
Western University Western University

Scholarship@Western Scholarship@Western

Digitized Theses Digitized Special Collections

2010

Fast numeric geometric techniques for COMPUTER GENERATED Fast numeric geometric techniques for COMPUTER GENERATED

DAE MODELS DAE MODELS

Niloofar Mani
Western University

Follow this and additional works at: https://ir.lib.uwo.ca/digitizedtheses

Recommended Citation Recommended Citation
Mani, Niloofar, "Fast numeric geometric techniques for COMPUTER GENERATED DAE MODELS" (2010).
Digitized Theses. 4491.
https://ir.lib.uwo.ca/digitizedtheses/4491

This Thesis is brought to you for free and open access by the Digitized Special Collections at
Scholarship@Western. It has been accepted for inclusion in Digitized Theses by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/digitizedtheses
https://ir.lib.uwo.ca/disc
https://ir.lib.uwo.ca/digitizedtheses?utm_source=ir.lib.uwo.ca%2Fdigitizedtheses%2F4491&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/digitizedtheses/4491?utm_source=ir.lib.uwo.ca%2Fdigitizedtheses%2F4491&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

Fast numeric geometric techniques for

COMPUTER GENERATED DAE MODELS

(Thesis Format: Monograph)

by

Niloofar Mani

Graduate Program
in

Applied Mathematics

on

A thesis is submitted in partial fulfillment
of the requirements for the degree of

Master of Science

School of Graduate and Postdoctoral Studies
The University of Western Ontario

London, Ontario, Canada ,

(Niloofar Mani 2010

THE UNIVERSITY OF WESTERN ONTARIO
School of Graduate and Postdoctoral Studies

CERTIFICATE OF EXAMINATION
Supervisor Examiners

Dr. Greg J. Reid Dr. David J. Jeffrey

Dr. Stephen M. Watt

Dr. Eric Schost

The thesis by

Niloofar Mani

entitled:

Fast numeric geometric techniques for computer
generated DAE models

is accepted in partial fulfillment of the
requirements for the degree of

Master of Science

Date _____________________
Aug, 23, 2010 Chair of the Thesis Examination Board

Dr. Robert M. Corless

11

Abstract

Complicated nonlinear systems of ordinary differential equation with constraints (so-

called differential algebraic equation (DAE)) arise frequently in applications, and are

often so complicated that they are in practice automatically generated by computer

modeling and simulation environments. We used the MapleSim software to generate

such systems. Missing constraints arising by prolongation (differentiation) of the DAE

need to be determined to consistently initialize and stabilize their numerical solution.

In this thesis, we review a fast prolongation method to find hidden constraints, and

apply it to systems from MapleSim models. Our symbolic numeric prolongation method

avoids the unstable eliminations of exact approaches, and applies to square systems (i.e.

systems having the same number of equations and dependent variables). The method is

successful provided the prolongations have a block structure, which is efficiently uncov­

ered by Linear Programming. Constrained mechanical systems generated by MapleSim

are used to demonstrate the power of the approach. The geometry of the constraints,

regarded as the solution set of a positive dimensional polynomial system, is determined

by using the new tools of numerical algebraic geometry. We used Bertini, a global ho­

motopy continuation solver, for this purpose. In particular Bertini determines consistent

initial conditions on the constraints. These conditions, together with the block structure

and an efficient Maple interface enable the efficient numerical solution of the system by

standard ODE methods.

111

Dedicated to my beloved husband, Saeid, the best event of my life.

iv

Acknowledgements

Here I would like to thank those who made this thesis possible. It is my pleasure to

thank my M.Sc. thesis supervisor, Dr. Greg Reid for his support and encouragement.

During these past two years, he has given me excellent advice about my research, my

thesis, and my teaching style. Moreover, I am so thankful for his kind guidance in course

projects.

It was an honor for me to be a student in Dr. Robert M. Corless and Dr. Colin

Denniston’s course. From them I was given a good start to my study.

Many thanks to all members of MapleSoft company, especially Juergen Gerhard,

Gilbert Lai, Allan Wittkopf, Austin Roche, Chad Schmitke and Erik Postma. They

taught me more than I was expecting to learn about the Maple and MapleSim software

during the valuable internship opportunity in this past summer.

I am indebted to Paul Vrbik for every single moment that he has patiently tried to

teach me the Maple Software. Thank you, Paul.

Thanks to Wenyuan Wu, for all comments and useful advice about my research.

I like to appreciate all advice I have received from Dan Bates and Jonathan Hauenstein

about the Bertini software and homotopy method.

I would like to thank my lovely academic sister, Xuan Liu who has tried her best to

replace my family while I was far from them.

Many thanks to all members of the ORCCA lab, the faculty members, staff (especially

Audrey Kager) and all my classmates and friends (especially my Canadian sister Nancy

Spring) for the ongoing support I have received from them.

I owe my deepest gratitude to my beloved husband, Saeid Kanani for all the support

he has given during this time. He has made available his help in a number of ways to

improve my living quality and make these two years an enjoyable time. I love you very

much, Saeid.

I would also like to show my gratitude to my wonderful mother Zohreh Azarnoush,

my late father Dr. Ahmad Mani and my lovely sister Yasaman, of whom I have always

been proud.

Love and thanks to my granny, Madar, for all her prayers.

Finally, I would like to express thanks to my mother-in-law, Soha, and Masood Kanani

for all their support and encouragement.

vi

Contents

CERTIFICATE OF EXAMINATION ii

ABSTRACT iii

DEDICATION iv

ACKNOWLEDGEMENTS v

CONTENTS vii

LIST OF TABLES ix

LIST OF FIGURES x

1 Introduction 1

2 Fast prolongation method 7
2.1 Introduction.. 7
2.2 Signature matrix of t-dominated systems using rankings........................... 8
2.3 Generalizing the fast prolongation method... 12

2.3.1 Square systems.. 12
2.3.2 Block triangular structures... 13

3 Numerical algebraic geometry: A homotopy method 16
3.1 Introduction.. 16
3.2 Homotopy continuation... 18

3.2.1 A generic illustrative homotopy algorithm 19
3.2.2 Homotopy for other functions... 23
3.2.3 Examples of the homotopy algorithm.. 23
3.2.4 Discussion.. 27

3.3 Positive dimensional solutions... 28
3.3.1 A numerical irreducible decomposition... 28
3.3.2 Witness sets... 29

V11

4 Main algorithm for MapleSim generated models 32
4.1 Introduction to the MapleSim software.. 32
4.2 Algorithm for MapleSim generated models.. 35

4.2.1 Simplification.. 36
4.2.2 Fast prolongation.. 42
4.2.3 Solution of the DAE system.. 43

4.3 Simplification of various type of DAE systems generated by MapleSim.. 47
4.4 Fast Prolongation on DAE systems generated by MapleSim..................... 49

5 Some MapleSim Models 50
5.1 Introduction... 50
5.2 Models with custom components ... 51

5.2.1 A non-linear damper with a linear spring....................................... 51
5.3 Multi-domain system in MapleSim .. 59

5.3.1 A DC-motor attached to a slider crank... 59

6 Models with Singularities 63
6.1 Introduction to models with singularities... 63

6.1.1 Equal-length bar slider crank ... 65

7 Conclusion and Future Work 75

BIBLIOGRAPHY 78

VITA 80

viii

List of Tables

2.1 The triangular block structure of DER for the case Ci = Ci+-1 +1....... 14
2.2 Block structure for one pendulum system... 15

3.1 Start points and target roots of (z-3)(z — 3 - 5i)(z - i)(z - 7i) =0by
our homotopy solver... 24

3.2 Start points and target roots of (z - 3)6 = 0 by our homotopy solver. . . 25
3.3 Start points and target roots of (z + 15)2(z — 48.9i)(z — 36.9 + 10.31)2(z —

V2) = 0........................ 27
3.4 Comparison between dsolve/numeric and prediction-correction for solv­

ing (z + 15)2(z - 48.9i)(z - 36.9 + 10.3i)2(z - V2) =0..................... 27

4.1 Simplification result for various MapleSim models....................................... 48
4.2 Fast prolongation timing for various MapleSim models............................... 49

6.1 Six components from Bertini for solving all blocks of equal-length bar slider
crank... 74

ix

List of Figures

1.1 Onependulumsysteni.. 1

2.1 One pendulum system.. 14

3.1 Homotopy solution paths for f(z) := (z — 3)(z — 2 — 5i)(z — i)(z — 7i) = 0. 24
3.2 Homotopy solution paths for g(z) = (z - 3)6 = 0.. 25
3.3 Homotopy solution paths of (z+15)2(z- 48.9i)(z- 36.9+10.3i)2(z-V2) = 0 26

4.1 MapleSim environment.. 33
4.2 Equation Analysis Template in equivalent Maple worksheet....................... 37
4.3 Two dimensional slider crank.. 38
4.4 Crank or connecting rod subsystem in slider crank in MapleSim............. 39
4.5 Two dimensional slider crank in MapleSim environment............................ 40
4.6 Animation of two dimensional slider crank after simulation..................... 40
4.7 Maple result for angle and displacement for slider crank............................ 45
4.8 MapleSim result for angle and displacement for slider crank...................... 45
4.9 Absolute error for Probe2.phi.. 46
4.10 Absolute error for Probel.s.. 46

5.1 The spring-damper system.. 52
5.2 The non-linear damper subsystem in MapleSim.. 53
5.3 The non-linear damper with linear spring in MapleSim............................ 54
5.4 Maple result for displacement and speed for the non-linear damper with a

linear spring.. 57
5.5 MapleSim result for displacement and speed for the non-linear damper

with a linear spring.. 57
5.6 Absolute error for probe2-s... 58
5.7 Absolute error for probe2-v .. 58
5.8 The slider crank system attached to a DC-motor in MapleSim................ 59
5.9 The DC-motor subsystem in MapleSim... 60

6.1 Equal-length bar slider crank .. 65
6.2 Near singular configuration of the equal-length bar slider crank................ 66
6.3 Near singular configuration of the equal-length bar slider crank................ 66
6.4 Variables for the slider crank.. 67

X

6.5 Probe2.phi result close to singular point P by dsolve for DAE system of
the equal-length bar slider crank.. 68

6.6 Probe2.phi result close to singular point P of the equal-length bar slider
crank... 68

6.7 Maple result for the equal-length bar slider crank before singularity at
t = 1.625 ... 69

6.8 MapleSim result for the equal-length bar slider crank before singularity . 69
6.9 A sample Bertini input file.. 70
6.10 First component of bottom block for equal-length bar slider crank 71
6.11 Second component of bottom block for equal-length bar slider crank ... 71
6.12 Equal-length bar slider crank position.. 72

1

Chapter 1

Introduction

The analysis of nonlinear systems of differential algebraic equations (DAEs) occurs com­

monly in applications. Missing constraints need to be determined for DAEs in order even

to initialize and stabilize their numerical solution. A simple example of a DAE is:

Xtt + XX — 0

Y+ XY = -g

x2 + Y2 = 1

The system (1.1) is for the motion of the simple pendulum shown in Figure 1.1.

mg

Figure 1.1: One pendulum system.

2

Here X(t), and Y(t) give the position of a unit mass on a unit length pendulum under

constant gravity g with λ as a Lagrange multiplier. Also X2+Y2=1 can be regarded

as a constraint. In the form (1.1) notice that the initial conditions:

X(O)I=X0, Xt(0) := Xt°

Y(0):=Y°, yt(0)==yt° (1.2)

can not be independently posed at t = 0. Obviously (X0)2 + (Y°)2 = 1. The derivative

of the constraint is 2XXt + 2YY = 0 and so the missing constraint obtained by the

differentiation must also be satisfied by the initial conditions. Thus 2X°X0 + 2Y°Y° = 0.

Of course, for the pendulum we can have its constraint removed by changing to polar

coordinates as below:

X = sin(e), T := - cos(B). (1.3)

Then the DAE is equivalent to the explicit ordinary differential equation (ODE):

θtt + g sin(0) = 0 (1.4)

But often DAEs are too complicated, especially those that are automatically generated,

to have their constraints algorithmically removed. Thus an important problem is to

determine all missing constraints for DAE so that constant initial conditions satisfying

the constraints can be determined for their numerical solution. More general models are

partial differential algebraic equations (PDAE). In this thesis we focus on DAEs which

are automatically generated by computer software.

Wu, Reid, and Ilie gave a symbolic-numeric approach [1, 2] for the computation of

Riquier Bases for PDAE, and showed that it can be useful in finding missing constraints

for such systems. In particular they presented new theoretical results, showing that

their method can be naturally applied to the approximate solution of PDAE by semi­

discretization (i.e. by the method of lines). In this thesis we apply their method to

3

systems of DAEs arising from various models generated by the MapleSim Software [3, 4].

MapleSim is a multi-domain modeling and simulation tool running in Maple.

We used the Wu and Reid’s method [1] to determine missing constraints for MapleSim

models and find initial conditions to numerically solve them. As described in [2] differen­

tial elimination algorithms apply a finite number of differentiations and eliminations to

uncover obstructions to formal integrability (i.e. to finitely characterize the relations be­

tween all the Taylor coefficients of solutions at a point). Since many numerical solution

methods depend on or are equivalent to Taylor expansions, the determination of such

obstructions or missing constraints can be essential for such methods. Exact differential

elimination algorithms that apply to exact polynomially nonlinear systems of PDAE are

given in [5, 6, 7, 8, 9]. Such methods identify all hidden constraints of PDAE systems

and the computation of initial conditions and associated formal power series solutions in

the neighborhood of a given point.

A major problem in these approaches is the exploding size of prolongations (differ­

entiations) for more than one independent variable. In symbolic approaches much effort

has been devoted to control the growth of this size by developing redundancy criteria (for

integrability conditions), and making strong use of elimination with respect to rankings

to decrease the size of the prolongations [10, 11]. However, symbolic elimination can

cause expression swell even in the case of one independent variable, such as for DAE

problems arising in multi-body mechanics.

Very little work has been done on the corresponding problems for symbolic-numeric

methods. Techniques which are helpful for the symbolic case are often unstable for the

approximate case, since the rankings (the differential analogue of term orders or even

more primitively, ordered Gaussian elimination) that underlie symbolic methods can

cause pivoting on small quantities and result in instability.

References [1, 2] give progress on this problem for a certain class of PDAE. For this

class, only prolongations with respect to one independent variable are needed. Rankings

are important in [1, 2] but do not cause instability since no eliminations are made. Hence

the expression swell due to the eliminations mentioned above is avoided. A suitable

4

ranking is determined by solving an integer linear programming problem to uncover a

block structure in the PDAE system.

Another main idea in Wu et al. [1, 2] is that such prolongations are essentially DAE-

like, and enable DAE techniques to be generalized to the PDAE case. In that case they

generalized a method of Pryce for DAE in the framework of Riquier Theory. In addition,

the method in their work yields the method of Pryce [12] for systems of DAE as a special

case which is very useful here because all MapleSim systems are DAE.

Prolongation will usually introduce more equations as well as more variables, but not

always. If some equations after differentiation do not introduce new variables for the

whole system, then there is the possibility that the dimension of the system is lowered.

Pryce [12] proposed a method to detect such “chances” that minimize the dimension

by taking advantage of the special structure of some systems. Pryce’s method was the

generalization of a method developed by Pantelides with historical roots in the work of

Jacobi (see [13]). References [14, 15] show that Pryce’s method can be extended to give

a polynomial cost method for the numerical solution of DAE.

Our goal in this thesis is to apply the method of Wu et al. [1, 2] to DAE models gen­

erated by the MapleSim package. Our models included: mechanical systems, electrical

models, and multi-body systems. We simulated their behavior using the MapleSim soft­

ware. In our algorithm we derive the DAE system from the model and use our method

to simplify them. When a simplified system is obtained, we use the fast prolongation

method with respect to one independent variable, usually time t, in order to find missing

constraints. Pryce’s method helps us to determine the missing constraints and to avoid

expression swell. Next, we apply fast prolongation to the system to obtain it a block

triangular form.

Bertini is a software package for computation in numerical algebraic geometry (Sommese

et al. [16]). In particular this package uses numerical homotopy continuation to find all

isolated solutions of polynomial systems. Further it determines (witness) points on all

submanifolds (or components) of solutions. We use it to solve the polynomial systems

arising in the block structure. Subsequently, it gives us the initial conditions to consis­

5

tently initialize and then numerically solve the simplified DAE system. Finally [17], using

dsolve in Maple 13 gives us the numeric solution for the system.

MapleSim models also provide examples of multi-body systems with singularities. See

[18, 19, 20] for the analysis of singularities of such systems with closed kinematic loops.

In Chapter 6 we will study MapleSim models with singularities.

Arponen et al. in [18] worked on singularities of a benchmark problem called the “An­

drews squeezing system”. They show that for some physically feasible parameter values

this system has singularities. Later, Piipponen in [19] used the same approach on planar

linkages. He analyzed closed four-bar mechanisms, closed five-bar mechanisms, and closed

six-bar mechanisms for their singularities. In particular he used the tools of computa­

tional algebraic geometry to determine the singularities. He also established strategies

to find necessary conditions for singularities. The methods are based on Grobner basis

computations and ideal decomposition [21].

The paper [20] by Arponen motivated us to create a two equal-length bar slider crank

using MapleSim. The purpose of that paper is to present a new technique for regularizing

certain singularities of mechanical systems. Arponen’s method is based on the elimination

of singularities by reformulating multibody systems of equations in such a way that the

cause of singularity is eliminated. In particular, we made systems of a two equal-length

bar slider crank to study singular cases using MapleSim. We described the differences of

our approach to the approach given in [18, 19, 20].

In Chapter 2, we give an overview of the fast prolongation method and how it produces

block triangular structures. We discuss DAE and PDAE and continue by defining of a

t-dominated system and a signature matrix for such a system. Then we show how to use

this matrix to do the fast prolongation method on a square system and obtain a block

triangular structure. Finally, we use the example of a one pendulum system to illustrate

these methods.

Chapter 3 provides an introduction to homotopy continuation which is a very powerful

and useful method to find isolated solutions of a multivariate polynomial system. We
a

present our homotopy algorithm which is implemented in Maple in order to find the zero

6

set of a polynomial system. In our package we first execute the fast prolongation and

subsequently obtain the block structures. The Bertini software for numerical homotopy

continuation is used to solve the block structure and give consistent initial conditions

for the system. Moreover, the Bertini software is able to characterize positive dimension

solution sets by using so-called witness points for polynomial systems. We conclude this

chapter with some examples.

Chapter 4 gives a complete description of our method. First we make a system in

MapleSim, derive its equations, and simplify them. Next we apply fast prolongation to

the simplified system in order to determine its missing constraints. Then we determine

the block structure. Finally, we use the block structure to determine initial conditions.

The slider crank example is used here to illustrate our method.

In Chapter 5 we apply our method to examples. Firstly, we worked on a non-linear

damper with a linear spring which is made in MapleSim by using a so-called custom

component. This enables us to add new components to the MapleSim library. The

second example we describe is a multi-domain system of a DC-motor attached to a slider

crank which has a piecewise function in its system of DAE. The goal of this example is

to illustrate the way that we can use Bertini when we have a piecewise function.

Finally in Chapter 6, we discuss a special case of a slider crank which has singularity.

We analyze singularity of the model and show how Bertini is used to detect the singularity

set of this system.

In our conclusion, Chapter 7, we summarize our results, discuss future work and open

problems.

7

Chapter 2

Fast prolongation method

2.1 Introduction .

We work with systems produced by MapleSim such as Electrical, Mechanical, Multibody

and other types of systems. The MapleSim package is interfaced to Maple. In particular

MapleSiml, MapleSim2, MapleSim3, and MapleSim4 were released by MapleSoft during

2008-2010 to run with Maple 12, 13, and 14. The model equations produced by MapleSim

are DAEs.

Wu, Reid and Ilie in [1, 2] introduced a fast prolongation method, a development

of (explicit) symbolic Riquier Bases for partial differential algebraic equation (PDAE).

Their methods are applicable to a class of PDAEs that are dominated by pure derivatives

in one of their independent variables with respect to some (partial) ranking. System of

DAEs are dominated by pure derivatives in t, and the fast prolongation methods enable

the determination of missing constraints without unstable elimination. It also enables

the determination of initial conditions that can be used to solve the system numerically.

To begin we present some basic definitions.

Definition 2.1.1. Let u ∈ Rm be an unknown vector valued junction in t. An equation

of the form u(n) = F(t,u,u,u,...) is called an ordinary differential equation (ODE) of

8

order n. Therefore, a first order ODE can be written as

. ü= F(t,u) (2.1)

Initial conditions are easy to state for such ODE. Most generally a DAE is a system in

implicit form which is not equivalent to an explicit ODE. For example f(t, u,u) =0 where

⅛ is singular. DAEs are distinct from ODEs in that a DAE is not completely solvable

for the derivatives of all components of the function u.

One often cited subclass of DAE are those of form:

f(t,u,ü,...,u())= 0,. (2.2)
g(t,u) = 0,

Here t is the independent variable (time for us) and u ∈ RRm is the m-vector of dependent

variables. The function f consists of the equations modeling the dynamics. The function

g contains the constraint equations (not hidden ones) which is a set of algebraic equations.

And, there is a singularity when the Jacobian of g is not maximal rank [20, 21].

In a similar manner a PDAE is a general systems of PDE which is not in explicit

solved form (see Reid, Lin, and Wittkopf [6]).

2.2 Signature matrix of t-dominated systems using

rankings

Systems which are t-dominated, are dominated by pure derivatives. We will explain

definition of t-dominated systems in 2.2.10.

Definition 2.2.1. (Pure-derivative [1, 2]) Let F be a field (R or C in our case).

Let x := (x1,...,n) be the independent variables (which is just t in our work), and

u = (u1,...,um) be the dependent variables for a system of PDAE. A pure derivative

with respect to an independent variable xi, is a derivative of the form (40.)*u) where

keN={0, 1,2,...}.

9

For example utt is a pure derivative in t, while uxt is not a pure derivative. Systems

which are t-dominated, are dominated by pure t-derivatives which are highest with respect

to a ranking.

Definition 2.2.2. (Jet variables [1, 2]) Consider a set of m dependent variables

ui(iι,...,⅝) which are functions ofn independent variables C1,...,n. The set of jet

variables is the set of indeterminates Ω = {⅛∣ α = (W1,..., an) ∈ N" U{0}, i=1..., m}
where each member of Ω corresponds to a partial derivative ofu by:

v + (D.A)Mn .(De)MLu (i, ..,**) = Dau‰...,xn). (2.3)

An example of this correspondence is:

V32 4 (DxJ3(Dx2)2U(XliX2). (2.4)

Definition 2.2.3. (Ranking [22]) A positive ranking - of S is a total ordering on Ω
which satisfies:

v<a+ (2.5)

for all a,B,Y ∈ N" U {0}.

Example 2.2.4. When there is only one independent variable and one dependent vari­

able, Definition 2.2.3 implies there is only one ranking:

u<uuX.. (2.6)

Before we define t-dominated systems we need to consider rankings which are consis­

tent with highest t-derivatives [1, 2]. For example, for two independent variables t, x and

10

for each u3, such a ranking needs to satisfy:

ud<u <ua X*<u2 <ud (2.7)

It is easy to extend this (partial) ranking to the case when x is a vector (e.g. using

lexical order on xc). In the general case t = xk for an Ik-dominated system. However, we

caution that t may not represent time for some physical -dominated systems.

Definition 2.2.5. The leading derivative of each equation Ri with respect to each u3 using

the (partial) ranking (2.7), is denoted by LD(Ri,u') which is highest ranked derivatives

for Ri respect to u3.

Example 2.2.6. In these systems below we show the leading derivative of each equation

Ri respect to the mentioned variable rising the (partial) ranking (2.7):

• R = {uttt — c2uxx = 0} then LD(R1,u) = uttt-

• R = {wxt — Wt = 0} then LD(R1,w) = Wæt.

• R = {uxt - (ve)2 = 0, (Veet)2 + (v)2 = 0} then LD(R1,u) = Uxt, LD(R1,v) = Vtt,

and LD(R2, v) = vttt.

Defining a weight map ^ιΩ→R with respect to t = xk as below, helps us to hide

the details about the differential order of the other independent variables [1, 2]:

Ok, if a = 0, for every p * k;
(2.8)

Ck + €, otherwise

where "e" is a symbolic parameter. For purpose of computation € > 0 may be taken
*

small and positive.

Example 2.2.7. The weight map for these three examples is:

• utt = (Dt)2u => O(utt) = 2.

11

• Uχχt -- (Dt) (Dz) = P(uzat) 1+ €.

su= (Dr.)0.. (Dai)°u = qp(u) = 0.

Definition 2.2.8. (Signature Matrix [1, 2]): By applying (2.8) to the leading deriva­

tives of R, we obtain an £ × m matrix (0i,j) which is called the signature matrix (with

respect to t) of R (see Pryce [12] for the DAE case):

G(LD(Ri,u')), if Ri depends on uj or any of its derivatives; .
(2∙9)

—CO, otherwise

Example 2.2.9. Consider R := {uttt — c2uxx = 0}. The 1 × 1 signature matrix

(with respect to t) for this R is: σ = q(LD(R1, u)) = p(uttt) = (3). For R :=

{(‰i)2-‰+‰ = 0}, σ = P(LD(R1,v)) = (P(Vette) - (4). AndforR := {wxt-wt = 0},

o = q(LD(R1,w)) = φ(wxt) = (1 + €).

The 2 × 2 signature matrix (with respect to t) of the system {uxt — (Vtt)2 = 0, (Vttt)2 +

(¾)2 = 0} with'rows corresponding to R1, R2 and columns corresponding to u,v is:
((1+e) 2)

(-co 3)

Definition 2.2.10. (t — dominated System [1, 2]) R is dominated by pure derivatives

in the independent variable t (t-dominated) if there is no € appearing in (Gi,j)(R).

Thus from the last example uttt~c2uxx = 0 and (Vtttt) — Vt+Vga = 0 are t-dominated.

In contrast wxt - wt = 0 and the system {uxt — (Vtt)2 = 0, (Vttt)2 + (vx)2 = 0} are not

t-dominated.

A PDAE system which is dominated by pure derivatives with respect to an indepen­

dent variable xi, must at least contain such a derivative in each of its equations.

Example 2.2.11. utet — c2uxx = 0 and v — ux = 0 both contain pure t-derivatives in

their equations (uttt and v respectively). But uxt — vxxt = 0 contains neither a pure t or

x-derivative, and so is not t-dominated.

12

2.3 Generalizing the fast prolongation method

2.3.1 Square systems

Let R be a square (i.e. #equations=#unknowns=m) and t-dominated system. The sig­

nature matrix (0i,j)(R) contains information on the differential order and ignores details

on the coefficients and degrees of items of a system R. Wu and Reid [1] introduced a

fast method based on (0i,j)(R) to differentiate R with respect to t to include its missing

constraints. Pryce’s method for square DAEs is a special case (see [13]), and yields a

local existence and uniqueness result.

Pryce’s method [12] finds the local constraints for a large class of square DAE using

only differentiation. This differentiation is called prolongation in the literature and in

[1, 2] this construction is generalized to PDAE.

Systems from MapleSim models are systems of DAE with t as an independent variable.

Therefore they are t-dominated systems. In the case of square systems from MapleSim

models, we use the Wu and Reid fast prolongation method to uncover hidden constraints.

Suppose Ri is differentiated ¾ ≥ 0 times. The new system after differentiation is

denoted by D{R. Suppose the highest order of uj that appears in DIR is dj. From the

definition of (0i,j), dj is the largest of ci+ Tij, which gives

dj — Ci > σij, for all i,j. (2.10)

There are at most m + 2dj pure t-derivative jet variables and m + 2ci equations in

D{R (considering independent variables and all non-t-derivatives as parameters). Making

the assumption that each equation drops the dimension by 1, the dimension of DR is

2d; - Σ¾. Finding all the constraints is equivalent to minimizing the dimension of DR.

This can be formulated as an integer linear programming (LP) problem in the variables

13

C — (ci, •. •, Cm) and d (di,...,dm).

Minimize z= Ed, - Ec,

where dj — ci> Tij, | (2.11)

Remark 2.3.1. Wu et al. [2] say “This integer LP problem is dual to an assignment

problem [12]. The task is to choose just one element in each row and column of the

signature matrix, then maximize the sum of these m elements. The maximum is called

the Maximal Transversal Value (MTV). If this value exists, then problem (2.11) has a

finite solution. Such problems can be solved (and the existence of MTV can be checked)

efficiently and in polynomial time by the Hungarian Method”. In [1, 2] they used LPSolve

in the optimization package of Maple 10 and their method is implemented here in Maple

13.

2.3.2 Block triangular structures

After we obtain the number of prolongation steps ci for each equation, we can construct

the partially prolonged system DIR using c. We assume cι ≥ c2 ≥ ■■■ ≥ Cm, and

let kc = cj, which is closely related [12] to the index of system R. The r-th partial

differentiation of a PDE Rj with respect to t is denoted by Rj . Then we can partition

DIR into ke+1 parts for 0 ≤ i < kc by

B.:= {RSt+e,-*):1<j<m,+0-k2 0} (2.12)

For 0 < i < kc, Bi has fewer variables than Bi+1. The block structure in the case

Ci = Ci+1 + 1 is given in Table 2.1.

14

Table 2.1: The triangular block structure of DIR for the case c⅞ = Ci+-1 + 1.

B0 B1 • * • Bkc-1 Bkc
R(0) R(1)

R(0) 12

• • •

* • •
•

:
bo

o SA
So ∙∙∙ C

e
R

e R
R

e

mg

×

Figure 2.1: One pendulum system.

Example 2.3.2. The Pendulum. Consider a pendulum of unit mass, under constant

gravity g as shoυm in Figure 2.1. In particular X(t), and Y(t) give the position of the

pendulum and X(t) is a Lagrange multiplier. These variables satisfy the system of DAE:

(2.13)

The signature matrix for (2.13) with rows corresponding to R1, R2, and R3, and

columns corresponding to X, Y, and λ, is:

2 —∞ 0

—∞ 2 0
0 0 -co)

(2.14)

Based on this signature matrix we obtain c = (0,0, 2) and d = (2,2,0). Recall that Ci

15

means the i-th equation needs to be differentiated Ci times (ci ≥ 0) and dj is the highest

order of derivative of u' after the prolongation. Here kc = 2, therefore we order c, d, and

R as c= (2,0, 0), d = (2,2,0), and R := {X2 +Y3 =1, Xtt +X = 0, Yit +Y = -g}.

Thus the block structure for this system is:

Bi
2XXt + 2YY = 0

B2
2X2+2Y2 + 2X Xe + 2YY = 0

Xe+XX = 0
Ytt + Y = -g

Table 2.2: Block structure for one pendulum system.

Using the first prolongation method yields two missing constraints for this system, which

are shown in B1 and B2 in the table above.

16

Chapter 3

Numerical algebraic geometry: A

homotopy method

3.1 Introduction

In this chapter we describe the advances made in the numerical solution of systems

of multivariate complex polynomial equations. For illustrative purposes we introduce

a simple homotopy method and describe how it is used to find isolated solutions of

polynomial equations. This method is described by Sommese and Wampler in [23].

Moreover, with Hauenstein and Bates they introduced the Bertini software [24, 25] which

is an advanced efficient implementation in C. It is used in our package to find initial

conditions for systems of DAEs.

Bertini is an efficient software package for computations in numerical algebraic ge­

ometry that use homotopy [16]. It is able to find zero dimensional (isolated) as well as

represents positive dimensional solution sets of a system. Solutions can be computed with

up to several hundred digits of accuracy. Sommese and Wampler [23] write “For poly­

nomial problem arising in applications in science and engineering, the homotopy method

works wonderfully well”.

Verschelde [26] has also developed an efficient package for numerical algebraic ge­

ometry, PHCPack; in ADA. Other notable packages include Hom4ps, by T. Y. Li and

17

collaborators [27] which finds isolated solutions of polynomial systems. It does not per­

form numerical algebraic geometry, but leads the field in creating start systems based on

mixed volume, which have few diverging paths.

It is appropriate to begin with the definitions of “polynomial,” and the “solution of

polynomial systems” which are given below from [23].

Definition 3.1.1. (Polynomials [23]) A function f(x) : CN → C in N variables x =

(x1,...,XN) is a polynomial if it can be expressed as a sum of terms, where each term

is the product of a coefficient and a monomial. In particular, each coefficient is a com­

plex number, and each monomial is a product of variables raised to non-negative integer

powers. If N = 1 we have an univariate polynomial and otherwise it is multivariate. Let

& = («!>..., &N) with each αi a non-negative integer, and write monomials in the form

xa = II xii∙ Then, a polynomial f is a function that can be written as

f(x) = Zaqa® (3.1)
~EI

where I is a finite set and aa ∈ C. The notation f ∈ C[X1...T] = C[x] means f is a

polynomial in the variables x with coefficients in C. The total degree of a monomial xa is

Q := ai++&v and of the polynomial f(x) is maxael:a-40 ~. A polynomial system

is written as f : CN → Cn which has n polynomials in N variables.

Remark 3.1.2. At times we may wish to represent f in other bases than the monomial

bases used here, but this suffices for a definition. .

Definition 3.1.3. (Zero Set, [23]) If f(x) : CN → Cn is a system of multivariate

polynomials, we use the notation V(f) := f-1(0) to represents the solution set of f(x) =

0:

VG): f-1(0) = { € cNif() - 0). (3.2)

Here V(f) is called the variety of f.

18

3.2 Homotopy continuation

We present a homotopy continuation method, which is a method for finding all zero­

dimensional (isolated) solutions of a multivariate polynomial system. Commenting on

alternatives to homotopy methods Sommese and Wampler [23] write: “For low-degree

polynomials in one variable, one approach is to reformulate the problem as finding the

eigenvalues of the companion matrix, which is convenient due to the wide availability

of high quality software for solving eigenvalue problems [28]. For polynomial with high

degree, divide-and-conquer techniques may be better [29].” Another alternative to ho­

motopy methods is to use Newton’s method. However, Newton’s method gives us just

one of the roots at a time. In addition, with a poor initial guess, Newton’s method can

fail. In contrast, homotopy methods are globally convergent and theoretically can find

all roots in situations where all alternative methods fail.

The approach of homotopy continuation is to:

• Define a family of problems depending on parameters which contains the system

we want to solve.

• Find the solution of the problem for some appropriate point in the parameter space.

• Follow the solution path from the point in the parameter space where we have the

solution to the point which is related to the original problem we want to solve.

Consider a polynomial system f : CN → Cn that we would like to solve by homotopy

continuation. We can form a polynomial system g that is related to f but has known,

or easily computable, zero set. The polynomials f and g form a homotopy, such as the

linear homotopy H(z,t) = /(1 -t)+ tg where 7 ∈ C is a random number. I will

explain in next section why we need this random 7. For a well-formed homotopy, there

are continuous solution paths from the solutions of g to all solutions of f which can be

followed using predictor-corrector methods. If t = 1 we have H(z, 1) = g whose roots

are known and if t = 0 we have H(z,0) = f whose roots need to be found. Therefore,

we can start from t = l and track our path to t = 0. In the next section, I will give

19

an algorithm for this method. Note it is conventional in the literature to start at t = 1

and go to t = 0, in opposition to the apparently more natural order 0 ≤ t ≤ 1. This is

because most of the interesting behavior occurs at the final time and representing t by

t = 0 is preferable for this reason.

A big advantage of this method is that it can easily be parallelized, which means if

the starting polynomial g has several solutions, the corresponding solution paths may be

tracked on different processors. There is a Message Passing Interface (MPI) version of

Bertini whose implementation is a parallelized homotopy method and can be used for big

systems of polynomials.

3 .2.1 A generic illustrative homotopy algorithm

Consider a univariate polynomial p(z) := zd + ajzd-1------- - ad. We want to show how

continuation can be used to find zero set of this polynomial. One of the great advantages

of working with the complex numbers is that, by the fundamental theorem of algebra,

we know V(p) has exactly d points, including multiplicities. Therefore we can consider

a starting system with d known roots and follow construction paths to the roots of p(z).

We know how to solve zd — 1 = 0: its d roots are

zk = ek2π^d fσr k = 0,d-1. (3.3)

We can define a homotopy by

H(z,t) ;= t(=4-1)+(I-t)p(z). (3.4)

When t = 1 we have H(z, 1) = zd — 1, with known roots, and when t = 0, we have the

system H(x,0) = p(z), which we want to solve. We need to track the solution paths as

t goes from 1 to 0. The question is how can we numerically do this? The solution paths

zi needs to satisfy H(zi(t),t) ≡ 0 for all t. Therefore:

0= dH((),0 = H,(20,44z,(0) + E0,(2(0),4), (3 5)

20

where Hz(z, t) and H(z, t) are the partial derivatives of H(z, t) with respect to z and t

respectively. Thus
' da,t) =-H,(=(6),t)-1H7(z,(t),t). (3.6)

at

This is an ordinary differential equation for Zi(I), with initial values at t = 1 given by

zj(l) which are starting points for this homotopy. The roots we seek are the values of

^(0).

There are some deficiencies for this method which we now discuss. For some poly­

nomials, H(z,t) can be constant for some t. Also, H(z,t) may have roots with mul­

tiplicity more than one. For example for p(z) = 5 — z2, the homotopy is H(z,t) =

t(z2 — 1) + (1 — t)(5 — z2). These are difficulties at t=5, because H(z, 8) = (3)z2 has

a double root and at t = 3, because H(z, $) = 2 has no solution. Using the following

“quick fix,” which is called “gamma trick” in [30] enables us to avoid these cases. In

particular select a random angle θ ∈ [0,2π]. As usual let i = V-1. Then

F(z,t) = teiθ(zd - 1) + (1 -t)p(z) = 0. (3.7)

Now, due to the complex factor e* β, the paths are well defined for all t ∈ [0,1]; with

probability one we do not face the difficulties above [23]. One further random angle

β ∈ [0,2T] is required to define a suitable homotopy

• Given: System of equations, H(z,t) : CN ×R→ CN, initial point zo at to = 1 such

H(z,t) = te" (zd - e4p)+(1 - t)p(z) = 0. (3.8)

For more details see [23]. Note that att = 0, we have the same target points as before (β =

0). The non-singular path tracking algorithm that we used in our Maple program can

be summarized as follows. To be general we can consider a system with N polynomials,

H(z,t) : CN × R → CN. In what follows H, = % is the N × N Jacobian matrix and

H = S is an N x 1 matrix.

Simple homotopy Algorithm 3.1:

21

that H(zo, to) ~ 0, and initial step length h; m = 5 (# of successive corrections);

k := 0 (a counter to count # of successful correction steps).

• Find: Approximation of a homotopy path (z(t),t) from t = 1 to t = 0 with

H(z0,to) ~ 0.

a
• Procedure: For i = 0 while t; > 0 do

1. Prediction: Predict solution wo by solving (3.9) implicitly (by an Euler

method), then decrease t by h:

Hz(zi,ti) Wo.= Hz(zi,ti)'Zi He(zi,ti)-h, (3.9)

t∙.= ti-h. (3.10)

2. Correction: Find the solution w of H(z,t) = 0 using Newton’s method with

start value wo and fixed t.

3. Update: If (successful correction step)

F(w,t) < [H(wo,t)72 (3.11)

then

(2i+1, ti+1) • — (w,t)

: i=i+1

k=k+1

If k = m then h =2*h

Go to prediction step 1 to calculate wo for the obtained i.

22

else

k:=0

h := h/2

t :=ti + h

Repeat prediction step with this half size h and (zi, ti).

Refine endpoint: At tn = 0, correct 2; to high accuracy with Newton’s method.

We make some notes about Algorithm 3.1.

In the Update step in the Algorithm 3.1:

• The correction step is considered successful in Algorithm 3.1 if (3.11) is satisfied.

• We can cut step length, h, in half on one failure of the correction and to double it, if

m successive corrections at the current step length have been successful. Following

Sommese and Wampler in [23], we used m = 5 in our algorithm in Maple.

Reason for Euler and Newton as prediction and correction method: Expanding

the homotopy function in Taylor series yields:

H(z + Az,t+ Δt) = H(z,t) + Hz(z,t)Az + He(z,t)At +..., (3.12)

If we have a point (z1,t1) close to the path, so that, H(z1,t1) ~ 0, then H(z1 + Az,t1 +

Δt) ~ 0. Then to first order

H,(21,ti)Az + H (21,ti)At= 0 (3.13)

Of course, we can explicitly solve Az = -Hz1(z1,t1)H(Z1,t1)At from (3.13). How­

ever, numerically it is much cheaper to solve the implicit form at each time step than

first explicitly symbolically invert Hz. From (3.12) when Az and Δt are small we can

23

approximate Az as the solution of

' H(z,t)+H,(z,ti)Az =0 =

Az =-H21(21,t1)H(z1,t)(3.14)

Equation (3.13) is an Euler prediction step and (3.14) is a Newton correction step.

One strategy to stay close to the path [23] is to keep the h small and the number of

iterations in the correction (3.14) small (say ≤ 3). Staying close to the path also helps

avoid path jumping. Moreover, in our program in Maple to save computation time, h

is bigger at the beginning of the path (1 ≥ t ≥ 0.1), then near the end h is smaller for

(0.1 ≥ t > 0). For simplicity but not necessarily efficiency, my program was implemented

also using fixed small step size.

3.2.2 Homotopy for other functions

Homotopy approaches are useful not only for polynomial solving but also for solving

more general type of systems. The DAE systems we generated all using MapleSim are

mostly trigonometric equations which can be converted to polynomials. For example,

for equations involving sin(Θ) and cos(e), we can introduce new variables, Se := sin(0)

and Ce := cos(0). Then the equation becomes polynomial subject to s3 + c3 = 1. When

solutions for Se and Ce are found, the values of θ are easily calculated. However not all

equations involving trigonometric functions can be changed to polynomials. Examples

include x + sin(x) = 0 and sin(x) + sin(xy) = 0.

3.2.3 Examples of the homotopy algorithm

In this section we use our simple homotopy algorithm to illustrate homotopy solving.

Example 3.2.1. The equation f(z) = 0 in (3.15) has four distinct roots.

f(z):= (z - 3)(z - = - 5i)(z-i)(z - 7) = 0. (3.15)

24

The algorithm we implemented in Maple in Section 3.2.1 yields the homotopy paths

shown in Figure 3.1 and the solution shown in Table 3.1.

—10

■

start values

0.8 0.6 0.4 ■ 0.2
t axis

D

Im(z)

18

■ ■

Figure 3.1: Homotopy solution paths for f(z) := (z — 3)(z - - 5i)(z — i)(z — 7i) = 0.

In Figure 3.1, the 4 start values are at left of the figure (i.e. at t = 1) and the 4 target

solutions are at right (t = 0). In particular the 4 solutions A, B, C, D are 7i, ⅜ + 5i, i,

and 3, respectively.

Table 3.1: Start points and target roots of (z — 3)(z - j- 5i)(z — i)(z — 7i) = 0 by our
homotopy solver.

Roots of start function:
eta(z4 — etb)

Random a,b ∈ (0..2π)

Roots of target function:
(z - 3)(z - j- 5i)(z - i)(z - 7i)

-0.9368574672 + 0.3497114326i 0. + 7.000000000
-.3497114324 - .936857467Zi 3.000000000 + Oi
.3497114320+.9368574675i .5000000000 + 5.000000000
.9368574674 - .3497114322 0. + 1.000000000

Example 3.2.2. The function g(z)

g(z) := (z - 3)6 (3.16)

25

in Figure 3.2 has root 3 with multiplicity 6. The homotopy Algorithm 3.1 yields the

homotopy paths shown in Figure 3.2 and corresponding solution shown in Table 3.2.

- ***** A
-Es

10.15 ====**T 1

start values ,
f axis 1.Re(z)

-10-

Im(a) -1⅛

-20-

■ -25-

Figure 3.2: Homotopy solution paths for g(z) := (z — 3)6 = 0.

In Figure 3.2, the 6 start values are at left of the figure (i.e. t = 1) and the 6 target

solutions z =3 are at right (t = 0).

Roots of start function:
eta(z6 — e'b)

Random a,b ∈ (0..2π)
-.9861980826 - .1655697494i
-.6364866497 + .7712877185i
-.3497114324 - .9368574673i
.3497114320 + .9368574675i
.6364866493 - .7712877189i
.9861980823 + .1655697508i

Roots of target function:
(z - 3)6

3.000094330 - 0.1399863868 × 10^4i
3.000025356 + 0.7583900569 × 10-4i
3.000005939 - 0.7347802653 × 10-4i
2.999964105 + 0.4427595856 × 10-4i
2.999958763 - 0.3564671291 × 10-4i
2.999950164 + 0.4104603269 × 10^5i

Table 3.2: Start points and target roots of (z — 3)6 = 0 by our homotopy solver.

26

Example 3.2.3. The solutions of

h(z) := (z + 15)2(z - 48.9i)(z - 36.9 + 10.36)2(z - V2) =0 (3.17)

is combination of real and complex roots with multiplicity one or more than one (see
Figure 3.3 and Table 3.3).

Figure 3.3: Homotopy solution paths of (z+15)2(z-48.9i)(z - 36.9+10.31)2(z - V2) = 0.

Start values at left of Figure 3.3, t = 1 are shown around a circle. At the right there

are six roots. Two of the roots have multiplicity two (B and D in Figure 3.3).

27

Table 3.3: Start points and target roots of (z+15)2(z-48.9i)(z-36.9+10.3i)2(z-v2) = 0.

Roots of start function:
e,°(z6 — eti)

Random a,b € (0..2π)

Roots of target function:
(z + 15)2(z - 48.9i)(z - 36.9 + 10,3i)2(z - √2)

-0.9861980826 - 0.1655697494i
-0.6364866497 + 0.7712877185i
-0.3497114324 - 0.9368574673i
0.3497114320 + 0.9368574675i
0.6364866493 - 0.7712877189i
0.9861980823 + 0.1655 697508i

-14.99999959 - 3.912940075 × 10^7i
-15.00000040 + 3.838379100 × 10-i

36.89999939 - 10.2999998li
-10-28 + 48.90000000

36.89999939 - 10.2999998li
1.414213562 + 0.i

3.2.4 Discussion

An alternative to using the prediction-correction methods is to only using prediction

steps. Thus we only numerically solve the prediction ODE (3.6). We compared these

two strategies on some examples. We used dsolve/numeric in Maple with Fehlberg

fourth-fifth order Runge-Kutta method (rkf45) and absolute error(abserr) =10-7 and

relative error (relerr) =0.000001. On our example the results were obtained more

quickly but not as accurately as results from our prediction and correction method with

tolerance=0.000001. For the example below dsolve/numeric computing time for find­

ing all roots is =2.797 seconds but the prediction and correction computing time is =9.391

seconds.

Result by dsolve/numeric:
-14.9991594040901 - 0.112989803875263 × 10^2i
-15.0001157551416 + 0.165970043007754 × 10-2i

36.9241045638584 - 10.3081715489427i
0.2169589718836 × 10-5 + 48.8999997696319i

36.8924717622899 - 10.2977793703036i
1.41421355480710 - 1.41056735789722 × 10-8;

Result by prediction and correction:
-14.99999959 - 3.912940075 × 10^7j
-15.00000040 + 3.838379100 × 10-7i

36.89999939 - 10.2999998li
-i0-28 + 48.90000000

36.89999939 - 10.2999998li
1.414213562 + 0.i

Table 3.4: Comparison between dsolve/numeric and prediction-correction for solving
(z + 15)2(z - 48.9i)(z - 36.9 + 10.3i)2(z - √2) = 0.

28

3.3 Positive dimensional solutions

Homotopy continuation methods provide efficient numerical algorithms to compute exact

approximations of all zero dimensional (isolated) solutions of polynomial systems. How­

ever, numerical algebraic geometry treats both zero-dimensional and positive dimensional

solution sets. The fundamental parts of the positive dimensional solution set of equations

are its irreducible components. These are the algebraic subsets Z of the solution set. The

solution sets are separated into a union of irreducible components, so that none of them

is contained in the union of the others. Among those components there may be some zero

dimensional (isolated) and some positive dimensional (dim > 0) solution sets. So-called

‘witness sets’ are the basic data structure used to describe positive dimensional solution

sets.

Consider an irreducible component Z of a system of polynomials f(x) = 0. A witness

set for Z consists of triple (f, L, W), where L is a random linear space of dimension

complementary to dimension of Z and where W is a set of points such that W =ZAL.

The Bertini software is able to give zero dimensional and positive dimensional solutions for

a system of N × n polynomials [31, 32]. In those works it was shown that we can represent

a positive dimensional by approximate (so-called witness) points, which are obtained as

intersection points of the set with a linear space of complementary dimension. Here we

want to illustrate witness sets and how to use them to describe positive dimensional

solution sets.

3.3.1 A numerical irreducible decomposition

I start with a motivating example from [31], which is a system of polynomials with several

solution components, of different dimensions and degrees. Later, we define the witness

set, which is used to represent pure dimensional solution sets of polynomial systems

numerically.

29

3.3.1. Suppose we wish to find the solution set of f :C3 → C3:

f(x,y,z) =

(y — x2)(x2 +y2+z2- 1)(x — 0.5)

(z - a3)(a2 + y2 + z2 — 1)(y — 0.5)

(y - 22)(z — g3)(a2 + y2 + 22 — 1)(z — 0.5)

= 0 (3.18)

In this factored form we can calculate the decomposition of the solution set = f 1(0)

into irreducible solution components, as below:

Z=Z2UZ1UZ0 = {Z21} U {Z11 U Z12 U Z13 U Z14} U {Z01} (3.19)

Where

• Z21 is the sphere (x2 +y2+22-1) = 0,

• Z11 is the line (x = 0.5, z = (0.5)3),

• Z12 is the line (x = V0.5,y = 0.5),

• Z13 is the line (xc = -0.5,y = 0.5),

• Z14 is the twisted cubic (y - x2 = 0,z - x3 = 0),

• Z01 is the point (x = 0.5,y = 0.5,z = 0.5).

Here Z21 is 2-dimensional, Z01 is 0-dimensional and Z11, Z12, Z13, and Z14 are all 1­

dimensional.

3.3.2 Witness sets

Now we define witness sets using [31]. Consider f := CN → Cn of n polynomials

f := {fι, f2, ■ ■ ■, fn} and N unknowns x = (x1,2,...,I). Recall we represent the

solution set of f by

V(f) = {x ∈ CNIf(x) = 0}. (3.20)

30

Suppose X C V(f) C CN is a pure dimensional algebraic set of dimension i and degree d.

By pure, we mean all components of the set have the same dimension. A witness set for

X is a data structure which consists the system f, a linear space L C CN of codimension

i, and a set of d points X ∩ L.

When X is not pure dimensional, a witness set for X can be separated into a list

of witness sets, one for each dimension. X has a unique decomposition into irreducible

components. Therefore, a witness set for X has a decomposition into the corresponding

irreducible witness sets. This is called a numerical irreducible decomposition of X.

Therefore, the irreducible decomposition of the solution set Z in (3.19) is:

[⅝^1,^0] = [[⅝L^b‰‰^4]>W, (3.21)

where the Wi are witness sets for pure dimensional components, of dimension i, parti­

tioned into witness sets Wij's corresponding to the irreducible components of Z. Thus

for this example we have:

• W21 contains two points on the sphere (x2 +y2+z2-1) = 0, cut by a random line,

• W11 contains one point on the line (x = 0.5,2 = 0.53), which is cut by a random

plane,

• W12 contains one point on the line (x = V0.5,y = 0.5), which is cut by a random

plane,

• W13 contains one point on the line (x = -0.5,y = 0.5), which is cut by a random

plane,

• W14 contains three points on the twisted cubic (y - x2 = 0,z — x3 = 0), which is

cut by a random plane,

• W01 is still just this point (x = 0.5,y = 0.5,z = 0.5).

The witness sets Wij consist of witness sets W = {i, f, L, x}, for x ∈ Zij ∩ L, where

L is a random linear subspace of codimension i (in this example of dimension 3 — i).

31

Moreover, as we can observe here #Wij = deg(Zij) = #(Zij ∩ L). If we ask Bertini to

solve this polynomial system, for example, as a result it gives a text file which contains

#Wij witness points for each components of various dimension. Furthermore, it is able

to show the dimension and degree of each component as well as singular and non-singular

solution sets. We will show one example of singular solutions from Bertini in Chapter 6.

32

Chapter 4

Main algorithm for MapleSim

generated models

4.1 Introduction to the MapleSim software

The main goal of this thesis is to efficiently apply the fast numeric geometric techniques

discussed in Chapter 2 to a wide variety of physical models generated by the MapleSim

software [3].

MapleSim is a high-performance multi domain modeling and simulation tool which

uses components from various engineering fields. We can build component diagrams that

represent such systems in a graphical form using MapleSim’s drag and drop interface.

When we obtain such a system, we can simulate its behavior using numeric approaches.

Unlike other simulation environments MapleSim exploits Maple’s symbolic features.

MapleSim uses the symbolic and numeric capabilities of Maple to generate the math­

ematical models that simulate the behavior of the physical system. We can, therefore,

derive the system’s equations in Maple and create concise and numerically efficient mod­

els. MapleSim enables the creation of the physical components the user needs without

forcing the user to write complex code and mathematical equations. Other physical

modeling tools however, demand that we write programming code to create physical

components. Consequently, MapleSim can cut project time and cost.

33

MapleSim also provides control theory tools, which give the ability to optimize and

control parameters to minimize rise time and reduce overshoot. Using 3D visualizer

features, MapleSim enables us to obtain an immediate insight into behavior of our models.

A typical MapleSim workspace is given in Figure 4.1 below:
7—Wi9 MALipikoin 2 umstiedl

BleEdit Ww Help.2
Run Smulatien | Meer

Scvdti

j Y ⅛⅛⅛
∣ » Wodkis odhrames
; • Forces and Momarts

p lonto and Mkorione

• Sears

VVtaateattan

"Zparazuaruakawury

*A
8

Tedrkcel Support,.. ι wow Decursent Foldw.r. ! Ranks Mandow.s. ∣ X⅛ •
∣"M a ■« **** rf>>nan∣ <∙ll,<<<ι>M>f>>al<Ma∣<κ>M∣Ha>a>).<>.><.<H< 1a+ ****************** **** '»»»■»■■»■■»'«■'"< -*=*******
ARM * Pwussers:

*""*************"...............*......."vemantr**131014823355*****11mR*NI**

NaimsAMAAMIs

Gocmnlry

rinarical

e.

CAD
Geomdiry

======---

Subsystem.’
Main

Parameters 1

* [10-1
. *****

stiff true
: solver "

adaptive true

1.0 17

Geumetry

1p Thermal

! • Elocr Grass
| hSuna Rated.

Force Arrow

Spring
Geemmy...

4.1.0101....
plot [200.........

points
compiler false

■ max. 400000
steps"...........

Arrow

- Subays1

Figure 4.1: MapleSim environment.

“o

To make a model, we need to use appropriate MapleSim library icons from the left palette

in Figure 4.1. Then we drag and drop the relevant icons on the workspace (the center

panel of Figure 4.1). Next we connect the icons in the desired manner. We can use the

Parameters pane in the right hand side of Figure 4.1 to change system parameters such

as final time, relative error, absolute error, and others.

Moreover, we have the option to choose initial conditions here while making our

model. When we click on some components, an IC (initial condition) appears in the

parameter pane. There are three options for IC: Ignore; Treat as guess; Strictly

Enforced. Ignore means MapleSim ignores the initial conditions of this component

given by user, and uses default values which are zero in most of the cases. Treat as

guess means MapleSim uses the initial condition for this component if it is consistent

34

with other initial values. Otherwise it replaces the initial condition with a consistent one.

Finally, Strictly Enforced means MapleSim uses the initial condition which is given

by the user. If the condition is not consistent it sends an error message to the user.

If we want to measure a quantity for a component such as an angle, speed or accelera­

tion, we need to add a ‘probe’ to that component. Those values are graphically displayed

after simulation.

The best way to derive equations is using the Modelica language which is accessi­

ble in MapleSim work space. The Modelica language [33] is a multi-domain modeling

language for component-oriented modeling of complex systems. It can model systems

containing mechanical, electrical, hydraulic, thermal, control, electric power or process-

oriented subcomponents. The Modelica Standard Library contains about 920 generic

model components and 615 functions in various domains. Modelica is an open standard

for describing physical models and components. Many components in MapleSim are from

the Modelica Standard Library. Because these Modelica components have been devel­

oped over many years and validated by industry, engineers can have confidence that their

MapleSim model will provide an accurate representation of the system. The Modelica file

of a MapleSim model can be exported to MapleSim after the model’s creation. To obtain

the DAE system of the model, we have to open the Modelica file in a Maple worksheet.

MapleSim equations after simulation are simplified. However, in the Modelica file they

are unsimplified and raw.

Input and output values for the system, can be visualized using Maple. Also MapleSim

does index reduction of DAE [6]. Index reduction enables the inclusion of missing con­

straints.

MapleSim is comparable with Matlab’s Simulink. Simufink is also a recent environ­

ment for multi-domain simulation and model-based design for dynamic systems integrated

with Matlab. In some cases MapleSim differs from this software. We mention just one

of differences here [3]. If we need a component which is not available in the MapleSim

libraries we can create it in Maple with easy-to-use templates in which we only have

to write down the equations that define the component’s dynamics. No other modeling

35

products have this ability. In Chapter 5, we give an example of this feature.
*

4.2 Algorithm for MapleSim generated models

Our algorithm in order to apply fast numeric geometric techniques with MapleSim models

is:

Algorithm 4.1 : Fast numeric-geometric techniques for MapleSim

• Given: A model created from MapleSim.

• Find: Numerical solution of system of DAEs for this model.

• Procedure:

1. Model in MapleSim: Make a model in MapleSim, do simulation and export

Modelica file.

2. In Maple’s worksheet: Open Modelica file and save it.

3. Simplification: Derive the DAE system and its variables. Change variables physi­

cal names to the mathematical names such as X[i] when i=1... number of variables.

Simplify the system.

4. Fast Prolongation: Calculate ci and di as described in Section 2.3, by fast pro­

longation package.

5. Initial Time: Set initial time according to the model in MapleSim.

6. Initial Conditions: There are two different cases for this part.

If c = 0 for all i, we use initial conditions from Modelica file if there is any, or a

random initial condition.

If Bi, Ci = 0, a block structure is calculated and we create a bottom-up block by the

two steps below:

(a) Jet Variables: Change jet variables to produce a file for Bertini (e.g. use

xtttt rather than xtttt)∙

36

(b) Bottom-Up Block: Use bottom-up substitution in block triangular struc­

tures [1, 2] to find consistent initial conditions:

Loop: For bottom block to top block repeat:

i. Solve system of this block by Bertini.

ii. Plug Bertini’s solution into the next block until all blocks are solved.

7. Solution: Use dsolve/numeric to solve the system of DAE from this model with

initial conditions from step 6.

8. Comparison: Compare our solution to that obtained by MapleSim.

We made an automatic package for Algorithm 4.1. For most models all that is required

is to input the Modelica file.

4.2.1 Simplification

The large DAE systems of MapleSim models usually contains many simple equations.

MapleSim uses these simple equations to reduce the number of variables and simplify

the system of DAEs which can be accessed from a Maple worksheet. Figure 4.2 gives an

example of such a simplified system.

However, our goal is to apply alternative procedures to the unsimplified DAE system.

While using an automatic command for generating the unsimplified system for a special

model we found a bug which was reported to MapleSoft Corporation. This led us to

use instead the Modelica file for the unsimplified system of equations. We derive the

Modelica file and open it in a Maple Worksheet in order to obtain the unsimplified system

of equations in Maple. The Modelica file includes all information about the system such

as names, parameters, variables, constants and the system of DAE.

Firstly, we change variable names from Modelica names to a form usable by our Maple

programs. Variable names in Modelica are physical names such as “Main.probe2.phi”,

for example which means the angle of the second probe attached in the main system.

Moreover, in Modelica they are not shown as functions of t. Such variable names are

changed to Xi(t), where i is from 1 to the number of variables.

37

▼ Model Equations
To start, click System Update to populate the Subsystem menu with a list of the subsystems in your
physical model. From the list, select the subsystem for which you want to retrieve model equations or
properties. Alternatively, select Main to retrieve model equations or properties for the entire system.

Next, click Get Equations to retrieve equations from the specified system or subsystem. Click
Assign to variable to manipulate these equations further in Maple. You can also retrieve properties
and assign them to variables.

Model Ma*n

eq

GetParameters

.Assign to variable:

Get Discrete Equations

Get I/O Variables

Get Initial Equations

Get Probes

Get Constraints
ι'.∙∣tv∣∙∣ .5 %' *7 “**..

GetStates

Subsystem:

⅛Get Boolean Equations...
MCE *.

Main
Illlllliuillill

Get Equations.:
ARtxctpsA******

'DFPSubsys I inst.theta_R3_ddot'(t) cos(DFPSubsyslinst.theta_R3 (
2

— DFPSubsyslinst.theta_R3_dot '(t) ConnectingRod-L sin(DF)

+ ‘DFPSubsyslinst.theta_RI_ddot"(t) cos('DFPSubsysl inst. theta

- DFPSubsyslinst.theta_Rl_dot(t)2 sin('DFPSubsys linst. theta

1 2 cost 'DFPSubsys IinsLtheta-Rl (t)) crank_L cost DFPSubsys

ConnectingRod_L
3

+ —- sin('DFPSubsysl inst,theta_Rl (t)) crank_L ConnectingRod

theta_R3"())) DFPSwbsyslinst.theta_RI_ddor”() + (1

+ a cos(DFPSubsyslinst.theta_R3"(4))2 ConnectingRod_L2

+ 4 ConnectingRod_L5 sin(DFPSubsyslinst.theta_R3 (4))

___DEPSt ihsuel inst.theta R3ddot (t)____________ __ __ ._______

To save your changes, save this worksheet in Maple and then save the .msim file to which this
_ worksheet is attached in MapleSim.

Figure 4.2: Equation Analysis Template in equivalent Maple worksheet.

38

Next the “_msim_der” used by Modelica for derivative is replaced by Maple’s deriva­

tion notation. Now we are left with a DAE system in Maple notation. For example:

X13(t) = 0, X17(t) = 0, X2(t) — X10(t) = 0,...
X1(t) - “ x3(t) = 0,X4 - X6(t) = 0,...

Lu UL
C1X34(t)) + C2 cos(X25(t)) — X22(t) =0,...

Such systems contain many 2-term equations of the form u — v = 0 or w — & = 0 (1st

and 2nd rows in (4.1)). Such equations can be used to simplify the system. We use

classical symbolic simplification of the 2-term equations with respect to a ranking - so

that uv,wxd. Applying Maple’s DEtools [rifsimp] to the 2-term equations, and

substitution of the result in the rest of the system can dramatically simplify systems like

(4.1). In particular a system with many variables and equations can be simplified to a

system with far fewer variables and equations.

This example (see Figure 4.3) will be used to illustrate the algorithm.

Figure 4.3: Two dimensional slider crank.

The two dimensional slider crank in Figure 4.3 is made using components from the

Multibody mechanical library. This system has a revolute joint, A, which is connected

to a planar link. This planar link is attached to a connecting rod using a second revolute

joint, B. The connecting rod is then connected to a sliding mass by a third revolute joint,

C, and the sliding mass is attached to the ground by a prismatic joint. In particular, this

39

system is used to convert rotational motion of the crank to translational motion of the

sliding mass or vice versa. For this system gravity is considered to be the only external

force, acting along the negative Y axis (the y axis for the inertial frame) [4].

This model in MapleSim consists of two subsystems, one for the crank and one for the

connecting rod. See Figure 4.4 for these subsystems which each contains two Rigid Body

Frames and one Rigid Body. A Rigid Body Frame is a frame with a fixed displacement

and orientation relative to a rigid body center of mass (CoM) frame with associated mass

and inertia matrix which is this Rigid Body here.

Rigid Body Frame I

Rigid Body !

Figure 4.4: Crank or connecting rod subsystem in slider crank in MapleSim.

In MapleSim we choose the length of the crank and connecting rod to be 1 and 2

meters, respectively. We discuss later a singular case where the bars have equal lengths.

The model of the slider crank in Figure 4.5 consists of the two mentioned subsystems,

three Revolute joints, one Rigid Body and one Prismatic (joint allowing one transla­

tional degree of freedom along a given axis). We need MapleSim to measure displacement

from A to C and angle θ in Figure 4.3. Therefore we add two probes to our system, to

report the length and angle θ. We give an initial condition of z/4 for the angle θ for

the first Revolute joint, which also has an attached probe. This initial condition will

be transferred to the related Maple worksheet via the Modelica file. The model before

simulation is shown in Figure 4.5, and after simulation is given in Figure 4.6.

40

Te MapleSstn 2 "WasmtreederarhksyHrrr in irapk-amsSlutoCershInkt{ F ab.mssumn

Rile Edk Wew Hrp
• *+4 *****=d*t*a= • • • ******* sa=*t ** •* abed - renga • ** 8*11911110121 2P*rd*ee ****************** *****=*m=evr*mrenmnen vürnen shveemanenen uuwouu 1**n • • omen an *re • meaeangbdthnad** uquupepupunuqdpona ** azpougape*uhan*ennaquuae • la+

Run Simudatien | Hessapas tivercem.n. i Techrical Support... | Mow Dec mat Fokdur.., | KLesuits Manager.. 1 *—dm we
, . .- -* .- ----*#:# ----**=*------*===----=**** - -**=*-*.- ****.**.

i Saarch 1 tilluns *** Parmedlere

4:

Farametens, foksi

Subsystem

Main
3

LPPavntuen

ilSmnd Socha

ipeeconen

• HDMdmriza

Ipl¾itta0

P Thermal

1 p Examotes

0′02
/ phi Revolute Joint

4.

Parameters

‘r
stiff
solver

adaptive

true

ι.

cram

~Prbe1

Prismatic

imporanks, Subrystems

>!*⅛ Cennastnghed Fft Hidingllam F, R) Ag Po

P,

4.
p : ' • , ckar*b**t**r
' * M w C ’ lk TAmictonter The11:

? as Maplesim 2 - *O.t.
- #.*****************

The. pof- Acolse .

"ahu

true

1.0 ιr,

Cennecinptor
“at
plot
points

w.

1.0 10-7

200

compiler false

max.
steps

1400000

101“
9a1Tmn

i 1,2 "

sf

$.

. ■ ■ swite ? > ************* . .
Sert kwnf 15# Syvte ’ "

3-D
animation

3D

: true

IT,
wwi

a?

€868 € 1 2 4 35 PM

*

10 s

1

E

w.

Figure 4.5: Two dimensional slider crank in MapleSim environment.

I*w*

3

Figure 4.6: Animation of two dimensional slider crank after simulation.

41

When we derive its DAE equations, we found that there are 23 equations and 23 variables.
The Maple form of the unsimplified system is:

X5(t) = 0, X1o(t) = 0, X1(t) = X4(t), X4(t) = X6(t), X2(t) = X7(t),

X7(t) = X9(t), -X3(t) - X5(t) = 0, -X8(t) - X10(t) = 0, X15(t) = X4(t),

X18(t) = X7(t), X14(t) + X3(t) = 0, X14(t) = X12(t), X19(t) = X13(t),

X19(t) + X8(t) = 0, X18(t) = X16(t),
d
di

X16(t) = X21(t), 4xi7(t) = X23(t), γX21(t) = X20(t), $ x23(t) = X22(t),
di dt di

2sin(X17(t)) + sin(X 16(t)) = 0, (4.2)

X15(t) = 2cos(X17(t)) + cos(X16(t)),

3.25.X20(t) + 3X22(t) cos(X16(t)) cos(X17(t)) + 3X22(t) sin(X16(t)) sin(X17(t))-

cos(X16(t))X11(t) + 24.525 cos(X16(i)) - 3cos(X16(t)) X 23(t)2sin(X17(t))+

3sin(X16(t)) X 23(t)2 cos(X17(t)) + sin(X16(t))X12(t) - X13(t) = 0,

3X20(t) cos(X16(t)) cos(X17(t)) + 3X20(t) sin(X 16(t)) sin(X17(i)) + 6X22(t)-

2cos(X17(t))X11(t) + 29.43 cos(X17(t)) - 3cos(X17(t))X21(t)2 sin(X 16(t))+

3sin(X17(t))X21(t)2 cos(X16(t)) + 2sin(X17(t))X12(t) = 0.

^ DEtools[rifsimp]'s result on the first five rows of (4.2) is:

LX17(t) = X23(t), ⅛l(t) = X20(t),

X23(t) = X22(t), "X9(t) = X21(t),

X1(t) = X6(t), X10(t) = 0, X12(t) = 0, X13(t) = 0, X14(t) = 0,

X15(t) = X6(t), X16(t) = X9(t), X18(t) = X9(t), X19(t) = 0, (4.3)

X2(t) = X9(t), X3(t) = 0, X4(t) = X6(t), X5(t) = 0, X7(t) = X9(t), X8(t) = 0.

If we use the three last rows from (4.3) we can use for example X6(t) instead of X1(t),

and remove for example X10(t) because it is zero, therefore out of 23 variables we are

left with eight variables below:

X11(t), X17(t), X20(t), X21(t), X22(t), X23(t), X6(t), X9(t). (4.4)

Moreover, we can use the first two rows of (4.3) to remove X20(t), X21(t), X22(t), and

42

X23(t) from the variables (4.4) as well. Finally we are left with just four variables, X6(t),

X9(t), X11(t), and X17(t). Substitution of the rifsimp’s result in the remaining part of

the DAE system which is eight rows of (4.2), gives a square system of four variables and

four equations:

2sin(X17(t)) + sin(X9(t)) = 0, X6(t) = 2 cos(X17(t)) + cos(X9(t)),
3.25(d3X9(t)) + 3(d3 X17(t)) cos(X9(t)) cos(X17(t)) +

at- dt-
d23(-X17(t)) sin(X9(t)) sin(X17(t)) - cos(X9(t))X11(t) ÷
at-

24.52cos(X9(t)) - 3cos(X9(t))(— X17(t))2 sin(X17(t)) +

3sm(X9(t))(⅛17(t))2 cos(X17(t)) = 0,

3(dx9(t)) cos(X9(t) cos(X17(t)) + 3(d)x9(t) sin(X9(t)) sin(X17(t)) +

6(-2X17(t)) - 2 cos(X17(t))X11(t) + 29.43 cos(X17(t)) -

3 cos(X17(t))(X9(t))2 sin(X9(t)) + 3 sin(X17(t))(- X9(t))2 cos(X9(t)) = 0.

(4∙5)

Here X9(t) = θ, and X17(t) = β, and X6(t) is displacement from A to C in Figure 4.3.

Also X11(t) is the Lagrange multiplier for the system.

4.2.2 Fast prolongation

After we obtain a simplified system, we use fast prolongation to determine all missing

constraints. Using our package, we can quickly calculate the Ci and dj. Recall Ci is the

number of times we have to differentiate (prolong) the i-th equation in the simplified

DAE system and d; is the highest derivative order of variable u‘ after the prolongation.

The Ci and dj below for DAE system of the slider crank, (4.5) with four variables,

X6(t), X9(t), X11(t), and X17(t) are obtained in 0.016 seconds:

c1 = 2, c2 = 0, c3 = 0, c4 = 0,

di = 0, d2 = 2, d3 =01 d = 2. (4∙6)

43

Therefore, according to the ¾ values we have to differentiate first equation in (4.5) twice

and there is no differentiation needed for the other three equations. Moreover, because

of the dj values the differentiation order of X6(t) and X11(t) after prolongation turns

out to be zero. However, we expect the first order derivative and second order derivative

of X9(t), and X17(t) to be in the system.

4.2.3 Solution of the DAE system

At this stage, we set the initial time, to to find initial conditions in order to solve the

simplified DAE system. Unlike the crane example in [1], our MapleSim models are

invariant under time translation and we can choose initial time t = 0. Wu and Reid in

[1] used the stats command in Maple to set random initial times because t appeared

explicitly in non-derivative form in their example..

If ci = 0 for all i, we use initial conditions from the Modelica file, or random initial

conditions. I will give an example of this later in Chapter 5.

If di,ci 7 0, we calculate the block structure. For the slider crank here cι = 0,

therefore we compute the block structure. Recall ci = 2 means we have to prolong
(differentiate) the first equation in the simplified DAE system twice. Thus the block
structure for the slider crank contains three blocks, Bo, which is called the bottom block,

and blocks B1, B2 which are given below:

• B0 = [2sin(X17(t)) + sin(X9(t)) = 0].

. Bi = [2cos(X17())4X17(t)+cos(X9())4 X9(t) = 0).

• B2 = -2sin(X17())(4X17(e)2 + 2cos(X17())A X17() - sin(X9(e))(4 X9(6)2 +
cos(X9(t))A, X9(t) = 0, X6(t) = 2cos(X17(t)) + cos(X9(t)),...]

In order to solve the ODE system for this problem, we have to solve Bo1 B1, and B2 to find

initial conditions. The total Bezout degree of the constraints is high. The Bezout degree

of a polynomial system of equations is the product of the degrees of each of the equations.

It is an important measure of the complexity of solving the system. However, even though

our constraint system has high Bezout degree it has a block triangular structure which

enables us to solve efficiently it by bottom up substitution.

44

In bottom up substitution, we first numerically solve the bottom block (Bo), then

substitute the solution into B1 and solve it. Again, we substitute solution of B1 into B2

and solve B2 and repeat this until we reach to the last Bi.

We use the Bertini package as our numerical solver. However Bertini requires poly­

nomial systems rather than algebraic equations. To obtain polynomial equations for the

slider crank, we replace sin(X9(t)), cos(X9(t)), sin(X17(t)), and cos(X17(t)) by n1(t),

n2(t), n3(t), and n4(t) respectively. The bottom block becomes 2*n3(t)+n1(t) = 0 sub­

ject to the relevant trigonometric identities nl(t)2 + n2(t)2 = 1, and n3(t)2 + n4(t)2 = 1.

To send these blocks to Bertini we need one more change. All variables are replaced

by jet variables. Therefore the three blocks become:

• Bo = [2 * n3 + nl = 0, nl2 + n22 - 1 = 0, n.32 + n42 - 1 = 0].

• Bi = [2 * n4 * X17t + n2 * X9t = 0].

• B2 = [—2*n3*X17t2+2*n4*X17tt- n1*X92+n2* X9tt = 0, X6 = 2*n4+n2, 3.25*
XOtt +3* X17tt*n2*n4 + 3 * X17tt *nl*n3-n2 * All + 24.525 * n2 — 3 * n2 * X17t2 *

n3+3*nl* X17t2 * n4 = 0,3 * X9tt * n2 * n4 + 3 * X9tt * nl * n3 + 6 * X17tt -2*n4*
X11 + 29.43 * n4 - 3 * n4 * X9t2 * n1+3 * n3 * X9t2 * n2 = 0].

Using the initial condition X9(t) = n/4 from the Modelica file and solving the system of

polynomials from Bo in Bertini gives values for nl, n2, n3, and n4 which we substitute

in Bi. Then we solve the single equation in Bi and get X9t, and X17t. Substitution of

all these in B2 and solving the resulting polynomial system, we obtain initial conditions

for X9tt, X17tt, X6, and X11.

After we obtain initial conditions for all variables, Maple’s dsolve/numeric command

is used to solve the ODE system which is the last block Bi. For almost all MapleSim

models, we use an implicit numerical method because the system of DAE from these

models are stiff and explicit methods are very expensive.

Finally, as a confirmation we can plot the solution and compare it to the MapleSim

result. For the slider crank example, we can plot X9(t), and X6(t) for desired time to

compare with two probes that are shown in MapleSim part, θ and distance from A to C

in Figure 4.3. In Chapter 5, and 6 we will give more examples for this method.

45

10

0 13

Figure 4.7: Maple result for angle and displacement for slider crank.

Probel: S

E

% ,
.D 2 o
A

1
f

-I
10

Figure 4.8: MapleSim result for angle and displacement for slider crank.

46

3.x 10-9 -

1.x 10:9 -

2. x 10-9 -

10

Figure 4.9: Absolute error for Probe2.phi.

10
04

0

Figure 4.10: Absolute error for Probel.s.

47

4.3 Simplification of various type of DAE systems

generated by MapleSim

Not all of the DAE systems which we worked on axe like (4.1). For example the DAE

system of RLC-Circuit model is:

X8(t) = 0, X21(t) = X27(t),X1(t) - X4(t) = 0,...
X1(t) - Cl dx6(t) = 0, X14 - C2⅛9(t) =0,... (4.7)

at
X21(t) = C5 + msim/PIECEWISE(X28(t) < C6, 0, true, C4)

In (4.7) X28(t) is "_msim_time" which is time or t in the system. Also msim/PIECEWISE

is the symbol for piecewise function in the Modelica file:

.O for t < CE ,X21(t) = Cs + 8 ° (4.8)
I C4 otherwise

An example of a different class of MapleSim DAE systems is the Heating Transfer system:

X5(t) = 0,X7(t) = 0,X1(t) - X2(t) =0,...
X19(t) - c,dx1(t) = 0,X3 - C2⅛20(t) = 0,.∙.

at at
X19(t) - X5(t) + X25(t) + X32(t) = 0,...

(4.9)

Another vary interesting DAE system is that for a 3D pendulum with drag in MapleSim:

X69(t) = 0,X70(t) = 0, X44(t) - X17(t) = 0,...

X95(t) - CX96(t) = 0, X94 - C2-X50(t) =0,...
at at

X78(t) = sin(X50(t)), X59(t) = cos(X50(t)) cos(X97(t)),... (4.10)
X47(t) = C3 + msim/PIECEWISE(X1(t) < C4, 0, true, Cs)...

-2cos(X96(t)) sin(X50(t)) sin(X97(t))X 49(t) + X94(t)X95(t) cos(X50(t))...

48

For this system we can use the first three rows of (4.10) to do simplification. However

we are unable to use DEtools [rifsimp] for equations similar to the third row of (4.10)

since sin and cos functions appear in the system. We first obtain DEtools[rifsimp]’s sim­

plification of first two rows of (4.10) and substitute it into the rest of (4.10). We then

use equations from third row of (4.10) to again substitute, for example sin(X50(t)) for

X78(t) and cos(X50(t)) cos(X97(t)) for X59(t). This reduces the number of variables

and equations further.

There are some other DAE systems from MapleSim models which combine feature of

(4.1) and (4.7) or (4.1) and (4.9) such as a slider crank and a DC-motor attached to­

gether and a centrifuge. Similarly, we can use DEtools[rifsimp] on redundant equations

and substitute the result in the rest of the DAE system to simplify it. Simplification

results for different MapleSim models by this method is summarized in this table below:

Table 4.1: Simplification result for various MapleSim models.

MapleSim Model Before simplification
#Eqns × #Vars

After simplification
#Eqns × #Vars

2D Slider Crank 23×23 4×4
3D Slider Crank 24×24 7×7

Rotating Pendulum 26×26 2×2
Gimbal 27×27 3×3

RLC-circuit 32×32 1×1
Furuta Pendulum 34×34 2×2

Triplets 39×39 3×3
Heating transfer system 41×41 1×1

DC-motor 57×57 1×1
Non-linear Spring Damper 57×57 2×2

Five-Pendulums 65×65 5×5
One-Ioop-Pendulum 69×69 8×8

Slider crank+DC-motor 72×72 5×5
Centrifuge 100 × 94 3×3

Two-Ioops-Pendulum 102 × 102 14×14
3-D Pendulum 117×96 3×3

Ice Tank 186×186 5×5

49

4.4 Fast Prolongation on DAE systems generated by

MapleSim

After we obtain a simplified system, the fast prolongation method is used to uncover all

hidden constraints. The fast prolongation is very fast-not more than 0.05 seconds was

taken on all models here. This is done in a computer with 2.66 GHz Intel Core processor

and 6.00 GB memory (RAM). Fast prolongation timing for different MapleSim models

that we did is given in this table below:

Table 4.2: Fast prolongation timing for various MapleSim models.

MapleSim Model Time in seconds
2D Slider Crank 0.016
3D Slider Crank 0.016

Rotating pendulum 0.015
Gimbal 0.015

RLC-circuit ■ 0.016
Furuta 0.031
Triplets 0.001

Heating Transfer System 0.016
DC-motor 0.015

Non-linear Spring Damper 0.001
Five-pendulum 0.031

One-loop-pendulum 0.046
Slider crank+DC motor 0.001

Centrifuge 0.016
Two-loops-pendulum 0.062

3-D Pendulum 0.006
Ice Tank 0.016

50

Chapter 5

Some MapleSim Models

5.1 Introduction

We applied the algorithm of Chapter 4 to many MapleSim models. Some of them are

pre-prepared examples such as, centrifuge, heating transfer system, ice-tank, etc. They

are accessible from MapleSim’s examples menu. However, we built others ourselves using

sources such as [3, 4].

We will discuss user created examples using a so-called ‘custom components’ which

are special feature of MapleSim. Custom components help us to make new components

that are not already in MapleSim by first writing the equations for that component in a

Maple worksheet.

We have substantial experience while working with the MapleSim models and we can

not talk about all of it here. In this and the next chapter, we try to summarize some

special and more significant cases that we faced. The first model we consider is a model

with custom components. This model does not have any missing constraints. The second

model is a multi-domain DC-motor attached to a slider crank. In this model we show

how to deal with a piecewise functions while using the Bertini software which requires

just polynomial equations. We made these models using [4].

51

5.2 Models with custom components

In addition to over 300 available components, we can extend the MapleSim library by

creating custom components that are based on mathematical models that we define.

Custom physical components can be created by writing down the equations in proper

mathematical notation in a Maple template. A custom component can contain a partic­

ular subsystem and provide specialized functionality. By using the Custom Component

Template, which is a Maple worksheet included in the MapleSim document folder, we

perform the following tasks in Maple to create a custom component:

• Define the component equations and properties that determine the behavior of the

component (for example, parameters, input/output ports, and variables),

• Test and analyze our mathematical model.

• Define and add input and output to the component.

• Generate the component and make it available in MapleSim.

5.2.1 A non-linear damper with a linear spring

To make this model [4], we used the custom component template to create a non-linear

spring damper component defined by differential equations. The equation defined in this

part are based on the Translational Spring Damper component in MapleSim. In this

case, the stiffness and damping coefficients are replaced with functions that are added as

inputs to the component. The spring-damper system is shown in Figure 5.1.

52

Srell
(
1

Figure 5.1: The spring-damper system.

As previously mentioned, MapleSim components are based on equations. To define

the equations related to this component the end points, a and b, can be defined as the

‘ports’ for the component. The equations are derived relative to these ports. The general

equation of the motion is:

d* dESrei(t) -F c * Srel(t) = F(t). (5.1)

Here d is the damping coefficient, and c is the stiffness of this spring. The quantity Srel

is the relative displacement between two ports sa and S6 which is defined by

Srel — Sa Sb. (5.2)

By a force analysis of the system, we have:

F(t) = Fb(t).

Fa(t) + Fi(t) = 0.

(5.3)

(5.4)

All of the above equations are necessary to define the behavior of this component. We

open a custom component template, through a document folder in MapleSim workspace

53

and write these equations above in the provided document space. The quantities Fa(t),

Fo(t), c(t), d(t) and sa, Sb are input and output variables, respectively. When we define

everything in this template, the Generate MapleSim Custom Component button at the

end of the page adds this new component, NLMSD1 in Figure 5.2, to the MapleSim

workspace. Also, MapleSim allows us to attach more files to our model. For instance,

we can provide the relative displacement of the damper (0, 0.05, 0.1, 0.2, 0.25, 0.3) and

values of the damping coefficient (750, 500, 250, 75, 250, 650) in an external Excel file.

We now make a subsystem called Nonlinear Damper. In order to do that, we need a

procedure Constant to generate a real constant signal. This Constant produces stiffness

of the spring which is 1000 here. Also, we add a procedure Gain which outputs the

product of a gain value which is chosen 1 here with the input signal, and a 1D lookup

table, useful for transferring data from the Excel file. Finally a Position Sensor is

added that measures the absolute position of a translational port. Figure 5.2 displays

this subsystem.

Constant

NLMSD,

Position
Sensur

ID Table Probet
Gain DI
∖ , Damping ..

Tt ' t.

Figure 5.2: The non-linear damper subsystem in MapleSim.

54

To finalize the main system, we need a Sliding Mass, which is a sliding mass with

inertia, and a Force, for the external force acting on a drive train element as input signal,

and Step which generates a real step signal with the height 100 here. Mass of Sliding

Mass is chosen, for instance, to be 100 Kg. The final system of this model in MapleSim

is given below in Figure 5.3.

Figure 5.3: The non-linear damper with linear spring in MapleSim.

We ask MapleSim to measure the damping, displacement, speed, and acceleration by two

probes which we added to the subsystem and the main system, respectively. They are

shown in Figures, 5.2 and 5.3 as Probel-Damping, Probe2-s, Probe2-v, and Probe2-a.

To implement our algorithm, a Modelica file is made in MapleSim and is derived in a

Maple worksheet. All information about the system including system of DAE is trans­

ferred from Modelica format. The DAE system of this model is a system of 57 equations

and 57 variables of form:

X13(t) = O, X1(t) = X7(t), X2(t) - X3(t) =01.,∙

X4(t) - CI— X6(t) = 0,X8 — C2-X10(t) = 0,...
at at

X7(t) = msim/PIECEWISE(X28(t) < C3, 0, true, C4),

X34(t) = msim/PIECEWISE(X33(t) < 0.2, msim/PIECEWISE(...),true,...),

(5.5)

55

where

X28(t) = -msim_time = t

Using DEtools[rifsimp] on the first two lines of (5.5) and substitution of the result into

the next two lines of (5.5) yields a simplified 2 × 2 system of equations:

42 d 0t<0100-X9(t) + X41(t)— X9(t) + 1000X9(t)) =
Ct dt I 100 otherwise

(5.6)

In (5.6), X41(t) which is the damping coefficient is generated with linear interpolation based

on the position of the mass.

X41(t) = 9(X9(t))
h(X9(t))

X9(t) < .2
otherwise

and

9(X9())=I Ci - C2X9() - CaX9(6)3
K(X9(t))

if X9(t) < 0.05

otherwise

K(X9()) = C4 - C5X9(t) - Ce(X9(t) - 0.05)2 + C7(X9(t) - 0.05)3

h(X9(t)) =

Cs - C2X9(t) + Cg(X9(t) - .1)2 + Cio(X9(t) - .1)3

/ Ch + C2X9(t) + Cs(X9(t) - ∙2)2 + CA(X9(t) - .2)3

∣ C15 + CEX9(t) + C,(X9(t) - .25)2 - Cg(X9(t) - .25)3

if X9(t) <.1

otherwise

if X9(t) <.25

otherwise

Also X9(t) =Probe2-s, X41(t) =Probel-Damping. Moreover, another outcome of

DEtools[rifsimp] is

d—((Probe2-s)) = Probe2-v,
dt
d. X— (Probe2-v) = Probe2-a.
dt

(5.7)

(5.8)

Next, we use fast prolongation to determine any hidden constraints. We find there are

56

no missing constraints because:

c = 0,02 = 0,d = 2,d2 = 0. (5.9)

This result means that we do not need any prolongation of 2 × 2 system of equation,

(5.6). Based on the algorithm in Chapter 4 and the fast prolongation result, we find

initial conditions. If there are no initial conditions from the Modelica file, we generate

random initial conditions. For this system there are no initial conditions coming from

the Modelica file; therefore we are free to define our own:

X41(0) = 0, X9(0) = 0, D(X9)(0) = 0. (5.10)

Finally, Maple’s dsolve/numeric is applied to the 2 × 2 system of equations (5.6) with

initial condition (5.10) to determine X41(t) and X9(t). We can plot the solutions and

compare them with the MapleSim result. To avoid expensive calculation in Maple, we

used standard finite difference approximation to calculate and plot the second derivative

of X9(t) which is Probe2-a [34]. We have:

D(f)(a)~1(-f(a - h) - Af(a)+f(a+h)- lf(a + 2h) (5.11)
h 3 2 0

Therefore we can use the first derivative from dsolve/numeric result to approximate the

second derivative of the desired variable:

D2(f)(a) - 1(D((a - h) -D()(a)+ D(f)(a+h) - 1D(a+2h)) (5.12)

The MapleSim results and our Maple worksheet results are the same for damping, dis­

placement, speed, and acceleration. In Figures 5.4 and 5.5 there is a comparison between

displacement and speed. There is also a close agreement for damping and acceleration.

57

Maple worksheet result:

Figure 5.4: Maple result for displacement and speed for the non-linear damper with a
linear spring.

0.06 -
X9

0.10 -

0.08 -

004-

0.02 -

probe2-s

10
-0.02 -

αιo H

0.08 -

0.02-1

J.04 H

probie2-v

DÇXOX 0.06-

MapleSim result:

Figure 5.5: MapleSim result for displacement and speed for the non-linear damper with
a linear spring.

0.02 4

0.10

Probe2: s

10

O
S

0.02 4

0.10-

-0.02 4

Probe2: Y

0.08­

0,06 -

0.04-

0.08-

ta

t3 0,06­
0
O .

0.04-

58

0.00005 4

0.00010 4

0.00015 -

10
0 0

Figure 5.6: Absolute error for probe2-s.

0.0003

0.0002

0.0001

10
0 T

0

Figure 5.7: Absolute error for probe2-v.

59

5.3 Multi-domain system in MapleSim

In MapleSim there are many models that are built by combination of two or more systems

from different fields. An example is a slider crank which is attached to a DC-motor. The

DAE system of this model contains a piecewise function and due to the attached slider

crank it has missing constraints. What should we do when we have a piecewise function

and we need to use Bertini which accepts just polynomials? In the following example we

answer this question.

5.3.1 A DC-motor attached to a slider crank

A DC-motor is an electric motor that runs on direct current (DC) electricity. This system

uses electrical energy to produce mechanical energy. Here, we attached this system to a

slider crank to observe the speed of slider crank [3]. This MapleSim model is given in

Figure 5.8. .

crank. ConnectingRod,

^Probβ3

/ phi

Probet
O

S

Figure 5.8: The slider crank system attached to a DC-motor in MapleSim.

The DC-motor subsystem in MapleSim which contains an RLC-Circuit with an elec­

tromotive force (EMF), Inertia, and Rotational Damper is shown in Figure 5.9.

60

Rffsistor : induchr

IyWa

Figure 5.9: The DC-motor subsystem in MapleSim.

An electromotive force (EMF) is an electric/mechanic transformer, Inertia is a 1-D

rotational component with inertia, and Rotational Damper is a linear 1-D rotational

damper. Parameters in this subsystem are chosen to be resistance of Resistor 1 Ω,

inductance of Inductor $ Henry, transformation coefficient of EMF 0.01 N. The DC-

motor is connected to a Step which generates a real step signal. We choose the height of

this step, for instance, to be 2000.

The DAE system of this model from the Modelica file is 72 × 72 system of the forms :

X15(t) = 0,X20(t) = 0,X14(t) - X16(t) =0,...
X7(t) - GX8(t) = 0,X23 - "X21(t) = 0,X30 - “ X60(t) = 0,..

X3(t) = msim/PIECEWISE(X4(t) < 0,0,true, 2000), (5.13)

2 sin(X55(t)) + sin(X54(t)) = 0,X53(t) = 2cos(X55(t))+ cos(X54(t)), ...

Here X4(t) = _msim_time = t. We use DEtools[rifsimp] on the first two rows of (5.13)

and substitute the result into the rest of the DAE system. This simplifies the system to

a 5 × 5 system of equations. Moreover, we replaced the msim∕PIECEWISE function in

61

the system by a Maple piecewise function. The simplified system is:

2 sin(X55(t)) + sin(X68(t)) = 0,

1d(x9()+X9()+0.014(X68(t)) = 0
2 dt 2000

for t<O

otherwise
(5.14)

X53(t) = 2 cos(X55(t)) + cos(X68(t)),
3-⅞(X68(t)) cos(X68(t)) cos(X55(t)) + 3⅛(X68(t)) sin(X68(t)) sin(X55(t)) + ...,

3.2642(X 68(t)+ 3(X55(t)) cos(X68(t))cos(X55(t) + 3(X55(t) sin(X68(t)...

Here X68(t) = Probe3-phi, X53(t) = Probel-s, and X55(t) is the angle made by

ConnectingRod subsystem with ground in Figure 5.8. Also X9(t) is direct current of

electricity, and X49(t) is the Lagrange multiplier for the system.

At this point, we apply fast prolongation for this system with variables X9(t), X49(t),

X53(t), X55(t), X68(t) and obtain:

cι = 2, C2 = 0, C3 = 0, c4 = 0, c5 = 0

di = 1,⅛ = 0, d3 = 0,d = 2, d5 = 2. (5.15)

Therefore, based on (5.15), we need to differentiate first equation of (5.14) twice to obtain

missing constraints. However, there is no need to differentiate the other equations in this

system, since for i > 1 we have c⅛ = 0. The missing constraints are:

2cos(X55(t)) “ (X55(t)) + cos(X68(t)) (X68(t)) = 0,

-2sin(X55(t))(d(X55(t)))2+2cos(X55(t))G (X55(t)) -

sin(X68(t))(d(X68(t)))2 + cos(X68(t))⅛(X68(t)) = 0 (5.16)
at dt-

Then, we make three block structures in order to find consistent initial conditions. These

are obtained by the bottom up block method using Bertini. Recall, Bertini is unable to

62

work with algebraic equations which contain functions such as sin and cos. So we have

to transform these functions to produce a polynomial system:

sin(X55(t)) = n1(t), cos(X55(t)) = n2(t),

sin(X68(t) = n3(t), cos(X68(t)) = n4(t). (5.17)

Moreover, we have to add two relevant trigonometric identities nl(t)2 + n2(t)2 —1 = 0,
and n3(t)2 +n4(t)2 — 1 = 0 and change to jet variable notation. The final block structure

which goes to Bertini is:

• Bo = [2 * nl + n3 = 0, n12 + n22 — 1 = 0, n32 + n42 — 1 = 0].

• Bi = [2*n2* X55t +n4* X68t = 0].

• Ba = [—2 * nl * X55t2 +2*n2* X55tt - n3 * X68t2 + n4 * X68tt = 0, X53 = 2*n2+
1 ∣ 0 for t < 0

n4, 1 * X9t + X9 + 0.01 * X68t = < ,
■ ! 2000 otherwise

3*X 68tt *n4*n2+3*X 68tt *n3*n1+6 *X55tt -2*n2* X49+ 29.43 * n2 — 3 * n2 * X 68t2 *

n3+3*n1* X68t2 * n4 = 0,3.26 * X68tt +3* X55tt *n4*n2+3* X55tt *n3*n1-n4*

X49+24.525*n4-3*n4* X55t2*n1+3*n3* X55t2 *n2+0.1* X68t-0.01*X9 = 0].

We choose initial time to be zero and send the bottom block, Bq, to Bertini. When

Bertini gives back the result, we substitute that result in the next block and send it to

Bertini again. This is continued up to B2, except here for B2 we need to do one more job
{0 for t<0

. This piecewise function should be
2000 otherwise

evaluated at ‘initial time,=0 since Bertini does not accept piecewise functions in its input

file. In addition to substitution of Bertini’s solution from other block in B2, we need to

substitute t = 0 and evaluate B2 at this point as well. Therefore, that special equation

with piecewise function in B2 is changed to * X9t+X9+ 0.01 * X68t = 2000 and Bertini

is able to solve it.

63

Chapter 6

Models with Singularities

6.1 Introduction to models with singularities

There are many works done on singularities of multibody systems. This motivated us to

investigate singular cases arising in MapleSim models. Arponen, Piipponen, and Tuomela

in [18, 19] analyzed the singularities of planar multibody mechanisms such as the “An­

drews squeezing system”, and various closed bar mechanisms.

The equation of the systems above take the Lagrangian form:

{
f(t,U,Ut,Utt,...,λ) = 0,

g(t,u) = 0,

where the function f describes the dynamical equations and g gives the constraints.

Here u€R" are the (generalized) position coordinates, ut, and Utt are first and second

derivatives, respectively, and λ represents the Lagrange multipliers. A singular point is

where the number of degrees of freedom of the system changes. Mathematically these

are the points where the rank of the Jacobian of g drops and is not full rank [20, 21].

There are some differences between [18, 19, 20] and our work. For example [18, 19, 20]

do not consider the actual dynamical equations and analyze only the constraints given

by g. However, in our approach we work with the whole system.

Based on [20], the singularities can be handled in one of the following ways:

(6.1)

64

• Avoided, or

• Compensated, or

• Eliminated.

Avoiding singularities mean we keep solution paths away from singularities. The works

[18, 19] are directed at finding the set of such singularities for multibody systems. Arpo-

nen [20] shows that a two bar slider crank admits a singularity if and only if the lengths

of the bars are equal. Thus a slider crank with different length bars we considered in

Section 4.2.1 is an example of the techniques of avoiding singularities. Compensating

for singularities means using techniques to overcome or compensate for the singularity.

Elimination means that we find the singularity’s cause and reformulate the equations in

such a way that the cause of singularity is eliminated. Arponen in [20] uses a different

approach to [18, 19] in that he presents a new method for eliminating singularities for a

large class of multibody models.

The papers [18, 19, 20] use algebraic tools such as fitting ideals, Grobner bases etc,

which work only for polynomial systems. They used the Singular freeware [35] which

is a computer algebra system for polynomial computations with special emphasis on

the needs of commutative algebra, algebraic geometry, and singularity theory. Since

multibody equations contain trigonometric functions, to use algebraic techniques, the

constraints equations need to be changed to polynomial form. We also need to change

from trigonometric to polynomial form to use the Bertini software for polynomial systems.

There are two. ways to formulate models of multibody dynamics. The first one uses

a minimum number of variables with constraint forces eliminated, e.g. in slider crank

using r, θ as the variables where r is the bar length and θ is the angle which is made

by the bar. This is an example of the elimination method. The other formulation uses

Cartesian coordinates, keeping the constraint forces within the equations of motion which

are augmented by the constraints. This is called the augmentation method and the system

is said to be in descriptor form.

The method in [20] by Arponen for the slider crank works in descriptor form. Arponen

65

used Cartesian coordinates (Ti, Yi) based on positions of the two bars. Our method for

the slider crank is an elimination method. We start with r and θ and only convert to

polynomial form for these equations being solved by Bertini.

6.1.1 Equal-length bar slider crank

We consider an equal-length bar (length=l meter) slider crank (see Figure 6.1). This

system is known [20] to admit a singularity.

Figure 6.1: Equal-length bar slider crank.

In a similar manner to [20] we analyze the constraints. We start with bottom block.

Finally, after constructing all blocks use of Bertini enables us to find the singular points.

We now give a formal definition [18] of singular points:

Definition 6.1.1. Let f : Rn — * be any smooth map where k <n and let df be its

Jacobian matrix. Let M = ∕-1(0) C R" be the zero set of f. A point q ζ M is a singular

point of M1 if df does not have maximal rank at q.

We observe that the MapleSim simulation is very slow near the singularity. This occurs

because as the Jacobian becomes singular the step size is made smaller and smaller to

retain accuracy.

In particular we set the final time, if in MapleSim to be 10 seconds but found that

the simulation stops at 1.605 seconds with a message indicating a possible singularity

66

at t = 1.625. We generate a Modelica file for our system and transfer all the system’s

information to a Maple worksheet. The slider crank figure in MapleSim simulation at the

singular point corresponds to the animations below in Figures 6.2 and 6.3. In particular

we observe as does Arponen [20] that the singularities occur where the bars overlap.

Figure 6.2: Near singular configuration of the equal-length bar slider crank.

E

1

Figure 6.3: Near singular configuration of the equal-length bar slider crank.

67

As discussed in Section 4.2.1 the DAE system of this model is a 23 × 23 system which
simplifies to a 4 × 4 system. Then, using the fast prolongation package, two missing

constraints are found. They are used to determine the blocks:

• Bo = [sin(X17(t)) + sin(X9(t)) = 0].

. Bi = cos(X17())A X17() + cos(X9())A X9() = 0].

. Ba =[-sin(X17())(4X17())2+cos(X17())2 X17()-sin(X9())(4 X9(6)2+

cos(X9(t))A X9(t) = 0, X6(t) = cos(X17(t)) + cos(X9(t)),. ..]

The variables X9(t), X17(t) are indicated in Figure 6.4.

XIT(t)

0 M _

Figure 6.4: Variables for the slider crank.

In terms of probes, X9(t) is Probe2-phi and X6(t) is Probel-s. Unlike the slider
crank in [20] that only uses Cartesian coordinates, we only change our system to such

polynomial coordinates system when required by the Bertini software. The blocks after

changing to such coordinates are:

• Bo = [n3 +nl= 0,n12 +n22 -1 = 0,n32 +∏42 - 1 = 0].

• Bi = [n4 * X17t + ∏2 * X9t = 0].

• B2 = [-n3* X17t2 + n4* X17tt-n1* X9t2+n2 * XStt = 0, X6 = n4+n2,3.25 * X9tt+
1.5 * X17tt *n2*n4+ 1.5 * X17tt *nl*n3-π2* X11 + 24.525 *n2 - 1.5 *n2* X17t2 *
n3 + 1.5 * nl * X17t2 *4 = 0, 1.5 * X9tt *n2*n4+ 1.5 * X9tt *nl*n3+ 2.25 * X17tt —
n4 * X11 + 14.715 *n4 - 1.5 *n4* X9t2 *n1+ 1.5 *n3* X9t2 *2 = 0].

68

Here sin(X9(t)) = nl, cos(X9(t)) = n2, sin(X17(t)) = n3, and cos(X17(t)) = n4.

We use the initial condition X9(t) = π∕4 from the Modelica file. We use bottom up

substitution with Bertini in order to find all initial conditions for this system. When

Maple’s dsolve/numeric is used it gives a max number of steps exceeded (maxfun)

error, due to the singularity. Graphs of Probe2.phi (X9(t)) close to the singular point

are given in Figures 6.5 and 6.6.

0.5

0
0.5

Figure 6.5: Probe2.phi result close to singular point P by dsolve for DAE system of the
equal-length bar slider crank.

-1.574-

16753 16260

Figure 6.6: Probe2.phi result close to singular point P of the equal-length bar slider
crank.

69

The result from MapleSim and Maple worksheet are the same as each other before

this singular point, at t = 1.625:

robel:s

05 -

-1.5 —

0.5 -

-1 -

'robe2 phi

1.2

1.4

1.60.2 0.4 0.6 0.8

1.2 1.4 1.6

X6 1.0 -

0.8 -

0.2 0.4 0.6 0.8
t

0.6 -

0.4­

0.2 -

Figure 6.7: Maple result for the equal-length bar slider crank before singularity at t =
1.625.

Probe2: phi Probel: s

0.5

0.6
0.48

■ 0.2 04 06 08
■ 1.

Figure 6.8: MapleSim result for the equal-length bar slider crank before singularity.

0 0.2 0.4 0.6 0.8
t

Now we want to investigate the origin of the singular point. Based on Figures 6.2 and

6.3 the singular point occurs when:

X9(t) = π∕2, X17(t) = —T/2, X6(t) = 0,

nl = 1, n2 = 0, n3 = —1, n4 = 0. (6.2)

70

or

X9(t) = 3*/2, X17(t) = -3*/2, X6(t) = 0,

nl =-1, n2 = 0, n3 = 1, n4 = 0. (6.3)

Like Arponen in [20] and Piipponen in [19], we want to find the polynomial decomposi­

tion of the bottom block which contains all constraints. Decomposition is a generalization

of polynomial factorization (see [21]). Therefore, we use Bertini to decompose the bottom

block:

' n3+n1 = 0, n12 + n22-1 = 0,n32 + n42 = 1. (6.4)

The Bertini input file for this system of polynomials is:

CONFIG ■
TRACKTYPE: 1;
END;
INPUT
variable_group ni, n3, n2, n4;
function f1,12,13;
fl-n3+nl;
£2=n1 2+n2 2-1;

f3=n3 2+n4 2-1;
END;

Figure 6.9: A sample Bertini input file.

We choose TRACKTYPE:= 1 in the file 6.9 (TRACKTYPE:= 0 by default). This instructs

Bertini to use its positive dimension solver. Recall from Chapter 3, Bertini can give

dimension and degree of the components in the decomposition of a polynomial system.

It also gives some information about singularities. Bertini shows that there are two

components each degree two and dimension one which are both nonsingular:

• Component-1: C1 : nl + n3 = 0, n2 — n4 = 0.

• Component-2: C2 : nl + n3 = 0, n2 + n4 = 0.

In angular coordinates this is equivalent to:

Figure 6.11: Second component of bottom block for equal-length bar slider crank.

singular
position

Component-1: sin(X9(t)) = — sin(X17(t)), cos(X9(t)) = cos(X17(t)).

Component-2: sin(X9(t)) = — sin(X17(t)), cos(X9(t)) = — cos(X17(t))

5

%

i

⅛
!

| singular
| position
1

XX(0

Figure 6.10: First component of bottom block for equal-length bar slider crank.

X17(1

Figure 6.12: Equal-length bar slider crank position.

Now I would like to show bottom block decomposition using r, θ coordinates (i.e using

the elimination method).

As we found in [19, 20], the singular points are at the intersection Ci ∩ C2 of these

two components:

CinC2 = {nl =1,n2 = 0, n3 = -1, n4 = 0} or {nl = —1, n2 = 0, n3 = 1, n4 = 0}.

• (6.5)

Now we want to show that the Jacobian of (6.4) is full rank for these two components

and it is not full rank at their intersection. The Jacobian of (6.4) respect to [nl, n2, n3, n4]

is:

R:
$ ■
%

4

4,,

%

#

■ #:

|

X940

— XI

73

Therefore, the bottom block constraints will be:

X12 + Y12 = 1,

X22+Y22 = 1, (6.8)

Y1 = Y2.

In angular coordinate (6.8) is:

rl2 — 1 = 0,

γ22-1 = 0, (6.9)

rl sin(X9(t)) + r2 sin(X17(t)) = 0.

The decomposition of (6.9) is:

• Component-1: rl = 1, r2 = 1, sin(X9(t)) + sin(X17(t)) = 0,

• Component-2: rl = 1, r2 = —1, sin(X9(t)) — sin(X17(t)) = 0,

• Component-3: rl = —1, r2 = 1, — sin(X9(t)) + sin(X17(t)) = 0,

• Component-4: rl = —1, r2 = —1, sin(X9(t)) + sin(X 17(t)) = 0,

Components 2, 3, and 4 are physically impossible since the bar lengths, rl, r2 are positive

and one. The only physically possible component is Component-1 which yields the cases:

r , (T: X17(t) =-X9(t),
[rl = 1, r2 = 1, sin(X9(t)) + sin(X17(t)) = 0] = - 1 (6.10)

T2 : X17(t) = X9(t) - .

Thus using elimination method (r, 0 system) we can have two components which are the

same as before related to Figures 6.10 and 6.11. Therefore the two methods give the

same result.

Recall from Chapter 3, the Bertini software is able to give information about singular

and non-singular solutions of a system. In order to do that, we can convert Bo, B1, and

74

B2 to a system of polynomials. In particular Bertini’s input file contains:

n3 + nl = 0,

nl2 + n22 — 1 = 0,

∏32 + n42 — 1 = 0,

n4 * X17t + n2* X9t = 0,

— n3 * X17t2 + n4 * X17tt — nl * X9t2 + n2 * XQtt = 0, (6.11)

X6 = n4 + ∏2t

3.25 * X9tt + 1.5 * X17tt *n2*n4 + 1.5 * X17tt * nl * n3 — n2 * X11+

24.525 * n2 — 1.5 * n2 * X17t2 * n3 + 1.5 * nl * X17t2 * n4 = 0,

1.5 * X9tt *n2*n4 + 1.5 * X9tt * nl * n3 + 2.25 * X17tt — n4* X11+

14.715 * n4 — 1.5 * n4 * X9t2 * nl + 1.5 * n3 * X9t2 *n2 = 0.

Bertini shows that there are six two-dimensional components shown in Table 6.1.

singular dim Equations of components
N 2 X17t = X9t, X17tt = X9tt, X6 = 0, nl + n3 = 0, n2 + n4 = 0
N 2 X17t = -X9t, X17tt = -X9tt, nl + n3 = 0, n2 - n4 =0
Y 2 X17t = X9t, X17tt = X6 = X9tt = 0, nl = -1, n2 = 0, n3 = 1, n4 = 0
Y 2 X17t = -X9t, X17tt = X6= X9tt = 0, nl = 1, n2 = 0, n3 = -1, n4 = 0
Y 2 X17t = X9t, X17tt = X6= X9tt = 0, nl = 1, n2 = 0, n3 = -1, n4 = 0
Y 2 X17t = - X9t, X17tt = X6= X9tt = 0, nl = -1, n2 = 0, n3 = 1, 4 = 0

Table 6.1: Six components from Bertini for solving all blocks of equal-length bar slider
crank

75

Chapter 7

Conclusion and Future Work

The analysis of nonlinear systems of DAEs is becoming more common in applications. For

such systems, it is required to uncover all hidden constraints in order to determine their

initial conditions and numerically solve them. In general, this can be more challenging

when DAEs are complicated and automatically generated by a computer software. In

this thesis, we worked on DAE systems which arise from MapleSim software. MapleSim

is a multi-domain modeling and simulation tool which enables us to make models from

diverse fields. This software is powered by the Maple software and systems of DAEs from

the MapleSim models can be transferred to Maple worksheet.

Wu, Reid and Ilie introduced a fast numeric geometric approach [1, 2] in the framework

of Riquier Bases for PDAEs. In those works, it is shown that this approach can be very

useful in finding all missing constraints for such systems. Their methods are applicable

to a class of PDAEs that are square systems dominated by pure derivatives in one of

their independent variables with respect to some partial ranking. They showed for this

class, only differentiations (prolongations) with respect to one independent variable are

needed to determine missing constraints. Their method is called the fast prolongation

method.

Since system of DAEs are dominated by pure derivatives in t (time here), we used

the fast prolongation method to find missing constraints and consistent initial conditions

for solving DAE from MapleSim. One of the contribution of this thesis is to show that

76

the fast prolongation method can be successfully applied to many MapleSim models from

diverse fields.

We created some of the models and others were obtained from MapleSim example

menus. The systems of DAEs from MapleSim usually contain many simple redundant

equations. Another contribution is to show that these can be used to dramatically re­

duce the number of variables and equations in the system. In particular we used Maple’s

DEtools[rifsimp] on those redundant equations to simplify the systems. Next, the fast

prolongation package is applied to the simplified system in order to find missing con­

straints. If any missing constraints are found, the block structure is computed. We use

the block structure and Bertini to find initial conditions and finally numerically solve the

DAE system. There is a discussion about our algorithm for MapleSim generated DAE

models in Chapter 4. A slider crank system in MapleSim is used here to illustrate our

approach.

The Bertini software is a global homotopy continuation solver introduced by Sommese

et al. [16]. Bertini applies to polynomial systems rather than algebraic equations to find

zero dimensional (isolated) solution as well as representing positive dimensional solution

sets of polynomial systems. It uses witness points to represent positive dimensional

solution sets (see Chapter 3). In Chapter 3 we also discussed homotopy continuation

methods.

In Chapter 5 we consider two MapleSim models: a nonlinear damper with a linear

spring and a DC-motor attached to a slider crank system. We made a nonlinear damper

with a linear spring using a so-called custom component. Such custom components are

a powerful feature of MapleSim and allow us to add new components to the MapleSim

library. A DC-motor attached to a slider crank system is a multi-domain model with a

piecewise function. In particular we successfully used our methods with Bertini on such

a system. We discuss the way Bertini should be used when we have piecewise function

which is not acceptable in the Bertini input file.

Another goal in this thesis was to work on models with singularities. In particular

the work on singularities [18, 19, 20] by Arponen, Piipponen, and Tuomela motivated us

77

4

to study the singularities of an equal-length bar slider crank. In Chapter 6 we compare

our method on singularities with the methods in [18, 19, 20]. Also we show how to use

Bertini to detect singularities.

The fast prolongation method only works on square DAE systems. Although most of

the MapleSim models have equal number of variables and equations after simplification,

non-square (overdetermined) DAE systems can be generated. An important future work

is to extend this method to non-square systems.

Only a few of the MapleSim models we studied so far have missing constraints. An

important future work is to study MapleSim models with missing constraints.

Another important future research area is to study models with singularities. Arpo-

nen, Piipponen, and Tuomela analyzed the singularities of planar multibody mechanisms

such as the “Andrews squeezing system”, and various closed bar mechanisms. Making

these models in MapleSim and analyzing their singularities using the techniques of the

thesis would be a very interesting future work.

The last but not least open question and future work is how to apply fast prolongation

method to systems of DAEs from hybrid models. Hybrid models are models with switch­

ing. In these models there is at least one condition on the system which discontinuously

changes the DAE system if that condition is satisfied. For example the DAE system may

contain a condition such as.

if X3(t) < 5 then X9(t) =-5 otherwise — X8(t) = 5. (7.1)

Therefore the DAE system can discontinuously change. A very interesting open question

is how to apply fast prolongation to this kind of system.

78

Bibliography

[1] W. Wu and G. Reid. Symbolic-numeric Computation of Implicit Riquier Bases for
PDE. Proc, of ISSAC,07. ACM, pages 377-385, 2007.

[2] W. Wu, G. Reid, and S. Ilie. Implicit Riquier Bases for PDAE and their Semi­
Discretizations. Journal of Symbolic Computaion, 44:923-941, 2009.

[3] Maplesoft Corporation. MapleSim: Multidomain modeling and simulation tool.
Available at , 2009, Access date:August 27, 2010.www.maplesoft.ca

[4] Maplesoft a division of Waterloo Maple Inc. MapleSim User’s Guide, 2009.

[5] F. Boulier, D. Lazard, F. Ollivier, and M. Petitot. Representation for the radical of
a finitely genereted differential ideal. Proc. ISSAC 1995. ACM Press, pages 158-166,
1995.

[6] G.J. Reid, P. Lin, and A.D. Wittkopf. Differential-Elimination completion Algo­
rithms for DAE and PDAE. Studies in Applied Mathematics, 106(1):1-45, 2001.

[7] E. Hubert. Notes on triangular sets and triangulation-decomposition algorithms ii:
Differential Systenas in: U. Langer., and F. Winkler, (eds.). Symbolic and Numerical
Scientific Computations. In: LNCS, 2630, Springer-Verlag Heidelberg, 2003.

[8] E. Mansfield. Differential Grobner Bases. Ph.D. Thesis, University of Sydney, 1991.

[9] W.M. Seiler. Involution-The Formal Theory of Differential Equations and its Appli­
cations in Computer Algebra and Numerical Analysis. Habilitation Thesis, Univer­
sity of Mannheim, 2002.

[10] F. Boulier. Récriture algébrique dans les systèmes d’équations différentielles en vue
d’applications dans les Science du Vivant. Habilitation Thesis, 2006.

[11] A. Wittkopf. Algorithms and Implementations for Differential Elimination. Ph.D.
Thesis, Simon Fraser University, 2004.

[12] J.D. Pryce. A simple structure analysis method for DAEs. BIT, 41:364-394, 2001.

[13] F. Ollivier. Historical Material on Jacobi’s Bound (including transla­
tions). ollivier∕JACOBI/j acobi.htm, Access
date=August 27, 2010.

http://www.lix.polytechnique.fr/

http://www.maplesoft.ca
http://www.lix.polytechnique.fr/

79

[14] S. Ilie, R.M. Corless, and G. Reid. Numerical solution of index-1 differential algebraic
equations can be computed in polynomial time. Numerical Algorithms, 41(2):161-
171, 2006.

[15] R.M. Corless and S. Ilie. Polynomial cost for solving IVP for high-index DAE. BIT
Numerical Mathematics, 48:29-49, 2008.

[16] D.J. Bates, J.D. Hauenstein, A.J. Sommese, and C. W. Wampler. Bertini: Soft­
' ware for Numerical Algebraic Geometry. Available at . edu∕ sommese∕bertini.,
2008.

www.nd

[17] L.F. Shampine and R.M. Corless. Initial value problems for ODEs in problem solving
environments. Journal of Computational and Applied Mathematics, 125:31-40, 2000.

[18] T. Arponen, S. Piipponen, and J. Tuomela. Analysing singularities of a benchmark
problem. Multibody System Dynamics, 19:227-253, 2008.

[19] S. Piipponen. Singularity analysis of planar linkages. Multibody System Dynamics,
22:223-243, 2009.

[20] T. Arponen. Regularization of Constraint Singularities in Multibody Systems. Multi­
body System Dynamics, 6(4):355-375, 2001.

[21] D. Cox, J. Little, and D. OShea. Ideals, Varieties, and Algorithms, An Introduction
to Computational Algebraic Geometry and Commutative Algebra. Springer, New
York.

[22] C. J. Rust. Rankings of derivatives for elimination algorithms and formal solvability
of analytic partial differential equations. Ph.D. Thesis, University of Chicago, 1998.

23] A.J. Sommese and C.W. Wampler. The Numerical Solution of Systems of Polyno­
mials Arising in Engineering and Science. World Scientific Press, Singapore, 2005.

[24] D.J Bates. Theory and applications in numerical algebraic geometry. Ph.D. Thesis,
University of Notre Dame, 2006.

[25] J.D. Hauenstein. Regeneration, local dimension, and applications in numerical alge­
braic geometry. Ph.D. Thesis, University of Notre Dame, 2009.

[26] J. Verschelde. Algorithm 795: PHCpack: A general-purpose solver for polynomial
systems by homotopy continuation. ACM Transactions on Mathematical Software,
25(2):251-276, 1999, Software available at .http://www.math.uic.edu/~jan

[27] T.L. Lee., T.Y. Li., and C.H. Tsai. HOM4PS-2.0: A software package for solv­
ing polynomial systems by the polyhedral homotopy continuation method. 2008,
Software available at .http://www.mth.msu.edu/~li/

[28] S. Goedecker. Remark on algorithms to find roots of polynomials. SIAM Journal
on Scientific computing, 15(5):1059-1063, 1994.

http://www.nd
http://www.math.uic.edu/%7Ejan
http://www.mth.msu.edu/%7Eli/

80

[29] V.Y. Pan. Solving a polynomial equation: some history and recent progress. SIAM
Rev., 39(2):187-220, 1997.

[30] A.P. Morgan and A.J. Sommese. A homotopy for solving general polynomial systems
that respects m-homogeneous structures. Appl. Math. Comput., 24(2): 101-113,1987.

[31] A.J. Sommese, J. Verschelde, and C.W. Wampler. Solving polynomial systems equa­
tion by equation, In Algorithms in Algebraic Geometry edited by A. Dickenstein, F.-
O. Schreyer, and A. J. Sommese. IMA Volumes in Mathematics and Its Applications,
146:133-152, 2007.

[32] D.J. Bates, J.D. Hauenstein, A.J. Sommese, and C.W. Wampler. Software for
numerical algebraic geometry: a paradigm and progress toward its implementa­
tion. Software for Algebraic Geometry, edited by M.E. Stillman, N. Takayama, and
J. Verschelde. IMA Volume in Mathematics and its Applications, 148:1-14, 2008.

[33] M. Otter and H. Elmqvist. Modelica Languages, Libraries, Tools, Workshop, and
EU-Project RealSim. German Aerospace Center, Oberpfaffenhofen, Germany and
Dynasim AB, Lund, Sweden, 2001.

[34] L.M. Milne-Thomson. The Calculus Of Finite Differences. Macmillan And Company,
London, 1933.

[35] G.M. Greuel, G. Pfister, and H. Schonemann. SINGULAR 3.0. A Computer Algebra
System for Polynomial Computations. Centre for Computer Algebra, University of
Kaiserslautern, Software available at . de., 2005.http://www.singular.uni-kl

http://www.singular.uni-kl

	Fast numeric geometric techniques for COMPUTER GENERATED DAE MODELS
	Recommended Citation

	CERTIFICATE OF EXAMINATION

	Niloofar Mani

	Fast numeric geometric techniques for computer generated DAE models

	Abstract

	Acknowledgements

	Contents

	List of Tables

	List of Figures

	Chapter 1

	Introduction

	Chapter 2

	Fast prolongation method

	2.1	Introduction	.

	2.2	Signature matrix of t-dominated systems using rankings

	2.3	Generalizing the fast prolongation method

	2.3.1	Square systems

	2.3.2	Block triangular structures

	Chapter 3

	Numerical algebraic geometry: A homotopy method

	3.1	Introduction

	3.2	Homotopy continuation

	3	.2.1 A generic illustrative homotopy algorithm

	3.2.2	Homotopy for other functions

	3.2.3	Examples of the homotopy algorithm

	3.2.4	Discussion

	3.3 Positive dimensional solutions

	3.3.1	A numerical irreducible decomposition

	3.3.2 Witness sets

	Chapter 4

	Main algorithm for MapleSim

	generated models

	4.1	Introduction to the MapleSim software

	4.2	Algorithm for MapleSim generated models

	4.2.1	Simplification

	4.2.2	Fast prolongation

	4.2.3	Solution of the DAE system

	4.3	Simplification of various type of DAE systems

	generated by MapleSim

	4.4	Fast Prolongation on DAE systems generated by MapleSim

	Chapter 5

	Some MapleSim Models

	5.1	Introduction

	5.2	Models with custom components

	5.2.1	A non-linear damper with a linear spring

	5.3 Multi-domain system in MapleSim

	5.3.1	A DC-motor attached to a slider crank

	Chapter 6

	Models with Singularities

	6.1	Introduction to models with singularities

	6.1.1	Equal-length bar slider crank

	Chapter 7

	Conclusion and Future Work

	Bibliography

