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ABSTRACT 

The ability to host nitrogen-fixing bacteria, which convert atmospheric di-nitrogen to 

ammonia, inside root cells is a special adaptation of most leguminous and only some non-

leguminous plants. It engenders the development of new, root-derived organs, called 

nodules. Significant research effort has been dedicated to understanding how these ultimate 

nitrogen-fixing plant organs are built. Nonetheless, important gaps with respect to pertinent 

knowledge still remain.  

My thesis work has focused on deciphering the role of the SHORT 

INTERNODES/STYLISH (SHI/STY) transcription factor gene family during nodule 

formation in Lotus japonicus, a model legume plant. I show here that the SHI/STY gene 

family comprises at least nine members, called STY1 to STY9. The RNAseq, qRT-PCR and 

promoter-GUS localization experiments revealed that expression of all nine STY genes 

associates with nodule development which in most cases required NF-YA1, encoding a 

nodule-specific subunit of a heterotrimeric transcription factor.  The activity of the STY 

promoters was associated with nodule primordia and with the vasculature and vascular 

parenchyma in fully mature nodules. Mutant analysis and a dominant negative approach 

were used to assess the functional relevance of the STY genes during nodule formation. 

Based on the outcome of experiments with the STY3-SRDX presumed dominant repressor, 

STY genes are shown to be required for both, symbiotic infection and nodule formation in 

L. japonicus. Using in silico analysis and a candidate gene approach, YUCCA1 and 

YUCCA11 genes, likely involved in regulation of auxin biosynthesis rates, were identified 

as potential targets of the STY-dependent regulation. My data suggest that L. japonicus 

STYs participate, in a highly redundant manner, in a cascade of transcriptional 

reprograming that is initiated with the perception of bacterially-encoded nodulation factors 

by the host roots and leads to local auxin signalling which is required for the differentiation 

of a fully functional, nitrogen-fixing nodule.  The summative findings of my thesis work 

contribute toward better understanding of the requisite mechanisms for nitrogen-fixing 

symbiosis, with refinement on the signal transduction pathway that is generated during root 

nodule organogenesis. 
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INTRODUCTION 
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1.1 Agriculture, nitrogen and the environment 

Approximately 60 percent of the world’s population depends on agriculture for their 

survival. Global agricultural production has been growing at an average rate of 2 to 4% 

annually over the past 50 years, while arable land has increased by only 1% annually. The 

current world population of more than 7 billion is predicted to increase to above 9 billion 

by 2050 (Figure 1.1) (United Nations Report, 2015; 

https://esa.un.org/unpd/wpp/Publications/Files/Key_Findings_WPP_2015.pdf). To meet 

the requirements of the growing population, world food production will need to be 

increased by a projected 25 to 70% (Hunter et al., 2017). This will have to be accompanied 

by a dramatic reduction in agriculture-related pollution in order to restore and maintain the 

key ecosystem services (Steffen et al., 2015; Hunter et al., 2017). Along with or as an 

integral part of the policy, governance and other management strategy developments, 

innovative agriculture research has, and will continue to have, a significant role to play in 

meeting these existential challenges. 

A good example in this context is the significant transformation in the capacity for food 

production that was made possible, thanks to the discovery of a chemical process that 

converts atmospheric di-nitrogen (N2) to ammonia and its subsequent industrialization. 

Known as the Haber-Bosch process, reflecting the names of two German chemists and 

Nobel Prize laureates (https://www.thechemicalengineer.com/features/cewctw-fritz-

haber-and-carl-bosch-feed-the-world/), it is conceivably one of the most impactful 

scientific inventions of the twentieth century. This invention launched the age of industrial 

nitrogen fertilization and became an integral part of the Green Revolution that spurred high 

yielding crop varieties (Pingali, 2012).  

https://esa.un.org/unpd/wpp/Publications/Files/Key_Findings_WPP_2015.pdf
https://www.thechemicalengineer.com/features/cewctw-fritz-haber-and-carl-bosch-feed-the-world/
https://www.thechemicalengineer.com/features/cewctw-fritz-haber-and-carl-bosch-feed-the-world/
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Figure 1.1 Population of the Earth. It had taken all of human history until 1804 for the 

world population to reach one billion. During 20th century, the global population grew from 

1.65 billion to 6 billion.  (Figure was modified from https://www.dsw.org/wp-

content/uploads/2018/06/weltbevölkerung_final.pdf) 

  

https://www.dsw.org/wp-content/uploads/2018/06/weltbevölkerung_final.pdf
https://www.dsw.org/wp-content/uploads/2018/06/weltbevölkerung_final.pdf
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Conventional agriculture, primarily in industrialized countries, has quickly become 

addicted to Haber-Bosch nitrogen and it was estimated that approximately half of the 

current human population owe their lives to this very invention (Erisman et al., 2008). 

However, the costs of producing and using industrial nitrogen fertilizers are no longer 

considered sustainable. This is because of the need for non-renewable fossil fuel energy in 

their production and the resulting pollution, as caused by environmental nitrogen 

enrichment, and its downstream impacts, including greenhouse gas effects, toxic algae 

blooms, and loss of biodiversity (Vitousek et al., 1997; Rockström et al., 2009).  

Pollution of the environment with nutrients is particularly prevalent in several regions 

of the world, including China, Northern India and also in the USA and Western Europe 

(Foley et al., 2011). In the United Kingdom, for example, agriculture-derived nitrogen 

accounts for 66% of nitrous oxide emissions, with very potent greenhouse gas effects 

(https://uk-

air.defra.gov.uk/assets/documents/reports/aqeg/2800829_Agricultural_emissions_vfinal2.

pdf), while in Europe 2-3% of the population is exposed to drinking water contaminated 

with unsafe levels of nitrate (Van Grinsven et al., 2006). Closer to home, in Ontario 

(Canada), Lake Erie is one of the most productive basins, providing drinking water to 

millions of people and supporting a multi-billion dollar economy in both Canada and USA. 

Unfortunately, its efficacy with regard to many key services it provides is threatened by a 

disturbing trend of recurrent algae blooms and hypoxic conditions. These highly 

detrimental events are a direct consequence of nutrient, primarily phosphorus and nitrogen, 

loading (contaminations) caused by agricultural run-offs. Anthropogenic enrichment in P 

is considered the primary driver behind the size of harmful algae blooms in Lake Erie. 

https://uk-air.defra.gov.uk/assets/documents/reports/aqeg/2800829_Agricultural_emissions_vfinal2.pdf
https://uk-air.defra.gov.uk/assets/documents/reports/aqeg/2800829_Agricultural_emissions_vfinal2.pdf
https://uk-air.defra.gov.uk/assets/documents/reports/aqeg/2800829_Agricultural_emissions_vfinal2.pdf


5 

 

 

However, there is mounting evidence that combined nitrogen from inorganic fertilizers and 

manure is the chief culprit influencing the toxicity of the bloom, a more important factor 

when it comes to public health (https://cen.acs.org/articles/94/web/2016/01/Nitrogen-

Triggers-Extra-Toxic-Algal.html).  

These few examples highlight the dark side of nitrogen, as used in agriculture. While 

critically needed to maintain high yields, at least under current production schemes, their 

use, or rather overuse, has already reached the critical planetary boundary level and become 

unsustainable (Rockström et al., 2009) .  

 

1.2 Plant nitrogen nutrition 

Nitrogen is one of the most widespread elements on the Earth. In its elemental, diatomic 

(N2) form, it comprises approximately 78% of the Earth’s atmosphere. However, N2 is 

unusable to most organisms due to the triple bond connectivity of the two atoms, which 

makes its conversion to any biologically active molecule highly challenging. Thus, while 

being abundant, nitrogen represents one of the most growth-limiting macronutrients for the 

majority of organisms in natural settings, including plants.  

Nitrogen is a major component of chlorophyll, the pigment required for photosynthesis, 

as well as amino acids, the building blocks of proteins. It is also found in biomolecules, 

like ATP and nucleic acids. Plants can only utilize nitrogen in its reduced forms and nitrate 

(NO3
-) is the most preferable source of mineral nitrogen for many plants, although they can 

also utilize other nitrogen forms, such as ammonium and amino acids (Masclaux-

Daubresse et al., 2010). Root-localized nitrogen sensing and uptake machinery facilitate 

these processes and are dynamically regulated at local and systemic levels, responding to 

https://cen.acs.org/articles/94/web/2016/01/Nitrogen-Triggers-Extra-Toxic-Algal.html
https://cen.acs.org/articles/94/web/2016/01/Nitrogen-Triggers-Extra-Toxic-Algal.html
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availability and distribution of external nitrogen while also integrating the information on 

internal demand (Gent and Forde, 2017; Poitout et al., 2018).  

Plants acquire NO3
- from the soil by absorbing it across the plasma membrane (PM) of 

root epidermal and cortical cells, which is facilitated by high- and low-affinity transporters. 

Once inside, NO3
- is reduced by nitrate reductase (NR) and nitrite reductase (NiR) to 

ammonium (NH4
+), which is then assimilated into an organic (amino acid) form via the 

GOGAT cycle. Only a proportion of absorbed nitrate is assimilated within the roots 

whereas the remaining amount is transported to the shoot via xylem and then assimilated 

in leaves (Miller and Smith, 1996; Forde and Clarkson, 1999).  

Scavenging for nitrogen and also other nutrients is an active process. One of the 

strategies common to all plants is reflected by the plasticity of growth, where the root 

system architecture, the three-dimensional geometry of root morphology in the soil (Lynch, 

1995), is adjusted depending on nutrient availability and other pertinent external and 

internal factors. For example, under severe nitrogen limitation, the root growth is stalled to 

preserve dwindling internal resources (Niu et al., 2013; Giehl et al., 2014; Peret et al., 

2014), but appearance of a localized nitrogen patch would quickly stimulate directional 

lateral root growth toward the nutrient source, allowing for a targeted exploration of the 

soil (Forde, 2009).  

 

1.3 Nutrient acquisition through plant-microbe interactions 

In their quest for limited nutrients, plants are supported not only by their intrinsic 

abilities to adjust the growth patterns but also by their microbiomes. Both loosely 

associated microorganisms residing in the rhizosphere and phyllosphere, and also those 
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habitating the plant endosphere compartments, classified as either extracellular or 

intracellular endophytes, are likely germane in this context. However, owing to their 

intimate nature the latter group is more likely to provide a reliable support for nutrition 

(van der Heijden et al., 2016). This is keenly exemplified by one of the most widely 

occurring intracellular plant-microbe interactions, pertinent to the majority of extant plant 

species, which is the symbiosis of plant roots with phosphate-acquiring arbuscular 

mycorrhiza (AM) fungi (Parniske, 2008; MacLean et al., 2017). Another prominent 

example is nitrogen-fixing root nodule symbiosis (NFS), although this interaction is 

restricted to a phylogenetically much smaller group of plants in comparison to AM 

symbiosis (AMS) (see below) (Figure 1.2). 

Among many edaphic factors, elevated levels of soil N and P were shown to influence 

taxonomic and functional traits of soil microbial communities (Ikeda et al., 2014; Pan et 

al., 2014; Leff et al., 2015) and their adverse effects on NFS and AMS, respectively, are 

well-documented (Fred and Graul, 1916; Carroll and Gresshoff, 1983; Delves et al., 1986; 

Streeter, 1988; Vessey and Waterer, 1992; Mortier et al., 2012; Cabeza et al., 2014; Saito 

et al., 2014; Konvalinková et al., 2017; Liese et al., 2017). Long-term exposure to chemical 

fertilization has also been linked to favoring selection of less effective plant mutualists 

(Johnson, 1993; Kiers et al., 2007; Toby Kiers et al., 2010; Vandenkoornhuyse et al., 2015; 

Weese et al., 2015). This highlights the existence of important balancing mechanisms and 

underpins the key dilemma. In agricultural settings, where limiting productivity by any 

factor is unacceptable, industrial fertilization, while fulfilling most nutritional needs, likely 

restricts many benefits the plants would have otherwise received through microbial-based 

services. How to resolve this apparent conundrum, while also addressing the compounding 
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Figure 1.2 Legume plants engage in beneficial symbioses with both rhizobia and 

arbuscular mycorrhiza fungi. (Picture of the arbuscule was modified from 

https://mycorrhizas.info/vam.html) 

 

 

  

https://mycorrhizas.info/vam.html
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factor of anthropogenic nutrients escaping to the environment and causing its degradation, 

constitutes one of the main challenges of our generation.  

Investments from public and private organizations have been supporting research on 

so called “self-fertilizing” crops. In terms of nitrogen, exploring the possibility of 

extending NFS to crops that are currently unable to engage in this type of interaction, or 

even directly engineering N2-fixation in cereals by in planta expression of a prokaryotic 

nitrogenase enzyme, are at the forefront of these efforts (Good and Beatty, 2011; Curatti 

and Rubio, 2014; Mus et al., 2016; Liu et al., 2018). Selecting natural or devising synthetic 

microbiomes that boost nitrogen acquisition and working toward so called ‘designer roots’ 

with improved foraging properties are other promising research avenues (Gewin, 2010; 

Bishopp and Lynch, 2015; Panke-Buisse et al., 2015; Sessitsch and Mitter, 2015). To 

succeed in these conceivably transformative endeavors will require a thorough 

understanding of the underlying processes, for which selected aspects of the current 

knowledge, especially those pertinent to NFS, are briefly summarized in following 

sections.  

 

1.4 Biological nitrogen fixation 

Early during the evolution of the prokaryotic life, long before the Haber-Bosch process 

was conceived, an enzymatic complex, called nitrogenase, was produced to catalyze the 

ATP-dependent conversion of N2 to ammonia (Navarro-Gonzalez et al., 2001). This 

reaction is known as biological nitrogen fixation (BNF) and although taxonomically 

restricted to only limited groups within Archea and bacteria, it accounts for at least half of 

the reduced nitrogen circulating today on the Earth (Falkowski, 1997) (Figure 1.3). Free-
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living soil bacteria, such as Klebsiella and Azotobacter, bacteria that form associative 

relationships with plants, including Azospirillum, Gluconacetobacter and cyanobacteria, 

and also rhizobia and Frankia that can live inside plant cells, exemplify microorganisms 

that are capable of BNF (Vitousek et al., 2013). On the other hand, not a single eukaryotic 

organism has gained the ability to carry out this process on it own, although different 

symbiotic associations with N2-fixing prokaryotes are known in all crown groups of 

eukaryotic life, including protists, fungi, animals and plants (Kneip et al., 2007). The 

nitrogen-fixing root nodule symbiosis of legumes with rhizobia is conceivably the most 

intricate and is also the best studied interaction.  

What evolutionary event or events engendered the ability of legumes and a restricted 

number of non-legume plants to host N2-fixing bacteria intracellularly remains the subject 

of great interest. The current theory, supported by extensive phylogenomic analyses, posits 

that this trait was attained in an ancestor of the N2-fixing clade as a result of refurbishing 

the regulatory elements of pre-existing gene networks (Szczyglowski and Amyot, 2003; 

Griesmann et al., 2018; van Velzen et al., 2018). One of these gene networks, based on 

which the capability for NFS evolved, turned out to support AMS (Stracke et al., 2002; 

Kistner et al., 2005; Markmann and Parniske, 2009; MacLean et al., 2017).  

  

1.5 Arbuscular mycorrhiza symbiosis and CSSP  

AMS between plants and the fungi of phylum Glomeromycota is ancient, with a 

predicted origin early during the evolution of terrestrial flora, approximately 460 million 

years ago (MYA) (Remy et al., 1994; Taylor et al., 1995; Parniske, 2008; Bonfante and 

Genre, 2010; Corradi and Bonfante, 2012). It has been speculated that plants would have  
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Figure 1.3 Schematic representation of the nitrogen cycle.  

(Figure was modified from https://en.wikipedia.org/wiki/Nitrogen_cycle)  

  

https://en.wikipedia.org/wiki/Nitrogen_cycle
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been unable to colonize land without being assisted by the fungi. These early land plants 

had no or very rudimentary root systems and fungal hyphae were likely essential in 

fulfilling the life-sustaining functions of supplementing water and nutrients, such as P and 

N to their primitive hosts (Pirozynski and Malloch, 1975).  

Extending far beyond the physical constraints of the roots, extra-radical AM hyphae 

dramatically increase both the distance and the surface area available for soil exploitation 

(Govindarajulu et al., 2005; Kistner et al., 2005) while highly branched intra-radical 

hyphae, called arbuscules, serve to trade externally captured nutrients for plant-derived 

sugars and fatty acids (Yang and Paszkowski, 2011; Luginbuehl et al., 2017; MacLean et 

al., 2017). Progression of intra-radical hyphae and the establishment of arbuscules without 

triggering any adverse defense mechanisms, mark an important evolutionary step that was 

taken by plants in learning of how to tame cooperative fungi through intracellular 

symbiosis. Evolution has apparently tinkered with this innovation further which, circa 60 

MYA, allowed the progenitor of legumes and some non-legume plants to learn how to 

accommodate N2-fixing bacteria, which is the basis of the extant NFS. This fascinating 

picture of the evolutionary progression first surfaced based on the discovery of pea plants 

carrying monogenic mutations that simultaneously impaired both AMS and NFS (Duc et 

al., 1989). Subsequent research revealed the presence of the so-called common symbiotic 

signalling pathway (CSSP) (Oldroyd, 2013), which is shared by and essential for the 

initiation of the plant accommodation program during both AMS and NFS (Stracke et al., 

2002; Kistner et al., 2005; Oldroyd, 2013; MacLean et al., 2017) (Figure 1.4).  

The known elements of the CSSP signal transduction include a leucine-rich repeats 

(LRR) type receptor SYMRK/DMI2 (Endre et al., 2002; Stracke et al., 2002), two ion 
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channels CASTOR and POLLUX/DMI1 (Ané et al., 2004; Charpentier et al., 2008) and 

three nucleoporins NUP88, NUP133 and NENA (Kanamori et al., 2006; Saito et al., 2007; 

Groth et al., 2010), which all contribute to epidermal events that stimulate cellular calcium 

(Ca2+) influx and rapid oscillations of Ca2+ concentration within the perinuclear space, 

called Ca2+ spiking (Ehrhardt et al., 1996; Sieberer et al., 2012; Morieri et al., 2013; 

Charpentier et al., 2016). Two more downstream components of the CSSP, namely 

CALCIUM and CALMODULIN-DEPENDENT RECEPTOR KINASE (CCaMK/DMI3) 

and its phosphorylation target CYCLOPS/IPD3, transduce these Ca2+ evolutions into 

relevant downstream outputs (Levy et al., 2004; Mitra et al., 2004; Messinese et al., 2007; 

Yano et al., 2008; Hayashi et al., 2010; Madsen et al., 2010; Singh et al., 2014). In M. 

truncatula, DELLA proteins, which are central to gibberellic acid signalling, were shown 

to promote CCaMK/IPD3 complex formation and be required for both symbioses, hence 

also belonging to the CSSP (Jin et al., 2016). Downstream from the CSSP, a cascade of 

transcription factors mediates divergent processes that establish rhizobial and mycorrhizal 

symbioses (Kalo et al., 2005; Smit et al., 2005; Middleton et al., 2007; Gobbato et al., 2012; 

Soyano and Hayashi, 2014; Sun et al., 2015; MacLean et al., 2017) (Figure 1.4).  

 

1.6 NFS, an AMS on steroids? 

Activation of CSSP during NFS and AMS involves the perception of microsymbiont-

derived chemical signals or a mixture of chemically-related signals, termed Nod Factor 

(NF) and Myc Factor (MycF), respectively (Genre et al., 2013; Russo et al., 2018). NF and 

MycF are lipo-chitooligosaccharide molecules, where a variety of bacterial strain-specific 

modifications at the reducing and non-reducing end of the former are considered as  
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Figure 1.4 The endosymbiosis pathway. An overview of plant proteins that mediate 

nitrogen-fixing (NFS) and arbuscular mycorrhiza (AMS) symbioses is provided. Note that 

many additionally regulatory proteins, not included in the schematic, are involved in the 

establishment of AMS (for comprehensive review on this topic, see MacLean et al., 2017). 

Furthermore, apart from CSSP, other proteins, such as some of the Nod factor receptors 

and several transcription factors, including NSP1/2 and NIN, while crucial for NFS, were 

also shown to play a role during AMS. For more details, please see text. 
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adaptations from the rather rudimentary chitin backbone of the latter (Maillet et al., 2011). 

This difference in chemical complexity (i.e. the extent of chemical decorations on the chitin 

backbone) between NF and MycF was postulated to account, at least in part, for the high 

level of selectivity in plant-Rhizobium interactions as opposed to the rather promiscuous 

nature of AMS (Maillet et al., 2011; MacLean et al., 2017).  

The MycF-specific receptor has yet to be identified while NF receptors have been 

characterized and were shown to be indispensable for NFS while also being partially 

involved in, but non-essential for, AMS (Zipfel and Oldroyd, 2017). Interestingly, 

however, in Parasponia andersonii, the only non-legume plant known to form N2-fixing 

symbiosis with rhizobia, a single LysM kinase receptor was found to be critical for both 

symbioses. This observation suggests that like other known CSSP elements, the NF-

perception receptors have evolved based on the pre-existing recognition mechanism 

relevant to AM signalling (Op den Camp et al., 2011).  

Activation of the NF or MycF receptors by their respective ligands drives the CSSP-

dependent reactivation of cell cycle-related processes in both the root epidermis and 

subtending cortex. This is apparently important for subsequent intracellular 

accommodation of both fungal and bacterial partners inside roots (Held et al., 2010; 

Breakspear et al., 2014; Xiao et al., 2014; Murray, 2017; Russo et al., 2018). However, 

during NFS only, the re-activated cell cycle results in extensive cell divisions that lead to 

the formation of distinct accommodation organs, root nodules, which host N2-fixing and 

other associated bacteria (Martínez-Hidalgo and Hirsch, 2017). By contrast, sporadic, 

ectopic cell divisions associated with the progression of fungal hyphae inside roots do not 

support any macroscopic organ formation and the development of AMS culminates in 
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microscopic structures only, as represented by arbuscule-containing cells (Russo et al., 

2018). Thus, in terms of symbiotic organ formation, NFS could be considered as AMS on 

steroids. 

As outlined below, a functional link between NF perception and the downstream host 

plant responses involving cytokinins may account for this ostensibly augmented, cellular-

level impact that makes a nodule during NFS.  

 

1.7 Root nodules 

Only a restricted number of extant plant genera, belonging to one of the four orders, 

Fabales, Fagales, Rosales and Cucurbitales, within Fabids (formerly eurosid 1) form 

nodules (Doyle, 2011). This developmental process requires a coordinated, CSSP-

dependent response of both root epidermis and subtending root cortex and pericycle 

(Timmers et al., 1999; Xiao et al., 2014), which commences as a result of the selective 

recognition and binding of NFs to their cognate, root epidermis-localized receptors. Like 

in Parasponia, these belong to the lysine motif (LysM) receptor-like kinase protein family 

and are known as NF receptor 1 (NFR1) and NFR5 in L. japonicus (Madsen et al., 2003; 

Radutoiu et al., 2003; Radutoiu et al., 2007; Broghammer et al., 2012) or MtLYK3 and 

MtNFP in Medicago truncatula (Limpens et al., 2003; Arrighi et al., 2006).  

The selectivity of the NF recognition by the receptors, which determines the 

compatibility between the host plant and its N2-fixing micro-symbiont, has been postulated 

to have evolved through a neo-functionalization of the plant innate immunity mechanism 

that uses transmembrane receptors to recognize microbial-associated molecular patterns, 

such as chitin (Jones and Dangl, 2006; Zhang and Zhou, 2010; Liang et al., 2013; Liang et 
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al., 2014; Zipfel and Oldroyd, 2017). More recently, a mechanism wherein NF perception 

induces expression of EPR3, an exopolysaccharide receptor belonging to the LysM 

receptor kinase family, has been documented. EPR3 apparently acts in a sequential manner 

with the NFR1/NFR5 complex to reinforce the recognition, thereby allowing the efficient 

entry of Mesorhizobium loti, an N2-fixing partner of L. japonicus, into roots (Kawaharada 

et al., 2015; Kawaharada et al., 2017b). Additional LysM receptors are also known to 

participate in fine-tuning the symbiotic process, which altogether points to the involvement 

of a rather intricate mechanism (Murakami et al., 2018).  

At the root epidermis, mutual compatibility between symbiotic partners drives 

symbiotic infection, which in most plants involves the formation of root hair plasma 

membrane-derived trans-cellular shafts, called infection threads (IT) (Figure 1.5) (Sprent, 

2007). These shafts are actively built by the host plant to guide the orderly progression of 

rhizobia inside the roots (Fournier et al., 2015; Miri et al., 2016), where a presumed cell 

non-autonomous root epidermis to cortex signalling has already activated mitotic cell 

divisions for nodule primordia (NP) formation (Madsen et al., 2010; Held et al., 2014). In 

most cases, the release of rhizobia from IT inside NP cells marks the beginning of 

functional symbiosis. Residing within symbiosomes, membrane-bound organelle-like 

structures present within the cytoplasm of infected nodule cells, differentiated forms of 

rhizobia, called bacteroids, begin N2 fixation while assimilating the photosynthetic carbon 

(Kereszt et al., 2011). 

The root nodule provides an ideal environment to protect the rhizobia-encoded 

nitrogenase complex which catalyzes the reduction of atmospheric N2 to ammonia 
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Figure 1.5 Infection thread. Image showing infection thread penetrating root hair and 

descending into subtending cortex. Presence of M. loti inside the infection thread is marked 

by blue colour, reflecting the activity of the LacZ reporter gene. MC, microcolony; eIT, 

epidermal infection thread; PIT, a preinfection thread that marks one possible route for 

progression of the infection towards subtending nodule primordium (not shown); E, root 

epidermis; C, root cortex.  
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 (Coba de la Pena et al., 2017). This is readily assimilated by the host plant, supporting its 

vigorous growth (Udvardi and Poole, 2013). From this perspective, nodules represent the 

ultimate N2-fixing hubs and their engineering in non-nodulation plants is considered as one 

of the essential steps in extending NFS to some important cereal crops (Rogers and 

Oldroyd, 2014). Interestingly in this context, acting downstream from NF perception and 

CSSP, cytokinins, a class of plant hormones regulating a variety of developmental 

processes in all higher plants, turned out to be key plant endogenous mediators of nodule 

organogenesis (Cooper and Long, 1994; Murray et al., 2007; Frugier et al., 2008; Sasaki et 

al., 2014; Gamas et al., 2017; Reid et al., 2017). Why formation of nodules, as mediated 

by ubiquitous cytokinins, is limited to some plants only, remains an unanswered question.  

 

1.8 Cytokinins and nodule formation 

Pertinent to many regulatory processes, (Zürcher and Muller, 2016) cytokinins partake 

in mechanisms that mediate acquisition of soil nutrients by systemically communicating 

plant nitrogen status to direct root foraging activities (Kiba et al., 2011; Krouk et al., 2011; 

Ruffel et al., 2011; Ruffel et al., 2016; Poitout et al., 2018). Their important role during 

NFS has also been firmly documented. This was initially inferred 24 years ago following 

the observation that a mutant strain of Sinorhizobium meliloti, unable to produce NF but 

engineered for secretion of trans-zeatin, an isoprenoid cytokinin, was able to induce 

nodule-like structures on M. sativa roots (Cooper and Long, 1994). This early observation 

is in line with the current understanding that suggests a rapid accumulation of cytokinin in 

roots as a key step in the nodule primordium inception (Frugier et al., 2008; Held et al., 

2014; van Zeijl et al., 2015; Boivin et al., 2016). Importantly, cytokinins have also turned 
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out to be important in mediating the root susceptibility to rhizobial infection (Murray et al., 

2007; Held et al., 2014; Miri et al., 2016; Tsikou et al., 2018).  

How bio-active cytokinins are generated in roots upon NF perception and CSSP 

activation remains a matter of intensive study. Nonetheless, current data indicate that both, 

de novo cytokinin biosynthesis and direct activation of a pre-existing, inert cytokinin 

pool(s) by LONELY GUY (LOG) proteins (Kurakawa et al., 2007; Tokunaga et al., 2012) 

contribute to or account for this process (Mortier et al., 2014; van Zeijl et al., 2015; Reid 

et al., 2017).  

Within 3 hours of NF application, trans-zeatin and isopentenyl adenine, the most potent 

endogenous cytokinins, were detected at a significantly elevated level in M. truncatula 

roots (van Zeijl et al., 2015) and similar observations have been made in L. japonicus (Reid 

et al., 2016). The majority of early (i.e. within the first 3 hours) transcriptional changes to 

NF perception in M. truncatula roots were shown to be dependent on the MtCRE1 

cytokinin receptor gene (van Zeijl et al., 2015), further confirming that cytokinin signalling 

in roots is one of the key, positive effectors of nodule organogenesis. Indeed, deleterious 

mutations in MtCRE1 or its L. japonicus orthologue, LHK1, result in hugely defective NFS 

(Gonzalez-Rizzo et al., 2006; Murray et al., 2007; Plet et al., 2011) and the L. japonicus 

lhk1-1 lhk1a-1 lhk3-1 triple cytokinin receptor mutant does not form nodules (Held et al., 

2014). On the other hand, ectopic cytokinins were shown to trigger cortical cell divisions 

and formation of nodule-like structures in the absence of rhizobia on roots of several 

leguminous species (Bauer et al., 1996; Fang and Hirsch, 1998; Mathesius et al., 2000a; 

Heckmann et al., 2011). Furthermore, axenically grown L. japonicus plants carrying snf2, 

a gain-of-function LHK1 allele, developed empty nodules (Tirichine et al., 2007; 
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Heckmann et al., 2011; Reid et al., 2017), showing that the cytokinin receptor was not only 

required but also sufficient for stimulating nodule organogenesis.  

 

1.9  NIN, the nodule inception regulator 

In L. japonicus, expression of the NODULE INCEPTION REGULATOR (NIN) gene is 

required for spontaneous nodule formation, as mediated by snf2, and NIN mRNA level was 

upregulated in snf2 roots in the absence of rhizobia (Tirichine et al., 2007). Furthermore, 

empty nodule-like structures were induced in L. japonicus roots by expressing NIN under 

the control of the constitutive, UBIQUITIN promoter (Soyano et al., 2013), indicating that 

by acting downstream from LHK1, NIN is a key mediator of nodule formation. Consistent 

with this, NIN was shown to be indispensable for nodule formation not only in L. japonicus 

(Schauser et al., 1999) but also in other legume species from Fabales, including pea (Pisum 

sativum) (Borisov et al., 2003) and Medicago truncatula (Marsh et al., 2007; Vernie et al., 

2015) and in Casuarina glauca (order Fagales), an actinorhizal plant (Clavijo et al., 2015; 

Chabaud et al., 2016).  

NIN genes encode RWP-RK domain-containing transcription regulators, belonging to 

the NIN-like protein (NLP) family (Chardin et al., 2014). Deleterious mutations at NIN loci 

in various nodulating plant species block the development of NFS, including bacterial 

infection and nodule organogenesis (Schauser et al., 1999; Marsh et al., 2007; Murray et 

al., 2007; Madsen et al., 2010; Xie et al., 2012; Soyano et al., 2013; Yoro et al., 2014; 

Vernie et al., 2015). In M. truncatula, NIN was shown also to play an important role during 

AM infection, although the Mtnin-1 mutant was still able to establish AMS (Guillotin et 

al., 2016), perhaps due to the presence of a partially redundant function(s).  
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CYCLOPS, the direct phosphorylation target of CCaMK (Yano et al., 2008; Singh et 

al., 2014) and a component of CSSP (Figure 1.4) was shown to initiate a cascade of 

transcriptional reprogramming that leads to nodule formation (Limpens and Bisseling, 

2014; Soyano and Hayashi, 2014). Its artificial activation in L. japonicus was sufficient to 

stimulate the formation of empty nodule structures in the absence of any external stimulus 

(Limpens and Bisseling, 2014; Singh et al., 2014). This required NIN, which is subjected 

to CYCLOPS-dependent regulation (Singh et al., 2014). NIN has a central, yet complex 

and not fully understood function(s) during symbiosis. In L. japonicus NIN was shown to 

directly regulate LjNF-YA1 and LjNF-YB1 transcription factor genes, which are required 

for normal nodule development (Soyano et al., 2013) (Figure 1.4). 

 

1.10 Nuclear factor Y (NF-Y) and nodule formation 

Nuclear Factor Y (NF-Y) proteins, known also as Heme Activator Proteins (HAP) or 

CAAT-box binding transcriptional factors (CBF), are heterotrimeric protein complexes 

composed of the NF-YA, NF-YB and NF-YC subunits (Mantovani, 1999; Dolfini et al., 

2012; Laloum et al., 2013). Unlike in animals and fungi, plants have evolved multiple 

copies of genes encoding each of the three NF-Y subunits and some of these have been 

shown to play important regulatory functions during nodule formation (Combier et al., 

2006; Combier et al., 2008; Zanetti et al., 2010; Laloum et al., 2013; Soyano et al., 2013; 

Battaglia et al., 2014; Laloum et al., 2014; Laporte et al., 2014).  

The M. truncatula MtNF-YA1 (MtHAP2-1) gene, which encodes an A subunit of the 

NF-Y complex, was the first to be identified as essential for indeterminate (i.e. those which 

contain a persistent meristem) nodule development (Combier et al., 2006; Combier et al., 
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2008). It was shown to be required for regulation of cell proliferation and proper nodule 

meristem formation. Its role during symbiotic root infection by S. meliloti, exerted through 

a partially redundant function with MtNF-YA2, was also highlighted (Laloum et al., 2014; 

Laporte et al., 2014). 

NF-Ys have emerged as important also for determinate, meristem-deprived nodules. 

For example, in common bean (Phaseolus vulgaris), PvNF-YC1 was shown to be required 

for nodule formation and also for rhizobial infections, including a mechanism by which the 

host plant selects for a more efficient symbiotic partner (Zanetti et al., 2010; Battaglia et 

al., 2014). By contrast, various impediments to the L. japonicus NF-YA1 did not lead to 

defective M. loti infection but, as in P. vulgaris and M. truncatula, were detrimental to 

nodule formation (Soyano et al., 2013; Hossain et al., 2016).  

Analysis of independent L. japonicus variants, carrying different mutant nf-ya1 alleles, 

showed that LjNF-YA1 became indispensable only downstream from the initial cortical cell 

divisions but prior to nodule differentiation, including cell expansion and nodule vascular 

bundle formation (Hossain et al., 2016). Although it remains unclear what specific 

mechanism(s) is being regulated, a hypothesis was formulated that NF-YA1 may partake 

in the generation of local auxin maxima. These maxima are known to be produced in M. 

loti-inoculated L. japonicus roots downstream from LHK1 and NIN and were deemed 

essential for nodule formation (Suzaki et al., 2012).  

 

1.11 The objectives of the thesis 

Microarray experiments previously done in our laboratory identified 17 genes as 

potential direct targets of the NF-YA1-dependent regulation during L. japonicus root nodule 
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formation (Hossain et al., 2016). Three of the 17 genes, namely STY1, STY2 and STY3, 

were characterized as members of the L. japonicus SHORT INTERNODE/STYLISH 

(SHI/STY) transcription factors gene family and the microarray data showed that, as 

compared to the wild-type counterpart, their expression was significantly downregulated 

in nf-ya1 mutants, which was associated with defective nodule organogenesis (Hossain et 

al., 2016). In A. thaliana and Physcomitrella patens, STY proteins act as important 

components of various gene networks, including those pertinent to regulation of cell 

expansion and auxin biosynthesis. YUCCA genes, encoding the indole-3-pyruvic acid 

(IPyA) decarboxylase, a rate-limiting enzyme in auxin biosynthesis (Cheng et al., 2006; 

Zhao, 2012) are among the identified, direct targets of the STY-dependent regulation 

(Sohlberg et al., 2006; Eklund et al., 2010a; Eklund et al., 2010b). As our microarray data 

suggested that at least some of the L. japonicus STY genes are regulated by NF-YA1, a 

nodule-specific transcription regulator, verifying this and characterizing the role of STYs 

during the transcriptional reprogramming of roots toward nodule formation constituted the 

primary goal for my thesis work.  

The following hypotheses were formulated and tested:  

(1) In response to M. loti infection, L. japonicus NF-YA1 regulates expression of 

several SHI/STY genes.  

(2) Members of the L. japonicus SHI/STY gene family act redundantly to regulate 

root nodule formation. 

(3)  SHI/STY genes are essential only after the initial cell divisions for nodule 

primordia formation. 
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(4) YUCCA genes, encoding auxin biosynthesis enzymes, are downstream targets 

of the NIN/NF-YA1/STY-dependent regulatory cascade. 

The long-term objective of this work is to make significant contributions to our 

understanding of mechanisms by which nodule formation is achieved. This is expected to 

resolve at least part of the puzzle, as associated with the ability of legumes and some non-

leguminous plants to host nitrogen-fixing bacteria.  
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CHAPTER 2 

MATERIALS AND METHODS 
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2.1 Seed germination and plant materials  

Lotus japonicus ecotype Gifu was used in all experiments (Handberg and Stougaard, 

1992). Seeds were scarified using sand paper, followed by two consecutive one-minute 

washes with 0.1% (w/v) sodium dodecyl sulfate (SDS) in 70% (v/v) ethanol and 0.1% 

(w/v) SDS in 20% (v/v) bleach. The seeds were then rinsed with sterile Milli-Q water ten 

times and incubated overnight in sterile water to imbibe. They were transferred to Petri 

dishes containing six layers of sterilized filter paper (Fisher #09-801A) moistened with 

sterilized Milli-Q water and allowed to germinate for 7 days at 23° C, under 16/8 hour 

light/dark regime. Unless otherwise specified, seedlings were transferred to pots containing 

a 6:1 mixture of vermiculite and sand that was soaked with a 1x B&D nutrient solution 

(Broughton and Dilworth, 1971), containing 0.5mM KNO3 and grown under sterile 

conditions as follows: 16/8 hours day/night at 23/18 °C with humidity of 70%.  

For analysis of non-symbiotic plant root and shoot phenotypes, un-inoculated L. 

japonicus wild-type and mutant seedlings were transferred to pots containing a mixture of 

vermiculite and sand (6:1) that was supplemented with B&D solution containing 1mM 

KNO3. Plants were harvested and analyzed at various time-points after sowing. 

 

2.2 Assessment of plant phenotypes 

Wild type and mutant L. japonicus seedlings were grown under sterile conditions and 

were inoculated 7 days after sowing using wild-type Mesorhizobium loti strain NZP2235 

or the same M. loti strain carrying the hemA::LacZ reporter cassette. The latter guided the 

visualization and scoring of bacterial infection and early nodule primordia formation via 

histochemical root staining for β-galactosidase activity (Wopereis et al., 2000). Briefly, 
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wild-type and mutant roots were collected at various time-points upon inoculation (7 and 

21 days) and were vacuum infiltrated for 15 minutes with a fixative solution (1.25% v/v 

glutaraldehyde solution buffered with 0.2 M sodium cacodylate pH 7.2) and incubated in 

the same buffer for an additional 1 hour. The fixed roots were rinsed twice with 0.2M 

sodium cacodylate, pH 7.2, for 15 min and stained for β-galactosidase activity for 16 hours 

at room temperature using a solution containing sodium cacodylate (0.17M , pH 7.2), 

K₃[Fe(CN)₆] (5.3mM), K₃[Fe(CN)₆] (5.3mM), and 5-bromo-4-chloro-3-indolyl-D-

galactoside substrate (X-Gal, PhytoTechnology Laboratories, USA; 0.085% w/v). The 

following day, stained roots were rinsed successively with 0.2M sodium cacodylate buffer 

(pH 7.2; 3 times for 10 min), distilled water (2 times for 5 min), and cleared using the 

protocol described by (Malamy and Benfey, 1997). This involved the following steps: (1) 

incubation in solution containing 0.24 M HCl in 20% (v/v) methanol for 15 minutes at 

57°C, (2) incubation in a 7% (w/v) NaOH solution in 60% (v/v) ethanol for an additional 

15 minutes at room temperature; (3) gradual re-hydration of the roots using an aqueous 

(v/v) ethanol series of 40%, 20% and 10%, incubating for 5 minutes at each step. Finally, 

the root specimens were vacuum infiltrated for 15 minutes with a 25% (v/v) glycerol 

solution containing 5% (v/v) ethanol and mounted on standard, glass microscope slides 

(Ultident Scientific Inc., Canada) using 50% (v/v) glycerol.  

 

2.3 Identification of sty and yucca mutant lines and development of 

higher order mutants 

The sty and yucca mutant lines were identified using the L. japonicus LORE1 

retrotransposon insertion lines collection at Aarhus University in Denmark 
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(https://lotus.au.dk/; Mun et al., 2016). These are listed in Table 2.1. For all the selected 

LORE1 insertion lines, the corresponding seeds were received through the Lotus Base 

(https://lotus.au.dk/). They were germinated and the resulting plants were genotyped using 

the gene and LORE1 specific primers (Appendix A and Appendix B), following the 

established procedure (Urbanski et al., 2012).  

For the STY3 locus, nine additional mutant alleles (Table 2.2), called sty3-1 to sty3-9, 

were identified using the L. japonicus TILLING (Targeting Induced Local Lesions In 

Genomes) resource at the John Innes Centre (RevGenUK; 

https://www.jic.ac.uk/technologies/genomic-services/revgenuk-tilling-reverse-genetics/; 

(Perry et al., 2009) . Two alleles, sty3-1 and sty3-9, carried nucleotide changes that resulted 

in predicted premature translation termination codons and these were analyzed further. The 

seeds for the two TILLING lines were obtained from RevGenUK. To identify homozygous 

plants, genotyping was carried out using derived cleavage amplified polymorphic sequence 

(dCAPS) markers for both alleles, and subsequently confirmed by sequencing of the 

relevant genomic regions. Both genotyping and sequencing primers used for sty3-1 and 

sty3-9 are listed in Appendix A. 

The double mutant lines were developed by performing genetic crosses between selected 

homozygous single mutants, using manual pollination. The F1 plants were allowed to self 

fertilize to produce segregating F2 populations and homozygous double mutants were 

selected using the corresponding genotyping primers (Appendix A). The sty1-2 sty2-1 sty3-

9 triple mutant was developed by crossing homozygous sty1-2 sty2-1 with sty2-1 sty3-9. 

The triple mutant was selected from the resulting F2 population. The F3 progeny derived 

https://lotus.au.dk/
https://lotus.au.dk/
https://www.jic.ac.uk/technologies/genomic-services/revgenuk-tilling-reverse-genetics/
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from the confirmed, homozygous double and triple mutant lines were utilized for 

subsequent phenotypic analyses.  

 

2.4 Electrophoretic Mobility Shift Assay 

For the Electrophoretic Mobility Shift Assay (EMSA) a C-terminal portion of the NF-

YA1 mRNA encompassing the DNA binding (DB) domain (i.e. amino acid residues 184 to 

332) was amplified using the NF-YA1_DB-F and NF-YA1_DB-R primers (Hossain et al., 

2016). Restriction enzyme recognition sites for HindIII and BglII, along with three random 

nucleotides, were introduced at 5’-ends of forward and reverse primers, respectively, in 

order to aid cloning into the pT7-FLAG-2 expression vector (Sigma-Aldrich, Canada). The 

integrity of the resulting NF-YA1DB-FLAG expression plasmid was confirmed by 

sequencing. To generate the nf-ya1-2 version of the same construct, a site-directed 

mutagenesis was carried out using the NF-YA1DB-FLAG (above) as the template and the 

5’-phosphorylated forward (5’-AAGGGGATGTGGTGATCGGTTCTTGAACA-3’) and 

reverse (5’-GGCCGGCGCATTGCATGTAGATGGC-3’) primers. The resulting vector 

was sequenced to confirm the presence of the nf-ya1-2 mutation (i.e. A to G substitution, 

as shown in bold and italics in the forward primer above). The recombinant NF-YA1 and 

NF-YA1G213D DB domains with C-terminal FLAG tag were produced and purified using 

ANTI-FLAG M2 Affinity Gel (Sigma-Aldrich, Canada), following the manufacturer’s 

instructions. 

EMSA assays were carried out using the LightShift Chemiluminescent EMSA kit 

(ThermoFisher, USA). For STY1, the region spanning nucleotide positions from -1615 to 

+88 (where +1 reflects A in the predicted ATG translation initiation codon) was amplified 
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as three overlapping fragments (-1615 to -1079, -1101 to -539 and -558 to +88). These 

fragments were biotin end-labeled using the Biotin 3’ End DNA Labeling Kit 

(ThermoFisher, USA) and tested for the binding of NF-YA1DBFLAG in vitro. The middle 

fragment, -1101 to -539, which showed binding, was subsequently divided into three 

additional sub-fragments, with only the -953 to -729 region demonstrating the specific 

binding activity. The same -953 to -729 STY1 promoter fragment was used to test for the 

binding activity of the mutant, NF-YA1DBG213D-FLAG. A similar procedure was used to 

select the STY2 (-357 to -104) and STY3 (-293 to -82) promoter fragments, which were 

specifically recognized by NF-YA1DB-FLAG in vitro. The corresponding non-labeled 

promoter fragments were used as cold competitors. 

 

2.5 Development of STY3::SRDX dominant negative constructs 

As described in (Hossain et al., 2016), the UBIQUITIN promoter (Maekawa et al., 

2008) was synthesized by Bio Basic Inc (Canada), with attL1 and attR5 recombination 

sites at its 5’ and 3’ ends, respectively. A fragment, containing a cDNA fragment 

encompassing the entire STY3 coding region (gene ID Lj2g3v1728900.1, 

www.kazusa.or.jp/lotus/), translationally fused with the 36-bp sequence for the ERF-

associated amphiphilic repression domain (superman repression domain X, called SRDX) 

(Hiratsu et al., 2003), and the attL5 and attL2 recombination sites at the 5’ and 3’ ends, 

respectively, was also prepared by gene synthesis (Bio Basic Inc., Canada). These two 

synthetic fragments were recombined directly into the pKGWD,0 destination vector 

(Karimi et al., 2002) (https://gateway.psb.ugent.be/), which has a green fluorescent protein 

http://www.kazusa.or.jp/lotus/
https://gateway.psb.ugent.be/
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(GFP) marker in the T-DNA region, using MultiSite Gateway technology (Invitrogen, 

USA), giving rise to the UBIPro:STY3::SRDX vector. 

Another DNA fragment encompassing the L. japonicus NF-YA1 promoter (position -

3045 to -1, where -1 denotes the first base upstream from the predicted ATG initiation 

codon; gene ID Lj5g3v0841080.1; www.kazusa.or.jp/lotus/) transcriptionally linked to the 

STY3::SRDX coding region and followed by the NF-YA1 3’UTR, was synthesized with 

attL1 and attL2 sites (Bio Basic Inc., Canada). This DNA fragment was recombined 

directly into the pKGWD,0 destination vector (Karimi et al., 2002) 

(https://gateway.psb.ugent.be/), giving rise to NF-YA1Pro:STY3::SRDX:NFYA1-3’UTR 

vector.  

 

2.6 Hairy root transformation and fully transgenic L. japonicus lines 

After validation by sequencing, the UBIPro:STY3::SRDX and NF-

YA1Pro:STY3::SRDX:NFYA1-3’UTR vectors were transformed separately into 

Agrobacterium rhizogenes strain AR1193 and Agrobacterium tumefaciens strain LBA4404 

via electroporation. Empty pKGWD,0 vector was used in parallel, as a negative control.  

Transgenic hairy roots on non-transgenic Lotus japonicus shoots were generated 

following the previously established procedure (Lombari et al., 2005; Murray et al., 2007). 

Briefly, wild-type L. japonicus seeds were sterilized and germinated for 4 days in the dark 

at room temperature, on Petri dishes containing ½ x Gamborg B5 Basal medium (pH 5.6) 

with 1% (w/v) phytagel, in order to stimulate hypocotyl growth. A. rhizogenes strains 

carrying either the empty vector or the same vector containing one of the two STY3::SRDX 

constructs were grown for 2 days at 28°C on solid LB plates containing rifampicin 

http://www.kazusa.or.jp/lotus/
https://gateway.psb.ugent.be/
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(100µg/ml), histidine (50µg/ml), spectinomycin (100µg/ml), and streptomycin (20µg/ml). 

On the fourth day after germination, the elongated hypocotyls were inoculated with the 

appropriate A. rhizogenens strain by poking three times with the 28G needle of a sterile 

0.5cc hypodermic syringe (Becton Dickinson and Company, USA) that was dipped into 

the Agrobacterium streak. The remaining bacteria on the needle were spread over the 

punctured hypocotyl region and plates with wounded plants were re-sealed using surgical 

tape and put back in the dark at room temperature for overnight incubation. The following 

day, the plates were moved to a tissue culture incubator for 1-2 weeks (23°C; 16h day/8h 

night). Hairy roots began to appear approximately 7-10 days post inoculation, first as 

localized tissue swellings (calluses) and subsequently as small root protrusions. At this 

stage, the original roots were removed at the hypocotyl/root junction. The rootless shoots 

with emerging hairy roots were transferred to liquid ½ x B5 medium containing 2% (w/v) 

sucrose and 300 µg/ml of cefotaxime in order to promote hairy root growth and to kill 

Agrobacterium. After two weeks of incubation, the composite plants were transferred to 

pots containing sterile vermiculite and sand mixture (6:1) moistened with B&D solution 

and inoculated seven days later with M. loti. Symbiotic phenotypes were evaluated 21 dai 

with M. loti by scoring all nodulation events on GFP-fluorescing hairy roots.  

Fully transgenic L. japonicus plants were generated following the previously described 

hypocotyl transformation procedure (Lombari et al., 2005). The primary transgenic T0 

plants were allowed to self and the resulting T1 populations were genotyped for the 

presence of the pNF-YA1:STY3::SRDX transgene (Appendix A) and evaluated for the 

associated nodulation phenotypes. The transgene containing non-nodulating T1 plants are 

currently being grown to produce T2 progeny in order to identify true-breeding, 
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homozygous T1 plants. The T2 progeny of these plants will be used to generate plant 

material for next-generation RNA sequencing experiments.  

For gene expression analysis (qRT-PCR; section 2.7) of the primary transformants, T0 

plants STY3::SRDX5 and STY3::SRDX6 were propagated by cuttings, as follows; briefly, 

shoot tip segments of approximately 4 cm in length were cut from branches of T0 plants, 

along with control wild-type plants, and set into vermiculite-sand (6:1) mixture soaked in 

B&D solution, where they were grown for 14 days under sterile conditions. 

 

2.7 Gene expression analysis using quantitative RT-PCR 

L. japonicus ecotype ‘Gifu’ wild-type and mutant L. japonicus seedlings were sown 

into vermiculite-sand and grown for 7 days, under sterile conditions as described above, 

while transplanted cuttings of primary T0 transgenic and similarly treated wild-type control 

plants were grown for 14 days. Control un-inoculated plants were harvested at this time, 

while the remainder were inoculated with M. loti strain NZP2235. Plants were harvested 

at various time-points after inoculation (4, 7, 12 or 21 days). Immediately upon harvest 5-

10 roots (depending on the age of the plants) constituting a single biological replicate, were 

cut from the adjoining shoots and transferred to a single 2 ml Safe-Lock tube (Eppendorf, 

Germany) containing a 5mm stainless steel bead (Qiagen, USA), which was flash frozen 

in liquid nitrogen. Frozen root samples were ground to a fine powder using a Retsch bead 

mill (Retsch, Germany) and total RNA was extracted using the Plant/Fungi Total RNA 

Purification Kit (Norgen Biotek, Canada) according to manufacturer’s instructions. 

Following treatment with TURBO DNase (Invitrogen, USA), the concentration and purity 

of RNA were determined using the QIAxpert (Qiagen, USA) and the integrity was 
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confirmed by running a 400ng aliquot on an agarose gel. cDNA was prepared from 1µg of 

total RNA using the SuperScript IV VILO Master Mix (Invitrogen, USA). Negative control 

reactions, to which no reverse transcriptase was added (-RT), were included for each RNA 

sample. Quantitative RT-PCR reactions were performed in triplicates (i.e. three biological 

and three technical replicates) on a CFX-384 Real-Time PCR Detection System (BioRad) 

using SensiFAST™ SYBR No-ROX Kit (Bioline, Canada). qRT-PCR was carried out 

using the following conditions: 95°C for 2 min, followed by 45 cycles of 95°C for 5 s and 

60°C for 30 s, depending on a given primer set. The expression levels were normalized 

against three reference genes, UBQ, PP2A, and ATPs (Tirichine et al., 2007). The list of 

primers used is given in Appendix A and Appendix B. 

 

2.8 Gene expression analysis using GUS histochemical assay 

Depending on the genomic sequence availability, fragments encompassing the STY1 to 

STY9 promoter regions, ranging in size from 2.5 to 4.0 kb, were prepared by gene synthesis 

(Bio Basic Inc., Canada). These were recombined in the pKGWFS7 destination vector 

containing a GFP/GUS reporter fusion (Karimi et al., 2002); 

(https://gateway.psb.ugent.be/) using GatewayTM technology (Invitrogen, USA). The 

TAC/BAC clones, LjT09B24 (TM2451) and LjB04P03 (BM2658), were used to amplify 

the promoter regions of YUCCA1 (position -2466 to -1) and YUCCA11 (position -2249 to 

-1), respectively, where -1 denotes the first base upstream from the predicted ATG 

initiation codon. This was done using the conditions: 98°C for 30 s, followed by 30 cycles 

of 98°C for 5 s and 55°C for 30 s and 72°C for 90 s with final elongation step at 72°C for 

5 min, and the primers as listed in Appendix B. The resulting promoter fragments were 

https://gateway.psb.ugent.be/
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directionally cloned into the pENTR/D-TOPO vector (Invitrogen, USA) and subsequently 

recombined in the pKGWFS7 destination vector (Karimi et al., 2002); 

(https://gateway.psb.ugent.be/). After validation by sequencing, the constructs were 

transformed into A. rhizogenes strain AR1193, which was used for hairy root 

transformation, as described above. At least ten independent hairy root systems were 

generated for each construct and these were analyzed for the GUS reporter activity.  

 

2.9 GUS staining procedure 

For histochemical staining, roots and nodules collected at various time-points were 

analyzed. Detection of the GUS reporter activity was conducted using a staining solution 

containing 0.1M potassium phosphate buffer, 5mM EDTA, 0.5mM potassium ferric- and 

ferrous-cyanides, 20% (v/v) methanol and 0.5mg/ml 5-bromo-4-chloro-3-indolyl 

glucuronide cyclohexyl ammonium salt (X-GLUC; Inalco, Italy). All tissues were vacuum-

infiltrated for 15 min and stained overnight at either 37°C or room temperature. After 

overnight incubation, the roots were rinsed successively with 0.2M sodium cacodylate 

buffer (pH 7.2; 3 times for 10 min), distilled water (2 times for 5 min) and were cleared 

following the protocol described above in section 2.2.  

 

2.10 RNA sequencing 

L. japonicus wild-type Gifu root samples were scarified, germinated, and grown as 

described in section 2.1. Root samples were harvested 4 dai with M. loti and also from the 

corresponding un-inoculated plants of the same age. Three independent biological 

replicates per treatment were collected. Total RNA was extracted using the Plant/Fungi 

https://gateway.psb.ugent.be/
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Total RNA Purification Kit (Norgen Biotek, Canada) and its quality was checked on an 

Agilent Bioanalyzer 2100 RNA Nano chip following the manufacturer’s instructions 

(Agilent Technologies, USA). The RNA library was constructed and sequenced at the 

Center for Applied Genomics at Sick Kids Hospital in Toronto (Canada) using Illumina 

Hi-Seq 2500 paired-end reads. The bioinformatics analysis to identify differentially 

expressed genes was performed through a collaboration with Drs. Terry Mun, Stig U. 

Andersen and Jens Stougaard at Aarhus University in Denmark. 

  

2.11 Microscopy 

All microscopic observations were performed using either Nikon Eclipse Ni upright or 

the Nikon SMZ25 stereo microscopes (Nikon, Japan). Both microscopes were integrated 

with a DsRi2 digital camera (Nikon, Japan). The Nikon Eclipse Ni microscope was fitted 

with 4, 10, 20, 40, and 100X objectives, while the magnification for the NikonSMZ25 

scope varied between 3.15x and 78.75x. All images captured were taken in a TIFF format 

and were subsequently processed using Adobe Photoshop CS6. The nodulation events on 

GFP-fluorescing hairy roots were counted under a Leica MZFLIII fluorescence 

stereomicroscope (Leica Microsystems Inc., USA). 

 

2.12 Statistical analyses 

Statistical analyses were performed using Microsoft Excel spreadsheet software. Pair-

wise comparisons were made using a Student’s t-test with either equal or unequal variance 

based on the result of an F-test. Significant differences between means for three or more 

data sets were calculated using the one-way analysis of variance (ANOVA) followed by a 
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post-hoc test. Unless otherwise stated, variance shown represents the 95% confidence 

intervals of the mean. 

 

2.13 Phylogenetic analyses 

The protein sequences were aligned with ClustalW and the tree was generated using 

MEGA 7 (Molecular Evolutionary Genetics Analysis) software and the neighbor-joining 

method with bootstrap replicates of 1000. 

 

2.14 BLAST analyses 

The Blast Local Alignment Sequence Tool (BLAST) was used for comparison of 

predicted STY and YUCCA protein sequences using the default parameters, as provided 

at (http://www.ncbi.nlm.nih.gov/).   

http://www.ncbi.nlm.nih.gov/
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Table 2.1 A list of L. japonicus sty and yucca LORE1 insertion lines and names of the 

corresponding mutant alleles 

Plant ID Mutant allele Plant ID Mutant allele 

30052423 sty1-1 30092737 sty7-4 

30032212 sty1-2 30097763 sty7-5 

P1687 sty2-1 30088537 sty8-1 

30010699 sty3-10 30089290 sty8-2 

30083039 sty4-1 30109651 sty8-3 

30007756 sty4-2 30034946 sty9-1 

30115636 sty5-1 30109475 sty9-2 

30120414 sty5-2 30058721 sty9-3 

30089004 sty5-3 30120352 yucca1-1 

30136178 sty6-1 L8288 yucca1-2 

30060832 sty7-1 30050160 yucca11-1 

30074305 sty7-2 30086558 yucca11-2 

30084924 sty7-3 30057384 yucca11-3 
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Table 2.2 sty3 mutant alleles identified by TILLING approach  

Plant ID Mutant allele Mutation (gDNA) Mutation (Amino acid) 

SL0946-1 sty3-1a C1934 - T Q63 - STOP 

SL5263-1 sty3-1b C1934 - T Q63 - STOP 

SL1150-1 sty3-2 G2070 - A G108 - E 

SL4187-1 sty3-3 G2073 - A G109 - E 

SL0070-1 sty3-4 G2081 - A A112 - T 

SL4855-1 sty3-5a C2082 - T A112 - V 

SL5707-1 sty3-5b C2082 - T A112 - V 

SL4170-1 sty3-6 G2211 - A R155 - H 

SL1418-1 sty3-7 G2214 - A R156 - H 

SL0174-1 sty3-8 G2216 - A E157 - K 

SL0541-1 sty3-9 C2240 - T Q165 - STOP 
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CHAPTER 3 

RESULTS 
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3.1 STY1, STY2 and STY3 are likely direct targets of NF-YA1  

To confirm the microarray data, quantitative reverse transcription-polymerase chain 

reaction (qRT-PCR) experiments were carried out, targeting the three SHI/STY genes. 

Both, control un-inoculated roots and the equivalent root samples collected at 4 dai with 

M. loti were analyzed in L. japonicus wild type and the nf-ya1-2 mutant (Figure 3.1). In 

the control roots, steady-state levels of STY1 and STY2 mRNAs were at or below the 

detection limit, while STY3 mRNA was detectable, albeit at a relatively low level, and this 

was similar between the two genotypes tested. The levels of the three STY mRNAs were 

significantly upregulated upon M. loti infection in wild type but not in nf-ya1-2 mutant 

roots, which confirmed the microarray data (Figure 3.1).  

These confirmatory observations were followed by testing whether NF-YA1 protein 

could directly interact with STY1, STY2 and STY3 promotors in vitro. The electrophoretic 

mobility shift assay (EMSA) was used for this purpose (Figure 3.2).  

EMSA, also known as a gel retardation assay, is a commonly used affinity 

electrophoresis technique for studying protein-DNA or protein-RNA interactions. It can 

determine whether a given protein or protein mixture binds to a DNA or RNA sequence, 

in vitro (Fried, 1989). In the case of NF-YA1, such an interaction was expected if the 

corresponding SHI/STY promoters indeed constitute its direct targets.  

Recombinant protein fragments encompassing either the DNA-binding (DB) domain 

of the wild-type L. japonicus NF-YA1 (NF-YA1DB) or its mutant NF-YA1DBG213D version, 

carrying the glycine (G) to aspartic acid (D) substitution at the amino-acid position 213, 

were prepared as FLAG-tags and used for testing. The substitution was engineered to 
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Figure 3.1 NF-YA1 mediates STY1, STY2 and STY3 gene expression during nodule 

development. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) 

analysis of the steady-state levels of STY1, STY2, and STY3 mRNAs in Lotus japonicus 

wild type and nf-ya1-2 mutant roots. UN, un-inoculated roots harvested 7 days after 

sowing; 4 dai, roots harvested 4 days after inoculation (dai) with M. loti. Average values 

for three biological replicates ± standard error are given. Asterisks indicate statistically 

significant differences. (*P ≤ 0.05; **P ≤ 0.01) in expression between wild type and the 

mutant, as determined using the Student’s t test.  
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Figure 3.2 NF-YA1 binds to the promoters of STY1, STY2, and STY3 in vitro. 

Electrophoretic mobility shift assays show specific binding of NF-YA1 to STY gene 

promoters in vitro. The migration of biotinylated STY1, STY2, and STY3 promoter 

fragments in the absence (-) or the presence (+) of 1 µg of purified FLAG-NF-YA1 wild-

type or FLAG-NF-YA1G213D mutant DNA-binding domain is shown. Note that the latter 

represents the predicted amino acid change in the nf-ya1-2 allele. The corresponding, non-

labeled, wild-type probe in 100-fold molar excess (100×) relative to the biotinylated probes 

has been added as competitor. Arrows indicate the specific binding of the wild-type FLAG-

NF-YA1 protein. 
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mimic the predicted effect of the nf-ya1-2 mutation (Hossain et al., 2016). While NF-

YA1DB was able to specifically bind to promoters of the three STY genes in vitro, NF-

YA1DBG213D failed to do so (Figure. 3.2).  

These in vitro data supported the notion that STY1, STY2 and STY3 constitute direct 

targets of the NF-YA1-dependent regulation upon M. loti infection. They also provided a 

plausible explanation for the defective symbiotic phenotype of nf-ya1-2 by indicating that 

the resulting mutant NF-YA1-2 DBG213D protein, carrying an amino acid substitution within 

the DNA binding domain, is likely unable to bind to its STY gene targets. Given the 

defective symbiotic phenotype of nf-ya1-2 (Hossain et al., 2016), SHI/STYs were 

considered as likely essential for root nodule formation, hence prompting their further 

detailed investigation. 

 

3.2 The L. japonicus SHI/STY gene family comprises at least nine 

members  

Using STY1, STY2 and STY3 DNA and the corresponding protein sequences as queries, 

non-redundant sequence collections at the NCBI server (https://www.ncbi.nlm.nih.gov/), 

the Lotus databases (www.kazusa.or.jp/lotus/ and https://lotus.au.dk/) were analyzed. Six 

additional STY genes were predicted, signifying the presence of at least nine members in 

the predicted L. japonicus SHI/STY gene family, which was based on the current, 3.0 

version of the L. japonicus genome sequence release 

(http://www.kazusa.or.jp/lotus/index.html) (Figure 3.3).  

Subsequently, a variety of on-line tools, including GenScan 

(www.genes.mit.edu/GENSCAN.html), Splign  

https://www.ncbi.nlm.nih.gov/
http://www.kazusa.or.jp/lotus/
https://lotus.au.dk/
http://www.kazusa.or.jp/lotus/index.html
http://www.genes.mit.edu/GENSCAN.html
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Figure 3.3 The Lotus japonicus genome contains at least nine STY genes. Approximate 

location of the SHI/STY genes on six L. japonicus chromosomes is shown. 
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 (www.ncbi.nlm.nih.gov/sutils/splign/splign.cgi) and Open Reading Frame Finder 

(www.ncbi.nlm.nih.gov/orffinder/) were utilized to determine the exon/intron structures 

and predict the corresponding coding and protein sequences. These analyses showed that 

the L. japonicus SHI/STY genes encode predicted proteins ranging in size from 246 to 348 

amino acids. In spite of a relatively low overall protein sequence similarity, they contained 

two conserved amino acid domains, namely the RING-type zinc finger (IPR001841) and 

the IGGH domains (Figure 3.4). The amino acid identity within the RING finger motif of 

the L. japonicus SHI/STY proteins ranges from 62 to 95% and in the IGGH domain from 

40 to 81%. 

The RING fingers of the L. japonicus SHI/STY proteins encompass circa 31 amino 

acid stretches that are cysteine (C)-rich and have the consensus sequence of C-X2-C-X7-

C-X-HX2-C-X2-C-X7-C-X2-H, or C3HC3H (Figure 3.5). This is similar to the classical 

zinc-binding C3HC4 RING finger motif (Freemont, 1993; Lovering et al., 1993), which is 

known to mediate protein-protein interactions in numerous otherwise unrelated proteins in 

various eukaryotes (Borden, 2000). Immediately downstream of the RING domains, 

putative nuclear localization signals (NLS) were predicted to be present in L. japonicus  

Further downstream, the IGGH domain is present (Figure 3.5B). This domain has no 

primary amino acid sequence similarity to any functionally characterized motifs and could 

be SHI/STY protein family specific. It is thought to partake in homo and/or 

heterodimerization between SHI/STY proteins (Eklund et al., 2010a).  

The RING finger and IGGH domains are conserved in all known SHI/STY proteins 

including those from dicotyledonous plants, such as L. japonicus, Arabidopsis thaliana, 

Nicotiana benthamiana, and the basal eudicot, Eschscholzia californica,  

http://www.ncbi.nlm.nih.gov/sutils/splign/splign.cgi
http://www.ncbi.nlm.nih.gov/orffinder/
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Figure 3.4 SHI/STY protein alignment. Nine STY proteins of Lotus japonicus were 

aligned using default settings in the Clustal Omega program. The BoxShade Server version 

3.21 was used to generate the final output. A threshold of ≥ 60% conservation was used. 

Black shading indicates identical residues, whereas gray indicates presence of conservative 

substitutions. The following accession numbers refer to the protein sequences used: (1) L. 

japonicus: LjSTY1 (Lj6g3v0959410), LjSTY2 (Lj0g3v0059359), LjSTY3 

(Lj2g3v1728900), LjSTY4 (Lj3g3v0766120), LjSTY5 (Lj1g3v2140900), LjSTY6 

(Lj3g3v3376040), LjSTY7 (Lj2g3v3044220), LjSTY8 (Lj5g3v0155490)¸ and LjSTY9 

(Lj0g3v0258549) 
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Figure 3.5 The predicted SHI/STY proteins share two conserved domains. Lotus 

japonicus STY proteins have two conserved domains namely, the putative RING zinc- 

finger domain (A) and the IGGH domain (B). The domain sequence alignments in A and 

B were generated using the Clustal Omega program with default settings. The BoxShade 

Server version 3.21 was used to generate the final output. A threshold of ≥ 60% 

conservation was used. Black shading indicates identical residues, whereas gray indicates 

presence of conservative substitutions. The corresponding domains of known Arabidopsis 

thaliana SHI/STY protein were used for comparison.  
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(Gomariz-Fernandez et al., 2017), and also in Physcomitrella patens (Eklund et al., 2010b). 

Noteworthy, several L. japonicus SHI/STY proteins contain homo-polymeric stretches 

of glutamine (Q) residues, a feature described in association with the activation domains 

of various transcription regulators and shared with some of the Arabidopsis and the two 

Physcomitrella SHI/STY proteins (Kuusk et al., 2006; Eklund et al., 2010b). Other homo-

polymeric regions, including those composed of glycine, histidine and/or asparagine 

residues were also apparent in some but not all L. japonicus SHI/STY proteins (Figure 3.4), 

but their functional significance is unknown. 

  

3.3 Activities of STY promoters associate with root and nodule 

development 

Having identified nine L. japonicus STY genes, follow-up experiments were performed 

to determine whether any other STYs, in addition to STY1, STY2 and STY3, are relevant to 

root nodule formation. The association of their expression patterns with nodule 

development was used as the initial criterion and two parallel experiments, namely 

histochemical localization of promoter activities and quantification of mRNA levels were 

employed to assess the attribute.  

The promoter-GUS reporter constructs (LjSTYPRO:GUS), encompassing 2.5 to 4.0 kb 

regions upstream from the predicted ATG initiation codons, were developed for each of  

the nine STY genes (Figure 3.6) and their activities were tested in Agrobacterium 

rhizogenes-induced transgenic hairy roots formed on wild-type L. japonicus shoots.  

All nine STY promoters were found to be active in hairy roots (Figure 3.7). The GUS 

reporter activity was found to associate with early lateral root primordia, including the 
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Figure 3.6 Schematics of constructs used to localize the STY gene promoter activities. 

LB: T-DNA left border; STYpro: DNA fragments for each of the nine L. japonicus STY 

genes spanning promoter regions of 2.5 kb or more immediately upstream of the predicted 

translational initiation (ATG) codons; Kan R: the kanamycin resistance gene; EGFP: gene 

encoding an enhanced green fluorescence protein; GUS: gene encoding the β-

glucuronidase; T35S: CaMV 35S terminator sequence; RB: T-DNA right border. 



52 

 

 

 

 

 

Figure 3.7 (see next page for the figure legend) 
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Figure 3.7 L. japonicus STY promoters are active during root and nodule 

development. Representative images of hairy-root segments showing activities of the STY 

promoters, as monitored using the GUS reporter (blue colour). Columns from left to right 

show the GUS activity as associated with small lateral root primordia (LRP), lateral roots 

(LR), root apical regions, nodule primordia (NP) and fully mature nodules. The specimens 

were collected 10-14 dai with M. loti. For each promoter:GUS construct, 5-10 individual 

plants were analysed. (NVB): nodule vascular bundle. 
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initial pericycle cell divisions. At more advanced stages, encompassing cortical cell 

divisions and emerging to fully emerged lateral roots, GUS activity was detectable in 

tissues of the central vasculature and in the root apices, with the latter persisting in the fully 

emerged lateral and main roots. These activity patterns were shared by most of the STY 

promoters, except STY7, for which GUS staining was only very weakly detectable at the 

base of the emerging lateral root and was not found in the root apices. Furthermore, GUS 

expression in the central, cylinder region of roots was variable, depending on a particular 

construct and also on a given developmental stage. It persisted in mature root vasculature 

for STY1, STY3, STY4, STY8 and STY9, while appearing only transient for STY2, STY5 and 

STY6. Remarkably, all nine STY promoters were active in dividing cortical cells of young 

nodule primordia and also later during development, in the vasculature of mature nodules 

(Figure 3.7). This was reminiscent of the NF-YA1 promoter activity in developing L. 

japonicus nodules (Hossain et al., 2016), indicating the presence of overlapped expression 

domains for these two classes of regulatory genes.  

 

3.4 The level of STY mRNAs is regulated during L. japonicus nodule 

development  

To further characterize STY gene expression during the root nodule symbiosis, an in-

silico analysis of next-generation RNA sequencing (RNAseq) data (P. Janakirama, and K. 

Szczyglowski, unpublished data) was carried out. Comparing transcriptomes of the control 

L. japonicus un-inoculated roots with equivalent (i.e. the same age) root samples collected 

4 dai with M. loti showed that the steady-state levels of STY1, STY2 and STY3 mRNAs 

were significantly upregulated in the latter group (Table 3.1), which was consistent with 
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Table 3.1 Expression of four L. japonicus STY genes is significantly upregulated upon 

M. loti infection. Wild-type, un-inoculated roots and roots of the same age collected 4 dai 

with M. loti were analyzed using next-generation RNA sequencing. Of the nine STY genes, 

STY1, STY2, STY3, and STY7 were found to be significantly (FDR<0.001) upregulated 

upon M. loti inoculation (highlighted in yellow) Log2FC: log2 fold change; Fold change: 

absolute fold change value; P-value: uncorrected P-value; FDR-value: false discover rate 

(corrected P value).  
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the qRT-PCR results (Figure 3. 1). In addition, the level of STY7, but not the remaining 

STY mRNAs, was also significantly upregulated in the inoculated roots at this relatively 

early stage during symbiosis (Table 3.1).  

Considering that the histochemical data described above pointed to all nine STY 

promoters being active during nodule formation, additional analyses were warranted. Thus, 

the steady-state level of the nine STY mRNAs was further evaluated across various time-

points. Wild-type roots collected at 4 , 7, 12 and 21 dai with M. loti and the control, 7-day-

old un-inoculated roots, were comparatively analyzed (Figure 3.8). The equivalent total 

RNA samples derived from roots of nf-ya1-2 were also included in these experiments in 

order to determine whether, like STY1, STY2 and STY3, any of the remaining six STY genes 

is also regulated by NF-YA1 upon M. loti infection.  

Apart from STY7, all other STY mRNAs were found to be at relatively low steady-state 

levels in control, un-inoculated roots and this was genotype independent (Figure 3.8). At 4 

dai, five STY mRNAs, namely STY1, STY2, STY3, STY7, and STY8, were significantly 

upregulated, above control levels, in wild-type roots. This upregulation was lost in nf-ya1-

2, except for STY7, which showed only a partial dependency on NF-YA1. STY7 was still 

upregulated by M. loti infection in nf-ya1-2, albeit to a slightly (yet significantly) lower 

level than in wild-type roots (Figures 3.8 and 3.9).  

At 7 dai, levels of these five STY mRNAs were further enhanced and two additional 

STY mRNAs, STY5 and STY9, were also significantly upregulated (Figures 3.8 and 3.9). 

Interestingly, while the latter two showed strict dependency on NF-YA1, the group of five 

initially upregulated STY mRNAs (i.e. STY1, STY2, STY3, STY7 and STY8) displayed only 

a partial dependency at this particular stage after M. loti infection. This was evidenced by 
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Figure 3.8 (see next page for the figure legend). 
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Figure 3.8 Expression of STY genes is regulated upon M. loti infection. Quantitative 

RT-PCR data showing steady-state levels of STY mRNAs in un-inoculated (UN) control 

roots of L. japonicus wild type (blue) and the nf-ya1-2 mutant (orange) and in samples 

collected at various time-points (days) after inoculation (dai) with M. loti. The mean ± SE 

are given for three biological replicates. Statistical groupings across different time-points, 

reflected by the same letters, have been determined separately for each genotype using one-

way ANOVA with the Tukey HSD post hoc test (P<0.05). The Student’s t-test was used 

to carry out pair-wise comparisons between wild-type and nf-ya1-2 at each time-point (*P 

<0.05; **P <0.01; *** P < 0.001). 

 

 

 



59 

 

 

 

 

 

 

 

 

 

 

Figure 3.9 Summary of STY genes that responded to M. loti infection and the relative 

dependency of expression changes on presence of functional NF-YA1. dai: days after 

inoculation with M. loti. Black asterisks reflect complete dependency of regulation on 

presence of functional NF-YA1, while red asterisks indicate both NF-YA1-dependent and 

independent control of expression. Arrows indicate downregulated levels of a given 

mRNA. 
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upregulated levels of their mRNAs in nf-ya1-2 also, although these were not as high as in 

wild-type roots (Figure 3.8). These observations suggested that in addition to NF-YA1, 

other regulators are likely to partake in mediating STY gene expression and this may be 

dependent on a particular developmental stage.  

In comparison to un-inoculated roots, levels of all seven STY mRNAs described above 

were also significantly upregulated at subsequent 12 and 21 dai time-points (Figures 3.8 

and 3.9). However, the corresponding expression patterns varied between different STYs 

and were loosely put into two categories. The first group included STY3, STY7, STY8 and 

STY9, for which levels of mRNAs while significantly upregulated from the control roots 

remained more or less constant from 7 to 21 dai with M. loti. In contrast, STY1, STY2 and 

STY5 showed more dynamic, time point-dependent expression patterns, with either 

lowered mRNA levels at both (STY1) or only one of the 12 and 21 dai time-points (STY2 

and STY5) (Figure 3.8). 

Notably, in nf-ya1-2, no further significant increase, beyond the 7 dai level, was 

observed for any of the seven STYs, except for STY9 for which mRNA levels were elevated 

between 7 and 12 dai time-points, perhaps reflecting a partial redundancy of the NF-YA1 

function. Finally, STY4 did not respond significantly and STY6 mRNA showed decreased 

levels upon M. loti infection (Figure 3.8). 

Using steady-state mRNA levels as sole indicators, Figure 3.9 summarises the 

expression patterns of L. japonicus STYs. Together with histochemical data (see above), 

these results indicated a strong likelihood for STYs acting in a highly redundant manner 

during L. japonicus root nodule development. 
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3.5 L. japonicus sty mutants 

To begin addressing the functional relevance of STY genes during root nodule 

development, a reverse genetic resource of L. japonicus LORE1 retrotransposon insertion 

lines (https://lotus.au.dk/; (Malolepszy et al., 2016; Mun et al., 2016) was surveyed in order 

to identify mutant sty alleles.  

LORE1 is a long terminal repeat retrotransposon that propagates in the L. japonicus 

genome by a copy-and-paste mechanism (Malolepszy et al., 2016). Insertions of the 5.041 

kb long LORE1 sequence in coding (exonic) regions of a gene introduce multiple 

premature, translational stop codons (Fukai et al., 2012; Urbanski et al., 2012), which in 

many cases generates strong, null alleles (Madsen et al., 2005; Hossain et al., 2016).  

Insertions of LORE1 in exonic regions were identified for all but the STY3 gene (Figure 

3.10). One of the L. japonicus lines (sty3-10; Plant ID 30010699; https://lotus.au.dk/) was 

characterized as containing an intronic LORE1 insertion at the STY3 locus. However, this 

insertion was considered unlikely to be deleterious to the gene function based on previous 

observations and data showing an unimpeded splicing of LORE1 containing introns (K. 

Szczyglowski, unpublished data). Therefore, a Targeted Induced Localised Lesions IN 

Genomes (TILLING) approach was used as an alternative to identify deleterious mutations 

at the STY3 locus. This was successful in selecting two alleles, called sty3-1 and sty3-9, 

that carried independent single nucleotide substitutions (C187 to T and C493 to T, 

respectively) which were predicted to result in premature translation termination (STOP) 

codons (Figure 3. 10). Unfortunately, the L. japonicus line carrying the sty3-1 allele 

showed significantly stunted growth with altered leaf morphology and was infertile (data 

  

https://lotus.au.dk/
https://lotus.au.dk/
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Figure 3.10 Lotus japonicus mutant sty alleles. Schematic structures of the nine L. 

japonicus STY genes are shown with the approximate positions of LORE1 retrotransposon 

insertions (green boxes) indicated. Names in the green boxes denote corresponding mutant 

alleles. Note that, for example, sty4-1 and sty4-2 represent two mutant sty4 alleles, each 

present in independent L. japonicus mutant lines. The same concept applies to all other 

STY loci. For STY3, two point mutations, sty3-1 and sty3-9, which are predicted to generate 

premature stop codons (STOP), were also identified using a TILLING approach. 
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not shown). By contrast, the line containing the sty3-9 allele appeared healthy and was 

therefore used in subsequent analyses. The stunted growth of sty3-1 was unlikely to be the 

result of a LORE1 insertion at the STY3 locus. If this was the case, a similar growth 

phenotype would be expected for sty3-9, which like sty3-1 carried a premature stop codon 

in the first exon. 

In terms of characterizing individual sty mutants, the effort was purposefully focused 

on a group of the five STY genes (i.e. STY1, STY2, STY3, STY7 and STY8) that were first to 

respond to M. loti infection by upregulating their expression at the 4 dai time-point (Figures 

3.8 and 3.9). As further described below, a dominant negative approach to simultaneously 

affect the functioning of all relevant STYs was also undertaken, in order to account for the 

high likelihood of their redundant function during symbiosis.  

  

3.6 sty mutants show weak symbiotic phenotypes  

Where available, two independent LORE1 insertion lines for a given STY locus (e.g. 

sty1-1 and sty1-2) were used to evaluate both symbiotic and non-symbiotic plant growth. 

For the symbiotic phenotype, number of epidermal infection threads (eITs), nodule 

primordia and mature nodules were scored. At 7 dai, no significant differences between 

wild type and the sty mutant lines could be found with regard to eIT formation (Figure 

3.11), indicating no major role for any of the five STY genes in this process. Surprisingly, 

however, while forming the wild-type or close to wild-type number of nodules, sty1, sty2, 

sty7 and sty8 developed a significantly lower number of nodule primordia. By contrast, 

sty3-9 was wild type in this respect (Figure 3.12A). These somewhat attenuated nodulation 

phenotypes persisted at the 21 dai time-point and were also consistent between different  
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Figure 3.11 sty mutants form epidermal infection threads. The epidermal infection 

threads were scored in L. japonicus wild type and the selected sty mutant lines at 7 dai with 

an M. loti strain NZP2235 tagged with the hemA::LacZ reporter. Note that where available, 

two independent mutant lines carrying different sty alleles (e.g. sty1-1 and sty1-2) at the 

same locus were used. In all cases, values reported are the mean ± 95% confidence intervals 

(n = 10). Statistical differences between wild type and the individual mutant lines were 

evaluated using Dunnett's test but none were found.  
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allelic lines used, suggesting that they are likely reflective of a given STY gene function 

(Figure 3.12A). 

Follow-up experiments were performed to determine whether the observed decreased 

nodule primordia phenotypes could be correlated with defects in overall plant growth. 

Development of shoots and roots in wild type and the sty mutants were comparatively 

evaluated at 14 and 28 days after sowing (das) under non-symbiotic conditions, in sterile 

soil supplemented with the B&D nutrient solution containing 1mM KNO3.  

In comparison to wild-type, the shoot mass, used as one of the measures of plant 

performance, was significantly diminished in all but the sty3-9  and sty8-2 mutants (Figure 

3.13A and B). This was especially evident for the 21 dai time-point (Figure 3. 13B). 

Similarly, the root growth was negatively impacted by the sty mutations, affecting in most 

cases root weight (Figures 3.14). However, a simple correlation between the degree of plant 

growth retardation under non-symbiotic conditions and the number of nodule primordia 

could not be fully supported. For example, in spite of having the most retarded growth, 

sty8-3 did not have the most extreme mutant nodulation phenotype. Also, at 21 dai, sty3-9 

had wild-type nodulation despite showing some diminished shoot and root growth under 

non-symbiotic conditions (Figures 3.12, 3.13 and 3.14). These data did not entirely rule 

out the possibility that the diminished growth of at least some of the sty mutants had a 

negative impact on the number of nodule primordia. Nonetheless, they showed that other, 

as yet uncharacterized factors were likely to be pertinent, which was not entirely surprising 

considering that each of the sty lines carried additional LORE1 insertions that could have 

impacted the phenotypic outcome. These data also indicated that developing and 

interpreting phenotypes of higher order (i.e. double, triple, etc.) sty mutants could be  
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Figure 3.12 sty mutants form fewer nodule primordia. The number of nodule primordia 

and nodules were scored 7 (A) and 21 dai (B) with M. loti strain NZP2235 tagged with the 

hemA::LacZ reporter. Ten individuals were scored for each genotype and average ± 95% 

confidence intervals are given. Asterisk denotes a significant difference from the wild-type 

control (Dunnett's test, *P <0.05; **P <0.01; *** P < 0.01).  

 



67 

 

 

 

 

Figure 3.13 Mutations at most STY loci affect shoot growth. Plants were grown under 

sterile conditions, in the absence of M. loti, and the fresh shoot weight was evaluated 14 

(A) and 28 (B) days after sowing (das). Ten plants were scored for each genotype. Averages 

± 95% confidence intervals are given. Asterisk denotes a significant difference from the 

wild-type control (Dunnett's test, *P <0.05; **P <0.01; *** P < 0.01). 

 

 



68 

 

 

 

 

 

Figure 3.14 (see next page for the figure legend) 
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Figure 3.14 Root growth is affected in sty mutants. Plants were grown under sterile 

conditions, in the absence of M. loti and root weight was measured 14 (A) and 28 (B) days 

after sowing (das). In addition, the root length (C) and the number of lateral roots (D) were 

evaluated 28 das. Ten plants were scored for each genotype. Averages ±95% confidence 

intervals are given. Asterisk denotes a significant difference from the wild-type control 

(Dunnett's test, *P <0.05; **P <0.01; *** P < 0.01). 
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Figure 3.15 A list of double and higher order sty mutants.  
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challenging due to an increased accumulation of LORE1 insertions. Nonetheless building 

such mutant lines was undertaken and four double mutants and the sty1-2 sty2-1sty3-9 

triple mutant were obtained, while construction of the relevant quadruple and quintuple 

mutant lines is currently under way (Figure 3.15).  

Symbiotic phenotypes of three of the four double sty mutants were evaluated by scoring 

visible nodules only. At 21 dai no significant differences from the wild-type control were 

detected (data not shown). The triple mutant showed a weak mutant symbiotic phenotype. 

When evaluated at 21 dai, it formed the same number of nodule primordia as wild type but 

had a significantly diminished, circa 30%, nodule number (Figure 3.16A). Under non 

symbiotic conditions, at 28 das, the triple mutant had diminished shoot and root growth 

(Figures 3.16B, 3.16C and 3.16D). Whether adding sty7-1 and/or sty8-2 alleles into the 

triple mutant background will result in a more severe nodulation phenotype remains to be 

determined. 

 

3.7 STY3::SRDX blocks infection thread and nodule formation  

In order to gain a swifter insight into the significance of STYs during symbiosis, a 

dominant negative approach was implemented. If successful, this was also expected to help 

determine whether continuing with the construction of higher order sty mutants is indeed 

warranted. To this end, a chimeric construct composed of the entire L. japonicus STY3 

coding (i.e. CDS) region translationally fused with a DNA fragment encoding the 12-amino 

acid-long Ethylene-Responsive Element Binding Factor (ERF)-associated amphiphilic 

repression domain, called SRDX (for SUPERMAN REPRESSOR DOMAIN X) was 

developed (Figure 3.17). The presence of the SRDX domain was expected to convert the  
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Figure 3.16 Plant development is affected in sty1-2 sty2-1 sty3-9 triple mutant. (A) 

Nodulation events (nodule primordia and nodules) were scored in wild type and the triple 

mutant 21 days after inoculation (dai) with M. loti. Non-symbiotic phenotypes, including 

shoot weight (B), root weight (C) and root length (D) of plants grown under sterile 

conditions, in absence of M. loti, were evaluated at 28 days after sowing (das). 15 and 30 

individuals per genotype were analyzed for symbiotic and non-symbiotic phenotypes, 

respectively. Averages ±95% confidence intervals are given. Asterisks(*** P<0.001) 

represent a significant difference from wild type (Student’s t-test). 
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Figure 3.17 Outlines of constructs used for expression of a presumed STY3 dominant 

repressor. Two different promoters (PRO), Ubiquitin (A), and NF-YA1 (B) were used to 

drive expression of a chimeric protein, as encoded by a cDNA sequence composed of the 

entire coding region of the STY3 gene translationally fused with the 36 nucleotide sequence 

for the 12 amino acid ERF-associated amphiphilic repression domain, known as the 

Superman Repressor Domain X (SRDX). T35S, the CAMV 35s terminator sequence; NF-

YA1 3’ UTR, 3’ untranslated region of the NF-YA1 mRNA.  
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Figure 3.18 pNF-YA1:STY3::SRDX inhibits nodule formation. (A) Scores of nodules 

on transgenic hairy roots in the absence (control) or presence of pNF-YA1:STY3::SRDX 

transgene. For Control and pNF-YA1:STY3-SRDX, 45 and 43 independent hairy root 

systems were evaluated, respectively. (B) Scores of nodules developed on fully transgenic 

(T0) L. japonicus control and pNF-YA1:STY3-SRDX containing plants (n=10 for each 

category). Control: plants transformed with the empty pKGWD,0 vector. The scores in A 

and B represent means +/- 95% confidence intervals and were taken 21 days and 6 weeks 

after M. loti inoculation, respectively.  
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Figure 3.19 Transgenic plants carrying pNF-YA1:STY3::SRDX do not form nodules. 

(A) Images of representative fully transgenic L. japonicus control and the pNF-

YA1:STY3::SRDX transgene-containing plants. The images were taken 28 days after 

inoculation with M. loti. (B) Close-up images depicting segements of roots shown in (A). 

Control: Plant transformed with the empty pKGWD,0 vector. 
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presumed STY3 transcriptional activator into a transcriptional repressor, as previously 

demonstrated for several independent transcriptional activators (Hiratsu et al., 2003), 

including Arabidopsis STY1 (Eklund et al., 2010a). STY3 was chosen for this approach 

because among the L. japonicus STYs it was expressed at a relatively high level and at 4 

dai with M. loti this was entirely dependent on NF-YA1 (Figures 3.8 and 3.9). 

The activation of any downstream targets of STY3 was expected to be attenuated in 

tissues expressing STY3::SRDX, possibly also overcoming the presumed functional 

redundancy. To account for the latter, the chimeric STY3::SRDX mRNA was expressed in 

transgenic hairy roots formed on wild-type L. japonicus shoots under the control of a 

strong, constitutive L. japonicus UBIQUITIN (UBIPro) promoter. In addition, the nodule-

specific LjNF-YA1 promoter was used, which provided an alternative that was meant to 

minimize any pleiotropic effects as possibly associated with the ubiquitous expression of 

STY3::SRDX in roots (Figure 3.17). Furthermore, the LjNF-YA1Pro:STY3::SRDX construct 

was presumed to allow silencing of only a subset of genes that operate downstream of NF-

YA1 and are targeted by STYs within the same cellular domain.  

Activity of the green fluorescent protein (GFP) marker present in the T-DNA region of 

the binary vector was used to select for the relevant, co-transformed transgenic hairy roots 

(see Materials and Methods). GFP-positive hairy roots were induced by A. rhizogenes 

carrying either control, empty binary vector or the same vector containing LjNF- 

YA1Pro:STY3::SRDX. By contrast, only non-fluorescing (i.e. GFP minus) hairy roots were 

formed when A. rhizogenes carrying the UBIPro:STY3::SRDX containing binary vector was 

used for transformation. This result indicated that ubiquitous expression of STY3::SRDX is 

detrimental to hairy root development. Consequently, subsequent experiments involved  
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Table 3.2 Segregation of the pNF-YA1:STY3::SRDX transgene in two T1 populations, 

derived from STY3::SRDX5 and STY3::SRDX6 independent T0 transgenic plants. 

(A) Number of plants segregating the pNF-YA1:STY3::SRDX transgene and the 

corresponding nodulation phenotypes. (-/+) symbols denote presence and absence of the 

transgene and nodules (Nod), respectively. (B) The corresponding Chi-square (χ2) test 

results for segregation of the transgene in T1 population derived from the indicated T0 

plant (P = 0.05). 

  



78 

 

 

evaluation of nodulation phenotypes as associated with either control or LjNF-

YA1Pro:STY3::SRDX containing hairy roots. When examined 21 dai with M. loti, the former 

developed on average 9.5 ± 1.7 nodules (n = 54), while the latter showed a low nodulation 

phenotype (x̄ = 2.1 ± 0.6; n = 43) (Figure 3.18A). In fact, of the 43 independent hairy root 

systems transformed with LjNFYA1Pro:STY3::SRDX, 15 did not form nodules at all, while 

the remaining 28 had a low-nodulation phenotype that included a mixture of primarily 

small but also some regular-size nodules. 

In order to characterize the impact of the transgene on nodule formation in more detail, 

fully trangenic L. japonicus plants were developed. Ten independent T0 plants carrying 

LjNF-YA1Pro:STY3::SRDX were characterized and compared with the equivalent, control 

T0 plants that lacked the construct. When examined 6 weeks after inoculation with M. loti, 

none of the LjNF-YA1Pro:STY3::SRDX containing plants formed any visible nodules. In 

contrast, control transgenic T0 plants were profusely nodulated (Figures 3.18B and 3.19). 

The T0 plants were allowed to self and produced segregating T1 populations. Two T1 

populations, derived from STY3::SRDX-5 and STY3::SRDX-6 independent T0 transgenic 

plants, were characterized by genotyping for the presence of the LjNF-YA1Pro:STY3::SRDX 

transgene and evaluating the associated symbiotic phenotypes. Out of 85 and 72 T1 

segregants genotyped for each of the two populations, 62 and 51 individuals were 

STY::SRDX positive (STY::SRDX +), respectively and showed non-nodulating phenotypes.  

The remaining 23 and 21 STY::SRDX lacking (STY::SRDX -) plants, respectively, 

formed wild-type looking nodules (Table 3.2 and Figure 3.20). These segregation values 

were consistent with a 3:1 ratio (P = 0.05), showing that the corresponding T0 plants  
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Figure 3.20 STYs are required for nodule formation. (A and B) Average scores of 

nodulation events (i.e. nodule primordia and nodules) in L. japonicus T1 plants segregating 

for presence/absence of the pNF-YA1:STY3::SRDX transgene. Control: T1 plants lacking 

the transgene; STY3::SRDX5 and STY3::SRDX6: T1 plants carrying the transgene and 

derived from two independent, 5 and 6, T0 plants, respectively. The nodulation phenotypes 

were evaluated at (A) 7 days after inoculation (dai) (control, n=7; STY3::SRDX5, n=19; 

STY3::SRDX6, n=16 and (B) 21 dai with M. loti (control, n=25 STY3::SRDX5; n=30 and 

STY3::SRDX6, n=30). The scores in A and B represent means +/- 95% confidence intervals 

(C) Representative images of wild-type nodule primordia and a nodule primordia formed 

in transgenic plants carrying the pNF-YA1:STY3::SRDX (STY3::SRDX+)transgene. 

Statistical groupings, reflected by the same letters, have been determined separately for 

nodule and nodule primordia using one-way ANOVA with the Tukey HSD post hoc test.  
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Figure 3.21 STYs are required for infection thread formation. (A) Scores of infection 

events (i.e microcolonies and epidermal infection threads) in L. japonicus T1 plants that 

either lack (control n =7) or carry (STY3::SRDX5, n=19, and STY3::SRDX6, n=16) the 

pNF-YA1:STY3::SRDX transgene. The scores represent means +/- 95% confidence 

intervals. Statistical groupings, reflected by the same letters, have been determined 

separately for MC and IT using one-way ANOVA with the Tukey HSD post hoc test. (B) 

Representative images of epidermal infection events in control or the transgene-containing 

(STY3::SRDX5) T1 plants. IT: Infection thread; MC: micro-colony; IT (partial): IT that is 

not fully elongated. Control: Plants without STY3::SRDX transgene.   
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contained a single locus transgene insertions, which segregated with the non-nodulating 

phenotype (Table 3.2 and Figure 3.20).  

Closer inspection of the STY::SRDX + plants performed at 7 and 21 dai showed that  

although unable to develop mature nodules, they were capable of initiating the 

organogenesis, such that small nodule primordia were formed (Figure 3.20A and 3.20B). 

These were represented by foci of limited cortical cell divisions (Figure 3.20C) that were 

less frequent in comparison to control, STY::SRDX- roots (Figure 3.20A and 3.20B). The 

STY3::SRDX+ T1 plants also formed very few eIT (Figure 3.21A) and those that managed 

to initiate appeared to terminate prematurely within root hairs (Figure 3.21B). Noteworthy, 

STY3::SRDX+ T1 plants had many microcolonies, even more than wild type in the case of 

STY3::SRDX5+plants. Together, these data indicated an essential role for STYs during eIT 

formation and nodule organogenesis.  

 

3.8 STYs are required to regulate YUCCA1 and YUCCA11 expression 

during symbiosis 

In order to begin identifying downstream targets of L. japonicus STY-dependent 

regulation in the context of symbiosis, two approaches were considered (Figure 3.22). An 

untargeted approach, such as RNAseq, CHIP-seq, and other genomic techniques would 

require an appropriate mutant sty background, with a clearly defined symbiotic phenotype, 

to be available. Work continues toward developing such a background either by 

pyramiding more sty mutations (i.e. generating quadruple and quintuple) into a single plant 

or by developing a stable, homozygous L. japonicus line expressing the STY3::SRDX 

chimeric protein under the control of the NF-YA1 promoter (see above). In the meantime,  
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Figure 3.22 A conceptual outline for identification of downstream STY targets. 
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Figure 3.23 L. japonicus YUCCA proteins have six conserved domains characteristic 

of flavin monooxygenases. (A) FAD-binding domain, (B) GC-motif, (C) ATG- 

Containing motif 1, (D) FMO-identifying sequence, (E) NADPH domain, (F) ATG-

Containing motif 2. The alignment was created with Clustal Omega using default settings 

and analyzed by the BoxShade software version 3.21. A threshold of ≥ 60% conservation 

was used. Black shading indicates identical residues, whereas gray indicates presence of 

conservative substitutions. The corresponding domains of known Arabidopsis thaliana 

STY/SHI protein were used for comparison. For accession numbers see Figure 3.24. 
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a targeted approach was commenced to determine whether any of the L. japonicus YUCCA 

genes are subjected to STY-dependent regulation and if this is relevant to symbiosis (Figure 

3.22).  

YUCCA genes encode flavin monooxygenase (FMO)-like enzymes that catalyze the 

rate-limiting step in tryptophan-dependent auxin biosynthesis and Arabidopsis YUCCA4 

and YUCCA8 were shown to be regulated by STY1 (Eklund et al., 2010a). As auxin 

signaling was shown to be important for both the symbiotic infection and nodule formation 

(Suzaki et al., 2012; Suzaki et al., 2013; Breakspear et al., 2014) and it has been suggested 

that NF-YA1 may regulate the relevant auxin maxima during symbiosis by orchestrating 

the STY gene expression (Hossain et al., 2016), focusing on YUCCA genes as potential 

downstream targets of NF-YA1/STY-dependent regulation was deemed relevant.  

Using Arabidopsis YUCCA protein sequences as Blast queries (Cheng et al., 2006; 

Zhao, 2018), 11 YUCCA-like proteins were predicted to be encoded by the L. japonicus 

genome (http://www.kazusa.or.jp/lotus/index.html; https://lotus.au.dk/) (Figure 3.23). Six 

of these proteins, namely YUCCA1-3, YUCCA7, YUCCA9 and YUCCA11 were found 

to contain all of the relatively conserved domains characteristic of FMOs (Yan et al., 2016). 

These included FAD-binding, GC, FMO-identifying, ATG-containing 1, NADP-biding 

and ATG-containing 2 motifs (Figure 3.23). YUCCA5, YUCCA6 and YUCCA8, were 

each missing one of the domains and YUCCA8 was also lacking the C-terminal region, as 

present in all other L. japonicus YUCCA proteins. Finally, YUCCA4 had a much shorter 

N-terminus, missing the first five FMO motifs (Figure 3.23). 

An in-silico analysis of the RNAseq data showed that at 4 dai with M. loti the steady-

state level of only YUCCA11 mRNA was significantly (FDR<0.05) upregulated in L.  

http://www.kazusa.or.jp/lotus/index.html
https://lotus.au.dk/
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Table 3.3 YUCCA11 is expressed upon M. loti inoculation. The wild-type, un-inoculated 

roots and the roots of the same age collected 4 days after inoculation with M. loti were 

analyzed using next-generation RNA sequencing. Of the 11 YUCCA genes, only YUCCA11 

was found to be significantly (FDR<0.05) regulated by M. loti inoculation (highlighted in 

yellow) Log2FC: log2 fold change; Fold change: absolute fold change value; P-value: 

uncorrected P-value; FDR-value: false discover rate (corrected P value). 
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Figure 3.24 Relationship tree of predicted L. japonicus and M. truncatula YUCCA 

proteins. The protein sequences were aligned with ClustalW and the tree was generated 

using MEGA 7 (Molecular Evolutionary Genetics Analysis) software and neighbor-joining 

method with bootstrap replicates of 1000. The corresponding accession numbers are as 

follows: L. japonicus LjYUCCA1 (Lj1g3v4528740.1), LjYUCCA2 (Lj0g3v0049349.1), 

LjYUCCA3 (Lj0g3v0085899.1), LjYUCCA4 (Lj0g3v0308259.1), LjYUCCA5 

(Lj3g3v3189630.1), LjYUCCA6 (Lj3g3v3189640.1), LjYUCCA7 (Lj1g3v2036560.1), 

LjYUCCA8 (Lj1g3v4764550.1), LjYUCCA9 (Lj1g3v4764680.3), LjYUCCA10 

(Lj0g3v0101099.1), LjYUCCA11 (Lj4g3v3081700.1), and M. truncatula MtYUCCA1 

(Medtr7g099330.1), MtYUCCA2 (Medtr7g099160.1), MtYUCCA3 (Medtr1g046230.1), 

MtYUCCA4 (Medtr4g051642.1), MtYUCCA5 (Medtr8g432640.1), MtYUCCA6 

(Medtr5g033260.1), MtYUCCA7 (Medtr3g109520.1), MtYUCCA8 (Medtr3g088955.1), 

MtYUCCA9 (Medtr3g088925.1), MtYUCCA10 (Medtr3g088945.1). Three M. truncatula 

YUCCAs in red boxes are known to be regulated in a Nod factor-dependent manner.  
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 japonicus roots (Table 3.3). Subsequently, a phylogenetic tree constructed with the 

corresponding L. japonicus and M. truncatula sequences revealed that L. japonicus 

YUCCA11 (LjYUCCA11) showed the highest primary sequence homology with the M. 

truncatula MtYUCCA7 protein (Figure 3.24). Interestingly, this protein is encoded by the 

Medtr3g109520.1 gene, the expression of which was reported to be significantly enhanced 

upon Nod factor application to M. truncatula roots (Larrainzar et al., 2015). Two other 

Medicago YUCCA genes, namely Medtr7g099160.1 and Medtr7g099330.1.1, were also 

shown to positively respond to Nod factor application with upregulated mRNA levels 

(Larrainzar et al., 2015). Their predicted protein products, MtYUCCA1 and MtYUCCA2, 

had the highest homology to LjYUCCA1 (Figure 3.24). Thus, based on these observations, 

both LjYUCCA1 and LjYUCCA11 were chosen for subsequent analyses.  

qRT-PCR analyses showed that both L. japonicus YUCCA1 and YUCCA11 expression 

was regulated during symbiosis (Figure 3.25). YUCCA1 mRNA was detectable already in 

un-inoculated L. japonicus roots and its level was significantly increased upon M. loti 

infection (Figure 3.25A). By contrast, YUCCA11 mRNA could be detected only in M. loti 

inoculated roots (Figure 3.25B). Importantly, the responsiveness of the two genes was 

entirely lost or significantly attenuated in STY3::SRDX-5 and STY3::SRDX-6 roots, 

indicating that STY3 and possibly other redundantly acting STYs are essential for the 

regulation of YUCCA1 and YUCCA11 gene expression upon M. loti infection (Figure 3.25). 

The binding site for STYs has been identified as ACTCTAC/A and is present in 

promoters of at least five Arabidopsis YUCCA genes (i.e. YUCCA1, 4, 5, 8 and 9) (Eklund 

et al., 2010a). However, in trans-activation assays with STY1, this recognition site was 

shown to be essential only for YUCCA4 and YUCCA8 expression, suggesting that other  
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Figure 3.25 YUCCA1 and YUCCA11 respond to M. loti infection and this is dependent 

on STYs. Using qRT-PCR, the steady-state levels of YUCCA1 and YUCCA11 mRNAs 

were determined in un-inoculated (control) L. japonicus roots of the wild-type genotype 

and the corresponding roots from T1 transgenic plants carrying the STY3-SRDX transgene 

These were compared to equivalent root samples collected 4 days after inoculation (dai) 

with M. loti. The mean ± SE is given for three biological replicates. Statistical groupings 

across different genotypes, reflected by the same letters, have been determined separately 

for M. loti inoculated and un-inoculated samples using one-way ANOVA with the Tukey 

HSD post hoc test. Asterisks (*) denote significant differences between un-inoculated and 

inoculated samples (Student’s t-test: [*], P < 0.05).  
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Table 3.4 In silico analysis of YUCCA gene promoters for the presence of a STY 

binding (ACTCTAC/A) motif. 
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regulatory sequences might also be required (Eklund et al., 2010a). Indeed, using a protein 

binding microarray, a palindromic CTAG sequence was also identified as a potential 

regulatory element and was shown to be enriched in Arabidopsis STY1 and STY2 co-

regulated genes (Franco-Zorrilla et al., 2014).  

Inspection of the 4.0 kb promoter regions of L. japonicus YUCCA genes showed that 

YUCCA1 and YUCCA11 each contain a single copy of the ACTCTAC/A motif at the 663 

or 1509 nucleotide position, respectively, upstream from the predicted transcriptional start 

site (Table 3.4). This motif was also present in promoters of YUCCA2, 7, 8 and 10 (Table 

4), while the CTAG palindromic sequences were present in multiple copies in both 

promoter and coding regions of all L. japonicus YUCCA sequences (data not shown).  

 

3.9 YUCCA1 and YUCCA11 promoters are active in nodule primordia 

and nodules 

To further explore expression patterns of YUCCA1 and YUCCA11 during root nodule 

symbiosis, the activity of their promoters was monitored in transgenic hairy roots, induced 

by A. rhizogenes-dependent transformation of wild-type L. japonicus shoots, using the 

GUS reporter (Figure 3.26). The YUCCA1 promoter showed activity along the entire root 

vasculature and also in dividing cortical cells of nodule primordia (Figure 3.26A). In 

growing (small) nodules, this activity appeared to be present in all centrally-located cells, 

only to be confined later to the nodule vasculature in fully developed nodules (Figure 

3.26A). The activity of the YUCCA11 promoter resembled YUCCA1, except that it was 

mostly if not exclusively confined to the root regions that formed nodules. This included  
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Figure 3.26 The activity of YUCCA1 and YUCCA11 promoters associates with nodule 

development. Representative images of nodules at different stages of development, 

showing the activity of GUS reporter gene (blue colour), as driven by YUCCA1 (A) and 

YUCCA11 (B) promoters. NP, nodule primordium; NVB, nodule vascular bundle. The 

images were captured at 10 days after inoculation with M. loti.  
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Figure 3.27 Lotus japonicus mutant yucca alleles. (A) Schematic exon-intron structures 

of YUCCA1 and YUCCA11 genes are shown with the positions of LORE1 insertions 

(orange boxes) indicated. Names in the orange boxes denote corresponding mutant alleles. 

The number of nodule primordia and nodules were scored 7 (B) and 21 (C) days after 

inoculation (dai) with M. loti strain NZP2235 tagged with the hemA::LacZ reporter. Ten 

individuals were scored for each genotype and average ± 95% confidence intervals are 

given. Statistical differences between wild type and the individual mutant lines were 

evaluated using the Student’s t-test (P<0.05). 
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the associated root vasculature at the place of nodule emergence, where the GUS activity 

appeared to be the most intense (Figure 3.26B).  

To assess the functional relevance of YUCCA1 and YUCCA11 during nodule 

development, the L. japonicus LORE1 insertion line resource 

(Malolepszy et al., 2016; Mun et al., 2016) was examined to identify the corresponding 

mutants. For the YUCCA1 locus two lines, L8288 and 30120352, were identified that 

carried the LORE1 insertion either 60 bp upstream from the predicted ATG initiation codon 

or 143 bp upstream from the TAA termination codon, respectively (Figure 3.27A). As 

seeds were not available for the former, likely due to the plant sterility, only the latter line, 

called yucca1-1, was used. For YUCCA11, three lines, named yucca11-1, -2 and -3 were 

obtained, each carrying LORE1 within the predicted 5’UTR sequence, at 369, 445 and 597 

bp upstream of the ATG initiation codon, respectively (Figure 3.27A), and yucca11-1 was 

chosen for downstream analyses. 

Both yucca1-1 and yucca11-1 were assessed with respect to their capacity for nodule 

primordia and nodule formation. At 7 and 21 dai with M. loti, these mutants showed wild-

type symbiotic phenotypes (Figure 3.27B and C).  

 

3.10 Expression of YUCCA1 and YUCCA11 is regulated by NF-YA1 

As the upregulated levels of YUCCA1 and YUCCA11 mRNA upon M. loti infection 

required STY-dependent functions (Figure 3.25) and STYs were regulated by NF-YA1 (see 

Figure 3.1 and 3.8), this predicted that the two YUCCA genes are likely subjected to the  
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Figure 3.28 NF-YA1 participates in the regulation of YUCCA1 and YUCCA11 

expression upon M. loti infection. Quantitative RT-PCR data showing steady-state levels 

of YUCCA1 (A) and YUCCA11 (B) mRNAs in roots of L. japonicus wild-type (blue) and 

nf-ya1-2 mutant (orange). The un-inoculated (UN) control roots and root samples collected 

at various time-points days after inoculation (dai) with M. loti were analyzed. The mean ± 

SE are given for three biological replicates. Small letters denote significant differences 

between time-points, as determined separately for each genotype by one-way ANOVA 

with post-hoc Tukey HSD; Asterisks denote significant differences in pair-wise 

comparisons between wild-type and nf-ya1-2 mutant allele (Student’s t-test: [*], P < 0.05; 

[**], P < 0.01; [***], P < 0.001).  
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Figure 3.29 L. japonicus has nine predicted NF-YA genes. The relationship tree based 

on an amino acid alignment of predicted, full-length L. japonicus NF-YA proteins. NF-

YA1 and its closest paralog, NF-YA4, are highlighted in blue boxes. The following 

accession numbers were used: LjNF-YA1 (Lj5g3v0841080.1; same as Genbank 

BAG50060.1); LjNF-YA2 (Lj6g3v0647470.1); LjNF-YA3 (Lj4g3v2179250.1); LjNF-

YA4 (Lj1g3v4752710.1); LjNF-YA5 (Lj3g3v2657800.1); LjNF-YA6 

(Lj3g3v0338970.1); LjNF-YA7 (Lj2g3v3336090.1); LjNF-YA8 (Lj0g3v0252369.1); 

LjNF-YA9 (deduced based on the predicted consensus sequence of three cDNAs with the 

following GenBank Accession. no: FS318732, FS333631 and FS360245). The protein 

sequences were aligned using ClustalW and the tree was generated using MEGA 7 

(Molecular Evolutionary Genetics Analysis) software and neighbor-joining method with 

bootstrap replicates of 1000. 
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NF-YA1-dependent regulation. To test this assumption, qPCR experiments were carried 

out, comparing steady-state levels of YUCCA1 and YUCCA11 mRNA at various stages of 

nodule development in both wild-type and nf-ya1-2 mutant roots.  

Confirming previous data (see Figure 3.25), levels of YUCCA1 and YUCCA11 

mRNAs were regulated upon M. loti infection (Figure 3.28). For YUCCA1 this was most 

apparent at 4 dai, where the mRNA level was significantly upregulated above the control, 

un-inoculated roots and this was entirely dependent on NF-YA1. By contrast, levels of 

YUCCA11 mRNA remained high in M. loti inoculated roots at all time-points analyzed, 

although they fluctuated significantly, being at their highest at 4 and 12 dai. Interestingly, 

reaching these relatively high levels required NF-YA1, while maintaining more modest 

levels at 7 and 21 dai time-points was NF-YA1-independent (Figure 3.28).  

 

3.11 NF-YA1 and NF-YA4 regulate the YUCCA11 gene expression in a 

partially redundant manner  

Given that the L. japonicus genome contains ten NF-YA genes (Hossain et al., 2016), it 

was surmised that a partially redundantly operating NF-YA could be responsible for the 

observed incomplete dependency of the YUCCA11 gene expression on NF-YA1. In the L. 

japonicus genome NF-YA4 is the closest paralog of NF-YA1 (Figure 3.29). Although 

dispensable for root nodule formation, the presence of the nf-ya4-1 mutation potentiates 

the defective symbiotic phenotype of nf-ya1-2, indicating a partially redundant function of 

the two genes in this process (S. Zhong, L. Ross and K. Szczyglowski, unpublished data). 

It was, therefore, tested whether this is pertinent to YUCCA1 and YUCCA11 expression 

during symbiosis.  
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Figure 3.30 NF-YA1 and NF-YA4 work partially redundantly to regulate YUCCA11 

gene expression. Quantitative RT-PCR data showing steady-state levels of YUCCA1 (A) 

and YUCCA11 (B) mRNAs in roots of L. japonicus wild-type, nf-ya1-2, and nf-ya1-2 nf-

ya4-1 mutants. The un-inoculated (UN) control roots and root samples collected at 4 dai 

with M. loti were analyzed. The mean ± SE are given for three biological replicates. Small 

letters denote significant differences, as determined separately for each genotype by one-

way ANOVA with post-hoc Tukey HSD; Asterisks (*) denote significant differences 

between wild-type and the mutants for the given treatment (Student’s t-test: [*], P < 0.05; 

[**], P < 0.01.  
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qRT-PCR experiments were conducted in order to determine levels of the two YUCCA 

mRNAs in the nf-ya1-2 nf-ya4-1 double mutant and compared them with corresponding 

mRNA levels in wild type and nf-ya1-2 (Figure 3.30). At 4 dai with M. loti, the steady-

state level of YUCCA1 mRNA was significantly upregulated in wild-type but not in nf-ya1-

2 mutant roots, confirming our previous data (Figure 3.28). Absence of NF-YA4, in nf-ya1-

2 nfya4-1, had no significant impact, such that levels of YUCCA1 mRNA in the single and  

double mutants were similar (Figure 3.30). By contrast, the level of YUCCA11 mRNA was 

further significantly diminished in M. loti inoculated nf-ya1-2 nf-ya4 roots, well below the 

corresponding levels in the nf-ya1-2 single mutant, even though it remained slightly 

elevated above the level in control, un-inoculated root.  
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CHAPTER 4 

DISCUSSION   
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4.1 The L. japonicus SHI/STY gene family partakes in nodule 

formation 

I show here that the L. japonicus genome contains a family of nine STY/SHI genes, 

called STY1 to STY9, which are likely essential for the development of nitrogen-fixing root 

nodule symbiosis. My observations extend the initial microarray gene expression data 

(Hossain et al., 2016) by documenting that the activity of all nine STY genes is associated 

with nodule development, with seven of them being regulated by nodule-specific NF-YA1. 

Combined histochemical localization, RNA sequencing and qRT-PCR gene expression 

data suggest that the STY genes work in a highly redundant manner to regulate symbiosis. 

Only minor symbiotic defects were detected in single sty mutants and the sty1-2 sty2-1 

sty3-9 triple mutant also showed a weak nodulation phenotype. By contrast, expressing a 

presumed STY3::SRDX dominant negative protein led to a strong impairment in nodule 

development. By taking a candidate gene approach, I was able to identify two YUCCA 

genes, YUCCA1 and YUCCA11, which are likely involved in auxin biosynthesis, as targets 

of STY-dependent regulation. Importantly, the same two YUCCA genes were found to be 

regulated by M. loti infection and this was dependent on NF-YA1 and also, in the case of 

YUCCA11, on partially redundantly acting NF-YA4. Taken together, my data suggest a 

cascade of transcriptional reprogramming, wherein the NIN-dependent expression of a 

heterotrimeric transcription factor containing NF-YA1 activates STYs, which in turn 

regulate expression of the two YUCCA genes. I postulate that this leads to the generation 

of local auxin maxima that drive nodule differentiation, including cell expansion and 

vascular bundle formation, downstream from the initially formed foci of cortical cell 

divisions. 
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4.2 SHI/STY proteins and plant development 

In Arabidopsis, the SHI/STY gene family comprises ten members, which includes 

LATERAL ROOT PRIMORDIA 1 (LRP1), the first characterized member (Smith and 

Fedoroff, 1995) and SHORT INTERNODE (SHI), on which the original name of the family 

was based (Fridborg et al., 1999). The role that the SHI-related proteins, STY1 and STY2, 

and also several SRS (SHI-related sequences) play in promoting style formation during 

female reproduction organ development accounts for the second half (i.e. STYLISH or STY) 

of the family name (Kuusk et al., 2002; Kuusk et al., 2006).  

The SHI/STY proteins are plant-specific transcriptional regulators that span a 

phylogenetic spectrum from P. patens, a moss, to mono- and dicotyledonous species 

(Fridborg et al., 2001). They were shown to be involved in a variety of processes, such as 

the development of lateral roots, stems, flowers, leaves, and siliques, primarily at the organ 

primordia formation stages. This promoted a hypothesis that they may regulate 

fundamental processes, such as cell proliferation and/or differentiation (Kuusk et al., 2006). 

Their involvement in modulating responses to gibberellin and/or contributing to auxin 

signalling has been well documented (Fridborg et al., 1999; Fridborg et al., 2001; Sohlberg 

et al., 2006; Staldal et al., 2008; Lutken et al., 2010). I show here that in L. japonicus, a 

model legume plant, STY genes are required for the differentiation of symbiotic root 

nodules and that this is mediated, at least in part, by their involvement in regulating 

YUCCA1 and YUCCA11 genes, presumably contributing to auxin biosynthesis.  
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4.3 L. japonicus STYs act in unison to mediate nodule formation 

A remarkable feature of SHI/STY genes is their functional synergism and redundancy 

(Kuusk et al., 2006). Different SHI/STY paralogues have apparently retained their ancestral 

function and together with overlapping or partially overlapping expression domains, these 

characteristics are thought to account for the highly redundant manner with which they 

mediate various developmental processes (Kuusk et al., 2006). In Arabidopsis, at least six 

SHI/STY genes partake in carpel formation while five of the SHI/STY family genes, 

spanning different clades, regulate leaf development (Kuusk et al., 2006). The phenotypic 

features of single and higher order mutants indicate that members of the Arabidopsis 

SHI/STY family act in a dosage-dependent manner and this has been considered as a 

protective mechanism against effects of dominant negative mutations, a notion for which 

some experimental support was found (Kuusk et al., 2006).  

Here I show that the activity of all nine L. japonicus STY genes associates with root and 

nodule development. Like Arabidopsis LRP1 (Smith and Fedoroff, 1995), STY2 (Kuusk et 

al., 2002), SRS5 (Kuusk et al., 2006) and STY1 (Eklund et al., 2011), promoters of the L. 

japonicus STY genes all shared identical or highly overlapping domains of activity, 

comprising dividing pericyclic cells of young lateral root primordia. Furthermore, most of 

them remained active later during root development, including at the base of emerging and 

already emerged lateral roots. They were also operational in lateral root and main root 

apices, which resembled the expression pattern reported for Arabidopsis SHI (Fridborg et 

al., 2001).  

The vastly overlapping if not identical activity domains, encompassing primordia and 

vasculature, were also apparent for the nine L. japonicus STY promoters during nodule 
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formation. However, unlike roots or carpels, nodules are dispensable plant organs. Thus, 

finding that all nine STY genes were recruited to the symbiotic program, where they appear 

to operate in a highly redundant manner, was surprising. SHI/STY proteins are known to 

form homo- and hetero-dimers (Eklund et al., 2010a) and based on the outcome of qRT-

PCR experiments, all nine L. japonicus STY genes are expressed at a relatively low level. 

Hence, a dosage-dependency requirement for accurate SHI/STY protein functioning in 

protein complexes during nodule formation could be a contributing factor. On the other 

hand, selective constraints for maintaining the participation of such a large number of 

SHI/STY genes in the nodulation program may also be indirect, due to existing functional 

overlaps with other developmental programs, including lateral root formation.  

 

4.4. STY gene expression is regulated by NF-YA1 dependent and 

independent mechanisms 

For seven of the L. japonicus STY genes, the steady-state level of their corresponding 

mRNAs was significantly upregulated upon M. loti infection. STY1, STY2, STY3, STY7 and 

STY8 were upregulated within the first 4 days after inoculation while STY5 and STY9 were 

upregulated during the following three days. The levels of the seven STY mRNAs peaked 

at around the 7 dai time-point, suggesting that a high dose of STY proteins may be needed 

shortly before or coincident with the onset of N2-fixation. For at least some of the STYs, 

this relatively high level was maintained at later stages, and was associated with mature 

nodules and based on the obtained histochemical data, confined to the nodule vascular 

bundles.  
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Using an electrophoretic mobility shift assay, it was possible to demonstrate that NF-

YA1 could bind to STY1, STY2 and STY3 promoters in vitro, suggesting that they may be 

subjected to direct regulation by NF-YA1. Interestingly, qRT-PCR experiments, also 

demonstrated the existence of an NF-YA1 independent mechanism(s), which positively 

impacted the steady-state levels of STY mRNAs. This was contingent on a particular time-

point upon M. loti infection. Thus, STY7 already showed both the NF-YA1 dependent and 

independent modes of regulation at 4 dai, while for STY1, STY2, STY3, and STY8 this 

became apparent only at 7 dai, and for STY9 at the 12 dai time-point. The significance of 

these observations and the underlying mechanism remain unclear. However, some insight 

was possibly gleaned from STY7, for which the steady-state level of mRNA was already 

relatively high, in un-inoculated L. japonicus roots, prior to M. loti infection. This predicted 

the involvement of a non-symbiotic component(s) regulating the STY7 gene expression. 

Interestingly in this context, I later found that NF-YA4, which is expressed in L. japonicus 

roots but is not regulated by M. loti infection (S. Zhong, L. Ross and K. Szczyglowski, 

unpublished data), acted partially redundantly with the nodule-specific NF-YA1 to drive 

YUCCA11 gene expression. It is conceivable that in addition to NF-YA1 other L. japonicus 

NF-YA genes, such as NF-YA4, also partake in regulating STY gene expression, which 

could explain the observed mixed regulatory mechanism (see Figure 3.8). This assumption 

is currently being tested using available higher order nf-ya mutant lines, including the nf-

ya1-2 nf-ya4 double mutant.  
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4.5 Deleterious mutations at STY loci have only limited impact on 

symbiosis 

Independent L. japonicus lines, each carrying a mutant allele at one of the five STY loci 

that showed the earliest responses to M. loti infection, were capable of developing wild-

type or close to wild-type nodule numbers. However, with the exception of sty3-9, all of 

them showed a reduced number of nodule primordia. This was not well-correlated with the 

somewhat diminished growth of the mutant lines. Given that STY1, STY7 and STY8, two 

independent LORE1 insertion lines were analyzed, showing a similar impact on nodule 

primordia formation, I have concluded that this was likely reflective of the role of the STY 

genes during symbiotic development. However, contradicting this notion was the 

observation that in the sty1-2 sty2-1 sty3-9 triple mutant the number of nodule primordia 

was similar to wild-type, even though the nodule number was significantly decreased in 

the mutant. This apparent conundrum could be due to shortcomings of the triple mutant 

experiment. Wild-type plants, used as a control in this experiment, grew relatively poorly, 

underperforming by 30 to 50% the more typically observed L. japonicus symbiotic 

phenotype in terms of both nodule primordia and nodule numbers. Although relevant under 

any circumstance, repeating the experiment was clearly important but had to be postponed 

due to scarcity of the triple mutant seeds. Therefore, any further conclusions must await 

the completion of this part of the research. In the same context, it should be informative to 

evaluate phenotypes of the relevant quadruple and quintuple sty mutants, providing that 

such mutants will be viable and healthy. This remains of concern because the triple mutant 

showed significantly diminished root and shoot growth, which already complicates the 

interpretation of data. 
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4.6 STY3::SRDX blocks nodule formation  

The essential role of STYs during L. japonicus root development was indirectly 

suggested by failure to obtain transgenic hairy roots expressing a presumed dominant 

negative STY3:SRDX chimeric protein under the control of the UBIQUITIN promoter. 

Similarly, a low nodulation phenotype or total lack of nodules in hairy roots and fully 

transgenic L. japonicus plants carrying the LjNF-YA1Pro:STY3::SRDX construct, 

respectively, were indicative of an important role for these transcriptional regulators during 

nodule development. This also predicted that STY3 and likely other redundantly acting STY 

genes must operate in the same cellular domain as NF-YA1, which was consistent with the 

histochemical data, as obtained for all STYs (see above) and also for the NF-YA1 promoter 

(Hossain et al., 2016).  

At 21 dai, T1 progeny derived from two independent fully transgenic L. japonicus 

plants carrying the LjNF-YA1Pro:STY3::SRDX transgene developed nodule primordia but 

no nodules. This resembled the prevalent symbiotic phenotype of nf-ya1 single mutants, 

where development of the majority of nodules was blocked at the primordium stage 

(Hossain et al., 2016), and was even more similar with the non-nodulating phenotype of 

the nf-ya1-2 nf-ya4 double mutant (S. Zhong and K. Szczyglowski; unpublished data). 

However, from a purely numerical point of view, the LjNF-YA1Pro:STY3::SRDX transgenic 

plants formed significantly less, while both nf-ya1-2 and nf-ya1-2 nf-ya4 mutants had 

significantly more nodule primordia than corresponding wild-type plants. This suggested 

that STYs are also likely to be essential early on during nodule primordia formation while 

NF-YA1 and NF-YA4 are not. However, expression of NF-YA1 is induced within a few 

hours upon M. loti infection, prior to nodule primordium formation (Heckmann et al., 
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2011). It is therefore conceivable that the role of NF-YA1 at earlier stages during symbiosis 

is masked by redundantly acting paralogues (Hossain et al., 2016), which would have to be 

beyond the partially redundantly operating NF-YA4.  

 

4.7 STY3::SRDX negatively impacts M. loti infection 

The LjNF-YA1Pro:STY3::SRDX5 and LjNF-YA1Pro:STY3::SRDX6 independent 

transgenic plants also exhibited a significant defect in M. loti infection. This was evidenced 

by strong attenuation of eIT formation. Neither nf-ya1 (Hossain et al., 2016) nor nf-ya4 (S. 

Zhong and K. Szczyglowski; unpublished data) had any detectable impairment in 

epidermal infections but the nf-ya1 nf-ya4 double mutant did. It formed slightly but 

significantly less eITs and more microcolonies in comparison to wild type (S. Zhong and 

K. Szczyglowski; unpublished data). Thus, both NF-YA and STY genes could be relevant 

not only with respect to nodule developement but also for eIT formation. Consistent with 

this notion, M. truncatula MtNF-YA1 and MtNF-YA2, presumed orthologs of L. japonicus 

NF-YA1 and NF-YA4, respectively, were shown to be required for symbiotic infection 

(Laloum et al., 2014; Laporte et al., 2014). Their expression in S. meliloti inoculated M. 

truncatula plants was associated, but not causally related, with the activation of auxin and 

cell-cycle markers within the root epidermis. While the latter accompanied the onset of 

bacterial infection, the former was shown to be necessary for the initiation of eIT formation 

(Breakspear et al., 2014; Murray, 2017; Nadzieja et al., 2018). The observation that in L. 

japonicus both NF-YA1 and NF-YA4 are required to regulate YUCCA gene expression may 

be important in this context because this could provide for at least one mechanism by which 

the relevant auxin signalling is generated to support epidermal infections.  
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4.8 Both NF-YA and STYs are required for YUCCA gene expression 

In addition to root epidermis, auxin responses are also known to precede and/or 

associate with nodule primordium formation (Mathesius et al., 2000b; Mathesius, 2008; 

Plet et al., 2011; Suzaki et al., 2012; Deinum et al., 2015) and exogenous application of 

polar auxin transport inhibitors to M. sativa (alfalfa) and M. truncatula roots was shown to 

induce nodule-like structures in the absence of rhizobia (Allen et al., 1953; Hirsch et al., 

1989; Hirsch and Fang, 1994; Rightmyer and Long, 2011; Suzaki et al., 2013). A model 

has been proposed in which NF perception and the resulting LHK1-dependent activation 

of NIN expression in the root cortex lead to production of auxin maxima, which mediate 

nodule organogenesis; however, how NIN contributes to this process remained unresolved 

(Suzaki et al., 2012).  

My work revealed a functional link between the NIN-regulated NF-YA1 and the nodule-

associated expression of SHI/STY genes. Members of the Arabidopsis SHI/STY 

transcription factor family were shown to regulate the auxin biosynthesis rates by acting as 

DNA-binding transcriptional activators of YUCCA4 and YUCCA8 genes (Kuusk et al., 

2002; Kuusk et al., 2006; Sohlberg et al., 2006; Eklund et al., 2010a; Eklund et al., 2010b; 

Baylis et al., 2013). The identification of the two L. japonicus YUCCA genes, YUCCA1 

and YUCCA11, as targets of the NF-YA1/STY dependent regulation strongly indicates that 

this signalling pathway may be responsible, at least in part, for auxin production during 

nodule organogenesis (Figure 4.1). 
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Figure 4.1 A working model for the NF-YA1/STY dependent regulation of nodule 

organogenesis in a model legume, L. japonicus. Perception of M. loti-derived nodulation 

factors by L. japonicus roots triggers accumulation of bioactive cytokinins and leads to 

expression of the NODULE INCEPTION transcriptional regulator NIN. NIN mediates 

downstream reprogramming, including expression of a nodule-specific NF-YA1, which is 

associated with the initial cell divisions for nodule primordia formation. As a component 

of a heterotrimeric transcriptional regulator, NF-YA1 regulates expression of STY genes, 

presumably in a partially redundant manner with other NF-YAs, such as NF-YA4. This, in 

turn, activates YUCCA gene expression. YUCCA1 and YUCCA11 are presumed to carry 

out auxin biosynthesis, which is required for differentiation of fully functional, N2-fixing 

nodules.  
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4.9 Nodule differentiation is mediated by STYs 

In addition to YUCCAs, other targets for the STY1-dependent regulation were 

characterized in Arabidopsis. These included genes involved in cell wall loosening and cell 

expansion and also genes encoding several different transcription factors, such as those 

belonging to the APETALA2/Ethylene Responsive Factor (AP2/ERF) protein family 

(Staldal et al., 2012). In legumes, members of the AP2/ERF gene family play an important 

role during both symbiotic infection and nodule formation (Andriankaja et al., 2007; 

Kawaharada et al., 2017a) and one of the L. japonicus AP2/ERF genes was characterized 

as a target of the NF-YA1-dependent regulation (Hossain et al., 2016). Whether this is direct 

or requires STYs as intermediaries remains an interesting question for future investigations.  

Determinate nodules formed by L. japonicus and also by Glycine max (soybean) and 

P. vulgaris (common bean), lack the persistent meristem. After several rounds of cell 

divisions, which initiate nodule organogenesis, subsequent progress toward a functional 

N2-fixing organ is primarily reliant on cellular differentiation (Islas-Flores et al., 2011; Li 

et al., 2015). This encompasses several interlinked events, such as increase in cell ploidy 

(endoreduplication) and cell expansion, as well as formation of nodule vascular bundles 

(Kondorosi and Kondorosi, 2004; González-Sama et al., 2006).  

In Arabidopsis, SHI/STY genes have been implicated as regulators of leaf venation by 

contributing to local auxin maxima (Baylis et al., 2013). Auxins also have a complex, 

concentration-dependent role in regulating root cell expansion (Barbez et al., 2017; Majda 

and Robert, 2018) and together with cytokinins have long been known to be consequential 

for the early establishment of root vascular tissues (De Rybel et al., 2015). Their role in the 

development of the L. japonicus nodule vasculature and lenticels was also documented 
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(Takanashi et al., 2011; Suzaki et al., 2012). We previously showed that NF-YA1 

participates in the differentiation of nodule structure, including cell expansion and 

formation of nodule vascular bundles (Hossain et al., 2016). Presence of cell divisions but 

lack of any subsequent nodule development in STY3::SRDX expressing transgenic plants 

support the notion that STYs are likely pertinent in the same context as NF-YA1. This is 

further accentuated by the overlapping expression domains, including vascular bundles of 

mature nodules, for NF-YA1, STYs, YUCCA1/11 and also for LHK1 (Held et al., 2014; 

Hossain et al., 2016). The regulatory relationships uncovered by this work suggest that 

these genes are likely constituents of the same transduction pathway, which leads to auxin-

dependent differentiation of functional nodules (Figure 4.1). However, further research is 

necessary to more directly demonstrate the involvement of NF-YA1, STYs and the two 

YUCCA genes in this important signalling circuit.  
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PERSPECTIVES AND CONCLUSIONS 

My thesis work has focused on deciphering the role of the L. japonicus SHI/STY gene 

family during symbiotic root nodule development. This was prompted by the initial 

observation that expression of at least three members of the family is regulated by a nodule 

specific transcription factor containing NF-YA1 (Hossain et al., 2016). I showed that 

SHI/STY genes are indeed important during root nodule development in L. japonicus while 

also providing the first comprehensive description of SHI/STY genes in a legume plant. My 

results indicate that SHI/STY participate in lateral root development and also in a mostly 

legume-specific  transcriptional reprograming that begins with the perception of rhizobia-

derived NF at the root surface and culminates with the formation of nitrogen-fixing root 

nodules. 

Initially, my aim was to characterize the three STY genes, STY1, STY2 and STY3, which 

were defined by previous work in our laboratory as being targeted by NF-YA1. By 

advancing the research, I ended up  characterizing nine STY genes, which all apparently 

participate in nodule formation. This was challenging, especially with regard to functional 

studies, where achieving absence or significant decline in STY-related functions was 

difficult due to their apparent redundancy. A dominant negative approach, using SRDX, 

turned out to be informative. Nonetheless, other experiments are in progress to further 

solidify current predictions. In addition to building higher order sty mutant lines, with 

possible pitfalls due to anticipated pleiotropic effects, a new chimeric construct expressing 

a truncated STY3 protein, deprived of the IGGH domain (STY3Truncated),  under the control 

of a nodule-specific NF-YA1 promoter is being prepared and will be used in order to 

determine whether a dominant negative effect could also be obtained in this way. A similar 
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approach was successful in Arabidopsis (Kuusk et al., 2006) and, in the context of L. 

japonicus-M. loti symbiosis, this could provide important additional support for my 

conclusions, as made thus far based on the SRDX domain-containing construct.  

Furthermore, obtaining stable transgenic lines with a nodule-specific decline in STY 

function(s), either through SRDX or STY3Truncated, is important because it will open the 

possibility of identifying downstream targets of STYs on the genome-wide scale but in a 

nodule-specific context. When compared to transcriptomic data from sty mutant roots, 

those yet to be identified as carrying a set of sty mutations that lead to a significant defect 

in nodule formation, this could allow for determining whether nodule specific targets other 

than YUCCA11 exist and ascertaining the magnitude of the overlap between root (lateral 

root) and nodule-specific STY functions.       

The identification of YUCCA1 and YUCCA11 as potential downstream targets of STY-

dependent regulation was exciting because it provided further support for the postulated 

participation of NF-YA1 in the generation of auxin maxima downstream from the NF-

induced cytokinin signalling (Hossain et al., 2016). However, additional work is needed to 

directly demonstrate that this relationship indeed exists. Two experiments are currently 

under way. Firstly, the already available transgenic L. japonicus plants carrying the 

DR5:GUS auxin reporter (H. Hou, L. Ross and K. Szczyglowski; unpublished data) in the 

otherwise wild-type and nf-ya1 mutant backgrounds will be comparatively evaluated using 

a histochemical approach. This should demonstrate whether significant differences in the 

activity of the reporter, as associated with either wild-type or the mutant nodule 

development, are detectable. Secondly, the YUCCA11 mRNA will be expressed under the 

control of the proAtCortex promoter in the L. japonicus DR5:GUS reporter line. Derived 
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from the Arabidopsis thaliana aspartyl protease-encoding gene, proAtCortex has root 

cortex-specific activity in L. japonicus  (Gavrilovic et al., 2016) and was recently used to 

successfully complement the symbiotic defect of the lhk1-1 mutation (Miri et al., 2019).  If 

the availability of YUCCA11 limits auxin production in roots, its ectopic production should 

be reflected in enhanced DR5:GUS reporter activity. At the same time, within the same 

experiment, it will be possible to determine whether the ectopic expression of YUCCA11 

in the root cortex will induce cell divisions. As proAtCortex is constitutively expressed in 

the root cortex, an inducible variant is also being prepared (Siligato et al., 2016) to limit 

global effects and to see whether a spatiotemporal regulation of YUCCA11 expression 

would lead to nodule primordia formation. 

 Like STYs, YUCCA genes are known to work in a redundant manner (Cheng et al., 

2006); hence building a higher order L. japonicus yucca mutant line could be informative. 

Also, it will be interesting to determine whether L. japonicus sty and/or yucca mutants 

suffer from defective AM symbiosis. Auxin signalling was shown to be essential for 

arbuscule formation (Etemadi et al., 2014). Therefore, involvement of STYs and YUCCAs 

in this more ubiquitous symbiosis is conceivable.  

In summary, my research has opened a new line of investigation toward the main goal 

of understanding the mechanisms that mediate nodule formation in legumes.  It is clear that 

upon activation by NF, an interplay between ubiquitous plant hormones, cytokinin and 

auxin, mediates nodule formation, with the former serving as the main plant endogenous 

stimuli that  initiates the entire process (Gamas et al., 2017). Further insight will likely 

define the reason why most non-leguminous plants are unable to carry out nodule 

organogenesis in response to cytokinin signalling. This should bring the ultimate goal of 
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engineering functional nitrogen-fixing symbiosis in important non-legume crops closer to 

reality, thus possibly advancing the next Green Revolution.      
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APPENDICES 

Appendix A Primers used for STY gene study 

Name of primer Primer sequences (5'-3') 

Genotyping primers for LORE1 insertion sty alleles 

sty1-1- LORE1-F ATTGCGGACACAGGAGGTGCAGGT 

sty1-1- LORE1-R CACGCACTTGACGAGGCAACGACT 

sty1-2- LORE1-F ACCTGCACCTCCTGTGTCCGCAAT 

sty1-2- LORE1-R TGGTCAGCCACTCCTCCATCCTCC 

sty2-1- LORE1-F TGCTTGTTGTTGCTTGCTTCTTC 

sty2-1- LORE1-R GACGACGCCCTCACAAACC 

sty3-10- LORE1-F CGCAACCGATCTTCCTTTGGAGCA 

sty3-10-LORE1-R CGCAACCGATCTTCCTTTGGAGCA 

sty4-1- LORE1-F GCCACTCCTTGCATGCCACAACAA 

sty4-1- LORE1-R CATCACCACCACCACCACCCTCAC 

sty4-2- LORE1-F CATGTTGTAAGGGGCGCGGGTATG 

sty4-2- LORE1-R CCTCCAGGACAACCAAATTGCCTTTCA 

sty5-1- LORE1-F CTCTGCAACGCCGCCATGGAAACT 

sty5-1- LORE1-R TGCATGGCTACGTCTCCCTTTTACCA 

sty5-2- LORE1-F TGAGATATGGCCACCGCAGCAGAA 

sty5-2- LORE1-R CACACACCGAAACACCGCCGTAGA 

sty5-3- LORE1-F TGGTTGTGGCCGTGTTAGTGGCAG 

sty5-3- LORE1-R GTTTCCGTGCCAAACGCATGTCAA 

sty5-4- LORE1-F GGAAGCGGGGCAATTCCCTACTGA 

sty5-4- LORE1-R TCACACCGGAAATACACCAGCACCA 

sty6-1- LORE1-F GAAGCTAATGAGCGCGGCTGAGGA 

sty6-1- LORE1-R TCCCTCCCCCAAATGTTACCTAACTCA 

sty7-1- LORE1-F GCATGTTGGTGGTTGCGTTGTCGT 

sty7-1- LORE1-R TGCAGCCTTCAGATTCTGGCGCTT 

sty7-2- LORE1-F ACGACAACGCAACCACCAACATGC 

sty7-2- LORE1-R CCAAAGCCAAAATCATACGGTGGGC 

sty7-3- LORE1-F CCGGCACTTCCAGGTCACCATCTC 

sty7-3- LORE1-R CTTGCAGCAGGGACCCAAGTGCTC 

sty7-4- LORE1-F GATGAGGCCCCATTTCTCCCTCCA 

sty7-4- LORE1-R GCCCACCGTATGATTTTGGCTTTGG 

sty7-5- LORE1-F TGCAGCCTTCAGATTCTGGCGCTT 

sty7-5- LORE1-R CTTGCAGCAGGGACCCAAGTGCTC 

sty8-1- LORE1-F TGAAAAACCATTCGTTACGGCTGAGACC 

sty8-1- LORE1-R CGACGATGTTTCGGTGTCTTTCTCCG 
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Appendix A continued 

sty8-2- LORE1-F TTGCTGTCTCTCACGGCGTTTTGC 

sty8-2- LORE1-R TCATCATCACAACAACATGGCTGGG 

sty8-3- LORE1-F GCCAGCCCCCTTTAATTTCGAGCA 

sty8-3- LORE1-R CCTGAGCTTAACTCTCCGGCGGTGT 

sty9-1- LORE1-F CAGACCTTGTTGCTGTTTCCATGAGCA 

sty9-1- LORE1-R GCACCACCACCATCACTGTCACCC 

sty9-2- LORE1-F GCACCACCACCATCACTGTCACCC 

sty9-2- LORE1-R GCCACTCCTTGCATGCCACAACCT 

sty9-3- LORE1-F GATGCAGGACATGTTGCAAGGGGC 

sty9-3- LORE1-R CATGTCCCCCTCCCTTCACCCACT 

P2 (LORE1 reverse) CCATGGCGGTTCCGTGAATCTTAGG 

Genotyping primers for sty3 TILLING alleles 

sty3-1-F TCTTCTTACAGAGGCTTTGAGATATGGAACCACCGG 

sty3-1-R AGAGTGCAAGCGAGTGATGAA 

sty3-9-F CGCTAGGTGTTGGGCCGTCG 

sty3-9-R ATCTCTCTGCTGCCTTGTAGGAACCAGCT 

Sequencing primers for sty3-1 and sty3-9 

sty3-1-seq-F ATGGCGGGTTTATTCTCACTAG 

sty3-1-seq-R TCCTCCTCCACCTCCACTTC 

sty3-1-seq-R1 AGCAAGTTCTGCACCTCACA 

sty3-9-seq-F GAAGTGGAGGTGGAGGAGGA 

sty3-9-seq-R TGCACTCTGCAGGATTCTGTT 

sty3-9-seq-F1 TGTGAGGTGCAGAACTTGCT 

sty3-9-seq-R1 ACACGCAACCGATCTTCCTT 

qRT-PCR Primers for STYs 

STY1-qPCR-F   ACGCTCTTGTTGAGCACGAT 

STY1-qPCR-R CTCCTGTGTCCGCAATCCTT 

STY2-qPCR-F   GGTACAAACCAAACGACGATG 

STY2-qPCR-R CTTAACCCTGCTCCTCCAACT 

STY3-qPCR-F GGCCAGACGGCAATAGTTACAC 

STY3-qPCR-R GAGCCGGATACAAGGAAGAAGG 

STY4-qPCR-F TGGAACCTCAAAATGTGCCC 

STY4-qPCR-R TCAGGACCGTAAACACCGTT 

STY5-qPCR-F TGATGATGAGTAGGCGTGGTG 

STY5-qPCR-R TGTGGTGGAGGATGGAGGATT 

STY6-qPCR-F ATGGCGGTATTCAGCAGTGTT 

STY6-qPCR-R ATCATGGCTGTGGATTGTGG 

STY7-qPCR-F GAGGATGGGAAGGATGAGTATG 
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Appendix A continued 

STY7-qPCR-R CTCCACCACCAACAGTACCAC 

STY8-qPCR-F AGGCCAAGACAATGCTCCTA  

STY8-qPCR-R GCGTACCAGCCATGAAAGCA 

STY9-qPCR-F GTGGCTGATGGTGGTAGTGG 

STY9-qPCR-R TTAGTGGCGGTGGAACTGTG 

UBQ-F ATGTGCATTTTAAGACAGGG  

UBQ-R GAACGTAGAAGATTGCCTGAA 

PP2A-F GTAAATGCGTCTAAAGATAGGGTCC 

PP2A-R ACTAGACTGTAGTGCTTGAGAGGC 

ATPs-F AACACCACTCTCGATCATTTCTCTG 

ATPs-R CAATGTCGCCAAGGCCCATGGTG 

Genotyping primers for STY3::SRDX transgene 

STY3-SRDX-F AAGTGAGAGAAGAATGGCGGG 

STY3-SRDX-R GCCAAGGATGGATTTCCTAAGC 

qPCR primers for STY3::SRDX transgene  

STY3-SRDX-qPCR-F GGGCCAGACGGCAATAGTTA 

STY3-SRDX-qPCR-R AGCAAATCCAAGTCTAAGCTCAA 
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Appendix B Primers used for YUCCA gene study 

Genotyping primers LORE1 insertion yucca alleles 

 yucca1-1-LORE1-F TGGGGCTGAAAAGGCCATCACAAG  

 yucca1-1-LORE1-R TGGGTCTTCGGAGAGGGCTCTGTTG 

 yucca11-1-LORE1-F TCAGGCCCTTGCAAACCACAGTGA  

 yucca11-1-LORE1-R CCCGGAACCCATGTAGGCCTTGTC 

 yucca11-2 LORE1-F TGACTGTGTGCATCCCCTGAAGCT  

 yucca11-2 LORE1-R TCCGCATGCATTAATTGGTGAGTGC 

yucca11-3 LORE1-F GGATGTTCTAGGTTCGAACACGATTGCC 

yucca11-3 LORE1-R TGACTGTGTGCATCCCCTGAAGCT 

qRT-PCR Primers for YUCCAs 

YUCCA1-qPCR-F GAGTTGGCGGTTATGATGCTG 

YUCCA1-qPCR-R CAGGGGTTTTTCCCATTGTGTT 

YUCCA11-qPCR-F ACAGCACGAAGTGGAGTTTG 

YUCCA11-qPCR-R AAGCAGGCCACGTTTAGAGA 

YUCCA1 and YUCCA11 promoter amplification primers 

 pYUCCA1-DT-F CACCTCATCCACTGTCTGTTAAG  

 pYUCCA1-DT-R TTTGAATTTTGTGTGTGTTATG 

 pYUCCA11-DT-F CACCAATGCAAGACATTGAC  

 pYUCCA11-DT-R ATGAATTGAAAACCAAACATATAC 

YUCCA1 and YUCCA11 promoter sequencing primers 

 pYUCCA1-F1 ATAACCTCCGATCCACTTC  

 pYUCCA1-F2 TGGAGTGTTATTCTAACA  

 pYUCCA1-F3 TACGTGTCAGTATGTCCTGC  

 pYUCCA1-F4 ATTTCTTCCATACCACTTG  

 pYUCCA1-F5 TCTCACAGAATATAGTGT  

 pYUCCA1-F6 TCAATCCAACACTCTCAAC  

 pYUCCA1-R1 CAACGATGCAGTGGAGCA 

 pYUCCA1-R2 ACATCACAGTCCTCCTCATTC 

 pYUCCA1-R3 ATCTATACAGTCTCTCTT 

 pYUCCA1-R4 GTATATGCATTTTCCATGCAC 

 pYUCCA1-R5 GACAATCCTTTGGTTATGTATG 

 pYUCCA11-F1 GTACTAGTGTCGCTACCAGATTG  

 pYUCCA11-F2 CGTCACATAGTTCTTGTCAGGAG  

 pYUCCA11-F3 TCAAAGCAAGGAATTTGTGAC  

 pYUCCA11-F4 CTATGAGTCATTCAAGCAATA  

 pYUCCA11-F5 CAAGTAGTCAGTTGTAGTGTG  

 pYUCCA11-F6 CAGTCCTTTCTTGAGGACAGTC  

 pYUCCA11-R1 GCATTGCTCGTATTAGGAG 



141 

 

 

Appendix B continued 

 pYUCCA11-R2 GTGACAGCCTTATATTTCGTC 

 pYUCCA11-R3 GTGACAGAATCTTAGAGAG 

 pYUCCA11-R4 CGAATCATGGATCAGGTACCT 

 pYUCCA11-R5 CACACAGACATTGGGAGTCAG 

 pYUCCA11-R6 GAGCACACAGCAGGAAGCAATGT 

 pYUCCA11-R7 CTCGTCACTCAGTGCATGT 
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