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Abstract 

The remediation of metal-contaminated natural water bodies is prioritized due to metals 

toxicity, non-biodegradable properties, and accumulative behaviours leading to the increased 

incidence of adverse health effects. Current investigation is driven by the existing problem of 

elevated aluminum concentrations in the groundwater of Khibiny alkaline massif (Kola 

Peninsula). The prohibitive aluminum level exceeding the accepted standard of 0.20 mg L−1 

is described as a serious health concern when the groundwater used for the local water 

supply. The results of comprehensive field data analysis based on chemometric methods 

applied to the available monitoring data including 12 groundwater quality parameters are 

reported as well as the outcomes of laboratory study on aluminum adsorption from aqueous 

solutions. Computed correlation coefficients matrix revealed a statistically significant level 

of associations between aluminum concentrations and pH values, concentrations of SO4
2−, 

NO3
−, Cl−. Mathematical models developed by using univariate and multivariate regression 

methods explained up to 54% of aluminum concentration temporal variability linked to pH, 

Cl−, NO3
− and up to 67.5% of the original dataset total variance. The outcomes of hierarchical 

cluster analysis suggested data subdivision into three clusters where Al and pH formed a 

separate cluster. The frequency bands describing dominant variability features of 

groundwater quality parameters were identified by spectral analysis based on fast Fourier 

transform algorithm and corresponded approximately to 5–7, 13–17, and 20–34 month 

periods. Calculated CCME water quality index scores identified a groundwater quality 

gradual deterioration from fair to marginal category during the monitoring period 1999–

2012. Laboratory study of aluminum removal on adsorbents from aqueous solutions 

considering water-specific natural conditions showed the maximum aluminum uptake of 1.69 

mg g−1 by montmorillonite K10 within 120 min at pH 4.0 while TiO2 and vermiculite 

concrete-supported ferric oxyhydroxide adsorbent were most effective at pH 9.0 obtaining 

maximum adsorption capacities of 6.85 mg g−1 and 6.75 mg g−1 in 30 min and 240 min, 

respectively. It was shown that when these two adsorbents worked jointly the capacity 

reached 8.28 mg g−1 within 60 min at pH 9.0. The changes of each component mass allow 

controlling contact time to provide required aluminum removal efficiency. No apparent 

significant effect on aluminum removal by adsorbents tested in the presence of SO4
2−, NO3

−, 
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Cl− was observed at pH 9.0. The current study identifies a possible approach and the reliable 

foundation of water treatment technology solving the problem of elevated aluminum 

concentrations in the household water of Khibiny alkaline massif area as well as other 

locations where the solution of this problem can improve living conditions or industrial 

technologies. 
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Chapter 1  

1 Introduction 

1.1 Rationale 

Earth is known as the “blue planet” because a significant part of its surface is covered by 

water with just a small portion taken by fresh water resources [1]. The access to safe and 

easily available resources of fresh water is a fundamental aspect of sustainable 

development [2]. It is estimated that more than a half of a total world’s population will be 

living in areas experiencing high levels of water stress by 2025 and it is projected to rise 

[3]. Nowadays nearly 845 million people lack a rudimentary dirking water service, 

including millions relying on surface water [4]. The reliance on groundwater sources for 

household needs is becoming more and more common [5]. This happens due to several 

reasons. First, world’s population is increasing, and a rapid industrial development is 

taking place [3,6,7]. Second, the surface water sources are limited and, in many cases, is 

considered as unsafe due to the presence of a wide range of pollutants including toxic 

metals and emerging organic contaminants [7–10]. The growth of importance keeping 

fresh water resources harmless and readily available is essential for environmental 

sustainability to meet the current demands without jeopardizing future generations needs 

[2]. 

The metals are identified as one of the major pollution sources of the aqueous 

environments as they are toxic, non-biodegradable, and have accumulative behaviours 

leading to the increased incidence of negative health effects [11,12]. Among the metals, 

aluminum because of its neurotoxic properties is prominent making contamination of 

water resources with this metal the ongoing problem [13–15]. It is enough to point out 

that clay consists of aluminum to understand aluminum’s wide occurrence in the Earth’s 

crust and consequently in natural water bodies [16]. Aluminum exposure to human by 

means of drinking water or food can potentially cause neurotoxicity increasing the risk of 

neurological disorders [13,17].  
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Among many other locations where high aluminum concentration presented in natural 

water sources, the prohibitive aluminum level in the groundwater of Khibiny alkaline 

massif (Kola Peninsula) is considered as a serious health concern limiting the water use 

for the household consumption [14]. Over the past three decades, the groundwater deposit 

located in the southern part of the Khibiny alkaline massif became one of the vital 

sources of Kirovsk and Apatity water supply (Figure 1.1). The water is characterized by 

strong alkaline conditions and elevated aluminum concentrations that exceed the drinking 

water guideline of 0.20 mg L−1 [18] up to nine times according to the available 

groundwater monitoring data. To date, there is no a reliable solution solving the problem 

of elevated aluminum concentrations in the alkaline groundwater that is feasible to be 

implemented in the Khibiny area and can facilitate the household water supply 

management to satisfy health regulations.  

A quantitative analysis of water quality data is an essential and necessary step to get an 

insight into such aspects of the problem as associations among investigated parameters, 

possible pollution sources, and overall water quality. The approach provides the reliable 

way to choose applicable methods and techniques revealing the key associations between 

the parameters under consideration. Chemometric methods of field data analysis along 

with various water treatments of contaminated water provide a solid foundation to 

investigate and solve the problem of elevated metal concentrations in aqueous 

environments [19–22].  

Figure 1.1: Study area: Khibiny alkaline massif, Kola Peninsula. 
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1.2 Thesis Objectives 

The need for the PhD originates from the industrial attempts to improve the groundwater 

quality of household water supply in Khibiny alkaline massif (Kola Peninsula) area. The 

approach proposed by current PhD research work to address the need combines a 

comprehensive field data analysis of the available groundwater quality monitoring data 

(1999–2012) and laboratory study on aluminum adsorption from aqueous solutions on 

various adsorbents. The following thesis objectives were made. 

i. to quantitatively access and analyze the results of long-term field data monitoring 

program of Khibiny alkaline massif (Kola Peninsula) groundwater by using 

chemometric methods, 

ii. to reveal the degree of association between the groundwater quality parameters 

with aluminum concentrations variability in the water intake under investigation, 

iii. to study reliable adsorbents removing aluminum effectively under the water-

specific natural conditions, 

iv. to investigate and quantitively describe adsorption process of aluminum removal 

by the selected adsorbents,  

v. to explore the effect of pH and ions presence on the adsorption of aluminum from 

aqueous solutions. 

 

1.3 Thesis Structure 

This PhD thesis is prepared in the article-integrated format in accordance with the 

guidelines provided by the School of Graduate and Postdoctoral Studies of the University 

of Western Ontario. The contents of seven chapters included in the thesis are as follows. 

Chapter 1 introduces and specifies the need for this study and defines the problem of 

elevated aluminum concentrations in the groundwater of Khibiny alkaline massif (Kola 

Peninsula). The thesis specific objectives are presented.  

Chapter 2 provides a literature review on the major problem-related aspects including 

aluminum environmental chemistry, the presence of prohibitive aluminum concentrations 
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in natural water bodies, the primary water treatment methods for aluminum removal from 

aqueous solutions, and the review and comparison of the results of studies on aluminum 

removal by various adsorbents.    

Chapter 3 is a research article entitled “Study of Aluminium in Groundwater using 

Chemometric Methods”. The study presents the initial results of field data analysis at 

both time and frequency domains by using chemometric methods including Pearson 

correlation, multiple regression analysis and spectral analysis based on fast Fourier 

transform algorithm to assess and interpret the outcomes of thirteen-year field data 

monitoring of Khibiny alkaline massif (Kola Peninsula) groundwater. The main objective 

of this study was to identify the parameters associated with aluminum concentrations 

variability in the groundwater under consideration. 

Chapter 4 is a research article entitled “Assessment of Khibiny Alkaline Massif 

Groundwater Quality using Statistical Methods and Water Quality Index”. This study 

extends the outcomes of univariate data analysis investigating the Khibiny alkaline 

massif groundwater quality by using multivariate statistical methods including factor 

analysis/principal component analysis and hierarchical cluster analysis, and the 

calculation of water quality index. The results represent the quantitative data assessment 

and describe influencing aluminum variability factors prior the development of plan of 

laboratory tests to keep aluminum concentrations in water considering water-specific 

natural conditions under the limits of accepted standards. 

Chapter 5 is a research article entitled “Removal of Aluminum from Aqueous Solution by 

Adsorption on Montmorillonite K10, TiO2, and SiO2: Kinetics, Isotherms, and Effect of 

Ions”. The investigation of adsorption capacities of montmorillonite K10, TiO2, and SiO2 

for the removal of aluminum from acidic aqueous solution is presented and discussed. 

The effects of pH, initial aluminum concentration, adsorbent amount, contact time, and 

the ions – Ca2+, Mg2+, SO4
2−, HCO3

–, Na+, and Cl− that usually present in natural water 

bodies were investigated. 

Chapter 6 is a research article entitled “Removal of Aluminum from Alkaline Aqueous 

Solution by Adsorption on TiO2 and Vermiculite Concrete-Supported Ferric 
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Oxyhydroxide Adsorbent”. Considering the results discussed in Chapters 3–5, this study 

is aimed at the investigation of aluminum adsorption from aqueous solution reflecting the 

main features of physico-chemical composition of Khibiny alkaline massif groundwater 

(Kola Peninsula) on TiO2, vermiculite concrete-supported ferric oxyhydroxide adsorbent, 

and a multicomponent adsorbent – the vermiculite-based adsorbent enriched with TiO2. 

The results obtained evidence in favour of that the application of this adsorbent can be an 

effective way to decrease and control aluminum concentrations below the drinking water 

guideline at the local Khibiny water treatment facility and at the other locations where 

high aluminum concentration in the alkaline aqueous solutions limits the water use for 

the household needs. 

Chapter 7 includes the discussion on PhD thesis major findings followed by scientific 

contribution of the study, study limitations, and future work recommendations.  
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Chapter 2  

2 Literature Review 

2.1 Introduction 

Aluminum (Al) is widely distributed in the environment comprising about 8% of the 

Earth’s outer crust. Al containing agents have been used in many applications including 

food, drinking water, and medicine [1,2]. Al compounds are currently extensively used in 

the industrial sector as well as in pharmaceutical sector comprising cosmetics, food 

additives, and household products. Aluminum-based salts such as aluminum chloride and 

aluminum sulphate are one of the most commonly used coagulating agents in the water 

treatment industry. The application of aluminum-based agents in various modern 

engineering technologies more often leads to the by-products generation including 

increased Al level in water [3].  

Al is known as a powerful neurotoxicant [4,5]. Several studies have implicated that Al 

accumulation in human body can cause neurotoxicity leading to the increased risk of 

neurological disorders such as Alzheimer’s disease [5–7]. The recommended upper 

boundary limit of Al concentration in drinking water is 0.05–0.20 mg L−1 [8]. In a 

number of cases, the elevated concentrations of Al that have been found in both acidic 

and alkaline surface and ground waters are recognized as a serious concern in many 

countries in the worldwide [9–11].  

A number of methods have been proposed for Al removal from aqueous solutions 

including ion exchange, adsorption, membrane filtration, and electrodialysis [12,13]. 

Among available water treatment technologies adsorption is considered as a suitable 

method for metal removal from aqueous solutions having advantages such as the 

availability of the wide range of adsorbents, low-cost, ease of operation, and efficiency 

[14]. Various sorbents substantially organic such as activated carbon and its modified 

forms, (bio)polymers, char, marble wastes, natural zeolite were tested for the Al removal 

from aqueous solutions [12,15–18].  
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2.2 Al Occurrence in the Environment 

The chemistry, bioavailability, and toxicity of Al in the aquatic environment are complex 

and affected by various water quality characteristics [19,20]. Al is released by both 

anthropogenic and natural sources and is present in all types of natural water bodies 

[9,21]. The major features of the biogeochemical cycle of aluminum include leaching of 

aluminum from geochemical formations and soil particulates to aqueous environments, 

adsorption onto soil or sediment particulates, and wet and dry deposition from the air to 

land and surface water [21]. The inorganic monomeric Al – aqua aluminum (Al3+) or its 

complexes by dissolved constituents such as OH−, F−, PO4
−, and SO4

2– are prevalent in 

the natural water bodies [22]. According to the World Health Organization dissolved Al 

concentration in natural water sources varies dramatically from 0.001 to 90.0 mg L−1 

depending on various physico-chemical and mineralogical factors [23]. Acid rain in 

recent years has transformed the insoluble aluminum-containing minerals into a more 

soluble form causing an accumulation of Al in food through drinking water sources [2]. 

The diversity of aluminum-based minerals found in nature are wide. The Al leaching 

from soil and bedrock into the aqueous solutions are widely occurring [21]. For example, 

in Sweden, Norway, and USA (Adirondacks), during the springtime a big amount of Al 

goes out from soil creating a glistening, silvery coat on the surface of lakes and ponds 

[24]. The elevated concentrations of Al in industrial waters can appear due to a side effect 

of applying Al-based coagulants in treatment processes resulting in a significant increase 

of Al concentration in the treated water [3]. 

 

2.3 Al Water Chemistry 

The behaviour of aluminum in the aqueous environment depends upon its coordination 

chemistry and the characteristics of the local environment, especially pH [21]. Within the 

aqueous phase, Al may be associated with a variety of inorganic and organic complexes 

[22]. Investigation of Al speciation in aqueous solutions is important due to several 

reasons. Firstly, the toxicity of Al depends primarily on its chemical forms. Secondly, 

some monomeric inorganic complexes may interfere with analytical techniques to 
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determine Al concentration. Thirdly, the hydrolysis products of Al are believed to be 

important in mineral phase formation and transportation, in the mobility of Al in soils and 

aquatic systems, and in the toxicity of Al to plants and aquatic organisms [20,25].  

The chemistry of Al in aqueous solution can be characterized by following properties 

[22,25–27]: 

• it has a strong tendency to hydrolyze in the solution, 

• its formation is strongly pH dependent, 

• its hydroxide forms are amphoteric, 

• its toxicity determines by the chemical form, 

• it forms stable soluble complexes with other substances present in the water. 

Total Al in water can be divided into three main fractions [13,22]: 

• monomeric aluminum organic complexes, 

• monomeric inorganic aluminum, 

• colloidal, polymeric, and organic complexes.  

Monomeric organic aluminum complexes are the ones associated with dissolved organic 

carbon. Monomeric inorganic aluminum includes aqua aluminum (Al3+) and its 

hydroxide, fluoride, and sulphate complexes. Polymeric organic complexes form when 

the number of Al ions in the complexes increases. The fraction of interest of most 

investigators is monomeric inorganic Al complexes [22,26].  These complexes of Al are 

dominant forms of the metal present in water bodies and the primary form ( > 80%) of it 

is Al3+ [13,20]. Al3+ is a small (ionic radius 0.51 Å), highly positive trivalent ion 

surrounded by six water molecules in an octahedral configuration. The chemical formula 

can be represented as Al(H2O)6
3+ [22]. Because of the high positive charge of Al3+ these 

water molecules form a tightly bound primary hydration shell giving a rise to the several 



11 

 

 

hydrolytic species, which are formed in accordance with the equilibrium constants [22]. 

This process is known as a hydrolysis and the resulting hydrolytic Al species are called 

hydrolysis products. At any pH above 3.5–4.0 various combinations of Al with hydroxide 

ions occur [26].  

 

2.3.1 Al Hydrolysis in Aqueous Solution 

The hydrolysis of Al ion is the progressive loss of hydration shell protons to water 

molecules in the surrounding bulk solution to maintain dissociation equilibrium. 

Aluminum hydrolysis reactions formed in accordance with the Al hydrolysis constants 

data p𝛽 at constant temperature (25 °C) and zero ion strength are presented as follows 

[22]:  

the first hydrolysis reaction, 

𝐴𝑙(𝐻2𝑂)6
3+ +  𝐻2𝑂 = 𝐴𝑙(𝐻2𝑂)5𝑂𝐻2+ + 𝐻3𝑂+                                           p𝛽 = 5.5 (2.1) 

the reaction can be abbreviated to the more common expression, 

𝐴𝑙3+ +  𝐻2𝑂 = 𝐴𝑙(𝑂𝐻)2+ + 𝐻+                                                                      p𝛽 = 5.5 (2.2) 

second hydrolysis reaction, 

𝐴𝑙3+ +  2𝐻2𝑂 = 𝐴𝑙(𝑂𝐻)2
+ + 2𝐻+                                                                   p𝛽 = 10.5 (2.3) 

third hydrolysis reaction, 

𝐴𝑙3+ +  3𝐻2𝑂 = 𝐴𝑙(𝑂𝐻)3
0 + 3𝐻+                                                                    p𝛽 = 17.3 (2.4) 

fourth hydrolysis reaction, 

𝐴𝑙3+ +  4𝐻2𝑂 = 𝐴𝑙(𝑂𝐻)4
− + 4𝐻+                                                                   p𝛽 = 23.5 (2.5) 
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2.3.2 pH Dependence 

Al is most soluble in strongly acidic environments such as volcanic areas and in strongly 

alkaline environments including alkaline lakes or groundwater. Amorphous aluminum 

hydroxide Al(OH)3
0

 is amphoteric [27]. It dissolves in acidic solutions as a cationic 

mono- or dihydroxo complex or in the alkaline solution having excess of hydroxo-ions as 

aluminate anion. Positively charged soluble Al3+, Al(OH)2+, and Al(OH)2
+ are most 

abundant below pH 5.0. At pH below 3.0, Al3+ is the dominant species in the solution. 

Insoluble aluminum hydroxide Al(OH)3
0 is  the predominant form in the pH range 5.2–

8.0 (T = 25 °C). In the alkaline conditions pH above 8.0, soluble aluminate anion 

Al(OH)4
− is a dominating species and it is the only species present above pH 10.0 (T = 25 

°C) [19–21,27].  

Dissolution of aluminum hydroxide under different pH values are presented as follows:  

𝐴𝑙(𝑂𝐻)3
0 ⟷ 𝐴𝑙3+ + 3𝑂𝐻−  (2.6) 

𝐴𝑙(𝑂𝐻)3
0 ⟷ 𝐴𝑙(𝑂𝐻)2+ + 2𝑂𝐻−  (2.7) 

𝐴𝑙(𝑂𝐻)3
0 ⟷ 𝐴𝑙(𝑂𝐻)2

+ + 𝑂𝐻−  (2.8) 

𝐴𝑙(𝑂𝐻)3
0 + 𝑂𝐻− ⟷ 𝐴𝑙(𝑂𝐻)4

−  (2.9) 

Al(OH) 3
0 is mainly insoluble in the pH range of 6.5 to 7.5 depending on the temperature 

of the system. The solubility is enhanced under acidic conditions and alkaline conditions 

pH < 6.0  and pH > 8.0, respectively [13,27]. The most toxic forms of Al are soluble Al3+ 

and hydrated monomers Al(OH)2+ and Al(OH)2
+ which occur in acidic water conditions 

[20,22]. These forms represent a greater danger to living organisms rather than organic 

complexes of Al. Conditions for Al adsorption from aqueous solution are best at pH 

around 4.0 where the most toxic aluminum species Al3+, Al(OH)2+, and Al(OH)2
+ are 

presented [27]. 



13 

 

 

2.4 Accepted Guidelines for Al Concentration in Water  

According to the World Health Organization (WHO) and the council of the European 

Union (EU) the recommended value for Al in water of 0.20 mg L−1 was established in 

1984 and 1998, respectively [28,29]. The U.S. Environmental Protection Agency 

(USEPA) announced the drinking water contaminant candidate list in 1998 where Al was 

included due to the recognition of a potential link between Al and adverse neurological 

effects [30]. The recommended secondary drinking water standard of Al concentration is 

0.05–0.20 mg L−1 in accordance with USEPA [8]. There is no health-based guideline 

provided for Al by Health Canada. However, it is recommended that the water treatment 

plants using Al-based coagulants optimize their operational conditions to decrease 

residual Al concentration in the treated water to the lowest extent possible according to 

the Guidelines for Canadian Drinking Water Quality. The operational guidance value of 

< 0.10 mg L−1 is established for conventional treatment plants using Al-based coagulants, 

for other types of treatment systems using such coagulants, the operational guidance 

value is < 0.20 mg L−1 [31].  

According to a recent WHO global overview of national regulations and standards for 

drinking-water quality, out of 97 countries and territories specifying a value for Al, 84 of 

them set a value of 0.20 mg L−1 [32].  

 

2.5 Negative Health Effect   

Food and drinking water are among the main sources of Al exposure to human [1]. Al 

interferes with numerous essential metals and metalloids in the human organism by 

altering their bioavailability [27].  Adverse effects of Al are currently known to be far 

more chronic than acute [33]. Aluminum accumulation can cause neurotoxicity leading to 

the increased risk of neurological disorders such as dementia [5]. In 1973, after the first 

report of elevated concentration of Al in the brains of patients with Alzheimer’s disease 

was published, an increased number of epidemiological studies on Al in drinking water 

and Alzheimer’s disease has been observed [5,34]. Alzheimer’s disease accounts for 
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more than 60% of dementia cases and is the fourth cause of mortality in the elderly [4]. 

Epidemiological studies performed in several countries have reported the presence of an 

association between Al in drinking water and Alzheimer’s disease [4,35,36]. The recent 

research showed the elevated Al concentrations in drinking water correlate with the 

increased incidence of neurological disorders [6,7,37]. Moreover, low Al levels can lead 

to behavioural and morphological changes associated with Alzheimer’s disease and age-

related neurodegeneration as the recent research indicated [38].  

 

2.6 High Al Level in Water Bodies Worldwide 

The problem of high Al concentrations presented in natural water sources and wastewater 

has a worldwide scale and in most cases is recognized as a serious health concern. Table 

2.1 specifies just several locations where prohibitive Al concentrations exceeding the 

drinking water guidelines of 0.20 mg L−1 (sometimes up to more than 30–78 times) were 

observed in raw and/or treated water sources. The natural processes such as Al leaching 

from minerals, the application of aluminum-containing coagulants like aluminum 

sulphate (alum), and anthropogenic influence are within the main reasons responsible for 

elevated Al concentrations in the water bodies. The high Al level in the freshwater 

resources has been recognized as a serious health issue in several countries (Table 2.1). 

The data from Table 2.1 show that in most cases, the prohibitive concentrations of Al 

have been observed in both acidic and alkaline surface and ground waters. For example, a 

study on the water quality assessment conducted in Iquitos, Peru showed that the 

groundwater having dissolved Al concentrations of up to 3.33 mg L−1 is acidic [39]. The 

outcomes of water quality assessment led in China defined Al as one of the dominant 

contaminants in the analyzed groundwater where Al concentrations were almost up to 25 

times higher than the local drinking water guidelines [40]. Al concentrations in the 

surface water of Sehwan Sharif, Pakistan significantly exceeds the drinking water 

guidelines reaching up to 4.27 mg L−1 with a mean value of 2.1 mg L−1 under alkaline 

conditions [41]. Studies on the assessment of groundwater recourses conducted in Cacheu 

and Oio regions, Guinea Bissau revealed that maximum Al concentrations exceeding the 

guidelines up to 22 times were observed at pH values of 5.8–6.2 [42].   
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Table 2.1: Elevated Al concentration in water bodies worldwide. 

Location Water type Al, mg L−1 

 

pH 

 

Water treatment 

method 

Residual 

Al, mg L−1 
Reference 

Turkey *) 

Biga Peninsula 

Spring water 13.17–15.70 < 4.0 N/D N/D [10] 

Peru *)  

Iquitos  

Groundwater 0.001–3.33 4.2–5.5 N/D N/D [39] 

Guinea Bissau 

Cacheu, Oio 

Groundwater 0.13–4.48 5.0–7.3 N/D N/D [42] 

India *) 

Ghaziabad 

Groundwater 1.33–6.30 6.1–7.7 N/D N/D [43] 

Poland *)  

Poznan 

Groundwater 0.001–0.75 6.2–8.1 N/D N/D [11] 

Russia *) 

Kola Peninsula 

Groundwater 0.19–1.81 8.7–9.6 UV disinfection  0.19–1.81 [44] 

China Groundwater 0.001–4.92 N/D N/D N/D [40] 

Canada 

Sudbury  

Surface water  0.15–1.15 4.3–7.0 Liming N/D [45] 

Spain 

Galicia 

Surface water N/D 5.3–7.4 Coagulation: 

Alum 

0.008–

0.65 

[46] 

Pakistan *) 

Sehwan Sharif 

Surface water  0.91–4.27 7.4–8.9 N/D N/D [41] 

Canada 

Toronto 

Surface water  0.001–0.12 N/D Coagulation: 

Alum 

0.05–0.29 [3] 

Canada 

Windsor 

Surface water  0.03–2.50 N/D Coagulation: 

Alum 

0.001–

5.10 

[3] 

United States  

California, 

Nevada 

Surface water 

 

N/D N/D Coagulation: 

Alum 

0.001–

1.12 

[47] 

United Kingdom 

Nottinghamshire 

Wastewater  0.05–0.18 7.3 Coagulation: 

Alum 

0.001–

1.00 

[48] 

Russia  

Angarsk 

Wastewater N/D N/D N/D (5.0÷15.0) 

×103 

[49] 

*) Water is used for the drinking and household water supply. 
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It is not seldom when high exceeding guidelines Al concentrations are found in the 

wastewater effluents. The potential source of wastewater contamination with Al is the 

industrial application of aluminum chloride as a catalyst for ethylbenzene production 

[50]. The drastically elevated concentrations of Al (5.0÷15.0) × 103 mg L−1 due to the use 

of aluminum chloride as a catalyst in the alkylation technology were reported in the 

wastewater effluent of polymer plant, Angarsk, Russia [49].  

According to the Table 2.1 the water treatment using alum as a coagulant can lead to the 

increased residual Al concentrations in the treated water. Studies led in the United 

Kingdom revealed Al concentration in wastewater effluent treated by alum as high as 1.0 

mg L−1 [48]. The Al concentration in the treated water of Lake Ontario (Toronto, Canada) 

and Detroit River (Windsor, Canada) increased more than twice compared to the Al 

concentration observed in raw water. Al concentrations in these surface water sources 

changed from 0.12 to 0.29 mg L−1 and from 2.50 to 5.10 mg L−1, respectively [3]. 

Elevated Al concentration in the groundwater of Miocene (Poznan, Poland) and Khibiny 

alkaline massif (Kola Peninsula, Russia) aquifers are the examples of serious health 

concerns when the groundwater is used for the local household water supply [11,44]. For 

example, the groundwater deposit located in the southern part of the Khibiny alkaline 

massif which belongs to the Baltic hydrogeological massif (Kola Peninsula) over the past 

three decades became one of the essential sources of household water supply in the area. 

The groundwater of this deposit has strong alkaline conditions (pH mean value 9.56) and 

elevated Al concentrations that are 4–9 higher than the acceptable drinking water 

guideline.  

 

2.7 Methods Removing Heavy Metals and Aluminum from 
Water 

Studies on metal removal from water are mainly focused on heavy metals including Cd, 

Cr, Cu, Fe, Hg, Ni, Pb, and Zn. Numerous chemical and physico-chemical methods were 
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proposed for metal removal from aqueous solutions including but not limited to chemical 

precipitation, ion exchange, adsorption, membrane processes, electrochemical methods 

[51,52]. Among the most widely used water treatment methods, 

coagulation/precipitation, lime softening, ion exchange (cation resin), electrodialysis, 

reverse osmosis, and adsorption are within the most suitable for the removal of Al from 

aqueous solution [12,13,53,54]. Some of these methods such as ion exchange and reverse 

osmosis are expensive and likely to be impractical for the industrial application in low-

income countries with high demand for safe household water [51].  

 

2.7.1 Chemical Precipitation  

Chemical precipitation is an effective and one of the most widely used process in water 

and wastewater treatment industries having advantages such as low-cost and ease of 

operation. The process can be combined with other water treatment methods including 

ion exchange, coagulation, filtration. In precipitation processes, chemicals react with 

metals ions forming insoluble precipitates which further separated from water by 

sedimentation or filtration. The conventional chemical precipitation processes include 

hydroxide and sulphate precipitations [55]. The application of chemical precipitation for 

the removal of metal cations such as Zn2+, Cu2+, Pb2+ showed a removal efficiency 

reaching up to more than 95% [56].  Although widely used, the application of chemical 

precipitation has some weaknesses including the generation of large amount of 

precipitated waste and extra operational cost for its disposal and possible formation of 

colloidal precipitates that can cause some separation problems in either settling or 

filtration processes. In addition, the process is not suitable for the removal of low metal 

ion concentrations and amphoteric metals hydroxides such for example as Al(OH)3 

[55,57].  
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2.7.2 Ion Exchange 

Ion exchange processes for metals removal from water are beneficial due to high removal 

efficiency and fast kinetics. The main advantages of ion exchange over chemical 

precipitation are selectivity and low waste generation [55]. In the ion exchange process, 

ions accumulated on the surface of ion exchange resin are exchanged for the metal ions 

having similar charge. Among materials used in ion exchange processes, synthetic resins 

are commonly preferred as they are effective to remove metal ions from aqueous solution 

[58]. For example, a complete removal of Co2+, Ni2+, and Cr3+ was obtained using cation-

exchange resin [59]. The application of cation-exchange resin for the Al removal reached 

the efficiency of more than 90% [13]. Periodic acid treatment is necessary to exchange 

accumulated Al off the resin due to high resin affinity for Al making self-regenerating 

cation-exchange systems impractical for the residential use [13]. Despite the 

effectiveness of ion exchange application, the treatment of large amount of water having 

low metal concentration can be expensive, moreover the regeneration of exhausted ion 

exchange resins by chemical reagents can cause serious secondary pollution [55].  

 

2.7.3 Coagulation and Flocculation 

Coagulation and flocculation in a conjunction with sedimentation and filtration is a 

commonly used water treatment approach for the metal removal. Coagulation involves 

the addition of coagulants to the aqueous solution to destabilize colloids by neutralizing 

the forces that keep them apart, flocculation forms the agglomerates (flocs) of 

destabilized particles that can further be removed or separated by filtration [55]. Various 

coagulants including ferric chloride, ferrous sulphate, aluminum sulphate (alum) are 

widely used showing a high efficiency toward metal removal. For example, tungsten 

removal reached up to 99% using ferric chloride as a coagulant in the treatment process 

[60]. The application of Al-containing coagulants may either increase or decrease Al 

concentration in the treated water depending on its speciation in the source water and 

water treatment conditions [3,13]. In most cases, the application of alum leads to a rise of 

Al concentrations in the treated water [46,48]. Additionally, it is difficult to control the 
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coagulant species formed when Al-based salts are used. Generally, the application of 

coagulation and flocculation is not sufficient for metals removal and must be combined 

with other treatment techniques such as precipitation, filtration [55].   

 

2.7.4 Membrane Filtration 

The membrane processes including reverse osmosis, nanofiltration, electrodialysis, and 

ultrafiltration are promising toward metal removal from water and wastewater. 

Membrane processes rely on a membrane defined as a phase that acts as a barrier 

between other phases to remove contaminants from water [61]. The application of these 

processes is advantageous as it is easy to operate, they are space-saver, and high metal 

removal efficiency can be archived [55]. Both electrodialysis and reverse osmosis 

showed an excellent Al removal reaching more than 90% [13]. A study on the application 

of nanofiltration for Al removal from coagulant effluent water obtained nearly 100% 

removal [53]. The application of reverse osmosis successfully removed other metals such 

as Ca2+ and Ni2+ ions where 99.5% removal was achieved [62]. It has been reported that 

the semi-permeable membrane used in reverse osmosis for removing metal ions lowers 

the pH of water making it acidic [63]. The high cost, process complexity, and membrane 

fouling limited the application of membrane processes for the metal removal from 

aqueous solution [55].  

 

2.7.5 Adsorption 

Among available water treatment technologies adsorption is considered as a suitable 

method for the removal of various toxic pollutants including heavy metals and organic 

chemicals from aqueous solutions [64]. The adsorption process offers numerous 

advantages including cost-effectiveness, flexibility in design and operation, wide variety 

of adsorbents available, effective removal of metal ions even in low concentrations. A 

recent review on the adsorption of heavy metals by clay minerals showed that these 

minerals have an excellent feasibility in removing different toxic aquatic metal pollutants 



20 

 

 

Figure 2.1: Adsorption in aqueous solution: chemisorption (a), physisorption (b), 

monolayer coverage (c), multilayer coverage (d). 

[14]. The use of metal oxides which have a favourable sorption to metals in terms of high 

capacity and selectivity has also been widely investigated [65].  

The adsorption process is described as a mass transfer process by which a substance is 

transferred from the liquid phase to the surface of a solid (adsorbent) and becomes bound 

by physical and/or chemical interactions [57]. Depending on the value of the adsorption 

enthalpy, adsorption can be characterized as chemical adsorption (chemisorption) or 

physical adsorption (physisorption) (Figure 2.1a,b). Chemisorption is carried out by the 

chemical interaction of molecules of the adsorbent and adsorbate, whereas physisorption 

is driven by the van der Waals forces (dipole-dipole interactions, dispersion forces, 

induction forces). The accumulation of adsorbate on the surface of adsorbent can form a 

monolayer or multilayer coverage (Figure 2.1c,d).   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) 
 

(b) 
 

(c) 
 

(d) 
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Mathematically adsorption process can be described by using kinetic and isotherm 

models [66]. The physico-chemical parameters of kinetic and isotherm models along with 

the underlying thermodynamic assumptions provide an insight into the adsorption 

mechanism, surface properties, and the degree of affinity of the adsorbents [67]. Among 

various isotherm models describing adsorption process in aqueous phase such as Sips 

model [68], Toth model, the Brunauer-Emmett-Teller (BET) model, the Dubinin-

Radushkevich model [67] – Freundlich [69] and Langmuir [70] are the most commonly 

used isotherm models.  

Langmuir isotherm refers to the homogeneous adsorption assuming a monolayer 

adsorbent surface coverage. Freundlich isotherm widely applied in heterogeneous 

systems describes a multilayer adsorption process [67]. The choice of experimental 

variables to obtain laboratory equilibrium adsorption data narrows generally down to the 

following two: adsorbate concentration and adsorbent dose where either one or both can 

be varied [71]. In the study of adsorption kinetics, two kinetic reaction models – the 

pseudo-first order and pseudo-second order adsorption kinetic models, the Elovich or 

Roginsky-Zeldovich models, and the intraparticle diffusion model are commonly used to 

describe the intrinsic kinetic adsorption constant mathematically [66,72]. The application 

of nonlinear optimization techniques such as nonlinear regression instead of the linear 

methods are recommended for an accurate estimation of the adsorption kinetic and 

isotherm models parameters [66].  

 

2.8 The Application of Adsorption for Al Removal  

According to the literature survey metals removal by means of adsorption was found to 

be the method of choice [51,73]. The general tendency is to find cost-effective adsorbents 

which remove metals from aqueous solutions effectively. The data from Table 2.2 show 

that mainly organic or having organic components sorbents are capable for Al removal 

from water most of which were previously investigated. Various materials including 

activated carbon and its modified forms [12,15,33,74,75], (bio)polymers (poly(γ-glutamic 

acid), ionic imprinted polymer IIP-PEI/SiO2, polyacrylonitrile (PAN) beads) [2,54,76], 
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alizarin yellow-attached magnetic poly(2-hydroxyethyl methacrylate) (mPHEMA) beads 

[77], silica gel grafted with polymer containing a functional monomer for metal chelating 

[78], char [18,75], marble wastes [17],  natural zeolite [16], marine alga (Cystoseira 

Baccata, Sargassurn fluitans) [79,80], powder and ash of leaves (Achiranthus Aspera) 

[81], fluted pumpkin (Telfairia Occidentalis) waste biomass [82], aluminosilicate clay 

minerals (montmorillonite, kaolinite, vermiculite) [83], clay and starch [84]  showed their 

effectiveness toward Al removal from aqueous solution (Table 2.2). The outcomes of 

literature sources on Al adsorption can be briefly summarized as follows:  

o adsorption can be an effective method, various materials are capable to remove up 

to 95–98% of Al concentration from water, 

o the efficiency of Al adsorption in most cases is strongly pH dependent and the 

sorbent choice is based on the treated water characteristics,  

o at the optimal solution pH the adsorption equilibrium is reached within 0.5–360 

min and in most cases 60 min or less depending on the initial Al concentration 

and sorbent dose is sufficient to reach the equilibrium, 

o the variation in the results of Al removal can be attributed to the different nature 

of each sorbent, 

o a very limited number of investigations on the process of Al adsorption from 

strong alkaline solutions (pH ≥ 8.0) has been studied,   

o the limited number of studies investigating the effect of ions usually present in 

natural water bodies on the removal of Al by adsorption has been carried out. 
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Table 2.2: Comparison of sorption performance of various materials under optimal experimental conditions for Al removal 

from aqueous solutions. 

Sorbent pH Temperature, 

oC 

Sorbent 

dose, g L−1 

Initial Al 

concentration, mg L−1 

Equilibrium/contact 

time, min 

Al removal, 

% 

Effect of ions 

study 

References 

1. Date-pit activated 

carbon 

4.0 22 2.0 5.0 

50.0 

1440 **) 

1440 **) 

52 *) 

18 *) 

– [33] 

2. BDH activated carbon 4.0 22 2.0 5.0 

50.0 

1440 **) 

1440 **) 

53 *) 

18 *) 

– [33] 

3. Activated carbon 4.0 N/D 20.0 3.0 5 95 *) – [74] 

4. Beach cast seaweed  4.0 23 2.5 10.0 

100.0 

30 **) 

30 **) 

80  

80  

– [79] 

5. Biopolymer 4.0 37 0.6 10.0 

50.0 

1 **) 

1 **) 

81  

96  

+ [2] 

6. Marine algae 4.0 N/D 1.0 N/D 600 80 – [80] 

7. Aluminosilicate clay 

minerals 

4.0 25 N/D N/D 0.5 N/D – [83] 

8. Rice husk char  4.2 30 2.0 3.0 120 98 – [75] 

9. Magnetic activated 

carbon/tungsten 

nanocomposite 

5.0 24 0.3 10.0 45 90 + [12] 

10. Fluted pumpkin waste  5.0 24 5.0 10 120 95 *) – [82] 

11. Surface imprinted 

polymer 

5.0 25 2.0 N/D 30 N/D – [76] 
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*) Al removal % calculated using the data reported in journal articles. 
**) Contact time. 

N/D: not detected. 

Presence (+) or absence (−) of the ions tests results. 

pH scale:  acidic, neutral, alkaline solution.

Table 2.2. Continuation. 

12. mPHEMA beads 5.0 25 2.0 100.0 60 98 + [77] 

13. PAN-based adsorbent 5.6 20 N/D 1.0 1440 >99 – [54] 

14. Silica gel grafted with 

polymer 

6.0 20 1.0 0.5 80 92 + [78] 

15. Powder of leaves  6.0 N/D 2.5 50.0 60 >99 + [81] 

16. Ash of leaves 6.0 N/D 2.0 50.0 30 >99 + [81] 

17. Natural zeolite  6.0 30 2.0 1.6 

40.0 

60 66 

85 

– [16] 

18. Clay  6.5 30 0.25 100.0 90 90 – [84] 

19. Starch  6.5 30 0.25 100.0 90 90 – [84] 

20. Powdered marble 

wastes  

7.0 

 

25 0.1 1.0, 3.0 

4.0, 8.0 

5 

25 

>99 

>99 

+ [17] 

21. Refuse derived char 8.0 23 2.0 100.0 120 93 – [18] 

22. Granular activated 

carbon with FeCl3 

8.0 20 5.0 2.15 

10.3 

360 

360 

83 *) 

92 *) 

– [15] 
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The data of Table 2.2 show that a limited number of inorganic adsorbents applied to Al 

removal from aqueous solution was previously studied and most of investigations was 

performed in the acidic pH range. The recent study on the adsorption of metal cations 

Cd2+, Cu2+, and Pb2+ from water onto vermiculite concrete and aerated autoclaved light 

concrete (aerocrete) modified with iron oxyhydroxide showed an effective metal removal 

[85]. The cost of vermiculite concrete and aerocrete vary within US $6–11 per tonne−1 

making it economically feasible [85]. In recent years, the number of application of 

titanium dioxide (TiO2) as an adsorbent which is relatively cheap, non-toxic, insoluble in 

water, and stable under operational conditions increases. It has been studied for the 

removal of toxic aquatic metal pollutants from aqueous solutions and showed a good 

adsorption performance [86,87]. Among other oxides, silica (SiO2) has also received a 

considerable attention, because of the large surface area and the ability to effectively 

adsorb metal ions from aqueous solutions [88]. 

The investigation of low-cost and reliable inorganic adsorbents for Al removal from 

aqueous solution needs further insights. The application of this group of adsorbents can 

be suitable for the removal of Al from natural water bodies with a potential to increase 

removal efficiency and reduce the contact time to reach equilibrium, to use low adsorbent 

doses allowing to decrease Al concentration below the guidelines, and to study the Al 

adsorption in both acidic and alkaline water solutions.   
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Chapter 3  

3 Study of Aluminum in Groundwater using Chemometric 
Methods 

3.1 Introduction 

It is enough to point out that Aluminum (Al) is a part of clay composition to understand 

its wide occurrence in the Earth crust [1,2]. The metal is present in all types of natural 

water sources and additionally comes to drinking and industrial waters from alum used as 

a coagulant in water treatment technologies [3,4]. In soil and natural waters, Al ions can 

form complexes with a series of organic and inorganic ligands. However, the information 

on speciation of dissolved Al is rather limited. Furthermore, the chemical behaviour of Al 

species and their ecological and health effect are even less understood [5]. The 

recommended upper boundary limit of Al concentration in drinking water is 0.20 mg L−1 

in accordance with the U.S. Environmental Protection Agency [6]. The recent research 

showed the elevated Al concentrations in drinking water correlate with the increased 

incidence of neurological disorders [7].  

The high Al level in the freshwater resources has been recognized as a serious problem in 

many countries, for example, Canada, China, Poland, India, etc. [8–12]. One of the 

locations where prohibitive Al concentrations in natural waters have been found is the 

Khibiny alkaline massif area which belongs to the Baltic hydrogeological massif (Kola 

Peninsula) [13,14]. The main objective of current study is revealing and analyzing the 

patterns of Al concentration variability in the Khibiny area and its possible associations 

with various groundwater quality parameters by applying chemometric methods. 

Сhemometric methods have several advantages including a broad range of applications, 

the ease of use and results interpretation. The chemometrics in environmental analysis 

comprises a variety of mathematical methods aiming to the identification, assessment, 

modelling, and prediction purposes depending on the data structures and the objective of 

study [15,16]. The univariate and multivariate regression methods are successfully used 

for the water quality assessment. The efficiency of the approach has been demonstrated 
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by a number of recent water quality monitoring research where the application of 

regression methods results in a possibility of evaluation spatial and temporal variations in 

drinking water quality and identification of pollution sources [17–19].  

The spectral analysis based on fast Fourier transform (FFT) algorithm as a part of 

chemometric methods is extensively used in various fields of engineering and science to 

analyze laboratory and field data. Its application to environmental data allows researchers 

solving a number of tasks related to water quality as well as biological and climatological 

problems [20–23]. Fourier transform decomposes a periodic time series into a linear 

superposition of sinusoids of different frequencies [22]. The main advantage of this 

approach lies in its capability to explain the patterns of dynamics and strength of 

variations of various components under consideration.  

The data of groundwater quality monitoring were analyzed by applying chemometric 

methods including Pearson correlation, multiple linear regression, and spectral analysis 

based on FFT algorithm. This combination of methods and proposed analysis framework 

not only allows for identifying the degree of association between Al concentrations and 

other physico-chemical parameters of groundwater but also revealing the frequency 

bands describing the strength of variations of various groundwater quality parameters 

(Appendix A). 

 

3.2 Study Area and Materials 

3.2.1 Location and Environmental Conditions 

The area of interest – the Khibiny alkaline massif located between two lakes Imandra and 

Umbozero at the central part of Kola Peninsula. The Khibiny alkaline massif area 

occupies 1327 km2 and has a ring structure. More than 90% of massif area is taken by 

nepheline syenite, where about 21% of its chemical composition is Al2O3 [14,24]. The 

massif is a place of the large-scale industrial production of apatite. The mining industry 

defines the social and economic region development. The influence of mining industry is 

considered as a threat to ecosystem’s sustainably in the region. It has changed the natural 
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landscape, increased the level of air pollution and dramatically lowered the quality of 

surface waters [25]. Up to 9.0×106 m3 of industrial wastewater enter the natural water 

bodies without a sufficient pre-treatment annually. This resulted in a serious 

contamination of surface water with aluminum, strontium, iron, manganese, zinc, alkali 

and alkaline earth metals, which in high concentrations have a negative effect on aquatic 

organisms and humans [26]. Several natural water bodies such as lake Imandra, Belaya 

and Zhemchuzhnaya rivers are considered as contaminated making the groundwater 

resources an alternative option for water supply of the area [25].  

A deposit of groundwater has been discovered in the southern part of the Khibiny 

alkaline massif and used as a local freshwater source for more than 40 years. Over the 

past 25–30 years groundwater became the main source of household water supply in the 

area. A current water treatment method – UV disinfection does not allow decreasing Al 

concentration to keep it below the guidelines [13]. Under these circumstances, the 

analysis of available field dataset as well as the development of effective water treatment 

method are becoming predominant tasks of local water supply.  

 

3.2.2 Field Dataset 

There are two groundwater intakes – “Central” and “Bolotny” that supply with water the 

city of Kirovsk with a population of approximately 27,000. The water of “Central” water 

intake having prohibitive Al concentrations and pH values that are much higher than 

local standards is the main water supply source, while water of “Bolotny” intake is under 

the drinking water guidelines [13]. A systematic monitoring of household water supply 

source “Central” has a seasonal basis – water samples in most cases were collected four 

times a year in winter, spring, summer, and fall. It includes ten operating wells equipped 

with centrifugal submersible pumps having an average discharge of 185 m3 hour−1 each. 

The operating wells have a depths range of 72–131 m. The field dataset for each well 

includes 12 physico-chemical characteristics of groundwater: Al, pH, fluoride F−, nitrate 

NO3
−, chloride Cl−, sulphate SO4

2−, total dissolved solids TDS, turbidity, colour, 

hardness, calcium Ca2+, magnesium Mg2+. The observations of each variable covered the 
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period of 112–161 months during 1999–2012 depending on the well (Table S3.1 of 

Appendix B).   

 

3.3 Methods 

3.3.1 Time Domain Analysis 

The initial step of analysis included the application of descriptive statistics to assess and 

summarize the basic properties of groundwater characteristics of each well. Prior 

calculating the descriptive statistics, the time series plots were examined with the 

application of the Grubbs’ outlier test to identify and remove unusual observations – 

outliers [27].  

The Pearson correlation and multiple linear regression analysis were applied to 

groundwater monitoring time series by using Minitab software to relate Al concentrations 

as a response variable to a set of predictor variables. The linearity and normality were the 

main assumptions for the regression analysis. The commonly used significance level (α-

level) of 0.05 was a criterion for interpreting the significance of calculated statistical 

parameters [28]. In consideration of the established α-level, the guidelines for 

interpretation of statistically significant Pearson correlation coefficient r values were 

chosen as follows:  |r| ≤ 0.3 indicates a poor or no linear relationship, 0.3 < |r| < 0.7 – a 

moderate linear relationship and |r| ≥ 0.7 – a strong linear relationship. To improve the 

strength of linear correlation between Al level and other statistically significant variables 

the exponential, logarithmic, power, and quadratic transformations [28] were applied to 

the time series and after that, the correlation coefficients were recalculated. 

Multiple linear regression analysis was applied to examine the association between Al 

and predictor variables and to develop a mathematical model describing quantitatively 

this association. The forward selection of variables procedure was used to test the 

statistical significance of groundwater quality parameters under consideration in multiple 

regression [28]. 
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It is important to diagnose multicollinearity that arises when at least two highly correlated 

predictor variables are assessed simultaneously in a multiple regression model. The 

adverse impact of multicollinearity in regression analysis is very well recognized and 

much attention to its effect is documented in the literature [29]. In current study, 

multicollinearity was assessed by the value of variance inflation factor (VIF). VIFs get 

their name from the fact that they report how much the variance of the estimated 

coefficients increases is due to collinear predictor variables. Specifically, VIF reports 

how much of a particular regressor’s variability is explained by the rest of regressors in 

the model due to correlation among those regressors [30]. 

 

3.3.2 Frequency Domain Analysis 

The spectral analysis based on discrete Fourier transform (DFT) allowed converting time 

domain series (e.g. the results of groundwater monitoring) into the frequency domain. 

The Fourier coefficients, power spectral density (PSD) and cumulative spectral power 

(CSP) estimates were calculated to identify and quantify the dominant frequencies, to 

characterize periodicities of variations and explore the strength of variations, so-called 

energies, of each variable for all ten water wells. The spectral analysis was performed 

using MATLAB. The Fourier coefficients Cj were calculated as follows [31]: 

𝐶𝑗 = ∑ 𝑑(𝑡𝑛) ∙ 𝑒𝑥𝑝(−𝑖𝜔𝑗𝑡𝑛) 

𝑁

𝑛=1

  (3.1) 

where d(tn) – value of variable at time tn, i = √−1, n – number of discrete time 

observations, n = 1,...,N, j = 0,…,N–1, ωj = 2×πfj – angular frequency, fj – ordinary 

frequency. Based on this the one-sided PSD estimates showing the strength of variation 

as a function of frequency were calculated with the normalizing factor considering the 

Parseval’s theorem [32]:  

𝑃(𝑓𝑗) = (2 ∙ (∆𝑡/𝑁)) |𝐶𝑗|2 (3.2) 
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where P(fj) – PSD estimates at frequency fj, ∆t – an equally spaced time interval. The 

PSD estimates were integrated over the frequency range to obtain CSP estimates which 

allowed to identify the frequency range where the main energy inflow is accumulated. 

The computations related to spectral analysis of dataset required pre-processing to make 

the time series of each separate well stationary and regularly sampled [33,34]. The 

application of linear detrending eliminated trends from the time series by taking a 

difference between consecutive observations. The missing observations in the 

groundwater monitoring data series were filled in with 35-day step data interpolation. 

When choosing the 35-day interval, the Nyquist critical frequency fc=(2×∆t)−1 was taken 

into consideration to prevent the problem of aliasing [31,32]. 

 

3.4 Results and Discussion  

3.4.1 Descriptive Statistics 

The descriptive statistics measures (Table 3.1) allowed assessing the central tendencies 

and variabilities of field data characteristics. The calculations exhibited that the pH mean 

value is 9.56 and its variation is insignificant within 13 years according to the StDev 

value of pH time series. This concludes that there are constant alkaline conditions in the 

groundwater. The range of TDS concentrations falls within the maximum allowable limit 

of 500 mg L−1 [6]. The concentrations of anions are varied considerably, although at the 

relatively low levels. For example, the concentrations of SO4
2− and Cl− vary in the ranges 

0.77–27.80 and 0.15–6.86 mg L−1 respectively. The Al concentration in groundwater 

exceeds the drinking water guideline of 0.20 mg L−1 up to nine times while the variation 

range is 0.19–1.81 mg L−1. The difference between Q3 and Q1 indicates that the middle 

50% of all observations of Al concentrations are within the range of 0.67–1.10 mg L−1 

that in 3–5 times exceeds the acceptable level.  

The results of calculations showed that most of the time the “Central” intake water does 

not meet established drinking water standards at least for two factors: the level of pH and 

concentration of Al. The mean, median and mode values for Al are almost equal that 
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indicates a normal distribution of Al concentrations. The distribution is centered at the 

concentration of 0.88 mg L−1 that significantly exceeds the guideline (Figure 3.1).  

 

Table 3.1: Calculated descriptive statistics measures assessing the central tendencies 

and variabilities of field data characteristics of “Central” water intake 1999–2012. 

StDev – standard deviation; Min – minimum; Max – maximum; Q1, Q3 – first and third 

quartiles. 

Parameters Units Mean StDev Min Q1 Median Q3 Max Mode 

Al mg L−1 0.88 0.32 0.19 0.67 0.88 1.10 1.81  0.87 

pH – 9.56 0.25 8.74 9.43 9.63 9.74 9.96  9.62 

F− mg L−1 0.13 0.10 0.00 0.04 0.10 0.19 0.62  0.04 

NO3
− mg L−1 2.14 2.55 0.04 0.48 1.00 2.58 13.12  0.44 

Cl− mg L−1 1.86 0.88 0.15 1.22 1.70 2.25 6.86  1.00 

SO4
2− mg L−1 7.15 5.66 0.77 3.11 5.30 9.20 27.80  2.06 

TDS mg L−1 55.81 21.90 25.20 40.25 48.00 62.95 126.00  38.70 

Turbidity mg L−1 0.27 0.27 0.00 0.05 0.25 0.40 1.84  0.00 

Colour colour units 1.48 1.52 0.00 0.40 0.90 2.21 8.18  0.00 

Hardness mmol L−1 0.03 0.05 0.00 0.00 0.02 0.03 0.51  0.00 

Ca2+ mmol L−1 0.16 0.33 0.00 0.00 0.00 0.10 2.00  0.00 

Mg2+ mmol L−1 0.05 0.11 0.00 0.00 0.00 0.02 0.60  0.00 

Figure 3.1: The distribution of Al concentrations in water of intake “Central”, 

1999–2012; solid line indicates the fitted normal distribution; counts correspond to 

the number of times a specific Al concentration occurs. 
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3.4.2 Pearson Correlation 

The Pearson correlation coefficients r describing the association between Al 

concentrations and predictor variables showed a resembling strength and a tendency of 

variation among all wells. The correlation matrix reflecting the whole dataset (Table 3.2) 

contains r values exhibiting relationships between two variables and their corresponding 

probability values (p-values). The application of exponential transformation technique to 

initial data provided up to 15% improvement in correlation strength between Al 

concentrations and other variables. Calculated results revealed the moderate linear 

relationships between Al concentrations and pH values, concentrations of NO3
−, SO4

2−, 

Cl−, and TDS as well as the strong and moderate linear relationships between some 

predictor variables (Table 3.2). The Al concentrations have a positive correlation with pH 

values, while its pairwise correlations with concentrations of NO3
−, SO4

2−, Cl−, and TDS 

have a negative interconnection. The investigation of a possible connection between Al 

concentrations and physical characteristics of water intake “Central” such as well 

discharge and depth did not show any statistically significant correlations.  

The results of computations supported the dependency between TDS and major anions as 

TDS is determined by the amount of dissolved substances. The calculated degree of 

association between Al and pH agrees with the theory describing the pH-dependency of 

Al and considering that the Al3+ ion, which is released to natural waters from Al-bearing 

minerals such, for example, as a nepheline syenite of Khibiny alkaline massif, is 

octahedrally coordinated with six water molecules and exists as Al(H2O)6
3+. This ion is a 

proton donor and moderately acidic and its hydrolysis in natural waters is thus the rule 

rather than the exception [5]. In accordance with a commonly used concept, there are four 

mononuclear species of Al: Al(OH)2+, Al(OH)2
+, Al(OH)3

0, and Al(OH)4
− which 

formation is strongly pH dependent and deals with hydrolysis reactions [1]. In the 

alkaline conditions – that is one of the major features of Khibiny massif groundwater – 

the fourth of a set of Al hydrolysis reactions takes place: 

𝐴𝑙3+ + 4𝐻2𝑂 = 𝐴𝑙(𝑂𝐻)4
− + 4𝐻+ (3.3) 
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This reaction and the fact that a mean pH value of “Central” intake water is 9.56 evidence 

in favour of the hypothesis that the dominant Al specie in water is Al(OH)4
−. 

 

Table 3.2: Calculated Pearson correlation coefficient matrix of “Central” water 

intake field data 1999–2012. 

*) Bolded values indicate moderate and strong relationships. 
**) p-value = 0.00 corresponds to the p-value < 0.001. 

N – the total number of observations. 

 

3.4.3 Multiple Linear Regression 

Among the investigated parameters (Table 3.1), pH, NO3
−, SO4

2−, Cl−, and TDS were 

N=464 ln Al pH F− NO3
− Cl− SO4

2− TDS Turbidity Colour Hardness Ca2+ 

pH 0.66 *)                     

  0.00 **)                     

F− –0.02 –0.05                   

  0.94 0.28                   

NO3
− –0.68 –0.67 –0.05                 

  0.00 0.00 0.32                 

Cl− –0.40 –0.36 –0.04 0.40               

  0.00 0.00 0.35 0.00               

SO4
2− –0.59 –0.61 –0.04 0.75 0.43             

  0.00 0.00 0.35 0.00 0.00             

TDS –0.69 –0.67 –0.06 0.86 0.44 0.78           

  0.00 0.00 0.21 0.00 0.00 0.00           

Turbidity 0.13 –0.10 0.01 0.03 –0.08 –0.06 0.03         

  0.01 0.09 0.84 0.50 0.10 0.17 0.58         

Colour 0.02 –0.14 –0.11 0.17 0.04 0.10 0.14 0.45       

  0.66 0.00 0.02 0.00 0.42 0.03 0.03 0.00       

Hardness –0.21 –0.24 –0.06 0.28 0.09 0.21 0.24 0.01 0.20     

  0.00 0.00 0.18 0.00 0.06 0.00 0.00 0.90 0.00     

Ca2+  –0.03 –0.15 0.15 0.12 0.18 0.16 0.10 –0.05 0.01 0.30   

  0.56 0.00 0.00 0.00 0.00 0.00 0.03 0.30 0.78 0.00   

Mg2+ –0.15 –0.06 0.07 0.21 0.00 0.12 0.19 0.06 0.16 0.30 0.10 

  0.01 0.40 0.16 0.00 0.98 0.01 0.00 0.20 0.00 0.00 0.03 

Cell Contents: Pearson correlation coefficient r 

p-value (-level = 0.05) 
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identified by Pearson correlation as statistically significant variables and were examined 

by the application of multiple linear regression analysis. In accordance with the results of 

calculation pH, NO3
−, and Cl− time series were used to develop a multiple regression 

mathematical model while SO4
2− time series did not meet a minimum criterion (p-value ≤ 

0.05) to stay in it.  The TDS time series were also excluded from the further analysis 

based on the results of multicollinearity check (Table S3.2 of Appendix B). Calculations 

showed that they have the highest VIF value (close to five) explained by strong and 

moderate correlations between this variable and the rest of assessed predictor variables 

(Table 3.2).  

The next step of data examination has been done with the application of analysis of 

variance (ANOVA) method which allows separating the contributions of various sources 

to the total variation of response variable in a set of experimental data [17]. The 

coefficient of determination R2 giving the proportion of Al variation explained by the 

predictor variables is 0.54 (54%). The sequential chain of contribution to the R2 

percentage is as follows: pH > NO3
− > Cl−. The numerical results of ANOVA are 

statistically significant in accordance with their corresponding p-values (≤ 0.05) and a 

multiple regression model can be given as follows:  

𝑙𝑛 𝐴𝑙 = −5.86 + 0.62 × 𝑝𝐻 − 0.07 × 𝑁𝑂3
− − 0.06 × 𝐶𝑙− (3.4) 

The r value corresponding to the model above is 0.74 that falls within a strong correlation 

range. The model shows a pH-dependency and quantitative impact of pH on the Al 

concentration variability when other predictor variables are held constant is the highest. 

The calculated VIF values for pH, NO3
−, and Cl− time series were less than two 

concluding that multicollinearity is negligible when these variables are assessed 

simultaneously in the proposed mathematical regression model (Table S3.3 of Appendix 

B). Figure 3.2 shows a variability of spatially averaged within the whole “Central” water 

intake time series of various variables included in equation (3.4). The Al and pH time 

series showed a general increase with the 8.6×10−5 mg L−1 day−1 and 1.6×10−5 day−1 rate 

of change respectively while the Cl− and NO3
− time series exhibited a decline.  
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3.4.4 Spectral Analysis Based on FFT 

The spectral analysis revealed that the energy spectrums of Al, pH, NO3
−, and Cl− have 

similar patterns of variability in frequency domain throughout the all ten groundwater 

wells of “Central” water intake. The calculations of PSD estimates allowed to identify the 

major frequency bands corresponding approximately to 5–7, 13–17, and 20–34 month 

periods. The fluctuations within these periods contribute mostly to the total temporal 

variability of time series under consideration. Figure 3.3 and Figure S3.1 (Appendix B) 

represent characteristic for the “Central” water intake examples of calculated energy 

spectrums of Al, pH, NO3
−, and Cl−. There is a good agreement between the main 

features of Al, pH, NO3
−, and Cl− energy spectrums including spikes identified by 

calculated PSD estimates. For example, there is a typical for all variables spike 

Figure 3.2: Spatially averaged within water intake “Central” Al (a), Cl− (b), pH (c), 

and NO3
− (d) time series; dashed lines denote linear fits within 13 years. 
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corresponding to the period of approximately seven months although its intensity differs 

depending on the particular variable. The spikes within 5–7 months and 13–17 frequency 

bands can possibly reflect the semi-annual and annual cycles respectively. There are also 

appeared considerable low-frequency variations in the range of 20–34 months period in 

Al, NO3
−, and Cl− spectrums. The low-frequency variation in pH spectrum also exists but 

with the lower intensity compared to other variables. These long-term fluctuations can 

potentially describe anthropogenic influence.  

 

The calculated CSP estimates of all four investigated variables showed that the main 

energy inflows fall within a frequency range of (1.0÷5.0)×10−3 cycle day−1 corresponding 

Figure 3.3: Calculated PSD of Al (a), Cl− (b), pH (c), and NO3
− (d) time series, well 8 

of water intake “Central”. 
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to the period extend of 6.7–33.3 months (Figure 3.4a). Calculations identified the similar 

patterns of exponential decay of PSD values with frequency increasing. It is proportional 

approximately to the −4 power characterizing the falloff in the strength of variations. The 

decay occurs depending on the well at the frequency (2.1÷5.0)×10−3 cycle day−1 (Figure 

3.4b).  

 

 

The raw data of water quality monitoring have an element of irregularity in sampling 

periods that can obstruct the direct application of FFT algorithm. The examination using 

Lomb-Scargle periodogram method [35] was performed to identify the influence and 

applicability of data interpolation that was used in current study. The method was applied 

to the Al, pH, NO3
−, and Cl− time series with irregular sampling interval. The calculations 

using both Lomb-Scargle and FFT algorithms revealed the close results especially within 

Figure 3.4: Calculated PSD and CSP estimates based on Al time series of the water 

intake “Central”: Calculated CSP estimates of Cl−, pH, and NO3
−, well 8 (a); 

vertical dashed-dotted lines denote the frequency boundaries of main energy 

impact; an example of PSD changes over frequency range with the typical pattern of 

energy decay, well 7 (b); dashed line denotes a slope describing the falloff in the 

strength of variations. 
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the range of frequencies where the main energy inflow falls (Figure 3.5). The MATLAB 

code used for the spectral analysis calculations is shown in Appendix C. 

 

3.5 Conclusions 

The current study presents the first results of chemometric methods application to assess 

and interpret the outcome of long-term field data monitoring of Khibiny alkaline massif 

(Kola Peninsula) groundwater with the prohibitive concentrations of Al limiting the use 

of groundwater for the local household water supply. The results of analysis allow better 

understanding the major features of Al concentration variability as well as associations 

between Al and other groundwater quality parameters examined at both time and 

frequency domains. Among 11 considered physico-chemical parameters pH values, 

concentrations of NO3
-, SO4

2−, Cl−, and TDS were the main statistically significant 

factors associated with the Al concentration variation in groundwater. It was revealed that 

exponential data transformation technique applied to the raw field data provided up to 

15% improvement in pairwise correlation. Multiple regression model (Equation (3.4)) 

Figure 3.5: Calculated CSP estimates of Al with application of FFT algorithm (a) 

and Lomb-Scargle method (b); well 8 of water intake “Central”. 
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considering the result of multicollinearity check explained up to 54% of Al concentration 

variability linked to pH values, concentrations of Cl− and NO3
−.  

Spectral analysis based on FFT algorithm applied to Al, pH, NO3
−, and Cl− time series 

identified similar variability patterns and three major frequency bands corresponding 

approximately to 5–7, 13–17, and 20–34 month periods. The periodicities within these 

frequency bands are responsible for most of the total temporal variation of variables 

under consideration. The main energy inflow is accumulated in the frequency range of 

(1.0÷5.0)×10−3 cycle day−1 as calculated CSP estimates showed.  

The results obtained in this study represent an initial quantitative data analysis step 

preceding the development of effective technology keeping Al concentrations under 

the guideline of accepted water quality standards. The current study of groundwater 

parameters dynamics did not reveal the evidence of direct anthropogenic influence on the 

elevated Al concentration in groundwater of “Central” water intake. It rather supports the 

outcomes of recent geochemical analysis according to which at the big depths of Khibiny 

alkaline massif there are reduction conditions promoting the Aluminum leaching [14]. On 

the other hand, the long-period variations (20–34 months) revealed by the spectral 

analysis can potentially describe anthropogenic influence. However, more data are 

needed to investigate this.  

The incorporation of additional factors reflecting industrial activities in the area such as 

waste discharge and its changes into the analysis and modelling will be beneficial to 

further examination of Al concentration variability. Although the current investigation 

has been done for the particular metal and groundwater source, a similar approach can be 

successfully applied to any other groundwater sources and can be extended to various 

toxic metals.  
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Chapter 4  

4 Assessment of Khibiny Alkaline Massif Groundwater 
Quality using Statistical Methods and Water Quality 
Index 

4.1 Introduction  

It is well-known that natural processes and anthropogenic influence can change the 

quality of natural water resources limiting the water use for drinking, industrial, and 

agricultural purposes [1]. The contamination of drinking water with metals, due to their 

potential acute (occurring in the short term) and/or chronic (occurring over the long term) 

adverse effect on human health can lead to life-threatening cancers and neurological 

disorders [2,3]. Negative health effects make metal pollution of natural water resources 

an ongoing global environmental problem nowadays.  

Aluminum (Al) is widely distributed in the environment comprising about 8% of the 

Earth outer crust [4]. It is released by both anthropogenic and natural sources and is 

present in all types of natural water bodies including wastewater [4]. The prohibitive 

concentrations of Al in natural water sources exceeding the recommended standard of 

0.20 mg L−1 according to the U.S. Environmental Protection Agency [5] are recognized 

as a serious issue in many countries in the worldwide as a growing number of 

epidemiological studies suggested the association between the increased incidence of 

neurological diseases and the elevated Al concentrations in drinking water [6].  

A study on the water quality assessment conducted in China defined Al as one of the 

dominant contaminants in the analyzed groundwater where Al concentrations were 

almost up to 25 times higher than the local drinking water guidelines [7]. The surface 

water assessment led in Pakistan revealed that Al concentrations significantly exceeded 

the drinking water guidelines ranging from 1.01 to 4.27 mg L−1 with a mean value of 2.10 

mg L−1 [8]. One of the locations where prohibitive Al level in groundwater is described 

as a serious health concern when used for the household water supply is the Khibiny 
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alkaline massif area which belongs to the Baltic hydrogeological massif (Kola Peninsula) 

[9].  

The analysis of environmental monitoring data includes the application of various 

mathematical methods working toward achieving a quantitative description, modeling, 

and forecasting purposes depending on the objectives of research and data structures. The 

multivariate statistical methods such as cluster analysis (CA), factor analysis (FA), and 

principal component analysis (PCA) are powerful tools which are widely applied for the 

comprehensive water quality assessment [10–12]. CA is the data classification method 

while FA and PCA are methods used for the data reduction [13,14]. The commonly used 

FA type, namely exploratory FA is often applied to identify several factors and variables 

that belong to specific factors. PCA is one of the exploratory factor analytic procedures 

[14]. The water quality indices (WQI) mathematically combine the water quality 

parameters providing a general and readily understood description of the water source 

under consideration [15]. Providing interpretation and communication of environmental 

data, WQI can be applied to reduce the multivariate nature of water quality data [16–18]. 

Among various WQI the Canadian Council of Ministries of the Environment Water 

Quality Index (CCME WQI) is used extensively in Canada and throughout the world for 

reporting on the state of water quality [15].  

A limited number of studies on Khibiny alkaline massif groundwater quality assessment 

by means of field data statistical analysis has been reported in the literature until now 

[9,19]. Taking this into consideration as well as a harmful influence of elevated 

aluminum concentration on groundwater quality, the current study has been conducted. 

The present paper is focused on the application of univariate and multivariate statistical 

methods and CCME WQI to assess and interpret the Khibiny alkaline massif 

groundwater quality field dataset with an emphasis on elevated Al concentrations. The 

main objectives are (i) quantitative description of interactions between groundwater 

quality parameters and (ii) evaluation of temporal variation of groundwater quality 

parameters. The results obtained can be used for water management and to develop and 

implement the treatment technology maintaining Al concentrations below the drinking 

water standards. 
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4.2 Materials and Methods 

4.2.1 Environmental Conditions of Study Area and Field Dataset 

The Khibiny massif has been investigated since the 19th century. Occupying the area of 

1327 km2, the Khibiny massif is located at the central part of Kola Peninsula and is 

considered as the world’s largest alkaline complex [20]. The local climate is strongly 

affected by the North Atlantic Current and is classified as slightly continental with an 

annual temperature and precipitation of −3.7 ̊C and 1070 mm, respectively [21,22]. The 

region geology is mainly represented by Precambrian crystalline rocks related to 

Fennoscandian crystalline massif [22]. Khibiny area is a minor intermontane aquifer 

system including Quaternary and bedrock aquifers. The groundwater of these aquifers is 

recharged from precipitation in the catchment area of Lake Bolshoy Vudyavr [19].  

Over 90% of the total area of the Khibiny massif is occupied with nepheline syenites, 

where almost 21% of its chemical composition is aluminum oxide [23]. The apatite 

reserves have driven a large-scale industrial production of apatite in Khibiny alkaline 

massif area. The impact of well-developed mining industry is considered as a negative 

factor influencing the local ecosystem’s sustainably. It has contributed to the increasing 

level of air pollution and contamination of surrounding surface water sources [24].  

Over the past three decades, the groundwater aquifer located in the southern part of the 

Khibiny alkaline massif became one of the essential sources of local household water 

supply. The water intakes “Central” and “Bolotny” are two groundwater intakes 

supplying the city of Kirovsk and area with water. The water of “Central” intake is the 

main local water supply source having restrictively high Al concentrations and high pH 

level, while the water quality parameters of intake “Bolotny” are within the drinking 

water standards [25]. The household water contamination with Al has become a serious 

concern in the organization and management of the local water supply. These conditions 

making the analysis of available field monitoring data of “Central” water intake aiming 

the development of an effective water treatment method becomes a predominant initial 

task of the water supply in the area.  
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The “Central” water intake includes ten operating groundwater wells. Each well is 

equipped with centrifugal submersible pumps providing an average discharge of 185 m3 

hour−1.  The depths of operating wells are 72–131 m with an average depth of 115.6 m. 

The data for each of ten operating groundwater wells of intake “Central” comprises 12 

groundwater quality parameters: Al, pH, fluoride F−, nitrate NO3
−, chloride Cl−, sulphate 

SO4
2−, total dissolved solids TDS, turbidity, colour, hardness, calcium Ca2+, magnesium 

Mg2+ that in most cases were collected seasonally. The total of 462 samples of each 

variable collected from 1999 to 2012 were analyzed by univariate and multivariate 

statistical methods. 

 

4.2.2 Descriptive Statistics and Multivariate Methods  

The major descriptive statistics measures (mean xm, standard deviation StDev, min, max, 

quartiles – 25%, median, 75%) and Spearman correlation coefficient matrix were 

calculated to assess and summarize the basic properties of groundwater parameters of 

each well and to quantitively analyze the associations between Al concentration and other 

groundwater quality parameters. The Spearman correlation coefficient rs is a widely used 

nonparametric measure assessing how well an arbitrary monotonic function can describe 

a relationship between two variables and is computed over the ranked data [11,26]. The 

application of rs does not require to make any assumptions regarding the frequency 

distribution of the variables and is not as sensitive to outliers (unusual observations 

within the dataset) as for example Pearson correlation coefficient [27]. The guidelines for 

interpretation of statistically significant rs values were chosen as follows: when the 

absolute value of rs is | rs | ≤ 0.3, 0.3 < | rs | < 0.7 and | rs | ≥ 0.7, the two variables would 

be regarded having a poor or no correlation, a moderate correlation and a strong 

correlation, respectively. The commonly used significance level (α-level) of 0.05 was a 

criterion for interpreting the statistical significance of computed rs values. The statistical 

significance was set at probability value (p-value) ≤ 0.05 [9,26]. 

The application of multivariate statistical methods to environmental monitoring datasets 

is beneficial when the results of basic statistics reveal statistically significant correlation 
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coefficients for several dataset parameters. The factor analysis (FA), principal component 

analysis (PCA) and cluster analysis (CA) are the most commonly used multivariate 

analysis methods for complex environmental datasets assessment [1,28]. Complex 

structures within the datasets could be extracted without losing any information by 

reducing them to a few dominating factors. FA/PCA is a convenient data reduction 

method which uses the extraction of eigenvalues and eigenvectors from the correlation 

matrix [28]. Each factor is extracted by means of PCA method and interpretation is based 

on the rotated factors and loadings (a measure of how much the variable contributes to 

the factor) [28]. The suitability of data to be applied to FA/PCA is assessed using Kaiser-

Meyer-Olkin (KMO) and Bartlett's sphericity tests [3,29]. The KMO test is a measure of 

sampling adequacy indicating the proportion of variance that is common, i.e., the 

variance that may be caused by underlying factors [30]. A high KMO value (close to 1) 

generally indicates that FA/PCA may be useful. The Bartlett's sphericity test examines 

the hypothesis that the correlation matrix comes from a population in which the variables 

are independent, i.e., an identity matrix [30]. The hypothesis is rejected when the 

significance of Bartlett's sphericity test is < 0.05 indicating that the data are adequate for 

FA/PCA [3,30].  

A well-recognized method for identifying groups called clusters from multivariate data 

objects is a cluster analysis (CA) [31]. Clustering procedures based on hierarchical, 

partitioning or two-step clustering methods are used to determine how clusters are to be 

formed [13]. Applied to environmental datasets, the hierarchical clustering methods allow 

combining the variables of similar observations into one group, followed by the next 

most similar observation into another group [28]. Having numerous advantages, the 

minor drawback of hierarchical clustering methods is a limited guidance to make a 

decision on the number of clusters. The only meaningful indicator relates to the distances 

at which the objects are grouped [13]. The application of hierarchical cluster analysis 

(HCA) using Euclidean distance as a measure of distance and Ward's method as a linkage 

rule produces the most distinctive clusters between the variables [28]. A dendrogram can 

be composed to illustrate the hierarchical arrangements of clusters produced. 
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The data standardization is recommended for FA/PCA and HCA to avoid 

misclassification due to the wide differences in data dimensionality [11,32]. One of the 

most commonly used data standardization technique so-called z-scale transformation for 

n variables each with N observations is calculated as follows: 

𝑍𝑖𝑗 = (𝑋𝑖𝑗 − 𝑥𝑚)/𝑆𝑡𝐷𝑒𝑣 (4.1) 

where Zij is a jth value of the standardized variable Zi, Xij is a the jth observation of the ith 

variable, i = 1, … ,n, j = 1,…,N, xm stands for the mean value, StDev is a standard 

deviation [32].   

The FA/PCA and HCA were performed on the to z-scale transformed Khibiny alkaline 

massif groundwater dataset to reduce the dimensionality of the dataset variables to 

several factors and group them into clusters. The calculated values of factor loadings 

using FA/PCA were classified as strong, moderate, and weak according to the absolute 

loading values of > 0.75, 0.75–0.50, and 0.50–0.30, respectively [1]. The HCA results 

were interpreted using a dendrogram displaying the distance level at which there is a 

merger of objects and clusters. The distance was rescaled to a range of 0–25, i.e., the last 

merging step to a one-cluster solution occurs at the rescaled distance of 25 [13]. 

 

4.2.3 Water Quality Index Calculation  

A water quality index (WQI) is a means by which the water quality datasets including 

several parameters can be summarized and expressed in a simple, concise, and consistent 

number representing the overall water quality. The Canadian Council of Ministries of the 

Environment Water Quality Index (CCME WQI) is extensively used worldwide to 

characterize the quality of water for several intended uses including agriculture, the 

protection of aquatic life and treated drinking water as well as a tool to characterize water 

intended as a source for drinking purposes [15,16]. CCME WQI is an objective-based 

index that reflects the results of comparison between measured parameters of water 

quality and accepted guidelines and produces a single score ranging from 0, representing 
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worst quality, to 100, representing best quality [15]. The CCME WQI incorporates three 

elements and can be calculated as follows: 

𝐶𝐶𝑀𝐸𝑊𝑄𝐼 = 100 − (√𝐹1
2 + 𝐹2

2 + 𝐹3
2 1.732⁄ ) (4.2) 

where F1 (scope) represents the percentage of parameters that do not meet their 

corresponding guidelines at least once during the considered period of time, F2 

(frequency) states for the percentage of individual tests that do not meet the guidelines, 

F3 (amplitude) represents the amount by which failed test values do not meet their 

guidelines, the divisor 1.732 normalizes the resultant values to a range between 0 and 100 

[15]. Based on the calculated CCME WQI score value the water quality falls  into one of 

the following categories: 95–100 indicates an excellent water quality, 80–94 a good water 

quality, 65–79 a fair water quality, 45–64 a marginal water quality, and 0–44 a poor 

water quality [15,16].  

The multivariate data processing was performed by using SPSS 16.0 statistical software 

package. The CCME WQI calculator 2.0 was used to compute CCME WQI score values 

from groundwater quality monitoring data [15]. 

 

4.3 Results and Discussion 

4.3.1 Descriptive Statistics of Groundwater Quality and Spearman 
Correlation 

The calculated descriptive statistics measures revealed that among 12 analyzed 

groundwater quality variables the concentration of Al and level of pH did not satisfy with 

the recommended drinking water quality standards. The amount of Al in groundwater 

exceeded the drinking water guideline of 0.20 mg L−1 up to nine times where the mean 

value was 0.88 mg L−1. Within the variation range of 0.19 to 1.81 mg L−1 only once 

during the 13-year monitoring period Al observation fell below the guideline value 

(Figure 4.1). The concentrations of anions Cl−, NO3
−, and SO4

2− were varied at the 

relatively low levels with respect to their guidelines values. The TDS concentrations were 
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varied significantly below the guideline of 500 mg L−1 in the range of 25.20 to 126 mg 

L−1 (Figure 4.1). According to pH mean value of 9.56 and corresponding standard 

deviation of 0.25 the groundwater under consideration has constant alkaline conditions. 

The observations of some organoleptic and physical characteristics of groundwater, as 

well as cations Ca2+ and Mg2+, were predominantly near not detectable level (< 0.001).  

Low concentrations of major anions such as Cl−, NO3
−, and F− in groundwater suggest 

that anthropogenic influence most likely do not influence its quality. The groundwater 

can be characterized as soft and low-mineralized according to the hardness and TDS 

levels, respectively.  

  

Figure 4.1: The variation of Al, major anions, and TDS concentrations in the 

groundwater of “Central” intake 1999–2012; quartiles 25%, 50% (median), and 

75% divide the data distribution into four parts; black-coloured triangle 

corresponds to the mean value. 
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The calculated Spearman correlation coefficient matrix (Table 4.1) revealed statistically 

significant correlations between each pair of groundwater quality parameters with rs 

values varying from |0.31| to |0.82|.  Both pH and Al had statistically significant 

correlations with major anions NO3
−, SO4

2−, Cl−, and TDS. Al and pH were 

interconnected with a moderate correlation coefficient equal to 0.50. The speciation and 

solubility of Al are strongly affected by pH according to the theory describing Al 

chemistry in the aqueous solution [4].  

 

Table 4.1: Calculated Spearman correlation coefficient matrix of field monitoring 

data of “Central” water intake 1999–2012. 

*) Bolded values: statistically significant correlation coefficients. 

**) p-value = 0.00 corresponds to the p-value < 0.001. 

 

 

  
Al pH F− NO3

− Cl− SO4
2− TDS Turbidity Colour Hardness Ca2+ Mg2+ 

Al 1.00            

             

pH 0.50 *) 1.00        

  0.00 **)        

F− −0.07 −0.10 1.00          

 0.06 0.02        
 

  

NO3
− −0.51 −0.55 −0.13 1.00         

 0.00 0.00 0.00          

Cl− −0.44 −0.37 −0.04 0.56 1.00        

 0.00 0.00 0.19 0.00         

SO4
2− −0.45 −0.42 −0.07 0.74 0.50 1.00       

 0.00 0.00 0.06 0.00 0.00        

TDS −0.49 −0.47 −0.15 0.82 0.57 0.73 1.00      

 0.00 0.00 0.00 0.00 0.00 0.00       

Turbidity 0.21 −0.05 0.10 −0.07 −0.08 −0.12 −0.04 1.00     

 0.00 0.14 0.01 0.08 0.04 0.00 0.22      

Colour 0.10 −0.12 −0.08 0.21 0.04 0.17 0.14 0.49 1.00    

 0.02 0.00 0.04 0.00 0.19 0.00 0.00 0.00     

Hardness −0.34 −0.28 −0.04 0.49 0.31 0.48 0.43 −0.32 0.10 1.00   

 0.00 0.00 0.21 0.00 0.00 0.00 0.00 0.00 0.01    

Ca2+  −0.16 −0.19 0.07 0.30 0.33 0.31 0.25 −0.25 0.05 0.68 1.00  

 0.00 0.00 0.08 0.00 0.00 0.00 0.00 0.00 0.17 0.00   

Mg2+ −0.30 −0.21 −0.02 0.34 0.09 0.35 0.35 −0.07 0.17 0.44 −0.11 1.00 

  0.00 0.00 0.31 0.00 0.03 0.00 0.00 0.06 0.00 0.00 0.01  

Cell contents: Spearman correlation coefficient  

                         p-value (α-level = 0.05) 
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4.3.2 Multivariate Analysis Results  

The application of FA/PCA with the extraction constraint of the eigenvalue > 1 revealed 

four dominating influencing factors from the z-scale transformed dataset (Figure S4.1 of 

Appendix D). The factor contributions are presented in Table 4.2. All four factors 

included 12 groundwater quality parameters but the loading of a separate variable to each 

of the factors had a different magnitude. The analyzed data were considered adequate for 

the FA/PCA application as the calculated value of KMO test equal to 0.82 and the 

significance of Bartlett’s sphericity test < 0.001 suggested.  

Altogether the extracted four factors were accounted for 67.36% of the dataset total 

variance. The eigenvalues of these factors were 3.95, 1.55, 1.50, and 1.11, and 

corresponding variance loadings were 32.89%, 12.88%, 12.49%, and 9.28%, 

respectively. Factor 1 had values of strong positive loadings of TDS (0.90), NO3
− (0.88), 

and SO4
2− (0.85), as well as values of strong negative loadings of pH (−0.81) and Al 

(−0.77). Hardness and F− contributed the most to the variance of Factor 2 and Factor 4, 

respectively. Factor 3 included colour and turbidity having strong positive loadings 

values of 0.87 and 0.76, respectively (Table 4.2).  

According to the results of calculation, Factor 1 evidenced in favor of the weathering 

processes responsible for Al release to groundwater due to pH changes. This conclusion 

supports the results of recent geochemical research suggesting that at the big depths of 

Khibiny alkaline massif the reduction conditions are formed promoting the Al leaching 

[23]. Factor 2 and Factor 3 including hardness, colour and turbidity represented the 

physical and organoleptic characteristics of the groundwater explaining 25.37% of the 

dataset total variance.  
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Table 4.2: Varimax rotated matrix for “Central” water intake field data 1999–2012. 

Variable Factor 1 Factor 2 Factor 3 Factor 4 

Al −0.77 *) −0.06 0.17 0.01 

pH −0.81 −0.06 −0.14 −0.10 

F− 0.02 −0.04 0.02 0.93 

NO3
− 0.88 0.17 0.13 −0.05 

Cl− 0.59 0.03 −0.17 0.03 

SO4
2− 0.85 0.12 0.01 0.03 

TDS 0.90 0.12 0.10 −0.06 

Turbidity −0.03 0.09 0.87 0.09 

Colour 0.04 0.31 0.76 −0.15 

Hardness 0.18 0.79 0.02 −0.12 

Ca2+ 0.08 0.58 -0.16 0.44 

Mg2+ 0.06 0.65 0.19 0.01 

Eigenvalues 3.95 1.55 1.50 1.11 

Cumulative (%) 32.89 45.77 58.26 67.53 

Variance (%) 32.89 12.88 12.49 9.28 

Extraction method: Principal component analysis. 

Rotation method: Varimax with Kaiser normalization. 
*) Bolded values: strong loadings values. 

 

The HCA applied to group the monitored groundwater quality parameters into clusters 

based on the similarity revealed three clusters (Figure 4.2). The calculations showed that 

among analyzed parameters pH and Al — variables considerably exceeding their 

corresponding guideline values — were grouped into one cluster indicating a metal 

pollution at the strong alkaline water conditions. Cluster 1 included major anions and 

TDS reflecting the mineralization content of groundwater, whereas Cluster 3 represented 

organoleptic parameters and hardness. According to the results of HCA and Spearman 

correlation, the parameters included in Cluster 1 were highly associated with each other 

and Al concentrations whereas Cluster 3 combined the parameters that have a low level 

of association with Al concentrations.  
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4.3.3 Groundwater Quality Assessment using CCME WQI   

The observations (1999–2012) of six monitored groundwater quality parameters Al, Cl−, 

pH, NO3
−, SO4

2−, TDS from ten wells and the corresponding drinking water guidelines 

[5] were used to calculate CCME WQI score values. The selection of groundwater 

quality parameters was based on the results of descriptive statistics and FA/PCA. The 

calculated CCME WQI score values showed that groundwater quality fell into the fair to 

marginal water quality category depending on the monitoring year (Figure 4.3). The score 

values decreased from 69.9 (fair) to 64.8 (marginal) during the monitoring period. 

Exceeding their acceptable drinking water guidelines, Al concentrations and pH values 

influenced the calculation results the most. In accordance with the results of calculations, 

the stable increase of Al concentrations over the years mainly caused the deterioration of 

groundwater quality and the decreasing WQI values.   

Figure 4.2: HCA dendrogram for 12 groundwater quality parameters of “Central” 

water intake 1999–2012; dash line represents the chosen distance defining number 

of clusters. 
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4.4 Conclusions 

The present study describes the results of multivariate analysis methods and water quality 

index application to the outcome of long-term field data groundwater monitoring of 

Khibiny alkaline massif (Kola Peninsula). The results of analysis provided the assessment 

and interpretation of the water quality with an emphasis on elevated aluminum 

concentrations and pH level narrowing the use of groundwater for the local household 

water supply. Among all considered physico-chemical parameters pH values, 

concentrations of nitrate, sulphate, and total dissolved solids were the main statistically 

significant variables associated with the aluminum concentration variation in the 

groundwater. The application of factor analysis using principal component analysis 

extraction method (FA/PCA) allowed the reduction of 12 groundwater quality parameters 

into four dominating influencing factors. These factors explained 67.53% of the original 

dataset total variance. The first factor including aluminum and pH, nitrate, sulphate, total 

Figure 4.3: Calculated CCME WQI score values 1999–2012; dash line represents 

the boundary between fair (light grey – CCME WQI > 65) and marginal (dark grey 

– CCME WQI < 65) water quality categories. 
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dissolved solids – parameters influencing the variation of aluminum concentrations – 

accounted for about 33% of the total variance.  

In accordance with the results of hierarchical cluster analysis (HCA), 12 monitored 

groundwater quality parameters were grouped into three clusters where Cluster 1 

represented major anions and total dissolved solids, Cluster 2 indicated the groundwater 

contaminants and Cluster 3 consisted of organoleptic parameters and hardness. The 

calculated Canadian Council of Ministries of the Environment Water Quality Index 

(CCME WQI) scores values describing the groundwater quality as fair to marginal 

indicated its gradual deterioration during the monitoring period 1999–2012.   

The outcomes of present study using univariate and multivariate statistical methods and 

the calculated values of WQI are in the agreement with the results of fulfilled earlier 

univariate analysis of Khibiny alkaline massif groundwater quality suggesting the natural 

processes as the main cause of prohibitive high aluminum concentrations in the 

groundwater [9]. The results obtained represent the quantitative data assessment prior to 

the development of effective technology keeping aluminum concentrations in 

groundwater under the limits of accepted water quality guidelines. It is believed that the 

results could be useful to the local authorities in the efforts on the pollution control and 

water quality management. 
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Chapter 5  

5 Removal of Aluminum from Aqueous Solution by 
Adsorption on Montmorillonite K10, TiO2, and SiO2: 
Kinetics, Isotherms, and Effect of Ions 

5.1 Introduction 

There is an increasing concern related to the contamination of drinking water sources 

(e.g. surface waters such as lakes and rivers, and groundwater) with metals, due to their 

potential acute (occurring in the short term) and/or chronic (occurring over the long term)  

adverse effects on the human health [1–3]. Aluminum (Al) is the most abundant metallic 

element in the Earth’s outer crust comprising about 8% of its mass. It is released to the 

environment from both natural e.g. weathering of rocks and minerals as well as from 

anthropogenic sources [4,5]. Many natural water bodies are severely influenced by 

acidification as a consequence of anthropogenic impacts promoting the release of Al into 

the aquatic environments [6]. 

The negative effects of Al are currently recognized to be far more chronic than acute [7] 

while the toxicity of Al depends primarily on its specific forms [8]. The recent research 

evidenced in favour of that the increased incidence of neurological diseases correlates 

with the high Al concentrations in drinking water [9,10]. The U.S. Environmental 

Protection Agency recommended secondary drinking water standards of Al concentration 

as 0.05–0.20 mg L−1 [11]. In a number of cases, the concentrations of Al that have been 

found in both acidic and alkaline surface and ground waters are recognized as a serious 

concern in many countries worldwide [4,12]. Several studies on the assessment of 

groundwater quality revealed drastically elevated Al concentrations. For example, 

groundwater sources in two regions of Guinea Bissau and in the industrial areas of 

Ghaziabad, India have Al concentrations reaching up to 4.48 mg L−1 and 6.30 mg L−1, 

respectively [13,14]. Most of springs used for a drinking water supply in Kirazli region, 

Turkey are described as acidic Al-rich waters having excessive Al concentrations ranging 

from 13.17 to 15.70 mg L−1 [15]. It is not seldom when high exceeding guidelines Al 

concentrations are found in the wastewater effluents. The drastically elevated 
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concentrations of Al (5.0÷15.0) × 103 mg L−1 due to the use of aluminum chloride as a 

catalyst in the alkylation technology were reported in the wastewater effluent of polymer 

plant, Angarsk, Russia [16]. The water treatment using alum as a coagulant can also lead 

to the increased residual Al concentrations in the treated water. Studies led in the United 

Kingdom revealed Al concentration in wastewater effluent treated by alum as high as 1.0 

mg L−1 [17,18].  

Studies on the removal of various toxic metals from natural water bodies and wastewater 

have been intensively reported over the past decades [19]. Numerous methods have been 

proposed for Al removal from aqueous solutions including cation exchange, adsorption, 

chemical precipitation, membrane filtration, and electrodialysis [7,20–22]. Among 

available water treatment technologies adsorption is considered as a reliable method for 

metal removal from aqueous solutions, due to the significant advantages such as low-

cost, ease of operation, efficiency, and the availability of the wide range of adsorbents 

[19]. The current work is focused on Al adsorption from acidic aqueous solution in which 

Al3+, Al(OH)2+, and Al(OH)2
+  — the most toxic aluminum species — are presented [8]. 

The Al removal from water by adsorption by using various organic materials such as 

starch, activated charcoal, wood charcoal, date-pit and commercially available BDH 

activated carbon, and seaweed [7,23,24], as well as inorganic adsorbents like powdered 

marble wastes [25], was previously reported. A recent review on the adsorption of metals 

by using clay minerals revealed that these minerals are effective toward removing various 

toxic metal contaminants from aqueous solutions [19]. For example, montmorillonite in 

its natural and modified forms is considered as a cheap and abundant material having 

high cation exchange capacity and surface area to remove various metal cations such as 

Cd2+, Cr3+, Pb2+, Hg2+, etc.  [19,26,27]. The use of metal oxides which have favourable 

sorption to metals in terms of high capacity and selectivity has also been widely 

investigated [28]. In recent years, the application of titanium dioxide (TiO2) as an 

adsorbent which is relatively cheap and non-toxic has been studied for the removal of 

toxic aquatic metal pollutants from aqueous solutions and showed a good adsorption 

performance [29,30]. Among other oxides, silica (SiO2) has also received considerable 
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attention, because of the large surface area and the ability to effectively adsorb metal ions 

from aqueous solutions [31].  

Although the use of the aforementioned adsorbents for the removal of various metals 

from water has been extensively investigated, the limited number of studies has been 

done so far on the Al removal by clay minerals and metal oxides. Most of the reported 

studies focused on the synthesis of the adsorbing material, and the adsorption isotherms 

and kinetics, and limited work has been carried out on the effect of ions usually present in 

natural water bodies and wastewater on the removal of metals by adsorption 

[23,25,32,33].  

In this study, the adsorption of Al in aqueous solution on montmorillonite K10, TiO2, and 

SiO2 was investigated. The main objectives are: (i) to assess the effect of pH on the 

solubility and adsorption of Al and to determine adsorption kinetic and isotherm 

parameters, and (ii) to investigate the effect of anions (Cl–, SO4
2–, HCO3

–) and cations 

(Na+, Ca2+, Mg2+) on the removal of Al by adsorption on K10, TiO2, and SiO2. 

 

5.2 Materials and Methods 

5.2.1 Chemicals 

Aluminum nitrate nonahydrate (Al(NO3)3.9H2O; 99.997% trace metals basis), 

montmorillonite K10, and high-purity grade ( ≥ 99%) silica gel (SiO2; particle size 250–

500 µm) were purchased from Sigma-Aldrich, Canada. Titanium dioxide (TiO2; Aeroxide 

P25 anatase – 80%, rutile – 20%; particle size 30 nm) was obtained from Evonik 

Corporation (Piscataway, New Jersey, USA). The surface areas of K10, TiO2, and SiO2 

are 250 m2 g−1, 50 m2 g−1, and 300 m2 g−1, respectively. Hydrochloric acid (HCl) and 

sodium hydroxide (NaOH) were acquired from Caledon Laboratory Chemicals 

(Georgetown, Ontario, Canada). Polypropylene syringe filters (0.45 µm) were bought 

from VWR International (Mississauga, Ontario, Canada). All chemicals were used 

without further purification. All solutions were prepared in doubly distilled water that 
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was passed through 18.2 MΩ water purification system (Thermo Scientific, BarnsteadTM 

EasypureTM RODi) (Milli-Q water).  

 

5.2.2 Adsorption Experiments 

All experiments were conducted in 125 mL flasks at room temperature (24±1 °C). Al 

solutions were prepared by dissolving a required amount of Al(NO3)3.9H2O salt in 800 

mL of Milli-Q. The initial concentration of Al was 2 mg/L. The pH of the solution was 

adjusted using 0.5 M HCl and/or 0.5 M NaOH, followed by the addition of the desired 

amount of adsorbent. The experiments were carried out in an orbital shaker (MaxQ 4000, 

the Barnstead|Lab-line) at 200 rpm. The collected samples (10 mL) were filtered through 

0.45 µm syringe filters to remove the adsorbent. The filtered samples were analyzed for 

Al concentration. 

To investigate the effect of ions usually present in various waters (e.g. groundwater and 

wastewater) on the removal of Al by adsorption, inorganic ions – Cl−, HCO3
–, SO4

2−, 

Ca2+, Mg2+, and Na+ were added individually to the Al solution prior to the addition of 

adsorbent. After the pH adjustment samples were collected and analyzed for Al 

concentration to rule out any interaction between Al and the ion in the absence of 

adsorbent.  

 

5.2.3 Analytical Methods 

The concentration of aluminum was measured by the inductively coupled plasma – 

optical emission spectrometry (ICP-OES). The plasma produces temperatures of around 

8000 °C making the elements in the sample excited and the concentrations of the 

elements under consideration can be measured [34]. The most commonly used spectral 

line for light absorption by aluminum atoms at the wavelength of 309.2 nm was applied 

in the method [35]. The aluminum concentration was determined by ICP-OES as an 

average of five replicates. Metrohm 780 pH Meter was used to measure the solution pH. 
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5.2.4 Adsorption Kinetic and Isotherm Models 

A pseudo-first order and pseudo-second order adsorption kinetic models used to describe 

the adsorption rate are calculated as follows [36,37]: 

𝑞𝑡 = 𝑞𝑒(1 − 𝑒𝑥𝑝(−𝑘1𝑡)) (5.1) 

𝑞𝑡 = (𝑞𝑒
2𝑘2𝑡)/(1 + 𝑞𝑒𝑘2𝑡) (5.2) 

where k1 and k2 are the pseudo-first and pseudo-second order rate constants in (min−1) 

and (g (mg min) −1) respectively, qe is the amount of Al adsorbed at equilibrium (mg g−1), 

and qt is the amount of Al on the surface of the adsorbent (mg g−1) at any time t. The 

amount of Al adsorbed was calculated using the following equation: 

𝑞𝑒 = (𝐶0 − 𝐶𝑒)𝑉/𝑚 (5.3) 

where V is the volume of solution (L), m is the mass of the adsorbent (g), and C0 and Ce 

are the initial and equilibrium concentrations of Al (mg L−1), respectively. The 

percentage removal was obtained by using equation (5.4). 

𝐴𝑙 𝑅𝑒𝑚𝑜𝑣𝑎𝑙 % = (𝐶0 − 𝐶𝑒)/𝐶0 × 100 (5.4) 

Three adsorption isotherm models were used to describe the experimental data. The 

Langmuir adsorption isotherm [38] is expressed as follows: 

𝑞𝑒 = (𝑄0𝑏𝐶𝑒)/(1 + 𝑏𝐶𝑒) (5.5) 

where Q0 is the maximum monolayer coverage capacity (mg g−1) and b is the Langmuir 

isotherm constant (L mg−1). The Freundlich’s adsorption isotherm [36,39] is given by the 

following equation: 

𝑄𝑒 = 𝐾𝐹𝐶𝑒
1/𝑛

 (5.6) 

where n is the Freundlich intensity parameter, which indicates the magnitude of the 

adsorption driving force or the surface heterogeneity, KF is Freundlich isotherm constant 
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related to adsorption capacity (mg g−1)/(mg L−1)n. A joint adsorption isotherm that 

combines both Langmuir and Freundlich adsorption isotherm models has been proposed 

by Sips in 1948 [40] and is given as: 

𝑞𝑒 = (𝐾𝑠𝐶𝑒
𝛽𝑆)/(1 + 𝑎𝑆𝐶𝑒

𝛽𝑆) (5.7) 

where KS is the Sips isotherm model constant (L g−1), βS is the Sips isotherm model 

exponent, and aS is the Sips isotherm model constant (L mg−1).  

The parameters of adsorption kinetic and isotherm models were calculated by non-linear 

regression analysis tool, Origin® 8.6 software. The standard error of regression S showing 

the average distance of the data points from the fitted lines that has the same units as the 

response variable (mg g−1) was used to analyze the fitting degree of kinetic and isotherm 

models with the laboratory tests data. In non-linear regression, S is a more meaningful 

estimate of the goodness-of-fit rather than the coefficient of determination R2 [41].  

 

5.3 Results and Discussion 

5.3.1 Effect of pH on the Solubility and Adsorption of Al 

Initially, the effect of pH on the solubility of Al in aqueous solution was investigated at 

the pH range of 2.0–7.0. This experiment was conducted in the absence of any adsorbent 

to ensure that any Al removal is only due to precipitation. The results revealed that Al 

underwent to precipitation at pH > 4.0 with an increasing trend: Al precipitation of 9.1%, 

62.7%, and 93.6% at pH 5.0, 6.0, and 7.0, respectively was observed (Figure 5.1a). These 

results are in agreement with the observations of other reported studies on the solubility 

of Al in water [7]. The adsorption of Al by K10, TiO2, and SiO2 was then investigated at 

pH of 2.0, 3.0, and 4.0 as at the aforementioned pH range 2.0–4.0, Al is completely 

dissolved in water [35]. The contact time for these experiments was 1440 min (24 h).  

As the results of laboratory tests showed, there was no Al removal by K10, TiO2, and 

SiO2 observed at pH 2.0 (Figure 5.1b). At pH 3.0, Al was removed by K10 only, but the 
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Figure 5.1: Effect of pH on the solubility (a) and adsorption (b) of Al by various 

adsorbents. Experimental conditions: [Al]0 = 2 mg L−1; [K10] = [ TiO2] = [ SiO2] = 

2.0 g L−1; contact time = 24 h; T = 24±1 °C. 

removal efficiency within 24 h of contact time was as low as 9.5%. There was no Al 

removal by TiO2 and SiO2 seen at pH values of 2.0 and 3.0. The highest removal of Al by 

all adsorbents used in the study was achieved at pH 4.0. The removal close to 90%, 54%, 

and 66% was obtained by K10, TiO2, and SiO2, respectively, at the same adsorbent dose 

of 2.0 g L−1 and initial Al concentration of 2 mg L−1. Similar results showing the optimal 

pH value of 4.0 for Al adsorption from acidic aqueous solution were mentioned in other 

studies [7,42]. Therefore, pH 4.0 was used for adsorption kinetic and isotherm studies, as 

well as to investigate the effect of ions on Al adsorption by K10, TiO2, and SiO2.  

 

 

 

 

5.3.2 Effect of Initial Al Concentration and Contact Time  

The effect of contact time on the adsorption of Al by K10, TiO2, and SiO2 was 

investigated at two initial Al concentrations – 2 mg L−1 and 5 mg L−1. The equilibrium 

time of 120 min for K10, 240 min for both TiO2 and SiO2 at pH 4.0 was revealed (Figure 

5.2). There was no significant effect on the adsorption of Al after this period of time.  
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Figure 5.2: Effect of contact time and Al initial concentration on Al removal by K10 

(a), TiO2 (b), and SiO2 (c). Experimental conditions: [K10] = [ TiO2] = [ SiO2] = 2.0 g 

L−1; T = 24±1 °C; pH = 4.0. 



81 

 

 

The adsorption capacities (qe) of all studied adsorbents increased with an increase of the 

initial concentration of Al. The reason of such a phenomenon can be connected with the 

increased driving force at the higher Al concentration which overcomes mass transfer 

resistance resulting in higher adsorption capacities [37]. Results obtained showed clearly 

that K10 exhibits a higher adsorption capacity compare to both TiO2 and SiO2. For TiO2 

and SiO2, qe was higher at higher initial Al concentration, as shown in Figure 5.2. The 

adsorption capacities of both TiO2 and SiO2 were almost similar with a slightly higher 

capacity of SiO2 to adsorb Al at pH 4.0 (Figure 5.2b,c). 

 

5.3.3 Adsorption Kinetics 

A pseudo-first order and a pseudo-second order kinetic models were used to fit the 

experimental data obtained at pH 4.0 (Figure 5.3). The rate of Al adsorption on K10 was 

better described by the pseudo-second order model. The calculated S values of pseudo-

first and pseudo-second order models were similar, however, S value of pseudo-second 

order model was slightly lower (Table 5.1). Additionally, the adsorption capacity qe 

calculated using the pseudo-second order kinetic model was closer to the qe
test value. 

These results (i.e. a better fit of pseudo-second order kinetic model) suggested that 

chemisorption most likely controls the adsorption of Al on K10 [43,44].  In the case of 

TiO2, the obtained S values for both kinetic models were similar, however, the qe
test value 

was equal to the calculated using the pseudo-first kinetic model qe value. The adsorption 

of Al on SiO2 followed better a pseudo-first order kinetic model as indicated by the 

calculated S values. Among adsorbents tested, K10 had a much higher adsorption rate 

(Figure 5.3, Table 5.1). It is worth mentioning that K10 required approximately 30 min to 

achieve an Al concentration below the limit of 0.20 mg L−1. 
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Table 5.1: Adsorption kinetic models fitting parameters of Al adsorption on 2.0 g 

L−1 K10, TiO2 and SiO2 at pH 4.0 and room temperature (T = 24±1 °C) based on the 

results of testing. 

Adsorbent qe
test *), 

mg g−1 

Kinetic model 

  Pseudo-first order Pseudo-second order 

k1,  

min−1 

qe,     

mg g−1 

S,       

mg g−1 

k2,               

   g (mg min) −1 

qe,    

mg g−1 

S,   

 mg g−1 

K10 0.96 1.95 0.94 0.03 5.41 0.95 0.02 

TiO2 0.45 0.01 0.45 0.03 0.03 0.53 0.03 

SiO2 0.53 0.03 0.54 0.02 0.05 0.61 0.04 

*) qe
test was determined based on laboratory tests by using equation (5.3). 

Figure 5.3: Laboratory test data and fitted curves of pseudo-first and pseudo-second 

order kinetic models of the Al adsorption by K10, TiO2, and SiO2. Experimental 

conditions: [Al]0 = 2 mg L−1; [K10] = [ TiO2] = [ SiO2] = 2.0 g L−1; pH = 4.0; T = 

24±1 °C. 
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5.3.4 Adsorption Isotherms 

The adsorption equilibrium data of Al removal from aqueous solution on K10, TiO2, and 

SiO2 were obtained at room temperature (24±1 ◦C) and pH 4.0. The concentrating range 

of adsorbents was 1.0–5.0 g L−1. Figure 5.4 shows fitted adsorption equilibrium data 

using isotherms models given by the equations (5.6), (5.5), and (5.7) for two-parameter 

Freundlich and Langmuir isotherm models, and a three-parameter Sips isotherm model, 

respectively.  

According to the results (Figure 5.4, Table 5.2), the adsorption data of Al on K10, TiO2, 

and SiO2 showed a satisfactory agreement with Freundlich adsorption isotherm model 

indicating the heterogeneous surface property of the adsorbents. For K10 and SiO2, the 

determined Freundlich model constant n was higher than 1 (Table 5.2). This suggests 

nonhomogeneous multilayer adsorption of Al on K10 and SiO2 [44]. A slightly lower 

capability of the Langmuir isotherm model to describe the adsorption equilibrium data on 

SiO2 was indicated by the higher S value, while Al adsorption data on K10 can be 

reasonably described by the three isotherms. The Langmuir model parameters for Al 

adsorption on TiO2 were found to be negative therefore no physical meaning could be 

withdrawn. 

The Sips isotherm model is a combined form of Langmuir and Freundlich expressions 

[45] and the model parameters were fitted using the following constraints KS, βS, aS > 0 

where βS can vary between 0 and 1 [40]. The three-parameter model reduced to the 

Freundlich isotherm that can be explained by the low adsorbate concentrations [40,45]. 

Results showed that the Freundlich isotherm model was more preferred to describe the Al 

adsorption equilibrium data on TiO2 and SiO2 than both the Langmuir and Sips 

adsorption isotherm models while Freundlich and Sips isotherm models were more 

applicable to simulate the adsorption behaviour of Al on K10 (Table 5.2).  
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Table 5.2: Adsorption isotherm models fitting parameters of Al adsorption on K10, 

TiO2 and SiO2 at pH 4.0 and room temperature (T = 24±1 °C). 

Adsorbent Isotherm model 

 Langmuir Freundlich Sips 

 Q0,   

mg g−1 

b, 

L mg−1 

S, 

mg g−1 

KF, (mg g−1) 

/(mg L−1)n 

n S,     

mg g−1 

KS,    

L g−1 

βS aS, 

L mg−1 

S,      

mg g−1 

K10 1.69 5.01 0.09 1.69 2.09 0.07 2.51 0.59 0.57 0.08 

TiO2 – – – 0.55 1.00 0.04 0.54 1.00 10−16 0.04 

SiO2 1.06 2.99 0.10 0.83 2.15 0.07 0.83 0.46 10−16 0.07 

 

 

Figure 5.4: Fitted curves of Langmuir, Freundlich, and Sips isotherm equations for 

equilibrium data of Al adsorption on K10, TiO2, and SiO2. Experimental conditions: 

[Al]0 = 2 mg L−1; [K10] = [TiO2] = [ SiO2] = 1.0–5.0 g L−1; pH = 4.0; T = 24±1 °C. 
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Among adsorbents tested, the use of K10 for Al removal at pH 4.0 is the most effective 

as the adsorption rate is relatively high and the small adsorbent doses are sufficient to 

significantly decrease Al concentration. A lower amount of K10 than TiO2 or SiO2 was 

needed to decrease Al concentration below the standard limit of 0.20 mg L−1. The 

concentration of Al decreased from its initial concentration to 0.19 mg L−1 by 2.0 g L−1 of 

K10. The similar effect can be achieved by using 5.0 g L−1 of SiO2 while adding the same 

concentration of TiO2 could remove not more than about 72%. It is worth mentioning that 

the increase of both TiO2 and SiO2 doses had a significant effect on Al removal where the 

use of 5.0 g L−1 improved the percentage Al removal almost twice compared to 1.0 g L−1
, 

whereas the same doses of K10 provided the enhancement of Al removal in about 1.5 

times (Table S5.1 of Appendix E). 

 

5.3.5 Effect of Ions on the Adsorption of Al 

The effect of water constituents such as ions on the removal of contaminants is important 

for the development of water treatment technologies. The effects of divalent cations (Ca2+ 

and Mg2+), monovalent cation (Na+), and anions (Cl–, SO4
2–

, and HCO3
–) usually present 

in surface waters, groundwater, and wastewater, on the Al adsorption on tested materials 

were investigated. The concentrations of the individually mixed ions were chosen to be 

relevant to concentrations found in the natural water bodies and wastewater [46]. The 

solution pH was adjusted to 4.0 before the ions addition. The further pH adjustment was 

needed only after HCO3
– ions addition to Al solution, while the addition of other ions did 

not influence the pH value. The adjusted pH remained unchanged throughout the tests. 

Samples of the Al-ion solution prior to the addition of adsorbent were taken and analyzed 

for Al concentration to rule out any interaction between the ion and Al. The t-confidence 

interval procedure (t-test) with a 95% confidence interval comparing two independent 

groups representing the results of adsorbent-Al (control) and adsorbent-Al-ion 

experiments was applied using Minitab® 17.1.0 software to laboratory test data. It 

allowed to conclude the presence of a statistically significant difference between Al 

removal by adsorbents tested and Al adsorption in the presence of ions under 

consideration (Tables S5.2, S5.3, and S5.4 of Appendix E). 
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The results showed that in the case of K10 no statistically significant effect was observed 

by adding Na+, Cl–, SO4
2– or HCO3

– ions to the solution. The removal of Al by K10 was 

negatively affected by the presence of Ca2+ and Mg2+ ions – the removal decreased from 

89.2% (control) to 35.5% and to 64.0%, for Ca2+ and Mg2+, respectively (Figure 5.5a). 

There was no apparent effect of Mg2+ ions seen in the case of Al removal by TiO2 while a 

presence of Ca2+ ions caused the adverse effect on Al adsorption and the Al removal 

decreased from 53.7% (control) to 44.5% (Figure 5.5b). The removal of Al by SiO2 was 

negatively affected by both Ca2+ and Mg2+ ions, as well as SO4
2– ions, where the Al 

removal decreased from 65.5% (control) to 47.4%, 54%, and 43.2%, respectively (Figure 

5.5c).  
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Figure 5.5: Effect of calcium (Ca2+; CaCl2), magnesium (Mg2+; MgCl2.6H2O), sulfate 

(SO4
2−; Na2SO4), bicarbonate (HCO3

−; NaHCO3), sodium (Na+; NaCl), and chloride 

(Cl−; NaCl) on Al adsorption on K10 (a), TiO2 (b), and SiO2 (c) at equilibrium time. 

Experimental conditions: [Al]0 = 2 mg L−1; [K10] = [ TiO2] = [ SiO2] = 2.0 g L−1; 

initial concentration of ions: [Ca2+] = [ SO4
2−] = 2 mM, [Mg2+] = [HCO3

−] = 1 mM, 

[Na+] = [Cl−] = 4 mM; pH = 4.0; T = 24±1 °C. 



88 

 

There was observed a negative effect on TiO2 adsorption capacity in the presence of 

HCO3
− ions in the solution – the adsorption efficiency lowered from 53.7% (control) to 

17.5%, while the presence of SO4
2− ions had a positive effect on TiO2 performance where 

Al removal increased from 53.7% (control) to 74.3% (Figure 5.5b). It is worth 

mentioning that the Al adsorption efficiency using 2.0 g L−1 of TiO2 in the presence of 

SO4
2− ions was similar to the percentage of Al removal by the TiO2 concertation of 5.0 g 

L−1 without SO4
2− ions (Table S5.1 of Appendix E). As the ionic strength may be 

changing by adding ions, it is assumed that some of the observed effects on aluminum 

removal by K10, TiO2, and SiO2 may be related to the variation in ionic strength rather 

than the ions effect [47,48]. 

The results of current study on Al adsorption by K10, TiO2, and SiO2 were compared to 

literature data on Al removal from acidic aqueous solutions (pH close to 4.0) (Table 5.3). 

The adsorbents tested are within the group of effective materials presented in Table 5.3. 

Al removal reaches 54–97% during 120–240 min by using K10, TiO2, and SiO2. Among 

them, K10 exhibited a significantly higher adsorption rate. Laboratory tests showed that 

K10 dose of 2.0 g L−1 was enough to remove up to 80% of Al throughout the initial five 

minutes and up to 89% at the equilibrium time 120 min. A comparable effectiveness 

under the experimental conditions when the sorbent dose and initial Al concentration 

were close to the ones used in current study is achieved by adsorption on rice husk char 

removing 98% of Al within the 120 min of equilibrium time (Table 5.3). The increase of 

K10 dose from 2.0 g L−1 to 5.0 g L−1 allowed to obtain 97% of Al removal during 120 

min. A relatively low adsorbent doses applied, a short equilibrium time and high 

performance toward the Al removal from acidic aqueous solution are the features 

witnessing in favour of tested and discussed in current study adsorbents compare to a 

number of others including some activated carbon materials and their modified forms. 
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Table 5.3: Performance of various adsorbents toward Al removal from acidic 

aqueous solution based on the results of current study and some literature data. 

              *) Contact time. 
**) Al removal % calculated using equations (5.3), (5.4) and the literature sources data. 

Presence (+) or absence (−) of the ions tests results. 

N/A: not applicable. 

 

5.4 Conclusions  

In this study, the adsorption of aluminum from aqueous solution on three adsorbents: 

K10, TiO2, and SiO2 at acidic conditions was examined. The effects of pH, initial 

aluminum concentration, contact time, adsorbent amount, and ions such as calcium, 

magnesium, sulphate, bicarbonate, sodium, and chloride were investigated. The 

laboratory tests showed that at pH 2.0, 3.0, and 4.0, the aluminum nitrate salt was found 

Sorbent Reference  pH Sorbent 

dose, g L−1 

[Al]0,    

mg L−1 

Equilibrium 

(or contact) 

time, min 

 Al removal, 

% 

Effect 

of ions 

study 

1. Beach cast seaweed [24]  4.0 2.5 10.0 

100.0 

30 *) 

30 *) 

80 

80 

– 

2. Rice husk char [42]  4.2 2.0 3.0 120 98 – 

3. Granular activated 

carbon 

[42]  4.2 4.0 3.0 120 N/A – 

4. Activated carbon [49]  4.0 20.0 3.0 5 95 **) – 

5. Date-pit activated 

carbon 

[7]  4.0 2.0 5.0 

50.0 

1440 *) 

1440 *) 

53 **) 

18 **) 

– 

6. BDH activated carbon [7]  4.0 2.0 5.0 

50.0 

1440 *) 

1440 *) 

54 **) 

18 **) 

– 

 

7. K10 Current 

study 

 4.0 2.0 

5.0 

2.0 

 

120 

120 

89 

97 

+ 

8. TiO2 Current 

study 

 4.0 2.0 

5.0 

2.0 240 

240 

54 

72 

+ 

9. SiO2 Current 

study 

 4.0 2.0 

5.0 

2.0 240 

240 

66 

95 

+ 
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to be completely soluble. The maximum adsorption capacities of K10, TiO2 and SiO2 

were obtained at pH 4.0. The aluminum uptake by K10, TiO2, and SiO2 was up to 97.4%, 

71.9%, and 94.6%, respectively at the 5.0 g L−1 adsorbents dose. The equilibrium time of 

120 min for K10, 240 min for both TiO2 and SiO2 at pH 4.0 was revealed. The results 

showed that K10 exhibited significantly faster adsorption rates compare to TiO2 and 

SiO2. The K10 adsorbent removed more than 80% of aluminum concentration within the 

first five minutes of contact time. The equilibrium data of aluminum adsorption on TiO2 

and SiO2 were described most satisfactory by the Freundlich isotherm model indicating a 

heterogeneous surface property of the adsorbents. Aluminum adsorption data on K10 can 

be reasonably described by the three isotherm models examined. Based on the 

experimental results it was found that various ions can negatively influence the 

adsorption of aluminum by the studied adsorbents. The presence of calcium and 

magnesium ions in the solution caused the highest negative effect on aluminum removal 

by K10, while the presence of HCO3
– and SO4

2– ions gave the highest negative effects on 

aluminum removal by TiO2 and SiO2, respectively. 
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Chapter 6   

6 Removal of Aluminum from Alkaline Aqueous Solution 
by Adsorption on TiO2 and Vermiculite Concrete-
Supported Ferric Oxyhydroxide  

6.1 Introduction 

The contamination of natural water sources with toxic metals has been recognized as one 

of the severe environmental problems nowadays [1–3]. Although several adverse health 

effects of metals have been known for a long time, the exposure to the metals goes on, 

and is even increasing in some areas [4]. Aluminum (Al) is the most plentiful metal in the 

Earth’s crust and due to this is widely distributed in the environment [5]. The natural 

processes such as Al leaching from minerals as well as anthropogenic influence including 

the application of Al-based coagulants/catalysts for various technological processes such 

for example as water treatment and alkylation are within the typical sources of Al release 

to the aquatic environments where the metal speciation and solubility is influenced by 

solution pH [5–8]. The excessive concentrations of Al are observed in both acidic and 

alkaline surface and ground waters [9–11]. 

Drinking water is one of the main sources of Al exposure to human [12,13]. Various 

studies have implicated that Al accumulation in human body can cause neurotoxicity 

leading to the increased risk of neurological disorders such as Alzheimer’s disease [14–

16]. Several federal agencies and organizations developed health regulations and 

recommendations for Al in water. For example, the recommended secondary standard of 

Al level in drinking water in accordance with U.S. Environmental Protection Agency is 

set at a concentrating range of 0.05–0.20 mg L−1 [17]. According to a recent World 

Health Organization global overview of national regulations and standards for drinking 

water quality, the majority of countries specify the limit of Al concentration equals to 

0.20 mg L−1 [18]. 

The problem of elevated Al concentrations in natural water sources is widespread [19–

22]. The prohibitive Al concentration in the surface water, spring water, and groundwater 
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are the serious health concerns when the water is used for the local water supply 

[11,21,23]. Especially alarming situations appear when prohibitive Al concentration is 

observed in drinking water. For example, the groundwater located in the southern part of 

the Khibiny alkaline massif (Kola Peninsula, Russia) belonging to the Baltic 

hydrogeological massif over the past three decades became one of the essential sources of 

household water supply in the area. According to the recent results of Khibiny water 

intake field dataset assessment, the concentrations of Al in the groundwater varying 

within 0.19–1.81 mg L−1 that exceed the drinking water guidelines of 0.20 mg L−1 up to 

nine times [20]. To date, there is no a reliable solution solving the problem of elevated 

aluminum concentrations in the alkaline groundwater that is feasible to implement in the 

Khibiny area and facilitate the household water supply management satisfying health 

regulations. 

Among available water treatment technologies adsorption is considered as a reliable 

method for the removal of various metals from aqueous solutions offering numerous 

advantages including cost-effectiveness, flexibility in design and operation as well as a 

wide variety of adsorbents available [24]. The key aspect is finding the effective 

adsorbent that is capable to remove the target metal pollutant from aqueous solutions 

effectively. Despite numerous adsorbents have been tested to remove metal pollutants 

from aqueous solutions just a limited number of investigations were dedicated to the 

adsorption of Al. Among them, only a few investigations describe Al removal by means 

of adsorption from alkaline aqueous solutions (pH ≥ 8.0) [25,26]. Most studies on Al 

adsorption are focused on the application of organic or having the organic component 

materials at the solution where the pH values are within the acidic range [27–29]. The 

number of studies investigating the effect of ions common for the natural water bodies 

such as Ca2+, Mg2+, SO4
2−, HCO3

–, Na+, and Cl− on Al removal by adsorption is also 

limited [12,30,31]. 

In present work the adsorption of Al from aqueous solution on titanium dioxide (TiO2) 

and vermiculite concrete-supported ferric oxyhydroxide (VC) [32] is studied considering 

the physico-chemical composition of Khibiny alkaline massif groundwater [20]. The 

main objectives of study are: (i) to examine based on the results of laboratory tests the 
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adsorption kinetics and isotherms and (ii) to investigate the effect of major characterizing 

Khibiny groundwater chemical composition ions on the removal of Al by adsorption on 

TiO2 and VC.  

 

6.2 Materials and Methods 

6.2.1  Characteristics of Khibiny Alkaline Massif Groundwater 

According to the results of “Central” water intake field data (Khibiny alkaline massif, 

Kola Peninsula) assessment, the groundwater is characterized by strong alkaline 

conditions and elevated Al concentrations. During 1999–2012 Al concentration in the 

groundwater varied within 0.19–1.81 mg L−1 exceeding the drinking water guideline up 

to nine times. The variation of pH values was insignificant within the monitoring period 

with a mean value of 9.56. The application of chemometric methods to the analysis of 

monitored field data (Chapter 3) revealed that among ions characterizing the chemical 

composition of groundwater, Cl−, SO4
2−, and NO3

− are associated with Al concentration 

changes.  

 

6.2.2 Chemicals Used 

Aeroxide TiO2 P25 (80:20% anatase/rutile) was purchased from Evonik Degussa 

Corporation, USA. The vermiculite concrete-supported ferric oxyhydroxide adsorbent 

(VC) samples [32] and supportive information were received from Tomsk Polytechnic 

University, Tomsk, Russia. The surface areas and particle size TiO2 and VC are 50 m2 g−1 

and 30 nm, and 188 m2 g−1 and < 0.1 mm, respectively [32]. Aluminum nitrate 

nonahydrate (Al(NO3)3.9H2O; 99.997% trace metals basis) from Sigma-Aldrich, Canada 

was used to prepare aluminum solutions. Hydrochloric acid (HCl) and sodium hydroxide 

(NaOH) were obtained from Caledon Laboratory Chemicals, Canada. Polypropylene 0.45 

µm syringe filters and 0.20 µm membrane disk filters were acquired from VWR 

International, Canada and Pall Corporation, USA, respectively. All solutions were 

prepared in doubly distilled water (18.2 MΩ) that passed through BarnsteadTM 
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EasypureTM RODi water purification system (Thermo Scientific, Canada) (Milli-Q 

water). All chemicals were used as received.  

 

6.2.3 Analytical Methods 

The solution pH was measured using a Metrohm 780 pH Meter. Aluminum concentration 

was determined as an average of five replicates by using inductively coupled plasma – 

optical emission spectrometry (ICP-OES). The plasma generates temperatures of around 

8000 °C, and at this temperature, all the elements in the sample are excited and the 

concentrations of the elements under consideration are determined [33]. The most 

commonly used spectral line for light absorption by Al atoms at the wavelength of 309.2 

nm was applied in the method [34]. 

 

6.2.4 Adsorption Testing Procedure 

Aluminum solutions were prepared by dissolving a required amount of Al(NO3)3.9H2O 

salt in 800 mL of Milli-Q water. The solution pH was adjusted to 9.0 by using 0.5 M 

NaOH, followed by the filtration of the solution through 0.20 µm disk filters to filter out 

the insoluble aluminum hydroxide flocs and 10 mL sample was taken to analyze for 

initial Al concentration. At pH adjusted to 9.0 after the filtration the initial concentration 

of Al was 2 mg L−1. All adsorption experiments were conducted in 500 mL beakers at 

room temperature (24±1 °C). The desired amount of adsorbent was added to Al solution, 

followed by a rapid mixing at room temperature (24±1 °C). The collected samples (10 

mL each) were filtered through 0.45 µm syringe filters to remove the adsorbent particles. 

The filtered samples were analyzed for Al concentration.  

To explore the effect of ions associated with elevated Al concentration in the Khibiny 

alkaline massif groundwater in accordance with the results of field data analysis (Chapter 

3) on the removal of Al by adsorption, the inorganic anions – Cl−, SO4
2−, and NO3

− were 

added separately to the Al solution before the adsorbent addition. The samples were taken 

and analyzed for Al concentration in the absence/presence of adsorbent. The 
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concentrations of the individually mixed ions were chosen to be relevant to 

concentrations measured in Khibiny alkaline massif groundwater (Chapter 3). 

The uptake and percentage removal of Al by tested adsorbents was calculated using the 

following equations: 

𝑞𝑒 = (𝐶0 − 𝐶𝑒)𝑉/𝑚 (6.1) 

𝐴𝑙 𝑅𝑒𝑚𝑜𝑣𝑎𝑙 % = (𝐶0 − 𝐶𝑒)/𝐶0 × 100 (6.2) 

where qe is the amount of Al adsorbed at equilibrium (mg g−1), V is the volume of 

solution (L), m is the mass of the adsorbent (g), and C0 and Ce are the initial and 

equilibrium concentrations of Al (mg L−1), respectively. 

 

6.2.5 Adsorption Kinetic and Isotherm Models Used 

The pseudo-first order and pseudo-second order adsorption kinetic models [35,36] used 

to describe adsorption mechanism and rate are given as follows: 

𝑞𝑡 = 𝑞𝑒(1 − 𝑒𝑥𝑝(−𝑘1𝑡)) (6.3) 

𝑞𝑡 = (𝑞𝑒
2𝑘2𝑡)/(1 + 𝑞𝑒𝑘2𝑡) (6.4) 

where k1 (min−1) and k2 (g (mg min) −1) are the pseudo-first and pseudo-second order rate 

constants, respectively, qt is the amount of Al adsorbed (mg g−1) at any time t (min).  

Langmuir, Freundlich, and Sips adsorption isotherm models were used to examine the 

experimental data. The Langmuir adsorption isotherm [37] is represented as follows: 

𝑞𝑒 = (𝑄0𝑏𝐶𝑒)/(1 + 𝑏𝐶𝑒) (6.5) 

where Q0 is the maximum monolayer coverage capacity (mg g−1) and b is the Langmuir 

isotherm constant (L mg−1). The Freundlich’s adsorption isotherm [35,38] is determined 

according to the following equation: 
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𝑄𝑒 = 𝐾𝐹𝐶𝑒
1/𝑛

 (6.6) 

where n is the Freundlich intensity parameter indicating the magnitude of the adsorption 

driving force or the surface heterogeneity, KF is Freundlich isotherm constant related to 

adsorption capacity (mg g−1)/(mg L−1)n. A joint adsorption isotherm combining both 

Langmuir and Freundlich adsorption isotherm models known as Sips or Langmuir-

Freundlich adsorption isotherm model [39] is given as: 

𝑞𝑒 = (𝐾𝑠𝐶𝑒
𝛽𝑆)/(1 + 𝑎𝑆𝐶𝑒

𝛽𝑆) (6.7) 

where KS is the Sips isotherm model constant (L g−1), βS is the Sips isotherm model 

exponent, and aS is the Sips isotherm model constant (L mg−1).  

The adsorption kinetic and isotherm models’ parameters were obtained by non-linear 

regression analysis tool, Origin® 8.6 software. To identify the best-fit kinetic and 

isotherm models with the experimental data, the standard error of regression S showing 

the average distance of the data points from the fitted lines and has the response variable 

units (mg g−1) was calculated. In non-linear regression, S is a more meaningful estimate 

of the goodness-of-fit rather than the coefficient of determination R2 [40]. 

 

6.3 Results and Discussion 

6.3.1 Adsorption of Al on TiO2 and Vermiculite Concrete-Supported 
Ferric Oxyhydroxide 

6.3.1.1 Effect of pH on the Solubility and Adsorption of Al  

The solubility of Al(NO3)3.9H2O in aqueous solution was tested in the pH range 3.0–11.0 

for two initial Al concentrations (2.5 and 100 mg L−1) in the absence of any adsorbent. 

The results revealed that Al underwent to precipitation at pH > 3.5–4.0 depending on its 

initial concentration (Figure 6.1a). The minimum solubility of Al was observed at the 

neutral pH where the dominant form of Al is the insoluble Al(OH)3
0 [34,41]. Al(OH)3

0 

dissolves in acidic or in the alkaline solutions making the investigation of Al adsorption 
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more appropriate at the aforementioned solution conditions [41]. Up to 40–60% of 

dissolved Al returned to the solution as pH reached the values of 8.5–9.0. The adsorption 

of Al on TiO2 and VC was then investigated at pH 3.0, 4.0, and 9.0 (Figure 6.1b). 

 

The results of laboratory tests in acidic conditions revealed that TiO2 was more efficient 

than VC toward Al removal. The removal efficiency within 240 min of contact time 

reached 37% at pH 4.0 while no removal by both adsorbents at pH 3.0 was observed 

(Figure 6.1b). An additional set of experiments to investigate how TiO2 adsorbent could 

influence the Al concentration change under UV irradiation at pH 4.0 was performed. 

The results expectedly were in a good agreement with the theory and showed no effect on 

Al removal that can be explained by a more negative Al3+ redox potential (E0) of −1.67 V 

Figure 6.1: Effect of pH on Al solubility (a) and Al adsorption (b). Experimental 

conditions: [Al]0 = 2 mg L−1; [TiO2] = [VC] = 1.0 g L−1; contact time = 240 min; T = 

24±1 °C; [Al] –current concentrations of Al; shaded area denotes pH range of field 

data of “Central” water intake. 
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(T = 25 °C) than the conduction band of the semiconductor photocatalyst [42,43] (Figure 

S6.1 of Appendix F).  

In the alkaline aqueous solution – that is one of the distinctive features of Khibiny massif 

groundwater – the highest Al removal at pH 9.0 on TiO2 and VC reached up to 87 and 

94%, respectively. The adsorption capacity of TiO2 at pH 9.0 was compared with the 

effectiveness of another inorganic adsorbent – ZnO. The results obtained were in favour 

of TiO2 and showed that at the equilibrium it is more effective and capable to remove 

from water 70–74% more of Al than ZnO (Figure S6.2 of Appendix F).  

An assumption of a possible Al precipitation during the adsorption process at alkaline 

conditions (simultaneous adsorption–precipitation) was made and a set of experiments by 

means of a so-called “tea-bag” procedure [44,45] was performed using different TiO2 and 

VC doses (Figure S6.3 of Appendix F). The results of “tea-bag” experiments confirmed 

that adsorption dominated in the Al removal process and can be responsible for up to 75–

80% Al removal (if the total removal amount is taken as 100%). The precipitation did not 

have a leading role and the amount of Al precipitated slightly varied depending on the 

adsorbent tested (Table S6.1 of Appendix F). 

 

6.3.1.2 Adsorption Kinetics 

The analysis of Al adsorption kinetics on TiO2 and VC was conducted using the 

adsorbent doses of 0.25 g L−1 and 0.75 g L−1. The results revealed that at pH 9.0 TiO2 

exhibited a significantly higher adsorption rate compare to VC – the period of 30 min and 

240 min were needed to reach the equilibrium of Al adsorption on TiO2 and VC, 

respectively (Figure 6.2). 
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The results of fitting laboratory test data kinetic models (Table 6.1) showed that the rate 

of Al adsorption on both TiO2 and VC was better described by the pseudo-second order 

model (equation 6.4). The calculated S values corresponding to pseudo-first and pseudo-

second order models for the experimental data by using various doses of each adsorbent 

evidenced that in most cases the pseudo-second order model is more appropriate to 

describe Al adsorption kinetics on adsorbents tested. A better fit (lower S values) to the 

pseudo-second order kinetic model suggested that aluminum adsorption behaviour on 

TiO2 and VC most likely occurs by chemisorption mechanism [46,47]. 

 

 

Figure 6.2: Laboratory test data and fitted curves of pseudo-first and pseudo-second 

order kinetic models of the Al adsorption by TiO2 (a) and VC (b). Experimental 

conditions: [Al]0 = 2 mg L−1; pH = 9.0; T = 24±1 °C. 
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Table 6.1: Adsorption kinetic models fitting parameters of Al adsorption on TiO2 

and VC at pH 9.0 and room temperature (T = 24±1 °C) based on the results of 

testing. 

Adsorbent Dose,  

g L−1 

qe
test *)  

   mg g−1 

Kinetic model 

   Pseudo-first order Pseudo-second order 

 k1, 

 min−1 

qe,  

mg g−1 

S,  

mg g−1 

k2,       

    g (mg min) −1 

qe,    

mg g−1 

S,   

 mg g−1 

TiO2
 0.25 4.45 **)  0.33 4.33 0.36 0.09 4.57 0.22 

 0.75 2.12 0.69 2.08 0.03 2.36 2.09 0.03 

VC 0.25 4.70 ***) 0.02  4.58  0.14  0.01  5.58  0.10  

 0.75 2.23  0.04  2.10 0.11  0.02  2.37   0.03 

*) qe
test was calculated based on laboratory tests using equation (6.1). 

**) Equilibrium time: 30 min. 

***) Equilibrium time: 240 min. 

 

The results of laboratory tests showed that within the first five min of contact time the 

doses 0.25 g L−1 and 0.75 g L−1 of TiO2 were capable to remove up to 41% and 76% of 

Al, respectively while that using VC required 60–120 min to achieve similar Al removal 

(46% and 77%, respectively) (Table S6.2a,b of Appendix F). In this set of tests, the pH 

value was stable throughout the experiments with respect to the adjusted pH 9.0 prior the 

adsorbent addition (Table S6.3 of Appendix F).  

 

6.3.1.3 Adsorption Isotherms 

The performance of TiO2 and VC was studied by measuring Al adsorption amount at 

adsorbents doses of 0.25÷2.0 g L−1, room temperature (24±1°C) and pH 9.0 (Tables S6.4, 

S6.5 of Appendix F). The obtained equilibrium data based on three replicates were fitted 

by using two-parameter Langmuir and Freundlich isotherm models, and a three-

parameter Sips isotherm model (Figure 6.3).   
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In accordance with isotherm classification [48], the obtained isotherms curve shapes 

indicates L3-behaviour in which the slope steadily falls with a rise in adsorbate 

concentration because vacant sites in the adsorbent surface become more difficult to find 

with progressive covering of the surface. The maximum TiO2 and VC adsorption 

capacities were similar and had values of 6.85 mg g−1 and 6.75 mg g−1, respectively. The 

equilibrium data were fitted most satisfactory with Freundlich adsorption isotherm model 

as the calculated S values showed (Table 6.2). For both TiO2 and VC the obtained 

Freundlich model constant n > 1 indicates a nonhomogeneous multilayer Al adsorption 

[47]. According to the calculated Sips isotherm parameters, the model has been reduced 

to the Freundlich isotherm (Table 6.2) that can be explained by the relatively low 

adsorbate concentrations [39,49]. 

Figure 6.3: Fitted curves of Langmuir, Freundlich, and Sips isotherm equations for 

equilibrium data of Al adsorption on TiO2 (a) and VC (b). Experimental conditions: 

[Al]0 = 1.85±0.1 mg L−1; [TiO2] = [VC] = 0.25–2.0 g L−1; pH = 9.0; T = 24±1 °C. 
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Table 6.2: Adsorption isotherm models fitting parameters of Al adsorption on TiO2 

and VC at pH 9.0 and room temperature (T = 24±1 °C). 

Adsorbent Isotherm model 

 Langmuir Freundlich Sips 

 Q0,   

mg g−1 

b, 

L mg−1 

S, 

mg g−1 

KF,  

(mg g−1)/(mg L−1)n 

n S,     

mg g−1 

KS,    

L g−1 

βS aS, 

L mg−1 

S,      

mg g−1 

TiO2 
*) 6.85  1.14   0.40 3.69  1.69  0.32  3.69  0.59  10−17   0.32  

VC **) 6.75  2.57  0.40 5.39 1.81   0.36 5.39  0.55 10−7  0.36  

*) Equilibrium time: 30 min. 

**) Equilibrium time: 240 min. 

 

6.3.2 Joint Use of TiO2 and Vermiculite Concrete-Supported Ferric 
Oxyhydroxide 

The adsorption capacity of both adsorbents tested toward Al removal from aqueous 

solution was found to be similar while the adsorption rate and time necessary to reach the 

equilibrium drastically differed – 30 min and 240 min were required in case of TiO2 and 

VC, respectively. Based on the results of Al adsorption kinetic and isotherm studies 

revealing the advantages of tested adsorbents — the high initial rate of Al adsorption on 

TiO2 and the high removal capacity of VC and TiO2 — the investigation of a joint 

performance of these adsorbents in a form of one aggregate multicomponent adsorbent 

(MA) was further undertaken. The MA was prepared by mixing the various doses of TiO2 

and VC and then tested to examine the adsorption kinetics, isotherms, and effect of ions 

on Al adsorption. The procedure of this set of tests was kept similar to the one described 

in 6.2.4. 
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6.3.2.1 Effect of Adsorbents Addition Sequence  

The effect of addition of TiO2 followed by VC in 30 min and vice versa on the Al 

removal from aqueous solution was investigated at pH 9.0 and room temperature (24±1 

°C). A typical example of the effect of adsorbents addition sequence on Al removal is 

shown on Figure 6.4a. According to the results, a slightly better Al removal (up to 82% 

within 60 min) was achieved in the case when TiO2 was added to the solution prior to the 

VC (Figure 6.4b). The solution pH in both experiments remained approximately the same 

(Table S6.6 of Appendix F). 

 

The results of adsorption kinetics for TiO2 and VC evidenced the possibility of using both 

adsorbents simultaneously and still have the advantages of both components: the high 

initial rate of Al adsorption on TiO2 and high adsorption capacity of VC and TiO2. The 

experiment on Al adsorption from aqueous solution using 0.50 g L−1 MA (simultaneously 

Figure 6.4: Effect of adsorbents addition sequence to aqueous solution (a) and the 

percentage Al removal from the solution (b).  Experimental conditions: [Al]0 = 2 mg 

L−1; [TiO2] = [VC] = 0.25 g L−1; pH = 9.0; T = 24±1 °C. Dash dotted line indicates 

the time when TiO2 or VC was added as a second adsorbent to the solution. 
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added 0.25 g L−1 of both TiO2 and VC) showed 78% Al removal within 60 min of contact 

time. The results of Al adsorption on TiO2 and VC added simultaneously or in a sequence 

were similar and showed the removal up to 72–82%. Taking into consideration the 

removal efficiency, the investigation of MA adsorption kinetics and isotherms was 

carried out.  

 

6.3.2.2 Adsorption Kinetics and Isotherms 

The adsorption kinetic and equilibrium data of Al removal from aqueous solution on MA 

were obtained at pH 9.0 and room temperature (24±1°C) (Figure 6.5, Table 6.3). The MA 

adsorbent doses used to acquire kinetic and equilibrium data correspond to the 

summation of TiO2 and VC doses in an equal proportion, for example, the MA doses of 

0.25 g L−1 and 0.50 g L−1 correspond to 0.125 g L−1 [TiO2] + 0.125 g L−1 [VC] and 0.25 g 

L−1 [TiO2] + 0.25 g L−1 [VC], respectively (Table S6.7 of Appendix F).   

Figure 6.5: Fitted curves of pseudo-first and pseudo-second order kinetic models (a) 

Langmuir and Freundlich isotherm models (b) of data obtained in laboratory tests 

on Al adsorption by MA. Experimental conditions: [Al]0 = 2 mg L−1; pH = 9.0; T = 

24±1 °C; [MA] = 0.25–1.0 g L−1. 
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Table 6.3: The fitted parameters of adsorption kinetic (a) and adsorption isotherm 

(b) models of Al adsorption on MA at pH 9.0 and room temperature (T = 24±1 °C) 

based on the results of testing. 

(a)     (b)    

Kinetic model Parameter Value  Isotherm model Parameter Value 

Pseudo-first order k1, min−1 0.30  Langmuir Q0, mg g−1 8.28 

 qe, mg g−1 3.02   b, L mg−1 1.21 

 S, mg g−1 0.09   S, mg g−1 0.21 

     ARE, % 5.66 *) 

     E2 0.13 **) 

Pseudo-second order k2, g (mg min) −1 0.20  Freundlich KF, (mg g−1)/(mg L−1)n 4.66 

 qe, mg g−1 3.09   n 1.62 

 S, mg g−1 0.06   S, mg g−1 0.20 

     ARE, % 5.61 *) 

     E2 0.13 **) 

 

*) 𝐴𝑅𝐸 = (100/𝑁) ∑ (|𝑞𝑒
𝑡𝑒𝑠𝑡 − 𝑞𝑒

𝑐𝑎𝑙𝑐|/𝑞𝑒
𝑡𝑒𝑠𝑡)𝑁

𝑖=1  where ARE is the average relative error. 

N is number of experimental data points, qe
calc

 values were calculated by using the 

isotherm model equations (6.5)–(6.7), qe
test values were calculated based on laboratory 

tests data by using equation (6.1). 

**) 𝐸2 = ∑ (𝑞𝑒
𝑡𝑒𝑠𝑡 − 𝑞𝑒

𝑐𝑎𝑙𝑐)2𝑁
𝑖=1  where E2 is the sum of squared errors. 

 

The adsorption kinetic data were better described by pseudo-second order model 

according to the calculated S values (Table 6.3a) that evidences in favour of 

chemisorption process controlling Al adsorption [46,47]. The results of experiments 

showed that Al adsorption on MA reached equilibrium within 60 min of contact time 

(Figure 6.5a) that is 30 min longer than in case of TiO2 but four times faster than VC. Up 

to 50% of Al were removed within the first five min of contact time and more than 73% 

of Al were adsorbed within the first 30 min by using 0.50 g L−1 MA (Figure 6.5a). To 

compare, when TiO2 worked alone the doses of 0.25 g L−1 and 0.50 g L−1 were capable to 
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decrease Al concentration up to 57% and 66% within 30 min (equilibrium time), 

respectively.   

The laboratory test data were found to be well-fitted to both Langmuir and Freundlich 

isotherms models (Figure 6.5b) as the calculated S values suggested. To check this result, 

the error functions ARE and E2 [50] were calculated (Table 6.3b). The obtained 

maximum monolayer coverage capacity of MA equal to 8.28 mg g−1 is higher than the 

individual TiO2 and VC adsorption capacities by 18% (Table 6.2).  

The scanning electron microscopy coupled with energy dispersive X-ray spectroscopy 

(SEM/EDX) analysis was used to characterize the surface of TiO2, VC, and MA. The 

samples for SEM/EDX analysis were prepared using the experimental procedure 

described in 6.2.4. The initial Al concentration and adsorbent dose of 2 mg L−1 and 1.0 g 

L−1, respectively were used. The images showing the morphology of TiO2, VC, and MA 

surfaces before and after Al adsorption are presented in Figures S6.4, S6.5 of Appendix F 

and Figure 6.6, respectively. 

According to SEM tests, surface morphology characteristics of adsorbents did not 

undergo significant changes due to the adsorption process (Figures S6.4a,c, S6.5a,c of 

Appendix F, Figure 6.6a,c) while EDX showed that aluminum ions attached to the 

surface of materials tested (Figures S6.4d, S6.5d of Appendix F, Figure 6.6d). Typical 

EDX spectra of unloaded and Al-adsorbed MA are shown on Figure 6.6b,d. The EDX 

spectrum of raw MA did not show Al ions on its surface while EDX spectrum of samples 

after adsorption evidenced the presence of aluminum ions on the surface of material 

tested. Similar results of SEM/EDX analysis were obtained in case of TiO2 and VC 

(Figures S6.4, S6.5 of Appendix F). 
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6.3.2.3 Effect of Ions and Adsorbent Dosing on Al Adsorption  

The effect of anions NO3
−, SO4

2–
, and Cl– representing the constituencies of natural 

chemical composition of Khibiny alkaline massif groundwater which were identified 

based on the results of mathematical modelling (Chapter 3) as the key parameters 

associated with Al concentration variation was investigated in a set of laboratory tests. 

The solution pH was adjusted to 9.0 followed by the filtration removing insoluble Al 

flocs before the addition of certain amount of the ions. The ions were added to the 

solution individually. The presence of ions tested did not influence the pH value which 

remained stable throughout each experiment (Table S6.8 of Appendix F). Samples of the 

Figure 6.6: The results of SEM/EDX analysis of MA surface: before Al adsorption 

(a) and (b); after Al adsorption (c) and (d). 
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Al-ion solution prior to the addition of adsorbent were taken and analyzed for Al 

concentration to eliminate any interaction between the ion and Al. The Al-ion-adsorbent 

samples were taken at equilibrium time of 30 min (TiO2), 60 min (MA), and 240 min 

(VC) and analyzed for Al concentration.  

The outcomes of this set of experiments indicated no apparent noticeable effect on Al 

removal by adsorbents tested in the presence of NO3
−, SO4

2–
, and Cl– ions (Figure 6.7a–

c). The SO4
2− and Cl– ions presented in the solution had a light negative effect on 

aluminum adsorption by VC and MA that was within 6–14% of the control Al 

concentration. The presence of Cl– ions in the solution influenced mostly the performance 

of MA adsorbent and lowered aluminum removal by 9.9% (Figure 6.7c). The apparent 

negative effects of tested ions were not detected for TiO2 (Figure 6.7a). As the ionic 

strength may be changing by adding ions, it is assumed that some of the observed effects 

by adsorbents tested on Al removal could be related to the variation in the ionic strength 

rather than the direct ions effect [51,52]. 
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Figure 6.7: Effect of nitrate (NO3
−, NaNO3), sulphate (SO4

2−; Na2SO4), and chloride 

(Cl−; NaCl) on Al adsorption on TiO2 (a), VC (b), and MA (c) at equilibrium time. 

Experimental conditions: [Al]0 = 2 mg L−1; [TiO2] = [VC] = 0.25 g L−1; [MA] = 0.50 

g L−1; initial concentration of ions: [NO3
−] = 2.12 mg L−1, [ SO4

2−] = 7.89 mg L−1, 

[Cl−] = 1.82 mg L−1; pH = 9.0; T = 24±1 °C. 
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6.3.2.4 Effect of Multicomponent Adsorbent Dosing on Al Removal  

The effect of adsorbent dosing on the Al removal was investigated considering the 

favourable outcomes obtained in the laboratory study on Al adsorption by MA. 

According to the results of adsorption kinetic and isotherm as well as the effect of ions 

studies, among adsorbents tested MA showed the highest adsorption capacity, a relatively 

high adsorption rate, and the insignificant changes in the presence of NO3
−, SO4

2–
, and Cl– 

anions on adsorption performance. The Al adsorption was tested at pH 9.0 and room 

temperature (24±1◦C) using the following combinations of components doses 

([TiO2]/[VC], g L−1): 0.25/0.75 g L−1, 0.50/0.50 g L−1, and 0.50/1.00 g L−1. For the set of 

experiments, the initial Al concentration that is approximately seven times above the 

drinking water guideline was chosen in accordance with the Q3 value of Al 

concentrations monitored in Khibiny alkaline massif groundwater for the period of 1999–

2012 (Table 3.1 of Chapter 3). 

The results of experiments revealed that the application of each tested dose combination 

was capable to decrease Al concentration below the drinking water guideline of 0.20 mg 

L−1 within 60 min of contact time (Figure 6.8). The total Al removal reached 87–95% 

depending on the MA dose (Table 6.4). The adsorption capacity and total effectiveness of 

the process can be easily controlled by changing the proportions between TiO2 and VC 

when used jointly. This promotes the possibility of using optimization methods and 

developing a computer model/program to control the process of Al removal depending on 

the initial Al concentration in the water intake, adsorbent doses, and allowed contact time 

to reduce certain Al concentrations below the drinking water standards.  
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Table 6.4: Effect of multicomponent adsorbent dosing on Al removal from water 

reflecting Khibiny alkaline massif groundwater conditions. 

    MA *), g L−1 [Al]0, mg L−1 [Al]60 min
**), mg L−1 Al removal, % qe, mg g−1 pH 

0.25/0.75 1.34 0.17 87.35 1.25 8.9 

0.50/0.50 1.37 0.13 90.87 1.17 8.9 

0.50/1.00 1.35 0.07 95.06 0.86 8.9 

*) [TiO2]/[VC], g L−1. 

**) Concentration of aluminum at equilibrium. 

 

Figure 6.8: Effect of MA dosing on Al removal from water reflecting Khibiny 

alkaline massif groundwater conditions. Experimental conditions: [Al]0 = 1.35 mg 

L−1; pH = 9.0; T = 24±1 °C. 
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The results of current study on Al adsorption considering the physico-chemical 

composition of Khibiny massif groundwater having elevated Al concentrations were 

compared to literature data on Al removal by various adsorbents from aqueous solutions 

(Table 6.5). It was found that the number of studies on Al removal from aqueous 

solutions by adsorption is limited and mostly focused on Al removal by organic or having 

an organic component materials at predominantly acidic pH range (pH < 6.0) 

[27,29,50,53]. In Table 6.5, the results on the performance of various adsorbents in 

alkaline aqueous solution are presented.  

 

Table 6.5: Performance of various adsorbents toward Al removal from alkaline 

aqueous solution based on the results of current study and some literature data. 

*) Adsorption capacity, mg g−1 calculated using the data reported in the journal article. 

Presence (+) or absence (−) of the ions tests results. 

 

 

Sorbent Reference  pH Sorbent dose, 

g L−1 

Equilibrium time, 

min 

Adsorption 

capacity, 

 mg g−1 

Effect 

of ions 

study 

Refuse derived 

char 

[26]  8.0 2.0 120 40.0 *) 

 

– 

Granular 

activated 

carbon/FeCl3 

[25]  8.0 5.0 360 

 

4.37 – 

Granular 

activated carbon 

[25]  8.0 5.0 360 3.0 – 

MA Current 

study 

 9.0 0.25÷1.0 60 

 

8.28 + 

TiO2 Current 

study 

 9.0 0.25÷2.0 30 

 

6.85 + 

VC Current 

study 

 9.0 0.25÷2.0 240 

 

6.75 + 
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The data indicate that TiO2, VC, and MA have a comparable or even higher adsorption 

capacity toward Al removal at alkaline conditions compare to activated carbon materials 

(Table 6.5). Additionally, the equilibrium time of Al adsorption on TiO2 and MA is 

significantly lower compare to the carbon and char-based adsorbents and even relatively 

low MA doses are capable to decrease Al concentrations below the drinking water 

guidelines. The strengths of adsorbents tested make MA a reliable and effective 

adsorbent for Al removal from the alkaline aqueous solution.  

 

6.4 Conclusions 

The adsorption of aluminum from aqueous solution reflecting the major features of 

physico-chemical composition of Khibiny alkaline massif groundwater (Kola Peninsula) 

was examined on titanium dioxide (TiO2), vermiculite concrete-supported ferric 

oxyhydroxide (VC) [32], and a multicomponent adsorbent (MA) aggregating both TiO2 

and VC adsorbents. The effects of pH, initial aluminum concentration, contact time, 

adsorbent dose, and ions present in the Khininy alkaline massif groundwater were 

studied.  

The results revealed that the adsorption rate followed the sequence of TiO2 > MA > VC 

and the adsorption capacity can be ranged as MA > TiO2 > VC. The adsorption kinetic 

data were well-fitted to the pseudo-second order kinetic model. The obtained kinetic data 

showed that aluminum adsorption on TiO2 and MA exhibited a dramatically higher 

adsorption rate compare to VC. The contact time of 30 min, 60 min, and 240 min were 

needed to reach equilibrium, respectively. The adsorption equilibrium data on TiO2 and 

VC were described most satisfactory by the Freundlich isotherm model indicating a 

heterogeneous surface property of the adsorbents while the adsorption process on MA 

can be reasonably characterized by both Freundlich and Langmuir isotherm models. The 

maximum adsorption capacities of VC, TiO2, and MA were 6.75, 6.85, and 8.28 mg g−1, 

respectively. Based on the experimental results, the presence of anions NO3
−, SO4

2–, and 

Cl– identified as the parameters associated with Al concentration variability by earlier 

obtained mathematical models [20] insignificantly affected the adsorption of aluminum 
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on TiO2, VC, and MA. It was found that the presence of SO4
2− ions in the solution 

lowered aluminum removal by 13.8% in the case of VC. The Cl– ions presented in the 

solution had a light negative effect on the efficiency of aluminum removal by MA 

decreasing it from 75.8% (control) to 65.9%. The apparent negative effect of ions was not 

detected for TiO2 as the outcomes of laboratory tests showed. It is assumed that some of 

the observed effects on aluminum removal by adsorbents tested may be related to 

variation in the ionic strength. 

The outcomes of current study are a necessary step to develop and implement a reliable 

method for treating Khibiny alkaline massif groundwater containing prohibitive 

aluminum concentrations. The implementation of adsorption process in the current 

technology at the Khibiny local water treatment facility can be an effective way to meet 

the drinking water standards. 
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Chapter 7  

7 Conclusions and Recommendations 

7.1 Major Conclusions 

The current PhD research work is driven by the problem of elevated aluminum 

concentrations in the groundwater of the Khibiny alkaline massif (Kola Peninsula). This 

thesis reports a comprehensive analysis of the available field data between 1999–2012 of 

groundwater quality monitoring and analysis of the results of laboratory study of 

aluminum adsorption from aqueous solutions on various adsorbents. The quantitative 

statistical analysis and mathematical modelling including both univariate and multivariate 

statistical techniques, spectral analysis, and water quality index scores values calculations 

were considered. The removal of aluminum via adsorption for both alkaline and acidic 

aqueous solutions were studied. The summaries and major outcomes during the 

consequent steps of this research are presented in Chapters 3–6. The principal findings of 

the PhD research thesis are as follows: 

• Statistical analysis and mathematical modelling:  

i. The univariate statistical analysis of the field dataset that includes 12 

groundwater quality parameters identified by using the correlation matrix that 

at a statistically significant level (α-level = 0.05) pH, NO3
−, SO4

2−, Cl− ions 

and TDS associated with aluminum concentrations variability of Khibiny 

massif groundwater. The multiple regression model after the multicollinearity 

check including NO3
−, Cl−, and pH explained up to 54% of aluminum 

concentrations temporal variation in groundwater. 

ii. The application of spectral analysis based on fast Fourier transform (FFT) 

algorithm to NO3
−, Cl−, pH, and aluminum time series allowed to identify 

three main frequency bands corresponding approximately to 5–7, 13–17, and 

20–34 month periods. The fluctuations within these bands contributed mostly 

to the total temporal variation of major Khibiny groundwater quality 

parameters. 
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iii. The multivariate statistical analysis of field data using factor analysis/principal 

component analysis extraction method (FA/PCA) allowed the reduction of 12 

groundwater quality parameters into four dominating influencing factors 

explaining 67.5% of the original dataset total variance. The hierarchical 

cluster analysis (HCA) applied to examine the similarities of 12 monitored 

groundwater quality parameters suggested the subdivision of data into three 

clusters where Al and pH formed a separate cluster. 

iv. The calculated CCME Water Quality Index (WQI) scores values combining 

and evaluating the scope, frequency, and amplitude measures of variance 

described the water quality of Khibiny alkaline massif as fair to marginal and 

indicated its gradual deterioration during the monitoring period 1999–2012. 

v. Although the field data analysis using chemometric methods has been done 

for one particular metal and groundwater source, the similar analysis, the 

developed algorithms and computer programs can be successfully applied to 

any other water sources and could be extended to other toxic metals in the 

natural water bodies. 

 

• Laboratory study: 

i. The removal of aluminum from acidic aqueous solution by adsorption on 

montmorillonite K10, TiO2, and SiO2 was studied. The effect of pH, initial 

aluminum concentration, contact time, adsorbent amount, and ions present in 

natural water bodies was investigated. The outcomes of laboratory tests 

showed that the adsorption rate and capacity of adsorbents were in the 

following orders K10 > TiO2 ≥ SiO2 and K10 > SiO2 > TiO2, respectively. The 

aluminum removal up to 97% was achieved in 120 min using 5.0 g L−1 of K10 

and the removal of 72–95% within 240 min using both TiO2 and SiO2. The 

presence of Ca2+, Mg2+, SO4
2, HCO3

− ions in the solution had a negative effect 

on the aluminum removal by adsorbents tested. 

ii. In the alkaline aqueous solution considering the natural physico-chemical 

composition of Khibiny alkaline massif groundwater, TiO2 and vermiculite 

concrete-supported ferric oxyhydroxide adsorbent displayed themselves as 
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effective adsorbents. The effects of pH, initial aluminum concentration, 

contact time, adsorbent dose, and ions associated according to the results of 

statistical analysis and mathematical modelling with aluminum concentration 

variability in the Khininy massif groundwater were investigated. The results 

revealed that TiO2 exhibited a much higher aluminum adsorption rate and the 

equilibrium time was up to eight times less than in case of vermiculite 

concrete-supported ferric oxyhydroxide adsorbent while the capacities of both 

adsorbents were similar. Laboratory tests showed that 1.0 g L−1 of each 

adsorbent at pH 9.0 removed 86–93% of aluminum initially contained in 

water during the contact time of 30 min for TiO2 and 240 min for vermiculite 

concrete-supported ferric oxyhydroxide adsorbent. 

iii. It was shown that when TiO2 and vermiculite concrete-supported ferric 

oxyhydroxide adsorbent worked jointly as a multicomponent adsorbent they 

were capable to remove up to 95% of aluminum within 60 min of contact time 

from alkaline aqueous solution and the changes of each component mass 

allow controlling the contact time and efficiency of aluminum removal. No 

apparent significant effect on aluminum removal in the presence of NO3
−, 

SO4
2–

, and Cl– at pH 9.0 was observed. 

 

The current investigation is a necessary step preceding the development and 

implementation of a reliable technology to reach a desirable level of aluminum removal 

from Khibiny alkaline massif groundwater that is an important source of household water 

supply in the area. The outcomes of field data analysis and mathematical modelling 

together with the results of laboratory study of adsorbents identify and present a possible 

approach solving the problem of elevated aluminum concentrations in the household 

water of Khibiny alkaline massif area as well as other locations where the solution of this 

problem can improve living conditions or industrial technologies. The PhD thesis 

objectives were addressed.  
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7.2 Scientific Contribution 

• The field dataset including the results of long-term monitoring of 12 physico-

chemical characteristics of Khibiny alkaline massif groundwater was analyzed 

quantitatively for the first time by applying chemometric methods including both 

univariate and multivariate statistical techniques, spectral analysis based on fast 

Fourier transform (FFT) algorithm and water quality index. The mathematical 

models developed by using univariate and multivariate regression methods 

explained up to 54% of aluminum concentration variability and 67.5% of the 

original dataset total variance. The temporal and dominant frequency variability 

features of groundwater quality parameters were established, analyzed, and 

interpreted with the emphasis on the elevated aluminum concentrations.  

• The gradual deterioration of Khibiny alkaline massif groundwater quality from 

fair to marginal category during the monitoring period 1999–2012 was revealed 

by calculated CCME Water Quality Index scores values.  

• The results of testing of various adsorbents revealed that in the acidic aqueous 

solution the maximum aluminum uptake of 1.69 mg g−1 was shown by the 

montmorillonite K10 within 120 min while in the alkaline solution TiO2 and 

vermiculite concrete-supported ferric oxyhydroxide adsorbent were most effective 

having the adsorption capacities of 6.85 mg g−1 and 6.75 mg g−1 at 30 min and 

240 min of contact time, respectively. Testing revealed that when worked jointly 

as a multicomponent adsorbent they were capable to effectively remove 

aluminum from the alkaline aqueous solution where the maximum uptake reached 

8.28 mg g−1 within 60 min and the changes of each component mass allow 

controlling the contact time to provide the required aluminum removal efficiency.  

• The adsorbents tested – K10, SiO2, TiO2, and vermiculite concrete-supported 

ferric oxyhydroxide showed several advantages over the conventional adsorbents 

such for example as activated carbon materials and their modified forms 

investigated in relevant studies. The benefits of a faster kinetic rate, higher 

adsorption capacity, and the application of lower adsorbent doses decreasing 

aluminum concentrations below the drinking water guideline of 0.20 mg L−1 were 

obtained in current study. 
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7.3 Study Limitations 

Study on adsorption of Al was conducted at acidic and alkaline aqueous solutions. 

According to the literature survey, elevated Al concentrations are presented in both acidic 

and alkaline surface and ground waters such as in the alkaline groundwater under 

consideration. The amphoteric nature of Al in aqueous solution dissolving in the acidic or 

in the alkaline solutions made the investigation of Al adsorption appropriate at the above-

mentioned conditions. The photocatalytic process using TiO2 as a photocatalyst could not 

be studied due to the more negative Al3+ (acidic conditions) and Al(OH)4
− (alkaline 

conditions) redox potentials (E0) of −1.67 V and −2.35 V at T = 25 °C, respectively than 

the conduction band of TiO2. 

 

7.4 Recommendations 

The current investigation on elevated aluminum level in the groundwater of Khibiny 

alkaline massif and the approach lowering it to the established guidelines by using 

statistical analysis, mathematical modelling as well as laboratory tests on adsorption as a 

reliable method for aluminum removal from aqueous solutions would require further 

investigation. The following research topics can be suggested: 

• The experiments testing adsorbents performance toward aluminum removal from 

natural water of Khibiny alkaline massif is recommended as the current study was 

performed on simulated water. 

• The investigation of adsorption on TiO2 and vermiculite concrete-supported ferric 

oxyhydroxide adsorbent in a multi-element aqueous system in the presence of 

competing toxic metals such as cadmium, zinc, chromium could be beneficial. 

• The life-cycle analysis study of adsorbents tested is suggested. 

• Studying the adsorption of aluminum on TiO2 and vermiculite concrete-supported 

ferric oxyhydroxide adsorbent adsorbents in a lab-scale and pilot-scale projects 

using continuous flow model systems is required. 
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• The development of computer model/program using optimization methods to 

control the process of aluminum removal depending on the initial aluminum 

concentration in the water intake, adsorbent doses, and allowed contact time is a 

necessary tool during the pilot-scale tests. 
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Appendix A: Graphical abstract of work presented in Chapter 3. 
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Table S3.1: Averaged water quality parameters monitored from ten groundwater wells of “Central” water intake. 
 

 

 

Year Al,  

mg L−1 

pH F−  

mg L−1 

NO3
−,  

mg L−1 

Cl−, 

mg L−1 

SO4
2−,  

mg L−1 

TDS, 

 mg L−1 

Turbidity, 

 mg L−1 

Colour,  

colour units 

Hardness, 

mmol L−1 

Ca2+,  

mmol L−1 

Mg2+, 

mmol L−1 

1999 0.53 9.53 0.12 2.32 2.95 11.47 65.48 0.04 1.50 0.02 0.02 0.01 

2000 0.56 9.47 0.08 3.57 1.60 8.94 66.64 0.02 0.00 0.03 0.00 0.03 

2001 0.67 9.44 0.09 3.56 1.83 12.54 63.83 0.14 1.47 0.03 0.01 0.02 

2002 0.92 9.61 0.09 2.68 1.86 9.71 58.18 0.16 2.15 0.03 0.03 0.00 

2003 0.83 9.52 0.07 2.63 1.97 7.78 54.57 0.22 2.54 0.07 0.05 0.03 

2004 0.88 9.53 0.13 2.38 2.40 8.13 56.91 0.16 0.98 0.04 0.80 0.00 

2005 0.96 9.51 0.18 2.30 1.68 11.42 57.89 0.19 1.86 0.04 0.66 0.19 

2006 1.24 9.65 0.15 1.64 1.33 6.83 51.44 0.40 1.76 0.01 0.00 0.16 

2007 0.99 9.48 0.27 1.79 1.92 7.16 52.54 0.35 1.81 0.02 0.19 0.06 

2008 0.97 9.55 0.21 1.91 1.28 5.12 54.77 0.42 1.66 0.01 0.07 0.05 

2009 0.93 9.58 0.16 1.48 1.32 4.89 49.63 0.42 2.75 0.01 0.14 0.07 

2010 0.90 9.58 0.08 1.35 1.69 5.26 50.08 0.37 1.32 0.01 0.08 0.03 

2011 0.92 9.56 0.10 1.41 2.01 5.73 51.37 0.48 2.17 0.00 0.01 0.01 

2012 0.90 9.54 0.12 1.25 1.69 6.56 51.52 0.37 1.03 0.01 0.00 0.00 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix B: Supplementary material of Chapter 3. 
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Table S3.2: Assessment of candidate terms for the Al multiple regression model. 

 

Table S3.3: Assessment of multiple regression model (Equation (3.4)) with 

predictors pH, NO3
−, and Cl−. 

 

 

 

Model Term Term Coefficient p-value VIF 

Constant −4.929 0.001 

 pH 0.543 0.001 1.980 

NO3
− −0.029 0.001 4.370 

Cl− −0.042 0.018 1.270 

SO4
2− 0.000 0.938 2.840 

TDS −0.006 0.001 4.830 

 

 

 

 

 

 

 

Model Term Term Coefficient p-value VIF 

Constant −5.861 0.001 

 pH 0.617 0.001 1.870 

NO3
− −0.068 0.001 1.930 

Cl− −0.057 0.001 1.210 
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Figure S3.1: Calculated PSD estimates of Al, Cl−, pH, and NO3
− time series, well 10 

of water intake “Central”. 
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% Aluminum time series 

Cj_Al=fft(Al); % calculation of Fourier coefficients of 

detrended and interpolated data using Fast Fourier 

Transform (FFT) algorithm 

N=length(Al); % set the length of data 

Fs=0.028571428;% set sampling frequency = 1/35 (1/day) 

Cj1_Al=Cj_Al(1:N/2+1); % we need only half of the result as 

the result is mirrored 

PSD_Al=(1/(Fs*N))*abs(Cj1_Al).^2; % calculation of PSD with 

the scaling factor  

PSD_Al(2:end-1)=2*PSD_Al(2:end-1); % additional factor of 2 

is added    

freq=0:Fs/N:Fs/2; % set frequency range, Fs/N is a 

frequency resolution  

% plot the results 

fig1=figure; 

plot(freq,PSD_Al, 'k') % plot PSD values as a function of 

frequency 

grid on % display grid on the graph 

xlabel('Frequency (cycle/day)') % name x-axis 

ylabel('PSD (mg/L).^2/(cycle/day)') % name y-axis 

title('Calculated values of Al PSD, Well 1 1999-2012') % 

title the graph 

set(gca,'xtick', 0:0.0025:0.015) % set x-axis tick values  

set(gca,'FontSize', 18) % set font size on the graph 

saveas(fig1,'Calculated values of Al PSD, Well 1 1999-

2012.tif')% save the graph as image 

 

% pH time series 

Cj_pH=fft(pH); % calculation of Fourier coefficients using 

Fast Fourier Transform algorithm 

Cj1_pH=Cj_pH(1:N/2+1); % we need only half of the result as 

the result is mirrored 

PSD_pH=(1/(Fs*N))*abs(Cj1_pH).^2; % calculation of PSD with 

the scaling factor  

PSD_pH(2:end-1)=2*PSD_pH(2:end-1); % additional factor of 2 

is added    

% plot the results 

fig2=figure; 

plot(freq,PSD_pH, 'k') % plot PSD values as a function of 

frequency 

Appendix C: MATLAB code to calculate the results reported in 3.4.4 Spectral 

Analysis based on FFT. 
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grid on % display grid on the graph 

xlabel('Frequency (cycle/day)') % name x-axis 

ylabel('PSD day/cycle') % name y-axis 

title('Calculated values of pH PSD, Well 1 1999-2012') % 

title the graph 

set(gca,'xtick', 0:0.0025:0.015) % set x-axis tick values  

set(gca,'FontSize', 18) % set font size on the graph 

saveas(fig2,'Calculated values of pH PSD, Well 1 1999-

2012.tif')% save the graph as image 

 

% Chloride time series 

Cj_Cl=fft(Cl); % calculation of Fourier coefficients using 

Fast Fourier Transform algorithm 

Cj1_Cl=Cj_Cl(1:N/2+1); % we need only half of the result as 

the result is mirrored 

PSD_Cl=(1/(Fs*N))*abs(Cj1_Cl).^2; % calculation of PSD with 

the scaling factor  

PSD_Cl(2:end-1)=2*PSD_Cl(2:end-1); % additional factor of 2 

is added    

% plot the results 

fig3=figure; 

plot(freq,PSD_Cl, 'k') % plot PSD values as a function of 

frequency 

grid on % display grid on the graph 

xlabel('Frequency (cycle/day)') % name x-axis 

ylabel('PSD (mg/L).^2/(cycle/day)') % name y-axis 

title('Calculated values of Cl.^- PSD, Well 1 1999-2012') % 

title the graph 

set(gca,'xtick', 0:0.0025:0.015) % set x-axis tick values  

set(gca,'FontSize', 18) % set font size on the graph 

saveas(fig3,'Calculated values of Cl.^- PSD, Well 1 1999-

2012.tif')% save the graph as image 

 

% Nitrate time series 

Cj_NO=fft(NO); % calculation of Fourier coefficients using 

Fast Fourier Transform algorithm 

Cj1_NO=Cj_NO(1:N/2+1); % we need only half of the result as 

the result is mirrored 

PSD_NO=(1/(Fs*N))*abs(Cj1_NO).^2; % calculation of PSD with 

the scaling factor  

PSD_NO(2:end-1)=2*PSD_NO(2:end-1); % additional factor of 2 

is added    

% plot the results 

fig4=figure; 

plot(freq,PSD_NO, 'k') % plot PSD values as a function of 

frequency 

grid on % display grid on the graph 
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xlabel('Frequency (cycle/day)') % name x-axis 

ylabel('PSD (mg/L).^2/(cycle/day)') % name y-axis 

title('Calculated values of NO_{3}.^- PSD, Well 1 1999-

2012') % title the graph 

set(gca,'xtick', 0:0.0025:0.015) % set x-axis tick values  

set(gca,'FontSize', 18) % set font size on the graph 

saveas(fig4,'Calculated values of NO3- PSD, Well 1 1999-

2012.tif')% save the graph as image 

  

% Cumulative spectral power estimates (CSP) calculation of 

aluminum, pH, chloride, and nitrate time series 

x=length(Time); % set the length of data 

T=Time(x); 

dF=1/T;% set frequency resolution 

CSP_Al=dF*cumsum(PSD_Al);% calculation of CSP 

CSP_pH=dF*cumsum(PSD_pH);% calculation of CSP 

CSP_Cl=dF*cumsum(PSD_Cl);% calculation of CSP 

CSP_NO=dF*cumsum(PSD_NO);% calculation of CSP 

CSP_Al_max=max(CSP_Al);% calculation of max CSP value 

CSP_pH_max=max(CSP_pH);% calculation of max CSP value 

CSP_Cl_max=max(CSP_Cl);% calculation of max CSP value 

CSP_NO_max=max(CSP_NO);% calculation of max CSP value 

CSP_Al_N=CSP_Al/CSP_Al_max;% normalizing the CSP values 

CSP_pH_N=CSP_pH/CSP_pH_max;% normalizing the CSP values 

CSP_Cl_N=CSP_Cl/CSP_Cl_max;% normalizing the CSP values 

CSP_NO_N=CSP_NO/CSP_NO_max;% normalizing the CSP values 

%plot the results 

fig5=figure; 

plot(freq,CSP_Al_N,'-.r*','DisplayName','Al') 

hold on 

plot(freq,CSP_pH_N,':bs','DisplayName','pH') 

hold on 

plot(freq,CSP_Cl_N,'--mo','DisplayName','Cl.^-') 

hold on 

plot(freq,CSP_NO_N,'-ko', 'MarkerFaceColor',[0 0 

0],'DisplayName','NO_{3}.^-') 

grid on 

xlabel('Frequency(cycle/day)')% name x-axis 

ylabel('CSP/CSP_{max}')% name y-axis 

title('Calculated CSP values, Well 1 1999-2012') 

set(gca,'xtick', 0:0.0025:0.015) % set x-axis tick values  

set(gca,'FontSize', 18) % set font size on the graph 

legend({'Al','pH','Cl.^-','NO_{3}.^-'},'AutoUpdate','off') 

saveas(fig5,'Calculated values of Al, pH, Cl-, and NO3- 

CSP, Well 1 1999-2012.tif')% save the graph as image 
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%Lomb-Scargle periodogram method using detrended 

noninterpolated data: aluminum time series 

[LS,freq2]=plomb(Al_raw,Time_raw); 

x_1=length(Time_raw); % set the length of data 

T_1=Time(x_1); 

dF_1=1/T_1;% set frequency resolution 

CSP_LS_Al=dF_1*cumsum(LS);% calculation of CSP based on 

Lomb-Scargle periodogram method 

fig6=figure; 

semilogy(freq,CSP_Al,'--mo','DisplayName','PSD based on 

FFT') 

hold on 

semilogy(freq2,CSP_LS_Al,'--ks','DisplayName','PSD based on 

Lomb-Scargle') 

xlabel('Frequency (cycles/day)') 

title('Calculated CSP estimates of Al with the application 

of FFT algorithm and Lomb-Scargle method') 

ylabel('CSP Al,(mg/L).^2') 

saveas(fig6,'Calculated CSP estimates of Al with the 

application of FFT algorithm and Lomb-Scargle method')% 

save the graph as image 
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Appendix D: Supplementary material of Chapter 4. 

Figure S4.1: Scree plot to identify the number of components to be 

retained in the analysis to comprehend the underlying data structure. 
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Table S5.1: Effect of adsorbent dose on percentage Al removal by K10, TiO2 and 

SiO2 at equilibrium time, pH 4.0 and room temperature (T = 24±1 °C). 

Adsorbent dose,    

g L−1 

Percentage of Al removal (mean ± standard deviation) 

K10 TiO2 SiO2 

1.0 67.5 ± 0.8 37.1 ± 1.5 50.1 ± 3.3 

2.0 89.2 ± 1.1 53.7 ± 4.6 65.5 ± 4.9 

3.0 92.3 ± 0.7 61.5 ± 3.4 80.4 ± 3.3 

4.0 97.1 ± 0.3 65.8 ± 3.7 89.1 ± 3.6 

5.0 97.4 ± 0.2 71.9 ± 1.9 94.6 ± 1.4 

 

 

 

 

 

 

 

 

 

 

Appendix E: Supplementary material of Chapter 5. 
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Table S5.2: Effect of ions on the percentage Al removal by K10 based on the t-

confidence interval procedure (t-test). 

Ion Estimate for 

difference*)  

 

95% 

confidence 

interval for 

difference*) 

p-value Comment 

on null 

hypothesis 

Presence of 

statistically 

significant 

difference 

Ca2+ 53.7 (45.9, 61.6) 0.001 < 0.05 Rejected Yes 

Mg2+ 25.2 (15.7, 34.8) 0.008 < 0.05 Rejected Yes 

SO4
2− 9.1 (–8.5, 26.7) 0.200 > 0.05 Accepted No 

Cl−/Na+ (NaCl) –0.1 (–4.4, 4.3) 0.977 > 0.05 Accepted No 

HCO3
− –5.7 (–18.4, 7.0) 0.193> 0.05 Accepted No 

*) Null Hypothesis: (Average Al Removal)(control) – (Average Al Removal)(in ion presence) = 0 
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Table S5.3: Effect of ions on the percentage Al removal by TiO2 based on the t-

confidence interval procedure (t-test).  

Ion Estimate for 

difference*)  

 

95% 

confidence 

interval for 

difference*) 

p-value Comment 

on null 

hypothesis 

Presence of 

statistically 

significant 

difference 

Ca2+ 9.2 (2.3, 16.1) 0.024 < 0.05 Rejected Yes 

Mg2+ 5.6 (−2.6, 13.8) 0.099 > 0.05 Accepted No 

SO4
2− –20.7 (–28.9, −12.5) 0.008 < 0.05 Rejected Yes 

Cl−/Na+ (NaCl) 8.5 (–0.16, 17.1) 0.052 > 0.05 Accepted No 

HCO3
− 36.2 (16.2, 56.1) 0.016 < 0.05 Rejected Yes 

*) Null Hypothesis: (Average Al Removal)(control) – (Average Al Removal)(in ion presence) = 0 
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Table S5.4: Effect of ions on the percentage Al removal by SiO2 based on the t-

confidence interval procedure (t-test). 

Ion Estimate for 

difference*) 

 

95% 

confidence 

interval for 

difference*) 

p-value Comment 

on null 

hypothesis 

Presence of 

statistically 

significant 

difference 

Ca2+ 18.1 (5.9, 30.3) 0.024 < 0.05 Rejected Yes 

Mg2+ 11.6 (1.1, 22.1) 0.040 < 0.05 Rejected Yes 

SO4
2− 22.4 (9.0, 35.7) 0.019 < 0.05 Rejected Yes 

Cl−/Na+ (NaCl) 16.0 (3.7, 28.3) 0.031 < 0.05 Rejected Yes 

HCO3
− –0.9 (–14.1, 12.2) 0.791 > 0.05 Accepted No 

*) Null Hypothesis: (Average Al Removal)(control) – (Average Al Removal)(in ion presence) = 0 

 

  



146 

 

*) The experimental procedure of this set of experiments was following the main steps as 

described in [1,2]. 
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Appendix F: Supplementary material of Chapter 6. 

Figure S6.1: Effect of UV radiation on Al removal by TiO2 
*). Experimental 

conditions: [Al]0 = 2 mg L−1; [TiO2] = 1.0 g L−1; pH = 4.0; T = 24±1 °C, light 

intensity = 100 mW cm−2. Dash dotted line indicates the time when the UV 

radiation started. 
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*) TiO2 – titanium dioxide P25 nano powder was obtained from Evonik Corporation 

(Piscataway, New Jersey, USA). Surface areas 50 m2 g−1, particle size 30 nm; 

ZnO – zinc oxide nano powder was purchased from Advanced Materials (Manchester, 

Connecticuit, USA). Surface area 35 m2 g−1, particle size 30 nm. 

  

Figure S6.2: Al adsorption on nanomaterials *). Experimental conditions: [Al]0 = 2 

mg L−1; [TiO2] = [ZnO] = 2.0 g L−1; equilibrium time = 30 min; pH = 9.0; T = 24±1 

°C. 
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Table S6.1: Percentage of Al removed by 

adsorption and precipitation on different TiO2 (a) 

and VC (b) doses based on the results of the “tea-

bag” experiments. Experimental conditions: [Al]0 

= 2 mg L−1; mixing time = 30 min (TiO2), 240 min 

(VC); T = 24±1 °C. 

MilliQ water 

0.5M NaOH 

Adsorbent 

addition 

Al salt 

MilliQ water 

0.5M NaOH 

100 mL 

50 mL 

50 mL 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

   

 

 

 

  

 

 

 

  

 

 

 

  

(a)      

TiO2, 

g L−1 

Precipitation, 

% 

Adsorption, 

% 

Total Al 

removal, % 

Adjusted 

pH 

Final 

pH 

0.375 22.4 35.2 57.7 9.0 8.2 

0.500 25.5 40.5 65.9 9.0 8.2 

0.625 19.8 65.9 85.7 9.0 8.2 

1.000 20.7 75.5 96.2 9.0 8.2 

(b) 

   

 

 

VC, 

g L−1 

Precipitation, 

% 

Adsorption, 

% 

Total Al 

removal, % 

Adjusted 

pH 

Final 

pH 

0.750 19.8 65.9 85.7 9.0 8.3 

1.500 20.7 75.5 96.2 9.0 8.3 

Figure S6.3: Main steps in the “tea-

bag” experimental procedure. 
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Table S6.2: Adsorption kinetics data of Al adsorption on TiO2 (a) and VC (b) 

obtained at pH = 9.0 and room temperature T = 24 ± 1 °C.  

(a)   

0.25 g L−1 TiO2  0.75 g L−1 TiO2 

Contact 

time, min 

Al,  

mg L−1 

qt,  

mg g−1 

Al removal, 

% 
 

Contact 

time, min 

Al,  

mg L−1 

qt,  

mg g−1 

Al removal, 

% 

0 1.96 0.00 0  0 1.99 0.00 0 

5 1.17 3.19 41  5 0.48 2.01 76 

15 1.08 3.54 45  15 0.46 2.03 77 

30 0.85 4.45 57  30 0.40 2.12 80 

60 0.88 4.31 55  60 0.41 2.10 79 

120 0.88 4.35 55  120 0.43 2.08 78 

180 0.78 4.71 60  180 0.44 2.07 78 

         

(b)    

0.25 g L−1 VC  0.75 g L−1 VC 

Contact 

time, min 

Al,  

mg L−1 

qt,  

mg g−1 

Al removal, 

% 
 

Contact 

time, min 

Al,  

mg L−1 

qt,  

mg g−1 

Al removal, 

% 

0 1.82 0.00 0  0 1.92 0.00 0 

5 1.63 0.75 10  5 – – – 

15 1.50 1.29 18  15 1.16 1.01 40 

30 1.27 2.20 30  30 0.85 1.42 56 

60 0.99 3.33 46  60 0.61 1.75 68 

120 0.78 4.15 57  120 0.43 1.98 77 

180 0.71 4.43 61  180 0.32 2.13 83 

240 0.64 4.70 65  240 0.25 2.23 87 
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Table S6.3: The pH measurement during the adsorption kinetic experiments with 

0.25 g L−1 and 0.75 g L−1 TiO2 and vermiculite concrete-supported adsorbent. 

Experimental conditions [Al]0 = 2 mg L−1; T = 24 ± 1 °C.  

Contact time, 

min 

pH 

0.25 g L−1 TiO2 

pH 

0.75 g L−1 TiO2 

pH 

0.25 g L−1 VC 

pH 

0.75 g L−1 VC 

0 9.05 9.05 9.01 9.01 

5 9.18 9.14 8.80 9.00 

15 9.17 9.15 8.81 9.07 

30 9.12 9.14 8.79 9.07 

60 9.12 9.06 8.85 9.15 

120 9.16 9.18 8.80 9.09 

180 9.11 9.18 8.77 9.00 

240 − − 8.69 8.88 
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Table S6.4: Effect of adsorbent dose on percentage Al removal by TiO2 at 

equilibrium time 30 min, pH 9.0 and room temperature (T = 24±1 °C). 

Adsorbent dose, g L−1 
Percentage of Al removal (mean ± 

standard deviation) 
Final pH 

0.250 53.30 ± 8.2 9.08 

0.375 64.54 ± 3.65 9.12 

0.500 65.92 ± 4.77 9.12 

0.625 76.01 ± 8.47 9.12 

0.750 80.57 ± 0.23 9.17 

1.000 86.54 ± 0.99 9.12 

1.500 93.40 ± 3.36 9.00 

2.000 99.05 *) 9.00 

*) The test was not replicated. 

 

Table S6.5: Effect of adsorbent dose on percentage Al removal by VC at equilibrium 

time 240 min, pH 9.0 and room temperature (T = 24±1 °C). 

Adsorbent dose, g L−1 
Percentage of Al removal (mean ± 

standard deviation) 
Final pH 

0.250 62.67 ± 2.82 8.88 

0.375 68.43 ± 4.90 8.90 

0.500 84.08 ± 2.40 8.73 

0.625 86.83 ± 8.81 8.81 

0.750 86.52 ± 0.87 8.96 

1.000 93.72 ± 0.14 8.87 

1.500 95.31 *) 8.85 

2.000 97.78 *) 8.75 

*) The test was not replicated. 
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Table S6.6: The Al removal and pH measurement during the experiments 

investigating the effect of adsorbents addition sequence. Experimental conditions 

[Al]0 = 2 mg L−1; [TiO2] = [VC] = 0.25 g L−1; T = 24 ± 1 °C.  

(a) 

Contact time, min Al Removal, % 

0.25 g L−1 TiO2 

pH 

0.25 g L−1 TiO2 

0 − 8.92 

30 56.7 ± 4.0 *) 9.07 

35 74.9 ± 3.7 **) 8.89 

45 76.5 ± 1.2 **) 8.84 

60 82.6 ± 3.6 **) 8.82 

(b) 

Contact time, min Al Removal, % 

0.25 g L−1 VC 

pH 

0.25 g L−1 VC 

0 − 8.98 

30 29.8 ± 1.1 ***) 8.83 

35 62.0 ****) 8.96 

45 65.2 ± 1.0 ****) 8.93 

60 72.9 ± 0.9 ****) 8.88 

*) Al removal by TiO2. 

**) Al removal by joint TiO2 +VC. 

***) Al removal by VC. 

****) Al removal by joint VC +TiO2.
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Table S6.7: Effect of adsorbent dose on percentage Al removal by MA at 

equilibrium time 60 min, pH 9.0, and room temperature (T = 24±1 °C). 

Adsorbent dose *), g L−1 
Percentage of Al removal (mean ± 

standard deviation) 
Final pH 

0.250 54.84 9.02 

0.375 67.84 9.03 

0.500 75.80 ± 3.29 9.06 

0.750 86.73 ± 3.89 8.86 

1.000 87.11 ± 1.63 8.92 

*) [MA] = [TiO2] + [VC] were taken in equal proportions. 
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(a) (b) 

(d) (c) 

Figure S6.4: The results of SEM/EDX analysis of TiO2 surface: before Al 

adsorption (a) and (b); after Al adsorption (c) and (d). 
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(a) (b) 

(d) (c) 

Figure S6.5: The results of SEM/EDX analysis of VC surface: before Al 

adsorption (a) and (b); after Al adsorption (c) and (d). 
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Table S6.8: Effect of ions on Al adsorption by 0.25 g L−1 TiO2 (a), 0.25 g L−1 VC (b), 

and 0.50 g L−1 MA (c) at equilibrium time, pH 9.0, and room temperature (T = 24±1 

°C), initial concentration of ions: [NO3
−] = 2.12 mg L−1, [ SO4

2−] = 7.89 mg L−1, [Cl−] 

= 1.82 mg L−1. 

 (a) Equilibrium time = 30 min 

 Al removal, % Final pH 

Control 54.64 ± 6.09 9.10 

NO3
− 54.99 ± 5.28  9.14 

SO4
− 52.13 ± 5.68 8.97 

Cl− 58.33 ± 5.98 9.01 

   

(b) Equilibrium time = 240 min 

 Al removal, % Final pH 

Control 62.67 ± 2.82 8.88 

NO3
− 57.19 ± 2.62 9.15 

SO4
− 48.88 ± 1.66 9.10 

Cl− 60.67 ± 1.00 9.06 

   

(c) Equilibrium time = 60 min 

 Al removal, % Final pH  

Control 75.80 ± 3.29 9.06 

NO3
− 74.76 ± 0.11 8.86 

SO4
− 74.94 ± 0.80 8.83 

Cl− 65.84 ± 0.78 9.05 
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