
Western University Western University

Scholarship@Western Scholarship@Western

Electronic Thesis and Dissertation Repository

4-5-2019 9:30 AM

Algorithms for Bohemian Matrices Algorithms for Bohemian Matrices

Steven E. Thornton, The University of Western Ontario

Supervisor: Corless, Robert M., The University of Western Ontario

Co-Supervisor: Moreno Maza, Marc, The University of Western Ontario

A thesis submitted in partial fulfillment of the requirements for the Doctor of Philosophy degree

in Applied Mathematics

© Steven E. Thornton 2019

Follow this and additional works at: https://ir.lib.uwo.ca/etd

 Part of the Other Applied Mathematics Commons

Recommended Citation Recommended Citation
Thornton, Steven E., "Algorithms for Bohemian Matrices" (2019). Electronic Thesis and Dissertation
Repository. 6069.
https://ir.lib.uwo.ca/etd/6069

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F6069&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/122?utm_source=ir.lib.uwo.ca%2Fetd%2F6069&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/6069?utm_source=ir.lib.uwo.ca%2Fetd%2F6069&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

Abstract

This thesis develops several algorithms for working with matrices whose entries are

multivariate polynomials in a set of parameters. Such parametric linear systems often

appear in biology and engineering applications where the parameters represent physical

properties of the system. Some computations on parametric matrices, such as the rank

and Jordan canonical form, are discontinuous in the parameter values. Understanding

where these discontinuities occur provides a greater understanding of the underlying

system.

Algorithms for computing a complete case discussion of the rank, Zigzag form, and

the Jordan canonical form of parametric matrices are presented. These algorithms use

the theory of regular chains to provide a unified framework allowing for algebraic or

semi-algebraic constraints on the parameters. Corresponding implementations for each

algorithm in the Maple computer algebra system are provided.

In some applications, all entries may be parameters whose values are limited to finite

sets of integers. Such matrices appear in applications such as graph theory where matrix

entries are limited to the sets {0,+1}, or {−1, 0,+1}. These types of parametric matrices

can be explored using different techniques and exhibit many interesting properties.

A family of Bohemian matrices is a set of low to moderate dimension matrices

where the entries are independently sampled from a finite set of integers of bounded

height. Properties of Bohemian matrices are studied including the distributions of their

eigenvalues, symmetries, and integer sequences arising from properties of the families.

These sequences provide connections to other areas of mathematics and have been archived

in the Characteristic Polynomial Database. A study of two families of structured matrices:

upper Hessenberg and upper Hessenberg Toeplitz, and properties of their characteristic

polynomials are presented.

Keywords: Parametric matrices, Jordan canonical form, Frobenius form, rational

form, Zigzag form, matrix rank, regular chains, parametric linear systems, Bohemian

matrices, random matrices, eigenvalues, upper Hessenberg, Toeplitz, rhapsodic matrices,

Characteristic Polynomial Database.

i

Co-Authorship Statement

This integrated-article thesis is based on 5 papers. Chapter 2 has been submitted for

publication, and Chapters 3, and 4 are based on the papers [1], and [2]. For these chapters,

Marc Moreno Maza provided assistance with the theoretical understanding behind regular

chains, and Rob Corless provided assistance with finding applications of the work. A

version of Chapter 5 is being prepared for publication. Rob Corless provided feedback

on the paper. A version of Chapter 6 has been submitted for publication. The initial

basis for this chapter was developed by Rob Corless, Laurenao Gonzalez-Vega, Rafael

Sendra, and Juana Sendra. Eunice Chan provided assistance with compiling the prior

work related to the paper and she generalized work on similar matrices in Theorem 6.5.10.

The work in Sections 6.10 and 6.11 was completed by Rob Corless.

Bibliography

[1] R. M. Corless, M. Moreno Maza, and S. E. Thornton. Zigzag form over families of

parametric matrices. ACM Communications in Computer Algebra, 48(3/4):109–112,

Feb 2015.

[2] R. M. Corless, M. Moreno Maza, and S. E. Thornton. Jordan canonical form with

parameters from Frobenius form with parameters. In Proceeding of The International

Conference on Mathematical Aspects of Computer and Information Sciences 2017,

pages 179–194. Springer, 2017.

ii

Acknowledgements

I am grateful for the support of many people who without, this thesis may have never

reached completion.

First, without my Ph.D. supervisors, Rob Corless and Marc Moreno Maza, this thesis

would not have been possible. I thank Rob for giving me the opportunity to pursue

graduate school under his supervision. The knowledge Rob has shared with me over the

past 6 years has been invaluable. I thank Marc for his generosity in sharing his expertise

of regular chains and aiding in the development of several key components of thesis.

Next, I thank my parents, Linda and Scott Thornton, for their constant support

throughout graduate school. Their enthusiasm has kept me going through the course of

my thesis. I am thankful for my partner, Emily Cozens, for helping me stay grounded

throughout graduate school.

I would like to thank my current employer, Rafael Nicolas Fermin Cota, for his

flexibility in allowing me to complete my Ph.D. while concurrently working full time.

After several years of dedication to expanding my knowledge of mathematics, I am

happy to be contributing this thesis to the mathematics community.

iii

Contents

Abstract i

Co-Authorship Statement ii

Acknowledgements iii

List of Figures viii

List of Tables xi

Abbreviations xiv

1 Introduction 1

1.1 Parametric Linear Systems . 1

1.2 Bohemian Matrices . 3

1.3 Outline . 5

2 Comprehensive Rank of Matrices Depending on Parameters 7

2.1 Introduction . 7

2.2 Preliminaries . 8

2.3 Lemmas . 11

2.4 Algorithm . 13

2.5 Implementation . 14

2.5.1 Comparison With Other Implementations 16

2.5.2 Example 1 . 17

2.5.3 Example 2 . 18

2.5.4 Example 3 . 19

2.6 Conclusion . 20

2.A Appendix A . 22

2.B Appendix B . 24

iv

3 Zigzag Form over Families of Parametric Matrices 27

3.1 Introduction . 27

3.2 Background Material . 27

3.3 Zigzag Matrix . 28

3.4 Computation . 29

3.5 Implementation . 29

3.6 Applications . 30

4 Jordan Form with Parameters from Frobenius Form 32

4.1 Introduction . 32

4.2 Some Prior Work . 35

4.3 Preliminaries . 36

4.3.1 Regular chain theory . 36

4.3.2 Regular chain representation of a splitting field 38

4.3.3 The Frobenius canonical form . 39

4.3.4 The Jordan canonical form . 40

4.4 JCF Over a Splitting Field . 40

4.4.1 Jordan form of a companion matrix 40

4.4.2 Frobenius form to Jordan form 41

4.4.3 Example . 41

4.5 JCF of a Matrix with Parameters . 42

4.5.1 Square-free factorization of a parametric polynomial 42

4.5.2 JCF of a companion matrix with parameters 43

4.5.3 Frobenius form to JCF with parameters 44

4.6 Experimentation . 44

4.6.1 Maple implementation . 44

4.6.2 Kac-Murdock-Szegö matrices . 45

4.6.3 The Belousov-Zhabotinskii reaction 45

4.6.4 Nuclear magnetic resonance . 46

4.6.5 Bifurcation studies . 47

4.7 Concluding Remarks . 48

5 Bohemian Matrices and Their Eigenvalues 52

5.1 Introduction . 52

5.2 Terminology . 55

5.3 Symmetry in Bohemian Families . 55

v

5.3.1 Complex Conjugate Eigenvalue Symmetry 55

5.3.2 Negation Symmetry . 56

5.3.3 Rhapsodic Matrices . 56

5.3.4 Permutations . 58

5.3.5 Similar Matrices . 60

5.4 Visualizing Distributions of Bohemian Eigenvalues 61

5.4.1 Plotting Eigenvalues in Matlab and Python 62

5.4.2 Overview of the BHIME-Project Framework 63

5.4.3 Computing Eigenvalues . 66

5.4.4 Plotting Eigenvalues . 69

5.4.5 Eigenvalue Computation Timing 72

5.4.6 Language Comparison . 73

5.5 A Test Class for Eigenvalue Solvers . 74

5.5.1 Numerical Error for Multiple Eigenvalues 76

5.6 Characteristic Polynomial Database . 76

5.6.1 Exhaustive Characteristic Polynomial Computations 78

5.6.2 Properties . 79

5.6.3 Integer Sequences . 82

5.7 Conclusion . 85

6 Bohemian Upper Hessenberg and Toeplitz Matrices 88

6.1 Introduction . 88

6.2 Prior Work . 94

6.3 Notation . 95

6.4 Results of Experiments . 96

6.5 Upper Hessenberg Matrices . 98

6.6 Upper Hessenberg Toeplitz Matrices . 105

6.7 Maximal Characteristic Height Upper Hessenberg Toeplitz Matrices . . . 109

6.8 Maximal Height Characteristic Polynomials 112

6.9 A Connection with Compositions . 120

6.10 Zero Diagonal Upper Hessenberg Matrices 121

6.11 Stable Matrices . 128

6.11.1 Type I Stable Matrices . 128

6.11.2 Type II Stable matrices . 129

6.12 Concluding Remarks . 131

vi

7 Concluding Remarks 134

7.1 Parametric Matrices . 134

7.2 Bohemian Matrices . 135

Curriculum Vitae 137

vii

List of Figures

1.1 The JordanForm function in the LinearAlgebra library in Maple fails

to compute the Jordan form of a matrix with a single parameter. This

example was run in Maple 2018. 2

1.2 Density of the eigenvalues of a sample of 100 million tridiagonal matrices

with entries sampled from the set {−1,+1} with entries on the main

diagonal fixed at 0. The figure is viewed over the complex range −2− 2i

to 2 + 2i. 4

2.1 If A is an m × n matrix, the color represents the ratio of the time to

compute the rank of A over the time to compute the rank of AT . The

ratio plotted is an average of the ratios for 100 randomly generated m× n
matrices with integer entries between −10 and 10, and between 1 and 5

entries containing parameters with at most 5 unique parameters. For each

matrix sampled, the minimum time from 10 iterations is taken. 15

2.2 Bar chart of the execution times for computing the rank of 495 matrices

for our algorithm compared to a naive version. 17

2.3 A triangular decomposition into semi-algebraic systems computed with the

RealTriangularize command. 22

2.4 Output of the RealTriangularize command for the EVE surface. 23

2.5 The computed rank values and the corresponding conditions on the param-

eters for Example 1 . 24

2.6 The computed rank values and the corresponding conditions on the param-

eters for Example 2 (part 1) . 25

2.7 The computed rank values and the corresponding conditions on the param-

eters for Example 2 (part 2) . 26

2.8 The computed rank values and the corresponding conditions on the param-

eters for Example 3 . 26

4.1 Our implementation provides a full case discussion of the JCF of a matrix

with 5 parameters. Two non-trivial cases are shown. 34

viii

4.2 Time to compute the JCF of each Frobenius form in the full case discussion

of the Frobenius form of the matrix in section 4.6.2. For all n, the Frobenius

form splits into two cases: ρ = 0 and ρ 6= 0. The JCF is computed over

each of these branches. Note the exponential growth. Timing was done

on a 2016, 3.3GHz quad-core Intel Core i7 iMac with 16GB of RAM using

Maple 2016.2. 45

5.1 Density plot over the complex plane of the eigenvalues of all 5× 5 matrices

with entries from the set {−1, 0,+1}. The plot is viewed on −4.13− 3.1i

to 4.13 + 3.1i. 53

5.2 The roots of all degree 25 polynomials with ±1 coefficients. 54

5.3 Examples of structures appearing in the plots of Bohemian eigenvalues. . 62

5.4 Radius of the spectrum for the Bohemian family of n×n upper Hessenberg

matrices with a Toeplitz structure, entries on the main diagonal fixed at 0,

and population {−1,+1}. Radius values for dimensions 3 to 25 are exact.

For dimensions larger than 25 the radius has been approximated from a

sample of 100 million matrices at each dimension. All computations were

performed in double precision. 63

5.5 Density plot in the complex plane of the eigenvalues of a random sample

of matrices from the Bohemian family of 5× 5 matrices with population

{−1, 0,+1}. 65

5.6 Eigenvalues from the family of 5× 5 Bohemian matrices with population

{−1, 0,+1}. The left half contains the eigenvalues from a sample of

100 million matrices and the right half contains the eigenvalues from

all 325 = 847,288,609,443 matrices in the family. 66

5.7 A histogram of the densities in the bins (pixels) for the family of 5 ×
5 matrices with population {−1, 0,+1} over the 2001×2001 pixel grid

ranging from −4− 4i to 4 + 4i. The bin with the highest density contains

296,330,735,533 eigenvalues and is the bin that contains 0. The lowest

density bins only contain 160 eigenvalues and occurs 4 times in the density

matrix. Bins containing 3,840 eigenvalues are the most common (excluding

bins with no eigenvalues) and occur 78,440 times in the density matrix. . 72

5.8 Time to compute and plot the eigenvalues of 1 million matrices for a range

of matrix dimensions. Computations were done using 16 cores on an AMD

Ryzen Threadripper 1950X 16 core/32 thread 3.7GHz with 64GB of RAM. 73

ix

5.9 Numeric error in multiple eigenvalues at 0 for two families of matrices.

Red circles have been added to show the expected error in an eigenvalue of

multiplicity m at 0 of ε1/m where ε is machine epsilon. 77

6.1 The set of eigenvalues of all 10,460,353,203 six by six upper Hessenberg

matrices H with entries Hi,j ∈ {−1, 0,+1} for 1 ≤ i ≤ j ≤ 6, and

Hi+1,i = 1 for 1 ≤ i < 6. A more detailed image can be found at

assets.bohemianmatrices.com/gallery/UH_6x6.png 92

6.2 The set of eigenvalues of all 14×14 upper Hessenberg Toeplitz matrices with

sub-diagonal entries equal to 1, and all other entries from the set {−1, 0,+1}.
A more detailed image can be found at assets.bohemianmatrices.com/

gallery/UHT_14x14.png . 92

6.3 The set of eigenvalues of all 14,348,907 matrices in Z6×6
{0} ({−1, 0,+1}); that

is, six by six upper Hessenberg matrices H with entries Hi,j ∈ {−1, 0,+1}
for 1 ≤ i < j ≤ 6, diagonal entries fixed as zero, and Hi+1,i = 1 for 1 ≤
i < 6. A more detailed image can be found at assets.bohemianmatrices.

com/gallery/UH_0_Diag_6x6.png . 93

6.4 The set of eigenvalues of all 14× 14 upper Hessenberg Toeplitz matrices

sub-diagonal entries equal to 1, diagonal entries equal to 0, and all other

entries from the set {−1, 0,+1}. A more detailed image can be found at

assets.bohemianmatrices.com/gallery/UHT_0_Diag_14x14.png . . . 93

6.5 The points are log τn+1 − log τn for n from 0 to 50,000 where τn is the

maximal characteristic height of Mn×n (i.e. when tk = −1, for example).

The solid line is log(1 + ϕ) where ϕ is the golden ratio. 110

6.6 Degree of the term corresponding to the height of the characteristic polyno-

mial of an n×n upper Hessenberg Toeplitz matrix of maximal characteristic

height. 111

x

assets.bohemianmatrices.com/gallery/UH_6x6.png
assets.bohemianmatrices.com/gallery/UHT_14x14.png
assets.bohemianmatrices.com/gallery/UHT_14x14.png
assets.bohemianmatrices.com/gallery/UH_0_Diag_6x6.png
assets.bohemianmatrices.com/gallery/UH_0_Diag_6x6.png
assets.bohemianmatrices.com/gallery/UHT_0_Diag_14x14.png

List of Tables

5.1 For the Bohemian family of n× n matrices with population {−1, 0,+1},
the table reports the number of matrices (3n

2
), the number of distinct

characteristic polynomials, and the number of distinct eigenvalues. 56

5.2 For the Bohemian family of n× n matrices with population {−1, 0,+1},
the table reports the number of matrices (3n

2
), the number of strictly

rhapsodic matrices, and the number of non-strictly rhapsodic matrices. . 57

5.3 Permutation symmetries for the Bohemian familyM of n×n matrices with

population {−1, 0,+1}. The #M column gives the number of matrices in

the family, #MP gives the number of matrices in a permutation normal

subset of M, and #MO gives the number of matrices in the subset of M
with entries ordered along the diagonal. The log10

(
1 − #M

n!#MP

)
column

shows the convergence of the permutation normal subset to the bound

given in Proposition 5.3.17. 59

5.4 Number of distinct characteristic polynomials and Jordan canonical forms

(JCFs) for the family of n× n matrices with population {−1, 0,+1}. The

number of distinct Jordan forms for the 5× 5 family is currently unknown. 61

xi

5.5 Comparison of the time (in seconds) to sample and compute the eigenvalues

of 1 million 5×5 matrices with population {−1, 0,+1} in Matlab, Python

(NumPy), and Julia. The “Sample and Eigenvalues” column gives the time

taken to sample and compute eigenvalues, the “Sample” column is the time

to sample 1 million matrices, and the “Eigenvalues” column gives the time

to compute the eigenvalues of a matrix 1 million times. The “Eigenvalues”

column is based on computing the eigenvalues of a matrix 1 million times

and is repeated for a sample of 100 matrices. The average time is given.

The “Python (NumPy) Sequential” row gives the time to repeatedly sample

5× 5 matrices and then compute their eigenvalues whereas the “Python

(NumPy) Batched” row gives the time to sample a single array of dimension

1,000,000×5×5 and use the batched functionality of the numpy.linalg.eig

function to compute the eigenvalues of all matrices with only one function

call. All scripts were run on a single thread on a computer with an AMD

Ryzen Threadripper 1950X 16 core/32 thread 3.7GHz processor and 64GB

of RAM using Matlab R2018a, Python 3.6.2 (NumPy 1.13.1), and Julia

1.0.2. 74

6.1 Some properties of matrices in Hn×n
{0} ({−1, 0,+1}). The #matrices column

reports the number of distinct matrices at each dimension. The #cpolys

column reports the number of distinct characteristic polynomials at each

dimension. The #neutral polys reports the number of characteristic poly-

nomials where all roots have zero real part. The #neutral matrices column

reports the number of matrices where all eigenvalues have zero real part. 96

6.2 Some properties of matrices in Zn×n{0} ({−1, 0,+1}). The #matrices column

reports the number of distinct matrices at each dimension. The #cpolys

column reports the number of distinct characteristic polynomials at each

dimension. The #neutral polys reports the number of characteristic poly-

nomials where all roots have zero real part. The #neutral matrices column

reports the number of matrices where all eigenvalues have zero real part. 97

6.3 Number of distinct eigenvalues of various multiplicities of matrices in

Zn×n{0} ({−1, 0,+1}). Most eigenvalues are simple. It turns out that every

multiple eigenvalue also occurs as a simple eigenvalue for some other matrix.

The only n-multiple eigenvalue of the class of n by n matrices is, of course,

λ = 0. 97

xii

6.4 Some properties of matrices in Hn×n
{0} ({0,+1}). The #matrices column

reports the number of distinct matrices at each dimension. The #cpolys

column reports the number of distinct characteristic polynomials at each

dimension. The #distinct real λ column reports the number of distinct

real eigenvalues in Hn×n
{0} ({0,+1}). The #neutral polys reports the number

of characteristic polynomials where all roots have zero real part (here only

zn). We conjecture that this is always so (and that there is only one matrix

for that neutral polynomial). The #neutral matrices column reports the

number of matrices where all eigenvalues have zero real part. 98

6.5 Number of distinct eigenvalues of various multiplicities matrices inHn×n
{0} ({0,+1}).

Note that in this class of matrices, diagonal entries of the matrix need not

be zero. 98

6.6 Some properties of matrices from Hn×n
{0} ({−1,+1}). The column #stables

reports the number of characteristic polynomials with all roots in the left

half plane; the corresponding number of matrices is 1, 4, 28, 424, and 11,613.

Other columns are as in previous tables. Blank table entries represent

unknowns. 99

6.7 Number of distinct eigenvalues of various multiplicities of matrices from

Hn×n
{0} ({−1,+1}). The diagonal entries are not zero. 99

6.8 Maximum height, τn, degree of term of characteristic polynomial corre-

sponding to maximum height, µn, and the number of matrices in Mn×n

for dimensions 2 to 10. 109

6.9 The numbers of Type I stable matrices for various populations and dimen-

sions. 129

6.10 The numbers of nilpotent matrices for various populations and dimensions 130

xiii

Abbreviations

CAS Computer algebra system

CPDB Characteristic polynomial database

GCD Greatest common divisor

JCF Jordan canonical form

OEIS Online Encyclopedia of Integer Sequences

xiv

Chapter 1

Introduction

1.1 Parametric Linear Systems

Linear systems are a universal tool in mathematics with their use spanning nearly all

applications. Many applications contain parameters that may be unknown quantities, or

approximate values found through experimentation. The values the parameters take may

lead to a significant difference in the meaning of the underlying system. Understanding

the influence of the parameter values on the underlying system is of great interest. Solving

linear systems with parameters has been studied extensively with early work by Sit in [2].

Significantly less work has been done on computing other properties of these systems

such as the distribution of rank as a function of the parameters, or the possible Jordan

canonical forms (JCF).

Many computer algebra systems (CAS) struggle with these types of problems. Asking

for the rank of a parametric matrix in Maple for example will return a generic solution

assuming the parameter values are transcendental numbers. For example, for the matrix

A =

1 2 3

4 5 6

7 8 α


where α ∈ C, Maple will compute the rank to be 3. If we specialize α = 9, we find

that the rank is 2. Even worse, in Maple, asking for the JCF of a parametric matrix

whose characteristic polynomial cannot be factored such that all irreducible terms are of

degree less than 5 will simply fail to provide a solution, see Figure 1.1 for example. These

problems appear to be universal across CAS. Sometimes the implementations will warn

the user that the answer may not be correct for all parameter values. In the Sage CAS

1

Chapter 1. Introduction 2

for example, a user is warned when computing the JCF of a parametric matrix and the

generic solution is provided. Solving parametric linear systems have been more successful

in those CAS with many specialized packages developed for working with these systems.

Figure 1.1: The JordanForm function in the LinearAlgebra library in Maple fails to
compute the Jordan form of a matrix with a single parameter. This example was run in
Maple 2018.

In this thesis, methods for analyzing matrices with entries that are multivariate

polynomials in a set of parameters are developed. Initially motivated by the failures

of Maple when computing the JCF of a parametric matrix, several algorithms are

developed including one for the JCF where the input matrix is in Frobenius form and

contains polynomial entries. The complexity of these problems is high when parameters

are present. As such, the algorithms are typically limited to small systems with few

parameters. They may succeed on larger systems but this success is dependent on the

linear system. A Maple package called ParametricMatrixTools has been developed to

share the algorithms with the greater mathematics community. These algorithms have

been developed using the theory of regular chains [1] and the ParametricMatrixTools

package has been built on top of the RegularChains package.

Some applications contain matrices where all entries are parameters. Further, such

parameter values may be restricted to belonging to small sets of integers. Such matrices

appear in graph theory where the entries are restricted to the sets {0,+1}, or {−1, 0,+1}.
Since the entries are restricted to small sets, different approaches may be used for the

analysis of these systems. In some cases, there may be a small enough set of distinct

Chapter 1. Introduction 3

matrices that all matrices can be exhaustively explored. Relationships within these

families can further reduce the computation required for many properties. Exploring these

families of parametric matrices turns out to be a very interesting problem on its own.

1.2 Bohemian Matrices

Low dimension square integer matrices are commonly used in introductory linear algebra

curricula for teaching the fundamental concepts. These matrices are often used as examples

for analyzing linear systems including solving the system, and computing its eigenvalues.

Despite their simplicity, many questions remain about these low dimension matrices. For

example, how many singular 6× 6 matrices with entries from the set {−1, 0,+1} exist?

To date the answer is unknown. While the computation for a single matrix is simple,

and is not outside of the scope of what an undergraduate student should be able to

compute, the difficulty comes from the number of such matrices. For this example there

are 336 = 150,094,635,296,999,121 matrices, most of which have likely never appeared

on a linear algebra exam. Even with modern computing power, questions like these still

remain outside the scope of what can be computed on standard hardware. Since the

number of matrices grows exponentially in the square of the dimension, computational

hardware will never be able to make much progress on these problems.

The study of Bohemian matrices focuses on answering questions about distributions

of low dimension integer matrices with entries of bounded height. A Bohemian family

is a distribution of Bohemian matrices where the population is the set of integers the

entries are sampled from. Inspiration for studying these types of problems originated

when exploring density plots of the eigenvalues of such types of random matrices. Discrete

structures appear in the eigenvalue densities that do not have obvious explanations, see

Figure 1.2 for example.

The exploration of new Bohemian families typically begins with plotting the density of

the eigenvalues in the complex plane. To ease this exploration phase, a Matlab framework

was developed to assist with generating mathematically accurate plots. This framework

has been made available at https://github.com/BohemianMatrices/BHIME-Project.

Specializing to Bohemian families where the matrices are structured (e.g. upper

Hessenberg, Toeplitz, circulant, etc.) has shown to be more successful in developing

an understanding of relationships within these families. With these special structures,

existing work on such structured matrices can be extended by restricting the entries to

belong to a small population of integers. Further, brute force exploration can help identify

patterns within these families.

https://github.com/BohemianMatrices/BHIME-Project

Chapter 1. Introduction 4

Figure 1.2: Density of the eigenvalues of a sample of 100 million tridiagonal matrices with
entries sampled from the set {−1,+1} with entries on the main diagonal fixed at 0. The
figure is viewed over the complex range −2− 2i to 2 + 2i.

Brute force computation over Bohemian families can also be used to find the distribu-

tions of characteristic polynomials. In many families, the size of the set of characteristic

polynomials is substantially smaller than the set of matrices. Thus, for some questions,

working with the set of characteristic polynomials can be easier than with the family of

Bohemian matrices. For example, the distribution of determinants within a family can

be read directly from the characteristic polynomials. Questions like this have inspired

the development of the Characteristic Polynomial Database (CPDB). The CPDB

provides distributions of the characteristic polynomials for families of Bohemian matri-

ces. The database is publicly available at http://www.bohemianmatrices.com/cpdb/

and currently contains 1,762,728,065 characteristic polynomials from 2,366,960,967,336

matrices.

http://www.bohemianmatrices.com/cpdb/

Chapter 1. Introduction 5

1.3 Outline

This thesis begins with three chapters on algorithms for parametric matrices. In Chapters 2

through 4, algorithms for computing the rank, Zigzag form, Frobenius (rational) form and

Jordan form of parametric matrices are discussed. Chapters 5 and 6 focus on Bohemian

matrices. Chapter 5 provides a general discussion of Bohemian matrices followed by a

detailed study of a specific family of Bohemian matrices in Chapter 6.

Chapter 2 presents an algorithm for computing the rank of a parametric matrix as a

function of the parameters while avoiding explicitly solving the corresponding parametric

linear system. As input, this algorithm takes a matrix with multivariate polynomial

entries whose indeterminates are regarded as parameters and are subject to a system

of polynomial equations and inequalities. The algorithm relies on the theory of regular

chains. An implementation of the algorithm in the Maple computer algebra system is

presented, which has been built on top of the RegularChains library. The effectiveness

of the implementation is demonstrated by comparing it to a näıve implementation and by

using it to find the rank of several examples from the literature.

In Chapter 3, an algorithm for computing the Zigzag form of a parametric matrix as a

function of the parameters is presented. This work was motivated by a desire to compute

the Frobenius (rational) canonical form of a parametric matrix. By first computing the

Zigzag form, the Frobenius form can be obtained by GCD computations. The algorithm

for the constant case has been taken from [3] and has O(n3) complexity. This algorithm

has been modified to provide a full case discussion for matrices with parameters.

Chapter 4 introduces an algorithm for computing the JCF of a parametric matrix

that is in Frobenius form. The algorithm takes as input a matrix in Frobenius canonical

form where the entries are multivariate polynomials in the parameters and computes a

complete case discussion for the JCF. The JCF of a square matrix is a foundational tool

in matrix analysis. If the matrix A is known exactly, symbolic computation of the JCF is

possible though expensive. When the matrix contains parameters, exact computation

requires either a potentially very expensive case discussion, significant expression swell, or

both. For this reason, no current computer algebra system will compute a case discussion

for the JCF of a matrix A(α) where α is a (vector of) parameter(s). This problem is

extremely difficult in general, even though the JCF is encountered early in most curricula.

The algorithm presented is based on the theory of regular chains and an implementation

built on the RegularChains library in Maple is discussed.

Chapter 5 addresses some of the interesting features of Bohemian families including

symmetries, distribution of eigenvalues, and integer sequences for related properties. A

BIBLIOGRAPHY 6

Matlab framework for visualizing distributions of eigenvalues is presented and used as

an experimental tool for understanding discrete structures found in these distributions.

While developing the framework, two families of Bohemian matrices were found where the

Matlab eigenvalue solver fails to produce solutions in some instances. The techniques used

for computing the properties and characteristic polynomials found in the Characteristic

Polynomial Database are introduced.

Chapter 6 explores a special family of Bohemian matrices, specifically those with entries

from the set {−1, 0,+1}. More, these matrices are specialized to be upper Hessenberg,

with sub-diagonal entries ±1. Many properties remain after these specializations, some of

which were surprising. Two recursive formulae for the characteristic polynomials of upper

Hessenberg matrices are given. Focusing on only those matrices whose characteristic

polynomials have maximal height allows us to explicitly identify these polynomials and

give a lower bound on their height. This bound is exponential in the order of the matrix.

We count stable matrices, normal matrices, and neutral matrices, and tabulate the results

of our experiments. We prove a theorem about the only possible kinds of normal matrices

amongst a specific family of Bohemian upper Hessenberg matrices.

Bibliography

[1] P. Aubry, D. Lazard, and M. Moreno Maza. On the theories of triangular sets. Journal

of Symbolic Computation, 28(1-2):105–124, 1999.

[2] W. Y. Sit. An algorithm for solving parametric linear systems. Journal of Symbolic

Computation, 13(4):353–394, 1992.

[3] A. Storjohann. An O(n3) algorithm for the Frobenius normal form. In Proceedings

of the 1998 International Symposium on Symbolic and Algebraic Computation, pages

101–105. ACM, 1998.

Chapter 2

Comprehensive Rank Computation

for Matrices Depending on

Parameters

2.1 Introduction

Determining the rank of a matrix is a simple computation traditionally presented in

introductory linear algebra courses. Unfortunately, the computation for parametric

matrices is a tedious process which, to our knowledge, does not yet have a completely

satisfactory solution. In this paper we present an algorithmic approach to extending the

methods of rank computation to parametric matrices with polynomial entries. External

equality and inequality constraints on the parameters may be inherited in the problem

being solved and will be considered in the computations. Additionally, we present an

implementation of our algorithm in the Maple computer algebra system (CAS).

For an m × n matrix A(α), where the parameters α are subject to a system of

polynomial constraints S, our rank computation proceeds as follows. We compute the

null space of A(α) by means of a triangular decomposition of the polynomial system S ′

obtained by adding to S the equations of A(α)X = 0, where X is a column vector of

unknowns x1, . . . , xn. By means of set-theoretic operations on algebraic or semi-algebraic

sets, we deduce a decomposition of the parameter space into cells C0, . . . , Cn such that

above Cr, for all 0 ≤ r ≤ n the rank of A(α) is equal to r. The proposed method is, in fact,

stated for both algebraic and semi-algebraic constraints. This feature is achieved thanks

to the theory of regular chains which provides us with a unified framework, reviewed in

Section 2.2, for solving polynomial systems over both the complex and the real numbers.

7

Chapter 2. Comprehensive Rank of Matrices Depending on Parameters 8

In addition, the proposed method is tailored to the problem of parametric matrix

rank computation. That is, we avoid the usage of general tools for solving parametric

polynomial systems, such as comprehensive Gröbner bases [22], comprehensive triangular

decomposition [8], or dynamic evaluation [4, 12]. In fact, we rely on the non-comprehensive

triangular decomposition algorithms presented in [9] and [6] for the complex and real

cases, respectively.

Our approach is presented in Section 2.4, following two lemmas established in Sec-

tion 2.3. We implemented our algorithms in the Maple CAS. Section 4.6 reports on

the successful application of our implementation to various examples taken from the

literature. In addition, the experimental part of our work revealed the importance of a

tailored method, that is, a method avoiding general tools for solving parametric polyno-

mial systems. Indeed, a preliminary implementation, based on comprehensive triangular

decomposition, was generating much more complex output and was substantially slower

than the method presented in Section 2.4.

Works related to this paper include polynomial eigenvalue problems [18, 21] which are

sub-problems of the question studied in this paper. In addition, control theory, where the

rank of a real matrix can be used to determine whether a linear system is controllable, or

observable, is an important area of applications for parametric matrix rank computation.

Extensive work has been done on solving parametric linear systems [2, 11, 13, 17], with

some of the earliest work done by William Sit [20].

2.2 Preliminaries

The algebraic material reviewed below supports the algorithm presented in Section 2.4.

The notion of a regular chain, introduced independently in [16] and [23], is closely related

to that of a triangular decomposition of a polynomial system. Broadly speaking, a

triangular decomposition of a polynomial system S is a set of simpler (in a precise sense)

polynomial systems S1, . . . , Se such that a point p is a solution of S if, and only if, p is a

solution of (at least) one of the systems S1, . . . , Se.

When the purpose is to describe all the solutions of S, whether their coordinates are

real numbers or not, in which case S is said to be algebraic, those simpler systems are

required to be regular chains. We refer to [1, 9] for a formal presentation on the concepts

of a regular chain and a triangular decomposition of an algebraic system.

If the coefficients of S are real numbers and only the real solutions are required, (in

which case S is said to be semi-algebraic), then those real solutions can be obtained by a

triangular decomposition into so-called regular semi-algebraic systems, a notion introduced

Chapter 2. Comprehensive Rank of Matrices Depending on Parameters 9

in [6]. In both cases, each of these simpler systems has a triangular shape and remarkable

properties, which justifies the terminology.

Multivariate polynomials. Let K be a field. If K is an ordered field, then we assume

that it is a real closed field like the field R of real numbers. Otherwise, we assume that K
is algebraically closed, like the field C of complex numbers. Let X1 < · · · < Xs be s ≥ 1

ordered variables. We denote by K[X1, . . . , Xs] the ring of polynomials in the variables

X1, . . . , Xs with coefficients in K. For a non-constant polynomial p ∈ K[X1, . . . , Xs], the

greatest variable in p is called the main variable of p, denoted by mvar(p), and the leading

coefficient of p w.r.t. mvar(p) is called the initial of p, denoted by init(p).

Regular chains. A set R of non-constant polynomials in K[X1, . . . , Xs] is called a

triangular set, if for all p,q ∈ R with p 6= q we have mvar(p) 6= mvar(q). A variable Xi is

said to be free w.r.t. R if there exists no p ∈ R such that mvar(p) = Xi. For a nonempty

triangular set R, we define the saturated ideal sat(R) of R to be the ideal 〈R〉 : h∞R , where

hR is the product of the initials of the polynomials in R. The saturated ideal of the empty

triangular set is defined as the trivial ideal 〈0〉. From now on, R denotes a triangular set of

K[X1, . . . , Xs]. The ideal sat(R) has several properties, and in particular it is unmixed [3].

We denote its height, that is, the number of polynomials in R, by e, thus sat(R) has

dimension s − e. Let Xi1 < · · · < Xie be the main variables of the polynomials in R.

We denote by rj the polynomial of R whose main variable is Xij and by hj the initial

of rj. Thus hR is the product h1 · · ·he. We say that R is a regular chain whenever R is

empty or, {r1, . . . , re−1} is a regular chain and he is regular modulo the saturated ideal

sat({r1, . . . , re−1}).

Constructible sets. Let F ⊂ K[X1, . . . , Xs] be a set of polynomials and g ∈ K[X1, . . . , Xs]

be a polynomial. We denote by V (F) ⊆ Ks the zero set or affine variety of F , that is,

the set of points in the affine space Ks at which every polynomial f ∈ F vanishes. If F

consists of a single polynomial f , we write V (f) instead of V (F). We call a constructible

set any subset of Ks of the form V (F) \ V (g). Let R ⊂ K[X1, . . . , Xs] be a regular chain

and let h ∈ K[X1, . . . , Xs] be a polynomial. We say that the pair [R, h] is a regular system

whenever h is regular modulo sat(R) and V (hR) ⊆ V (h) holds. We write Z(R,h) for

V (R) \ V (h). One should observe that for a regular system [R, h] the zero set Z(R,h)

is necessarily not empty. Regular systems provide an encoding for constructible sets.

More precisely, there exists a finite family T of regular systems [R1, h1], . . . , [Re, he] of

K[X1, . . . , Xs] such that

V (F) \ V (g) = Z(R1, h1) ∪ · · · ∪ Z(Re, he).

Chapter 2. Comprehensive Rank of Matrices Depending on Parameters 10

We call T a triangular decomposition of the constructible set V (F) \ V (g).

In the sequel of this section, we assume that K is a real closed field.

Regular semi-algebraic systems. A regular semi-algebraic system of K[X1, . . . , Xs]

is a triple [T,Q, P] where T ⊂ K[X1, . . . , Xs] is a regular chain, Q is a quantifier-free

formula involving only the free variables of T and P is a set of positive inequalities defined

by polynomials of K[X1, . . . , Xs]; moreover [T,Q, P] must satisfy the following properties:

(i) Q defines a non-empty open set in the space of the free variables of T ;

(ii) at any point α defined by Q, the product hT of the initials of T does not vanish,

the specialized regular chain Tα generates a radical ideal and, each specialized

polynomial in Pα is invertible modulo the ideal generated by Tα;

(iii) at any point α defined by Q, the specialized semi-algebraic system [Tα, Pα] admits

at least one real solution β, that is, every polynomial in Tα is zero at β, and every

polynomial in Pα is positive at β.

We denote by Z(T,Q, P) the set of the points in the affine space Ks simultaneously

satisfying the quantifier-free formula Q, the equation f = 0 for each f ∈ T and, each of

the inequalities of P .

Semi-algebraic sets. We call a semi-algebraic system of K[X1, . . . , Xs] any polynomial

system S of the form

f1 = · · · = fa = 0, g 6= 0, p1 > 0, . . . , pb > 0, q1 ≥ 0, . . . , qc ≥ 0,

where f1, . . . , fa, g, p1, . . . , pb, q1, . . . , qc are polynomials of K[X1, . . . , Xs]. The solution

set S consists of all points in the affine space Ks satisfying simultaneously the above

constraints. We call a semi-algebraic set any subset of Ks which is the solution set of

a semi-algebraic system of K[X1, . . . , Xs]. Regular semi-algebraic systems provide an

encoding for semi-algebraic sets. More precisely, there exists a finite family T of regular

semi-algebraic systems [T1, Q1, P1], . . . , [Te, Qe, Pe] of K[X1, . . . , Xs] such that we have

S = Z(T1, Q1, P1) ∪ · · · ∪ Z(Te, Qe, Pe).

We call T a triangular decomposition of the semi-algebraic set S. Examples are provided

in Appendix 2.6. An important property of any regular semi-algebraic system [T,Q, P] is

the fact that it is a parametrization of its zero set. Therefore, a triangular decomposition

of a semi-algebraic system S decomposes the zero set of S into components, each of which

is given by a parametric representation. This encoding of a semi-algebraic set is very

useful to compute geometrical quantities such as dimension.

Chapter 2. Comprehensive Rank of Matrices Depending on Parameters 11

Encoding constructible sets (resp. semi-algebraic sets) with regular systems (resp.

regular semi-algebraic systems) has another benefit. It leads to efficient algorithms for

performing set-theoretic operations on constructible and semi-algebraic sets; see [8] and [7]

respectively. These operations, as well as the above mentioned triangular decomposition

algorithms, are part of the RegularChains library [5, 19] distributed with the Maple CAS.

In Section 2.4, our algorithm refers to the operations Triangularize, RealTriangularize

and Difference of the RegularChains library. The first two operations compute a

triangular decomposition of a constructible set and a semi-algebraic set, respectively. The

latter applies to a couple (A,B), of either constructible sets or semi-algebraic sets, and

returns the set-theoretic difference A \B.

2.3 Lemmas

We use the same notations as in Section 2.2. In addition, we consider k ≥ 1 ordered

variables α1 < · · · < αk that we shall view as parameters. Let A(α) = A(α1, . . . , αk) be

an m× n matrix with coefficients in K[α1, . . . , αk].

If K is a real closed field, we assume that α1, . . . , αk are subject to a semi-algebraic

system S defined by polynomials of K[α1, . . . , αk]. We denote by Σ ⊆ Kk the semi-

algebraic set defined by S. If K is algebraically closed, we assume that α1, . . . , αk are

subject to an algebraic system that we denote by S and which is defined by polynomials

of K[α1, . . . , αk]. We denote by Σ ⊆ Kk the corresponding constructible set.

Our aim is to compute the rank of A(α) for all α ∈ Σ. More precisely, we aim at

decomposing Σ into cells C0, . . . , Cn such that the rank of A(α) is r for all α ∈ Cr, for

0 ≤ r ≤ n.

Let X be an n-element column vector whose entries are ordered variables x1, . . . , xn

satisfying α1 < · · · < αk < x1 < · · · < xn. Denote by Π the standard projection from

Kk+n onto the space of the least k coordinates. We consider the polynomial system S ′

obtained by adding to S the equations of A(α)X = 0. These are equations given by

polynomials of K[α1 < · · · < αk < x1 < · · · < xn]. Let T be a triangular decomposition

of the zero set of S ′. The following two lemmas state respectively in the complex and

real cases a key property which allows us to deduce from T a case discussion for the

computation of the null space of A(α). This will be used in Section 2.4 in order to obtain

the desired parametric rank computation.

Lemma 2.3.1. If K is algebraically closed, then T is a finite family of regular systems

[T1, h1], . . . , [Te, he] of K[α1, . . . , αk, x1, . . . , xn] such that the following properties hold:

Chapter 2. Comprehensive Rank of Matrices Depending on Parameters 12

(i) each polynomial in each regular chain T1, . . . , Te has degree zero or one w.r.t. each

of the variables x1, . . . , xn;

(ii) each polynomial hi belongs to K[α1, . . . , αk];

(iii) for each 1 ≤ i ≤ e, the projection Π(Z(Ti, hi)) is given by Z(Ti ∩ K[α1, . . . , αk], hi),

that is,

Π−1(Π(Z(Ti, hi))) = Z(Ti ∩ K[α1, . . . , αk], hi),

thus, Π(Z(Ti, hi)) is obtained by “erasing” from [Ti, hi] those polynomials where at

least one of the variables x1, . . . , xn appears.

Proof. We first prove (i). Since variables are ordered as α1 < · · · < αk < x1 < · · · < xn

and since the input polynomials have degree zero or one w.r.t. each of the variables

x1, . . . , xn, the triangular decomposition algorithm of [9] (which relies on polynomial GCD

and resultant computations) generates polynomials which all have degree zero or one

w.r.t. each of the variables x1, . . . , xn. This observation implies (i). Next, we prove (ii).

Following again the triangular decomposition algorithm of [9], each of the polynomials

h1, . . . , he comes either from the input system S ′ or, is a factor of an initial or, a factor of

a resultant computed by the triangular decomposition algorithm of [9]. It follows from

(i) that each of h1, . . . , he necessarily belongs to K[α1, . . . , αk]. Finally, we prove (iii).

Let [Ri, hi] be any of the regular systems of T . Let β be a point in the parameter space.

Since hi does not involve any of the variables x1, . . . , xn the inequation hi(β) 6= 0 makes

sense. Since hi(β) 6= 0 implies that none of the initials of Ti vanishes at β, the conditions

hi(β) 6= 0 and f(β) = 0 (∀f ∈ Ti ∩ K[α1, . . . , αk]),

are sufficient for β to be extended to a zero of Z(Ti, hi). The conclusion follows. \

Lemma 2.3.2. If K is a real closed field, then T is a finite family of regular semi-

algebraic systems [T1, Q1, P1], . . . , [Te, Qe, Pe] of K[α1, . . . , αk, x1, . . . , xn] such that the

following properties hold:

(1) each polynomial in each regular chain T1, . . . , Te has degree zero or one w.r.t. each

of the variables x1, . . . , xn;

(2) each set of polynomial inequalities Pi is empty;

(3) for each i = 1 · · · e, we have

Π−1(Π(Z(Ti, Qi, Pi))) = Z(Ti ∩K[α1, . . . , αk], Qi,∅).

Chapter 2. Comprehensive Rank of Matrices Depending on Parameters 13

Proof. A first step is to compute a triangular decomposition TK over the algebraic closure

of K of the system S ′′ consisting only of the equations of S ′. (See Line 1 of Algorithm

2 in [6].) Lemma 2.3.1 applies to S ′′ and TK. Hence TK consists of regular systems

[T1, h1], . . . , [Te, he] satisfying properties (i), (ii) and (iii) of Lemma 2.3.1. A second

step is to refine TK (still over the algebraic closure of K) by using the inequations and

inequalities of S ′ as inequations. (See Lines 2 to 15 of Algorithm 2 in [6].) Since S ′

has no inequations or inequalities involving (at least one of) the variables x1 < · · · < xn,

we can still assume that, after this second step, we have a triangular decomposition

consisting of regular systems [T1, h1], . . . , [Te, he] satisfying properties (i), (ii) and (iii) of

Lemma 2.3.1. A third and final step is, for each regular system [Ti, hi], to check whether

or not it has real solutions and, if yes, to generate the quantifier free Qi such that the

regular semi-algebraic system [Ti, Qi,∅] describes those real solutions (See Lines 16 to

19 of Algorithm 2 together with Algorithms 3, 5 and 6 in [6].) One should observe that

each Qi may contain inequalities. However, those inequalities involve the parameters

α1, . . . , αk only. Claims (1) and (2) follow from the above observations. Finally, Claim (3)

follows from Claims (1) and (2) and the properties of a regular semi-algebraic system. \

Lemmas 2.3.1 and 2.3.2 imply that the Π-projections of the zero sets of the regular

systems (resp. regular semi-algebraic systems) of the triangular decomposition T decom-

pose the constructible set (resp. semi-algebraic set) Σ into cells B0, . . . , Be above which

the solutions of the parametric linear system A(α)X = 0 is given by one of the regular

systems in T . However, this does not yet solve our parametric rank computation problem.

Indeed, the solution set of A(α)X = 0 above a cell Bi might be contained into the solution

set of A(α)X = 0 above another cell Bj, for some 0 ≤ i < j ≤ e. In fact, dealing with

redundant components is a well-known issue in all types of algorithms for decomposing

polynomial systems. This difficulty is handled in Section 2.4 by a post-processing of the

triangular decomposition T .

2.4 Algorithm

Reusing the notations of Section 2.3, recall that T is a triangular decomposition of the

zero set of the system S ′ obtained by adding to S the equations of A(α)X = 0, where S

is a polynomial system on the parameters of the m × n parametric matrix A(α). The

following procedure computes a decomposition of the zero set Σ ⊆ Kk of S into cells

C0, C1, . . . , Cn such that for all 0 ≤ r ≤ n and all α∗ ∈ Ci the rank of the specialized

matrix A(α∗) is r. We make use of the commands of the RegularChains library specified

Chapter 2. Comprehensive Rank of Matrices Depending on Parameters 14

in Section 2.2. Assume first that K is algebraically closed.

Step 1: Let T := Triangularize(S ′, K[α1 < · · · < αk < x1 < · · · < xn])

Step 2: For 0 ≤ r ≤ n, let Cr be the constructible set of Kk given by all regular systems

[Tj ∩ K[α1 < · · · < αk], hj] such that [Tj, hj] ∈ T and the number of polynomials

of Tj of positive degree in (at least) one of the variables x1 < · · · < xn is exactly r.

Step 3: For r := n down to 1 do

Cr := Difference(Cr, Cr−1 ∪ · · · ∪ C0)

Now, we state the algorithm for the case where K is real closed.

Step 1: Let T := RealTriangularize(S ′, K[α1 < · · · < αk < x1 < · · · < xn])

Step 2: For 0 ≤ r ≤ n, let Cr be the semi-algebraic set of Kk given by all regular

semi-algebraic systems [Tj ∩ K[α1 < · · · < αk], Qj,∅] such that [Tj, Qj,∅] ∈ T and

the number of polynomials of Tj of positive degree in (at least) one of the variables

x1 < · · · < xn is exactly r.

Step 3: For r := n down to 1 do

Cr := Difference(Cr, Cr−1 ∪ · · · ∪ C0)

Theorem 2.4.1. Whether K is algebraically closed or real closed, the above procedure

satisfies the claimed specification.

Proof. Let 0 ≤ r ≤ n and let α∗ ∈ Ci. By virtue of Lemmas 2.3.1 and 2.3.2, the point α∗

can be extended to a solution of a regular chain with n polynomials of positive degree in

(at least) one of the variables x1 < · · · < xn. Thus, the null space of A(α∗) has dimension

at most n − r. Using the fact that the cells C0, C1, . . . , Cn are pairwise disjoint (this

property is achieved by Step 3) it follows from the rank-nullity theorem that the rank of

A(α∗) is exactly r. \

2.5 Implementation

Computing the rank of matrices depending on parameters is only one of many compu-

tations on matrices with parameters we are considering. We are developing a Maple

Chapter 2. Comprehensive Rank of Matrices Depending on Parameters 15

packaged called ParametricMatrixTools for computations on matrices containing param-

eters [10]. The implementations in our package are based on the theory of regular chains

and build on the RegularChains package in Maple. The source including examples of the

main procedures of the package is available at https://github.com/steventhornton/

ParametricMatrixTools. The ComprehensiveRank and RealComprehensiveRank rou-

tines implement the algorithms discussed in Section 2.4 and are applied on the examples

that follow.

Our implementations include some heuristics that aim to improve the computation

time. The first heuristic we use applies to non-square matrices. When computing the

rank of an m×n matrix where n > m, the transpose is taken as this typically results in a

speed improvement. This improvement is a consequence of the triangular decomposition

computation in Step 1 of our algorithm. Computing a triangular decomposition of n

equations equations which are linear in the largest m variables x1, . . . , xm for n > m is

less expensive than when m > n. This improvement is illustrated in Figure 2.1.

5

10

15

20

5 10 15 20

m

n

1

2

3

4

5

Time Ratio

Figure 2.1: If A is an m× n matrix, the color represents the ratio of the time to compute
the rank of A over the time to compute the rank of AT . The ratio plotted is an average
of the ratios for 100 randomly generated m × n matrices with integer entries between
−10 and 10, and between 1 and 5 entries containing parameters with at most 5 unique
parameters. For each matrix sampled, the minimum time from 10 iterations is taken.

The second heuristic we introduce uses the SuggestVariableOrder function from

the RegularChains package to determine an order for the linear variables x1, . . . , xn

that is expected to speed up the triangular decomposition (Step 1 in the algorithms

from Section 2.4). The parameters are excluded from the resulting suggested variable

https://github.com/steventhornton/ParametricMatrixTools
https://github.com/steventhornton/ParametricMatrixTools

Chapter 2. Comprehensive Rank of Matrices Depending on Parameters 16

ordering and they remain in the order given as input to the ComprehensiveRank or

RealComprehensiveRank functions such that they are all less than the linear variables.

The Maple scripts used for all the examples and timing below are available on GitHub

at https://github.com/steventhornton/Comprehensive_Rank_Computation_for_Matrices_

Depending_on_Parameters.

2.5.1 Comparison With Other Implementations

Despite extensive literature on solving parametric linear systems and their corresponding

implementations, we have been unable to find any algorithms or implementations that

provide the full decomposition of the rank of a parametric linear system. To illustrate the

effectiveness of our algorithm, we compare it with a naive implementation based on the

computation of a comprehensive triangular decomposition of the linear system.

Our naive algorithm will compute a decomposition of the zero set Σ ⊆ Kk of S into

cells D0, D1, . . . , Dn such that for all 0 ≤ r ≤ n and all α∗ ∈ Di the rank of the specialized

matrix A(α∗) is r. This algorithm is included in the ParametricMatrixTools package

and can be used by calling the ComprehensiveRank procedure with the algorithm=ctd

option. As in Section 2.4, let S ′ be the polynomial system obtained by adding to S the

equations of A(α)X = 0. Our algorithm follows the notation of [8] for a comprehensive

triangular decomposition.

Step 1: Let the comprehensive triangular decomposition of S ′ ⊂ K[α1, . . . , αk, x1, . . . , xk]

be given by the pair (TC , C ∈ C) for C = Πα(V (S ′)) where α = α1 < · · · < αk.

Step 2: For 0 ≤ r ≤ n, let Dr be the union of all constructible sets C ∈ C such that no

regular chain T ∈ TC contains less than r polynomials in x1, . . . , xn, and at least

one T ∈ TC contains exactly r polynomials in x1, . . . , xn.

Both the implementation of the algorithm discussed here and our naive implementation

were tested on a corpus of 540 parametric matrices generated by Ballarin and Kauers for

their paper on solving parametric linear systems [2]. The corpus is available at https:

//github.com/steventhornton/corpus-of-parametric-linear-systems1. The 540

parametric matrices are all square matrices ranging in size from 4 × 4 to 6 × 6 with

polynomial entries containing between 0 and 3 parameters, of total degree between 2 and

10, between 0 and 12 symbolic entries, and between 0 and 12 zero entries.

1The corpus was originally available at http://www21.in.tum.de/~ballarin/data/c540/ but ap-
pears to have been removed as of early 2018.

https://github.com/steventhornton/Comprehensive_Rank_Computation_for_Matrices_Depending_on_Parameters
https://github.com/steventhornton/Comprehensive_Rank_Computation_for_Matrices_Depending_on_Parameters
https://github.com/steventhornton/corpus-of-parametric-linear-systems
https://github.com/steventhornton/corpus-of-parametric-linear-systems
http://www21.in.tum.de/~ballarin/data/c540/

Chapter 2. Comprehensive Rank of Matrices Depending on Parameters 17

Our experiment ran each of the 540 examples 25 times on each implementation for a

maximum time of 10 minutes. We take the fastest time from the 25 runs as the execution

time for each example. All timings were run with Maple 2017 on an AMD Ryzen

Threadripper 1950X with 64Gb of RAM.

Of the 540 examples, 45 contained no parameters and are excluded from our comparison.

Of the remaining 495 examples, there were 120 that neither implementation was able

to complete in less than 10 minutes. Of the 375 examples that at least one of the

implementations completed in under 10 minutes and contained parameters, our algorithm

computed the rank faster than the naive algorithm in 372 cases. The other 3 examples

were slower by only 1ms. Figure 2.2 compares our algorithm with the naive version across

several properties of the example matrices.

0.01

0.1

1

10

100

1000

4 5 6

Matrix Dimension

E
xe

c
u

ti
o

n
 T

im
e

 (
s
)

0.01

0.1

1

10

100

1000

1 2 3

Number of Parameters

E
xe

c
u

ti
o

n
 T

im
e

 (
s
)

0.01

0.1

1

10

100

1000

2 3 4 5 6 7 8 9 10

Max Total Degree

E
xe

c
u

ti
o

n
 T

im
e

 (
s
)

0.01

0.1

1

10

100

1000

4 7 8 10 12

Number of Symbolic Entries

E
xe

c
u

ti
o

n
 T

im
e

 (
s
)

Our Algorithm Naive Algorithm

Figure 2.2: Bar chart of the execution times for computing the rank of 495 matrices for
our algorithm compared to a naive version.

2.5.2 Example 1

Taking an example from [15] from control theory, we look for the conditions on the

parameters such that the matrix is full rank. When it is full rank we know we have a

Chapter 2. Comprehensive Rank of Matrices Depending on Parameters 18

controllable system.

E =

1 3 1

3 1 1

0 0 0

 A1 =

1 1 3

1 3 1

0 0 0

 , A2 =

 λ 3λ λ

3λ+ µ λ+ µ λ+ 3µ

0 0 0

 , B =

0

0

1



C =



−E 0 0 0 B 0 0 0 0 0

−A1 −E 0 0 0 B 0 0 0 0

A2 −A1 −E 0 0 0 B 0 0 0

0 A2 −A1 −E 0 0 0 B 0 0

0 0 A2 −A1 0 0 0 0 B 0

0 0 0 A2 0 0 0 0 0 B


As stated in [15], C only has full rank if λ 6= 0. We verify this using our ComprehensiveRank

routine and find C to be full rank when λ 6= 0 and µ 6= 1/2. Figure 2.5 in Appendix 2.B

gives the complete output of our implementation with all possible rank values.

2.5.3 Example 2

A second example from [24], we have a matrix depending on 6 complex parameters,

zij, for i = 1,2, j = 1,2,3

X =

 −4z11 − 4z12 −4z12 − 4z13 20z13 + 24z11 + 44z12

−7z11 − 6z12 + z13 −18z12 − 12z13 − 6z11 54z13 + 72z11 + 126z12

−z21 + z23 −12z22 − 6z21 − 6z23 24z23 + 60z22 + 36z21


Since det(X) ≡ 0 we immediately know rank(X) < 3. The result computed using our

algorithm gives 23 cases, but most importantly, no cases where the rank is 3. Sample

cases include:

rank(X) = 1 if


2z11 + 3z12 + z13 = 0

2z21 + 3z22 + z23 = 0

z22 + z23 6= 0

Chapter 2. Comprehensive Rank of Matrices Depending on Parameters 19

rank(X) = 2 if



z12 + z13 = 0

z22 + z23 = 0

z11 − z13 6= 0

z21 − z23 6= 0

For the full list of cases see Figures 2.6 and 2.7 in Appendix 2.B.

2.5.4 Example 3

The final example we show is a modified version of the example in [14] where we introduce

a new parameter c such that c > 0 and maintain the condition that 0.2 ≤ a ≤ 1.2.

A =



−1 1 1 1 1 0 1

0 0 1 0 1 0 0

0 1/2 0 1/2 0 1 0

0 ca 0 a 0 0 0

0 0 −ca 0 −a 0 1

0 0 1 0 0 0 0

1 1 0 0 0 0 0


We find that a rank of 6 or 7 is possible. The resulting conditions on a and c to have

a rank of 6 are c = 2

1
5
≤ a ≤ 6

5
,

and the conditions for rank 7 are 
c > 0

c 6= 2

1
5
≤ a ≤ 6

5
.

The commands executed are displayed in Figure 2.8 in Appendix 2.B.

BIBLIOGRAPHY 20

2.6 Conclusion

For an m× n parametric matrix A(α), where the parameters α are subject to polynomial

constraints S, we have successfully developed and implemented a method for the compu-

tation of the rank of A(α). By taking advantage of the methods of the RegularChains

library we are able to simplify the problem into computing disjoint sets of conditions

where each set corresponds to a unique value of the rank. We have developed methods for

both the case where we have algebraic and semi-algebraic constraints on the parameters.

Bibliography

[1] P. Aubry, D. Lazard, and M. Moreno Maza. On the theories of triangular sets.

Journal of Symbolic Computation, 28(1-2):105–124, 1999.

[2] C. Ballarin and M. Kauers. Solving parametric linear systems: an experiment with

constraint algebraic programming. ACM Sigsam Bulletin, 38(2):33–46, 2004.

[3] F. Boulier, F. Lemaire, and M. Moreno Maza. Well known theorems on triangular

systems and the D5 principle. In Proceedings of Transgressive Computing, Granada,

Spain, 2006.

[4] P. A. Broadbery, T. Gómez-Dı́az, and S. M. Watt. On the implementation of dynamic

evaluation. In Proceedings of the 1995 International Symposium on Symbolic and

Algebraic Computation, pages 77–84, 1995.

[5] C. Chen, J. H. Davenport, F. Lemaire, M. Moreno Maza, N. Phisanbut, B. Xia,

R. Xiao, and Y. Xie. Solving semi-algebraic systems with the regularchains library

in Maple. In Proceedings of Mathematical Aspects of Computer and Information

Sciences, pages 38–51, 2011.

[6] C. Chen, J. H. Davenport, J. P. May, M. Moreno Maza, B. Xia, and R. Xiao.

Triangular decomposition of semi-algebraic systems. Journal of Symbolic Computation,

49:3–26, 2013.

[7] C. Chen, J. H. Davenport, M. Moreno Maza, C. Xia, and R. Xiao. Computing with

semi-algebraic sets represented by triangular decomposition. In Proceedings of the

2011 International Symposium on Symbolic and Algebraic Computation, pages 75–82.

ACM, 2011.

BIBLIOGRAPHY 21

[8] C. Chen, O. Golubitsky, F. Lemaire, M. Moreno Maza, and W. Pan. Comprehen-

sive triangular decomposition. In Proceedings of Computer Algebra in Scientific

Computing, volume 4770 of Lecture Notes in Computer Science, pages 73–101, 2007.

[9] C. Chen and M. Moreno Maza. Algorithms for computing triangular decomposition

of polynomial systems. Journal of Symbolic Computation, 47(6):610–642, 2012.

[10] R. M. Corless and S. E. Thornton. A package for parametric matrix computations. In

Proceedings of the International Congress on Mathematical Software, pages 442–449.

Springer, 2014.

[11] M. D. Darmian and A. Hashemimir. Parametric FGLM algorithm. Journal of

Symbolic Computation, 82:38–56, 2017.

[12] J. Della Dora, C. Dicrescenzo, and D. Duval. About a new method for computing

in algebraic number fields. In European Conference on Computer Algebra, pages

289–290, 1985.

[13] G. M. Diaz-Toca, L. Gonzalez-Vega, and H. Lombardi. Generalizing Cramer’s rule:

Solving uniformly linear systems of equations. SIAM Journal on Matrix Analysis

and Applications, 27(3):621–637, 2005.

[14] S. G. Dietz, C. W. Scherer, and W. Huygen. Linear parameter-varying controller syn-

thesis using matrix sum-of-squares relaxations. In Brazilian Automation Conference,

2006.

[15] M. I. Garćıa-Planas and J. Clotet. Analyzing the set of uncontrollable second

order generalized linear systems. International Journal of Applied Mathematics and

Informatics, 1(2):76–83, 2007.

[16] M. Kalkbrener. Three contributions to elimination theory. PhD thesis, Johannes

Kepler University, Linz, 1991.

[17] D. Kapur. An approach for solving systems of parametric polynomial equations.

Principles and Practices of Constraint Programming, pages 217–244, 1995.

[18] M. Karow, D. Kressner, and F. Tisseur. Structured eigenvalue condition numbers.

SIAM Journal on Matrix Analysis and Applications, 28(4):1052–1068, 2006.

[19] F. Lemaire, M. Moreno Maza, and Y. Xie. The regularchains library. In I. S.

Kotsireas, editor, Maple Conference, pages 355–368, 2005.

BIBLIOGRAPHY 22

[20] W. Y. Sit. An algorithm for solving parametric linear systems. Journal of Symbolic

Computation, 13(4):353–394, 1992.

[21] F. Tisseur and N. J. Higham. Structured pseudospectra for polynomial eigenvalue

problems, with applications. SIAM journal on matrix analysis and applications,

23(1):187–208, 2001.

[22] V. Weispfenning. Comprehensive Gröbner bases. Journal of Symbolic Computation,

14(1):1–30, 1992.

[23] L. Yang and J. Zhang. Searching dependency between algebraic equations: an

algorithm applied to automated reasoning. Technical Report IC/89/263, International

Atomic Energy Agency, Miramare, Trieste, Italy, 1991.

[24] B. Zhou and G. Duan. An explicit solution to the matrix equation AX −XF = BY .

Linear Algebra and its Applications, 402:345–366, 2005.

2.A Appendix A

In this section, we provide examples of triangular decompositions of polynomial systems.

As a first illustration let us consider the following semi-algebraic system{
(x− 1)(y2 + t2) + (x− 2)(y2 − t) = 0

(x− 1)(x− 2) = 0,
(2.1)

and solve it with the RealTriangularize command of the RegularChains library, leading

to the computations in Figure 2.3.

> >

> >

> >

Rd PolynomialRing y, x, t ;
Rd polynomial_ring

Fd xK1 $ xK2 , xK1 $ y2Ct2 C xK2 $ y2Kt ;
Fd xK 1 xK 2 , xK 1 t2 C y2 C xK 2 y2 K t

RealTriangularize F, R, output = record ;
y = 0

xK 2 = 0

t = 0
,
y2 K t = 0

xK 1 = 0

tO 0

,

y = 0

xK 1 = 0

t = 0

Figure 2.3: A triangular decomposition into semi-algebraic systems computed with the
RealTriangularize command.

BIBLIOGRAPHY 23

The above triangular decomposition consists of three regular semi-algebraic systems.

Let us denote them respectively by [T1, Q1, P1], [T2, Q2, P2], [T3, Q3, P3]. The first and the

third ones consist simply of a regular chain, thus we have P1 = P3 = ∅ and Q1 = Q3 = true.

In fact each of [T1, Q1, P1], [T3, Q3, P3] simply encodes a point, that is, a zero-dimensional

component. For the second one, we have P2 = ∅ and Q2 = 0 < t, thus T2 = {y2− t, x−1}.
Therefore, [T2, Q2, P2], is a parametrization of a one-dimensional component.

> >

> >

> > Rd PolynomialRing x, y, z ;
Rd polynomial_ring

Fd 5$x2C2$z2$xC5$y6C15$y4K5$y3K15$y5C5$z2 ;
Fd 5 y6 K 15 y5 C 15 y4 C 2 z2 xK 5 y3 C 5 x2 C 5 z2

RealTriangularize F, R, output = record ;
5 x2 C 2 z2 xC 5 y6 C 15 y4 K 5 y3 K 15 y5 C 5 z2 = 0

25 y6 K 75 y5 C 75 y4 K z4 K 25 y3 C 25 z2 ! 0
,

5 xC z2 = 0

25 y6 K 75 y5 C 75 y4 K 25 y3 K z4 C 25 z2 = 0

64 z4 K 1600 z2 C 25 O 0

zs 0

zK 5 s 0

zC 5 s 0

,

x = 0

yK 1 = 0

z = 0
,

x = 0

y = 0

z = 0
,

xC 5 = 0

yK 1 = 0

zK 5 = 0
,

xC 5 = 0

y = 0

zK 5 = 0
,

xC 5 = 0

yK 1 = 0

zC 5 = 0
,

xC 5 = 0

y = 0

zC 5 = 0
,

5 xC z2 = 0

2 yK 1 = 0

64 z4 K 1600 z2 C 25 = 0

Figure 2.4: Output of the RealTriangularize command for the EVE surface.

Figure 2.4 contains a second and more advanced example, where the purpose of the

Maple session is to obtain a description of the real points of the hypersurface EVE from the

Algebraic Surface Gallery2 and whose equation is 5x2+2xz2+5y6+15y4+5z2−15y5−5y3 =

0. The solutions of the above are all (x,y,z) where x,y,z are complex numbers satisfying

this equation. The output of RealTriangularize consists of 9 regular semi-algebraic

systems, for which the variables are ordered as x > y > z. The first regular semi-algebraic

system represents a two-dimensional component. Indeed, it defines x as the solution of

2This is a collection of algebraic surfaces, well-known in the mathematical literature and available at
http://homepage.univie.ac.at/herwig.hauser/bildergalerie/gallery.html

http://homepage.univie.ac.at/herwig.hauser/bildergalerie/gallery.html

BIBLIOGRAPHY 24

a parametric equation of degree 2, where y,z are regarded as parameters subject to an

inequality (defined by the discriminant of the equation) which ensures the existence of two

x-values for each valid (y,z)-value. The second regular semi-algebraic system represents a

one-dimensional component: the two equations define (x,y) as functions of z, which is

subject to various inequalities. Each of the other 7 regular semi-algebraic systems encodes

a zero-dimensional component, that is, a finite set of points.

2.B Appendix B

In this section, we show the full solutions to the examples presented in Section 5. In the

first example we computed that the matrix can have a rank of 15 through 18 depending

upon the parameters. Figure 2.5 shows the conditions resulting in each rank. For the

Figure 2.5: The computed rank values and the corresponding conditions on the parameters
for Example 1

second example we show all conditions on the parameters resulting in a rank of 0, 1 or 2.

Figure 2.6 and 2.7 show all conditions for the respective ranks. The executed commands

and the output for Example 3 are displayed in Figure 2.8.

BIBLIOGRAPHY 25

Figure 2.6: The computed rank values and the corresponding conditions on the parameters
for Example 2 (part 1)

BIBLIOGRAPHY 26

Figure 2.7: The computed rank values and the corresponding conditions on the parameters
for Example 2 (part 2)

Figure 2.8: The computed rank values and the corresponding conditions on the parameters
for Example 3

Chapter 3

Zigzag Form over Families of

Parametric Matrices

3.1 Introduction

Currently, computations on parametric matrices are considered difficult and costly because

canonical forms such as the Frobenius, Jordan and Weyr forms are discontinuous; this

requires special cases for completeness, and exhaustive analysis produces combinatorially

many cases. Some papers considering special cases with parameters include [1] and [4].

There are a large number of methods for computing the Frobenius form of a constant

matrix such as in [2], [6], [7], [8], [9] and [10]. We instead modify the algorithm of

Storjohann from [11] and [12] for computations on parametric matrices. This algorithm

requires the computation of a so-called Zigzag form before the Frobenius form can be

computed. The Zigzag form itself is not directly useful for applications but provides a

matrix from which the Frobenius form can easily be obtained.

3.2 Background Material

Let K be an algebraically closed field or a real closed field. Let α1 < · · · < αm be m ≥ 1

ordered variables. We denote by K[α] = K[α1, . . . ,αm] the ring of polynomials in the

variables α = α1, . . . , αm with coefficients in K. We denote by K(α) the quotient field of

K[α], that is, the field of multivariate rational functions in α with coefficients in K.

Proposition 3.2.1 ([5, 3]). For two constructible (resp. semi-algebraic) sets S1, S2 ⊂ Km,

one can compute a triangular decomposition of their intersection S1 ∩ S2, their union

S1 ∪ S2 and the set theoretical difference S1 \ S2.

27

Chapter 3. Zigzag Form over Families of Parametric Matrices 28

Remark 3.2.2. Let S ⊆ Km be a constructible (resp. semi-algebraic) set and f(α) ∈ K[α].

A useful tool for later computations will be finding the partition (Seq, Sneq) of S defined

by

Seq = S ∩ V (f(α)) and Sneq = S \ V (f(α)) = S \ Seq

by means of the algorithms of [5, 3].

3.3 Zigzag Matrix

Parametric Polynomial. Let f(x;α) be a monic polynomial of degree r w.r.t. x. We

write:

f(x;α) = f0(α) + f1(α)x+ · · ·+ fr−1(α)xr−1 + xr (3.1)

with coefficients f0(α), . . . , fr−1(α) ∈ K(α). The α values are constrained to belong to a

constructible (resp. semi-algebraic) set S such that the denominator of every coefficient

f0(α), . . . , fr−1(α) is nonzero everywhere on S.

Zigzag Matrix. A parametric Zigzag matrix takes the form

Cc1(x;α) B1

CT
c2(x;α)

B2 Cc3(x;α) B3

CT
c4(x;α)

. . .

CT
ck−2(x;α)

Bk−2 Cck−1(x;α) Bk−1

CT
ck(x;α)


for k even.

Each polynomial c1(x;α), . . . ,ck(x;α) takes the same form as Equation (3.1) and each

Cci(x;α) is a companion matrix of ci(x;α). The Bi blocks have all entries zero except those

in the upper left corner which are either 0 or 1; each Bi block has its size determined by

its neighbouring companion blocks.

If there is an odd number of diagonal blocks we allow deg ck = 0 while deg ci ≥ 1 for

1 ≤ i < k. This allows the kth diagonal block to have dimension zero and hence the block

Bk−1 above CT
ck(x;α) will also have dimension zero.

Chapter 3. Zigzag Form over Families of Parametric Matrices 29

3.4 Computation

Theorem 3.4.1. For every matrix A(α) ∈ Kn×n[α], there exists a partition (S1, . . . , SN)

of input constructible (resp. semi-algebraic) set S such that for each Si, there exists a

matrix Zi(α) ∼ A(α) in Zigzag form where the denominators of the coefficients of the

entries of Zi(α) are all non-zero everywhere on Si.

We follow the same algorithm presented in Section 2 of [11]. Stages 1 and 3 must

be modified for finding pivots vanishing nowhere on the underlying constructible (resp.

semi-algebraic) set.

Once computation has split into two branches, one where a pivot has been found and

the set S has been replaced with Sneq, and another where the pivot has not yet been

found and the search for a pivot continues with S replaced by Seq, the computations

proceed in parallel (or by stack execution sequentially).

3.5 Implementation

A sequential implementation has been written in Maple to compute the set of Zigzag

forms similar to an input parametric matrix under algebraic or semi-algebraic constraints.

The RegularChains library in Maple contains many useful procedures and sub-packages

for performing polynomial computations with parameters. See www.regularchains.org

for details. The ConstructibleSetTools and SemiAlgebraicSetTools sub-packages of

RegularChains are useful for representing constructible sets and semi-algebraic sets re-

spectively and, performing set operations on them, as mentioned in Proposition 3.2.1. The

GeneralConstruct procedure from the ConstructibleSetTools sub-package obtains a

triangular decomposition of an input system of polynomial equations and inequations.

Analogously, the RealTriangularize procedure computes a triangular decomposition

of a semi-algebraic set given by an input system of polynomial equations, inequations

and inequalities. The intersection and set theoretical difference computations needed

in Remark 3.2.2 are performed by the Intersection and Difference commands of the

ConstructibleSetTools and SemiAlgebraicSetTools sub-packages.

Cost. As one can expect, we have verified experimentally that the main cost of the

implemented algorithm comes from the computations of the intersections needed in

Remark 3.2.2. Clearly, this costs grows exponentially with the number m of parameters

α1, . . . , αm.

www.regularchains.org

BIBLIOGRAPHY 30

Example 3.5.1. Consider the 3× 3 matrix with a single parameter α over the complex

numbers C

A(α) =

 −1 −α− 1 0

−1/2 α− 2 1/2

−2 3α + 1 −1


with no input conditions on α. The Zigzag forms similar to this matrix are

Z1(α) =

0 0 4α

1 0 4(α− 1)

0 1 α− 4

 α + 3 6= 0, Z2(α) =

 0 −4 1

1 −4 0

0 0 −3

 α + 3 = 0 .

Clearly, Z1(α) is already in Frobenius form whereas Z2(α) requires additional work to

obtain the Frobenius form. This example turns out to have a continuous Frobenius form

in the parameter, hence the Frobenius form is Z1(α) for all values of α.

3.6 Applications

An implementation of the algorithm for computing the Zigzag form is available as part

of the ParametricMatrixTools package we are developing for the Maple computer

algebra system. A repository containing the implementation as well as several examples is

available at . We are currently extending the functionalities offered by this implementation

dedicated to parametric matrices under algebraic or semi-algebraic constraints. Indeed,

from the Zigzag form, the Frobenius form can easily be determined, leading to the

computation of the Jordan form and the minimal polynomial.

Bibliography

[1] V. I. Arnol’d. On matrices depending on parameters. Russian Mathematical Surveys,

26(2):29–43, 1971.

[2] D. Augot and P. Camion. On the computation of minimal polynomials, cyclic vectors,

and Frobenius forms. Linear Algebra and its Applications, 260:61–94, 1997.

[3] C. Chen, J. H. Davenport, J. P. May, M. Moreno Maza, B. Xia, and R. Xiao.

Triangular decomposition of semi-algebraic systems. Journal of Symbolic Computation,

49:3–26, 2013.

https://github.com/steventhornton/ParametricMatrixTools

BIBLIOGRAPHY 31

[4] G. Chen. Computing the normal forms of matrices depending on parameters. In

Proceedings of the 1989 International Symposium on Symbolic and Algebraic Compu-

tation, pages 244–249. ACM, 1989.

[5] V. G. Ganzha, E. W. Mayr, and E. V. Vorozhtsov, editors. Computer Algebra in

Scientific Computing, volume 4770 of Lecture Notes in Computer Science. Springer,

2007.

[6] M. Giesbrecht. Fast algorithms for matrix normal forms. In Symposium on Founda-

tions of Computer Science, pages 121–130. IEEE, 1992.

[7] M. Giesbrecht. Nearly optimal algorithms for canonical matrix forms. SIAM Journal

on Computing, 24(5):948–969, 1995.

[8] E. Kaltofen, M. S. Krishnamoorthy, and B. D. Saunders. Parallel algorithms for

matrix normal forms. Linear Algebra and its Applications, 136:189–208, 1990.

[9] K. R. Matthews. A rational canonical form algorithm. Mathematica Bohemica,

117(3):315–324, 1992.

[10] P. Ozello. Calcul exact des formes de Jordan et de Frobenius d’une matrice. PhD

thesis, Université Joseph-Fourier-Grenoble I, 1987.

[11] A. Storjohann. An O(n3) algorithm for the Frobenius normal form. In Proceedings

of the 1998 International Symposium on Symbolic and Algebraic Computation, pages

101–105. ACM, 1998.

[12] A. Storjohann. Algorithms for matrix canonical forms. PhD thesis, ETH Zurich,

2000.

Chapter 4

Jordan Canonical Form with

Parameters From Frobenius Form

with Parameters

4.1 Introduction

The Jordan canonical form (JCF) of a matrix and its close cousin the Weyr canonical form

are foundational tools in the analysis of eigenvalue problems and dynamical systems. For

a summary of theory, see for instance Chapter 6 in The Handbook of Linear Algebra [20];

for the Weyr form, see [29].

The first use usually seen for the JCF is as a canonical form for matrix similarity:

two matrices are similar if and only if they have identical (sets of, up to ordering) Jordan

canonical forms [21]. Of course, there are other (often better) canonical forms for similarity

such as the Frobenius (rational) canonical form, or the rational Jordan form [13, 22].

The JCF is well known to be discontinuous with respect to changes in the entries if

the base field K has nonempty open sets. We typically take K = C, the field of complex

numbers. Therefore, the JCF cannot be computed numerically with small forward error,

even when using a numerically stable algorithm. A numerically stable algorithm gives

the exact answer for a nearby input A + E with ||E|| = O(µ) or O(µ||A||) or even

|eij| < O(µ)|aij| where µ is unit roundoff.

This has forced the development of alternatives to the JCF, such as the Schur form,

which is numerically stable and useful in the computation of matrix functions via the

Parlett recurrences, for instance [19]. Consider the computation of the matrix exponential.

First computing the JCF is one of the famous “Nineteen Dubious Ways to Compute the

32

Chapter 4. Jordan Form with Parameters from Frobenius Form 33

Exponential of a Matrix” [19, 27]; computing the matrix exponential remains of serious

interest today (or perhaps is even of increased interest) because of new methods for

“geometric” numerical integration of large systems [11, 17, 24].

Analysis of small systems containing symbolic parameters is also of great interest,

in mathematical biology especially (models of disease dynamics in populations and in

individual hosts, evolutionary or ecological models) but also in many other dynamical

systems applications such as fluid-structure interactions, robot kinematics, and electrical

networks. The algorithmic situation for systems containing parameters is much less

well-developed than is the corresponding situation for numerical systems. Although

alternatives to the JCF exist for the analysis of these systems, the JCF has become a

standard tool with implementations available in every major computer algebra system

(CAS).

The current situation in Maple is that explicit computation of the JCF of a matrix

containing parameters of dimension 5 or more may fail in some simple cases. For example,

Maple simply does not provide a result for the JCF of the Frobenius companion matrix

of p(x) = x5 + x4 + x3 + x2 + x+ a. Similar failures occur for the MatrixFunction and

MatrixExponential procedures. Wolfram Alpha gives the generic answers, but fails to

give non-generic ones. Computing matrix functions may succeed in cases where computing

the JCF does not because the JCF need not be used (an interpolation algorithm can be

used instead); see for instance Definition 1.4 in [19].

Most computer algebra systems have adopted some variation of the definition of

algebraic functions as implicit roots of their defining polynomials. In Maple, the

syntax uses RootOf; together with an alias facility. This gives a useful way to encode the

mathematical statement (for instance) “Let α be a root of the polynomial x5 +εx+1 = 0”.

> alias(alpha = RootOf(x^5+ eps*x+1,x)):

This should, in theory, allow symbolic computation of the JCF of (small) matrices, even

ones containing parameters. To date in practice it has not. “In theory there is no

difference between theory and practice; in practice there is.”1

In this paper, we offer some progress, although we note that combinatorial growth

of the resulting expressions remains a difficulty. However, the tools we provide here

are already useful for some example applications and go some way towards filling a

scientific and engineering need. We aim to minimize unnecessary growth throughout the

computation.

The tools we use here include provisos [8] and comprehensive square-free factorization

1http://wikiquote.org/wiki/Jan_L._A._van_de_Snepscheut

http://wikiquote.org/wiki/Jan_L._A._van_de_Snepscheut

Chapter 4. Jordan Form with Parameters from Frobenius Form 34

with the RegularChains package. This is in the tradition of Cauchy:

Thus Cauchy insisted in the preface to his Cours d’Analyse [1821] that mathe-
matical reasoning must not be based on arguments “drawn from the generality
of algebra,” arguments which “tend to attribute an indefinite scope to the
algebraic formulas, whereas in reality the majority hold true only under certain
conditions and for certain quantities of the variables involved.” T.Hawkins [18,
p. 122]

Consider, for example, the Jacobian matrix in [36]. If you compute the JCF of this

matrix using Maple’s built-in JordanForm command it will return a diagonal matrix

where the eigenvalues are large nested radical expressions as a result of explicitly solving

the characteristic polynomial. In contrast, our ComprehensiveJordanForm method gives

a full case discussion. Two interesting cases where the JCF is non-trivial are shown in

Figure 4.1. Further details of this example are given in Section 4.6.5.

Figure 4.1: Our implementation provides a full case discussion of the JCF of a matrix
with 5 parameters. Two non-trivial cases are shown.

In Section 4.5, we present an algorithm for computing the JCF of a matrix in Frobenius

form where the entries are multivariate polynomials whose indeterminates are regarded

as parameters. Our approach uses comprehensive square-free factorization to provide a

complete case discussion. Classical approaches for computing the JCF rely on elementary

row and column operations that maintain a similarity relation at each step [3, 14, 30].

Because the entries of the matrices we are considering are multivariate polynomials, row

and column operations lead to significant expression growth that can be difficult to control.

Additionally, this would require us to work over matrices of multivariate rational functions

in the parameters, again making it difficult to control expression growth. By instead

computing fraction free square-free factorizations, we are able to maintain better control

Chapter 4. Jordan Form with Parameters from Frobenius Form 35

over expression growth. Because our implementation does not use elementary row and

column operations, we do not compute the similarity transformation matrix Q such that

J = Q−1AQ gives the Jordan form J of A. We leave this problem for future work.

We present an implementation of our algorithm in Section 4.6 and use it to solve

several problems taken from the literature. These examples are not in Frobenius form

and we do not discuss in detail how we obtain the Frobenius form. The Frobenius form

implementation uses standard algorithms based on GCD computations of parametric

polynomials to find the Smith form of A − xI and the relation between this and the

Frobenius form of A [22].

Section 4.4 presents a new approach for computing the JCF of a non-parametric

matrix in Frobenius form over the splitting field of the characteristic polynomial. Our

discussion is based on the theory of regular chains. We do not apply this splitting field

approach in the parametric case because the square-free factorization approach we use

gives the complete structure of the JCF. Constructing the splitting field would be vastly

more expensive than the approach presented in Section 4.5.

4.2 Some Prior Work

As previously mentioned, the JCF of a matrix A ∈ Cn×n as a function of the entries

of A has discontinuities. These discontinuities are often precisely what is important in

applications. This also means that even numerically stable algorithms can sometimes give

results with O(1) forward error. This is often also stated by saying that “computing the

JCF is an ill-posed problem” [3].

This has not prevented people from trying to compute the JCF numerically anyway

(see [3] and the references therein), but in general such efforts cannot always be satisfactory:

discontinuous is ill-posed, and without regularization such efforts are (sometimes) doomed.

There have been at least three responses in the literature.

One is to find other ways to solve your problem, i.e. compute matrix functions such as

An and exp(tA), without first computing the JCF, and the invention of the numerically

stable Schur factoring and the Parlett recurrences for instance has allowed significant

success [19].

The second response is to find a canonical form that explicitly preserves the continuity

or smoothness of the matrix; the versal forms of [1] do this. Incidentally, the Frobenius

form with parameters is an example of a versal form (Arnol’d calls this a Sylvester family),

but there are others. The paper [7] uses Carleman linearization to do something similar.

The third response is to assume exact input and try to do exact or symbolic computation

Chapter 4. Jordan Form with Parameters from Frobenius Form 36

of the JCF. Early attempts, e.g. [14], had high complexity: O(n8) [30] in the dimension n

and with expression growth O(2n
2
). A key step is the computation of the Frobenius form,

and the current best complexity algorithm is O(n3) field operations, and keeps expression

swell to a minimum [32]. Boolean circuit complexity results can be found in [22].

Inclusion of symbolic parameters makes things much more complicated and expensive,

of course. Early work by Guoting Chen, who used computation in series in a single

parameter [6] does not seem to have been improved upon. Some modern computer algebra

systems simply give up when asked to compute the JCF of a matrix bigger than 5× 5

that contains a parameter as we showed in Section 4.1.

This present paper attempts to strengthen the direct approach and improve the

capabilities of CAS to find the JCF of a matrix that contains parameters. Our reasoning

is that to use either the versal form or the Frobenius form or Carleman linearization [7]

requires educating the user, which while in principle is the best idea, in practice can lead

to suboptimal results (such as the user refusing to be educated). So if the user wants the

JCF, let’s try to give it to them. This can have an advantage, in that the user will learn

about the special cases, and those may be what was actually needed.

There has been a significant body of computational algebraic work relevant to this

problem, in computing the Frobenius form, the Zigzag form, and the Smith form [32, 33]

but relatively few works [1, 6] on matrices with parameters. The difficulty appears to

be combinatorial growth in the number of possible different cases. In the context of

solving parametric linear systems, not eigenvalues, a significant amount of work has been

done [2, 4, 9, 10, 23, 31]. Parametric nonlinear systems are studied in [26, 28, 37] and the

references therein.

4.3 Preliminaries

Sections 4.3.1 and 4.3.2 gather the basic concepts and results from polynomial algebra

that are needed in this paper. Meanwhile, Sections 4.3.3 and 4.3.4 review the notions of

the Frobenius canonical form and the Jordan canonical form.

4.3.1 Regular chain theory

Let K be a field and K its algebraic closure. Let X1 < · · · < Xs be s ≥ 1 ordered

variables. We denote by K[X] the ring of polynomials in the variables X = X1, . . . , Xs

with coefficients in K. For F ⊂ K[X], we denote by 〈F 〉 and V (F), the ideal generated by

F in K[X] and the algebraic set of Ks
consisting of the common roots of the polynomials

Chapter 4. Jordan Form with Parameters from Frobenius Form 37

of F . For a non-constant polynomial p ∈ K[X], the greatest variable of p is called the

main variable of p and denoted mvar(p), and the leading coefficient of p w.r.t. mvar(p) is

called the initial of p, denoted by init(p). The Zariski closure of W ⊆ Ks
, denoted by W ,

is the intersection of all algebraic sets V ⊆ Ks
such that W ⊆ V holds.

A set T ⊂ K[X] \K is triangular if mvar(t) 6= mvar(t′) holds for all t 6= t′ in T . Let hT

be the product of the initials of the polynomials in T . We denote by sat(T) the saturated

ideal of T ; if T is empty, then sat(T) is defined as the trivial ideal 〈0〉, otherwise it is

the ideal 〈T 〉 : h∞T . The quasi-component W (T) of T is defined as V (T) \ V (hT). The

following property holds: W (T) = V (sat(T)).

A triangular set T ⊂ K[X] is a regular chain if either T is empty, or the set T ′

is a regular chain, and the initial of p is regular (that is, neither zero nor zero di-

visor) modulo sat(T ′), where p is the polynomial of T with largest main variable,

and T ′ := T \ {p}. Let T ⊂ K[X] be a regular chain. If T contains s polynomials

t1(X1), t2(X1, X2), . . . , ts(X1, . . . , Xs), then T generates a zero-dimensional ideal which is

equal to the saturated ideal sat(T). If, in addition, the ideal sat(T) is prime (and, thus

maximal in this case), then T is an encoding of the field extension L := K[X]/〈T 〉.
Let H ⊂ K[X]. The pair [T,H] is a regular system if each polynomial in H is regular

modulo sat(T); the zero set of [T,H], denoted by Z(T,H), consists of all points of Ks

satisfying t = 0 for all t ∈ T , h 6= 0 for all h ∈ H ∪ {hT}. A regular chain T , or a regular

system [T,H], is square-free if for all t ∈ T , the polynomial der(t) is regular w.r.t. sat(T),

where der(t) = ∂t
∂v

and v = mvar(t).

The zero set S of an arbitrary system of polynomial equations and inequations is called

a constructible set and can be decomposed as the union of the zero sets (resp. the Zariski

closure of the zero sets) of finitely many square-free regular systems [T1,H1], . . . , [Te, He].

When this holds we have S = Z(T1, H1) ∪ · · · ∪ Z(Te, He) (resp. S = Z(T1, H1) ∪ · · · ∪
Z(Te, He)) and we say that [T1,H1], . . . , [Te, He] is a triangular decomposition of S in the

sense of Lazard and Wu (resp. in the sense of Kalkbrener).

We specify below a core routine thanks to which triangular decompositions can be

computed. For more details about the theory of regular chains and its algorithmic aspects,

we refer to [5].

Notation 1. The function Squarefree RC(p, T,H) computes a set of triples

((bi,1, . . . , bi,`i), Ti, Hi) with 1 ≤ i ≤ e, such that [T1,H1], . . . , [Te, He] are regular sys-

tems forming a triangular decomposition of Z(T,H), and for all 1 ≤ i ≤ e:

1. bi,1, . . . , bi,`i are polynomials with the same main variable v = mvar(p) such that we

have p ≡
∏`i

j=1 b
j
i,j mod sat(Ti),

Chapter 4. Jordan Form with Parameters from Frobenius Form 38

2. all discriminants discr(bi,j, v) and all resultants res(bi,j, bi,k, v) are regular modulo

sat(Ti), thus
∏`i

j=1 b
j
i,j is a square-free factorization of p modulo sat(Ti).

4.3.2 Regular chain representation of a splitting field

Let p(x) ∈ K[x] be a monic univariate polynomial. The splitting field of p(x) over K is

the smallest field extension of K over which p(x) splits into linear factors,

p(x) =
∏̀
i=1

(x− ri)mi . (4.1)

The set {r1, . . . , r`} generates L over K. That is, L = K(r1, . . . , r`).

Assume that p(x) is an irreducible, monic polynomial in K[x] of degree n ≥ 2. To

construct the splitting field L of p(x) and compute the factorization of p(x) into linear

factors over L, we proceed as follows.

1. Initialize i := 1, yi := x, L := K, T := {}, P := {} and F := {p}; the set F is

assumed to maintain a list of univariate polynomials in yi, irreducible over the

current value of L and, of degree at least two,

2. While F is not empty do

(S1) pick a polynomial f(yi) ∈ F over L,

(S2) let αi be a root of f(yi) (in the algebraic closure of K),

(S3) replace L by L(αi), that is, by adjoining αi to L,

(S4) replace T by T∪{ti(y1, . . . , yi)}, where the multivariate ti(y1, . . . , yi) is obtained

from f(yi) after replacing the algebraic numbers α1, . . . , αi−1 with the variables

y1, . . . , yi−1,

(S5) replace P by P ∪ {x− yi},
(S6) factor f(yi) into irreducible factors over L, then add the obtained factors of

degree 1 (resp. greater than 1) to P (resp. F); when adding a factor to P,

replace α1, . . . , αi−1 with y1, . . . , yi−1; when adding a factor to F , replace yi

with yi+1.

(S7) if F is not empty then i := i+ 1.

3. Set s := i and return (s, T,P).

At the end of this procedure, the set T is a regular chain in the polynomial ring K[y1, . . . , ys]

generating a maximal ideal such that K[y1, . . . , ys]/〈T 〉 is isomorphic to the splitting field

K(p) of p(x). This procedure can be derived from S. Landau’s paper [25]; note that

the factorization at Step (S6) can be performed, for instance, by the algorithm of B.

Trager [34]. Example: with p(x) = x3 − 2, one can find T = {y3
1 − 2, y2

2 + y1y2 + y2
1} and

Chapter 4. Jordan Form with Parameters from Frobenius Form 39

P = {x− y1, x− y2, x+ y2 + y1}.

4.3.3 The Frobenius canonical form

Throughout the sequel of this section, we denote by A a square matrix of dimension n

with entries in a field K.

Let p(x) = xn + an−1x
n−1 + · · · + a1x + a0 be a monic polynomial in K[x]. The

Frobenius companion matrix 2 of p(x) is a square n× n matrix of the form

C(p(x)) =



0 0 · · · 0 −a0

1 0 · · · 0 −a1

0 1 · · · 0 −a2

...
...

. . .
...

...

0 0 · · · 1 −an−1


. (4.2)

A matrix F ∈ Kn×n is said to be in Frobenius (rational) canonical form if it is a

block diagonal matrix where the blocks are companion matrices of monic polynomials

ψi(x) ∈ K[x]

F =
m⊕
i=1

C(ψi(x)) (4.3)

such that ψi−1 | ψi for i = 1, . . . ,m − 1. The polynomials ψi are called the invariant

factors of F . Further details can be found in [12, 15, 22].

We recall a few properties.

1. Every companion matrix is in Frobenius canonical form.

2. For all i = 1, . . . ,m, the companion matrix C(ψi) is non-derogatory3.

3. There exists a non-singular matrix Q ∈ Kn×n such that F := Q−1AQ is in Frobenius

canonical form. The matrix F is called the Frobenius canonical form of A and the

matrices A and F are said to be similar. We note that A and F have the same

invariant factors.

4. The polynomial ψ1 is the minimal polynomial of F and the product
∏
ψi is the

characteristic polynomial of F .

2There are many other companion matrices, but in this paper a “companion matrix” is a Frobenius
companion matrix.

3The characteristic polynomial and the minimal polynomial coincide up to a factor of ±1.

Chapter 4. Jordan Form with Parameters from Frobenius Form 40

4.3.4 The Jordan canonical form

An element λ ∈ K is an eigenvalue of A if it satisfies det(A − λIn) = 0 where In is

the identity matrix of dimension n. The algebraic multiplicity of an eigenvalue λ is its

multiplicity as a root of the characteristic polynomial of A, and its geometric multiplicity

is the dimension of the null space of A− λIn.

Let F = diag(C(ψ1), C(ψ2), . . . , C(ψm)) be the Frobenius form of A where C(ψi) is

the companion matrix of the ith invariant factor ψi of A. We note that the geometric

multiplicity of an eigenvalue λ of A is the number of invariant factors that λ is a solution

for. Thus, the Frobenius form of A tells us both the algebraic and geometric multiplicities

of all eigenvalues of A.

A matrix is called a Jordan block of dimension n if it is zero everywhere except for

ones along its super-diagonal, and a single value λ along its main diagonal. A Jordan

block has one eigenvalue λ with geometric multiplicity 1 and algebraic multiplicity n. We

use the notation JBMn(λ) to denote a Jordan block of dimension n with eigenvalue λ.

Let F be a matrix in Frobenius form as in Equation (4.3). The Jordan canonical form

of F is given by

J =
m⊕
i=1

JCF(C(ψi(x))) (4.4)

where JCF(C(ψ(x))) is the Jordan form of a companion matrix of ψ(x), see Chapter VI,

§6 of [12] for a proof.

4.4 JCF Over a Splitting Field

4.4.1 Jordan form of a companion matrix

Let ψ(x) ∈ K[x] be a univariate monic polynomial of degree n. Let L be the splitting

field of ψ(x) over K. Let C = C(ψ(x)) be the companion matrix of ψ(x). Assume that

the complete factorization into linear factors of ψ(x) writes

ψ(x) =
∏̀
i=1

(x− ri)mi (4.5)

where ri ∈ L for i = 1 . . . ` and ri 6= rj for i 6= j. Then, the Jordan form of C is given by

J =
⊕̀
i=1

JBMmi
(ri) (4.6)

Chapter 4. Jordan Form with Parameters from Frobenius Form 41

where the entries of J are in L. Thus, once the splitting field of ψ(x) is computed, the

Jordan canonical form of the companion matrix of ψ(x) can be constructed.

Using the algorithm described in Section 4.3.2, the roots r1, . . . , r` of ψ(x) are repre-

sented by the residue classes of multivariate polynomials r1(y1, . . . , ys), . . ., r`(y1, . . . , ys)

modulo 〈T 〉, since the regular chain T = t1(y1), . . . , ts(y1, . . . , ys) encodes the splitting

field K(ψ) of ψ(x) in the sense that this field is isomorphic to K[y1, . . . , yi]/〈T 〉. Therefore,

the Jordan form of C is given by

⊕̀
i=1

JBMmi
(ri(y1, . . . , ys)) (4.7)

together with the regular chain T .

4.4.2 Frobenius form to Jordan form

Let F ∈ Kn×n be in Frobenius form, with F = diag(C(ψ1), C(ψ2), . . . , C(ψm)), where the

polynomials ψi are the invariant factors of F . By Equation (4.4), the Jordan form of F is

given by

J =
m⊕
i=1

JCF(C(ψi)) (4.8)

and a regular chain T defining the splitting field of ψ1. This is, indeed, sufficient to

compute all the entries of the JCF of F , since every subsequent polynomial ψi divides ψ1.

4.4.3 Example

Let ψ(x) = (x3 + x2 + x− 1)(x2 + x+ 1)2, where the coefficients are in Q. Let C be the

companion matrix of ψ. The JCF of C over the splitting field L of ψ over Q is

y1 0 0 0 0 0 0

0 y3 0 0 0 0 0

0 0 1− y1 − y3 0 0 0 0

0 0 0 y2 1 0 0

0 0 0 0 y2 0 0

0 0 0 0 0 −1− y2 1

0 0 0 0 0 −1− y2



Chapter 4. Jordan Form with Parameters from Frobenius Form 42

where (y1, y2, y3) are any point in the zero set V (T) where T is

T = {y2
1 + (1 + y3)y1 + y2

3 + y3 + 1, y2
2 + y2 + 1, y3

3 + y2
3 + y3 − 1}.

4.5 JCF of a Matrix with Parameters

In this section we show how to compute a complete case discussion for the JCF of a

matrix F in Frobenius form where the entries are polynomials in K[α1, . . . , αs]. Note that,

as Arnol’d points out in [1], a parametric Frobenius form is continuous in its parameters,

though its Jordan form may not be. Throughout this section, T ⊂ K[α] will be a regular

chain and H ⊂ K[α] a set of polynomial inequations such that [T,H] forms a regular

system.

4.5.1 Square-free factorization of a parametric polynomial

Let α1 < · · · < αs be s ≥ 1 ordered variables. Let K[α] = K[α1, . . . , αs] be the ring

of polynomials in the variables α = α1, . . . , αs. Let x be a variable. Let K[x] (resp.

K[α][x]) be the ring of polynomials in x with coefficients in K (resp. K[α]). A polynomial

p(x;α) ∈ K[α][x] is called a univariate, parametric polynomial in x and takes the form

p(x;α) = an(α)xn + · · ·+ a1(α)x+ a0(α) (4.9)

where the coefficients ai(α) are polynomials in K[α].

Let p(x;α) =
∏`

i=1 bi(x;α)i be a square-free factorization of p(x;α), regarded as a

univariate polynomial in K[α][x]. Then, the following properties must hold:

1. each polynomial bi(x;α) is square-free as a polynomial in K[α][x], and

2. the GCD of bi(x;α) and bj(x;α), as polynomials in K[α][x], has degree zero in x,

for all 1 ≤ i < j ≤ `.

We note that each of the square-free factors b1, . . . , b` of p(x;α) is uniquely defined up to

a multiplicative element of K[α].

Definition 1. We say that the sequence of polynomials b1, . . . , b` specializes well at a

point α∗ = (α∗1, . . . , α
∗
s) ∈ Ks

whenever

1. the degree in x of the specialized polynomial bi(x;α∗) is the same as the degree in

x of bi as a polynomial in K[α][x], for all 1 ≤ i ≤ `;

2. each specialized polynomial bi(x;α∗) is square-free, as a polynomial in K[x], for all

1 ≤ i ≤ `; and

Chapter 4. Jordan Form with Parameters from Frobenius Form 43

3. the GCD of bi(x;α∗) and bj(x;α∗), as polynomials in K[x], has degree zero in x, for

all 1 ≤ i < j ≤ `.

From the theory of border polynomials [26, 28, 37] the following result holds.

Proposition 1. The set of points α ∈ Ks
at which the sequence of polynomials b1, . . . , b`

specializes well is the complement of the algebraic set given by

{ i=e⋃
i=1

V (∆i)

}
∪
{ ⋃

1≤i<j≤e

V (Ri,j)

}
, (4.10)

where ∆i := discr(bi(x;α), x) denotes the discriminant of bi(x;α) w.r.t. x and Ri,j :=

res(bi(x;α), bj(x;α), x) denotes the resultant of bi(x;α) and bj(x;α) w.r.t. x.

Definition 2. We call the proviso of the sequence of polynomials

b1, . . . , b` the algebraic set (actually hypersurface) given by Equation (4.10) and denote it

by Proviso(b1, . . . , b`). We call the square-free factorization with proviso of p(x;α) the pair

(
∏`

i=1 bi(x;α)i,Proviso(b1, . . . , b`)).

We note that the zero set of the border polynomial of p(x;α) (in the sense [28, 37]) is

usually defined whenever p(x;α) is square-free w.r.t. x, in which case it coincides with

Proviso(b1, . . . , b`).

We are now interested in obtaining a complete case discussion for the square-free factor-

ization of p(x;α), that is, including the cases where

α∗ ∈ Proviso(p(x;α), x) holds. This can be achieved by using the function

Squarefree RC(p, T,H) specified in Section 4.3.1.

4.5.2 JCF of a companion matrix with parameters

From now on, we assume that K is the field C of complex numbers. Let C ∈ K[α]n×n be a

companion matrix with characteristic polynomial ψ(x;α) ∈ K[α][x]. Let
∏`

i=1 bi(x;α)i be a

square-free factorization of ψ(x;α). We observe that in the complement of Proviso(b1, . . . , b`),

the roots (in x) of b1, . . . , b`, as functions of α, define continuous, disjoint graphs.

Let us denote those functions by λi,1, . . . , λi,ni
corresponding to the polynomial bi, for

1 ≤ i ≤ `. Therefore, one can construct the JCF of C uniformly over the complement of

Proviso(b1, . . . , b`) as follows ⊕̀
i=1

ni⊕
j=1

JBMi(λi,j) . (4.11)

Chapter 4. Jordan Form with Parameters from Frobenius Form 44

More generally, for a regular system [T,H] let ((bi,1, . . . , bi,`i), Ti, Hi), with 1 ≤ i ≤ e,

be the output of Squarefree RC(ψ(x;α), T,H) (in Notation 1). Then, for every 1 ≤ i ≤ e,

one can construct the JCF of C uniformly over Z(Ti, Hi) (resp. Z(Ti, Hi)) as the regular

systems [T1,H1], . . . , [Te, He] form a triangular decomposition of Z(T,H) in the sense

Lazard-Wu (resp. Kalkbrener).

4.5.3 Frobenius form to JCF with parameters

Let F ∈ K[α]n×n be a matrix in Frobenius form with invariant factors ψi(x;α) ∈ K[α][x]

for 1 ≤ i ≤ m. Let
∏`

i=1 bi(x;α)i be a square-free factorization of the minimal polynomial,

ψ1(x;α). The JCF over the complement of Proviso(b1, . . . , b`) is defined continuously for

each companion matrix C(ψi(x;α)), 1 ≤ i ≤ m. This is a consequence of the property of

invariant factors that each subsequent ψi(x;α) divides ψ1(x;α).

In the sense of Lazard-Wu (resp. Kalkbrener), the construction of the JCF of

C(ψ1(x;α)) defines a decomposition into the zero sets (resp. the Zariski closure of

the zero sets) of finitely many square-free regular systems [T1,H1], . . . , [Te, He]. Over each

regular system, the JCF of each companion matrix C(ψi(x;α)) for 1 ≤ i ≤ m is defined

continuously.

4.6 Experimentation

4.6.1 Maple implementation

We are actively developing a package called ParametricMatrixTools in Maple that

implements algorithms for computations on matrices with parameters. The source for this

package, including numerous examples, is available at

https://github.com/steventhornton/ParametricMatrixTools and is compatible with

the version of the RegularChains library included in Maple 2016 and later. The

ComprehensiveJordanForm method implements the algorithm discussed in Section 4.5.

Our implementation is based on the theory of regular chains and its Maple imple-

mentation, the RegularChains package. Further details can be found at http://

regularchains.org.

For each of the examples that follow, we have first computed a full case discussion

for the Frobenius form using the ComprehensiveFrobeniusForm routine in our package.

The details of the Frobenius form implementation have been omitted and we are actively

working to improve our current implementation.

https://github.com/steventhornton/ParametricMatrixTools
http://regularchains.org
http://regularchains.org

Chapter 4. Jordan Form with Parameters from Frobenius Form 45

Figure 4.2: Time to compute the JCF of each Frobenius form in the full case discussion
of the Frobenius form of the matrix in section 4.6.2. For all n, the Frobenius form splits
into two cases: ρ = 0 and ρ 6= 0. The JCF is computed over each of these branches. Note
the exponential growth. Timing was done on a 2016, 3.3GHz quad-core Intel Core i7
iMac with 16GB of RAM using Maple 2016.2.

4.6.2 Kac-Murdock-Szegö matrices

The inverse matrix K−1
n (ρ) from [35] is

1

1− ρ2



1 −ρ 0 · · · 0 0 0

−ρ 1 + ρ2 −ρ · · · 0 0 0

0 −ρ 1 + ρ2 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 1 + ρ2 −ρ 0

0 0 0 · · · −ρ 1 + ρ2 −ρ
0 0 0 · · · 0 −ρ 1


.

The cost to compute a full case discussion of the JCF of (1−ρ2)K−1
n (ρ) grows exponentially

with n. See Figure 4.2.

4.6.3 The Belousov-Zhabotinskii reaction

The report [16] contains a very readable account of the famous B-Z reaction and its

history. This is a chemical oscillator. In non-dimensional form with ε = δ = 1 we have

ẋ = qy − xy + x(1− x)

ẏ = −qy − xy + fz

ż = x− z .

Chapter 4. Jordan Form with Parameters from Frobenius Form 46

The equilibria include x = z being a positive root of the quadratic

x(x− 1 + f) + q(x− 1− f) = 0 . (4.12)

The Jacobian at the equilibrium is

A =

1− x− y q − x 0

−y −(q + x) f

1 0 −1

 (4.13)

and the Jordan form of A splits into many cases. One non-trivial example is

J =

α 0 0

0 β 1

0 0 β

 (4.14)

where

α =
1

9994
(−81q5 + 804q4 − 3882q3 + 12209q2 − 6288q − 59636)

β =
1

2
(−α + 3q − 10)

under the following constraints on the indeterminates of A:

x = z = −2y

f = −1

(q5 − 13q4 + 86q3 − 359q2 + 911q − 742)z − 4q2 − 8 = 0

q6 − 15q5 + 112q4 − 531q3 + 1633q2 − 2564q + 1492 = 0 .

There are real values of q satisfying this equation, and hence this case is real.

4.6.4 Nuclear magnetic resonance

In [19], Section 2.2, we find a concise description of an application of the matrix exponential

to solve the so-called Solomon equations

Ṁ = −RM, M(0) = I by M(t) = e−Rt . (4.15)

Chapter 4. Jordan Form with Parameters from Frobenius Form 47

Here R is a symmetric, diagonally dominant matrix called the relaxation matrix, and M is

the matrix of intensities. Suppose R is in fact tridiagonal, with ones on the sub- and super-

diagonals, and diagonal parameters |ri| > 1. Using Maple’s built-in MatrixExponential

gets answers (e.g. when the dimension n is 3) but we are not convinced that the generic

answer returned is correct, always. So we try computing the JCF. Doing so, we find that

indeed there are special cases that the generic code missed.

For example, when R is of dimension 3, the JCF of R is(r1 + r2 + r3)/3 1

0 (r1 + r2 + r3)/3 1

0 0 (r1 + r2 + r3)/3

 (4.16)

when

r2
1 + r2

2 + r2
3 − r1r2 − r1r3 − r2r3 + 6 = 0 (4.17)

((r1 − r3)2 − 1)((r1 − r3)2 + 8) = 0 . (4.18)

When discr(det(R− λI)) 6= 0 the JCF is simply diag(λ1, λ2, λ3) for the distinct eigenvalues

λ1, λ2, λ3. And for the remaining parameter values, the JCF consists of a Jordan block of

dimension 2 with eigenvalue λ1, and a Jordan block of dimension 1 with eigenvalue λ2

for λ1 6= λ2. The only case corresponding to real values of r1, r2, r3 is the trivial diagonal

case. In the cases where the JCF is not a diagonal matrix, the result computed by the

MatrixExponential function in Maple contains discontinuities.

4.6.5 Bifurcation studies

The mathematical methods used in bifurcation studies are highly sophisticated, both

symbolically and numerically. Tools used include normal forms and the action of symmetry

groups. Consider the matrix

J =

0 2ρ 0

a 2β 2v

b −2v 2β

 (4.19)

which is the Jacobian matrix of a dynamical system at equilibrium. The analysis of

this system in [36] is quite complete, yet the evolution of trajectories near the equilibria,

governed by

ξ′ = Jξ, ξ(0) = I (4.20)

BIBLIOGRAPHY 48

or ξ = exp(tJ), is of interest. When the JCF of J is nontrivial, one can anticipate

phenomena such as greater sensitivity to modelling error, for instance. Our implementation

is able to find a complete case discussion of the JCF, starting from the complete case

discussion of the Frobenius form, in approximately 2 seconds. We find cases corresponding

to each of the 5 possible Jordan structures for a 3× 3 matrix with a total of 46 cases. Of

the 46 cases, 14 are defined by polynomials of total degree greater than 4. The worst case

contains a polynomial of degree 12 in the parameters with 19 terms.

One non-trivial case we were able to automatically identify is where the JCF of J is

given by 2β 0 0

0 β 1

0 0 β

 (4.21)

when 2ρa+ β2 = 0, v = 0, and a, ρ and β are non-zero.

4.7 Concluding Remarks

At the movie theatre watching a horror show, one often hears audience members warning

the movie characters “don’t go in there!”. One could imagine a similar warning about the

JCF. As Arnol’d says, “when investigating a family of matrices smoothly depending on

parameters, then although each individual matrix can be reduced to Jordan normal form,

it is unwise to do so, since in such an operation the smoothness (and also the continuity)

relative to the parameters is lost.”

Our approach here has been to ignore the warning, and go ahead anyway. We try to

trap all the monsters. It is a complex problem and we claim only partial success (small

monsters only!). But we believe this approach is already useful for some purposes. In

particular, the discontinuities are sometimes the very quantities of interest and we can

display them explicitly.

Bibliography

[1] V. I. Arnol’d. On matrices depending on parameters. Russian Mathematical Surveys,

26(2):29–43, 1971.

[2] C. Ballarin and M. Kauers. Solving parametric linear systems: an experiment with

constraint algebraic programming. ACM Sigsam Bulletin, 38(2):33–46, 2004.

BIBLIOGRAPHY 49

[3] T. Beelen and P. Van Dooren. Computational aspects of the Jordan canonical form.

Oxford Science Publishing, Oxford University Press, pages 57—-72, 1990.

[4] P. A. Broadbery, T. Gómez-Dı́az, and S. M. Watt. On the implementation of dynamic

evaluation. In Proceedings of the 1995 International Symposium on Symbolic and

Algebraic Computation, pages 77–84. ACM, 1995.

[5] C. Chen and M. Moreno Maza. Algorithms for computing triangular decomposition

of polynomial systems. Journal of Symbolic Computation, 47(6):610–642, 2012.

[6] G. Chen. Computing the normal forms of matrices depending on parameters. In

Proceedings of the 1989 International Symposium on Symbolic and Algebraic Compu-

tation, pages 244–249. ACM, 1989.

[7] G. Chen and J. Della Dora. Rational normal form for dynamical systems by Carleman

linearization. In Proceedings of the 1999 International Symposium on Symbolic and

Algebraic Computation, pages 165–172. ACM, 1999.

[8] R. M. Corless and D. J. Jeffrey. Well...it isn’t quite that simple. ACM Sigsam

Bulletin, 26(3):2–6, 1992.

[9] R. M. Corless and S. E. Thornton. A package for parametric matrix computations. In

Proceedings of the International Congress on Mathematical Software, pages 442–449.

Springer, 2014.

[10] G. M. Diaz-Toca, L. Gonzalez-Vega, and H. Lombardi. Generalizing Cramer’s rule:

Solving uniformly linear systems of equations. SIAM Journal on Matrix Analysis

and Applications, 27(3):621–637, 2005.

[11] J. Frank, W. Huang, and B. Leimkuhler. Geometric integrators for classical spin

systems. Journal of Computational Physics, 133(1):160–172, 1997.

[12] F. R. Gantmacher. The theory of matrices. Vol. 1. Chelsea Publishing Company,

1960.

[13] M. Giesbrecht. Nearly optimal algorithms for canonical matrix forms. SIAM Journal

on Computing, 24(5):948–969, 1995.

[14] I. Gil. Computation of the Jordan canonical form of a square matrix (using the

Axiom programming language). In Proceedings of the 1992 International Symposium

on Symbolic and Algebraic Computation, pages 138–145. ACM, 1992.

BIBLIOGRAPHY 50

[15] I. Gohberg, P. Lancaster, and L. Rodman. Matrix polynomials. SIAM, 2009.

[16] C. R. Gray. Analysis of the Belousov-Zhabotinskii reaction. Rose-Hulman Under-

graduate Mathematics Journal, 3(1), 2002.

[17] E. Hairer, C. Lubich, and G. Wanner. Geometric numerical integration: structure-

preserving algorithms for ordinary differential equations, volume 31. Springer, 2006.

[18] T. Hawkins. Weierstrass and the theory of matrices. Archive for History of Exact

Sciences, 17(2):119–163, 1977.

[19] N. J. Higham. Functions of matrices: theory and computation. SIAM, 2008.

[20] L. Hogben. Handbook of linear algebra. CRC Press, 2016.

[21] R. A. Horn and C. R. Johnson. Matrix analysis. CUP, 2012.

[22] E. Kaltofen, M. Krishnamoorthy, and B. D. Saunders. Fast parallel algorithms for

similarity of matrices. In Proceedings of the fifth ACM Symposium on Symbolic and

Algebraic Computation, pages 65–70. ACM, 1986.

[23] D. Kapur. An approach for solving systems of parametric polynomial equations.

Principles and Practices of Constraint Programming, pages 217–244, 1995.

[24] P. Kunkel and V. Mehrmann. Differential-algebraic equations: analysis and numerical

solution, volume 2. European Mathematical Society, 2006.

[25] S. Landau. Factoring polynomials over algebraic number fields. SIAM Journal on

Computing, 14(1):184–195, 1985.

[26] D. Lazard and F. Rouillier. Solving parametric polynomial systems. Journal of

Symbolic Computation, 42(6):636–667, 2007.

[27] C. Moler and C. Van Loan. Nineteen dubious ways to compute the exponential of a

matrix, twenty-five years later. SIAM review, 45(1):3–49, 2003.

[28] M. Moreno Maza, B. Xia, and R. Xiao. On solving parametric polynomial systems.

Mathematics in Computer Science, 6(4):457–473, 2012.

[29] K. O’Meara, J. Clark, and C. Vinsonhaler. Advanced Topics in Linear Algebra:

Weaving Matrix Problems Through the Weyr Form. Oxford University Press, 2011.

BIBLIOGRAPHY 51

[30] P. Ozello. Calcul exact des formes de Jordan et de Frobenius d’une matrice. PhD

thesis, Université Joseph-Fourier-Grenoble I, 1987.

[31] W. Y. Sit. An algorithm for solving parametric linear systems. Journal of Symbolic

Computation, 13(4):353–394, 1992.

[32] A. Storjohann. An O(n3) algorithm for the Frobenius normal form. In Proceedings

of the 1998 International Symposium on Symbolic and Algebraic Computation, pages

101–105. ACM, 1998.

[33] A. Storjohann. Algorithms for matrix canonical forms. PhD thesis, Swiss Federal

Institute of Technology Zurich, 2013.

[34] B. M. Trager. Algebraic factoring and rational function integration. In R. D. Jenks,

editor, SYMSAC 1976, Proceedings of the third ACM Symposium on Symbolic and

Algebraic Manipulation, Yorktown Heights, New York, USA, August 10-12, 1976,

pages 219–226. ACM, 1976.

[35] W. F. Trench. Properties of some generalizations of Kac-Murdock-Szegö matrices.

Structured Matrices in Mathematics, Computer Science II Control, Signal and Image

Processing (AMS Contemporary Mathematics Series), 281, 2001.

[36] S. A. Van Gils, M. Krupa, and W. F. Langford. Hopf bifurcation with non-semisimple

1:1 resonance. Nonlinearity, 3(3):825, 1990.

[37] L. Yang, X. Hou, and B. Xia. A complete algorithm for automated discovering of a

class of inequality-type theorems. Science in China Series F: Information Sciences,

44(1):33–49, 2001.

Chapter 5

Bohemian Matrices and Their

Eigenvalues

5.1 Introduction

A family of Bohemian matrices is a set of structured matrices where the entries are from

a finite set of integers. Studying such matrices leads to many unanswered questions.

Through extensive experimental work, we have discovered many properties of families of

Bohemian matrices and their eigenvalues that lack obvious explanations. Our focus is

fixed on matrices of low dimension, typically no more than 20 × 20. In some cases we

consider structured matrices of higher dimension, although typically with constraints such

that the number of free entries grows linearly in the dimension.

By plotting the distributions of the eigenvalues of all matrices in a Bohemian family

over the complex plane, many interesting discrete structures appear. For example, in

Figure 5.1, distinct “holes” appear in the distribution. Other families exhibit fractal-

like structures and diffraction patterns. By studying these families in greater detail

we are able understand why some structures appear. Many examples of the discrete

structures that appear in the distributions of eigenvalues can be found at http://www.

bohemianmatrices.com/gallery/.

Our experimental work is only possible thanks to advances in the processing power of

common personal computers. This has allowed us to explore families containing upwards

of 1 trillion matrices on a laptop. Through brute-force computation we are able to

answer questions such as “how many 6× 6 matrices with entries from the set {−1,+1}
are nilpotent?” The answer is 3,781,503. Further, these computations have helped us

make connections between properties of matrices that we may not have made otherwise.

52

http://www.bohemianmatrices.com/gallery/
http://www.bohemianmatrices.com/gallery/

Chapter 5. Bohemian Matrices and Their Eigenvalues 53

Figure 5.1: Density plot over the complex plane of the eigenvalues of all 5× 5 matrices
with entries from the set {−1, 0,+1}. The plot is viewed on −4.13− 3.1i to 4.13 + 3.1i.

For example, the number of n× n matrices with entries from the set {−1,+1} that are

nilpotent is also the “number of acyclic digraphs (or DAGs) with n labelled nodes”, as was

discovered through the Online Encyclopedia of Integer Sequences (OEIS) [22] (sequence

A003024).

The idea of visualizing the eigenvalues of random samples of matrices is not new. L. N.

Trefethen [24] used this idea to visualize the pseudospectra of several test matrices. Related

to the eigenvalues of matrices, many authors have studied the zeros of polynomials whose

coefficients belong to discrete sets of integers. Early work by Odlyzko and Poonen [20]

studied the zeros of polynomials with coefficients in {0, 1}. More recently, the distributions

of the roots of Littlewood polynomials [18] (polynomials with coefficients ±1 in the

monomial basis) have been studied [1, 2, 3, 11, 21]. In Figure 5.2, the distribution of the

roots of all degree 25 Littlewood polynomials are visualized. This is, of course, equivalent

to the eigenvalues of a Bohemian family of (Frobenius) companion matrices with entries

from the set {−1,+1}.
Our interest in studying these families started when we first generated a plot similar

to that of Figure 5.1. This work was first presented as a poster [13] at the East Coast

Computer Algebra Day (ECCAD) 2015. The poster mainly focused on the visualization

of distributions of eigenvalues. Section 5.4 of this paper builds on many of those ideas.

http://oeis.org/A003024

Chapter 5. Bohemian Matrices and Their Eigenvalues 54

Figure 5.2: The roots of all degree 25 polynomials with ±1 coefficients.

Some of our original interests in Bohemian families are presented in [12]. Many specialized

cases have been previously studied in [4, 5, 6, 7, 8, 9].

We begin by introducing the notation used throughout this paper. Next, we explore

symmetries in families of Bohemian matrices in Section 5.3. These symmetries have

been helpful for reducing the number of matrices required to compute some properties

of Bohemian families. Next, we discuss our Matlab framework for visualizing the

distributions of the eigenvalues of Bohemian matrices. Since eigenvalues are computed

numerically, we can visualize the numerical error in computation of eigenvalues using our

Matlab framework. In Section 5.5, we show the numeric error in eigenvalue computation.

We also discuss some example families that were discovered while generating plots of

eigenvalue distributions where the Matlab eig function failed to compute the eigenvalues.

Finally, in Section 5.6, the Characteristic Polynomial Database (CPDB) is introduced.

The methods used for computing distributions of characteristic polynomials are discussed.

Chapter 5. Bohemian Matrices and Their Eigenvalues 55

Many properties of Bohemian families are included in the CPDB. The computational

methods used for these properties are discussed. Finally, we end with 21 conjectures

related to integer sequences arising from the properties of Bohemian families.

5.2 Terminology

Definition 5.2.1. A family of Bohemian matrices is a set of matrices of dimension n

where the free entries are from the discrete set of bounded height P called the population

of the Bohemian family. We denote a family of Bohemian matrices by M.

Definition 5.2.2. A Bohemian matrix is a matrix belonging to a family of Bohemian

matrices.

Definition 5.2.3. Bohemian eigenvalues are the eigenvalues of a family of Bohemian

matrices.

Definition 5.2.4. An eigenvalue exclusion zone is a distinct region in the complex plane

containing at most a single eigenvalue.

Definition 5.2.5. The characteristic height of a matrix is the height of its characteristic

polynomial (orignially defined in [9].)

5.3 Symmetry in Bohemian Families

Symmetries within Bohemian families can help reduce the amount of computation required

for analysis. When computing the distribution of characteristic polynomials of a Bohemian

family, we noticed a large reduction in the number of characteristic polynomials compared

to the family size. For example, in Table 5.1 we see that for the family of 5× 5 matrices

with population {−1, 0,+1}, each distinct characteristic polynomial corresponds to nearly

500,000 matrices on average. The set of distinct eigenvalues for this family shows a further

reduction although not nearly as substantial. By exploring some symmetries in this family

we are able to reduce the family size to a smaller set that approaches the dimension of

the set of characteristic polynomials. Here we discuss several symmetries in Bohemian

families.

5.3.1 Complex Conjugate Eigenvalue Symmetry

Proposition 5.3.1. Let P ⊂ Z be the population of the Bohemian family M . For every

matrix A ∈M, if λ is an eigenvalue of A, λ is also an eigenvalue of A.

Chapter 5. Bohemian Matrices and Their Eigenvalues 56

n # of Matrices # of Characteristic Polynomials # of Distinct Eigenvalues

1 3 3 3
2 81 16 21
3 19,683 209 375
4 43,046,721 8,739 24,823
5 847,288,609,443 1,839,102 7,963,249

Table 5.1: For the Bohemian family of n × n matrices with population {−1, 0,+1},
the table reports the number of matrices (3n

2
), the number of distinct characteristic

polynomials, and the number of distinct eigenvalues.

Remark 5.3.2. This symmetry presents itself as a reflection over the real axis when plotting

the eigenvalues of the family, see Figure 5.1 for example.

5.3.2 Negation Symmetry

Proposition 5.3.3. Consider a Bohemian family M of n× n matrices with population

P ⊂ Z where the population is a symmetric set1. Let Λ be the set of eigenvalues for all

matrices in M. For every eigenvalue λ ∈ Λ, −λ is also in Λ.

Proof. Let A be a matrix in M. −A must also be in M since P is a symmetric set. Let

p(x) = det(xI −A) be the characteristic polynomial of A, and q(x) = det(xI + A) be

the characteristic polynomial of −A. Let λ be an eigenvalue of A. Then

p(λ) = det(λI−A) (5.1)

= (−1)n det(−λI + A) (5.2)

= (−1)nq(−λ) . (5.3)

Hence, when p(λ) = 0, q(−λ) = 0 and −λ is an eigenvalue of −A. \

Remark 5.3.4. This symmetry presents itself as a reflection over the imaginary axis when

plotting the eigenvalues of the family, see Figure 5.1 for example.

5.3.3 Rhapsodic Matrices

Definition 5.3.5. A matrix A in a Bohemian familyM is said to be a strictly rhapsodic

matrix if there exists a matrix B ∈M such that A−1 = B.

1A symmetric set S is a set such that if s ∈ S, −s ∈ S.

Chapter 5. Bohemian Matrices and Their Eigenvalues 57

Definition 5.3.6. A Bohemian family M is said to be a strictly rhapsodic family if all

matrices A ∈M are strictly rhapsodic.

Definition 5.3.7. Two matrices A and B are said to be similar (denoted A ∼ B) if

there exists an invertible matrix Q such that B = Q−1AQ.

Remark 5.3.8. Similar matrices have the same Jordan canonical form and hence the same

set of eigenvalues. They share many other properties including their rank, characteristic

polynomial, and minmal polynomial.

Definition 5.3.9. A matrix A in a Bohemian family M is said to be a non-strictly

rhapsodic matrix if there exists a matrix B ∈M such that A−1 ∼ B.

Definition 5.3.10. A Bohemian family M is said to be a non-strictly rhapsodic family

if all matrices A ∈M are non-strictly rhapsodic.

n # of Matrices # of Strictly Rhapsodic # of Non-strictly Rhapsodic

1 3 2 2
2 81 40 40
3 19,683 4,656 6,528
4 43,046,721 2,808,192 9,175,104

Table 5.2: For the Bohemian family of n× n matrices with population {−1, 0,+1}, the
table reports the number of matrices (3n

2
), the number of strictly rhapsodic matrices,

and the number of non-strictly rhapsodic matrices.

Proposition 5.3.11. If p(x) is the characteristic polynomial of an invertible matrix A,

the characteristic polynomial of A−1 is (−1)n rev(p(x))
det A

.

Proposition 5.3.12. Let M be a strictly rhapsodic family and let Λ be the set of

eigenvalues of all matrices in M. For every eigenvalue λ ∈ Λ, λ−1 is also in Λ.

Proof. Let p(x) be the characteristic polynomial of a matrix A ∈M. Since all matrices

in M are strictly rhapsodic, A−1 is also in M. By Proposition 5.3.11, the characteristic

polynomial of A−1 is q(x) = rev(p(x))
det A

. Let λ be a root of p(x). Then

q(λ−1) =
rev(p(λ−1))

det A
(5.4)

=
λnp(λ)

det A
(5.5)

= 0 . (5.6)

\

Chapter 5. Bohemian Matrices and Their Eigenvalues 58

Remark 5.3.13. This symmetry presents itself as a reflection over the unit circle when

plotting the eigenvalues of the strictly rhapsodic family, see Figure 5.2 for example.

5.3.4 Permutations

Definition 5.3.14. Let M be a Bohemian family. A permutation normal subset of

M is any set MP ⊆ M such that for every matrix A ∈ M, there exists a matrix

B ∈MP such that A = PBP−1 for some permutation matrix P. Additionally, for every

matrix A ∈ MP , there is no matrix B ∈ MP (A 6= B) such that A = PBP−1 for any

permutation matrix P.

Proposition 5.3.15. Let M be a Bohemian family and let MP be a permutation normal

subset of M. The set of characteristic polynomials of M is the same as the set of

characteristic polynomials of MP .

Proof. For every matrix A ∈MP , there exists a permutation matrix P such that there is

a matrix B ∈M where B = PAP−1. Since B is similar to A, they must have the same

characteristic polynomial. Similarly, for every matrix B ∈M, there exists a permutation

matrix P such that there is a matrix A ∈MP where B = PAP−1. Since B is similar to

A, they must have the same characteristic polynomials. \

Proposition 5.3.16. The set of eigenvalues of M is the same as the set of eigenvalues

of MP .

Proof. Since M and MP have the same set of characteristic polynomials by Proposi-

tion 5.3.15, they must also have the same set of eigenvalues. \

Proposition 5.3.17. For a Bohemian family M of n× n matrices with a permutation

normal subset MP , #MP ≥ #M/n! .

Proof. Let M be a Bohemian family such that for every matrix A ∈M, and for each of

the n! permutation matrices, A 6= PAP−1 except when P = I. A permutation normal

subset for this family contains exactly #M/n! matrices. \

Remark 5.3.18. Most families do not reach this bound. Let M be a Bohemian family

that contains the identity matrix. For each of the n! permutation matrices P, PIP−1 = I.

Hence, for this family the number of matrices in a permutation normal subset must be

greater than #M/n! .

Chapter 5. Bohemian Matrices and Their Eigenvalues 59

Computing a permutation normal subset of a Bohemian family is very expensive

because it requires evaluating all n! permutations of all matrices in the family. In

Table 5.3 the size of permutation normal subsets are shown for an example family. The

size of the permutation normal subsets do not quite reach the #M/n! bound. In the

5 × 5 case #M/#MP = 847,288,609,443/7,071,729,867 ≈ 119.8 which is close to the

5! = 120 bound. The method used for computing the size of the permutation normal

subsets is discussed further in Section 5.6. Conjecture 21 in Section 5.6 states that the

size of a permutation normal subset for this family is given by sequence A004105 on the

OEIS for the “number of point-self-dual nets with 2n nodes [and the] number of directed

2-multigraphs with loops on n nodes”.

n #M #MP log10

(
1− #M

n!#MP

)
#MO

1 3 3 −∞ 3
2 81 45 −1 54
3 19,683 3,411 −1.417 7,290
4 43,046,721 1,809,459 −2.058 7,971,615
5 847,288,609,443 7,071,729,867 −2.808 73,222,472,421

Table 5.3: Permutation symmetries for the Bohemian family M of n× n matrices with
population {−1, 0,+1}. The #M column gives the number of matrices in the family,
#MP gives the number of matrices in a permutation normal subset of M, and #MO

gives the number of matrices in the subset of M with entries ordered along the diagonal.
The log10

(
1− #M

n!#MP

)
column shows the convergence of the permutation normal subset

to the bound given in Proposition 5.3.17.

A less computationally expensive alternative to the permutation normal subset of

a Bohemian family is to find a subset where the matrix entries along the diagonal are

ordered according to some ordering ≺ over the population. This subset captures some

of the permutations that a permutation normal subset finds but misses permutations

within blocks of equal values along the diagonal. This subset can be constructed by

directly sampling the matrices in the subset. The size of these subsets remains an order

of magnitude larger than the permutation normal subsets as is shown in the last column

of Table 5.3 for an example family.

Proposition 5.3.19. Let MO be the subset of a Bohemian family M of n× n matrices

such that the diagonal entries of the matrices in MO are ordered according to an ordering

≺. Let the population of M contain m elements. The number of matrices in MO is(
n+m− 1

m

)
mn2−n . (5.7)

http://oeis.org/A004105

Chapter 5. Bohemian Matrices and Their Eigenvalues 60

Proof. The number of ordered combinations of the entries along the diagonal is the same

as the number of multisets of length n from m entries in the population. Thus, there are(
n+m−1

m

)
possible orderings for the diagonal entries. The number of off-diagonal entries of

the matrix is n2 − n. The number of combinations of the m values in P for the n2 − n off

diagonal entries is mn2−n. \

As an example, consider the family of 4× 4 matrices with population {−1, 0,+1} and

order −1 < 0 < 1 over the population. The matrix A1 in Equation (5.8) is ordered but

matrix A2 is not. Here A1 = PA2P
−1 for the permutation matrix P.

A1 =


−1 0 1 1

0 0 −1 −1

1 −1 1 1

1 1 0 1

 A2 =


1 1 1 0

−1 0 0 −1

1 0 −1 1

1 −1 1 1

 P =


0 0 1 0

0 1 0 0

0 0 0 1

1 0 0 0

 (5.8)

5.3.5 Similar Matrices

Definition 5.3.20. Let M be a Bohemian family. A similarity normal subset of M
is a set MS ⊆ M such that for every matrix A ∈ M, there exists a matrix B ∈ MS

such that A ∼ B. Additionally, for every matrix A ∈MS, there is no matrix B ∈MS

(A 6= B) such that A ∼ B.

Proposition 5.3.21. The set of Jordan canonical forms of a Bohemian family is iso-

morphic to a similarity normal subset of the family.

Proof. Let M be a Bohemian family, let MS be a similarity normal subset of M and let

J be the set of Jordan canonical forms of all matrices in M. For each matrix J ∈ J ,

there exists a matrix S such that SJS−1 is a matrix in M. Since J is the set of Jordan

forms, which are unique up to the ordering of the Jordan blocks, given a matrix J1 ∈ J ,

there is no matrix J2 ∈ J (J1 6= J2) such that J1 ∼ J2. \

Since the set of Jordan canonical forms of a Bohemian family is isomorphic to a

similarity normal subset, this can be a useful way to compute a similarity normal subset.

Once we have the set of Jordan canonical forms, we can test if a new matrix (not necessarily

from the same family) is similar to a matrix in the Bohemian family by computing its

Jordan form and testing if it belongs to the set of Jordan forms. In Table 5.4 we give the

size of the set of Jordan forms, or equivalently the size of any similarity normal subset of

the example family. Details on the method used to count the number of distinct Jordan

forms is discussed in detail in Section 5.6.

Chapter 5. Bohemian Matrices and Their Eigenvalues 61

n # of Matrices # of Characteristic Polynomials # of Distinct JCFs

1 3 3 3
2 81 16 19
3 19,683 209 225
4 43,046,721 8,739 8,971
5 847,288,609,443 1,839,102

Table 5.4: Number of distinct characteristic polynomials and Jordan canonical forms
(JCFs) for the family of n × n matrices with population {−1, 0,+1}. The number of
distinct Jordan forms for the 5× 5 family is currently unknown.

5.4 Visualizing Distributions of Bohemian Eigenval-

ues

When exploring a new family of Bohemian matrices, the first thing we typically look at is

the distribution of the eigenvalues. These distributions are one of the main motivations

for our further exploration into Bohemian families and are helpful for understanding some

properties. Often these distributions display interesting discrete structures that we are

unable to fully explain. Our exploration into Bohemian families has been inspired by

these questions. Some of the questions we have considered follow.

1. Many families have an eigenvalue exclusion zone centred at 0, see Figure 5.3a for

example. What is size of this gap along the real line? What is the size of the gap in

the imaginary plane?

2. What are the centres and radii of the eigenvalue exclusion zones? See Figure 5.3b

for an example.

3. Some families (companion matrices of Littlewood polynomials, upper Hessenberg

Toeplitz matrices, for example) show fractal like structures near the edges of the

eigenvalue inclusion regions (see Figure 5.3c). Are these patterns truly fractals as

n→∞?

4. Diffraction-like patterns appear in the densities of eigenvalues, see Figure 5.3d for

an example. What is the cause of these patterns?

5. What is the radius of the spectrum? For many families this grows at a rate much

slower than O(
√
n). See Figure 5.4 for example.

Chapter 5. Bohemian Matrices and Their Eigenvalues 62

(a) Eigenvalue exclusion zone centred
at 0 for the family of 5 × 5 matrices
with population {−1, 0,+1}.

(b) Eigenvalue exclusion zone centred

at 1
2 +

√
3

2 i for the family of 5× 5 ma-
trices with population {−1, 0,+1}.

(c) Fractal-like pattern appearing at
the edge of the eigenvalue inclusion
zone for the family of 25×25 upper Hes-
senberg Toeplitz matrices with main
diagonal entries fixed at 0, subdiago-
nal entries fixed at 1, and population
{−1, 0,+1}.

(d) Diffraction pattern appearing in the
eigenvalues from the Bohemian fam-
ily of 5 × 5 matrices with population
{−20,−1, 0,+1,+20}.

Figure 5.3: Examples of structures appearing in the plots of Bohemian eigenvalues.

5.4.1 Plotting Eigenvalues in Matlab and Python

Visualizing the distributions of eigenvalues for a Bohemian family can be done in only

a few lines of Matlab or Python code. Listings 5.1 and 5.2 are short scripts that will

sample 1 million matrices from the family of 5× 5 matrices with population {−1, 0,+1},
compute their eigenvalues and plot the density of eigenvalues over the complex plane in

Chapter 5. Bohemian Matrices and Their Eigenvalues 63

Figure 5.4: Radius of the spectrum for the Bohemian family of n× n upper Hessenberg
matrices with a Toeplitz structure, entries on the main diagonal fixed at 0, and population
{−1,+1}. Radius values for dimensions 3 to 25 are exact. For dimensions larger than 25
the radius has been approximated from a sample of 100 million matrices at each dimension.
All computations were performed in double precision.

Matlab and Python respectively.

Although plots of the distributions of eigenvalues can be generated using only a few

lines of code, these scripts lack the flexibility required to generate plots in general. To

address this shortcoming, we have developed a Matlab framework for easily generating

plots of the eigenvalues of families of Bohemian matrices. The framework, including

numerous examples, is available on GitHub at https://github.com/BohemianMatrices/

BHIME-Project. A Python version is under active development and is available at

https://github.com/BohemianMatrices/bohemian. All of the plots of eigenvalues in

this paper have been generating using the Matlab framework.

5.4.2 Overview of the BHIME-Project Framework

The BHIME-Project Matlab framework provides a simple interface to efficiently gen-

erating plots of Bohemian eigenvalues. A basic example for the Bohemian family of

5 × 5 matrices with population {−1, 0,+1} is presented in Listing 5.3. An extensively

commented version of this example is available in Example1.m on the GitHub repository.

Figure 5.5 shows the resulting image.

https://github.com/BohemianMatrices/BHIME-Project
https://github.com/BohemianMatrices/BHIME-Project
https://github.com/BohemianMatrices/bohemian
https://github.com/BohemianMatrices/BHIME-Project
https://github.com/BohemianMatrices/BHIME-Project/blob/master/Examples/Example1.m

Chapter 5. Bohemian Matrices and Their Eigenvalues 64

1 L = zeros(5, 1e6);

2 for i=1:1e6

3 A = randi([-1, 0, 1], 5, 5);

4 L(:, i) = eig(A);

5 end

6 L = reshape(L, [5e6, 1]);

7 d = hist3([imag(L), real(L)], [1000, 1000]);

8 imagesc(log(d+1));

Listing 5.1: Example Matlab script for generating a density plot over the complex plane
of the eigenvalues for a sample of 1 million random matrices from the Bohemian family of
5× 5 matrices with population {−1, 0,+1}.

1 import numpy as np

2 import matplotlib.pyplot as plt

3 A = np.random.choice([-1, 0, 1], size=(10**6, 5, 5))

4 L = np.linalg.eigvals(A).flatten()

5 H, x, y = np.histogram2d(L.real, L.imag, bins=1000)

6 plt.imshow(np.log(H.T+1), extent=[x[0], x[-1], y[0], y[-1]])

Listing 5.2: Example Python script for generating a density plot over the complex plane
of the eigenvalues for a sample of 1 million random matrices from the Bohemian family of
5× 5 matrices with population {−1, 0,+1}.

1 workingDir = '~/Real5x5_d3/';

2 g = @() randomMatrix([-1, 0, 1], 5);

3 generateRandomSample(g, workingDir);

4 pFilename = processData(workingDir);

5 processImage(pFilename, workingDir);

Listing 5.3: Simple example of using the BHIME-Project framework for plotting the
eigenvalues for a sample of 5 × 5 matrices with population {−1, 0,+1}. The image
produced from this example is given in Figure 5.5.

The framework breaks the plotting of eigenvalues into three main steps:

1. Compute the eigenvalues for a random sample of matrices,

2. Compute a two-dimensional histogram over the complex plane of eigenvalue densities,

and

Chapter 5. Bohemian Matrices and Their Eigenvalues 65

Figure 5.5: Density plot in the complex plane of the eigenvalues of a random sample of
matrices from the Bohemian family of 5× 5 matrices with population {−1, 0,+1}.

3. Generate the final image.

Each of these three steps corresponds to a single function within the framework. Each

of these functions takes a directory (workingDir) as input and uses this as the base

directory to save data files and images. The directory can be specified as either an

absolute path, or a path relative to the current directory in Matlab. If the directory

does not exist the framework will create it. It is highly recommended that the script

file used to generate the images is stored in the working directory. Inside the working

directory the following three folders are generated corresponding to the three steps of the

image creation:

• Data

• ProcessedData

• Images

The Data directory is created by the generateRandomSample function and is where

the computed eigenvalues are stored in Matlab .mat files. The ProcessedData directory

is created by the processData function and stores the eigenvalue density matrix (two

dimensional histogram over the complex plane) of the eigenvalues as a matrix in a Matlab

.mat file. The Images directory is generated by the processImage function and will

Chapter 5. Bohemian Matrices and Their Eigenvalues 66

contain all output images in png format. Each of these directories will additionally contain

a README.txt file that is automatically generated and appended to each time one of the

three functions is called. The README.txt files contain general information that can be

useful for reproducing the final image.

5.4.3 Computing Eigenvalues

Two approaches are available for computing eigenvalues. Matrices can either be randomly

sampled from a family, or all matrices can be evaluated sequentially given a mapping from

the positive integers to matrices in the family. The second approach is useful computing

the eigenvalues of all matrices in a family when the size of the family is small. Random

sampling is highly effective even for small samples (� 1%). The distinct patterns and

attributes of the distribution of the eigenvalues remain visible, see Figure 5.6 for example.

Notice that fine diffraction pattern requires more sampling. Similarly, so do other subtle

features.

Figure 5.6: Eigenvalues from the family of 5 × 5 Bohemian matrices with population
{−1, 0,+1}. The left half contains the eigenvalues from a sample of 100 million matrices
and the right half contains the eigenvalues from all 325 = 847,288,609,443 matrices in the
family.

Chapter 5. Bohemian Matrices and Their Eigenvalues 67

Randomly Sampling Matrices

The generateRandomSample function is the only function required for randomly sampling

eigenvalues from Bohemian families. Its first input argument is a function that will return

a single matrix at random from the Bohemian family each time it is called. Several

template functions for common Bohemian families are available in the framework in the

src/matrixGenerators directory. The following code will compute the eigenvalues of 10×
10 Toeplitz matrices with population {−1, 1} using the provided randomToeplitzMatrix

function.

1 g = randomToeplitzMatrix([-1, 1], 10);

2 generateRandomSample(g, workingDir);

By default the generateRandomSample function will sample b1 000 000/nc matrices

from a Bohemian family containing matrices of dimension n. An optional third argument

can be provided to specify additional parameters for the random sampling. This argument

should be a Matlab struct object where the field is the name of the option, and the

value is the corresponding option value. Two options are available for controlling the

number of matrices sampled. Eigenvalue data can be spread over multiple .mat files using

the numDataFiles option (1 by default). This is useful when more eigenvalues than can

fit in memory are being computed. The limit on the number of eigenvalues that can be

computed in a family is thus limited by storage, not memory. The matricesPerFile

option controls the number of matrices sampled for each .mat file. For example, the

following code would generate 10 data files each containing the eigenvalues of 1 million

matrices.

1 opts = struct('numDataFiles', 10, ...

2 'matricesPerFile', 1000000);

3 g = randomToeplitzMatrix([-1, 1], 10);

4 generateRandomSample(g, workingDir, opts);

The generateRandomSample function saves the eigenvalue data in the Data subdi-

rectory. By default, the data files are named BHIME i.mat where i is the index of the

file (1 through 10 in the above example). The file prefix can be controlled using the

filenamePrefix option (BHIME by default). Each file contains a matrix of dimension

matricesPerFile×n containing eigenvalues. Eigenvalues are always computed in double

https://github.com/BohemianMatrices/BHIME-Project/tree/master/src/matrixGenerators

Chapter 5. Bohemian Matrices and Their Eigenvalues 68

precision but stored in single precision by default to reduce file size. For most families the

additional precision available with storing eigenvalues in double precision will not have

any noticeable effect on the resulting images. The dataPrecision option can be set to

‘double’ if double precision is required.

Eigenvalue computation is done in parallel using the parfor construct of the Par-

allel Computing Toolbox2 in Matlab. Eigenvalues are computed in batches of size

bmatricesPerFile/(10 · nCores)c. For example, if we are computing 1 million matrices

per file, on a system with 16 cores, each parallel job will compute the eigenvalues of

b1000000/(10 · 16)c = 6250 matrices.

Each time the generateRandomSample function is called it will create additional data

files. So if it is called twice with the numDataFiles option set to 10, 20 files indexed 1

through 20 will be saved to the Data directory.

Eigenvalues of All Matrices

The generateAllMatrices function can be used to compute the eigenvalues of all ma-

trices in a family. The first argument is an injective function that maps an integer

between 1 and the number of matrices in the family, to a matrix in the family. An

example function for mapping positive integers to matrices is given by the matrixAtIndex

function in the matrixGenerators directory of the repository. The third argument to

generateAllMatrices is an integer specifying the number of matrices in the family. The

function will then iterate through all matrices and compute their eigenvalues.

As in the random sampling case, this function allows a fourth argument that specifies

additional parameters. The matricesPerFile option can again be set to split the

eigenvalues over multiple files. Since all matrices are sampled, the number of files

generated is determined by the number of matrices in the family. For example, for the

family of 4 × 4 matrices with population {−1, 0,+1}, which contains 316 = 43,046,721

matrices, if matricesPerFile is set to 106, 44 files files containing eigenvalues will be

saved. The first 43 files will contain the eigenvalues of 1 million matrices and the final file

will contain the eigenvalues of the last 46,721 matrices.

This approach is limited by the family size. For large families, the time to sample

and compute eigenvalues, or the amount of storage required to store all eigenvalues,

may prevent this from being an appropriate choice. For example, consider the family of

5× 5 matrices with population {−1, 0,+1}. This family contains 325 = 847,288,609,443

matrices and 4,236,443,047,215 eigenvalues. Storing the eigenvalues (uncompressed) in

2https://www.mathworks.com/products/parallel-computing.html

https://www.mathworks.com/products/parallel-computing.html

Chapter 5. Bohemian Matrices and Their Eigenvalues 69

single precision (32-bits per eigenvalue) would require more than 15TB or storage. Further,

the time to compute all eigenvalues on a desktop computer3 has been projected to take

nearly 4 months. Due to the exponential growth of families of matrices, computing all

eigenvalues using this approach can become intractable very quickly. If we instead looked

at 4×4 matrices with population {−1, 0,+1}, the eigenvalue data requires only 656MB of

storage and all eigenvalues can be computed in about 9 minutes (using the same computer

as before.)

5.4.4 Plotting Eigenvalues

Once the eigenvalues have been computed, the next step is to plot their density in the

complex plane. This is broken into two steps: first a two-dimensional histogram is

computed over the complex plane and stored as a matrix, then the matrix is converted

to an image. These two steps are performed using the processData and processImage

functions respectively.

Computing Eigenvalue Density

The final output plot is a two-dimensional histogram of eigenvalue densities over the

complex plane. Let a density matrix be the two-dimensional histogram over the complex

plane. Each entry of the density matrix represents one pixel in the output image. To

compute the density matrix we must first define the height of the image (number of rows

of the density matrix) and the boundaries of the image. The width of the density matrix

is computed from the height and boundaries as

width := height · (right− left)/(top− bottom)

where left, right, top, and bottom are the left, right, top and bottom values for the

boundaries respectively. For example, if we want to generate a plot over the complex area

[−2− 3i, 4 + 5i] with height 1000, the width would be

1000 · (4− (−2))/(5− (−3)) = 750 . (5.9)

The density matrix is then computed by counting the number of eigenvalues that fall

inside each bin. When eigenvalues fall on the boundaries of a bin, they are included in

the bin to their left (if on a left/right boundary), or the bin above (if on a top/bottom

3Computations run on a 2015 iMac with a 3.3 GHz Intel Core i7 processor and 16GB of RAM.

Chapter 5. Bohemian Matrices and Their Eigenvalues 70

boundary).

The processData function computes the density matrix and saves it to a Matlab

.mat file. This file is saved inside the processedData subdirectory of the workingDir.

Each time the processData function is called a new file will be generated.

By default, processedData will generate an image with a height of 1001 pixels and

boundaries determined such that all eigenvalues in the eigenvalue data files are included

in the density matrix.

Several options are available for controlling the output image. The height of the image

in pixels, and the boundary of the image can be set using the height and margin options

respectively. For example, if we wanted to view a plot on the rectangle −3 ≤ Im(z) ≤ 3,

−4 ≤ Re(z) ≤ 4 with a height of 1000 pixels, the processData function can be called as

follows.

1 margin = struct('left', -4, ...

2 'right', 4, ...

3 'bottom', -3, ...

4 'top', 3);

5 opts = struct('height', 1000, ...

6 'margin', margin);

7 pFilename = processData(workingDir, opts);

Symmetry in the eigenvalues across the real and imaginary axes can be used to

effectively double or quadruple the number of eigenvalues plotted. The symmetryRe and

symmetryIm options are available for adding symmetry across the real and imaginary axes

respectively. If a+ bi is an eigenvalue, the symmetryRe option adds a− bi to the set of

eigenvalues, when symmetryIm used, −a + bi is added to the set of eigenvalues. When

both are used, a + bi, −a + bi, and −a − bi are all appended to the set of eigenvalues.

These options should be used with care as adding the symmetryRe option for a family

that does not have negation symmetry will produce an incorrect plot. For families of

matrices with real entries, the symmetryIm option will not have any effect due to the

complex conjugate eigenvalue symmetry. This option should only be used when exploring

Bohemian families over the complex numbers when it is known that both A and A are in

the family for all matrices A.

The density of purely real eigenvalues is typically much higher than the density off

the real axis. For example, when plotting the eigenvalues of the family of 5× 5 matrices

with population {−1, 0,+1} on a 2001× 2001 pixel grid over the complex range −4− 4i

to 4 + 4i, the average density of bins that contain the real axis (excluding empty bins) is

Chapter 5. Bohemian Matrices and Their Eigenvalues 71

1.023× 109 while the average density of bins not on the real axis (excluding empty bins)

is only 1.768× 106. This can make selecting a colormap difficult and including the real

eigenvalues often has minimal affect on the plot (since most of the structure in the plots

is in the complex plane.) The ignoreReal option allows real eigenvalues to be excluded

from the plot. This option works in conjunction with the ignoreRealTol option which

specifies the tolerance such that an eigenvalue is considered real. If z is an eigenvalue, and

|Re(z)| < ignoreRealTol, then it is considered purely real and is excluded. By default,

the ignoreRealTol is 10−8.

Producing the Final Plot

Once the matrix of eigenvalue densities has been computed, the only remaining step

is to convert this matrix of integer counts into an image. The processImage function

converts the density matrix to the final output image. It begins by creating an Images

subdirectory within the workingDir. Images are saved to this directory with the name

Image-i.png where i is a positive integer selected such that no image is ever overwritten.

The processImage function can be called as follows where the variable pFilename is the

output of the processData function.

1 T = [0, 0, 0;

2 85, 0, 0;

3 170, 0, 0;

4 255, 0, 0;

5 255, 85, 0;

6 255, 170, 0;

7 255, 255, 0;

8 255, 255, 127;

9 255, 255, 255;

10 255, 255, 255]/255;

11 x = [0, 0.01, 0.04, 0.9, 0.13, 0.18, 0.23, 0.28, 0.4, 1.0];

12

13 processImage(pFilename, workingDir, T, x);

Several options are provided to allow maximal control over the final plot. The

eigenvalue counts are always plotted on a log scale as the densities typically have a large

range with some bins containing only a single eigenvalue while others (typically along the

real axis or at 0) have density many orders of magnitude larger. This is illustrated in

Figure 5.7

Chapter 5. Bohemian Matrices and Their Eigenvalues 72

Figure 5.7: A histogram of the densities in the bins (pixels) for the family of 5×5 matrices
with population {−1, 0,+1} over the 2001×2001 pixel grid ranging from −4− 4i to 4 + 4i.
The bin with the highest density contains 296,330,735,533 eigenvalues and is the bin that
contains 0. The lowest density bins only contain 160 eigenvalues and occurs 4 times in
the density matrix. Bins containing 3,840 eigenvalues are the most common (excluding
bins with no eigenvalues) and occur 78,440 times in the density matrix.

The colormap that is applied to the log densities (T and x in the above listing) is

provided in two parts. First an n× 3 matrix of RGB values where a row [0, 0, 0] is black

and [1, 1, 1] is white defines the colors to use. A strictly increasing length n vector starting

at 0 and ending at 1 is also required defining the relative locations of the colors. A default

colormap and weighting are set if the T and x arguments to processImage are omitted.

5.4.5 Eigenvalue Computation Timing

Computing the eigenvalues of a dimension n matrix is an O(n3) operation. Our framework

aims to make the computation as efficient as possible by optimizing the use of parallel

resources and avoiding copying data unnecessarily. On a 2015 iMac with a 3.3 GHz Intel

Core i7 processor and 16GB of RAM, we can compute and plot the eigenvalues of 1

million 5× 5 matrices with population {−1, 0,+1} on a 2001× 2001 pixel grid in under

25 seconds using only a single core. In Figure 5.8, the time to compute and plot the

eigenvalues for a range of matrix dimensions is shown.

Chapter 5. Bohemian Matrices and Their Eigenvalues 73

Figure 5.8: Time to compute and plot the eigenvalues of 1 million matrices for a range
of matrix dimensions. Computations were done using 16 cores on an AMD Ryzen
Threadripper 1950X 16 core/32 thread 3.7GHz with 64GB of RAM.

5.4.6 Language Comparison

The top high-level languages used in numerical analysis (Matlab, Python, and Julia) all

use LAPACK for computing eigenvalues, but how they interface the LAPACK routines

affects the time to compute eigenvalues. While this may be minor for computing the

eigenvalues of a single matrix, and negligible when computing the eigenvalues of large

dimension matrices, this is magnified when computing the eigenvalues of many low

dimension matrices. Table 5.5 shows a comparison of the time to compute the eigenvalues

of 1 million 5× 5 matrices with population {−1, 0,+1}.
The numpy.linalg.eig function in Python is the only eigenvalue solver in these

languages that allows batched computation of eigenvalues. The Batched BLAS [15]

API provides optimized implementations of the routines in BLAS for running the same

computation on multiple matrices. Currently no implementation appears to be available

for an eigenvalue solvers that uses the Batched BLAS API when computing eigenvalues

for batches of matrices. The batched functionality of the numpy.linalg.eig function

does however provide significant speedup by reducing the overhead to the LAPACK

eigenvalue routines. The “Python (NumPy) Batched” row reports the time to compute

the eigenvalues using the batched functionality of the numpy.linalg.eig function. The

function allows input of an m × n × n array (m = 1,000,000 in Table 5.5) where the

eigenvalues of each slice are computed. This minimizes the overhead from calling the

Chapter 5. Bohemian Matrices and Their Eigenvalues 74

function 1,000,000 times as in the “Python (NumPy) Sequential” row. Sampling is also

faster for the batched version as only a single 1,000,000× 5× 5 array must be sampled

rather than 1,000,000 5× 5 matrices.

Language Sample & Eigenvalues Sample Eigenvalues

Matlab 13.113 4.650 6.397
Python (NumPy) Sequential 43.344 9.631 25.121
Python (NumPy) Batched 5.406 0.344 5.077

Julia 5.888 0.345 5.046

Table 5.5: Comparison of the time (in seconds) to sample and compute the eigenvalues
of 1 million 5× 5 matrices with population {−1, 0,+1} in Matlab, Python (NumPy),
and Julia. The “Sample and Eigenvalues” column gives the time taken to sample and
compute eigenvalues, the “Sample” column is the time to sample 1 million matrices,
and the “Eigenvalues” column gives the time to compute the eigenvalues of a matrix 1
million times. The “Eigenvalues” column is based on computing the eigenvalues of a
matrix 1 million times and is repeated for a sample of 100 matrices. The average time is
given. The “Python (NumPy) Sequential” row gives the time to repeatedly sample 5× 5
matrices and then compute their eigenvalues whereas the “Python (NumPy) Batched”
row gives the time to sample a single array of dimension 1,000,000× 5× 5 and use the
batched functionality of the numpy.linalg.eig function to compute the eigenvalues of
all matrices with only one function call. All scripts were run on a single thread on a
computer with an AMD Ryzen Threadripper 1950X 16 core/32 thread 3.7GHz processor
and 64GB of RAM using Matlab R2018a, Python 3.6.2 (NumPy 1.13.1), and Julia 1.0.2.

5.5 A Test Class for Eigenvalue Solvers

Through our experimental work we estimate to have computed the eigenvalues of well

over 1 trillion low dimension matrices. We have encountered a few matrices where the eig

command in Matlab fails to compute the eigenvalues. The error message Matlab gives

is “Algorithm did not succeed” and no eigenvalues are returned. The errors appear to

be system dependent as a matrix where eig fails on one computer may be successful on

another. Nevertheless we have been able to identify matrices that fail on all computers we

have tried. These failures are rare appearing about once in every 8.6 million matrices that

we sample based on a sample of 1.5 billion matrices. All of the matrices we have found

that fail in Matlab are successful in other languages (R, Python, and Julia). Further,

computing the eigenvalues of AT , and A + εI both succeed for |ε| > 2−52. We suspect the

error is in the Intel MKL library and not the LAPACK function. To date we have not

Chapter 5. Bohemian Matrices and Their Eigenvalues 75

discovered any matrices where the eigenvalue solvers in Python (NumPy), Julia, or R fail,

although we have spent significantly less time exploring eigenvalues with those languages.

The smallest real matrices we have encountered are of dimension 15. They are

generated from a family of Bohemian matrices called border matrices. A border matrix is

one where entries in the first and last row, and the first and last column are randomly

populated from the population and all other entries are fixed at 0. As of Matlab 2018a,

this family of matrices no longer causes an error in the eig function.

An example matrix that fails on an iMac (Matlab 2017b, Intel MKL version 11.3.1,

and LAPACK version 3.5.0), but is successful on other computers is the 15× 15 matrix

A15 =



0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 1 −1 1 0 1 −1 1 1 1 1 0 0 1 0

0 0 1 0 0 0 0 0 0 0 −1 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 −1 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0 0 0 −1 0 0 0 0

0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0

0 1 −1 −1 −1 0 0 1 −1 −1 1 1 1 0 −1

0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



. (5.10)

This matrices does not appear as a border matrix due to the balancing step used by

the eig function. The matrix in Equation (5.10) is the result of calling the balance

function on a border matrix (which the eig function does by default). Turning off the

balancing step and computing the eigenvalues of the original border matrix succeeds.

This matrix has characteristic polynomial x12(x3 − x− 2) with an eigenvalue at 0 with

algebraic multiplicity 12 and geometric multiplicity 11.

We have also found that the family of 12× 12 tridiagonal matrices with population

{−1, 1, i,−i, 20,−20, 20i,−20i} fails for all version of Matlab up to and including 2018b.

As in the previous case, these matrices appear to be system dependent. One example

Chapter 5. Bohemian Matrices and Their Eigenvalues 76

that fails on an iMac in Matlab 2018b is the matrix

20 1 0 0 0 0 0 0 0 0 0 0

−20i i 0 0 0 0 0 0 0 0 0 0

0 1 20 −i 0 0 0 0 0 0 0 0

0 0 −i −1 −i 0 0 0 0 0 0 0

0 0 0 0 20i −1 0 0 0 0 0 0

0 0 0 0 1 −1 20i 0 0 0 0 0

0 0 0 0 0 0 0 20 0 0 0 0

0 0 0 0 0 0 −i 20 20i 0 0 0

0 0 0 0 0 0 0 20 1 20 0 0

0 0 0 0 0 0 0 0 20i −20 −20i 0

0 0 0 0 0 0 0 0 0 −1 −i 0

0 0 0 0 0 0 0 0 0 0 −i −i



. (5.11)

5.5.1 Numerical Error for Multiple Eigenvalues

Visualizing the eigenvalues of a family of Bohemian matrices can be useful for visually

observing the numerical error surrounding high-multiplicity eigenvalues. Eigenvalues

centred at 0 are commonly of high multiplicity. Figure 5.9 shows a closeup around 0 for

two families of matrices. In both families a distinctive star shape appears. The outermost

star shape contains 2n rays where n is the dimension of the matrix. The eigenvalues that

form this part of the star are from matrices with an eigenvalue at 0 of multiplicity n. The

next smaller star has 2(n− 1) rays and is formed by matrices with an eigenvalue at 0 of

multiplicity n− 1. The numeric error in the eigenvalues from matrices with eigenvalues

at 0 of multiplicity m is ε1/m. This appears as the radius of the 2m-pointed stars in the

figures. The symmetry is indicative of rounding errors4.

5.6 Characteristic Polynomial Database

Because the populations we consider contain only integers, we are able to compute the

characteristic polynomials of matrices in these families exactly over the integers. This

proves to be useful for the exploration of many properties of the families and helps answer

questions such as how many matrices in a family are singular, or how many distinct

4An experienced numerical analyst picked out this numerical artifact at a glance of the eigenvalue
picture. Knowing machine epsilon ε = 2−52 he was able to deduce the multiplicity of the zero eigenvalues
from the number of rays in the star and the size of |z1/m|

Chapter 5. Bohemian Matrices and Their Eigenvalues 77

(a) Numerical error in the multiple
eigenvalues at 0 for the family of 5× 5
matrices with population {−1, 0,+1}.
A random sample of 100 million matri-
ces from this family is shown and the
image is viewed on the complex range
−0.0018− 0.0018i to 0.0018 + 0.0018i.
The red circles show the expected error
when there is eigenvalues of multiplic-
ity 5 (outer red circle, ε1/5) or 4 (inner
red circle, ε1/4) at 0.

(b) Numerical error in the multiple
eigenvalues at 0 for the family of 20×20
antitridiagonal matrices with popula-
tion {−1, 0,+1}. A sample of 100 mil-
lion matrices from this family is shown
and the image is viewed on the complex
range −0.1−0.1i to 0.1+0.1i. The red
circles show the expected error, ε1/m,
for eigenvalues of multiplicity m at 0
for m from 15 (outermost circle) to 8
(innermost circle).

Figure 5.9: Numeric error in multiple eigenvalues at 0 for two families of matrices. Red
circles have been added to show the expected error in an eigenvalue of multiplicity m at 0
of ε1/m where ε is machine epsilon.

eigenvalues does a family have. By working with the characteristic polynomials rather

than the matrices themselves, we get a compact representation of the family. For many

of the families we have explored, the sets of characteristic polynomials are substantially

smaller than the sets of matrices (see Table 5.1). While the symmetries discussed in

Section 5.3 are helpful in reducing the size of the families for some analysis, it turns out

that brute-force computation of all characteristic polynomials in a family can be done

much faster. Symmetries can however be helpful in reducing the number of matrices

we must compute the characteristic polynomials of by avoiding redundant computation

(such as computing the characteristic polynomial of both A and −A). We do however

lose some information about the original matrices by working with their characteristic

polynomials such as the geometric multiplicity of their eigenvalues, the eigenvectors, and

the eigenvalue condition numbers.

Chapter 5. Bohemian Matrices and Their Eigenvalues 78

5.6.1 Exhaustive Characteristic Polynomial Computations

Computing the entire set of characteristic polynomials for families of Bohemian matrices

can be done when the number of characteristic polynomials is not too large. For example,

for the family of 5×5 matrices with population {−1, 0,+1}, there are 1,839,102 character-

istic polynomials. Storing each of these polynomials requires storing 5 64-bit integers (for

this family 16-bit integers would be sufficient but in general they are not). Thus, the set of

all characteristic polynomials would require about 70MB of memory. If a family has more

characteristic polynomials than we are able to fit in memory, managing the set of character-

istic polynomials becomes more difficult. Since the number of characteristic polynomials

is unknown a priori, approximating the number from lower dimension matrices is useful

to ensure all polynomials can fit in memory. Another limitation is the number of matrices

in a family. For the 5 × 5 example, we must compute the characteristic polynomials

of 847,288,609,443 matrices which is close to the limit of what can be completed on a

personal computer. We were able to compute all characteristic polynomials for this family

in less than a week.

When computing sets of characteristic polynomials, the number of occurrences of each

polynomial are recorded to provide a complete description of the set of characteristic

polynomials. This allows us to compute properties such as counting the number of singular

matrices by simply summing the frequencies of all polynomials with constant term equal

to zero.

To compute the sets of characteristic polynomials and their frequencies we took

advantage of the efficiency of compiled C++ code. Since all matrices are over the integers,

we are able to represent the characteristic polynomials of these matrices exactly by using a

vector of integers. Dimension n matrices were stored as vectors of length n2. For structured

matrices, only those entries that are sampled from the population are stored in the vector

of entries. For example, for upper triangular matrices, we would only use a vector of length

(n2 + n)/2. The matrices are sampled using a mapping from the non-negative integers to

a vector of entries of each matrix. For example, for the family of n × n matrices with

population {−1, 0,+1}, the mapping first writes the non-negative integers in base 3, pads

the number with zeros until we have a length n2 array of numbers, and then subtracts 1

from each number. For example, the integer 12345 would be written as 102101112 in base

3. If n = 4, we would pad this with enough zeros to give a length 16 array of numbers

giving 0000000102101112. Next we would subtract 1 from each number giving the entries

of the matrix as a vector: [−1,− 1,− 1,− 1,− 1,− 1,− 1,0,− 1,1,0,− 1,0,0,0,1].

Computing the coefficients of the characteristic polynomials was done by generating a

Chapter 5. Bohemian Matrices and Their Eigenvalues 79

program for computing the coefficients as a function of the (free) entries of the matrix

using Maple. While this is undoubtedly not the most efficient method for finding

the characteristic polynomials the flexibility for new families of matrices, and the small

dimensions we focus on were sufficient for us to allow the overhead. To store the

characteristic polynomials we use the map class in C++ where the keys are vectors of

length n containing the coefficients (excluding the leading coefficient) of the characteristic

polynomials, and the values are the frequencies of each characteristic polynomial. This has

O(N) look-up time given that the map contains N values. For a Bohemian family that

contains M matrices and has N distinct characteristic polynomials, the cost to compute

the set of characteristic polynomials is O(MN).

This technique has proved to be very successful even for families with more than 1 billion

characteristic polynomials. To date the largest family we have computed the characteristic

polynomials for is the family of 8×8 upper-Hessenberg matrices with population {−1,+1}.
This family contains 29·(8)/2 = 68,719,476,736 matrices and 1,279,227,671 characteristic

polynomials.

We have made available sets of characteristic polynomials along with the frequencies

of the polynomials on the Characteristic Polynomial Database [23] (CPDB) for several

families. Currently, the CPDB contains 1,762,728,065 characteristic polynomials from

2,366,960,967,336 matrices and is available on the Bohemian matrices website at http:

//www.bohemianmatrices.com/cpdb/. The code used for computing the sets of charac-

teristic polynomials is available on GitHub at https://github.com/BohemianMatrices/

characteristic-polynomial-database.

5.6.2 Properties

The distributions of characteristic polynomials have been used to compute several prop-

erties of their Bohemian families. This has proven effective in the discovery of several

interesting properties and sequences for various families. Tables of the properties we have

computed are also available on the CPDB. Here we discuss the techniques we used for

computing these properties.

Counting Eigenvalues

Since the set of roots of all characteristic polynomials is the same as the set of all

eigenvalues for a Bohemian family, we can count the number of distinct eigenvalues in a

Bohemian family from the set of characteristic polynomials. This computation can be

done exactly since all characteristic polynomials have integer coefficients. The algorithm

http://www.bohemianmatrices.com/cpdb/
http://www.bohemianmatrices.com/cpdb/
https://github.com/BohemianMatrices/characteristic-polynomial-database
https://github.com/BohemianMatrices/characteristic-polynomial-database

Chapter 5. Bohemian Matrices and Their Eigenvalues 80

we use to count the distinct roots computes a GCD-free basis of the set of characteristic

polynomials. That is, we compute a set of polynomials with the same roots as the set of

characteristic polynomials such that any two non-equal polynomials in the set have GCD

1. By making all polynomials square-free we have a set of polynomials where the sum of

their degrees gives the number of distinct roots.

Algorithm 1: Count the number of distinct roots of a set of polynomials.

Input : The set T of all characteristic polynomials of a Bohemian family.

Tirred ← {}.
for t ∈ T do

Let S be the set of irreducible factors of t over the integers.
Tirred ← Tirred ∪ S

The number of distinct roots in T is
∑

t∈Tirred

deg(t).

We tested our algorithm using Maple on the set of 1,839,102 characteristic polynomials

from the Bohemian family of 5× 5 matrices with population {−1, 0,+1}. On an AMD

Ryzen Threadripper 1950X 16 core/32 thread 3.7GHz processor it takes 1211 seconds to

count the eigenvalues.

To count the number of distinct real eigenvalues we sum the number of real roots

of each polynomial in Tirred. The number of real roots of each polynomial is computed

using Sturm’s theorem (sturm function in Maple). This took an additional 633 seconds

starting from Tirred. Counting the real roots using Descartes’ rule of signs (realroot

function in Maple) takes 844 seconds.

Minimal Polynomials

The sets of minimal polynomials for Bohemian families were computed by exhaustively

computing the minimal polynomial of each matrix in the family using Maple. The sets

of minimal polynomials for all families have also been provided on the CPDB. The set of

minimal polynomials also tells us the number of non-derogatory5 matrices since a matrix

of dimension n with minimal polynomial of degree n must be non-derogatory.

5A matrix is non-derogatory if its characteristic polynomial and minimal polynomial are equal up to a
factor of ±1.

Chapter 5. Bohemian Matrices and Their Eigenvalues 81

Jordan Canonical Forms

The Jordan canonical form (JCF) provides information on several properties of a matrix

including its characteristic polynomial, minimal polynomial, and both the algebraic and

geometric multiplicities of the eigenvalues. Computing the JCF numerically is unstable

because it is discontinuous with respect to changes in its entries. Symbolically computing

the JCF can be done although requires an extension to the set of algebraic numbers

(Bohemian matrices are over the field of integers). This can lead to a JCF where the

eigenvalues can only be represented exactly as the solutions to algebraic equations,

specifically when the dimension of the matrix is larger than 4. To avoid a field extension,

the rational Jordan form [16, 17] can be used. The Frobenius (rational) form is another

alternative that is a unique canonical form over the base field (integers). Since a matrix

in Frobenius form has a unique JCF [17], computing the Frobenius form is sufficient for

counting the number of JCFs in a family of Bohemian matrices. Since the set of JCFs

is isomorphic to similarity normal subset of a Bohemian family (see Proposition 5.3.21),

and each matrix in Frobenius form has a unique JCF, the set of Frobenius forms must

also be isomorphic to a similarity normal subset of a Bohemian family.

To count the number of distinct JCFs (or equivalently the number of distinct Frobenius

forms, or the size of a similarity normal subset), we compute the Frobenius form of every

matrix in a family symbolically and count the number of distinct Frobenius forms. In

Table 5.4, we report the number of distinct JCFs for an example family.

Permutation Normal Subset

Computing a permutation normal subset requires evaluating all n! permutations of all

matrices in the family. Algorithm 2 counts the size of the permutation normal subset

without storing the subset. This algorithm can be modified to return a permutation

normal subset by tracking the integer hashes of the matrices in the subset and mapping

these back to matrices from the family.

Rhapsodic Matrices

To count the number of strictly rhapsodic matrices in a family we exhaustively compute

the inverse of every invertible matrix in the family and count the number of inverses that

belong to the same family. We use Maple for this computation. To count the number of

non-strictly rhapsodic matrices, we first find the sets of Frobenius forms for all matrices in

the family (two matrices are similar if and only if they have the same Frobenius form). We

Chapter 5. Bohemian Matrices and Their Eigenvalues 82

Algorithm 2: Compute the size of a permutation normal subset.

Let decode be an injective function that maps integers to unique matrices in the
family with domain [1,m] where m is the number of matrices in the family.

Let encode be the inverse of decode.

count ← 0
for i from 1 to m do

permutation normal ← True
A← decode(i)
j ← 1
while permutation normal is True and j ≤ n! do

B ← jth permutation of A
permutation normal ← encode(B) ≥ i
j ← j + 1

if permutation normal is True then
count ← count+1

count gives the size of a permutation normal subset of the family.

then compute the inverse of every invertible matrix in the family, compute its Frobenius

form, and check if its Frobenius form is in the set of Frobenius forms of the family.

Properties of Determinants

Given the set of characteristic polynomials for a Bohemian family we also get the set

of determinants by isolating the constant coefficients. This allows us to easily compute

several properties of the matrices that are directly related to determinants. The properties

we have computed include:

• the maximum absolute determinant,

• the number of unimodular matrices (determinant ±1),

• the number of singular matrices (determinant 0),

• the number of distinct determinants, and

• the smallest positive integer that is not a determinant.

5.6.3 Integer Sequences

The properties we compute are integer sequences over the dimension of the Bohemian

family. For example, how many n× n matrices with population {−1, 0,+1} are singular.

Chapter 5. Bohemian Matrices and Their Eigenvalues 83

We have found several of these sequences already exist on the OEIS [22]. For the previous

example we refer to OEIS sequence A057981. Some of the sequences we compute appear

to align with sequences already present on the OEIS but in many cases we lack proof

of these matches. To help find proofs to these, we have compiled a list of conjectures

linking sequences related to Bohemian families to existing sequences on the OEIS. These

conjectures are listed below. Conjectures 1, 3, 4, 5, 7 and 10 already have proofs and

Conjecture 2 has been disproved. These conjectures have been included for completeness.

Conjectures

1. The number of nilpotent n× n matrices with entries from the set {0,+1} is given

by the sequence A003024. Proof in [14], reference provided by Jianxiang Chen.

2. The maximal characteristic height of n×n matrices with entries from the set {0,+1}
is given by the sequence A082914. Disproved by Jianxiang Chen.

3. The number of nilpotent n × n matrices with entries from the set {0,+1} and

diagonal entries fixed at 0 is given by the sequence A003024. Proof in [14], reference

provided by Jianxiang Chen.

4. The maximal absolute determinant of n × n matrices with entries from the set

{−1, 0,+1} is given by the sequence A003433. Proof in [14], reference provided by

Jianxiang Chen.

5. The number of nilpotent n× n matrices with entries from the set {−1, 0,+1} and

diagonal entries fixed at 0 is given by the sequence A085506. Proof in [19], reference

provided by Jianxiang Chen.

6. The number of nilpotent n × n matrices with entries from the set {0,+1,+2} is

given by the sequence A188457.

7. The maximum absolute determinant of an n × n upper-Hessenberg matrix with

entries from the set {0,+1} and subdiagonal entries fixed at 1 is given by the

Fibonacci sequence A000045. Proof in [10], reference provided by Nick Higham.

8. The maximum absolute determinant of an n × n upper-Hessenberg matrix with

entries from the set {0,+1,+2} and subdiagonal entries fixed at 1 is given by

sequence A052542.

http://oeis.org/A003024
http://oeis.org/A082914
http://oeis.org/A003024
http://oeis.org/A003433
http://oeis.org/A085506
http://oeis.org/A188457
http://oeis.org/A000045
https://nickhigham.wordpress.com/
http://oeis.org/A052542

Chapter 5. Bohemian Matrices and Their Eigenvalues 84

9. The number of distinct determinants of an n × n upper-Hessenberg matrix with

entries from the set {0, 1}, subdiagonal entries fixed at 1, and diagonal entries fixed

at 0 is given by sequence A212264.

10. All upper-Hessenberg matrices with subdiagonal entries fixed at 1 are non-derogatory.

Proof in [8], Proposition 5.3.

11. The maximum characteristic height of an n × n upper-Hessenberg matrix with

entries from the set {0,+1,+2}, subdiagonal entries fixed at 1, and diagonal entries

fixed at 0 is given by sequence A058764.

12. The number of distinct determinants of an n × n upper-Hessenberg matrix with

entries from the set {−1, 0}, subdiagonal entries fixed at 1, and diagonal entries

fixed at 0 is given by sequence A001611.

13. The maximum absolute determinant of an n × n upper-Hessenberg matrix with

entries from the set {−1, 0}, subdiagonal entries fixed at 1, and diagonal entries

fixed at 0 is given by the Fibonacci sequence A000045.

14. The number of distinct determinants of an n × n upper-Hessenberg matrix with

entries from the set {−1, 0,+1}, subdiagonal entries fixed at 1, and diagonal entries

fixed at 0 is given by sequence A001588.

15. The maximum absolute determinant of an n × n upper-Hessenberg matrix with

entries from the set {−1, 0,+1}, subdiagonal entries fixed at 1, and diagonal entries

fixed at 0 is given by the Fibonacci sequence A000045.

16. The number of distinct determinants of an n × n upper-Hessenberg matrix with

entries from the set {−1,+1}, subdiagonal entries fixed at 1, and diagonal entries

fixed at 0 is given by sequence A001611.

17. The maximum absolute determinant of an n × n upper-Hessenberg matrix with

entries from the set {−1,+1}, subdiagonal entries fixed at 1, and diagonal entries

fixed at 0 is given by the Fibonacci sequence A000045.

18. The number of distinct determinants of an n × n upper-Hessenberg matrix with

entries from the set {−1, 0} and subdiagonal entries fixed at 1 is given by sequence

A000051.

http://oeis.org/A212264
http://oeis.org/A058764
http://oeis.org/A001611
http://oeis.org/A000045
http://oeis.org/A001588
http://oeis.org/A000045
http://oeis.org/A001611
http://oeis.org/A000045
http://oeis.org/A000051

Chapter 5. Bohemian Matrices and Their Eigenvalues 85

19. The number of distinct determinants of an n × n upper-Hessenberg matrix with

entries from the set {−1, 0,+1} and subdiagonal entries fixed at 1 is given by

sequence A000051.

20. The number of distinct determinants of an n × n upper-Hessenberg matrix with

entries from the set {−1,+1} and subdiagonal entries fixed at 1 is given by sequence

A000051.

21. The size of a permutation normal subset of the family of n × n matrices with

population {−1, 0,+1} is given by sequence A004105.

5.7 Conclusion

Studying Bohemian matrices has become a fascinating journey of unanswered questions

first inspired by the strange discrete structures appearing in plots of Bohemian eigenvalues.

Here we provided a general overview of Bohemian matrices and the questions we are

interested in. The symmetries discussed in Section 5.3 have proven useful when working

with Bohemian matrices. The BHIME-project Matlab framework for plotting Bohemian

eigenvalues, which has been used to generate thousands of unique and interesting images,

has been discussed. In Section 5.5, two families of Bohemian matrices where the eigenvalue

routine in Matlab fails to provide a solution were discussed. Finally, we introduced

the Characteristic Polynomial Database and the tools we use to compute properties of

Bohemian families.

Many questions relating to Bohemian families remain unanswered. Our future work

is focused on a few main problems. First, we are developing a Python package for

generating plots of Bohemian eigenvalues and hope this package will make Bohemian

eigenvalues accessible to a wider audience. Next, the exploration of the distributions of

eigenvalue condition numbers are of interest. Are the eigenvalues within some families

or for certain structures inherently better conditioned than in other families? Inverse

eigenvalue problems are also of interest. That is, given an eigenvalue and a Bohemian

family, identify a matrix in the family with the given eigenvalue. Finally, we hope that

the list of conjectures available through the Characteristic Polynomial Database inspires

others to explore these types of problems.

http://oeis.org/A000051
http://oeis.org/A000051
http://oeis.org/A004105

BIBLIOGRAPHY 86

Bibliography

[1] J. Baez. The beauty of roots. Available at:

https://johncarlosbaez.wordpress.com/2011/12/11/the-beauty-of-roots/, 2011.

[2] P. Borwein and L. Jörgenson. Visible structures in number theory. The American

Mathematical Monthly, 108(10):897–910, 2001.

[3] P. Borwein and C. Pinner. Polynomials with {0,+1,−1} coefficients and a root close

to a given point. Canadian Journal of Mathematics, 49(5):887–915, 1997.

[4] E. Y. S. Chan. A comparison of solution methods for Mandelbrot-like polynomials.

Electronic Thesis and Dissertation Repository, 2016. https://ir.lib.uwo.ca/etd/

4028.

[5] E. Y. S. Chan and R. M. Corless. A new kind of companion matrix. Electronic

Journal of Linear Algebra, 32:335–342, 2017.

[6] E. Y. S. Chan and R. M. Corless. Minimal height companion matrices for Euclid

polynomials. Mathematics in Computer Science, Jul 2018.

[7] E. Y. S. Chan, R. M. Corless, L. Gonzalez-Vega, J. R. Sendra, and J. Sendra.

Algebraic linearizations of matrix polynomials. Linear Algebra and its Applications,

563:373–399, 2019.

[8] E. Y. S. Chan, R. M. Corless, L. Gonzalez-Vega, J. R. Sendra, J. Sendra, and S. E.

Thornton. Bohemian upper Hessenberg matrices. arXiv preprint arXiv:1809.10653,

2018.

[9] E. Y. S. Chan, R. M. Corless, L. Gonzalez-Vega, J. R. Sendra, J. Sendra, and

S. E. Thornton. Bohemian upper Hessenberg Toeplitz matrices. arXiv preprint

arXiv:1809.10664, 2018.

[10] L. Ching. The maximum determinant of an n× n lower Hessenberg (0, 1) matrix.

Linear algebra and its applications, 183:147–153, 1993.

[11] D. Christensen. Plots of roots of polynomials with integer coefficients. http:

//jdc.math.uwo.ca/roots/. Accessed: 2016-06-25.

[12] R. M. Corless and S. E. Thornton. The Bohemian eigenvalue project. ACM

Communications in Computer Algebra, 50(4):158–160, 2016.

https://ir.lib.uwo.ca/etd/4028
https://ir.lib.uwo.ca/etd/4028
http://jdc.math.uwo.ca/roots/
http://jdc.math.uwo.ca/roots/

BIBLIOGRAPHY 87

[13] R. M. Corless and S. E. Thornton. Visualizing eigenvalues of random matrices. ACM

Communications in Computer Algebra, 50(1):35–39, apr 2016.

[14] D. Cvetkovic, M. Doob, and H. Sachs. Spectra of graphs-theory and applications

3rd edn. 1995.

[15] J. Dongarra, S. Hammarling, N. J. Higham, S. D. Relton, P. Valero-Lara, and

M. Zounon. The design and performance of batched BLAS on modern high- perfor-

mance computing systems. Procedia Computer Science, 108:495–504, 2017.

[16] M. Giesbrecht. Nearly optimal algorithms for canonical matrix forms. SIAM Journal

on Computing, 24(5):948–969, 1995.

[17] E. Kaltofen, M. Krishnamoorthy, and B. D. Saunders. Fast parallel algorithms for

similarity of matrices. In Proceedings of the fifth ACM symposium on Symbolic and

Algebraic Computation, pages 65–70. ACM, 1986.

[18] J. E. Littlewood. On polynomials
∑n±zm,

∑n eαmizm, z = eθi . Journal of the

London Mathematical Society, 41:367–376, 1966.

[19] B. D. McKay, F. E. Oggier, G. F. Royle, N. J. A. Sloane, I. M. Wanless, and H. S. Wilf.

Acyclic digraphs and eigenvalues of (0, 1)-matrices. Journal of Integer Sequences,

7(2):3, 2004.

[20] A. Odlyzko and B. Poonen. Zeros of polynomials with 0, 1 coefficients. Enseign.

Math, 39:317–348, 1993.

[21] R. Reyna and S. Damelin. On the structure of the Littlewood polynomials and their

zero sets. arXiv preprint arXiv:1504.08058, 2015.

[22] N. J. A. Sloane. The on-line encyclopedia of integer sequences. Published electronically

at https://oeis.org (Jan. 11, 2019).

[23] S. E. Thornton. The characteristic polynomial database. Available at http://

bohemianmatrices.com/cpdb (Sept. 7, 2018).

[24] L. N. Trefethen. Pseudospectra of matrices. Numerical analysis, 91:234–266, 1991.

https://oeis.org
http://bohemianmatrices.com/cpdb
http://bohemianmatrices.com/cpdb

Chapter 6

Bohemian Upper Hessenberg and

Toeplitz Matrices

6.1 Introduction

A matrix family is called Bohemian if its entries come from a fixed finite discrete (and

hence bounded) set, usually integers. The name is a mnemonic for Bounded Height

Matrix of Integers. Such populations arise in many applications (e.g. compressed sensing)

and the properties of matrices selected “at random” from such families are of practical and

mathematical interest. For example, Tao and Vu have shown that random matrices (more

specifically real symmetric random matrices in which the upper-triangular entries ξi,j,

i < j and diagonal entries ξi,i are independent) have simple spectrum [24]. An overview

of some of our original interest in Bohemian matrices can be found in [16].

Bohemian families have been studied for a long time, although not under that name.

For instance, Olga Taussky-Todd’s paper “Matrices of Rational Integers” [25] begins by

saying

“This subject is very vast and very old. It includes all of the arithmetic
theory of quadratic forms, as well as many of other classical subjects, such as
Latin squares and matrices with elements +1 or −1 which enter into Euler’s,
Sylvester’s or Hadamard’s famous conjectures.”

The paper [20] by C. W. Gear is another instance. What is new here is the idea that

these families are themselves interesting objects of study, and susceptible to brute-force

computational experiments as well as to asymptotic analysis. These experiments have

generated many conjectures, some of which we resolve in this paper. Others remain

88

Chapter 6. Bohemian Upper Hessenberg and Toeplitz Matrices 89

unsolved, and are listed on the Characteristic Polynomial Database [26]. Many of the

conjectures have a number-theoretic or combinatorial flavour.

Typical computational puzzles arise on asking simple-looking questions such as “how

many 6 × 6 matrices with the population1 {−1, 0,+1} are singular.” The answer is

not known as we write this, although we can give a probabilistic estimate (0.205 after

20,000,000 sample determinants2): brute computation seems futile because there are

336 .
= 1.7 × 1017 such matrices. We do know the answers up to size five by five: The

number of n by n singular matrices with population {−1, 0,+1} is, for n = 1, 2, 3, 4, and

5, just 1, 33, 7,875, 15,099,201, and 237,634,987,683. This represents fractions of their

numbers (3n
2
) of 0.333, 0.407, 0.400, 0.351, and 0.280, respectively.

Yet such matrix families are both useful and interesting. For instance, one may

use discrete optimization over a family to look for improved growth factor bounds [21].

Matrices with the population {−1, 0,+1} have minimal height3 over all integer matrices;

finding a matrix in this family which has a given polynomial p(λ) ∈ Z[λ] as characteristic

polynomial identifies a so-called “minimal height companion matrix”, which may confer

numerical benefits.

Recently the study of eigenvalues of structured Bohemian matrices (e.g. tridiagonal,

complex symmetric) has been undertaken and several puzzling features are seen resulting

from extensive experimental computations. For instance, some of the images at http:

//www.bohemianmatrices.com/gallery show common features including “holes”.

Different matrix structures produce remarkably different pictures. One structure useful

in eigenvalue computation is the upper Hessenberg matrix, which means a matrix H such

that hi,j = 0 if i > j + 1. These arise naturally in eigenvalue computation because the

QR iteration is cheaper for matrices in Hessenberg form. Results on the determinants of

Hessenberg matrices can be found in [22].

Remark 6.1.1. on computing eigenvalues by first computing characteristic polynomials.

Numerical analysts are familiar with the superior numerical stability of computing

eigenvalues iteratively, usually by the QR algorithm or some variant, rather than first

computing characteristic polynomials and then finding roots. As is well-known, such

an algorithm is numerically unstable because polynomials are usually badly-conditioned

while eigenvalues are usually well-conditioned4. Somewhat surprisingly, for several families

1The population of a Bohemian family is the set of permissible entries.
24103732 singular matrices out of twenty million sampled.
3height(A) := ||vec(A)||∞ is the largest absolute value of any entry in A.
4This has been well-known to the point of folklore since the work of Wilkinson. The well-conditioning

of eigenvalues has only recently been quantified in some cases, but for instance the results of [4] do
confirm the folklore.

http://www.bohemianmatrices.com/gallery
http://www.bohemianmatrices.com/gallery

Chapter 6. Bohemian Upper Hessenberg and Toeplitz Matrices 90

of Bohemian matrices, characteristic polynomials become valuable again: first because

the matrix dimensions are typically small or at most moderate, the ill-conditioning does

not matter much, and second because for some families (not all!) the number of distinct

characteristic polynomials is vastly smaller than the number of matrices in the family.

For instance, for the general five by five matrices with population {−1, 0,+1}, there are

nearly one trillion such matrices, but fewer than two million characteristic polynomials.

This compression is significant.

For other families of matrices, such as upper Hessenberg Toeplitz matrices, there is no

compression at all because each matrix has a distinct characteristic polynomial. Circulant

matrices fall between, having fewer characteristic polynomials but not vastly fewer. The

lesson is that for some questions (though not others), prior computation of characteristic

polynomials is valuable.

We begin our study in this paper by considering determinants of Bohemian upper

Hessenberg matrices. We prove two recursive formulae for the characteristic polynomials

of upper Hessenberg matrices5. For another recursive formula we refer to [18]. During the

course of our computations, we encountered “maximal polynomial height” characteristic

polynomials when the matrices were not only upper Hessenberg, but Toeplitz (hi,j constant

along diagonals j − i = k). Further restrictions to this class allowed identification of key

results including explicit formulae for the characteristic polynomials of maximal height. In

what follows, we lay out definitions and prove several facts of interest about characteristic

polynomials and their respective height for these families.

In Figure 6.1 we see all eigenvalues of 6 × 6 upper Hessenberg matrices with sub-

diagonals fixed at 1 and upper triangular entries from the population P = {−1, 0,+1}.
We denote this set of matrices H6×6

{0} (P). There are 321 = 10,460,353,203 such matrices.

We see a wide octagonal shape. The width of the figure reflects that some matrices might

have diagonals −1, while some have diagonals 0, and others have diagonals 1. Of course

mixed diagonals are also possible, but this should only tend to push things towards the

centre.

In Figure 6.2, we see all the eigenvalues of all 14 × 14 upper Hessenberg Toeplitz

matrices with sub-diagonals fixed at 1 and upper triangular entries from the population

P = {−1, 0,+1}. We denote this set of matrices M14×14
{0} (P). There are 314 = 4,782,969

such matrices. We now see a wide irregular hexagonal shape. More, the density of

eigenvalues (here, a darker colour indicates higher density of eigenvalues) is quite irregular,

with high-density flecks dispersed throughout. In some ways the picture is reminiscent

5We do not claim originality; recursion relations for upper Hessenberg determinants are known.

Chapter 6. Bohemian Upper Hessenberg and Toeplitz Matrices 91

of seeds in a cotton ball, if the cotton ball has been flattened. The conjugate symmetry

and z → −z symmetry are evident; to save space, we could have plotted only the first

quadrant, but for completeness have included all four. This helps to show that there is a

slightly lower density of eigenvalues near (not on) the real line. The density of eigenvalues

actually on the real line is quite high, although this is not evident from the picture.

The one thing that is easily explained about Figure 6.2 is the wide flat top (and

bottom). To do this, consider eigenvalues of upper Hessenberg Toeplitz matrices with zero

diagonal. Figure 6.4 is a picture of the set of eigenvalues of all 14× 14 upper Hessenberg

Toeplitz matrices, sub-diagonal 1, diagonal 0, and upper triangular entries from the

population P = {−1, 0,+1}. There are 313 = 1,594,323 such matrices. Here, we also see a

hexagonal shape, but this time, it is not as wide. The matrices B giving rise to Figure 6.2

are exactly the matrices B = A, B = A + I and B = A− I where the matrices A give

rise to Figure 6.4; thus the eigenvalues of each A occur three times, once with zero shift,

once with −1 shift, and once with 1 shift. That is, Figure 6.2 is simply three copies of

Figure 6.4 placed side by side, giving the appearance of a flat (or mostly flat) top and

bottom.

In Figure 6.3 we show the set of eigenvalues of upper Hessenberg matrices, sub-diagonal

1, diagonal 0, and upper triangular entries from the population P = {−1, 0,+1}. We

denote this set by Z6×6
{0} (P). There are substantially fewer matrices here than in the

H6×6
{0} (P) family, only 315 = 14,348,907 to be exact. Roughly speaking, Figure 6.1 is

partially explained by saying that, along with other eigenvalues, it contains three copies

of Figure 6.3 placed with centres at −1, at 0, and at +1.

In Figure 6.4 we see more clearly that the high-density “flecks” occur moderately near

to the edge of the eigenvalue inclusion region. We have no explanation for this. We also

see that the eigenvalues fit into a rough diamond shape; one wonders if the eigenvalues

λ = x+ iy fit into a region of shape |x|+ |y| ≤ O(
√
n). Again, we have no explanation

for this (or even much data; we do not know if this guess is even correct experimentally).

In this paper we seek to explain some of the features of these pictures, and to learn

some things about these families of Bohemian matrices. We provide supplementary

material through a git repository available at https://github.com/BohemianMatrices/

Bohemian_Upper_Hessenberg_Toeplitz_Matrices. This repository provides all code

and data used to generate the results, figures, and tables in this paper.

https://github.com/BohemianMatrices/Bohemian_Upper_Hessenberg_Toeplitz_Matrices
https://github.com/BohemianMatrices/Bohemian_Upper_Hessenberg_Toeplitz_Matrices

Chapter 6. Bohemian Upper Hessenberg and Toeplitz Matrices 92

Figure 6.1: The set of eigenvalues of all 10,460,353,203 six by six upper Hessenberg matrices
H with entries Hi,j ∈ {−1, 0,+1} for 1 ≤ i ≤ j ≤ 6, and Hi+1,i = 1 for 1 ≤ i < 6. A more
detailed image can be found at assets.bohemianmatrices.com/gallery/UH_6x6.png

Figure 6.2: The set of eigenvalues of all 14×14 upper Hessenberg Toeplitz matrices with sub-
diagonal entries equal to 1, and all other entries from the set {−1, 0,+1}. A more detailed
image can be found at assets.bohemianmatrices.com/gallery/UHT_14x14.png

assets.bohemianmatrices.com/gallery/UH_6x6.png
assets.bohemianmatrices.com/gallery/UHT_14x14.png

Chapter 6. Bohemian Upper Hessenberg and Toeplitz Matrices 93

Figure 6.3: The set of eigenvalues of all 14,348,907 matrices in Z6×6
{0} ({−1, 0,+1}); that is,

six by six upper Hessenberg matrices H with entries Hi,j ∈ {−1, 0,+1} for 1 ≤ i < j ≤ 6,
diagonal entries fixed as zero, and Hi+1,i = 1 for 1 ≤ i < 6. A more detailed image can
be found at assets.bohemianmatrices.com/gallery/UH_0_Diag_6x6.png

Figure 6.4: The set of eigenvalues of all 14 × 14 upper Hessenberg Toeplitz matrices
sub-diagonal entries equal to 1, diagonal entries equal to 0, and all other entries from
the set {−1, 0,+1}. A more detailed image can be found at assets.bohemianmatrices.
com/gallery/UHT_0_Diag_14x14.png

assets.bohemianmatrices.com/gallery/UH_0_Diag_6x6.png
assets.bohemianmatrices.com/gallery/UHT_0_Diag_14x14.png
assets.bohemianmatrices.com/gallery/UHT_0_Diag_14x14.png

Chapter 6. Bohemian Upper Hessenberg and Toeplitz Matrices 94

6.2 Prior Work

Visible features of graphs of roots and eigenvalues from structured families of polynomials

and matrices have been previously studied. One well-known polynomial whose roots

produce interesting pictures is the Littlewood polynomial,

p(x) =
n∑
i=0

aix
i , (6.1)

where ai ∈ {−1,+1}. These polynomials have been studied in [2], [6], [7], and [8]. The

image of their roots raises many questions, ranging from whether the set is (ultimately,

as n→∞) a fractal and what the boundary of the set is, to questions about the holes

in the image and its connection to various properties, such as degree and coefficients of

the polynomial. Answers to some of these questions, particularly the ones involving the

holes, have been shown to have some significance in number theory [3]. Roots of other

polynomials have also been visualized; for more, see Christensen’s6 and Jörgenson’s7 web

pages.

Corless used a generalization of the Littlewood polynomial (to Lagrange bases). In

his paper [13], he gave a new kind of companion matrix for polynomials expressed in

a Lagrange basis. He used generalized Littlewood polynomials as test problems for his

algorithm.

“The Bohemian Eigenvalue Project” was first presented as a poster [17] at the East

Coast Computer Algebra Day (ECCAD) 2015. The poster focused on preliminary

results and many of the questions raised when visualizing the distributions of Bohemian

eigenvalues over the complex plane. In particular, the poster focused on “eigenvalue

exclusion zones” (i.e. distinct regions within the domain of the eigenvalues where no

eigenvalues exist), computational methods for visualizing eigenvalues, and some results

on eigenvalue conditioning over distributions of random matrices.

In Chan’s Master’s thesis [9], she extended Piers W. Lawrence’s construction of the

companion matrix for the Mandelbrot polynomials [15, 14] to other families of polynomials,

mainly the Fibonacci-Mandelbrot polynomials and the Narayana-Mandelbrot polynomials.

What is relevant here about this construction is that these matrices are upper Hessenberg

and contain entries from a constrained set of numbers: {−1, 0}, and therefore fall under the

category of being Bohemian upper Hessenberg. Both the Fibonacci-Mandelbrot matrices

and Narayana-Mandelbrot matrices are also Bohemian upper Hessenberg, but the set that

6https://jdc.math.uwo.ca/roots/
7http://www.cecm.sfu.ca/~loki/Projects/Roots/

https://jdc.math.uwo.ca/roots/
http://www.cecm.sfu.ca/~loki/Projects/Roots/

Chapter 6. Bohemian Upper Hessenberg and Toeplitz Matrices 95

the entries draw from is {−1, 0,+1}. At the time of submission for Chan’s Master’s thesis,

the largest number of eigenvalues successfully computed (using a machine with 32 GB of

memory) were 32,767, 17,710, and 18,559 for the Mandelbrot, Fibonacci-Mandelbrot, and

Narayana-Mandelbrot matrices, respectively. This makes the 16th Mandelbrot matrix the

“largest” Bohemian matrix that we have solved at the time we write this paper.

These new constructions led Chan and Corless to a new kind of companion matrix

for polynomials of the form c(z) = za(z)b(z) + c0. A first step towards this was first

proved using the Schur complement in [10]. Knuth then suggested that Chan and Corless

look at the Euclid polynomials [11], based on the Euclid numbers. It was the success of

this construction that led to the realization that this construction is general, and gives

a genuinely new kind of companion matrix. Similar to the previous three families of

matrices, the Euclid matrices are also upper Hessenberg and Bohemian, as the entries

are comprised from the set {−1, 0,+1}. In addition, an interesting property of these

companion matrices is that their inverses are also Bohemian with the same population, a

property which we call “the matrix family having rhapsody [12].”

As an extension of this generalization, Chan et al. [12] showed how to construct

linearizations of matrix polynomials, particularly of the form za(z)d0 +c0, a(z)b(z), a(z)+

b(z) (when deg(b(z)) < deg(a(z)), and za(z)d0b(z) + c0, using a similar construction.

6.3 Notation

In what follows, we present some results on upper Hessenberg Bohemian matrices of the

form

Hn =



h1,1 h1,2 h1,3 · · · h1,n

s h2,2 h2,3 · · · h2,n

0 s h3,3 · · · h3,n

...
.

...

0 · · · 0 s hn,n


(6.2)

with s = exp(iθk), usually s ∈ {−1,+1} (we do not allow zero sub-diagonal entries, because

that reduces the problem to smaller ones) and hi,j ∈ {−1, 0,+1} for 1 ≤ i ≤ j ≤ n. We

denote the characteristic polynomial Qn(z) ≡ det(zI−Hn).

Definition 6.3.1. The set of all n× n Bohemian upper Hessenberg matrices with upper

triangle population P and sub-diagonal population from a discrete set of roots of unity,

say s ∈ {eiθk} where {θk} is some finite set of angles, is called Hn×n
{θk}(P). In particular,

Chapter 6. Bohemian Upper Hessenberg and Toeplitz Matrices 96

Hn×n
{0} (P) is the set of all n× n Bohemian upper Hessenberg matrices with upper triangle

entries from P and sub-diagonal entries equal to 1 and Hn×n
{π} (P) is when the sub-diagonals

entries are −1.

It will often be true that the average value of a population will be zero. In that case,

matrices with trace zero will be common. It is a useful oversimplification to look in that

case at matrices whose diagonal is exactly zero.

Definition 6.3.2. For a population P such that 0 ∈ P , let Zn×n{θk}(P) be the subset of

Hn×n
{θk}(P) where the main diagonal entries are fixed at 0.

6.4 Results of Experiments

The methods used for computing the characteristic polynomials and counting the number

of eigenvalues presented in Tables 6.1–6.10 will be discussed in detail in a forthcoming

paper. Many of the smaller-dimension computations were done directly in Maple 2017;

for instance, computation of the characteristic polynomials of all two million or so matrices

in H5×5
{0} ({0,+1}) took about six hours on a Surface Pro. The greater number of higher-

dimension matrices, or matrices with larger populations, required special techniques and

larger & faster machines. Eigenvalue computations were also done in Matlab and in

Python. The computed characteristic polynomials are available through the Characteristic

Polynomial Database [26].

n #matrices #cpolys #neutral polys #neutral matrices

2 27 16 2 4
3 729 166 3 24
4 59,049 3,317 7 332
5 14,348,907 133,255 11 9,909
6 10,460,353,203 10,872,459 25 696,083

Table 6.1: Some properties of matrices in Hn×n
{0} ({−1, 0,+1}). The #matrices column

reports the number of distinct matrices at each dimension. The #cpolys column reports
the number of distinct characteristic polynomials at each dimension. The #neutral polys
reports the number of characteristic polynomials where all roots have zero real part. The
#neutral matrices column reports the number of matrices where all eigenvalues have zero
real part.

Other questions than those answered in these tables can be asked of this data. For

instance, one might be interested in the proportion of singular matrices. By asking which

Chapter 6. Bohemian Upper Hessenberg and Toeplitz Matrices 97

n #matrices #cpolys #neutral polys #neutral matrices

2 3 3 2 2
3 27 15 3 6
4 729 140 7 66
5 59,049 2,297 11 1,069
6 14,348,907 67,628 25 45,375
7 10,460,353,203 3,606,225 45 4,105,977

Table 6.2: Some properties of matrices in Zn×n{0} ({−1, 0,+1}). The #matrices column
reports the number of distinct matrices at each dimension. The #cpolys column reports
the number of distinct characteristic polynomials at each dimension. The #neutral polys
reports the number of characteristic polynomials where all roots have zero real part. The
#neutral matrices column reports the number of matrices where all eigenvalues have zero
real part.

n multiplicity 1 2 3 4 5 6

2 5 1
3 35 0 1
4 431 5 0 1
5 9,497 9 3 0 1
6 363,143 51 5 1 0 1

Table 6.3: Number of distinct eigenvalues of various multiplicities of matrices in
Zn×n{0} ({−1, 0,+1}). Most eigenvalues are simple. It turns out that every multiple eigen-
value also occurs as a simple eigenvalue for some other matrix. The only n-multiple
eigenvalue of the class of n by n matrices is, of course, λ = 0.

characteristic polynomials have zero constant coefficient, and counting the number of

matrices that have that characteristic polynomial, one can answer such questions. In

the case of six by six upper Hessenberg matrices with population {−1,+1}, there are

383,680 singular matrices, or about 18.3%. Recall that for “random” six by six matrices,

where the entries are chosen perhaps uniformly over some real interval, the probability

of singularity is zero because such matrices come from a set of measure zero. Yet in

applications, the probability of singular matrices is often nonzero because of structure.

By looking at Bohemian matrices, we get some idea of the influence of structure for finite

dimensions n.

Chapter 6. Bohemian Upper Hessenberg and Toeplitz Matrices 98

n #matrices #cpolys #distinct real λ #neutrals polys #neutral matrices

2 8 6 6 1 1
3 64 28 25 1 1
4 1,024 197 219 1 1
5 32,768 2,235 3,264 1 1
6 2,097,152 39,768 75,045 1 1
7 268,435,456 1,140,848 2,694,199 1 1

Table 6.4: Some properties of matrices in Hn×n
{0} ({0,+1}). The #matrices column reports

the number of distinct matrices at each dimension. The #cpolys column reports the
number of distinct characteristic polynomials at each dimension. The #distinct real λ
column reports the number of distinct real eigenvalues in Hn×n

{0} ({0,+1}). The #neutral
polys reports the number of characteristic polynomials where all roots have zero real part
(here only zn). We conjecture that this is always so (and that there is only one matrix for
that neutral polynomial). The #neutral matrices column reports the number of matrices
where all eigenvalues have zero real part.

n multiplicity 1 2 3 4 5 6

2 6 2
3 43 2 2
4 413 6 2 2
5 6,920 6 3 2 2
6 166,005 45 6 2 2 2

Table 6.5: Number of distinct eigenvalues of various multiplicities matrices in
Hn×n
{0} ({0,+1}). Note that in this class of matrices, diagonal entries of the matrix need

not be zero.

6.5 Upper Hessenberg Matrices

We can make sense of some of those experiments by theoretical results and proofs. We

begin with a recurrence relation for the characteristic polynomial Qn(z) = det(zI−Hn)

for Hn ∈ Hn×n
{θk}(P) where s = exp(iθk). Later we will specialize the population P to

contain only zero and numbers of unit magnitude, usually {−1,0,+1}.

Theorem 6.5.1.

Qn(z) = zQn−1(z)−
n∑
k=1

sk−1hn−k+1,nQn−k(z) (6.3)

with the convention that Q0(z) = 1 (H0 = [], the empty matrix).

Chapter 6. Bohemian Upper Hessenberg and Toeplitz Matrices 99

n #matrices #cpolys #stables #neutral polys #neutral matrices #distinct real λ

2 8 6 1 1 2 5
3 64 32 3 0 0 29
4 1,024 289 14 1 6 233
5 32,768 4,958 93 0 0 7,363
6 2,097,152 162,059 992 2 430 299,477
7 268,435,456 10,318,948 0 0

Table 6.6: Some properties of matrices from Hn×n
{0} ({−1,+1}). The column #stables

reports the number of characteristic polynomials with all roots in the left half plane; the
corresponding number of matrices is 1, 4, 28, 424, and 11,613. Other columns are as in
previous tables. Blank table entries represent unknowns.

n multiplicity 1 2 3 4 5 6

2 9 1
3 65 0 0
4 689 5 0 0
5 20,565 3 0 0 0
6 887,539 59 9 1 1 1

Table 6.7: Number of distinct eigenvalues of various multiplicities of matrices from
Hn×n
{0} ({−1,+1}). The diagonal entries are not zero.

Proof. We begin by proving the following equality:

det

 zI−Hi−1

−h1,n

...

−hi−1,n

0 · · · 0 −s −hi,n

 = −
i∑

k=1

sk−1hi−k+1,nQi−k(z) (6.4)

for 1 ≤ i ≤ n.

When i = 1 the left side of equation (6.4) reduces to det
[
−h1,n

]
= −h1,n, and the

right side reduces to −
∑1

k=1 s
k−1h1−k+1,nQ1−k(z) = −h1,n.

Assume inductively that

det

 zI−Hj−1

−h1,n

...

−hj−1,n

0 · · · 0 −s −hj,n

 = −
j∑

k=1

sk−1hj−k+1,nQj−k(z) (6.5)

Chapter 6. Bohemian Upper Hessenberg and Toeplitz Matrices 100

for i = j − 1. Then

det

 zI−Hj

−h1,n

...

−hj,n
0 · · · 0 −s −hj+1,n

 = −hj+1,n det(zI−Hj) + s det

 zI−Hj−1

−h1,n

...

−hj−1,n

0 · · · 0 −s −hj,n


= −hj+1,nQj(z) + s

(
−

j∑
k=1

sk−1hj−k+1,nQj−k(z)

)
(6.6)

= −hj+1,nQj(z)−
j∑

k=1

skhj−k+1,nQj−k(z) (6.7)

= −
j∑

k=0

skhj−k+1,nQj−k(z) (6.8)

= −
j+1∑
k=1

sk−1h(j+1)−k+1,nQ(j+1)−k(z) . (6.9)

Next we prove the theorem. Performing Laplace expansion on the last row of zI−Hn we

get

Qn(z) = det

 zI−Hn−1

−h1,n

...

−hn−1,n

0 · · · 0 −s z − hn,n

 (6.10)

= (z − hn,n) det(zI−Hn−1) + s det

 zI−Hn−2

−h1,n

...

−hn−2,n

0 · · · 0 −s −hn−1,n

 (6.11)

= zQn−1(z)− hn,nQn−1(z) + s

(
−

n−1∑
k=1

sk−1hn−1−k+1,nQn−1−k(z)

)
(6.12)

= zQn−1(z)− hn,nQn−1(z)−
n−1∑
k=1

skhn−k,nQn−1−k(z) (6.13)

= zQn−1(z)−
n−1∑
k=0

skhn−k,nQn−1−k(z) (6.14)

Chapter 6. Bohemian Upper Hessenberg and Toeplitz Matrices 101

= zQn−1(z)−
n∑
k=1

sk−1hn−k+1,nQn−k(z) . (6.15)

\

Theorem 6.5.2. Expanding Qn(z) as

Qn(z) = qn,nz
n + qn,n−1z

n−1 + · · ·+ qn,0, (6.16)

we can express the coefficients recursively by

qn,n = 1, (6.17a)

qn,j = qn−1,j−1 −
n−j∑
k=1

sk−1hn−k+1,nqn−k,j for 1 ≤ j ≤ n− 1, (6.17b)

qn,0 = −
n∑
k=1

sk−1hn−k+1,nqn−k,0 for n > 0, and (6.17c)

q0,0 = 1 . (6.17d)

Proof. By Theorem 6.5.1

Qn(z) = zQn−1(z)−
n∑
k=1

sk−1hn−k+1,nQn−k(z) . (6.18)

The first term can be written

zQn−1(z) = z
[
zn−1 + qn−1,n−2z

n−2 + · · ·+ qn−1,0

]
(6.19)

= z

[
zn−1 +

n−2∑
j=0

qn−1,jz
j

]
(6.20)

= zn +
n−2∑
j=0

qn−1,jz
j+1 (6.21)

= zn +
n−1∑
j=1

qn−1,j−1z
j (6.22)

and the second term

sk−1hn−k+1,nQn−k(z) = sk−1hn−k+1,n

[
qn−k,n−kz

n−k + qn−k,n−k−1z
n−k−1 + · · ·+ qn−k,0

]

Chapter 6. Bohemian Upper Hessenberg and Toeplitz Matrices 102

= sk−1hn−k+1,n

n−k∑
j=0

qn−k,jz
j . (6.23)

Therefore,

Qn(z) = zn +
n−1∑
j=1

qn−1,j−1z
j −

n∑
k=1

sk−1hn−k+1,n

n−k∑
j=0

qn−k,jz
j

= zn +
n−1∑
j=1

qn−1,j−1z
j −

n−1∑
j=0

(
n−j∑
k=1

sk−1hn−k+1,nqn−k,j

)
zj

= zn +
n−1∑
j=1

(
qn−1,j−1 −

n−j∑
k=1

sk−1hn−k+1,nqn−k,j

)
zj −

n∑
k=1

sk−1hn−k+1,nqn−k,0 .

\

Proposition 6.5.3. All matrices in Hn×n
{θk}(P) are non-derogatory8.

Proof. Let H ∈ Hn×n
{θk}(P). Because H is upper Hessenberg

Hk
i,j =


fi,j,k for i < j + k

sk for i = j + k

0 for i > j + k

(6.24)

for 0 ≤ k ≤ n− 1 where fi,j,k are some functions of the entries of H. Let

A = r(H) =
n−1∑
k=0

ckH
k = 0 . (6.25)

We find An,1 = sn−1cn−1 = 0 and therefore cn−1 = 0. Continuing recursively for k from

n− 2 to 1 we find Ak+j,j = skck = 0 for 1 ≤ j ≤ n− k and therefore ck = 0 (since cj = 0

for j > k) for 1 ≤ k ≤ n−1. We have A = c0H
0 = 0 and hence c0 = 0. Thus, no non-zero

polynomial of degree less than n exists that satisfies r(H) = 0. Therefore, the minimal

degree non-zero polynomial that satisfies r(H) = 0 is the characteristic polynomial of

H. \

Definition 6.5.4. The characteristic height of a matrix is the height of its characteristic

polynomial.

8A non-derogatory matrix is a matrix for which its characteristic polynomial and minimal polynomial
coincide (up to a factor of ±1)

Chapter 6. Bohemian Upper Hessenberg and Toeplitz Matrices 103

Remark 6.5.5. The height of a polynomial is in fact a norm (the infinity norm of the

vector of coefficients).

Proposition 6.5.6. For any matrix A, −A has the same characteristic height as A.

Proposition 6.5.7. The maximal characteristic height of Hn ∈ Hn×n
{0,π}({−1, 0,+1})

occurs when sk−1hi,i+k−1 = −1 for 1 ≤ i ≤ n− k + 1 and 1 ≤ k ≤ n.

Proof. Since s ∈ {−1,+1} and hi,j ∈ {−1, 0,+1}, sk−1hi,i+k−1 ∈ {−1, 0,+1} and hence

max |sk−1hi,i+k−1| = 1. Let sk−1hi,i+k−1 = −1. By Theorem 6.5.2

qn,0 = −
n∑
k=1

sk−1hn−k+1,nqn−k,0 (6.26)

=
n∑
k=1

qn−k,0 (6.27)

and

qn,j = qn−1,j−1 −
n−j∑
k=1

sk−1hn−k+1,nqn−k,j (6.28)

= qn−1,j−1 +

n−j∑
k=1

qn−k,j . (6.29)

Since q0,0 = 1, and equations (6.27) and (6.29) are independent of s and hi,j , all qn,j must

be positive and the maximum characteristic height is attained. \

Remark 6.5.8. When s = 1 (θ = 0) and hi,j = −1 for all 1 ≤ i ≤ j ≤ n, Hn attains

maximal characteristic height. By Proposition 6.5.6, s = −1 (θ = π) and hi,j = 1 will also

attain maximal characteristic height. Both of these cases correspond to upper Hessenberg

matrices with a Toeplitz structure as we explore in further detail in Sections 6.6, and 6.8.

Definition 6.5.9. P is invariant under multiplication by a fixed unit eiθ if eiθP = P ;

that is, each entry of P , say p, is such that eiθp is also in P . For instance, {−1, 0,+1} is

invariant under multiplication by −1. Note that invariance with respect to eiθ implies

invariance with respect to e−iθ.

Theorem 6.5.10. Suppose Hn ∈ Hn×n
{θk}(P) and P is invariant under multiplication by

each eiθk and by −eiθk . Then Hn is similar to a matrix in Hn×n
{π} (P), and similar to a

matrix in Hn×n
{0} (P).

Chapter 6. Bohemian Upper Hessenberg and Toeplitz Matrices 104

Proof. We use induction. The case n = 1 is vacuously upper Hessenberg, though it is[
eiθk
] [
h11

] [
e−iθk

]
=
[
h11

]
∈ H1×1

{θk}(P) .

For n > 1, partition the matrix as
h11 h12 · · · h1n

s

Hn−1


where s = eiθk for some θk. Then conjugate by

1

−eiθk

In−2



h11 h12 · · · h1n

s

Hn−1


1

−eiθk

In−2


−1

=

 h11 −e−iθkh12 · · ·
−1

H̃n−1

 .

Clearly H̃n−1 is in Hn−1×n−1
{θk} (P). By induction the proof is complete. \

Remark 6.5.11. For clarity, consider the case n = 2:

H =

[
a b

s c

]
, (6.30)

where a, b, c ∈ P and s = eiθk . Then, the following similarity transforms reduce the

problem to one in H2×2
{0} (P) and one in H2×2

{π} (P).[
1 0

0 e−iθk

]
H

[
1 0

0 eiθk

]
=

[
a beiθk

1 c

]
(6.31)[

1 0

0 −e−iθk

]
H

[
1 0

0 −eiθk

]
=

[
a −beiθk

−1 c

]
. (6.32)

Chapter 6. Bohemian Upper Hessenberg and Toeplitz Matrices 105

6.6 Upper Hessenberg Toeplitz Matrices

Proposition 6.5.7 gives matrices inHn×n
{0,π}({−1, 0,+1}) with maximal characteristic height9.

We noticed that they are Toeplitz matrices. This motivates our interest in upper Hessen-

berg Toeplitz matrices.

Consider upper Hessenberg matrices with a Toeplitz structure of the form

Mn =



t1 t2 t3 · · · tn

s t1 t2 · · · tn−1

0 s t1 · · · tn−2

...
.

...

0 · · · 0 s t1


(6.33)

with s = exp(iθk), (we again do not allow zero sub-diagonal entries).

Definition 6.6.1. The set of all n × n Bohemian upper Hessenberg Toeplitz matrices

with upper triangle population P and sub-diagonal population from a discrete set of roots

of unity, say s ∈ {eiθk} where {θk} is some finite set of angles, is called Mn×n
{θk}(P).

We will restrict our analysis in this section to those matrices with population

{−1, 0,+1} and sub-diagonals fixed at 1. We will denote this set byMn×n =Mn×n
{0} ({−1, 0,+1}).

We denote the characteristic polynomial Pn(z) ≡ det(zI−Mn) for Mn ∈Mn×n.

Proposition 6.6.2. The characteristic polynomial recurrence from Theorem 6.5.1 can be

written for upper Hessenberg Toeplitz matrices in Mn×n
{0} (P) as

Pn(z) = zPn−1(z)−
n∑
k=1

tkPn−k(z) (6.34)

with the convention that P0(z) = 1 (M0 = [], the empty matrix).

Proof. For a matrix Mn ∈Mn×n
{0} (P), the entries at the ith row and the i+k−1-th column

for 1 ≤ i ≤ n− k + 1 (i.e. the k− 1-th diagonal) are all equal to tk. In equation (6.3), we

can replace hn−k+1,n with tk (i = n− k + 1) recovering equation (6.34). \

Proposition 6.6.3. The characteristic polynomial recurrence from Theorem 6.5.2 can be

written for upper Hessenberg Toeplitz matrices in Mn×n
{0} (P) as

pn,n = 1, (6.35a)

9We did not report the numbers of such matrices and polynomials that we found in our “results”
section.

Chapter 6. Bohemian Upper Hessenberg and Toeplitz Matrices 106

pn,j = pn−1,j−1 −
n−j∑
k=1

tkpn−k,j for 1 ≤ j ≤ n− 1, (6.35b)

pn,0 = −
n∑
k=1

tkpn−k,0, and (6.35c)

p0,0 = 1 . (6.35d)

Proof. Performing the same replacement as above (a notational change), we recover

equation (6.35). \

Proposition 6.6.4. pn,i is independent of tj for j > n− i.

Proof. First, assume pn,` is a function of t1, . . . , tn−` for ` = i and all n. By Proposi-

tion 6.6.3

pn,` = pn−1,`−1 −
n−∑̀
k=1

tkpn−k,` . (6.36)

Isolating the pn−1,`−1 term, we have

pn−1,`−1 = pn,` +
n−∑̀
k=1

tkpn−k,` (6.37)

The first term, pn,`, is a function of t1, . . . , tn−`. Each term tkpn−k,` in the sum is a function

of t1, . . . , tn−k−`, tk. Taking k = n− `, we have the sum is a function of t1, . . . , tn−`. Hence,

pn−1,`−1 is a function of t1, . . . , tn−1−(`−1) = tn−`.

When i = 0, by Proposition 6.6.3 we have

pn,0 = −
n∑
k=1

tkpn−k,0 (6.38)

which is a function of t1, . . . , tn. \

Theorem 6.6.5. The set of characteristic polynomials for all matrices Mn ∈Mn×n has

cardinality 3n.

Proof. Let

An =



a1 a2 a3 · · · an

1 a1 a2 · · · an−1

0 1 a1 · · · an−2

...
.

...

0 · · · 0 1 a1


(6.39)

Chapter 6. Bohemian Upper Hessenberg and Toeplitz Matrices 107

with ak ∈ {−1, 0,+1} for 1 ≤ k ≤ n. Let Rn(z; a1, . . . , an) be the characteristic polynomial

of An. Assume P` = R` for ` < n. By Proposition 6.6.2, for An and Mn to have the same

characteristic polynomial we find

zPn−1 −
n∑
k=1

tkPn−k = zRn−1 −
n∑
k=1

akRn−k . (6.40)

Since P` = R` for all ` < n, and the
∑n

k=1 tkPn−k and
∑n

k=1 tkRn−k terms are polynomials

of degree n− 1 in z, we find Pn = Rn only when tk = ak for all 1 ≤ k ≤ n (the zPn−1 and

zRn−1 terms are the only terms of degree n in z). Hence, for each combination of tk, no

other upper Hessenberg Toeplitz matrix with tk ∈ {−1, 0,+1} and sub-diagonal 1 has the

same characteristic polynomial. \

Proposition 6.6.6. The characteristic height of Mn ∈Mn×n is maximal when tk = −1

for 1 ≤ k ≤ n.

Proof. Following from Proposition 6.5.7, the entries in the ith row and i+k−1-th column

for 1 ≤ i ≤ n− k + 1 correspond to tk, after substituting s = 1 we find tk = −1 gives the

maximal characteristic height. \

Proposition 6.6.7. Let F ⊂ R be a closed and bounded set with a = min(F), b = max(F)

and #F ≥ 2. Let Mn ∈ Mn×n
{0} (F). If |a| ≥ |b|, Mn is of maximal characteristic height

when tk = a for all 1 ≤ k ≤ n. If |b| ≥ |a|, Mn is of maximal characteristic height for

tk = a for k even, and tk = b for k odd.

Proof. First, consider the case when |a| ≥ |b|. Since a < b we find a < 0. Let tk = −tk.
Writing Proposition 6.5.6 in terms of tk gives

pn,n = 1, (6.41a)

pn,j = pn−1,j−1 +

n−j∑
k=1

tkpn−k,j for 1 ≤ j ≤ n− 1, (6.41b)

pn,0 =
n∑
k=1

tkpn−k,0, and (6.41c)

p0,0 = 1 . (6.41d)

If all tk are positive then pn,j must be positive for all n and j. Hence, the maximal

characteristic height is attained when tk is maximal, or equivalently tk is minimal and

negative. Thus tk = min(F) = a gives maximal characteristic height.

Chapter 6. Bohemian Upper Hessenberg and Toeplitz Matrices 108

Next, consider when |b| ≥ |a|. Since a < b we find b > 0. By Proposition 6.5.6 we

know that the characteristic height of Mn is equal to the characteristic height of −Mn.

Rewriting Proposition 6.6.3 for −Mn by substituting pn,j with (−1)n−jpn,j we find the

recurrence for the characteristic polynomial of −Mn:

pn,n = 1, (6.42a)

pn,j = pn−1,j−1 +

n−j∑
k=1

(−1)k−1tkpn−k,j for 1 ≤ j ≤ n− 1, (6.42b)

pn,0 =
n∑
k=1

(−1)k−1tkpn−k,0, and (6.42c)

p0,0 = 1 . (6.42d)

Separating out the even and odd values of k in the sums we can write the recurrence as

pn,n = 1, (6.43a)

pn,j = pn−1,j−1 +

n−j∑
k odd

tkpn−k,j −
n−j∑
k even

tkpn−k,j for 1 ≤ j ≤ n− 1, (6.43b)

pn,0 =
n∑

k odd

tkpn−k,0 −
n∑

k even

tkpn−k,0, and (6.43c)

p0,0 = 1 . (6.43d)

The odd sums are maximal for tk = max(F) = b and the even sums are maximal for

tk = min(F) = a. Hence, the maximal characteristic height is attained for tk = b when k

is odd, and tk = a when k is even.

When |a| = |b|, equations (6.41) and (6.43) are equivalent and the maximal height is

attained both when tk = b for all k, and tk = b for k odd and tk = a for k even. \

Proposition 6.6.8. Mn ∈Mn×n also attains maximal characteristic height when tk =

(−1)k−1 for 1 ≤ k ≤ n.

Proof. By Proposition 6.6.7, we have F = {−1, 0,+1} with a = −1, and b = +1. Thus

Mn is also of maximal characteristic height for tk = b = +1 for odd values of k, and

tk = a = −1 for even values of k. \

Chapter 6. Bohemian Upper Hessenberg and Toeplitz Matrices 109

6.7 Maximal Characteristic Height Upper Hessen-

berg Toeplitz Matrices

In this section we restrict our analysis to those matrices inMn×n of maximal characteristic

height. We denote this subset by Mn×n. Let τn be the characteristic height of Mn×n

(the height is the same for all matrices in Mn×n) and let µn be the degree of the term

of the characteristic polynomial of Mn ∈ Mn×n whose coefficient gives the height. In

Proposition 6.7.5 we prove that µn the same for all matrices inMn×n. τn and µn and the

number of matrices with maximal characteristic height for dimensions 2 to 10 are given

in Table 6.8.

n τn µn # max char height

2 2 1 6
3 5 1 6
4 12 1 6
5 27 1 6
6 66 2 18
7 168 2 18
8 416 2 18
9 1,008 2 18
10 2,528 3 54

Table 6.8: Maximum height, τn, degree of term of characteristic polynomial corresponding
to maximum height, µn, and the number of matrices in Mn×n for dimensions 2 to 10.

Proposition 6.7.1. The characteristic height, τn grows at least exponentially in n.

Proof. When tk = −1 for 1 ≤ k ≤ n, the characteristic height is maximal by Proposi-

tion 6.6.6. Equation (6.35c) from Proposition 6.6.3 reduces to

pn,0 =
n∑
k=1

pn−k,0 = 2n−1 (6.44)

for n ≥ 1 with p0,0 = 1 by equation (6.35d). Thus, the maximal characteristic height

must grow at least exponentially in n. \

Conjecture 6.7.2. The maximum characteristic height, τn, approaches C(1 + ϕ)n as

n→∞ for some constant C where ϕ is the golden ratio.

Remark 6.7.3. This limit is illustrated in Figure 6.5, motivating this conjecture.

Chapter 6. Bohemian Upper Hessenberg and Toeplitz Matrices 110

Figure 6.5: The points are log τn+1− log τn for n from 0 to 50,000 where τn is the maximal
characteristic height ofMn×n (i.e. when tk = −1, for example). The solid line is log(1+ϕ)
where ϕ is the golden ratio.

Proposition 6.7.4. The characteristic height, τn is independent of tj for j > n− µn.

Proof. Let Pn be the characteristic polynomial of Mn ∈ Mn×n. By Proposition 6.6.4,

pn,µn is independent of tj for j > n − µn. Thus, tj for j > n − µn only affects pn,k for

k < µn. Since Mn is of maximal height, |pn,k| ≤ |pn,µn| for k < µn for all tj ∈ {−1, 0,+1}
with j > n− µn. \

Proposition 6.7.5. For fixed n, µn is the same for all Mn ∈Mn×n.

Proof. The characteristic polynomial of Mn when tk = −1 has the same coefficients

as the characteristic polynomial of Mn for tk = (−1)k−1 up to a sign change. By

Proposition 6.7.4, changing any of the entries tj of Mn for j > n− µn does not affect the

value of µn. Therefore µn is fixed. \

Theorem 6.7.6. Mn×n contains 2 · 3µn matrices.

Proof. By Proposition 6.6.6, tk = −1 for 1 ≤ k ≤ n gives maximal characteristic height.

By Proposition 6.7.4, any combination of tj ∈ {−1, 0,+1} for j > n− µn will not affect

Chapter 6. Bohemian Upper Hessenberg and Toeplitz Matrices 111

the characteristic height. Thus, the 3µn matrices with tk = −1 for 1 ≤ k ≤ n− µn, and

tk ∈ {−1, 0,+1} for n− µn + 1 ≤ k ≤ n all have maximal characteristic height. Similarly,

by Proposition 6.6.8, tk = (−1)k−1 for 1 ≤ k ≤ n gives maximal characteristic height.

Again, by Proposition 6.7.4, 3µn matrices with tk = (−1)k−1 for 1 ≤ k ≤ n − µn, and

tk ∈ {−1, 0,+1} for n− µn + 1 ≤ k ≤ n all have maximal characteristic height. \

Remark 6.7.7. We have found that µn remains constant for 3 or 4 subsequent values of n

followed by an increment by 1. We have verified this pattern experimentally up to degree

50,000. Figure 6.6 shows the pattern for matrix dimension up to 100.

Figure 6.6: Degree of the term corresponding to the height of the characteristic polynomial
of an n× n upper Hessenberg Toeplitz matrix of maximal characteristic height.

Remark 6.7.8. The sequence µn+1 − µn is nearly equivalent to the sequence for the

generalized Fibonacci word f [3]

a(n) =

⌊
n+ 2

ϕ+ 2

⌋
−
⌊
n+ 1

ϕ+ 2

⌋
(6.45)

(A221150 on the OEIS). We have found that up to at least degree 50,000, µn+1 − µn =

a(n+ 326) except when n ∈ {0, 2, 24,148, 24,149}.

http://oeis.org/A221150

Chapter 6. Bohemian Upper Hessenberg and Toeplitz Matrices 112

Remark 6.7.9. The sequence µn is nearly equivalent to the sequence⌊
n+ 327

ϕ+ 2

⌋
− 90 (6.46)

for n > 2. The two sequences are equal for all values up to n = 50,000 except when

n = 24,149.

The sequences presented in the previous remarks are examples of high-precision

fraud [5] requiring evaluation up to dimension 25,000 and nearly 25,000 digits of precision

to identity.

6.8 Maximal Height Characteristic Polynomials

In this section we restrict our analysis to the matrix M̃n ∈Mn×n with tk = −1 for all k.

By Proposition 6.6.6, M̃n is of maximal characteristic height.

Proposition 6.8.1. The characteristic polynomial of M̃n is of the form

Pn = zn + pn,n−1z
n−1 + · · ·+ pn,0 (6.47)

where pn,j is positive for all n and j.

Proof. When tk = −1 for 1 ≤ k ≤ n, Proposition 6.6.3 reduces to

pn,n = 1, (6.48a)

pn,j = pn−1,j−1 +

n−j∑
k=1

pn−k,j for 1 ≤ j ≤ n− 1, (6.48b)

pn,0 =
n∑
k=1

pn−k,0, and (6.48c)

p0,0 = 1 . (6.48d)

Since p0,0 is positive, and all coefficients in the above equations are positive, pn,j must be

positive for all n and j. \

Proposition 6.8.2. The generating function of the sequence (pi,i, pi+1,i, . . .) for all i ≥ 0

is

Gi(x) =

(
1− x
1− 2x

)i+1

. (6.49)

Chapter 6. Bohemian Upper Hessenberg and Toeplitz Matrices 113

Proof. First we will prove the i = 0 case. Let

G0(x) =
∞∑
`=0

p`,0x
` . (6.50)

Then,

(1− 2x)G0(x) = p0,0 +
∞∑
`=1

(p`,0 − 2p`−1,0)x` . (6.51)

From equation (6.48c),

(1− 2x)G0(x) = p0,0 + (p1,0 − 2p0,0)x+
∞∑
`=2

(p`,0 − 2p`−1,0)x` (6.52)

= p0,0 + (p1,0 − 2p0,0)x+
∞∑
`=2

(∑̀
k=1

p`−k,0 − 2
`−1∑
k=1

p`−1−k,0

)
x` (6.53)

= p0,0 + (p1,0 − 2p0,0)x+
∞∑
`=2

(∑̀
k=1

p`−k,0 − 2
∑̀
k=2

p`−k,0

)
x` (6.54)

= p0,0 + (p1,0 − 2p0,0)x+
∞∑
`=2

(
p`−1,0 −

∑̀
k=2

p`−k,0

)
x` . (6.55)

Since p0,0 = p1,0 = 1,

(1− 2x)G0(x) = 1− x+
∞∑
`=2

(
p`−1,0 −

`−1∑
k=1

p`−1−k,0

)
x` (6.56)

= 1− x . (6.57)

Therefore

G0(x) =
1− x
1− 2x

. (6.58)

Next we prove the general case for i > 0. Assume inductively that

Gi(x) =

(
1− x
1− 2x

)i+1

=
∞∑
`=0

pi+`,ix
` . (6.59)

∞∑
`=0

pi+`+1,i+1x
` =

(
1− 2x

1− 2x

) ∞∑
`=0

pi+`+1,i+1x
`

Chapter 6. Bohemian Upper Hessenberg and Toeplitz Matrices 114

=

(
1

1− 2x

)[∞∑
`=0

pi+`+1,i+1x
` − 2x

∞∑
`=0

pi+`+1,i+1x
`

]
=

(
1

1− 2x

)[
pi+1,i+1 +

∞∑
`=1

(pi+`+1,i+1 − 2pi+`,i+1)x`
]

Because pi+1,i+1 = 1 = pi,i

=

(
1

1− 2x

)[
pi,i +

∞∑
`=1

(pi+`+1,i+1 − 2pi+`,i+1)x`
]

=

(
1

1− 2x

)[
pi,i +

∞∑
`=1

(
pi+`+1,i+1 − pi+`,i+1 − pi+`,i+1

)
x`
]

=

(
1

1− 2x

)[
pi,i +

∞∑
`=1

(
pi+`+1,i+1 − pi+`,i+1 −

`−1∑
k=0

pi+`−k,i+1 +
`−1∑
k=1

pi+`−k,i+1

)
x`
]

=

(
1

1− 2x

)[
pi,i +

∞∑
`=1

(
pi+`+1,i+1 − pi+`,i+1 −

`−1∑
k=0

pi+`−k,i+1 +
`−1∑
k=1

pi+`−k,i+1

)
x`
]

=

(
1

1− 2x

)[
pi,i +

∞∑
`=1

((
pi+`+1,i+1 −

∑̀
k=1

pi+`+1−k,i+1

)
−
(
pi+`,i+1 −

`−1∑
k=1

pi+`−k,i+1

))
x`

]
.

Rewriting equation (6.48b) as

pn,j = pn+1,j+1 −
n−j∑
k=1

pn+1−k,j+1, (6.60)

we find

∞∑
`=0

pi+`+1,i+1x
` =

(
1

1− 2x

)[
pi,i +

∞∑
`=1

(pi+`,i − pi+`−1,i)x
`

]
=

(
1

1− 2x

)[∞∑
`=0

pi+`,ix
` −

∞∑
`=1

pi+`−1,ix
`

]
=

(
1

1− 2x

)[∞∑
`=0

pi+`,ix
` −

∞∑
`=0

pi+`,ix
`+1

]
=

(
1− x
1− 2x

) ∞∑
`=0

pi+`,ix
`

=

(
1− x
1− 2x

)i+2

\

Chapter 6. Bohemian Upper Hessenberg and Toeplitz Matrices 115

Proposition 6.8.3. The coefficients pn,k are given by the OEIS sequence A105306 for the

“number of directed column-convex polynomials of area n, having the top of the right-most

column at height k.” We have pn,k = Tn+1,k+1 where

Tn,k =


n−k−1∑
j=0

(
k + j

k − 1

)(
n− k − 1

j

)
if k < n

1 if k = n

(6.61)

Maple “simplifies” this to

Tn,k =


kF

 k + 1, k + 1− n
−1

2

 if n 6= k

1 if n = k

(6.62)

where F (·) is the hypergeometric function defined as

F

(
a, b

z
c

)
=
∞∑
n=0

an̄bn̄

cn̄
zn

n!
(6.63)

where qn̄ is q · (q + 1) · · · (q + n− 1).

Proof. We will show that

pi+n,i = Tn+i+1,i+1 =


n−1∑
j=0

(
i+ j + 1

i

)(
n− 1

j

)
if n > 0

1 if n = 0 .

(6.64)

By Proposition 6.8.2

pi+n,i =
1

n!

dn

dxn
Gi(x)

∣∣∣
x=0

(6.65)

where

Gi(x) =

(
1− x
1− 2x

)i+1

= fi(g(x)) (6.66)

with

fi(x) = xi+1, and (6.67)

g(x) =
1− x
1− 2x

=
1

1− 2x
− x

1− 2x
. (6.68)

http://oeis.org/A105306

Chapter 6. Bohemian Upper Hessenberg and Toeplitz Matrices 116

Differentiating fi(x) and g(x) with respect to x,

dn

dxn
fi(x) =

(i+ 1)(i) · · · (i− n+ 2)xi+1−n for n ≤ i+ 1

0 for n > i+ 1
(6.69)

=

(
i+ 1

n

)
n!xi+1−n (6.70)

and

dn

dxn
g(x) =

dn

dxn
1

1− 2x
+

dn

dxn
x

1− 2x
(6.71)

=
2nn!

(1− 2x)n+1
+

2n−1n!

(1− 2x)n
+

2nn!x

(1− 2x)n+1
(6.72)

=
2nn!(1− x)

(1− 2x)n+1
− 2n−1n!

(1− 2x)n
(6.73)

with

dn

dxn
g(x)

∣∣∣
x=0

=

n! 2n−1 for n > 0

1 for n = 0 .
(6.74)

When n = 0,

pi+n,i = pi,i = Gi(0) = 1 . (6.75)

For n > 0, by Faà di Bruno’s formula we have

dn

dxn
Gi(x) =

dn

dxn
fi(g(x)) (6.76)

=
n∑
k=1

f
(k)
i

(
g(x)

)
Bn,k(g

′(x), g′′(x), . . . , g(n−k+1)(x)) (6.77)

and therefore

dn

dxn
Gi(x)

∣∣∣
x=0

=
n∑
k=1

f
(k)
i

(
g(0)

)
Bn,k(g

′(0), g′′(0), . . . , g(n−k+1)(0)) (6.78)

=
n∑
k=1

f
(k)
i (1)Bn,k(1, 4, 24, . . . , (n− k + 1)!2n−k) . (6.79)

By Theorem 6 of [1],

Bn,k(1, 4, 24, . . . , (n− k + 1)!2n−k) = Bn,k(q0(1), q1(2), . . . , qn−k(n− k + 1)) (6.80)

Chapter 6. Bohemian Upper Hessenberg and Toeplitz Matrices 117

=

(
n− 1

k − 1

)
n!

k!
2n−k (6.81)

because the function

qn(x) =
x!

(x− n)!
2n (6.82)

satisfies

qn(x+ y) =
n∑
k=0

(
n

k

)
qk(y)qn−k(x) . (6.83)

Returning to the proof,

pi+n,i =
1

n!

dn

dxn
Gi(x)

∣∣∣
x=0

(6.84)

=
1

n!

n∑
k=1

(
i+ 1

k

)(
n− 1

k − 1

)
k!
n!

k!
2n−k (6.85)

=
n∑
k=1

(
i+ 1

k

)(
n− 1

k − 1

)
2n−k (6.86)

=
n−1∑
k=0

(
i+ 1

k + 1

)(
n− 1

k

)
2n−k−1 (6.87)

=
n−1∑
k=0

(
i+ 1

k + 1

)(
n− 1

k

) n−k−1∑
j=0

(
n− k − 1

j

)
(6.88)

=
n−1∑
k=0

n−k−1∑
j=0

(
n− 1

k

)(
i+ 1

k + 1

)(
n− k − 1

j

)
(6.89)

=
n−1∑
j=0

n−j−1∑
k=0

(
n− 1

k

)(
i+ 1

k + 1

)(
n− k − 1

j

)
(6.90)

=
n−1∑
j=0

j∑
k=0

(
n− 1

k

)(
i+ 1

k + 1

)(
n− k − 1

n− j − 1

)
(6.91)

=
n−1∑
j=0

j∑
k=0

(
n− 1

n− j − 1

)(
j

k

)(
i+ 1

k + 1

)
(6.92)

=
n−1∑
j=0

(
n− 1

j

) j∑
k=0

(
j

k

)(
i+ 1

k + 1

)
(6.93)

=
n−1∑
j=0

(
n− 1

j

)(
i+ j + 1

j + 1

)
(6.94)

=
n−1∑
j=0

(
n− 1

j

)(
i+ j + 1

i

)
(6.95)

Chapter 6. Bohemian Upper Hessenberg and Toeplitz Matrices 118

\

Proposition 6.8.4. The characteristic polynomial of M̃n is

Pn(z) =

bn/2c∑
`=0

(
n

2`

)(
z

2
+ 1

)n−2`(
1 +

z2

4

)`
+
z

2

bn−1
2
c∑

`=0

(
n

2`+ 1

)(
z

2
+ 1

)n−2`−1(
1 +

z2

4

)`
.

This proposition can be proved in several ways. We choose below to think of z ∈
C \ {±2i}, for a reason that will become clear. Since the end result is a polynomial in z,

proving the formula for z 6= ±2i will recover the exceptional cases by continuity.

Another equally valid approach would be to think of z as being transcendental and

noting that the characteristic polynomial of M̃n has integer coefficients.

Proof. From Proposition 6.6.2

Pn(z) = zPn−1(z)−
n∑
k=1

tkPn−k(z) (6.96)

= zPn−1(z)−
n−1∑
k=0

tn−kPk(z) . (6.97)

If tk = −1 for 1 ≤ k ≤ n,

Pn(z) = zPn−1(z) +
n−1∑
k=0

Pk(z) . (6.98)

Let Tj(z) =
∑j

k=0 Pk(z). Tn(z) = Tn−1(z) + Pn(z), so

Pn(z) = zPn−1(z) + Tn−1(z) (6.99)

Tn(z) = zPn−1(z) + 2Tn−1(z) (6.100)

or [
Pn(z)

Tn(z)

]
=

[
z 1

z 2

]n [
P0(z)

T0(z)

]
(6.101)

=

[
z 1

z 2

]n [
1

1

]
(6.102)

Chapter 6. Bohemian Upper Hessenberg and Toeplitz Matrices 119

since P0(z) = 1 and T0(z) =
∑0

j=0 P0(z) = 1. The eigenvalues of this matrix are

λ+ = 1 +
z

2
+ ∆ (6.103)

λ− = 1 +
z

2
−∆ (6.104)

∆ =
√

1 + z2/4 . (6.105)

If z = ±2i the eigenvalues are multiple and our approach would have to be modified. We

ignore this and recover the true result at the end. The eigenvectors are

V =

[
1 1

1− z
2

+ ∆ 1− z
2
−∆

]
(6.106)

and

V−1 =
−1

2∆

[
1− z

2
−∆ −1

−1 + z
2
−∆ 1

]
(6.107)

hence

V−1

[
1

1

]
=
−1

2∆

[
−z
2
−∆

z
2
−∆

]
=

[
1
2

+ z
4∆

1
2
− z

4∆

]
. (6.108)

Therefore [
Pn(z)

Tn(z)

]
=

[
1 1

1− z
2

+ ∆ 1− z
2
−∆

][
λn+
(

1
2

+ z
4∆

)
λn−
(

1
2
− z

4∆

)] (6.109)

and in particular

Pn(z) = λn+

(
1

2
+

z

4∆

)
+ λn−

(
1

2
− z

4∆

)
. (6.110)

Now

λn+ =

(
z

2
+ 1 + ∆

)n
(6.111)

=
n∑
k=0

(
n

k

)(
z

2
+ 1

)
∆k (6.112)

and

λn− =

(
z

2
+ 1−∆

)n
(6.113)

=
n∑
k=0

(
n

k

)(
z

2
+ 1

)
(−∆)k . (6.114)

Chapter 6. Bohemian Upper Hessenberg and Toeplitz Matrices 120

∴ Pn(z) =
n∑
k=0

(
n

k

)(
z

2
+ 1

)n−k(
1

2
∆k +

1

2
(−∆)k

)

+
z

4∆

n∑
k=0

(
n

k

)(
z

2
+ 1

)n−k (
∆k − (−∆)k

)
. (6.115)

Every odd term drops out of the first, and every even out of the second.

∴ Pn(z) =
n∑
k=0
k even

(
n

k

)(
z

2
+ 1

)n−k
∆k +

z

4∆

n∑
k=0
k odd

(
n

k

)(
z

2
+ 1

)k
· 2∆k

=

bn/2c∑
`=0

(
n

2`

)(
z

2
+ 1

)n−2`(
1 +

z2

4

)`
+
z

2

bn−1
2
c∑

`=0

(
n

2`+ 1

)(
z

2
+ 1

)n−2`−1(
1 +

z2

4

)`
.

At this point the difficulty with ∆ = 0 has been resolved by continuity. We see that Pn(z)

is a polynomial of degree n. \

6.9 A Connection with Compositions

Consider the case with symbolic entries ti, and sub-diagonals −1 for convenience with

minus signs in the formulae. For instance, the 5 by 5 example upper Hessenberg Toeplitz

matrix is

M5 =



t1 t2 t3 t4 t5

−1 t1 t2 t3 t4

0 −1 t1 t2 t3

0 0 −1 t1 t2

0 0 0 −1 t1


. (6.116)

In this section we consider what happens when we take determinants Pn(z) = det(zI−Mn).

Examining P0(0), P1(0), P2(0), P3(0), and P4(0), and in particular Pk(0) (i.e. det(−Mk))

we see that

P0(0) = 1 by convention (6.117)

P1(0) = t1 (6.118)

P2(0) = t21 + t2 (6.119)

P3(0) = t31 + 2t1t2 + t3 (6.120)

P4(0) = t41 + 3t21t2 + 2t1t3 + t22 + t4 . (6.121)

Chapter 6. Bohemian Upper Hessenberg and Toeplitz Matrices 121

One may interpret these (looking at the subscripts) as compositions: 2 = 1 + 1 = 2;

3 = 1 + 1 + 1 = 1 + 2 = 2 + 1 = 3; 4 = 1 + 1 + 1 + 1 = 2 + 1 + 1 = 1 + 2 + 1 = 1 + 1 + 2 =

1 + 3 = 3 + 1 = 2 + 2 = 4. The number of compositions of n is 2n−1, which we get if all

tj = 1.

From the Wikipedia entry on composition (combinatorics), “a composition of an

integer n is a way of writing n as the sum of a sequence of strictly positive integers.”

One may interpret the recurrence relation

pn,0 =
n∑
k=1

tkpn−k,0 (6.122)

from Proposition 6.6.3 as saying that to generate a composition of n, you get the

composition of n− k and then add the number “k” to them; adding these together gives

all compositions. For example, when n = 5 we have p0,0 = 1, p1,0 = t1, p2,0 = t21 + t2,

p3,0 = t31 + 2t1t2 + t3, and p4,0 = t41 + 3t21t2 + 2t1t3 + t22 + t4. Then

p5,0 = t1p4,0 + t2p3,0 + t3p2,0 + t4p1,0 + t5p0,0

= t51 + 3t31t2 + 2t21t3 + t1t
2
2 + t1t4 + t2t

3
1 + 2t1t

2
2 + t2t3 + t21t3 + t2t3 + t4t1 + t5

= t51 + 4t31t2 + 3t21t3 + 3t1t
2
2 + 2t1t4 + 2t2t3 + t5 .

Remark 6.9.1. This determinant also contains the whole characteristic polynomial. Simply

replace t, with t1 − z and we get det (Mn − zI) = (−1)nPn. This suggests that “composi-

tions with all parts bigger than 1” can be used to generate all compositions. This fact is

well-known. The combinatorial analysis of this recurrence formula is not quite trivial.

6.10 Zero Diagonal Upper Hessenberg Matrices

Theorem 6.10.1. Let An ∈ Zn×n{0} (P) for P = {0, w1, . . . , wm} for some fixed positive

integer m and each |wj| = 1. If An is normal, i.e. A∗nAn = AnA
∗
n, then for n ≥ 3, An is

symmetric, wj-skew symmetric for some fixed 1 ≤ j ≤ m or wj-skew circulant. These 2m

matrices (m symmetric/wj-skew symmetric, and m wj-skew circulant matrices) are the

only normal matrices in Zn×n{0} (P). (For n = 1, this is only [0]; for n = 2, the symmetric

and circulant cases coalesce, so that there are only m such matrices.)

Proof. To prove this theorem, we establish a sequence of lemmas. First, we partition An.

Chapter 6. Bohemian Upper Hessenberg and Toeplitz Matrices 122

Put

An =

[
0 T∗

e An−1

]
(6.123)

where

e∗ =
[
1 0 · · · 0

]
(6.124)

and

T∗ =
[
t12 t13 · · · t1n

]
=
[
t∗21 t∗31 · · · t∗n1

]∗
. (6.125)

Then the conditions of normality are

AnA
∗
n =

[
T∗T T∗A∗n−1

An−1 ee∗ + An−1A
∗
n−1

]
(6.126)

must equal

A∗nAn =

[
1 e∗An−1

A∗n−1e TT∗ + A∗n−1An−1

]
. (6.127)

\

Lemma 6.10.2. The first row of An contains exactly one nonzero element, say τ in

position j (2 ≤ j ≤ n).

Proof.

T∗T =
n∑
j=2

|tij|2 = 1 (6.128)

from the upper left corner. Since each nonzero element of P has magnitude 1, exactly

one entry must be nonzero. \

Lemma 6.10.3. If An−1 is normal then T = τe and An is τ -skew symmetric.

Proof. If An−1 is normal, then TT∗ + A∗n−1An−1 being equal to ee∗ + An−1A
∗
n−1 implies

TT∗ = ee∗ so that T∗ =
[
τ ∗ 0 · · · 0

]
for some τ with |τ | = 1. Then

T∗A∗n−1 = e∗An−1 ⇒ τ ∗
[
1 0 · · · 0

]
A∗n−1 = e∗A∗n−1 (6.129)

and this says τ ∗ times the first row of A∗n−1 is the first row of An−1.

But the first row of A∗n−1 is
[
0 1 0 · · · 0

]
because An−1 is upper Hessenberg with

Chapter 6. Bohemian Upper Hessenberg and Toeplitz Matrices 123

zero diagonal. Thus the first row of An−1 is
[
0 τ ∗ 0 · · · 0

]
. Thus

An =


0 τ ∗

1 0 τ ∗

1
An−2

 (remember n ≥ 3) (6.130)

and

An−1 =

 0 τ ∗

1
An−2

 (6.131)

is normal. Because An−1 is normal, and

A∗n−1 =


0 1

τ 0 1

τ
A∗n−2

 (6.132)

we have A∗n−1An−1 = An−1A
∗
n−1 or


0 1

τ 0 1

1
An−2




0 τ ∗

1 0 τ ∗

1
An−2



=


1 0 τ ∗

0 2 e∗n−2An−2

τ
τA+

n−2en−2 ee∗ + A∗n−2An−2


must equal

0 τ ∗

1 0 τ ∗

1
An−2




0 1

τ 0 1

1
An−2



Chapter 6. Bohemian Upper Hessenberg and Toeplitz Matrices 124

=


1 0 τ ∗

0 2 e∗n−2An−2

τ
τA+

n−2en−2 ee∗ + A∗n−2An−2

 .

The lower left block gives ee∗ + An−2A
∗
n−2 = ee∗ + A∗n−2An−2 so An−2 must also be

normal.

At this point, we see the outline of an induction:

An =

 0 τ ∗

1
An−1

 (6.133)

being normal with An−1 being normal implies that

An−1 =

 0 τ ∗

1
An−2

 (6.134)

where An−2 is normal. Explicit computation of the n = 3 case shows the induction

terminates. \

We now consider the harder case where

An =

[
0 T∗

en−1 An−1

]
(6.135)

but where An−1 is not itself normal. From Lemma 6.10.2 we know that T∗ has only one

nonzero element; call it τ ∗ as before. Then

TT∗ =



0
. . .

0

1

0
. . .

0


(6.136)

Chapter 6. Bohemian Upper Hessenberg and Toeplitz Matrices 125

while

ee∗ =


1

0
. . .

0

 , (6.137)

and we may assume that the 1 in TT∗ does not occur in the first row and column (else

we are in the previous case, and An−1 will be normal). Here

An−1A
∗
n−1 −A∗n−1An−1 = TT∗ − ee∗ =



−1

0
. . .

0

1

0
. . .

0


(6.138)

is the departure of An−1 from normality. We will establish that in fact

T∗ =
[
0 0 0 · · · 0 τ ∗

]
(6.139)

and that

An−1 =



0

1 0

1 0
.

1 0


; (6.140)

that is, the nonzero element can only occur in the last place. Notice that the upper left

corner of 6.138 is, if the top row of An−1 is
[
0 a1,2 a1,3 · · · a1,n−1

]
,

n−1∑
j=2

|a1,j|2 − 1 . (6.141)

Chapter 6. Bohemian Upper Hessenberg and Toeplitz Matrices 126

Therefore, all a1,j = 0 and the first row of An−1 must be zero: i.e.

An−1 =



0 0 0 · · · 0

1 0 a3,3 · · · a2,n−1

1 0
. . .

...
. an−2,n−1

1 0


(6.142)

Then,

An−1T = A∗n−1e =


0 1

0 0
. . .

...
. . . 1

0 · · · · · · 0




1

0
...

0

 =


0

0
...

0

 . (6.143)

If

T =



0

0
...

0

τ

0
...

0


, (6.144)

then

An−1T =



0

τa2,j

...

τaj−1,j

0

τ

0
...

0



, (6.145)

Chapter 6. Bohemian Upper Hessenberg and Toeplitz Matrices 127

which is impossible unless j = n (when the τ term is not present). Therefore,

An−1 =



0 0 · · · 0 0

1 x · · · x 0

1
. . .

...
...

. . . x 0

1 0


=

[
0 0

U 0

]
, (6.146)

and

An−1A
∗
n−1 −A∗n−1An−1 =



−1

0
. . .

0

1


. (6.147)

Since

A∗n−1 =

[
0 U∗

0 0

]
(6.148)

and

An−1A
∗
n−1 =

[
0 0

0 UU∗

]
(6.149)

and

A∗n−1An−1 =

[
U∗U 0

0 0

]
, (6.150)

[
0 0

0 UU∗

]
−

[
U∗U 0

0 0

]
(6.151)

must be diagonal. Therefore, the first row of UU∗ must be zero except for the first

element.

Remark 6.10.4. For n = 4, and P = {0, i,−i} (m = 2) the following 4 matrices are

normal:

Chapter 6. Bohemian Upper Hessenberg and Toeplitz Matrices 128

wj wj-skew symmetric wj-skew circulant

i


0 i 0 0
1 0 i 0

1 0 i
1 0




0 0 0 i
1 0 0 0

1 0 0
1 0



−i


0 −i 0 0
1 0 −i 0

1 0 −i
1 0




0 0 0 −i
1 0 0 0

1 0 0
1 0



6.11 Stable Matrices

6.11.1 Type I Stable Matrices

A Type I stable matrix A is a matrix with all of its eigenvalues strictly in the left half

plane: if λ is an eigenvalue of A then <(λ) < 0. This nomenclature comes from differential

equations, in that all solutions of the linear system of ODEs dy/dt = Ay will ultimately

decay as t→∞ if A is a type I stable matrix.

If the matrix A is not normal, then pseudospectra can play a role, in that even though

all solutions y must ultimately decay, they might first grow large. See [19] for details.

By Theorem 6.10.1, only 2m of the zero diagonal upper Hessenberg matrices with

population P = {−1, 0,+1} are normal, where here m = 2. Similarly, when the population

is P = {0,+1} then m = 1 and only two matrices of every dimension are normal (the

symmetric matrix with 1s on its upper diagonal, and the circulant matrix with a 1 in the

last column of the first row).

Theorem 6.11.1. No An ∈ Zn×n{θk}(P) is Type I stable, for any population P .

Proof. Suppose An ∈ Zn×n{θk}(P) has eigenvalues {λk}nk=1. Then

n∑
k=1

λk = Trace(An) = 0 . (6.152)

Therefore,
∑n

k=1 Re(λk) = 0. This is n times the average, and so the average is zero.

Since the maximum Re(λk) must be larger than the average, this proves the theorem. \

Chapter 6. Bohemian Upper Hessenberg and Toeplitz Matrices 129

The proof of this theorem did not depend on the structure or population. Thus if

we consider Hn×n
{0} (P) instead of Zn×n{0} (P), then we may simplify our search for stable

matrices by restricting the computation to those with negative trace. This is in fact the

first inequality of the Hurwitz criteria10, which leads to an effective and efficient method

to count stable matrices: start from the database of characteristic polynomials [26], decide

using the Hurwitz criteria if all roots are in the left half-plane, and if so add its matrices

to the count.

n Hn×n
{0} ({−1, 0,+1}) Hn×n

{0} ({−1,+1})

2 4 1
3 44 4
4 1,386 28
5 130,735 424
6 35,217,156 11,613
7 617,619

Table 6.9: The numbers of Type I stable matrices for various populations and dimensions.

Remark 6.11.2. For stable matrices in Hn×n
{0} ({−1, 0,+1}) the maximum real part of any

eigenvalue is, for n = 2, just −0.5 while for n = 3 it is −1.226 · 10−1. For n = 4 it is

−1.591 · 10−2. For n = 5 it is −5.176 · 10−4. For n = 6 it is −2.42 · 10−5. The maximum

real part of the eigenvalues seems to be approaching the real axis at least exponentially

in n, for this population. It would be nice to have a good asymptotic estimate.

The sequence of maximum real parts of eigenvalues for Hn×n
{0} ({−1,+1}) gives at n = 2

<(λ) = −1, −0.5, −2.168 · 10−2, −2.66 · 10−3, −1.70 · 10−4, and −2.62 · 10−6 for n = 7.

6.11.2 Type II Stable matrices

A Type II Stable Matrix A has all its eigenvalues inside the unit circle. This class of

matrices arises naturally on studying the simple linear recurrence relation yn+1 = Ayn.

Fairly obviously, all solutions of this difference equation will ultimately decay to 0 as

n→∞ if and only if all eigenvalues of A are inside the unit circle (again, pseudospectra

can play a role in the transient behaviour, sometimes significantly).

Theorem 6.11.3. If A is a Bohemian matrix with integer population P , then it is Type

II stable if and only if it is nilpotent, in which case all its eigenvalues are 0.
10The Maple command PolynomialTools[Hurwitz] implements a well-known test to decide if

p ∈ C[z] has all its roots strictly in the left half plane. Because that routine considers the complex
case, and tests for pathological cases, it is too inefficient to use in this context. We unrolled the loops,
essentially converting the code to specific tests of the principal minors of the Hurwitz matrix.

Chapter 6. Bohemian Upper Hessenberg and Toeplitz Matrices 130

Proof. Suppose to the contrary that some eigenvalues are not zero.

The determinant of A must necessarily be an integer. If the integer is not zero, it is

at least 1 in magnitude. The product of the eigenvalues is thus at least 1 in magnitude;

hence there must be at least one eigenvalue that is at least 1 in magnitude.

If the matrix A has zero determinant but not all eigenvalues zero, then after factoring

out zm for the multiplicity of the zero eigenvalue, the product of the other eigenvalues

becomes the constant coefficient (what was the coefficient of zm in the original). This

coefficient again must be an integer, and again at least one eigenvalue must be at least 1

in magnitude.

This proves the theorem, by contradiction. \

Remark 6.11.4. We did not, in fact, use that the matrix came from a Bohemian family;

only that its entries were integers.

Searching for nilpotent matrices in various classes of Bohemian matrices turns up

several puzzles. We give some preliminary results here in Table 6.10, but leave this

mostly to future work. For instance, it seems clear from our experiments that the only

nilpotent matrix in Hn×n
{0} ({0,+1}) is the (transpose of the) complete Jordan block of n

zero eigenvalues; contrariwise the irregular behaviour for Hn×n
{0} ({−1,+1}) is very puzzling.

n Zn×n{0} ({−1, 0,+1}) Hn×n
{0} ({0,+1}) Hn×n

{0} ({−1,+1})

2 1 1 2
3 3 1 0
4 21 1 0
5 271 1 0
6 9,075 1 324

Table 6.10: The numbers of nilpotent matrices for various populations and dimensions

Considering general Bohemian matrices with population {−1, 0,+1}, so that there

are 3n
2

such matrices, we find that there are 1, 9, 481, 148,817, and 243,782,721 nilpotent

matrices at dimensions 1 through 5 inclusive. We can fit this experimentally with the

formula exp(0.5 + 0.38n+ 0.23n2), or something like 1.26n
2
, which vanishes very quickly

compared to 3n
2
. This formula predicts that for n = 6 the probability of finding a nilpotent

matrix is about 2.75× 10−14. It would be gratifying to have a better understanding of

the number of nilpotent matrices in a family.

BIBLIOGRAPHY 131

6.12 Concluding Remarks

The class of upper Hessenberg Bohemian matrices gives a useful way to study Bohemian

matrices in general. This is an instance of Polya’s adage “find a useful specialization.” [23,

p. 190] Because these classes are simpler than the general case, we were able to establish

several theorems. Note that the three families Hn×n
{0} ({0,+1}), Hn×n

{0} ({−1,+1}), and

Zn×n{0} ({−1, 0,+1}) are all subfamilies of Hn×n
{0} ({−1, 0,+1}).

In this paper we have introduced two new formulae for computing the characteristic

polynomials of upper Hessenberg matrices. Our first formula, given in Theorem 6.5.1,

also computes the characteristic polynomials recursively. Our second formula, given in

Theorem 6.5.2, computes the coefficients recursively.

We extended the formulae for the characteristic polynomials to upper Hessenberg

Toeplitz matrices in Proposition 6.6.6 and Proposition 6.6.8. In Proposition 6.7.1 we show

that the maximal characteristic height of upper Hessenberg matrices in Hn×n
{0} ({−1, 0,+1})

is at least 2n−1. In Theorem 6.7.6 we show that the number of upper Hessenberg Toeplitz

matrices of maximal height in Mn×n
{0} ({−1, 0,+1}) is 3 · 2µn where µn is the degree of the

coefficient of the characteristic polynomial whose coefficient, in absolute value, is the

height.

We also explored some properties of zero diagonal Bohemian upper Hessenberg matrices.

In Theorem 6.10.1, we show that the subset of these matrices that are normal are always

symmetric, wj-skew symmetric for some fixed 1 ≤ j ≤ m, or wj-skew circulant. In

Theorem 6.11.1, we showed that no H ∈ Zn×n{θk}(P) is stable.

Many puzzles remain. Perhaps the most striking is the angular appearance of the set

Λ(Hn×n
{0} (P)) of eigenvalues of Hn×n

{0} (P), such as in Figures 6.1 and 6.3. General matrices

have eigenvalues asymptotic to a (scaled) disc [24]; our computations suggest that as

n→∞, Λ(Hn×n
{0} (P))/n1/2 tends to an irregular hexagonal shape, rather than a disk. More,

the density does not appear to be approaching uniformity. Further, the boundary is

irregular, with shapes suggestive of what is popularly known as the “dragon curve” (in

reverse—these delineate where the eigenvalues are absent, near the edge). We have no

explanation for this.

Bibliography

[1] M. Abbas and S. Bouroubi. On new identities for Bell’s polynomials. Discrete

Mathematics, 293(1-3):5–10, 2005.

BIBLIOGRAPHY 132

[2] J. Baez. The beauty of roots. Available at:

https://johncarlosbaez.wordpress.com/2011/12/11/the-beauty-of-roots/, 2011.

[3] F. Beaucoup, P. Borwein, D. W. Boyd, and C. Pinner. Multiple roots of [−1, 1]

power series. Journal of the London Mathematical Society, 57(1):135–147, 1998.

[4] C. Beltrán and D. Armentano. The polynomial eigenvalue problem is well conditioned

for random inputs. arXiv preprint arXiv:1706.06025, 2017.

[5] J. M. Borwein and P. B. Borwein. Strange series and high precision fraud. The

American Mathematical Monthly, 99(7):622–640, 1992.

[6] P. Borwein. Computational excursions in analysis and number theory. Springer

Science & Business Media, 2012.

[7] P. Borwein and L. Jörgenson. Visible structures in number theory. The American

Mathematical Monthly, 108(10):897–910, 2001.

[8] P. Borwein and C. Pinner. Polynomials with {0,+1,−1} coefficients and a root close

to a given point. Canadian Journal of Mathematics, 49(5):887–915, 1997.

[9] E. Y. S. Chan. A comparison of solution methods for Mandelbrot-like polynomials.

Electronic Thesis and Dissertation Repository, 2016. https://ir.lib.uwo.ca/etd/

4028.

[10] E. Y. S. Chan and R. M. Corless. A new kind of companion matrix. Electronic

Journal of Linear Algebra, 32:335–342, 2017.

[11] E. Y. S. Chan and R. M. Corless. Minimal height companion matrices for Euclid

polynomials. Mathematics in Computer Science, Jul 2018.

[12] E. Y. S. Chan, R. M. Corless, L. Gonzalez-Vega, J. R. Sendra, and J. Sendra.

Algebraic linearizations of matrix polynomials. Linear Algebra and its Applications,

563:373–399, 2019.

[13] R. M. Corless. Generalized companion matrices in the Lagrange basis. In Proceedings

of Encuentro de Algebra Computacional y Aplicaciones, pages 317–322. Santander,

Spain: Universidad de Cantabria, 2004.

[14] R. M. Corless and P. W. Lawrence. Mandelbrot polynomials and matrices. In

preparation.

https://ir.lib.uwo.ca/etd/4028
https://ir.lib.uwo.ca/etd/4028

BIBLIOGRAPHY 133

[15] R. M. Corless and P. W. Lawrence. The largest roots of the Mandelbrot polynomials.

In Computational and Analytical Mathematics, pages 305–324. Springer, 2013.

[16] R. M. Corless and S. E. Thornton. The Bohemian eigenvalue project. ACM

Communications in Computer Algebra, 50(4):158–160, 2016.

[17] R. M. Corless and S. E. Thornton. Visualizing eigenvalues of random matrices. ACM

Communications in Computer Algebra, 50(1):35–39, apr 2016.

[18] M. Elouafi and A. D. A. Hadj. A recursion formula for the characteristic polynomial

of Hessenberg matrices. Applied Mathematics and Computation, 208(1):177–179,

2009.

[19] M. Embree. Pseudospectra. In L. Hogben, editor, Handbook of Linear Algebra,

chapter 23. Chapman and Hall/CRC, 2013.

[20] C. W. Gear. A simple set of test matrices for eigenvalue programs. Mathematics of

Computation, 23(105):119–125, 1969.

[21] N. J. Higham. Bohemian matrices in numerical linear algebra. Avail-

able at http://www.maths.manchester.ac.uk/~higham/conferences/bohemian/

higham_bohemian18.pdf(June 20, 2018).

[22] K. Kaygısız and A. Sahin. Determinant and permanent of Hessenberg matrix and

Fibonacci type numbers. Gen, 9(2):32–41, 2012.

[23] G. Polya. How to solve it: A new aspect of mathematical method. Princeton University

Press, 2014.

[24] T. Tao and V. Vu. Random matrices have simple spectrum. Combinatorica, 37(3):539–

553, 2017.

[25] O. Taussky. Matrices of rational integers. Bulletin of the American Mathematical

Society, 66(5):327–345, 1960.

[26] S. E. Thornton. The characteristic polynomial database. Available at http://

bohemianmatrices.com/cpdb (Sept. 7, 2018).

http://www.maths.manchester.ac.uk/~higham/conferences/bohemian/higham_bohemian18.pdf
http://www.maths.manchester.ac.uk/~higham/conferences/bohemian/higham_bohemian18.pdf
http://bohemianmatrices.com/cpdb
http://bohemianmatrices.com/cpdb

Chapter 7

Concluding Remarks

7.1 Parametric Matrices

Motivated by the goal of computing the Jordan canonical form of matrices depending

on parameters, several algorithms have been developed that work in conjunction to

achieve this goal. Focusing on matrices where the entries are multivariate polynomials

whose indeterminates are regarded as parameters, we are able to use the theory of

regular chains to develop algorithms for parametric matrices. Further, the theory of

regular chains provides a uniform framework for working over systems with both algebraic

and semi-algebraic constraints. The RegularChains1 library in the Maple computer

algebra system has allowed for implementations of the presented algorithms. A Maple

package called ParametricMatrixTools contains implementations of these algorithms and

is available at https://github.com/steventhornton/ParametricMatrixTools. These

algorithms have proven effective in problems from control theory and biology where

parameters represent underlying physical properties of the systems.

In Chapter 2, an algorithm for computing the rank of a parametric matrix as a function

of its parameters was presented. The algorithm avoids the use of general tools for solving

parametric linear systems. Experiments comparing this algorithm to a näıve one illustrate

its effectiveness. By using the theory of regular chains, the algorithm was presented for

both the case of real-value parameters and complex valued. The algorithm was applied to

several problems from the literature and provided meaningful insight into the systems

being studied.

Chapter 3 introduced the Zigzag form and its use for computing the Frobenius form.

An algorithm for computing the Zigzag form was adapted from [1] to work with matrices

1See http://regularchains.org/ for details.

134

https://github.com/steventhornton/ParametricMatrixTools
http://regularchains.org/

Chapter 7. Concluding Remarks 135

where the entries are multivariate polynomials in the parameters.

Chapter 4 presented an algorithm for computing the Jordan canonical form of a

matrix in Frobenius form. The input matrix is in Frobenius form where the entries are

multivariate polynomials in the parameters. A complete case discussion for the Jordan

form was computed and allows for input algebraic or semi-algebraic constraints on the

parameters.

Work on parametric matrices still remains including many improvements to the

algorithms presented. The algorithm based on the Zigzag form for computing the

Frobenius form of a matrix can lead to large expression growth and unnecessary splitting.

Including heuristics in the implementation to help select pivots that delay splitting and

control expression growth may allow the algorithm to be applied to larger problems.

Alternatively, computing the Smith form of A − xI may also provide an improvement

because entries can be treated as univariate polynomials in x with coefficients that are

multivariate polynomials in the parameters. For both the computation of the Frobenius

form and the computation of the Jordan form, research remains to be done to generate

algorithms that maintain the similarity transformation matrices.

7.2 Bohemian Matrices

Bohemian matrices have proven to be fascinating objects to study. The http://www.

bohemianmatrices.com website has been created to archive research related to Bohemian

matrices.

Density plots of Bohemian eigenvalues have been a main source of motivation for

continued study of many Bohemian families. A Matlab framework has been developed

to make the generation of plots of Bohemian eigenvalues faster and is available at https:

//github.com/BohemianMatrices/BHIME-Project. An extensive gallery of density plots

of Bohemian eigenvalues is available at http://www.bohemianmatrices.com/gallery/.

The Characteristic Polynomial Database was created to provide a centralized database

of the distributions of characteristic polynomials for several interesting Bohemian families.

These distributions have led to many new connections between the study of Bohemian

matrices and other areas of mathematics. The database is available at http://www.

bohemianmatrices.com/cpdb/ and includes a list of 21 conjectures related to Bohemian

matrices and their properties.

In Chapter 5, an extensive introduction to Bohemian matrices and the problems of

interest related to them was presented. The Matlab framework developed for generating

plots of Bohemian matrices was presented. Two families of Bohemian matrices were

http://www.bohemianmatrices.com
http://www.bohemianmatrices.com
https://github.com/BohemianMatrices/BHIME-Project
https://github.com/BohemianMatrices/BHIME-Project
http://www.bohemianmatrices.com/gallery/
http://www.bohemianmatrices.com/cpdb/
http://www.bohemianmatrices.com/cpdb/

BIBLIOGRAPHY 136

discovered where the eig function in Matlab fails to provide solutions in some instances.

The Characteristic Polynomial Database and the motivation for its development was

introduced. Properties of interest related to Bohemian families were discussed. Finally, a

list of 21 conjectures connecting sequences of properties of Bohemian families with known

sequences on the OEIS were given.

Chapter 6 focused on two specialized families of Bohemian matrices: upper Hessenberg,

and upper Hessenberg matrices with a Toeplitz structure. These matrices were further

specialized to have population {−1, 0,+1}. Two recursive formulae for the characteristic

polynomials of upper Hessenberg matrices were given. By specializing to matrices whose

characteristic polynomials are of maximal height we were able to give a bound on their

height.

Many questions remain unanswered about Bohemian matrices and new families remain

to be explored. The Characteristic Polynomial Database will continue to expand to

include many new families including structured matrices such as symmetric, circulant, and

tridiagonal. As new families are explored new questions will arise. The list of properties

computed on these families will continue to grow and new algorithms will be required as

family sizes grow. New conjectures will appear and the list of conjectures will continue to

expand.

The visualization of Bohemian eigenvalues has provided a new class of mathematical

objects that can be appreciated regardless of someone’s mathematical background. A

Python package for visualization is under development with the hope of making Bohemian

eigenvalues accessible to a wider audience.

The work on Bohemian matrices presented in this thesis serves as a basis from which

many new and interesting questions can be tackled.

Bibliography

[1] A. Storjohann. An O(n3) algorithm for the Frobenius normal form. In Proceedings

of the 1998 International Symposium on Symbolic and Algebraic Computation, pages

101–105. ACM, 1998.

BIBLIOGRAPHY 137

Steven E. Thornton

Education The University of Western Ontario 2014 – Present
Ph.D. Candidate in Applied Mathematics

The University of Western Ontario 2013 – 2014
M.Sc. Candidate in Applied Mathematics (direct entry to Ph.D.)

The University of Western Ontario 2009 – 2013
B.Sc. Honors Applied Mathematics, minor in Physics

Academic
Awards

Ontario Graduate Scholarship 2016 – 2017

Publications Corless, R. M., Moreno Maza, M., & Thornton, S. E. (2017,
November). “Jordan Canonical Form with Parameters from Frobe-
nius Form with Parameters.” In Proceedings of The International
Conference on Mathematical Aspects of Computer and Information
Sciences (pp. 179-194). Springer, Cham.

Corless, R. M., & Thornton, S. E. (2014, August). “A package
for parametric matrix computations.” In In Proceedings of The
International Congress on Mathematical Software (pp. 442-449).
Springer, Berlin, Heidelberg.

Corless, R. M., Moreno Maza, M., & Thornton, S. E. (2015).
“Zigzag form over families of parametric matrices.” ACM Commu-
nications in Computer Algebra, 48(3/4), 109-112.

Submitted
Publications

Thornton, S. E. (2019). “Bohemian Matrices and Their Eigen-
values.”

Corless, R. M., Moreno Maza, M., & Thornton, S. E. (2018).
“Comprehensive Rank Computation for Matrices Depending on
Parameters.”

Chan, E. Y. S., Corless, R. M., Gonzalez-Vega, L., Sendra, J.
R., Sendra, J. & Thornton, S. E. (2018). “Bohemian Upper
Hessenberg and Toeplitz Matrices.”

Conference
Presentations

“Computing Bohemian Eigenvalues,” presented at Bohemian Matri-
ces and Applications 2018, University of Manchester, Manchester,
England.

BIBLIOGRAPHY 138

“Jordan Canonical Form with Parameters from Frobenius Form with
Parameters,” presented at the International Conference on Mathe-
matical Aspects of Computer and Information Sciences (MACIS)
2017, Vienna, Austria.

“The Bohemian Eigenvalue Project,” presented at The Canadian
Applied and Industrial Mathematics Society (CAIMS) 2017, Halifax,
Canada.

“A Maple Package for Parametric Matrix Computations,” presented
at the Southern Ontario Numerical Analysis Day (SONAD) 2015,
Toronto, Canada.

“A Maple Package for Parametric Matrix Computations,” presented
at the International Congress on Mathematical Software (ICMS)
2014, Seoul, Korea.

“Zigzag Form over Families of Parametric Matrices,” presented at
Encuentro de Algebra Computacional y Aplicaciones (EACA) 2015,
Barcelona, Spain.

Posters “The Bohemian Eigenvalue Project,” presented at the Fallona
Interdisciplinary Research Showcase, Western University, London,
Canada, 2017.

“The Weyr Canonical Form,” presented at the Ontario Research
Centre for Computer Algebra (ORCCA) joint lab meeting, Western
University, London, Canada, 2016.

“The Bohemian Eigenvalue Project,” presented at the International
Symposium on Symbolic and Algebraic Computation (ISSAC),
Wilfrid Laurier University, Waterloo, Canada, 2016.

“Visualizing Eigenvalues of Structured Random Matrices,” pre-
sented at the East Coast Computer Algebra Day (ECCAD), Fields
Institute, Toronto, Canada, 2015.

“Rank Computation of Parametric Matrices,” presented at the East
Coast Computer Algebra Day (ECCAD), Fields Institute, Toronto,
Canada, 2015.

“A Maple Package for Parametric matrix Computations,” presented
at the Western University Research Showcase, Western University,
London, Canada, 2014.

BIBLIOGRAPHY 139

“Zigzag Form Over Families of Parametric Matrices,” presented at
the International Symposium on Symbolic and Algebraic Computa-
tion (ISSAC), Kobe University, Kobe, Japan, 2014.

Teaching
Experience

The University of Western Ontario 2013 – 2017
Teaching Assisitant, Department of Applied Mathematics
Numerical Analysis, Introduction to Experimental Mathematics,
Calculus, Linear Algebra with Numberical Analysis for Engineer-
ing, Advanced Applied Mathematics for Mechanical Engineering,
Advanced Applied Mathematics for Electrical Engineering.

The University of Western Ontario 2016
Introduction to Python for Data Science, Instructor
Ivey Business School

Teaching
Awards

Faculty of Science Graduate Student Teaching Assistant Award,
2016.

	Algorithms for Bohemian Matrices
	Recommended Citation

	Abstract
	Co-Authorship Statement
	Acknowledgements
	List of Figures
	List of Tables
	Abbreviations
	Introduction
	Parametric Linear Systems
	Bohemian Matrices
	Outline

	Comprehensive Rank of Matrices Depending on Parameters
	Introduction
	Preliminaries
	Lemmas
	Algorithm
	Implementation
	Comparison With Other Implementations
	Example 1
	Example 2
	Example 3

	Conclusion
	Appendix A
	Appendix B

	Zigzag Form over Families of Parametric Matrices
	Introduction
	Background Material
	Zigzag Matrix
	Computation
	Implementation
	Applications

	Jordan Form with Parameters from Frobenius Form
	Introduction
	Some Prior Work
	Preliminaries
	Regular chain theory
	Regular chain representation of a splitting field
	The Frobenius canonical form
	The Jordan canonical form

	JCF Over a Splitting Field
	Jordan form of a companion matrix
	Frobenius form to Jordan form
	Example

	JCF of a Matrix with Parameters
	Square-free factorization of a parametric polynomial
	JCF of a companion matrix with parameters
	Frobenius form to JCF with parameters

	Experimentation
	Maple implementation
	Kac-Murdock-Szegö matrices
	The Belousov-Zhabotinskii reaction
	Nuclear magnetic resonance
	Bifurcation studies

	Concluding Remarks

	Bohemian Matrices and Their Eigenvalues
	Introduction
	Terminology
	Symmetry in Bohemian Families
	Complex Conjugate Eigenvalue Symmetry
	Negation Symmetry
	Rhapsodic Matrices
	Permutations
	Similar Matrices

	Visualizing Distributions of Bohemian Eigenvalues
	Plotting Eigenvalues in Matlab and Python
	Overview of the BHIME-Project Framework
	Computing Eigenvalues
	Plotting Eigenvalues
	Eigenvalue Computation Timing
	Language Comparison

	A Test Class for Eigenvalue Solvers
	Numerical Error for Multiple Eigenvalues

	Characteristic Polynomial Database
	Exhaustive Characteristic Polynomial Computations
	Properties
	Integer Sequences

	Conclusion

	Bohemian Upper Hessenberg and Toeplitz Matrices
	Introduction
	Prior Work
	Notation
	Results of Experiments
	Upper Hessenberg Matrices
	Upper Hessenberg Toeplitz Matrices
	Maximal Characteristic Height Upper Hessenberg Toeplitz Matrices
	Maximal Height Characteristic Polynomials
	A Connection with Compositions
	Zero Diagonal Upper Hessenberg Matrices
	Stable Matrices
	Type I Stable Matrices
	Type II Stable matrices

	Concluding Remarks

	Concluding Remarks
	Parametric Matrices
	Bohemian Matrices

	Curriculum Vitae

