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Abstract

Numerous insurance products linked to risky assets have emerged rapidly in the last cou-

ple of decades. These products have option-embedded features and typically involve at

least two risk factors, namely interest and mortality risks. The need for models to cap-

ture risk factors’ behaviours accurately is enormous and critical for insurance companies.

The primary objective of this thesis is to develop pricing and hedging frameworks for

option-embedded longevity products addressing correlated risk factors. Various methods

are employed to facilitate the computation of prices and risk measures of longevity prod-

ucts including those with maturity benefits. Furthermore, in order to be prepared for the

implementation of the new International Financial Reporting Standards (IFRS) 17, the the-

sis’s secondary objective is to provide a methodology for computing risk margins under

the impending regulatory requirements. This is demonstrated using a property and casualty

(P&C) insurance example and taking advantage of P&C data availability.

To accomplish the above-mentioned objectives, five self-contained but related research

works are undertaken and described as follows. (i) A pricing framework for annuities

is constructed, where interest and mortality rates are both stochastic and dependent. The

short-rate process and the force of mortality follow the two-factor Hull-White model and

Lee-Carter model, respectively. (ii) The framework in (i) is further developed by adopting

the Cox-Ingersoll-Ross model for the short-rate process to price guarantee annuity options

(GAOs). The change of measure technique together with the comonotonicity theory is

utilised to facilitate the computation of GAO prices. (iii) A further modelling framework

extension is attained by considering a two-decrement model for GAO’s valuation and risk

measurement. Interest rate, mortality and lapse risks are assumed correlated and they are all

modelled as affine-diffusion processes. Risk measures are calculated via the moment-based

density method. (iv) We introduce a regime-switching set up for the valuation of guaranteed

minimum maturity benefits (GMMBs). A hidden Markov model (HMM) modulates the

evolution of risk processes and the HMM-based filtering technique is employed to generate

the risk-factor models’ parameter estimates. An analytical expression for GMMB value is

derived with the aid of the change of measure technique in combination with a Fourier-

transform approach. (v) Finally, a paid-incurred chain method is customised to model

Ontario’s automobile claim development triangular data set over a 15-year period, and the

moment-based density method is applied to approximate the distributions of outstanding

claim liabilities. The risk margins are determined through risk measures as prescribed by

the IFRS 17. Sensitivity analysis is performed for risk margins using the bootstrap method.
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Chapter 1

Introduction

1.1 Research motivation and objectives

The importance of managing longevity risk in the pension sector has become more pro-

foundly pronounced in recent years as improvements in mortality have continued. Gov-

ernments, insurance companies and individuals must deal with longevity risk in order to

to provide stable and dependable social security for the populace. Many innovations were

introduced by the insurance industry and the capital markets to facilitate the hedging and

transfer of longevity risk. Such financial innovations are in the form of new investment

products including mortality-catastrophe bonds, longevity bonds, longevity swaps, and

mortality-forward contracts, amongst others.

The International Longevity Risk and Capital Markets Solutions Conferences were held to

discuss and analyse these longevity-related developments in their impact to the economy

and financial markets. In 2008, the Institutional Life Services and the Institutional Life

Administration were launched to serve as life settlements’ trading platform and clearing

house. The Life and Longevity Markets Association was established in 2010 to promote

the development of a liquid market involving longevity- and mortality-related risks. The

volume of transactions and amounts of longevity products all around the world have grown

dramatically in recent years. Academic researches on longevity risk also made headway in

the analysis of capital markets that accommodate the trading of longevity-linked contracts.

Specifically, ideas on the use of longevity bonds to hedge longevity risk in the capital mar-

ket have been promoted, and they cover the following themes: developing longevity-linked

markets, pricing longevity-linked products and derivative, mortality indices, longevity risk

in pension plans and pension systems, natural hedging of longevity risk, and mortality

1



2 Chapter 1. Introduction

modelling.

Stochastic models, which are mathematical tools for estimating and predicting random

events over time, are necessary to support the investigation of longevity risk. They have

been widely used in many research areas such as engineering, natural sciences, economics,

and business. Financial innovations, needing random models, entail the creation of many

insurance products with option-embedded features such as guaranteed annuity options and

equity-linked annuities. Uncertainty arises from future liability in these products and must

be taken into consideration when pricing and hedging them. This uncertainty could lead to

huge losses and liquidity problem for insurance companies. Hence, it is important to model

and include these risks explicitly in the actuarial valuation. Considering the similarities of

these insurance products to financial derivatives, option-pricing theory in conjunction with

stochastic modelling could be relied upon. Typically, the interest, mortality and lapse risks

are assumed independent of each other ease computational hurdles. Nonetheless, the cor-

relations between these risks are should not be ignored especially when there is strong

empirical evidence.

The International Accounting Standards Board issued the new International Financial Re-

porting Standard in May 2017, which is now commonly known as IFRS 17. It will replace

IFRS 4 on the accounting of insurance contracts. It will come into effect on 01 January

2022. IFRS 17 introduces a new measurement model for insurance contracts and will give

users of financial information a whole new perspective on insurance companies’ financial

statements. Therefore, new methods for calculating risk margins for claims adherent to

IFRS 17 are desired.

The specific aims of this thesis consist of the following: (i) Propose suitable pricing and

hedging frameworks for longevity products with investment guarantee where the correla-

tion between risks are explicitly modelled. (ii) Facilitate the valuation of insurance products

with the aid of change of measure technique and comonotonicity theory. (iii) Determine

various risk measures and compare them quantitatively. (iv) Perform sensitivity analyses

and investigate the impact of each factor on prices and risk measures of insurance products.

(v) Develop a risk-margin calculation method that meets the requirement of IFRS 17.
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1.2 Literature review

This section provides an overview of pertinent stochastic modelling and its applications to

capture the time-series behaviours of interest, mortality, lapse rates supporting the valua-

tion and risk management of insurance products.

1.2.1 Stochastic modelling of interest rate

Stochastic models in finance can be traced back to the 1900s when Bachelier [1] utilised

Brownian motion to model stock price movements in the Paris Stock Exchange and to study

the option markets. In Vasiček [23], an equilibrium interest rate model was in introduced

for the short rate process based on the Ornstein-Uhlenbeck specification having a mean-

reverting feature. The Vasiček interest rate model continues to have a significant influence

in the current financial modelling. Widening the interest-rate model choices, Cox et al. [4]

developed the Cox-Ingersoll-Ross (CIR) short-rate interest model based on a square-root

diffusion, thereby avoiding non-negativity of the process but still maintaining mean rever-

sion.

An alternative methodology to modelling interest rates is the no-arbitrage approach. Under

this approach, a model is designed to match today’s term structure of interest rates. The

first no-arbitrage model of interest rate term structure was developed by Ho and Lee [10]

in which the drift term is a function of time and is calculated analytically by using for-

ward rates. Hull and White [11] extended the Vasiček model so that it fits the initial term

structure exactly. In Hull and White [12], a two-factor model is proposed, where the mean-

reverting level is a stochastic process. The Hull-White two-factor model is able to replicate

richer patterns of term structure movements and volatilities than the one-factor models.

Further model flexibility could be obtained using regime-switching processes for interest

rates; normally, the Markov chain either in discrete or continuous time drives the evolution

of parameters. The work of Hamilton [9] pioneered the application of a regime-switching

technique to economic modelling. Elliott and Mamon [8] presented a Markovian interest

rate model with a complete term structure characterisation. The proof is given via the

Unbiased Expectation Hypothesis and change of measure technique. An explicit analytical

expression for the bond price under the Heath-Jarrow-Morton approach in a Markovian

market environment was also derived.
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1.2.2 Stochastic modelling of mortality rate and lapse rate

In traditional frameworks, the probabilities of death, which are used in life insurance pre-

mium and reserve calculations, are assumed deterministic and obtained using observed

data. However, with medical and health care advances, the future uncertainty on morality

rate remains unabated.

The first account of using stochastic processes to model the movement of mortality rates

appears to originate from the work of Lee and Carter [15]. In their paper, the logarithms of

mortality rates are modelled as a linear function of a time-varying index with age-dependent

parameters. The time-varying index can describe the variation of mortality patterns over

time. The least-squares solution to the model were obtained by employing the singular-

value decomposition method. Predictions of mortality and other life table variables were

also derived and presented. The concept that allowing uncertainty in the mortality rate by

modelling it as a stochastic process inspires subsequent research works on stochastic mor-

tality based LC model.

Cairns et al. [3] compared quantitatively eight stochastic mortality models. In their paper,

a model was developed to capture the improvement of mortality at higher ages. The cohort

effects were also taken in to account. They also pointed out that the most suitable model

for different cohorts might be different as well.

A Markovian regime-switching (RS) model incorporating mortality state switches into

mortality dynamics is developed in Milidonis et al. [21]. In their paper, the error term

of the time-varying index in the LC model is modelled as a regime-switching process. It

was highlighted that RS models have the capacity to describe the timing of a structural

change in death rates and the duration of each regime.

Modelling lapse rates appropriately is also important in the management of the assets and

liability of insurance companies. The risks arising from lapsation could threaten the in-

surer’s liquidity and force the selling of their assets. Eling and Kochanski [7] gave a com-

prehensive review of lapse-rate modelling in life insurance.

De Giovanni [5] built a Rational-Expectation model to describe lapse rates. In his paper, the

interest rate follows the CIR model and the price of a insurance product embedded with sur-

render option was carried out via numerical approximation of the two-space-dimensional



1.2. Literature review 5

parabolic partial differential equation. Loisel and Milhaud [18] proposed a stochastic model

for lapse rate with a bi-modal distribution. Numerical results were carried out and showed

that the lapse rate distribution could affect appreciably the reserves of the company and

forecasts of its economic capital needs.

1.2.3 Stochastic modelling in actuarial valuation and risk measure-
ment

The rapid emergence of complex insurance products with option-embedded features ne-

cessitates all the more reason to apply and advance stochastic modelling in finance and

actuarial science. Ballotta and Haberman [2] considered the fair valuation of guaranteed

annuity options (GAOs) but with independent financial and insurance risks.

Following Jalen and Mamon [14], an integrated framework was proposed for the valuation

of contingent claims with correlated interest and morality risks. They relaxed the assump-

tion of independence between two risks and assume that both interest and mortality rates

follow affine-type stochastic process. The survival benefit can be priced in an analytically

tractable way in conjunction with the change of measure technique.

Both Liu et al. [16] and Liu et al. [17] developed a generalised pricing framework for

GAOs. In their framework, two risks are assumed dependent and the short rate follows

the Vasiček model whilst the mortality rate follows the non-mean-reverting process in Lu-

ciano and Vigna [19]. A simplified for the GAO price was derived by using the change of

measure technique. The numerical results showed that their proposed method has highly

efficient and accuracy.

Deelstra et al. [6] proposed a GAO pricing set up based on the approach in Liu et al. [17].

They considered multi-factor models for the interest and mortality rates under some gen-

eralised affine settings. Specifically, a Wishart affine model, which allows a non-trival

dependence between the mortality and the interest rates, was taken into consideration.

A hidden Markov model (HMM) is also employed in actuarial valuation. In Shen and Siu

[22], an HMM was developed for valuing longevity bonds incorporating jumps in both

the short rate and force or mortality. An exponential affine form solution of the longevity

bond price in terms of the fundamental matrix solutions to linear, matrix-values ODEs

is derived. Ignatieva et al. [13] presented a regime-switching framework for pricing and
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hedging Guaranteed Minimum Benefits (GMBs). Semi-closed form solutions for prices

and the Greeks for GMBs are derived and computed efficiently using the Fourier-Space

Timestepping algorithm.

1.3 Structure of the thesis

This thesis comprises seven chapters. The current chapter (Chapter 1) gives an overview of

recent stochastic models used in finance and insurance. The succeeding chapters make up

a collection of five related research papers. Chapter 2 presents a model setting for the val-

uation of annuities that assumes dependent financial and mortality risks. In Chapter 3, we

propose a pricing framework addressing correlated interest and mortality risks. The change

of measure technique and comonotonicity theory are employed to facilitate the valuation of

a guaranteed annuity option(GAO). We introduce a two-decrement model for the valuation

and risk measurement of a GAO in Chapter 4. Chapter 5 introduces a regime-switching

framework for a guaranteed minimum maturity benefit (GMMB). Filtering technique is

utilised to estimate model parameters. In Chapter 6, we devise a method to determine risk

margins in line with the new accounting standard referred to as IFRS 17. Finally, some

concluding remarks and future directions are outlined in Chapter 7. The contents of Chap-

ters 2-6 are briefly reviewed below.

1.3.1 Annuity valuation under correlated risks

A pricing framework for annuity valuation is considered, where the dependence between

interest and mortality risk factors is modelled explicitly. The calculation is facilitated by

combining the change of measure and comonotonic-based methods to obtain accurate ap-

proximation of the survival probability’s quantile and hence annuity value. We demonstrate

that our approach is significantly more efficient than the usual simulation under a stochastic

setting. The interest rate is governed by a two-factor Hull-White model to capture current

levels of very low and even the possibility of negative rates occurring in some countries

post-2008 financial crisis. The mortality rate evolves in accordance with a continuous-time

version of the Lee-Carter (LC) model.
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1.3.2 An efficient algorithm for the valuation of a guaranteed annuity
option with correlated financial and mortality risks

We introduce a pricing framework for a GAO, where both the interest and mortality risks

are correlated. We assume that the short rate and the force of mortality follow the Cox-

Ingersoll-Ross (CIR) and LC models, respectively. Employing the change of measure

technique, we decompose the pure endowment into the product of the bond price and sur-

vival probability, thereby easing computational burden in the evaluation of the annuity

expression. With the aid of the dynamics of interest and mortality processes under the for-

ward measure, we construct an algorithm based on comonotonicity principles to estimate

the quantiles of survival probability and annuity rate. The comonotonic upper and lower

bounds in the convex order are used to approximate the annuity and GAO prices and hence-

forth avoiding the simulation-within-simulation problem. Numerical illustrations show that

our algorithm gives an efficient and practical method to estimate GAO values.

1.3.3 A two-decrement model for the valuation and risk measurement
of a guaranteed annuity option

The lapse risk arising from the termination of policies, due to a variety of causes, has signif-

icant influence on the prices of contracts, liquidity of an insurer and the reserves necessary

to meet regulatory capital. We address in an integrated way the problem of pricing and

determining the capital requirements for a GAO when lapse risk is specifically embedded

in the modelling framework. In particular, two decrements are considered in which death

and policy lapse occurrences with their correlations to the financial risk are explicitly mod-

elled. A series of probability measure changes is employed and the corresponding forward,

survival, and risk-endowment measures are constructed. This approach superbly circum-

vents the rather slow “simulation-within-simulation” pricing procedure under a stochastic

setting. Our implementation illustrates that our proposed approach cuts down the Monte-

Carlo technique’s average computing time by 99%. Risk measures are determined using

the moment-based density method and benchmarked with the Monte-Carlo simulation. Our

numerical results also indicate that depending on the risk metric used (e.g., VaR, CVaR, var-

ious forms of distortion risk measures) and the correlation between the interest and lapse

rates, the capital requirement may substantially change, which could be either an increase

or decrease up to 50%.
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1.3.4 The pricing of a guaranteed minimum maturity benefit under
regime-switching framework

The global insurance markets have become more sophisticated in recent times in response

to the evolving needs of population that tends to live longer. Policy holders desire the

benefits of longevity/mortality protection whilst taking advantage of investment growth

opportunities in the equity markets. As a result, insurers incorporate payment guarantees

in new insurance products known as equity-linked contracts whose values are dependent

on prices of risky assets. A GMMB is now common in many equity-linked contracts. We

develop an integrated pricing framework for a GMMB focusing on segregated fund con-

tracts. More specifically, we construct hidden Makov models (HMMs) for a stock index as

well as interest and mortality rates. The dependence between these risk factors are charac-

terised explicitly. We assume that the stock index follows a Markov-modulated geometric

Brownian motion whilst the interest and mortality rates have Markov-modulated affine dy-

namics. A series of measure changes is employed to obtain a semi-closed form solution for

the GMMB price. The Fourier-transform method is applied to numerically approximate the

prices more efficiently. Recursive HMM filters are developed for our model calibration. We

provide numerical investigations to show the accuracy of GMMB prices and an extensive

analysis is included to examine systematically how risk factors affect the GMMB value.

1.3.5 Setting risk margin for claims liabilities in accordance with IFRS
17

In IFRS 17, the general approach for liability measurement is the Building Block Approach

(BBA). Under the BBA, the value of the contract is the sum of four components: (i) total

future cash flows, (ii) time value of the future cash flows, (iii) risk margins, and (iv) con-

tractual service margin. In this thesis, we address the computation of risk margin for claims

liability. In IFRS 17, there is no explicit recommendation for the method in calculating the

risk margin, which is defined as the compensation that insurers require for bearing the un-

certainty in the amount and timing of cash flows.

We employ the paid-incurred chain model proposed in Merz and Wüthrich [20] to model

the claim triangular data. The moment-based density approximation is used to approximate

the distribution of losses as the years progress. Risk measures including value at risk, con-

ditional tail expectation and cost of capital are applied to compute risk margins of claim

liabilities. Historical data on the aggregate Ontario automobile insurance claims are used
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to examine the appropriateness and accuracy of our approach. The results are compared

with those obtained from some traditional methods. A sensitivity analysis for risk margins

is performed using the bootstrap method.
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Chapter 2

Annuity contract valuation under
dependent risks

2.1 Introduction

Both the decline of future mortality rates and uncertainty in the term structure of inter-

est rates neccessitate an improved framework for the pricing of annuity contracts. The

associated computational challenge arising from such a framework and complexity of the

risk-factor models are primary considerations. Thus, there is a need to balance between

the desire for closed-form or tractable pricing representation and the sophistication of both

mortality and financial risk processes with correlation structures.

We shall utilise a mortality model with a good fitting performance to empirical data and an

interest rate model that adequately describe short-term dynamics. A computationally effi-

cient algorithm will be developed to characterise the future annuity values. The aim is to

go around the “simulation-within-simulation” problem involved in a correlated stochastic

framework. The principle of our aim is related to that in Dowd et al. [8]. Our work on the

correlated modelling set up for annuity pricing is akin to the objectives of Zhao and Mamon

[23], Gao et al. [9], Liu et al. [16], and Jalen and Mamon [13], amongst others. Indepen-

dence between mortality and financial risks is no longer a realistic assumption. Dhaene

et al. [7], for example, asserted that independence under the physical world is not hered-

itary under the risk-neutral world. Also, as an ageing population puts burden on national

security systems, there is now clarity on the impact of life and health insurance markets

on the financial markets. A pertinent analysis focusing on the combined effect of random

mortality and interest rates in the context of a portfolio of deferred annuities is given in [17].

12
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In this chapter, we adopt the two-factor Hull-White model [12] for the interest rate process,

which has a better performance than the one-factor Vasicek model in fitting the rates’ ini-

tial term structure; see also [11]. The two-factor HW model is able to generate as well a

wider class of yield curves and volatility term structures observed in the market. In light

of the current developments of very low interest rates and in some countries they can be-

come negative, it is reasonable and justified to utilise the HW model. In Denmark, Sweden,

Switzerland and Japan, for example, a negative rate applies on commercial banks’ excess

funds held on deposit in each central bank. The rationale for lower and negative interest

rates comes from an economic policy that discourages investors from buying the local cur-

rency; the act of buying more tends to push its value up. Near-zero and negative rates also

curb deflation that was recently experienced in those countries; see [21] for further discus-

sion. For mortality projections, we employ the Lee-Carter (LC) [14] model. Unfortunately,

there is no closed-form solution for the survival probability under the LC model, and exten-

sive simulation is required. In lieu of simulation, nonetheless, we utilise the general idea in

Denuit and Dhaene [5] to construct comonotonic upper- and lower-bound approximations

for the survival quantiles. These are sharp approximations with remarkable precision with-

out implementing any Monte-Carlo (MC) simulation.

The main problem that we are addressing is how to deal with the sum of dependent random

variables, which is the case for the conditional expected present value of a life annuity.

Pertinent comonotonicity concepts will aid us in re-expressing this sum into a more math-

ematically tractable form. Analytical approximations for the quantiles of the life annuity’s

conditional expected present value will be derived. This chapter will proceed as follows.

Section 2.2 presents the correlated mortality and interest rate models, and the annuity func-

tion under a change of numéraire. Comonotonic approximations are given in section 2.3.

Section 2.4 highlights numerical illustrations for the efficient computations of the survival

probability and approximation for the annuity rate. Some final remarks are provided in

Section 2.5.



14 Chapter 2. Annuity contract valuation under dependent risks

2.2 The pricing problem and framework

2.2.1 Correlated modelling

We define the short rate rt and the force of mortality µt under a filtered probability space

(Ω,FT , {Ft},Q), where Q is risk-neutral and {Ft} is the joint filtration generated by rt and

µt. The way a risk-neutral measure is selected for the rt or the corresponding market prices

of risk for rt (and also mortality) is broadly discussed in Biffis et al. [1]. The rt process

follows the two-factor HW model, which gives an analytically tractable bond price, via the

stochastic differential equations (SDEs)

drt = [θ(t) + ut − art] dt + σ1 dW1
t

dut = −butdt + σ2

(
ρ1 dW1

t +

√
1 − ρ2

1 dW2
t

)
,

(2.1)

where ut is the stochastic mean-reverting level for some initial value, and a, b, σ1, σ2 and

ρ1 are positive constants. In (2.1), W1
t and W2

t are two independent standard Brownian

motions; and θ(t) is deterministic, which can be used to match the initial term structure.

The HW model is flexible and can accommodate a hump volatility structure that is often

observed in the cap market.

The mortality index κt will be modelled in accordance with the Lee and Carter’s continuous-

time specification [14]. In particular, the force of mortality µt is driven by κt satisfying

dκt = c dt + ξ dZt, (2.2)

where c is constant, ξ is a positive constant, and Zt is a standard Brownian motion correlated

with W1
t . The dependence between the interest and mortality rates is achieved by means of

the correlation coefficient ρ2£ between rt and κt, i.e., through

dW1
t dZt = ρ2 dt.

So, for any ρ2 , 0, we have

Zt = ρ2W1
t +

√
1 − ρ2

2W3
t

and it must be noted that W1
t , W2

t and W3
t are independent standard Brownian motions.

The joint filtration generated by the adapted processes rt, ut and µt is defined as Ft :=

F
W1

t
t ∨ F

W2
t

t ∨ F
W3

t
t .

In Liu et al. [15] and the references therein, a decrease of adult mortality could cause a de-

cline of interest rate as in the case of pre-industrial England. Such a result relied upon the
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life-cycle hypothesis in which higher life expectancy implies less farmer impatience lead-

ing to more investment in land fertility and higher production per acre. It was documented

that agricultural production and capital rates of return have their empirical patterns coincide

fairly well. Furthermore, the importance of a pricing framework that allows dependence

between mortality and interest rates is noted. This is because real-world independence be-

tween two risk factors does not carry forward to valuation-world independence.

Our model construction under a risk-neutral measure Q is a starting assumption. Inter-

ested readers are referred to Biffis et al. [1] on how to adjust mortality dynamics to reflect

the market price of mortality risk from P to Q. The supposition that the Q-dynamics of

µt equals its dynamics under the real probability measure P is valid only when interest

and mortality risks are driven by independent Brownian motions. Notwithstanding this

caveat, we shall bypass the necessary adjustment and simply use parameters obtained from

calibrating a mortality model under the real world. Our main focus is on showing the

computational efficiency of our algorithm for annuity valuation. Besides, as Hardy [10]

indicated, current market statistics that are used to back out the risk-neutral measure may

not contain adequate information as life and annuity contracts have longer maturities than

traded options. Current market conditions and prices are insufficient when analysing future

annuity cash flows. Thus, reliance on real-world estimates, with appropriate adjustment,

may still make better sense for longevity products.

2.2.2 Mortality model

Mortality evolution is a function of both age x and time t, and it is linked to future survival

probabilities dependent on κt. The LC model describes how the the logarithm of the central

mortality rate µxt behaves and affected by two age-specific covariates and a time-varying

component. In particular,

log µxt = Γx + Ψxκt + εxt. (2.3)

In equation (2.3), Γx is the average of log µxt over time; changes in log µxt are driven by

the dynamics of κt and the sensitivity of changes at age x is modulated by Ψx; and εxt is

the error term. Additionally, exp(Γx) influences the general shape of the mortality schedule

whilst Ψx explains which age-specific rates decline more rapidly or slowly over time due

to changes in κt. For a given age x, we assume Γx and Ψx remain constant over time and

modulates κt in (2.2). The survival probability, given µxt, is

S x(t,T ) = e−
∫ T

t µx+s,s ds, (2.4)
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which is a random variable. When pricing, we need to evaluate

Px(t,T ) := E
[
I{τ≥t}|Mt

]
= E [S x(t,T )|Mt] = E

[
e−

∫ T
t µx+s,s ds|Mt

]
, (2.5)

where {Mt} is the filtration generated by µxt.

2.2.3 Interest-rate model

When rt is given by equation (2.1), closed-form pricing solutions to bond and bond for-

wards/futures could be obtained. The price at time t of a $1 zero-coupon bond that matures

at time T (t ≤ T ) is

B(t,T ) = EQ[e−
∫ T

t rs ds|Ft] = e−A(t,T )rt−C(t,T )ut+D(t,T ), (2.6)

where

A(t,T ) =
1 − e−a(T−t)

a
,

C(t,T ) =
1

a(a − b)
e−a(T−t) −

1
b(a − b)

e−b(T−t) +
1

ab

and D(t,T ) satisfies the ordinary differential equation

∂D
∂t
− Aθt +

1
2

(
σ2

1A2 + σ2
2C

2 + 2ρ1σ1σ2AC
)

= 0.

Risk-neutral parameters are recovered using current market prices of bonds; see for exam-

ple, Rodrigo and Mamon [19] on how to solve the inverse problem of backing out model

parameters from bond market prices. However, if past short-term interest rate data are used

for model calibration, then the parameter estimates obtained are under the physical mea-

sure P. Consequently, the market price of risk must be defined or determined.

The two-factor HW model is equivalent to a two-additive-factor Gaussian model. It has

analytic bond price solution, and both the mean and variance of the interest rate process

have tractable expressions. Equation (2.1) has the solution

rt = r0e−at +
u0

b − a

(
e−at − e−bt

)
+

∫ t

0
θ(s)e−a(t−s) ds +

∫ t

0

(
σ1e−a(t−s)

+
ρ1σ2

b − a

(
e−a(t−s) − e−b(t−s)

) )
dW1

s +

√
1 − ρ2

1σ2

b − a

∫ t

0

(
e−a(t−s) − e−b(t−s)

)
dW2

s
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and yields the respective mean and variance

r0e−at +
u0

b − a

(
e−at − e−bt

)
+

∫ t

0
θ(s)e−a(t−s) ds

and

(σ2
1(b − a)2 + σ2

2 − 2ρ1σ1σ2(b − a))
2a(b − a)2

(
1 − e−2at

)
+

σ2
2

2b(b − a)2

(
1 − e−2bt

)
−

2ρ1σ1σ2(b − a) + 2σ2
2

(a + b)(b − a)2

(
1 − e−(a+b)t

)
.

2.2.4 Annuity and the change of numéraire

Let τ(x, t) be the remaining lifetime random variable, and for convenience set the current

time to t = 0. A survival benefit of $1 to be paid at time T to a life aged x at time t < T has

the fair value

M(t,T ) = EQ[e−
∫ T

t ru du · I{τ≥T }|Ft] = I{τ≥t} · EQ[e−
∫ T

t ru due−
∫ T

t µx+u,u du|Ft]. (2.7)

The indicator I{τ≥t} in equation (2.7) emphasises that a pure endowment’s value is condi-

tional on (x) being alive at time t . An annuity is a series of periodic payments of survival

benefits of $1. Hence, the risk-neutral value of ax(T ), conditional on (x) surviving at time

T , is

ax(T ) =

∞∑
n=1

EQ[e−
∫ T+n

T ru due−
∫ T+n

T µx+v,v dv|FT ] =

∞∑
n=1

M(T,T + n). (2.8)

The future trajectory of the risk factors, namely, rt and κt from time T will determine the

conditional expected present value of the life annuity. Although the force of mortality is

commonly modelled by adopting the financial-theory approach as noted in Cairns et al. [3],

the force of mortality here is indirectly specified by the time-varying mortality index κt. The

LC model is selected here because of its impressive empirical performance e.g., [14], and

it has become a mortality forecasting benchmark. LC’s lack of tractability is circumvented

here by offering instead closed-form approximations for the survival probabilities.

A change-of-measure technique is employed, with the bond price B(t,T ) as the numéraire,

to evaluate the pure endowment dependent on correlated interest and mortality rates. A

martingale measure Q̃ ∼ Q on FT corresponding to B(t,T ) is called the forward measure,

and it is constructed as

dQ̃
dQ

∣∣∣∣∣∣∣
FT

=

exp
(
−

∫ T

0
ru du

)
E

[
exp

(
−

∫ T

0
ru du

)] .



18 Chapter 2. Annuity contract valuation under dependent risks

As in Xi and Mamon [22], an application of the Bayes’ rule for conditional expectation

gives

M(t,T ) = B(t,T )EQ̃
[
I{τ≥T }

]
= B(t,T )EQ̃

[
e−

∫ T
t µx,x+v dv

∣∣∣∣Ft

]
. (2.9)

Equation (2.9) tells us that the pure endowment is a product of the bond price and the sur-

vival probability under Q̃.

Remark: We shall derive the dynamics of µt under Q̃. In the succeeding discussion, as

the subscript x does not affect the model dynamics, it is removed from µ to avoid clutter of

notation.

Similar to the results from the Appendix of Mamon [18], the standard Brownian motion

under Q̃ can be written as

dW̃1
t = dW1

t + (σ1A(t,T ) + ρ1σ2C(t,T )) dt, dW̃2
t = dW2

t + σ2

√
1 − ρ2

1C(t,T )dt and

dW̃3
t = dW3

t .

From (2.2), the dynamics of κt under Q̃ is

dκt = c dt + ξ
(
ρ2 dW̃1

t − ρ2 (σ1A(t,T ) + ρ1σ2C(t,T )) dt +

√
1 − ρ2

2 dW̃2
t

)
= (−ξρ2σ1A(t,T ) − ξρ2ρ1σ2C(t,T ) + c) dt + ρ2ξ dW̃1

t + ξ
√

1 − ρ2
2 dW̃2

t

= (−ξρ2σ1A(t,T ) − ξρ2ρ1σ2C(t,T ) + c) dt + ξ dZ̃t, (2.10)

where Z̃t = ρ2W̃1
t +

√
1 − ρ2

2W̃3
t . Given an initial value κ0, the process κt has the integral

representation

κt = κ0 + ct − ξρ2

∫ t

0
(σ1A(v,T ) + ρ1σ2C(v,T )) dv + ξZ̃t

= κ0 + ct − ξρ2

( t
a
−

1
a2

(
e−a(T−t) − e−aT

)
+

1
a2(a − b)

(
e−a(T−t) − e−aT

)
−

1
b2(a − b)

(
e−b(T−t) − e−bT

)
+

t
ab

)
+ ξZ̃t, (2.11)

where A(t,T ) =
1 − e−a(T−t)

a
and C(t,T ) =

1
a(a − b)

e−a(T−t) −
1

b(a − b)
e−b(T−t) +

1
ab

. Notice

that the mortality index is a Brownian motion but with a time-varying drift now. Conse-
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quently, µt follows the geometric Brownian motion with a functional form

µt = exp (Γx + Ψxκt)

= exp
(
Γx + Ψx

(
κ0 + ct − ξρ2

( t
a
−

1
a2

(
e−a(T−t) − e−aT

)
+

1
a2(a − b)

(
e−a(T−t) − e−aT

)
−

1
b2(a − b)

(
e−b(T−t) − e−bT

)
+

t
ab

)
+ ξZ̃t

))
.

Under Q̃ and with the aid of Itô’s lemma, we get

dµt =

(
−Ψxξρ2σ1A(t,T ) − Ψxξρ2ρ1σ2C(t,T ) + cΨx +

1
2

(Ψxξ)2
)
µt dt + Ψxξµt dZ̃t. (2.12)

From (2.5), the semblance between survival probability determination under Q̃ and zero-

coupon bond price calculation in equation (2.6) is apparent. In (2.12), the drift term con-

tains a deterministic function, whilst the diffusion term contains the term µ
β
t , where β = 1.

As shown in Hull and White [11], models with a diffusion term of the form µ
β
t with β = 0

and β = 0.5 are analytically tractable in the sense of evaluating the conditional expectations

of their discounted values. Hence, this tells us that a closed-form solution to the survival

probability, driven by µt in (2.12), is not available. An alternative evaluation method for

the survival probability, based on comonotonicity theory, will be provided.

2.3 Comonotonic approximation

2.3.1 Relevant background

We shall be dealing with the evaluation of discounted cash flows of the form

S =

n∑
i=0

αie−Yi , (2.13)

where αi, i = 1, . . . , n are real numbers. The expression exp(−Yi) may refer to either a dis-

counted value or a decrement process. A multivariate normal random vector (Y0,Y1, . . . ,Yn−1)

is at the core of our analysis. Equation (2.13), which is a series of dependent log-normal

random variables, is instrumental so that we could invoke the results of Denuit et al. [6] for

our proposed approximations.

A random vector X ≡ (X1, X2, . . . , Xn) is comonotonic if there exists a random variable Z

and monotonic functions g1, g2, . . . , gn, such that the distribution of X is (g1(Z), g2(Z), . . . , gn(Z)).
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In other words, the random variables X1, X2, . . . , Xn are transformations of the same under-

lying random variable Z so that comonotonicity indicates a perfect positive dependence.

Suppose FX is the distribution function of a random variable X. The inverse distribution

function F−1
X is given by

F−1
X (p) = inf{x ∈ R|FX(x) ≥ p},

where p ∈ [0, 1] is the X’s p-th quantile. If FX is continuous, the relation between the

quantiles of X and g(X) is

F−1
g(X)(p) = g

(
F−1

X (p)
)

whenever g is a continuous and non-decreasing function. Similarly,

F−1
h(X)(p) = h

(
F−1

X (1 − p)
)

whenever h is a continuous and non-increasing function. From the quantile additivity prop-

erty of comonotonic random variables,

F−1
X1+...+Xn

(p) =

n∑
i=1

gi

(
F−1

Z (1 − p)
)

provided gi, i = 1, . . . , n are non-increasing. Hence, if the components of the sum are

comonotonic then the aggregate sum’s quantiles could be calculated without much diffi-

culty. Clearly, comonotonic sum is tractable and aids in establishing with ease the distribu-

tion of equation (2.13).

2.3.2 Comonotonic lower bounds

Consider two random variables X and Y , and suppose E[(X − ζ)+] ≤ E[(Y − ζ)+], for all

ζ ∈ R+. Then, X is less than Y in the stop-loss order sense, denoted by X �sl Y , and this

can also be viewed as an increasing-convex order. This is because for all non-decreasing

and convex functions g, X �sl Y ⇔ E[g(X)] ≤ E[g(Y)]. If X �sl Y and E[X] = E[Y] then

we have a stochastic convex ordering denoted by X �cx Y .

When X �cx Y , X has lighter tails than those of Y; so, the the latter is more likely to have

extreme values, larger variance, and risky-profile distribution. This concept together with

comonotonicity is applied to create a version of X with a more risky profile for the upper

bound, and a random vector with a less risky profile for the lower bound. Suppose the
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marginal distribution of Xi and the corresponding cumulative distribution function Fi are

known, given the random vector (X1, X2, . . . , Xn). Then,

n∑
i=1

Xi �cx

n∑
i=1

F−1
i (U),

where U ∼ Uniform(0, 1). Let S u
n :=

∑n
i=1 F−1

i (U) be the convex-order upper bound of

S n :=
∑n

i=1 Xi.

Now, let S l
n :=

∑n
i=1 E[Xi|Λ] be the convex-order lower bound of S n :=

∑n
i=1 Xi. That is,

n∑
i=1

E[Xi|Λ] �cx

n∑
i=1

Xi,

for some random variable Λ. An accurate approximation will depend on the choice of Λ,

and as revealed in Dhaene et al. [6], Vanduffel et al. [20] and Denuit [4], S n’s first-order

Taylor’s approximation could be chosen as a suitable Λ. This means that S l
n is constructed

by conditioning the X′i s on Λ. Moreover, E[Xi|Λ]’s are monotonic functions of Λ and have

known distributions. Thus, S l
n is a comonotonic sum.

2.3.3 Comonotonic bounds of survival probabilities

Equation (2.5) illustrates that the survival probability is a random variable whose values

are conditional on κt. Our goal is the future survival probabilities’ evaluation not relying on

demanding and costly computations. Instead, closed-form bounds for the future survival

probability random variable will be derived following the comonotonic principles outlined

in Denuit and Dhaene’s results [5]. In particular, the stop-loss upper and lower bounds

satisfying S l
x �sl S x �sl S u

x will be developed.

We assume µx+ε(t + τ) = µx(t) for 0 ≤ ε, τ < 1. That is, within each band of age and

time, the force of mortality is constant. This implies

S x(t, t + n) = exp

− n−1∑
j=0

µx+ j

 = exp

− n−1∑
j=0

exp(Γx+ j + Ψx+ jκt+ j)

 , (2.14)

and µx has a log-normal distribution because κt is normally distributed. It should be noted

that future survival probabilities are random variables with a dependence structure, and so

we have to deal with a sum of correlated log-normal random variables whose distribution

is not easy to determine. Nonetheless, we circumvent such difficulty with the comonotonic
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bounds for S x(t, t + n).

Then, S x(t, t + n) = exp(−S n) if

S n :=
n−1∑
j=0

exp(Γx+ j + Ψx+ jκt+ j). (2.15)

Consequently,

S n =

n−1∑
j=0

δ jexp(Y j) (2.16)

with δ j = exp(Γx+ j) and Y j = Ψx+ jκt+ j.

The characterisation of the survival probability under Q̃ is paramount. Assuming a known

κt0 , Y j ∼ N(µY j , σ
2
Y j

) where

µY j = EQ̃[Y j]

= Ψx+ j

(
κt0 + c j −

∫ t0+ j

t0
(ξρ2σ1A(v, t0 + n) + ξρ2ρ1σ2C(v, t0 + n)) dv

)
and σ2

Y j
= VarQ̃[Y j] = (Ψx+ j)2 jξ2.

Define the convex-upper bound of S n as

S u
n =

n−1∑
j=0

δ jexp(µY j + σY jZ) (2.17)

with Z ∼ N(0, 1) so that S n �cx S u
n. This yields S x(t, t + n) �sl exp(−S u

n).

Denote by Φ−1 the standard normal distribution’s quantile function. The quantile function

of S u
n satisfies additivity by the comonotonicity property, i.e.,

F−1
S u

n
(ε) =

n−1∑
j=0

δ jexp
(
µY j + σY jΦ

−1(1 − ε)
)
. (2.18)

For the convex-order lower bound of S n, consider S l
n = E[S n|Λn]. We condition on some

random variable Λn to approximate S n; and Λn is set as the first-order Taylor approximation

of S n. Hence,

Λn =

n−1∑
j=0

δ jY j, (2.19)



2.3. Comonotonic approximation 23

which is a normal random variable. With the aid of the concept of moment-generating

function, E[S n|Λn] can be evaluated and this provides

S l
d =

n−1∑
j=0

δ jexp
(
µY j + ρ j[Y j,Λn]σY jZ +

1
2

(
1 − ρ j[Y j,Λn]

)2
σ2

Y j

)
, (2.20)

as the comonotonic lower-bound approximation for S n. In (2.20), ρi[Y j,Λn], j = 0, . . . , n −

1, is the correlation coefficient given by

ρ j[Y j,Λn] =
Cov[Yi,Λn]
σYiσΛn

.

Thus, exp(−S l
n) �sl S x(t, t + n) holds. Again, by the quantile-additivity property and with

S l
n being the sum of comonotonic random variables, the quantile function of S l

n is

F−1
S l

n
(ε) =

n−1∑
j=0

δ jexp
(
µY j + ρ j[Y j,Λn]σY jΦ

−1(1 − ε) +
1
2

(
1 − ρ j[Y j,Λn]

)2
σ2

Y j

)
. (2.21)

2.3.4 Approximation for the annuity rate

An annuity immediate is a series of survival benefits paying $1 at time T for a life aged x.

Its fair value is

ax(T ) =

n∑
i=1

M(T,T + i) =

n∑
i=1

B(T,T + i)EQ̃
[
e−

∫ T+i
T µv dv

∣∣∣∣FT

]
=

n∑
i=1

e−A(T,T+i)rT−C(T,T+i)uT +D(T,T+i)EQ̃
[
e−

∫ T+i
T µv dv

∣∣∣∣FT

]
.

Clearly, ax(T ) depends on the state, under Q, of rT , uT and κT from (2.3.4).

The quantile functions obtained from the comonotonic approximations will facilitate the

numerical computation of the expected n-year survival probability at time T . This is ac-

complished via

EQ̃[S x(T,T + n)|FT ] =

∫ 1

0
Fcm−1

(p) dp, (2.22)

where Fcm−1
denotes the lower or upper comonotonic bound of S x(T,T + n)’s quantile

function. Whenever κT , rT and uT are known, ax(T ) is efficiently generated. To calculate

at time t = 0 the expected value or quantile of ax(T ), simulated vales of κT , rT and uT

are necessary. The distribution of ax(T ) under Q relies on (rT , uT , κT ), which is a trivariate

normal random variable with

EQ[rT ] = r0e−aT +
u0

b − a

(
e−aT − e−bT

)
+

∫ T

0
θ(s)e−a(T−s) ds, (2.23)
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EQ[uT ] = u0e−bT , (2.24)

EQ[κT ] = cT, (2.25)

VarQ[rT ] =
(σ2

1(b − a)2 + σ2
2 − 2ρ1σ1σ2(b − a))

2a(b − a)2

(
1 − e−2at

)
+

σ2
2

2b(b − a)2

(
1 − e−2bt

)
−

2ρ1σ1σ2(b − a) + 2σ2
2

(a + b)(b − a)2

(
1 − e−(a+b)t

)
,

(2.26)

VarQ[uT ] =
σ2

2

2b

(
1 − e−2bT

)
, (2.27)

VarQ[κT ] = ξ2T, (2.28)

CovQ[rT , uT ] =

(
ρ1σ1σ2

a + b
+

σ2
2

(b − a)(a + b)

) (
1 − e−(a+b)T

)
−

σ2
2

2b(b − a)

(
1 − e−2bT

)
, (2.29)

CovQ[rT , κT ] = ρ2ξ

[(
σ1

a
+

ρ1σ2

(b − a)b

) (
1 − e−aT

)
−

ρ1σ2

(b − a)b

(
1 − e−bT

)]
(2.30)

and

CovQ[uT , κT ] =
ρ1ρ2σ2ξ

b

(
1 − e−bT

)
. (2.31)

2.4 Implementation

The Human Mortality Database’s life table on Canadian males aged x = 25, . . . , 100, from

years 1970 to 2009, was utilised to fit the parameters ax, bx, and κt of the LC mortality

model. It is assumed that Year 2009 is the current time T = 0 and the years thereafter are

termed as the future; and 100 is the ultimate age in the life table. An ARIMA (0,1,0), i.e.,

a random walk with drift was fitted to produce parameter estimates of index κt, and the re-

sults are ĉ = −1.2785 and ξ̂ = 0.4165. The parameter specifications for the two-factor HW

model are a = 1, b = 0.1, θ = 0.045, ρ1 = 0.6, σ1 = 0.01 and σ2 = 0.01, with r0 = 0.045

and u0 = 0. No further calibration is conducted for the HW model as we concentrate in

showing the efficiency and accuracy of the proposed approximation. One may use a quasi-

likelihood method to perform parameter estimation; see Mamon and Zhou []
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2.4.1 Approximation of survival probability

We shall demonstrate the behaviour of the approximated quantiles of S x(n) using the comono-

tonic upper and lower bounds given by (2.18) and (2.21), respectively. The time t argument

is suppressed from S x(t, t + n) to minimise clutter of notation. Figure 2.1 depicts the quan-

tiles of the 10-year survival probability for a life aged 65 with a time horizon of T = 15.

Equation (2.4), using 10,000 simulated sample paths under Q̃, gives the “true” quantiles.

For a varying ρ, the quantiles of the comonotonic bounds are close to the simulated survival

probability. Relatively small differences can be observed between the comonotonic approx-

imations and simulated quantiles. Although the lower-bound approximations are slightly

better, the calculation of the upper-bound approximations are more efficient because fewer

terms are involved.
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Figure 2.1: Upper panel: Quantile functions of S x(n), S u
x(n) and S l

x(n); Lower panel:
Relative differences between the approximated quantiles and the simulated quantiles.

Equation (2.15) gives the expression for S n, and the relation S l
n �cx S n �cx S u

n holds. Also,

S x(n) = exp(−S n), and so exp(−S l
n) �sl S x(n) �sl exp(−S u

n). The approximations for the

means of the 10-year survival probabilities are very accurate as shown in Table 2.1. The
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correlation ρ2 between mortality and interest rate risks has a small but noticeable effect on

the survival probability. As ρ2 increases, the survival probability decreases with ρ1 = 0.6

fixed. For a 10-year survival probability, there is a small (i.e., 0.0123%) difference between

the probability based on ρ2 = −0.9 and the probability based on ρ2 = 0.9, on average.

However, this difference will grow the longer the duration is because sample paths will

have greater variability. For instance, there is a 0.23% difference between the 40-year sur-

vival probability with ρ2 = −0.9 and the 40-year survival probability with ρ2 = 0.9. A

more pronounced effect of ρ2 to the annuity value is caused by the accumulation of these

differences.

ρ2 T=5 T=40

S 65(10) S l
65(10) S u

65(10) S 65(10) S l
65(10) S u

65(10)

-0.9 0.811206 0.811159 0.811393 0.823134 0.823179 0.823405

-0.6 0.814421 0.814255 0.814486 0.825839 0.826105 0.826329

-0.3 0.817190 0.817296 0.817526 0.829053 0.828979 0.829200

0 0.820388 0.820284 0.820512 0.831948 0.831802 0.832021

0.3 0.822852 0.823220 0.823444 0.834731 0.834574 0.834790

0.6 0.826319 0.826103 0.826325 0.837409 0.837296 0.837510

0.9 0.828983 0.828935 0.829155 0.839612 0.839970 0.840182

Table 2.1: 10-year survival probability average value for a Canadian male aged 65 at future

horizons T=5 and T=40.

2.4.2 Approximation of the annuity

We now investigate the approximation of ax(T ) based on (2.3.4), whereby the conditional

expectation is determined by the upper and lower bounds of the survival probabilities as

well as equation (2.22). The triplet (rT , uT , κT ), under Q, are characterised by the moments

given in (2.23) – (2.31). To calculate the “true” value of ax(T ), we use equation (2.3.4)

and apply the MC simulation method for the evaluation of the conditional expectation in

each trial. Figure 2.2 shows that the quantiles of simulated ax(T ) are closed to those of the

comonotonic approximations. The relative differences, which are very small, are attributed

to the “noise” due to survival probabilities’ approximation and variations from simulation.

To examine the effect of ρ2 on the annuity value, a sensitivity analysis is performed. In
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Figure 2.2: Upper panel: Quantile functions of a 10-year annuity immediate for time

horizon T=15 based on values a65(5), au
65(5) and al

65(5). Lower panel: Relative differences

between the approximated and simulated quantiles.

demonstrating a clear relation between ρ2 and ax(T ), the parameters σ1 and σ2 in the two-

factor HW model, and ξ in the LC mortality model are magnified; these magnified param-

eters are σ′1 = 0.35, σ′2 = 0.35 and ξ′ = 30ξ. They reflect an extreme scenario of a stressed

financial environment and volatile health status of the cohort. We will consider a whole life

annuity, and so with a maximum age of 100, a 35-year annuity immediate for an individ-

ual aged 65 is deemed a whole life annuity. The calculated annuities based on magnified

parameter values are shown in Table 2.2 and 2.3 with 50,000 MC iterations. There is a

discernible increasing trend in the annuity value as ρ2 increases. On average, the difference

between the annuity value corresponding to ρ2 = −0.9 and the annuity corresponding to

ρ2 = 0.9 for T = 5 is 20%; whilst the difference is 22% for T = 40. This suggests that the

correlation between interest and mortality risks could have a strong influence on annuity

values under some extreme scenarios. The average relative difference between simulation

results and approximations is 0.3%, which implies that our proposed method provides high
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ρ2 a65(5) al
65(5) au

65(5)

-0.9 11.102878 (0.041781) 11.067061 (0.041571) 11.138986 (0.041792)

-0.6 11.542502 (0.042239) 11.505685 (0.042880) 11.586022 (0.042880)

-0.3 12.138739 (0.042480) 12.089327 (0.043299) 12.197056 (0.042937)

0 12.400552 (0.043584) 12.370652 (0.043436) 12.461776 (0.042851)

0.3 12.771842 (0.043521) 12.734359 (0.043650) 12.818750 (0.043998)

0.6 13.254950 (0.044504) 13.212704 (0.044099) 13.295973 (0.044711)

0.9 13.633704 (0.045391) 13.595405 (0.045716) 13.678474 (0.045943)

Computation

Ave Time (hrs) 12.32 0.29 0.25

Table 2.2: 35-year annuity immediate average value for a Canadian male aged 65 at a future

horizon T=5.

accuracy in pricing annuities.

Our approach also aims to reduce substantially computing time for annuity valuation. Up-

per and lower bound-approximations for a65(T ) are displayed in Tables 2.2 and 2.3. For a

given future time T and all values of ρ, the approximations for a 35-year annuity immediate

are very close to their “true” values. Most notably, the difference between simulation and

comonotonic-based approximation in terms of the average computing times to complete

the annuity calculations is very highly significant (i.e., more than 12.5 hours for the for-

mer versus less than 16 minutes only for the latter). Ostensibly, the simulations involved

in a65(T ) took 12.5 hours because within each simulation an embedded simulation for the

trivariate random variable (rT , uT , κT ) is required; this is the so-called simulation-within-

simulation, which presents a challenge in the brute-force MC method. The capacity for a

huge computing-time saving is an important and gainful feature of our method in addition

to its ability to give approximations with superb accuracy.

In Figure 2.3, we plot the annuity’s 5th, 50th and 95th quantiles for horizons 1 to 40.

These were obtained by the comonotonic upper and lower-bound approximations. The

solid points are the quantiles of the true values for horizons 5, 20 and 40. Expectedly, as

T goes bigger, the bound intervals also get wider. The increasing annuity trend is a direct

result of the mortality index having a downward trend, pointing to the fact that indeed mor-

tality improvement over time is happening. The quantiles with n = 35 are also presented as

we are also particularly interested in life annuity. The bound intervals for the life annuity
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ρ2 a65(40) al
65(40) au

65(40)

-0.9 18.169796 (0.044210) 18.124952 (0.044811) 18.210668 (0.044625)

-0.6 18.885663 (0.044323) 18.844803 (0.044931) 18.954663 (0.044320)

-0.3 19.871910 (0.045430) 19.296891 (0.045276) 19.313245 (0.045632)

0 20.537852 (0.045809) 20.474202 (0.045321) 20.592673 (0.045465)

0.3 21.120986 (0.046809) 21.079679 (0.046316) 21.164902 (0.046062)

0.6 22.057027 (0.046173) 22.002318 (0.046203) 22.114022 (0.046883)

0.9 22.738262 (0.047860) 22.686841 (0.047984) 22.793342 (0.047945)

Computation

Ave Time (hrs) 12.41 0.29 0.26

Table 2.3: 35-year annuity immediate average value for a Canadian male aged 65 at a future

horizon T=40.

are more significantly larger than those of the 10-year annuity and their increasing trend is

more pronounced.

In Figure 2.4, we display the volatility pattern of the 10 year-annuity immediate at a future

horizon T = 40 as a function of both ρ1 and ρ2. When ρ1 is positive, ρ2 has a strong in-

fluence on the volatility. But ρ2 has less effect on the volatility when ρ1 is negative. The

correlation ρ1 is estimated from the calibration of the term structure of interest rates. Dif-

ferent values of ρ1 can reproduce various observed features of the bond prices. As Brigo

and Mercurio [2] averred, a humped volatility structure of interest rate can be engendered

by a negative ρ1. Certainly, the volatility and distribution of the annuity rate are affected,

to a greater extent, by both ρ1 and ρ2.

Life annuity prices are illustrated in Figure 2.5 at time horizon T = 5 under different values

of σ1, σ2 and ξ. As σ2 increases or ξ decreases, annuity value increases sharply. The annu-

ity value has a small but visible decreasing pattern as σ1 increases. It can be inferred that

the annuity is more sensitive to σ2 and ξ than σ1. Thus, both σ2 and ξ must be estimated

accurately when using our proposed correlated interest and mortality framework to price

an annuity.
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Figure 2.3: Prediction intervals for a 10-year annuity immediate and life annuity for fore-

casting horizons T = 1, . . . , 40 years; solid points represent predicted quantiles based on

Monte-Carlo simulations

2.5 Conclusion

This chapter put forward a computationally efficient approach with notable accuracy in

determining the survival probability and pricing annuity via the combined power of the

change-of-measure technique and comonotonic approximation. The comonotonic-based

method resolves the issue of “simulation within simulation” in the evaluation of a future

expected value dependent on a mortality risk with a stochastic evolution.

The analytic approximations for the survival probability’s quantiles sidestep the imped-

iment of not having a closed-form representation for the survival probability. The an-

nuity pricing is accomplished straightforwardly by the change of measure method. Our

numerical experiments and implementation established that the comonotonic approxima-

tion manifestly bore remarkable accuracy and patently shorter computational time when

benchmarked to the MC simulation method. Our study verified the riskiness element of

annuities at farther time horizons, and such riskiness could be measured by certain risk

metrics mandated by insurance regulators. Likewise, the correlation between interest and
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mortality rates cogently influence annuity’s distribution. The natural direction of this work,

which will continue to be relevant and beneficial to investors, managers, and regulatory

authorities, is the examination of longevity products, specifically the valuation and risk

measurement, using the notions behind the development of computational schemes pro-

moted in this research.



32 Chapter 2. Annuity contract valuation under dependent risks

0

0.25

1

0
0.45

2
=0.05

10
15

10

0.6

an
nu

ity

20

15

0

0.25

1

0

2
=0.15

0.45
10

10
an

nu
ity

15 0.620

15

0

0.210

1

0
0.45

2
=0.25

10

20

15

an
nu

ity

0.620

30

0

0.220

1

0
0.45

2
=0.35

10
15

40

an
nu

ity

0.620

60

Figure 2.5: Life annuity values at time horizon T = 40 with varying σ1, σ2 and ξ



REFERENCES 33

References

[1] E. Biffis, M. Denuit, and P. Devolder. Stochastic mortality under measure changes.

Scandinavian Actuarial Journal, 2010(4):284–311, 2010.

[2] D. Brigo and F. Mercurio. Interest Rate Models-Theory and Practice: With Smile,

Inflation and Credit. Springer, New York, 207.

[3] A. Cairns, D. Blake, and K. Dowd. Pricing deaths: Frameworks for the valuation and

securitisation of mortality risk. ASTIN Bulletin, 36(1):79–120, 2006.

[4] M. Denuit. Comonotonic approximations to quantiles of life annuity conditional ex-

pected present value. Insurance: Mathematics and Economics, 42(2):831–838, 2008.

[5] M. Denuit and J. Dhaene. Comonotonic bounds on the survival probabilities in the

lee–carter model for mortality projection. Journal of Computational and Applied

Mathematics, 203(1):169–176, 2007.

[6] J. Dhaene, M. Denuit, M. Goovaerts, R. Kaas, and D. Vyncke. The concept of

comonotonicity in actuarial science and finance: Applications. Insurance: Mathe-

matics and Economics, 31(2):133–161, 2002.

[7] J. Dhaene, A. Kukush, E. Luciano, W. Schoutens, and B. Stassen. The concept of

comonotonicity in actuarial science and finance: Applications. Insurance: Mathe-

matics and Economics, 52(3):522–531, 2013.

[8] K. Dowd, D. Blake, and A. Cairns. A computationally efficient algorithm for estimat-

ing the distribution of future annuity values under interest-rate and longevity risks.

North American Actuarial Journal, 15(2):237–247, 2011.

[9] H. Gao, R. Mamon, and X. Liu. Pricing a guaranteed annuity option under correlated

and regime-switching risk factors. European Actuarial Journal, 5(2):309–326, 2015.

[10] M. Hardy. Investment Guarantees: Modeling and Risk Management for Equity-

Linked Life Insurance. Wiley & Sons, New Jersey, 2003.

[11] J. Hull and A. White. Pricing interest rate derivative securities. Review of Financial

Studies, 3(4):573–592, 1990.

[12] J. Hull and A. White. Numerical procedures for implementing term structure models

I: Single-factor models. Journal of Derivatives, 2(1):7–16, 1994.



34 Chapter 2. Annuity contract valuation under dependent risks

[13] L. Jalen and R. Mamon. Valuation of contingent claims with mortality and interest

rate risks. Mathematical and Computer Modelling, 49(9):1893–1904, 2009.

[14] R. Lee and L. Carter. Modeling and forecasting us mortality. Journal of the American

Statistical Association, 87:659–671, 1992.

[15] X. Liu, R. Mamon, and H. Gao. A comonotonicity-based valuation method for guar-

anteed annuity options. Journal of Computational and Applied Mathematics, pages

58–69, 2013.

[16] X. Liu, R. Mamon, and H. Gao. A generalised pricing framework addressing corre-

lated mortality and interest risks: A change of probability measure approach. Stochas-

tics, 86(4):594–608, 2014.

[17] A. Mahayni and D. Steuten. Deferred annuities - on the combined effect of stochas-

tic mortality and interest rates. Insurance: Mathematics and Economics, 7(1):1–28,

2013.

[18] R. Mamon. Three ways to solve for bond prices in the Vasiček model. Journal of
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Chapter 3

An efficient algorithm for the valuation
of a GAO with correlated financial and
mortality risks

3.1 Introduction

Recent financial innovations in the market included the creation of many insurance prod-

ucts with option-embedded features such as guaranteed annuity options and equity-linked

annuities; see Hardy [15]. These products depend on both mortality and interest rate risks.

The previous methodology in evaluating this kind of products affected by these two risks

is oversimplified. In the past literature, the interest rate is modelled as a stochastic process

and the mortality rate is deemed deterministic; see Ballotta and Haberman [1, 2]. The un-

derestimation of mortality risk could lead to huge losses for many insurance companies.

Majority of research papers do not deal with the correlation between mortality and interest

rate risks. It is more desirable to have a valuation setting that allows for the dependence

between these two risk factors. In Liu, et al. [21], a valuation pricing framework covers the

case of correlated mortality and interest risks, albeit the interest rate model is restricted to

Vasiček to obtain analytic pricing solution of a guaranteed annuity option (GAO). Liu, et al.

[20], on the other hand, proposed comonotonicity-based method to improve the efficiency

of GAO pricing computation.

With the improvement of approaches in modelling mortality risks, more stochastic mortal-

ity models with greater flexibility, were put forward; see Cairns, et al. [6], Lee and Carter

[17], and Lin and Liu [18], amongst others. The pricing of annuity products has become

35
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more complicated as the complexity of the mortality model has also increased. We aim to

construct a model with greater capability in fitting with the historical data very well, i.e.,

capturing ably the mortality evolution whilst attaining tractability for ease of implementa-

tion. However, building such a model that captures adequately both behavioural properties

could be challenging. When a complicated mortality model is adopted, the computational

burden is heavy and the “simulation-within-simulation” problem poses a difficulty in the

implementation. Our goal is to develop a computationally efficient algorithm to evaluate

the GAO price.

GAO valuation with regime-switching but under independent risk factors is put forward

in [12]; the pricing under regime-switching with correlation structure involving Vasiček

interest-rate dynamics and mortality rate is given in [11]; and the setting of GAO capital

requirements using moment-based method is shown in [13]. This chapter could be viewed

as an extension of the framework constructed in Liu, et al. [21] in which their model

setting is limited only to Vasiček and Ornstein-Uhlenbeck-based models for the interest

and mortality rates, respectively, due to the models’ combined mathematical tractability.

Nonetheless, we know that both risk processes have more complicated dynamics requiring

a combined modelling framework with more capabilities. So, to bring further modelling de-

velopment, we consider the CIR model for the interest rate process which is mean-reverting

and its nonnegative feature provides a realistic description of the evolution of the interest

rate. Also, the well-studied Lee-Carter mortality model is adopted in this investigation. As

pointed out in Lee and Carter [17], their mortality model performs superbly in fitting the

empirical data. However, the price of GAO for this choice of combined interest and mortal-

ity models, with correlation structure, does not yield a closed-form pricing solution so that

the simulation technique must be used. To aid the price computation, the comonotonicity

lower and upper bounds are calculated to give an approximation of the GAO value.

We note that our proposed research idea and that of Deelstra et al. [8] exhibit similarities

in GAO pricing. These similarities include the (i) framework of correlated interest and

mortality risks, (ii) examination of the influence brought about by the risks’ dependence

structure on GAO prices, (iii) employment of the change-of-measure technique, and (iv)

short-term interest rate governed by the Cox-Ingersoll-Ross (CIR) model.

Nonetheless, this article also has certain features that depict distinctive differences from

Deelstra et al. [8]. Such features justify our unique position relative to the current liter-

ature, and its contributions by all means complement those in [8]. We highlight the dif-
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ferences as follows. (i) We assume the mortality rate evolves according to the Lee-Carter

model whilst in [8], both mortality and short rates follow the multi-CIR or Wishart mod-

els. The Lee-Carter model arguably performs better in fitting mortality rates as this model

was originally created to model mortality risks; in particular, it takes into account both

the age and time factors. In contrast, the model in [8] considers only the time factor. (ii)

In this chapter, the interest and mortality rates are governed by different models vis-à-vis

the assumption in [8]. Thus, in our case, explicit solutions for the annuity rates and GAO

prices are unattainable. But, with the aid of the concept of comonotonicity bounds, we get

closed-form pricing approximations for annuity and GAO prices. (iii) The procedure to

calculate our survival probability and price estimates is deemed efficient with the general

Monte-Carlo simulation method as benchmark. Our numerical results are enhanced further

by a systematic analysis that ascertains how sensitive the GAO prices are to the perturba-

tions in various parameter values.

This chapter is organised as follows. Section 2.2 presents the formulation of the pricing

framework along with the assumptions of the interest and mortality rate modelling set ups.

In section 2.3, we describe the change of measure method and determine the dynamics of

the interest and mortality rate processes under the forward measure. In section 2.4, the

comonotonicity bounds are introduced and they are used in turn to evaluate the survival

probability, annuity rate, and GAO price. Section 2.5 provides some numerical examples

to illustrate the advantages of our proposed technique. Finally, we give some concluding

remarks in section 2.6.

3.2 Valuation framework

3.2.1 Cox-Ingersoll-Ross (CIR) model

Under a risk-neutral measure Q, the short-term interest rate rt is governed by the CIR

model, i.e., rt follows the dynamics

drt = a(b − rt) dt + σ
√

rt dW1
t , (3.1)

where a, b and σ are positive constants and W1
t is a standard Brownian motion on some

filtered probability space (Ω,Rt, {Rt},Q). Here, {Rt} is the filtration generated by rt. The

square root term in the diffusion coefficient of equation (3.1) together with an appropriate

choice of parameters imply that the interest rate is always positive and provided 2ab ≥ σ2.
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The respective mean and variance of rt conditional on Rs are given by

E[rt|Rs] = rse−a(t−s) + b(1 − e−a(t−s))

and

Var[rt|Rs] = rs
σ2

a

(
e−a(t−s) − e−2a(t−s)

)
+
σ2b
2a

(
1 − e−a(t−s)

)2
.

Under the CIR setting, the price of a $1 time-T zero-coupon bond at time t has an expo-

nential affine representation given by

B(t,T ) = EQ
[
e
∫ T

t rudu
∣∣∣∣Rt

]
= e−A(t,T )rt+D(t,T ), (3.2)

where

A(t,T ) =
2(e(T−t)h − 1)

2h + (a + h)(e(T−t)h − 1)
,

D(t,T ) =
2ab
σ2 log

(
2he(a+h)(T−t)/2

2h + (a + h)(e(T−t)h − 1)

)
and h =

√
a2 + 2σ2.

3.2.2 Lee-Carter model

We assume that the force of mortality µx,t, for a life aged x at time t, follows the Lee-Carter

model, which consists of two age-specific factors and a time-varying index. That is,

log µx,t = αx + βxkt + εx,t (3.3)

with constraints ∑
t

kt = 0,
∑

x

βx = 1,

where αx and βx are age-specific constants, kt is a time-varying index, and εx,t is an error

term. In equation (3.3), kt satisfies the stochastic differential equation

dkt = c dt + ξ dZt, (3.4)

where c and ξ are constants (ξ > 0) and {Zt} is a standard Brownian on (Ω,Mt, {Mt},Q).

Here, {Mt} is the filtration generated by µxt via kt.

The Lee-Carter model parameters in equation (3.3) have intuitive interpretations: αx is the

average mortality rate that describes the differences between ages; kt represents the changes
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of mortality rate over time, which is a stochastic process; βx explains at which ages mortal-

ity rate declines rapidly as influenced by kt; and εx,t is a random disturbance.

Given the force of mortality µx,t, we get the survival probability

S x(t,T ) = exp
(
−

∫ T

t
ux+s,s ds

)
.

Since µx,t is a stochastic process, the survival probability is also a random variable. To

price an insurance product, we need to determine the conditional expectation of the survival

probability, which is

Px(t,T ) := E
[
exp

(
−

∫ T

t
ux+s,s ds

)∣∣∣∣∣∣Mt

]
. (3.5)

We assume that Zt is correlated with W1
t with dependence structure

dZt dW1
t = ρ dt,

where ρ is the correlation coefficient between the interest rate and mortality rate processes.

Generating Zt could be performed using the relation

Zt = ρW1
t +

√
1 − ρ2W2

t ,

where W2
t is a standard Brownian motion independent of W1

t .

3.2.3 Valuation formula

We define the joint filtration {Ft} via Ft := Rt ∨ Mt := σ(Rt ∪ Mt). We develop a mod-

elling framework based on the short interest rate rt and the force of mortality ut defined on

(Ω,F , {Ft},Q). Denote by τ(x, t) the future lifetime random variable of an individual aged

x at current time t. The fair value of a survival benefit of $1 payable at time T for a life

aged x at time t < T is

Mx(t,T ) : = EQ
[
e−

∫ T
t ru duI{τ>T }

∣∣∣∣Ft

]
= I{τ>t}EQ

[
e−

∫ T
t ru due−

∫ T
t µx+v,v dv

∣∣∣∣Ft

]
(3.6)

= I{τ>t}Mx(t,T ),

where IA is the indicator function of a set A and Mx(t,T ) = EQ
[
e−

∫ T
t rudue−

∫ T
t µx+v,v dv

∣∣∣∣Ft

]
.
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Equation (3.6) provides the value of the pure endowment, which is conditional on the sur-

vival of x to time t. For a general contingent payoff conditional on the survival at time T ,

the fair value at time t is

Cx,t = EQ
[
e−

∫ T
t ru duI{τ>T }CT

∣∣∣∣Ft

]
= I{τ>t}EQ

[
e−

∫ T
t ru due−

∫ T
t ux+v,v dvCT

∣∣∣∣Ft

]
(3.7)

= I{τ>t}Cx,t,

where Cx,t = EQ
[
e−

∫ T
t ru due−

∫ T
t ux+v,v dvCT

∣∣∣∣Ft

]
.

In equation (3.7), CT is a generalised contingent claim and may refer to a GAO or other

type of insurance derivatives. We recall that a GAO is a contract that gives the policy holder

the right to convert his survival benefit into an annuity at a pre-specified conversion rate at

a certain future time. This kind of contract has been popular in UK pension policies since

the late 70-80’s. According to Bolton, et al. [3], the most commonly used guaranteed con-

version rate for males aged 65 in the UK is g =
1
9

, which means a survival benefit of £1000

can be converted into an anuity of £111 per annum. If the annuity is sold at a price higher

than
1
g

, the GAO is at a positive value; otherwise, it is worthless. The annuity is a series of

survival benefits of $1 conditional on a life aged x survive to time T .

The annuity rate ax(T ), applicable at time T , for a life aged x at time t, is given by

ax(T ) =

∞∑
n=1

M(T,T + n) =

∞∑
n=1

EQ
[
e−

∫ T+n
T ru due−

∫ T+n
T µx+v,v dv

∣∣∣∣FT

]
. (3.8)

If we let CT = (gax(T ) − 1)+, i.e., CT = g(ax(T ) − K)+ where K =
1
g

, then at time 0 the

valuation formula for GAO is

PGAO =
1
K

EQ
[
e−

∫ T
0 ru due−

∫ T
0 ux+v,v dv(ax(T ) − K)+

∣∣∣∣F0

]
. (3.9)

It has to be noted that formula (3.9) requires simulation in two levels to evaluate the an-

nuities and GAO values. This leads to a “simulation-within-simulation” problem. Conse-

quently, this makes the valuation of GAO time-consuming and inefficient. We will intro-

duce a method based on the theory of comonotonicity to improve valuation efficiency and

substantially reduce the computing time for pricing GAOs.
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3.3 Change of measure

One may observe that when generating the numerical results of the pure endowment in

equation (3.6) under Q, trajectories of both the interest and mortality rates are needed. The

change of numéraire technique will be applied to improve the efficiency of the calculations.

Consider the bond price B(t,T ) as the new numéraire with associated measure Q̃ equivalent

to Q defined via the Radon-Nikodým derivative as per the Girsanov’s theorem. With Q̃

and the application of Bayes’ theorem for conditional expectation, the pure endowment is

essentially the discounted survival benefit of $1. This could be written as

Mx(t,T ) = B(t,T )EQ̃
[
e−

∫ T
t µx+v,v dv

∣∣∣∣Ft

]
. (3.10)

With the change of numéraire technique, we are able to split the pure endowment into the

product of the bond price and the expectation of survival probability evaluated under the

forward measure.

Consequently, we need to determine the dynamics of the interest rate and mortality rate

processes under Q̃. Following the results shown in Mamon [23], the standard Brownian

motions under the forward measure Q̃ have dynamics

dW̃1
t = dW1

t + σA(t,T )
√

rt dt dW̃2
t = dW2

t . (3.11)

Hence,

dZ̃t = ρ dW̃1
t +

√
1 − ρ2 dW̃2

t . (3.12)

Plugging in equation (3.11) into equation (3.1), we obtain the dynamics of rt under Q̃ as

illustrated by the succeeding calculations.

drt = a(b − rt) dt + σ
√

rt dW1
t

= a(b − rt) dt + σ
√

rt(dW̃1
t − σA(t,T )

√
rt dt)

= a
[
b −

(
σ2A(t,T )

a
+ 1

)
rt

]
dt + σ

√
rt dW̃1

t .

We see that the short interest rate also follows the CIR model under Q̃, i.e.,

drt = ã
[̃
b − rt

]
dt + σ̃

√
rt dW̃1

t (3.13)
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with new parameters ã := a + σ2A(t,T ), b̃ :=
ab

a + σ2A(t,T )
and σ̃ := σ.

Similarly, substituting equation (3.12) into equation (3.4), we obtain the dynamics of kt

under Q̃ in accordance with the computation that follows.

dkt = c dt + ξ dZt = c dt + ξ[ρdW1
t +

√
1 − ρ2 dW2

t ]

= c dt + ξ[ρ(dW̃1
t − σA(t,T )

√
rt dt) +

√
1 − ρ2 dW̃2

t ]

= (c − ρξσA(t,T )
√

rt) dt + ξ[ρ dW̃1
t +

√
1 − ρ2 dW̃2

t ]

= (c − ρξσA(t,T )
√

rt) dt + ξ dZ̃t. (3.14)

The integral representation of (3.14), given the initial value k0, is

kt = k0 + ct − ρσξ
∫ t

0
A(u,T )

√
ru du + ξZ̃t. (3.15)

We aim to find the variance of kt under Q̃. Since ρ, σ, ξ and
√

ru are all less than 1 in

general, ρσξ
∫ t

0
A(u,T )

√
ru du is much smaller than ξZ̃t. In fact, we verify numerically that

the variation of the drift term is much smaller than that of the diffusion term. In particular,

using a Monte-Carlo simulation method, we compare the standard deviations (SDs) of the

drift and diffusion terms as we vary the parameters ρ, σ and ξ, with the other parameters

taking the constant values displayed in Table 4.1. Indeed, we can observe from Tables 3.1-

3.3 that the drift’s SD is substantially smaller than the corresponding diffusion’s SD. This

shows that the diffusion term is the dominant random component of kt under Q̃.

Table 3.1: SDs of kt’s drift and diffusion terms under different values of ρ
ρ -1.0 -0.5 0.0 0.5 1.0

drift 0.084107 0.039294 0.000000 0.042256 0.086062

diffusion 5.412869 5.24136 5.330050 5.212744 5.682106

Table 3.2: SDs of kt’s drift and diffusion terms under different values of ξ
ξ 0.25 0.50 0.75 1.00

drift 0.013783 0.027282 0.040481 0.054616

diffusion 1.742354 3.517697 5.419593 7.216929
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Table 3.3: SDs of kt’s drift and diffusion terms under different values of σ
σ 0.010 0.025 0.050 0.075

drift 0.004843 0.029818 0.103759 0.203865

diffusion 5.294222 5.368703 5.371906 5.471100

It is not easy to determine the distribution of ρσξ
∫ t

0
A(u,T )

√
ru du. However, the term ξZ̃t

follows the normal distribution and as noted above, it is the dominating source of random-

ness for kt. For tractability, kt will be treated as a normally distributed random variable, at

least approximately. Such an assumption will be justified empirically further in section 3.5

via normality tests.

A closed-form solution to the survival probability driven by kt does not exist. Therefore, we

provide an approximate solution through comonotonicity theory. We shall now determine

the expectation of
√

rt and variance of rt under Q̃; they are needed in section 4.

Write

ct :=
4a

σ2(1 − exp(−at))
. (3.16)

In Brigo and Mecurio [4], rt governed by the CIR model could be expressed as rt =
Y
ct

where ct is the parameter defined in (3.16) and Y is a random variable that follows the non-

central chi-square distribution with vt degrees of freedom and non-centrality parameter λt.

Then Y = ctrt follows the non-central chi-square distribution with parameters

vt =
4ab
σ2 , (3.17)

and

λt = ctr0 exp(−at), (3.18)

where a, b and σ are constants appearing in the short-term interest rate process of equation

(3.1).

A general non-central chi-square random variable with degrees of freedom v (v > 0) and

non-centrality parameter λ (λ > 0) has the density function (see Brigo and Mercurio [4])

pχ2(v,λ)(z) =

∞∑
i=0

e−λ/2(λ/2)i

i!
pΓ(i+v/2,1/2)(z) (3.19)

with

pΓ(i+v/2,1/2)(z) =
(1/2)i+v/2zi+v/2−1

Γ(i + v/2)
e−z/2, (3.20)
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where i = 0, 1, . . . ,.

Equations (3.16)-(3.20) are under Q, and under this measure, the parameters a, b and σ

are replaced by ã, b̃ and σ̃, which are the parameters in the interest rate model (see equa-

tion (3.13)). Considering that ã and b̃ are time-dependent functions under Q̃, we invoke

Maghsoodi [22] to obtain the distribution of rt. To do this, write

c̃t :=
[
1
4

∫ t

0
e−

∫ s
0 ã(u) duσ̃2 ds

]−1

and λ̃t := c̃tr0 exp
(
−

∫ t

0
ã(s) ds

)
,

where ã(s) := a + σ2A(s,T ) and σ̃2 = σ2.

From the description involving equation (3.13), it turns out that ṽt is a constant; specifically,

ṽt :=
4̃ãb
σ̃2 =

4ab
σ2 .

So, by Maghsoodi [22], the argument justifying the derivation of the distribution of rt still

holds under the Q̃ measure here. Thus, the expectation of the square root of rt under Q̃ can

be calculated by evaluating the pertinent integral, i.e.,

EQ̃[
√

rt] =
1√
c̃t

∫ ∞

0

√
z
∞∑

i=0

e−λ̃t/2(̃λt/2)i

i!
pΓ(i+̃vt/2,1/2)(z) dz.

After simplification (see Appendix for details of the succeeding result), we have

EQ̃[
√

rt] =

√
2
c̃t

∞∑
i=0

e−λ̃t/2(̃λt/2)i

i!
Γ(i + ṽt/2 + 1/2)

Γ(i + ṽt/2)
. (3.21)

The expectation in (3.21) is written as a series. Based on the parameter values used in

the implementation section of this chapter, our numerical experiment shows that 25 terms

are required for an approximating partial sum to give a precision of 0.001, and 30 terms

for a precision of 0.0001. Employing equations (3.21) and (3.15), we get the respective

expectation and variance of kt under measure Q̃ as

EQ̃[kt] = k0 + ct − ρσξ
∫ t

0
A(u,T )EQ̃[

√
ru] du, (3.22)

VarQ̃[kt] = (ρσξ)2
∫ t

0
A(u,T )2(EQ̃[ru] − EQ̃[

√
ru]2) du + ξ2t

+ ρσξ2
∫ t

0
A(u,T )CovQ̃[

√
ru, Z̃u] du.

(3.23)
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Since we do not have a closed-form solution to the survival probability, we propose an ap-

proximation method in obtaining their numerical results. Our approximation, with the aid

of the moments of kt, will be shown to be more efficient than the Monte-Carlo simulation

method. It must be noted that this section contains characterisations of the moments of the

CIR process with time-dependent parameters under the forward measure Q̃. These results

enhance the developments in the study of CIR processes with time-varying coefficients that

were previously examined in Deelstra [7], Maghsoodi [22] and Shirakawa [24].

3.4 Comonotonicity bounds

3.4.1 Comonotonicity theory

The random variables X1, X2, . . . , Xn are said to be comonotonic if there exists a random

variable V and monotonic functions g1, g2, . . . , gn such that (X1, X2, . . . , Xn) is distributed

as (g1(V), g2(V), . . . , gn(V)). If the random vector X = (X1, X2, . . . , Xn) has comonotonic

distribution, two possible outcomes (x1, x2, . . . , xn) and (y1, y2, . . . , yn) of (X1, X2, . . . , Xn)

are ordered componentwise. It means that all the elements of the vector move in the same

direction.

We consider a random variable X with cumulative distribution function FX. Its pth quantile

is defined as

F−1
X (p) = inf{x ∈ R; FX(x) ≥ p}.

This is also referred to as the inverse function of FX. For a random variable and a continuous

function g(x), we have

F−1
g(X)(p) = g(F−1

X (p))

for a non-decreasing function g(x) and

F−1
g(X)(p) = g(F−1

X (1 − p))

for a non-increasing function g(x).

We follow the development in Liu, et al. [19] in the succeeding discussion of the distri-

bution of
∑n

i=1 Xi. If X1, X2, . . . , Xn are comonotonic random variables and (X1, X2, . . . , Xn)
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is distributed as (g1(V), g2(V), . . . , gn(V)), where g1, g2, . . . , gn are non-decreasing (or non-

increasing) functions, the quantile additive property states

F−1
X1+···+Xn

(p) =

n∑
i=1

gi(F−1
V (p)).

Consider two random variables X and Y . X is said to be smaller than Y in the convex order,

which is denoted by X �cx Y , if and only if

E[X] = E[Y] and E[(X − d)+] ≤ E[(Y − d)+], for all d ∈ R.

The convex-order relation X �cx Y also implies that Y has a heavier lower and upper tails

than that of X. The probability that Y has an extreme value is higher than that of X; there-

fore, Var[X] ≤ Var[Y].

In the remaining part of this section, we utilise the concept of comonotonicity to approxi-

mate the random variable of the form

S =

n∑
i=1

Xi,

where X1, X2, . . . , Xn are dependent and their marginal distributions FXi are known but their

joint distribution is unspecified and is typically hard to determine. Furthermore, the distri-

bution of the sum of S is difficult to derive. The idea to find the comonotonic approximation

is to replace the dependent random variables X1, X2, . . . , Xn with comonotonic random vari-

ables Y1,Y2, . . . ,Yn. Then S can be approximated by S̃ =
∑n

i=1 Yi. Applying the quantile

additive property, the distribution of S̃ can be derived in a more efficient way. The idea

of utilising the comonotonicity theory to approximate the sum of dependent random vari-

ables was initiated by Dhaene, et al. [9]. Such technique was implemented in a stochastic

life annuity framework by Liu, et al. [19]. We consider the upper and lower bounds of S

in a convex order, which are denoted by S u and S l, respectively; S u and S l must satisfy

S l �cx S �cx S u.

One approach to find the convex-order upper bound S u is by setting S u =
∑n

i=1 F−1
Xi

(U),

where U is a uniform random variable between 0 and 1. Note that the components in S u

are comonotonic and they have the same distribution as X′i s. Hence, S u has the convex-

largest sum of S . In order to determine the lower bound S l, we shall use the conditional
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expectation E[Xi|Λ] to set up the lower bound S l =
∑n

i=1 E[Xi|Λ] , where Λ is some condi-

tioning random variable. The lower bound is a function of Λ and it is desired to choose a

Λ that can approximate S accurately. In Dhaene, et al. [10], it is suggested to choose Λ as

the first-order Taylor approximation of S .

3.4.2 Comonotonicity bounds of survival probabilities

We assume that the force of mortality within each band of age and time remains constant,

i.e, µx+ε(t + τ) = µx(t) for 0 ≤ ε, τ < 1. The survival probability of a life aged x at time t

reaching time t + n can be written as

S x(t, t + n) = exp

− n−1∑
j=0

µx+ j,t+ j

 = exp

− n−1∑
j=0

exp(αx+ j + βx+ jkt+ j)

 .
As previously indicated in section 3, kt is approximately normally distributed, so that µt

is log-normally distributed. In the LC model, the kt+ j’s are independent random variables.

The exponent in S x(t, t+n) is the sum of correlated log-normal random variables. Therefore,

we could obtain the comonotonic bounds to approximate S x(t, t + n). Write

S n :=
n−1∑
j=0

exp(αx+ j + βx+ jkt+ j) =

n−1∑
j=0

δ jeX j ,

where δ j = eαx+ j and X j = βx+ jkt+ j.

Consequently, S x(t, t + n) = exp(−S n). Recall that with the survival probability evaluated

under Q̃, the dynamics of kt is given by equation (3.14). Therefore, we have X j ∼ N(µ j, σ
2
j),

where u j and σ2
j

µ j = βx+ jEQ̃[kt+ j]

and

σ2
j = β2

x+ jVarQ̃[kt+ j].

Note that EQ̃[kt+ j] and VarQ̃[kt+ j] are determined employing equations (3.22) and (3.23),

respectively.

We then obtain the convex-order upper bound for S n as

S u
n =

n−1∑
j=0

δ jeµ j+σ jZ,
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where Z ∼ N(0, 1). The relation S n �cx S u
n implies Px(t, t + n) �cx exp(−S u

n). The quantile

for S u
n is given by

F−1
S u

n
(ε) =

n−1∑
j=0

δ jeµ j+σ jΦ
−1(ε), (3.24)

where Φ−1 is the quantile function of the standard normal distribution.

In order to find the convex-order lower bound, we require the conditioning random variable

Λn. Here, we choose the first-order Taylor approximation of S as Λn, that is,

Λn =

n−1∑
j=0

δ jX j, (3.25)

and Λn is normally distributed with parameters

µΛ = EQ̃[Λn] =

n−1∑
j=0

δ jµ j (3.26)

and

σ2
Λ = VarQ̃[Λn] =

n−1∑
i=0

n−1∑
j=0

δiδ jσi j, (3.27)

where σi j is the covariance of Xi and X j. Moreover, the covariance between Xi and Λn is

CovQ̃[Xi,Λn] =

n−1∑
j=0

δ jσi j. (3.28)

We define the correlation coefficient between Xi and Λn as

ψi =
CovQ̃[Xi,Λn]

σiσΛ

. (3.29)

This means that Xi|Λn ∼ N
(
µi + ψi

σi

σΛ

(Λn − µΛ), (1 − ψ2
i )σ2

i

)
. Note that

Λ − µΛ

σΛ

is a stan-

dard normal random variables, and so

EQ̃
[
eXi

∣∣∣ Λn

]
= eµi+ψiσiZ+ 1

2 (1−ψ2
i )σ2

i ,

where Z is the standard normal random variable. Hence, the convex-order lower bound is

S l
n =

n−1∑
i=0

δiEQ̃
[
eXi

∣∣∣ Λn

]
=

n−1∑
i=0

δieµi+ψiσiZ+ 1
2 (1−ψ2

i )σ2
i .
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The relation S l
n �cx S n implies that exp(−S u

n) �cx Px(t, t + n), and the quantile function of

S l
n is

F−1
S l

n
(ε) =

n−1∑
i=0

δieµi+ψiσiΦ
−1(ε)+ 1

2 (1−ψ2
i )σ2

i . (3.30)

3.4.3 Comonotonicity bounds of annuity rate

The annuity rate in equation (3.8) is the sum of dependent random variables and finding

its analytical solution is not easy. So, we shall approximate the annuity rate by using the

comonotonicity bounds of survival probabilities. Plugging in equations (3.2) and (3.10)

into equation (3.8), we have the annuity rate

ax(T ) =

n∑
i=1

B(T,T + i)EQ̃
[
e−

∫ T+i
T µx+v,v dv

∣∣∣∣FT

]
=

n∑
i=1

e−A(T,T+i)rT +D(T,T+i)EQ̃
[
e−

∫ T+i
T µx+v,v dv

∣∣∣∣FT

]
. (3.31)

Note that the annuity rate is the sum of the products of bond price and expectation of

survival probability evaluated under the forward measure. The bond price has a closed-

form solution and it is determined by rT . The expectation term does not have a closed-form

expression but we may approximate it using comonotonicity bounds. The expectation of

the n-year survival probability of an individual aged x at time T can be efficiently obtained

by numerical method via the quantile function of the comonotonic bounds. In particular,

we have

EQ̃
[
e−

∫ T+i
T µx+v,v dv

∣∣∣∣FT

]
=

∫ 1

0
F−1

p (p) dp, (3.32)

where F−1
p (p) can be either the lower or upper bound of the survival probability Px(T,T +n),

which is obtained in the last subsection. The annuity rate ax(T ) at time T depends on rT and

kT . Hence, given the values of rT and kT , we are able to compute annuity rate efficiently

by using comonotonicity bounds. Since (rT , kT ) is a pair of random variables, ax(T ) is also

a random variable. We intend to determine the distribution and the mean of annuity rate

at time T . This can be achieved by the Monte-Carlo simulation. We generate samples of

(rT , kT ) and compute ax(T ) for each trail. Then we are able to obtain the approximation of

the distribution of ax(T ).



50Chapter 3. An efficient algorithm for the valuation of aGAOwith correlated financial and mortality risks

3.4.4 GAO estimation

The value of a GAO is provided by the pricing formula

PGAO = gEQ

[
e
∫ T

0 rv dve
∫ T

0 µx+v,v dv

(
ax(T ) −

1
g

)+]
. (3.33)

As mentioned in section 3.2, for the general implementation of the simulation method,

equation (3.33) requires simulations within a set of simulations as we have to know the an-

nuity rate ax(T ) for each simulation. In section 3.3, we stated that there is no closed-form

solution to the survival probability under Q̃. Hence, there is no closed-form solution to the

pure endowment M(T,T + n) or the annuity rate ax(T ).

In this section, we utilise the comonotonic method to obtain the convex-order upper and

lower bounds for the annuity rate ax(T ). Then we are able to approximate the annuity rate

by using comonotonic bounds and circumvent the tedious simulations within each simu-

lation. Therefore, the evaluation procedure reduces to a one-level simulation only, which

substantially improves both the computing time and calculation efficiency.

3.5 Numerical illustration

3.5.1 Lee-Carter model estimation

To implement our proposed modelling approach, we consider the data from the Human

Mortality Database (HMD). We shall examine the data for the Canadian males aged x =

25, . . . , 100 from 1970 to 2009. We select the year 2009 as the current time. The maximum

likelihood estimation method in Brouhns, et al. [5] will be employed in estimating the pa-

rameters of the LC model. The parameter estimates, as they vary through age (year), are

shown in Figure 3.1. We have ĉ = −1.2210 and ξ̂ = 0.7646 for the time-varying index kt

described in equation (3.4).

3.5.2 Survival probability approximations

We investigate the behaviour of the comonotonic bounds for the survival probability S x(t, t+

n). The approximated quantile function of S x(t, t + n) is evaluated using equations (3.24)
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and (3.30). The simulated quantile function is obtained by simulating 1,000 sample paths

for rt and kt using equation (3.5). The results will show that pricing values are already

within a narrow bandwith of the lower and upper comonotonic bounds, implying robust-

ness even for this small number of sample paths.

The parameter values used for the numerical computation in this section are shown in

Table 4.1. The numerical results are produced by varying the value of one parameter whilst

holding the other parameters fixed.

Our simulations in the numerical implementation of the correlated models make use of the

Euler discretisation scheme given in Glasserman [14]. However, in order to avoid generat-

ing negative interest rates arising from the discretisation of the CIR model, we employ the

discretisation modifications proposed by Labbé, et al. [16].

Contract specification

g = 11.1% T = 15 n = 35

Interest rate model

a = 0.15 b = 0.045 σ = 0.03 r0 = 0.045

Mortality model

c = −1.2210 ξ = 0.7646 k0 = −27.65504 ρ = 0.3

Table 3.4: Parameter values

Before approximating the survival probability, we first test if indeed kt follows the normal

distribution approximately. We generate 5,000 sample paths to form the distribution of kt

at time t = T + n. We also vary the parameters within a reasonable range. The Shapiro

test is used to check formally the normality of kt. From the results shown in Table 3.5, we

see large p-values so that we do not reject the null hypothesis, i.e., we do not have enough

evidence to refute that kt follows the normal distribution. We complement the statistical

tests with the QQ plots and the results are shown in Figure 3.2. The plots in the upper panel

are for different values of ρ and those in the lower panel are for different values of n. From

these results, we can conclude that kt follows the normal distribution.

In Figure 3.3, we display the comonotonicity-based quantile functions for ρ = −0.9, 0 and

0.9. These quantile functions are very close to those obtained from simulation and all abso-

lute differences are smaller than 0.001. Thus, it is not straightforward to determine which
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Figure 3.2: QQ plot for kt

bound is better as their accuracies are quite similar. However, the upper bound is more

efficient than the lower bound when the computation complexity is considered because the

conditioning random variable Λ is still needed when calculating convex-lower bound.

We choose different values of parameters within a reasonable range and perform the sim-

ulation for the expected survival probability P65(15, 15 + n). Tables 3.6–3.11 display the

expectation of the survival probabilities using different approximation methods. Standard

errors (SEs) for the estimated survival probabilities by simulation are given in parentheses.

At a significance level of say 5%, confidence intervals for the estimated values by simula-

tion overlap with the corresponding intervals spanned by the lower and upper bonds. This

statistically provides support that our comonotonic approximations are accurate, with the

simulated values serving as benchmarks. We carry a 4-decimal accuracy for the comono-

tonic approximations. The parameters of the interest model has a small but visible influence

on the survival probability. As ρ increases, the survival probability increases, and vice-

versa. The parameter c has a significant influence on the results. The survival probability

decreases as c increases.
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Figure 3.3: Quantiles to demonstrate the differences in the approximation of S 65(15, 15 +

35)

3.5.3 Annuity rate approximation

In this subsection, we assess the performance of the approximation that evaluates the an-

nuity rate ax(T ). Similar to the survival probability, we obtain the quantiles of the comono-

tonic approximations for ax(T ) using equations (3.31) and (3.32). The simulated quantiles

are obtained by equation (3.8), and we generated 2,000 sample paths for rt and kt. From

Figure 3.4, we see that the quantiles of the comonotonic bounds closely approximate the

simulated value. The upper panel shows the quantile functions and the lower panel shows

the relative differences between the approximated and simulated quantiles. All differences

in absolute value are less than 0.2.

The means of annuity rates are displayed in Table 3.12-3.17. We observe that the comono-

tonic bounds still exhibit good performance in approximating ax(T ); the absolute values

of the differences are less than 0.1. As n increases, the annuity also increases. A fivefold

magnification of the original σ and ξ estimates was introduced in order to illustrate per-

spicuously the influence of ρ on annuity rates as illustrated in Table 3.12; the annuity rate

increases as ρ increases. The annuity rate decreases significantly as parameters a, b, σ, c

or ξ increases, and vice-versa.

When n = 15, the computing time for our approximation is only 4% of that required for the
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Table 3.6: Valuation of P65(15, 15 + n) with different values of ρ
n=10 n=35

ρ simulation lower upper simulation lower upper

-0.9 0.869956 (2.8×10−5) 0.869946 0.869947 0.019684 (7×10−6) 0.019685 0.019688

-0.6 0.870048 (2.8×10−5) 0.870005 0.870006 0.019722 (7×10−6) 0.019724 0.019726

-0.3 0.870108 (2.8×10−5) 0.870063 0.870065 0.019760 (7×10−6) 0.019762 0.019765

0 0.870164 (2.8×10−5) 0.870122 0.870123 0.019799 (7×10−6) 0.019800 0.019803

0.3 0.870217 (2.8×10−5) 0.870181 0.870182 0.019833 (7×10−6) 0.019839 0.019842

0.6 0.870239 (2.8×10−5) 0.870239 0.870241 0.019880 (7×10−6) 0.019877 0.019880

0.9 0.870308 (2.8×10−5) 0.870298 0.870299 0.019919 (7×10−6) 0.019916 0.019919

Table 3.7: Valuation of P65(15, 15 + n) with different values of a
n=10 n=35

a simulation lower upper simulation lower upper

0.05 0.870211 (2.8×10−5) 0.870202 0.870203 0.019876 (7.0×10−6) 0.019878 0.019881

0.10 0.870201 (2.8×10−5) 0.870190 0.870191 0.019847 (7.0×10−6) 0.019853 0.019856

0.15 0.870199 (2.8×10−5) 0.870181 0.870182 0.019840 (7.0×10−6) 0.019839 0.019842

0.20 0.870186 (2.8×10−5) 0.870173 0.870174 0.019830 (7.0×10−6) 0.019830 0.019833

0.25 0.870179 (2.8×10−5) 0.870167 0.870168 0.019824 (7.0×10−6) 0.019825 0.019827

0.30 0.870167 (2.8×10−5) 0.870162 0.870163 0.019820 (7.0×10−6) 0.019821 0.019824

0.35 0.870156 (2.8×10−5) 0.870158 0.870159 0.019817 (7.0×10−6) 0.019818 0.019821

0.40 0.870153 (2.8×10−5) 0.870154 0.870156 0.019813 (7.0×10−6) 0.019816 0.019819

Monte-Carlo method in average. When n = 35 the computing time for the approximation is

only 2% of that required for the Monte-Carlo method in average. Ostensibly, the approach

via the comonotonic bounds provides a more efficient method to approximate the annuity

rate.



3.5. Numerical illustration 57

Table 3.8: Valuation of P65(15, 15 + n) with different values of b
n=10 n=35

b simulation lower upper simulation lower upper

0.030 0.870171 (2.8×10−5) 0.870177 0.870179 0.019832 (7.0×10−6) 0.019834 0.019837

0.035 0.870176 (2.8×10−5) 0.870179 0.870180 0.019831 (7.0×10−6) 0.019836 0.019838

0.040 0.870180 (2.8×10−5) 0.870180 0.870181 0.019836 (7.0×10−6) 0.019837 0.019840

0.045 0.870182 (2.8×10−5) 0.870181 0.870182 0.019835 (7.0×10−6) 0.019839 0.019842

0.050 0.870186 (2.8×10−5) 0.870182 0.870183 0.019837 (7.0×10−6) 0.019840 0.019843

0.055 0.870193 (2.8×10−5) 0.870183 0.870184 0.019844 (7.0×10−6) 0.019842 0.019844

0.060 0.870195 (2.8×10−5) 0.870184 0.870185 0.019839 (7.0×10−6) 0.019842 0.019846

Table 3.9: Valuation of P65(15, 15 + n) with different values of σ
n=10 n=35

σ simulation lower upper simulation lower upper

0.01 0.870136 (2.8×10−5) 0.870142 0.870143 0.019812 (7.0×10−6) 0.019814 0.019816

0.03 0.870173 (2.8×10−5) 0.870181 0.870182 0.019843 (7.0×10−6) 0.019839 0.019842

0.05 0.870223 (2.8×10−5) 0.870218 0.870219 0.019861 (7.0×10−6) 0.019861 0.019863

0.10 0.870287 (2.8×10−5) 0.870294 0.870295 0.019894 (7.0×10−6) 0.019895 0.019898

0.15 0.870334 (2.8×10−5) 0.870340 0.870341 0.019916 (7.0×10−6) 0.019902 0.019905

0.30 0.870365 (2.8×10−5) 0.870334 0.870336 0.019988 (7.0×10−6) 0.019873 0.019877

Figure 3.4: Quantiles and differences in the approximation of a65(15) for n = 35
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Table 3.10: Valuation of P65(15, 15 + n) with different values of c
n=10 n=35

c simulation lower upper simulation lower upper

-1.5 0.872939 (2.8×10−5) 0.872938 0.872940 0.021037 (7.0×10−6) 0.021038 0.021040

-1.4 0.871956 (2.8×10−5) 0.871958 0.871960 0.020605 (7.0×10−6) 0.020605 0.020608

-1.3 0.871967 (2.8×10−5) 0.870969 0.870970 0.020177 (7.0×10−6) 0.020176 0.020179

-1.2 0.870978 (2.8×10−5) 0.869971 0.869972 0.019749 (7.0×10−6) 0.019750 0.019753

-1.1 0.869966 (2.8×10−5) 0.868963 0.868967 0.019326 (7.0×10−6) 0.019327 0.019330

-1.0 0.867950 (2.8×10−5) 0.867946 0.867947 0.018903 (7.0×10−6) 0.018907 0.018910

-0.9 0.866931 (2.8×10−5) 0.866920 0.866921 0.018485 (7.0×10−6) 0.018491 0.018494

Table 3.11: Valuation of P65(15, 15 + n) with different values of ξ
n=10 n=35

ξ simulation lower upper simulation lower upper

0.5 0.870200 (1.8×10−5) 0.870194 0.870195 0.019823 (4.0×10−6) 0.019824 0.019825

0.6 0.870214 (2.2×10−5) 0.870204 0.870205 0.019832 (5.0×10−6) 0.019830 0.019832

0.7 0.870212 (2.6×10−5) 0.870212 0.870214 0.019838 (6.0×10−6) 0.019835 0.019838

0.8 0.870224 (3.0×10−5) 0.870229 0.870231 0.019836 (7.0×10−6) 0.019841 0.019844

0.9 0.870236 (3.3×10−5) 0.870235 0.870237 0.019844 (8.0×10−6) 0.019846 0.019850

1.0 0.870253 (3.6×10−5) 0.870249 0.870241 0.019851 (9.0×10−6) 0.019852 0.019857

1.1 0.870217 (3.9×10−5) 0.870252 0.870255 0.019853 (1.0×10−5) 0.019858 0.019864

1.2 0.870262 (4.4×10−5) 0.870263 0.870267 0.019862 (1.1×10−5) 0.019864 0.019870

Table 3.12: aluation of annuity with different values of ρ
n=10 n=35

ρ simulation lower upper simulation lower upper

-0.9 7.377389 7.377197 7.378049 12.26755 12.26709 12.26942

-0.6 7.398602 7.395779 7.408123 12.29378 12.29059 12.29691

-0.3 7.416339 7.413593 7.418294 12.32284 12.32028 12.32534

0 7.424933 7.422534 7.428741 12.33934 12.33572 12.34245

0.3 7.436314 7.431407 7.438583 12.35322 12.34982 12.35635

0.6 7.451433 7.449221 7.452682 12.38246 12.37941 12.38236

0.9 7.467994 7.467035 7.469789 12.41030 12.40901 12.41217

computing time 1184.26 secs 52.72 secs 12043.34 secs 262.87 secs
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Table 3.13: Valuation of annuity with different values of a. All SEs for simulated values

are less than 9.5 × 10−4.
n=10 n=35

a simulation lower upper simulation lower upper

0.05 7.440523 7.441846 7.458045 12.52017 12.48421 12.52668

0.10 7.421565 7.428505 7.437837 12.41622 12.37775 12.40001

0.15 7.429408 7.422686 7.428543 12.34290 12.33722 12.35015

0.20 7.422491 7.419634 7.423604 12.32006 12.31772 12.32600

0.25 7.416134 7.417810 7.420668 12.28791 12.30683 12.31254

0.30 7.415625 7.416618 7.418772 12.30592 12.30012 12.30428

0.35 7.417167 7.415790 7.417471 12.29519 12.29568 12.29885

0.40 7.413073 7.415188 7.417471 12.29084 12.29258 12.29508

computing time 1257.41 secs 54.85 secs 13780.91 secs 296.04 secs

Table 3.14: Valuation of annuity with different values of b. All SEs for simulated values

are less than 9.5 × 10−4.
n=10 n=35

b simulation lower upper simulation lower upper

0.030 7.972695 7.965416 7.971999 14.26360 14.25534 14.27131

0.035 7.780771 7.778834 7.785152 13.61697 13.56855 13.58339

0.040 7.596806 7.597992 7.604069 12.95986 12.93058 12.94442

0.045 7.422507 7.422686 7.428543 12.36373 12.33722 12.35015

0.050 7.251678 7.252724 7.258376 11.78635 11.78466 11.79679

0.055 7.087846 7.087919 7.093380 11.27769 11.26948 11.28087

0.060 6.917590 6.928092 6.933372 10.78459 10.78856 10.79928

computing time 1102.36 secs 49.08 secs 12082.57 secs 270.15 secs
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Table 3.15: Valuation of annuity with different values of σ. All SEs for simulated values

are less than 9.5 × 10−4.
n=10 n=35

σ simulation lower upper simulation lower upper

0.01 7.410818 7.413585 7.414247 12.28469 12.28699 12.28846

0.03 7.423400 7.422686 7.428543 12.33366 12.33722 12.35015

0.05 7.446104 7.440506 7.456197 12.44000 12.43283 12.46717

0.07 7.454350 7.466471 7.495548 12.54979 12.56807 12.63091

0.09 7.499653 7.499792 7.544276 12.71330 12.73576 12.83038

computing time 831.94 secs 57.68 secs 10243.30 secs 314.94 secs

Table 3.16: Valuation of annuity with different values of c. All SEs for simulated values

are less than 9.5 × 10−4.
n=10 n=35

c simulation lower upper simulation lower upper

-1.5 7.452310 7.459493 7.465387 12.56111 12.56444 12.57770

-1.4 7.453556 7.446639 7.452520 12.49959 12.48411 12.49726

-1.3 7.444359 7.433413 7.439280 12.40151 12.40255 12.41558

-1.2 7.431990 7.419803 7.425656 12.33854 12.31977 12.33269

-1.1 7.402086 7.405799 7.411639 12.22570 12.23577 12.24857

-1.0 7.383719 7.391393 7.397218 12.16437 12.15056 12.16323

-0.9 7.373812 7.376573 7.382383 12.04440 12.06415 12.07670

computing time 1108.76 secs 50.35 secs 12115.92 secs 270.20 secs
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Table 3.17: Valuation of annuity with different values of ξ. All SEs for simulated values

are less than 9.5 × 10−4.
n=10 n=35

ξ simulation lower upper simulation lower upper

0.5 7.428001 7.422682 7.428539 12.34633 12.33657 12.34950

0.6 7.431360 7.422686 7.428542 12.31695 12.33682 12.34976

0.7 7.429945 7.422687 7.428543 12.31162 12.33707 12.35000

0.8 7.424207 7.422686 7.428542 12.34886 12.33730 12.35024

0.9 7.422763 7.422682 7.428539 12.33217 12.33752 12.35046

1.0 7.432457 7.422676 7.428533 12.33108 12.33773 12.35067

1.1 7.423462 7.422668 7.428525 12.35035 12.33794 12.35087

1.2 7.417140 7.422658 7.428515 12.34545 12.33813 12.35106

computing time 1167.48 secs 55.84 secs 13289.06 secs 303.38 secs

3.5.4 GAO evaluation

We now compare the comonotonic approximations and the simulated values for GAO. The

comonotonic approximations are obtained using equations (3.31) and (3.33). The simu-

lated values are obtained through equations (3.8) and (3.9). Both methods make use of

5,000 sample paths. However, for a simulated value, we have to generate 5,000 sample

paths to calculate ax(T ) for each simulation.

Tables 3.18-3.20 present the numerical results for different values of parameters. Almost

all approximations are precise to the third decimal place and the average of relative differ-

ences is smaller than 1%. Our estimated σ and ξ were also quintupled to clearly the impact

of ρ on GAO prices, which are displayed in Table 3.18. We can see that GAO values ex-

hibit variation as ρ changes. Also, we observe that the GAO value decreases as a , b or

c increases. The computational time takes only 0.36% of that for the crude Monte-Carlo

simulations, which clearly suggests that the comonotonic method provides a much more

efficient way to estimate GAO prices.
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ρ simulation (SE) approximation

-0.9 0.1730782 (0.0005562) 0.1730448

-0.6 0.1747384 (0.0005932) 0.1747469

-0.3 0.1768427 (0.0006263) 0.1764492

0 0.1773337 (0.0006410) 0.1773474

0.3 0.1785088 (0.0006722) 0.1781523

0.6 0.1794514 (0.0006887) 0.1798531

0.9 0.1806418 (0.0007126) 0.1811562

computing time 76782.23 secs 278.45 secs

Table 3.18: Valuation of GAO with different values of ρ

a simulation (SE) approximation

0.05 0.196577 (1.5 × 10−4) 0.201189

0.10 0.184769 (9.3 × 10−4) 0.185583

0.15 0.177708 (6.7 × 10−4) 0.182774

0.20 0.175712 (5.1 × 10−4) 0.176002

0.25 0.175032 (4.1 × 10−4) 0.174719

0.30 0.173473 (3.3 × 10−4) 0.172924

0.35 0.173397 (2.9 × 10−4) 0.173910

computing time 77937.82 secs 289.14 secs

Table 3.19: Valuation of GAO with different values of a

b simulation (SE) approximation

0.030 0.321141 (8.7 × 10−4) 0.322056

0.035 0.266019 (8.1 × 10−4) 0.266583

0.040 0.219750 (7.4 × 10−4) 0.217499

0.045 0.178533 (6.7 × 10−4) 0.177478

0.050 0.142920 (6.1 × 10−4) 0.139237

0.055 0.111113 (5.4 × 10−4) 0.110972

0.060 0.084868 (4.9 × 10−4) 0.082836

computing time 84610.26 secs 268.15 secs

Table 3.20: Valuation of GAO with different values of b
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c simulation (SE) approximation

-1.5 0.191594 (6.9 × 10−4) 0.190959

-1.4 0.186615 (6.9 × 10−4) 0.186058

-1.3 0.181677 (6.9 × 10−4) 0.182320

-1.2 0.178045 (6.7 × 10−4) 0.175953

-1.1 0.171942 (6.4 × 10−4) 0.171123

-1.0 0.166786 (6.4 × 10−4) 0.168111

-0.9 0.164060 (6.4 × 10−4) 0.161401

computing time 74167.97 secs 267.55 secs

Table 3.21: Valuation of GAO with different values of c

ξ simulation (SE) approximation

0.5 0.176827 (6.6 × 10−4) 0.177805

0.6 0.178300 (6.6 × 10−4) 0.177412

0.7 0.179225 (6.6 × 10−4) 0.177938

0.8 0.177798 (6.8 × 10−4) 0.181160

0.9 0.177917 (6.7 × 10−4) 0.175302

1.0 0.178547 (6.8 × 10−4) 0.179936

1.1 0.176970 (6.8 × 10−4) 0.177625

1.2 0.178705 (6.9 × 10−4) 0.174075

computing time 82925.64 secs 305.44 secs

Table 3.22: Valuation of GAO with different values of ξ

3.6 Conclusion

We presented an important application of the comonotonicity-based methodology. The

comonotonic approximations of survival probabilities and annuities provide a powerful

way to improve the computation of prices with greater efficiency and excellent precision. It

avoids the “simulation-within-simulation” problem in GAO valuation. Although the short-

term interest rate rt and force of mortality µt are dependent and as such, there is no closed-

form solution to the pure endowment and annuity rate, we are still able to provide high-

performance approximations for them.

In particular, we employed the change of measure technique to simplify the endowment

formula and make the comonotonic method accessible. Numerical illustrations show that



64Chapter 3. An efficient algorithm for the valuation of aGAOwith correlated financial and mortality risks

the comonotonic approximation indeed provide an efficient method to estimate the sur-

vival probability, annuity rate and GAO price. They also demonstrate that the comonotonic

bounds provide superb accuracy and laid down the mechanics on how this method could

be implemented with ease.

Further research works could use stochastic parameters in the model. For instance, we

may apply the Markov regime-switching methodology to develop a much more flexible

modelling set up. We certainly could also utilise the ideas behind our proposed efficient

algorithm here to price other contingent products whose values depend on both the short

rate and force of mortality with a given correlation.
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Chapter 4

A two-decrement model for the valuation
and risk measurement of a GAO

4.1 Introduction

Financial innovations, created to respond to the needs of clients amidst increased longevity

and an ageing population, have made the insurance market an investment hub. A wider

range of products that both act as income security and investment protection is now avail-

able. This kind of products typically has option-embedded features and requires the ac-

curate modelling of the uncertainty akin to various risk factors along with the correlation

amongst them. Interest and mortality risks are deemed to be the two most important factors

in the valuation and risk management of longevity products; they have been extensively ex-

amined altogether for several decades. Nonetheless, lapse risk is another essential factor in

pricing insurance products; such a risk refers to the possibility that policyholders terminate

their policies early for various reasons. Policy’s lapse risk could then lead to huge losses

and liquidity problem for insurance companies, and therefore, is an important considera-

tion given economic and financial uncertainties.

Some theoretical and empirical studies were carried out in an attempt to explain the lapses’

determinants and eventually incorporate them in actuarial pricing and risk management.

For instance, Kim [15] and Zians et al. [27] developed lapse-rate models with explanatory

variables dependent mainly on (i) unemployment rate and (ii) the difference between mar-

ket interest and credit rates, whilst Albizzati and Geman [3] and Bacinello [5] considered

the surrender option embedded in a life insurance. An alternative way is to consider the

lapse or surrender risk with a rational surrendering model by formulation an optimal sur-

67
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rendering problem as an optimal stopping problem; see Siu [? ]. As a related point, such

an optimal stopping problem with factors targetting the risk characteristics of the policy-

holders (e.g., financial and economic factors). For a comprehensive review of lapse-rate

modelling in life insurance, one may refer to Eling and Kochanski [8].

In current practice, lapse rate is assumed constant in actuarial valuation as research ad-

vances on its modelling are rather slow and not sustaining as those of interest and mortality

dynamics. Such a lack of research progress is attributed primarily to the absence of reliable

data and inability to access copyrighted data owned by a company or professional organi-

sation. One may use, however, insights on certain longevity product (e.g., variable annuity

(VA)) in probing the very nature of lapse risk. Recall that a VA is a tax-deferred investment

that allows the holder to choose from a suite of investments paying retirement income at a

level dependent on the over all performance of the selected investments. A penalty is levied

when a VA contract is terminated, and this mechanism somehow mitigates policy surren-

der, thereby lowering the lapse rate. Nonetheless, the surrender of a VA is most likely if

there are investment alternatives that have better returns outweighing surrender losses.

Also, we note that policyholder’s decision to surrender is directly affected by economic

circumstances. For instance, when interest rate falls, which in turn stimulates borrowing, a

low lapse rate is expected because the policy holder can obtain a loan at a lower interest rate

instead of incurring a heavy surrender penalty. Although there are papers that deal with the

dynamic behaviour of lapse rates (e.g., Xue [26]; De Giovanni [6]; and Loisel and Milhaud

[19]), their aims are not aligned to actuarial applications. Furthermore, their frameworks

do not take into consideration the interaction amongst lapse risk, interest rate and mortality

risk.

Pertinent developments in recent years, covering the valuation of GAO with closely related

objectives and setting to this chapter, are given in Gao et al. [10] and Gao et al. [11]. A

pricing method for GAO utilising comonotonic bounds is demonstrated as well in Liu et al.

[17]. The specific intent of this article is to extend Liu et al. [18] and Gao et al. [12], thereby

enabling modelling advances over one-decrement actuarial models with correlated mortal-

ity and financial risk factors. Our proposed modelling framework distinctly presents lapse

rate as one of the three major contributing risk factors. Our model exploits the results of

Duffie and Kan [7] and Mamon [20] showing that affine dynamics for multiple factors yield

exponential bond prices and vice versa. We employ the change of measure technique and

bypass the “simulation-within-simulation” problem associated in the evaluation of GAO
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liabilities. Numerical results show that our method outperforms the classical Monte-Carlo

(MC) method, and these led to the efficient computations of GAO’s capital requirements

under several risk measures emphasised by regulatory authorities (e.g., Canada’s OSFI).

Concentrating on the challenge of efficiently characterising the GAO’s loss function for

risk measurement, we make use of the moment-based density approximation popularised

in Provost [22], and update the results under this alternative technique in the context of Gao

et al. [12].

This chapter is organised as follows. The combined modelling framework of the dependent

risk factors is constructed in Section 4.2, which also details the formulation of the pricing

set up and the loss function of a GAO. In Section 4.3, we determine the value of a GAO

with the aid of certain numèraires corresponding to the sequence of probability measure

changes involving forward, survival, and risk-endowment probability measures. Some risk

measures are evaluated using the moment-based density approximation method in Section

4.4, and the results are benchmarked with those from the MC simulation and forward-

measure methods . We present a numerical implementation in Section 4.5 illustrating the

advantages of our proposed method and quantifying the impact of lapse rate on GAO prices

and risk measures. Finally, Section 4.6 concludes.

4.2 Modelling framework

Our valuation of insurance and annuity products relies on three kinds of interrelated un-

certainty risks represented by the short-rate process rt for financial risk, force of mortality

µt for mortality risk, and lapse rate lt for lapse risk. We assume that these processes are

defined on a filtered probability space (Ω,F , {Ft},Q), where Q is a risk-neutral probability

and Ft is the joint filtration generated by rt, µt and lt.

4.2.1 Interest rate model

Under Q, rt follows the Vasiček model dynamics given by

drt = a(b − rt) dt + σ dXt, (4.1)
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where a, b and σ are positive constants, and Xt is a standard Brownian motion (BM). The

price B(t,T ) of a T -maturity zero-coupon bond at time t < T is known to be

B(t,T ) = EQ
[
e−

∫ T
t ru du

∣∣∣∣Ft

]
= e−A(t,T )rt+D(t,T ), (4.2)

where

A(t,T ) =
1 − e−a(T−t)

a
and

D(t,T ) =

(
b −

σ2

2a2

)
[A(t,T ) − (T − t)] −

σ2A(t,T )2

4a
.

4.2.2 Mortality model

The dynamics of the force of mortality process µt is given by

dµt = cµt dt + ξ dYt, (4.3)

where c and ξ are positive constants, and Yt is a standard BM under Q. We suppose that Xt

and Yt are correlated and their dependence is modelled as

dXt dYt = ρ12 dt.

The survival probability for an individual aged (x) at time t surviving to time T is e−
∫ T

t µu du.

Note that this is a random variable; and so we define the survival function

S (t,T ) = EQ
[
e−

∫ T
t µu du

∣∣∣∣Ft

]
,

which is the expectation of the survival probability. This expectation is under Q because

our purpose is to price a financial contract.

4.2.3 Lapse rate model

As mentioned in Kim [15] and Zians et al. [27], lapse rate is driven by many factors includ-

ing the policyholder’s behavioural characteristics, product’s specificities, financial market

and macro-economic environments. Thus, there is no denying that building an appropri-

ate model for the lapse rate is a challenging endeavour. For pricing tractability, we shall

propose a simplified model yet capable enough to incorporate the stylised facts presently

observed in the risk process. As per the findings in Kuo et al. [16], lapse rate is hugely in-

fluenced by the interest rate and somehow by the unemployment rate and GDP. Since these
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intervening factors are also largely driven by the economic cycle, lapse must also exhibit a

mean-reverting feature. Therefore, for the process lt, we adopt the dynamics

dlt = h(m − lt) dt + ζ dZt, (4.4)

where h, m and ζ are positive constants and Zt is a standard BM correlated with both Xt and

Yt; in particular,

dXt dZt = ρ13 dt and dYt dZt = ρ23 dt.

Remark 4.1 The mean-reverting model for the lapse rate could be thought of as a macroe-

conomic approach for the lapse rate’s description; this is considering the premise that the

lapse rate is related to certain macro-economic factors such as interest rate, unemployment

rate, GDP, and economic cycles.

In order to implement a consistent correlation matrix when generating Xt, Yt and Zt for

simulation and other financial-modelling objectives, these BMs’ dynamics are specified as

follows:

dXt = dW1
t ,

dYt = ρ12 dW1
t +

√
1 − ρ2

12 dW2
t ,

dZt = ρ13 dW1
t + ρ′23 dW2

t +

√
1 − ρ2

13 − ρ
′2
23 dW3

t ,

where W1
t , W2

t and W3
t are independent standard BMs and

ρ′23 =
ρ23 − ρ12ρ13√

1 − ρ2
12

. (4.5)

Note that equation (4.5) does not apply to any values of ρ12, ρ13 and ρ23. We should choose

appropriate values for ρ12, ρ13 and ρ23 such that |ρ′23| ≤ 1. In general, if we have to system-

atically come up with n correlated samples from normal distributions with the correlation

between sample i and sample j, where ρi j is the desired correlation, a Cholesky decompo-

sition could be applied; see Hull [13], for example.
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4.2.4 Valuation framework

Let Md(t,T ) be the fair value at time t of a pure endowment of $1 at maturity T when

mortality is the only decrement. From the risk-neutral pricing principle, Md(t,T ) is given

by

Md(t,T ) = EQ
[
e−

∫ T
t ru due−

∫ T
t µu du

∣∣∣∣Ft

]
. (4.6)

Similarly, let Mτ(t,T ) be the fair value at time t of a $1 pure endowment at maturity T

under a two-decrement model (both mortality and lapse rates are considered). From the

risk-neutral pricing principle,

Mτ(t,T ) = EQ
[
e−

∫ T
t ru due−

∫ T
t µu due−

∫ T
t lu du

∣∣∣∣Ft

]
. (4.7)

Define ax(T ) as the annuity rate, which is the risk-neutral value evaluated at time T , of a

life annuity paying $1 to an insured annually conditional on his/her survival at the moment

of payments, and given that the insured is alive at the time of valuation. Note that ax(T ) is

a sequence of pure endowment contracts of $1 paying at the beginning of each year so that

ax(T ) =

∞∑
n=0

EQ
[
e−

∫ T+n
T ru due−

∫ T+n
T µu du

∣∣∣∣FT

]
=

∞∑
n=0

Md(T,T + n). (4.8)

Let us now focus on the guaranteed annuity option (GAO), which is a contract that gives the

policyholder the right to convert the survival benefit into an annuity at a pre-specified guar-

anteed conversion rate g (quoted as an annuity/cash value ratio). For example, a survival

benefit with a cash value of $1000 can be converted into an annuity of $1000g per annum.

If g is higher than the prevailing market rate which is determined by ax(T ), the value of

the GAO contract is positive; this is because the policyholder will exercise the contract to

receive the annuity instead of the cash. On the other hand if g is lower than the prevailing

market rate, then the the GAO contract is valueless; in this case, the policyholder will opt

to receive the cash and use it to buy an annuity contract at a prevailing conversion rate in

the market.

Thus, the GAO’s payoff function, per dollar cash amount, time T is CT = g(ax(T ) − K)+,

where K = 1/g. The loss L is the payoff ‘discounted’ by mortality and lapse factors, i.e.,

L = ge−
∫ T

0 µu due−
∫ T

0 lu du(ax(T ) − K)+. (4.9)

Consequently, the fair value of GAO at time 0, by risk-neutral pricing, is

PGAO = gEQ
[
e−

∫ T
0 ru due−

∫ T
0 µu due−

∫ T
0 lu du(ax(T ) − K)+

∣∣∣∣F0

]
. (4.10)
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4.3 Derivation of GAO prices

4.3.1 The forward measure

The change of measure technique is employed to facilitate our pricing calculation. The

bond price B(t,T ) is chosen as a numéraire associated with the forward measure Q̃, which

is equivalent to the risk-neutral measure Q on FT . The corresponding Radon-Nikodým

derivative is given by
dQ̃
dQ

∣∣∣∣∣∣
FT

= Λ1
T B

e−
∫ T

0 ru duB(T,T )
B(0,T )

.

Under measure Q, Λ1
T is a martingale. So, for t ≤ T ,

Λ1
t = EQ[Λ1

T |Ft] =
e−

∫ t
0 ru duB(t,T )
B(0,T )

.

By the Bayes’ rule for conditional expectation, for any Ft-integrable random variable H,

EQ̃[H|Ft] =
EQ[Λ1

T H|Ft]
EQ[Λ1

T |Ft]
.

This implies

EQ̃[H|Ft] =

EQ
[
e−

∫ T
t ru duH

∣∣∣∣Ft

]
B(t,T )

.

Hence,

EQ
[
e−

∫ T
t ru duH

∣∣∣∣Ft

]
= B(t,T )EQ̃[H|Ft].

Therefore, equation (4.6) can be expressed as

Md(t,T ) = B(t,T )EQ̃
[
e−

∫ T
t µu du

∣∣∣∣Ft

]
, (4.11)

whilst 4.7 can be represented as

Mτ(t,T ) = B(t,T )EQ̃
[
e−

∫ T
t µu due−

∫ T
t lu du

∣∣∣∣Ft

]
. (4.12)

Note that the conditional expectations in equations (4.11) and (4.12) are under Q̃. Once the

Q̃ dynamics of µt and lt are available, explicit solutions for such conditional expectations

follow. With the aid of the generalised result in Mamon [21], we have

dW̃1
t = dW1

t + A(t,T )σ dt, dW̃2
t = dW2

t and dW̃3
t = dW3

t ,
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where {W̃1
t }, {W̃

2
t } and {W̃3

t } are standard BMs under Q̃. Therefore, the respective Q̃ dy-

namics of rt, µt and lt are

drt = [ab − σ2A(t,T ) − art] dt + σ dX̃t,

dµt = [−ρ12σξA(t,T ) + cµt] dt + ξ dỸt,

and

dlt = [hm − ρ13σζA(t,T ) − hlt] dt + ζ dZ̃t,

where dX̃t = dW̃1
t , dỸt = ρ12 dW̃1

t +

√
1 − ρ2

12 dW̃2
t and dZ̃t = ρ13 dW̃1

t + ρ′23 dW̃2
t +√

1 − ρ2
13 − ρ

′2
23 dW̃3

t .

Following the results given in Liu et al. [18], we have

S (t,T ) = EQ̃
[
e−

∫ T
t µu du

∣∣∣∣Ft

]
= e−µtG̃(t,T )+H̃(t,T ). (4.13)

where

G̃(t,T ) =
ec(T−t) − 1

c
and

H̃(t,T ) =

(
ρ12σξ

ac
−
ξ2

2c2

)
[G̃(t,T ) − (T − t)] +

ρ12σξ

ac
[A(t,T ) − φ(t,T )]

+
ξ2

4c
G̃(t,T )2

with

φ(t,T ) =
1 − e−(a−c)(T−t)

a − c
.

Using equations (5.6), (4.11) and (4.13), we have

Md(t,T ) = e−(A(t,T )rt+G̃(t,T )µt)+D(t,T )+H̃(t,T ) = βd(t,T )e−Vd(t,T ), (4.14)

where

βd(t,T ) = eD(t,T )+H̃(t,T )

and

Vd(t,T ) = A(t,T )rt + G̃(t,T )µt.

With equations (4.8) and (4.14) combined together, we get

ax(T ) =

∞∑
n=0

Md(T,T + n) =

∞∑
n=0

βd(T,T + n)e−Vd(T,T+n). (4.15)
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Thus, upon substitution of (4.15) into (4.10),

PGAO = gEQ

e− ∫ T
0 ru due−

∫ T
0 µu due−

∫ T
0 lu du

 ∞∑
n=0

βd(T,T + n)e−Vd(T,T+n) − K

+
∣∣∣∣∣∣∣F0

 . (4.16)

4.3.2 The survival measure

In an effort to obtain an explicit solution to equation (4.12), we construct a new measure

utilising the survival function S (t,T ). We define a measure Q̄ equivalent to the forward

measure Q̃ via the Radon-Nikodým derivative

dQ̄

dQ̃

∣∣∣∣∣∣
FT

= Λ2
T B

e−
∫ T

0 µu duS (T,T )
S (0,T )

.

Since Λ2
t is a martingale, then for t ≤ T we have

Λ2
t = EQ̃[Λ2

T |Ft] =
e−

∫ t
0 µu duS (t,T )
S (0,T )

.

Thus,

EQ̃
[
e−

∫ T
t µu due−

∫ T
t lu du

∣∣∣∣Ft

]
= S (t,T )EQ̄

[
e−

∫ T
t lu du

∣∣∣∣Ft

]
. (4.17)

Linking equations (4.12) and (4.17), we have

Mτ(t,T ) = EQ
[
e−

∫ T
t ru due−

∫ T
t µu due−

∫ T
t lu du

∣∣∣∣Ft

]
= B(t,T )S (t,T )EQ̄

[
e−

∫ T
t lu du

∣∣∣∣Ft

]
. (4.18)

To further obtain a closed-form solution to (4.18), the dynamics of lt under Q̄ are needed.

It may be verified that

dlt = (hm − ρ13σζA(t,T ) − ρ23ξζG̃(t,T ) − hlt) dt + ζ dZt,

where dZt = ρ13 dW
1
t + ρ′23 dW

2
t +

√
1 − ρ2

13 − ρ
′2
23 dW

3
t ; W

1
t ,W

2
t and W

3
t are standard BMs

under Q. Write

a(t) B hm − ρ13σζA(t,T ) − ρ23ξζG̃(t,T ), b(t) B
∫ t

0
h du = ht

and

γ(t) B
∫ T

t
e−b(u) du =

e−ht − e−hT

h
=

e−ht

h
(1 − e−h(T−t)).
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Invoking the result in Elliott and Kopp [9] for Vasiček dynamics with time-varying coeffi-

cients, we have

EQ[e−
∫ T

t lu du|Ft] = e−lt I(t,T )+J(t,T ) (4.19)

where

I(t,T ) = eb(t)
∫ T

t
e−b(u) du = eb(t)γ(t) =

1 − e−h(T−t)

h
,

and

I(t,T ) = −

∫ T

t

(
eb(u)a(u)γ(u) −

1
2

e2b(u)ξ2γ2(u)
)

du

=

(
ρ23ξζ

ch
−
ρ13σζ

ah
−
ζ2

2h2 + m
)

[I(t,T ) − (T − t)] +
ρ13σζ

ah
[A(t,T ) −

ϑ(t,T )] +
ρ23ξζ

ch
[G̃(t,T ) − ψ(t,T )] −

ζ2

4h
I(t,T )2

with

ψ(t,T ) =
1 − e−(h−c)(T−t)

h − c
and ϑ(t,T ) =

1 − e−(a+h)(T−t)

a + h
.

From equations (5.6), (4.13), (4.18) and (4.19), we have the analytic solution

Mτ(t,T ) = e−(A(t,T )rt+G̃(t,T )µt+I(t,T )lt)+D(t,T )+H̃(t,T )+J(t,T ) = βτ(t,T )e−Vτ(t,T ),

where

βτ(t,T ) = eD(t,T )+H̃(t,T )+J(t,T )

and

Vτ(t,T ) = A(t,T )rt + G̃(t,T )µt + I(t,T )lt.

4.3.3 The endowment-risk-adjusted measure

The final objective of this section is to determine efficiently the PGAO value. To this end, a

new measure Q̂, called the endowment-risk-adjusted measure, is introduced with Mτ(t,T )

as the associated numéraire. The measure Q̂ is equivalent to Q defined by

dQ̂
dQ

∣∣∣∣∣∣
FT

= Λ3
T B

e−
∫ T

0 ru due−
∫ T

0 µu due−
∫ T

0 lu duMτ(T,T )
Mτ(0,T )

.

Since Λ3
t is a martingale under Q, we have

Λ3
t = EQ[Λ3

T |Ft] =
e−

∫ t
0 ru due−

∫ t
0 µu due−

∫ t
0 lu duMτ(t,T )

Mτ(0,T )
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for any t ≤ T . Then, equation (4.10) can be rewritten as

PGAO = gMτ(0,T )EQ̂[(ax(T ) − K)+|F0]

= gMτ(0,T )EQ̂

 ∞∑
n=0

βd(T,T + n)e−Vd(T,T+n) − K

+
∣∣∣∣∣∣∣F0

 . (4.20)

To evaluate equation (4.20), we must have the dynamics of rt and µt under Q̂. To have

them, we first consider the dynamics of

Λ3
t B

V1
t V2

t V3
t

Mτ(0,T )
,

where

V1
t = e−

∫ t
0 ru due−A(t,T )rt+D(t,T ),

V2
t = e−

∫ t
0 µu due−G̃(t,T )µt+H̃(t,T )

and

V3
t = e−

∫ t
0 lu due−I(t,T )lt+J(t,T ).

Our calculations show that

dV1
t = −σA(t,T )V1

t dX1
t = −σA(t,T )V1

t dW1
t ,

dV2
t = −ξG̃(t,T )V2

t dỸt

= −ξG̃(t,T )V2
t

(
ρ12 dW̃1

t +

√
1 − ρ2

12 dW̃2
t

)
and

dV3
t = −ζI(t,T )V3

t dZt

= −ζI(t,T )V3
t

(
ρ13 dW

1
t + ρ′23 dW

2
t +

√
1 − ρ13 − ρ

′
23 dW

3
t

)
.

Hence,

dV1
t V2

t = V2
t dV1

t + V1
t dV2

t + dV1
t dV2

t

= −σA(t,T )V1
t V2

t dW1
t − ξG̃(t,T )V1

t V2
t

[
ρ12 dW̃1

t +

√
1 − ρ2

12 dW̃2
t

]
+ ρ12σξA(t,T )G̃(t,T )V2

t V1
t dt

= −V1
t V2

t

[(
σA(t,T ) + ρ12ξG̃(t,T )

)
dW1

t + ξG̃(t,T )
√

1 − ρ2
12 dW2

t

]
.
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Furthermore,

dV1
t V2

t V3
t = V3

t dV1
t V2

t + V1
t V2

t dV3
t + dV1

t V2
t dV3

t

= −V1
t V2

t V3
t

[(
σA(t,T ) + ρ12ξG̃(t,T )

)
dW1

t + ξG̃(t,T )
√

1 − ρ2
12 dW2

t

]
− ζI(t,T )V1

t V2
t V3

t

[
ρ13 dW

1
t + ρ′23 dW

2
t +

√
1 − ρ13 − ρ

′
23 dW

3
t

]
+ V1

t V2
t V3

t

[
ρ13ζI(t,T )

(
σA(t,T ) + ρ12ξG̃(t,T )

)
+ ρ′23ξζI(t,T )G̃(t,T )

√
1 − ρ2

12

]
dt

= −V1
t V2

t V3
t

[ (
σA(t,T ) + ρ12ξG̃(t,T ) + ρ13ζI(t,T )

)
dW1

t

+

(
ξG̃(t,T )

√
1 − ρ2

12 + ρ′23ζI(t,T )
)

dW2
t + ζI(t,T )

√
1 − ρ13 − ρ

′
23 dW3

t

]
.

Thus, the dynamics of Λ3
t under Q is given by

dΛ3
t = −Λ3

t

[ (
σA(t,T ) + ρ12ξG̃(t,T ) + ρ13ζI(t,T )

)
dW1

t

+

(
ξG̃(t,T )

√
1 − ρ2

12 + ρ′23ζI(t,T )
)

dW2
t + ζI(t,T )

√
1 − ρ13 − ρ

′
23 dW3

t

]
.

By the Girsanov’s theorem,

dŴ1
t = dW1

t +
(
σA(t,T ) + ρ12ξG̃(t,T ) + ρ13ζI(t,T )

)
dt,

dŴ2
t = dW2

t +

(
ξG̃(t,T )

√
1 − ρ2

12 + ρ′23ζI(t,T )
)

dt

and

dŴ3
t = dW3

t + ζI(t,T )
√

1 − ρ13 − ρ
′
23 dt,

where Ŵ1
t , Ŵ1

2 and Ŵ3
t are Q̂−standard BMs.

So, the respective stochastic dynamics of rt, µt and lt are

drt = (ab − σ2A(t,T ) − ρ12σξG̃(t,T ) − ρ13σζI(t,T ) − art) dt + σ dX̂t, (4.21)

dµt = (cµt − ρ12σξA(t,T ) − ξ2G̃(t,T ) − ρ23ξζI(t,T )) dt + ξ dŶt (4.22)

and

dlt = (hm − ρ13σζA(t,T ) − ζ2I(t,T ) − ρ23ξζG̃(t,T )) dt + ξ dẐt.
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From equations (4.21) and (4.22), both rt and µt follow the extended Vasiček model, and

therefore by Elliott and Kopp [9], they are each normally distributed under Q̂. The pair

(rt, µt) is a bivariate normal random variable, under Q̂, with the following moments:

EQ̂[rt] = e−atr0 + b
(
a − e−at) − σ2

a

[
1 − e−at

a
−

e−aT+at − e−aT−at

2a

]
−
ρ12σξ

c

[
ecT−ct − ecT−at

a − c
−

1 − e−at

a

]
−
ρ13σζ

h

[
1 − e−at

a
−

e−hT+ht − e−hT−at

a + h

]
,

VarQ̂[rt] =
σ2

2a

[
1 − e−2at

]
, (4.23)

EQ̂[µt] = ectµ0 −
ρ12σξ

a

[
ect − 1

c
−

e−aT+at − e−aT+ct

a − c

]
−
ξ2

c

[
ecT+ct − ecT−ct

2c
−

ect − 1
c

]
−
ρ23ξζ

h

[
ect − 1

c
−

e−hT+ht − e−hT+ct

h − c

]
, (4.24)

VarQ̂[µt] =
ξ2

2c

[
e2ct − 1

]
(4.25)

and

CovQ̂[rt, µt] =
ρ12σξ

a − c

[
1 − e−(a−c)t

]
. (4.26)

4.4 Risk measurement of GAO

4.4.1 Description of risk measures

As stated by Artzner et al. [4], a risk measure φ is a mapping from a loss random variables

to the real numbers, i.e., φ : L → R ∪ {+∞}, and satisfies the following properties:

Normalisation φ(0) = 0;

Translation-invariance If Z ∈ L and b ∈ R, then φ(Z + b) = φ(Z) + b;

Monotonicity If Z1,Z2 ∈ L and P(Z1 ≤ Z2) = 1, then φ(Z1) ≤ φ(Z2).

Moreover, if a risk measure is coherent, then it satisfies:

Sub-additivity If Z1,Z2 ∈ L, then φ(Z1 + Z2) ≤ φ(Z1) + φ(Z2);
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Positive homogeneity If Z ∈ L and b > 0, then φ(bZ) = bφ(Z).

VaR has been used widely and it is the most popular risk measure. It is defined as the value

which the loss random variable exceeds with a probability of at most 1 − α, where α is the

confidence level. Given Z ∈ L and 0 < α < 1, the 100α% VaR is

VaRα(Z) = inf{z : P(Z ≤ z) ≥ α}.

A major drawback of VaR is that it ignores the profile of the potential loss beyond the

confidence level. In addition, it is not a coherent risk measure. This limitation leads to the

introduction of an alternative risk measure called conditional tail expectation (CTE), which

is the expected value of the loss given that the loss is greater than VaRa(Z). Formally,

CTEα(Z) = E[Z|Z > VaRα(Z)].

Both VaR and CTE only consider though the tail of the loss distribution and do not make

full use of information in the entire loss distribution. So, to put risk-related matters in

perspective, we also consider another kind of coherent measure ζ proposed by Wang [24].

More specifically, we are referring to the distortion risk measure defined as

ζχ(z) =

∫ ∞

0
χ(S Z(z)) dz, (4.27)

where S Z(z) is the survival function of the loss random variable Z and χ(x) is the distortion

function χ : [0, 1]→ [0, 1], which is a non-decreasing function with χ(0) = 0 and χ(1) = 1.

The distortion function allows adjustment in the true probability measure to give more

weights to higher risk events. The well-known distortion risk measures are the proportional

hazard (PH), Wang, and lookback (LB) transforms. Wang [23] developed the PH transform,

which can be applied to risk-adjusted premium calculations. The distortion function χ(x)

for the PH transform is given by

χ(x) = xγ,

where γ ∈ (0, 1] is the risk-aversion parameter; higher γ means less aversion towards risk.

The distortion function χ(x) for the Wang transform (WT) described in Wang [25] is

χ(x) = Φ(Φ−1(x) + Φ−1(ι)),
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where Φ is the cumulative distribution function (CDF) of a standard normal random vari-

able and ι ∈ [0, 1], whilst for the LB transform proposed in Hürlimann [14],

χ(x) = xη(1 − η log(x)),

where η ∈ (0, 1].

We also consider the spectral risk measure, also a coherent measure, which represents the

weighted average of the quantiles of a loss function. The spectral risk measure has been

discussed in Acerbi [1] and Adam et al. [2] and it can be used for capital requirement

calculations. Individual’s risk aversion is reflected by the weights of certain outcomes;

and bad outcomes are typically assigned higher weights. In this chapter, the spectral risk

measure ϕ is given by

ϕω =

∫ 1

0
ω(υ)q(υ) dυ,

where ω(υ) is a weighting function such that
∫ 1

0
ω(υ)dυ = 1 and q(υ) is a quantile function

of a loss random variable. The choice of weighting function is based on individual’s risk

tolerance. Two commonly-used weighting functions, the power and exponential functions

ωE(υ) and ωP(υ) are highlighted in this chapter and defined by

ωE(υ) =
κe−κ(1−υ)

1 − e−κ
and ωP(υ) = δνδ−1.

They correspond to the computations of the exponential and the power weighted quantile

risk measures (EWQRM and PWQRM, respectively).

4.4.2 Moment-based density approximation

The usual way to estimate risk measures is through the MC method, which gives the em-

pirical distribution of the loss random variable. Alternatively, an analytical approximation

of the loss random variable could be used. We adopt the moment-based density approxi-

mation method introduced by Provost [22]. The underlying idea of this method is the fact

that the exact density function with known first n moments can be approximated by the

product of (i) a base density, whose tail behavior is congruent to that of distribution to be

approximated, and (ii) a polynomial of degree q. The parameters of the base density can

be determined by matching the moments of the loss random variable and the approximated

density.
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Combining equations (4.9) and (4.15), the loss random variable can be expressed as

L = ge−
∫ T

0 µu due−
∫ T

0 lu du

 ∞∑
n=0

βd(T,T + n)e−Vd(T,T+n) − K

+

.

Since L is truncated at 0, it is not straightforward to find an appropriate base function in

estimating the exact distribution. Thus, we need to reflect this truncation by re-formulating

L as Lp given by

Lp = ge−
∫ T

0 µu due−
∫ T

0 lu du

 ∞∑
n=0

βd(T,T + n)e−Vd(T,T+n) − K

 .
Write

L :=

0 if Lp ≤ 0,

Lp if Lp > 0.

The distribution of Lp can be estimated by the moment-based approximation method. Then

the CDF of L can be determined through the CDF of Lp by

FL(l) =

FLP(0) if l ≤ 0,

FLP(l) if l > 0.
(4.28)

On the other hand, the probability density function (PDF) of L is given by

fL(l) =

FLP(0) if l ≤ 0,

fLP(l) if l > 0.
(4.29)

The choice of the base function depends on the loss distribution. Gao et al. [12] suggested

the use of the Student’s t and normal distributions as base functions in estimating the loss

distribution. We observe that the loss random variable has an asymmetric distribution, and

so we choose the gamma distribution as the base function. Since a gamma random variable

is nonnegative, we make the transformation Z B Lp − u, where u is a relatively small

value. Let the moments of the random variable Z be µZ(i) for i = 0, 1, . . . , q. Since it

is not possible to obtain the theoretical moments of Z, we can use the sample moments

obtained from the MC method. Let the theoretical moments of the base function Ψ(z) be

mZ(i) for i = 0, 1, . . . , 2q. The parameters α and θ of Ψ(z) can be determined by setting

µZ(i) = mZ(i) for i = 1, 2. Hence, we have

α̂ =
µ2

Z(1)
µZ(2) − µ2

Z(1)
and θ̂ =

µZ(2) − µ2
Z(1)

µZ(1)
.
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The PDF of Z is approximated as

fZ(z) = Ψ(z)
q∑

i=0

yizi,

where yi’s, i = 0, . . . , n, are polynomial coefficients and they are determined via

(k0, k1, . . . , kn)> = M−1(µZ(0), µZ(1), . . . , µZ(q))>,

where > is the transpose of a vector and M is a (q + 1) × (q + 1) symmetric matrix whose

(i + 1)th row is (mZ(i),mZ(i + 1), . . . ,mZ(i + q)).

Consequently, the approximated density of Lp is given by

fLp(l) =
(l − u)α−1

Γ(α)θα
e−(l−u)/θ

q∑
i=0

ki(l − u)i. (4.30)

4.5 Numerical illustration

4.5.1 GAO pricing

We calculate the GAO prices using both equations (4.16) and (4.20) via the MC simula-

tion method. The approach using equation (4.16) is a brute-force implementation of the

MC method under the risk-neutral measure; this approach is doable but time-consuming.

In (4.20), the pure endowment Mτ(t,T ) is explicitly determined one r0, µ0 and l0 are set.

Thus, we only require the simulation of the pair (rT , µT ) and do not need to know the tra-

jectory of the risk processes from time 0 and T . The pair (rT , µT ) is bivariate normal and

can be generated through equations (4.23)-(4.26).

The simulations of rt, µt and lt between times 0 and T are needed in applying (4.16) to

calculate the GAO prices. We subdivide the time interval [0,T ] into k subintervals of same

length ∆t = T/k, and let ti = i∆t for i = 0, . . . , k. Based on the evolutions described in

equations (4.1), (4.3) and (4.4), the respective sample paths of rt, µt and lt are generated by

the discretisations

rti = rti−1 + a(b − rti−1)∆t + σ
√

∆tε1
ti ,
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µti = µti−1 + cµti−1∆t + ξ
√

∆t
(
ρ12ε

1
ti +

√
1 − ρ2

12ε
2
ti

)
and

lti = lti−1 + h(m − lti−1)∆t + ζ
√

∆t
(
ρ13ε

1
ti + ρ′23ε

2
ti +

√
1 − ρ2

13 − ρ
′2
23ε

3
ti

)
,

where {ε1
ti}i=1,...,m, {ε2

ti}i=1,...,m and {ε3
ti}i=1,...,m are three independent sequences of standard nor-

mal random variables.

The integral in (4.16), via the trapezoidal rule, has the approximate solution∫ T

0
r(u) du ≈

∆t
2

r0 + rm + 2
m−1∑
k=1

rk

 .
Consequently, numerical values for the product e−

∫ T
0 ru due−

∫ T
0 µu due−

∫ T
0 lu du is obtained, and

the generated results for rT and µT are then used to evaluate ax(T ).

Our MC implementation involves 100,000 sample paths in conjunction with model param-

eter values for equations (4.1), (4.3) and (4.4) being shown in Table 4.1; the results are

reported in Table 4.2. A wide range of correlation values ρ12, ρ13 and ρ23 are tested to see

their influences on GAO prices. The the maximum age of an individual is assumed 100 and

the GAO contract matures at age 65 (i.e., T = 15 for a person buying the GAO at age 50).

In Table 4.2, the prices calculated under the direct approach and the endowment-risk-

adjusted measure method are displayed in the second and third columns, respectively. The

numbers enclosed in the parentheses are standard errors (SEs). The SEs in the third col-

umn are lower than those in the second column. This tells us that the results based on

endowment-risk-adjusted method is more accurate than those based on the direct method.

The total computing time using equation (4.20) is only 0.07% of the computation time us-

ing equation (4.16). Thus, the endowment-risk-adjusted method is way more efficient than

the direct application of the MC method. It is worth noting that the GAO prices signifi-

cantly change as correlations vary. Prices increase as the number of negative correlations

decreases. On a component-wise basis of the correlation vector (ρ12, ρ13, ρ23), GAO prices

also tend to increase as the magnitude in absolute value of the correlation decreases.

We compare the GAO prices under stochastic lapse rates with prices under a constant lapse

rate. We vary ρ12 and ρ13 and set ρ23 = ρ12ρ13. The results are shown in Table 4.3. Prices

increase as ρ13 increases with ρ12 fixed. Price values vary from 12% less to 18% more than

the prices with the constant lapse rate. It can be observed that the GAO prices assuming



4.5. Numerical illustration 85

Table 4.1: Parameter values
Contract specification

g = 11.1% T = 15 n = 35

Interest rate model

a = 0.15 b = 0.045 σ = 0.03 r0 = 0.045

Mortality model

c = 0.1 ξ = 0.0003 µ0 = −0.006

Lapse rate model

h = 0.12 m = 0.02 ζ = 0.01 l0 = 0.02

constant lapse rate are lower or higher than those obtained under the stochastic lapse rate

assumption, and the absolute price differences could be relatively substantial (as high as

25%).

In order to assess the impact of lapse-model parameters on the GAO price, we perform

price-sensitivity analyses with respect to h, m, ξ and ρ13. The results are displayed in Fig-

ure 4.1. The first plot in the upper panel demonstrates that m is negatively related to the

GAO price. The parameter m is the lapse rate’s mean-reverting level; so, such a result is

consistent with the view that the GAO price decreases as lapse rate increases. The inverse

relation between GAO price and lapse rate is analogous to the relation between bond price

and the interest rate level. High lapse rate implies that there is more risk that the policy

holder will terminate the contract. Therefore, the price of the pre-existing contract would

have to decrease enough to compensate for the possibility of lapsation and must match the

same return yielded by prevailing interest rates adjusted for the ‘lapse risk premium’.

The parameter h produces GAO prices forming a similar pattern to those produced by m

but its resulting curve is not as smooth as that resulting from m. The last two plots in the

lower panel show that each ξ and ρ13 moves in the same direction of the GAO prices. As

the lapse rate’s volatility increases, the GAO price increases. We also examine the impact

of the maturity length T on the GAO price. Figure 4.2 depicts the GAO prices with T

changing from 1 to 20 years, demonstrating that as T gets larger, the lapse rate has more

impact on GAO prices.
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Table 4.2: GAO prices calculated based on equations (4.16) and (4.20)
(ρ12, ρ13, ρ23) Using eq (4.16) Using eq (4.20)

(−0.9,−0.9, 0.81) 0.06012 (0.00024) 0.05942 (0.00019)

(−0.6,−0.6, 0.36) 0.06682 (0.00030) 0.06608 (0.00021)

(−0.3,−0.3, 0.09) 0.07407 (0.00036) 0.07414 (0.00023)

(0.0, 0.0, 0.0) 0.08270 (0.00045) 0.08272 (0.00025)

(0.3, 0.3, 0.3) 0.09444 (0.00054) 0.09396 (0.00028)

(0.6, 0.6, 0.6) 0.10758 (0.00069) 0.10650 (0.00032)

(0.9, 0.9, 0.9) 0.11993 (0.00081) 0.11954 (0.00035)

(−0.9, 0.81,−0.9) 0.07866 (0.00043) 0.07868 (0.00023)

(−0.6, 0.36,−0.6) 0.07773 (0.00041) 0.07710 (0.00023)

(−0.3, 0.09,−0.3) 0.07941 (0.00042) 0.07880 (0.00024)

(0.81,−0.9,−0.9) 0.07947 (0.00038) 0.07865 (0.00026)

(0.36,−0.6,−0.6) 0.07875 (0.00038) 0.07772 (0.00025)

(0.09,−0.3,−0.3) 0.07957 (0.00040) 0.07972 (0.00025)

average computing time 213.82 secs 0.14 secs

4.5.2 Valuation of risk measures

We employ both the MC and moment-based density approximation methods to evaluate

the risk measures of GAO. In the MC method, we generate N replicates of the loss ran-

dom variable using equation (4.9). We then re-arrange these replicates to get an ascending

ordered sequence {L(1), L(2), . . . , L(N)}. The VaRα is estimated as

V̂aRα(L) = L(bNαc+1)

and the estimate of CTEα is

ĈTEa(L) =

∑N
bNαc+1 L( j)

N(1 − α)
,

where b·c denotes the greatest integer function and j = 1, 2, . . . ,N.

To estimate the distortion risk measures, we may use the empirical decumulative function,

which is given by

S L(L( j)) = 1 −
j

N
.

Consequently, the distortion function can be obtained as χ(S L(L( j))). Hence, the distortion
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Table 4.3: GAO prices under constant and stochastic lapse rates

ρ12 Constant
ρ13

-0.9 -0.5 0 0.5 0.9

-0.9 0.0679 0.0595 0.0635 0.0689 0.0747 0.0800

-0.8 0.0693 0.0603 0.0651 0.0704 0.0762 0.0817

-0.7 0.0712 0.0615 0.0660 0.0721 0.0777 0.0835

-0.6 0.0717 0.0631 0.0675 0.0731 0.0800 0.0859

-0.5 0.0738 0.0639 0.0685 0.0751 0.0819 0.0880

-0.4 0.0750 0.0652 0.0698 0.0768 0.0838 0.0899

-0.3 0.0765 0.0662 0.0712 0.0782 0.0854 0.0919

-0.2 0.0780 0.0677 0.0727 0.0800 0.0876 0.0944

-0.1 0.0808 0.0685 0.0739 0.0814 0.0892 0.0961

0.0 0.0810 0.0700 0.0754 0.0831 0.0911 0.0985

0.1 0.0836 0.0711 0.0769 0.0843 0.0933 0.1001

0.2 0.0842 0.0718 0.0780 0.0859 0.0948 0.1029

0.3 0.0863 0.0731 0.0799 0.0881 0.0975 0.1049

0.4 0.0883 0.0749 0.0812 0.0898 0.0993 0.1071

0.5 0.0896 0.0757 0.0823 0.0911 0.1013 0.1097

0.6 0.0913 0.0770 0.0839 0.0929 0.1035 0.1121

0.7 0.0930 0.0776 0.0854 0.0949 0.1057 0.1145

0.8 0.0948 0.0793 0.0865 0.0964 0.1074 0.1168

0.9 0.0964 0.0812 0.0884 0.0980 0.1094 0.1192

risk measures is then approximated, using (4.27), as

ζχ(z) =

∫ ∞

0
χ(S L(l)) dl ≈

N−1∑
j=0

χ(S L(L( j)))(L( j+1) − L( j)), (4.31)

where L(0) = 0. Plugging the distortion functions given in Subsection 4.4.1 into equation

(4.31), we get the estimate of the distortion risk measure. For the spectral risk measures,

they can be approximated by the empirical quantiles of L.

For the moment-based density approximation method described in subsection 4.4.2, we

first approximate the density function of Lp given in 6.7 by generating N replicates of Lp,

which in turn gives the approximated CDF of Lp. Thus, the distribution of L may be deter-

mined by equations (4.28) and (4.29). The approximated distributions of Lp are displayed

in Figure 4.3 and the approximated distributions of L are shown in Figure 4.4. The results
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Figure 4.1: GAO prices under different parameter values
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are calculated under three different sample sizes of 10,000, 100,000 and 1,000,000. The

moment-based density approximation performs very well in approximating the distribution

of Lp and L. The Kolmogorov-Smirnov (KS) test is used to validate the goodness of fit

of our approximations. The KS p-values corresponding to the three different sample sizes

are 0.2367, 0.6735 and 0.9120. This implies that the approximations have excellent fitting

with the simulated distributions.

To strengthen our simulation analysis, we employ the bootstrap method; the Lp’s are resam-

pled 1,000 times in order to generate the approximated density functions. We then analyse

the distribution of the p-values arising from the test of equality between the moment- and

simulated-based densities of the loss random variable. The results are shown in Figure 4.5

illustrating that there are only a few cases of p-values falling below the significance level.

These imply that the moment-based density approximation fits the distribution of L very

well.

Table 4.4 shows the calculated values of risk measures under both the empirical CDF

(ECDF) and moment-based CDF (MCDF) approximation methods with different number

of replicates. Note that there is no significant difference between the numerical results of

these two methods. It can also be observed that each difference is becoming smaller as the
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Figure 4.2: GAO prices under varying maturities
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number of replicates increases. This implies that the accuracy can be improved by increas-

ing the sample size.

We vary the values of the correlation coefficient ρ13 to ascertain the impact of the correla-

tion between the interest and lapse rates upon the risk measures. The results are depicted

in Figure 4.6. The estimated values of the risk measures have a slightly decreasing trend as

ρ13 goes down. This is in agreement with the fact that as correlation between interest and

lapse rates is getting more negative, the risk is reduced (hence, GAO risk measure is getting

lower) as one factor serves as a hedge for the other. The impact of other parameters (i.e.,

m, h, ξ and ρ13) on the GAO price is further explored; see Figure 4.7. The mean-reverting

level m of the lapse rate has an inverse relation with the GAO price as pointed out in Sub-

section 4.5.1. The lapse rate’s speed of mean reversion h also has a similar effect to that

of m on the GAO price albeit a slightly less impact. The two plots in the lower panel of

Figure 4.7 show that the GAO price goes in the same direction with the movements of ξ

and ρ13. Apparently, the higher the lapse rate’s volatility, the riskier the profile of the GAO,

and therefore, the higher its price.
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Figure 4.3: Approximating the distribution of Lp
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4.6 Conclusion

The main contribution of this chapter is the development of a closely integrated modelling

framework for GAO pricing and capital requirement determination. The lapse risk was

given the same level of importance as with mortality and interest rate risks. Each of our

three risk factors has an affine structure specification and their correlations with one another

is fully described. The modelling philosophy of this research is consistent with the goal of

regulatory authority, such as Canada’s OSFI, in ensuring that a synthesised modelling ap-

proach for pricing and risk management must be an integral part of planning, monitoring

and controlling of the insurance company’s risk-taking capability.

We employed iteratively the change of probability measure technique to evaluate GAO

prices efficiently and accurately. The forward, survival, and risk-endowment measures

were introduced facilitating the derivation of a simplified expression for the GAO price.

This method can be extended to other option-embedded contingent claims in which cor-

related risk factors of any dimension are assumed to follow affine dynamics. We further

evaluate seven different risk measures for GAO through the empirical CDF and moment-

based density approximation methods. The appropriateness of the gamma distribution for

the latter method was highlighted in the context and uniqueness of the GAO’s risk profile
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Figure 4.4: Approximating the distribution of L
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Figure 4.5: Distribution of the p-values in testing the fitness of moment-based approxi-

mated density with the simulated density
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studied here. This is a step ahead relative to the current risk measurement literature that so

far only features the normal and t− distributions as base densities in the applications of the

moment-based techniques.

Our numerical results confirmed the efficiency and accuracy of our proposed methods in

the valuation of GAO and in its risk measurement. Compared to the general MC simulation

method, our approach cuts down the average computing time by 99%, whilst the obtained

estimates’ standard errors are also less than those of MC simulation. The results provided

strong support in using the moment-based approximation method to accurately approx-

imate GAO’s risk measures. The extent of the influence of various lapse risk model’s

parameters on GAO’s prices and risk measures was investigated as well. We found that

some small perturbations in the values of parameters could lead to substantial changes in
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Table 4.4: Risk measures of gross loss for GAO under different sample sizes
Risk measures N = 10, 000 N = 100, 000 N = 1, 000, 000

ECDF MCDF ECDF MCDF ECDF MCDF

VaR (α = 0.90) 0.1659 0.1631 0.1655 0.1658 0.1669 0.1681

VaR (α = 0.95) 0.2115 0.2068 0.2114 0.2104 0.2139 0.2143

VaR (α = 0.99 ) 0.3127 0.3042 0.3190 0.3211 0.3237 0.3271

CTE (α = 0.90 ) 0.2300 0.2243 0.2328 0.2321 0.2353 0.2364

CTE (α = 0.95 ) 0.2739 0.2664 0.2798 0.2787 0.2830 0.2842

CTE (α = 0.99 ) 0.3757 0.3658 0.3964 0.3935 0.3970 0.4016

WT (γ = 0.90) 0.1872 0.1818 0.1920 0.1922 0.1935 0.1938

WT (γ = 0.50) 0.2340 0.2254 0.2426 0.2430 0.2444 0.2443

WT (γ = 0.10 ) 0.3356 0.3156 0.3574 0.3586 0.3614 0.3570

PH (ι = 0.10) 0.0752 0.0736 0.0760 0.0760 0.0765 0.0767

PH (ι = 0.05 ) 0.1361 0.1317 0.1401 0.1402 0.1413 0.1411

PH (ι = 0.01 ) 0.4199 0.4076 0.4895 0.4908 0.5332 0.5345

LB (η = 0.90) 0.1549 0.1496 0.1575 0.1576 0.1587 0.1593

LB (η = 0.50 ) 0.2668 0.2500 0.2816 0.2826 0.2853 0.2822

LB (η = 0.10) 0.5885 0.5670 0.7190 0.7215 0.8148 0.8186

EWQRM (κ = 1) 0.0867 0.0852 0.0875 0.0875 0.0881 0.0884

EWQRM (κ = 20 ) 0.2469 0.2444 0.2517 0.2517 0.2542 0.2557

EWQRM (κ = 100 ) 0.3512 0.3564 0.3660 0.3664 0.3673 0.3714

PWRM (δ = 1) 0.0672 0.0659 0.0678 0.0678 0.0683 0.0684

PWRM (δ = 20 ) 0.2485 0.2460 0.2534 0.2534 0.2559 0.2574

PWRM (δ = 100) 0.3515 0.3567 0.3664 0.3668 0.3676 0.3718

the prices and risk measures. This suggests that the stochastic behaviour of the lapse rate

must be captured accurately and taken into account when designing, pricing and monitoring

insurance products given its potentially huge effect as per our empirical work demonstrated.
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Figure 4.6: Variation of risk measures as a function of ρ13 with a given ρ12 and ρ23 = ρ12ρ13
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Figure 4.7: Sensitivity of risk measures to various parameters
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Chapter 5

The valuation of a guaranteed minimum
maturity benefit under a
regime-switching framework

5.1 Introduction

Product development in the insurance markets all over the world has changed dramatically

in the past few decades. Policyholders are getting more aware of investment opportuni-

ties outside the insurance sector; they want to benefit simultaneously from both equity

investments and mortality protection. In order to meet this dual demand for insurance and

investment, insurers issue various types of equity-linked insurance contracts. Examples

include segregated fund contracts in Canada; unit-linked insurance in the UK; and variable

annuities and equity-indexed annuities in the USA; see Hardy [16] for a comprehensive

survey. Equity-linked insurance is a contract in which the policyholder’s fund level de-

pends on the performance of a stock market indicator. Insurers offer guarantees embedded

in equity-linked contracts to provide downside protection. Such guarantees pass the risks

from policy holders to insurers, making the contracts more attractive. There are several

classifications of a guaranteed minimum benefit (GMB). A guaranteed minimum maturity

benefit (GMMB) is a guarantee that provides the policyholder with a minimum benefit on

maturity date. A guaranteed minimum death benefit (GMDB) is a guarantee that pays out

a minimum benefit upon death during the term of the contract. A guaranteed minimum ac-

cumulation benefit (GMAB) allows the policy holder to renew the contract at a guaranteed

level. A guaranteed minimum income benefit (GMIB) gives the policy holder the right to

convert at maturity the account value to an annuity at a guaranteed rate.

98
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The pricing of GMBs entails the modelling of risk factors such as interest rate, mortality

rate and the underlying stock index. Various frameworks for GMB valuation have been

put forward previously. In Fung et al. [14] and Da Fonseca and Ziveyi [5], independence

between mortality rates and financial markets are assumed. Peng et al. [25], Dai et al. [6],

Chen et al. [4] and Marshall et al. [22] ignored mortality affects whilst Fung et al. [14] set

mortality rate as constant. Some authors endorsed the GBM as a suitable model for the

underlying fund dynamics (e.g. Brennan and Schwartz [2], Milevsky and Salisbury [23],

Feng and Vecer [13] , Bauer et al. [1] and Piscopo and Haberman [26]). A GMMB embed-

ded in a segregated fund contract is the focus of this article. We construct a framework for

pricing a GMMB under a combined regime-switching models for three risk factors whose

parameters are driven by a hidden Markov model (HMM). The application of HMM to the

pricing of certain GMBs were carried out before (e.g., Gao et al. [15] and Ignatieva et al.

[17]). However, Gao et al. [15] assumed that only the volatilities are governed by an HMM;

whilst Ignatieva et al. [17] supposed the force of interest is constant with different states.

Those assumptions are relaxed in this chapter. The HMMs are also found applications in

the valuation of other insurance products, such as longevity bonds and options e.g., Shen

and Siu [27] and Fan et al. [12]). Interest and mortality rates are governed by an HMM

in Shen and Siu [27] whilst in Fan et al. [12], interest rate and stock index are regime-

switching.

For the valuation of GMMB, we utilise the change of measure technique and the Fourier

transform method. Fourier transform was first introduced by Carr and Madan [3] for option

pricing. It was then applied to value an option under a regime-switching set up in Liu et al.

[19] and Fan et al. [12]. The method is also used for GMBs in Da Fonseca and Ziveyi [5]

and Ignatieva et al. [17]. To estimate the model parameters under our framework, we adopt

the recursive filtering technique following the method originally introduced by Elliott [8].

Filtering of signals in the financial markets is utilised to estimate parameters in an interest

rate model (e.g., Erlwein and Mamon [11]) and commodity futures price model (e.g., Date

et al. [7]).

The remaining parts of this chapter are organised as follows. Section 5.2 presents the devel-

opment of a regime-switching framework that covers the interconnectedness of models for

interest rate, mortality rate and stock index. A detailed derivation of the semi-closed form

pricing formula for GMMB and the corresponding numerical calculation are discussed in

Section 5.3. Changing probability measures in conjunction with the Fourier transform is
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applied for the valuation of GMMB. In Section 5.4, we show the derivation of the recursive

formulae for the pertinent functions of a Markov chain that will be used in turn for the es-

timation of model parameters. We feature a numerical study, implementing the parameter

estimation and GMMB price calculation. Finally, some concluding remarks are given in

Section 5.5.

5.2 Model description

Suppose (Ω,F , {Ft},P) is a filtered probability space that supports all observed underlying

stochastic processes in our modelling set up. Here, P is the objective probability measure

and {Ft} is the joint filtration generated by all processes. The short rate rt, force of mortal-

ity µt and stock index S t are stochastic processes whose parameters are driven by an HMM.

If rt follows the Vasicek model then it has the dynamics

drt = a(bt − rt) dt + σt dW1
t , (5.1)

where a is a positive constant and W1
t is a standard Brownian motion under P. When

pricing, parameters must be under the risk-neutral measure Q, which can be recovered by

calibrating the model with current market prices. The link between P and Q is via a mar-

ket price of risk. However, insurance products are long-term contracts; using only current

prices for calibration may not be adequate to reflect the parameter estimates appropriate for

long-term products. Therefore, for all underlying variables, we do not consider parameter

estimates under Q and rely instead on estimates from historical data under P.

It assumed that the stochastic differential equation (SDE) for the force of mortality µt is

given by

dµt = cµt dt + ξt dYt, (5.2)

where c is a positive constant and Yt is a standard Brownian motion correlated to W1
t . Equa-

tion (5.2) is a generalisation of a non-mean reverting Ornstein-Uhlenbeck process, which

was first introduced to model mortality rate in Luciano and Vigna [20]. Actually, it may be

viewed that the process for the force of mortality has a long-term equilibrium at point 0.

Whilst this µt’s specification allows for negative values, it is still a suitable model as c and

ξt could be chosen such that the probability of negative values is minimised. Setting the

correlation structure as dW1
t dYt = ρ1 dt, Yt can be expressed as Yt = ρ1W1

t +

√
1 − ρ2

1W2
t ,
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where W2
t is a standard Brownian motion independent of W1

t .

We suppose the stock index S t has dynamics

dS t = mtS t dt + ηtS t dZt, (5.3)

where Zt is a standard Brownian motion and dW1
t dZt = ρ2 dt. Consequently, Zt = ρ2W1

t +√
1 − ρ2

2W3
t , where W3

t is a standard Brownian motion independent of W1
t and W2

t .

Let xt be a finite-state Markov chain on (Ω,F , {Ft},P) with a state space E. Following

Elliott [8], we choose E as the set of standard basis vectors, i.e. E = {e1, e2, . . . , eN} ⊂ RN ,

where N is the number of states. Here, ei = (0, . . . , 1, . . . , 0)> is the unit vector with the

ith entry being 1 and 0 elsewhere, and > stands for the transpose of a matrix. With this

notation, ei represents the ith state, which is regarded as the ith “regime” of the economic

and mortality environments. Let Q = [qi j]i, j=1,...,N be the intensity matrix, that is, qi j is the

transition intensity for xt of going from state j to state i; and so, Q satisfies
∑N

k=1 qk j = 0 for

all j = 1, . . . ,N. As established in Elliott [8], xt has the semi-martingale representation

dxt = Qxt dt + dMt,

where {Mt} is an RN-valued martingale with respect to F x under P, and F x is the natural

filtration generated by xt.

This chapter proposes a regime-switching framework by enriching equation (5.1) via hav-

ing parameters bt and σt depend on xt, i.e.,

bt = b(xt) = 〈b, xt〉 and σt = σ(xt) = 〈σ, xt〉,

where b = (b1, b2, . . . , bN)>, σ = (σ1, σ2, . . . , σN)> and 〈·, ·〉 is the scalar product of two

vectors. They describe the level of b and σ under various states. Similarly, ξt in equation

(5.2) as well as mt and ηt in equation (5.3) are also assumed to be governed by xt. Their

corresponding dynamics are given by

ξt = ξ(xt) = 〈ξ, xt〉 , mt = m(xt) = 〈m, xt〉 and ηt = η(xt) = 〈η, xt〉,

where ξ = (ξ1, ξ2, . . . , ξN)>, m = (m1,m2, . . . ,mN)> and η = (η1, η2, . . . , ηN)>.

In order to achieve tractability in obtaining an analytical pricing solution, a and c in equa-

tions (5.1) and (5.2), respectively, will not be treated as regime-switching parameters. Ad-

ditionally, we deem that the switching between regimes is only more pertinent for the mean-

reverting level b and volatilities σ and ξ. As rt, µt and S t unfold through time, they all
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depend on a single xt. Thus, when the regime of an environment changes, the three risk

factors are all affected. Indeed, even if they are driven by different Markov chains, say x(1)
t ,

x(2)
t and x(3)

t , we can combine these together to form a single Markov chain with a larger

state space. Given the behaviour of the data time series, estimates of the state or regime

will adjust accordingly through the use of an HMM filtering technique in Section 5.4.

5.3 Derivation of valuation formula

The price of a derivative security (i.e., financial or insurance contract) is calculated under

Q and so the regime-switching Q-dynamics of rt, µt and S t are required. For risk-neutral

pricing, the Esscher transform θi
t connects the P and Q dynamics of S t. As shown in Elliott

et al. [10], θi
t =

rt − mi
t(

ηi
t
)2 corresponding to the ith regime and giving

dS t = rtS t dt + ηtS t dZt, (5.4)

where ηt = η(xt) = 〈η, xt〉 and Zt is a Q-Brownian motion. In order to adopt the Esscher

transform in determing a risk-neutral probability so that the probability laws of the modu-

lating Markov chain remain unchanged after measure changes, the independence between

the Markov chain and Brownian motion must be imposed.

Going back to the purpose of this chapter, we are valuing a GMMB, which has a very long

maturity and so the parameter dynamics are better reflected under the objective measure P.

We suppose the intensity matrix Q has the same dynamics under both Q and P, implying

the same semi-martingale representation for xt under both measures. The dynamics of the

process µt under P is also assumed. It has to be noted that although insurance contracts are

not offered to the entire population, the insurer has a sufficient large pool of policyhold-

ers and so the unsystematic mortality risk is negligible. The risk-neutral dynamics for rt

is assumed to follow that of rt under P and the same assumption goes for the correlation

between our three underlying stochastic processes as discussed in Section 5.2.

The insurer’s liability is (G − FT )+, where FT is the policyholder’s fund level at maturity

T and G is the minimum guarantee. This is the same as the payoff of a put option on FT

with a strike price of G. In the segregated fund contract in Canada, G is typically 75% or

100% of the initial investment and FT is linked to the performance of the stock index S T .
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In particular,

FT = F0
S T

S 0
e−ιT ,

where ι is the constant continuously compounded management charge rate. Further details

on the design of investment guarantees can be found in Hardy [16]. Without loss of gener-

ality, we let F0 = S 0 and ι = 0. The pricing formula for the GMMB at time 0 is expressed

as

PGMMB = EQ
[
e−

∫ T
0 rt dte−

∫ T
0 µt dt(G − FT )+

∣∣∣∣F0

]
= EQ

[
e−

∫ T
0 rt dte−

∫ T
0 µt dt(G − S T )+

∣∣∣∣F0

]
.

(5.5)

5.3.1 Bond price

The fair value B(t,T ) of a zero-coupon bond at time t with a payment of $1 at maturity T is

B(t,T ) = EQ
[
e−

∫ T
t rs ds

∣∣∣∣Ft

]
. (5.6)

Under a Markov-modulated affine setting, Elliott and Siu [9] utilised a partial-differential-

equation approach to show that (5.6) is also a Markov-driven exponential-affine bond price

given

B(t,T ) = eD(t,T,xt)−A(t,T )rt , (5.7)

where

A(t,T ) =
1
a

(
1 − e−a(T−t)

)
and

D(t,T, xt) =

N∑
i=1

ln (〈Φ(t)1, ei〉) 〈xt, ei〉. (5.8)

In (5.8), Φ(t) is the fundamental matrix solution of

dΦ(t)
dt

= ∆(t)Φ(t), Φ(T ) = I,

where I is the N × N identity matrix and ∆(t) is defined as

∆(t) = diag (f(t)) −Q>. (5.9)

Note that in (5.9), diag (f(t)) is the diagonal matrix with f(t) being its diagonal and f(t) =

( f1(t), f2(t), . . . , fN(t)), where

fi(t) = biaA(t,T ) −
1
2
σ2

i A2(t,T ), i = 1, 2, . . . ,N.
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5.3.2 Pure endowment

The time-t price M(t,T ) of a pure endowment with a survival benefit of $1 at maturity T is

M(t,T ) = EQ
[
e−

∫ T
t rs dse−

∫ T
t µs ds

∣∣∣∣Ft

]
.

To facilitate the price calculation of a pure endowment, we invoke the change-of-numéraire

technique; a similar approach can be found in Shen and Siu [27]. Define the forward

measure Q̃ associated with B(t,T ); Q̃ is equivalent to Q and constructed via the Radon-

Nikodŷm derivative
dQ̃
dQ

∣∣∣∣∣∣∣
FT

B Π
(1)
T =

e−
∫ T

0 rs dsB(T,T )
B(0,T )

.

Notice that Π
(1)
T is a martingale under Q, and so

Π
(1)
t = EQ

[
Π

(1)
T

∣∣∣Ft

]
=

e−
∫ t

0 rs dsB(t,T )
B(0,T )

.

By the Bayes’ rule for conditional expectation,

M(t,T ) = EQ
[
e−

∫ T
t rs dse−

∫ T
t µs ds

∣∣∣∣Ft

]
= EQ

[
e−

∫ T
t rs ds

∣∣∣∣Ft

]
EQ̃

[
e−

∫ T
t µs ds

∣∣∣∣Ft

]
= B(t,T )S̃ (t,T ),

where S̃ (t,T ) = EQ̃
[
e−

∫ T
t µs ds

∣∣∣∣Ft

]
is the conditional expectation of survival probability un-

der Q̃. As we desire an explicit solution for M(t,T ), the dynamics of µt under Q̃ is needed.

By the Girsanov’s theorem, the corresponding Brownian motions under Q̃ are

dW̃1
t = W1

t + σtA(t,T ) dt, dW̃2
t = dW2

t and dW̃3
t = dW3

t .

Plugging them in equation (5.2), the dynamics of µt under Q̃ are

dµt = (−ξtσtA(t,T ) + cµt) dt + ξt dỸt,

where dỸt = ρ1 dW̃1
t +

√
1 − ρ2

1 dW̃2
t .

The dynamics of xt also change under Q̃. Applying Proposition 5.1 in Palmowski and

Rolski [24], the new intensity matrix Q̃(t) =
[̃
qi j(t)

]
i, j=1,...,N

is given by

q̃i j(t) =

qi j
eD(t,T,ei)

eD(t,T,e j)
, i , j,

−
∑

k, j qk j
eD(t,T,ek )

eD(t,T,e j)
, i = j.
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It can be seen that Q̃(t) is a time dependent matrix and under Q̃, xt has the semi-martingale

representation

dxt = Q̃(t)xt dt + dM̃t,

where M̃t is a martingale under Q̃.

Following similar results we have for the bond price, the Markov-modulated exponential-

affine form for the survival function is obtained and given by

S̃ (t,T ) = eH̃(t,T,xt)−G̃(t,T )µt , (5.10)

where

G̃(t,T ) =
1
c

(
ec(T−t) − 1

)
and

H̃(t,T, xt) =

N∑
i=1

ln(〈Φ̃(t)1, ei〉)〈xt, ei〉, (5.11)

where 1 is a vector of 1’s. In (5.11), if we define ∆̃(t) = diag
(̃
f(t)

)
− Q̃(t)> and f̃i(t) =

−ξiσiA(t,T )G̃(t,T ) − 1
2ξ

2
i G̃2(t,T ), for i = 1, 2, . . . ,N then Φ̃(t) is the fundamental matrix

solution of
dΦ̃(t)

dt
= ∆̃(t)Φ̃(t), Φ̃(T ) = I.

Therefore, combining equations (5.7) and (5.10), the price of a pure endowment has the

analytic solution

M(t,T ) = eD(t,T,xt)+H̃(t,T,xt)−A(t,T )rt−G̃(t,T )µt . (5.12)

5.3.3 Guaranteed minimum maturity benefit

We could first assume that the modulating Markov chain is observable then its ‘filtered’

estimate utilising historical data could be used later. We do not translate these estimates into

risk-neutral estimates given the long maturity of the contract and we rely on information

provided by past data in the real world. A pertinent literature dealing with option valuation

and filtering is given in Elliott and Siu [? ] and Siu [? ].

In order to turn the GMMB pricing expression in (5.5) into an efficiently implementable

form, we shall use another measure called the endowment-risk-adjusted measure Q̂ defined

through the Radon-Nikodŷm derivative

dQ̂
dQ

∣∣∣∣∣∣∣
FT

B Π
(2)
T =

e−
∫ T

0 rs dse−
∫ T

0 µs dsM(T,T )
M(0,T )

.
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Since Π
(2)
T is a martingale under Q,

Π
(2)
t = EQ

[
Π

(2)
T

∣∣∣Ft

]
=

e−
∫ t

0 rs dse−
∫ t

0 µs dsM(t,T )
M(0,T )

.

In a similar manner to finding the price of a pure endowment through the application of the

Bayes’ rule, the GMMB price is

PGMMB = EQ
[
e−

∫ T
0 rt dte−

∫ T
0 µt dt(G − S T )+

∣∣∣∣F0

]
= M(0,T )EQ̂

[
(G − S T )+|F0

]
. (5.13)

Since we already came up with an analytic solution to M(0,T ) in Subsection 5.3.2, it only

remains to evaluate EQ̂ [(G − S T )+|F0]. By using the Girsanov’s theorem again, the corre-

sponding Brownian motions under Q̂ are

dŴ1
t = W1

t +
(
σtA(t,T ) + ρ1ξtG̃(t,T )

)
dt, dŴ2

t = W2
t +

√
1 − ρ2

1ξtG̃(t,T ) dt and

dŴ3
t = W3

t .

Substituting them into equations (5.1) and (5.4), the respective Q̂−dynamics of rt and S t

are

drt =
(
abt − σ

2
t A(t,T ) − ρ1σtξtG̃(t,T ) − art

)
dt + σt dŴ1

t (5.14)

and

dS t =
(
rt − ρ2ηtσtA(t,T ) − ρ1ρ2ηtξtG̃(t,T )

)
S t dt + ηtS t dẐt, (5.15)

where dẐt = ρ2 dŴ1
t +

√
1 − ρ2

2 dŴ3
t . Noting that the dynamics of S t have a complex struc-

ture in (5.15), an explicit solution to GMMB pricing formula would be difficult to attain.

Hence, a simulation-based method is necessary to complete the valuation of GMMB. In the

next Subsection, we utilise the Fourier-transform approach as an alternative to efficiently

compute numerically the price of a GMMB.

Lastly, the distribution of xt under Q̂ changes as well. The intensity matrix Q̂(t) =
[̂
qi j(t)

]
i, j=1,...,N

is given by

q̂i j(t) =


qi j

eD(t,T,ei)+H̃(t,T,ei)

eD(t,T,e j)+H̃(t,T,e j)
, i , j,

−
∑

k, j qk j
eD(t,T,ek)+H̃(t,T,ek)

eD(t,T,e j)+H̃(t,T,e j)
, i = j.

Thus, xt has the semi-martingale representation

dxt = Q̂(t)xt dt + dM̂t,

where M̂t is a martingale under Q̂.
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5.3.4 Fourier transform

In this Subsection, we apply a version of the Fourier transform method proposed in Carr

and Madan [3] to price GMMBs; see also Fan et al. [12] for option pricing. This approach

can be extended to fast Fourier transform (FFT) to price GMMBs with various guaranteed

values.

Write st := log S t. The dynamics of st under Q̂, from equation (5.15), is given by

dst =

(
rt −

1
2
η2

t − ρ2ηtσtA(t,T ) − ρ1ρ2ηtξtĜ(t,T )
)

dt + ηt dẐt.

We first determine the characteristic function of
(∫ T

0
rt dt,

∫ T

0
ηt dẐt

)
conditional on F x

T

under Q̂. Equation (5.14) has the solution

rt = e−at
(
r0 +

∫ t

0
eas

(
abs − σ

2
s A(s,T ) − ρ1σsξsG̃(s,T ) − ars

)
ds +

∫ t

0
easσs dŴ1

s

)
. (5.16)

Integrating both sides of equation (5.16) yields∫ T

0
rt dt =

∫ T

0
e−at

(
r0 +

∫ t

0
eas

(
abs − σ

2
s A(s,T ) − ρ1σsξsG̃(s,T ) − ars

)
ds

+

∫ t

0
easσs dŴ1

s

)
dt.

It may be proved that
(∫ T

0
rt dt,

∫ T

0
ηt dẐt

)
follows a bivariate normal distribution with

respective mean and covariance matrix
∫ T

0
e−at

(
r0 +

∫ t

0
eas(abs − σ

2
s A(s,T ) − ρ1σsξsG̃(s,T ) − ars) ds

)
dt

0


and 

∫ T

0
A(t,T )2σ2

t dt
∫ T

0
ρ2σtηtA(t,T ) dt∫ T

0
ρ2σtηtA(t,T ) dt

∫ T

0
η2

t dt

 .
The characteristic function of

(∫ T

0
rt dt,

∫ T

0
ηt dẐt

)
conditional on F x

T is

EQ̂
[
exp

{
iv

(∫ T

0
rt dt +

∫ T

0
ηt dẐt

)}∣∣∣∣∣∣F x
T

]
=

exp
{

ivA(0,T )r0 −
1
2

v2
∫ T

0
η2

t dt −
1
2

v2
∫ T

0
A(t,T )2σ2

t dt

+iv
∫ T

0
A(t,T )[abt − σ

2
t A(t,T ) − ρ1σtξtĜ(t,T )] dt − v2

∫ T

0
A(t,T )ρ2σtηt dt

}
.
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Hence, the characteristic function of sT under Q̂ is

φ(v, 0,T ) = EQ̂
[
eivsT

]
= EQ̂

[
EQ̂

[
exp

{
iv

(
s0 +

∫ T

0

(
rt −

1
2
η2

t − ρ2ηtσtA(t,T ) − ρ1ρ2ηtξtĜ(t,T )
)

dt

+

∫ T

0
ηt dẐt

)}∣∣∣∣∣∣F x
T

]]
= EQ̂

[
exp

{
iv

(
s0 −

∫ T

0

(
1
2
η2

t + ρ2ηtσtA(t,T ) + ρ1ρ2ηtξtĜ(t,T )
)

dt
)}

×EQ̂
[
exp

{∫ T

0
rt dt +

∫ T

0
ηt dẐt

}∣∣∣∣∣∣F x
t

]]
= EQ̂

[
exp

{
iv (s0 + A(0,T )r0) +

∫ T

0

〈
ϕt, xt

〉
dt

}]
= eiv(s0+A(0,T )r0)EQ̂

[
e
∫ T

0 〈ϕt ,xt〉 dt
]
, (5.17)

where ϕt = (ϕ1(t), ϕ2(t), . . . , ϕN(t)) and

ϕ j(t) = − iv
(
1
2
η2

j + ρ2η jσ jA(t,T ) + ρ1ρ2η jξ jG̃(t,T )
)
−

1
2

v2η j −
1
2

v2A(t,T )σ2
j

+ ivA(t,T )
(
ab j − σ

2
j A(t,T ) − ρ1σ jξ jG̃(t,T )

)
− v2A(t.T )ρ2σ jη j

for j = 1, 2, . . . ,N.

All that remains to be done is the evaluation of the expectation of e
∫ T

0 〈ϕt ,xt〉 dt under Q̂. If

Wt := e
∫ t

0 〈ϕs,xs〉 dsxt

then Wt satisfies the stochastic differential equation

dWt =
〈
ϕt, xt

〉
Wt dt + e

∫ t
0 〈ϕs,xs〉 ds dxt.

Note that

dxt = Q̂(t)xt dt + dM̂t and
〈
ϕt, xt

〉
Wt = diag(ϕt)Wt

so that

dWt =
(
Q̂(t) + diag(ϕt)

)
Wt dt + e

∫ t
0 〈ϕs,xs〉 ds dM̂t

and therefore,

Wt = W0 +

∫ t

0

(
Q̂(s) + diag(ϕs)

)
Ws ds +

∫ t

0
e
∫ s

0 〈ϕu,xu〉 du dM̂s. (5.18)

Taking expectations bot sides of equation (5.18),

EQ̂ [Wt] = x0 +

∫ t

0

(
Q̂(s) + diag(ϕs)

)
EQ̂ [Wt] ds.
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Let Φ̂(t) be the fundamental matrix solution to

dΦ̂(t)
dt

=
(
Q̂(t) + diag(ϕt)

)
Φ̂(t), Φ̂(0) = I.

Then EQ̂ [Wt] can be represented as Φ̂(T )x0. Consequently,

EQ̂
[
exp

(∫ T

0

〈
ϕt, xt

〉
dt

)]
= EQ̂

[
exp

(∫ T

0

〈
ϕt, xt

〉
dt

)
〈xt, 1〉

]
= EQ̂

[〈
exp

(∫ T

0

〈
ϕt, xt

〉
dt

)
xt, 1

〉]
=

〈
EQ̂

[
exp

(∫ T

0

〈
ϕt, xt

〉
dt

)
xt

]
, 1

〉
=

〈
EQ̂ [WT ] , 1

〉
=

〈
Φ̂(T )x0, 1

〉
. (5.19)

Combining equations (5.17) and (5.19), the characteristic function of sT under Q̂ is

φ(v, 0,T ) = eiv(s0+A(0,T )r0)
〈
Φ̂(T )x0, 1

〉
.

Now, consider the Fourier transform of the GMMB price as provided by equation (5.13).

Write g := log G. In order to achieve a square-integrable function, we first modify the price

by imposing a factor α, i.e.,

P′GMMB(g) := e−αgPGMMB(g),

where α > 0. The Fourier transform of P′GMMB(g) is

χ(v) =

∫ ∞

−∞

eivgP′GMMB(g) dg =

∫ ∞

−∞

eivge−αgM(0,T )EQ̂
[
(eg − esT )+

|F0
]
dg

= M(0,T )
∫ ∞

−∞

eivge−αg
∫ g

−∞

(eg − es) fsT (s) ds dg

= M(0,T )
∫ ∞

−∞

fsT (s)
∫ ∞

s

(
e(1+iv−α)g − es+(iv−α)g

)
dg ds

= M(0,T )
∫ ∞

−∞

fsT (s)
(
−

e(1+iv−α)s

1 + iv − α
+

e(1+iv−α)s

iv − α

)
ds

=
M(0,T )φ(v + i(α − 1), 0,T )

(1 + iv − α)(iv − α)
,

where fsT (s) is the density of sT . Then, the price of GMMB is obtained by using the inverse

Fourier transform

PGMMB =
eαg

2π

∫ ∞

−∞

e−ivgχ(v) dv. (5.20)

Equation (5.20) could be computed numerically employing the discrete inverse Fourier

transform

PGMMB ≈
eαg

2π

M∑
j=−M

e−iv jgχ(v j)∆v, (5.21)

where v j = ∆v( j − 1) and M is typically selected as a power of 2.
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5.4 Numerical illustration

5.4.1 Recursive filtering

We apply the discrete-time HMM-filtering method to estimate parameters from historical

data. Mortality data are usually recorded yearly, whilst the interest rates and stock index

values are gathered daily or monthly. Given the issue on the synchrony of data frequency,

it is difficult to estimate all parameters simultaneously. Due to this limitation, parameter

estimation will be performed separately for the different models and the correlation coeffi-

cients will be estimated separately as well.

From equation (5.1),

rt = rse−a(t−s) +

∫ t

s
bue−a(t−u) du +

∫ t

s
σue−a(t−u) dW1

t . (5.22)

Let ∆t be the constant time interval between data points. With the aid of the distribution of

the stochastic integral over the time period [tk, tk+1] corresponding to the increment rk+1−rk,

equation (5.22) can be approximated as

rk+1 = e−a∆trk + bk(1 − e−a∆t) + σk

√
1 − e−2a∆t

2a
ε(1)

k+1, (5.23)

where
{
ε(1)

k

}
is a sequence of independent and identically distributed (IID) standard normal

random variables (RVs). We re-write equation (5.23) as

rk+1 = α1rk + α2(xk) + α3(xk)ε
(1)
k+1, (5.24)

where α1 = e−a∆t, α2(xk) = bk(1 − e−a∆t) and α3(xk) = σk

√
1 − e−2a∆t

2a
.

Similarly, for equation (5.2), we have

µk+1 = β1µk + β2(xk)ε
(2)
k+1, (5.25)

where β1 = ec∆t, β2(xk) = ξk

√
e2c∆t − 1

2c
and

{
ε(2)

k

}
is a sequence of IID standard normal

RVs. From equation (5.3),

log
(
S k+1

S k

)
= γ1(xk) + γ2(xk)ε

(3)
k+1, (5.26)

where γ1(xk) =

(
mt −

1
2
η2

t

)
∆t, γ2(xk) = ηt

√
∆t and

{
ε(3)

k

}
is also a sequence of IID standard

normal RVs.
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The discrete-time expression for the hidden Markov chain xk is

xk+1 = Pxk + εk+1, (5.27)

where εk is a martingale increment under P; P = [pi j]i, j=1,...,N is the transition probability

matrix; and pi j is the transition probability of xk from state j to state i, i.e., pi j = P(xk+1 =

ei|xk = e j). The connection between the intensity matrix Q and the transition probability

matrix P is given by

P = exp(Q∆t).

We introduce a new measure P̃ under which the observations are IID RVs and xk retains

the same distribution under P. With observations being IID, P̃ is an ideal measure that

makes calculations involving expectations manageable. We shall focus first on the interest

rate model. Define the processes λ(1)
l and Λ

(1)
k by

λ(1)
l =

ψ ((rl − α1rl−1 − α2(xl−1)) /α3(xl−1))
α3(xl−1)ψ(rl)

,

Λ
(1)
k =

k∏
l=1

λl, k ≥ 1, Λ
(1)
0 = 1,

where ψ(·) is the probability density function of a standard normal RV.

Let Hk be the filtration generated by the observed processes rt, µt and S t. Write ζk B

EP̃
[
Λ

(1)
k xk

∣∣∣Hk

]
; It may be verified that EP̃

[
Λ

(1)
k

∣∣∣Hk

]
=

〈
ζk, 1

〉
. Denote by D the diagonal

matrix with the ith element on the diagonal being
ψ

(
(rl − α1rl−1 − α2,i)

)
/α3,i

α3,iψ(rl)
. Based on

Erlwein and Mamon [11], ζk has the recursive relation

ζk+1 = PDζk.

To estimate the model parameters, we define the following three functions of xk:

(i) the number of jumps from state j to state i up to time k denoted by

J
(i j)
k =

k∑
l=1

〈
xl−1, e j

〉
〈xl, ei〉 ;

(ii) the amount of time spent on state i up to time k given by

O
(i)
k =

k∑
l=1

〈xl−1, ei〉 ;

and
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(iii) the process for function g contingent upon state i up to time k represented by

T
(i)
k (g) =

k∑
l=1

〈xl−1, ei〉 g(yl).

Let Ck be one of the above three stochastic processes, i.e. Ck = J
(sr)
k , O(r)

k or T(r)
k (g). Then,

the ‘best’ estimate in the sense of conditional expected value of Ck at time k, by the Bayes’

theorem, is given by

Ĉk = EP
[
Ck | Hk

]
=

EP̃
[
Λ

(1)
k Ck

∣∣∣Hk

]
EP̃

[
Λ

(1)
k

∣∣∣Hk

] =
EP̃

[
Λ

(1)
k Ck

∣∣∣Hk

]〈
ζk, 1

〉 .

Write ω (C)k := EP̃
[
Λ

(1)
k Ck

∣∣∣Hk

]
. Note that, for any k,

ω (C)k = ω (Ck 〈xk, 1〉) = ω (〈Ckxk, 1〉) = 〈ω (Ckxk) , 1〉 .

The estimate of Ck is immediate once the value for ω (Ckxk) is determined. For the interest

rate model, we adopt from Erlwein and Mamon [11] the estimation results below:

ω
(
J

(i j)
k xk

)
= PDω

(
J

(i j)
k−1xk−1

)
+

〈
ζk−1, e j

〉 ψ (
(rk − α1rk−1 − α2, j)/α3, j

)
α3, jψ(rk)

pi jei (5.28)

ω
(
O

(i)
k xk

)
= PDω

(
O

(i)
k−1xk−1

)
+

〈
ζk−1, ei

〉 ψ (
(rk − α1rk−1 + α2,i)/α3,i

)
α3,iψ(rk)

Pei (5.29)

ω
(
T

(i)
k (g)xk

)
= PDω

(
T

(i)
k−1(g)xk−1

)
+

〈
ζk−1, ei

〉 ψ (
(rk − α1rk−1 + α2,i)/α3,i

)
α3,iψ(rk)

Pei. (5.30)

We set the initial values as ω
(
J

(sr)
0

)
= ω

(
O

(r)
0

)
= ω

(
T

(r)
0 (g)

)
= 0. By the EM algorithm the

set of parameter estimates
{
p̂i j, α̂2,i, α̂3,i

}
, for i, j = 1, . . . ,N, is generated and computed as

follows:

p̂i j =

〈
ω

(
J

(i j)
k xk

)
, 1

〉〈
ω

(
O

( j)
k xk

)
, 1

〉 , (5.31)

α̂2,i =

〈
ω

(
T

(i)
k (rk)xk

)
, 1

〉
−

〈
α1ω

(
T

(i)
k (rk−1)xk

)
, 1

〉〈
ω

(
O

( j)
k xk

)
, 1

〉 , (5.32)

and

α̂3,i =

√
A1 − 2A2

ω
(
O

(i)
k

) , (5.33)

where

A1 = ω
(
T

(i)
k (r2

k )
)

+ α2
1ω

(
T

(i)
k (r2

k−1)
)

+ α2
2,iω

(
O

(i)
k

)
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and

A2 = α1ω
(
T

(i)
k (rkrk−1)

)
+ α2,iω

(
T

(i)
k (rk)

)
− α1α2,iω

(
T

(i)
k (rk−1)

)
.

The parameters bk and σk could be estimated using the relation specified in (5.24).

Following similar estimation procedure, the mortality-model parameters are explicitly es-

timated as

β̂2,i =

√√√√〈
ω

(
T

(i)
k (µ2

k)xk
)
, 1

〉
+ β2

1

〈
ω

(
T

(i)
k (µ2

k−1)xk
)
, 1

〉
− 2β1

〈
ω

(
T

(i)
k (µkµk−1)xk

)
, 1

〉〈
ω

(
O

(i)
k xk

)
, 1

〉 ; (5.34)

and for the stock index model,

γ̂1,i =

〈
ω

(
T

(i)
k (log(S k/S k−1))xk

)
, 1

〉〈
ω

(
O

(i)
k xk

)
, 1

〉 (5.35)

and

γ̂2,i =

√√√√〈
ω

(
T

(i)
k (log(S k/S k−1)2)xk

)
, 1

〉
+ γ2

1

〈
ω

(
O

(i)
k xk

)
, 1

〉
− 2γ1

〈
ω

(
T

(i)
k (log(S k/S k−1))xk

)
, 1

〉〈
ω

(
O

(i)
k xk

)
, 1

〉 . (5.36)

5.4.2 Parameter estimates

The HMM filtering technique will be illustrated in this Subsection to calibrate the model

to historical data. Monthly data on the 10-year Canada government bond yields from 1950

to 2011 were obtained from the Federal Reserve Economic Data website. For the mortality

data, we use yearly cohort data for Canadian males between age 50 (in 1951) and age 110

(in 2011), which are available from the Human Mortality Database. For the stock index

data, we choose the monthly data of iShares Core S&P 500 ETF from 2002 to 2011; these

data are obtained from Yahoo Finance. The behaviours of the various historical data are

presented in Figure 5.1.

In the filtering algorithm, the dataset is divided into batches. In each algorithm step, we

calculate, by processing a batch of data points, ω
(
J

(i j)
k xk

)
, ω

(
O

(i)
k xk

)
andω

(
T

(i)
k (g)xk

)
recur-

sively employing equations (5.28)– (5.30). Parameters are updated after each step applying

equations (5.31)–(5.36). Initial values of the parameters are obtained by the using maxi-

mum likelihood method. We use these initial values for the first step of the algorithm.

The interest rate data is processed in batches of 20 data values; that is, the parameters

are updated approximately every two years. For each step, the parameters p̂i j, α̂2,i and
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Figure 5.1: Behaviour of various historical data
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α̂3,i, for i, j = 1, . . . ,N, are calculated via equations (5.31), (5.32) and (5.33), respectively.

They can then be utilised in the recovery of the original model’s parameters b̂i and σ̂i, for

i = 1, . . . ,N. Figures 5.2 and 5.3 display the evolution of parameter estimates of interest

rate model under the 2-state and 3-state settings, respectively. For the 2-state model, the

mean-reversion level b̂ in state 2 increases steadily before the 20th step and then decreases

afterwards. This is in agreement with the behaviour of the historical data. The state-2

volatility increases dramatically between the 17th and 20th steps because of the drastic

change in interest rates. It can be observed that the 3-state model captures these behaviors

in various different states more adequately.

The mortality rate data is processed in batches of 2 data points, which means the parame-

ters are updated every two years. For i = 1, . . . ,N, β̂2,i is computed using equation (5.34)

thereby giving ξ̂. Figures 5.4 and 5.5 depict the parameter estimates’ dynamics in the mor-

tality model. The volatility increases substantially after the 25th step. This suggests that the

volatility could be higher at older ages. Therefore, the HHM is appropriate for mortality

modelling because it is able to capture the random occurrence of both low volatility and

high volatility states.
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The processing of the stock index data is performed with 3 data points in each batch; thus,

the parameters are updated every quarter. For i = 1, . . . ,N, γ̂1,i and γ̂2,i are determined

through equations (5.35) and (5.36). Figures 5.6 and 5.7 exhibit the evolution of parameter

estimates for the stock index model. There is a generally continuous trend of historical data

values falling in large magnitude during the period Jan 2008 – Jan 2009. This leads to a

decrease in m and an increase in η.

Figure 5.2: Evolution of interest-rate model’s parameters under the 2-state setting
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Table 5.1 shows the estimated parameters in the last algorithm step. Clearly, parameter

values in different states could be significantly different. To quantify the variance of these

parameter estimates, we compute the Fisher information I. The maximum likelihood es-

timate is asymptotically normally distributed with variance I−1. Consistent to the concept

of evolving parameter estimates, the Fisher information values could also be updated in

each algorithm step. The Fisher information of an estimated parameter can be calculated

by taking the expectation of the second derivatives of the log-likelihood function with re-

spect to the parameter in consideration. The Fisher information for each regime-switching

parameter is given by
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Figure 5.3: Evolution of interest-rate model’s parameters under the 3-state setting
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I(α2,i) =
ω

(
O

(i)
k

)
α2

3,i

, (5.37)

I(α3,i) = −
ω

(
O

(i)
k

)
α2

3,i

+
ω

(
T

(i)
k (r2

k )
)

+ α2
1ω

(
T

(i)
k (r2

k−1)
)

+ α2
2,iω

(
O

(i)
k

)
α4

3,i/3

+
−2α1ω

(
T

(r)
k (rkrk−1)

)
− 2α2,iω

(
T)(i)

k (rk)
)

+ 2α1α2,iω
(
T

(i)
k (rk−1)

)
α4

3,i/3
, (5.38)

I(β2,i) = −
ω

(
O

(i)
k

)
β2

2,i

+
ω

(
T

(i)
k (µ2

k)
)

+ α2
1ω

(
T

(i)
k (µ2

k−1)
)
− 2α1ω

(
T

(i)
k (µkµk−1)

)
β4

2,i/3
, (5.39)

I(γ1,i) =
ω

(
O

(i)
k

)
γ2

2,i

, (5.40)

I(γ2,i) =
ω

(
T

(i)
k (log(S k/S k−1)2)

)
+ γ2

1ω
(
O

(i)
k

)
− 2γ1ω

(
T

(i)
k (log(S k/S k−1))

)
γ4

2,i/3

−
ω

(
O

(i)
k

)
γ2

2,i

.

(5.41)
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Figure 5.4: Evolution of mortality-rate model’s parameters under the 2-state setting
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The respective standard error for each regime-switching parameter can be obtained via

using equations (5.37)– –(5.41). The results are shown in Table 5.2, from which we see

that the standard errors are relatively small implying very good precision of parameter

estimates calculated using our proposed method.

Table 5.1: Parameter estimates in the final algorithm step
state â b̂ σ̂ ĉ ξ̂ m̂ η̂

1-state 1 0.0559 0.0683 0.0102 0.0852 0.0818 0.0025 0.1666

2-state
1 0.0559 0.0632 0.0028 0.0852 0.0011 0.0812 0.1213

2 0.0559 0.0728 0.0126 0.0852 0.0986 -0.0640 0.1970

3-state

1 0.0559 0.0730 0.0111 0.0852 0.0010 0.0762 0.1194

2 0.0559 0.0470 0.0024 0.0852 0.0012 0.0417 0.1384

3 0.0559 0.0563 0.0024 0.0852 0.1016 -0.0854 0.2132
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Figure 5.5: Evolution of mortality-rate model’s parameters under the 3-state setting
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Table 5.2: Standard errors for the parameter estimates in the final algorithm step
state b̂ σ̂(×10−3) ξ̂(×10−3) m̂ η̂

1 state 1 0.0023 0.2665 7.4630 0.0054 0.0111

2-state
1 0.0018 0.1238 0.1770 0.0012 0.0119

2 0.0035 0.4085 1.4124 0.0058 0.0177

3-state

1 0.0027 0.3161 0.2126 0.0071 0.0146

2 0.0017 0.1961 0.2689 0.0079 0.0162

3 0.0022 0.2539 11.5363 0.0110 0.0226

To determine the optimal number of regimes appropriate for a given data set, we use the

log-likelihood value, Akaike information criterion (AIC), and Bayesian information crite-

rion (BIC). Both the AIC and BIC consider the log likelihood function and the number of

parameters as inputs for model selection. The respective AIC and BIC formulae are given

by

AIC = −2 logL + 2 × (number of parameters)
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Figure 5.6: Evolution of stock-index model’s parameters under the 2-state setting

0 5 10 15 20 25 30 35 40

Algorithm steps

-0.8

-0.6

-0.4

-0.2

0

0.2

m
m

1

m
2

0 5 10 15 20 25 30 35 40

Algorithm steps

0.05

0.1

0.15

0.2

1

2

0 5 10 15 20 25 30 35 40

Algorithm steps

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P

P
1,1

P
1,2

P
2,1

P
2,2

and

BIC = −2 logL + (number of parameters) × log (number of observations),

where L refers to the likelihood function. The model with the lowest AIC or BIC would

be the most preferable model. The results are shown in Table 5.3; numbers in bold are the

lowest and correspond to the best model. Our numerical results illustrate that the 2-state

model is the most appropriate (giving the best balance between maximising likelihood and

estimating the number of parameters) for our historical data. Although the 3-state model

may have higher log-likelihood values, the greater number of parameters involved penalises

the AIC and BIC values.

To assess the prediction performance of various model settings, we examine the one-step

ahead predictions. The one-step ahead forecasts for the interest rate, mortality rate, and

stock index are computed as

EP [rk+1|Fk] = α1rk + 〈α2, P̂xk〉, (5.42)
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Figure 5.7: Evolution of stock-index model’s parameters under the 3-state setting
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EP
[
µk+1|Fk

]
= β1µk (5.43)

and

EP
[
log

(
S k+1

S k

)∣∣∣∣∣∣Fk

]
= 〈γ1, P̂xk〉 + 〈γ2, P̂xk〉, (5.44)

where x̂k = EP[xk|Fk].

We generate the one-step predictions for rt, µt and S t under the 1-state, 2-state and 3-state

models using equations (5.42), (5.43), and (5.44), respectively. To assess the goodness of fit

of the one-step ahead prediction, we adopt three criteria: root mean square error (RMSE),

mean absolute error (MAE), and relative absolute error (RAE); the results are presented in

Table 5.4. Although the differences are small, the 2-state model yields a better prediction

performance than the 1-state and 3-state models.
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Table 5.3: AIC and BIC values under different model settings. Numbers in bold represent

the best among others.
Risk factor Log likelihood AIC BIC

Interest rate

1-state 3256 -6508 -6499

2-state 3404 -6796 -6768
3-state 3388 -6753 -6697

Mortality rate

1-state 72.2417 -142.4833 -140.3890

2-state 187.8974 -367.7948 -359.4175
3-state 191.1901 -364.3801 -345.5310

Stock index

1-state 183.1841 -362.3682 -356.8958
2-state 188.7342 -365.4684 -349.0512

3-state 192.4256 -360.8513 -328.0169

Table 5.4: Error analysis under different model settings
Risk factor RMSE (×10−3) MAE(×10−3) RAE(×10−2)

Interest rate

1-state 2.95378 1.85806 7.50994

2-state 2.95309 1.85697 7.50103

3-state 2.95394 1.85712 7.50362

Mortality rate

1-state 22.5459 13.3687 7.7110

2-state 22.5459 13.3687 7.7110

3-state 22.5459 13.3687 7.7110

Stock price

1-state 48.5182 35.9969 1.6601×1019

2-state 48.3853 35.7898 1.8231×103

3-state 48.4688 35.7969 1.2487×103

5.4.3 GMMB pricing

In this subsection, we present implementation results for the valuation of a GMMB. The

parameter values for our pricing are those given in Table 5.1. Our proposed method, i.e.,

equation (5.21), is used to calculate GMMB prices efficiently; we set α = 1.5, M = 512

and ∆v = 0.2. Under this method, we do not need the trajectories of rt, µt and S t from time

0 to T ; this then reduces significantly the computing time.

The Monte Carlo simulation method, applied to equation (5.5) is considered as our bench-

mark. To implement equation (5.5) directly, we generate sample paths of rt, µt, S t as well
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as xt from time 0 to T under measure Q. To do this, we divide each year into 252 time inter-

vals with fixed length ∆t = 1
525 . Applying the Euler discretisation scheme, we approximate

the evolution of rt, µt, S t and xt over [0,T ]. The discresation of xt is as per equation (5.27)

whilst the respective discretisations for rt, µt and S t, under Q, are

rk+1 = rk + a(bk − rk)∆t + σk

√
∆tεk+1,

µk+1 = µk + cµk∆t + ξk

√
∆t

(
ρ1εk+1 +

√
ρ2

1ε
′
k+1

)

and

S k+1 = S k + rkS k∆t + ηkS k

√
∆t

(
ρ2εk+1 +

√
1 − ρ2

2ε
′′
k+1

)
,

where {εk}, {ε′k} and {ε′′k } are independent sequences of standard normal random variables.

The integrals in equation (5.5) are evaluated by applying the Trapezoidal Rule.

Numerical results from our proposed method and the Monte Carlo simulation method given

various values of ρ1 and ρ2 are displayed in Table 5.5. For the GMMB pricing, we set the

guaranteed level G = 20 and the maturity T = 10 viewed at year 2011. This means we

are assuming T = 0 at year 2011. Further, it is supposed that the policyholder is aged 50

at time 0. We choose observed data points in 2011 for the values of r0, µ0 and S 0. The

results from the Monte Carlo method are obtained employing 1,000,000 samples via par-

allel simulation with 8 cores in Matlab. The numbers enclosed in parenthesis are standard

errors of values resulting from the simulation method. We can see that the prices from our

proposed method and the benchmark are very close. It is worth noting that the results from

our proposed method are within the 95% confidence interval of the results by the simu-

lation method. Furthermore, prices increase as ρ1 and ρ2 vary from negative to positive.

This is consistent with the fact that negative correlation aids in diversification, combatting

the combined effect of risk factors that move together. The average computing time of our

proposed method is considerably less (by 99%) than that of the simulation method. This

implies that our proposed method is not only highly accurate but is also remarkably effi-

cient.
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Table 5.5: GMMB prices with different parameter values and number of states
Setting (ρ1, ρ2) Our proposed method Monte-Carlo simulation

1-state

(−0.9,−0.9) 2.4395 2.4306 (0.0020)
(−0.5,−0.5) 2.5430 2.5389 (0.0021)

(0, 0) 2.9063 2.9178 (0.0026)
(0.5, 0.5) 3.4995 3.5054 (0.0032)
(0.9, 0.9) 3.7894 3.8112 (0.0042)

2-state

(−0.9,−0.9) 2.5945 2.6005 (0.0026)
(−0.5,−0.5) 2.6929 2.6938 (0.0028)

(0, 0) 2,9354 2.9300 (0.0031)
(0.5, 0.5) 3.3067 3.3040 (0.0036)
(0.9, 0.9) 3.6989 3.6875 (0.0041)

3-state

(−0.9,−0.9) 2.6032 2.5964 (0.0023)
(−0.5,−0.5) 2.7331 2.7042 (0.0029)

(0, 0) 2.9599 2.9653 (0.0037)
(0.5, 0.5) 3.3045 3.2931 (0.0041)
(0.9, 0.9) 3.5231 3.5198 (0.0045)

Average computing time 43 secs 4.71 hrs

We vary the values of guaranteed level G and maturity time T to see how the GMMB price

responds. Results are depicted in Figure 5.8. The GMMB price increases as G increases;

this is because a higher guaranteed level would lead insurers to set a higher reserve, and

hence a higher premium. The GMMB price decreases as T increases; this is justified by

the fact that interest and mortality rates contributed to the discounting of the future payoff.

Therefore, the longer the maturity, the greater the effect of the discounting, and conse-

quently the lower the price. We also investigate how interest rate, mortality rate and stock

index level affect the GMMB price. We look into the corresponding percent change of

GMMB price when we vary the values of r0, µ0 and S 0 ranging from -20% to 20% of their

current value.

Figure 5.9 shows that the GMMB price decreases for any risk factor that increases. Given

the -20% to 20% change, the GMMB price changes roughly from -10% to 10% when r0 is

varied, from -1% to 1% when µ0 is perturbed, and from -40% to 40% when S 0 is changed.

Thus, the stock index has the most significant influence on the price. The impact of mor-

tality rate is relative low because the mortality rate is still low for an individual at aged 50.
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However, the mortality will increase at older age, and hence, in that case it will have much

greater influence on the price.

Figure 5.8: GMMB prices with various values of G and T
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Figure 5.9: Sensitivity of GMMB prices to r0, µ0 and S 0
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5.5 Conclusion

We developed an integrated framework for the valuation of GMMB. The dynamics of inter-

est rate, mortality rate, and stock index are all driven by an HMM. These three risk factors

are also correlated via their diffusion components; to some extent there is an additionally

embedded correlation with the fact that one underlying Markov chain drives the switching

of regimes in these risk processes. The change of measure technique, featuring the forward

measure and endowment-risk-adjusted measure, was employed to obtain a closed-form

regime-switching exponential-affine solution for the endowment, and in turn this facilitates

the pricing evaluation of the GMMB.

The Fourier transform is used to price the GMMB numerically. Numerical results demon-

strated that our proposed method is significantly more efficient, with high level of accuracy,

than the Monte Carlo simulation method. Our parameter estimation made use of the recur-

sive HMM-based filtering technique. Calibration to historical data was performed, and

results showed that the 2-state set up is the most adequate in capturing the dynamics of the
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risk factors involved in the proposed model.

Our work concentrated on the valuation of GMMB and calibration of model parameters.

However, in practice, risk measures, such as the value-at-risk and conditional tail expec-

tation, are also essential in risk management. These can be achieved under our proposed

modelling framework by considering the distribution of the payoff under the objective mea-

sure. Evaluating the Greeks is also important to hedge the GMMB contract. This can be

done by differentiating the pricing formula with respect to various parameters similar to the

idea in Ignatieva et al. [17].

Our modelling framework is flexible and it can be extended in many ways. We may adopt

the Cox-Ingersoll-Ross (CIR) model for the interest rate instead of the Vasicek model and

introduce regime switching as well. To better describe the dynamics of mortality rate, we

may use the model in Lee and Carter [18] in which both age and year factors for mortal-

ity are considered. A higher-order HMM could be added to enrich the model further; see

Mamon and Elliott [21] for example. Our modelling framework can also be utilised for

other GMBs such as the GMDB, GMAB and GMIB. One may include the analysis of the

withdrawal feature in a contract, allows the policyholder to withdraw some money from his

fund before the maturity date. All of these extensions, as this research’s natural directions,

will lead to certain computational challenge requiring new methods and approaches.
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Chapter 6

Setting risk margin for claim liabilities
in accordance with IFRS 17

6.1 Introduction

The international Accounting Standards Board is responsible for setting accounting stan-

dards for many countries that are part of the Organization for Economic Co-operation and

Development. One of its standards, known as the International Financial Reporting Stan-

dards (IFRS) 17, deals with insurance contracts (see International Accounting Standards

Board [6]). The Canadian Accounting Standards Board will adopt IFRS 17 without mod-

ification starting 01 January 2022. The preparation for implementing the new standard

engendered substantial efforts and upgraded systems, processes and controls.

In IFRS 17, the general measurement model for liabilities of insurance contracts is the

Building Block Approach (BBA). It affords a comprehensive and coherent framework that

provides information reflecting many features of insurance contracts. Under the BBA, the

value of insurance contracts is measured as the sum of four blocks described as follows:

• Block 1: Sum of the future cash flows that relate directly to the fulfillment of the

contractual obligations;

• Block 2: The value of the future cash flows;

• Block 3: Risk adjustment, representing the compensation for bearing the uncertainty

about the cash flows;

• Block 4: Contractual service margin (CSM), representing the unearned profit that

will be recognised in profit or loss as services are provided.

130
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In this chapter, we address the evaluation of risk margins (Block 3) of insurance policies

by proposing an efficient and accurate method in risk margins’ estimation under IFRS 17.

It has to be noted that IFRS 17 does not provide specific prescriptions for risk margin cal-

culations, nor does it mandate a particular method to determine risk margin.Although it

does not restrict the usage of any technique, it requires that the risk margin should reflect

the compensation that the entity requires for bearing the uncertainty about the amount and

timing of the cash flows that arises from non-financial risk. Risk margins can be computed

using various risk measures, which are justified by the principles and concepts in probabil-

ity theory and statistics.

We consider the claims development triangle, which will be the basis for our risk mar-

gin calculation. The claim development triangle is specifically used for forecasting future

claims and estimating outstanding claim liabilities. Some methods for the estimation of

outstanding liabilities include the chain-ladder method, Bornhuetter-Ferguson method and

frequency-severity method; an overview of such methods are given in Taylor [18] and

Wüthrich and Merz [21]). Models for claims and supporting the above methods include

the log-normal model (Barnett and Zehnwirth [1]), gamma model (Zehnwirth [22] and

Mack [10]), distribution-free approach (Mack [11]), and over-dispersed model (Renshaw

and Verrall [17]). In our case, we shall develop and customise the paid-incurred chain

model proposed in Merz and Wüthrich [12] to predict the future claims using Ontario’s

automobile claim data. Our methodology combines the principal elements of Hertig [5] for

paid losses and Gogol [4] for incurred claims.

Some stochastic claim reserving methods can replicate the reserve estimates from the de-

terministic claim reserving methods such as the chain-ladder and Bornhuetter-Ferguson

methods. One noticeable advantage of the stochastic claim reserving methods is that they

are able to attach a probability or confidence level to describe the accuracy of a reserve esti-

mate for outstanding liabilities. To evaluate the risk margins of insurance policies, the dis-

tribution of the outstanding claim liabilities need to be determined. The general approach is

to obtain the empirical cumulative distribution function via Monte-Carlo (MC) simulation.

The distribution could be approximated using normal or log-normal distributions. Here, we

also employ the moment-based density method Provost [16] as an alternative. This method

was applied to risk measurement and management of insurance policies including guaran-

teed minimum benefits in Gao et al. [3] and Zhao et al. [23] as well as aggregate losses in

Jin et al. [8].
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This chapter is organised as follows. In section 2, the paid-incurred chain model is de-

veloped and the formula for the claim reserves is provided. Four risk-margin computation

methods are described in section 3. In section 4, numerical examples based on historical

data are discussed. Moment-based density approximation is applied for the approximation

of distribution of claim reserves. In section 5, the simulation’s distribution assumption is

statistically validated. Finally, some concluding remarks are given in section 6.

6.2 Model description

A claim-development triangle is an essential method to organise data for actuarial analyses

and claim reserving. The triangle (see Table 6.1) depicts how the claims in each accident

year are developing to their ultimate value. This data organisation greatly facilitates the

comparison of the development history experienced in an accident year. In this method,

we consider two types of triangles: (i) incurred claims, which refer to the reported claim

amounts and (ii) paid losses, which refer to the payments made for the claims. The paid

losses should be less than the incurred claims in the same development year. Nonetheless,

they should have the same values ultimately; that is, all reported claims must be paid off at

the end of the lifetime of the policies.

Table 6.1: An illustration of the claims development triangle. The left-hand panel displays

the cumulative paid losses whilst the right-hand shows the cumulative incurred claims.
i\ j 0 · · · J · · · 0 j/i

0

Pi,J = Ii,J

0

Pi. j Ii. j
...

...

J =⇒ ⇐= J

The fundamental ideas of the paid-incurred chain method can be found in Merz and Wüthrich

[12]. It is designed for analysing information on both incurred claims and paid losses data.

We denote the accident year by i (0 ≤ i ≤ J) and the development year by j (0 ≤ j ≤ J).

Here, J refers to the largest development year. Let Ii, j be the cumulative incurred claims

in accident year i after j development years and Pi, j be the corresponding cumulative paid

losses. We further assume that all the claims are settled after J years, i.e., Pi,J = Ii,J. Table
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6.1 imparts graphically the implementation structure of this method. Define the sets

B
P
j = {Pi,l : 0 ≤ i ≤ J, 0 ≤ l ≤ j},

B
I
j = {Ii,l : 0 ≤ i ≤ J, 0 ≤ l ≤ j}

and

B j = BP
j ∪B

I
j

as the paid losses data, incurred claims data and joint data information up to development

year j, respectively.

Consider a series of independent and identically distributed random variables

{ξ1,1, . . . , ξJ,J, ζ1,1, . . . , ζJ,J}. In our case, we shall assume that they follow the Gaussian

distributions; that is,

ξi, j ∼ N(φ j, σ
2
j), 0 ≤ i ≤ J and 0 ≤ j ≤ J,

ζi. j ∼ N(ϕ j, τ
2
j), 0 ≤ i ≤ J and 0 ≤ j ≤ J,

where φ j, σ j, ϕ j and τ j are constants for 1 ≤ j ≤ J.

The cumulative paid losses Pi, j are determined by the recursion

Pi, j = Pi, j−1eξi, j

with initial value Pi,0 = eξi,0 . For the cumulative incurred claims Ii,I , we have the backward

recursion

Ii, j−1 = Ii, je−ζi. j−1

with initial value Ii,J = Pi,J. eξi, j and e−ζi. j−1 are called link ratios. Conditional on the

sets B j and given the distribution assumptions on ξi, j and ζi. j−1, the joint distribution of(
log Pi, j+1, log Pi, j+2, . . . , log Pi,J

)>
follows a multivariate normal distribution, i.e.,(

log Pi, j+1, log Pi, j+2, . . . , log Pi,J

)>∣∣∣∣
B j
∼ N(u,Σ), (6.1)

where > is a vector transpose.

In equation (6.1),

u =


η j+1 +

(
1 − β j, j+1

) (
log Pi, j − η j

)
+ β j, j+1

(
log Ii, j − µ j

)
...

ηJ +
(
1 − β j,J

) (
log Pi, j − η j

)
+ β j,J

(
log Ii, j − µ j

)
 (6.2)
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and

Σ =


ω2

j+1 −
(
1 − β j, j+1

)
ω2

j − β j, j+1ω
2
j, j+1 · · · ω2

j+1 −
(
1 − β j, j+1

)
ω2

j − β j, j+1ω
2
j,J

...
. . .

...

ω2
j+1 −

(
1 − β j,J

)
ω2

j − β j,Jω
2
j, j+1 · · · ω2

J −
(
1 − β j,J

)
ω2

j − β j,Jω
2
j,J

 . (6.3)

The parameters in equations (6.2) and (6.3) are given by

η j =

j∑
m=0

φm, ω2
j =

j∑
m=0

σ2
m, µ j =

J∑
m=0

φm−

J−1∑
n= j

ϕn, ν2
j =

J∑
m=0

σ2
m−

J−1∑
n= j

τ2
n and β j,l =

ω2
l − ω

2
j

ν2
j − ω

2
j

.

Let Ci, j denote the incremental paid loss in accident year i during the jth development year.

Thus,

Ci, j = Pi, j − Pi, j−1. (6.4)

As we are interested in future unpaid losses, the distribution of Ci, j needs to be determined.

Furthermore, note that the total paid losses in year k is given by

Ck =
∑
i+ j=k

Ci, j. (6.5)

At time J, the total discounted future-unpaid losses is

RJ =

J∑
k=1

CJ+k

(1 + rk)k , (6.6)

where rk is the interest rate at time k. In other words, this is the time-J outstanding loss

liabilities of the claims spanning accident years 0 to J. It is also the reserve for the claims

at time J.

6.3 Risk-margin calculation

IFRS 17 mandates that the risk margins must be calculated based on the discounted ful-

fillment cash flows over the lifetime of policies. As this new standard does not designate

any estimation technique in determining the risk margin, we adopt four methods discussed

in International Actuarial Association [7]. They are value at risk (VaR), conditional tail

expectation (CTE), Wang transform (WT) and cost of capital (CoC).

VaR is the loss level for which the loss random variable exceeds with probability 1 − α,

where α is the confidence level. So, if S is the loss random variable then the 100α% VaR,

denoted by VaRα(S ), is given by

VaRα(S ) = inf{s : P(S ≤ s) ≥ α}.
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The risk margin is equal to the difference between VaR and the corresponding probability

weighted expected value. The drawback of VaR is that it disregards the extreme values

beyond the confidence level and this could lead to an underestimation of risks.

CTE is an alternative quantile technique, whose advantage over VaR is its primary con-

centration on the tail of the loss distribution and it is also a coherent risk measure. More

specifically, CTE is the expected loss given that the loss is greater than VaRα(S ). Therefore,

CTEα(S ) = E[S |S > VaRα(S )].

The risk margin is then calculated as the difference between the CTE and the correspond-

ing probability weighted expected value. The CTE may not be coherent though when the

loss distribution is discrete. See for example, Boyle et al. [2].

Another coherent risk measure that we include is WT, which is typified as a distortion risk

measure; see Wang [19] and Wang [20]. Under WT, probability distribution is adjusted

due to risk preferences. This means that lower adjusted probability values are assigned to

favourable outcomes whilst higher adjusted probability values are assigned to unfavorable

outcomes. A WT was chosen in Miccolis and Heppen [14] to provide risk adjustment as

per IFRS 17 by calibrating parameters. A general expression for the distortion risk measure

for a non-negative loss random variable S is given by

ζχ(s) =

∫ ∞

0
χ (1 − FS (s)) ds,

where FS (s) is the cumulative distribution function of S and χ(x) is a distortion function

χ : [0, 1] → [0, 1], which is a non-decreasing function with χ(0) = 0 and χ(1) = 1. The

distortion function for WT is given by

χ(x) = Φ
(
Φ−1(x) + Φ−1(η)

)
,

where η is a risk aversion parameter. The higher the η, the lesser is the risk aversion. The

risk margin is calculated as the difference between the probability-weighted expected value

using adjusted probability and the expected vale under the original probability.

Under the concept of CoC, an entity will determine its risk preference based on its selec-

tion of a capital amount appropriate for the risks that are relevant to IFRS 17’s measurement

objectives. The assigned capital amount that would be used in computing the CoC is the

difference between
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(a) the amount calculated under the probability distribution associated with the selected

confidence level and

(b) the amount using the probability weighted expected value.

The risk margin is computed as the present value of the future cost of capital associated

with relevant cash flows. This is expressed as

risk margin =

n∑
i=1

ciAi

(1 + ri)i ,

where Ai is the assigned capital amount for period ending at time i, ci is the CoC’s rate at

time i and ri is the discount rate at time i.

The challenge in choosing the appropriate ci is akin to meeting the specific requirement

objectives. This should reflect a rate of return consistent with the entity being indifferent

between insurance contract’s liabilities with uncertain cash flows and liabilities with fixed

cash flows. Also, the CoC’s rate should take into account the entity’s risk preference and

experience. A general approach to quantifying a risk margin based on the CoC technique is

described in Meyers [13], which incorporates stochastic path dependencies given that the

capital amount is impacted over the time, and such an approach is applied to the claims

development triangles of the unpaid losses.

6.4 Numerical illustration

In this section, we present a numerical illustration utilising incurred claims and paid losses

data on Ontario automobile from 2002 to 2016 inclusive. There are three different groups

of insurance policies categorised as: bodily injury, direct compensation and accident ben-

efit. This tells us that we have 6 different data sets: (i) bodily injury incurred claims, (ii)

bodily injury paid losses, (iii) direct compensation incurred claims, (iv) direct compensa-

tion paid losses, (v) accident benefit incurred claims, and (vi) accident benefit paid losses.

The data sets were compiled by the General Insurance Statistical Agency and are displayed

as claims development triangles.

These three types of insurance policies have various features and show different trends

over development years. In this illustration, we have J = 14, i.e., we assume all claims

are settled after 14 years. Moreover, it is assumed that the horizontal year is 2016 and we
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must forecast the future claims after 2016. The estimates of parameters φ j, σ j, ϕ j, τ j for

0 ≤ j ≤ J are obtained by using the maximum likelihood method. The formulae for the

estimators are given by

φ̂ j =
1

J + 1 − j

J+1− j∑
i=1

log
Pi, j

Pi, j−1
, σ̂2

j =
1

J − j

J+1− j∑
i=1

(
log

Pi, j

Pi, j−1
− φ̂ j

)2

and

ϕ̂ j =
1

J + 1 − j

J+1− j∑
i=1

log
Ii, j

Ii, j−1
, φ̂2

j =
1

J − j

J+1− j∑
i=1

(
log

Ii, j

Ii, j−1
− ϕ̂ j

)2

.

Since there are not enough data points to estimate σ14 and τ14, we extrapolate their values.

Tables 6.2 and 6.3 display the estimates of these parameters.

Table 6.2: Parameter estimates recovered from paid-losses data
Bodily injury Direct compensation Accident benefit

Development year φ j σ j φ j σ j φ j σ j

1 1.788270 0.157308 0.129518 0.013202 1.004686 0.177061

2 1.110350 0.094517 0.001331 0.000329 0.327183 0.094545

3 0.715325 0.052882 0.000377 0.000225 0.193076 0.067292

4 0.437724 0.040531 0.000142 0.000300 0.130786 0.043079

5 0.254945 0.023194 0.000091 0.000307 0.082337 0.018089

6 0.135959 0.013062 0.000062 0.000090 0.053216 0.011642

7 0.073244 0.008697 -0.000028 0.000052 0.037004 0.007191

8 0.035751 0.002376 -0.000036 0.000076 0.026940 0.007446

9 0.021297 0.004364 -0.000024 0.000020 0.017885 0.002140

10 0.012067 0.003368 -0.000004 0.000017 0.015164 0.002982

11 0.007262 0.001986 -0.000008 0.000011 0.012159 0.001694

12 0.004751 0.000407 0.000011 0.000026 0.009612 0.001672

13 0.002382 0.000726 0.000001 0.000006 0.005552 0.000048

14 0.001546 0.000371 -0.000001 0.000001 0.005677 0.000000

Using the parameter estimates in Tables 6.2 and 6.3, the MC simulation method is con-

ducted to forecast future unpaid losses and estimate the outstanding claims liabilities via

the following procedure:

1. For each i (0 ≤ i ≤ J), generate values of Pi, j (i + 1 ≤ j ≤ J) using equation (6.1).
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Table 6.3: Parameter estimates recovered from incurred-claims data
Bodily injury Direct compensation Accident benefit

Development year ϕ j τ j ϕ j τ j ϕ j τ j

1 0.363657 0.048902 0.023472 0.006457 0.223483 0.082017

2 0.279259 0.047978 0.000111 0.000712 0.077566 0.053506

3 0.135730 0.027995 0.000006 0.000400 0.058734 0.028937

4 0.059139 0.021971 0.000032 0.000468 0.026611 0.009055

5 0.023823 0.016908 -0.000108 0.000168 0.016343 0.007765

6 0.010466 0.010082 0.000053 0.000136 0.008198 0.007305

7 0.004622 0.006287 -0.000071 0.000095 0.007328 0.004943

8 0.003734 0.001926 -0.000035 0.000062 0.006238 0.003780

9 0.000282 0.001536 -0.000036 0.000047 0.004755 0.002683

10 0.001657 0.002030 0.000001 0.000031 0.004365 0.002093

11 -0.000375 0.000608 -0.000015 0.000009 0.001936 0.001826

12 0.000367 0.000321 0.000009 0.000022 0.001397 0.001573

13 -0.000200 0.000141 0.000002 0.000006 -0.000980 0.000767

14 0.000600 0.000051 -0.000003 0.000000 0.000251 0.000364

2. Calculate Ci, j, CJ+l and RJ using equations (6.4), (6.5) and (6.6), respectively.

3. Repeat steps 1 and 2 N times.

Considering that J = 14 and the horizontal year is 2016, we forecast the unpaid losses

from years 2017 up to 2030. These unpaid losses correspond to insurance contracts with

accident years from 2002 to 2016. The directive from IFRS 17 states that the discount

rate applied to the estimates of the future cash flows should: (i) reflect the cash flows and

liquidity’s characteristics of the insurance contracts and (ii) be consistent with the current

observed market prices. IFRS 17 does not specify though any technique to determine the

discount rate. The “top-down” and “bottom up” methods are suggested by KMPG [9] to

determine the discount rate value. For the ease of calculation, we assume r is constant and

r = 0.024 in this example.

We implemented the MC simulation with 1,000,000 replicates. The histograms of unpaid

losses for bodily-injury type policies in different years (CJ+l) are displayed in Figure 6.1.

The means and standard deviations of unpaid losses in different years are shown in Table

6.4; the means and standard deviations of total discounted unpaid losses (i.e., outstanding
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claims liabilities) are shown in the last row. From Table 6.4, the direct-compensation pol-

icy has much lower means and standard deviations. This is consistent with the fact that

the claims are almost always reported and paid in the first few years under this policy type.

The accident-benefit policy has the highest volatilities and this observation suggests that

the future cash flows for this policy is more uncertain than those of the other two policies.

The histograms of discounted total paid losses (RJ) are portrayed in Figure 6.2.

Figure 6.1: Histogram of unpaid losses (Bodily injury)
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Note that it is impossible to obtain the exact distribution of outstanding claim liabilities.

Therefore, some approximation methods must be utilised to obtain an approximated dis-

tribution. The most commonly used method is the empirical CDF. Some parametric ap-

proximations including normal and log-normal distributions could also be tried. We adopt

the moment-based density approximation method introduced in Provost [16]. Under this

method, the exact density function with known first n moments can be approximated by the

product of (i) a base density, whose tail behaviour is congruent to that of the distribution to

be approximated, and (ii) a polynomial of degree q. The parameters of the base density can

be determined by matching the moments of the loss random variable and the approximated

density.
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The choice of the base function depends on the loss distribution. Based on the preliminary

examination on the distribution of claims liabilities, we adopt the normal distribution for

the approximation. In particular, the base function Ψ(x) with parameters θ and c is given

by

Ψ(x) =
1
√

2πc
e−

(x−θ)2

2c2 .

Let the moments of the random variable X be αX(i) for i = 0, 1, . . . , q. Since it is

not possible to obtain the theoretical moments of X, we can use the sample moments

obtained from the data. Denote the theoretical moments of the base function Ψ(x) by

mX(i) for i = 0, 1, . . . , 2q. The parameters θ and c of Ψ(x) can be determined by setting

αX(i) = mX(i) for i = 1, 2. Hence,

θ = αX(1) and c =
√
αX(2) − αX(1)2.

The density fX(x) of X is approximated as

fq(x) = Ψ(x)
q∑

i=0

ki

( x − θ
c

)i

,

where ki’s, i = 0, . . . , n, are polynomial coefficients and they are determined via

(k0, k1, . . . , kn)> = M−1(αX(0), αX(1), . . . , αX(q))>,

where M is a (q + 1) × (q + 1) symmetric matrix whose (i + 1)th row is (mX(i),mX(i +

1), . . . ,mX(i + q)).

Consequently, the approximated density of X is given by

fq(x) =
1
√

2πc
e−

(x−θ)2

2c2

q∑
i=0

ki

( x − θ
c

)i

. (6.7)

The approximated CDF of X can be obtained from equation (6.7). As an explicit for-

mula for the quantile function is not available, quantiles can be calculated numerically

(e.g., using Newton’s method). We consider the normal and log-normal approximations as

benchmarks. The approximated densities for the total unpaid losses based on these three

methods are displayed in Figure 6.2. The corresponding CDFs are shown in Figure 6.3 and

the moment-based approximation is the closest to the empirical CDF.

The Kolmogorov-Smirnov test is used to assess the goodness of fit of the approximations.

The results of the test are provided in Table 6.5 showing that the moment-based density
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Figure 6.2: Density of total unpaid losses
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approximation outperforms the two other approximations.

Table 6.5: Results of the Kolmogorov-Smirnov test under different methods
Bodily injury Direct compensation Accident benefit

test statistic p-value test statistic p-value test statistic p-value

Moment-based 0.00072 0.67787 0.000363 0.999400 0.000485 0.972524

Normal 0.00757 0.00000 0.001221 0.101413 0.010594 0.000000

Log normal 0.00292 0.00000 0.008348 0.000000 0.003856 0.000000

The risk margins of three policy types are computed using the VaR, CTE, WT and CoC met-

rics based on the simulation results. The normal and log-normal approximations serve as

benchmarks. We select three confidence levels for VaR and CTE: 90%, 95% and 99%. The

three risk aversion parameter values for WT are 0.1, 0.05 and 0.01. The capital amounts
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Figure 6.3: CDF of total unpaid losses
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every year under the CoC method are determined using the VaR. The CoC rate is set at

0.08. The results are shown in Tables 6.6-6.9; percentages refer to the ratios of the risk

margins to the probability weighted expected values. Results obtained from moment-based

density method are better than those from the normal and log-normal approximations. This

is because the differences between the results from the empirical CDF and those from the

moment-based density method are much smaller than the differences between results from

the other two methods and those from the empirical CDF. Note that risk margins using

the CTE method have the highest values because CTE considers potential loss beyond the

confidence level. Risk margins using the CoC method have much lower values.

It has to be noted that, notwithstanding IFRS 17’s not indicating the method in determining

risk margins, it requires that the confidence level to be disclosed. Therefore, if the WT

or CoC method is used to calculate risk margins, the equivalent confidence level must be
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revealed consistent with the VaR method.

The computed risk margins are based on historical data. In order to analyse the sensitiv-

ity of these risk margins to various risk-metric calculation, we employ the non-parametric

bootstrap method. Bootstrap is a simulation-based statistical analysis that could be used

to measure the accuracy of sample estimates. As statistics calculated from samples can be

used to estimate parameter in the population, the bootstrap distribution can be utilised to

describe the behaviour of quantities being estimated such as standard errors and confidence

intervals.

Suppose {Pi, j, Ii, j : 0 < i ≤ J, 0 < j ≤ J − i} is the observed data set. Define a j and b j as

the mean and standard deviation of Pi, j in year j, and also define e j and g j as the mean and

standard deviation of Ii, j in year j. We consider the residuals

Di, j =
Pi, j − â j

b̂ j

and Ei, j =
Ii, j − ê j

ĝ j
,

where â j ,̂b j ,̂e j and ĝ j are the estimates of a j, b j, e j and g j, respectively. Then we obtain the

bootstrap distributions F̂D for the set of observations D = {Di, j : i + j < J} and F̂E for the

set of observations E = {Ei, j : i + j < J}. We generate two series of IID residuals

D∗i, j ∼ F̂D and E∗i, j ∼ F̂E.

New ‘observations’ of Pi, j and Ii, j are given by

P∗i, j = â j + b̂ jD∗i, j and P∗i, j = ê j + ĝ jE∗i, j.

The new estimates of parameters for the corresponding distribution are determined through

these new observations. Consequently, the risk margins are computed under the new esti-

mated distribution.

We apply the MC simulation method to generate 1,000 samples of new observations. For

each trial, the risk margins are computed using simulation with 10,000 replicates. Then the

bootstrap distribution for risk margins are obtained through these 1,000 samples. Figures

6.4-6.6 display the distribution of risk margins obtained using the bootstrap method. The

corresponding means and standard deviations are shown in Table 6.10. From Figures 6.4-

6.6 and Table 6.10, we see that the risk margins for bodily injury policy have the highest

volatility whilst those for direct compensation have the lowest volatility. This suggests that

the risk margins set for direct compensation policy are more accurate and stable. We also
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note that the volatility under the CTE is higher than those of the VaR and WT. This tells us

that the VaR and WT estimates are more stable than the CTE’s.

Figure 6.4: Bootstrap distribution of risk margins (Bodily injury)
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Figure 6.5: Bootstrap distribution of risk margins (Direct compensation)

VaR

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

risk margin 104

0

0.5

1

1.5

2

2.5
de

ns
ity

10-4 CTE

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

risk margin 104

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

de
ns

ity

10-4

WT

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

risk margin 104

0

0.5

1

1.5

2

2.5

de
ns

ity

10-4 CoC

600 800 1000 1200 1400 1600 1800

risk margin

0

0.5

1

1.5

2

2.5

3

de
ns

ity

10-3



6.5. Verifying the normality assumption 151

Figure 6.6: Bootstrap distribution of risk margins (Accident benefit)
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Table 6.10: Risk margins under the bootstrap method
Bodily injury Direct compensation Accident benefit

mean s.d. mean s.d. mean s.d.

VaR(95%) 280,034 18,678 10,848 1,786 349,095 28,620

CTE(95%) 355,017 23,859 13,631 2,243 444,891 37,543

WT(0.05) 282,258 19,054 10,839 1,781 353,871 30,081

CoC(95%) 43,023 2,329 1,157 146 69,330 4,910

6.5 Verifying the normality assumption

To verify that our data set for the numerical illustration in the previous section follows

the normality assumption in section 6.2, we perform a KolmogorovSmirnov (KS) test and

Shapiro-Wilk (WS) test the observations log Pi, j

Pi, j−1
and log Ii, j

Ii, j−1
covering the first three acci-

dent years. The KS test is a nonparametric test of the null hypothesis that the cumulative

distribution function (CDF) of the data is equal to the hypothesised CDF. The KS test could
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be used to assess normality of empirical data when the hypothesised CDF is a normal distri-

bution. The SW test is also used for normality test but it is designed for situations of small

sample sizes. The results from the two statistical tests are shown in Table 6.11. We see that

high p-values are obtained so that we could not reject the null hypothesis of a normal CDF.

Therefore, it is reasonable to adopt the normal assumption in the model.

Table 6.11: p-values for the KS and SW normality tests
Bodily Injury Direct Compensation Accident benefit

Accident year KS test SW test KS test SW test KS test SW test

Paid 1 0.875474 0.793625 0.925442 0.204618 0.652408 0.136140

losses 2 0.868966 0.167638 0.963453 0.525485 0.939638 0.573753

3 0.585226 0.075189 0.913402 0.665581 0.693782 0.083805

Inccured 1 0.925442 0.204618 0.958631 0.807814 0.920132 0.382023

claims 2 0.963453 0.525485 0.894853 0.432259 0.874620 0.547997

3 0.913402 0.665581 0.610291 0.137533 0.931737 0.846044

Of course, if the normality assumption is not adequate, other non-Gaussian distributions

with heavy tails could be considered (e.g., lognormal).

6.6 Conclusion

In this chapter, we proposed an efficient and accurate methodology and elaborated on the

entire process in estimating risk margins for claims according to the IFRS 17’s require-

ments. The paid-incurred chain model was adopted to describe the development of un-

paid losses based on historical information involving incurred-claims and paid-losses data.

The Monte-Carlo simulation method was employed to generate samples of future unpaid

losses. To approximate the distribution of claims reserves, the Moment-based approxima-

tion method was utilised. Risk margins were computed in four different ways using the

approximated distribution with the bootstrap method being applied to obtain the distribu-

tion of risk margins.

The methodology and procedures described here could be used as implementation guide-

lines for the computation of risk margins of insurance companies’ claims. Certain fun-

damental ideas in this research could stimulate further examinations of various aspects of

allocating risk margins of claims liabilities. In future studies, models and methods consid-

ered here could be extended in many ways. The independent assumption on the link ratios
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could be relaxed and assumed that they follow a multivariate skew normal distribution (see

Pigeon et al. [15]). A prior distribution of the model parameters could be taken into account

leading a the Bayesian paid-chain incurred method as alluded in Merz and Wüthrich [12].

When dealing with several types of policies, risk dependencies and aggregation techniques

should be treated with an appropriate approach. A copula method could be used to model

the dependence structure and calculate the aggregated risks for all policies; some in Inter-

national Actuarial Association [7].

It should be noted that, we only considered the historical data of incurred claims and paid

losses. The reliability of estimation results will increase if we could incorporate other use-

ful information including earned premium, earned exposure, reserves, etc. Furthermore,

the additional information may decrease as well the variability of model parameter esti-

mates and improve the performance of future forecasting of cash flows. Lastly, the risk

margins we computed are solely based on future unpaid losses. Other relevant future cash

flows satisfying the requirements of IFRS 17 could be embedded when available in the im-

plementation of the method to calculate risk margin practically in insurance companies.
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Chapter 7

Conclusion

7.1 Research summary

In this thesis, we developed appropriately various pricing and hedging frameworks for in-

surance products with investment guarantees under correlated risks. First, the construction

of a pricing framework for an annuity with stochastic and dependent interest and mortality

rates was tackled. Second, a CIR interest rate model is combined with the LC mortality

rate model in the pricing of GAO. Third, under a two-decrement model lapse risk is added

into financial and insurance risks as a particular factor for the valuation of a GAO; all three

risk factors are dependent and modelled as affine-diffusion processes. Fourth, a regime-

switching framework for three risk processes, namely the short-rate, force of mortality and

stock index processes and are all governed by HMMs, was created for for GMMB pricing.

Finally, we explored the paid-incurred chain model to analyse the claim triangular data and

compute the risk margins as per the requirements of IFRS 17.

The major research contributions accomplished in this thesis are: (i) Successful appli-

cation of sequential probability measure changes to obtain computational efficient repre-

sentation of the longevity product’s value; (ii) Design of an efficient algorithm for GAO

pricing, which reduces computing time through a comonotonic approximation; (iii) Utility

of a moment-based density to approximate accurately and speedily the distribution of loss

random variables; (iv) Implementable closed-form solutions, via Fourier transform, for a

GMMB value under the framework of HMM-modulated risk processes; (v) Derivation of

HMM filters for the GMMB modelling set up, and provided recursive estimators for every

model parameter; and (vi) Allocation of risk margins using paid-incurred chain method on

P&C claim data.

156
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This research work offers valuable insights and contributions to the theoretical underpin-

nings of financial insurance covering some important issues in the life and non-life insur-

ance sectors. Our results could benefit insurers academic researchers, and financial reg-

ulators. It is important for insurance companies to come up with the fair valuation and

effective risk management of insurance products. Our applications of stochastic models

in finance and actuarial science give some ideas on how to further take advantage of var-

ious useful concepts and methods in probability, statistics and related areas in addressing

contemporary issues in pension economics and regulatory considerations towards financial

stability and insurance resiliency.

7.2 Future research directions

Although we made considerable gains on accuracy and efficiency of our parameter estima-

tion and methodology for valuation and risk management computations under more flexible

modelling frameworks, we also recognise certain limitations. Yet, these limitations could

be turned into opportunities for possible extensions or continued search for alternative tech-

niques. The theoretical and practical contributions of our research are expected to inspire

further investigations of developing new or tailoring available stochastic approaches in ac-

tuarial theory and practice. We provide several ramifications of what we learnt throughout

the course of this study.

• An HMM could be incorporated to enrich further the pricing framework in Chapter 2

that synthesises CIR and LC processes. This extension enables capacity to to capture

dynamic regime changes in the economic and mortality environments.

• A higher-order HMM (HOHMM) may be used in the modelling framework of Chap-

ter 5. HMM is generally capable of describing first-order transitions amongst hidden

states. However, it might not be adequate for some real-world applications because

imposing that current state dependent only on the last state may be too restrictive.

The HOHMM allows the present state to be dependent on information reflected on

previous states many time steps into the past.

• Our pricing framework could be applied in other GMBs such as GMDB, GMAB

and GMIB and other equity-linked insurance products. In principle, getting pricing

representations for these insurance products may be straightforward under our pro-

posed modelling frameworks; however, numerical evaluations could present some
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challenges that need to be handled with the help of additional details and product’s

pay off specifications.

• Hedging strategy is an important part in risk management. Although we did not

concentrate on sensitivity of parameters under our model settings, computing the

‘Greeks’ for insurance products could provide insurers, investors and regulators with

characteristics of the insurance policies and investments that they are dealing with.

• In improving the accuracy of the estimation of risk margins in chapter 6, the inclu-

sion of certain information such as earned premium and case reserve could reduce

the variability of the estimators. Furthermore, some alternative distributions could

be adopted to better describe the claim data. In particular, for calculating risk mar-

gins we only consider incurred claims and paid losses. Various earned premiums in

different accident years suggest different amounts of potential losses. Therefore, we

could link the earned premium to the claim amount through the ratio of incremental

claim and earned premium rather than claims themselves.

We also deem it more realistic for log-normal or gamma distribution in fitting the

ratio data. These distributions have better performance than that of the normal dis-

tribution in capturing the behaviour of heavy right tails. The resulting risk margins

under the new distributions will be higher and thereby preferred by risk-adverse com-

panies.
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Calculation details for the computation
of the first two moments of kt for
Chapter 3

EQ̃[
√

rt] =
1√
c̃t

∫ ∞

0

√
z
∞∑

i=0

e−λ̃t/2(̃λt/2)i

i!
pΓ(i+̃vt/2,1/2)(z)dz

=
1√
c̃t

∫ ∞

0

√
z
∞∑

i=0

e−λ̃t/2(̃λt/2)i

i!
(1/2)i+̃vt/2zi+̃vt/2−1

Γ(i + ṽt/2)
e−z/2dz

=

√
2√
c̃t

∫ ∞

0

∞∑
i=0

e−λ̃t/2(̃λt/2)i

i!
Γ(i + ṽt/2 + 1/2)

Γ(i + ṽt/2)
(1/2)i+̃vt/2+1/2zi+̃vt/2−1/2

Γ(i + ṽt/2 + 1/2)
e−z/2dz

=

√
2
c̃t

∞∑
i=0

e−λ̃t/2(̃λt/2)i

i!
Γ(i + ṽt/2 + 1/2)

Γ(i + ṽt/2)

∫ ∞

0

(1/2)i+̃vt/2+1/2zi+̃vt/2−1/2

Γ(i + ṽt/2 + 1/2)
e−z/2dz

=

√
2
c̃t

∞∑
i=0

e−λ̃t/2(̃λt/2)i

i!
Γ(i + ṽt/2 + 1/2)

Γ(i + ṽt/2)
.

Note that
(1/2)i+̃vt/2+1/2zi+̃vt/2−1/2

Γ(i + ṽt/2 + 1/2)
e−z/2 is the density function of a gamma random vari-

able with parameters i + ṽt/2 + 1/2 and 1/2. Hence, the expectation of kt under the forward

measure is

EQ̃[kt] = EQ̃

[
k0 + ct − ρσξ

∫ t

0
A(u,T )

√
rudu + ξZ̃t

]
= k0 + ct − ρσξ

∫ t

0
A(u,T )EQ̃[

√
ru]du.
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The variance of kt under the forward measure is

VarQ̃[kt] = VarQ̃

[
k0 + ct − ρσξ

∫ t

0
A(u,T )

√
rudu + ξZ̃t

]
= (ρσξ)2

∫ t

0
A(u,T )2VarQ̃[

√
ru]du + ξ2VarQ̃[Z̃t] + ρσξ2

∫ t

0
A(u,T )CovQ̃[

√
ru], Z̃u]du

= (ρσξ)2
∫ t

0
A(u,T )2(EQ̃[ru] − EQ̃[

√
ru]2)du + ξ2t + ρσξ2

∫ t

0
A(u,T )CovQ̃[

√
ru], Z̃u]du.
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