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Abstract 

Chronic obstructive pulmonary disease (COPD) leads to persistent airflow limitation, causing 

a large burden to patients and the health care system. Thoracic CT provides an opportunity to 

observe the structural pathophysiology of COPD, whereas hyperpolarized gas MRI provides 

images of the consequential ventilation heterogeneity. However, hyperpolarized gas MRI is 

currently limited to research centres, due to the high cost of gas and polarization equipment. 

Therefore, I developed a pipeline using texture analysis and machine learning methods to 

create predicted ventilation maps based on non-contrast enhanced, single-volume thoracic CT. 

In a COPD cohort, predicted ventilation maps were qualitatively and quantitatively related to 

ground-truth MRI ventilation, and both maps were related to important patient lung function 

and quality-of-life measures. This study is the first to demonstrate the feasibility of predicting 

hyperpolarized MRI-based ventilation from single-volume, breath-hold thoracic CT, which 

has potential to translate pulmonary ventilation information to widely available thoracic CT 

imaging. 
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CHAPTER 1 

1 INTRODUCTION 

Chronic obstructive pulmonary disease (COPD) is a disease characterized as non-

reversible airflow limitation, which causes the lung to be heterogeneously ventilated. 

Hyperpolarized gas magnetic resonance imaging (MRI) provides the ability to image the 

ventilation within the lung, however is limited to research centres, whereas thoracic 

computed tomography (CT) is widely available. In this thesis, the underlying hidden and 

visible structural information within CT images was quantified with texture analysis and 

machine learning to predict pulmonary ventilation heterogeneity.  

 Motivation and Rationale 

Chronic obstructive pulmonary disease (COPD) is defined by irreversible airflow 

obstruction, and presents a serious burden to the health care system and to patients’ quality 

of life. COPD was projected to become the third leading cause of by 2030,1 however has 

surpassed the projections and was recently reported to already be the third leading cause of 

death worldwide.2 As of now there is no cure for COPD,3 instead the current management 

goal is to improve health status, prevent exacerbations and prevent related complications 

and mortality.3 Figure 1-1 displays the burden of hospitalizations from patients with COPD 

in Canada. Importantly, a large portion of patients are admitted for multiple hospital visits 

compared to other diseases responsible for large numbers of hospitalizations.4 Related to 

these hospitalization statistics, there is a mean annual COPD-related healthcare cost per 

patient of over $3000.5  
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Figure 1-1: Leading causes of hospitalizations in Canada.  

Figure adapted from Canadian Institute of Health Information, Health Indicators 2008 

report.4  

The large, and growing, burden illustrates the sub-optimal management and treatment of 

COPD. Current measures of lung function include relatively simple and inexpensive 

pulmonary function tests. Despite their wide use, these tests provide only a global measure 

to encapsulate the complex heterogeneity of the disease, which manifests itself in many 

ways including airway obstruction, parenchymal destruction and related pathophysiology 

such as vascular abnormalities. Further, COPD is a heterogeneous disease, and does not 

affect the entire lung uniformly. A more precise and sensitive method for characterizing 

and monitoring underlying structural abnormalities, and resulting functional consequences, 

in COPD is needed. This has motivated the use of pulmonary imaging to enable a regional 

understanding of underlying structural abnormalities in patient populations, as well as on 

an individual level.  

Since the late 1970s, x-ray computed tomography (CT) has been used for pulmonary exams 

in COPD, specifically for detecting parenchymal destruction, or emphysema.6-10 CT has 

further been used to visualize the airways and vasculature within the lung. Alternatively, 

emerging imaging technologies such as hyperpolarized gas magnetic resonance imaging 

(MRI) have been developed that allow visualization of ventilation heterogeneity within the 



 

3 

 

lung that is a result of underlying structural abnormalities.  Hyperpolarized gas MRI 

provides unique information on lung function and patient outcomes, however this 

functional information is currently limited to a number of research centres of excellence.  

To translate this unique information, this thesis focuses on predicting regional ventilation 

heterogeneity based on structural patterns and determinants as quantified within widely 

available thoracic CT.  

In this chapter, background relevant to the understanding and motivation of the original 

research work presented in Chapters 2 and 3, is provided. In (1.2), an overview of the 

relationship between structure and function of the lung is presented. Section (1.3) presents 

the pathophysiology of COPD, followed by the clinical measures (1.4) and current imaging 

techniques (1.5) used to monitor COPD. Texture analysis of medical images and the current 

role it plays in lung imaging will be introduced in (1.6). Finally, the hypothesis and 

objectives of the thesis will be introduced and stated in (1.7).  

 Structure and Function of the Lung 

The lung is a complex organ that allows for efficient distribution and exchange of oxygen 

into the bloodstream. The structure of the lungs consists of the airways, parenchyma and 

vasculature, while the function is how these components exist together to distribute oxygen 

throughout the lung and deliver it into the bloodstream.  

1.2.1 Airways 

The airways are the highway for delivery of oxygen, and range widely in size and structure. 

A diagram of the entire airway tree is shown in Figure 1-2. The beginning airway 

generations, including the trachea and the main bronchi, have a large diameter and are 

supported by cartilage. As the airway generation increases, the number of airways grows 

exponentially due to branching, while the airway diameter decreases. At the terminal 

bronchioles, the airways are no longer supported by a cartilage and are simply supported 

by the airway wall and smooth muscle, as well as the matrix composed of alveoli.  

As shown in Figure 1-2, the airway tree can be split into the conducting zone and the 

respiratory zone. The conducting zone is comprised of the airways which do not participate 
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in gas exchange, whereas the respiratory zone is comprised of airways which are lined with 

alveoli. Conducting zone airways hold approximately 150 millilitres of air, and are often 

referred to as dead space as they do not participate in gas exchange. This is converse to the 

respiratory and transition zone airways, which participate in gas exchange and can hold 

approximately 2.5-3 litres at rest, depending on the size of the individual’s lungs.11  

Within the conducting zone the airflow is driven by bulk flow and the inertia of the air. 

Once through the conducting zone, the total cross-sectional area of the airways increases, 

slowing the velocity of airflow. From this point onward, the air movement is largely due 

to diffusion of the gas.  

 

Figure 1-2: Idealized human airway generation diagram.  

Adapted from Respiratory Physiology: The Essentials 10th edition.11  

1.2.2 Parenchyma 

The lung and airway system is designed to maximize the surface area available for gas to 

diffuse into the blood. Small alveolar sacs comprise the terminal point of the airways, 

where the wall is thin enough to allow oxygen to diffuse into the bloodstream. These well-

formed, small alveolar sacs provide the lung with 50-100 m2 of surface area for gas 
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exchange. Figure 1-3 displays a diagram of the alveoli and bloodstream interaction, where 

it can be seen that the alveoli takes a spherical shape to maximize the surface area. There 

are approximately 500 million alveoli within the lung,12 with a dense capillary network 

around the alveoli. The capillaries which participate in gas exchange are not much larger 

than a single blood cell, and the alveolar-capillary membrane is extremely thin, 

approximately 0.2-0.3 µm, allowing for fast diffusion of gases across the membrane.  

 

 
Figure 1-3: Diagram of oxygen exchange into the bloodstream. 

Diagram showing gas (blue circles) exchange into the bloodstream from the alveoli.  

 Pathophysiology of Chronic Obstructive Pulmonary 

Disease 

Lung disease can occur from an abnormality or dysfunction in any of the components 

above, preventing optimal delivery of oxygen to the bloodstream. COPD is characterized 

by persistent airflow limitation caused by a combination of parenchymal destruction 

(emphysema) and airways disease (chronic bronchitis).3 COPD is progressive over time, 

and is a result of exposure to exogenous irritants such as cigarette smoke, 

environmental/occupational irritants or genetic conditions such as alpha-1 antitrypsin 

deficiency.3  
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Figure 1-4: Diagram of pathophysiology of chronic obstructive pulmonary disease.  

Healthy airway and obstructive lung disease panels are adapted from Hogg (2004),13 

permission to reproduce provided in Appendix E. Healthy Alveoli and Emphysema are 

adapted from Woods et al. (2006),14 permission to reproduce provided in Appendix E. 

1.3.1 Emphysema 

Emphysema is characterized by enlargement of the airspaces distal to the terminal 

bronchioles, where gas exchange occurs. This enlargement is due to the destruction of 

parenchymal tissue, where the effects can be observed in the lower right quadrant of Figure 

1-4, compared to healthy alveoli in the lower left quadrant. The destruction of parenchyma 

may be heterogeneous and to varying severities in different regions within the lung, which 

give sub-classifications of emphysema including: centrilobular, panlobular and bullous 

emphysema. Many patients have a combination of these sub-classifications, and in severe 

emphysema it may be difficult to distinguish them.  

Some of the earliest observations of emphysema stem from work in the 1950s from 

Leopold and Gough. Their seminal work included observations on the inflammation, 

calibre of bronchi and weakness within emphysematous spaces.15 Since then, there have 

been extensive studies, moving from two-dimensional ex vivo measurements of 
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emphysema, to three-dimensional ex vivo measurements of emphysema,16-18 and 

eventually in vivo monitoring of emphysema using imaging as described in Section 1.5. 

The understanding of COPD changed in the 1960s, when Dr. James Hogg et al. published 

“The site and nature of airway obstruction in chronic obstructive lung disease”, 

demonstrating the importance of the small airways.19 They observed that in a healthy 

individual, the small airways contributes a small amount of the total airways resistance. 

However, in patients with COPD it was observed this relationship was inverted and small 

airways resistance was significantly increased. This increased resistance was present in 

regions with and without emphysema, indicating small airway abnormalities may predate 

the development of emphysema. 

1.3.2 Chronic Bronchitis 

Chronic bronchitis is characterized by sputum production and airflow obstruction for 

greater than three months during two consecutive years.3  The causes of cough and airflow 

obstruction are believed to be inflammation, mucus and damage to airways. Early 

investigations of chronic bronchitis observed a relationship between mucous 

hypersecretion and thickening of the bronchial mucus glands,20-23 as well as between 

mucous hypersecretion and accelerated lung function decline.24 An example of airway 

inflammation and mucus presence is shown in the upper right quadrant of Figure 1-4, where 

mucus is observed in the airway lumen leading to a decreased cross-section for airflow.  

 Clinical Measures of Global Lung Function 

“Pulmonary function tests provide objective, quantifiable measures of lung function. They 

are used to evaluate and monitor diseases that affect heart and lung function” Crapo 

1994.25 

To diagnose and monitor COPD, clinicians primarily rely on pulmonary function tests 

(PFT). These are simple breathing maneuvers that monitor flow rate, lung volumes and gas 

exchange at the mouth to provide information about the function of the lungs. These tests 

include spirometry, plethysmography and the diffusing capacity of the lung for carbon 

monoxide (DLCO). Measurement values can be expressed as percent of the predicted value, 
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which is a function of the patient’s age, sex, height and ethnicity.26 The impact of 

obstructive lung disease on patients can also be measured using quality-of-life 

questionnaires and exercise capacity tests. 

Of the breathing tests available, spirometry is currently the simplest and most widely used. 

Spirometry can be performed using a handheld device, such as that shown in Figure 1-5A.27 

The patient performs multiple tidal breaths, then is instructed to inhale fully, followed by 

a forceful exhalation until they cannot exhale further. A representative lung volume curve 

measured by the spirometer is displayed in Figure 1-5A. From this maneuver, the forced 

expiratory volume in one second (FEV1) and the forced vital capacity (FVC) are measured. 

The clinical diagnosis of COPD is based on the lung volumes measured with spirometry, 

as shown in Table 1-1. A ratio of FEV1 to FVC less than 70 percent is the diagnostic cut-

off for COPD according to the Global Initiative for Chronic Lung Disease (GOLD) 

criteria.3 The severity of COPD is then graded based on FEV1, where a lower percent of 

predicted is indicative of increased obstruction.  

Table 1-1: Diagnostic cut-offs from the Global Initiative for Chronic Lung Disease 

(GOLD).  

The pulmonary function test cut-off for diagnosis of COPD is for FEV1/FVC<70%, the 

severity grading is based on FEV1 percent predicted. 

 Pulmonary Function Test 

If FEV1/FVC < 70% 

GOLD Grade 1 FEV1 ≥ 80%pred 

GOLD Grade 2 50%pred ≤ FEV1 < 80%pred 

GOLD Grade 3 30%pred ≤ FEV1 < 50%pred 

GOLD Grade 4 FEV1 < 30%pred 

Plethysmography can be used to measure additional lung volumes, based on Boyle’s law.28 

The patient is seated in a sealed chamber, as shown in Figure 1-5B, and performs a series 

of breathing maneuvers, including tidal breathing, full inspiration and full expiration. An 

exemplar lung volume curve is also displayed in Figure 1-5B. In the context of COPD, the 

residual volume and functional residual capacity will often be increased due to gas trapping 

from the collapse of airways.  
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Figure 1-5: Spirometry and plethysmography devices and measurements. 

A) Handheld spirometer and measurements of the forced expiratory volume in one second 

and the forced vital capacity. B) Plethysmography box for lung volume measurements. 

Further, the morphology of the alveoli can be probed using the DLCO.29 This test is 

performed by inhaling a specific mixture of gas, containing a low concentration of carbon 

monoxide (CO) (0.3%). The patient then holds their breath at total lung capacity for eight 

seconds, during which the CO diffuses across the alveolar-capillary membrane and into the 

blood. When the patient breaths out, the concentration of CO is measured and compared to 

the initial concentration, from which the amount of CO that has diffused into the blood is 

inferred. Patients with emphysema will have a decreased DLCO due to a reduction of 

alveolar surface area for gas exchange, however a decreased DLCO may also be indicative 

of a thickening of the alveolar-capillary membrane, among other abnormalities.  

The impact that COPD has on the life of a patient is also an important measure. To quantify 

this, patient quality of life is measured using the St. George’s Respiratory Questionnaire 

(SGRQ).30 The SGRQ includes information from different aspects of disease effects, 
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including symptoms, activity and impacts on daily life. The scores from each component 

of the questionnaire are then averaged to give a single SGRQ value. Further, exercise 

capacity can be quantified using tests such as the six minute walk test.31, 32 The six-minute 

walk test, as well as other exercise capacity measurements, have been shown to be 

clinically important measures.33-35 

Despite the ability to simply and cost-effectively monitor lung disease, the tests described 

above do not provide sensitive quantitative or regional measurements of lung disease. In 

healthy individuals, the small airways contribute only a small portion of the total lung 

resistance, however, in COPD these small airways may be where the disease begins,19 and 

therefore may not be detected by measuring lung volumes and capacities.  

 Imaging Pulmonary Structure and Function 

“There may be considerable obstruction in the peripheral airways that would affect 

ventilation distribution and gas exchange but would have little effect on function tests 

designed to reveal obstruction. When total airway resistance is elevated to a clinically 

detectable level by disease in the small airways, obstruction is much more severe than is 

generally recognized.” Hogg et al. 1968.19 

Contrary to clinical measures of lung function, pulmonary imaging provides the 

opportunity to view regional abnormalities within the lung. As discussed in Section 1.2, 

the structure and function of the lung are innately connected. Anatomical imaging 

modalities provide the opportunity to visualize the structural abnormalities which in turn 

may be consequential in determining the functional abnormalities, which can be measured 

using functional imaging techniques.   

1.5.1 Structural and Anatomical Imaging 

First introduced in the late 1970s, x-ray computed tomography (CT) allows for 

visualization of the structure within the lung, as shown within Figure 1-6. Thoracic CT can 

be acquired under breath hold conditions, where a patient is instructed to inhale fully, or 

by inhaling a set volume of gas from functional residual capacity. CT then provides an 

attenuation map of the lung, where a density of -1000 Hounsfield units (HU) indicates the 



 

11 

 

presence of air, and as such, voxels with a density near -1000 HU indicate regions of tissue 

destruction. Two methods are commonly used to quantify the severity of emphysema in a 

patient, either a threshold method or percentile method. The threshold method quantifies 

the percentage of the lung that has a density of less than the threshold. Commonly used 

thresholds include -910 HU,36 -950 HU37 and -960 HU.38 The percentile method reports 

the value of the percentile density from a histogram, often used values include the 5th 

percentile and 15th percentile. The ability to visualize emphysema in vivo has allowed for 

sensitive monitoring of disease progression, and has been shown to reduce the statistical 

power needed to perform clinical trials of treatment in alpha-1 antitrypsin deficiency 

compared to spirometry.39 

More complex CT analyses have also been employed, including metrics which examine 

the statistical properties of low attenuating (< -960 HU) clusters in CT images.40 The 

cumulative size distribution of low attenuating clusters were shown to follow a power-law 

relationship, and the power-law exponent was shown to be reduced in relation to a decrease 

in DLCO.40  

 

Figure 1-6: CT Imaging of healthy, mild COPD and severe COPD individuals.  
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Healthy DLCO= 106%pred, FEV1/FVC= 72%, FEV1 = 80%pred; Mild COPD DLCO=87%pred, 

FEV1/FVC=60%, FEV1=94%pred; Severe COPD DLCO=17%pred, FEV1/FVC=29%, 

FEV1=28%pred. Yellow areas show regions of density less than -950 HU. 

CT can also be used to visualize the airways and vasculature within the lung. Spatial 

resolution in low-dose CT typically limits the segmentation of airways to ~7th generation 

airways (~2 mm diameter). Despite these limitations, from airway segmentations, 

important measurements can be made such as airway wall thickness, wall area and lumen 

area. Airway measurements have led to observations including recent work showing 

apparent loss of airways in severe emphysema,41 and the extent of this loss measured using 

CT is an independent predictor of patient quality of life.42 CT measures have also been 

shown to be risk factors for exacerbations, including the percentage of emphysema or 

airway wall thickening which were both associated with COPD exacerbation frequency.43  

Further, changes in pulmonary vasculature have been observed using CT perfusion 

imaging, indicating there may be vasculature changes at early stages of COPD 

development.44 Non-contrast enhanced CT has also been used to observe distal pruning of 

small vessels in COPD, where a decreased ratio of small vessel blood volume to total blood 

volume was shown.45, 46 

More recently, high resolution structural images of the lung have been achieved using 

magnetic resonance imaging (MRI). MRI of the lung presents a unique challenge because 

there is a low density of tissue and many tissue/air interfaces. This means there is a small 

magnitude of signal and a high amount of paramagnetic oxygen, which creates local field 

inhomogeneities and increases the relaxation rate. To account for the increased relaxation 

rate of the tissue within the lung, ultra-short echo time sequences have been developed.47-

50 These, and newer techniques such as zero echo time sequences, are advances towards 

MR images achieving similar structural information as present within CT, with no radiation 

dose to the patient.51 

1.5.2 Functional Imaging 

While structural information may indirectly inform upon the efficiency of the lung, with in 

vivo imaging there is opportunity to image function within the lung.  
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X-ray Computed Tomography 

Contrast-enhanced CT utilizes inhaled xenon and dual energy techniques to image where 

in the lung the xenon gas reaches to visualize ventilation. To accomplish this, dual-source 

CT scanners are used for near-simultaneous acquisition of two separate energy spectra. The 

separation between high and low energy spectra allows for differentiation between the 

inhaled contrast gas, and the native materials to the lung, to generate gas distribution 

images. Dual-energy CT has previously been applied to observe ventilation patterns in 

patients with COPD.52, 53 

In addition to dual-energy CT, it is possible to use air as a contrast agent by acquiring 

images at multiple lung volumes, where you can attribute the change in density within an 

anatomical location to the flux of air. Both four-dimensional CT (4D-CT) and multi-

volume CT have been used to create surrogate measures of ventilation by registering 

multiple lung volumes acquired and quantifying the density change as air enters the lung.54-

59  

Despite success of CT for functional imaging, the clinical adoption is limited due to the 

increased radiation dose required for multiple, or extended length, scans. Additionally, the 

necessity of additional scans or an exogenous contrast agent with specialized hardware 

make these scans costly.  

Hyperpolarized Gas Magnetic Resonance Imaging 

Hyperpolarized gas MRI uses an exogenous gas, which is polarized to have an atomic spin. 

When inhaled, the spatial distribution of the gas within the lungs can be imaged using 

specialized receive coils within a magnetic resonance scanner. Due to the low spin density 

available in the gas state, hyperpolarization is performed. This is done through optical 

pumping, where angular momentum is given to an alkali metal (typically Rubidium) 

through a circularly polarized laser at the resonance frequency of the metal (~794.6 nm for 

Rubidium). The angular momentum is then transferred from the metal to the nuclei being 

polarized (3He or 129Xe) through collisions. The optical pumping technique can increase 

the polarization of the gas up to five orders of magnitude greater than through a thermal 

process. 
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The field began in the 1990s, when inhaled 129Xe was first imaged within a mouse model.60 

Since then, the use of hyperpolarized gas MRI has greatly expanded, and has seen the 

adoption of hyperpolarized 3He, however, is currently undergoing a transition back to 129Xe 

due to the increasing cost of 3He. Figure 1-7 displays the ventilation patterns measured 

using hyperpolarized 3He across COPD disease severity. Cyan indicates the volumes 

ventilated within a breath-hold, whereas dark regions are not ventilated. To quantify the 

extent of ventilation abnormalities, the ventilation defect percent (VDP) is calculated as 

the total volume of ventilation defects normalized to the thoracic cavity volume.61 The 

Brownian motion of hyperpolarized gas under diffusion gradients has also been used to 

probe microstructure of the lung using the apparent diffusion coefficient or 

morphometry.14, 62-64 Work related to these measures is complimentary to the objective and 

hypothesis of this thesis, and are presented in Appendix A-C.  

 

Figure 1-7: 3He hyperpolarized gas MRI for healthy, mild COPD and severe COPD 

individuals.  

Examples of hyperpolarized 3He (cyan) overlaid on anatomical 1H (gray) MRI. The dark 

regions within the lung are regions which are not filled within a breath hold, and are termed 

ventilation defects. An increase in severity in COPD is related to an increase in ventilation 

defects.  

 

Both 3He and 129Xe hyperpolarized gas MRI have been shown to be safe and reproducible 

measures.65-67 In COPD patients, 3He VDP is related to spirometry,68 symptoms and 

exercise capacity,69 CT based measurements of emphysema and patient exacerbations.70, 71 

Ventilation defects have also been shown to be spatially related to structural observations 

of gas trapping and emphysema as measured using CT parametric response maps.72  Using 

129Xe has yielded similar observations, with many of the 3He studies being paired with 
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129Xe, as well as independent studies where the VDP was again shown to be related to 

spirometry.73 

It is important to note that despite each ventilation imaging technique relating to patient 

measures, they all vary slightly on the physiology they are probing. There are known 

differences between 3He and 129Xe,68, 74, 75 likely due to the density and viscosity of each 

gas allowing for different flow dynamics (based on Reynolds Numbers) in different calibre 

airways. Differences between CT-derived ventilation and hyperpolarized gas imaging have 

recently been reported,76 where a portion of the difference is likely a difference due to 

different breathing maneuvers. The majority of hyperpolarized gas imaging is based on 

static breath-holds, whereas CT is based on volumes throughout the breathing cycle. 

 Texture Analysis in Medical Imaging 

 “Texture is an innate property of virtually all surfaces … It contains important 

information about the structural arrangement of surfaces and their relationship to the 

surrounding environment.” Haralick 1973.77 

In medical imaging, texture analysis provides a quantitative method for describing patterns 

within an image, which may relate to different underlying pathophysiological 

determinants. Texture analysis has played a large role in the field of computer-aided 

diagnosis, where biomedical images are mined for information reflecting underlying 

pathophysiology which can then be used for the detection and diagnosis of disease.78 The 

rapid growth of the application of texture analysis and machine learning in medicine is 

evident in Figure 1-8, where an exponential increase in PubMed search results are 

observed, compared to a near linear increase in CT and MRI.  
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Figure 1-8: PubMed results for thesis keywords. 

Displaying the number of results sorted by year, displaying an indirect observation of the 

popularity of these methods.  

1.6.1 Typical Work Flow 

A typical workflow for texture analysis is outlined in Figure 1-9, where it includes image 

acquisition, region of interest definition, feature extraction from the region of interest, and 

feature analysis. The feature analysis can involve calculating which features are unique to 

certain regions, or including features within a machine learning algorithm. Below, the 

methods used for each of these steps are described, where segmentation and registration 

can be used to define a region of interest, and feature selection and machine learning are 

methods to analyze the extracted features.  



 

17 

 

 
Figure 1-9: Typical workflow for texture analysis. 

The typical workflow for texture analysis include image acquisition, region of interest 

definition, feature extraction then feature analysis. ROI=region of interest. 

Segmentation  

Medical image segmentation is the task of partitioning an image into multiple regions, 

based on a specified similarity characteristic. The simplest segmentation is done manually, 

where an observer outlines the structure desired. However, this method can be quite time 

intensive, and leads to high variability depending on the observer. Due to this, medical 

imaging has moved to semi-automated or automated segmentations. Segmentation of the 

lung cavity is a relatively easy task because there is a distinct density difference between 

lung tissue and other tissue. However, it is complicated by the presence of vasculature, 

diseased tissue and differentiating the trachea from lung tissue.  

The simplest computer aided segmentation approach is based on thresholding the image. 

Thresholding partitions the image into different regions based on a set, or algorithmically 

determined, signal intensity.79, 80 Another approach to segmentation is region growing 

techniques, which segments regions connected by intensity similarities. This can be 

performed by manually, or automatically selecting a seed location, and growing the region 

by iteratively adding neighboring pixels within a certain similarity criteria.81, 82 These 

methods have been employed to segment proton MRI thoracic cavity images previously.61 

More advanced methods including watershed,83 clustering,84, 85 and model based 

techniques86 have also been employed. Many of these methods have been utilized to create 

automated lung segmentation algorithms as an integral step in computer-aided diagnosis 

pipelines.87-89  
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More recently, deep learning has been applied to medical image segmentation, with the 

wide adoption of convolutional neural network architectures such as U-Net.90 U-Net is a 

neural network architecture which gained popularity after outperforming other 

segmentation tasks in multiple Grand Challenges. The U-Net architecture has also been 

extended to be compatible with volumetric segmentation, versus 2-dimensional 

segmentation, in a network referred to as V-Net.91 Converse to the previously described 

segmentation techniques, deep learning does not follow rule based segmentation, and 

instead learns to identify features relevant to the specific segmentation task trained on 

through backpropagation. One common limitation with deep learning for segmentation is 

the necessity for large labeled datasets, which can be time consuming to curate or difficult 

to attain. However, there are open source trained segmentation networks available on 

repositories such as GitHub or NiftyNet92 which can be more simply applied to a specific 

segmentation task without needing to train an entire network.  

Registration 

Registration is often required to determine the ground truth for texture analysis, whether 

that be registering MRI to histology, conventional to contrast-enhanced images, or 

structural to functional images. There are different registration techniques including rigid, 

affine and deformable. These techniques enforce limits on how the images can be moved 

or warped to match the other image. Rigid registration allows only translations and 

rotations of the moving image, and affine registrations maps parallel lines across the 

images being registered. Deformable registration cannot be represented using a 

transformation matrix, and instead creates local vector displacement fields to map the 

images to the same space. The technique you choose will depend on the registration task, 

where a rigid or affine registration is often sufficient if the images being registered are of 

the same anatomical space. However, for registration of inherently different images, 

deformable registrations may be more successful.  

A simple registration technique is landmark based registration, where a user places 

landmarks at the same anatomical location on the two images to be registered, and a 

deformation is calculated and applied to minimize the difference in the locations. This 
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method has previously been developed for affine registration of hyperpolarized gas MRI 

to anatomical proton MRI.61 More complex registration methods work to minimize a cost 

function based on the similarity of the images being registered, or by matching segmented 

surfaces. State-of-the-art registration algorithms used in medical imaging include the 

demons registration93 and the modality independent neighbourhood descriptor (MIND) 

registration.94 

Feature Extraction 

To describe the underlying patterns within the image, feature extraction is performed. The 

simplest features can be extracted from the histogram of values within the region of 

interest. These first-order features include the mean, median, mode, standard deviation, 

skewness and more. In CT imaging, these relate to the density, and include quantitative CT 

measures discussed in Section 1.5.1 including the relative area less than a threshold value, 

or the histogram percentile.  

Despite containing information on the voxel values within a region of interest, first-order 

features do not contain any information regarding the spatial distribution of voxels. To 

overcome this, frequently used approaches are based on second-order statistics which 

quantifies the relationship between voxels. Two of the most commonly used second-order 

statistic features include gray level co-occurrence matrix (GLCM)77 and run length matrix 

(RLM)95 derived features.96 The GLCM is populated by recording the number of times 

gray-level values appear within proximity to each other, where the column and row indices 

represent the pixel value, and the value within each element is the number of times the 

pixel values appear next to each other. Therefore, a GLCM with large values close to the 

diagonal represents an image that does not have many sharp edges. The RLM is populated 

by recording the number of runs within an image, where the row indices are the pixel value 

and the column indices are the length of a run, and the element value is the number of runs. 

Therefore, a RLM with most values in the first columns indicates an image which is very 

heterogeneous in appearance.  

Many further texture features may be calculated, including filter based methods, local 

binary patterns, spherical harmonics, Markov models and wavelets. A comparison of the 
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use cases and properties of each of these features are presented in a review of three-

dimensional texture features in medical imaging.96 

To account for noise, and reduce the size of the matrices, values must be binned to create 

both RLM and GLCM. If this is not performed, there would be virtually zero runs within 

the RLM, as there would be a very small chance of the exact same value appearing. A 

similar problem would be observed within the GLCM. The width of the bin will be a 

determinant of how well the features describe the region of interest; if the bin width is too 

small, the features will be noisy, whereas if it is too large you will not be sensitive to 

differences which may be physiologically relevant. The bin width is therefore a parameter 

that should be carefully chosen and is often experimentally determined to address what is 

best for the specific task. To address these problems, filtering and smoothing of the image 

may also be performed.  

More recently, with the advances made possible from improvements in hardware and 

software, deep neural networks have been widely adopted in medical image analysis. The 

most popular method for deep learning, a subtype of machine learning, is using 

convolutional neural networks (CNN). Conceptually, CNN are iteratively trained to learn 

abstractions of images from low level (such as edges and corners), to high level (such as 

shapes and concepts) features. These abstractions are learned and stored in filter banks, 

which are specially tuned to the type of image the CNN was trained on. As discussed, 

texture analysis aims to describe underlying patterns in an image, and in the same way, 

filter banks from a CNN quantify patterns observed. The largest difference between the 

methods is that texture analysis relies on hand crafted features, whereas deep learning 

automatically learns features which are relevant to a task, and typically has much greater 

capacity for abstraction. Further, the filter banks and features generated from a CNN do 

not require the next two steps (feature selection and machine learning for classification), 

as the last layer of a CNN generates class labels. However, a limitation to deep learning is 

the requirement of a large amount of training data, and the computational complexity of 

handling a large amount of data.  
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Feature Selection 

Feature selection aims to minimize the subset of features used from the original set of 

extracted features, such that the generalizability of the model is maximized. There are many 

factors that must be considered when choosing which features to use, including the size of 

the dataset you have. It has been observed the error of a classifier decreases and then 

increased as the number of features included increase.97 There have been different studies 

into the optimal number of features to include, however the consensus is the number varies 

largely depending on the task.98  

Methods to perform feature selection include forward selection and backward selection. In 

forward selection, features are iteratively added to the model based on the feature which 

increases the performance metric the most, whereas backward selection starts with the 

entire set of features and iteratively removes features which leaves the highest performing 

model. Further methods include dimension reduction by using tools such as principle 

component analysis or independent component analysis which aim to explain variance 

within the data, however, the interpretability of the features can be complicated while using 

these approaches. It is also important to select features which will be steady in different 

circumstances; for example, it is undesirable to include features that are highly dependent 

on user input, such as a segmentation. As such, a step can be included to select only features 

which are steady through different observer segmentations. To do this, a metric such as the 

intraclass correlation coefficient (ICC) may be used to compare the ranking of features 

across different segmentations.  

Machine Learning 

Once features are chosen to represent an image, or region in an image, machine learning 

can be used to determine how to combine the information from different features to 

minimize a cost function. The simplest example of this is a linear regression, where you 

want to minimize the sum of the squares of the distance from the line of best fit to each 

data point. When you have more than one feature, this task becomes more complicated.  

Machine learning approaches can generally be classified as supervised, or unsupervised 

learning. Unsupervised approaches look for patterns within a feature set, creating clusters 
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of features, without knowing an associated label for each cluster. Supervised approaches 

look to separate the feature space based on a label associated with each data point. Popular 

supervised machine learning algorithms used in medical imaging include logistic 

regression, linear discriminants, support vector machines, decision trees and neural 

networks.99  

A logistic regression is used for classification problems by estimating the probabilities for 

each class using a logistic function, also known as a sigmoid function, as the activation 

function which maps your algorithm value to a probability between [0, 1]. To train a 

logistic regression, the cross-entropy cost function is typically used. Similarly, a support 

vector machine aims to find the hyperplane which separates two classes, while maximizing 

the distance from the plane to each of the closest points, or support vectors. In cases which 

the data are not linearly separable, a non-linear kernel can be used to map the data to a 

linear space, as well as an application of a soft-margin. To train a support vector machine, 

the cost function rewards being at least one unit away from zero in the cost space, which 

aims to minimize the data points which lay within a margin to the separating hyperplane. 

Due to the inclusion of distance to points in space in the cost function, standardization or 

normalization of the features is an important pre-processing step. Standardization is 

performed by subtracting the feature mean and dividing by the standard deviation, while 

normalization is performed to rescale all data to the range of [0, 1]. Other classifiers include 

decision trees which learn decision rules for each feature to classify based on features, 

nearest neighbor, which classifies based on how similar a data point is to previously 

observed data, and a neural networks train to learn the combination of features and weights 

to predict the class. Each of these have different underlying algorithms, but all aim to 

minimize a cost function, such that when presented with a new data point they can predict 

the associated label as accurately as possible. 

1.6.2 Challenges and Limitations 

One of the largest challenges in texture analysis for medical imaging is deciding which of 

the methods discussed in Section 1.6.1 to implement. As is evident, there are a high number 

of combinations and permutations of texture features, feature selection and machine 
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learning methods. There is no standard combination that is the “best” to employ due to the 

fact that each medical image analysis problem is unique. Therefore, one of the most 

important parts of any texture analysis or machine learning project is managing the dataset 

to be able to validate and eventually test your specific method. If done correctly, a training, 

validation and testing split allows for confidence in the performance of the model created. 

For example, many machine learning methods may be used to generate a model from the 

training set, then be applied to the validation set. The highest performing model as 

determined on the validation set, can then be applied to the testing set to report the overall 

performance of the model generated. This ensures a decision on the best machine learning 

algorithm was determined experimentally, greatly reducing the likelihood the final model 

has been over fit to the data.  

Another important challenge is the generalizability of the models created using texture 

analysis. To obtain the best results, homogenous collection of the data is desired, where 

the same imaging protocol is employed across all subjects. However, to translate the model, 

differences across sites must be understood and considered. It is known the protocol 

parameters (slice thickness, voxel spacing), reconstruction kernel, and scanner vendor all 

effect texture features.100-102 The robustness of features across different scanners can be 

studied, including measuring feature robustness as a metric within feature selection. There 

is also recent work being done to standardize features across scanners.103 

1.6.3 Applications in Lung Imaging 

Computer-aided diagnosis has been around since before the digitization of medical images, 

where a pattern recognition approach was introduced to preprocess images, extract features 

and perform classification.104 Within lung imaging, a large number of studies applied 

feature analysis to chest x-ray images in a series of studies on “Image feature analysis and 

computer-aided diagnosis in digital radiography” from Dr. MacMahon and colleagues.105-

112  

More recently, texture analysis has been applied to CT images for the detection and 

classification of pulmonary nodules,113-116 which is also referred to as radiomics. Here, it 

has been observed that in addition to analyzing the tumour volume, it is beneficial to 
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analyze the parenchymal tissue.117, 118 Texture analysis has also been applied to create 

automated lung disease classification, including fibrosis,119 pneumonia120 and obstructive 

lung disease such as emphysema.121-125 All of these studies employed slightly different 

approaches to texture analysis, with different ground truths, however demonstrate the 

ability of texture analysis to capture important information within thoracic CT images. 

 Thesis Hypotheses and Objectives 

Hyperpolarized gas MRI has been used to provide unique functional information in patients 

with COPD, and has been shown to relate to important patient outcomes and have the 

potential to guide treatment. Unfortunately, this specialized information is currently limited 

to a small number of research centres due to the high cost of hyperpolarization equipment 

and gas. This is converse to widely available thoracic CT, which provides high-resolution 

anatomical images. The overarching objective of this thesis is to use texture analysis and 

machine learning to generate the functional information contained within hyperpolarized 

gas MRI, from a single-volume, non-contrast enhanced thoracic CT. To do this, 

hyperpolarized gas MRI were registered to thoracic CT to provide the ground truth training 

label. First and second order features were then extracted from each volume of interest, 

which were used to create a machine learning model. We hypothesized that the structural 

information contained within a single-volume breath hold CT can inform on regional lung 

function. This hypothesis has a basis in previous observations using thoracic CT, such as 

the airway and vasculature changes associated with COPD, and the previously reported 

spatial overlap between CT emphysema measures and ventilation defects.  The objective 

of Chapter 2 was to development a texture analysis pipeline, and apply the pipeline is a 

small cohort as proof-of-concept.  

The objectives in Chapter 3, were to apply improve upon the methods developed in Chapter 

2, and apply this pipeline in a larger set of patients. To do this texture features, the volume 

of interest size, and the sampling method were optimized within the training set of this 

cohort. The optimal performing model was then applied in the testing set of 27 participants. 

We hypothesized that the model predicted ventilation maps would qualitatively and 
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quantitatively relate to ground truth MRI ventilation maps, as well as important clinical 

measures.  

In Chapter 4, I provide a summary of the impact and conclusions from Chapter 2 and 3, as 

well as discuss limitations and future steps to build upon the research presented in this 

thesis.  
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CHAPTER 2 

2 TEXTURE ANALYSIS OF THORACIC CT TO 

PREDICT HYPERPOLARIZED GAS MRI LUNG 

FUNCTION 

To develop a pipeline for predicting hyperpolarized gas MRI ventilation based on texture 

analysis of thoracic CT, a small cohort of COPD patients were evaluated. Predicted 

ventilation maps were compared to ground truth hyperpolarized gas MRI ventilation.  

The contents of this chapter were accepted as conference proceedings in SPIE Medical 

Imaging and permission to reproduce the article was granted by SPIE: A Westcott, D.P.I 

Capaldi, D.G McCormack, A Fenster and G Parraga. SPIE Medical Imaging 2019.  

 Introduction 

Pulmonary imaging provides a unique opportunity to guide treatment and monitor disease 

progression in patients with chronic obstructive pulmonary disease (COPD). Currently, 

such regional information can be gleaned using contrast-enhanced X-ray computed 

tomography (CT), typically by using inhaled xenon gas with dual energy CT, at two 

different inspiration volumes, or free breathing volumetric CT image acquisition (4DCT) 

that employ advanced registration and analysis techniques.1  

Recently, hyperpolarized gas MRI has been developed and exploited in COPD patients 

because it does not employ ionizing radiation, which augers well for serial imaging studies. 

Hyperpolarized 3He and 129Xe MRI have been shown to be reproducible and measurements 

or biomarkers derived using both approaches are sensitive to changes over short periods of 

time,2, 3 as well as having the potential to guide treatment such as bronchoscopic lung 

volume reduction.4 MRI ventilation information and ventilation defects can be quantified 

using the ventilation defect percent (VDP), which quantifies the volume of the lung not 

ventilated or poorly ventilated during a breath-hold scan of 8-12s.5 Although the functional 

information hyperpolarized gas MRI provides is unique, the method is limited to research 

centres of excellence, which limits its clinical translation and use in multi-centre clinical 

cohort studies and clinical trials.  Moreover, CT and thoracic CT protocols are universally 

available and this has facilitated the acquisition of CT in large cohort studies such as 
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COPDGene,6 ECLIPSE,7 SPIROMICS,8 and CANCold,9 which have together resulted in 

tens of thousands of thoracic CT images acquired in COPD patients for analysis.10   

We postulated that by combining the use of texture analysis and machine learning, the 

ventilation information provided by hyperpolarized gas MRI could be transferred directly 

to thoracic CT acquired at the same breath-hold volume.  The acquisition of a large number 

of MRI-CT pairs in the cohort study TinCAN,11 provides an opportunity to train and test a 

machine learning approach to distinguishing ventilated from non-ventilated regions based 

on CT.  

Therefore, the aim of this research was to develop and evaluate novel texture analysis tools 

to be used on CT images, using hyperpolarized gas MRI to determine the ground truth 

label. We hypothesized that a model utilizing first and second order features can be 

developed to classify CT regions as ventilated or non-ventilated based on hyperpolarized 

gas MRI ventilation maps.   

 Materials and Methods 

2.2.1 Study Subjects and Image Acquisition 

Subjects with a confirmed diagnosis of COPD provided informed written consent to a study 

protocol approved by a local research ethics board and Health Canada.11 These participants 

have been extensively investigated in a longitudinal cohort study.12 1H and 3He MRI were 

performed on a 3T whole-body system (MR750 Discovery, General Electric Health Care 

[GEHC], Milwaukee, WI) as previously described.11   Thoracic CT images were also 

acquired as previously described11 on a 64-slice Lightspeed VCT scanner (GEHC, 

Milwaukee, WI) (64 × 0.625 mm, 120 kVp, 100 effective mA, rotation time = 500 ms, and 

pitch = 1.0).  For CT, 1H and 3He imaging the subject was scanned in the supine position 

in breath-hold after inhalation of a 1-L bag from functional residual capacity to match lung 

volumes between scans. 10 subjects displaying CT evidence of emphysema (CT RA950 >9), 

and with a high ventilation defect percent (VDP>12%) were randomly selected, and 

randomly split into a training (n=7) and test (n=3) set. 
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2.2.2 Proposed Pipeline 

Figure 1 displays the pipeline developed to classify CT volumes-of-interest (VOI), based 

on breath-hold CT images, feature extraction, a trained feature classifier and 

hyperpolarized gas MRI as ground truth.  

 

Figure 2-1: Proposed texture analysis pipeline for classifying CT volumes of interest 

(VOIs) into ventilation defects or ventilated. 

2.2.3 Hyperpolarized MRI to Thoracic CT Registration 

CT images were concatenated to 15mm thick slices to match the MRI dimensions. MRI 

data were resampled and cropped to result in 1.25x0.7mm pixels - the original CT x-y plane 

dimensions. 1H MRI thoracic cavity images were registered to the CT using an affine 

landmark based registration, described previously for 1H to 3He registration (MATLAB 

R2018a; MathWorks, Natick, MA).5 The calculated registration transformation was 

applied to the MR ventilation cluster maps, which were generated by registering the 1H to 

3He and clustering using k-means clustering as previously described.5 CT images were 

segmented using Pulmonary Workstation 2.0 (VIDA Diagnostics Inc., Coralville, IA).  

CT and MR VOI were defined by applying a 3-dimensional grid, with isotropic dimensions 

of 15x15x15mm, on both the segmented CT and MR ventilation map.  The MR ventilation 

map was labeled as background, ventilated and non-ventilated, with the label of a VOI 

being the mode, or most common, value. The grid was then shifted 7.5mm horizontally 

and 7.5mm vertically, to generate additional training samples, such that each voxel belongs 
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to three separate VOI. This technique was further utilized when predicting the final label 

in the test set, as the mean was used between three overlapping 15x15x15 VOI, which then 

defined a 7.5x7.5x15mm region. Figure 2 shows the MR-CT registration and VOI 

extraction process. 

 
Figure 2-2: MRI to CT registration pipeline.  

Displaying the 3-dimensional grid used to define CT VOIs and corresponding MR based 

ventilation label. 

2.2.4 Thoracic CT Feature Extraction 

First and second order features were extracted using a custom-built texture analysis 

software as described below (MATLAB R2018a; MathWorks, Natick, Mass). 
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First Order Statistics 

The first order features used were mean CT density, standard deviation density, skewness, 

kurtosis, 95th percentile density, 15th percentile density (HU15), relative area of the lung 

less than -950 HU (RA950), relative area less than -910 HU (RA910) and relative area less 

than -856 HU (RA856).   

Gray-level Co-occurrence Matrix 

The gray level co-occurrence (GLCM) matrix is a measure of the number of times voxels 

of the same value appear next to each other.13 The matrix was populated by classifying 

voxels based on Hounsfield Units (HU) into 20 bins from 0 to -1000 HU, each with a 50 

HU size range. Using methodology previously described,13 features were calculated as 

shown in the right side of Table 1, for the 13 unique 3-dimensional directions.  

Cluster Volume Matrix 

The run-length matrix is commonly used as a method to extract features from 2-

dimensional images.14 However, calculating run lengths in 3-dimensions becomes 

computationally intensive, and does not take into account regions that are fully, but not 

linearly, connected. Further, in COPD, cluster of low attenuating regions are clinically 

relevant.15 Therefore, here we employed a combination of the run-length matrix with CT 

cluster analysis by creating the cluster volume matrix (CVM), for novel CT texture 

features. This is essentially a 3-dimensional extension of the run length matrix, where 

𝑝(𝑖, 𝑗) is the number of clusters, and 𝑖 is still the gray-level, but 𝑗 is the 3-dimensional 

cluster size of the same gray-level. The features calculated from the CVM are the same as 

those calculated from a run-length matrix, as shown in the left column of Table 1. The 

matrix was populated by classifying into 40 HU wide groups between -500 and -1000, 

where all voxels greater than -500 were collapsed into a single group. 
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Table 2-1: Equations to calculate features from a gray-level run length matrix and to 

calculate features from a gray-level co-occurrence matrix. 

𝑝(𝑖, 𝑗) is an element of the gray-level run length matrix, where 𝑖 corresponds to the image 

intensity, and 𝑗 corresponds to the number of homogenous runs of length 𝑗 and 𝑛𝑟 is the 

total number of runs. 𝑔(𝑖, 𝑗) is an element of the co-occurrence matrix. 𝜇 = ∑ 𝑖 ∗ 𝑔(𝑖, 𝑗)𝑖,𝑗  

is the mean, 𝜎 = ∑ 𝑔(𝑖, 𝑗) ∗ (𝑖 − 𝜇)2𝑖,𝑗  is the variance. 

CVM Feature Equation GLCM Feature Equation 

Short Run Emphasis 

(SRE) 

1

𝑛𝑟
∑

𝑝(𝑖, 𝑗)

𝑗2𝑖,𝑗
 Energy ∑ 𝑔(𝑖, 𝑗)2

𝑖,𝑗
 

Long Run Emphasis 

(LRE) 

1

𝑛𝑟
∑ 𝑝(𝑖, 𝑗) ∗ 𝑗2

𝑖,𝑗
 Entropy 

∑ −log(𝑔(𝑖, 𝑗)) ∗ 𝑔(𝑖, 𝑗))𝑖,𝑗 , if 𝑔(𝑖, 𝑗) ≅

0 

0 if 𝑔(𝑖, 𝑗) = 0 

Gray-level Non-

uniformity (GLNU) 

1

𝑛𝑟
∑ (∑ 𝑝(𝑖, 𝑗)

𝑗
)

2

𝑖
 Contrast ∑ 𝑔(𝑖, 𝑗) ∗ (𝑖 − 𝑗)2

𝑖,𝑗
 

Run length Non-

uniformity (RLNU) 

1

𝑛𝑟
∑ (∑ 𝑝(𝑖, 𝑗)

𝑖
)
2

𝑗
 Homogeneity ∑

𝑔(𝑖, 𝑗)

1 + (𝑖 − 𝑗)2𝑖,𝑗
 

Run Percentage (RP) 
𝑛𝑟

∑ 𝑗 ∗ 𝑝(𝑖, 𝑗)𝑖,𝑗

 Correlation ∑
𝑔(𝑖, 𝑗) ∗ (𝑖 − 𝜇) ∗ (𝑗 − 𝜇)

𝜎2
𝑖,𝑗

 

Low gray-level run 

emphasis (LGRE) 

1

𝑛𝑟
∑

𝑝(𝑖, 𝑗)

𝑖2𝑖,𝑗
   

High gray-level run 

emphasis (HGRE) 

1

𝑛𝑟
∑ 𝑝(𝑖, 𝑗) ∗ 𝑖2

𝑖,𝑗
   

Short run low gray-

level emphasis 

(SRLGE) 

1

𝑛𝑟
∑

𝑝(𝑖, 𝑗)

𝑖2 ∗ 𝑗2𝑖,𝑗
   

Short run high gray-

level emphasis 

(SRHGE) 

1

𝑛𝑟
∑ 𝑝(𝑖, 𝑗) ∗

𝑖2

𝑗2𝑖,𝑗
   

Long run low gray-

level emphasis 

(LRLGE) 

1

𝑛𝑟
∑ 𝑝(𝑖, 𝑗) ∗

𝑗2

𝑖2𝑖,𝑗
   

Long run high-gray 

level emphasis 

(LRHGE) 

1

𝑛𝑟
∑ 𝑝(𝑖, 𝑗) ∗ 𝑗2

𝑖,𝑗

∗ 𝑖2 

 

 
 

2.2.5 Training a Classification Model 

In total there were 85 features extracted to describe each CT volume, which were then used 

as the input to the classifier model. To train the model we used an even number of ventilated 

and non-ventilated regions from each subject, randomly selecting ventilated regions to 

match the number of non-ventilated regions. To obtain a training accuracy, which could 

provide an adequate estimate of the entire dataset, the training set was trained in five 

iterations with each iteration being trained on 80% and tested on 20% of the training data, 

where the testing 20% is unique for each iteration. This 5-fold cross-validation training 

was performed using a logistic regression, linear support vector machine (SVM) and a 
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quadratic SVM. To compare models, the mean accuracy of the 5-fold cross-validation was 

calculated and a receiver-operator-characteristic (ROC) curve was generated. From the 

ROC curve, the area under the curve (AUC) was also calculated as a global summary of 

the classifier performance.  

 Results 

2.3.1 Study Subjects 

Demographics, pulmonary function tests, CT and MR imaging measurements for ten 

subjects with COPD are provided in Table 2.  

Table 2-2: COPD Subject demographics, pulmonary function tests, CT and MR imaging 

measurements 

 
Training (n=7) Test (n=3) 

Age years 72 (6) 81 (5) 

Sex (M/F) 3/4 3/0 

Pack Years 60 (40) 50 (20) 

FEV1 %pred 33 (7) 42 (13) 

FEV1/FVC 36 (8) 36 (7) 

DLCO %pred 30 (9) 29 (8) 

RA950 % 21 (9) 21 (7) 

VDP % 27 (7) 28 (2) 
FEV1=forced expiratory volume in 1 second; FEV1/FVC=FEV1 ratio with 
forced vital capacity; %pred=percent predicted; DLCO=diffusing capacity for 
carbon monoxide; RA950=relative area of CT histogram <-950 HU. 
VDP=ventilation defect percent. 

2.3.2 Model Results 

Three different classification algorithms were trained including logistic regression, linear 

SVM and quadratic SVM using ~20,000 VOI, with an even proportion of ventilated and 

ventilation defect VOI. The results for each classification method are displayed in Table 3. 

Quadratic SVM performed best in both accuracy and area-under-curve, so it was applied 

to the test set of patients. Table 3 shows accuracy and AUC and Figure 3 shows the 

confusion matrix and receiver-operator-characteristic curve for the test subjects.    
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Table 2-3: Results for training and test set of patients. Only the best performing model was 

applied to the test set. 

 
Training (n=7) Test (n=3) 

Number sub-regions 20718 17358 

# ventilation defect 10359 12783 

# well ventilated 10359 4575 

Logistic Regression accuracy 67.3 - 

Logistic Regression AUC 0.74 - 

Linear SVM accuracy 67.3 - 

Linear SVM AUC 0.73 - 

Quadratic SVM accuracy  70.9 66.2 

Quadratic SVM AUC 0.78 0.72 

 

Figure 2-3: Confusion matrix and receiver-operator-characteristics (ROC) curve for the 

test set of subjects. 

The output of the model pipeline for a single test subject is shown in Figure 4 as a model 

score map and the binary map with spatial agreement between the model-predicted 

ventilation map and the ground truth 3He ventilation map shown with yellow arrows.  
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Figure 2-4: CT, Model predicted score, model binary prediction and 3He cluster map for a 

test subject showing representative centre and anterior slices. 

2.3.3 Comparison to Conventional CT Measures 

Spatial correlation between 3He ventilation defects and quantitative CT measures of 

emphysema were previously discovered and described using the TINCan cohort study.16 

To explore the predictive value of quantitative CT measures, and the additional value of 

texture features, we trained a logistic regression, linear SVM and quadratic SVM on the 

same patient dataset, using only RA950 and HU15.  The highest scoring model in the training 

set using only these two measurements and logistic regression resulted in 61% accuracy 

and an AUC of 0.66. This trained model was applied to the test set, with accuracy of 66% 

with an AUC of 0.63. Figure 5 shows the output of the logistic regression trained using 

only RA950 and HU15 next to the full model which showed qualitatively better prediction 

of ground truth.  
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Figure 2-5: “Conventional” versus Full Feature Models 

The output of the logistic regression trained using only RA950 and HU15 (“Conventional” 

Features), the output from the quadratic SVM model trained using the full set of features 

(Full Features), the CT showing region of low attenuation (RA950), and the ground truth 
3He ventilation images. 

 New or Breakthrough Work to be Presented 

We developed a pipeline to generate a new way to simulate 3He MRI ventilation defect 

maps from a single-volume breath-hold CT and applied this in a proof-of-concept 

demonstration in a small cohort of patients with COPD. In a small training and test dataset 

of 10 COPD patients, this proposed approach yielded increased prediction success as 

compared to emphysema CT biomarkers alone. To our knowledge, this is the first 
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demonstration of texture analysis and machine learning to predict ventilation abnormalities 

using single-volume thoracic CT.  

 Discussion and Conclusion 

In this proof-of-concept demonstration, we developed a pipeline to co-register 

hyperpolarized gas MRI and thoracic CT and extract features from CT ROI to create a 

classification model and predict ventilated or non-ventilated. The prediction of lung 

ventilation functional information from thoracic CT was recently described using multi-

volume CT and directly compared with hyperpolarized gas MRI.17 Our approach is based 

on a single clinical CT in a small group of COPD patients and serves as validation for 

future developments. Future work will be done to extend this method to include a larger 

and more heterogeneous cohort of patients, which we hypothesize will increase both the 

performance and generalizability of the model.  
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CHAPTER 3 

3 CHRONIC OBSTRUCTIVE PULMONARY DISEASE: 

THORACIC CT TEXTURE ANALYSIS AND MACHINE 

LEARNING TO PREDICT PULMONARY 

VENTILATION 

Building on Chapter 2 where the pipeline for texture analysis was developed, we apply it 

here in a relatively large cohort (n=95). Here we optimize the free parameters and build 

a texture model to predict ventilation based on widely available thoracic CT images.  

The contents of this chapter were submitted to Radiology: A Westcott, D.P.I Capaldi, D.G 

McCormack, A Ward, A Fenster and G Parraga. Chronic Obstructive Pulmonary Disease: 

Thoracic CT Texture Analysis and Machine Learning to Predict Pulmonary Ventilation. 

Radiology (Submitted February 26, 2019).  

 Introduction  

In patients with chronic obstructive pulmonary disease (COPD), structural remodeling of 

the airways, airway inflammation/obliteration and parenchyma destruction commonly 

result from chronic inhalation of combustibles including tobacco cigarettes and biomass 

fuels.1  Pulmonary x-ray computed tomography (CT) is now widely used to visualize and 

quantify COPD lung structural abnormalities and these measurements have been exploited 

in large cohort studies including COPDGene,2 ECLIPSE,3 SPIROMICS,4 and CANCold,5 

which have resulted in tens of thousands of thoracic CT images acquired in COPD 

patients.6  While all of these studies have focused on anatomical measurements, 

complementary functional information may also be gleaned using inhaled xenon gas and 

dual-energy CT, or multi-volume CT acquisition through the breathing cycle in 

combination with advanced registration and analysis techniques.7  

Hyperpolarized 3He and 129Xe magnetic resonance imaging (MRI) pulmonary 

measurements also provide high spatial and temporal resolution lung ventilation 

heterogeneity and microstructural information in COPD patients.8, 9 Hyperpolarized gas 

MRI measurements in COPD patients are reproducible over short periods of time,10 

sensitive to therapy11 and to the lung changes that accompany exacerbations.12  In 

particular, 3He and 129Xe MRI ventilation heterogeneity, quantified as MRI ventilation 
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defect percent (VDP),13 is predictive of COPD exacerbations,14 and longitudinal changes 

in quality of life and exercise capacity.15 In spite of these unique advantages, 

hyperpolarized gas MRI has been limited to specialized research centres and has not been 

used in multi-centre cohort COPD studies and clinical trials, largely due to the high cost of 

the hyperpolarized gas and specialized equipment. Unfortunately, the unique functional 

information provided by hyperpolarized gas MRI has not been made as widely available 

as CT, for clinical evaluations of COPD patients. With the recent successful utilization of 

texture analysis and machine learning in medical imaging, we postulated it would be 

possible to identify the necessary and sufficient features in CT images to generate lung 

ventilation heterogeneity maps which would make this important lung functional 

information more widely available. 

The TINCan cohort study16 prospectively acquired volume-matched CT and MRI in a 

relatively large group of COPD patients and provides a unique opportunity to train and test 

a machine learning approach to generate pulmonary ventilation maps based on single-

volume, non-contrast CT.  We hypothesized that ventilation maps could be generated based 

on texture features and machine learning of CT images, and that such maps would 

significantly correlate spatially with hyperpolarized 3He MRI ventilation defect percent 

(VDP) acquired experimentally in COPD patients. Such pulmonary ventilation predictions 

based on nearly universally available, conventional CT, may increase clinical access to 

valuable functional lung information beyond sites with hyperpolarized gas MRI. Therefore, 

the purpose of this study was to develop, train and test a pulmonary CT texture analysis 

and machine learning pipeline to predict 3He MRI ventilation heterogeneity maps acquired 

in the same COPD patients.  

 Materials and Methods  

3.2.1 Study Design and Pulmonary Tests 

Participants provided informed written consent to a longitudinal cohort study,17 approved 

by a local research ethics board in compliance with the Health Insurance Portability and 

Accountability Act (NCT=NCT02723474, Institutional Review Board #00000940).16 Data 

were prospectively acquired from January 2010 to February 2017. Spirometry 
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measurements were acquired according to the American Thoracic Society guidelines18 

using a whole-body system (MedGraphics Corporation, St Paul, MN).  Body 

plethysmography was performed for the measurement of lung volumes and diffusing 

capacity of the lung for carbon monoxide (DLCO) was measured using the attached gas 

analyzer.  The St. George Respiratory Questionnaire (SGRQ)19 was employed as a measure 

of quality of life.  

Figure 3-1 shows the image processing pipeline we developed to generate ventilation maps 

based on thoracic CT, as well as the consort diagram. Participants were excluded if they 

did not have COPD, or if the CT acquisition parameters were prospectively altered to 

include a modified inspiration-expiration protocol/scheme. One patient dataset was used to 

perform texture parameter optimization and the remaining patient datasets were 

randomized to a training set, for tuning model hyperparameters, and a testing set. 

 

Figure 3-1: Schematic for Analysis. 

A) Proposed texture analysis pipeline for generating predicted ventilation maps from 

thoracic CT. B) Consort diagram showing the participants that competed a visit, those 

excluded in this study due to not having COPD and those who had CT acquired with 
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different voxel spacing. For the training set, participants were randomly divided into five 

groups. Training was performed during five iterations, where for each iteration the model 

was trained on four groups (gray rectangle), and validated on one group (blue rectangle).   

3.2.2 Image Acquisition 

Conventional proton (1H) and 3He MRI were performed on a whole-body 3T system 

(MR750 Discovery, General Electric Health Care [GEHC], Milwaukee, WI) with 

broadband imaging capabilities as previously described.8  1H MRI was performed using a 

fast spoiled gradient-recalled-echo sequence, with acquisition parameters as previously 

described.8  3He MRI employed a whole-body gradient set with maximum gradient 

amplitude of 50 mT/m and a single-channel, rigid elliptical transmit-receive chest coil 

(RAPID Biomedical GmbH, Wuerzburg, Germany).  The basis frequency of the coil was 

97.3 MHz and excitation power was 3 kW using an AMT 3T90 RF power amplifier 

(GEHC).   3He gas was polarized to 30–40% polarization using a spin-exchange optical 

polarizer (Polarean Inc, Durham, NC). Thoracic CT was acquired on a 64-slice Lightspeed 

VCT scanner (GEHC, Milwaukee, WI) (64 × 0.625 mm, 120 kVp, 100 effective mA, tube 

rotation time = 500 ms, and pitch = 1.0).  CT images were reconstructed using a slice 

thickness of 1.25 mm with a standard convolution kernel.  The total effective dose to the 

participant was 1.8 mSv according to manufacturer settings and Imaging Performance 

Assessment of CT patient dosimetry calculator based on software from the Health 

Protection Agency of the United Kingdom (NRPB-SR250). The dimensions in the coronal 

plane for MRI were 3.1x3.1x15mm3 and in the CT were 1.25x0.7x0.7mm3. 

3.2.3 Image co-Registration 

Figure 3-2 shows the MRI-CT registration and volume-of-interest (VOI) extraction 

approach. MRI 1H and 3He images were registered using landmark registration, and k-

means clustering was used to generate ventilation cluster maps, as previously described.13  

MRI data were resampled to 1.25x0.7mm voxels to match the original CT coronal plane 

dimensions and cropped to match the CT field-of-view. CT images were segmented using 

Pulmonary Workstation 2.0 (VIDA Diagnostics Inc., Coralville, IA), then were 

concatenated to 15mm thick slices in the coronal plane to match the MRI dimensions. The 

segmented 1H MRI thoracic cavity masks were registered to the CT using a deformable 
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registration, the modality independent neighborhood descriptor (MIND) registration.20 The 

resultant registration transformation was applied to MRI ventilation cluster maps. Co-

registration was evaluated using the Dice similarity coefficient (DSC).  

 

Figure 3-2: MRI to CT registration pipeline. 

A 3-dimensional grid was used to define CT volume of interest (VOI) and the 

corresponding MRI based ventilation label where L is the length of the VOI in the coronal 

plane which is varied to determine the optimal VOI dimensions. MIND=modality 

independent neighborhood descriptor.  

 

CT and MRI VOI were defined by applying a 3-dimensional grid, with dimensions of 

LxLx15mm3, to the segmented CT and MRI ventilation map, where L was the VOI size in 

the coronal plane, which was optimized within the training set.  The MRI ventilation map 

was labeled as background, ventilated and non-ventilated, with the label of each VOI being 

the mode, or most common, value. The grid was then shifted L/2mm horizontally and 

L/2mm vertically, to generate additional training samples, such that each voxel belonged 
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to three separate VOIs. This technique was further utilized when predicting the final label 

in the test set, as the mean score of three overlapping LxLx15mm3 VOIs was used, which 

then defined unique predictions for L/2x L/2x15mm3 regions.  

 

3.2.4 Thoracic CT Feature Extraction 

First and second order features were extracted using a custom-built texture analysis 

software using MATLAB (MATLAB R2018a; MathWorks, Natick, Mass). A parameter 

search was performed to determine the texture parameters (GLCM bin width, CVM bin 

width and CVM bin range) using one patient dataset, which was then removed for the 

remainder of the analysis. The results from this parameter search is provided in Figure 3-3. 

Exemplar feature maps using these optimized parameters are shown in Figure 3-4. In total 

there were 87 unique features calculated per VOI, (i.e. global features). To provide the 

model more context in terms of COPD severity, each VOI feature was also divided by the 

average value of the feature within the same patient, and this generated an additional 87 

features (i.e. ratio features), for a total of 174 features per VOI. 

 
Figure 3-3: Texture parameter search. 

Performed using single individual with VDP=25%. The set of parameters chosen were 

those which had the greatest validation accuracy with stable accuracy values surrounding 

it, as shown as CVM Width=40, CVM Cut-off=-300 HU, GLCM Bins=45. 
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First order features that were generated included mean CT density, standard deviation 

density, skewness, kurtosis, 2nd moment, 3rd moment, 95th percentile density, 15th percentile 

density (HU15), relative area of the lung <-950 HU (RA950), <-910 HU (RA910) and <-856 

HU (RA856). 

 

Figure 3-4: Hyperpolarized MRI ventilation, thoracic CT image and feature maps. 

Feature maps were calculated using VOI dimensions of 15x15x15mm3. HU=Hounsfield 

Units; 15th percentile=the 15th percentile of CT density histogram; GLCM=gray level co-

occurrence matrix; CVM=cluster volume matrix; GLN=gray level non-uniformity.  
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The gray level co-occurrence (GLCM) matrix21 was populated by binning voxels based on 

Hounsfield Units (HU) into 45 bins from 0 to -1000 HU, where 45 bins was the result from 

the parameter search in the one patient removed. As previously described,21 features were 

calculated as shown in the right side of Table 3-1 for the 13 unique 3-dimensional 

directions.  

Table 3-1: Equations used to calculate features. 

𝑝(𝑖, 𝑗) is an element of the gray-level run length matrix, where 𝑖 corresponds to the image 

intensity, and 𝑗 corresponds to the number of homogenous runs of length 𝑗 and 𝑛𝑟 is the 

total number of runs. 𝑔(𝑖, 𝑗) is an element of the co-occurrence matrix. 𝜇 = ∑ 𝑖 ∗ 𝑔(𝑖, 𝑗)𝑖,𝑗  

is the mean, 𝜎 = ∑ 𝑔(𝑖, 𝑗) ∗ (𝑖 − 𝜇)2𝑖,𝑗  is the variance.  

CVM Feature Equation 
GLCM 
Feature 

Equation 

Short Run Emphasis 
(SRE) 

1

𝑛𝑟
∑

𝑝(𝑖, 𝑗)

𝑗2𝑖,𝑗
 Energy ∑ 𝑔(𝑖, 𝑗)2

𝑖,𝑗
 

Long Run Emphasis 
(LRE) 

1

𝑛𝑟
∑ 𝑝(𝑖, 𝑗) ∗ 𝑗2

𝑖,𝑗
 Entropy 

∑ −log(𝑔(𝑖, 𝑗)) ∗ 𝑔(𝑖, 𝑗))𝑖,𝑗 , if 

𝑔(𝑖, 𝑗) ≅ 0 

0 if 𝑔(𝑖, 𝑗) = 0 

Gray-level Non-
uniformity (GLN) 

1

𝑛𝑟
∑ (∑ 𝑝(𝑖, 𝑗)

𝑗
)

2

𝑖
 Contrast ∑ 𝑔(𝑖, 𝑗) ∗ (𝑖 − 𝑗)2

𝑖,𝑗
 

Run length Non-
uniformity (RLN) 

1

𝑛𝑟
∑ (∑ 𝑝(𝑖, 𝑗)

𝑖
)
2

𝑗
 Homogeneity ∑

𝑔(𝑖, 𝑗)

1 + (𝑖 − 𝑗)2𝑖,𝑗
 

Run Percentage (RP) 
𝑛𝑟

∑ 𝑗 ∗ 𝑝(𝑖, 𝑗)𝑖,𝑗

 Correlation ∑
𝑔(𝑖, 𝑗) ∗ (𝑖 − 𝜇) ∗ (𝑗 − 𝜇)

𝜎2
𝑖,𝑗

 

Low gray-level run 
emphasis (LGRE) 

1

𝑛𝑟
∑

𝑝(𝑖, 𝑗)

𝑖2𝑖,𝑗
   

High gray-level run 
emphasis (HGRE) 

1

𝑛𝑟
∑ 𝑝(𝑖, 𝑗) ∗ 𝑖2

𝑖,𝑗
   

Short run low gray-level 
emphasis (SRLGE) 

1

𝑛𝑟
∑

𝑝(𝑖, 𝑗)

𝑖2 ∗ 𝑗2𝑖,𝑗
   

Short run high gray-level 
emphasis (SRHGE) 

1

𝑛𝑟
∑ 𝑝(𝑖, 𝑗) ∗

𝑖2

𝑗2𝑖,𝑗
   

Long run low gray-level 
emphasis (LRLGE) 

1

𝑛𝑟
∑ 𝑝(𝑖, 𝑗) ∗

𝑗2

𝑖2𝑖,𝑗
   

Long run high-gray level 
emphasis (LRHGE) 

1

𝑛𝑟
∑ 𝑝(𝑖, 𝑗) ∗ 𝑗2 ∗ 𝑖2

𝑖,𝑗
 

 
 

 

Although run-length matrix is commonly used as a method to extract features from 2-

dimensional images,22 this becomes computationally intensive, and does not account for 

regions that are fully, but not linearly, connected which can be accounted for using low 

attenuating clusters.23 Therefore, here we employed a combination of the run-length matrix 

with CT cluster analysis by creating a new texture parameter, the cluster volume matrix 

(CVM). This is a 3-dimensional analog of the run length matrix, where p(i, j) is the number 
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of clusters, i is the gray level, and j is the 3-dimensional cluster size of the same gray level. 

The features calculated from the CVM are the same as those calculated from a run-length 

matrix, as shown on the left side of Table 3-1. The matrix was populated by binning voxels 

into 18 bins between -300 and -1000 HU, where all voxels with values greater than -300 

were collapsed into a single bin and all voxels less than -1000HU were included in the 

lowest density bin. 

3.2.5 Feature Selection 

With the intention to avoid model overfitting and maximize model generalizability, a 

forward feature selection scheme was developed in MATLAB. As shown in Figure 1B, 

training data were divided into five different groups, and five-fold cross validation was 

performed using logistic regression, where features were iteratively added based on the 

feature that lead to the greatest improvement of the validation area-under-the-curve (AUC), 

calculated from the receiver operator characteristic (ROC) curve. As shown in Figure 3-5, 

this was performed up to 20 features, as the AUC plateaued to a maximum when 20 features 

were used. Features which were in the first 20 features selected for at least two of the five-

fold cross-validation steps were included in the final model to ensure the features 

consistently contribute to an optimal model.  
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Figure 3-5: Details of Training set Outputs. 

A) Number of features and validation AUC where features were iteratively included based 

on maximal increase to the model during forward feature selection B) Correlation plot for 

features included in the final model.  

15th percentile=15th percentile of CT Hounsfield Units (HU); CVM = cluster volume 

matrix; LGRE=low gray-level run emphasis; RA950=relative area of CT histogram <-950 

HU; GLCM=gray level co-occurrence matrix; GLN=gray level non-uniformity; 

SRLGE=short run low gray-level emphasis; HGRE=high gray-level run emphasis  
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3.2.6 Training the Classification Model 

To simplify the anatomical heterogeneity included in the model while maintaining the 

information that is representive of the entire lung, we included the centre-most six slices 

(of ~15 total slices) that encompass 58±5 percent volume of the lung. In the training set, 

the VOI size and sampling scheme were optimized to maximize AUC. The VOI 

dimensions were 15 mm in the posterior to anterior direction and were varied from 

15x15mm2 to 30x30mm2 in the coronal plane. Due to a greater number of ventilated versus 

non-ventilated VOI, the method for sampling VOI to create the training set was critical. 

Under-sampling the majority class (ventilated volumes) was used in the training set with 

varying methods to ensure that patients with a lower magnitude of ventilation defect 

percent were adequately represented in the training data set. To accomplish this, at least as 

many ventilated as non-ventilated volumes were randomly sampled from each participant. 

Within the training set, to include a balance of patients with large ventilation defects, and 

patients with a lower magnitude of ventilation defect percent, a threshold was varied to 

define the minimum percentage of the lung sampled (i.e. for threshold=20%, participants 

with VDP<20%, ventilated volume sampled=20% of the lung).  

Once all parameters and features were selected, 5-fold cross-validation training was 

performed using a logistic regression, linear support vector machine (SVM) and a quadratic 

SVM. These classifiers were tested as they had greater performance compared to random 

forest, linear discriminant and nearest neighbor methods on previous experiments. The data 

were standardized and hyperparameter optimization was performed using Matlab 

(Classification Learner app) for each model to find the optimal hyperparameters, as 

displayed in Table 3-2. The mean cross-validation AUC were used to compare models.  

Table 3-2: Quadratic SVM Training Hyperparameters. 

The results of hyperparameter optimization for quadratic support vector machine using the 

Sequential Minimal Optimization solver, trained using 5-fold cross-validation and 

selecting the model with the highest mean validation accuracy. 

Metric Value 

Bias 1.2001 
Box Constraint 1.0 
Kernel Scale 1.8248 
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3.2.7 Statistics 

All statistical analyses were performed using GraphPad Prism, V8.0 (GraphPad Software 

Inc., La Jolla, CA).  To determine group differences, unpaired parametric t-tests were used 

when the data were normally distributed, and non-parametric Mann-Whitney tests were 

used when the data were not normally distributed as tested using the Shapiro-Wilk test for 

normality. Pearson correlation coefficients were used to determine the relationships 

between model, MRI and pulmonary function measurements. Results were considered 

significant when the probability of a two-tailed type I error (alpha) was less than 5% 

(p<0.05). 

 Results  

Demographic, pulmonary function tests and imaging measurements provided in Table 3-3 

show there were no significant differences between training and testing data sets. 

Table 3-3: Participant demographics, pulmonary function and imaging measurements. 

Parameter (±SD) 
All Participants 

n=94 

Training  

n=67 

Test  

n=27 

Difference 

p-value 

Age years 70 (9) 70 (8) 69 (10) 0.6 

Female sex % 33 31 48 0.1 

Pack Years years 50 (30) 49 (29) 50 (27) 0.9 

FEV1 %pred 63 (25) 63 (25) 61 (24) 0.6 

FEV1/FVC % 51 (13) 51 (13) 51 (13) 1 

DLCO %pred 56 (23) 54 (21)˄ 57 (22) 0.7 

SGRQ 40 (18) 41 (18)† 37 (20)‡ 0.5 

RA950 % 10 (10) 10 (10) 10 (10) 1 

VDP % 12 (12) 12 (11) 11 (12) 0.9 

DSC % 95 (1) 95 (1) 95 (1) 0.8 

FEV1=forced expiratory volume in 1 second; FEV1/FVC=FEV1 ratio with forced vital 

capacity; %pred=percent predicted; DLCO=diffusing capacity for carbon monoxide; 

RA950=relative area of CT histogram <-950 HU; VDP=ventilation defect percent; 

DSC=dice similarity coefficient for CT-MRI co-registration.  
†n=64; ‡n=26; ˄n=66 
 

As shown in Table 3-4, the best performing VOI size was 30x30mm2 while the optimal 

sampling threshold required a minimum of 30% ventilated lung, based on the highest AUC 

while maintaining the sensitivity once the AUC plateaued. Table 3-4 also shows that by 

varying the sampling pattern there was a trade-off between sensitivity and specificity. 
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Therefore, feature selection was performed using 5-fold cross-validation with VOI 

dimensions of 30x30x15mm3 and a sampling minimum of 30%.  

Table 3-4: Volume of interest and training sample patterns. 

To optimize coronal VOI dimensions, the sampling scheme ensured ≥ 30% ventilated lung 

was evaluated. To optimize the sampling scheme, for each participant evaluated in the 

training set, at least as many ventilated samples as non-ventilated samples were evaluated. 

To ensure that disease severity (ventilation, ventilation defects) was represented to train 

the model, a minimum percent of the ventilated lung was sampled. 

VOI dimensions 

Validation 

Accuracy  

Validation 

AUC  

Validation 

Sensitivity  

Validation 

Specificity  

                  Coronal VOI Size 

15x15mm2 81.5 0.773 0.440 0.885 

20x20mm2 78.6 0.784 0.584 0.822 

25x25mm2 80.1 0.804 0.605 0.833 

30x30mm2 85.0 0.820 0.485 0.906 

Sampling Scheme                Minimum % Lung Sampled 

0 69.4 0.776 0.729 0.688 

10 78.7 0.808 0.661 0.807 

20 82.6 0.816 0.576 0.864 

30 85.0 0.820 0.485 0.906 

40 86.3 0.820 0.382 0.937 

 

Table 3-5 shows that first-order density-based features have the largest individual AUC 

and both global and ratio values helped optimize the model, where a total of 21 features 

were included in the final model.  The correlation plot for all included features (Figure 

S2B) shows the strong correlation between GLCM features in different directions. During 

training, logistic regression, linear SVM and quadratic SVM achieved validation 

accuracy/AUC of 85.2%/0.82, 86.3%/0.81 and 87.0%/0.86, respectively. Therefore, the 

quadratic SVM model was applied to the test set.  

Table 3-5: Features utilized and AUC for training group.  

(participants n=67, VOI n=48,313) 
Feature AUC 

15th percentile global 0.765 

Skewness global 0.505 

15th percentile ratio 0.713 

GLCM Energy [-1,1,1] ratio  0.585 

GLCM Homogeneity [0,1,0] ratio 0.570 

Skewness ratio 0.507 

CVM GLN ratio 0.620 

RA950 ratio 0.711 

CVM LGRE global 0.550 
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RA950 global 0.761 

GLCM Energy [1,1,-1] ratio 0.586 

GLCM Energy [1,0,0] global 0.584 

GLCM Contrast [1,0,1] global 0.588 

RA910 global 0.753 

CVM GLN global 0.660 

GLCM Energy [1,1,0] ratio 0.583 

GLCM Contrast [1,0,-1] ratio 0.594 

CVM SRLGE global 0.552 

CVM HGRE global 0.570 

GLCM Correlation [1,0,-1] ratio 0.594 

Standard deviation ratio 0.535 

Global=value; ratio=value of VOI feature divided by mean feature value for whole lung; 

15th percentile=15th percentile of CT Hounsfield Units (HU); CVM = cluster volume 

matrix; LGRE=low gray-level run emphasis; RA950=relative area of CT histogram <-950 

HU; GLCM=gray level co-occurrence matrix; GLN=gray level non-uniformity; 

SRLGE=short run low gray-level emphasis; HGRE=high gray-level run emphasis. 

 

 

Figure 3-6 shows the predicted ventilation maps for four subjects within the test set, along 

with the experimentally-acquired CT and MRI ventilation scans. A qualitative spatial 

agreement between the model ventilation prediction and the MRI ventilation is observed, 

as well as noting the magnitude of predicted ventilation defects corresponds to that 

observed in the MRI ventilation.  
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Figure 3-6: Representative CT, MRI and model outputs for four participants in testing set.  

S1: FEV1=116%pred, FEV1/FVC=67%, DLCO=107%pred; S2: FEV1=39%pred, 

FEV1/FVC=34%, DLCO =63%pred; S3: FEV1 =25%pred, FEV1/FVC=29%, DLCO =17%pred; 

S4: FEV1=30%pred, FEV1/FVC=30%, DLCO =39%pred. 

 

In Figure 3-7, test-set evaluations are shown where the final model achieved an accuracy 

of 87.9% and an AUC of 0.82. Figure 3-7 also shows the significant and strong relationship 

between model-predicted VDP and hyperpolarized MRI VDP (r=0.90, p=<0.0001) as well 

as their significant relationships with FEV1 (Model r=-0.65, p<0.001; MRI r=-0.70, 

p<0.0001) FEV1/FVC (Model r=-0.73, p<0.0001; MRI r=-0.75, p<0.0001), DLCO (Model 

r=-0.69, p<0.0001; MRI r=-0.65, p<0.001) and SGRQ (Model r=0.59, p<0.005; MRI 

r=0.65, p<0.001). 
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Figure 3-7: Testing Set Model Outputs and Relationships. 

 A) Confusion matrix showing the model predicted, and the ground truth MRI 

classification, where accuracy=87.9%, AUC=0.82, sensitivity=0.58, specificity=0.92 (VOI 

n = 32457); B) Predicted VDP versus the observed VDP (r=0.90, p<0.0001, 𝑦 = 0.65𝑥 +
3). C-F) clinical measures versus model VDP and MRI VDP. DLCO= Diffusing capacity 

of the lung for carbon monoxide; VDP= ventilation defect percent; FEV1=forced 

expiratory volume in one second; FVC=functional vital capacity; SGRQ=St. George 

Respiratory Questionnaire. 
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 Discussion  

We developed a CT analysis pipeline that combined texture feature analysis with machine 

learning to generate pulmonary ventilation heterogeneity maps for direct comparison with 

MRI ventilation maps acquired in patients. The pipeline was trained and tested in a cohort 

of 95 COPD patients in whom volume-matched MRI and CT were acquired within 10 

minutes of each other. We made the following observations: 1) the highest performing 

model on the training set was applied to the testing set where it classified ventilated and 

non-ventilated VOI with 88% accuracy and an AUC of 0.82, 2) there were significant and 

strong correlations between model-predicted VDP and MRI VDP, and, 3) both model-

predicted and MRI VDP were significantly related to clinically-relevant measurements in 

the same patients including SGRQ, DLCO and FEV1/FVC.  

The pipeline we created generated a model that classified ventilated and non-ventilated 

volumes with 88% accuracy and an AUC of 0.82.  It is important to note that we chose the 

parameters and final model based on maximizing the AUC, such that both sensitivity and 

specificity of detecting ventilation heterogeneities were considered for algorithm 

performance. Density-based first order features generated the largest AUC, which was 

consistent with the spatial overlap between emphysema and ventilation defects, and in 

agreement with previous experimental results.14, 24 The influence of both global and ratio 

features for predicting ventilation underscores the importance of considering disease 

severity in relation to the rest of an individual’s lung, and relative to all patient lungs.  

Model VDP was strongly and significantly related to MRI VDP. The strong relationship 

between model and MRI VDP also provides strong support for the notion that the model 

well-predicted a large range of disease severity present within this study. Model-predicted 

VDP and MRI VDP were also significantly related to clinically-relevant pulmonary 

function measurements, including FEV1/FVC and DLCO as well as SGRQ. This is an 

important result in the context of previous automated disease quantification methods 

developed using texture analysis,25-29 which were trained using unsupervised learning, or 

with previously developed disease classification systems. In contrast, the predicted-model 
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trained here provided a quantitative measure that was spatially-dependent and trained using 

ventilation as the ground truth.  

We acknowledge numerous study limitations including the fact that TINCan comprised a 

convenience sample with a large number of moderate to severe patients, so generalizability 

should be considered in this context.  We also acknowledge that only the centre ~60% of 

the lung was included in the analysis in order to simplify CT-MRI co-registration. 

Nevertheless, the centre six slices provide an appropriate representation of all five lung 

lobes, with a mean VDP difference of 1±2% between the slices we used and whole lung 

measurements. CT protocol and scanner image reconstruction may influence texture 

features,30, 31 and as such, the generalizability of the trained model presented here to other 

scanners and CT acquisition protocols needs to be considered.  With that in mind, it is 

expected that the inclusion of the normalized features (to whole lung means) may help 

mitigate inter-scanner and inter-site variability. While application of our approach to a 

multi-centre dataset will evaluate its utility, it is worth noting that many of the density-

based measures such as RA950 and HU15 are already successfully used in clinic as well as 

in multi-site studies.32, 33  

In 95 patients with COPD, machine learning and texture analysis were used to generate 

predicted pulmonary ventilation heterogeneity maps from anatomical thoracic CT and 

these maps significantly and strongly correlated with MRI ventilation, pulmonary function 

measurements and quality of life. This technology, when externally validated, will enable 

widespread generation of ventilation heterogeneity maps using nearly-ubiquitous CT 

scanners, providing a novel way to generate ventilation maps beyond the few centres with 

hyperpolarized MRI.   
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CHAPTER 4 

4 CONCLUSIONS AND FUTURE DIRECTIONS 

In this final chapter, a summary and overview is provided for the main observations and 

conclusions presented in Chapter 2 and Chapter 3. Limitations related to specific studies, 

as well as general limitations are provided, along with potential mitigation strategies for 

the limitations. Finally, the chapter concludes by discussing future directions for the 

methods developed and discussed here.  

 Overview and Research Objectives 

Pulmonary imaging has been used to provide novel insights into COPD, specifically 

utilizing hyperpolarized gas MRI for ventilation imaging, which unfortunately, has been 

limited in application to date due to the large associated cost. Texture analysis is an 

increasingly popular technique for classifying lung disease severity and detecting cancer 

in thoracic CT. The overarching objective of this thesis was to develop and apply a texture 

analysis pipeline to predict pulmonary ventilation from thoracic CT, thereby extending the 

availability of specialized pulmonary ventilation imaging. We postulated the structural 

information contained within a single-volume breath hold CT could inform on regional 

lung ventilation. The specific research objectives were to first develop a pipeline to perform 

texture analysis to predict pulmonary ventilation from thoracic CT, and second, apply this 

pipeline in a cohort of COPD patients to generate predicted ventilation maps. 

 Summary and Conclusions 

In Chapter 2, we first proposed the method of using texture analysis to predict pulmonary 

ventilation. Here, the pipeline was developed using a small cohort of COPD patients as a 

proof-of-concept demonstration. In this small cohort, we observed that utilizing a volume 

by volume prediction provided a large number of training samples, which were used to 

train a classifier. The observations in this proof-of-concept study demonstrated the 

potential of this approach to be applied in a large cohort.  

In Chapter 3, we applied, and improved, upon the methods developed in Chapter 2. An 

important addition to these methods was the normalization of extracted features to patient 
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whole lung values. This allows the model to account for the context of patient disease 

severity, as well as the regional disease severity within a patient. 95 patients were 

randomized to optimization (n=1), training (n=67) and testing (n=27) datasets. Texture 

analysis and machine learning were used to create model-predicted ventilation maps from 

CT, which strongly correlated with MRI ventilation maps, DLCO and quality of life 

measurements in COPD. These results indicate the potential for the approach presented in 

this thesis to be applied in predicting pulmonary ventilation, using widely available CT 

protocols.  

 

 Limitations 

Chapter 2 is a proof-of-concept demonstration of the method developed, and the results 

must therefore be taken in that context. The patients within this cohort were hand selected 

based on the presence of severe emphysema as determined using CT emphysema measures, 

and the presence of a large magnitude of ventilation defects. This was done to enforce a 

near equal balance of ventilated and not ventilated samples for training, however, this 

strategy also introduced a large bias into the generalizability of the results reported. Despite 

choosing patients with similar emphysema and ventilation defect characteristics, there may 

be large physiological differences between the training and testing datasets due to a small 

sample size. It is therefore difficult to ascertain whether the drop-in performance observed 

from training to testing was due to suboptimal selection of parameters (possibly 

overfitting), or due to testing on patients that had substantially different disease 

manifestation. To address these limitations, a larger, more heterogeneous cohort of patients 

should be explored, which allows for a more thorough investigation into the optimal model 

parameters.  

Chapter 3 addressed many of the major limitations of the study presented in Chapter 2, 

including utilizing a larger cohort of COPD patients, however, there were still a number of 

limitations. Firstly, the patient data used in the analysis were from the TINCan cohort, 

which is comprised of a large number of moderate to severe patients compared to the 

general COPD population, and so the generalizability must be considered in this context. 
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We also acknowledge that only the centre ~60% of the lung was included in the analysis, 

which was done to minimize the anatomical differences within CT. The centre slices are 

typically a good representation of the whole lung, and allow for visualization of all five 

lobes. To quantify any potential difference this introduced, the VDP for the centre six 

slices, as used in this study, was subtracted from the whole lung VDP, and there was an 

average difference of 1±2%, which is less than the VDP minimal clinically important 

difference of 2%.1 Further, while texture analysis has been widely studied as a promising 

method to quantify underlying patterns within medical images, it is known that CT protocol 

and scanner image reconstruction may influence textural features,2, 3 and as such, the 

generalizability of the trained model presented here to other sites at this time is unknown. 

With that in mind, it is expected that the inclusion of the ratio of VOI features to whole 

lung feature mean may help mitigate some scanner to scanner variability. The application 

to a multi-site dataset is necessary to fully quantify the ability to translate the trained model. 

With a dataset taken from multiple scanners, a feature selection step could be included to 

select only features which are reproducible across sites. Although a multi-site comparison 

is a necessary step towards clinical application of texture analysis, many of the density 

based measures such as RA950 and HU15 are already successfully used in clinic as well as 

in multi-site studies.4, 5 Due to this wide use, and the fact that the largest contributors to the 

model are these density based measures, it is hypothesized the model may be successful in 

being generalized to multiple sites.  

A general limitation to the work presented in this thesis is the complexity of the prediction 

problem being addressed. As discussed, previous studies in COPD have shown there are 

hallmark physiological changes, including tissue destruction and airway inflammation. 

There are also more recent observations which include vascular abnormalities and airway 

pruning. To motivate the work presented here, we have hypothesized these changes will 

not be homogenous throughout the lung, but may be more localized within regions of 

ventilation defects. This hypothesis has not yet been widely studied, and the notion of 

vascular abnormalities within defected regions is a current area of research. Despite the 

current limited knowledge of the research related to the underlying hypothesis of this work, 
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the texture analysis pipeline and results presented here may be an important tool to explore 

questions of the pathophysiological basis of ventilation defects.  

 Future Directions 

4.4.1 Robustness of Texture Model 

As mentioned in the limitations, future work must be done to study the generalizability of 

the model created to multi-site datasets. Differences in a multi-site dataset that may effect 

the texture features include the acquisition parameters, scanner vendor and reconstruction 

kernel. Within the TINCan dataset, which was acquired at the same site as the data 

presented in this thesis, there is a subset of patients who underwent scans with varying 

voxel spacing, ranging from in-plane voxel dimensions of 0.58x0.58mm2 to 

0.85x0.85mm2. There are fourteen patients with different voxel dimensions, where images 

were acquired with the same scanner, with the same bag-matched breath hold technique, 

and with available ground truth hyperpolarized MRI ventilation images. We hypothesize 

the first-order measures will transfer well to the study with different voxel spacing, 

however the transferability of the second-order features, as well as those normalized to 

patient whole lung values, remains unknown. Applying the model generated in Chapter 3 

to this subset of patients will allow for conclusions to be drawn on the robustness of the 

features to different acquisition parameters.  

4.4.2 Lung Function Prediction in Lung Cancer  

Patient who undergo radiation therapy for lung cancer require treatment plans for the 

delivery of the treatment. Advances in radiation planning and delivery allow for the 

possibility to minimize the radiation to certain areas in the lung, and thereby increasing it 

to other regions. In lung cancer this can be used to create functional lung avoidance plans, 

where the regions within the lung that have the greatest function are spared in the treatment 

plan at the expense of regions which are not functioning well, such as ventilation defects.6-

10  

The method developed within this thesis may allow for the extraction of this information 

from a simple breath hold CT. Lung cancer and COPD are highly related 
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epidemiologically,11, 12 and therefore it is hypothesized that the results obtained within this 

thesis indicate similar results may be obtained in lung cancer patients. However, additional 

complexities will be introduced when training on lung cancer patients. The most obvious 

will be the presence of the tumor, and the effect that may have on ventilation, as well as 

the fact that the shape, size and location of tumors vary greatly between lung cancer 

patients.    

4.4.3 Deep Learning for Lung Function Synthesis 

There has been a drastic increase in the interest in deep learning for medical image analysis. 

Both within, and outside, the medical field convolutional neural networks have shown great 

promise for image classification problems. Recently in a large cohort of COPD patients, 

deep learning has been applied to create automated disease staging.13 However, this study 

also highlights the challenges with deep learning discussed in Section 1.6.1. The large 

dataset provided a computational challenge, and subsequently the input data used were 

limited to four slices to represent the whole lung, and only a modest success in predicting 

disease stage was observed. Despite TINCan not having thousands of images available, 

this does provide a benefit as the data is very focused and well understood. Additionally, 

utilizing ventilation images as ground truth provides a more spatially and quantitatively 

rich measure compared to training to predict a single patient measure such as disease stage. 

To apply deep learning to the problem of predicting pulmonary ventilation from single 

volume thoracic CT, there are two methods which we hope to explore. The first is by 

utilizing a similar pipeline as presented in Chapter 2 and Chapter 3, where the image is 

split into volumes of interest, then each VOI is classified as ventilated or not ventilated by 

utilizing a CNN with a binary classification as the output layer. Another method is to use 

entire CT image as the input, and have the binary ventilation image as the output layer. 

Work has been done to create and train architecture for similar tasks of image synthesis, 

such as predicting a CT image from an MR image.14, 15  

Each method has its own benefits and limitations. If the VOI prediction is used, there will 

be a large number of training samples, and it is well known deep learning approaches 

increase in performance with a large amount of data. However, this method will not fully 
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utilize the spatial relationship between different regions in the image as predictions are 

made based only on the local information. For example, it is known mucus plugs within 

the lung are associated with ventilation defects,16 however, the ventilation defect will 

extend beyond the abnormality if the airflow obstruction is within one of the large airways. 

Conversely, the image-to-image synthesis method will be able to more fully account for 

the relationship between different regions as the neural network is trained on the entire 

lung volume. However, it will be limited to a smaller number of training samples (in both 

the case it is trained 2D slice by slice, and especially if trained on the entire 3D volume). 

Further, training a 3D neural network with an entire CT as the input will be quite 

computationally intensive.  

In both methods, it will be possible to leverage transfer learning – where a network is 

trained on a larger dataset which allows it to develop the ability to recognize the 

fundamentals that make up an image, for example learning edge detection. This is often 

utilized in medical imaging, where networks are trained on large, open-source labeled 

datasets such as ImageNet. It is hypothesized that an intermediate stage of transfer learning 

may help with the adaptation to medical images. In this case, there are large open-source 

labeled datasets of planar chest x-rays.17 A network originally trained on natural objects in 

ImageNet, may be applied and fine-tuned to classify the planar chest x-rays, conceivably 

learning to detect more subtle abnormalities that are seen within lung diseases. This 

network may then be applied to classify image VOI, or as the encoder/decoder weight 

initialization for an image synthesis network.  

 Significance and Impact 

In patients with chronic obstructive pulmonary disease (COPD), structural remodeling of 

the airways, airway inflammation/obliteration and parenchyma destruction commonly 

result from chronic inhalation of combustibles including tobacco cigarettes and biomass 

fuels.18  Pulmonary x-ray computed tomography (CT) is now widely used to visualize and 

quantify COPD structural lung abnormalities and these measurements have been exploited 

in large cohort studies. Hyperpolarized 3He and 129Xe magnetic resonance imaging (MRI) 

pulmonary measurements also provide high spatial and temporal resolution lung 

ventilation heterogeneity and microstructural information in COPD patients. The most 
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significant limitation to the widespread application of these techniques is that they are 

scarcely available due to the high cost of such technology. The methods and models 

generated in this thesis, when externally validated, will enable translation of ventilation 

heterogeneity maps using nearly-ubiquitous CT scanners, providing a novel way to 

generate ventilation maps beyond the few centres with hyperpolarized MRI.   
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APPENDIX 

Appendix A – Hyperpolarized 3He MRI Ventilatory Apparent Diffusion Coefficient 

of Alpha-1 Antitrypsin Deficiency 

In Appendix A we developed a new 3He MRI biomarker of emphysema which 

incorporates both abnormal ventilation heterogeneity and the apparent diffusion 

coefficient (ADC) – this biomarker overcomes limitations in longitudinally following 

emphysema progression using ADC.  

 

The contents of this chapter have previously been published in Journal of Magnetic 

Resonance Imaging and permission to reproduce the article was granted by John Wiley 

and Sons and is provided in Appendix C.  

A Westcott, DPI Capaldi, A Ouriadov, DG McCormack and G Parraga. Hyperpolarized 
3He MRI Ventilatory Apparent Diffusion Coefficient of Alpha-1 Antitrypsin Deficiency. 

JMRI. 10.1002/jmri.26202. 

To the Editor: 

Alpha-1 antitrypsin deficiency (AATD) leads to disabling chronic obstructive pulmonary 

disease (COPD). Current therapy aimed at slowing lung disease progression includes 

exogenous alpha-1 antitrypsin augmentation therapy but there are few potential new 

treatments under development.  Currently used measurements of AATD-related 

emphysema include the forced expiratory volume in 1 second (FEV1) and the diffusing 

capacity of carbon monoxide (DLCO); both are relatively insensitive to therapy1 although 

CT lung density measurements have been shown to worsen more slowly in treated 

patients.2 

Hyperpolarized magnetic resonance imaging (MRI) has emerged as a possible alternative 

or complementary method for evaluating lung microstructure and function.3  Longitudinal 

worsening of MRI ventilation-defect-percent (VDP) was shown to be related to symptoms 

and exercise capacity in COPD patients in whom FEV1 was not predictive.4  The apparent 

diffusion coefficient (ADC) measured using 3He and 129Xe  MRI has also been 

demonstrated in patients with AATD.5 Although 3He MRI ADC is highly reproducible,6 

these values only report from well-ventilated lung which is important because as AATD 
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emphysema worsens over time, no inhaled gas MRI information can be gleaned from 

unventilated lung regions. 

Our goal was to develop a new biomarker of AATD emphysema that incorporates 

functional and microstructural abnormalities which would be sensitive to disease changes 

over time.  We evaluated a single patient with a clinical diagnosis of AATD, who provided 

written informed consent to study protocols (registered at clinicaltrials.gov as 

NCT02279329 and NCT02723474) approved by a local research ethics board and federal 

regulatory agency. He was evaluated using spirometry, plethysmography according to 

guidelines7 and MRI at each visit; he also completed the St. George Respiratory 

Questionnaire (SGRQ) and six minute walk test (6MWT) and thoracic CT on a 64-slice 

Lightspeed VCT scanner (General Electric Healthcare, Milwaukee, WI) (64 × 0.625 mm, 

120 kVp, 100 effective mA, tube rotation time = 500 ms, and pitch = 1.0) in breath-hold 

after inhalation of a 1-L N2 bag from FRC on visits 2, 4 and 6.  The total effective dose 

was 1.8 mSv (Health Protection Agency of the United Kingdom NRPB-SR250). MRI was 

performed on a 3T system (MR750 Discovery, GEHC, Milwaukee, WI) as previously 

described6 using a multi-slice interleaved 2-dimensional gradient echo diffusion-weighted 

sequence for seven 30-mm coronal slices (900 µs selective radio frequency pulse, flip angle 

θ = 4°, echo time = 3.9 ms, repetition time = 5.6 ms, bandwidth = 62.5 kHz, in-plane 

resolution = 3.125 × 3.125mm2, b = 0, 1.6 s/cm2); the diffusion-sensitization gradient pulse 

ramp up-down time=500 µs and diffusion time=1460 µs.   

The relative area of the CT density-histogram with values < -950 HU (RA950) and MRI 

ventilation-defect-percent (VDP) were measured using custom-built (MATLAB R2014b; 

MathWorks, Natick, Mass) software.8 ADC maps were generated using 3He diffusion-

weighted images as previously described.9  To determine regional information, the apical 

region was segmented from the basal region based on the location of the carina.  

It was previously shown in patients with severe COPD that ventilation defects spatially and 

quantitatively correlated with emphysematous bullae10 which reinforces the notion that 

lung regions with severe emphysema have long time-constants for filling and cannot be 

ventilated during a short breath-hold scan. To account for this, we considered the diffusing 
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capacity of the lung for carbon monoxide (DLCO) normalized to the ventilated alveolar 

volume, which generates KCO, as shown in equation 1: 

𝐾𝐶𝑂 =
𝐷𝐿𝐶𝑂

𝑉𝐴
     (1) 

where 𝑉𝐴 is the alveolar volume, or the “accessible” volume available for gas exchange. In 

a similar manner, we proposed to normalize ADC in relation to ventilation, which we term 

the ventilatory ADC (vADC) as: 

𝑣𝐴𝐷𝐶 =
𝐴𝐷𝐶

1−
𝑉𝐷𝑃

100

     (2) 

We prospectively evaluated a single AATD patient who attended six visits over a 65 month 

period and received augmentation therapy for the duration of the study, except for a few 

months between visit 3 and visit 4.  At the first visit where quality of life measurements 

were recorded, the 6MWD was normal. As shown in Figure 1A, measurements were 

evaluated using linear regression with the time as the independent variable to calculate 

slope, r2 and p-value. 3He MRI ventilation and ADC maps show there was qualitative, 

visually-obvious evidence of increasing ADC values in the apical lung regions and 

enlarged ventilation defects in the basal lung regions.  In Figure 1A and Figure 1C, FEV1 

(slope=-1.8, r2=0.94, p=0.001), RA950 (slope=0.86, r2=1, p=0.02), vADC (slope=0.03, 

r2=0.77, p=0.02), and VDP (slope=2.7, r2=0.79, p=0.02) significantly changed over time 

(significant non-zero slope). However, DLCO (p=0.70), ADC (p=0.20) and FEV1/FVC 

(p=0.05) did not significantly change. These results, along with other important measures, 

are reflected in the quantitative results shown in Figure 1B.  
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Figure 1: A) Longitudinal imaging measurements and 3He MRI static ventilation (cyan) 

coregistered with 1H MRI; 3He MRI apparent diffusion coefficient (ADC) maps; Thoracic 

CT RA950 maps; B) Participant measurements over 65 months; C) Clinical pulmonary 

function measurements, 95 % confidence intervals shown for significant regressions. 

FEV1=forced expiratory volume in 1 second; %pred=percent predicted; FVC=forced vital 

capacity; DLCO=diffusing capacity of the lungs for carbon monoxide; 6MWD=Six minute 

walk distance; VDP=ventilation defect percent; ADC=apparent diffusion coefficient; 

RA950=relative area of the CT density histogram of attenuation values <-950 Hounsfield 

Units; vADC=ventilatory ADC.  

In this proof of concept demonstration, it is important to note that vADC was generated 

and used based on the assumption that in patients with advanced COPD, ventilation defects 

are dominated by emphysematous bullae and not airways disease.10  This is certainly also 

the case in AATD patients where emphysematous destruction dominates. However, in 

patients with mild COPD, ventilation defects also derive from gas trapping due to small-

airways disease10 and for these patients, different weightings of the ratio of ADC and VDP 

should be generated and tested. In this specific AATD patient with GOLD grade 2 COPD 

and severe emphysema, vADC, and VDP as well as apical ADC, RA950, 6MWD and FEV1 
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significantly changed over the 65 month followup period. Somewhat surprisingly, this was 

not the case for DLCO, perhaps because it can be highly variable over time.   

We also observed that vADC significantly increased in both apical and basal regions, 

whereas VDP did not significantly change in the apical regions and ADC did not 

significantly change in the basal lung regions.  These findings are certainly consistent with 

previous longitudinal MRI results in COPD patients in whom worsening emphysematous 

bullae resulted in larger ventilation abnormalities as disease progressed.  We acknowledge 

that vADC has not been widely tested yet and a large scale study is required in patients 

with severe emphysema that includes both KCO and patient outcomes.  Nevertheless, this 

preliminary study in a single AATD patient showed that vADC significantly changed while 

ADC did not.  Moreover, vADC changes were concordant with significantly worse 6MWD 

and CT measurements which supports its use as a biomarker of airspace enlargement in 

patients with severe emphysema.  
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Appendix B - Rapid Single-breath Hyperpolarized Noble Gas MRI Based 

Biomarkers of Airspace Enlargement. 

In Appendix B we used accelerated 129Xe MRI to generate alveolar morphometry 

estimates in patients with COPD and alpha-1 antitrypsin deficiency. The use of 

accelerated MRI allows for collection of the data in a single breath-hold scan, versus 

multiple-breath methods previously used. I was co-first author on this work with my 

colleague Fumin Guo. 

 

The contents of this chapter have previously been published in Journal of Magnetic 

Resonance Imaging and permission to reproduce the article was granted by John Wiley 

and Sons and is provided in Appendix C.  

A Westcott, F Guo, G Parraga and A Ouriadov. Rapid single-breath hyperpolarized 

noble gas MRI-based biomarkers of airspace enlargement. 10.1002/jmri.26574. 

 

INTRODUCTION 

Chronic obstructive pulmonary disease (COPD), characterized by both small airway 

dysfunction and airspace enlargement, is a leading cause of morbidity and mortality and is 

responsible for 700,000 costly hospitalization days annually in the United States.1 

Important and promising work with 3He MRI has led to the development of physiologically 

relevant biomarkers of obstructive lung disease including the apparent diffusion coefficient 

(ADC) and mean linear intercept (Lm), derived from multi-b diffusion weighted MRI and 

utilized to probe the microstructure of the lung.2 Due to the increasing scarcity and cost of 

3He, the continuation of hyperpolarized gas imaging necessitates decreasing the number of 

3He doses or moving towards the use of 129Xe.3-5  However, the low gyromagnetic ratio of 

129Xe and the gradient strengths typical for clinical scanners (5G/cm) dictate that rapid MRI 

acquisition strategies be developed to facilitate the uptake of 129Xe diffusion-weighted 

imaging.6  This is especially true for multi-b diffusion-weighted MRI because currently, 

whole lung datasets are difficult to acquire during the relatively short 10-16 second breath-

hold timeframe7 feasible in patients with lung disease. However, it was recently 

demonstrated8 that 6 b-value, lower spatial resolution (7x7x30mm3 voxels) whole-lung 

coverage can be achieved in 10 seconds using a GRAPPA approach with a dedicated, 

phased receive-array coil system.  

Previously, three-dimensional multi-b diffusion-weighted MRI9 required a number of 

independent doses of gas for each slice as typically 4 or 5 different b values (including 0) 
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are required in order to generate curves with sufficient data for analysis and each of these 

b values requires a single breath-hold image with freshly inhaled gas contrast,7 culminating 

in a total of three xenon doses. This is an important cost and time/patient effort issue.  

Therefore, the ability to accelerate the acquisition has the potential to provide cost savings 

in two critical areas: the cost of the xenon gas, and the time needed for the scans.  Each 

xenon dose costs approximately $250 US (1L of 50/50 129Xe/4He, 86% enriched), in 

addition to an average collection time of 20 minutes per xenon bag, necessitating at least 

an hour of personnel and patient time for three separate scans.  Further, multiple scans can 

lead to lung volume variability and patient distress or fatigue.  While a multi-breath 

approach has been feasible in small research studies, the increased time for acquisition, the 

potential for lung volume mismatch and repeated doses of hyperpolarized gas will likely 

not be compatible with larger scale clinical examinations or use.  Recently, a stretched-

exponential-model10 combined with under-sampling in the imaging and diffusion 

directions11 was proposed for the evaluation of hyperpolarized gas multiple b-value 

diffusion-weighted MRI.  The major advantage of this method is the possibility to 

significantly speed up data acquisition using acceleration factors (AF) between 7 and 10.11  

This is potentially more rapid than the compressed-sensing methods recently published for 

diffusion-weighted MRI10 and also provides high spatial resolution images.  This approach 

provides a method to generate four non-zero b-values for diffusion-weighted 129Xe MRI in 

a single breath-hold, or alternatively be applied to combine 3He static ventilation and multi-

b diffusion weighted scans into a single breath-hold.  We hypothesized that a previous 

method11 could be extended to provide whole lung hyperpolarized gas MRI-based 

emphysema biomarkers for 3He and 129Xe, including static-ventilation (SV), T2*,12 ADC 

and morphometry maps with high spatial image resolution.  Therefore, in this proof-of-

concept evaluation, our objective was to develop a rapid, cost-efficient and patient friendly 

approach that generates emphysema biomarkers in a small group of patients with 

emphysema. 

 

THEORY 

In pulmonary diffusion MRI, the limitations of non-renewable gas hyperpolarization, 

breath-hold duration, and the inherently longer diffusion-weighted scans have motivated 
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the development of rapid image acquisition and reconstruction techniques. Accordingly, 

previous efforts have focused on accelerated image acquisition including parallel imaging, 

compressed sensing, deep learning and combinations of these approaches.  For example, 

k-t methods (e.g., k-t BLAST/SENSE) represent a model-based approach that employs the 

prior information of signal covariance matrix from training data to improve image 

resolution.13 K-t methods were also combined with compressed sensing (e.g., k-t SPARSE, 

k-t FOCUSS) to reconstruct high spatial-temporal resolution images with minimal aliasing 

artefacts from under-sampled data. In particular, k-t FOCUSS14 comprises of a prediction 

step, a residual encoding step, and the optimal sample allocation between the two. Another 

model-based approach, MARTINI,15 employs mono-exponential T2 decay as prior, and 

directly estimates tissue properties (T2 and spin density) from a set of under-sampled k-

space data using a nonlinear inverse reconstruction algorithm. Other approaches including 

SAKE,16 LORAKS17 and ALOHA18 arrange k-space data into a structured annihilating 

filter-based Hankel matrix and employ the low-rankness of the matrix for image 

reconstruction.  In particular, SAKE investigates the correlation between multiple receiver 

coils, LORAKS requires finite spatial support and smooth phase prior, ALOHA relates 

transform sparsity to low-rankness of the Hankel matrix in the Fourier domain and 

reconstructs images through matrix completion. Here we employed a compressed sensing-

based framework with a Split Bregman numerical solver to reconstruct high resolution 

images from under-sampled k-space data by exploiting the implicit spatial and b-value 

sparsity of MR images. 

We denote 𝐼 = {𝐼1
𝐻, 𝐼2

𝐻 …𝐼𝑁
𝐻}𝐻 as the N ventilation images that we aim to reconstruct from 

undersampled k-space data 𝑓 = {𝑓1
𝐻, 𝑓2

𝐻 …𝑓𝑁
𝐻}𝐻 corresponding to the N b-values, where H 

represents Hermitian transpose. Here the spatial sparsity of each diffusion MR image is 

mathematically formulated using total variation (TV) of the image, i.e. |∇𝐼𝑖|. In addition, 

the sparsity along the 𝑏-value direction can be regarded as the gradient of diffusion MR 

images 𝐼𝑖 and 𝐼𝑖−1 acquired at adjacent 𝑏-values  𝑏𝑖 and 𝑏𝑖−1, 𝑖 = 2…𝑁, i.e.,  

𝑀𝐼𝑖 = 𝐼𝑖 − 𝐼𝑖−1 ∙ 𝑒
−((�̅�𝑏𝑖)

�̅�−(�̅�𝑏𝑖−1)
�̅�),[1] 

where �̅� and �̅� are the mean diffusivity and heterogeneity values, respectively, and can be 

estimated from previously acquired images.11 To this end, we proposed to reconstruct the 
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images 𝐼 from undersampled k-space data 𝑓 in both the spatial and b-value directions while 

maintaining data consistency as follows: 

min
𝐼

𝛼‖∇𝐼‖1 + 𝛽‖𝑀𝐼‖1 +
𝜇

2
‖𝐹𝐼 − 𝑓‖2,  [2] 

where  𝑀 is the linear operator defined in Eqn. [1], 𝐹 represents the undersampled Fourier 

transform, 𝛼, 𝛽 and 𝜇 are positive constants that balance the weight of three terms.  

The unconstrained TV-ℓ1/ℓ2 optimization problem in Eqn. [2] was solved using a Split 

Bregman algorithm19 and we note that it can also be solved using convex optimization 

techniques.20 The Split Bregman algorithm introduces a number of dummy variables, i.e., 

𝑑𝑥 = ∇𝑥𝐼, 𝑑𝑦 = ∇𝑦𝐼 and 𝑚 = 𝑀𝐼, for each constraint weighted by constant 𝜆. The Split 

Bregman algorithm iterates in two phases until convergence: 

1. (𝐼𝑘+1, 𝑑𝑥
𝑘+1, 𝑑𝑦

𝑘+1, 𝑚𝑘+1) = arg min
𝐼,𝑑𝑥,𝑑𝑦,𝑚

𝛼‖𝑑𝑥‖+𝛼‖𝑑𝑦‖ + 𝛽‖𝑚‖ +

𝜇

2
‖𝐹𝐼 − 𝑓𝑘‖2 + 

𝜆

2
‖𝑑𝑥 − ∇𝑥𝐼 − 𝑏𝑥

𝑘‖2 +
𝜆

2
‖𝑑𝑦 − ∇𝑦𝐼 − 𝑏𝑦

𝑘‖
2
+

𝜆

2
‖𝑚 −𝑀𝐼 − 𝑏𝑚

𝑘 ‖2. This step can be 

spilt into several subproblems each optimizing a single variable sequentially because 

these variables are independent from each other. In particular, the subproblem of  𝐼 

involves only ℓ2-norm and can be solved analytically. 

2. Update the dummy variables as: 𝑏𝑥,𝑦
𝑘+1 =𝑏𝑥,𝑦

𝑘 + ∇𝑥,𝑦𝐼
𝑘+1 −𝑑𝑥,𝑦

𝑘+1,  𝑏𝑚
𝑘+1 =𝑏𝑚

𝑘 +

𝑀𝐼𝑘+1 −𝑚𝑘+1 and 𝑓𝑘+1 = 𝑓𝑘 + 𝑓 − 𝐹𝐼𝑘+1. 

The signal dependence related to diffusion-sensitization can be determined through the 

probability density function or diffusion propagator (P) for fluid diffusion in confined 

media with unknown geometry:21-23  

 

dD)bDexp()D(PS/)b(S

0

0 −= 


 

[3]
 

where S(b) is the signal at a particular b-value and S0 is the MR signal-intensity in the 

absence of diffusion-sensitizing gradients.  The diffusion propagator can be ascertained 

through the inverse Laplace transform of S(b)22 and to apply this, the analytical 

representation for S(b) is required.  Thus, experimental S(b) values can be fit as 

demonstrated for multi-b diffusion-weighted 3He MRI10, 11, 23 as follows: 
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 −= )bDexp(S/)b(S 0  [4]
 

where D  is the apparent diffusivity and α is the heterogeneity index (0<α≤1.0).  The 

diffusion propagator can be determined through substitution of Eqn. [4] into Eqn. [1] and 

then applying the inverse Laplace transform:22 
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where f(D) is the auxiliary function and parameters B and C are functions of the 

heterogeneity index.22  Mean D estimates can be determined using the probability density 

function distribution to calculate specific to acinar duct mean diffusion length maps21 

(LmD = √2∆D, where ∆ is the diffusion time and D is the diffusivity).  For multi-b 

diffusion-weighted 3He MRI, Lm is empirically observed to be proportional to LmD:23 

Dm Lm3.4m562L +−=       [7] 

LmD depends on both diffusion time and diffusivity, so Eqn. [7] cannot be used for 129Xe 

MRI-based Lm estimates.  In order to extend Eqn. [7] to 129Xe gas, the empirical 

relationship in Eqn. [8] was previously determined and proposed:24  

Xe

Xe

0

He

He

0
Dm

D2

D2
Lm3.4m562L




+−=     [8] 

where 
He

0D  is the diffusion coefficient of 3He (0.88 cm2/s) in gas mixture, ΔHe=1.46 ms, 

Xe

0D  is the diffusion coefficient of 129Xe (0.12 cm2s-1/0.14 cm2s-1 25) in gas mixture and ΔXe 

is the diffusion time.   

 

MATERIALS and METHODS 

Study Participants 
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We enrolled 12 participants, including four never-smokers, four COPD ex-smokers with 

emphysema and one alpha-1 antitrypsin deficiency (AATD) patient with COPD who were 

included in the retrospective study as well as three COPD ex-smokers with emphysema 

who were included in the prospective study; all provided written informed consent to an 

ethics board-approved protocolthat was compliant with the Health Insurance Portability 

and Accountability Act (HIPAA, USA).  Ex-smokers with COPD and AATD patients with 

COPD were enrolled between 50-80 years of age; never-smokers without a history of 

tobacco smoking or chronic respiratory disease were enrolled between 45-80 years of age.   

Pulmonary Function Tests and CT 

Spirometry, plethysmography and the diffusing-capacity-of-the-lung-for-carbon-

monoxide (DLCO) were performed according to American Thoracic Society (ATS) 

guidelines26 using a plethysmograph and attached gas analyzer (MedGraphics Corporation. 

St. Paul, MN USA).  X-ray computed tomography (CT) was also performed supine (64-

slice Lightspeed VCT scanner GEHC, Milwaukee, WI USA; 64×0.625 mm, 120 kVp, 

effective mA=100, tube rotation time=500 ms, pitch=1.0) using a spiral acquisition in 

breath-hold after inhalation of 1L N2 from functional residual capacity (FRC).  A slice 

thickness of 1.25 mm and standard convolution kernel were used.  

129Xe and 3He MRI Acquisition 

MRI was performed at 3T (MR750, GEHC, Waukesha WI) using whole-body gradients 

(Gmax=5 G/cm, slew rate=200 mTm-1s-1) as previously described.7  129Xe gas (86% enriched, 

measured polarization 12-40%) was provided by commercial polarizer systems (XeBox-

E10, Xemed LLC, Durham, NH; XeniSpin™, Polarean Inc, Durham, NC).  All subjects 

inhaled 1L of a 50/50 by volume 129Xe/4He gas mixture from functional residual capacity 

(FRC). In all xenon measurements the diffusion-sensitization gradient pulse ramp up/down 

time=500 μs, constant time=2 ms, ΔXe=5 ms, providing four b-values 0, 12.0, 20.0, and 

30.0 s/cm2.  Three 129Xe doses were used in the diffusion-weighted measurements, except 

for a single AATD patient who could not undertake multiple breath-holds, and in whom 

data was acquired in a single xenon dose at a lower resolution to obtain whole lung 

coverage with a diffusion-weighted, whole lung 3D FGRE pulse sequence.  For patients 

with COPD and never-smokers, two interleaved acquisitions (diffusion-weighted, multi-

slice 2D Fast Gradient Recall Echo (FGRE) pulse sequence (similar to Figure 1A), 
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TE/TR=9.8msec/11.0msec, matrix size=128x80, number of slices=7; slice 

thickness=30 mm, and FOV=40x40 cm2) one with and one without diffusion-sensitization 

(i.e. b=0 and b=12 s/cm2 or b=0 and b=20 s/cm2 or b=0 and b=30 s/cm2) for each line of k-

space in each image slice were acquired to ensure that RF depolarization (optimal 5o constant 

flip angle  was used) and T1 relaxation effects were minimal.7  For 129Xe MRI in the AATD 

patient, four interleaved acquisitions (diffusion-weighted, whole lung 3D FGRE, 0.5ms 

rectangular RF pulse, VFA, TE/TR=9.0msec/10.0msec, matrix size=64x64, number of 

slices=8; slice thickness=30 mm, and FOV=40x40 cm2). Four interleave cycles were 

initiated at the maximum b-value (b=30s/cm2) to ensure that maximum MR signal was 

acquired at greater b-values as previously described.23 

For 3He MRI, polarized 3He gas (polarization ~40%) was provided by a commercial system 

(HelispinTM, Polarean Inc, Durham, NC 27).  Subjects inhaled 1L of a 3He/N2 a gas mixture 

(30/70 by volume) from FRC as previously described.28 For 3He MRI, an accelerated 

(AF=7) multi-slice interleaved (six interleaves) centric 2D FGRE diffusion-weighted 

sequence (Figure 1A and B) under-sampled in the imaging and diffusion direction as it is 

shown in Figure 1C (bottom panel)11 was acquired for seven 15mm coronal slices 

(reconstructed matrix size=128x128, total acquisition time=12 s, 0.9 ms selective RF 

pulse, TE/TR=4.1ms/5.6ms, bandwidth=62.5 kHz, FOV=40x40 cm2, b=0, 1.6, 3.2, 4.8, 

6.4 s/cm2).  An optimal 7.4o constant-flip-angle (120 [20 per b-value] RF pulses per slice) 

was used. 

Figure 1 outlines the pulse sequence used and the k-space sampling method, where the 

sparsity occurs in the diffusion direction, as shown using the varying sampling patterns for 

different b-value images. The diffusion-sensitization gradient pulse ramp up/down 

time=0.5 ms with ΔHe=1.46 ms which was initiated at the maximum b-value to ensure that 

maximum MR signal was acquired at greater b-values as previously described.23  

Additionally, a short-TE (TE=1.3ms) b=0 image was used to generate the SV image and 

T2* map.  A single breath-hold was used to generate all 3He maps. 
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Figure 1: MRI Pulse Sequence Schematic, Sparsity Pattern and Reconstructed 3He Images 

A) Diffusion-Weighted, Multi-Slice 2D Fast Gradient Recall Echo (FGRE) pulse sequence 

with diffusion-sensitizing along z-direction. Δ=1.46ms, TE=4.1ms.  Five interleaves, 

starting at the maximum b-value (6.4 s/cm2) ensures multiple b-value approach; B) An 

extra interleave with no diffusion-weighting (b=0) and significantly reduced TE (1.3ms) 

utilized to generate a short TE static ventilation image and T2* map by using a long TE 

static ventilation image (b=0) from A); C) k-space under-sampling scheme (bottom panel), 

ensuring a variety of sparsity patterns for each b-value (AF=7) employed in diffusion 

direction, with resulting images where the signal decay with higher diffusion 

gradient  induced signal decay is evident.  A short TE static ventilation image, a long TE 

static ventilation image and four diffusion-weighted images (top panel) shown from left to 

right.  The SNR value varies from 35 (short TE static ventilation image) to 4 (maximum b-

value image). 
 

Image Analysis 

129Xe data were retrospectively under-sampled in both imaging and diffusion directions 

ensuring AF=7 to validate the reconstruction method11 and using the regularization 

parameters previously determined.19 A single slice (six images) reconstruction was 
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completed within approximately 2-3 minutes using Matlab 2016 on a standard PC 

workstation with 3.0GHz CPU using a previously developed approach.11  The ADC (b=0 

and 12 s/cm2) and morphometry maps ((LmD),10 mean-linear-intercept (Lm)23) were 

generated as previously described11, 23 and compared with corresponding maps calculated 

for the fully-sampled k-spaces.  3H MRI data were reconstructed as previously described,11 

and static-ventilation (short-TE image), T2* (TE1/TE2=1.3ms/4.1ms), ADC (0 and 

1.6 s/cm2)  and morphometry (LmD/Lm) maps were generated.  (MATLAB R2017 

MathWorks, Natick, MA) was used to generate all hyperpolarized gas maps. Image SNR 

was calculated using a 15x15 voxel square region of interest inside a lung region of 

homogeneous signal and using the same 15x15 voxel square region of interest outside the 

lung where there is no lung signal.29 

A semi-automated segmentation approach was used to generate ventilation defect percent 

(VDP), as previously described.30   ADC maps were generated for two b-values on a voxel-

by-voxel basis as previously described.4  The relative area of the CT density histogram 

with attenuation values <-950 Hounsfield units (RA950)
31 was determined using Pulmonary 

Workstation 2.0 (VIDA Diagnostics Inc., Coralville, IA).  

Statistics 

Differences between ADC and Lm values generated from fully and undersampled k-space 

were calculated on a voxel-by-voxel basis for a single slice10 using Eqn. [9]:  

%100]
edFullySampl

pledUndersamledFullySamp
[Difference

N

1i

M

1j ij

ijij


−
=

= =

  [9] 

where N and M are the corresponding image matrix sizes.  Multivariate analysis of variance 

(MANOVA) and independent t-tests were performed using SPSS Statistics, V22.0 (SPSS 

Inc., Chicago, IL).  Results were considered significant when the probability of two-tailed 

type I error () was less than 5% (p<.05). 

 

RESULTS 

Table 1 summarizes pulmonary function, CT and demographic measurements for all 

participants.  Figure 1C (top panel) shows representative images reconstructed from the 

under-sampled data in the imaging and diffusion direction of k-space (bottom panel, AF=7) 

including a short TE static ventilation image, a long TE static ventilation image and four 
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diffusion-weighted images shown from left to right.  The SNR value varied from 35 (short 

TE static ventilation image) to 4 (maximum b-value image).  

Table 1: Participant demographic and imaging measurements.  

 

Parameter 

(Mean±SD) 

Emphysema Subjects 

(n=8) 

 

Never-Smokers 

(n=4, 129Xe) COPD 

(n=3, 3He) 

COPD 

(n=4, 129Xe) 

AATD 

(n=1, 129Xe)   

Male Sex n (%) 3(100) 3 (75) 1 (100) 2 (50) 

Age years 81 (6) 68 (10) 67 (-) 66 (13) 

FVC %pred 104 (40) 100 (21) 102 (-) 102 (8) 

FEV1 %pred 89 (37) 58 (30) 55 (-) 103 (6) 

FEV1/FVC % 82 (84) 42 (14) 40 (-) 76 (2) 

RV %pred 46 (43) 160 (57) 170 (-) 102 (9) 

TLC %pred 60 (50) 123 (8) 130 (-) 102 (8) 

RV/TLC %pred 50 (43) 48 (14) 131 (-) 39 (9) 

DLCO %pred 56 (6) 39 (13) 50 (-) 104 (12) 

VDP % 20 (6) 28 (14) - 4 (.3) 

RA950 % - 19 (9) - - 
COPD=ex-smoker with COPD; FEV1=forced-expiratory-volume-1-sec; %pred= percent-
predicted; FVC=forced-vital-capacity; RV=residual-volume; TLC=total-lung-capacity; 
DLCO=diffusing capacity of the lung for carbon monoxide; VDP=ventilation defect 
percent; RA950=relative area of the CT density histogram < - 950 Hounsfield units 
 

Figure 2 shows centre coronal slice CT and MRI ventilation images as well as MRI ADC 

and Lm maps for a representative never-soker, COPD and AATD patients obtained for 

fully-sampled and retrospectively accelerated methods.  CT images reflected low 

attenuating areas (<-950 HU) in the COPD/AATD patients with RA950=12% and 19% 

respectively, where the AATD CT is from a visit 19 months prior.   
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Figure 2:  Representative CT  and  129Xe  MRI  Maps 

SV=MRI static ventilation; ADC=apparent-diffusion-coefficient; Lm=MRI mean-linear-

intercept; ADCA=ADC obtained with accelerated approach; Lm
A= Lm obtained with 

accelerated approach. 

NS=Elderly never-smoker, FEV1=105%pred, DLCO=94%pred, RA950=0.14%, 

ADC/ADCA=0.05cm2 s-1/0.05cm2s-1, Lm/Lm
A=300µm/280µm, VDP=3.92%;  

COPD=Ex-smoker with COPD, FEV1=59%pred, DLCO=43%pred, RA950=12%, ADC/ADCA 

=0.08cm2 s-1/0.08cm2s-1, Lm/Lm
A=540µm/550µm, VDP=15%; 

AATD=alpha-one antitrypsin deficiency, FEV1=58%pred, DLCO=50%pred, RA950=19%, 

ADC/ADCA =0.08cm2 s-1/0.09cm2s-1, Lm/Lm
A=580µm/570µm, VDP=27%. 
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Table 2 summarizes 129Xe airspace enlargement biomarkers calculated from the center 

slice, ADC and Lm, for all 129Xe study participants.  Mean ADC/ADCA, (A=acceleration) 

and Lm/Lm
A estimates for the never-smokers (0.05cm2s-1/0.05cm2s-1 and 290µm /280µm) 

were significantly smaller than the corresponding mean estimates for COPD/AATD 

patients (0.09cm2s/0.09cm2s and 540µm/530µm; all p<.001) for fully-sampled and 

accelerated methods.  For the never-smoker subgroup, a mean difference of 14%/12% was 

observed between the fully-sampled and the accelerated approach for the ADC and Lm 

values, respectively.  For the COPD subgroup a mean difference of 12%/8% was observed 

between fully-sampled and accelerated data ADC and Lm values, respectively.  For the 

AATD subject a mean difference of 11%/9% observed between fully-sampled and 

accelerated data ADC and Lm values, respectively.  

Table 2: 129Xe MRI Parenchyma Measurements and Morphometry Estimates. 

  
ADC 

cm2/s 

ADCA 

cm2/s 
Lm µm Lm

A µm 
ADC 

difference 

Lm 

difference 

Never-Smoker .05 (.01) .05 (.01) 290 (100) 280 (110) 14% 12% 

   NS-1 .04 (.01) .05 (.01) 310 (90) 320 (80) 9% 10% 

   NS-2 .05 (.02) .05 (.01) 280 (110) 260 (90) 16% 14% 

   NS-3 .04 (.01) .04 (.01) 280 (90) 280 (150) 16% 12% 

   NS-4 .05 (.01) .05 (.01) 300 (120) 280 (100) 15% 13% 

COPD .09 (.02) .08 (.01) 490 (120) 480 (250) 12% 8% 

  COPD-1 .10 (.02) .10 (.01) 500 (130) 480 (120) 12% 8% 

  COPD -2 .08 (.02) .08 (.01) 540 (100) 550 (90) 9% 6% 

  COPD -3 .08 (.02) .08 (.01) 450 (120) 440 (100) 13% 8% 

  COPD -4 .09 (.03) .08 (.02) 490 (140) 480 (120) 16% 9% 

AATD .08 (.02) .09 (.02) 580 (140) 570 (130) 11% 9% 

NS-COPD/AATD 

p-value 

<0.001 <0.001 <0.001 <0.001 0.4 <0.01 

NS= Never-Smokers; COPD=COPD ex-smoker; AATD=alpha-one antitrypsin 
deficiency; ADC=apparent-diffusion-coefficient; Lm=MRI mean-linear-intercept; 
ADCA=ADC obtained with accelerated approach; Lm

A= Lm obtained with accelerated 
approach. 
 

Figure 3 shows representative center slice SV, T2*, ADC, LmD and Lm maps for three 

COPD subjects reconstructed from the originally under-sampled k-space (AF=7).  Table 3 

shows mean estimates of T2* ADC, LmD and Lm and the signal-to-noise (SNR) values for 

b=0/b=6.4s/cm2 images and SV image used to calculate ventilation-defect-percent.4 



 

97 

 

 
Figure 3: Representative 3He MRI Maps obtained for COPD patients 

Ventilation = MRI Static Ventilation Image; VDP = MRI ventilation defect percentage; 

T2* = MRI free induction decay time constant; ADC = MRI apparent-diffusion-coefficient; 

LmD = MRI mean-airway-length-scale; Lm = MRI mean-linear-intercept; 

COPD-1: VDP =6, T2* = 7 ms, ADC =0.50 cm2 s-1, LmD = 290 µm, Lm = 800 µm 

COPD-2: VDP =17, T2* = 8 ms, ADC = 0.40 cm2 s-1, LmD= 270 µm, Lm = 680 µm 

COPD-3: VDP = 17, T2* = 9 ms, ADC = 0.40 cm2 s-1, LmD= 290 µm, Lm = 760 µm 

Table 3: 3He MRI Parenchyma Measurements 

Parameter (SD)  COPD-1  COPD-2  COPD-3 

   VDP, %  6 17  17 

   T2* (ms)  7 (5)  8 (5)  9 (5) 

   ADC (cm2/s)  0.50 (0.15)    0.40 (0.15)  0.40 (0.15) 

   LmD  (µm)  290 (40)  270 (40)  290 (40) 

   Lm (µm)  800 (190) 680 (180)  760 (170) 

   SNR (SV)  30 25  30 

   SNR (b=0)  22 17  20 

   SNR (b=6.4s/cm2)  6 4  6 

COPD=COPD ex-smoker; VDP = ventilation defect percentage; T2*= free induction decay 
time constant; ADC = apparent diffusion coefficient; LmD = mean airway length scale; Lm 
= mean linear intercept estimate; SV = static ventilation; SNR = signal to noise ratio. 
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DISCUSSION 

In this proof-of-concept study, we investigated the feasibility of undersampling in imaging 

and diffusion-weighted directions for potential use as a clinical tool.  In a single 3He breath-

hold we were able to obtained static ventilation SV, T2*, ADC and morphometry maps 

using 3He diffusion-weighted lung MRI in a single 16 sec breath-hold.  Further, we 

demonstrated that this acceleration scheme may be applied to 129Xe imaging in order to 

acquire whole lung ADC and morphological measurements in a single breath-hold, without 

significant penalty to imaging information.  In both nuclei, this acceleration can help save 

up to two gas doses, decrease MRI scan time, and make the scan more tolerable for a patient 

with lung disease.   

By acquiring VDP/T2*/ADC/morphometry estimates during a single 3He scan, we 

eliminate the need for two separate static ventilation and diffusion-weighted scans. The 

3He T2*-results suggested that T2* values were in the 7-9ms interval for severe emphysema 

patients;  3He MRI T2* values have previously been measured in young healthy volunteers 

on 3T GE (7±1.4ms) 32 and Philips (10.8±1.8ms) MRI systems.29 The mean T2* values we 

reported were in the same range (7-9 ms), and therefore, the free induction decay estimates 

we generated were likely physiologically realistic for the age and disease status of the 

participants in this study.  Likely, T2* estimates depend on alveolar surface-to-volume ratio 

and, therefore, can be potentially used as a biomarker. Another potential role for T2* 

mapping is signal correction. The SNR of static ventilation images, which ranged between 

25 and 30, was more than adequate for VDP calculations and can be generated alongside 

ADC values in a single rapid breath-hold.4 Moreover, the SNR we observed was typical 

for multi b-value diffusion-weighed data acquired without acceleration.33 Thus, no special 

denoising procedure was required prior to regularized reconstruction. 

In order to validate this acceleration method, we conducted a sub-study with fully-sampled 

129Xe data.  For all participants the mean ADC/ADCA values as well as Lm/Lm
A values were 

not significantly different between acquisition methods (all p>.4).  For the never-smoker 

subgroup, a mean difference of 14%/12% was observed between the fully-sampled and the 

accelerated approach for the ADC and Lm values, respectively and this difference was not 

significant.  For the COPD subgroup, a mean difference of 12%/8% was observed between 

the fully-sampled and the accelerated approach for the ADC and Lm values, respectively 
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and this was not significant. AATD subject results have confirmed that ADC/Lm MRI 

estimates can be obtained in a single 16 sec breath-hold with the accelerated method.  

Figure 2 shows that there is a difference between right and left lung in a COPD patient. 

This is likely due to volume mismatch between the multiple-b value breath-hold co-

registered images. If this is indeed the cause, this highlights the importance of a single 

breath method for multiple-b value collections. Acceleration provides numerous 

advantages for difficult clinical cases (by limiting the number of breath-holds required in 

respiratory-compromised patients), for reduction of costs and for reduction of image 

analysis requirements that stem from multiple breath-hold scans.  For example, by reducing 

the need for up to 5 different contrast gas breath-holds, the cost was reduced from 

approximately $US 1200 to $US 200 for the gas contrast which is in the same cost range 

as blood-based contrast agents.  The time required to acquire the data is also reduced from 

approximately 40 minutes to 10 minutes. Both of these savings combine and result in 

substantial time and dollar cost savings as well as improved patient comfort and 

safety/tolerability.  

In this development study, we acknowledge a number of important study limitations, 

including potential errors introduced into the fully-sampled data from multiple breath-

holds, as well as possible errors introduced because of low SNR.  When separate breath-

holds are employed, image co-registration is required to ensure voxel-wise spatial 

agreement between images. Unfortunately, co-registration results are not always accurate, 

and this further highlights the need for, and importance of a single breath method for 

multiple-b value acquisitions. We also recognize and acknowledge that for maximum b-

value images, SNR is less than the Rose criteria of SNR=5,34 which serves as a general 

guide for image quality.  However, this is an expected signal reduction due to the strong 

diffusion attenuation for the patients with severe emphysema (Figure 1C, top panel).  

Nevertheless, for larger b-value images, such as the b=6.4s/cm2 image, the relative values 

are low compared to the lower b-value images so the influence on curve fitting is also low. 

Certainly, low SNR images must also be considered as a limitation, however, new 

polarization methods onboard commercially-available turnkey systems have recently 

increased 129Xe polarization levels (~40% polarization of a 400ml volume in 15-20 

minutes) with the result being substantially improved image quality and SNR. We also 
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recognize that for this study, we used D, α and LmD values of best-fit and did not collect 

statistics on the fitting error/residual to exclude pixels.  Finally, Eqn. [8] was not validated 

with histology or morphometry methods and this is in contrast to Eqn. [7].23  However, we 

note that Eqn. [8] was used only to validate the proposed acceleration method 

reconstruction by applying retrospective k-space under-sampling to the multiple breath-

hold data so this would not likely influence the reliability of the accelerated diffusion-

weighted multi b-value 3He MRI method. 

Accelerated 129Xe MRI provides a way to generate alveolar morphometry estimates to 

regionally characterize emphysema and airspace enlargement in patients with COPD and 

AATD in a single breath-hold scan using a single gas dose.  This means that multi-breath 

methods (which are not as cost-efficient and may lead to lung volume variability and 

patient distress or fatigue) or longer duration scans are no longer required and can be 

replaced with accelerated methods.  The emphysema biomarkers obtained for this pilot 

study in COPD patients are the first demonstration of this acceleration (7x) method.   

  



 

101 

 

REFERENCES 

1. Collaborators USBoD. The state of us health, 1990-2010: Burden of diseases, 

injuries, and risk factors. JAMA. 2013;310(6):591-606. 

2. Yablonskiy DA, Sukstanskii AL, Woods JC, et al. Quantification of lung 

microstructure with hyperpolarized 3He diffusion MRI. J Appl Physiol. 2009;107(4):1258-

65. 

3. Mugler JP, 3rd, Altes TA. Hyperpolarized 129Xe MRI of the human lung. J Magn 

Reson Imaging. 2013;37(2):313-31. 

4. Kirby M, Svenningsen S, Owrangi A, et al. Hyperpolarized 3He and 129Xe MR 

imaging in healthy volunteers and patients with chronic obstructive pulmonary disease. 

Radiology. 2012;265(2):600-10. 

5. Kaushik SS, Cleveland ZI, Cofer GP, et al. Diffusion-weighted hyperpolarized 

129Xe MRI in healthy volunteers and subjects with chronic obstructive pulmonary disease. 

Magn Reson Med. 2011;65(4):1154-65. 

6. Kaushik SS, Robertson SH, Freeman MS, et al. Single-breath clinical imaging of 

hyperpolarized 129xe in the airspaces, barrier, and red blood cells using an interleaved 3D 

radial 1-point Dixon acquisition. Magn Reson Med. 2016;75(4):1434-43. 

7. Ouriadov A, Farag A, Kirby M, McCormack DG, Parraga G, Santyr GE. Lung 

morphometry using hyperpolarized (129) Xe apparent diffusion coefficient anisotropy in 

chronic obstructive pulmonary disease. Magn Reson Med. 2013;70(6):1699-706. 

8. Chang YV, Quirk JD, Yablonskiy DA. In vivo lung morphometry with accelerated 

hyperpolarized (3) He diffusion MRI: a preliminary study. Magn Reson Med. 

2015;73(4):1609-14. 

9. Pike D, Mohan S, Ma W, Lewis JF, Parraga G. Pulmonary imaging abnormalities 

in an adult case of congenital lobar emphysema. J Radiol Case Rep. 2015;9(2):9-15. 

10. Chan HF, Stewart NJ, Parra-Robles J, Collier GJ, Wild JM. Whole lung 

morphometry with 3D multiple b-value hyperpolarized gas MRI and compressed sensing. 

Magn Reson Med. 2017;77(5):1916-25. 

11. Abascal JFPJ, Desco M, Parra-Robles J. Incorporation of prior knowledge of the 

signal behavior into the reconstruction to accelerate the acquisition of MR diffusion data. 

ArXiv e-prints [Internet]. 2017; 1702. Available from: 

http://adsabs.harvard.edu/abs/2017arXiv170202743A. 

12. Xu X, Norquay G, Parnell SR, et al. Hyperpolarized 129Xe gas lung MRI–SNR 

and T2* comparisons at 1.5 T and 3 T. Magn Reson Med. 2012;68(6):1900-4. 

http://adsabs.harvard.edu/abs/2017arXiv170202743A


 

102 

 

13. Tsao J, Boesiger P, Pruessmann KP. k-t BLAST and k-t SENSE: dynamic MRI 

with high frame rate exploiting spatiotemporal correlations. Magn Reson Med. 

2003;50(5):1031-42. 

14. Jung H, Ye JC, Kim EY. Improved k-t BLAST and k-t SENSE using FOCUSS. 

Phys Med Biol. 2007;52(11):3201-26. 

15. Sumpf TJ, Uecker M, Boretius S, Frahm J. Model-based nonlinear inverse 

reconstruction for T2 mapping using highly undersampled spin-echo MRI. J Magn Reson 

Imaging. 2011;34(2):420-8. 

16. Shin PJ, Larson PE, Ohliger MA, et al. Calibrationless parallel imaging 

reconstruction based on structured low-rank matrix completion. Magn Reson Med. 

2014;72(4):959-70. 

17. Haldar JP. Low-rank modeling of local k-space neighborhoods (LORAKS) for 

constrained MRI. IEEE Trans Med Imaging. 2014;33(3):668-81. 

18. Lee D, Jin KH, Kim EY, Park SH, Ye JC. Acceleration of MR parameter mapping 

using annihilating filter-based low rank hankel matrix (ALOHA). Magn Reson Med. 

2016;76(6):1848-64. 

19. Goldstein T, Osher S. The Split Bregman Method for L1-Regularized Problems. 

SIAM J Imaging Sci. 2009;2(2):323-43. 

20. Guo F, Yuan J, Rajchl M, et al. Globally optimal co-segmentation of three-

dimensional pulmonary 1H and hyperpolarized 3He MRI with spatial consistence prior. 

Med Image Anal. 2015;23(1):43-55. 

21. Parra-Robles J, Marshall H, Hartley RA, Brightling CE, Wild JM. Quantification 

of lung microstructure in asthma using a 3He fractional diffusion approach [abstract]. 

ISMRM 22nd Annual Meeting. 2014:3529. 

22. Berberan-Santos MN, Bodunov EN, Valeur B. Mathematical functions for the 

analysis of luminescence decays with underlying distributions 1. Kohlrausch decay 

function (stretched exponential). Chemical Physics. 2005;315(1-2):171-82. 

23. Ouriadov A, Lessard E, Sheikh K, Parraga G, Canadian Respiratory Research N. 

Pulmonary MRI morphometry modeling of airspace enlargement in chronic obstructive 

pulmonary disease and alpha-1 antitrypsin deficiency. Magn Reson Med. 2018;79(1):439-

48. 

24. Ouriadov A, Lessard E, Guo F, et al. Accelerated Diffusion-weighted 129Xe MRI 

Morphometry of Emphysema in COPD and Alpha-1 Antitrypsin Deficiency Patients 

[abstract]. ISMRM 25th Annual Meeting, Honolulu, Hawaii, USA. 2017([abstract]):1763. 

25. Ouriadov A, Farag A, Kirby M, McCormack DG, Parraga G, Santyr GE. 

Pulmonary hyperpolarized (129) Xe morphometry for mapping xenon gas concentrations 



 

103 

 

and alveolar oxygen partial pressure: Proof-of-concept demonstration in healthy and 

COPD subjects. Magn Reson Med. 2015;74(6):1726-32. 

26. Miller MR, Hankinson J, Brusasco V, et al. Standardisation of spirometry. Eur 

Respir J  2005;26(2):319-38. 

27. Miller G, Altes T, Brookeman J, De Lange E, Mugler Iii J. Hyperpolarized 3He 

lung ventilation imaging with B 1-inhomogeneity correction in a single breath-hold scan. 

Magn Reson Mater Phys Biol Med. 2004;16(5):218-26. 

28. Kirby M, Pike D, McCormack D, et al. Longitudinal Computed Tomography and 

Magnetic Resonance Imaging of COPD: Thoracic Imaging Network of Canada (TINCan) 

Study Objectives. J COPD F. 2014;1(2):200-11. 

29. Dominguez-Viqueira W, Ouriadov A, O'Halloran R, Fain SB, Santyr GE. Signal-

to-noise ratio for hyperpolarized (3)He MR imaging of human lungs: a 1.5 T and 3 T 

comparison. Magn Reson Med. 2011;66(5):1400-4. 

30. Kirby M, Heydarian M, Svenningsen S, et al. Hyperpolarized 3He magnetic 

resonance functional imaging semiautomated segmentation. Acad Radiol. 2012;19(2):141-

52. 

31. Zach JA, Newell Jr JD, Schroeder J, et al. Quantitative CT of the Lungs and 

Airways in Healthy Non-Smoking Adults. Investigative radiology. 2012;47(10):596. 

32. Deppe MH, Parra-Robles J, Ajraoui S, et al. Susceptibility effects in hyperpolarized 

3He lung MRI at 1.5T and 3T. J Magn Reson Imaging. 2009;30(2):418-23. 

33. Paulin GA, Ouriadov A, Lessard E, Sheikh K, McCormack DG, Parraga G. 

Noninvasive quantification of alveolar morphometry in elderly never- and ex-smokers. 

Physiol Rep. 2015;3(10). 

34. Rose A. The sensitivity performance of the human eye on an absolute scale. J Opt 

Soc Am. 1948;38(2):196-208. 

 

 



 

104 

 

Appendix C - Advanced Pulmonary MRI to Quantify Alveolar and Acinar Duct 

Abnormalities: Current Status and Future Clinical Applications 

Appendix C is a review article presenting a historical overview of measurements of 

alveolar and acinar duct abnormalities, from ex vivo studies to current in vivo 

measurements, as utilized in Appendix A and Appendix B. 

 

The contents of this chapter have previously been published in Journal of Magnetic 

Resonance Imaging and permission to reproduce the article was granted by John Wiley 

and Sons and is provided in Appendix C.  

A Westcott, DG McCormack, G Parraga and A Ouriadov. Advanced pulmonary MRI to 

quantify alveolar and acinar duct abnormalities: Current status and future clinical 

applications. 10.1002/jmri.26574. 

OVERVIEW 

Chronic diseases of the lung frequently involve parenchymal tissue destruction and/or 

fibrosis, terminal airspace enlargement, bronchiectatic airways and emphysematous 

damage.  Such chronic lung diseases include but are not limited to, interstitial lung disease 

and fibrosis, chronic obstructive pulmonary disease (COPD), bronchopulmonary dysplasia 

(BPD) related to extreme preterm birth, bronchiolitis obliterans related to lung transplant 

and emphysema related to alpha-one antitrypsin deficiency (AATD).  The development of 

new therapies and the longitudinal monitoring of disease progression and response to 

therapy in patients has been challenging because currently there are no clinically-available, 

direct, non-invasive in vivo measurements of the lung tissue pathologies that 

mechanistically drive disease initiation and progression.  To address this serious clinical 

and knowledge gap, highly sensitive and specific measurements of lung parenchyma 

abnormalities, are required.  In this review, we focus on obstructive lung diseases such as 

COPD and BPD and review currently used ex vivo measurement tools including 

histological and micro-CT measurements of biopsy samples.  We also summarize emerging 

pulmonary magnetic resonance imaging (MRI) methods that provide non-invasive in vivo 

measurements of the terminal bronchioles and acinar duct geometry and morphology. We 

discuss important new findings related to these developments, as well as future research 

directions and clinical opportunities. 
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RATIONALE: CLINICAL GAPS AND UNANSWERED QUESTIONS 

For over 7 decades, the spirometry measurement of the forced expiratory volume in 1s 

(FEV1), first invented in the 1800s,1 has remained the clinical measurement tool for 

diagnosing chronic lung disease and for informing clinical management of patients over 

time.  Unfortunately, it is well-understood that FEV1 is insensitive to changes in the 

parenchyma and small airways that are now believed to be the sites where chronic lung 

disease initiates.2, 3  Moreover, parenchymal changes that alter the acinar ducts and 

diminish the surface area for gas exchange are currently clinically measured using the 

diffusing capacity of the lungs for carbon monoxide (DLCO). While DLCO measurements 

are relatively inexpensive and straightforward to acquire, rigorous quality assurance of 

equipment is required and even in frequently and expertly calibrated units, DLCO 

measurements can be highly variable over time in patients4 which has effectively limited 

its use in longitudinal studies.5  As an alternative, CT lung density and airway 

measurements may be qualitatively or quantitatively evaluated6 although the combination 

of the limited spatial resolution of thoracic CT (1mm isotropic) and radiation burden does 

not support the use of CT for longitudinal or serial investigations, especially in young or 

middle-aged patients.  Unfortunately, therefore, there remain significant gaps in our 

understanding of how chronic lung disease initiates and progresses at the level of the acinar 

ducts and terminal bronchioles. Moreover, it is difficult if not impossible to sensitively 

measure response to therapy in patients.   

HISTORICAL FRAMEWORK 

Histology and Stereology 

Some of the earliest understandings of lung disease pathogenesis stemmed from the pivotal 

work of Leopold and Gough,7 over six decades ago.  Their histological evaluation of 140 

post-mortem emphysema samples (all but 10 male) were fixed under inflation and 

compared with normal post-mortem findings. They made qualitative observations using 

light microscopy of two-dimensional fixed samples which were ground-breaking; using 

this approach, they made the first descriptions of the pathogenesis of emphysema in 

relation to inflammation, bronchiolar caliber and emphysematous airspace enlargement.  
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This seminal work and questions about the underlying physiology being probed by the 

DLCO measurement motivated the development of three-dimensional lung morphometry 

approaches and measurements based on two-dimensional cross- sectional histology 

samples, by a number of groups and pioneered by Weibel, Ochs and colleagues.8, 9 As 

shown in Figure 1, the overall three-dimensional structure of the lungs may be discerned 

and measured using stereology methods.10, 11  Stereological measurements of excised lung 

sections include, through-point counts, intersect counts and transect-counting, from which 

an estimation of lung volume, surface area or mean linear intercept (Lm) can be made.12-14  

While this approach has been fundamental to our understanding of lung disease 

pathogenesis, unfortunately, it relies on excised lung tissue from post-mortem or post-

surgical samples and thus this is limited to ex vivo analyses.  This certainly limits 

longitudinal evaluations and hence this approach tends to focus on single time-point or 

cross-sectional studies.  

Micro-Computed tomography (CT) 

The concept of micro-CT was first developed in the early 1980s,15-17 where this method 

was employed by material scientists for imaging the internal structures of small objects. 

Some of these early conceptual developments were commercialized in the early 1990s18, 19 

and scanners that typically comprised of an X-ray source (focal diameter <100 µm) and a 

thin x-ray detector were used to enable ex vivo and small animal in vivo samples 

measurements. In fact, currently used micro-CT in combination with synchrotron radiation 

provides images with approximately 10µm isotropic spatial resolution.20   Turn-key, 

commercially available micro-CT systems have been employed to visualize and quantify 

lung tissue measurements in mice,21 rats,22-25 pigs26 and cadaveric human lung 

specimens.20, 27, 28  Micro-CT has also been applied to study patient lung tissue samples, as 

shown in Figure 1, and provides a way to generate high spatial resolution images of normal 

and abnormal parenchyma tissue resected from patients.3  However, micro-CT scan speed 

and the radiation doses needed to generate images with the spatial resolution required to 

measure lung abnormalities means that the method is feasible mainly for ex vivo and 

cadaveric or end-stage small animal model tissue measurements.29, 30  
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Figure 1: Lung tissue histology and micro-CT images. 

Top panels show histology slides for normal and COPD patient and scalar bar is 500 µm 

adapted from Woods et al. 2006 Mag Reson Med.103  Bottom panels show micro-CT 

images for normal and emphysematous tissue with scalar bar 1mm, adapted from Watz et 

al. 2005 Radiology.27 

 

Thoracic CT 

Important pathological observations made using ex vivo morphometry have led an 

American Thoracic Society/European Respiratory Society (ATS/ERS) joint task force to 

consider this approach as the gold standard for evaluating clinical interventions, severity 

of disease and response to treatment.31  Translating such ex vivo findings to inform clinical 

treatment decisions and disease monitoring requires in vivo, non-invasive measurements 

such as provided using clinical thoracic x-ray computed tomography (CT). CT was first 

used for pulmonary exams in the late 1970s, and this led to a number of studies of COPD-

related emphysema studies.32-36   For over three decades now, low dose, multi-detector 
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thoracic CT has provided this opportunity in patients with a wide variety of chronic lung 

diseases.37-40  In particular, thoracic CT provides a way to visualize the large airways and 

provide measurements such as wall thickness and lumen diameter in vivo. Due mainly to 

dose and to spatial resolution limitations, it is typically possible to segment and measure 

airways to the ~7th generation.  Despite these spatial resolution limits, CT provides 

macroscopic quantitative measures which indirectly informs on the microstructure within 

a voxel, based on the premise that a voxel near -1000 Hounsfield Units (HU) contains 

minimal parenchymal tissue. Quantitative measures that are commonly used include the 

relative area < -950 HU (RA950), the 15th percentile HU and slope calculated from low 

attenuating clusters.41-43 In addition to CT emphysema measurements, CT may also be used 

to evaluate lung surface area to volume ratios.44 The advent and development of thoracic 

CT has provided enormous clinical and research value for in vivo lung measurements, but 

its use is still limited because of radiation exposure concerns in patients and because of the 

fundamental spatial resolution of method itself. 

HYPERPOLARIZED NOBLE GAS MRI  

Overview 

Recently, hyperpolarized noble gas magnetic resonance imaging (MRI) has been employed 

to visualize and measure pulmonary structure and function in vivo in patients. The 

pulmonary hyperpolarized gas MRI era started with the publication of mouse lung 129Xe 

MRI by pioneers in the field of hyperpolarization physics.45  The original observations led 

to the development of inhaled noble gas diffusion-weighted measurements in animal 

models of emphysema46 and in patients with COPD.47 Because serial monitoring is critical 

gap for small animal and patient studies, non-invasive inhaled hyperpolarized magnetic 

resonance imaging (MRI) has emerged as a possible alternative or complementary method 

for evaluating lung microstructure and function.48, 49  Importantly, during a 10-15s 

breathhold, diffusion-weighted pulse sequences may be employed to determine the 

apparent diffusion coefficient (ADC) of 3He47  and 129Xe50 gases, both of which have been 

measured in COPD patients with emphysema51 and in AATD patients.52 The 3He MRI 

ADC was shown to be highly reproducible48, 53 and to correlate with DLCO,54 reflecting 
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regional emphysema.55  MRI diffusion-weighted pulse sequences provide maps and 

regional ADC measurements that reflect the Brownian motion of the inhaled gas that is 

restricted within the airways and alveoli.56  Because 3He in particular and 129Xe to a lesser 

extent is inert, its displacement reflects the size of the alveolar structures that restrict its 

movement.  As such, pulmonary MRI ADC values provide non-invasive estimates of 

alveolar dimensions; these have been used to measure the microanatomical abnormalities 

associated with emphysema in COPD.47, 55, 57-63    

It is reasonable to ask the question: Why MRI in patients with obstructive lung disease? 

MRI has been used to investigate emphysematous changes in current and ex-smokers64-66 

with COPD and to monitor potential lung regrowth in rodents67 and lung cancer patients.68, 

69  The relationship of in vivo MRI estimates and histological measurements in excised 

tissues were also determined.70, 71  These previous results have generated a strong 

foundation for the optimization and strategic clinical research application of MRI in 

patients, to directly measure treatment efficacy and help accelerate the development of 

novel therapies including cell-based and whole organ replacement therapy. Therefore, as 

there have been a number of thorough reviews on the history, technological background 

and development of hyperpolarized gas MRI,72-74 this review will focus on the emerging 

sub-field of hyperpolarized gas morphometry, and the unique role it can play in guiding 

patient management.  

MRI Apparent Diffusion Coefficients 

Estimates of the self-diffusion coefficient of liquids or gases are based on the Einstein 

equation: 

 
,
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where D is a self-diffusion coefficient, <r>2 is the mean square displacement of a Brownian 

molecule, n is a dimension (n=1, 2, 3) and td is the diffusion observation time.  If D does 

not depend on the diffusion observation time and the direction of diffusion, there is by 

definition, free isotropic diffusion which may be characterized using Gaussian 
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distributions.75  However, liquid or gas diffusion inside a confined media may deviate from 

the free isotropic diffusion, and in such cases, D is a function of td, and is more 

appropriately described as an Apparent Diffusion Coefficient (ADC), which depends on 

both td and the geometry of the confining medium. MRI ADC measurements typically 

require only two data points, one with and another without a single-direction diffusion-

sensitizing pulse.  D values may also depend on the direction of the diffusion measurement 

or is anisotropic so that diffusion in one direction is more rapid than in another direction.  

An example of anisotropic diffusion is a gas molecule diffusion inside the Weibel model 

of an acinar duct airway,76 shown in Figure 2 with the added assumption of non-permeable 

walls75 and infinitely long ducts.  In such a model, the diffusion measured along the duct 

direction or a longitudinal diffusion (with anisotropic diffusion coefficient (DL)) should 

approach free diffusion.  However, the diffusion measured perpendicular to the duct axis 

direction, or a transverse diffusion (with anisotropic diffusion coefficient (DT)) is restricted 

by that dimension.  Restricted or non-free diffusion means that diffusing gas molecules 

start to interact with the duct walls, the transverse diffusion becomes restricted and the 

measured DT should be less than DL based on Eq [1].  This intuitive example demonstrates 

that gas molecules can be utilized with MRI to probe the micro-geometry of alveoli with 

submillimeter spatial resolution even when voxels are significantly larger in size.  A 

number of theories describing restricted diffusion features were published where the main 

focus was extraction of geometric information, such as the size and shape of pores or 

channels77-80 and the surface-to-volume ratio (S/V) of porous space.81, 82   

Table 1: Typical MRI acquisition parameters  
 2D Diffusion-

weighted 3He MRI 
3D Diffusion-

weighted 
129Xe MRI 

3D Diffusion-

weighted 
129Xe MRI  

With CS AF=7 

TR/TE (ms) 3.9/5.6 11/10 11/10 

Flip Angle 4o VFA VFA 

FOV (cm2) 40 x 40 40 x 40 40 x 30 

Matrix size 128 x 80 128 x 80 128 x 128 

Slice number 7 7 7 

Orientation Coronal Coronal Coronal 

Voxel size (mm3) 3.1 x 3.2 x 30 3.1 x 3.2 x 30 3.1 x 3.2 x 30 

b-value (s/cm2) 0, 1.6, 3.2, 4.8, 6.4 0, 12, 20, 30, 40 0, 12, 20, 30, 45 

Diffusion time (ms) 1.46 5 5.2 

Scan time (sec) 16 >16* >16 

Cylinder (ref 85) Yes Yes Yes 
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Single Compartment (ref 

52) 

Yes No No 

Stretched Exponential (ref 

90) 

Yes No Yes 

VFA= variable flipped angle; FOV=field of view; TR= relaxation time; TE=echo time 

*16s for two b-values only.  CS=compressed sensing, AF=acceleration factor.   

Figure 2:  Schematic for Weibel Acinar Duct cylindrical model  

Cylinder model of acinar airways showing the two anisotropic diffusion coefficients: DL 

representing diffusion parallel to the acinar airway and DT representing diffusion 

perpendicular to the acinar airway. The dashed arrows show the directions of the two 

anisotropic diffusion coefficients where R = external airway radius, r = internal airway 

radius, h = alveolar sleeve depth and L = alveolar length. Adapted from Yablonskiy et al. 

2002 PNAS (51). 

 

MRI Sub-voxel Resolution Morphometry Modelling 

To provide clinically-relevant measurements of alveolar sizes and geometries, MRI 

morphometry was first proposed by Yablonskiy27 using hyperpolarized 3He MRI and 

further developed by a team of pioneers in St Louis at Washington University.58, 61, 83-85  
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MRI morphometry requires multiple-b value sampling (four different b-values or more) in 

order to probe a wide range of the alveolar sizes.  To model MRI diffusion measurements, 

the Weibel model of the acinar duct was first employed and this resembles a long cylinder 

that represents the terminal bronchiole with acini.  Using this specific geometry, 

anisotropic diffusion coefficients DL and DT depend on the internal (r) and external (R) 

radii of the acinar duct (Figure 2) in multi-b value measurements.  Correlations between 

clinically relevant alveolar estimates such as mean airspace chord length, alveolar surface-

to-volume ratio and MRI-derived r/R (shown in Figure 2) have been observed.86   

Figure 3: Hyperpolarized 3He MRI Static Ventilation and Apparent Diffusion 

Coefficient Maps and Thoracic CT 

Ex-smoker with COPD: FEV1=32%pred, FEV1/FVC=28%pred, DLCO=37%pred, RA950 = 

18%; and AATD patient: FEV1=61 %pred, FEV1/FVC=60%, DLCO=21%pred, RA950 = 31%; 

MRI and thoracic CT with RA950 mask in yellow 
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COPD = Ex-smoker with COPD, AATD: = Alpha-1 antitrypsin deficiency, Yellow pixels 

on CT RA950 maps correspond to voxels < -950 Hounsfield Units.   

Recently, an alternative to the cylinder model -the stretched exponential model was 

developed and this approach does not assume any underlying geometry, and so this may 

be used to fit any multi-b diffusion attenuation using general signal decay equations87 and 

a dedicated mathematical framework.88  Because the stretched exponential model does not 

assume any specific geometry for the acinar duct, MRI estimates based on this approach 

still require validation with histological ground truth and with the morphometry estimates 

based on the cylinder model.52  A major advantage of the stretched exponential model 

approach is that it may be combined with compressed sensing89 to accelerate image 

acquisition using under-sampling in the imaging and diffusion directions.90 

Currently, a cylinder morphometry model is the most widely-used, and is histologically-

validated70 in patients and histology/micro CT-validated in animal models.71, 91-93  

Although the cylinder model has a complete mathematical framework for both 3He and 

129Xe clinical/pre-clinical lung morphometry,85, 94, 95 most morphometry studies were 

conducted with 3He gas. This is largely due to increased scan times needed for 129Xe 

measurements, which makes the stretched exponential model a promising alternative.  

Figure 4 shows representative centre slice 3He morphometry and CT images obtained for 

COPD, AATD and BPD patients.  The bottom panel shows MRI-derived Lm maps 

generated for these patients all of whom show different emphysema patterns.  For the 

representative COPD patient, there was augmented ADC reflecting emphysema in the 

apical lung regions (hotter colours indicate larger Lm values).  The distribution of MRI-

derived Lm values were also in agreement with the regional distribution of CT RA950.   
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Figure 4: Hyperpolarized 3He MRI-derived Lm and thoracic CT RA950 in patients with 

COPD, AATD and BPD.  

Top panel is ex-smoker with COPD; FEV1=126%pred, FEV1/FVC=63%, DLCO=62%pred, 

RA950 = 11%, Lm = 500 µm; middle panel is AATD patient; FEV1=58%pred, FEV1/FVC= 

41%, DLCO=50%pred, RA950 = 17%; Lm = 720 µm and bottom panel is BPD patient; 

FEV1=36%pred, FEV1/FVC= 39%, DLCO= 76%pred, RA950 = 16%, Lm = 420 µm.   

 

 
Yellow pixels on CT RA950 maps correspond to voxels < -950 Hounsfield Units.   

Validation of MRI morphometry  

All key preclinical and clinical findings using 3He/129Xe MRI are summarized in Table 2 

which shows that MRI-derived lung morphometry has been directly compared with micro-
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CT/histology-based estimates in small animal models. In Figure 4, the mean Lm for the 

COPD patient was 500 µm, significantly greater than the mean Lm estimate reported in 

elderly never-smokers,96 which suggests that Lm can be used as emphysema biomarker and 

can be directly compared with histological values.  In mouse studies, MRI-derived Lm 

values were in agreement with stereological measurements from lung histology and CT 

measurements.91  A small animal model of mild emphysema was also investigated using 

129Xe MRI morphometry and histological measurements and a systematically increased Lm 

was reported.93  In patient studies, Lm values were also shown to agree with stereological 

measurements.85  Excellent correspondence between MRI based Lm estimates and the 

histology mean linear intercept estimates was confirmed.70, 71  Although there has not been 

a direct comparison of 129Xe morphology measurements to histology, there has recently 

been comparisons of 129Xe to 3He derived measures.97 

Table 2: MRI-derived and Histology Mean Linear Intercept (Lm) values in small animal 

models and patients 

 

                                                        Mean Linear Intercept (Lm) 
 3He MRI Histology 129Xe MRI Histology 

Clinical*: 
Normal lung 

 
100 µm 

 
105 µm 

 
- 

 
- 

Normal lung 170 µm 140 µm - - 
Mild emphysema 250 µm 240 µm - - 
Mild emphysema 360 µm 360 µm - - 
Severe emphysema 590 µm 590 µm - - 
Severe emphysema 670 µm 660 µm - - 

Small animal models:     
Healthy micea 60±4 µm 52±2 µm - - 
Sham miceb 66±5 µm 64±9 µm - - 
Pneumonectomy miceb 68±3 µm 65±9 µm - - 
Control ratsc - - 79±12 µm 70±15 µm 
Irradiated ratsc - - 54±17 µm 57±12 µm 
Healthy ratsd - - 110±7 µm 80±7 µm 
Emphysematous ratsd - - 130±9 µm 100±4 µm 

*Data from (85); aData from (91) bData from (67) cData from (71) d Data from (93)  

APPLICATIONS   
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Table 3 summarizes recent findings using MRI ADC and morphometry values in patients 

with COPD, BPD, lung cancer radiation-induced lung injury, post-surgical lung regrowth 

and lung transplant.   

 

 

Table 3: Summary of MRI Morphometry Studies by Disease foci of interest 

Application Nuclei Patient-based Study 
Literature References 

Small-Animal Model Study 
Literature References 

Volunteers 3He (103), (85), (97), (64), (90), 
(52), (93), (99), (97) 

(93), (92) 

 129Xe (65), (97), (129)  (126) 

COPD 3He (13), (103), (85), (104), 
(84), (97)  

 

 129Xe (65), (97), (129) (93) 

AATD 3He (52), (99)  

BPD 3He (105)  

CF 129Xe (101)  

Lung Growth 3He (68) (67) 

RILI 3He  (102) 

 129Xe  (71) 

COPD 

Figure 4 shows hyperpolarized 3He MRI Lm maps and CT for patients with emphysema 

related to COPD and alpha-1 antitrypsin deficiency. The MRI-derived Lm map generated 

for the AATD subject shows two well-defined regions: 1) apical lung with normal Lm 

values and, 2) basal lung with abnormally large Lm values, suggesting severe emphysema 

(Lm > 500 µm).  Thoracic CT density masks show good quantitative and spatial agreement 

with MRI regions with augmented Lm values.  MRI morphometry has also clearly revealed 

emphysematous changes in current and ex-smokers,64-66 congenital lobar emphysema,98 

normal lung aging,96 as well as for evaluating emphysema in AATD patients52, 99 and 

monitoring AATD patient response to augmentation therapy.100  129Xe MRI morphometry 
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has been piloted and compared in a small group of COPD patients and healthy volunteers65 

with mean MRI-derived Lm values in the range of  220-253 μm and 410 ± 90 μm, 

respectively.101  Finally, hyperpolarized gas diffusion-weighted MRI has been clinically 

approved for use in the United Kingdom56, 102-104 and this will dramatically increase the 

number of cases that can be used as exemplars of the utility of the method.    

Bronchopulmonary Dysplasia (BPD) 

Extreme prematurity at birth (<28 weeks gestation) commonly results in neonatal intensive 

care and mechanical ventilation due to respiratory distress syndrome because of limited or 

no lung surfactant and incomplete lung development.  Ventilator-associated lung injury is 

also possible and extreme prematurity of the lung themselves cause abnormal and irregular 

lung growth (BPD).  In neonates with a clinical diagnosis of BPD, monitoring of lung 

development throughout the course of the patient’s life may guide the type and timing 

oftreatment, as well as provide insight into lung development in BPD. Hyperpolarized 

noble gas MRI morphometry has been used to observe the abnormal development of the 

acinar ducts as with BPD patients,105 and was shown to be a promising method for 

longitudinal monitoring. Figure 4 provides an MRI-derived Lm map and CT with lung 

attenuation values <-950 HU shown in yellow for a patient with BPD. The heterogeneous 

MRI-derived Lm distribution is consistent with the heterogeneous distribution of the CT 

low-density areas. Importantly, this approach was previously validated using histology in 

clinical and small animal studies, as summarized in Table 2, providing credence and 

evidence of feasibility for the use of MRI morphometry in young patients with BPD in 

whom repeated CT imaging is not practical for radiation burden reasons.  

Radiation-induced lung injury  

Radiation-induced lung injury (RILI) remains a major dose-limiting factor for radiotherapy 

treatment of the lung cancer.  Radiation pneumonitis or inflammation is commonly 

observed in patients at ~3 to 12 weeks post-irradiation due to cytokine induction and 

inflammation related to the radiation therapy.  Late stage post-radiation pulmonary effects 

include parenchymal fibrosis and this typically develops 6 to 24 months post-radiation 

therapy and manifests as an irreversible decrease in lung compliance and decreased lung 
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volume which are characteristic of a restrictive or fibrotic pulmonary phenotype.  Both 

early and late post-radiation pulmonary effects have been well-investigated106-108 but there 

remains an urgent need for new regional lung measurements of early post-radiation 

changes, in order to improve patient outcomes.  A number of longitudinal clinical studies 

evaluated lung microstructure following radiotherapy treatment.109-114  These studies have 

reported differences in ADC values in patients with RILI compared to controls, along with 

3He static lung ventilation defects. RILI-induced fibrosis in rats showed102 that ADC values 

in regions of fibrosis were lower compared to healthy regions. The earliest stages of 

radiation-pneumonitis and RILI was also investigated using 129Xe MRI morphometry in 

rats. This work revealed quantitative morphological changes at the alveolar level as early 

as two weeks post-radiation71 while MRI-based Lm, estimates were consistent with Lm 

changes measured using histology in rats sacrificed at the end of the study. 

Adult Lung Regrowth 

One potential clinical application of MRI morphometry is the evaluation and 

characterization of lung growth in newborns and children as well as in adults, post-surgery.  

The observation and assessment of lung regrowth in adults68 and in small animal models67 

demonstrated this clinical potential for cases where MRI is a good alternative for non-

invasive assessment of lung structure and function. In the new field of cell-based 

replacement therapies and whole organ regeneration,115, 116 non-invasive MRI 

morphometry provides a non-invasive way to serially measure lung growth as well as the 

biomechanical and functional properties.  For example, 3He MRI morphometry was 

recently used to track lung growth over 30 days using MRI Lm estimates and changes in 

the alveolar density.67 

Lung Transplant 

Bronchiolitis obliterans syndrome (BOS), or obstructive chronic lung allograft dysfunction 

(CLAD), is loss of lung function due to airway remodeling and fibrosis following lung 

transplantation.117  Clinically, BOS is characterized using measurements of gas-trapping, 

bronchiectasis and hyperinflation and thoracic CT follow-up is commonly employed post-

transplantation to monitor lung structural changes.  More than 10 years ago, hyperpolarized 
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3He MRI was piloted in post-transplant patients to detect and measure ventilation defects 

due to BOS.118, 119  While MRI morphometry has not yet been piloted in these patients, it 

will certainly provide a sensitive, non-invasive means of measuring changes in the lung 

parenchyma and perhaps early warnings of BOS in post-transplant patients. 

 

CHALLENGES AND LIMITATIONS 

A summary of the challenges, limitations and strengths associated with 3He and 129Xe lung 

morphometry MRI are briefly outlined in Table 4. Some of the limitations of 

hyperpolarized noble gas MRI relate mainly to infrastructure availability and the 

complexity of the analysis that has limited its use at major clinical centers. While 3He 

availability and cost is also a limitation,120 as an alternative, 129Xe gas provides both 

availability and cost effectiveness121, 122 while enabling imaging measurements that are 

similar to and perhaps more sensitive to airway obstruction than 3He.55, 63, 123, 124   As well, 

129Xe is modestly soluble in biological tissues and blood, which permits simultaneous 

ventilation-perfusion and blood-gas tissue barrier imaging.125, 126  However, 129Xe MRI 

whole lung three-dimensional morphometry is still very challenging88, 127 and this has led 

to the development of rapid image acquisition and reconstruction techniques as well as 

advanced transmit-receive MRI hardware.127, 128 Recently, the feasibility of single breath-

hold, whole lung morphometry with hyperpolarized 3He using parallel imaging was 

demonstrated127 in four asthma patients with a reduction in total acquisition time of up to 

10 seconds; morphometric estimates with and without parallel imaging demonstrated good 

agreement.  Another single breath-hold 3He/129X whole lung morphometry approach using 

compressed sensing with an acceleration factor similar to parallel imaging was 

demonstrated in healthy volunteers and COPD patients.88, 97 Recently, a compressed 

sensing approach90 was developed that combined undersampling in both spatial and 

diffusion-sensitizing directions; this work underscores the role of continuous optimization 

of compressed sensing and parallel imaging to reduce acquisition times which may help 

increase clinical uptake.   
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Table 4: Challenges, Limitations and Opportunities  
 3He MRI 129Xe MRI 

Challenges High cost, limited supply  

 

No pathway for clinical translation 

 

No pathway for commercial 

translation 

Low gamma = lower SNR than 3He 

MRI 

 

Slower lung filling and gas diffusion 

 

Advanced MRI hardware such as high 

gradient strength and receive phase 

arrays needed 

 

Limitations Cannot be mixed with oxygen or 

used for free breathing 

measurements in patients 

 

Inert, not soluble in lung tissue and 

blood 

Cannot be mixed with oxygen or used 

for dynamic free-breathing patient 

measurements 

 

 

Pulse sequences result in mechanical 

vibrations leading to acoustic effects 

Opportunities High image SNR  

 

Fast lung filling 

Natural abundance of 129Xe isotope 

 

Large volume, high polarization, rapid 

production 129Xe polarizers 

 

Solubility in tissue and blood allows for 

pulmonary gas, barrier, blood imaging 

and brain measurements. 

 

Approved for clinical use UK 

 

ROLE IN FUTURE 

Patients with chronic lung disease typically require treatment and monitoring over decades 

as disease progression, lung maturation and aging ensues.  Frequent, or at least annual 

clinical evaluations are required to assess progressive disease, response to therapy and the 

need for changes in therapy and other clinical management strategies. Until now however, 

and in a few specific cases, thoracic imaging is not routinely used in the clinical work-up 

or follow-up of patients with chronic lung disease.  The application of MRI morphometry 

methods and measurements in patients with COPD,51, 64, 65, 85, 96, 97, 103, 104, 129 cystic 

fibrosis,101 BPD105 and AATD 52, 99 has well-demonstrated its clinical potential and opens 

the door for more personalized and perhaps augmented therapy for these patients.  For 
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example, in AATD patients, including those undergoing augmentation therapy or cell-

based therapy, there is a potential clinical benefit because response to therapy can be 

measured using MRI-derived Lm.  Moreover, preclinical studies have demonstrated the 

promising impact of stem cell-based therapies in small animal models mimicking BPD.130, 

131  The evidence of alveolar growth and repair observed in the small animal models is now 

driving early phase clinical trials for which MRI lung morphometry is an ideal efficacy and 

safety measurement tool.  Furthermore, the direct phenotyping of AATD, BPD and CF 

patients with MRI-derived lung morphometry measurements holds promise for clinical 

decision making in regard to lung transplant.  Certainly, MRI-derived morphometry 

measurements are highly complementary to current clinical consensus guideline 

measurement thresh-holds used to stratify patients to the transplant list. 

Further development of MRI hardware including multiple receive array coils132 and 

increasing clinical scanner gradient strength, as well as parallel imaging127 and compressed 

sensing,88 will improve image quality and signal-to-noise ratios as well as decrease the data 

acquisition time.  This will provide a way to combine isotropic ventilation and diffusion-

weighting in a single breath-hold whole lung measurement. Another important step that 

will enhance clinical utilization of 129Xe MRI morphometry measurements is the 

facilitation of new clinical research sites at pediatric hospitals including Cincinnati 

Children’s Hospital (Cincinnati USA) and the Hospital for Sick Children (Toronto 

CANADA).  

In summary, following the pivotal ex vivo studies of Leopold and Gough7 and Weibel and 

co-workers 8, hyperpolarized noble gas MRI provides new, non-invasive in vivo 

measurements of the lung parenchyma that have been validated using histology.  In future, 

new 129Xe MRI methods will be developed to generate regional maps and biomarkers of 

alveolar wall microstructure because 129Xe has modest solubility in the tissue barrier for 

gas diffusion and in the blood.125, 133, 134 This technological advance will certainly 

accelerate in vivo longitudinal monitoring of lung biomarkers135 that have never before 

been possible in patients. 
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