . . . , L − 1, assign

xeld ld+1
= (1 − xeld ld ), xeld+1ld+1

= min
{

1,
1 − (peld

xeld ld+1
+ 1

3 )

peld+1

}
,

and set

xerdrd+1
= (1 − xerd rd ), xerd+1rd+1

= min
{

1,
1 − (perd

xerdrd+1
+ 1

3 )

perd+1

}
.
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Observe that the big edges el0 and er0 are each oriented by more than half toward l0 and r0

respectively as ε > 0. Then, small edges el1 and er1 are fractionally oriented by more than half
toward l1 and r1 respectively, as

xel0 l1 =

(
1−

1
2(1 − ε)

)
and xel1 l1 =

(1 −
(
(1 − ε)(1 − 1

2(1−ε) ) + 1
3 )

)
1
3

)
= 3

(
1−(1−ε)+

1
2
−

1
3

)
=

1
2

+3ε;

the values are similar for xer0 r1 and xer1 r1 . Likewise, since an additional 3ε/(1/3) = ε amount of
load was contributed to l1 and r1 by small edges el1 and er1 , again, the big edges el2 and er2 are
oriented by more than half toward l2 and r2, which leaves an additional 2ε of load free on l3 and
r3 for small edges; this allows for small edges el3 and er3 to be fractionally oriented by 1/2 + 6ε
toward l3 and r3, respectively. Furthermore, each small edge eld has xeld ld = 1/2 + dd/2e(3ε),
which holds similarly for erd . Thus, if L is sufficiently large so that d(L − 1)/2e(3ε) ≥ 1/2, the
small edges elL−1 and erL−1 incident on ai and bi are oriented away from vertices lL and rL and
toward lL−1 and rL−1, respectively.

Clearly all the edge constraints are satisfied. Let us check the load constraints associated
with each vertex. First, the load of either u or u′ is

1
3

2 − 3ε
+

3c(1 − ε)
2 − 3ε

=
1

6 − 9ε
+

3(2 − 3ε)(1 − ε)
(6 − 6ε)(2 − 3ε)

=
1

6 − 9ε
+

3(1 − ε)
6(1 − ε)

≤
1
2

+
1
2

= 1.

Next, the vertices ai, bi, i = 1, 2, 3 each have load

1
3

+ (1 − ε)(1 − c) =
1
3

+ (1 − ε)
(
1 −

2 − 3ε
6 − 6ε

)
=

1
3

+
(1 − ε)(4 − 3ε)

6(1 − ε)
=

1
3

+
4 − 3ε

6
< 1.

It is not hard to see from the way the values of the variables are assigned for the edges incident
on the remaining vertices of the three paths that their loads are each at most 1.

Consider now any big tree T ∈ TB. Notice that every big edge in T has length 1 − ε = κT .
First, if u or u′ is a leaf in T , then there is only one other leaf in T and that leaf is incident on a
twin edge and so∑

(v,e)∈L(T )

pexev = c(1 − ε) + (1 − c)(1 − ε) = 1 − ε =
∑

(v,e)∈L(T )

pe − κT .

If a big tree consists of a single big edge along one of the three paths, because the edge con-
straints hold, the tree constraints for any such big tree are satisfied. Otherwise, the leaves are
either auxiliary nodes or vertices that are neither u nor u′ but are adjacent to auxiliary nodes.
Let the number of leaves in a big tree T be k. As the degree of any vertex in T is at most 3,
k ≤ 3. As (k(2 − 3ε))/(6 − 6ε) < 1 for 0 ≤ k ≤ 3, then∑

(v,e)∈L(T )

pexev = (1 − ε)
(
k(1 − c)

)
= (1 − ε)

(
k −

k(2 − 3ε)
6 − 6ε

)

> (1 − ε)(k − 1) =
∑

(v,e)∈L(T )

pe − κT .

Thus, all the constraints of LP5 are satisfied, so the makespan of this solution is at most 1.
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Now we determine the optimal integral solution to LP5. Due to the tree constraints and
the auxiliary constraints, at most one big twin edge can be oriented toward u and u′, so the
loads of u and u′ are at most (1/3)/(2 − 3ε) + (1 − ε)/(2 − 3ε) ≤ 1. Along the three paths
from ai to bi, i = 1, 2, 3, observe that at least one vertex in one of the three paths must have at
least two edges oriented towards it. The speed of any of these vertices is 1, so the makespan
is (1−ε)+1/3+1/3 = 5/3−ε. Therefore, if we take ε → 0, LP5 has integrality gap at least 5/3
for the graph balancing problem with two speeds and two job lengths.

In the above proof it is not hard to see that the star constraint of LP6 is also satisfied, so our
example above works also for LP6.

Corollary 4.3.2 For the graph balancing problem with two speeds and two job lengths, the
integrality gap of LP6 is at least 5/3.

To close this section, we consider LP5 and LP6 for the graph balancing problem with two
speeds and three job lengths. Build the same weighted multigraph G′ we did in Theorem 4.3.1
with the following modifications. First, the dedicated loads of all the vertices except the aux-
iliary nodes are 1/4, and all auxiliary nodes have no dedicated load. Next, the edges with
length 1 − ε now have length 1, and the edges with length 1/3 have length 1/2 − ε. Finally, set
the speeds s2 = 2 − ε and s1 = 1. An argument similar to the one given above can be used to
show the integrality gap is at least 7/4. Note that this instance extends the one in [20] for the
graph balancing problem with one speed to the case of two speeds and three job lengths.

Theorem 4.3.3 For the graph balancing problem with two speeds and three job lengths, the
integrality gap of LP5 is at least 7/4.

Corollary 4.3.4 For the graph balancing problem with two speeds and three job lengths, the
integrality gap of LP6 is at least 7/4.



Chapter 5

Simple Job-Intersection Structure and
Bounded Job Assignments

In this chapter we present results from our study of R||Cmax with simple job-intersection struc-
ture and R||Cmax with bounded job assignments. For any instance of R||Cmax, the job-intersection
graph GJ = (J, EJ) is such that EJ contains edge {J j, J j′} if there is a machine Mi ∈ M such
that pi, j , ∞ and pi, j′ , ∞. Let Ji be the set of jobs that can be scheduled on machine Mi.
Recall that in R||Cmax with simple job-intersection structure we restrict the problem to instances
of R||Cmax where GJ belongs to a specific graph class, and in R||Cmax with bounded job assign-
ments |Ji| ≤ r for some fixed r > 0 for every Mi ∈ M. We focus on instances of R||Cmax of
both these problems where there are only a few eligible jobs per machine.

In Chapter 5.1 we show that there are no ρ-approximation algorithms with ρ < 3/2 for both
R||Cmax restricted to diamondless job-intersection graphs and R||Cmax with bounded job assign-
ments when r = 3, unless P = NP; while these results match the best-known 3/2 lower bound
for R||Cmax, these results are stronger hardness results than previously known. In Chapter 5.2
we present a flow-based approximation algorithm that is a 5/3-approximation algorithm for
R||Cmax with r = 4, a 3/2-approximation algorithm for both R||Cmax with r = 3 and R||Cmax

restricted to diamondless job-intersection graphs, and a polynomial-time algorithm for both
R||Cmax with r = 2 and R||Cmax restricted to triangle-free job-intersection graphs. In Chap-
ter 5.3 we give a (2−1/(r−1))-approximation algorithm for the restricted assignment problem
with two job lengths when r ≥ 3. Finally, we wrap up this chapter with Chapter 5.4 by summa-
rizing 3/2-hardness results for R||Cmax restricted to various special classes of job-intersection
graphs: complete graphs, threshold graphs, interval graphs, cographs, split graphs, and house-
free graphs.

5.1 Hardness of Approximation

In this section we prove under the assumption that P , NP that R||Cmax is 3/2-inapproximable
when restricted to instances with diamondless job-intersection graphs. To do this, we use the
reduction from Chapter 2.2.3 (Page 25) used to show that there is no ρ-approximation algorithm
with ρ < 3/2 for the graph balancing problem with job lengths either 1 or 2, unless P = NP.
We can make a couple of simple but stronger assumptions than previously assumed for At-

68
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Most-3-SAT(2L): Without loss of generality we assume that no clause contains a tautology,
and that no clause contains duplicate literals. In addition, we will treat the dedicated load of
any vertex v of value qv as qv self-loops of length 1.

Here we describe the reduction with our changes. Given an instance of At-Most-3-SAT(2L)
where no clause in formula φ contains duplicate literals nor any tautologies, we build a weighted
multigraph G as follows. Create one vertex for each clause yi, and one vertex for each lit-
eral (xi and ¬xi) of every variable xi; again, these are called clause vertices and literal vertices,
respectively. For each variable xi, add a tautologous edge {xi,¬xi} of length 2, and add 3 − |yi|

self-loops of length 1 to clause vertex yi, where |yi| is the number of literals in clause yi. Finally,
for each clause yi and literal l, add clause edge {l, yi} if literal l is in clause yi.

Recall that the diamond graph is the complete graph K4 less one edge, and that a diamond-
less graph contains no subgraph that is the diamond graph. We prove that any job-intersection
graph GJ of an instance produced by this reduction is diamondless.

Lemma 5.1.1 The job-intersection graph GJ of the weighted multigraph G produced by the
above reduction contains no diamonds.

Proof Every vertex in G has at most three incident edges, so GJ can only be comprised of
isolated job vertices, paths, or triangles. Observe that then, there must be two triangles in GJ

that share two job vertices to form a diamond. We show that no two such triangles exist in GJ.
First, consider the edges incident on literal vertices in G. Recall that each variable appears

in at most three clauses in formula φ and each literal for that variable appears at most twice.
So the job vertex corresponding to the tautologous edge {xi,¬xi} has degree at most three in
GJ. Furthermore, this job vertex is only adjacent to job vertices that are clause edges in G, and
at most two clause edges may have the same literal vertex as an endpoint in G. Thus, any job
vertex {xi,¬xi} along with its adjacent job vertices for clause edges form in GJ either a path
with one edge, a path with two edges, a triangle, or a path with an edge plus a triangle, but not
two triangles (i.e. a bowtie or a diamond).

Next consider the edges incident on clause vertices in G. As no two clause vertices have
edges in common in G and every clause vertex has three edges incident on it, the edges incident
on the clause vertex form a triangle in GJ. Thus, if there is a diamond in GJ it must be com-
prised of job vertices of two clause edges that are adjacent to the job vertices of a tautologous
edge and another clause edge. There is no diamond when these two clause edges are incident
on two literal vertices of different variables, hence, there are two possibilities:

1. A diamond formed by two clause edges that are incident on the same literal vertex in G.
This cannot happen as no clause in formula φ has duplicate literals.

2. A diamond formed by two clause edges that are incident on two literal vertices for the
same variable in G. No clause contains tautologies, thus this situation cannot occur.

Therefore, GJ contains no diamonds.

Bringing together Theorem 2.2.2 and Lemma 5.1.1, it follows that if there were a ρ-
approximation algorithm with ρ < 3/2 for the graph balancing problem with two job lengths
when GJ is diamondless, one could apply the above reduction and then use such a ρ-approximation
algorithm to correctly decide whether φ is satisfiable or not in polynomial time.
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Theorem 5.1.2 There is no ρ-approximation algorithm with ρ < 3/2 for the graph balancing
problem with two job lengths when the job-intersection graph GJ contains no diamonds, unless
P = NP.

The graph balancing problem is a special case of R||Cmax, therefore we obtain the following
corollary.

Corollary 5.1.3 There is no ρ-approximation algorithm with ρ < 3/2 for R||Cmax restricted to
diamondless job-intersection graphs, unless P = NP.

If |Ji| > 3 for some machine Mi, then there are at least four jobs J1, J2, J3, J4 such that
pi,1 , ∞, pi,2 , ∞, pi,3 , ∞, and pi,4 , ∞. This would imply GJ contains a diamond; thus, for
any machine Mi, |Ji| ≤ 3 is satisfied if GJ is diamondless. Hence, the case for R||Cmax when
the job-intersection graph is diamondless is a special case of R||Cmax when |Ji| ≤ 3 for each
machine Mi. Thus our hardness results carry over to the special case where every machine can
process at most three jobs. Do note that this result can also be trivially obtained by observing
that every vertex in the graph balancing instance from the reduction above has at most three
incident edges.

Corollary 5.1.4 There is no ρ-approximation algorithm for the graph balancing problem with
two job lengths when every machine can process at most three jobs where ρ < 3/2, unless
P = NP.

5.2 Approximation Results for Unrelated Scheduling
As we stated at the end of the previous section, R||Cmax restricted to diamondless job-intersection
graphs is a special case of R||Cmax when every machine Mi satisfies |Ji| ≤ 3. Here we present
a 5/3-approximation algorithm for R||Cmax when every machine can process at most four jobs.
In our analysis we show the same approximation algorithm has approximation ratio 3/2 in
the case when every machine can process at most three jobs and it solves the problem exactly
if |Ji| ≤ 2. Note that for R||Cmax restricted to triangle-free job-intersection graphs, |Ji| ≤ 2
for each machine Mi as if three jobs share a common machine then the job-intersection graph
would have a triangle.

Given makespan estimate τ, our algorithm is a 5/3-relaxed decision procedure when |Ji| ≤

4. We say a job J j is small on machine Mi if its processing time is pi, j ≤ τ/2, and is big on
machine Mi if τ/2 < pi, j ≤ τ. Observe that if OPT ≤ τ, at most one big job can be scheduled
on a machine. Note that by our definitions, if pi, j > τ then job J j is neither big nor small with
respect to its processing time on machine Mi. Our algorithm is described below.

1. For each machine Mi, if any job J j has a processing time pi, j > τ on Mi, we remove job J j

from job set Ji. As a result, every job J j in each job set Ji has processing time pi, j ≤ τ.

2. Build a single-source single-sink flow network N with source s∗ and sink t∗. In this
network, create a job node for each job, and add arcs from s∗ to each job node with
capacity 1. Now, for each machine Mi, we create a machine node and a buffer node with
arcs according to the Machine Plan given in Figure 5.1. Let disjoint sets Si,Bi ⊆ Ji,
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Figure 5.1: Machine Plan. Flow network N is built in part by determining the appropriate
machine plan for each machine. Assume an integer value d is provided. Unlabelled white
nodes are job nodes, the black node is a buffer node of machine Mi that only allows one unit of
flow to be sent from job nodes in Bi, and t∗ is the sink of N. It is worth noting that if Bi = ∅,
the buffer node for the machine plan of Mi has no incoming arcs.

where unless otherwise statedSi and Bi are the small jobs and big jobs in Ji, respectively.
Consider the following cases in the order provided:

(a) If |Ji| = 0, no arcs are added for machine node Mi.

(b) If
∑

J j∈Ji
pi, j ≤ τ, then every job J j ∈ Ji can be scheduled on machine Mi, so we

add arcs according to the Machine Plan with d = |Ji| and set Si = Ji and Bi = ∅.

(c) If |Ji| ≤ 3, then use the Machine Plan with d = |Ji| − 1.

For the next set of cases |Ji| = 4. Sort the jobs of each set Ji in non-increasing order by
processing time; let these jobs be indexed as j(i)

1 , j(i)
2 , j(i)

3 , j(i)
4 .

(d) If
∑4

k=2 pi, j(i)k
> τ, add arcs according to the Machine Plan with d = 2.

(e) If
∑4

k=2 pi, j(i)k
≤ τ and pi, j(i)1

+ pi, j(i)2
> τ, put jobs j(i)

1 and j(i)
2 into Bi (if either is not

already there set Si = Ji \Bi) and use the Machine Plan with d = 3.

(f) If
∑4

k=2 pi, j(i)k
≤ τ and pi, j(i)1

+ pi, j(i)2
≤ τ, use the Machine Plan with d = 3.

3. After N is constructed, the algorithm computes an integral maximum flow f on N. If any
arc leaving the source does not carry one unit of flow, report FAIL; otherwise, we build
a schedule as follows: for each job node J j, if machine node Mi receives 1 unit of flow
from J j, schedule job J j on machine Mi.

We set the value d in each case above so that if a schedule of makespan τ exists, we permit
a sufficient amount of flow to reach the sink and saturate the arcs incident on the source. In
addition, a schedule with makespan at most τ allows at most one job from Bi onto each ma-
chine Mi, so any flow carried from the source through a job node of Bi can be sent through the
buffer node and to the sink. Thus, by the way we designed the flow network, it is not hard to
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see that if OPT ≤ τ, all the arcs leaving the source are saturated, and as a result, a schedule is
produced.

Now we analyze the load of each machine. First, it is trivial to observe that the load of any
machine Mi is at most τ if either

∑
J j∈Ji

pi, j ≤ τ (Case (b)) or all the jobs in Ji are big (Case (c)
if |Ji| ≤ 3, Case (d) if |Ji| = 4). Thus, we consider each machine Mi when there is at least one
small job and

∑
J j∈J

pi, j > τ by the number of jobs in Ji:

• |Ji| ≤ 2. If |Ji| ≤ 1, then either Case (a) or Case (b) occurs, which we already considered
above. If |Ji| = 2 and all the jobs are small, then

∑
J j∈Ji

pi, j ≤ τ/2 + τ/2 = τ. If |Ji| = 2
and

∑
J j∈Ji

pi, j > τ, then the algorithm applies Case (c), which permits only |Ji|−1 = 1 job
to be scheduled on machine Mi, and so the load of Mi is at most τ. Therefore, the load
of any machine with |Ji| ≤ 2 is at most τ.

• |Ji| = 3. If
∑

J j∈Ji
pi, j > τ, Case (c) is applied and the Machine Plan allows at most

|Ji| − 1 = 2 jobs to be scheduled on machine Mi. If all three jobs in Ji are small, then at
most two jobs are scheduled on machine Mi and the load is at most τ. Otherwise, at least
one job is big and at most two jobs are small in Ji; at most one big job will be scheduled
with a small job and so the load is at most τ + τ/2 = (3/2)τ. Therefore, the load of any
machine with |Ji| = 3 is at most (3/2)τ.

• |Ji| = 4. First, we make a few key observations that will simplify our analysis. If Case (d)
is applied then d = 2 in the Machine Plan, so at most one big job is scheduled with one
small job and the load is at most τ + τ/2 = (3/2)τ. Thus we only need to consider the
algorithm in situations when it applies Case (e) or Case (f). In either of these two cases,
d = 3, so at most one big job is scheduled with two small jobs, as when three small jobs
are scheduled on machine Mi the load is at most (3/2)τ. Recall that the jobs in Ji are
sorted in non-increasing order of processing time: j(i)

1 , j(i)
2 , j(i)

3 , j(i)
4 . If there are at least

three big jobs and at most one small job, then
∑4

k=2 pi, j(i)k
> τ and this falls under Case (d);

thus we only need to consider below when there are at most two big jobs and at least two
small jobs in Ji.

– If all four jobs are small and Case (d) did not apply, then only Case (f) can apply as
the sum of processing times of any two small jobs on machine Mi cannot exceed τ.
Since Case (f) sets d = 3, at most three small jobs can be scheduled on machine Mi

and the load is at most (3/2)τ.

– If three jobs are small and one job is big, then either Case (e) or Case (f) is applied
by the algorithm. In Case (e), if pi, j(i)2

≤ τ/3 then the sorting of the jobs implies
that the load is at most τ + 2(τ/3) = (5/3)τ. Then, observe that if pi, j(i)2

> τ/3 and∑4
k=2 pi, j(i)k

≤ τ, then
∑4

k=3 pi, j(i)k
< τ − τ/3 = (2/3)τ, and the load on machine Mi is

at most pi, j(i)1
+ pi, j(i)3

+ pi, j(i)4
≤ τ + (2/3)τ = (5/3)τ. Next if Case (f) is applied, then

pi, j(i)1
+ pi, j(i)2

≤ τ implies the load of machine Mi is at most pi, j(i)1
+ pi, j(i)2

+ pi, j(i)3
≤

τ + τ/2 = (3/2)τ.

– If two jobs are small and two jobs are big, only Case (e) applies as the sum of
processing times of any two big jobs exceeds τ. Job j(i)

2 is big, so observe that
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∑4
k=2 pi, j(i)k

≤ τ ⇒
∑4

k=3 pi, j(i)k
< τ − (τ/2) = τ/2. Thus, the load of machine Mi is at

most τ + τ/2 = (3/2)τ.

Hence, the maximum load of a machine with |Ji| = 4 is at most (5/3)τ.

Therefore, we obtain the following results that match the inapproximability lower bounds
given by Corollary 5.1.3 and Corollary 5.1.4.

Theorem 5.2.1 There is a polynomial-time algorithm for R||Cmax when every machine can
process at most two, three, or four jobs with approximation ratio 1, 3/2, or 5/3, respectively.

Corollary 5.2.2 There is a polynomial-time algorithm for R||Cmax restricted to job-intersection
graphs that are either triangle free or diamondless with approximation ratio 1 or 3/2, respec-
tively. Furthermore, there is a polynomial-time algorithm for R||Cmax restricted to bipartite
job-intersection graphs.

5.3 A (2−1/(r−1))-Approximation Algorithm for Restricted
Assignment with Two Job Lengths

Let `s, `b ∈ Z
+, where `s < `b. Recall that the restricted assignment problem with two

job lengths is a special case of R||Cmax where every processing time pi, j ∈ {p j,∞} and job
length p j ∈ {`s, `b}. Note that if every job has the same job length, this is equivalent to the
restricted assignment problem with unit job lengths and can be solved in polynomial time [79].
So below we consider instances where the jobs have one of two distinct job lengths, and every
machine can process at most r ≥ 3 jobs. By modifying the algorithm from Chapter 5.2 along
with using some known results, we obtain a (2−1/(r−1))τ-relaxed decision algorithm. Below
we assume if not all of the jobs are scheduled, the algorithm reports FAIL. Given estimate τ,
consider the following cases in the order provided.

1. If there is a job J j ∈ J with no machine Mi where pi, j = p j ≤ τ, report FAIL.

2. `s > τ/(r − 1) and `b ≤ τ. Apply the (2 − `s/`b)-relaxed decision algorithm from
Chapter 4.1 for estimate τ. If a schedule exists with makespan τ, this algorithm will
compute a schedule with makespan at most(

2 −
`s

`b

)
τ <

(
2 −

τ
r−1

τ

)
τ =

(
2 −

1
r − 1

)
τ.

3. `s ≤ τ/(r − 1) and `b ≤ τ/2. Apply Theorem 2.2.1. If a schedule is produced, it has
makespan at most τ + max{`s, `b} ≤ τ + τ/2 = (3/2)τ.

4. `s ≤ τ/(r−1) and τ/2 < `b ≤ τ. Use the algorithm given in Chapter 5.2 except in Step 2,
for every machine Mi proceed as follows:

• If every job in Ji is small, it is possible for every job in Ji to be scheduled on
machine Mi, so use the Machine Plan with d = |Ji|. The load of the machine i is at
most |Ji|`s ≤ |Ji|(τ/(r − 1)) ≤ r(τ/(r − 1)) ≤ (2 − 1/(r − 1))τ as r ≥ 3.
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• There is at least one big job in job set Ji. If `b +
∑

j∈Si
p j ≤ τ, use the Machine

Plan with d = |Si| + 1, where Si is the set of small jobs of job set Ji. At most one
big job can be scheduled with every job in Si, so the load of a machine Mi is at
most `b +

∑
j∈Si

p j ≤ τ.
If `b +

∑
j∈Si

p j > τ, then either at most one big job can be scheduled with |Si| − 1
small jobs or at most all |Si| small jobs are scheduled together. Use the Machine
Plan with d = max{|Si|, 1}. Since at least one job in job set Ji is big, |Si| ≤ |Ji| −1 ≤
r − 1. If every job that is scheduled on machine Mi is small, then the load is
at most |Si|`s ≤ (r − 1)(τ/(r − 1)) = τ. Otherwise, at most one big job can be
scheduled along with |Si| − 1 small jobs and so the load of machine Mi is at most

`b + (|Si| − 1)`s ≤ τ + ((r − 1) − 1)
( τ

r − 1

)
=

(
2 −

1
r − 1

)
τ.

Theorem 5.3.1 There is a (2−1/(r−1))-approximation algorithm for the restricted assignment
problem with two job lengths when every machine can process at most r ≥ 3 jobs.

5.4 Inapproximability Results for Job-Intersection Graphs
with Cliques

For any instance I = (P = (pi, j),m, n) of R||Cmax with some pi, j = ∞, there is another in-
stance I′ = (P′ = (p′i, j),m, n) of R||Cmax with the same optimal solution but every p′i, j , ∞:
set p′i, j = pi, j for any pi, j , ∞; and if pi, j = ∞, set p′i, j to some prohibitively large number,
for example, p′i, j = npmax + 1 where pmax is the largest processing time that is not ∞ in P.
For τ ≤ npmax, there is a schedule for instance I with makespan τ if and only if there is a
schedule for instance I′ with makespan τ. Every job in instance I′ can be scheduled on any of
the machines, so the job-intersection graph GJ for I′ is the complete graph Kn. We note that
an alternate construction to arrive at the complete job-intersection graph is given at the start
of Section 4 in [54]. Therefore, we can carry forward the inapproximability lower bound 3/2
from the graph balancing problem with two job lengths given in Chapter 5.1.

Corollary 5.4.1 There is no ρ-approximation algorithm with ρ < 3/2 for R||Cmax restricted to
instances where the job-intersection graph is the complete graph Kn, unless P = NP.

From Corollary 5.4.1, R||Cmax restricted to any superclass of the complete job-intersection
graphs inherits the 3/2-inapproximability lower bound of R||Cmax. We name some of these
graph classes as they are of interest from a graph-theoretic standpoint. To begin, define a job-
intersection graph as a threshold graph if it can be constructed by repeatedly performing the
following two operations: insert an isolated vertex; or insert a vertex and add edges from this
vertex to every other vertex presently in the graph, this vertex is called a dominating vertex. All
complete graphs are threshold graphs, and three superclasses of threshold graphs are interval
graphs, cographs, and split graphs [8, Corollary 7.1.1]. Note that all these graphs belong to
the house-free graphs. A graph is called house free if the graph does not contain as an induced
subgraph the house graph, shown in Figure 5.2.
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Figure 5.2: The house graph.

Corollary 5.4.2 There is no ρ-approximation algorithm with ρ < 3/2 for R||Cmax restricted
to instances where the job-intersection graphs belong to either the threshold graphs, interval
graphs, cographs, split graphs, or house-free graphs, unless P = NP.



Chapter 6

Scheduling Parallel Machines with a Few
Bags

In this chapter we present results for makespan minimization on unrelated parallel machines
with bags (R|bag|Cmax) and special cases of this problem. Recall that in these scheduling prob-
lems, the jobs J are partitioned into b sets called bags B = (B1, B2, . . . , Bb), and it must be
that a feasible schedule must satisfy the bag constraints: no two jobs from the same bag can be
scheduled on the same machine.

To begin this chapter, we provide a couple basic properties of R|bag|Cmax in Chapter 6.1.
In Chapter 6.2 we give a simple b-approximation algorithm for R|bag|Cmax, then in Chap-
ter 6.3 a PTAS for R|bag|Cmax when both the number of machine types and number of bags
are constant is presented. In Chapter 6.4 we present a b/2-approximation algorithm for the
graph balancing problem with b ≥ 2 bags, this is also a polynomial-time algorithm for the
graph balancing problem with b = 2 bags. In Chapter 6.5 we prove that the restricted assign-
ment problem with bags on uniform parallel machines where the jobs all have the same length
(Q|bag,Mj, p j = 1|Cmax) is polynomial-time solvable, and also present a O(m log m)-time algo-
rithm for makespan minimization on identical parallel machines with bags (P|bag|Cmax) when
there are b = 2 bags. Finally, in Chapter 6.6, we prove that it is NP-hard to approximate
with approximation ratio less than 3/2 the restricted assignment and graph balancing problems
with b = 2 and b = 3 bags, respectively, and that makespan minimization on uniform parallel
machines (Q|bag|Cmax) with b = 2 bags is strongly NP-hard.

6.1 A Couple Basic Properties
First, if b = 1, at most one job can be scheduled on each machine. Hence, we can solve
R|bag|Cmax with one bag in polynomial time as follows: build a weighted bipartite graph G =

(J ∪ M, E), where

E =
{
(J j,Mi) | job J j can be scheduled on machine Mi

}
,

and w( j, i) = pi, j for every (J j,Mi) ∈ E. Given a weighted bipartite graph, a maximum car-
dinality bottleneck matching is a maximum (cardinality) matching M where the maximum
length of an edge in M is as small as possible. Compute a maximum cardinality bottleneck

76
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matching M of G [89] and for each arc (J j,Mi) ∈ M , schedule job J j on machine Mi; there
is no feasible solution if any job is not scheduled. Thus, in the sequel we focus on R|bag|Cmax

when there are b > 1 bags.
Second, despite being a generalization of R||Cmax, the feasible schedules of R|bag|Cmax have

a strict limit of at most b jobs per machine:

Property 6.1.1 For any schedule that satisfies the bag constraints with b bags, there are at
most b jobs scheduled on a machine.

Proof Assume otherwise, then there exists at least one machine with more than b jobs. There
are b bags, so if at least b + 1 jobs are scheduled on a machine, at least two jobs belong to the
same bag and the bag constraints are violated.

6.2 A b-Approximation Algorithm for R|bag|Cmax

Our approximation algorithm uses a b-relaxed decision procedure. For makespan estimate τ,
the idea is to treat each bag independently and simply schedule the jobs J j in each bag Bk ∈ B
on machines Mi where pi, j ≤ τ so that the bag constraints are not violated. We do this by
building a flow network N where there is a source s∗, a job node for each J j ∈ J, a bag-
machine node MBk ,i for each Mi ∈ M and Bk ∈ B, a machine node for every Mi ∈ M, and a
sink t∗. Do the following for each bag Bk ∈ B: for each J j ∈ Bk, add an arc from s∗ to each job
node J j and set its capacity to 1. Next, for each J j ∈ Bk and Mi ∈ M, if pi, j ≤ τ, then add an
arc from job node J j to MBk ,i with capacity 1. For each Mi ∈ M and Bk ∈ B, add an arc from
each bag-machine node MBk ,i to machine node Mi with capacity 1. Finally, from each machine
node Mi ∈ M, add an arc from Mi to t∗ with capacity b.

The b-relaxed decision algorithm is as follows.
1. Build the above flow network N and compute an integral maximum flow f .

2. For each J j ∈ Bk, if f (s∗, J j) = 0 then return FAIL.

3. For each job J j ∈ Bk, schedule J j on machine Mi if f (J j,Mk,i) = 1, and return this
schedule.

It is not hard to see that if an integral maximum flow is computed and all the arcs incident
on s∗ are saturated, the jobs in bag Bk can be scheduled on the machines so as to satisfy the bag
constraints, and such that each job takes at most τ time units.

Theorem 6.2.1 There is b-approximation algorithm for R|bag|Cmax.

6.3 A PTAS for R|bag|Cmax with Constant Numbers of Ma-
chine Types and Bags

Recall that two machines Mi and Mi′ have the same machine type if, for every J j ∈ J, pi, j =

pi′, j. Let Nt(υ) be the number of machines of machine type υ, and let δ be the number of
machine types. For the PTAS, a b-approximate value t to the optimal makespan is computed,
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so that t/b ≤ OPT ≤ t; value t can be computed using the b-approximation algorithm from
Chapter 6.2.

Consider all possible schedules of some length τ. We simplify the structure of these sched-
ules so that there is only a constant number of different machine load configurations (defined
below), while increasing the length of the schedule by a factor of at most (1 + ε) for any fixed
ε > 0. This simplification will allow us to design a PTAS, by using binary search over the
interval [t/b, t] to find the smallest value τ for which the algorithm given below computes a
schedule

First divide the timeline of a schedule into units of length (τε)/b2 for some constant ε > 0.
The load configuration of machine Mi is a vector (li,1,li,2, . . . ,li,b) such that if job J j from
bag Bk is scheduled on Mi then (li,k − 1)(τε)/b2 < pi, j ≤ li,k · (τε)/b2. The maximum
number of values each li,k can take is 1 + d ττε

b2
e = 1 + db

2

ε
e, so li,k ∈ {0, 1, 2, . . . , db2/εe}.

As there are b values in any load configuration, the number of possible load configurations
is then (1 + db2/εe)b =: D, a constant; index these load configurations 1, 2, . . . ,D. Let
vector (c1,1, c1,2, . . . , c1,D, c2,1, c2,2, . . . , c2,D, . . . , cδ,1, cδ,2, . . . , cδ,D) be a schedule configuration,
where cυ,µ is the number of machines with machine type υ that have load configuration µ. There
are m machines, so each cυ,µ ∈ {0, 1, . . . ,m} and because there are δD many elements in a sched-
ule configuration, the total number of possible schedule configurations is O(mδD), a polynomial
function as δ and D are constant. A schedule configuration is valid if

∑δ
υ=1

∑D
µ=1 cυ,µ = m, and∑D

µ=1 cυ,µ = Nt(υ), for υ = 1, 2, . . . , δ. For each valid schedule configuration there are exactly
m load configurations, one for each machine. That is, for each cυ,µ > 0, assign load configura-
tion µ to cυ,µ machines of machine type υ. Then, the makespan of a valid schedule configuration
is max1≤i≤m

{∑b
k=1 li,k( τεb2 )

}
.

We compute all valid schedule configurations for makespan τ and choose one for which
the jobs can be allocated to the machines according to that schedule configuration. If there
is a feasible schedule, at least one such schedule configuration exists where for each J j ∈ J
with J j ∈ Bk, there is a machine Mi with pi, j ≤ li,k( τεb2 ) ≤ db

2

ε
e( τε

b2 ) where b2

ε
( τε
b2 ) = τ ≤

db
2

ε
e( τε

b2 ). To find this schedule we proceed as follows. For each valid schedule configuration,
assign to machine Mi a load configuration Li as described above. Then consider each bag Bk,
k = 1, 2, . . . ,b, and build a bipartite graph Gk = (Bk ∪ M, Ek), where Ek =

{
( j,Mi) | Mi ∈

M, j ∈ Bk, (li,k − 1)
(
τε
b2

)
< pi, j ≤ li,k

(
τε
b2

)}
. Compute a maximum matching of Gk, and for

each arc (J j,Mi) in the matching, schedule J j on Mi. Discard the schedule if at least one job of
bag Bk is not scheduled. Otherwise, for k = 1, 2, . . . ,b, a matching of size |Bk| is computed for
Gk and thus every job J j ∈ Bk is scheduled. This will assign at most one job from each bag Bk

to each machine, so a feasible schedule is produced.
Let machine Mλ be a machine that finishes last in the schedule configuration with minimum

makespan τ∗ selected by the algorithm and let L∗λ = (l∗λ,1,l
∗
λ,1, . . . ,l

∗
λ,b) be its load configuration.

Note that for each job J j ∈ Bk on Mλ, pλ, j ≤ l∗λ,k(τ
∗ε)/b2, but pλ, j > (l∗λ,k − 1)(τ∗ε)/b2 as

otherwise there would be another schedule configuration of lesser makespan where all the jobs
can be allocated to the machines. Since τ∗ ≥ OPT ,∑

job J j scheduled
on machine Mλ

pλ, j ≥ OPT >

b∑
k=1

max
{
(l∗λ,k − 1)

τ∗ε

b2 , 0
}
.
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Therefore, ∑
job J j scheduled
on machine Mλ

pλ, j ≤
b∑

k=1

l∗λ,k
τ∗ε

b2 ≤

b∑
k=1

max
{
(l∗λ,k − 1)

τ∗ε

b2 , 0
}

+

b∑
k=1

τ∗ε

b2

< OPT +

b∑
k=1

τ∗ε

b2 ,

and since t/b ≤ OPT ≤ τ∗ ≤ t, the makespan is at most

OPT +

b∑
k=1

τ∗ε

b2 = OPT +
(τ∗
b

)
ε ≤ OPT +

(t
b

)
ε ≤ (1 + ε)OPT.

Theorem 6.3.1 There is a PTAS for R|bag|Cmax with machine types when both the number b
of bags and the number δ of machine types are constant.

Consider makespan minimization on uniform machines with bags (Q|bag|Cmax). The pro-
cessing time for a job on a machine depends on the speed of the machine. Therefore, the
number of machine types is in fact the number of machine speeds.

Corollary 6.3.2 There is a PTAS for Q|bag|Cmax when both the number of distinct machine
speeds and the number of bags are constant.

6.4 A b/2-Approximation Algorithm for the Graph Balanc-
ing Problem with b ≥ 2 Bags

Recall that in the graph balancing problem with bags the jobs and machines can be represented
as a weighted multigraph G = (V, E), where the jobs are edges i.e. E =

⋃b
k=1 Bk, each edge e ∈

E has length pe ∈ Z
+, and the machines are the vertices. We remark that in the case with bags,

we must assume the multigraph may contain self-loops (and does not have dedicated loads) as
self-loops might belong to different bags. Here we continue to use m and n to be the number
of machines and jobs, respectively. Let GBk = (VBk , Bk) where vertex v ∈ VBk if v ∈ e ∈ Bk. We
call a maximally connected component of GBk a bag component. Recall that a pseudoforest is
a collection of trees and unicyclic graphs (, i.e. 1-trees), a unicyclic graph is a connected graph
that contains exactly one cycle.

Property 6.4.1 Consider the graph balancing problem with bags. If there is a schedule S that
satisfies the bag constraints, then for every Bk ∈ B, GBk is a pseudoforest.

Proof Assume this is not the case, then there is a bag component CBk of GBk that contains at
least two cycles. Observe that then there are more edges than vertices, thus in S at least two
edges in CBk must be directed toward the same vertex, violating the bag constraints.

In the sequel we assume that the input multigraph G satisfies the conditions of Prop-
erty 6.4.1, this allows us to bound the number of possible feasible orientations for the edges
in a bag component. A bag component that is a tree T = (VT , ET ) has at most |VT | possible
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orientations: select each vertex as the root of the tree and direct all edges away from it. In
addition, there are at most two possible orientations in a unicyclic bag component: select one
of two directions to direct all the edges in the cycle, and then direct all other edges away from
the cycle. We use these facts in our algorithm.

Our algorithm employs a b/2-relaxed decision procedure. Let lL(u) be the load contributed
by the edge with the largest edge length directed toward vertex u in G; hence lL(u) = 0 if no
edge is directed toward u. We note that if lL(u) > τ/2 then no other edges with length larger
than τ/2 can be directed toward u without the makespan exceeding τ; we call an edge e a big
edge when its length pe > τ/2 and an edge is small if pe ≤ τ/2.

The b/2-relaxed decision algorithm uses a set D to store the edges that have already been
assigned a direction. Initially D = ∅ and if a schedule exists, at the end D will contain all
the edges in G. First, if any edge e ∈ E has length larger than τ return FAIL. While there
is an edge in E \ D do the following. Compute a bag component C of G \ D and perform
an expansion of C by using the procedure described in Step (2) of the algorithm below. For
each feasible orientation of the edges in C an expansion forces edges away from C if this does
not violate the bag constraints and lL(u) + pe ≤ τ for every u ∈ C and edge e incident on u.
The forcing of edges away “expands” C and this process will continue “expanding” C until
no more edges need to be forced in a certain direction or infeasibility is determined. If an
expansion is successfully computed, directions for a set CE of edges is found and so we set
D = D ∪ CE. The process is then repeated if there are any undirected edges left in E \ D.
Otherwise, if no expansion was found another orientation for C is considered and another
expansion is computed. The algorithm returns FAIL if there are no more orientations to try.
We assume below that each lL(u) is updated as the direction of edges are changed. Now we
formally describe the algorithm.

1. Set D = ∅. If any edge e ∈ E has length pe > τ, return FAIL.

2. While E \ D is not empty:

(a) Compute a bag component C of G \ D.

(b) Find a new orientation of the edges in C for which at most one edge from each bag
is directed to the same vertex and any two edges e, e′ directed to the same vertex
satisfy pe + pe′ ≤ τ. If there are no more new orientations to try for C return FAIL.
Let C′ be the set of vertices u where an edge is directed toward u by this step.

(c) While there is a vertex u ∈ C′ and undirected edge e = {u, v} in E \ D where
lL(u) + pe > τ:

i. Direct e from u to v; then direct all edges of the same bag as e that are reachable
from v away from u. Add to C′ all vertices whose loads increased in this step.

ii. If any vertex w ∈ C′ has two edges from the same bag directed toward it or if
there are two edges e and e′ directed toward w so that pe + pe′ > τ then reset
all loads and edges directed by this iteration of Step (2) and go to Step (2b).

(d) Let CE be the set of edges that were assigned a direction in Steps (2b) and (2c). Set
D = D ∪CE.

3. Return schedule corresponding to the orientation of the edges.
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The time complexity of this algorithm is O(n2m + m2n). Let C1,C2, . . . ,Ch be the bag
components selected by the algorithm in Step (2a) in the order they were chosen. If after
expanding a bag component Ci a vertex u has at least one edge directed to it, we say that u has
been expanded.

Lemma 6.4.2 If the expansion of Ch is attempted by the algorithm and it returns FAIL, then
there is no schedule with makespan at most τ.

Proof If the algorithm returns FAIL after attempting to expand Ch, then for every possible
orientation of Ch there is a vertex w ∈ C′ where either: two edges from the same bag are
directed toward w, violating the bag constraints; or two edges e, e′ with pe + pe′ > τ have
been directed toward w. Note that after expanding any of the bag components C1,C2, . . . ,Ch−1

for every expanded vertex u the following properties hold: at most one edge from each bag is
directed to u; any two edges directed to u have combined length at most d; and any undirected
edge e = {u, v} satisfies lL(u) + pe ≤ τ.

These properties allow us to deal with each bag component Ci independently from the
previously expanded bag components C1, . . . ,Ci−1. In particular, if the algorithm returns FAIL
when trying to expand Ch, then there cannot be a schedule of length at most τ. To see this
assume the opposite, that there is a schedule S of makespan at most τ. Since no vertex expanded
by the expansion of C1,C2, . . . ,Ch−1 is incident to an undirected edge from the same bag as Ch,
then the algorithm will consider the same orientation for the edges of Ch as the orientation
chosen by S . Since the makespan of S is at most τ, if there is a vertex u in Ch incident to
an undirected edge e = {u, v} for which lL(u) + pe > τ then S orients e from u to v and any
undirected edge from the same bag as e is directed away from u. Note that this is exactly what
our algorithm does. Any further vertices u expanded by this process incident on undirected
edges are handled in the same manner. Since our algorithm assigns directions to the edges
exactly as S , then if S exists our algorithm must successfully expand Ch.

Lemma 6.4.3 If the algorithm produces a schedule, the makespan of the schedule is at most
(b/2)τ.

Proof Consider the load of any vertex w ∈ V with lL(w) > 0. There are b bags, so at most b
different edges e1, e2, . . . , eb are directed toward w, where e1 ∈ B1, e2 ∈ B2, . . . , eb ∈ Bb. If
lL(w) ≤ τ/2, then all edges oriented toward w are small and the load of w is at most bτ/2.
Otherwise lL(w) > τ/2; since the algorithm only proceeds to Step (2) if every edge e ∈ E has
weight pe ≤ τ, then τ/2 < lL(w) ≤ τ. The first time a big edge is directed toward w causing
lL(w) > τ/2 all undirected big edges incident on w are directed away from w; so besides this big
edge all other edges directed to w are small. By the condition of the while loop lL(w) + pe ≤ τ
for every small edge directed to w and so pe ≤ τ − lL(w). Thus the load of w is at most

b∑
k=1

pek ≤ lL(w) + (b − 1)(τ − lL(w)) = τ + (b − 2)(τ − lL(w)) ≤ τ +
(b − 2)τ

2
=

bτ

2
,

where the last inequality holds because lL(w) > τ/2. Therefore, the makespan of a schedule
produced by the algorithm is at most (b/2)τ.
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Theorem 6.4.4 There is a b/2-approximation algorithm for the graph balancing problem with
b ≥ 2 bags.

Corollary 6.4.5 There is a polynomial-time algorithm for the graph balancing problem with
two bags.

6.5 Polynomial-time Solvable Problems

6.5.1 A Polynomial-Time Algorithm for Q|bag,Mj, p j = 1|Cmax

In this section we consider the restricted assignment problem on uniform parallel machines
with bags where every job has the same length. Without loss of generality we can assume
that all the machines have speeds s1, . . . , sm ∈ Z

+. Let the least common multiple of the
speeds s1, . . . , sm be c. The above problem is equivalent to when every job J j ∈ J has
length p j = c, so for convenience we assume below that every job has length p j = c. Ob-
serve that since c is the least common multiple of the speeds, p j/si is integral for all J j ∈ J
and Mi ∈ M. We employ a 1-relaxed decision procedure. Note that in the special case when
there is one bag for each job, our algorithm is exactly the algorithm of Lin and Li [79] for
Q|Mj, p j = 1|Cmax.

Let a conflict machine set for bag Bk be C(Bk) = {Mi ∈ M | ∃J j, J j′ ∈ Bk : Mi ∈ Mj ∩

Mj′}, where Mj and Mj′ are the sets of machines where for jobs J j and J j′ can be scheduled,
respectively. As a result of this definition, if there is a machine Mi < C(Bk), then at most one
job in Bk can be scheduled on machine Mi. In our algorithm we first build a flow network N
with a source s∗ and sink t∗ as follows. First, there will be a job node for each job J j ∈ J;
then for each k = 1, . . . ,b, create a conflict machine node for every machine M′

i ∈ C(Bk), and
a machine node for each machine Mi ∈ M. To avoid ambiguity, we write M′

i whenever we
refer to a conflict machine node of a machine Mi, and Mi when we refer to the machine node
for machine Mi. We add arcs as follows: add arcs with capacity 1 from the source to each job
node; if job J j ∈ Bk can be scheduled on machine Mi: (i) if Mi ∈ C(Bk) then add an arc from J j

to the machine conflict node M′
i of bag Bk with capacity 1, (ii) otherwise add an arc from J j to

machine node Mi with capacity 1. Add an arc with flow capacity 1 from each machine conflict
node M′

i to its corresponding machine node Mi and include an arc from each machine node Mi

to the sink with capacity b(siτ)/cc. See Figure 6.1 for an example network.

Lemma 6.5.1 There is an integral flow f that saturates all the arcs incident on s∗ if and only
if there is a schedule with makespan at most τ such that the bag constraints are satisfied.

Proof First, let us show that if there is a flow f for N that saturates all the arcs incident on the
source, then there a schedule with makespan at most τ and the bag constraints are satisfied. As
all the arcs incident on the source are saturated by f , one unit of flow is sent from the source
to each job node. The flow from each job node J j is either sent directly to a machine node Mi

or a machine conflict node M′
i . If the unit of flow is sent to Mi or to M′

i , schedule job J j on
machine Mi.

Now we must show that by employing the above process, we obtain a schedule such that
the bag constraints are satisfied and the makespan of the schedule is at most τ. All the arcs
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Figure 6.1: Flow network N for the following instance: n = 4 jobs J = {J1, J2, J3, J4} and
m = 3 machines M = {M1,M2,M3}, the eligibility constraints for the jobs are M1 = {M1,M2},
M2 = {M1,M3}, M3 = {M1,M2,M3}, and M4 = {M2,M3}, and b = 2 bags where B1 = {J1, J2},
and B2 = {J3, J4}.

incident on the source are saturated in f , and so | f | = n. All the arcs except those incident on
the sink have capacity 1, so by flow conservation the n units of flow from the job nodes are
received by the machine nodes. We schedule job J j on a machine if its corresponding machine
node receives 1 unit of flow from job node J j, thus, the schedule must contain all n jobs. For
any machine node Mi,(∑

J j∈J

f (J j,Mi) +
∑

M′i∈C(Bk)|k=1,...,b

f (M′
i ,Mi)

)
≤ c(Mi, t∗) =

⌊ siτ

c

⌋
,

so no more than b(siτ)/cc jobs can be assigned to machine Mi. Every job has length c, so
the load of machine Mi cannot exceed (c/si)b(siτ)/cc ≤ τ. Machines where at least two jobs
from Bk can be scheduled are in set C(Bk), and all jobs in J j ∈ Bk that can be scheduled on
a machine Mi in C(Bk) have an arc from job node J j to conflict machine node M′

i . Each arc
leaving a conflict machine node has capacity 1, so at most one of the jobs from a bag Bk can be
scheduled to a machine, and so the bag constraints are satisfied.

Next, we show that if there is a schedule with makespan at most τ such that the bag con-
straints are satisfied, then we can build a flow function f such that all the arcs incident on the
source are saturated. As there is a job for each job node, set f (s∗, J j) = 1. For each job J j

scheduled on a machine Mi where J j ∈ Bk for some bag Bk, if machine Mi is not in C(Bk) set
f (J j,Mi) = 1, otherwise set f (J j,M′

i ) = 1. At most one job in bag Bk is scheduled on each
machine Mi ∈ C(Bk) and at most one unit of flow is received at machine conflict node M′

i of
Bk, so this unit of flow can be sent to machine node Mi as c(M′

i ,Mi) = 1. A unit of flow is sent
from each job node J j to the machine node Mi where J j is scheduled, and the sum of the flows
entering machine node Mi is equal to the number of jobs scheduled on machine Mi. Each job
takes c/si time units on machine Mi and the makespan is at most τ, so at most b(siτ)/cc jobs
can be scheduled on machine Mi. This implies that at most b(siτ)/cc units of flow are received
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by machine node Mi and f (Mi, t) ≤ c(Mi, t∗) = b(siτ)/cc, therefore we can send the flow from
every machine node Mi to the sink t∗.

The 1-relaxed decision algorithm is the following: build the flow network N described
above and compute an integral maximum flow f ; if f does not saturate at least one arc incident
on the source, return FAIL; otherwise all the arcs incident on the source are saturated, and for
each job J j ∈ J, schedule job J j on machine Mi if there is flow sent from job node J j to machine
node Mi.

Theorem 6.5.2 There is a polynomial-time algorithm for Q|bag,Mj, p j = 1|Cmax.

6.5.2 A O(m log m)-Time Algorithm for P|bag|Cmax with b = 2 Bags
If m < max{|B1|, |B2|} then two jobs of the same bag must go on the same machine and no
solution exists, so we assume that m ≥ max{|B1|, |B2|}. Introduce dummy jobs so that there
are 2m jobs where |B1| = m and |B2| = m; each dummy job has length zero. Then, our
problem is equivalent to the following problem: given two sequences A = a1, a2, . . . , am and
A′ = a′1, a

′
2, . . . , a

′
m representing the job lengths, find m disjoint pairs where each pair consists of

one element from A and the other from A′ such that the maximum sum of a pair is minimized.
It is trivial to solve this problem: sort the numbers in both sequences so that a1 ≥ a2 ≥ · · · ≥ am

and a′1 ≤ a′2 ≤ · · · ≤ a′m, then the m pairs are (a1, a′1), (a2, a′2), . . . , (am, a′m). Then we can produce
a schedule: for each pair (ai, a′i), i = 1, 2, . . . ,m, schedule the non-dummy jobs of pair i on Mi.
Since m ≥ max{|B1|, |B2|}, this algorithm takes O(m log m) time.

Theorem 6.5.3 P|bag|Cmax with b = 2 bags is solvable in O(m log m) time.

6.6 Inapproximability and Complexity

6.6.1 Restricted Assignment Problem with b = 2 Bags and Two Job
Lengths

To begin, we prove that restricted assignment problem with b = 2 bags where the job lengths
are either 1 or 2 has no approximation algorithm with approximation ratio less than 3/2, unless
P = NP (Corollary 6.6.2). To do this we reduce from the 3-dimensional matching problem
([SP1] in [29]). The result follows from Theorem 6.6.1 below. We note that our reduction is
similar to the one given by Lenstra et al. [72], but their reduction assumes there are b = n bags.

Problem: 3-Dimensional Matching (3DM)

Input: Three disjoint sets X = {x1, x2, . . . , xm′},Y = {y1, . . . , ym′},Z = {z1, . . . , zm′}, and a
set T ⊆ X × Y × Z of triples.

Output: Is there a set T ′ ⊆ T containing m′ triples, such that for any pair of
triples (xk, yk, zk), (xl, yl, zl) ∈ T ′, xk , xl, yk , yl, and zk , zl?

Theorem 6.6.1 It is NP-hard to decide whether there is a schedule with makespan at most 2
for the restricted assignment problem with b = 2 bags when the jobs lengths p j ∈ {1, 2}.
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Proof We give a reduction from the 3-dimensional matching problem. Build a scheduling
instance as follows. For each triple t ∈ T where element z ∈ t and z ∈ Z, create a machine Mt

of type z. Next, each element in X ∪ Y is a job j, where we place j in bag B1 if j ∈ X and
in bag B2 if j ∈ Y; j has processing time pt, j = 1 on machine Mt if j ∈ t, and pt, j = ∞

otherwise. Let deg(z) be the number of triples of T that contain element z ∈ Z. Then for each
element z ∈ Z, create (deg(z) − 1) dummy jobs of type z, where each dummy job j takes 2 time
units on machines of type z, and pt, j = ∞ otherwise. Place all the dummy jobs in bag B1.

We show there is a schedule with makespan at most 2 that satisfies the bag constraints if
and only if there is a 3DM T ′ of size m′.

(⇒) Since the makespan is at most 2, the dummy jobs are scheduled on
∑

z∈Z (deg(z) − 1)
of the machines. As there are deg(z) machines of type z ∈ Z and (deg(z) − 1) of these
machines have scheduled dummy jobs in them, there are exactly m′ machines scheduled
with the 2m′ non-dummy jobs, one machine for each type. Notice that if any one of these
m′ machines schedules exactly one non-dummy job, then either three non-dummy jobs
are scheduled together on a machine or a non-dummy job is scheduled with a dummy
job, but the schedule then has makespan at least 3 if either is the case. This implies the
non-dummy jobs, are scheduled two jobs per machine on the remaining m′ machines. By
the bag constraints, each pair of non-dummy jobs on these machines has one job from
bag B1 = X and the other job from B2 = Y .

Constructing the 3DM T ′ is simple. For each pair of non-dummy jobs x ∈ X and y ∈ Y
scheduled on a machine of type z ∈ Z, include the triple (x, y, z) in T ′. There is only one
job per element in X ∪ Y and exactly one triple is selected for each z ∈ Z, therefore T ′

has m′ pairwise disjoint triples.

(⇐) For each triple t = (x, y, z) ∈ T ′, schedule jobs x and y on machine Mt, then uniquely
schedule all the dummy jobs of type z on the remaining (deg(z) − 1) machines of type z.
Either a machine has a dummy job scheduled on it or two non-dummy jobs scheduled on
it, so the makespan of this schedule is 2. Each x ∈ X = B1 and y ∈ Y = B2, so machines
with non-dummy jobs respect the bag constraints. On the remaining machines, exactly
one dummy job is scheduled so, again, the bag constraints are satisfied. Therefore, the
schedule constructed has makespan at most 2 and satisfies the bag constraints.

Corollary 6.6.2 There is no ρ-approximation algorithm with ρ < 3/2 for the restricted assign-
ment problem with b = 2 bags where the job lengths are either 1 or 2, unless P = NP.

6.6.2 Graph Balancing Problem with b = 3 Bags and Two Job Lengths
In this section we show that when there are b ≥ 3 bags, it is NP-hard to approximate the
graph balancing problem with b bags with approximation ratio less than 3/2; in the graph
balancing problem with bags edges are assigned to bags. To do this we extend the reduction in
Chapter 2.2.3. As stated in Chapter 6.4, for the graph balancing problem with bags we presume
that there are self-loops instead of dedicated loads, so we will state any non-zero dedicated load
in the original reduction as a self-loop. That is, when the dedicated load is set to 3−|yi| for each
clause vertex yi in Chapter 2.2.3, add instead a self-loop of length 3 − |yi| on clause vertex yi if
3 − |yi| > 0, where |yi| is the number of literals in clause yi.



86 Chapter 6. Scheduling ParallelMachines with a Few Bags

Now we describe our extension to this reduction that will assign each edge to a bag. Create
a modified version of G called G′, where, for each self loop incident on a clause vertex yi in
G, replace the self-loop with a new vertex y′i and self edge {yi, y′i} in G′; each self-edge in G′

corresponds to a self-loop in G. Note that G′ is simple.

Lemma 6.6.3 There is an edge colouring of G′ that uses at most four colours, this colouring
can be computed in polynomial time.

Proof Let the four colours be η1, η2, η3, η4. Begin by assigning the colour η4 to all tautologous
edges, then consider the subgraph G′′ of G′ consisting of the same vertices but only the un-
coloured edges. Observe that every edge in G′′ either has a literal vertex and a clause vertex as
its endpoints or is a self-edge with one endpoint that is a leaf, thus G′′ is bipartite. Since G′′ is
bipartite and the maximum degree of any vertex in G′′ is three, by Vizing’s Theorem [98] there
is an edge colouring of G′′ using three colours η1, η2, η3, this edge colouring can be computed
in polynomial time.

Using Lemma 6.6.3 we can assign the edges in G to three bags: the edges coloured in G′

using colour η1 are in bag B1, the edges coloured in G′ using colour η2 are in bag B2, and the
edges in G′ coloured with η3 are in bag B3. Finally, place the edges coloured with η4 in any of
the three bags.

If a schedule has makespan at most 2, observe that the edges coloured in G′ with η4 are the
tautologous edges, each of these edges has weight 2 and if each tautologous edge is directed
towards a literal vertex, all other edges incident on such a literal vertex cannot be directed
toward it. All the edges incident on literal vertices other than the tautologous edges cannot
violate the bag constraints at literal vertices as they were given different colours, hence are
assigned to different bags. As a result, no tautologous edge can violate the bag constraints for
any schedule with makespan at most 2. All other edges in G have the property that no two edges
incident on any clause vertex in G′ share the same colour, so this ensures that any schedule
computed does not violate the bag constraints at the clause vertices. By Theorem 2.2.2, G has
an orientation with makespan at most 2 if and only if φ is satisfied. Therefore, by assigning the
bags as we have described, the reduction carries forward.

Theorem 6.6.4 There is no ρ-approximation algorithm with ρ < 3/2 for the graph balancing
problem with b ≥ 3 bags where job lengths are either 1 or 2, unless P = NP.

6.6.3 Q|bag|Cmax with b = 2 Bags
For P|bag|Cmax with b = 3 bags and Q|bag|Cmax with b = 2 bags, we show that both are

strongly NP-hard. We reduce from numerical 3-dimensional matching ([SP16] in [29]), which
is known to be NP-complete in the strong sense.

Problem: Numerical 3-Dimensional Matching

Input: 3 disjoint sets X = {a1, a2, . . . , am′},Y = {am′+1, . . . , a2m′},Z = {a2m′+1, . . . , a3m′}, and a
value β ∈ Z+; every element a j ∈ X ∪ Y ∪ Z has a size s(a j) ∈ Z+.

Output: Are there disjoint triples A1, . . . , Am′ where each triple Ai contains exactly one ele-
ment of X, one element of Y , and one element of Z, such that

∑
a j∈Ai

s(a j) = β?
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Notice that if an instance of P|bag|Cmax with b = 3 bags has exactly 3m jobs, Property 6.1.1
implies that every machine in a feasible schedule processes three jobs. By exploiting the fact
that the bags are disjoint and that we cannot place any two jobs from the same bag together on
a machine, we obtain a straightforward reduction from numerical 3-dimensional matching to
P|bag|Cmax with b = 3 bags. This reduction was independently presented by Dokka et al. [19].

Theorem 6.6.5 (Dokka et al. [19]) P|bag|Cmax with b = 3 bags is strongly NP-hard.

Proof To prove the claim we consider the decision variant of P|bag|Cmax and show it is NP-
complete in the strong sense. Clearly the decision variant of P|bag|Cmax is in NP. We show a
reduction from numerical 3-dimensional matching to P|bag|Cmax with b = 3 bags. Without loss
of generality we can assume that s(a j) ≤ β for all a j ∈ X∪Y∪Z and

∑
a j∈X∪Y∪Z s(a j) = m′β. Let

the number of machines m = m′, the number of jobs n = 3m′, where each job j is an element
a j ∈ X ∪ Y ∪ Z with length p j = s(a j), and bags B1 = X, B2 = Y , and B3 = Z.

The above reduction can be performed in polynomial time. We now show that there is
a schedule with makespan β that satisfies the bag constraints if and only if there are disjoint
triples A1, . . . , Am′ where

∑
a j∈Ai

s(a j) = β, for each i = 1, . . . ,m′.
(⇒) Since there are m = m′ machines and n = 3m′ jobs, by Observation 6.1.1 in a schedule

that respects the bag constraints every machine has exactly three jobs scheduled on it.
Put every job scheduled on machine Mi in triple Ai, i = 1, . . . ,m.

As the bag constraints are satisfied, no two jobs from the same bag are placed on ma-
chine Mi and so exactly one element of X, one of Y , and one of Z are in each triple Ai.
Each job J j ∈ J is an element in X∪Y ∪Z, thus

∑
J j∈J p j =

∑
a j∈X∪Y∪Z s(a j). To show that

the sum of the sizes of the elements in a triple Ai is β, assume there is a schedule with
makespan β but there is at least one machine with load less than β. Then

∑
J j∈J

p j =

m∑
i=1

( ∑
job J j scheduled
on machine Mi

p j

)
< mβ = m′β =

∑
a j∈X∪Y∪Z

s(a j),

which implies such a schedule cannot exist, so every machine has load β and each triple
has elements of total size β.

(⇐) For triples A1, . . . , Am′ , schedule each job J j with length p j = s(a j) for each a j ∈ Ai on
machine Mi. Since there are m = m′ machines, every job is scheduled. For each triple Ai,∑

a j∈Ai
s(a j) = β is satisfied so the makespan of our schedule is β. Since we set the bags

B1 = X, B2 = Y , and B3 = Z, each machine has exactly one job from each bag and the
bag constraints are satisfied.

When the machines are uniform the problem is NP-hard with only two bags.

Theorem 6.6.6 Q|bag|Cmax with b = 2 bags is strongly NP-hard.

Proof Consider the decision variant of Q|bag|Cmax with b = 2 bags. Clearly this decision
problem is in NP. Again, we reduce from numerical 3-dimensional matching. We can assume
without loss of generality that for every element s(a j) ≤ β, a j ∈ X∪Y∪Z, and

∑
a j∈X∪Y∪Y s(a j) =
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m′β. Let the number of machines m = m′, the number of jobs n = 2m′ where job J j ∈ J
corresponds to element a j ∈ X ∪ Y and has length p j = s(a j), and the bags are B1 = X and
B2 = Y . We associate each machine Mi with a unique element zi ∈ Z and set the speed of Mi to
si = (β − s(zi))/β. Clearly this reduction can be done in polynomial time.

We show that there is a schedule with makespan at most β if and only if there are disjoint
triples A1, . . . , Am′ , where

∑
a j∈Ai

s(a j) = β, for every i = 1, . . . ,m′.
(⇒) Since the number of jobs n = 2m, by Property 6.1.1 there are exactly two jobs scheduled

on each machine. For each machine Mi ∈ M, place the elements corresponding to the
jobs scheduled on machine Mi along with associated element zi ∈ Z in triple Ai. Since
the bag constraints are satisfied in the schedule and B1 = X and B2 = Y , triple Ai contains
exactly one element from each of X, Y , and Z. Let jobs J j ∈ B1 and J j′ ∈ B2 be scheduled
on machine Mi, then the load of Mi is

p j

si
+

p j′

si
=

1
si

(p j + p j′) ≤ β⇔ p j + p j′ ≤ βsi = β − s(zi)

⇒ p j + p j′ + s(zi) = s(a j) + s(a j′) + s(zi) ≤ β. (6.1)

Assume that the load of at least one machine Mi is strictly less than β. Under this as-
sumption, sum inequality (6.1) over all machines M1,M2, . . . ,Mm to get∑

a j∈X∪Y∪Z

s(a j) < mβ = m′β,

which cannot happen. Therefore, for every triple Ai,
∑

a j∈Ai
s(a j) = β.

(⇐) Construct a schedule for the scheduling instance as follows. Let jobs ji, j′i correspond
to elements xi ∈ X and yi ∈ Y in triple Ai. Schedule jobs ji and j′i on the machine Mi

associated with element zi ∈ Z in Ai, i = 1, . . . ,m. The bags are B1 = X and B2 = Y , so
the bag constraints are clearly satisfied. Since

s(xi) + s(yi) + s(zi) = β⇒ p ji + p j′i = β − s(zi)⇔
1
si

(p ji + p j′i )

=
β − s(zi)

si
= β,

hence, the makespan is β.

As a note, Yu et al. [102] proved that the special case of the numerical 3-dimensional match-
ing problem where two of the three disjoint sets X = {a1, a2, . . . , am′} and Y = {am′+1, am′+2, . . . , a2m′}

have elements with sizes s(a1) = s(am′+1) = 1, s(a2) = s(am′+2) = 2, . . . , s(am′) = s(a2m′) = m′

is strongly NP-hard. Our reduction still works in this case and because B1 = X, B2 = Y , and
m = m′, one can show even with a limited set of job lengths p j ∈ {1, 2, . . . ,m}, Q|bag|Cmax with
b = 2 bags is strongly NP-hard.

Corollary 6.6.7 Q|bag, p j ∈ {1, 2, . . . ,m}|Cmax with b = 2 bags is strongly NP-hard.
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Conclusions

Closing the 3/2-to-2 hardness gap of R||Cmax remains an open problem in approximation algo-
rithms and scheduling theory despite almost thirty years of research. In this thesis we present
results from our investigation of special cases of R||Cmax and related hard scheduling problems.
We improved upon several previously best-known approximation algorithms and studied the
structure of some of these problems in the hopes of revealing previously unknown complexities
surrounding the 3/2-to-2 hardness gap of R||Cmax. While the research presented in this thesis
did not reconcile the outstanding 3/2-to-2 hardness gap, we discovered new approximation
algorithms with tight approximation ratios (assuming P , NP) for some variants of R||Cmax.
In some cases these problems share the same 3/2-lower bound on the approximation ratio of
R||Cmax.

Below we provide a summary of our results in Section 7.1, and briefly discuss future work
and open problems in Section 7.2.

7.1 Summary

In Chapter 3 we gave 3/2-approximation algorithms for the graph balancing problem with two
job lengths, matching the 3/2-hardness lower bound known for the approximation ratio for this
problem. The best-known approximation algorithm prior to our results for the graph balancing
problem with two job lengths had approximation ratio 1.652 [66].

In Chapter 4 we proved there exists a (
√

65 + 7)/8-approximation algorithm for the graph
balancing problem with two speeds and two job lengths, this to the best of our knowledge is
the first approximation algorithm with approximation ratio strictly less than 2 for a scheduling
problem on uniform parallel machines that shares the same 3/2-inapproximability bound as
R||Cmax. We also present a (2 − `s/`b)-approximation algorithm for the restricted assignment
problem with two job lengths p j ∈ {`s, `b} on uniform parallel machines, where `s < `b. Previ-
ous to this, the best-known approximation algorithms for both problems were those for R||Cmax

and have ratios of 2.
In Chapter 5 we prove that unless P = NP there is no ρ-approximation algorithm with

ρ < 3/2 for the graph balancing problem restricted to instances where the job-intersection
graph is diamondless, even if the job lengths are only 1 or 2. This was accomplished by
strengthening a reduction by Ebenlendr et al. [21]. For R||Cmax with bounded job assignments,
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we gave a flow-based approximation algorithm that has approximation ratio 5/3 for r = 4,
3/2 for r = 3, and 1 for r = 2. This approximation algorithm is also a 3/2-approximation
algorithm for R||Cmax restricted to diamondless job-intersection graphs, and solves R||Cmax re-
stricted to triangle-free graphs. By combining our algorithm with the best-known algorithms
for the restricted assignment problem and R||Cmax, we designed a (2−1/(r−1))-approximation
algorithm for the restricted assignment problem with two job lengths when r ≥ 3.

In Chapter 6 we presented results for R|bag|Cmax and special cases of this problem with an
emphasis placed on when the number of bags is small. First, we gave a simple b-approximation
algorithm for R|bag|Cmax and a PTAS for R|bag|Cmax when there the numbers of machine types
and bags are both constant; the latter result implies there is a PTAS for Q|bag|Cmax when
both the number of machine speeds and number of bags are constant. Next, we gave a b/2-
approximation algorithm for the graph balancing problem with b ≥ 2 bags; this approximation
ratio is tight for b = 2 bags and for b = 3 bags, unless P = NP. Following this, we presented
polynomial-time algorithms for the restricted assignment problem with bags on uniform paral-
lel machines where all the jobs have unit length (Q|bag,Mj, p j = 1|Cmax) and for P|bag|Cmax

with b = 2 bags. Then, we proved that unless P = NP there are no ρ-approximation algorithms
with ρ < 3/2 for the restricted assignment and graph balancing problems with b = 2 and
b = 3 bags, respectively. Finally, we proved that Q|bag|Cmax with b = 2 bags is strongly NP-
hard; this implies there is no FPTAS for Q|bag|Cmax when there are two bags, unless P = NP.

7.2 Future Work and Open Problems
We conclude this thesis by presenting some future work and open problems. For the sake of
brevity, we only state open work that directly results from our research presented in this thesis.
We give these problems by chapter.

Chapter 3. There still remains a 3/2-to-7/4 hardness gap for the graph balancing prob-
lem. As we show in Chapter 3, there are 3/2-approximation algorithms for the graph balancing
problem with two job lengths. In fact, since our research two independent research groups
have also developed 3/2-approximation algorithms [11, 45]; both of these works use different
techniques than the algorithm we presented in Chapter 3.1. Our algorithm described in Chap-
ter 3.2 uses an approach that is somewhat similar to that in [11]. A natural special case of
the the graph balancing problem to consider is the graph balancing problem with a constant
number c > 2 job lengths and an open question is whether approximation algorithms for this
problem with approximation ratio less than 7/4 exist.

Chapter 4. We broke the 2-approximation barrier for the graph balancing problem with
two speeds and two job lengths by giving an approximation algorithm with approximation
ratio (

√
65 + 7)/8 ≈ 1.88278. It is unclear if the approximation ratio we obtained can be

improved upon. It does not appear the techniques we used can generalize easily to three or
more machine speeds, and some of the techniques that we use rely on the assumption that
there are only two job lengths. Further investigation may be necessary for the graph balancing
problem with speeds for a fixed number of machine speeds and/or job lengths.

Chapter 5. We studied R||Cmax with simple job-intersection structure, however, the com-
plexity of R||Cmax restricted to planar job-intersection graphs remains open. Our 3/2-hardness
proof for the diamondless case does not necessarily yield instances of R||Cmax with planar
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job-intersection graphs. Planar graphs can admit diamonds, so we suspect it may not be
polynomial-time solvable.

Chapter 6. We developed several results for both R|bag|Cmax and special cases of this
problem. Currently there are several outstanding problems.

First, we proved that unless P = NP there is no ρ-approximation algorithm with ρ < 3/2
for the graph balancing problem with b = 3 bags unless P = NP, and our b/2-approximation
for this problem matches this lower bound for b = 3 bags; beyond this, it is not clear how
the hardness gap may differ for any number of bags. Assuming P = NP, there is no constant-
factor approximation algorithm for the restricted assignment problem with bags, presently it is
unknown whether or not the same is true for the graph balancing problem with bags.

We gave a PTAS for R|bag|Cmax with a constant numbers of machine types and bags. Das
and Wiese [17] designed a PTAS for P|bag|Cmax and [31, 52] present PTASs for R||Cmax with
a constant number of machine types. It is unclear if there is a PTAS for R|bag|Cmax when only
the number of machine types is constant. It is worth noting that when the number of machine
types is not constant, R|bag|Cmax with a constant number of bags has no PTAS (Corollary 6.6.2,
Corollary 6.6.4). Currently we do not know whether there is a PTAS for makespan minimiza-
tion on uniform parallel machines with bags (Q|bag|Cmax) when the number of machine speeds
is constant.

As there are no constant-factor approximation algorithms for the restricted assignment
problem with bags assuming P , NP, an interesting angle for research is to investigate other
special cases of this problem, like parallel machine scheduling with processing set restric-
tions and bags. As we discussed in Section 2.2.2, scheduling problems on parallel machines
with processing set restrictions have approximation algorithms with approximation ratios less
than 2; once the bags are introduced, there may exist constant-factor approximation algorithms.
To the best of our knowledge, parallel machine scheduling with processing set restrictions and
bags has not yet been investigated in the literature.
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