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Abstract 

The transpressional reverse Leech River fault (LRF) extends across the southern 

tip of Vancouver Island and beneath the city of Victoria, British Columbia, Canada. New 

paleoseismic studies suggest at least three surface-rupturing earthquakes have exceeded 

a moment magnitude (M) of 6 within a proposed Leech River Valley Fault Zone (LRVFZ) 

within the last 9,000 years. We examine the impact of an active LRVFZ to predicted 

earthquake ground motions for Victoria. In a probabilistic formulation considering the 

likelihood of all earthquake sources, LRVFZ earthquakes will contribute the most to high-

frequency ground motions (≥ 10 Hz) in Victoria. The Canadian seismic design ground 

motions for Victoria increase on average by 4 – 23% at 10 Hz depending on the selection 

for the magnitude-recurrence rate associated with the LRVFZ. In a deterministic 

formulation considering rupture complexities for a suite of M 7 LRVFZ scenario 

earthquakes, predicted low-frequency (< 0.5 Hz) ground motions in Victoria vary 

between 1 cm/s (weak shaking) and 19 cm/s (strong shaking) depending on the scenario. 

The highest ground motions in Victoria are generated by an eastward-rupturing large 

magnitude LRVFZ earthquake with maximum slip at shallow depth near the city. 

  



iii 
 

Keywords 

Earthquake, Seismic Hazard, Probabilistic Seismic Hazard Analysis, PSHA, 

Deterministic Seismic Hazard Analysis, wave propagation simulation, Leech River fault, 

Leech River Valley, Victoria, British Columbia  



iv 
 

Co-authorship Statement 

The thesis is presented in Integrated Article format and consists of the following 

two papers that have been submitted to, or prepared for, peer-reviewed journals. 

Chapter 2: Preliminary findings were published as a 2018 Risk conference paper in 

Kukovica et al. (2018). This work is superseded here by Kukovica et al. (2019a). 

Kukovica, J., Molnar, S., Ghofrani, H., and Assatourians, K. (2018). Impact from a nearby 

seismically-active fault to seismic hazard in Victoria, Canada. WIT 

Transactions on Engineering Sciences, 121 173-181, doi: 10.2495/RISK180151. 

Kukovica, J., Ghofrani, H., Molnar, S. and Assatourians, K. (2019a). Probabilistic seismic 

hazard analysis of Victoria, British Columbia: Considering an active fault zone 

in the nearby Leech River valley. Bulletin of the Seismological Society of America, 

revisions submitted May 9, 2019. 

Probabilistic Seismic Hazard Analysis (PSHA) was performed for Victoria by 

adding the Leech River Valley Fault Zone (LRVFZ) as an active seismic source. I 

replicated the current uniform hazard curves for Victoria that are reported in the 2015 

National Building Code of Canada using EQHAZ software, with the supervision of Dr. 

Karen Assatourians. I then determined magnitude-recurrence relations for the LRVFZ 

based on three different sources; Dr. Hadi Ghofrani helped combine paleoseismic data to 

generate characteristic distribution functions for the LRVFZ. I then generated a MATLAB 



v 
 

code to represent the LRVFZ based on these magnitude-recurrence relations, and fault 

geometry, in the EqHaz software suite to perform a PSHA of Victoria. 

Chapter 3: Kukovica, J., Molnar, S., and Ghofrani, H. (2019b). Earthquake ground 

motion simulations for Victoria, British Columbia: Considering an active 

Leech River Valley fault zone. This manuscript is prepared for the Bulletin of 

the Seismological Society of America. 

Three-dimensional (3D) finite difference (FD) simulations were performed for 

southern Vancouver Island using an anelastic wave propagation (AWP) simulation code 

(AWP-ODC; version 1.1.2) provided by Dr. Sheri Molnar and obtained from Dr. Kim 

Olsen. The base elastic physical model representative of the local geology beneath 

Vancouver Island was provided by Dr. Sheri Molnar. I generated my own MATLAB code 

to superimpose slip models from the 2010 M 7 Darfield, New Zealand and 2010 M 7 Haiti 

earthquake ruptures onto the LRVFZ. I then performed 3D FD simulations for 24 

different M 7 LRVFZ scenarios to generate ShakeMaps for southern Vancouver Island 

and extracted synthetic low-frequency waveforms at seven different locations with 

inferred high seismic risk. 

The thesis and integrated articles were completed under the supervision of my co-

supervisors, Dr. Sheri Molnar and Dr. Hadi Ghofrani. Both supervisors provided 

exemplary on-going guidance, suggestions, and improvements to the manuscripts.  



vi 
 

Acknowledgments 

Financial support for this thesis was provided by an NSERC Collaborative 

Research and Development (CRD) grant with Chaucer Syndicates. 

I am truly grateful for the amazing academic guidance, emotional support, and 

encouragement provided by my supervisor and co-supervisor; Dr. Sheri Molnar and Dr. 

Hadi Ghofrani. This project could not have been accomplished without their help and 

professional skills. I’d also like to give a big thanks to Dr. Karen Assatourians for his help 

co-authoring my first publication. 

Thank you to everyone in the Good Vibrations and Excitations lab group; the 

remaining Kristy Tiampo research group; and all my friends and professors in the Earth 

Sciences department for making these last two years ones to remember. This department 

has been more than a family to me for my undergraduate and graduate degrees at 

Western and it will be hard to leave here. Shout out to the “fun-fund”, the “Slither 

Squad”, the Relationship Guys, and Vienna for getting me through the long work days. 

To my parents, Janice and Peter, thank you for all your love and support through 

this journey. If I ever needed someone, I knew I could always turn to you to help me 

through the exciting highs and stressful lows. To my Papa and Grandma, Joe and Lillian 

Mokanski, I could not have done this without Papa guiding me through (many) calculus 

problems, or one of grandma’s famous chocolate chip cookies! And lastly, to my loving 



vii 
 

girlfriend, Rebecca. You were always an anchor for me when the ground got a little shaky 

and I know I could always turn to you for love and support. 

  



viii 
 

Table of Contents 

Abstract........................................................................................................................................................ ii 

Keywords ...................................................................................................................................................iii 

Co-authorship Statement ......................................................................................................................... iv 

Acknowledgments .................................................................................................................................... vi 

List of Tables ............................................................................................................................................... x 

List of Figures ............................................................................................................................................ xi 

List of Abbreviations ............................................................................................................................... xv 

List of Symbols ........................................................................................................................................xvi 

1 Introduction .......................................................................................................................................... 1 

1.1 Seismicity in Victoria ................................................................................................................. 1 

1.2 Seismic Hazard Analyses .......................................................................................................... 6 

1.2.1 Probabilistic Seismic Hazard Analyses (PSHA) ............................................................ 6 

1.2.2 Deterministic Seismic Hazard Analyses (DSHA) ........................................................ 11 

1.2.3 Seismic Hazard Analyses in Canada ............................................................................. 12 

1.3 Thesis Aims ............................................................................................................................... 13 

1.4 Organization of Thesis ............................................................................................................ 14 

1.4.1 Chapter 2 – PSHA Considering an Active LRVFZ ...................................................... 14 

1.4.2 Chapter 3 – DSHA Considering an Active LRVFZ ..................................................... 14 

1.4.3 Chapter 4 – Conclusions.................................................................................................. 15 

1.5 Data and Resources .................................................................................................................. 15 

1.6 References ................................................................................................................................. 16 

2 Probabilistic Seismic Hazard Analysis of Victoria, British Columbia: Considering an 

Active Fault Zone in the Nearby Leech River Valley .................................................................. 21 

2.1 Introduction .............................................................................................................................. 21 

2.2 PSHA methodology and validation with 2015 NBCC ground motions .......................... 26 

2.3 Inclusion of the LRVFZ as a fault source zone .................................................................... 32 

2.3.1 Uncertainty in maximum magnitude ............................................................................ 33 

2.3.2 Uncertainty in earthquake occurrence statistics .......................................................... 33 

2.3.3 Magnitude-frequency distributions developed from seismicity catalogues ........... 34 



ix 
 

2.3.4 Magnitude-frequency distributions developed from earthquake statistics ............ 40 

2.3.5 Uncertainty in ground motion prediction .................................................................... 43 

2.4 PSHA for Victoria including the LRVFZ .............................................................................. 44 

2.5 Discussion and Conclusions ................................................................................................... 52 

2.6 Data and Resources .................................................................................................................. 54 

2.7 Acknowledgments ................................................................................................................... 55 

2.8 References ................................................................................................................................. 55 

3 Earthquake Ground Motion Simulations for Victoria, British Columbia: Considering an 

Active Leech River Valley Fault Zone ............................................................................................ 60 

3.1 Introduction .............................................................................................................................. 60 

3.2 Physical-Structure Model and Finite-Difference Scheme ................................................... 63 

3.2.1 Finite-Difference Methodology ...................................................................................... 66 

3.3 Earthquake Source Models ..................................................................................................... 69 

3.4 Simulated Finite-Difference Scenarios .................................................................................. 74 

3.5 Predicted long-period ground motions ................................................................................ 76 

3.5.1 Darfield Rupture Scenarios ............................................................................................. 77 

3.5.2 Haiti Rupture Scenarios .................................................................................................. 81 

3.5.3 Hypocenter Rupture Scenarios ...................................................................................... 85 

3.6 Discussion and Conclusions ................................................................................................... 90 

3.7 Data and Resources .................................................................................................................. 93 

3.8 Acknowledgments ................................................................................................................... 93 

3.9 References ................................................................................................................................. 94 

4 Conclusions ......................................................................................................................................... 98 

4.1 Summary ................................................................................................................................... 98 

4.2 Future Work ............................................................................................................................ 100 

4.3 References ............................................................................................................................... 101 

Curriculum Vitae .................................................................................................................................. 102 

  

  



x 
 

List of Tables 

Table 2.1. Magnitude completeness for the NRCAN and Li and Liu catalogues. 

Table 2.2. Eight sets of magnitude-recurrence parameters for the LRVFZ source zone.  

Table 2.3. UHS motions at 2% probability of exceedance in 50 years for Victoria. 

Percent difference (%) calculated with reference to the 2015 NBCC UHS 

motion.  

Table 3.1. 3D Velocity Model Parameters 

Table 3.2. Q values for 3D visoelastic structure model 

Table 3.3. Modified Earthquake Source Model Characteristics 

Table 3.4. Predicted maximum PGV (cm/s) from Darfield Source Models 

Table 3.5. Predicted maximum PGV (cm/s) from Haiti Source Models 

Table 3.6. Predicted maximum PGV from Max-Slip Hypocenter Rupture Scenarios 

  



xi 
 

List of Figures 

Figure 1.1. Tectonic setting for British Columbia. Arrows show relative plate motions 

(modified from Earle, 2016). Inset shows the Leech River fault surface 

expression (solid red line) and extension into the Juan de Fuca Strait 

(dashed red line) relative to Victoria and nearby active faults according to 

the 2014 United States Geologic Survey (USGS) (black lines; see Data and 

Resources). 

Figure 1.2. The four different steps involved in PSHA. From Tera (1980). 

Figure 2.1. Terrain map of the southern tip of Vancouver Island. The LRF surface 

(solid red line) and its offshore projection (dashed red line) are shown in 

relation to Greater Victoria. The black lines show fault source zones from 

the 2014 USGS seismic hazard model. StPF is the Strawberry Point Fault 

and UPF is the Utsalady Point fault. 

Figure 2.2. 2015 seismic hazard map of Canada for PGA. From NRCAN (see Data 

and Resources). 

Figure 2.3. Map depicting the 2015 NBCC source zones within a 500 km radius 

(dashed circle) of Victoria (black square). (a) Depicts crustal source zones 

and (b) depicts inslab source zones to a depth of 30 and 50 km. The upper 

bound of the Cascadia interface source zone (depth of ~5 km) is shown 

with a thin line to the west (Halchuk et al, 2014). Surface expression of the 

LRF is shown as a dotted line. 2015 NBCC source zone labels are: 1 – 

Brooks Peninsula; 2 – Cascade Mountains; 3 – Coastal Mountains Revised; 

4 – Explorer Plate Bending; 5 – Georgia Strait/Puget Sound (Deep); 6 – 

Juan de Fuca Plate Bending, Offshore; 7 – Juan de Fuca Plate Bending, 

Onshore (Deep); 8 – Northern British Columbia; 9 – Nookta Fault; 10 – 

Olympic Mountains; 11 – Puget Sound Shallow; 12 – Southern British 

Columbia; 13 – Vancouver Island Coast Mountains. 

Figure 2.4. Victoria Pseudo-Spectral Acceleration (PSA) spectra for (a) M 4.5 and (b) 

M 7 earthquakes of select seismic source types. Ground motions are 

calculated for site class C ground conditions and appropriate distances for 

Victoria determined from deaggregation. For both magnitudes, the 

crustal and fault GMPEs site distances are 10 km. Inslab and interface 

GMPEs site distances are 50 km. 



xii 
 

Figure 2.5. Comparison of the Victoria UHS (dashed or dotted lines) calculated at 

different annual rates of exceedance with the 2015 NBCC UHS (solid 

lines). Simulated PGA values are represented as an open circle and the 

2015 NBCC PGA values are represented by an asterisk. 

Figure 2.6. Hybrid magnitude-recurrence models developed from the NRCAN and 

Li and Liu catalogues including two M > 6 events in 15,000 years based 

on Morell et al. (2017). Grey triangles depict three M 6 or M 6.5 

earthquakes within 9,000 years based on Morell et al. (2018). 

Figure 2.7. Map depicting the “Vancouver Island” and “Plate Bend” source zones. 

Taken from Mulder (1995). 

Figure 2.8. Gutenberg-Richter relations for all simulations in comparison to the 

hybrid models. 

Figure 2.9. Victoria UHS curves at a 2475-year return period from eight PSHA 

calculations with a different LRVFZ magnitude-recurrence rate (a-h; 

listed in Table 2.2) showing contribution of each source zone type as well 

as the total UHS from all source contributions (dotted line). 

Figure 2.10. PSHA deaggregations at 10 Hz for Victoria at a 2475-year return period 

(a) without an active LRVFZ zone and including an active LRVFZ zone 

from PSHA (b) calculation a, (c) calculation b, and (d) calculation g in Figs. 

2.9 with fault appropriate GMPEs. 

Figure 2.11. Reference 2015 NBCC Victoria UHS (solid lines) compared to calculated 

Victoria UHS curves from eight PSHA calculations including an active 

LRVFZ zone (a-h; listed in Table 2.2). Symbols denote PGA values. The 

2015 NBCC Victoria UHS at a 10,000 year return period is not available. 

Figure 3.1. Terrain map of the southern tip of Vancouver Island. The LRVFZ surface 

projection (solid red line) used in ground motion simulations, and its 

potential extension beneath Juan de Fuca Strait (red dashed line), shown 

in relation to Greater Victoria (light blue region). The blue circles mark 

points of interest where waveforms from ground motion simulations are 

extracted. The locations are: 1 – Port Renfrew; 2 –Jordan River; 3 – 

Langford; 4 – Victoria; 5 – Victoria Airport; 6 – Duncan; 7 – Nanaimo. 

Figure 3.2. Modified Mercalli Intensity units and corresponding perceived shaking, 

peak motion type attributes. PGV values represent the minimum value 

for corresponding instrumental intensity. From Worden and Wald (2016). 



xiii 
 

Figure 3.3. Depth slices from the Molnar (2011) modified Pacific Northwest velocity 

model for Vs at: (a) 0 m; (b) 500 m; (c) 1000 m; and (d) 3000 m depth. White 

circles denote 7 locations described in Figure 3.1. 

Figure 3.4. Velocity profiles (Vs) from 0 km to 10 km depth for the seven waveform 

locations expressed in Figure 3.1. 

Figure 3.5. LRVFZ scenario slip distribution models of the (a) Darfield slip model 

with 448 subfaults over 64 km by 28 km area and (b) Haiti slip model with 

264 subfaults over 66 km by 30 km area. Orientation is west to east (north 

is into the page) with Victoria located at approximately latitude grid point 

300. 

Figure 3.6. (a) Moment-tensor rate function of the Mxx component. (b) Amplitude 

spectra of moment-tensor rate function in a). 

Figure 3.7. Example of how the Haiti slip model is rotated by reflection along the x- 

and/or y- axes of the fault. Maximum slip is relocated into the (a) top west 

quadrant (original slip model), (b) top east quadrant, (c) bottom west 

quadrant, and (d) bottom east quadrant. 

Figure 3.8. Predicted long-period ground motion intensities in southwestern British 

Columbia from modified M 6.9 Darfield scenarios. Each column 

represents a different location of Darfield source model slip; magenta 

stars show the locations of maximum slip in the fault model. White dots 

represent waveform locations, with numbers of the location shown in 

subplot (a), from Figure 3.1. The magenta box outlines the surface 

projection of the LRVFZ. 

Figure 3.9. Synthetic waveforms extracted at seven locations (see Figure 3.8) from 

four modified M 6.9 Darfield rupture scenarios with maximum slip in (a) 

upper west quadrant, (b) upper east quadrant, (c) lower west quadrant 

and (d) lower east quadrant. 

Figure 3.10. Predicted long-period ground motion intensities in southwestern British 

Columbia from modified M 7 Haiti scenarios. Each column represents a 

different location of Haiti source model slip; magenta stars show the 

locations of maximum slip in the fault model. White dots represent 

waveform locations, with numbers of the location shown in subplot (a), 

from Figure 3.1. The magenta box outlines the surface projection of the 

LRVFZ. 



xiv 
 

Figure 3.11. Synthetic waveforms extracted at seven locations (see Figure 3.10) from 

four modified M 7 Haiti rupture scenarios with maximum slip in (a) 

upper west quadrant, (b) upper east quadrant, (c) lower west quadrant 

and (d) lower east quadrant. 

Figure 3.12. Predicted long-period ground motion intensities in southwestern British 

Columbia from modified M 6.9 Darfield (top row) and M 7 Haiti (bottom 

row) rupture scenarios. Each column represents a different hypocenter 

and maximum slip location of the source models; magenta stars show the 

locations of hypocenters and maximum slip in the fault models. White 

dots represent waveform locations, with numbers of the location shown 

in subplot (a), from Figure 3.1. The magenta box outlines the surface 

projection of the LRVFZ. 

Figure 3.13. Synthetic waveforms extracted at seven locations (see Figure 3.12) from 

modified M 6.9 Darfield and M 7 Haiti rupture scenarios with hypocenter 

and maximum slip in (a) upper west quadrant, (b) upper east quadrant, 

(c) lower west quadrant and (d) lower east quadrant. 

  



xv 
 

List of Abbreviations 

3D Three-Dimensional 

AWP-ODC Anelastic Wave Propagation – Olsen, Day, and Cui 

BC British Columbia 

CDF Characteristic Distribution Function 

CPU Central Processing Unit 

DSHA Deterministic Seismic Hazard Analysis 

FD Finite Difference 

GMPE Ground Motion Prediction Equation 

GR Gutenberg – Richter 

GPU Graphics Processing Unit 

LRF Leech River fault 

LRVFZ Leech River Valley Fault Zone 

LiDAR Light Detection and Ranging 

NBCC National Building Code of Canada 

NEHRP National Earthquake Hazards Reduction Program 

NEIC National Earthquake Information Center 

NRCAN Natural Resources Canada 

PGA Peak Ground Acceleration (m/s2) 

PGV Peak Ground Velocity (m/s) 

PSA Pseudo Spectral Acceleration (m/s2) 

PSHA Probabilistic Seismic Hazard Analysis 

UHS Uniform Hazard Spectrum 

  



xvi 
 

List of Symbols 

a Gutenberg-Richter a value – long term activity rate; the total seismicity rate 

of the region 

A  Area (contextually in m2) 

b Gutenberg-Richter b value – the decay rate of exponential distribution; 

describes the relative size distribution of earthquakes 

β  Natural logarithmic representation of catalogue slope (b) 

D  Fault slip (m) 

ε  Randomness 

fε  Probability density function for randomness 

fM  Probability density function for moment magnitude 

fR  Probability density function for distance 

γ  Frequency of exceedance 

L  Fault length (km) 

m  Given magnitude above the magnitude of completeness 

M  Moment magnitude 

M0  Seismic moment (contextually in N ∙ m or dyne ∙ cm) 

MChar  Characteristic magnitude 

Mmax  Maximum magnitude 

Mmin  Minimum magnitude 

MMI  Modified Mercalli Intensity 

µ  Shear modulus (Pa) 

N0  Number of earthquakes (per year) with magnitude ≥ m = 0 

P  Probability of predicted ground motion 

Q  Quality factor 

r  Distance from source 



xvii 
 

ρ  Density (kg/m3) 

Rhypo  Hypocentral distance (km) 

Rcd  Closest-distance to the top of the rupture plane (km) 

RJB The Joyner-Boore distance (km) defined as the closest distance to the 

surface projection of the rupture surface 

S  Slip rate (mm/yr) 

t  Time (s) 

tR  Rise time (s) 

∆T  Duration of catalogue completeness (years) 

v  Activity rate (per year) 

v(t)  Velocity (m/s) at time t 

VP  Compression-wave velocity (m/s) 

Vs  Shear-wave velocity (m/s) 

Vs30  Time-averaged shear wave velocity in the top 30 m (m/s) 

Y  Predicted ground motion  

y  Ground motion amplitude  



1 
 

1 Introduction 

1.1 Seismicity in Victoria 

For the residents of Victoria, British Columbia, Canada, the potential for a large-

magnitude earthquake is a very real concern. Located on the southern tip of Vancouver 

Island, Victoria is situated near the northern limit of the Cascadia subduction zone, where 

the oceanic Juan de Fuca plate is subducting northeast under the crustal North American 

plate (Figure 1.1). The west coast of Canada is seismically unique because it is one of the 

few places in the world where all three types of plate movement occur to produce 

earthquakes; strike-slip, convergent, and divergent plate boundaries (NRCAN, 2017). 

Subduction of the oceanic Juan de Fuca (at a rate of about 33 to 41 mm yr-1; Gripp and 

Gordon, 2002) and Explorer plates underneath continental North America has put 

significant stress on the Cascadia subduction zone. The oblique subduction of the Juan 

de Fuca plate has created a seismically active fault zone and volcanic arc; creating 

additional seismic hazard relative to the movement of forearc blocks (Wells et al., 1998). 

This active tectonic setting has resulted in damaging, large earthquakes, such as the 

moment magnitude (M) 6.8 Nisqually earthquake of February 28th, 2001 (Filiatrault et 

al., 2001), the M 7.8 Haida Gwaii earthquake of October 27th, 2012, or the stronger M 8.1 

Queen Charlotte Island earthquake of 1949. 
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Figure 1.1. Tectonic setting for British Columbia. Arrows show relative plate 

motions (modified from Earle, 2016). Inset shows the Leech River fault surface 

expression (solid red line) and extension into the Juan de Fuca Strait (dashed red 

line) relative to Victoria and nearby active faults according to the 2014 United 

States Geologic Survey (USGS) (black lines; see Data and Resources). 

The Leech River fault (LRF) is a shallow NE dipping terrane bounding fault 

located on the southern tip of Vancouver Island (Figure 1.1). The fault divides geologic 

units of Jurassic-Cretaceous schists of the Leech River Complex to the north and Eocene 

basalts of the Metchosin Formation to the south (Muller, 1977; Fairchild and Cowan, 1982; 

Rusmore and Cowan, 1985). Underthrusting of the Metchosin formation exhumed the 

Leech River Complex along the LRF and exposed the Leech River Complex at surface by 

35 Ma, when it was then overlain by sediments of the Oliogocene Carmanah Group 
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(Fairchild and Cowan, 1982; Massey, 1986; Clowes et al., 1987; Groome et al., 2003). This 

event exposed the fault with the sinistral-oblique sense of displacement seen today 

(Fairchild, 1979; Muller, 1983; Massey, 1986; Groome et al., 2003). The LRF is well imaged 

on Lithoprobe seismic refraction surveys (e.g. Clowes et al., 1987) and in seismic 

tomography (e.g. Ramachandran, 2001). Where this fault daylights, a spectacular 

topographic feature with up to 500 m of relief, the Leech River Valley, cuts across 

southern Vancouver Island. Recent paleoseismic studies (Morell et al., 2017; 2018) and a 

microearthquake study (Li et al., 2018) continue to validate that the previously named 

LRF is not seismically active, but rather suggest there may be a broad deformation zone 

of high angle transpressional faulting within or near the Leech River Valley that may 

have been active in Holocene time. In this thesis, we explore the seismic hazard 

implications of such a fault zone and we refer to it here as the Leech River Valley Fault 

Zone (LRVFZ). Recent studies of the LRVFZ indicate at least three earthquakes exceeding 

M 6 have occurred within the last ~9 ka (Morell et al., 2017; 2018).  In addition, there has 

been recognition of Quaternary seismic activity just tens of kilometers offshore Victoria 

in structures of the Juan de Fuca Strait (Barrie and Greene, 2015). 

Seismic hazard for a given location is defined as “the potential for dangerous, 

earthquake related phenomena such as ground shaking, fault rupture, or soil 

liquefaction” (Reiter, 1990). McGuire (2004) more generally describes seismic hazard as 

“a property of an earthquake that can cause damage and loss”. Seismic hazard analyses 
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are generalized here to predictions of ground shaking amplitudes. Seismic risk on the 

other hand is quantitatively expressed as the product of seismic hazard times the 

vulnerability (Wang, 2011). To understand the difference between seismic hazard and 

risk, consider a hypothetical example of an active fault. This fault would cut underneath 

both a heavily built, urban environment with a large population and an open field area 

with no population or infrastructure. Assuming there are consistent ground conditions 

throughout both areas and a large-scale earthquake ruptured evenly throughout the 

entirety of the fault, there would be equal amounts of seismic hazard for both the field 

and urban regions. However, there would be greater seismic risk associated with the city 

because of the potential for more human or economic losses.  

Previous seismic risk assessments of M 6-7 LRF scenarios have been accomplished 

using HAZUS software (Zaleski, 2014; Ventura and Bebamzadeh, 2016). Zaleski (2014) 

proposed two deterministic LRF scenarios with a fault dip of 30°: (1) a 13-km length M 6 

LRF scenario with 0.22 m of average displacement, and (2) a 30-km length M 7 LRF 

scenario with 1 m average displacement. These two LRF earthquake scenarios were 

developed based on guidance from emergency managers and with consideration to 

earthquake scenarios with recurrence intervals compatible with planning time horizons. 

Earthquake ground motions for these two scenarios were calculated using a weighted 

average of three Ground Motion Prediction Equations (GMPEs) for crustal earthquakes 

in western North America and captured variable ground conditions using the Victoria 
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site class map of Monahan et al. (2000). This HAZUS Level 1 risk analysis is limited to 

direct economic impacts to the residential general building stock, shelter requirements, 

and debris cleanup for scenarios at 2 am (maximum building occupancy). The two LRF 

scenarios are predicted to result in $1.8 billion and $5.9 billion Canadian dollars in direct 

economic losses, respectively. For a Level 2 analysis, structural and non-structural 

building damage, business inventory loss, relocation cost, business income loss, rental 

income loss, and wage loss are included. For the M 6 and 7 LRF scenarios, Level 2 

economic losses increase to $3.5 billion and exceed $11 billion, respectively, in Victoria.  

Ventura and Bebamzadeh’s (2016) seismic risk analysis used the same M 7 LRF 

scenario of Zaleski (2014). However, ground motions were calculated using western 

Canada crustal GMPEs developed for the 5th-generation national seismic hazard model 

(Halchuk et al., 2014) and also included the Victoria site class map of Monahan et al. 

(2000). This LRF scenario is very damaging with 64% of buildings reaching extensive 

damage levels. Complete damage (3%) is localized to concrete and masonry buildings of 

the downtown core. It is expected that water pipelines in Victoria would be reduced to 

25% of normal serviceability and sewer pipelines would be lost completely. 

The identification of recent seismic activity from the LRVFZ (Morell et al., 2017; 

2018) affects seismic activity rates within the southern Vancouver Island region. 

Currently, the 5th-generation national seismic hazard model, which defines seismic 

design ground motions in the 2015 NBCC, does not consider the LRVFZ or the LRF as 
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active faults (Halchuk et al., 2014). Updating seismic design ground motions in the 2020 

NBCC to include LRVFZ seismicity is important for future risk and/or resilience 

assessments. This thesis presents Probabilistic and Deterministic Seismic Hazard 

Analyses (PSHA) and (DSHA), respectively for Greater Victoria. PSHAs are based on a 

range of LRVFZ events between M ~4 – 7 while DSHAs are based on complex M ~7 

LRVFZ rupture scenarios that include the ~60 km fault length. 

 

1.2 Seismic Hazard Analyses 

Seismic hazard analyses are divided into two main approaches: PSHA and DSHA. 

PSHA determines the probability of exceeding a particular level of earthquake shaking 

at a site from all known seismic sources within a given time frame, whereas DSHA 

predicts earthquake ground motions at a site from a single earthquake occurrence 

regardless of likelihood.  

1.2.1 Probabilistic Seismic Hazard Analyses (PSHA) 

PSHA determines the probability of exceedance for a given ground motion 

amplitude at a site by integrating over all earthquake occurrences, for all associated 

source zones, and their associated ground motions for a specific temporal period 

(Cornell, 1968; McGuire, 1995; Wang, 2011). The basis for PSHA requires three main 
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“inputs” to determine the probability of earthquake shaking within a period of time at a 

given site (Figure 1.2) (Musson, 1999; 2000). 

Figure 1.2. The four different steps involved in PSHA. From Tera (1980). 

In step 1, to model the occurrence of a region’s distributed earthquake activity, 

seismic sources are spatially based on a region’s geologic and tectonic settings into either 

fault or area source zones. In step 2, the annual rate of occurrence of different earthquake 

magnitudes is obtained from earthquake statistics associated within each spatial source 

zone. This is expressed as the Gutenberg-Richter (GR) relationship (Gutenberg and 

Richer, 1945; 1956) such that 

log10 𝑁(𝑚) = 𝑎 − 𝑏𝑚, (1.1) 
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where N(m) is the annual rate of earthquakes with a magnitude ≥ m within an assumed 

duration where the catalogue is complete per magnitude. The values of a and b are 

constants that relate to the intercept (i.e. activity rate) and slope (i.e. relative number of 

small magnitude to large magnitude earthquakes) of a source zone, respectively. 

Seismicity of each source is generally assumed to follow a Poisson distribution (Musson, 

2000). Modelling an individual fault or finite volume source zone requires an upper limit 

for the size of an earthquake governed by the physical properties of the source zone 

(Youngs and Coppersmith, 1986). This truncates the magnitude distribution below the 

defined upper bounds of the source zone. To model the GR between a range of minimum 

and maximum magnitudes, a truncated GR model is used and expanded on in section 2. 

In step 3, GMPEs calculate the corresponding ground motions for each scenario of 

synthetic events determined in step 2 into ground motions with scatter from the predicted 

median value (epsilon) included. A GMPE is a function that determines the median 

ground motions at a site based on the magnitude and distance of an earthquake for a 

specific tectonic setting (Atkinson and Adams, 2013). Typically, a suite of GMPEs are 

used with various weighting in a logic tree approach to capture epistemic uncertainty in 

the median ground motion predictions (Atkinson and Adams, 2013). In the 2015 

Canadian national seismic hazard maps, a central GMPE was developed with 

representative upper and lower bounds to express uncertainty about the central GMPE 

(Atkinson and Adams, 2013). This approach was chosen over a weighted model because 
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it allows for explicit judgments to be made for magnitude and distance scaling which 

satisfy important project data constraints, and to provide additional control of central 

GMPEs with corresponding uncertainty across different regions and event types 

(Atkinson and Adams, 2013).  

In step 4, the frequency of exceedance (γ) is calculated for a given ground motion 

amplitude (y) at a desired return period through the summation of activity rates for all 

source zones such that 

𝛾(𝑌 > 𝑦) = ∑ 𝑣𝑖 ∭ 𝑓𝑀(𝑚)𝑓𝑅(𝑟)𝑓𝜀(𝜀)𝑃[𝑌 > 𝑦|𝑚, 𝑟, 𝜀]𝑑𝑚 𝑑𝑟 𝑑𝜀𝑖 , (1.2) 

where vi represents the activity rate v of source i; fM and fR represent the probability 

density functions for moment magnitude and distance, respectively; and the term 

P[Y>y|m,r,σ] represents the probability of the predicted ground motion measure (Y) for 

a given magnitude (m), distance from source (r), and epsilon (ε) (Cornell, 1968; McGuire, 

1995; Halchuk et al., 2014). By applying equation 1.2 for multiple select frequencies, a 

Uniform Hazard Spectra (UHS) can be generated for a specific return period through 

plotting ground motion amplitude with frequency. The probability the ground motion 

measure Y will exceed the value y in t years, assuming that such an event is a Poisson 

process, is 

𝑃(𝑌 > 𝑦) = 1 − 𝑒𝑥𝑝(−𝑡𝛾(𝑌 > 𝑦)). (1.3) 
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The PSHA integral in equation 1.2 can be solved in two different approaches: empirically 

(Milne and Davenport, 1969), where hazard is derived through the relationship between 

a given ground motion parameter and historical earthquake observations (Wang, 2011); 

or event-based, where Monte Carlo simulations are performed through random 

samplings of the probability density functions. The Monte Carlo method involves 

generating a stochastic earthquake catalog based on source zone seismicity parameters 

over a certain temporal period and taking the largest event to represent the probability 

of that magnitude occurring for a given site (Musson, 1999; 2000; Assatourians and 

Atkinson, 2013).  

In summary, PSHA has the great advantage of amalgamating multiple earthquake 

sources by including the hazard of each event in terms of earthquake size, occurrence 

frequency, and associated ground motion (McGuire, 1995). PSHA is the basis for seismic 

design ground motions in building codes. However, large uncertainties can occur in 

calculations due to insufficient data availability. More data over longer time periods are 

always a benefit to provide accurate magnitude-recurrence relations, especially when 

looking at time scales for large magnitudes (Mulargia et al., 2017). This means for certain 

regions where data is sparse, the occurrence frequency of large magnitude earthquakes 

is extrapolated from small scale seismicity where data is readily available. This method 

works for a source zone that follows the GR log-linear trend for magnitude distributions 
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but may not encapsulate specific characteristic rupture mechanics that could govern the 

source zone (Mulargia et al., 2017). 

1.2.2 Deterministic Seismic Hazard Analyses (DSHA) 

DSHA involves calculating ground motions at a site for a given earthquake or set 

of earthquakes or scenarios, regardless of likelihood (Wang, 2011). Deterministic 

earthquake scenarios are a special case of the probabilistic approach and can complement 

PSHA to provide additional insights to the seismic hazard (McGuire, 2004). If peak 

motions are desired, then a DSHA involves predicting peak (median) motions using 

empirical GMPEs (only step 3 in Figure 1.2) (Atkinson and Boore, 2006). If earthquake 

waveforms are desired, then numerical techniques or full wave propagation simulation 

is performed for the deterministic event(s). In the latter case, complexity of the 

earthquake source rupture process (source model) is combined with the complexity of 

the subsurface (physical model) to predict earthquake shaking.  A wave propagation 

simulation is a physics-based solution for the given earthquake source including 

complexities in the path and site conditions whereas a GMPE predicts the expected 

ground motion, on average, which statistically captures complexities in source, path, and 

site effects. The more complex the source, path, and site effects, the more appropriate it 

is to use physics-based wave propagation simulations compared to GMPEs. However, 

wave propagation simulations are computationally expensive so have been primarily 

used to predict motions in sedimentary basin environments from large magnitude 
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earthquake ruptures (e.g., Olsen 2000; Pitarka et al., 2004; Frankel and Stephenson, 2000; 

Molnar et al., 2014a; 2014b). In contrast, generating predictions of earthquake shaking for 

a given earthquake or scenario is accomplished rapidly using GMPEs and is the basis of 

the United States Geological Survey (USGS) “ShakeMap” product. ShakeMaps display 

the spatial pattern of predicted motions and are useful products for pre- and post-

earthquake planning purposes.  

1.2.3 Seismic Hazard Analyses in Canada 

Over the last 75 years, five defining seismic hazard models have been produced 

for Canada, with the latest 5th-generation model produced in 2015 (Allen et al., 2015; 

Adams et al., 2015). The current 5th-generation seismic hazard model (SHM) includes 

probabilistic treatment of the Cascadia subduction zone source and other fault sources 

and estimates mean ground shaking at a 2% probability of exceedance in 50 years hazard 

level (Allen et al., 2015). This fully probabilistic model is designed for PGA, PGV, and 

spectral accelerations of 0.2, 0.5, 1.0, 2.0, 5.0, and 10.0 s for a reference site condition 

(NBCC site class C with a time-averaged shear-wave velocity of the upper 30 meters (VS30) 

of 450 m/s). Calculations were performed on an extensively modified version of Risk 

Engineering’s (1988) proprietary FRISK88 code (Halchuk et al., 2014). The 6th-generation 

seismic hazard model will provide the seismic design motions in the 2020 NBCC. This is 

under current review and will be presented at the upcoming 12th Canadian Conference 

on Earthquake Engineering in June 2019 (e.g., Halchuk et al., 2019).  
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1.3 Thesis Aims 

The goal of this study is to consider the seismic hazard implications for the city of 

Victoria due to a seismically active Leech River Valley fault zone. The key questions this 

research aims to answer are: how much change is expected to predicted ground motions 

in Victoria due to a seismically active LRVFZ? And what ground motions are expected 

from large magnitude LRVFZ rupture scenarios? These two questions are answered by 

performing many PSHAs and DSHAs, respectively, for the Greater Victoria region. An 

active LRVFZ source zone is incorporated into 8 PSHAs for Victoria considering 

uncertainty in the fault’s seismic activity rate and the appropriate GMPE to predict 

LRVFZ earthquake motions. The percentage difference in UHS motions for Victoria with 

respect to the 2015 NBCC motions (5th-generation hazard model) are assessed. A suite of 

24 deterministic M 7 LRVFZ scenarios are developed from two slip distribution models 

of empirical M ~7 earthquakes elsewhere in the world. Wave propagation simulations of 

these 24 deterministic M 7 LRVFZ rupture scenarios are performed to predict long-period 

ground motions in southwestern British Columbia. It is hypothesized the addition of the 

LRVFZ fault source will increase seismic hazard for Greater Victoria because of the 

proximity to the fault zone. It is also hypothesized that motions will vary greatly based 

on slip distribution, rupture directionality, and hypocenter location with greatest ground 

shaking occurring in close proximity to the fault, the hypocenter, or in areas atop low 

velocity lithologies. 
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1.4 Organization of Thesis 

This thesis consists of two main chapters that address seismic hazard analyses for 

Greater Victoria, British Columbia considering an active LRVFZ. 

1.4.1 Chapter 2 – PSHA Considering an Active LRVFZ 

PSHA is performed for the city of Victoria with consideration of the LRVFZ as an 

active fault source. This study’s PSHA methodology first reproduces the 2015 NBCC 

ground motions for Victoria to quantify adjustments to the national hazard values from 

inclusion of an active LRVFZ fault source zone. Following a logic tree approach, a set of 

plausible alternative seismicity parameters (i.e. minimum magnitude (Mmin), maximum 

magnitude (Mmax), a- and b-values of GR parameters), and GMPEs are considered to 

explicitly capture the epistemic uncertainty in PSHA motions. Results from 475, 1000, 

2475, and 10,000-year return periods are compared to 2015 NBCC motions to determine 

if seismic hazard alters for Victoria based on a newly identified active LRVFZ source 

zone. We examine the distribution of hazard contribution between the different 

applicable source zones and report percentage change in UHS ground motions with 

respect to the 2015 NBCC. 

1.4.2 Chapter 3 – DSHA Considering an Active LRVFZ 

Chapter 3 presents DSHAs for a suite of 24 M 7 LRVFZ scenarios performed using 

three-dimensional finite-difference wave propagation simulations. Development of 24 
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different, potential earthquake scenarios is accomplished by superimposing two M 7 

empirical slip models onto the LRVFZ: the 2010 M 7 Darfield, New Zealand and the 2010 

M 7 Haiti events. Uncertainties in earthquake rupture parameters including direction of 

propagation, slip distribution pattern and hypocentre location are captured within the 

suite of 24 scenarios to assess ground shaking from simulated large LRVFZ earthquakes. 

We convert PGV to Modified Mercalli Intensity (MMI) to generate “ShakeMaps” from 

our 24 deterministic scenarios. 

1.4.3 Chapter 4 – Conclusions 

Discussion of findings and conclusions from the previous two chapters are 

presented here. The significance of these two papers, in addition to suggestions for future 

work, is also discussed. 

 

1.5 Data and Resources 

Faults for the 2014 USGS active fault zones were obtained from the USGS 

Interactive Fault map at https://earthquake.usgs.gov/hazards/qfaults/ (accessed on 

September 2017). ShakeMaps are a product of the USGS Earthquake Hazards Program 

with information available at https://earthquake.usgs.gov/data/shakemap/ (accessed on 

December 2018). 

 

https://earthquake.usgs.gov/hazards/qfaults/
https://earthquake.usgs.gov/data/shakemap/
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2 Probabilistic Seismic Hazard Analysis of Victoria, British Columbia: 

Considering an Active Fault Zone in the Nearby Leech River Valley 

2.1 Introduction 

The LRF (Figure 2.1) is present southeast of Port Renfrew on the west coast of 

Vancouver Island and extends east to the provincial capital city of Victoria where it 

continues offshore in the Juan de Fuca Strait and potentially connects with the 

Darrington-Devils Mountain fault (Johnson et al., 2001). The LRF is a shallow north 

dipping terrain bounding fault that is well imaged on Lithoprobe seismic refraction 

surveys (e.g. Clowes et al., 1987) and in seismic tomography (e.g. Ramachandran, 2001). 

Recent paleoseismic studies (Morell et al., 2017; 2018) and a microearthquake study (Li et 

al., 2018) continue to validate that the previously named LRF is not seismically active but 

suggest there may be a broad deformation zone of high angle transpressional faulting 

within or near the Leech River Valley that may have been active in Holocene time. We 

explore the seismic hazard implications of such a fault zone and we refer to it here as the 

Leech River Valley Fault Zone (LRVFZ). 



22 
 

 

Figure 2.1. Terrain map of the southern tip of Vancouver Island. The LRF surface 

(solid red line) and its offshore projection (dashed red line) are shown in relation 

to Greater Victoria. The black lines show fault source zones from the 2014 USGS 

seismic hazard model. StPF is the Strawberry Point Fault and UPF is the Utsalady 

Point fault. 

Suggestions of Holocene activity within several strands of the LRVFZ has been 

recently identified (Morell et al., 2017; 2018). The evidence comes from a combination of 

paleoseismic trenching, Light Detection and Ranging (LiDAR)-based lineament 

mapping, and geomorphology. Morell et al. (2017) mapped more than 60 steeply dipping, 

semi-continuous linear scarps, sags, and swales that cut across both bedrock and 

Quaternary deposits along the LRVFZ. Reconstruction of colluvial fault slip surfaces in 
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two trenches across a short 200-m lineament detected by LiDAR suggest a total of ~6 m 

of vertical displacement. They propose two large moment magnitude (M) > 6 earthquakes 

caused this displacement since the last deglaciation event 15,000 years ago. Morell et al. 

(2018) updated this assessment to three M > 6 LRVFZ earthquakes in the last ~9,000 years. 

Other paleoseismic studies of nearby crustal faults in the region have identified 

Quaternary fault activity, including the Darrington-Devils Mountain fault zone (Johnson 

et al., 2001; Barrie and Greene, 2015) and Whidbey Island fault (Sherrod et al., 2008). It is 

becoming increasingly important to examine how to incorporate these newly identified 

active faults in southwestern British Columbia, with very little recorded seismicity 

attributed to the faults themselves, into future seismic hazard assessments. 

Vancouver Island is a critically studied part of Canada in terms of earthquake 

hazard because of its close proximity to the Cascadia subduction zone, where the oceanic 

Juan de Fuca plate is actively subducting beneath the continental North America plate. 

The city of Victoria is therefore exposed to the highest seismic hazard for a major city in 

Canada. For example, the peak horizontal ground acceleration (PGA) in Victoria 

calculated in the 5th- generation Canadian seismic hazard model, developed for seismic 

design provisions of the 2015 National Building Code of Canada (NBCC), is 0.58 g at a 

2% probability of exceedance in 50 years (Figure 2.2) (Halchuk et al., 2014). This value is 

eight times greater than the interior of the country. 
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Figure 2.2. 2015 seismic hazard map of Canada for PGA. From NRCAN (see Data 

and Resources). 

The recent evidence that the LRVFZ might be seismically active, having possibly 

produced up to three M > 6 earthquakes in the last 9,000 years (Morell et al., 2017; 2018), 

adds further to the consideration of seismic hazard in this region. Previously, no recorded 

seismicity has been attributed to this proposed fault zone (Mulder, 1995; Balfour et al., 

2012); however, recent microearthquake relocation analyses (Li et al., 2018) demonstrate 

linearized seismicity patterns attributed to LRVFZ seismicity. This study performs 

Probabilistic Seismic Hazard Analyses (PSHA) which include the LRVFZ as an active 
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seismic fault zone to examine the contribution of this proposed fault source to the seismic 

hazard of Victoria. 

PSHA determines the probability of exceedance for a given ground motion 

amplitude at a site by integrating over all earthquake occurrences for all source zones and 

their associated ground motions for a specific temporal period (Cornell, 1968; McGuire, 

1995). For a specific site, the related frequency of exceedance (γ) is calculated for a given 

ground motion amplitude (y) at a desired return period and is achieved through the 

summation of all activity rates for all source zones in the analysis using equation 1.2. 

Current available PSHA software includes OpenSHA (Field et al., 2003), OpenQuake 

(GEM, 2017), EqHaz (Assatourians and Atkinson, 2013), CU-PSHA (Pailoplee and 

Palasri, 2014), and CRISIS2008 (Ordaz et al., 2013), among others. This study uses the 

EqHaz software, which uses Monte Carlo simulation (Musson, 1999, 2000) to solve the 

Cornell-McGuire PSHA methodology presented in section 1.2.1. 

We first confirm our PSHA implementation by replicating the 2015 NBCC ground 

motions at different return periods for Victoria before introducing the LRVFZ as a seismic 

source. We use the fault zone geometry proposed by Li et al. (2018) and keep it fixed in 

our PSHA calculations. We note that the fault’s possible eastward extent and connection 

with other nearby splay faults (Morell et al., 2017; 2018), as well as potential seismic 

activity northward beneath Victoria (Li et al., 2018) have been proposed but are not 

considered further here. The largest unknowns in our PSHA calculations are therefore 
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the magnitude-recurrence rate of the LRVFZ and the applicable Ground Motion 

Prediction Equation (GMPE) for LRVFZ earthquakes. We perform a suite of eight PSHAs 

considering a range in magnitude-recurrence distributions developed from three 

different sources of recorded seismicity. The potential Holocene M > 6 events (Morell et 

al., 2017) are used to develop a characteristic magnitude-frequency distribution function 

for magnitudes greater than M > 6. The observed variability in our PSHA calculations 

captures uncertainty in the LRVFZ’s activity rate of the fault zone model and in the 

applicable GMPEs to calculate fault event ground motions. 

 

2.2 PSHA methodology and validation with 2015 NBCC ground motions 

The general workflow of the EqHaz software (Assatourians and Atkinson, 2013) 

is briefly described here. A synthetic earthquake catalogue is generated via Monte Carlo 

simulation based on regional seismicity parameters for specific source zones and their 

geometries. The synthetic earthquake catalogue is calculated by applying magnitude-

frequency parameters of an areal source zone or a fault source. The program then creates 

a grid of points within the source and randomly generates an earthquake event of equal 

weighting at each grid point. Applicable regional GMPEs are then used to compute a 

synthetic ground motion catalogue for the site of interest using all events in the synthetic 

earthquake catalogue. The GMPEs are used with a range of epsilon values to address the 
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randomness in ground-motion estimations. To obtain a mean hazard curve, EqHaz 

counts the number of exceedances of specified ground-motion levels in the generated 

ground-motion catalogue and divides these numbers by the equivalent total duration of 

the catalogue to find the rate of exceedance of each ground-motion amplitude level 

(Milne and Davenport, 1969). This refers to steps 3 and 4 of Figure 1.2 and is accomplished 

via EqHaz2. Rates of exceedance are used to calculate probabilities assuming a Poisson 

process (Assatourians and Atkinson, 2013). The PSHA can be deaggreated using EqHaz3 

(McGuire, 1995; Bazzurro and Cornell, 1999; Harmsen and Frankel, 1999) through 

binning the strongest ground motion subset of the synthetic ground motion catalogue at 

different magnitude and distance intervals. 

The source zones of the fifth-generation Canadian seismic hazard model (Halchuk 

et al., 2014) within 500-km of Victoria consist of 11 crustal, two inslab (30-km and 50-km 

depth) and one interface zones (Figure 2.3). For all source zones, the fifth-generation 

seismic hazard model parameters are maintained including source zone geometry, 

magnitude-recurrence parameters and associated GMPEs and uncertainties. 
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Figure 2.3. Map depicting the 2015 NBCC source zones within a 500 km radius 

(dashed circle) of Victoria (black square). (a) Depicts crustal source zones and (b) 

depicts inslab source zones to a depth of 30 and 50 km. The upper bound of the 

Cascadia interface source zone (depth of ~5 km) is shown with a thin line to the 

west (Halchuk et al, 2014). Surface expression of the LRF is shown as a dotted 

line. 2015 NBCC source zone labels are: 1 – Brooks Peninsula; 2 – Cascade 

Mountains; 3 – Coastal Mountains Revised; 4 – Explorer Plate Bending; 5 – 

Georgia Strait/Puget Sound (Deep); 6 – Juan de Fuca Plate Bending, Offshore; 7 

– Juan de Fuca Plate Bending, Onshore (Deep); 8 – Northern British Columbia; 9 

– Nookta Fault; 10 – Olympic Mountains; 11 – Puget Sound Shallow; 12 – 

Southern British Columbia; 13 – Vancouver Island Coast Mountains. 

Magnitude-frequency statistics are defined by the Gutenberg-Richter relation 

(Gutenberg and Richter, 1945): 

log10 (
𝑁(𝑚)

Δ𝑇
) = 𝑎 − 𝑏𝑚, (2.1) 
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where N(m) represents the total number of earthquakes with magnitude ≥ m (assuming 

completeness for the earthquake catalogue duration), duration of completeness in years 

(ΔT), with an intercept of a (i.e. activity rate) and slope of b (i.e. the relative number of 

small to large earthquakes). Magnitude-recurrence parameters, β and N0, are then defined 

as  

𝛽 = 𝑏 ∗ ln(10), (2.2) 

and 

𝑁0 = 10𝑎. (2.3) 

Synthetic earthquake catalogues are generated for each of the four source zone types 

using their determined magnitude-recurrence parameters: crustal, inslab to 30-km depth, 

inslab to 50-km depth, and interface zones. Maximum moment magnitude (Mmax) and 

minimum moment magnitude (Mmin) for each source zone of the fifth-generation hazard 

model are used here (Halchuk et al., 2014) and define the magnitude range used in our 

EqHaz calculations to generate synthetic catalogues. For most of the source zones in the 

study area, a value of Mmin 4.8 is typically used (e.g. Halchuk and Adams, 2010; Adams 

et al., 2015), as smaller events have not generally been observed to cause damage to 

engineered earthquake-resistant structures (Bommer and Crowley, 2017). 

Each synthetic catalogue is simulated for a duration of 1 million years to minimize 

errors due to sparse sampling. GMPEs developed for each source zone type are 
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characterized by a lower, central, and upper GMPE relation, which are weighted 16%, 

68% and 16%, respectively. Ground motions are calculated from the synthetic catalogues 

for each source type using the associated GMPE (Figure 2.4) for a reference stiff ground 

condition with an average shear-wave velocity of the upper 30 meters (VS30) of 450 m/s 

(NEHRP site class C).  

 

Figure 2.4. Victoria Pseudo-Spectral Acceleration (PSA) spectra for (a) M 4.5 and 

(b) M 7 earthquakes of select seismic source types. Ground motions are 

calculated for site class C ground conditions and appropriate distances for 

Victoria determined from deaggregation. For both magnitudes, the crustal and 

fault GMPEs site distances are 10 km. Inslab and interface GMPEs site distances 

are 50 km. 

We reproduce 2015 NBCC hazard values for Victoria (see Data and Resources 

Section) to validate our PSHA implementation prior to introducing the LRVFZ as a fault 

source. Figure 2.5 shows the uniform hazard spectra (UHS) for Victoria at various return 

periods: 475 years or 10% probability of exceedance in 50 years (10% in 50 years), 1000 
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years (5% in 50 years), 2475 years (2% in 50 years), and 10,000 years (0.5% in 50 years). 

Figure 2.5 demonstrates good agreement between our UHS produced using EqHaz with 

the 2015 NBCC UHS at different return periods for Victoria. The maximum difference is 

11% at 10 Hz for a 2475-yr return period. Hence, confidence in our PSHA implementation 

is obtained for further analyses and inclusion of the LRVFZ source zone. The NBCC does 

not record a UHS for a 10,000 year return period and thus is not included in Figure 2.5. 

 

Figure 2.5. Comparison of the Victoria UHS (dashed or dotted lines) calculated 

at different annual rates of exceedance with the 2015 NBCC UHS (solid lines). 

Simulated PGA values are represented as an open circle and the 2015 NBCC PGA 

values are represented by an asterisk.  
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2.3 Inclusion of the LRVFZ as a fault source zone 

In the forearc of the northern Cascadia subduction zone, few planar (linearized) 

seismicity patterns have been determined (Cassidy et al., 2000; Balfour et al., 2012), which 

delineate potential active fault seismicity.  Morell et al. (2017) mapped > 60 topographic 

features (scarps, sags and swales) that collectively extend > 60 km in length and span ~1 

km in width. Although the topographic features are semi-continuous along strike, it is 

suggested that the active fault zone extends the entire 60 km length due to similarity of 

these features along the western ~30 km of the fault to those on the eastern half (Morell 

et al., 2017). LiDAR imagery and field observations indicated dip slip motion on a steep 

(70-90° NE), north-dipping reverse fault (Morell et al., 2017). These results are supported 

by the microseismicity relocation study of Li et al. (2018) which delineate subsurface 

seismogenic structures within the LRVFZ area. This relatively known fault geometry is 

used to include an active fault zone into the fifth-generation seismic hazard model. To 

define the east-west striking LRVFZ geometry, we use a 60-km fault length and 28-km 

fault width (down dip extent) with a 60° dip NE and 1-km depth to the top of the fault. 

To avoid double counting of seismic events in the source model, the seismic 

activity contribution of the LRVFZ is subtracted from the shallow earthquakes in the areal 

source that contains the fault. In this way, the (total) seismic moment budget is 

distributed between the LRVFZ and areal source zone thereby conserving the total 

moment release. 
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2.3.1 Uncertainty in maximum magnitude  

The Mmax value of the LRVFZ is determined using an empirical relation based on 

geometric attributes for fault length of a strike-slip fault > 45 km (Leonard, 2010; 

Leonard, 2012), expressed as 

𝑀𝑚𝑎𝑥 = 𝑐 log 𝐿 + 𝑑, (2.4) 

where L is the length of the fault (km), and c and d are equal to 1.67 and 4.17, respectively. 

The Mmax value of the 60-km LRVFZ length is therefore M 7.14 and set as the upper Mmax 

value. The Mmax lower bound is set to M 5.8, to encapsulate the M > 6 paleoseismic events. 

The central value of M 6.5 is the average between the lower and upper Mmax bounds. 

Lower, central, and upper Mmax values are weighted in each of the PSHA calculations at 

35%, 50%, and 15%, respectively. Mmin was extrapolated to 3.5 to generate a sufficient 

number of events to avoid errors due to sparse magnitude sampling. 

2.3.2 Uncertainty in earthquake occurrence statistics 

Uncertainty in the magnitude-frequency statistics of the LRVFZ is addressed by 

generating eight magnitude distribution functions (occurrence rate of various 

magnitudes) from seismicity catalogues and previous studies using the online Natural 

Resources Canada (NRCAN) national earthquake catalogue (see Data and Resources). 

Magnitude-frequency statistics of the LRVFZ are drawn from three different sources: the 

NRCAN earthquake catalogue, a sub-catalogue of relocated microearthquakes (G. Li and 
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Y. Liu, pers. comm., 2017) via double-difference hypocenter location techniques 

(Waldhauser and Ellsworth, 2000), and regional magnitude-frequency statistics obtained 

from the NRCAN catalogue (Mulder, 1995). In total, eight different magnitude-

recurrence distributions are developed here to characterize uncertainty in LRVFZ 

seismicity in subsequent PSHA calculations. 

2.3.3 Magnitude-frequency distributions developed from seismicity catalogues  

The NRCAN catalogue is searched to extract earthquakes within 15 kilometers of 

the fault surface. These 18 M ≥ 2 earthquakes are therefore selected as representative of 

LRVFZ seismicity here. The second sub-catalogue of relocated events consists of 181 M ≥ 

1 earthquakes which occur in linearized patterns attributed with LRVFZ seismicity (Li et 

al., 2018). For the NRCAN and Li and Liu catalogues (Table 2.1), the cumulative number 

of earthquakes greater than and equal to each magnitude bin interval is calculated and 

divided by the duration (in years) of catalogue completeness. The catalogue completeness 

durations are taken from the fifth-generation seismic hazard model (S. Halchuk, pers. 

comm., 2018). 
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Table 2.1. Magnitude completeness for the NRCAN and Li and Liu catalogues. 

Catalogue Magnitude Range N ΔT (Years) 

NRCAN 

M 2.0-2.5 12 42 

M 2.5-3.6 5 48 

M 3.6-4.9 1 78 

M ≥ 6.0 2 15000 

Li and Liu 

M 1.0-2.0 169 10 

M 2.0-2.4 10 22 

M 2.4-3.0 2 48 

M ≥ 6.0 2 15000 

To describe fault activity, we develop hybrid magnitude-recurrence models for the 

LRVFZ (Figure 2.6). For the smaller magnitude earthquakes in the NRCAN or Li and Liu 

catalogues, an exponential frequency–magnitude relationship (Gutenberg and Richter, 

1945; 1956) is developed over the magnitude range of each catalogue. The associating β 

and N0 values are provided in Table 2.2.  
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Figure 2.6. Hybrid magnitude-recurrence models developed from the NRCAN 

and Li and Liu catalogues including two M > 6 events in 15,000 years based on 

Morell et al. (2017). Grey triangles depict three M 6 or M 6.5 earthquakes within 

9,000 years based on Morell et al. (2018). 
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Table 2.2. Eight sets of magnitude-recurrence parameters for the LRVFZ source zone. 

Source 
 β   N0  Catalogue 

Range (M) Lower Central Upper Lower Central Upper 

(a) NRCAN  1.806 2.007 2.201 72.075 109.850 167.423 2 ≤ M ≤ 4.9 

(b) Li and Liu 2.030 2.255 2.481 147.527 193.375 253.471 1 ≤ M ≤ 3 

(c) Mulder – Vancouver 

Island (All) 
2.213 2.388 2.563 336.394 400.726 477.362 0 ≤ M ≤ 4 

(d) Mulder – Plate Bend 

(All) 
1.913 2.015 2.116 527.205 583.418 645.624 0 ≤ M ≤ 4 

(e) Mulder – Vancouver 

Island (Shallow) 
2.365 2.812 3.258 91.516 143.054 223.614 0 ≤ M ≤ 4 

(f) Mulder – Vancouver 

Island (Deep) 
1.810 1.955 2.100 119.950 134.586 151.356 0 ≤ M ≤ 4 

(g) Mulder – Plate Bend 

(Shallow) 
1.216 1.398 1.580 43.954 50.816 58.749 0 ≤ M ≤ 4 

(h) Mulder – Plate Bend 

(Deep) 
2.105 2.240 2.376 619.441 719.449 835.603 0 ≤ M ≤ 4 

For the larger magnitude paleoseismic events, a characteristic-magnitude model 

(Schwartz and Coppersmith, 1984; Youngs and Coppersmith, 1985) is developed to allow 

for the increased likelihood of characteristic fault events. To define the characteristic 

distribution function at larger magnitudes, we first examined the range in average slip 

per year for known active faults near the LRVFZ. Based on previous studies of the Devils 

Mountain fault zone and the Strawberry Point and Utsalady Point faults (Johnson et al., 

1999; 2001), the suggested fault slip rate is between 0.7-1.1 mm/yr. Our calculations are 

performed based on two M > 6 earthquakes within 15,000 years from Morell et al. (2017) 

(Figure 2.6). Morell et al. (2018) provide new constraints about LRVFZ seismicity, 

identifying three M > 6 earthquakes within the last 9,000 years (triangles in Figure 2.6) 

and a LRVFZ slip rate of ≥ 0.2-0.3 mm/yr. These recent findings were taken into 

consideration and do not significantly change our initial input variables. Figure 2.6 shows 
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that the reported increase in the number and frequency of paleoseismic events lies within 

the bounds of our characteristic distribution functions. 

There is large uncertainty in calculating the LRVFZ activity rate. Using 0.7-1.1 

mm/yr as a representative range in slip rate for the LRVFZ, we then compute the potential 

activity rate for the LRVFZ between Mmin and Mmax in terms of seismic moment. The 

seismic moment can be expressed as, 

𝑀0 = 𝜇𝐴𝐷, (2.5) 

where µ is the shear modulus of the crust (dyne/cm2), A is the area of fault rupture (cm2), 

and D is the average displacement (cm) or slip over the rupture surface. The annual rate 

of buildup of seismic moment is then equal to the time derivative of equation 2.5; 

d𝑀0

d𝑡
=

d𝜇𝐴𝐷

d𝑡
= 𝜇𝐴𝑆, (2.6) 

where S is the slip rate of the fault (Youngs and Coppersmith, 1985). To convert slip rate 

to an earthquake activity rate, the long-term rate of seismic moment accumulation is set 

to equal the long-term rate of seismic moment release. The characteristic recurrence 

model with N(Mmin) set as the rate of non-characteristic earthquakes, or total number of 

earthquakes in the magnitude range of Mmin to Mc, can be written as (Gupta, 2007) 

𝑁(𝑀) = {
𝑁(𝑀min)

exp(−𝛽(𝑀 − 𝑀min)) − exp(−𝛽(𝑀𝑐 − 𝑀𝑚𝑖𝑛))

1 − exp(−𝛽(𝑀𝑐 − 𝑀𝑚𝑖𝑛))
+ �̇�(𝑀𝑐)∆𝑀𝑐;     𝑀min ≤ 𝑀 < 𝑀𝑐

�̇�(𝑀𝑐)(𝑀max − 𝑀);                                                                                                    𝑀𝑐 ≤ 𝑀 < 𝑀max

 , (2.7) 
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where ṅ(Mc) is the probability density for the occurrence rate of the characteristic 

earthquakes. This is equal to the rate density at magnitude M’, represented by the 

exponential distribution for magnitudes up to Mc, 

�̇�(𝑀𝑐) = 𝑁(𝑀𝑚𝑖𝑛)
𝛽exp (−𝛽(𝑀′ − 𝑀𝑚𝑖𝑛)

1 − exp (−𝛽(𝑀𝑐 − 𝑀𝑚𝑖𝑛)
  . (2.8) 

The calculated activity rate is used to constrain the rate of potential earthquakes with the 

characteristic mean M of 6.5. Solving equations 2.5 through 2.8 for the NRCAN and Li 

and Liu catalogs results in the hybrid frequency-magnitude distribution shown in Figure 

2.6 and describes the adjustment of the GR curve to higher magnitudes. The hybrid 

NRCAN magnitude-frequency distribution predicts a higher rate of LRVFZ events with 

M > 2. Both hybrid models will predict the same number of large characteristic LRVFZ 

events. The fault activity rate depends on the distribution of earthquake magnitudes that 

release the seismic energy along the fault. We assumed the LRVFZ is in equilibrium by 

releasing the seismic moment in many small to moderate magnitude earthquakes as well 

as in a few large magnitude earthquakes. The relative rate of small-to-moderate 

earthquakes to large magnitude earthquakes for the LRVFZ is described by our 

characteristic recurrence models. The rate of earthquakes above a specified minimum 

magnitude, N(Mmin), is given by the ratio of the seismic moment accumulation rate 

(equation 2.6) to the mean moment per earthquake with M > Mmin. 
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2.3.4 Magnitude-frequency distributions developed from earthquake statistics 

The Mulder (1995) earthquake catalogue, a regional catalogue of the NRCAN 

catalogue from 1981 to 1991 consists of 2816 M ≤ 4.5 regional earthquakes. The earthquake 

data were broken into four regions based on varying stress regimes and geological 

composition. For our study, we focused on two regions that contained the LRVFZ and 

thus were most likely to represent the magnitude-recurrence rate of the fault, Mulder’s 

“Vancouver Island” and “Plate Bend” regions. The earthquake occurrence statistics (a 

and b values) were calculated by Mulder (1995) for these two areal source zones: the 

larger “Vancouver Island” zone with 368 M ≤ 4 events over approximately 41,600 km2, 

and the smaller “Plate Bend” zone inclusive of southern Vancouver Island and the 

LRVFZ with 778 M ≤ 4 events over approximately 17,800 km2 (Figure 2.7). 

 

Figure 2.7. Map depicting the “Vancouver Island” and “Plate Bend” source 

zones. Taken from Mulder (1995). 
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In total, these two regions consist of 1146 M ≤ 4 earthquakes. The crustal seismicity 

in the region also occurs in a bi-modal depth distribution. Hence, these two areal source 

zones were divided into three different depth ranges by Mulder (1995): shallow events ≤ 

10 km depth, “deep” events > 10 km depth, and all events from 0-30 km depth. We assume 

the “Plate Bend” event statistics are more representative of the LRVFZ due to spatial 

proximity, i.e., similarity in stress regime. However, the accuracy of these magnitude-

recurrence statistics to represent LRVFZ seismicity cannot be verified. We therefore also 

utilize the regional “Vancouver Island” magnitude-recurrence statistics determined by 

Mulder (1995). 

We substitute the a and b values calculated by Mulder (1995) from events within 

these 6 different sub-regions into equations 2.2 and 2.3 to define central β and N0 values 

(Table 2.2). Lower and upper bounds for β and N0 values are set to 10% deviation of the 

central value. Weighting applied to the lower, central and upper bounds of β and N0 are 

16%, 68%, and 16%, respectively. The Mulder (1995) M ≤ 4 recurrence statistics therefore 

define exponential frequency-magnitude distributions that are essentially extrapolated 

to the Mmax in each PSHA calculation. Hybrid models were only applied to the NRCAN 

and Li and Liu catalogues due to the similar range the GR relations from the Mulder 

(1995) values (Figure 2.8). 
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Figure 2.8. Gutenberg-Richter relations for all simulations in comparison to the 

hybrid models. 
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2.3.5 Uncertainty in ground motion prediction 

A GMPE specific to the LRVFZ is required to estimate ground motion intensities 

from synthetic LRVFZ events, yet the ground motions associated with various magnitude 

LRVFZ earthquakes is relatively unknown. In lieu of a GMPE specific to LRVFZ motions, 

the central, upper, and lower GMM relations for active crustal faults in western Canada 

are used from the fifth-generation seismic hazard model (Halchuk et al., 2014) to calculate 

ground motions from the eight sets of synthetic LRVFZ seismicity catalogues. These 

western Canada fault-appropriate GMPEs are used to calculate ground motions for the 

Queen Charlotte and Fairweather faults in the 5th-generation seismic hazard model 

(Halchuk et al., 2014). The central GMPE is based on the modified Boore and Atkinson 

(2008) GMPE developed from the NGA-West 2 ground motion database. Lower and 

upper bound GMPEs were developed to express epistemic uncertainty about the central 

GMPE (Atkinson and Adams, 2013). The central, upper, and lower GMPEs are 

representing alternative estimates of the median ground-motion amplitudes. These fault-

appropriate models were converted from western Canada crustal GMPEs which are 

based on a point-source distance metric. The distance metric of fault-appropriate GMPE 

suites is the Joyner-Boore distance (RJB; Joyner and Boore, 1981). A conversion from a 

point-source distance metric to fault-distance metrics were made using a simple 

approximation that accounts for average fault size (see Appendix A of Atkinson (2012) 

for details). 
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2.4 PSHA for Victoria including the LRVFZ 

PSHA calculations are performed for Victoria using each of the eight magnitude-

recurrence distributions developed to represent LRVFZ seismicity. Their appropriate β 

and N0 values reported in Table 2.2 are used. Uncertainties in the maximum magnitude 

and fault source GMPE are included in each PSHA. A total of 8 PSHA calculations are 

therefore performed for Victoria including the LRVFZ as an active fault source to examine 

the impact (percentage change) to predicted ground motions.  

Figure 2.9 shows the contribution of each earthquake source type to the Victoria 

UHS at a 2475-year return period. At low frequencies (longer periods), the UHS motions 

are dominated by Cascadia subduction zone interface sources. Above 2.0 Hz, the crustal 

North American plate sources control the UHS motions. Earthquakes within the 

subducting Juan de Fuca plate directly below Victoria (50 km depth inslab zone) provide 

similar ground motion contributions as crustal events at high frequencies and interface 

events at low frequencies. The 30-km depth inslab source zone for events offshore 

Vancouver Island contributes the least to motions in Victoria. 
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Figure 2.9. Victoria UHS curves at a 2475-year return period from eight PSHA calculations with a different LRVFZ 

magnitude-recurrence rate (a-h; listed in Table 2.2) showing contribution of each source zone type as well as the 

total UHS from all source contributions (dotted line). 
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The contribution of an active LRVFZ source varies based on the fault’s magnitude-

recurrence rate. Figure 2.9 demonstrates that the LRVFZ zone will contribute to Victoria 

UHS motions at higher frequencies, similar to interface and crustal source contributions 

in some cases (subplots a, c, f, h), and has the potential to become the greatest contributor 

at high frequencies (subplots d, g). These latter two PSHA calculations included LRVFZ 

seismicity based on earthquake events that occur in the upper 10 km of the crust at the 

southern tip of Vancouver Island and correspond to low β values (Table 2.2). The LRVFZ 

contributes the least to the UHS when its simulated seismicity is based on magnitude-

frequency statistics from shallow (< 10 km depth) earthquakes of the entire Vancouver 

Island region (subplot e; largest β value). In other words, magnitude-recurrence rates 

with lower β values leads to an increase in the number of larger magnitude events, which 

increases the LRVFZ ground motion contribution.  

We further explore the predicted 2% in 50 years UHS ground motions by 

performing deaggregation of select PSHAs at high frequency (10 Hz). Figure 2.10 shows 

deaggregation of PSHAs without and with the LRVFZ source zone included. Prior to 

adding the LRVFZ as a fault source zone (Figure 2.10a), the main contributions of ground 

motions arise from three distinct sources: M ≤ 7.5 crustal earthquakes within 20 km of 

Victoria, M 6 to 7 inslab earthquakes at distances > 40 km from Victoria, and M > 8.5 

Cascadia interface earthquakes within 40-100 km of Victoria. Deaggregations of PSHA 

calculations with the hybrid NRCAN and Li and Liu seismicity models (Figures 2.10b 



47 
 

and c, respectively) demonstrate the LRVFZ contribution is generated from occurrences 

of M 6 to 7 earthquakes at 40 km distance and M 4.5 to 5 events at closer (≤ 20 km) 

distances. Figure 2.10d shows the PSHA deaggreation including a shallow “Plate Bend” 

LRVFZ seismicity model (calculation g in Figure 2.9); the PSHA calculation with the 

largest LRVFZ contribution. Contribution of large magnitude earthquake occurrences 

associated with the Cascadia subduction zone and M 6 to 7 inslab earthquakes at a 40 km 

distance appear reduced due to significant increased occurrences of M 4.5 to 5 LRVFZ 

events within 20 km of Victoria. 
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Figure 2.10. PSHA deaggregations at 10 Hz for Victoria at a 2475-year return period (a) without an active LRVFZ 

zone and including an active LRVFZ zone from PSHA (b) calculation a, (c) calculation b, and (d) calculation g in 

Figs. 2.9 with fault appropriate GMPEs. 
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The impact of including the LRVFZ as an active fault source zone to the predicted 

2015 NBCC UHS ground motions for Victoria is shown in Figure 2.11. Introduction of the 

LRVFZ source zone causes the greatest increase in UHS motions at high frequencies (≥ 10 

Hz) related to the associating magnitude-recurrence rate of the fault. At a 2% probability 

of exceedance in 50 years, the percentage increase compared to the 2015 NBCC UHS at 

frequencies ≤ 10 Hz ranges between 1% to 23% for all calculations (Table 2.3). 

Table 2.3 reports a 4% to 23% increase in UHS motions at 10 Hz compared to the 

2015 NBCC UHS. PSHA calculations a and b which utilized hybrid magnitude-frequency 

distributions show increases in UHS motions at 10 Hz of 12% and 8%, respectively.  
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Table 2.3. UHS motions at 2% probability of exceedance in 50 years for Victoria. Percent difference (%) calculated with reference to 

the 2015 NBCC UHS motion. 

Source Calculation 

Fault Specific GM 

PSA at 5 Hz 

(cm/s2) 

PSA at 10 Hz 

(cm/s2) 

PGA 

(g) 

2015 NBCC 1280.85 1064.90 0.58 

NRCAN a 1216.20 (5%) 1188.82 (12%) 0.64 (10%) 

Li and Liu b 1298.93 (1%) 1154.60 (8%) 0.64 (10%) 

Vancouver Island 

(All) 
c 1215.12 (5%) 1130.55 (6%) 0.60 (4%) 

Plate Bend (All) d 1304.69 (2%) 1194.38 (12%) 0.63 (9%) 

Vancouver Island 

(Shallow) 
e 1187.90 (7%) 1230.45 (16%) 0.61 (5%) 

Vancouver Island 

(Deep) 
f 1239.11 (3%) 1208.65 (14%) 0.60 (4%) 

Plate Bend (Shallow) g 1416.35 (11%) 1312.28 (23%) 0.66 (14%) 

Plate Bend (Deep) h 1244.27 (3%) 1107.63 (4%) 0.66 (14%) 

Average 1265.32 (1%) 1190.92 (11%) 0.63 (8%) 
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Figure 2.11. Reference 2015 NBCC Victoria UHS (solid lines) compared to calculated Victoria UHS curves from eight PSHA 

calculations including an active LRVFZ zone (a-h; listed in Table 2.2). Symbols denote PGA values. The 2015 NBCC Victoria 

UHS at a 10,000 year return period is not available. 
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The predicted PGA in Victoria at a 2% probability of exceedance in 50 years is an 

average of 0.63 g (0.02 g one standard deviation) amongst the eight calculations, which is 

an increase of 9% compared to the 2015 NBCC PGA of 0.58 g. Three hydroelectric dams 

in southern Vancouver Island are located near the LRVFZ. Seismic hazard assessment for 

dams requires longer return periods, e.g., 10,000 years. At this longer return period, an 

active LRVFZ zone may increase motions up to 15% at a 5 Hz frequency and 6% at 10 Hz 

frequency (Figure 2.11g). 

 

2.5 Discussion and Conclusions 

We performed 8 PSHA calculations to examine the seismic hazard impact to 

Victoria from an active LRVFZ. These PSHA calculations capture variability due to 

uncertainties in implementing a LRVFZ source zone, including maximum magnitude, 

earthquake occurrence statistics, and fault appropriate GMPEs. We used a consistent 

east-west striking ~60-km length and 28-km width fault geometry with 60° N dip and 1 

km depth to top of the fault for all 8 PSHA calculations. LRVFZ seismicity parameters are 

based on magnitude-frequency statistics from three different sources. 8 different sets of 

magnitude-recurrence distributions are developed or taken from these sources to capture 

uncertainty in the LRVFZ seismicity rate. A suite of lower, central, and upper fault-

appropriate GMPEs were used to convert the eight synthetic LRVFZ seismicity 
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catalogues into predicted motions based on a fault projection (Rjb) distance metric. The 

LRVFZ has the potential to be a significant seismic source contributor to high-frequency 

ground motions for Victoria depending on the magnitude-recurrence associated with the 

fault. The tested variation in LRVFZ b-value is 0.6 to 1.2 in this study. When fault 

seismicity is highly uncertain, as is the case for the LRVFZ, care should be taken in 

selecting an appropriate b-value for smaller magnitude earthquakes in the characteristic 

model.  

Overall, inclusion of the LRVFZ as an active fault zone causes notable increases in 

Victoria ground motions at high frequencies compared to the 2015 NBCC ground 

motions. The 2,475-year return period PSA motions increase by a maximum of 23% 

(1064.90 cm/s2 to 1312.28 cm/s2 at 10 Hz) compared to the 2015 NBCC UHS. Higher 

frequency ground motions impact shorter buildings with higher resonance frequencies. 

For example, one-story tall buildings typically resonate at 10 Hz (Meyer, 2006). 

The LRVFZ is one of several faults to be recently identified as potentially 

seismically active in southwestern British Columbia and northwestern Washington State. 

How best to implement and assess the impact of these newly identified active faults, in 

which recorded seismicity may or may not be related to the fault itself, is a major 

challenge for future seismic hazard analysis. In general, the mixing of Gutenberg-Richter 

recurrence statistics with paleoseismic evidence can improve the statistical representation 

of a fault (Valentini et al., 2017). Future PSHA works for the LRVFZ would therefore 
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benefit from continued monitoring and densifying of local seismic networks around the 

LRVFZ to further constrain its magnitude recurrence rate. Additional paleoseismic 

studies of the LRVFZ and others in the fault system would be beneficial in constraining 

fault activity rates in the region. Trenching studies to more accurately identify the 

causative fault, its previous movements, and thereby its maximum magnitude. 

Additionally, deterministic seismic hazard analyses of large scenario LRVFZ earthquakes 

would capture variability in potential ground motions due to uncertainty in the rupture 

process and characteristics of large LRVFZ (paleo and future) earthquakes.  

This study’s PSHA calculations are considered exploratory by the authors and do 

not replace the proposed 2015 NBCC ground motions. Inclusion of the LRVFZ and the 

Darrington-Devils Mountain fault zone as seismically active is included in the 6th-

generation national seismic hazard model for development of the 2020 NBCC design 

ground motions (Halchuk et al., 2019). 

 

2.6 Data and Resources 

2015 NBCC hazard values for Victoria were obtained using NRCAN’s seismic hazard 

calculator at http://www.earthquakescanada.nrcan.gc.ca/hazard-

alea/interpolat/index_2015-en.php (last accessed on September 2018). The NRCAN 

earthquake catalogue used in this study is retrieved from the national earthquake 

http://www.earthquakescanada.nrcan.gc.ca/hazard-alea/interpolat/index_2015-en.php
http://www.earthquakescanada.nrcan.gc.ca/hazard-alea/interpolat/index_2015-en.php
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database at http://www.earthquakescanada.nrcan.gc.ca/stndon/NEDB-BNDS/index-

en.php (last accessed on September 2018). The 2015 earthquake hazard map for PGA 

used in the 2015 NBCC is retrieved from 

http://www.earthquakescanada.nrcan.gc.ca/hazard-alea/zoning-

zonage/NBCC2015maps-en.php (last accessed on December 2018). 
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3 Earthquake Ground Motion Simulations for Victoria, British 

Columbia: Considering an Active Leech River Valley Fault Zone 

3.1 Introduction 

The LRVFZ (Figure 3.1) is an ~60 km transpressional reverse fault zone that 

extends along the southern tip of Vancouver Island, British Columbia, Canada. The fault 

is present near the city of Port Renfrew and extends east under the provincial capital city 

of Victoria and potentially continues offshore connecting with the Devil’s Mountain 

Fault. It is important to examine how earthquake ground motions generated along this 

newly identified active fault will affect nearby infrastructure or cities. 

 

Figure 3.1. Terrain map of the southern tip of Vancouver Island. The LRVFZ 

surface projection (solid red line) used in ground motion simulations, and its 
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potential extension beneath Juan de Fuca Strait (red dashed line), shown in 

relation to Greater Victoria (light blue region). The blue circles mark points of 

interest where waveforms from ground motion simulations are extracted. The 

locations are: 1 – Port Renfrew; 2 –Jordan River; 3 – Langford; 4 – Victoria; 5 – 

Victoria Airport; 6 – Duncan; 7 – Nanaimo. 

Vancouver Island is situated on the crustal North America plate where crustal 

earthquake stress accumulation is caused due to compression (Molnar et al., 2014a). 

Historical large M ≥ 7 crustal NA plate earthquakes occurred in central Vancouver Island 

in 1918 and 1946. Moderate M 5.5-6 earthquakes have occurred closer to Victoria, beneath 

the San Juan Islands, Washington, in 1909 and 1920 (Molnar et al., 2014b). The activity 

rate of M 5 crustal earthquakes in southwestern British Columbia is approximately one 

every 20 years, and a best-estimate maximum magnitude of M 7.3 for shallow crustal 

earthquakes (Adams and Halchuk, 2003). Outside of the three M ≥ 6 paleoseismic LRVFZ 

earthquakes proposed by Morell et al. (2017; 2018), modern seismic networks have not 

recorded large magnitude LRVFZ earthquakes. Recent paleoseismic studies suggest the 

LRVFZ has produced three large magnitude > 6 ruptures in the Holocene (Morell et al., 

2017, 2018). Including the LRVFZ as a seismic source in PSHA analyses increases PGA in 

Victoria at a 2,475-year return period by 9% on average (Kukovica et al., 2019a). 

3D Finite Difference (FD) wave propagation simulations were performed to 

quantify the Georgia sedimentary basin effect on long-period ground shaking in Greater 

Vancouver considering eight realistic scenarios of M 6.8 shallow North America plate 

earthquakes (Molnar et al., 2014b). On average, the maximum peak ground motion was 
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17.8 cm/s for Greater Vancouver; corresponding to a very strong shaking level or a 

Modified Mercalli Intensity (MMI) VII (Figure 3.2). 

 

Figure 3.2. Modified Mercalli Intensity units and corresponding perceived 

shaking, peak motion type attributes. PGV values represent the minimum value 

for corresponding instrumental intensity. From Worden and Wald (2016). 

Scenario 5 in Molnar et al. (2014b) used a M 6.8 rupture with a hypocenter located 

under Victoria, British Columbia which is similar to LRVFZ scenarios in this thesis. Their 

scenario is based on a modified 1994 M 6.7 Northridge, California earthquake source 

model with a N270°E strike and 45° dip north, and is comparable to an eastern portion 

rupture of the LRVFZ. PGV in the southern section of Vancouver Island from this M 6.8 

scenario ranged from 3.4 to 9.6 cm/s (MMI I to V) with peak ground motions near 20 cm/s 

at Victoria (MMI VI).  

This study performs Deterministic Seismic Hazard Analyses (DSHA) using 3D FD 

wave propagation simulations to predict low frequency (≤ 0.5 Hz) or long-period (≥ 2 s) 

ground motions from large M 7 LRVFZ earthquake scenarios. Slip distributions for two 

empirical M 7 earthquakes elsewhere in the world are modified to produce a suite of 24 

LRVFZ rupture scenarios with varying depth and distribution of maximum slip, 

direction of rupture propagation (east-to-west vs. west-to-east), and hypocenter location. 



63 

The slip distribution models from the 2010 M 7 Darfield, South Island, New Zealand 

earthquake and the 2010 M 7 Haiti earthquake are used (see Data and Resources). 3D FD 

wave propagation simulations provide long-period (≥ 2 s) ground motions at the surface 

of a regional velocity model of southwestern British Columbia for the 24 deterministic M 

7 LRVFZ scenario earthquakes. Waveforms are extracted at seven select locations (Figure 

3.1) with high populations and/or critical infrastructure in southern Vancouver Island, 

i.e. locations of higher seismic risk, to examine earthquake shaking of potential large 

magnitude LRVFZ earthquakes. The PGV metric used for computing a synthetic 

horizontal waveform is calculated as 

𝑚𝑎𝑥𝑡(√𝑣𝐸𝑊(𝑡) × 𝑣𝑁𝑆(𝑡)), (3.2) 

where v(t) represents the synthetic horizontal velocity in the east-west (EW) and north-

south (NS) components (Molnar et al., 2014a; 2014b). 

 

3.2 Physical-Structure Model and Finite-Difference Scheme 

The base elastic physical model is extracted from the Molnar (2011) southwest 

British Columbia 3D velocity model (Figure 3.3). This model is a modified version of the 

larger Pacific Northwest velocity model of Stephenson (2007). The physical structure 

model incorporates the 3D P- and S-wave velocities (VP and VS, respectively) and densities 

(ρ) to 60-km depth within the Cascadia subduction zone. The model is based on six main 
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geologic units: continental basin sediments, crust, and mantle; and oceanic sediments, 

crust, and mantle. Surface topography is not included in the model and the minimum VS 

is set to 625 m/s for computational feasibility. Molnar (2011) updated the upper 1 km of 

the Stephenson (2007) model for the Greater Vancouver or Georgia basin region, which 

helped reduce overprediction of long-period ground motions in Greater Vancouver from 

a factor of 2.1 to 1.6. The higher velocities of the metamorphic Leech River Complex and 

igneous Metchosin Formation (Figure 3.3c and d) are overlain by lower velocity 

sediments from the Oliogocene Carmanah group near the LRVFZ (Figure 3.3a and b) 

(Fairchild and Cowan, 1982; Groome et al., 2003). 

 

Figure 3.3. Depth slices from the Molnar (2011) modified Pacific Northwest 

velocity model for Vs at: (a) 0 m; (b) 500 m; (c) 1000 m; and (d) 3000 m depth. 

White circles denote 7 locations described in Figure 3.1. 
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Velocity depth profiles (Figure 3.4) of each waveform location are extracted from 

the physical structure (velocity) model. Shear wave velocities range between 1000 m/s 

and 4000 m/s with velocities increasing to ~2500 m/s to ~3500 m/s in the upper 1-3 km for 

each location. Victoria is the stiffest of all sites with the highest velocities in the upper 4 

km. Velocities at > 10 km depth for all locations are between 3500 m/s to 4000 m/s to the 

base of the NA plate (~30 km depth). 

 

Figure 3.4. Velocity profiles (Vs) from 0 km to 10 km depth for the seven 

waveform locations expressed in Figure 3.1. 



66 

For this study, we extracted a 191 km by 191 km by 30 km portion of the Molnar 

(2011) Georgia basin velocity model centered over the LRVFZ and Greater Victoria (Table 

3.1). The regional physical model used in this study is discretized into a uniform 250-m 

grid mesh with ~7.5 x 107 grid nodes.   

Table 3.1: 3D Velocity Model Parameters 

Parameter Regional Model 

Spatial discretization 250 m 

Temporal discretization 0.015 s 

Lowest VP 1562.50 m/s 

Lowest VS 625.20 m/s 

Lowest ρ 1674.36 kg/m3 

Number of grid nodes in the x direction 764 (191 km) 

Number of grid nodes in the y direction 764 (191 km) 

Number of grid nodes in the z direction 128 (32 km) 

Number of time steps (simulation duration) 4668 (70 s) 

Numerical averaging Arithmetic 

Boundary conditions Cerjan 

Real time simulation duration ~ 2 hours 

3.2.1 Finite-Difference Methodology 

The FD wave propagation scheme created by Olsen (1994) uses a physical model 

for the medium that is discretized into a uniform cubic mesh. The shortest shear 

wavelength of the grid must be sampled at a rate of 5 nodes per wavelength to minimize 

the effects of grid dispersion and grid anisotropy (Levander, 1988; Moczo et al., 2000). For 

computational feasibility, this limits minimum Vs to 625 m/s and caps the maximum 
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resolvable frequency at 0.5 Hz. Synthetic results that are measured above the resolvable-

frequency limit become spectrally deficient which biases ground motion estimates near 

this cut off frequency (Day et al., 2008). To ensure stability in each simulation, the stability 

criterion should be less than the maximum resolvable frequency, 

0.5 >
𝐶𝑚𝑎𝑥×𝐷𝑇

𝐷𝑋
, (3.1) 

where Cmax is the highest encountered VP, DT is the time discretization, and DX is the 

space discretization. The stability criterion value for all simulations is calculated to be 

0.482. 

Based on the staggered-grid FD method outlined by Graves (1996), the nodes of 

each cell can be expressed as wavefield variables and media (Lamé) parameters, with cell 

lengths defined as half the distance between two adjacent cell centers (Olsen, 1994). This 

means the equations for wave propagation within 3D, linear, isotropic elastic media are 

expressed as three velocity components and six stress components (Graves, 1996). In a 

staggered-grid method of simulation, the system is staggered both spatially and 

temporally. Therefore, velocities and stresses are updated independently which 

improves computational efficiency. The seismic source is applied to the FD grid by 

adding the moment tensor for an earthquake subfault (-Mij(t)) divided by the cell volume 

(V = dx3) to the stress tensor on the fault (Sij(t)) at time t, where ij refers to a specific cell in 

the fault (Olsen, 2000). 
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The anelastic quality factor (Q) for viscoelasticity is incorporated independently 

for compression (P) and shear (S) waves with a coarse-grained implementation of 

memory variables (Day, 1998; Day and Bradley, 2001). Reflections from the boundaries 

of the model are minimized using absorbing boundary conditions (Clayton and Engquist, 

1977) and a zone of highly attenuative material (Cerjan et al., 1985). 

The two defining parameters for ground motion prediction are generally QS and 

VS, as they govern the shear- and surface-wave amplitudes of the strongest ground 

motions (Brocher, 2007). From previously tested regional Q relations in Molnar et al. 

(2014a), there was little variation in predicted low-frequency ground motions (Olsen, 

2003; Brocher, 2008; Frankel et al., 2009). Therefore, Q relations for stiff sediments in the 

Pacific Northwest from Frankel et al. (2009) were chosen by Molnar et al. (2014a) to be 

consistent with regional geology (Table 3.2).  

Table 3.2. Q values for 3D visoelastic structure model 

High QS model (low attenuation) 

Qs = 0.1643VS - 14 VS < 1 km/s 

Qs = 0.15VS VS > 1 km/s 

QP = 2QS  

The Anelastic Wave Propagation (AWP) wave propagation code of Olsen, Day 

and Cui (ODC), termed AWP-ODC (version 1.1.2) was compiled for simulations on the 

“Richter” Lenovo ThinkStation at the University of Western Ontario which has an Octa-

core Intel Xeon processor running at 3.50 GHz. Arithmetic numerical averaging (Olsen, 
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1994) with absorbing boundary conditions for a 20-grid cell padded zone of attenuative 

material are used in the regional model for the simulations. Arithmetic numerical 

averaging of ground motions is used due to the presence of water in the model, where VS 

is set to 0. Simulations were calibrated on this computer system by first reproducing the 

results found by Molnar et al. (2014a) for a M 6.8 Nisqually shallow crustal earthquake 

rupture scenario. Original simulated waveforms from Molnar et al. (2014a) were 

validated against recorded waveforms from the M 6.8 Nisqually earthquake. 

 

3.3 Earthquake Source Models 

The rupture characteristics of a large LRVFZ earthquake, including rupture length, 

direction of rupture, locations of maximum slip, etc. are relatively unknown. We develop 

a suite of 24 deterministic M ~7 LRVFZ rupture models to determine the impact to 

motions in southern Vancouver Island from varying rupture characteristics. These 24 M 

7 LRVFZ scenarios are based on the slip distribution of two real earthquakes, the 2010 M 

7 Darfield, New Zealand earthquake and the 2010 M 7 Haiti earthquake (Table 3.3 and 

see Data and Resources section). The slip models of these empirical earthquakes were 

chosen based on similarities in exposure to Greater Victoria and fault structure to the 

LRVFZ, respectively. The 2010 M 7 Darfield, New Zealand earthquake occurred on a 

previously unidentified fault approximately 40 km west of the populated city of 
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Christchurch (Potter et al., 2015). In 2010, Christchurch had a similar population to 

Greater Victoria of 370,000 residents. No casualties resulted due to the 4:36 AM time of 

rupture (EERI Report, 2010). Lateral spreading and liquefaction damage in Christchurch 

greatly contributed to the total estimated losses of $4 billion New Zealand dollars 

(approximately $3 billion Canadian dollars in November 2010). Damages in Victoria from 

a nearby earthquake have been suggested to be analogous to a “Darfield-like” rupture 

due to similarities in infrastructure and predicted loss estimates (Zaleski, 2014; Ventura 

and Bebamzadeh, 2016; Morell et al., 2017). The 2011 M 6.2 aftershock occurred 

immediately below Christchurch (10 km depth) and resulted in greater structural and 

liquefaction-related damage and is therefore more widely known but is not simulated 

here. 

The 2010 M 7 Haiti earthquake was one of the most destructive earthquakes in 

recorded history due the large magnitude located near a region with a large population 

on or below the poverty line, and infrastructure built to low levels of earthquake 

preparedness (Eberhard et al., 2010). There are vast differences between Haiti’s and 

Greater Victoria’s economic status or building codes; however, similarities in 

paleoseismicity and fault geology can be drawn which make simulating the Haiti event 

a compelling choice. Haiti’s rupture occurred on or near the mapped Enriquillo fault 

west-southwest of Port-au-Prince; a strike-slip fault system that separates two major 

geologic units of basaltic rocks to the south, and marine sedimentary rocks to the north 
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(Eberhard et al., 2010). This fault is one of the principal plate boundary faults between 

the Caribbean and North American tectonic plates and has been rather dormant 

(Eberhard et al., 2010). Since the installation of a modern seismic network in 1964, Port-

au-Prince has only experienced one earthquake greater than M 4, with additional events 

occurring 100 km to the west (Eberhard et al., 2010). Other reports suggest the main M 7 

Haiti rupture occurred along the Léogâne fault which lies subparallel to the Enriquillo 

fault, resulting in a transpressional rupture of the fault (Calais et al., 2010). Except for the 

LRVFZ separating igneous and metamorphic rocks, the LRVFZ has a similar strike, 

transpressional fault type, and location within an adjacent crustal system like the Haiti 

Léogâne fault. 

Table 3.3. Modified Earthquake Source Model Characteristics 

Parameter Darfield Model Haiti Model 

Parent slip model NEIC (Hayes 2010a) NEIC (Hayes 2010b) 

Subfault size 
4.0 × 106 m2  

(2000 m × 2000 m) 

7.5 × 106 m2  

(3000 m × 2500 m) 

Strike (°)  292.5 292.5 

Dip (°) 70 70 

Rise Time (s) 1.96 2.45 

Seismic Moment (N ∙ m) 3.02 × 1019 5.15 × 1019 

M 6.92 7.07 

The LRVFZ is modelled with a 66 km fault length and 30 km down dip width 

towards the north east. The fault strikes east to west from Port Renfrew for approximately 

40 km where it bends south east at Leechtown towards Langford (Figure 3.1). 
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Computationally, this bend is included and does not impact the AWP-ODC software’s 

ability to calculate ground-motion simulations along the LRVFZ. The source models of 

Darfield and Haiti are modified (resized) to be within the limits of the LRVFZ rupture 

model. The 64 km by 28 km Darfield fault plane is discretized into 448 subfaults (Figure 

3.5a), and the 66 km by 30 km Haiti fault plane is discretized into 264 subfaults (Figure 

3.5b). The discretization is based on the size of the subfaults provided in the parent slip 

models (see Table 3.3). The slip that is reported in each subfault of the source model is 

converted to seismic moment (M0) for the FD simulations through 

𝑀0 = 𝜇𝐷𝐴, (3.4) 

where µ is equal to the physical model shear modulus along the LRVFZ in Pascal, D is 

the average slip of each subfault in metres, and A is the area of each subfault in m2 

(Sommerville et al., 1999). The longer Darfield slip model was clipped so the dimensions 

would fit within the LRVFZ fault plane. Removal of these Darfield ‘edge’ sub-faults 

reduced the M from 7 to the simulated M of 6.9. Darfield has a greater number of smaller 

subfaults with lower slip values per subfault; however, most of the seismic moment (slip) 

occurs within the upper 10 km of the original source model. In contrast, Haiti is simulated 

with higher slip values on larger subfaults with most of the slip concentrated in a 

particular quadrant to ~20-km depth. 
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Figure 3.5. LRVFZ scenario slip distribution models of the (a) Darfield slip model 

with 448 subfaults over 64 km by 28 km area and (b) Haiti slip model with 264 

subfaults over 66 km by 30 km area. Orientation is west to east (north is into the 

page) with Victoria located at approximately latitude grid point 300. 

A moment tensor represents the focal mechanism of an earthquake and 

mathematically describes how the amplitudes of seismic waves vary as they radiate away 

from a source through 9 different force couples inclusive of positive or negative forces in 

the three (x, y, z) directions. The moment tensor rate of each subfault (Figure 3.6) is 

characterized here by a half-cosine function with a constant rise time of ~2.0-2.5 s (Table 

3.3). The rise time (tR) for each M ~7 earthquake scenario was derived through the 

Sommerville et al. (1999) relation to seismic moment (M0): 
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𝑡𝑅 = 1.48 × 10−11 × 𝑀0
0.42. (3.3) 

 

Figure 3.6. (a) Moment rate function of the Mxx component. (b) Amplitude 

spectra of moment rate function in a). 

 

3.4 Simulated Finite-Difference Scenarios 

24 total FD simulations are performed to examine ground shaking in southern 

Vancouver Island and Greater Victoria from potential large magnitude LRVFZ rupture 

scenarios. Previous wave propagation simulations have documented that predicted 
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ground motions are strongly dependent on rupture length, rupture directivity, and slip 

distribution (Aagaard et al., 2010b). Ground motions from simulations with varying rise 

time and rupture speed are less sensitive to these changes (Aagaard et al., 2010a; 2010b). 

Each of the two empirical-based M ~7 earthquake rupture models are simulated 

with four different slip distribution patterns (varying the location of maximum slip, 

rotating the slip distribution pattern), as well as varying the direction of rupture 

propagation and hypocenter (rupture initiation) location. Four different rupture 

scenarios of each Darfield and Haiti slip distribution model are generated by reflecting 

the slip pattern along the x- and/or y- axes of the fault such that patches with the greatest 

slip occur in the upper west, upper east, lower west, and lower east quadrants of the fault 

(Figure 3.7). These 4 rotated slip distribution patterns capture changes in slip distribution 

with depth. The rupture direction is then changed in all four scenarios such that rupture 

propagates west-to-east or east-to-west to explore the effects of rupture directionality. A 

uniform 2.5 km/s rupture velocity is used, which is ∼80% of the local VS (Graves and 

Pitarka, 2004) near the LRVFZ. The hypocentre location (rupture initiation) is also varied 

from the surface grid corner of each rupture direction (i.e., upper west grid cell for west-

to-east rupture propagation) to the location of maximum slip, which is rotating from near 

surface to depth in the 4 slip models).  
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Figure 3.7. Example of how the Haiti slip model is rotated by reflection along the 

x- and/or y- axes of the fault. Maximum slip is relocated into the (a) top west 

quadrant (original slip model), (b) top east quadrant, (c) bottom west quadrant, 

and (d) bottom east quadrant.  

 

3.5 Predicted long-period ground motions 

To ensure frequencies less than the maximum resolvable frequency (≤ 0.5 Hz) are 

present in PGV maps and measured waveforms, a lowpass first-order Butterworth filter 

with a cut off frequency of 0.5 Hz was applied to the input moment tensor and resulting 

waveforms. The filter was applied once forwards and once backwards to remove high 

frequency energy with no phase shifting of the waveform. The simulated PGV values in 

cm/s were converted to MMI estimates using the relation of Worden et al. (2012), 
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MMI = 2.89 + 3.16 log(PGV). (3.5) 

This relation is based on shallow California earthquakes for use in generating global 

earthquake USGS ShakeMaps. 

3.5.1 Darfield Rupture Scenarios 

Figure 3.8 shows predicted ShakeMaps for southern Vancouver Island based on 

different rupture directions and orientations of the M 6.9 Darfield slip distribution model. 

Consistent in all eight scenarios, areas of greatest ground shaking are focused in the 

Georgia Strait, Juan de Fuca Strait, and directly over sections of the LRVFZ. High ground 

motions within the two Straits are related to site amplification effects by the lower 

velocity sediments (Molnar et al., 2014a; 2014b). Varying the depth of maximum slip 

yields greater MMI values when source model slip is focused within the upper 10 km of 

the fault model (Figure 3.8a, b and e, f) compared to slip distributions at greater depths 

(Figure 3.8c, d and g, h). MMI VIII (very strong shaking) levels are reached in the Georgia 

Strait and directly above the LRVFZ. Changes in rupture directionality greatly changes 

the areas where greater ground shaking occurs. With a west to east rupture (Figure 3.8a-

d), more ground shaking is observed west of Jordan River and toward the Victoria 

airport, with moderate shaking (MMI V) extending into the Georgia Strait and as far as 

Greater Vancouver. East to west rupture scenarios (Figure 3.8e-h) directs greater ground 
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shaking eastward to Victoria airport and northward towards Nanaimo and northern 

sections of the Georgia Strait. 

Waveforms from the seven selected locations are presented in Figure 3.9. Each 

waveform was simulated for a total of 70 seconds to ensure that any simulated ground 

motions from a rupture scenario would fully propagate through southern Vancouver 

Island. The maximum PGV values from each waveform are listed in Table 3.4. The 

highest predicted PGV values occur at Jordan River with 17.15 cm/s (MMI VI) from a 

westward rupture direction and 13.91 cm/s (MMI VII) from an eastward rupture 

direction. This site also has the highest average ground shaking between all eight Darfield 

scenarios of 6.79 cm/s (MMI V). Because this location is very close to the surface 

expression of the LRVFZ, it is expected to receive the highest ground motions. 

Understanding how high the ground motions could be at this location are of interest due 

to the presence of two hydroelectric dams at the Diversion and Elliot Lake reservoirs 

nearby (Morell et al., 2017; 2018). 
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Figure 3.8. Predicted long-period ground motion intensities in southwestern British Columbia from modified M 

6.9 Darfield scenarios. Each column represents a different location of Darfield source model slip; magenta stars 

show the locations of maximum slip in the fault model. White dots represent waveform locations, with numbers 

of the location shown in subplot (a), from Figure 3.1. The magenta box outlines the surface projection of the LRVFZ. 
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Figure 3.9. Synthetic waveforms extracted at seven locations (see Figure 3.8) 

from four modified M 6.9 Darfield rupture scenarios with maximum slip in (a) 

upper west quadrant, (b) upper east quadrant, (c) lower west quadrant and (d) 

lower east quadrant. 

 

Table 3.4. Predicted maximum PGV (cm/s) from Darfield Source Models 

Location West to East Rupture (cm/s) East to West Rupture (cm/s) 

 a) b) c) d) e) f) g) h) 

(1) Port Renfrew 1.04 0.78 0.83 0.63 11.26 6.15 2.90 2.18 

(2) Jordan River 13.91 3.32 1.87 1.52 17.15 9.29 3.12 4.15 

(3) Langford 5.48 8.44 1.73 1.64 2.12 3.17 1.46 1.15 

(4) Victoria 4.61 7.01 1.43 1.70 1.20 2.00 0.68 0.84 

(5) Victoria Airport 10.33 5.06 3.80 3.51 2.12 3.54 2.32 2.34 

(6) Duncan 6.33 4.80 1.98 1.87 3.72 7.49 1.21 1.89 

(7) Nanaimo 1.99 2.70 1.50 1.62 4.42 4.15 3.49 3.89 

Note: See Figure 3.8 for corresponding scenarios and locations. 
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Other interesting synthetic waveforms are observed at Victoria Airport (Location 

5) and Nanaimo (Location 7) with respect to rupture direction. Noticeable amplification 

(PGV 10.33 cm/s; MMI VI) that is between 2.04 and 4.87 times greater than any other 

scenario at Victoria Airport is observed in scenario A with a west to east rupture direction 

(Figure 3.8a, Figure 3.9, waveform 5a). Looking at the velocity profile at Victoria Airport 

(Figure 3.4), there is a sharp impedance contrast at a depth of 2.75 km. It is hypothesized 

that rupture directionality and the location of maximum slip in the source model of 

scenario A directs larger amplitude waveforms towards the airport which is then 

amplified by the thicker low velocity sediments at the site. When rupture direction is 

westward, the northern city of Nanaimo experiences ground motions that are on average 

2.05 times greater in simulations with eastward rupture direction, resulting in an average 

measured PGV of 3.99 cm/s (MMI IV) compared to 1.95 cm/s (MMI III). Nanaimo has a 

similar velocity profile to Victoria Airport where a sharp impedance contrast at 2.75 km 

depth would amplify ground motions. This is in addition to the westward rupture 

direction focusing waveforms north towards Nanaimo compared to eastward ruptures 

which focus motions away from Nanaimo and more towards Vancouver (Figure 3.8). 

3.5.2 Haiti Rupture Scenarios 

Figure 3.10 presents predicted ShakeMaps from M 7 Haiti- rupture earthquake 

scenarios. The Haiti source model has a slightly higher seismic moment than Darfield 

and a greater amount of slip focused into a more concentrated area (Figure 3.6). MMI 
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values from the M 7 Haiti rupture are therefore 1.11 times larger on average than M 6.9 

Darfield motions between all seven waveform locations. Ground shaking distribution 

patterns from the Haiti rupture scenarios are generally similar to the Darfield rupture 

scenarios. An eastward rupture direction focusses ground shaking in the east, towards 

Vancouver and into the southern section of the Georgia Strait where basin sediments 

amplify ground motions. In contrast, westward ruptures direct more energy west of 

Victoria and north towards the northern sections of Georgia Strait and Nanaimo. Greater 

average ground shaking is observed across the southern section of Vancouver Island. Slip 

located in the upper west quadrant with an eastward rupture direction (Figure 3.10b) 

generates the largest ground shaking at Victoria with a PGV of 19.38 cm/s (MMI VI) 

which is 1.97 to 28.5 times greater than any other Haiti or Darfield rupture scenario. 
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Figure 3.10. Predicted long-period ground motion intensities in southwestern British Columbia from modified M 

7 Haiti scenarios. Each column represents a different location of Haiti source model slip; magenta stars show the 

locations of maximum slip in the fault model. White dots represent waveform locations, with numbers of the 

location shown in subplot (a), from Figure 3.1. The magenta box outlines the surface projection of the LRVFZ. 
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The largest PGV value predicted by any Haiti scenario is again at Jordan River 

with a PGV of 25.26 cm/s (Figure 3.10a; Figure 3.11, waveform 2a), correlating to very 

strong shaking (MMI VII). Jordan River is not the only location to be exposed to very 

strong shaking (MMI VII) in a Haiti-type rupture. PGV values greater than 19.9 cm/s 

(MMI VII) are also generated at Victoria airport (Table 3.5). These high predicted motions 

are due to rupture scenarios with eastward rupture direction and shallow slip.  

Figure 3.11. Synthetic waveforms extracted at seven locations (see Figure 3.10) 

from four modified M 7 Haiti rupture scenarios with maximum slip in (a) 

upper west quadrant, (b) upper east quadrant, (c) lower west quadrant and (d) 

lower east quadrant. 
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Table 3.5. Predicted maximum PGV (cm/s) from Haiti Source Models 

Location West to East Rupture (cm/s) East to West Rupture (cm/s) 

 a) b) c) d) e) f) g) h) 

(1) Port Renfrew 1.86 1.58 2.14 0.65 16.94 7.82 8.92 2.18 

(2) Jordan River 25.26 1.91 3.77 1.69 14.34 11.24 3.47 3.88 

(3) Langford 12.06 19.18 4.00 3.15 2.20 9.04 2.36 2.07 

(4) Victoria 9.86 19.38 2.48 5.74 1.48 5.21 1.6 2.03 

(5) Victoria Airport 21.77 7.11 5.47 3.54 1.72 5.82 1.87 3.61 

(6) Duncan 11.77 2.20 4.63 1.33 3.02 11.94 1.40 2.94 

(7) Nanaimo 2.03 2.19 1.44 1.43 3.03 9.52 1.25 4.76 

Note: See Figure 3.10 for corresponding scenarios and locations. 

The site effects that are observed at Victoria airport in scenario A of the Darfield 

rupture are amplified in scenario A of the Haiti rupture. Lower velocity sediments 

present in the velocity model and the difference in slip between the two ruptures increase 

ground shaking by 2.11 with Haiti scenario a (Figure 3.10a; Figure 3.11, subplot 5) over 

Darfield scenario a (Figure 3.8a; Figure 3.9, subplot 5). Scenario B with an eastward 

rupture direction (Figure 3.10b) increases PGV at both Langford and Victoria by 2.27 and 

2.76, respectively, over Darfield (Figure 3.8b). Ground shaking at Nanaimo from an east 

to west rupture direction that are consistently present in the Darfield scenarios as MMI 

IV are more varied in the Haiti scenarios; ranging from MMI III to V. 

3.5.3 Hypocenter Rupture Scenarios 

Figure 3.12 presents predicted ShakeMaps from M 6.9 Darfield and M 7 Haiti- 

rupture earthquake scenarios where the hypocenters of each rupture are centered on the 
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location of maximum slip (termed max-slip hypocentre scenarios) with rupture direction 

radiating away from the hypocenter. Max-slip hypocentre rupture scenarios increases 

MMI values from the M 6.9 Darfield rupture scenarios (section 3.5.1) and M 7 Haiti 

rupture scenarios (section 3.5.2) on average by 1.12 and 1.22 times, respectfully for all 

seven measured locations. The change in hypocentre location results in new ground 

shaking distribution patterns compared to patterns observed with varying rupture 

directions. Seismic waves radiate away from the hypocenter regardless of the hypocenter 

location in the upper or lower quadrants of the fault. Shallow max-slip hypocenter 

scenarios (Figure 3.12a, b, e, and f) focus higher ground motions across southern 

Vancouver Island and tend to extend further north towards Vancouver and the Georgia 

Strait. Deep max-slip hypocenter scenarios (Figure 3.12c, d, g, and h) direct higher ground 

motions towards the Juan de Fuca Strait. These max-slip hypocentre rupture scenarios 

generate higher ground shaking in Victoria on average with an average PGV of 8.12 cm/s 

(MMI V). The greatest ground shaking in Victoria occurs from a Haiti rupture scenario 

where the max-slip hypocenter is located in the upper west quadrant of the fault (Figure 

3.12f) with a PGV of 18.81 cm/s (MMI VI). 
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Figure 3.12. Predicted long-period ground motion intensities in southwestern British Columbia from modified M 

6.9 Darfield (top row) and M 7 Haiti (bottom row) rupture scenarios. Each column represents a different hypocenter 

and maximum slip location of the source models; magenta stars show the locations of hypocenters and maximum 

slip in the fault models. White dots represent waveform locations, with numbers of the location shown in subplot 

(a), from Figure 3.1. The magenta box outlines the surface projection of the LRVFZ. 
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The largest PGV value is at Langford with a PGV of 32.89 cm/s (Figure 3.12f; Figure 

3.13, waveform 3b), correlating to very strong shaking (MMI VII). This is the highest 

predicted ground shaking of all 24 rupture scenarios. This can be attributed to the 

hypocenter and maximum slip being located very close to the city. Langford is not the 

only location to be exposed to very strong shaking (MMI VII) due to max-slip hypocentre 

ruptures. PGV values greater than 19.9 cm/s (MMI VII) are also generated at Jordan River 

and Victoria airport (Table 3.6). These high predicted motions are due to Haiti-type 

rupture scenarios.  

 

Figure 3.13. Synthetic waveforms extracted at seven locations (see Figure 3.12) 

from modified M 6.9 Darfield and M 7 Haiti rupture scenarios with hypocenter 

and maximum slip in (a) upper west quadrant, (b) upper east quadrant, (c) lower 

west quadrant and (d) lower east quadrant.  
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Table 3.6. Predicted maximum PGV from Max-Slip Hypocenter Rupture Scenarios 

Location Darfield Rupture (cm/s) Haiti Rupture (cm/s) 

 a) b) c) d) e) f) g) h) 

(1) Port Renfrew 8.01 7.78 1.50 2.37 3.64 11.19 4.46 3.68 

(2) Jordan River 12.69 6.73 3.58 4.36 29.08 14.6 21.19 4.27 

(3) Langford 6.56 10.23 4.85 6.99 15.43 32.89 4.63 19.96 

(4) Victoria 3.89 7.09 2.47 4.64 11.79 18.81 2.84 13.44 

(5) Victoria Airport 7.71 6.96 4.19 3.29 19.98 9.64 6.1 8.31 

(6) Duncan 3.12 1.63 2.48 2.21 13.57 12.68 4.57 5.62 

(7) Nanaimo 4.25 4.47 0.93 0.77 4.31 8.50 1.23 2.53 

Note: See Figure 3.12 for corresponding scenarios and locations. 

Haiti rupture scenarios generate ground shaking that is on average 1.21 times 

greater than Darfield rupture scenarios and more locations have ground shaking 

intensities that are higher than MMI VII. Most notably, the proximity of Langford to the 

hypocenter in scenario f (Figure 3.12f, Figure 3.13 subplot 3) generated the highest 

measured ground shaking out of any of the seven measured locations. This was 1.13 times 

greater than the highest measured value at Jordan River (29.08 cm/s; MMI VII) and 1.64 

times greater than any other observed ground shaking at Langford (19.96 cm/s; MMI VII). 

Rupture scenarios where hypocenter was varied also tended to generate higher ground 

shaking intensities regardless of the depth of the hypocenter. For example, Haiti-type 

rupture scenarios d and h from section 3.5.2 have maximum slip located in the same 

location as scenario h of section 3.5.3, but the rupture direction was changed. These two 

scenarios only generated a maximum ground shaking value of 3.15 cm/s (MMI IV) for 
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Langford. However, when the hypocenter is located in the same location as maximum 

slip, Langford experiences ground shaking with a PGV of 19.96 cm/s (MMI VII) or 6.33 

times greater shaking for that location. 

 

3.6 Discussion and Conclusions 

We performed low frequency (≤ 0.5 Hz) or long period (≥ 2 sec) 3D wave 

propagation simulations of potential LRVFZ rupture scenarios using the AWP-ODC FD 

scheme (version 1.1.2; Olsen, 1994) to examine ground shaking in southern Vancouver 

Island, including Port Renfrew, Jordan River, Langford, Victoria, the Victoria airport, 

Duncan, and Nanaimo. The base elastic physical model is a modified version of the 

Stephenson (2007) Pacific Northwest 3D velocity model by Molnar (2011; Molnar et al., 

2014a; 2014b). We modified the slip distribution models of the 2010 M 7 Darfield and 2010 

M 7 Haiti earthquakes to create 24 unique rupture scenarios with varying slip 

distribution pattern, rupture propagation direction and hypocentre location. These 

source models were superimposed to be within the bounds of a consistent LRVFZ fault 

geometry with 66 km length, 30 km width, and 70° NNE dip (Morell et al., 2017; 2018). 

The suite of source rupture models were generated by transforming the parent slip 

distributions with reflections along the x- and y- axes to create four rupture models, each 

with original slip rotated into a different quadrant of the fault. Rupture direction and 
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hypocenter location were varied such that all four source models for both earthquake 

scenarios were simulated with rupture starting in the upper west or east corner subfault, 

or at the location of maximum slip and radiating away from the hypocenter to create the 

24 unique scenarios. The LRVFZ has the potential to create very strong shaking (MMI 

VII) at three of the seven locations on Vancouver Island depending on the rupture 

direction, slip distribution in the source rupture model, and hypocenter location. When 

rupture direction was changed, shallower slip distributions (slip concentrated in the 

upper 10 km) created the greatest ground shaking at surface with eastward ruptures 

generating higher ground motions within southern parts of the Georgia Strait and 

Greater Victoria. Westward ruptures generated ground motions with greatest amplitude 

at Nanaimo and northern parts of the Georgia Strait, and in the western sections of the 

Juan de Fuca Strait near Port Renfrew. Jordan River, where two hydroelectric dams occur 

near the fault, is exposed to the highest PGV values with shallow ruptures; averaging ~12 

cm/s between the Darfield and Haiti scenarios (MMI VI) and reaching a maximum PGV 

of ~25 cm/s (MMI VII). In Langford and Victoria, the most populous locations in southern 

Vancouver Island, shallow ruptures generated maximum PGV of ~19 cm/s, 

corresponding to MMI VI at which structural damage begins to occur. 

When the hypocenter was located at the same location as maximum slip, seismic 

waves radiate away from the hypocenter. Shallow hypocenters (located in the upper 10 

km) for Darfield and Haiti-type ruptures created the greatest ground motions and 
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focused ground motions north towards Vancouver and the Georgia Strait. When the max-

slip hypocenter was located deeper (in the lower 15 km of the fault), large ground motions 

were reduced and focussed towards the north. Ground shaking intensities were on 

average 1.11 times greater for Darfield-type rupture scenarios (4.84 cm/s; MMI IV) or 1.22 

times greater for Haiti-type rupture scenarios (11.03 cm/s; MMI V). When the hypocenter 

and maximum slip were located at depths greater than 15 km, significant ground 

intensities measuring MMI VII were still generated at Jordan River and Langford for 

Haiti-type rupture scenarios. 

Rupture directionality relative to slip location was a controlling parameter to the 

resulting predicted waveforms at the 7 select locations. If the rupture direction was 

towards a section of greatest slip on the source model and away from a site, the resulting 

waveform has minimal amplitude. However, if the rupture direction was towards a 

section of greatest slip between the hypocenter and the site, the resulting waveform at 

the site is characterized with a large amplitude pulse. 

Recent paleoseismic research (e.g., Morell et al., 2017; 2018) suggests the LRVFZ is 

an active fault zone. It is important to understand how ground motions are likely to 

interact in high seismic hazard areas. Future DSHAs for the LRVFZ should implement a 

wider suite of potential rupture scenarios. Stochastic finite-fault modeling, known as 

EXSIM software (Motazedian and Atkinson, 2005), produces synthetic earthquake 

waveforms over the frequency range of engineering interest and is less computationally 
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expensive, so the number of potential rupture scenarios can be significantly increased. As 

the extent of the LRVFZ fault geometry becomes more defined, more complex and 

accurate representations of the fault structure can be developed to examine earthquake 

ground shaking due to LRVFZ ruptures. 

 

3.7 Data and Resources 

Slip models for the 2010 Darfield, New Zealand earthquake and the 2010 Haiti 

earthquake were obtained from the Finite-Source Rupture Model Database at 

http://equake-rc.info/SRCMOD/searchmodels/allevents/ (last accessed on September 

2018). The model used for the Darfield rupture was taken from the FSP file at 

http://equake-rc.info/SRCMOD/searchmodels/viewmodel/s2010DARFIE01HAYE/ 

(created on August 21, 2013) and the model for the Haiti rupture was taken from the FSP 

file at http://equake-rc.info/SRCMOD/searchmodels/viewmodel/s2010HAITIx02HAYE/ 

(created on August 20, 2013). 
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4 Conclusions 

4.1 Summary 

The LRF runs across the southern tip of Vancouver Island and is just tens of 

kilometers from key infrastructure. The steep NE projection of the LRVFZ near Greater 

Victoria suggests an earthquake along the defined fault zone poses a major seismic 

hazard. The objective of this thesis is to perform PSHAs and DSHAs with the LRVFZ as 

an active source zone to determine the impact to earthquake shaking in Victoria and at 

other seismic risk locations across southern Vancouver Island. 

In Chapter 2, we performed PSHAs for Victoria by adding the LRVFZ as an active 

source zone. We found the new fault source zone contributed significantly at high 

frequencies (≥ 10 Hz). The LRVFZ contributed similarly to interface and crustal sources 

in four of the eight (scenarios a, c, f, and h) PSHA calculations. For two of our PSHA 

calculations (scenarios d and g), the LRVFZ was the greatest contributor for the same ≥ 

10 Hz frequency range. The LRVFZ contributes the least to the 2,475 year return period 

UHS when the simulated seismicity is based on magnitude-frequency statistics from 

shallow (< 10 km depth) earthquakes of the entire Vancouver Island region. The UHS in 

Victoria for a 2% probability of exceedance in 50 years significantly increased by a 

maximum of 23% at 10 Hz frequency from 1064.90 cm/s2 (1.09 g) to 1312.28 cm/s2 (1.34 g). 
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Average PGA of 0.63 ± 0.02 g using fault appropriate GMPEs was an increase of 9% when 

compared to 2015 NBCC PGA of 0.58 g. 

In Chapter 3, we performed DSHAs with low frequency (≤ 0.5 Hz) 3D FD 

simulations of potential large magnitude LRVFZ ruptures. We modified the slip models 

of the 2010 M 7 Darfield and 2010 M 7 Haiti earthquakes to create 8 unique slip 

distribution models. Rupture direction was changed to simulate eastward and westward 

ruptures. The hypocenter was then moved over top of the point of maximum slip to create 

a total of 24 different rupture scenarios. The LRVFZ has the potential to create MMI VII 

ground motions at Jordan River, Langford, and Victoria Airport. Source models with the 

greatest slip concentrated shallower in the model (≥ 10 km) generate the greatest ground 

motions for the entire island. When rupture directionality was changed, the highest MMI 

values were simulated in Jordan River for shallow slip ruptures, averaging MMI VI for 

the suite of modified Darfield and Haiti scenarios with a maximum MMI VII. For 

populous cities of Langford and Victoria, shallow ruptures resulted in a maximum 

predicted MMI VI. 

When the hypocenter occurs at the location of maximum slip, the highest MMI 

values were calculated at Jordan River and Langford from Haiti-type rupture scenarios, 

averaging MMI VI. For Langford and Victoria, shallow ruptures of Darfield-type 

ruptures resulted in maximum predicted MMI V for both locations. Haiti-type ruptures 
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for Langford and Victoria resulted in maximum predicted MMI of VII and VI, 

respectively. 

Based on the studies performed in Chapters 2 and 3, it is important that city 

planning in southern Vancouver Island, especially in Greater Victoria, considers the 

LRVFZ as an active source zone due to calculated very strong (MMI VII) ground shaking 

in locations of higher seismic risk and greater than 11% increases in the 2,475 year return 

period UHS of the current 2015 NBCC. 

 

4.2 Future Work 

Chapter 2 defined new magnitude-recurrence relations and hybrid characteristic 

distribution functions for the LRVFZ based on paleoseismic M > 6 events along the fault 

(Morell et al., 2017; 2018). Future PSHA works for the LRF and LRVFZ would therefore 

benefit from continued monitoring and densifying of local seismic networks around the 

Leech River Valley to further constrain magnitude recurrence rates. Continued 

paleoseismic studies would be beneficial to further constrain the fault zones’ activity rate. 

Improved identification of the causative fault from trenching would improve maximum 

magnitude estimates based on fault geometry. Chapter 3 simulated 3D long-period 

ground motions based on 24 potential M ~7 LRVFZ rupture scenarios. Future DSHAs for 

the LRVFZ would therefore benefit from studies that encompass more potential rupture 
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scenarios, implement updated physical structure models, and predict motions over a 

wider frequency range of engineering interest. As the fault geometry becomes more 

defined, more complex and accurate representations of the fault structure can be 

modelled to better understand resulting earthquake ground shaking. 
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