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I Abstract

This study evaluated the performance of prognostic models for survival after liver trans­

plant. Assessment of the adequacy of such models is difficult and quantitative benchmarks 

are needed for measuring performance. We examined the commonly used Cox proportional 

hazards (PH) model for survival analysis and compared to simpler models using survival 

trees. Models were evaluated using the integrated Brier score on an independent test set, 

allowing comparison of models based on prediction error. We also evaluated Harrell’s con­

cordance statistic in the Cox PH model. We found that two important predictors of survival 

violated the PH assumption, suggesting that both the PH model and the concordance statis­

tic are inappropriate for transplant data. We found that the scientific significance of the 

predictive accuracy gained through the use of the models tested here was limited. Bench­

marks for performance evaluation are an important tool for accurate decision making in 

medicine.
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survival analysis, integrated Brier score, concordance, liver transplantation, prediction error
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1 Introduction

The body of literature on the subject of survival analysis methodology has grown at a 

rapid pace. In 1995, Wyatt and Altman published a paper examining why so many prog­

nostic models are published and then promptly forgotten, citing a lack of evidence of both 

accuracy and generalizability. Among other things, they suggest authors provide a vali­

dation of the model on an independent data set, preferably prospectively, in addition to 

proof of low prediction error. In 2000, Altman and Royston followed up with a tutorial on 

model validation: “The idea of validating a prognostic model is generally taken to mean 

establishing that it works satisfactorily for patients other than those from whose data it was 

derived.” More recently, Altman and colleagues published a valuable series of papers in the 

British Medical Journal describing best practices for developing and validating prognostic 

models (Altman, 2009; Moons, 2009).

New prognostic models for liver transplant survival appear frequently, most of which 

utilize the popular Cox proportional hazards (PH) regression model (Cox, 1972). With 

this paper we aim to produce a quantitative evaluation of some statistical methods that 

are popular in survival analysis. We chose survival after liver transplant as our example 

because there is much current research being done in this area. The last twenty years of 

transplant research have produced extensive insight into possible factors affecting survival 

after liver transplant. Several prognostic models have been proposed. Almost all use the 

Cox PH model for survival analysis and Harrell’s concordance statistic as a measure of 

model adequacy. Very few authors include a discussion of whether the assumptions of the 

methods used were met. Difficulties in assessment and comparison of models are further 

complicated by the fact that quite often, papers analyzing the same data set return contra­

dictory results. This is due to the employment of differing time frames, the use of different 

inclusion or exclusion criteria, and using cutpoints or dichotomization of continuous vari­

ables. Authors will condense categorical variables into fewer categories, and often what 

is included in each category is impossible to determine. Categorizations of continuous 
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variables may not be specified in detail, making study results difficult to compare.

Although validation of prognostic models has been firmly established as an absolute ne­

cessity, many papers do not test their model performance at all, or they employ a measure 

of performance based on the same data set with which the model was built, resulting in an 

overly optimistic assessment. By convention, most transplant researchers use Harrell’s con­

cordance statistic (Harrell et al., 1982) as a measure of model performance, although other 

new methods for measuring the probability of concordance have been proposed, some of 

which employ measures to better handle censored data (Gonen and Heller, 2005). Missing 

from current research are large sample analyses with quantitative measures which evaluate 

prognostic models on independent data. Wyatt and Altman (1995) write of the necessity 

of separate testing - in time and place - of the model on a new test set: “In view of the 

established difficulty of transferring prognostic models, it is surprising that such follow up 

testing is seldom performed.”

We assessed the performance of predictive models for survival after transplant using the 

Cox PH model. We tested whether the assumptions of the Cox model and the concordance 

statistic were met and found that they were not. We evaluated the prediction error of the 

Cox PH model with a method called the integrated Brier score which is a valid measure of 

model performance even when the PH assumption does not hold or the model is otherwise 

mis-specified. We also compared the performance of a simpler model using survival trees 

with the more complex Cox models that are largely present in transplant literature.

2 Evaluators of Predictive Performance

Critical evaluation of prognostic models is often overlooked but it is essential for ob­

taining a model that predicts as accurately as possible. In 2001, Christensen published 

a review of currently used prognostic models for survival in chronic liver disease (with­

out transplant) and expressed concern that measures of prediction error were lacking. The 
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accuracy of prognostic models for survival after liver transplantation has not been tested 

except in a very limited way. In addition, there are currently no standards for evaluating the 

accuracy of prognostic models. Accuracy in the context of this study refers to predictive 

performance. A more comprehensive view of accuracy is given by Hand (1997). Hand also 

points to a lack of standard definitions for terminology used in performance assessment, 

with words such as discriminability, reliability, and imprecision being used interchange­

ably with inaccuracy.

2.1 Concordance Statistic

The concordance statistic, also called the c-statistic or c-index, is one of the most com­

monly used methods to assess the performance of survival models. The c-statistic is a 

measure of predictive discrimination, which to most scientists means how well the model 

distinguishes between patients who experience an event and those who do not. This mea­

sure was introduced by Harrell et al. in 1982 (see also Harrell et al., 1983). He describes the 

measure as an estimate of the probability that, of two randomly chosen patients, the patient 

with the higher prognostic score will outlive the patient with the lower prognostic score. To 

determine the c-statistic, all possible pairs of observed data where one subject failed and 

the other did not are examined. Harrell’s c-statistic is then calculated as the number of pairs 

where the ordering of the observed survival times agrees with that predicted by the model, 

divided by the total number of pairs for which the ordering of survival times could be in­

ferred. When the survival times predicted by the model are identical for a pair, then 0.5 is 

added to the count of concordant pairs, instead of 1, while 1 is added to the count of usable 

pairs. Thus, the c-statistic excludes patients for which the ordering of survival times cannot 

be determined. If both subjects are censored, their survival times cannot be ordered and 

the c-statistic cannot be calculated (Harrell et al., 1983). Similarly, survival times cannot 

be ordered for two subjects where one has failed and the censoring time of the other is less 

than the one who failed. A c-statistic greater than 0.7 is considered to be clinically useful, 
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while a c-statistic of 0.5 would indicate random prediction. A model that predicts perfectly 
(C+P) would give a c-statistic of 1. The c-statistic can be expressed as c = C+DP where C is 

the number of concordant pairs, P is the number of ties and D is the number of discordant 

pairs.

Several biostatisticians have criticized Harrell’s c-statistic as a biased measure (Graf, 

1999; Schumacher, 2003; Gonen, 2005). One concern is that the c-statistic is usually posi­

tively biased, indicating that the predictive accuracy of the model is overly optimistic when 

based on the c-statistic. Using simulation, Gonen (2005) showed how the value of Harrell’s 

c-statistic increased with the proportion of censoring in the Cox PH model. Graf (1999) 

criticized the c-statistic as a biased performance measure because it is based on predicted 

survival times. It has long been recognized that survival time, or the time-to-event, cannot 

adequately be predicted (Parkes, 1972; Forster 1988; Henderson, 1995). Estimates of du­

ration of survival are often overly optimistic. Most researchers today will use the predicted 

probability of surviving until a fixed timepoint rather than the predicted survival time to 

calculate the c-statistic, and this is considered acceptable as long as the two estimates are 

one-to-one functions of each other. Harrell (1996) notes that this situation holds as long as 

the PH assumption is satisfied. Because of these limitations, many statisticians prefer meth­

ods to assess prediction error that consider “individual vital status as a prediction outcome 

variable instead of observed survival time” (Schumacher, 2003).

2.2 Brier Score

Several statistical papers have suggested using the Brier score instead of commonly 

used methods such as p-values, the c-statistic, or receiver operating characteristic curve 

methodology (Schumacher, 2003; Kronek, 2009; Haibe-Kains, 2008; van Wieringen, 2009; 

Ikeda, 2001). These latter methods, while well understood by medical practitioners, are 

limited in the presence of censored data. On the other hand, the Brier score is a useful 

measure of the predictive performance of prognostic survival models with censored data. 



5

While the Brier score as a method of model assessment is not new, it is virtually unused in 

transplant-related survival analysis. A search of www.pubmed.com for “Brier score” and 

“transplant” returned only 1 result, a 2009 paper on stem cell transplantation (Hari et al., 

2009).

The method behind the Brier score was developed in 1950 by meteorologist Glenn W. 

Brier for measuring the accuracy of weather predictions (Brier, 1950). The Brier score, in 

the context of survival analysis, is a measure of the expected squared difference between 

individual patient status and the survival probability predicted by the model. A score can 

be obtained for specific time points, or an integrated score for the entire time period of 

observation can be used, and a prediction error curve over time can be output for each 

patient.

The empirical Brier score, when censoring does not occur, is defined (Schumacher, 

2003) as

1 ABS(t) = - ¥ (Y,(t) - z(t|X/))2 
n4Y

where Y(t) is the individual vital status at time î (zero if an event has occurred before ï 

and one otherwise), X is the vector of covariates, and the index i denotes the i-th patient 

in i = l...n. The estimated event-free probabilities for an individual with covariate vector 

X are denoted by x(t|X). The extension to right censored data was introduced by Graf et 

al. in 1999 using observational data on the survival of breast cancer patients. Weighting by 

means of the distribution of censoring times is used to remove censoring bias. The Brier 

score for censored data is defined in the following way using the notation of Schumacher 

(2003):

Eso)=l2I461((-*(x)2+ 
n⅛l G(Ti)

IB D) (,() - (X2)2
G(f)

where Ti is the minimum of the survival and the censoring time, I is an indicator function, 

http://www.pubmed.com


6

δi is the censoring indicator which is equal to 1 if uncensored, and G(-) is the Kaplan-Meier 

estimator of the censoring distribution in the whole sample. The weights are cef) if an event 

occurs before time t and a if an event occurs after time t. Censored observations with 
G(z)

survival times smaller than t are weighted with zero (Graf, 1999). It should be noted that as 

the end of the study period approaches, G(-) becomes very small as censoring approaches 

its maximum of 84% for the data analyzed in this study. 

The Integrated Brier Score (IBS) provides a cumulative prediction error from time zero 

to some specified time point, t*.

AÎ*
BS (t)dt 

0

The Brier score will be a number between zero and one. The better a method is at 

predicting survival on the test set, the smaller its Brier score. A perfect prediction model 

would have a Brier score of 0. Henderson et al. (2001) demonstrated that predictions drawn 

independently from a uniform [0,1] distribution have an expected Brier score of 0.33. A 

constant prediction of 0.5 would yield a Brier score of 0.25 (Schumacher, 2003).

Schumacher et al. (2003) have demonstrated that Graf’s extension of the Brier score to 

survival data can provide a meaningful interpretation even when the model is mis-specified, 

since the score does not depend on the assumed survival model. This means that the Brier 

score, unlike the c-statistic, is still a valid measure of performance when the PH assumption 

of the Cox model fails. The main assumption of the weighting scheme proposed by Graf is 

that the censoring distribution is independent of the covariates.

While medical practitioners may not be as familiar with the Brier score, some statis­

ticians prefer it as an assessment method because it is based on predicted survival curves 

and is valid for censored data. The Brier score of the Kaplan-Meier estimate where co­

variate information is ignored can be used as a benchmark for predictive performance. The 

Kaplan-Meier estimate produces a common survival curve, the same for all patients. The 



Brier score from the Kaplan-Meier estimate provides a benchmark value that is similar to 

that obtained from the null model in linear regression (Haibe-Kains, 2008). Schumacher 

(2003) writes that the relative gain in predictive power of a prognostic model with respect 

to the Kaplan-Meier benchmark can be interpreted as an Λ,2-like measure.

The Brier score is limited in that it can only be applied to right censored data. It is also 

a measure of overall performance of a model. It is possible that a model that performs well 

overall may not predict accurately for an individual patient (Gerds, 2006).

There are two packages in R which contain functions for computing the Brier score, 

survcomp for Cox models (Haibe-Kains et al, 2009) and ipred for survival trees (Pe­

ters and Hothorn, 2009). The functions sbrier and sbrier.score2proba com­

pute the Brier scores and the corresponding integrated Brier score from a risk score, for 

every event time. All statistical calculations were carried out using R version 2.10.1 (R 

Development Core Team, 2009).

2.3 Comparing Brier Scores

Haibe-Kains (2008) used a paired Wilcoxon rank sum test for dependent samples to 

determine whether one integrated Brier score was significantly better than another. The 

Wilcoxon rank sum test is a non-parametric test that can be used to determine if the mean 

or median of one population is shifted to the right or left of another. Thus the Wilcoxon rank 

sum test can be used to determine whether Brier scores over time in one model are smaller 

than the Brier scores of another model. For more detailed information on the Wilcoxon 

rank sum test see Conover (1999).

3 Literature Review

In this review we focus on recent papers whose primary goal was prediction of out­

come for future patients after liver transplant. An extensive review of the topic of re- 
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transplantation for patients with recurrent liver disease was undertaken by Rosen et al. 

(2000; 2003) using Organ Procurement and Transplantation Network (OPTN) data from 

patients transplanted between 1990 and 1996 (n = 1356). The authors tested Cox PH sur­

vival models on an independent data set from outside the United States (n = 281). The 

predictive performance was evaluated by calculating the risk score from their model and 

carrying out a Kaplan-Meier analysis stratified by risk score (high, medium, low). The 

result for each data set was displayed in a graph of survival curves stratified by risk group. 

While the graphs of the test set looked similar to those of the training set, there was no 

measure of variability given and so the statistical significance is unknown. No other quan­

titative evaluation of predictive performance was performed on the independent data set. 

On the combined data sets the authors evaluated their model with ROC curves and the 

c-statistic (0.606 to 0.657 depending on the timepoint). No examination of the PH assump­

tion was reported. Ghobrial et al. (2002) developed a prognostic model for survival after 

liver transplant in Hepatitis C positive patients using Cox PH regression on the OPTN data 

set. The c-statistic was used to assess model performance on the same data set used to build 

the model. They found that the c-statistic was 0.69, 0.68, and 0.67, at 3 months, 6 months, 

and 1 year after transplantation, respectively. There was no report of assessment of the PH 

assumption.

Merion et al. (2005) introduced a “survival benefit” model for liver transplant as a 

time-dependent Cox regression model to compare mortality for wait-listed candidates and 

transplant recipients, at equal duration since wait-listing. The model was based on the 

Model for End Stage Liver Disease (MELD) score which is currently used to predict sur­

vival on the waiting list. A piecewise PH model was used to estimate mortality after trans­

plant at various time windows up to one year. Habib et al. (2006) assessed the value of 

the pre-transplant MELD score to predict survival after transplant using 12 years of data 

from the Thomas E. Starzl Transplantation Institute in Pittsburgh. In building a prognostic 

model using Cox PH regression, the authors considered 2,009 adults receiving deceased 
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donor transplant but excluded patients with acute failure, hepatocellular carcinoma, and 

other hepatic malignancies. They evaluated their model by determining the c-statistic on 

the same data set that was used to build the model (0.63 for patient survival). Habib also 

used the Grambsch-Therneau test to assess the PH assumption, however the results were 

not reported. Weismuller et al. (2008) developed a prognostic model using Cox PH re­

gression for survival after liver transplant based on a small data set of 133 patients and 

validated it on a separate cohort of 87 patients. Performance measures used were ROC 

curves and a graphical comparison using Kaplan-Meier survival curves. No assessment of 

the PH assumption was included in the discussion.

In 2008 a new model for predicting three month survival after liver transplantation was 

proposed by Rana (2008). Logistic regression analysis was employed and a risk score was 

assigned to each risk factor based on its odds ratio for patient death at three months. Model 

performance was assessed using ROC curves and the c-statistic (0.70) on the same data set 

used to build the model. There was no discussion of whether goodness of fit tests for the 

logistic model were performed.

In a 2009 publication, Schaubel et al. calculated survival benefit as the difference be­

tween a candidate’s predicted 5-year mean lifetime without a transplant and their predicted 

5-year mean lifetime with a transplant. The authors propose an organ allocation model 

based on predictions of survival benefit for every candidate on the waiting list, assessed 

each time an organ becomes available. The survival after transplant component of the 

prediction was developed using a Cox PH model which incorporated 30 covariates and 

utilized categorization of continuous variables such as recipient age, donor age, recipient 

pre-transplant serum creatinine and recipient pre-transplant albumin. The model included 

all adults and children transplanted between September 2001 and December 2007. The fit 

was evaluated with Harrell’s c-statistic (0.63). The model was cross validated by randomly 

splitting the data set used to build the model repeatedly, fitting the model with one half and 

calculating the c-statistic on the other. There was no discussion included on assessment 
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of the PH assumption. In 2009 Ravaioli et al. used European registry data to develop a 

survival benefit model using Cox regression with liver transplantation as a time-dependent 

variable. Continuous variables were dichotomized with cutpoints chosen based on prior 

studies. Variables were assessed using the c-statistic (not reported) and ROC curves on the 

same data set used to build the model. No evaluation of model performance was carried 

out and no assessment of the PH assumption was discussed.

A review of prognostic models for survival after liver transplant shows a lack of both 

independent validation and evidence of model accuracy. The models are likely to be overly 

optimistic in their assessment of model fit. The ability to compare the prediction error of 

these prognostic models to a benchmark indicator would vastly improve interpretation of 

these results.

Very few authors report any examination of the assumptions of the statistical method­

ology used. As noted by Wyatt and Altman (1995), hundreds of prognostic models are 

published every year yet very few are actually used in clinical decision making. Too often, 

the use of the Cox PH model is not followed up by a critical check of model assumptions. 

Reliable and accurate predictive models for survival after liver transplant would be a valu­

able tool for physicians determining how to allocate a scarce resource. Examination of 

performance measures is urgently needed in order to support better decision-making.

4 Application to Liver Transplant Data

4.1 Description of the Data Set

The data set described here is OPTN data provided by the Scientific Registry of Trans­

plant Recipients (SRTR). The data examined comprises patients aged 18 or older who 

received a first liver transplant from a deceased donor between September 1, 2001 and 

December 31, 2007. We chose a data set including only adult patients and excluded living 

donations in the hope that a more homogenous data set would produce a model with greater 
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prediction accuracy. For this reason we also excluded patients with a previous transplant of 

any organ, and patients who received a split liver. During this time frame 28,165 patients 

who fit our inclusion criteria were transplanted. Complete data on the covariates considered 

were available on 21,268 patients. A total number of 3473 deaths were observed (16∕%).

The endpoint was patient survival (death from any cause) from the time of liver trans­

plant to three years after transplant. Patients who died on the same day of transplant were 

assigned a survival time of 0.5 days for all models. Patients followed for less than three 

years were censored at the date of last follow up assessment. Retransplanted patients were 

censored at the time of retransplant. Censoring would be described as high (Lin, 1997) at 

84%. Of the censored observations, 46% were followed for the entire three year period, 

6% were censored due to retransplant, and the remaining 48% were censored due to end of 

follow up time or loss to follow up.

The data (complete cases only) was randomly split into a mutually exclusive training 

set (n = 14178) and test set (n = 7090). While the survival tree methods can accommodate 

missing data, the Cox models cannot; complete cases only were used to facilitate compar­

ison between models. The training set was used to build each model, and the test set was 

used to evaluate the performance of the models built using the training set. The same set of 

covariates was used in building each model.

Subjects lost to follow up are potentially a large problem with registry data, especially 

when patients who die are mistakenly classified as lost to follow up. To combat this, the 

SRTR provides supplemental data from the social security death master file as a reference 

and we cross checked our data source with this index. Patient follow up forms are turned 

into the OPTN at set times after transplant, but often forms are turned in early when a 

patient dies. After choosing your date of data extraction, it is important to avoid bias from 

forms turned in early, just before the date of data extraction, due to the death of the patient. 

You will then have follow up information from the patients who died but not from the 

ones still alive, simply because the due date for their forms has not arrived. The SRTR
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Figure 1: Distribution of follow up time in the training set.
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recommends using the maximum date for which we expect follow up from the OPTN on 

a particular patient as the last day at risk and not using information from forms turned in 

early for patients who died. Median time to censoring in the training set was 451 days, 

calculated by means of a reverse Kaplan-Meier analysis according to Schemper (1996). 

Figure 1 shows a plot of the proportion followed up over time. The discrete data collection 

intervals of the SRTR registry are illustrated in this plot.

4.2 Description of Variables

The variables considered as possible predictors were based on research conducted by 

experts in the field (Merion, 2005; Rana, 2008; Schaubel, 2009; Watt, 2010). We ex­

amined recipient age at transplant, recipient body mass index, recipient serum creatinine 

pre-transplant, recipient albumin pre-transplant, recipient International Normalized Ratio 

(INR) pre-transplant, recipient bilirubin pre-transplant, recipient BMI pre-transplant, di­

agnosis of cholestatic liver disease, diagnosis of Hepatitis C virus (HCV), diagnosis of 
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acute hepatic necrosis, diagnosis of malignancy of any type, diagnosis of non-cholestatic 

liver disease, diagnosis of metabolic liver disease, diagnosis of hepatocellular carcinoma 

(HCC), diagnosis of viral liver disease, diagnosis of alcoholic liver disease, previous portal 

vein thrombosis in the recipient, whether or not the recipient was on life support, whether 

or not the recipient had had prior abdominal surgery, whether or not the recipient was hos­

pitalized or in ICU, whether or not the recipient underwent dialysis status in the week prior 

to transplant, donor age, donor cause of death categorized by trauma, anoxia, cardiovascu­

lar disease, and other, donor race categorized by White, Hispanic, Black, Asian, and other, 

whether or not the donor organ was shared from another transplant centre, cold ischemic 

time of the transplanted liver, and whether or not the donor was non heart beating. Charts 

detailing the categorization of any continuous variables are provided in the Appendix. For 

all models, the following impossible data values were set to NA, thus excluding the records 

from the analysis: five observations with a pre-transplant creatinine of zero, two observa­

tions with donor age of zero, seven observations with a height of zero, 28 observations with 

a height under 100 cm, and four observations with a cold ischemic time of zero.

4.3 Statistical Models

4.3.1 Cox Proportional Hazards Model: General Remarks

The popularity of the Cox PH model (Cox, 1972) is unparalleled in survival literature 

and this popularity extends to published research in liver transplantation. The model is 

expressed in terms of the hazard function as follows:

h (t, X) = ho (t) exp
P 1

2B,X, 
∖ i=1 7

where X represents a set of explanatory variables and ho (t) is the unspecified baseline 

hazard, assumed to be the same for all subjects. The predictors act multiplicatively on the 

hazard function. Thus the hazard at time t is the product of the baseline hazard ho and the 
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explanatory variables which are independent of time. The baseline hazard is a function of 

time but not the covariates X. It is unspecified, making the model semi-parametric. The 

ability to leave the baseline hazard unspecified yet still obtain good estimates of regression 

coefficients is a fundamental reason for the popularity of the model. The key assumption 

of the model is that the ratio of the hazards for different individuals is constant over time. 

A meaningful illustration of this assumption would be to say that a person with a risk of 

death at baseline that was twice as high as that of another person would have a risk of death 

at all subsequent times to be twice as high (Harrell, 2001). A covariate that does not satisfy 

the PH assumption can be modelled using stratification or a time-dependent variable.

4.3.2 Cox Proportional Hazards Model 1: Using Cutpoints

We used a model built in a fashion similar to Schaubel et al. (2009) using quartile-based 

dummy variables for creatinine and albumin. However, unlike Schaubel we did not include 

re-transplanted subjects, recipients under age 18, diabetic status, or serum sodium pre­

transplant, so that we could use a larger data set. Donor age was categorized also according 

to Schaubel (2009, see Table 2). The model was built using backward elimination selecting 

covariates with an observed significance level of 5% or smaller. Two interactions identified 

in Schaubel (2009) as significant were included in the model: donor age > 60 yrs * HCV 

and recipient age > 55 yrs * recipient age. Continuous variables were centred. Number of 

events per variable in the training set was approximately 108, with 21 components in the 

model.

4.3.3 Cox Proportional Hazards Model 2: Using Fractional Polynomials

The categorization of continuous covariates has come under increased scrutiny in recent 

years. The concern is that dichotomization or categorization could result in a loss of infor­

mation, leading to a biased model (Royston, 2006). Models may be mis-specified if curved 

relationships are modelled as linear. The possible advantages gained, such as greater sim­
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plicity, have been shown to come at a high cost statistically. Royston (2006) states that the 

use of dummy variables for a continuous covariate uses up valuable degrees of freedom at 

the expense of power and precision. Wainer (2006) has shown that cutpoints can be found 

that will result in either positive or negative associations. Austin et al. (2004) illustrated 

how categorization may increase the Type I error rate. Most importantly, Royston et al. 

(2006) note that the impact of categorizing or dichotomizing more than one predictor is 

unpredictable and could result in a seriously misleading model.

A two term polynomial with powers pl and p2 can be used to model a continuous 

covariate X, represented as BiXPl + B2XP2 . Benner’s (2005) model selection algorithm 

combines backward elimination with a systematic search for a suitable transformation to 

represent the influence of each continuous covariate on the outcome. The algorithm selects 

the 1 or 2 degree fractional polynomial which best predicts the outcome. No transformation 

is the default if evidence of non-linearity is not found. The powers for the polynomial, pi 

and P2, are taken from the set S = {-2, -1, -0.5, 0, 0.5, 1, 2, 3} where x° = log(x). In a 

two degree polynomial with equal powers pi and P2, a “repeated powers” function is used 

where the second term is multiplied by the log of the covariate value, Bi XP +/2XP2 • log(X) 

where X is a single continuous covariate. The algorithm starts by arranging the explanatory 

variables in order of decreasing statistical significance for omitting each predictor from a 

model comprising all the predictors with each term linear (Ambler & Benner, 2008). The 

best fractional polynomial is determined by fitting each polynomial, starting with the most 

complex, in the set S and finding the one with the lowest deviance (-2*log-likelihood). 

Additional details of the variable selection algorithm are provided in Benner (2005) and 

also Ambler and Royston (2001).

Disadvantages of using fractional polynomials include insufficient power to detect non­

linear functions, especially in survival analysis where there are too few events (Royston, 

2008). We do not anticipate this to be an issue here given our large data set. Another is­

sue is possible sensitivity to extreme values in a covariate which can be checked through 
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residual analysis.

We built a model using the mfp package (Ambler and Benner, 2008) available in R. All 

continuous predictors were kept as continuous and were modelled using fractional polyno­

mials. We chose a p-value of 0.05 for the selection of the best functional form for continu­

ous variables in the model. We restricted the variable cold ischemic time to be a polynomial 

of degree 1 since the effect of this predictor is known to be linear and increasing. There 

are some probable errors in the registry which would influence the choice of polynomial, 

e.g. a cold ischemic time of 50 minutes recorded as 50 hours, and if this restriction is not 

implemented the algorithm chooses a parabolic shaped polynomial showing reduced haz­

ard for patients with the lowest and the highest cold ischemic times which does not make 

sense clinically.

4.3.4 A Single Survival Tree

Tree-based methods require fewer statistical assumptions compared to methods like the 

Cox PH model. Extension of tree methods to survival analysis with right censored data was 

introduced in 1985 (Gordon, 1985).

Survival tree models are grown using a method called recursive partitioning. This is a 

non-parametric procedure in which the data set is repeatedly subdivided into groups as ho­

mogeneous as possible within groups and as heterogeneous as possible between groups by 

recursively partitioning based on covariates. As described in Therneau (1997), the first step 

is to identify the single variable which best splits the data into two groups. This process is 

then repeated separately within each group, until the subgroups reach a specified minimum 

size, or until no further improvements can be made. There are different splitting criteria 

available but the rpart function, available in the rpart package in R (Therneau and 

Atkinson, 2010), implements the algorithm described by LeBlanc and Crowley (1992). In 

order to improve stability of the tree, pruning or trimming of the tree is recommended. 

This is done using cross validation in an attempt to correct for overfitting and to minimize 
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prediction error.

The top of the tree is called the root. Splits are determined based on the recursive 

algorithm, each ending in a terminai node of the tree, also called a leaf. There are many 

tuning parameters available for the recursive partitioning algorithm. We set the minimum 

split size to 200, specifying the minimum number of observations in a node for which the 

routine will try to compute a split. We set the threshold complexity parameter to 0.001. 

This a tuning parameter which regulates the size of the tree. According to Breiman (1984), 

the complexity parameter is a measure of whether the amount of accuracy that a split adds 

to a tree warrants the additional complexity. The default is 0.01 which is too high for a 

large data set such as the one considered here. The tree is then pruned to reduce overfitting, 

and here we used a complexity parameter of 0.0014 since it gave the best balance between 

overfitting the data yet still achieving a tree structure large enough to make sense clinically. 

In survival trees, prediction is carried out based on the Kaplan-Meier curve of the leaf that 

a new observation falls into.

Advantages of trees include simplicity, interpretability and ease of use. They visually 

describe the structure of the data and can present a clear picture that is readily interpretable 

in a clinical setting. They have only one assumption, according to Gordon (1985), namely 

that the conditional distributions of the covariates are identifiable (each value of the co­

variate maps onto a unique prediction). A disadvantage of the single tree is instability, 

particularly if the training set is small (Hothorn, 2004). The tree can depend too much on 

the data set used to construct it, with the result that small changes in the data set can induce 

large changes in the tree (Breiman, 1996). Bootstrap aggregation, discussed in the next 

section, can be used to stabilize the survival tree.

4.3.5 Bootstrap Aggregated (Bagged) Survival Trees

The term bagging is short for bootstrap aggregation and was introduced by Breiman 

(1996) who applied it to tree-based classification methods. Bagging of survival trees has 
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been studied extensively by Hothorn et al. (2004) in order to obtain improved predictions 

from survival trees. Bagging is carried out in two main steps. First, a set of survival trees is 

generated for B bootstrap samples of the observations. Then the predicted survival proba­

bility can be calculated for a set of new patients using the bootstrapped trees. To aggregate 

the predictions from bagged survival trees, we used Hothorn’s “weighted” method of aggre­

gation where observations from each leaf are aggregated directly and one single predictor 

is computed for the aggregated sample only (Hothorn, 2004). The bootstrap aggregated 

Kaplan-Meier curve of a new patient is computed by dropping the new observation down 

each of the B trees successively, combining into one sample, and predicting the Kaplan- 

Meier curve from this sample.

Other aggregation methods are available, such as by majority voting or by averaging. 

All three methods are implemented in the ipred package in R (Peters, 2002). We chose 

to leave our complexity parameters the same as in the single model, although in bagging 

it results in larger trees. Hothorn (2004) notes that the optimal tree size in bagging is still 

undetermined.

There are some disadvantages in using bagged trees. They can be difficult to interpret 

compared to single trees. Hothorn describes them as a ‘black box’ of multiple trees. There 

are also many tuning parameters available, such that varying results are possible based 

on selection of parameters. Further, it is possible that bagging of a stable algorithm can 

actually make it worse. As Breiman (1996) notes, the essential element is the instability of 

the prediction method. If perturbing the learning set can cause significant changes in the 

predictor constructed, then bagging can improve accuracy. Lastly, bagging survival trees on 

a large data set requires a significant amount of computing power. Initially we restricted the 

number of bootstrapped trees to 50. We also tested 300 bootstrapped replications in order 

to confirm Hothorn’s findings that more than 50 trees does not lead to further improvement 

in prediction error (Hothorn, 2004).
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4.4 Evaluation of Predictive Accuracy

The predicted survival probability for each subject in the test set was determined from 

each model and the integrated Brier score was calculated in order to evaluate predictive 

accuracy. Integrated Brier scores were compared to the Brier score of the benchmark 

Kaplan-Meier model using the Wilcoxon rank sum test. The concordance statistic was 

also evaluated in the Cox models.

5 Results

5.1 Descriptive Statistics

Table 1 provides a summary of descriptive statistics for the training set as a whole and 

also for censored vs uncensored observations. Significant differences (p < 0.002) were 

found between the percentage of censored and uncensored patients with a diagnosis of 

AHN, HCV, HCC, and a donor race of Black. These may simply be due to chance - it is 

not caused by more patients in these categories being censored for re-transplantation (6.5% 

overall compared to less than 6.5% for all categories except donor race Black at 6.6%), nor 

is it caused by more patients in these categories being transplanted later rather than earlier 

in the period under study.

5.2 Brier Scores and Concordance Statistic

Table 2 shows the integrated Brier score calculated on the test set for each of the four 

models we evaluated. Also shown is the score for the benchmark Kaplan-Meier model 

considering no covariate information. In addition, we show the relative gain in predictive 

power of each prognostic model with respect to the benchmark pooled Kaplan-Meier esti­

mate, calculated as 1 - IBS(model)/IBS(benchmark). For the calculation of the IBS at the 

maximum three year time point we used the score at day 1092 since all observations are
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Table 1: Selected characteristics of training data at time of transplant. Note that subjects may fall 
into more than one diagnosis category.

Variable
All Censored Uncensored

mean sd mean sd mean sd
Recipient age (years) 53.7 9.9 53.2 9.9 53.0 9.9
Donor age (years) 42.0 17.5 42.5 17.5 41.7 17.5

All Censored Uncensored
n % n % n %

Sex
Female 4493 31.7 1698 31.2 2795 32.0
Male 9685 68.3 3740 68.8 5945 68.0

Recipient diagnosis
Acute hepatic necrosis 896 6.3 300 5.5 596 6.8
Alcoholic cirrhosis 3636 25.6 1441 26.5 2185 25.1
Cholestatic cirrhosis 1319 9.3 509 9.4 810 9.3
Hepatitis C 6076 42.9 2241 41.2 3835 43.9
Hepatocellular carcinoma 1936 13.7 904 16.6 1032 11.8
Metabolic liver disease 391 2.8 151 2.8 240 2.7
Non-cholestatic cirrhosis 10442 73.6 4028 74.0 6414 73.4
Other diagnosis 1246 8.8 465 8.6 781 8.9

Donor race/ethnicity
Asian 274 1.9 97 1.8 177 2.0
Black 2069 14.6 902 16.6 1167 13.3
Hispanic 1698 12.0 676 12.4 1022 11.7
White 9978 70.4 3699 68.0 6279 71.2
Other 153 1.1 64 1.2 89 1.0

Table 2: Integrated Brier Scores for each model, measured from time of transplant to 3 years after 
transplant.

Model
Benchmark null model

IBS % improvement over benchmark
0.1142 -

Cox Model 1 (cutpoints) 0.1114 2.45%
Cox Model 2 (fp) 0.1115 2.36%
50 Bagged Survival Trees 0.1119 2.01%
Single Survival Tree 0.1122 1.75%
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Figure 2: Prediction error curves for Cox model 1 (cutpoints) compared to the benchmark Kaplan- 
Meier curve (covariate information ignored).
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censored at the final timepoint of 1095 days. All models score significantly better than the 

Kaplan-Meier benchmark, a null model that does not employ any covariate information (p 

< 0.0001 for all models). However, the prediction error curves shown in figures 2 to 5 lead 

one to question the scientific significance of the predictive accuracy gained through the use 

of any of these models. The comparison of the prediction error curves for each model to 

the benchmark Kaplan-Meier curve are shown on separate graphs to improve readability. 

The best integrated Brier score of 0.1114 was obtained using Cox model 1 (with cutpoints) 

similar to the one used by Schaubel et al. (2009), with a gain in prediction accuaracy of 

2.45% compared to the benchmark model.

This was followed closely by Cox model 2 (using fractional polynomials) at 0.1115, 

and then the bagged survival trees (0.1119). We found that the IBS for the 50 bagged trees 

and the 300 bagged trees were the same to four decimal places. The single survival tree 

was the simplest, most parsimonious method and is the most easily understood in a clinical
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Figure 3: Prediction error curves for Cox model 2 (fp) compared to the benchmark Kaplan-Meier 
curve (covariate information ignored).
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Figure 4: Prediction error curves for 50 bagged survival trees compared to the benchmark Kaplan- 
Meier curve (covariate information ignored).
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Figure 5: Prediction error curves for the single survival tree compared to the benchmark Kaplan- 
Meier curve (covariate information ignored).

1000400 800

Time in days post transplant

Kaplan Meier Benchmark 
Single Survival Tree

LO 
O
G

200

O 
O

L 
Φ 
E 

CQ

9

G
C 
g 
g 
o 
(DL. 
0

1

600

setting, however it had the highest prediction error (IBS = 0.1122). We also calculated 

Harrell’s concordance statistic on the test set for both Cox models. Cox model 1 (with 

cutpoints) had a c-statistic of 0.620 while Cox model 2 (fractional polynomials) was 0.619.

First quartile and fourth quartile BMI was a significant predictor in Cox model 1, and 

the continuous BMI was a significant predictor in Cox model 2 when modelled as a frac­

tional polynomial. However, we chose not include it in either Cox model because of con­

cern over a larger number of data entry errors compared to other variables in the data set. 

We found that leaving out BMI in the Cox models improved prediction.

We did test the effect of removing probable outliers on the integrated Brier score by 

removing 96 records with the most likely outliers in the variables BMI and cold ischemic 

time. BMI less than 10 or greater than 60 were set to NA. Cold ischemic times greater 

than 30 hours were removed, since most transplant centres limit this time to 24 hours and 

it is very likely that these times were meant to be entered into the database with a unit of 
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minutes rather than hours. Unfortunately, it is likely that errors still remain in the database. 

Removing possible outliers resulted in no overall gain in improvement in Cox Model 1. 

In Cox Model 2 with outliers removed we saw increased prediction error. In spite of this, 

removing the outliers improved the c-statistic in both Cox models to 0.624 for Cox model 

1 and 0.627 for Cox model 2.

With suspected outliers removed, the predictive accuracy of both survival tree methods 

declined substantially to achieve an integrated Brier score worse than the corresponding 

null model.

We also tested prediction accuracy on a reduced data set (n=20,910) in models that in­

cluded diabetic status as a predictor. While diabetic status was very significant in both Cox 

models, we did not find that including this variable offered any improvement in the predic­

tion error obtained by the best model without this predictor. Cox model 2 (using fractional 

polynomials) tied with bagged survival trees to give an improvement in prediction error 

over the null model of 2.4%, while Cox model 1 (using cutpoints) gave an improvement of 

2.3% and the single survival tree only 1.5%. Further details of the model fit can be found 

in Tables 11 and 12 of the Appendix.

5.3 Cox Model 1: Using Cutpoints

The results of the model fit for the Cox model with cutpoints for selected continuous 

variables are shown in Table 3 together with the estimated hazard ratios and p-values from 

the likelihood ratio test. Table 4 shows the results of the model fitted to the entire data 

set (training and test data). Three variables that were borderline or not significant at a 

level of 5% were kept in the model because they are known to be important predictors of 

outcome: diagnosis of hepatocellular carcinoma, receiving a liver from a non heart beating 

donor, and a recipient having previous incident of portal vein thrombosis. We also tested 

the performance of this model incorporating stratification by transplant centre; however we 

found that this did not improve the prediction accuracy of the model.
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Table 3: Results of Cox Model 1 (using cutpoints) on the training data.

Variable
Age at transplant (yrs)
Age > 55 yrs
Diagnosis: cholestatic cirrhosis
Diagnosis: hepatocellular carcinoma (HCC)
Diagnosis: hepatitis C virus (HCV)
Dialysis in the week prior to transplant
Recipient medical condition: in ICU
Recipient medical condition: hospitalized not in ICU
Recipient on life support
Recipient prior portal vein thrombosis
Recipient prior abdominal surgery
Creatinine: 4th quartile
Albumin: 1st quartile
Non heart beating donor
Donor age (yrs): 40 to 49
Donor age (yrs): 50 to 59
Donor age (yrs) > 60
Donor race: white
Cold ischemic time (hours)
Age at transplant * age > 55 yrs
Recipient HCV status * Donor age (yrs) > 60 years

β exp(β) p-value
0.0096
-0.0551
-0.2621 
0.1068 
0.2578
0.2381 
0.3669
0.2578
0.4818 
0.1879 
0.1889
0.2118
0.2477
0.1978
0.2345
0.2869 
0.3384
-0.1648 
0.0196 
0.0281 
0.3633

1.0096 
0.9464 
0.7694 
1.1127 
1.2941 
1.2688 
1.4433 
1.2941 
1.6189 
1.2067 
1.2080 
1.2358 
1.2811 
1.2187 
1.2642 
1.3322 
1.4027 
0.8480 
1.0198 
1.0285 
1.4381

0.0242
0.4533
0.0034
0.0895

< 0.0001
0.0125

< 0.0001
< 0.0001
< 0.0001

0.0600
< 0.0001
< 0.0001
< 0.0001

0.0701
< 0.0001
< 0.0001
< 0.0001
< 0.0001

0.0002
0.0002
0.0004
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Table 4: Results of Cox Model 1 (using cutpoints) on the entire data set.

Variable β exp(β) p-value
Age at transplant (yrs)
Age > 55 yrs
Diagnosis: cholestatic cirrhosis
Diagnosis: hepatocellular carcinoma (HCC)
Diagnosis: hepatitis C virus (HCV)
Dialysis in the week prior to transplant
Recipient medical condition: in ICU
Recipient medical condition: hospitalized not in ICU
Recipient on life support
Recipient prior portal vein thrombosis
Recipient prior abdominal surgery
Creatinine: 4th quartile
Albumin: 1st quartile
Non heart beating donor
Donor age (yrs): 40 to 49
Donor age (yrs): 50 to 59
Donor age (yrs) > 60
Donor race: white
Cold ischemic time (hours)
Age at transplant * age > 55 yrs
Recipient HCV status * Donor age (yrs) > 60 years

0.0098
-0.0132
-0.2465 
0.1522 
0.2233
0.1971
0.3511
0.1633
0.4721
0.2202
0.1745
0.2463
0.2072
0.1933
0.2506 
0.2980
0.2851
-0.1307 
0.0199 
0.0216 
0.4706

1.0098 
0.9869 
0.7816 
1.1644 
1.2502 
1.2178 
1.4206 
1.1774 
1.6034 
1.2463 
1.1907 
1.2792 
1.2302 
1.2132 
1.2848 
1.3471 
1.3299 
0.8775 
1.0201 
1.0218 
1.6010

0.0041
0.8234
0.0007
0.0023
0.0001
0.0115
0.0001
0.0014
0.0001
0.0056
0.0001
0.0001
0.0001
0.0258
0.0001
0.0001
0.0001
0.0004
0.0001
0.0004
0.0001
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5.4 Cox Model 2: Using Fractional Polynomials

Table 5 shows the covariates used in construction of the Cox model using fractional 

polynomials. The results of the fit on the full data set are shown in Table 6. Note that in 

the fractional polynomial procedure, all predictors are shifted and re-scaled before being 

power transformed if non-positive values are encountered or the range of the predictor 

is reasonably large (Ambler & Benner, 2008). The interaction between the continuous

Figure 6: Effect of recipient age (years) on the log relative hazard of survival.
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covariate donor age and the binary variable HCV status was modelled according to the 

algorithm for multivariable fractional polynomial interaction suggested in Sauerbrei et al. 

(2007). The fractional polynomial algorithm chose the best fitting polynomial for age at 

transplant to beβ * (age ∙at ■ transplant/100)3. As noted by Sauerbrei (2006),β and exp(β) 

are not readily interpretable for fractional polynomials. A better approach is to plot the 

log relative hazard, or fitted function, against X. The log relative hazard function shows 

the relative effect of the predictor, with the baseline hazard removed. A plot of the log 

relative hazard vs recipient age is shown in Figure 6. Pre-transplant serum creatinine was
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Table 5: Results of Cox Model 2 (using fractional polynomials) on the training data.

Variable β exp(β) p-value
(Recipient - age(yrs) ■ at - transplant∕∖00)3 2.6 * 10-6 1.0000 < 0.0001
Donor age (yrs) * recipient HCV positive 0.0168 1.017 < 0.0001
Albumin (g∕dL) -0.1826 0.8331 < 0.0001
Recipient medical condition: in ICU 0.3669 1.443 < 0.0001
Recipient medical condition: hospitalized not in ICU 0.2614 1.299 < 0.0001
Recipient on life support 0.4872 1.628 < 0.0001
Recipient prior abdominal surgery 0.1888 1.208 < 0.0001
Donor age (yrs) * recipient HCV negative 0.0060 1.006 0.0003
Cold ischemic time (hours) 0.0192 1.019 0.0003
Donor race: Hispanic 0.2155 1.240 0.0005
Diagnosis: Cholestatic cirrhosis -0.2515 0.7776 0.0050
Iog(Creatinine) (mg∕dL) 0.1647 1.179 0.0002
Donor race: Black 0.1386 1.149 0.0215
Dialysis in the week prior to transplant 0.2181 1.244 0.0247
Diagnosis: hepatocellular carcinoma 0.1337 1.143 0.0347
Recipient prior portal vein thrombosis 0.1763 1.193 0.0773
Non heart beating donor 0.1940 1.214 0.0753
Diagnosis: Hepatitis C virus -0.1677 0.8456 0.1540
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Table 6: Results of Cox Model 2 (using fractional polynomials) on the entire data set.

Variable
(Recipient ■ age(yrs) ■ at • transplant)3
Donor age (yrs) * recipient HCV positive 
Albumin (g∕dL)
Recipient medical condition: in ICU
Recipient medical condition: hospitalized not in ICU
Recipient on life support
Recipient prior abdominal surgery 
Donor age (yrs) * recipient HCV negative
Cold ischemic time (hours)
Donor race: Hispanic
Diagnosis: Cholestatic cirrhosis
Iog(Creatinine) (mg/dL)
Donor race: Black
Dialysis in the week prior to transplant
Diagnosis: hepatocellular carcinoma
Recipient prior portal vein thrombosis
Non heart beating donor
Diagnosis: Hepatitis C virus

β exp(β) p-value
2.4 * 10-6 1.0000 < 0.0001

< 0.00010.0172 
-0.1630 
0.3591
0.1739 
0.4766 
0.1750
0.0059
0.0196 
0.1824 
-0.2399
0.1690 
0.0801 
0.1811
0.1753 
0.2019 
0.1955
-0.1961

1.0000
1.0170
0.8496
1.432
1.190
1.611
1.191
1.006
1.020
1.200

0.7867
1.184
1.083
1.199
1.192
1.224
1.216

0.8219

0.0001
0.0001
0.0007
0.0001
0.0001
0.0001
0.0001
0.0003
0.0010
0.0001
0.1039
0.0227
0.0005
0.0111
0.0240
0.0381
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Figure 7: Effect of creatinine (rng/dL) on the log relative hazard of survival.
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modelled as B * log(creatinine). Figure 7 shows a plot of the fitted function (log relative 

hazard) vs pre-transplant creatinine. The algorithm fitted all other continuous covariates 

with no transformation since significant evidence of non-linearity was not found. We did 

not include BMI in the model because of concern over data entry errors. However, when 

BMI is included, the algorithm chooses a second degree polynomial for BMI that gives a 

parabolic shape, with dramatically increasing hazard as BMI moves below 20 or above 35.

5.5 Testing the Proportional Hazards Assumption

For the two Cox models we examined whether the assumption of PH was met. The 

assumption should hold for each covariate in the model. Once potential issues with non­

proportionality are identified, Therneau (2000) suggests a strategy which first involves the 

determination of whether the effect is meaningful. It is often the case that significant non­

proportionality may not have a substantial impact, particularly with large sample sizes as 

is the case here. Therneau suggests for time-fixed categorical variables to plot the Kaplan-
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Figure 8: Log-log survival curves for recipient medical condition.
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Figure 10: Log-log survival curves for HCC status.
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Meier curves for the levels on a log-log scale. Figure 8 shows the Kaplan-Meier survival 

curves for the three levels of the variable “recipient medical condition.” If the PH assump­

tion holds, the three curves should be roughly parallel and we can see no cause for concern 

with this variable, except perhaps near the time of transplant. However, with HCV status 

we can see crossing survival curves (see Figure 9). The effect of HCV status on the hazard 

appears to vary over time, with a slightly protective effect early on for HCV positive recip­

ients and a serious decline beginning approximately 220 days after transplant. This could 

be due to avoidance by physicians of transplanting marginal livers into patients who are 

HCV positive, thus giving these subjects an initial advantage. A search of the medical liter­

ature reveals evidence that HCV positive patients have a poorer prognosis when receiving 

higher risk livers (e.g. livers from older donors or fatty livers, see Feng, 2006). Receiving 

a higher quality liver has a protective effect early on but a decline in survival is seen once 

the recurrence of the Hepatitis C virus begins to have an effect on the new liver.

Similarly, crossing hazards are also seen with a diagnosis of hepatocellular carcinoma, 
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with curves crossing after about 420 days after transplant (see Figure 10). Patients with 

HCC are transplanted earlier in order to avoid spreading of the cancer beyond the liver. 

However, they are known to have problems with late occurring recurrence of cancer. The 

same crossing hazards are seen if dummy variables for viral liver disease (including viral 

liver disease other than Hepatitis C) or malignancy (including cancers other than HCC) are 

used.

5.5.1 Testing Proportional Hazards: Cox Model 1

O
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Figure 11: Scaled Schoenfeld residuals for HCV status, Cox Model 1.
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The Cox model with cutpoints had five variables potentially violating the PH as­

sumption based on significant p-values obtained from the Grambsch-Therneau test: two 

were as expected, HCV status and HCC status. The three other variables were recipi­

ent medical condition, recipient previous abdominal surgery, and the dummy variable for 

first quartile albumin. These variables are among the most significant predictors in the 

model. Model-specific plots of scaled Schoenfeld residuals are useful for detecting non-
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Figure 12: Scaled Schoenfeld residuals for HCC status, Cox Model 1.
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proportionality. A smoothed line is added to the plot and any evidence of non-zero slope is 

suggestive of non-proportionality (Therneau, 2000). The residual plots for recipient med­

ical condition show a slight decreasing pattern which may suggest that the negative effect 

of being in ICU at time of transplant gradually decreases over time - a reasonable clinical 

conclusion.

Figure 11 shows the scaled Schoenfeld residuals for HCV under Cox model 1, along 

with the fitted least squares line. The y-axis shows the time-dependent variable beta(t), 

which gives an estimate of the correlation of HCV status with time. If a covariate is not 

correlated with time, the plot of the partial residuals against time should have a zero slope. 

These residual plots can show a banding effect, caused by censoring or by categorical co­

variates, which can be ignored (Grambsch, 1994). The plot shows that a positive HCV 

status is protective initially but the effect declines over time. Then, it appears to become 

protective again after two years if the subject has survived that long. The interaction with 

donor age > 60 years is not significantly non-proportional and the residual plots for this 
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interaction are unremarkable. However, if the residuals for the HCV positive and HCV 

negative patients are separated in this interaction, the resulting plots are still suggestive 

of non-proportionality, illustrated in Figures 13 and 14. Venables & Ripley (2002) sug- 

Figure 13: Scaled Schoenfeld residuals for HCV positive * donor age > 60 years interaction.
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gest a search for interactions such as the one used here as one possible way to deal with 

non-proportionality in a covariate. Kleinbaum (2005) suggests using an adjusted log-log 

survival curve to assess the effect of the interaction. Figure 16 shows the fit of a Cox PH 

model stratified by HCV status and adjusted for donor age > 60 years. The plot shows the 

survival curves still cross and is almost unchanged from the unadjusted version shown in 

Figure 9. It is unlikely that the interaction used here addresses the non-proportional hazards 

in HCV status.

A plot of the scaled Schoenfeld residuals for HCC status (Figure 12) shows the same 

effect as HCV status although the protective effect at the beginning and end of the time 

period is less pronounced. An important strategy for handling non-proportionality in cat­

egorical covariates is stratification, however, we found that stratification by either HCV
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Figure 14: Scaled Schoenfeld residuals for HCV negative * donor age > 60 years interaction.
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Figure 15: Log-log survival curves for HCV status using the Cox PH model adjusted for donor age 
> 60 years.
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or HCC status did not improve predictive performance. Another alternative is to consider 

a piecewise PH model or time-by-covariate interactions, but these can be difficult to im­

plement in such a large data set. When we test a model which removed the 96 outliers 

mentioned above, the result was that first quartile albumin was no longer significant in 

the Grambsch-Therneau test for non-proportionality, although it remained borderline at 

p=0.065. HCV, HCC, recipient previous abdominal surgery and recipient medical condi­

tion (in ICU) remained significantly non-proportional. The model which included diabetic 

status as a predictor had similar issues with non-proportionality.

5.5.2 Testing Proportional Hazards: Cox Model 2

The Grambsch-Therneau test for non-proportionality identified four covariates in Cox 

model 2 with potential issues: recipient medical condition, previous abdominal surgery, 

creatinine, and diagnosis of hepatocellular carcinoma. Neither HCV nor its interactions 

were identified as significantly non-proportional, although the residual plot for HCV status 

showed the same pattern as in Cox Model 1. Log-log survival curves for HCV status using 

the Cox PH model adjusted for donor age as a continuous variable look very similar to Fig­

ure 16. HCC status has already been identified as problematic. We have already noted that 

the log-log survival plots for recipient medical condition and previous abdominal surgery 

showed no major cause for concern. The residual plots for recipient medical condition 

were similar to those seen in Cox model 1. The significant finding of non-proportionality 

for creatinine could indicate that the functional form chosen is not optimal.

When we remove the 96 outliers in BMI (BMI < 10 or > 60) and cold ischemic time 

(CIT > 30), all variables identified as significantly non-proportional still remain so in the 

new model. Prediction error is not improved. The model which included diabetic status as 

a predictor had similar issues with non-proportionality.



Figure 16: Single survival tree constructed from the training data set.
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5.6 The Single Survival Tree

The single survival tree used 5 covariates in tree construction: donor age, recipient age, 

albumin at time of transplant, Hepatitis C status, and for the initial split, whether or not the 

recipient was on life support at the time of transplant. Figure 16 shows the single survival 

tree constructed using the training set. Under each node, the hazard ratio is provided. 

Below that is the number of deaths divided by the total number in the node at each point in 

the tree. .

After removing the 96 outliers, the survival tree generated by the recursive partitioning 

algorithm changes the structure of the tree substantially, with the main split now based on 

recipient creatinine, a variable which was not included in the original tree. Cold ischemic 

time now appears in the tree, and albumin is no longer present. Recipient age, donor age, 

recipient HCV status and whether the recipient was on life support are still used in tree 

construction. However, we found that the predictive accuracy has suffered, with the model 

achieving an integrated Brier score higher than the corresponding null model with outliers 

removed. This could be due to possible errors remaining in the variable cold ischemic time, 

now used in prediction.

5.7 Bagged Survival Trees

A disadvantage of using bagged trees is that we can no longer present the model in a 

simple tree form. Predictions are made based on each of the bootstrapped trees and aggre­

gated according to the method chosen. Each bootstrapped tree has different characteristics. 

The median number of nodes in the 50 bagged trees was 21. The median number of nodes 

in the 300 bagged trees was 21.5.
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6 Discussion

6.1 Brier Scores and Concordance Statistic

The prediction error curves provided by the Brier score are a valuable tool for describing 

the uncertainty of a model over time. These curves can also be drawn for an individual 

patient. The IBS provides an important description of the overall uncertainty of a predictive 

model.

The concordance statistics for the two Cox models were similar and were for the most 

part slightly below the optimistic c-statistics reported in liver transplant survival literature 

where concordance was calculated on the same data set used to build the model. With heavy 

censoring, it is likely that the c-statistics found here are inflated. We have also shown that 

the PH assumption was not satisfied for either Cox model tested here which means the 

c-statistic is not valid as a performance measure.

The data-splitting approach taken here is not ideal since the indices of accuracy may 

vary with different splits (Harrell, 1996). Indeed, with the single survival tree we see how 

minor perturbations in the data influenced tree construction and corresponding Brier score. 

It is therefore possible that the integrated Brier scores found here are overly optimistic. 

Van Wieringen et al (2009), in a consideration of evaluation methods for predictive models 

using gene expression data, showed that the best prediction method can depend on the data 

set used. Prognostic models for liver transplantation should ideally be tested on similarly 

large transplant registry data sets such as those from Canada or Europe. Here we randomly 

split our data set in order to obtain a training set and a test set. However, a problem with 

this method is that the data used for testing are statistically homogeneous with the training 

data. May et al. (2004) write that assessment based on independently collected data would 

provide more realistic results. Formal validation in a prospective study is recommended by 

Altman et al. (2009). Further, it is recommended by Moons et al. (2009) that any prog­

nostic model be adjusted and updated over time to accommodate changes in practice. A 
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better approach than the one taken here would be to compare a model built on the U.S. data 

to a completely separate data set such as the Canadian Organ Replacement Registry or the 

European Liver Transplant Registry. Transplant registries worldwide offer a unique oppor­

tunity to carry out this validation, adjustment and prospective evaluation, once a promising 

model is developed.

In 1986, Box and Draper wrote, “Remember that all models are wrong: the practi­

cal question is how wrong do they have to be to not be useful.” How low a Brier score 

is required before a model can be considered a good predictor is a question that must be 

answered by consensus of physicians and scientists. Minimally the score should be signif­

icantly better than the score of the null model with no covariate information, however, we 

have shown that sometimes a significant statistical difference does not result in meaningful 

scientific significance. A plot of the prediction error curves comparing the prediction error 

to a benchmark model is an essential tool.

6.2 Simple Models vs Complex Models

It has often been noted that simple models can have better prediction accuracy than 

more complex models (Vittinghoff, 2005). Haibe-Kains et al. (2008), in an evaluation of 

the predictive performance of breast cancer survival models using large microarray data sets 

comprising more than 1000 patients, found no evidence that complex methods outperform 

the simplest prognostication techniques. They write that the result suggests that the “loss 

of interpretability deriving from the use of overcomplex data analysis strategies may not 

be sufficiently counterbalanced by an improvement in the quality of prediction.” In this 

analysis, however, the number of events per variable was large for all models (> 100), 

and, as others have shown using simulation studies, there is little difference in predictive 

accuracy between models when events per variable are large (> 20) (Ambler 2002). In this 

study we thought we might find that tree models, with fewer assumptions, would predict 

better than a Cox PH model where assumptions are not satisfied. We discovered, however, 
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that the survival trees do not perform better, and the Cox models are the best of a group 

of models which are all somewhat poor predictors. The best model we tested offers only a 

2.5% improvement over the benchmark model ignoring covariate information, whereas the 

simplest tree method offered a 1.75% improvement. The difference between the best and 

the worst models tested here did reach statistical significance (p < 0.0001).

The appealing aspects of a simple model, if one could be determined, are many - all 

of the variables in a model such as the single survival tree described here are well defined 

and unambiguous. A single survival tree provides an easily interpretable decision rule. 

The model does not require complex software to run and with a print copy of the tree, a 

transplant physician could make a decision. However, in the case of transplant registry 

data, we found that the single survival tree had the highest prediction error and the tree was 

unstable. The exercise of removing outliers in the tree models illustrated how the predictive 

accuracy of single survival trees is influenced by small changes in the data set. While the 

variables chosen by the recursive partitioning algorithm made sense in terms of known 

predictors, other criticisms of survival trees are readily at hand. The decision thresholds 

seem arbitrary and may not be clinically relevant. It is difficult to explain why a donor 

age of 42.5 is much worse than a donor age of 42. Wyatt and Altman (1995) write that 

“Model builders should try to avoid arbitrary thresholds for continuous variables.” In the 

case of transplant registry data, a survival tree may still be useful in exploratory analysis, 

for example in suggesting prognostic groups that are not obvious in a PH analysis or in 

suggesting topics worthy of more formal research. A single tree constructed from the 

whole data set (including observations with missing values in the predictors) is shown in 

Figure 17 as an example.

6.3 Cox Model: Cutpoints vs Fractional Polynomials

The two Cox models tested here found similar covariates to be significant predictors, 

and even though the two continuous covariates of recipient age and creatinine were mod-



Figure 17: Single survival tree constructed from the entire data set (n=28,165) including records with missing data in any of the predictors.
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elled differently, the predictive performance of both models was very similar. This could 

be because of the large data set where it is possible the problems seen with dichotomizing 

continuous variables cause fewer problems. It could also be that the quality of the data, e.g. 

data entry errors in cold ischemic time, influenced the predictive accuracy of one or both 

models. Note that the comparison presented here is not a fair one since the proportional 

hazards assumption was not met. In future work, the author intends to examine whether a 

model using fractional polynomials will perform better in a situation where the assumptions 

of the model are not violated.

Whether BMI is a significant predictor of survival is a matter of debate among physi­

cians (Nair, 2002; Pelletier, 2007). The evidence from Cox Model 2, when BMI was 

included, suggests that BMI is best modelled with a non-linear approach. Using the OPTN 

data set from 1988 to 1996, Nair (2002) categorized BMI into 5 groups and using Cox 

regression analysis determined that a BMI > 40 kg∕m2 was a significant predictor of in­

creased mortality risk. The smallest group used by Nair et al. included all subjects with 

BMI < 25 kg∕m2 which may have masked the increased risk associated with very low BMI 

seen here and also by Pelletier et al. (2007) in their examination of BMI and its effect on 

the survival benefit of liver transplantation. It is also possible that an interaction between 

BMI and another covariate such as age or diabetic status is further complicating the picture.

Pre-transplant diabetic status has been identified as a possible predictor of poor out­

come after liver transplant (Schaubel, 2009). Recent research has identified a greater risk 

of the development of serious liver disease in patients already diagnosed with Type II di­

abetes (Porepa et al., 2010). The authors postulate that the increased risk is caused either 

by insulin resistance, which can result in damage to the liver through fatty deposits, or 

by direct glycemic injury to the liver. Insulin resistance has also been associated with a 

more rapid progression of Hepatitis C virus recurrence after liver transplant (Lornado et 

al., 2008). Further complicating the picture is that development of new-onset diabetes after 

liver transplant is a common problem and this has also been identified as a risk factor for 
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poor outcome after transplant (Watt et al., 2010). When we included pre-transplant diabetic 

status as a covariate in our models, we did not find it improved prediction accuracy. This 

could be caused by interaction with the covariate for HCV status. It is also possible that 

further research into the association between liver disease, insulin resistance and glycemic 

injury will identify an important predictor that is not currently included in any models.

In this study we did not find any donor cause of death to be a significant predictor of 

survival, which differs from the results found in Schaubel (2009) who examined patient 

survival after transplant and Feng (2006) who studied graft survival. It is possible this is a 

result of different coding used for donor cause of death. The coding used here is available 

in the Appendix.

In Cox model 1 we included a donor race of White as a predictor of outcome because it 

gave a lower AIC and more parsimonious model than including both donor race of Black 

or Hispanic as predictors. In Cox model 2 we found that including donor race of Black 

and Hispanic gave a lower model deviance compared to using donor race of White only. 

Changing either model to include the same donor race predictors made no difference in 

predictive accuracy. Donor race is included in the donor risk index proposed by Feng in 

2006. However, the topic is a matter of debate among transplant physicians. Some suggest 

that stratifying by centre removes donor race as a predictor of survival. Asrani et al. (2010) 

tested such a model on the SRTR data and still found that their donor race “other” category, 

which included Hispanic status, was a significant predictor of survival. We also tested 

a model with stratification by centre and with donor race of Hispanic origin in its own 

category using dummy variables. We found that a donor race of Hispanic origin remained 

a significant predictor of poorer outcome while the significance of donor race equal to 

Black disappeared. We also found that stratification by centre did not improve prediction

error.
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6.4 Is the Cox Proportional Hazards Model Appropriate for Trans­

plant Data?

The violation of the primary assumption of the Cox PH model by important predictors 

of survival indicate that it is not the best choice for transplant data. However, the issue of 

non-proportionality is often not addressed. The non-proportionality seen in HCV and HCC 

status in particular make the PH model inappropriate for transplant data. As seen in Table 

1, patients with a diagnosis of Hepatitis C comprise close to half of the records in the data 

set. The Cox model can handle non-proportional baseline hazards by stratification on the 

offending covariate, but we found that stratification by HCV or HCC did not improve the 

predictive accuracy of the models. This emphasizes the need to look beyond the Cox PH 

model for more suitable methods which do not transgress the assumptions of the model. A 

model such as the one proposed by Zeng and Liri (2007) that can handle crossing hazards 

may be a better choice.

Schaubel and Wei (2007) considered an additive hazards model for survival on the 

waiting list for liver transplantation. This is another possible alternative to the PH model 

that could be applied to survival after transplantation.

Poor model fit is not confined to liver transplant models. Schemper (2003) writes that 

scientists cannot rely on statistical significance of covariates as evidence of good model 

fit, since “even strong and highly significant covariates of a study may not automatically 

translate into sufficiently accurate prediction or close determination of individual outcome 

values.” There are also issues specific to liver transplant that need to be addressed in any 

model of survival, specifically the non-proportional hazards mentioned already, early fail­

ure times, newly identificed predictors not available or not collected for an extended time 

(e.g. pre-transplant sodium), and data quality. Transplant registry data is an evolving or­

ganism. What flexibility is available in an organ allocation scheme is influenced by current 

research, as is seen in the examination of HCV status. The decision making process in 

organ allocation is influenced by other considerations that may not be collected. The final 
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conclusion might be that it is simply too difficult to predict a result 3 years in the future 

from baseline information - there are too many important variables occurring after the time 

of transplant such as immunosuppressive regime, infection, rejection, and technical issues, 

which will influence outcome. Christensen (2004) suggests that currently used prognostic 

variables are not sufficiently informative and he looks to advances in molecular biology 

for variables giving more information about a disease process. An example offered is the 

interleukin-10 GG genotype in Hepatitis C patients that is associated with persistent in­

fection (Knapp, 2003). Scientific advances such as this can be combined with properly 

applied statistical models where assumptions are satisfied in order to improve prediction 

error. Coordination of registry standards and increased data validation by the large trans­

plant registries worldwide would be of great benefit to research in the field.

7 Conclusion

With this paper we have shown that the non-proportionality found in some covariates 

used to assess survival after liver transplant make the Cox PH regression model a sub­

optimal choice. We found that the predictive accuracy gained through use of the Cox PH 

model is limited compared to a null model without covariate information. In the hope of 

finding a better model fit, we tested simpler models generated by survival trees but found 

they have higher prediction error than models developed using Cox PH regression. The 

nature of the data requires a complex statistical model, and the search must continue for one 

that is appropriate. It is critical that new prognostic models undergo a valid assessment of 

model adequacy. Here we have established a performance benchmark that future prognostic 

models may be measured against, using the integrated Brier score as a valid assessment of 

model performance.
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Table 7: Coding for donor cause of death.

Registry term Cardiovascular disease Anoxia Trauma Other
Death from natural causes
Drowning
Intracranial hemorrhage/stroke
Seizure
Drug intoxication
Asphyxiation
Cardiovascular

X

None of the above
Gun shot wound
Stab
Blunt injury
Electrical

X

Table 8: Coding for donor race.

Registry term Asian Black Hispanic White Other
Native Hawaiian or Other Pacific Islander
Black or African American
Hispanic/Latino
American Indian or Alaska Native
Asian X
White
Multi-Racial

*

x



Table 9: Coding for recipient diagnosis categories.

Registry term
AHN: DRUG OTHER SPECIFY
AHN: TYPE A
AHN: TYPE B- HBSAG+
AHN: TYPE C
AHN: TYPE D
AHN: TYPE B AND C
AHN: TYPE B AND D
AHN: ETIOLOGY UNKNOWN
AHN: OTHER, SPECIFY
CIRRHOSIS: DRUG/INDUST SPECIFY
CIRRHOSIS: TYPE A
CIRRHOSIS: TYPE B- HBSAG+
CIRRHOSIS: TYPE C
CIRRHOSIS: TYPE D
CIRRHOSIS: TYPE B AND C
CIRRHOSIS: TYPE B AND D
CIRRHOSIS: CRYPTOGENIC
CIRRHOSIS: CHRONIC ACTIVE HEPATITIS: UNK
CIRRHOSIS: OTHER, SPECIFY
CIRRHOSIS: AUTOIMMUNE
CIRRHOSIS: CRYPTOGENIC
CIRRHOSIS: FATTY LIVER (NASH)
ALCOHOLIC CIRRHOSIS
ALCOHOLIC CIRR WITH HCV
ACUTE ALCOHOLIC HEPATITIS
PRIMARY BILIARY CIRR (PBC)
SEC BILIARY CIRR: CAROLI’S DISEASE
SEC BILIARY CIRR: CHOLEDOCHOL CYST
SEC BILIARY CIRR: OTHER SP
PSC: CROHN’S DISEASE
PSC: ULCERATIVE COLITIS
PSC: NO BOWEL DISEASE
PSC: OTHER SPECIFY

AHN Alcohol BA Chole. HCC HCV Malig. Metabol. Non-Chole. Other Viral
X
X
X
X
X
X
X
X

X

X

X

X
X
X

x
X
X
X

X
X

X

X

x

x

X

X
X

X
X
X
X
X
X
X

X

X

X
X
X
X



Table 10: Coding for recipient diagnosis categories (continued).

Registry term
FAMILIAL CHOLESTASIS: BYLER’S DISEASE I
FAMILIAL CHOLESTASIS: OTHER SPECIFY
CHOLES LIVER DISEASE: OTHER SPECIFY
NEONATAL CHOLESTATIC LIVER DISEASE
NEONATAL HEPATITIS OTHER SPECIFY
BILIARY ATRESIA: EXTRAHEPATIC
BILIARY HYPOPLASIA; NONSYNDROMIC PAUCITY IBD
BILIARY HYPOPLASIA: ALAGILLES SYNDROME
BILIARY ATRESIA OR HYPOPLASIA: OTHER, SPECIFY
CONGENITAL HEPATIC FIBROSIS
CYSTIC FIBROSIS
BUDD-CHIARI SYNDROME
METDIS: ALPHA-1 -ANTITRYPSIN DEFIC A-1-A
METDIS: WILSON’S DISEASE, OTHER COPPER
METDIS: HEMOCHROMATOSIS - HEMOSIDEROSIS
METDIS: GLYC STOR DIS TYPE I (GSD-I)
METDIS: GLYC STOR DIS TYPE II (GSD-IV)
METDIS: HYPERLIPIDEMIA-II, HOMOZYGOUS HYPERCHOL.
METDIS: TYROSINEMIA
METDIS: PRIMARY OXALOSIS/OXALURIA, HYPEROXALURIA
METDIS: MAPLE SYRUP URINE DISEASE
METDIS: OTHER SPECIFY
PLM: HEPATOMA - HEPATOCELLULAR CARCINOMA
PLM: HEPATOMA (HCC) AND CIRRHOSIS
PLM: FIBROLAMELLAR (FL-HC)
PLM: Cholangiocarcinoma (CH-CA)
PLM: HEPATOBLASTOMA (HBL)
PLM: HEMANGIOENDOTHELIOMA, HEMANGIOSARCOMA, ANGIOSARCOMA
PLM: OTHER SPECIFY (I.E., KLATZKIN TUMOR, LEIOMYSARCOMA)
BILE DUCT CANCER: (CHOLANGIOMA, BILIARY TRACT CARCINOMA)
SECONDARY HEPATIC MALIGNANCY OTHER SPECIFY
BENIGN TUMOR: HEPATIC ADENOMA
BENIGN TUMOR: POLYCYSTIC LIVER DISEASE
BENIGN TUMOR: OTHER SPECIFY
TPN/HYPERALIMENTATION IND LIVER DISEASE
GRAFT VS. HOST DIS SEC TO NON-LITX
TRAUMA OTHER SPECIFY
Hepatitis B: Chronic or Acute
Hepatitis C: Chronic or Acute
OTHER SPECIFY Other

AHN Alcohol BA Chole. HCC HCV Malig. Metabol. Non-Chole. Other Viral
X

X
X

X
X
X

X
X
X
X

X

X

X

X

X
X
X

X
X

X 
X 
X 
X
X

X 
X 
X

X 
X 
X
X

XX

x
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Table 11: Results of Cox Model 1 (using cutpoints) on the training data - including DIABETIC 
status.

Variable β exp(β) p-value
Age at transplant (yrs) 0.0052 1.0053 0.2013
Age > 55 yrs -0.01779 0.9824 0.8086
Diagnosis: non-cholestatic cirrhosis -0.1279 0.8800 0.0373
Diagnosis: cholestatic cirrhosis -0.2978 0.7425 0.0023
Diagnosis: metabolic liver disease -0.3894 0.6775 0.0168
Diagnosis: hepatocellular carcinoma (HCC) 0.1619 1.1757 0.0080
Diagnosis: hepatitis C virus (HCV) 0.2497 1.2837 < 0.0001
Recipient medical condition: in ICU 0.3102 1.3638 0.0003
Recipient medical condition: hospitalized not in ICU 0.2096 1.2331 0.0008
Recipient on life support 0.5820 1.7896 < 0.0001
Recipient prior portal vein thrombosis 0.2125 1.2367 0.0292
Recipient prior abdominal surgery 0.1704 1.1858 < 0.0001
Creatinine: 4th quartile 0.2122 1.2729 < 0.0001
Albumin: 1st quartile 0.2267 1.2544 < 0.0001
Donor age (yrs): 40 to 49 0.2413 1.2642 < 0.0001
Donor age (yrs): 50 to 59 0.3273 1.3872 < 0.0001
Donor age (yrs) > 60 0.3380 1.4021 < 0.0001
Donor race: hispanic 0.2278 1.2558 < 0.0001
Cold ischemic time (hours) 0.0151 1.0152 0.0041
Age at transplant * age > 55 yrs 0.0260 1.0263 0.0005
Recipient HCV status * Donor age (yrs) > 60 years 0.4759 1.6095 < 0.0001
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Table 12: Results of Cox Model 2 (using fractional polynomials) on the training data - including 
DIABETIC status.

Variable
(Recipient • age(yrs) • at ■ transplant/ 100)3
Donor age (yrs) * recipient HCV positive
Albumin (g∕dL)
Recipient medical condition: in ICU
Recipient medical condition: hospitalized not in ICU
Recipient on life support
Recipient prior abdominal surgery 
Donor age (yrs) * recipient HCV negative
Cold ischemic time (hours)
Donor race: Hispanic
Diagnosis: Cholestatic cirrhosis
Diagnosis: Non-cholestatis cirrhosis
Creatinine (mg/dL)
Diabetic status
Diagnosis: metabolic liver disease
Diagnosis: hepatocellular carcinoma
Recipient prior portal vein thrombosis
Diagnosis: Hepatitis C virus

exp(B) p-value
2.181 * 10-6 1.0000 < 0.0001

0.01764 1.018 < 0.0001
-0.1592 0.8528 < 0.0001
0.3223 1.380 0.0001
0.2202 1.246 0.0004
0.5811 1.788 < 0.0001
0.1714 1.1870 < 0.0001
0.0070 1.007 < 0.0001
0.0147 1.0150 0.0054
0.2343 1.2640 < 0.0001
-0.3045 0.7375 0.0019
-0.1391 0.8702 0.0225
0.0735 1.0760 < 0.0001
0.2226 1.249 < 0.0001
-0.3928 0.6752 0.0158
0.1768 1.1930 0.0038
0.2013 1.2230 0.03860
-0.1492 0.8614 0.2108
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