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Abstract and Keywords 
 
Wetland restoration efforts have increased on the Canadian prairies to 

compensate for widespread loss of wetland area, form, and function. Restoration 

activity presumes a direct replacement for natural wetlands, where restored 

wetlands provide equivalent ecological functions and services. However, 

restoration projects often show limited recovery success in biological structure 

and biogeochemical function. Using plant functional traits is an emerging 

approach to assessing ecological process and may provide a better indicator of 

wetland functional recovery than vegetation structural indicators alone. Here, I 

tracked vegetation structural metrics (i.e., species richness, composition, and 

cover) and plant functional traits over a chronosequence of restored wetlands to 

compare structural and functional recovery and evaluate restoration success. 

Results suggest rapid structural recovery (within five years of restoration) and 

similar functional diversity among drained, restored, and natural wetlands. The 

approach taken towards wetland restoration, combined with a heavily impacted 

agricultural landscape, may be limiting the recovery potential of wetlands, thereby 

creating a homogenization of wetland form and function.  

 

Keywords: wetland, restoration, recovery, plant functional traits, chronosequence, 

vegetation, ecosystem process, Prairie Pothole Region  
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1 Chapter 1. Introduction 

1.1 Problem Statement 
Wetlands have historically sustained major impacts and high rates of loss 

on prairie landscapes as a result of the encroachment of development and/or 

drainage for crop production (Golden et al. 2017). With this wetland loss is an 

associated loss of wetland functions and ecosystem services (Creed at al. 2017). 

In the Canadian prairies, wetland restoration is increasingly being used as a tool 

to return wetland functions and ecosystem services back to the landscape, and 

the implication is often that ecosystem functions and services provided by the lost 

natural wetlands have been repaired. Creating wetland habitat (i.e., more wetland 

area) is easy and relatively successful when hydrologic conditions are restored 

(Zedler & Kercher 2005). However, ecological processes and functioning take 

longer to develop than vegetation diversity and structure, and require more time 

and resources to measures (Meli et al. 2014). Ultimately, return of ecosystem 

function and services of wetlands post-restoration are required to provide resilient 

habitats, regulate hydrology, and maintain multi-functional landscapes. Finding a 

reliable method for assessing and monitoring the recovery of wetland functions is 

required given that wetland policies and restoration guidelines across North 

America include functional equivalence as a primary goal or desired outcome 

(e.g., Alberta’s Wetland Policy, Government of Alberta 2013).  

1.2 Scientific Justification 

1.2.1 Wetlands and Consequences of Their Loss 
Wetlands are some of the most diverse and ecologically important habitats 

in the world, and yet, wetlands are among the most threatened ecosystems 

(Erwin 2009). Found worldwide in both inland and coastal forms, wetlands cover 

five to eight percent of the land surface of the Earth (Mitsch & Gosselink 2007) 

and can be classified based on plant community structure, wetland form, and 

wetland function. Inland wetlands take four forms; peatlands (i.e., bogs and fens), 

marshes, swamps, and riparian systems. While class, type, permanence, and 

definitions may vary in different parts of the world, three conditions must be 

satisfied for a habitat to be classified as wetland. These include the presence of 
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water at or near the ground surface of the soil for all or varying periods of the 

year, the development of hydric soils (further discussed in Chapter 2) that 

distinguish wetland soils from adjacent uplands, and finally, the presence of biota 

and vegetation adapted to wet conditions. Despite being variable in character, 

wetlands have been valued and depended upon for centuries as a source of 

food, trade, material, and for other products and services (Mitsch and Gosselink 

2007). 

Wetland habitats have long been threatened by urban expansion, 

agricultural intensification, and land development, resulting in widespread, global 

loss in number and area (Davidson 2014). Globally, up to 50% of wetlands have 

been lost, though these estimates may be conservative and are dated (from the 

early 1990s) (Davidson 2014). Further, estimates of wetland loss increase 

significantly (to 80 or 90%) in some areas where wetlands feature (or historically 

featured) prominently on the landscape; for example, in the Prairie Pothole 

Region (PPR) where wetlands historically covered ~20% of the landscape. 

(Mulhouse and Galatowitsch 2003). The PPR is located in the northern Great 

Plains states of the USA and much of the southern portion of the Prairie 

Provinces (i.e., Alberta, Saskatchewan, and Manitoba) of Canada (Figure 2.1, 

inset), and is named after the pothole wetlands that characterize the region. 

Pothole wetlands are small, shallow wetlands formed following the retreat of the 

Laurentide ice sheet at the end of the Wisconsinan glaciation (Dyke and Prest 

1987). While often considered geographically isolated from one another, in fact, 

prairie pothole wetlands are hydrologically connected through groundwater, and 

form one of the largest wetland complexes in North America (Tiner 2003; Van de 

Valk 2005). The main cause of wetland loss in the PPR has been the conversion 

of natural landscapes into agriculture (Tiner 1984). 

Wetlands have hydrological, biological, and biogeochemical influence on the 

landscape. These critical landscape features regulate water quantity (Kennedy 

and Mayer 2002) and water quality (Marton et al. 2015). Wetlands are important 

for climate regulation and climate change control as they sequester some of the 

largest stores of carbon on the planet (Finlayson et al. 2005). For example, 
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globally wetlands represent three percent of total land area, but sequester 30 

percent of all soil carbon (Zedler & Kercher 2005). Wetlands store carbon in their 

vegetation and soils, thus when natural wetlands are drained for cultivation, large 

quantities of stored organic carbon decompose and are lost to the atmosphere as 

carbon dioxide (Zedler & Kercher 2005). Further, wetland habitats are an 

interface between terrestrial and aquatic habitats, supporting a high diversity of 

plants and wildlife species and contributing disproportionately to primary 

productivity on the landscape (Kennedy and Mayer 2002).  

When wetlands are removed for agricultural, industrial, or other land 

developmental purposes, the functions and ecosystem services that wetlands 

provide are lost. The impacts of wetland loss on the Canadian Prairies include 

increased flooding events (Acreman and Holden 2013), increased frequency of 

nuisance algal blooms (Davis and Froend 1999), and shifts in landscape level 

hydrology (Cohen et al. 2016). The Millennium Ecosystem Assessment 

conducted an economic valuation of wetland ecosystem services and determined 

that the total economic value of natural wetlands was far greater than the 

economic value of wetlands converted to agriculture ($5,800 per hectare 

compared to $2,400 per hectare when drained and used for agricultural 

purposes) (MEA 2005). Yet, despite the intrinsic and economic values provided 

by wetland habitats, wetland drainage and deterioration activities are widespread 

in the interest of economic development (Davidson 2014).  

1.2.2 Wetland Management in Canada and on the Prairies 
Great efforts have gone into implementing policy to conserve and protect 

remaining wetlands, and into wetland restoration initiatives to improve landscape 

function and provisioning of ecosystem services. In Canada, wetland policy 

implementation, development, and enforcement are a consolidated effort among 

the federal government, provincial governments, and other wetland management 

programs (e.g., Ducks Unlimited Canada, North American Waterfowl 

Management Plan, and the Canadian Habitat Joint Venture programs). The 

Federal Policy on Wetland Conservation (Government of Canada 1991) 

advocates for 29% of Canadian wetlands that are located within federal lands 
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(situated within National Parks, military reserves, National Wildlife Areas, and 

much of the land in the northern territories) (Rubec & Hanson 2009). The federal 

policy outlines a ‘mitigation hierarchy’, which includes steps, in order of 

preference, for mitigating impacts to wetlands (Government of Canada 1991; 

Rubec & Hanson 2009). Separately, provincial governments manage most of the 

country’s wetlands and associated functions. While each province has a set of 

regulations, policies, and practices concerning wetland policy, many operate 

under a similar mitigation hierarchy (Rubec & Hanson 2009; Clare et al. 2011). 

Under this hierarchy, both federally and provincially, wetland conservation and 

avoiding impacts to wetlands are prioritized, then if avoidance of impacts is not 

practicable then the process progresses through to minimization. Finally, 

compensation is mandated when impacts to wetlands are unavoidable, usually 

through restoration, enhancement, or creation activities. 

In Alberta, a new wetland policy was implemented in 2013; it is among a 

wave of policy updates and new policy developments that take a functional 

approach to wetland management. The Alberta Wetland Policy places a higher 

value on wetlands that contribute to water quality improvements, hydrology, 

biodiversity, and human use functions (Government of Alberta 2013). As with the 

federal policy, Alberta follows a three-stage hierarchy to guide management of 

wetlands and impacts. Avoidance of wetlands is the preferred response for 

managing wetlands, followed by an expectation to minimize impacts, and then 

finally wetland replacement, as opposed to compensation, as a last resort 

requirement when wetland impacts cannot be avoided or minimized. This policy 

provides an assessment of the contributions of a specific wetland to the 

ecosystem and uses wetland relative value to establish restoration requirements 

if wetland impacts are unavoidable (Government of Alberta 2013).  

1.2.3 Wetland Replacement by Restorative Action  
Wetland loss in the Prairie Pothole Region has been caused by an 

extensive network of surface drainage ditches, which have drained wet areas to 

expand crop production on the prairies (Galatowitsch & van der Valk 1996a). 

However, increasingly, wetlands are being restored in an effort to recover lost 
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wetland functions and services. Restoration is defined as the practice of renewing 

or recovering function to a degraded, damaged, or destroyed ecosystem (SER 

2002). Wetland restoration has been shown to mitigate the effects of wetland 

drainage and loss, but some damages are more difficult to restore, most notably, 

the loss of ecosystem services (Zedler & Kercher 2005). Ditch-drained wetlands 

typical of the Prairie Pothole Region are deemed to be among the simplest 

systems to restore. By constructing a ditch plug (or earthen berm) within the 

drainage ditch that previously drained the wetland, hydrology of the wetland basin 

is restored. It is expected that natural re-colonization of wetland plant species will 

follow (Galatowitsch & van der Valk 1996a). This idea of natural re-colonization, 

was termed the “efficient community hypothesis” and formed the leading 

conceptual model for wetland restoration in the 1980s. However, rather than 

following the anticipated predictable pattern of recovery for wetlands, research 

suggests that restored wetlands deviate from their expected recovery path 

(Galatowitsch & van der Valk 1996b; Suding 2011; Moreno-Mateos et al. 2012). 

An emerging consensus is that the wetland vegetation structure and diversity 

does not recover to the condition of nearby, undisturbed natural wetlands of 

similar class, size, and condition. There is a critical need to understand the 

recovery of wetlands following restoration in an effort to more effectively manage 

these systems and the provisioning of functions and services they provide. 

1.2.4 The Conceptual Basis behind Restoration 
The principles of restoration are rooted in community ecology theory, 

because restoration begins with a disturbance to a degraded system, which 

initiates a response in the species, biotic interactions, energy transformations 

within a community. Community ecology describes the processes that underlie 

the assembly, maintenance of diversity, and functioning of ecology communities 

(Wainwright et al. 2017). Most restoration activities, assessment, and monitoring 

approaches are directed towards the plant species that comprise a restored 

community, so concepts related to coexistence among plants will be discussed 

(Wainwright et al. 2017). Models of succession, state-transition, and assembly 
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are fundamental components to understanding and achieving restoration 

success.  

Successional theories describe an orderly predictable return of communities 

after a disturbance, until a climax community has been achieved (Clements 

1916). This theory suggests that the species living in a particular place will 

gradually change over time as the physical and chemical environment in an area 

changes. Primary succession describes the changing community that occurs on 

an entirely new habitat that has not previously been colonized (Gorham et al. 

1979). Secondary succession follows, where the community composition 

changes as the dynamics within the community change (e.g., competition, 

nutrient conditions, environmental factors) (Horn 1974). Finally, climax 

communities are achieved when the species in a community are stable and are 

no longer undergoing change in composition under a set of environmental 

conditions (Horn 1974). 

State and transition models are another framework that can explain 

community assembly following restoration (Young 2005). State transitions are 

described as discrete communities that exist under a set of conditions (i.e., 

climate, soil, topographic) (Westoby et al. 1989). A state is defined as long-term 

persistence of a new plant community or a new range of variation within a 

community that previously did not exist (Bestelmeyer et al. 2017). State 

transitions can be driven by internal mechanisms such as competitive 

interactions, or by external drivers such as change in climate. Further, changes 

can be gradual such as by periodic grazing activity, or abrupt such as by an 

extreme drought (Bestelmeyer et al. 2017). State and transition models were 

developed to allow for flexibility and nonlinearity otherwise not observed with 

succession models (Zweig et al. 2009). 

Succession and state transition models suggest that a pathway towards a 

desired state or condition exists. In contrast, assembly theory dictates that a 

community is determined by a series of hierarchical filters (abiotic or biotic) that 

control which species can co-exist at a given time (Diamond 1975). Early 

assembly theorists observed unique species composition in spatially isolated 
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communities hypothesized to be due to random differences in colonization, 

establishment, and priority effects (Johnson 2005). Specifically, assembly theory 

suggests that from a pool of available species in a region, various filters work to 

limit the species that comprise the community. Some important filters that control 

wetland species composition may include water levels, fertility, disturbance, 

competition or other interactions (Keddy 1999). 

These models of community development do not work in isolation. Instead, 

in combination, these evolving theories try to explain differences, change, and/or 

patterns in community assembly (Chang et al. 2016). Further, increasingly, the 

concept of alternative stable states is being used to describe community 

assembly in restored systems (Lewontin 1969). A concept that incorporates 

aspects of succession, state and transition models, and assembly filters, 

alternate stable states describes stable ecosystems that exist under different sets 

of unique biotic and abiotic conditions. The theory suggests that ecological 

thresholds separate discrete states, but under significant perturbations, shifts 

between states are possible and can be catastrophic (Scheffer et al. 2001). 

Stability of an ecosystem determines how significant a perturbation has to be in 

order to shift states, and theoretically, the resistance and resilience of the system 

determine ecosystem stability (Mitchell et al. 2000). Ecosystem resilience is the 

ability of a system to return to normal following a disturbance or stress (Leps et 

al. 1982), whereas resistance is the ability of a system to avoid being displaces 

during a disturbance. Stability is an essential determinant of healthy communities 

and an important concept for ecological restoration (Leps et al. 1982).  

Further, alternative stable states have been used to describe the wetland 

restoration process, where a degraded ecosystem (drained wetland) exists in a 

stable state and will not transition until a significant perturbation occurs to shift 

the ecosystem into a new stable state. Hydrologic restoration of drained basins 

acts as the perturbation, transitioning the community from degraded through to a 

restored community. However, following restoration, restored communities are 

subject to a multitude of environmental or biotic conditions that could cause 

stress and test the stability of a restored community. 
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Concurrent and related to community assembly, the mechanisms behind the 

coexistence of species in a community and ecosystem functioning are central to 

ecological restoration. Several theories exist to explain the occupation of a 

community by multiple species. To start, niche theory describes the general 

ecological requirements of a species given the physiological and biotic limits that 

restrict where they can thrive (Young et al. 2005). Competition for resources was 

considered the driver for the development of niche space in a community, such 

that the theory suggests no two species can occupy the exact same niche 

(competitive exclusion) (Palmer et al. 2006). Consumer differences in resource 

use determine the outcome of competition (survival, coexistence, or extinction). 

Equalizing and/or stabilizing mechanisms are also used to explain the 

coexistence of species (Chesson et al. 2000). This idea suggests that 

heterogeneity in an environment results in trade-offs among species, which 

enables species co-existence. Stabilizing mechanisms increase intraspecific 

interactions relative to interspecific interactions (such as in relation to resource 

partitioning) thereby reducing competition since segregation of strategies ensure 

that species persist through time (Chesson et al. 2000). Whereas equalizing 

mechanisms minimize fitness differences between species, which increases 

competition thereby excluding those species unable to compete, which 

contributes to stable coexistence of a few competitive species (Chesson et al. 

2000). Similarly, resource based theories of competition explain coexistence 

through differential resource requirements and uptake strategies among co-

occurring species. 

Finally, life-history strategy and trade-off concepts enable coexistence since 

species exhibit trade-offs in their response to competition, stress, and 

disturbances (e.g., C-S-R model (Grime 1977)). The CSR model (one example of 

strategy or trade-off concepts) suggest that species are classified according to a 

life history strategy related to three factors – growth (as it related to competition 

for resources), stress (as it related to environmental stress), and ruderality (a 

species tolerance to environmental disturbance). Grime suggests that species will 

associate along a continuum of each strategy resulting in a community where life 
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history traits differ among species allowing coexistence (Grime 1977). Of the 

theories presented, no one concept explains species coexistence in every 

community, but rather these concepts should be used by restoration practitioners 

to explain patterns of community development, species persistence through time, 

and change in community composition.  

Generally, a community with many persistent and coexisting species is a 

common objective of habitat restoration projects (Palmer et al. 2006), where high 

diversity is traditionally the main focus (Cadotte et al. 2011). Diversity – function 

(or biodiversity - ecosystem function (BEF)) relationships are widely studied and 

continue to feature prominently in ecological research, increasingly so in the field 

of restoration ecological (Benayas 2009). The theory suggests that biodiversity is 

a key factor in ecosystem functioning. Ecosystems contain an assemblage of 

species whose individuals cycle material between organic and inorganic forms 

referred to as ecosystem processes (Naeem 2006). Ecosystem processes are 

generally measured as rates of flux among pools of dead, living, or inorganic 

matter (Naeem 2006). These fluxes can be compared among ecosystems in 

order to understand ecosystem response to change, such as addition of loss of 

species, land modification, or restoration efforts (Naeem 2006).  

Further, species diversity is hypothesized to play a major in ecosystem 

stability. Four hypotheses are said to describe the role of species diversity on 

ecosystem stability (Mitchell et al 2000). First, the diversity - stability hypothesis 

predicts that ecosystem stability increases as species diversity increases 

(MacArthur 1955). The rivet hypothesis suggests that an ecosystem will continue 

to function normally if there are only a few extinctions, but the loss of a critical 

species or number of species may cause instability within an ecosystem (Ehrlich 

& Erlich 1981). The redundancy hypothesis suggests that certain species are 

able to expand their hold in the ecosystem to compensate when neighbouring 

species are lost (Walker 1992). And finally, the idiosyncratic hypothesis proposes 

that although ecosystem function changes when diversity changes, the 

magnitude of and direction of the change is unpredictable because of the 
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complexity of ecosystems and the varied responses of the species (Lawton 

1994).  

The ecological concepts and theories described above provide a glimpse of 

the deep ecological roots that restoration is built upon. Without a doubt, 

understanding theses concepts of community ecology will help contribute to re-

establishing compositionally and functionally diverse communities to the 

landscape.  

1.2.5 A Trait-based Approach to Functional Recovery 
Trait-based ecology has recently emerged as a promising approach to 

evaluate ecosystem function and community dynamics (Laughlin 2014; Zirbel et 

al. 2017). As described above, communities result from the influence of biotic and 

abiotic filters that act to constrain species from a regionally available pool. Trait-

based ecology predicts that these filters (biotic and abiotic) should also act on the 

traits of the species that persist in a community. A functional trait is defined as 

any morphological, physiological, or phenological feature that is measurable at an 

individual level and is linked to species fitness and performance (e.g., canopy 

size, seed mass, or flower density) (Violle et al. 2017). Changes in the value, 

range, and relative abundance of functional traits in an ecosystem provide insight 

into ecosystem processes (Diaz et al. 2007a). Relationships between plant 

functional traits and their effect on ecosystem processes and services have been 

documented for a range of organisms and ecosystems (de Bello et al. 2010). In 

terrestrial systems, plant functional traits have been shown to influence primary 

productivity, litter decomposition, cycling of nitrogen and other nutrients, and 

levels of soil moisture and sediment retention (de Bello et al. 2010; Diaz et al. 

2004; Eviner & Chapin 2003). While the trait - ecosystem process relationship in 

wetlands is understudied, the patterns between traits and function in wetland 

systems have been found to overlap those found in terrestrial systems; therefore, 

these relationships can be generalized for wetland systems (Moor et al. 2017). 

Functional trait research in increasingly being used to understand the field of 

restoration ecology. For example, trait-based approaches have been used to 

study species assemblages that most effectively achieve functional outcomes 
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(e.g., limiting invasion, maximize survival, achieving desired functions) (Laughlin 

2014), to evaluate the performance of species for establishment and persistence 

following restoration (Pywell et al. 2003), and to further describe and understand 

the diversity - ecosystem function relationship (Cadotte, Carscadden, & 

Mirotchnick 2011). 

1.3 Research goals, hypothesis, and predictions 
This observational study evaluated the vegetation communities of 42 prairie 

pothole wetlands, which included drained, natural, and restored wetlands ranging 

from one year through 24 years since restoration. The goal of this research 

project was to track, analyze, and compare structural and functional recovery of 

vegetation in restored wetlands in an effort to identify indicators of success, infer 

return to function, and evaluate trajectories of recovery between structural and 

functional approaches. This research project tested two hypotheses. 

1) Structural diversity of restored wetlands recovers rapidly but is dependent 

on wetland morphometry.  

I predict that plant species diversity, community composition, and cover 

estimates of restored wetlands will be comparable to natural wetlands within a 

few growing seasons, and that larger wetland area, smaller perimeter to area 

ratios, and gentler slopes will support vegetation communities that more closely 

resemble those of natural wetlands. 

2) Functional recovery of restored wetlands is slow to recover and will be 

reflected in plant functional traits and wetland functional diversity. 

I predict that newly restored wetlands will be dominated by species that are 

shorter and have more conservative nutrient acquisition strategies (i.e., low 

specific leaf area, high leaf dry matter content, low leaf nitrogen content) and 

have lower functional diversity when compared to natural wetlands, which will be 

dominated by plant communities with high nutrient acquisition and quick turnover 

strategies and where wetland functional diversity will be high. 



 

 

12 

1.4 Thesis organization 
This thesis is organized in an integrated article format. Chapter 1 introduces 

wetland loss, wetland restoration, and the theoretical basis behind restoration 

ecology. In Chapter 2, I present the results from the assessment of structural 

metrics for a series of restored wetlands over two years. Here, in addition to 

restored wetland, two classes of natural wetlands were considered - natural 

agricultural and natural reserve, which represent different natural wetland 

disturbance conditions found in central Alberta. These two classes of natural 

wetlands provided a useful comparison when considering reference condition. In 

Chapter 3, I assessed the plant functional traits of the dominant species found 

within the series of restored wetlands. Trait values were compared within 

species, at the community level, and were combined to compare functional trait 

diversity among wetland age classes and with drained and natural wetlands. 

Finally, Chapter 4 compares structural versus functional recovery, discusses the 

influence of annual variability on results, and provides a general discussion on 

the significance of integrating structural and functional metrics into assessments 

of ecosystem recovery.  
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2 Chapter 2. Incomplete Recovery of Plant Diversity in 
Restored Prairie Wetlands on Agricultural Landscapes 

2.1 Introduction 
Wetlands provide many important ecosystem services, such as carbon 

sequestration (Mitsch et al. 2013), flood and drought control (Rains et al. 2016), 

and water quality improvement (Marton et al. 2015). Furthermore, wetlands are 

biodiversity hotspots and support many species at risk (Calhoun et al. 2017) as 

well as half of North America’s waterfowl population (Junk et al. 2013). Yet, 

wetlands are at risk of degradation and loss from land conversion activities, with 

recent global estimates of wetland area loss ranging between 54-57% (Davidson 

2014). While these vulnerable waters continue to be threatened (Creed et al. 

2017), habitat restoration is increasingly being used as a strategy to reverse 

historical and on-going wetland losses and degradation.  

The practice of wetland restoration has grown rapidly in response to 

increasing land development, natural habitat degradation, and understanding of 

the ecological importance of these systems. The recovery of wetland vegetation 

follows a complex successional trajectory, where rather than expecting to see 

predictable plant community development characterized by annuals dominating 

first, followed by herbaceous perennials, and eventual colonization of woody 

perennials (trees and shrubs) (Noon 1996), it is anticipated that the plant 

community will be determined by the seeds and propagules present in the 

remnant seedbank (Galatowitsch & Van der Valk 1996), and the dispersal and 

colonization abilities of incoming species (Zedler 2000).   

Evidence suggests that it is not uncommon for a restored wetland to deviate 

from its expected recovery path (Suding 2011; Moreno-Mateos et al. 2012). Once 

a system is degraded, new abiotic and biotic conditions can develop where 

strong positive feedbacks and interactions among conditions inhibit the ability of a 

wetland to return to its pre-disturbance state (Suding et al. 2004). For example, in 

a meta-analysis of 621 restored and created wetland sites worldwide, Moreno-

Mateos et al. (2012) observed that biological structure (composed of abundance, 

density, richness, occupancy, cover, and/or biomass of vertebrates, 



 

 
 

18 

macroinvertebrates, and plant assemblages, though mostly driven by the latter) 

was on average 26% lower in restored wetlands than natural wetlands, even a 

century post-restoration. This shows that while a number of ecological theories 

interplay in the restoration of a wetland system (including successional theories, 

dispersal limitation, and disturbance theory to name a few, see Zedler 2000), 

restored wetlands are not reaching their natural state equivalent. 

The goal of most wetland restoration efforts is to return the degraded 

ecosystem back to its ‘pre-disturbed’ state (Hobbs & Harris 2001); however, in 

most cases, restored wetlands are unlikely to reach a natural reference condition 

(Moreno-Mateos et al. 2012). This has led to a need to view restored wetlands as 

novel ecosystems that have been driven and influenced by human action and 

environmental change, resulting in ecosystems that are characterized by species 

in combinations or relative abundances not previously observed within natural 

reference systems (Hobbs et al. 2006). While controversy exists over the utility 

and management implications of novel ecosystems (Miller & Bestelmeyer 2016), 

many researchers think that the novel ecosystem concept provides a way forward 

for managing wetland ecosystems in a landscape fraught with environmental and 

anthropogenic change and associated legacy effects. Nevertheless, most 

restoration efforts are still focused on achieving similarity to a given reference 

state (Hallet et al. 2013), and many restoration practitioners use history as a 

guide to select reference benchmarks for restoration (Hallet et al. 2013; Higgs et 

al. 2014). Consideration must be given to the natural history of the surrounding 

landscapes and historic impacts on reference and restoration sites because they 

can have major implications on determining restoration success.  

Given the need to evaluate restoration efforts within a rapidly changing 

environment, this study was conducted to determine the recovery success of 

plant diversity in restored prairie wetlands. Recovery was assessed by comparing 

restored sites with contemporary examples of natural reference wetlands using 

plant structural diversity metrics commonly used to evaluate restoration success. 

I had two hypotheses. The first hypothesis was that plant diversity of restored 

wetlands increases with time since restoration, and further, that the recovery of 
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plant structural diversity in restored prairie wetlands is rapid (i.e., equivalence 

between restored and natural reference is achieved within a few growing 

seasons). The second hypothesis was that wetland morphology (i.e., area, 

shape, slope, and perimeter to area ratio) influences plant structural diversity 

potential. These hypotheses were tested within the Prairie Pothole Region, an 

area that has been traditionally agriculturally intensive, heavily impacted by 

wetland loss, and where wetlands are predicted to be profoundly affected by 

climate change (Rashford et al. 2016). 

2.2 Methods 

2.2.1 Study area 
The study was conducted on geographically isolated wetlands (wetlands 

surrounded completely by upland with no obvious surficial connection to another 

wetland) in the Central Parkland ecoregion of Alberta, Canada (Figure 2.1). The 

mean annual temperature of the region is 2.6 °C and the climate is characterized 

by warm summers and cold winters based on Canadian Climate Normals 

(Environment Canada 2016). Mean annual precipitation is 446.1 mm, of which 

50% falls from June to August (Environment Canada 2016). The landscape 

comprises mainly glacial till plains, hummocky uplands, and many shallow prairie 

pothole wetlands formed by the Wisconsin glaciation. Typical soils found in study 

wetlands include humic and orthic gleysols (Natural Regions Committee 2006). 

The dominant native vegetation in the ecoregion is a mix of aspen parkland and 

prairie plant communities (Natural Regions Committee 2006). 
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Figure 2.1. Location of study sites used to assess structural recovery in restored 
wetlands. The study area includes 18 restored wetlands, 8 natural wetlands, and 3 
drained wetlands located in Alberta, Canada. 

 

In the Prairie Pothole Region, wetlands can be classified by the vegetation 

occupying the central or deepest part of the wetland. Temporary wetlands are 

characterized by a central zone represented by fine stemmed grasses and 

sedges whereas seasonal wetlands are defined by a central zone dominated by 

coarse grasses, sedges, and associated forbs (Stewart & Kantrud 1971). 

Restored temporary and seasonal wetlands were selected from properties owned 

by Ducks Unlimited Canada (DUC), and ranged in size from 0.06 to 1.06 ha 

(Table B1). This range in sizes reflected the dominant size class of wetlands in 

this prairie region (Serran & Creed 2016), as well as the dominant size class of 

restored wetlands in the Parkland ecoregion (DUC 2016). The chronosequence 

approach, where study sites are selected that have similar attributes but are of 

different ages, is a reliable method to study temporal dynamics of plant 

succession (Cowles 1899; Pickett 1989; Walker 2010), thus making it a suitable 
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approach for tracking vegetation recovery within restored wetlands. This study 

included a chronosequence of 29 wetlands that included drained, restored 

(ranging between 3 and 24 years since restoration), and natural reference 

wetlands. Drained wetlands (n=3) were actively being cultivated at the time of 

sampling, and included two wetlands that were completely drained and one 

wetland with incomplete drainage. The restored wetlands were further 

categorized into age classes: 3-5 years since restoration (5 wetlands), 6-10 years 

since restoration (5 wetlands), 11-15 years since restoration (5 wetlands), and 

>20 years since restoration (3 wetlands). Additionally, the natural reference 

wetlands were further classified as “natural agriculture” (Nat(Ag), n=3) and 

“natural reserve” (Nat(Res), n=5). The natural agriculture wetlands had not been 

impacted by historical drainage and were located within the same parcels as one 

of the restored wetlands. Land use surrounding the natural agriculture wetlands 

has historically included cultivation and livestock grazing, and given the proximity 

between the Nat(Ag) and the restored wetlands, land management practices 

adjacent to these wetlands was assumed to be comparable. The natural reserve 

wetlands were situated within the Cooking Lake – Blackfoot Provincial Recreation 

Area where surrounding land use has historically included recreation such as 

hiking, horseback riding, and cycling, as well as livestock grazing. These natural 

reserve wetlands and the surrounding landscape may have been subjected to 

other historical and contemporary disturbances, including weed control measures 

and other management activities; however, specifics are unknown. 

Wetlands were restored by DUC via construction of an earthen berm across 

drainage ditches to restore the hydrology of the wetland basin. No hydrophytes or 

aquatic plants were planted or seeded within restored wetland basins, and as 

such, the flora reflected natural colonization from seed banks or dispersal. 

However, following construction, earthen berms were often seeded with an equal 

portion of grass seed mix containing Bromus riparius (meadow brome), Medicago 

sativa (alfalfa), Schedonorus arundinaceus (tall fescue), and Elymus trachycaulus 

(slender wheatgrass), and Hordeum vulgare (barley) at a rate of 34 kg per 

hectacre to provide stability during flooding events and to suppress the growth of 
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weeds (R. Hunka, DUC, personal communication, 3 January 2017). Glyphosate 

spot treatment and periodic mowing were conducted in uplands surrounding 

restored wetlands to control the spread of weeds, particularly Cirsium arvense 

(Canada thistle). While land use practices surrounding restored wetlands varied 

among grazing, haying, or left idle based on DUC’s land management goals and 

objectives, these differences were not considered as part of this study, since 

these activities were scheduled for later in the season and after field sampling 

was completed.  

2.2.2 Sampling 
In 2016, wetlands were delineated in the field based on hydrophytic 

vegetation and hydric soil indicators. While boundary delineations can often be 

easily determined using vegetation indicators, soil indicators can identify 

seasonally saturated conditions and provide a better determinant of soil 

saturation and wetland conditions than vegetation alone (Government of Alberta 

2015). Hydric soil indicators common of the soils in the study area can include a 

deep organic soil layer, redoximorphic features such a depletion of color of the 

soil (gleying) within 30cm of the surface, and/or oxidized rhizospheres, identified 

as a red color located within plant root pores resulting from oxidation of reduced 

iron when soil moisture drops (Government of Alberta 2015).  

In both 2016 and 2017, each wetland was visited and sampled once 

between June and August. This timeframe corresponds to peak growing season 

in the region. In 2016, the majority (25) of wetlands were sampled between June 

1 and July 1, including all drained, all restored, all Nat(Ag) and one Nat(Res) 

wetland. The remaining four Nat(Res) wetlands were sampled between July 10 

and Aug 10 due to permitting and access constraints. In 2017, all wetlands were 

sampled between June 19 and August 15, with the majority of sampling (21 sites) 

conducted in July, as a result of significant standing water present in wetlands at 

the beginning of the sampling season.  

A similar vegetation sampling protocol was employed between sampling 

years. Stratified random sampling was used to capture vegetation heterogeneity 

across the hydrologic gradient of the wetland, as represented by different 
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vegetation zones (Little 2013). Wetland zonation is typical of prairie wetlands, 

where rings of distinct vegetation communities are observed resultant from the 

hydrologic gradient found within wetlands (Stewart & Kantrud 1971). Square 

meter quadrats were randomly placed along four transects that were oriented at 

90° from each other, and within each quadrat all herbaceous vegetation was 

sampled. Following a species accumulation analysis, eight quadrats per 

vegetation zone was determined to be the optimum sampling effort for a variety 

of wetland size classes assessed in this study. As such, total number of quadrats 

sampled per wetland ranged from 6 – 30 quadrats depending on the size of 

wetland and number of vegetation zones present. All species within a quadrat 

were identified and percent cover was estimated using an 8-point cover 

classification system (Mueller-Dembois & Ellenberg 1974). A random walk 

through was also conducted within each wetland to record any rare species, 

species occurring in patches, or species not previously identified through quadrat 

sampling (Mueller-Dembois & Ellenberg 1974).  

2.2.3 Plant Diversity 
Wetland plant diversity was measured in several ways. First, the average 

percent cover of hydrophytes, native species, and non-native species were 

calculated for each wetland by taking the midpoint value of each cover class 

range for each quadrat sampled. All species detected were assigned a wetland 

indicator status (WIS) based upon the National Wetland Plant List (Lichvar et al. 

2016; U.S. Army Corps of Engineers 2016). All species designated as facultative, 

facultative wetland, and obligate wetland species were classified as hydrophytes. 

Native status was assigned as per the Alberta Conservation Information 

Management System List of Vascular Plants (ACIMS 2015). Plants that could not 

be identified to species were not assigned a WIS or native status and could not 

be analyzed as per the metrics. Between both sampling years,  34 out of the total 

216 species observed (16%) could not be identified to the species level (Table 

A1). Second, given the uneven sampling effort within wetlands, species richness 

was estimated in EstimateS, version 9.1 (Colwell 2013) using rarefaction curves 

for restored and natural wetlands and extrapolation curves for drained wetlands, 
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following methods by Colwell et al. (2012). Rarefaction allows for the interpolation 

of species richness estimates at a lower effort than was conducted in the field, 

whereas extrapolation allows the estimation of species richness beyond the 

original sampling intensity. Species richness within each wetland was estimated 

for 12 quadrats per wetland, and species data collected during quadrat sampling 

was used to calculate richness estimates using either rarefaction or extrapolation 

curves. Finally, all species identified within a wetland (i.e., species observed 

during quadrat sampling and the random walk through) were used in for a 

community composition analysis. The Sørensen Index was used to estimate 

similarity in community composition as a distance measure between wetlands 

(Sørensen 1948). Sensitive species identified as plants with relatively small 

distributional ranges, small population sizes, or occurrences of ≤100 in Alberta 

(ACIMS 2015) were excluded from the analysis to remove unnecessary variability 

in the data (McCune & Grace 2002).  

2.2.4 Morphology 
Wetland morphometries were derived from the wetland field delineations  

conducted in 2016 and included area, slope, perimeter-to-area ratio, and shape. 

Slope was estimated as the mode within each wetland determined from a 

hydrologically corrected 25 m digital elevation model (Alberta Environment and 

Parks 2008) that was resampled to generate a 5 m grid in ArcGIS Desktop 10.4 

(ESRI, Redlands, CA). Shape was measured as the departure from a circular 

shape (McGarigal & Marks 1995).  

2.2.5 Statistical Analysis 
Analysis of variance (ANOVA) was used to compare structural metrics. 

Where wetland area was correlated to plant diversity metrics, analysis of 

covariance (ANCOVA) was used to control for wetland area (i.e., for percent 

cover of hydrophytes and native species, as well as species richness). All figures 

present estimated marginal means at a constant wetland area of 0.378 ha, in an 

effort to remove the influence of wetland area on metric results. This wetland 

area represents the average size of wetlands assessed in the study. 

Assumptions of ANOVA/ANCOVA models were tested and confirmed by a way of 
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QQ plots, the Shapiro-Wilk normality test, Bartlett’s test, and two-way ANOVA 

with an interaction term to ensure homogeneity of variance, normality of 

residuals, and homogeneity of regression slopes. Spearman rank correlation was 

used to assess the relationship between plant diversity metrics and wetland 

morphometrics. Pairwise comparisons were conducted using the Sidak test. 

ANCOVA was performed in SPSS version 24 (IBM Corp, Armonk, NY, U.S.A.) at 

a significance level of 0.05. 

A nonmetric multidimensional scaling (NMDS) was performed using the 

Sørensen Index to assess differences in community composition, as the data 

were nonlinear. NMDS was run iteratively until a stable solution was achieved 

with a recommended goodness of fit below 0.2 (Clarke 1993; McCune & Grace 

2002). Wetland area, perimeter-to-area ratio, shape, slope, and wetland age 

classes were fitted on the ordination to determine correlation with community 

composition. Morphometric variables were standardized prior to running the 

ordination to ensure a mean of 0 and standard deviation of 1. NMDS analysis and 

variable fitting were performed in R using metaMDS() and envfit() functions in the 

vegan package (Oksanen et al. 2017; RStudio, Boston, MA, U.S.A.). Significant 

differences in community composition were tested using PERMANOVA in Primer 

Version 7 (Clarke & Gorley 2015). 

2.2.6 Precipitation and Climate 
An analysis of precipitation across sampling years was conducted in an effort to 

explain some variability among years. Spatial climate models derived for North 

America were used to interpolate daily precipitation values from October 2015 

through September 2017 (McKenney et al. 2011). Further, 30-yr climate normal 

(1987 - 2017) for a centralized point within the study area (township 49, range 20, 

W4M) was determined from data retrieved from the Alberta Climate Information 

Service (ACIS 2018). 

 

2.3 Results 
Over two years of quadrat sampling, a total of 216 species were observed 

within 29 study wetlands (Table A1). After removing unidentified species, 33% of 
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species were only observed in 2016, whereas an additional 10% of species were 

only identified in 2017. 90 species were observed in 5 wetlands or less whereas 

42 species were observed in at least 50% of all study sites. The species most 

frequently observed across wetlands include Cirsium arvense (observed in 29 

wetlands), Poa palustris (28 wetlands), Poa pratensis (27 wetlands), Taraxacum 

officinale (27 wetlands), Sonchus arvensis (26 wetlands), Carex atherodes (26 

wetlands), and Eleocharis palustris (26 wetlands). 

2.3.1 Effect of Age on Wetland Recovery 
ANCOVA revealed a significant difference in percent cover of hydrophytic 

species among wetland age groups in 2016 (F(6,21) = 2.741, p = 0.040, partial K2 = 

0.439, observed power = 0.753) (Table 2.1; Figure 2.2A). Given a constant 

wetland size of 0.378 ha, drained wetlands had a lower percent cover of 

hydrophytic species (13.23 ± 10.44) when compared with wetlands restored 3-5 

years (45.06 ± 7.85), 6-10 years (57.55 ± 8.23), 11-15 years (33.67 ± 7.65), 20-

30 years (34.75 ± 9.92), agricultural natural wetlands (26.92 ± 11.25), and natural 

reserve wetlands (47.23 ± 8.19). Pairwise comparisons suggested that drained 

wetlands have significantly lower hydrophytic cover than wetlands restored 6-10 

years (p = 0.0268), otherwise no significant differences were observed in percent 

cover of hydrophytic species. Similarly, there was a significant difference in 

percent cover of native species among age groups in 2016 as determined by 

ANCOVA (F(6,21) = 3.293, p = 0.019, partial K2 = 0.485, observed power = 0.838) 

(Table 2.1; Figure 2.2B). Drained wetlands had a lower percent cover of native 

species (9.07 ± 9.99) when compared with wetlands restored 3-5 years (44.66 ± 

7.51), 6-10 years (58.47 ± 7.88), 11-15 years (36.78 ± 7.33), 20-30 years (36.80 

± 9.50), agricultural natural wetlands (34.04 ± 10.77), and natural reserve 

wetlands (49.55 ± 7.84). Pairwise comparisons suggested that drained wetlands 

have a significantly lower native cover than wetlands restored 6-10 years (p = 

0.007), otherwise no significant differences were observed in percent cover of 

native species. ANOVA found no significant difference in percent cover of non-

native species among age groups in 2016 (F(6,22) = 0.275, p = 0.951, partial K2 = 

0.066, observed power = 0.103) (Table 2.1; Figure 2.2C). It should be noted that 
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there was a high cover of bare ground in all drained wetlands as a result of recent 

and regular cultivation activities, which accounts for low total (hydrophytes, 

native, and non-native species) cover observed within these wetlands.  

 

Table 2.1. Raw mean values ±SE of structural metrics in 2016, represented by 
age class. Cover values represent mean cover within a wetland based on quadrat 
sampling. Species richness is an estimate at 12 quadrats sampled. Nat(Ag) 
represents natural wetlands on agricultural landscapes and Nat(Res) represents 
wetlands located within a natural reserve. 

 

Average 
Size 
(ha) 

Sample 
Size Cover 

Hydrophytes 
Cover 

Natives 
Cover Non-

natives 
Estimated 
Species 

Richness 

 
Mean SE Mean SE Mean SE Mean SE 

Drained 0.12 3 6.11 6.07 2.39 2.35 16.89 1.08 12.33 1.67 
Age 3-5 0.25 5 41.40 5.26 41.23 4.75 13.99 6.02 28.60 1.66 

Age 6-10 0.15 5 51.16 8.13 52.47 8.00 11.56 3.53 24.60 1.86 
Age 11-15 0.38 5 33.83 10.59 36.93 10.07 12.29 3.11 21.00 5.36 
Age 20-30 0.45 3 36.71 12.95 38.64 13.58 13.66 4.27 22.00 0.58 

Nat(Ag) 0.60 3 38.31 15.03 44.73 13.78 9.89 4.78 28.33 3.48 
Nat(Res) 0.79 5 53.39 6.15 55.33 6.13 14.99 2.81 44.00 2.39 
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Figure 2.2. Estimated marginal means (± SE) of (A) percent cover of hydrophytes, (B) 
percent cover of native species, and (C) percent cover of non-native species across a 
chronosequence of restored wetlands at a standard wetland size of 0.378 ha as 
observed in 2016. Age 0 represents drained wetlands, Nat(Ag) represents natural 
wetlands on agricultural landscapes, and Nat(Res) represents wetlands located within a 
natural reserve. Different letters indicate significant differences. 
 

ANCOVA indicated species richness in 2016 was significantly different 

among wetland age groups (F(6,21) = 8.386, p < 0.0001, partial K2 = 0.706, 

observed power = 0.999). Drained wetlands supported the lowest estimated 

species richness (14.9 ± 3.60), when compared with wetlands restored 3-5 years 

(29.92 ± 2.71), 6-10 years (26.91 ± 2.84), 11-15 years (20.94 ± 2.64), 20-30 

years (21.29 ± 3.43), agricultural natural wetlands (24.22 ± 3.89) and natural 

reserve wetlands (41.78 ± 2.83). Pairwise comparisons revealed that drained 

wetlands had significantly lower species richness than newly restored wetlands 

(3-5 years; p = 0.0328) and natural reserve wetlands (p = 0.0003). As well, 

natural reserve wetlands had significantly higher species richness than restored 
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age classes 6-10 years (p = 0.0303), 11-15 years (p = 0.0004), 20-30 years (p = 

0.0021), and agricultural natural wetlands (p = 0.010) (Table 2.1; Figure 2.3).  

 

 

Figure 2.3. Estimate species richness (+/- SE; estimated marginal means at a constant 
wetland size of 0.378 ha) across a chronosequence of restored wetlands assessed in 
2016. Age 0 represents drained wetlands, Nat(Ag) represents natural wetlands on 
agricultural landscapes, and Nat(Res) represents wetlands located within a natural 
reserve. Different letters indicate significant differences. 

 
The NMDS ordination of community composition in 2016 revealed three 

community clusters (Figuer 2.3). Drained wetlands separated from the other 

wetland classes along the first axis, natural reserve wetlands separated along the 

second axis, and restored wetlands showed convergence in community 

composition with agricultural natural wetlands as indicated by close proximity and 

overlapping clusters. PERMANOVA further confirmed differences in community 

composition (pseudo-F(6,22) = 3.63, p = 0.0001). Pairwise comparisons suggested 

that drained wetlands were significantly different from wetlands restored 3-5 

years (p = 0.004), 6-10 years (p = 0.003), 11-15 years (p = 0.005), 20-30 years (p 

= 0.016), agricultural natural wetlands (p = 0.014), and natural reserve wetlands 

(p < 0.001). Likewise, natural reserve wetlands were also significantly different 

from wetlands restored 3-5 years (p = 0.018), 6-10 years (p = 0.004), 11-15 years 
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(p = 0.007), 20-30 years (p = 0.013), and agricultural natural wetlands (p = 

0.045). The NMDS iterative algorithm stopped after 20 random starts and 

provided a solution with a stress of 0.15 indicating a good representation of the 

underlying structure.  

 

 

 
Figure 2.4 NMDS of community composition observed in 2016 grouped by wetland 
restoration age classes (represented by triangles). Nat(Ag) represents natural wetlands 
on agricultural landscapes, and Nat(Res) represents wetlands located within a natural 
reserve (stress = 0.15). 
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2.3.2 Effect of Morphology on Recovery 
In 2016, wetland size and slope had a significant effect on wetland recovery 

(Table 2.2). Wetland area was positively correlated with species richness (r = 

0.474, p = 0.009), percent cover of hydrophytes (r = 0.414, p = 0.025) and natives 

(r = 0.429, p = 0.020), but not percent cover of non-native species (r = 0.099, p= 

0.608). On the other hand, wetland slope was positively correlated with percent 

cover of non-native species (r = 0.456, p = 0.013) (Table 2.2). Wetland perimeter-

to-area ratio and shape had no significant association with structural diversity 

metrics in 2016 (Table 2.2).  

Table 2.2. Spearman rank correlation values between wetland morphometrics 
and plant structural diversity metrics in 2016. Significant (α =0.05) correlations 
are bolded and p-values are provided in parentheses. 

Plant Diversity Metrics Area (ha) Perimeter-to-area 
Ratio (m-1) Shape 

 
Slope 

(% rise) 
 

Species Richness 0.474 
(0.009) 

-0.335 
(0.0751) 

0.190 
(0.321) 

0.094 
(0.624) 

Percent cover Hydrophytes 0.414 
(0.025) 

-0.258 
(0.175) 

0.349 
(0.063) 

-0.014 
(0.942) 

Percent cover Natives 0.429 
(0.020) 

-0.272 
(0.151) 

0.345 
(0.066) 

-0.069 
(0.720) 

Percent cover Non-natives 0.099 
(0.608) 

0.001 
(0.995) 

0.054 
(0.780) 

0.456 
(0.013) 

 
 

Wetland area (r2 = 0.287, p = 0.013) and perimeter-to-area ratio (r2 = 0.248, 

p = 0.022) significantly (but weakly) explained dissimilarity in community 

composition among sites. Perimeter to area ratio fitted on the NMDS of 

community composition provides further support of that morphometric variability 

in wetlands types (Figure 2.5).  



 

 
 

32 

 
Figure 2.5. Perimeter to area ratio (P:A) fitted on NMDS ordination of community 
composition in 2016.The centre point of arrows represent the mean P:A of wetlands, and 
the direction of arrows represent general morphometries of wetlands, where natural 
wetlands were associated with smaller P:A ratios and drained wetlands were associated 
with larger perimeter to area ratios. 
 

Wetland points were plotted against perimeter to area ratio as a function of 

wetland area to better understand the distribution of wetland morphometries 

within the study. Results suggest most natural wetlands (in agriculture settings 

and natural reserves) are characterized by low P:A ratios (between 425 - 1250 

m/m2) and had wetland areas on the larger end (all >0.45 ha), whereas drained 

wetlands in this study had high P:A ratios (all >1900 m/m2) and were small in size 

(<0.25 ha). Restored wetlands varied from having low to high P:A ratios (422 – 

1686 m/m2 ) and ranged from small (0.05 ha) to large (1.0 ha) (Figure 2.6). 
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Figure 2.6. Morphometries of study wetlands. Wetlands are identified by a letter 
representing type of wetlands (R= restored, D = drained, N = Nat(Ag), and P = Nat(Res)) 
and a number representing wetland number (in the case of drained and all natural sites) 
or age (in the case of restored wetlands). When more than one restored wetlands were 
of the same age they were further distinguished by a lower case letter (a – d). 
 

2.3.3  Effect of Annual Variability on Structural Metrics 
All wetlands were re-assessed in 2017, and structural metrics were 

analyzed. Results suggest, in general, native cover and hydrophyte cover were 

higher in 2017 when compared to 2016 (Figure 2.7A and 2.7B, respectively). All 

restored and natural wetlands contained average native and hydrophyte covers 

between approximately 60% and 80% cover. Drained wetlands had lower 

average native and hydrophyte covers (26% and 27%, respectively). Non-native 

cover was low across all wetland age classes and was similar between 2016 and 

2017 (Figure 2.7C). Drained wetlands, the exception, had an average non-native 

cover of 42% in 2017 compared to 17% in 2016. ANOVA suggests that in 2017, 

drained wetlands had significantly higher cover of non-native species when 
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compared to wetlands Age 3-5 (10 %), Age 11-15 (4.5 %), Age >20 (6.2 %), and 

Nat(Ag) wetlands (6.2 %) (F(6,21) = 3.0891, p = 0.02501). No significant 

differences were observed across the chronosequence when analyzing cover of 

natives (F(6,21) = 2.3003, p = 0.073) or cover hydrophytes (F(6,21) = 2.2836, p = 

0.075). 

When comparing species richness between years, 2017 had higher 

estimated species richness in every age class, with the exception of Nat(Res) 

wetlands (Figure 2.7D). Nat(Res) had 38 species in 2017 compared to 42 

species in 2016. ANOVA suggests that in 2017, no significant differences were 

observed in estimated species richness at 12 quadrats across wetland age 

classes (F(6,21) = 2.0254, p = 0.1073).  

 
Figure 2.7. Structural diversity metrics (± SE) compared between 2016 and 2017. 2016 
values are estimated marginal means, whereas 2017 values are raw values. (A) percent 
cover of native species, (B) percent cover of hydrophytes, (C) percent cover of non-
native species and (D) estimated species richness at 12 quadrats. Age 0 represents 
drained wetlands, Nat(Ag) represents natural wetlands on agricultural landscapes, and 
Nat(Res) represents wetlands located within a natural reserve. 
 

A B 

C D 
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When analyzing community composition among wetlands in 2017, a similar 

differentiation of the species that comprise drained wetlands was observed. 

Drained wetlands separate along the x-axis from restored and natural wetlands 

as was observed in 2016. However, the community composition of natural 

wetlands in natural reserves was not distinctly different from restored and Nat(Ag) 

wetlands, as was the case in 2016 (Figure 2.8). PERMANOVA confirmed 

differences in community composition among wetlands (pseudo-F(6,21) = 2.90, p = 

0.001). 

 
Figure 2.8. NMDS of community composition as assessed in 2017. Wetlands are 
grouped by restoration age classes represented by polygons. Nat(Res) represents 
natural wetlands in natural reserves and Nat(Ag) represent natural wetlands on 
agricultural landscapes (stress = 0.16). 
 

2.3.4 Comparison Precipitation Between Sampling Years 
Cumulative daily precipitation values for a centrally located point within the 

study area suggests that through most of the growing season (May – August), 

precipitation was consistently higher in 2016 than in 2017, resulting in an 

accumulation of 347 mm and 234 mm of precipitation respectively (Figure 2.9). 

When compared to the 30-year precipitation normal for the area, 2016 received 
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approximately 80 mm more precipitation than average. The cumulative 

precipitation in 2017 was slightly higher than the 30-yr normal for the first half of 

the growing season (early July), after which cumulative precipitation values were 

slightly less than the 30-yr normal. 

 

 
Figure 2.9. Comparison of cumulative precipitation in 2016, 2017, and to the 30-year 
precipitation normal over the growing season for a centrally located point within the study 
area. 

 

An analysis of precipitation from the winters prior to field sampling revealed 

that the snow pack prior to the 2017 field season was nearly three times that of 

the winter season prior to 2016 (Table 2.3). Nearly 30% of the total precipitation 

from the 2017 water year (Oct 2016 through Sept 2017) was accumulated in the 

winter, compared to 13% accumulated in the winter of 2015/2016. 
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Table 2.3. Monthly water year precipitation compared between 2016 and 2017. 
Water year is defined from October through September of the following year. 

2016  
Field Season 

Precipitation 
(mm) 

2017  
Field Season 

Precipitation 
(mm) 

10/2015 6.62 10/2016 61.73 
11/2015 11.40 11/2016 40.48 
12/2015 5.48 12/2016 15.65 
1/2016 11.31 1/2017 10.12 
2/2016 8.59 2/2017 14.23 
3/2016 15.45 3/2017 21.73 
4/2016 13.36 4/2017 57.03 
5/2016 104.63 5/2017 51.95 
6/2016 80.12 6/2017 79.48 
7/2016 101.44 7/2017 61.29 
8/2016 60.54 8/2017 41.56 
9/2016 27.57 9/2017 48.10 

Total Summer (Apr - Sept):  387.67  339.41 
Total Winter (Oct - Mar):  58.86  163.94 

Combined Total:  446.52 (2016)  503.35 (2017) 
 

2.4 Discussion 

2.4.1 Assessment of Degraded Conditions Prior to Wetland Recovery  
On the Canadian prairies, wetland drainage for agricultural production has 

historically been the main cause of wetland loss (Zedler & Kercher 2005). Thus, 

assessing the condition of drained wetlands allows for the quantification and 

characterization of the degraded state of these impacted habitats prior to 

restoration. Typically, wetlands are drained through a ditch that is constructed to 

convey water away from the wetland basin. The duration that a wetland has been 

drained and completeness of drainage are factors that can influence species 

richness and community composition of a site (Weinhold & van der Valk 1989).  

In my study, drained wetlands differed significantly from restored and 

natural wetlands in vegetation community composition and species richness; 

however, when very simple metrics of plant diversity were compared (i.e., percent 

cover of hydrophytic, native, and non-native species), I found that the drained 
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wetlands were not statistically different from restored or natural reference 

wetlands when the estimated marginal means for a constant wetland area were 

compared. These results are despite the fact that the drained wetlands included 

in this study were heavily impacted by agricultural activity, contained few 

hydrological indicators typical of a wetland ecosystem, and were generally 

characterized by low species richness and high percent cover of bare ground.  

The lack of statistically significant differences in the cover of hydrophytes 

and native species between drained and restored/natural wetlands may be 

partially explained by the incomplete drainage of one of the “drained” wetlands. In 

this wetland, the drainage ditch contained water at the time of sampling, and 

hydrophytic species were found in patches that were proximal to the drainage 

ditch. This resulted in relatively high native and hydrophytic species cover 

estimates, as compared to the two other completely drained wetlands that were 

included in this age class. The presence of hydrophytes in this drained wetland 

suggests that this basin holds water for sufficiently long periods so as to allow for 

the persistence of water-loving plants to develop and persist, both within and 

between years. This circumstance is not unique to the drained wetland included 

in this study; in fact, incomplete drainage of prairie pothole wetlands is a fairly 

common occurrence across central and southern Alberta, and as a result, many 

drained wetlands continue to support substantial patches of native wetland plants 

within the drained basin. This is particularly true for drained wetlands that had 

large basins that were more permanently inundated prior to the initiation of the 

drainage activity, as these wetlands are generally more difficult to completely 

drain with a ditch.  

While the simple plant diversity metrics included in this study suggest little 

difference between drained, restored, and natural wetlands, it should be noted 

that the significant difference measured in species richness and plant community 

composition suggest that there may be more nuanced differences between 

wetland age classes than can be captured using these metrics alone. For 

example, this study did not examine the effect of age class on the spatial 

arrangement or functional traits of the plant species and communities present. It 
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is possible that an examination of more complex plant community metrics may 

reveal important differences in drained and restored wetlands, as compared to 

natural reference conditions.  

2.4.2 Effect of Age on Wetland Recovery  
These results showed that at a normalized wetland size of 0.378 ha, 

species richness is lowest in drained wetlands, increases rapidly within five years 

of restoration, and appears to stabilize within six to ten years of restoration. 

Though restored wetlands maintain a similar number of species to Nat(Ag) 

wetlands, species richness in Nat(Res) wetlands is significantly higher than all 

restored and Nat(Ag) wetlands, with the exception of newly restored wetlands 

(Age 3-5). Similarly, cover of hydrophytic and native species increases 

substantially within 3-5 years of restoration with peak cover of hydrophytic and 

native species at 6 to 10 years since restoration. As well, though cover estimates 

can be dependant on timing of field sampling, all cover indicators (i.e., cover of 

hydrophytes, natives, and non-natives) seem to stabilize within 5 years, 

suggesting that the rate of recovery within restored wetlands occurs rapidly. Once 

restored, wetlands generally undergo a period of “self-design” (Mitsch & Wilson 

1996) and “self-organization” (Odum 1989) during which succession and 

community assembly takes place. Prairie wetlands like those observed in the 

study (i.e., temporary and seasonal wetlands) often experience rapid species 

accumulation and extinction rates due to a variable hydroperiod (Aronson & 

Galatowitsch 2008). After the initial increase in species, community composition 

and species diversity tend to stabilize (Zedler & Callaway 1999). These results 

are comparable to other studies conducted in the Parkland ecoregion of the 

prairies where it has been shown that vegetation communities, bird and 

amphibian assemblages, biotic communities (phytoplankton, zooplankton, and 

macroinvertebrates), and abiotic conditions (pH, specific conductance, total 

phosphorus, and dissolved carbon dioxide) within wetlands will recover post 

restoration and resemble natural wetland communities within approximately a 

decade (Aronson & Galatowitsch 2008; Puchniak 2002; Bortolotti et al. 2016). 

While exact recovery rates and conditions of these research studies varied, 
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combined, these results suggest that wetland restoration does lead to recovery of 

important biological and chemical conditions, and that this recovery can occur 

rapidly after the re-establishment of hydrologic function. 

While these results are promising, it is clear from this and other studies that 

restored wetlands do not achieve a natural reference condition for many 

important biological metrics, even within several decades of recovery. In fact, 

despite the rapid recovery seen within the first five years of restoration, there 

appeared to be a plateau in the recovery of the metrics Iassessed between 6-10 

years, and in some cases, a decline through time. For example, species richness 

and community composition of restored wetlands are not comparable to wetlands 

in natural reserves, even >20 years following restoration. These differences 

suggest restored wetlands are failing to achieve their maximum restoration 

potential.  

This lack of complete recovery may be partially explained by the influence of 

the surrounding land use on the assembly and recovery of wetland plant 

communities (Boughton et al. 2010). Natural re-colonization of wetlands on 

agricultural landscapes is often impeded because the large-scale loss of 

wetlands from these landscapes has resulted in scarce or depauperate native 

seed banks and plant propagules (Galatowitsch 2006). Furthermore, differences 

in plant communities can be explained by limitations of establishment and 

dispersal. For example, sedge meadow, wet prairie, and woody perennial species 

are considered to be low efficiency colonizers due to limited propagule availability 

or an absence of reliable dispersal vectors (Galatowitsch & van der Valk 1996; 

Aronson & Galatowitsch 2008). Sedge meadow communities, in particular, are 

invaluable in wetland systems as they provide micro-topographic variation that 

promotes high species richness in wetlands (Werner & Zedler 2002). Yet, these 

communities are frequently absent from restored wetlands (Galatowitsch & Van 

der Valk 1996) and are hard to restore (van der Valk et al. 1999). In addition, the 

prominence of non-native perennial species, particularly Bromus inermis (smooth 

brome), Cirsium arvense (Canada thistle), Sonchus arvensis (perennial sow-

thistle), and Taraxacum officinale (common dandelion) in restored sites suggests 
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invasion theory is an important driver in explaining the differences in species 

composition between wetlands. Key features of invasive species, such as 

vegetative reproduction (colonial species) and/or the production of many, small, 

light seeds provide an advantage in newly disturbed habitats for these species to 

establish quickly and efficiently, thereby impeding establishment of native 

hydrophytes (Sakai et al. 2001). Further, these features provide not only an 

advantage during establishment post-restoration but are equally as integral to the 

pervasiveness of invasive species through time given their prominence across all 

wetland age classes. 

2.4.3 Effect of Morphology on Wetland Recovery 
Wetlands vary in size and complexity, and as such, it was hypothesized that 

wetland morphometrics would influence the potential success of a restoration. 

These results suggest that wetland size influences plant diversity, with wetland 

area being positively correlated with species richness and cover of hydrophytic 

and native species. These results are consistent with previous studies that show 

larger wetlands typically provide increased habitat heterogeneity and support a 

wider variety of plant species (Mulhouse & Galatowitsch 2003), and that larger 

wetlands have a higher likelihood of receiving plant propagules and seeds from 

nearby sources and within site dispersal, thereby increasing both species 

richness and cover (Cook et al. 2005). While the results of this study are 

consistent with the literature and provide support for a restoration strategy that 

targets larger basins, particularly if the goal is to maximize plant diversity within 

restored sites, is important to note that the wetlands in this study ranged between 

0.06 and 1.06 ha. While this size range is representative of temporary and 

seasonal wetlands in the Canadian prairies and is consistent with the majority of 

wetlands restored in Alberta, it is at that smaller end of the size range that has 

been previously studied. Further, the distribution of wetland size across age 

groups in the study is regrettably uneven, with drained and younger restorations 

being relatively small (<0.3 ha), and Nat(Ag) wetlands being at the higher end of 

the size range (0.74 ha – 0.84 ha).  
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Perimeter to area ratio and shape were not found to influence the diversity 

or cover of native, non-native, or hydrophytic species; however, perimeter-to-area 

ratio explained some dissimilarity in community composition, where natural 

reserve wetlands were associated with smaller perimeter to area ratios. High 

perimeter-to-area ratio exposes wetland species to edge effects where non-

native and other opportunistic species from adjacent uplands can prevent the 

establishment of native and/or hydrophytic species, thereby altering community 

composition within a restored wetland (Harker et al. 2009; Young et al. 2001). 

Steeper slopes (>2% rise) were associated with higher cover of non-native 

species. Steep slopes in a wetland generally undergo rapid changes in soil 

moisture conditions during the variable hydroperiods that are typical of temporary 

and seasonal pothole wetlands, and this increases the susceptibility of a wetland 

to invasion by non-native species (Zampella & Laidig 2003) and decreases the 

width of vegetation zones, thereby reducing species richness (Forrest 2010). 

Overall, the results suggest that larger wetlands with gently sloping basins should 

be prioritized for restoration and management if the primarily goal of restoration 

activity is to maximize vegetation community recovery. 

Wetland size, perimeter to area ratio, and natural condition are somewhat 

confounded in this study. The distribution of wetland size across the age groups 

is regrettably uneven, where drained and younger restorations are all on the 

small side (<0.3 ha) and older restoration sites and natural wetlands more evenly 

cover the range previously mentioned. Most Nat(Ag) and several Nat(Res) 

wetlands, however, are all located the high end of the size range (0.74 ha – 0.84 

ha) and lower end of the range in perimeter to area ratios. This is in contrast to 

drained wetlands, which were situated at the low end of wetland size range and 

at the end of perimeter to area ratios. Disentangling wetland area from wetland 

age is important, and I have tried to address this concern by presenting estimated 

marginal means of hydrophyte, native, non-native cover, and estimated species 

richness using a constant wetland area of 0.378 ha. This wetland area value 

represents the average size of wetlands sampled in this study. Further, analysis 

of covariance tests were used to control for the impact of wetland area on 
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species diversity metrics. The results presented still show significant differences 

across the chronosequence after all efforts were made to control for wetland 

area.  

Finally, the distribution of wetland size within this study is representative of 

the distribution of wetland size on the landscape and is an artifact of a long 

history of wetland drainage in the area. Typically, wetlands that are easy to drain 

and tend to be selected for drainage are smaller and less permanent features. 

This results in a small size of restoration sites as well given that restored 

wetlands are selected from the drained wetland inventory. Finally, wetlands that 

are less likely to be drained and thus retained on the landscape are those that 

are more difficult to be drain given their size or permanence. As such, finding 

large drained wetlands and/or small natural wetlands was a difficult endeavor. 

NatPr wetlands represent a wider range of size classes (0.107 – 0.974 ha) given 

that these wetlands are not typically subjected to drainage given their location in 

a natural reserve.  

2.4.4 Benchmarks for Measuring Restoration Success 
Defining and evaluating restoration success is a difficult endeavor and there 

is currently no standard practice for doing so amongst restoration practitioners. 

Often, restoration success is determined by specifications outlined in wetland 

policies. For example, the Alberta Wetland Policy, applicable to the restored 

wetlands in this study, considers restoration success to be “re-establishment of 

natural hydrology, vegetation, and wetland processes within a previously drained 

wetland” (Government of Alberta 2016). This definition, however, fails to provide 

a target or means of comparison that can serve as a model for planning a 

restoration project. The Society of Ecological Restoration (SER) Primer on 

Ecological Restoration (SER 2002) suggests that a historic condition is an ideal 

starting point for restoration design, while acknowledging that a severely 

impacted or highly degraded system may never attain the target or even a 

trajectory towards a natural reference state. Regardless, a comparable intact 

system can be used to define targets for biological metrics, as well as provide 

measurable and achievable goals for restoration success.  
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When comparing the two classes of natural reference wetlands in this study, 

I found significant differences in species richness and community composition. 

These results suggest that while “natural” wetlands in an agricultural landscape 

are not subject to drainage, they are still impacted by disturbances that ultimately 

influence plant community composition. In contrast, wetlands situated within the 

Cooking Lake-Blackfoot Provincial Recreation Area represent a “least disturbed” 

wetland condition, where human influence and management is less intensive. 

The wetlands contained within these reserve lands contained high species 

richness and high cover of native species and hydrophytes. They contained 32 

species that were otherwise absent from wetlands found within the agricultural 

landscape, of which 23 were native hydrophytes. These results suggest that 

continued loss of reserve or protected areas that conserve natural landscapes 

may result in a depletion of native seed sources and habitats, thereby affecting 

the vegetation recovery potential of future wetland restorations. This, in addition 

to the anthropogenic impacts resulting from land-use and climate change, will 

likely result in increased disparity between the actual (i.e., on the ground) and 

potential (i.e., reference condition) recovery of restored wetland habitat.  

This observational study highlights the critical importance of thoughtfully 

selecting a reference condition for evaluating wetland restoration success, given 

that important differences can exist between natural reference conditions 

depending upon the surrounding landscape context. The conclusions drawn in 

this study would have been markedly different had I selected a single natural 

reference condition for comparison, rather than considering natural wetlands 

embedded within both an agricultural and reserve landscape. Similarly, This 

study highlights the importance of carefully selecting “drained” wetland sites, as 

the degree of hydrological disruption related to a drainage activity can greatly 

influence the presence or absence of hydrophytic and native plant species. 

Classifying the degree of hydrological disruption, and accounting for this in the 

sampling design and data analysis, will allow for more precisely measuring 

differences between restoration age classes and the overall effectiveness of 

restoration through time. Ultimately, this study has identified a need for the 
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examination of more complex plant community metrics, functional traits, and/or 

functional diversity, which may help tease apart additional differences among 

wetland age classes, in an effort to help restoration agents and land managers 

better manage wetlands on the landscape. 

2.4.5 Variability in Wetlands and the Influence of Precipitation  

The differences observed in structural diversity metrics between years 

suggest that climate and in particular precipitation can have a significant 

influence on wetlands vegetation communities. At the wetland scale, the effects 

of change in precipitation can be described by a correlation in number of wetland 

ponds on a landscape to precipitation of the previous year (Withey & van Kooten 

2011). Specifically, wetland numbers are low in the year following a drought 

event (Bethke & Nudds 1995; Adams 1988; Withey & van Kooten 2011).  

Related, the Wetland Continuum describes variability in wetlands as a 

function of hydrology related to atmospheric inputs (drought versus deluge) and 

hydrology related to groundwater (recharge versus discharge) (Euliss et al. 

2004). The authors predict that the framework can be used to determine 

community composition (plants, invertebrates, amphibians, and/or birds) 

expected to occur within the unique positions along the wetland continuum. 

Generally, drought conditions may result in extensive cover of emergent species 

and a shrinkage of open water area, whereas periods of deluge and flooding 

conditions may result in the opposite effect, large areas of open water and limited 

emergent or deep marsh species cover (Euliss et al. 2004; Johnson et al. 2005). 

Wetlands systems are highly variable hydrologically, temporally, and 

spatially. Despite the two-year monitoring period of this research project, the 

results demonstrate the importance of considering climate and precipitation in 

evaluations of wetland condition and vegetation assesments. Prairie Pothole 

wetlands are sensitive to changes in hydrology and water levels, thus interpreting 

community assembly and composition should consider the climate record.  

This information is particularly relevant when considering the predicted 

impacts of climate change on the Prairie Pothole Region. Climate change is 

expected to increase temperatures, change precipitation patterns, increase 
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length of growing seasons, and produce milder winters and hotter summers in the 

Prairie Pothole Region (Johnson et al. 2005). These extreme changes in 

temperatures and precipitation may push wetland systems outside the natural 

range of variability (e.g., hydrological, biological, structural, etc.). Understanding 

this variability is critical for managing restored wetlands and ensuring these 

systems are resilient in the face of change. 

2.5 Conclusions and Lessons for Wetland Managers  
To maximize restoration success, management of restored wetlands is 

required. Wetland restoration planning should begin with prioritization of 

restoration sites with larger basins (>1 ha), where wetland basins have naturally 

gentle and gradual slopes. However, both small and large restorations are 

important to maintain representative distributions of wetland size and complexity 

on the landscape. Second, management should adopt measures that control the 

spread of non-native species such as C. arvense and S. arvensis (i.e., weeding) 

and promote the establishment of native hydrophytes (i.e., sowing or plantings). 

Finally, it is important to understand and recognize that global drivers may 

continue to shift biotic and abiotic conditions in both reference and restored 

wetlands, which could potentially increase the difference in vegetation community 

composition between these habitats. Restored wetlands, especially under a 

changing climate, are unlikely to reach reference condition state; therefore, an 

alternate approach to wetland restoration and management may be required. For 

example, restoration strategies could be modified to meet a specific purpose 

such as the provision of an ecological function and/or biological structure. With 

that said, natural wetlands should be protected from landscape fragmentation 

and land conversion activities given the important ecosystem functions, seed 

sources, and frame of reference they provide. 
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3 Chapter 3. A Functional Approach to Evaluating Wetland 
Restoration Success 

3.1 Introduction 
Wetland habitats have experienced widespread global loss (Davidson 

2014). The Prairie Pothole Region of North America, home to one of the world’s 

largest wetlandscapes (landscapes with multiple wetlands) (Thorslund et al. 

2017), has experienced extensive land use changes, resulting in significant 

wetland loss over the last century that varies regionally from 40-90% (Mushet 

2016; Keddy et al. 2009; Tiner 1984; Anteau et al. 2016). With this loss comes an 

associated loss of wetland function and ecosystem services. Ecological 

restoration has become an increasingly common practice to recover lost habitat 

and ecosystem function associated with development activities, industrialization, 

and agricultural intensification (Dobson et al. 1997). As the importance wetland 

systems for landscape health is increasingly being recognized, wetland loss has 

slowed and restoration activities have increased (Davidson 2014). While to the 

best my knowledge there are no existing estimates of wetland area restored, 

Ducks Unlimited Canada (DUC) has more than 2000 projects covering 2.3 million 

acres in Alberta alone, representing DUC’s largest concentration of habitat 

projects (DUC 2018). These restoration projects have the potential to provide 

essential wildlife habitat, support areas of groundwater recharge, act as nutrient 

and sediment sinks, as well as provide flood control, carbon sequestration, and 

other environmental and socio-economic benefits (Zedler and Kercher 2005). 

Wetland restoration is returning wetland number and area back to the prairies but 

restored wetlands are often of lower quality in terms of biodiversity (Hansen and 

Gibson 2014), ecosystem functioning (Moreno-Mateos et al. 2012), and 

sustainability and persistence through time when compared to natural wetlands 

(Zedler 2003).  

The loss of wetland habitat decreases the biodiversity of a landscape. 

Wetlands provide aquatic habitat for plants, wildlife, invertebrates, and other 

organisms that would otherwise not be present within the surrounding upland. 

Worldwide loss of biological diversity, referring to genetic, species, population, or 
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ecosystem diversity, is an on-going global problem (Hooper et al 2012) and the 

[biodiversity × ecosystem function] relationship is a central issue in ecological and 

environmental sciences. Increasing evidence suggests biodiversity loss can 

decrease ecosystem functioning and services (Loreau et al. 2001; Cardinale et 

al. 2006; Isbell et al. 2011). Further, research suggests that biodiversity increases 

the stability of ecosystem functions through time (Cardinale et al. 2012) and 

provides resilience to communities in the face of disturbance (Carvalho 2013). 

Both ecosystem stability and resilience in the face of disturbance are key 

processes when considering recovery following restoration given the natural 

inherent variability (i.e., hydrologic) that defines prairie pothole wetlands. 

Functional diversity is an important component of biodiversity and recent 

research shows it plays a role in ecosystem functioning (Song et al. 2014). Trait-

based ecology and functional diversity, defined as the value, variation, and 

distribution of traits in a community assembly, provides a link between plant 

diversity and ecosystem function. The variation in plant traits and plant strategies 

across flora, taxa, and/or environmental conditions and the trade-offs to 

individuals associated with these strategies can affect ecosystem processes and 

services. Plant functional traits (PFTs) reflect the acquisition of resources for 

growth, reproduction, or survival at the species level, and the assumption of trait-

based ecology is that these same processes scale up to the ecosystem 

functioning level (Lavorel &Garnier 2002). Increasingly, the link between 

individual plant functional traits and their effect on various ecosystem properties 

are being studied (Table 3.1) A further benefit to trait-based ecology is that it 

moves away from taxonomy towards a more generalizable approach focused on 

traits of organisms, such that comparisons and predictions can be made across 

scales of biological organization and geographic location (Shipley et al. 2016).  

Understanding how biodiversity in wetlands recovers post-restoration is 

important for evaluating the effectiveness of wetland restoration. Structural 

attributes (i.e., species cover, species richness, floristic quality index (FQI)) of 

plant communities are typically used to assess the quality of wetland restoration 

(Matthews & Endress 2008). However, research shows that wetland structural 
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recovery fails to recover to pre-disturbance levels (Suding 2011; Moreno-Mateos 

et al. 2012). An alternate approach to evaluating restoration success is to 

consider functional composition and diversity. Functional diversity and species 

richness are often positively correlated (Song et al. 2014), but functional diversity 

considers the ecological role of the species found in a community based on plant 

functional traits. Functional diversity can be higher or lower than species diversity 

due to niche overlap between species and functional redundancies (Song et al. 

2014). It is anticipated that high functional diversity can allow for more complete 

use of resources among species, thereby increasing ecosystem function (e.g., 

biomass production or nutrient retention) of a system (Loreau 2000; Díaz & 

Cabido 2001; Villéger et al. 2008; Mouchet et al. 2010).  

In this study, I assessed ecosystem functional recovery by analysing the 

plant functional traits and functional diversity of vegetation within a 

chronosequence of restored wetlands. I hypothesized that functional recovery of 

restored wetlands is sensitive to draining and subsequent restoration, so plant 

functional traits and functional trait diversity will reflect a lower condition than 

natural wetlands. I predict that newly restored wetlands will be dominated by 

species that have more conservative nutrient strategies (i.e., low height, low 

specific leaf area, high leaf dry matter content, low leaf nitrogen content) when 

compared to older restored and natural wetlands, which will be dominated by 

plant communities with high nutrient acquisition and quick turnover strategies 

(i.e., tall, high specific leaf area, low leaf dry matter content, high leaf nitrogen 

content). With respect to functional trait diversity, I predict that functional diversity 

will be low in drained wetlands, and be consistently lower across the 

chronosequence of restored wetlands than when compared to natural wetlands. 
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Table 3.1. Common plant functional traits used to evaluate ecosystem process and function as established in the 
literature. 
Plant Functional Trait Link to ecosystem process Relationship to ecosystem 

services provisioning 
Source 

Phenology Carbon sequestration; Evapotranspiration; 
Heat exchange 

Climate regulation, Water 
regulation 

Diaz et al. 2006 

Height Heat exchange; Primary productivity; 
Carbon dynamics and storage 

Climate regulation; Carbon 
sequestration 

Butterfield & Suding 2013; 
Diaz et al. 2006 

Lignin Content Decomposition and mineralization; Nutrient 
mobilization; Herbivory control;  
Soil formation 

Soil fertility and nutrient cycling; 
Biocontrol; Soil formation 

Taylor et al. 1989 

Relative Growth Rate Carbon sequestration; Nutrient/ sediment 
retention; Oxygen regulation in water 

Climate regulation; Water 
purification 

Butterfield & Suding 2013 

Leaf Nitrogen Content Decomposition and mineralization; nutrient 
mobilization; Herbivory control 

Soil fertility and nutrient cycling; 
Biocontrol 

Hodgson et al. 2011 

Specific Leaf Area Decomposition and mineralization;  
Nutrient mobilization; Herbivory control;  
Sediment retention 

Soil fertility and nutrient cycling; 
Biocontrol; Water purification; 
Fodder provisioning 

Hodgson et al. 2011, 
Diaz et al 2004 

Leaf Area Decomposition and mineralization; Nutrient 
mobilization; Evapotranspiration;  
Sediment retention 

Soil fertility and nutrient cycling; 
Water regulation; Fodder 
provisioning 

Diaz et al 2004 

Density/Depth/Size of 
Rooting System 

Erosion prevention; Decomposition and 
mineralization; Nutrient mobilization; 
Evapotranspiration; Soil formation 

Soil stability; Natural hazard 
prevent; Soil fertility and nutrient 
cycling; Water regulation; Soil 
formation 

Butterfield & Suding 2013; 
Diaz et al. 2006 

Leaf Dry Matter 
Content 

Decomposition/mineralization; Primary 
productivity; Carbon dynamics and storage; 
Nutrient mobilization; Sediment retention 

Carbon sequestration; 
Soil fertility and nutrient cycling; 
Biocontrol; Water purification; 
Fodder provision 

Diaz et al. 2004; 
Funk et al. 2008; 
Messier et al. 2016 
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3.2 Methods 

3.2.1 Study area and sample sites 
This research was conducted within the Prairie Pothole Region (PPR). The 

PPR is named for the characteristic landscape of pothole wetlands, which 

historically covered ~20% of the landscape. These shallow depressional wetlands 

are a remnant from the retreat of the Wisconsinan glaciation, which left behind 

low permeability glacial till. Wetlands that make up this study are found within the 

Central Parkland and the Dry Mixedwood Natural Subregions, where 

temperatures, precipitation, and growing season conditions are intermediate 

between the dry, warm grasslands located to the south, and cooler, wetter boreal 

forest conditions to the north (Natural Regions Committee 2006). The study area 

receives an average annual precipitation of 426 mm based on daily climate 

values from 1987 – 2016 (McKenney et al. 2011). Precipitation is greatest in July, 

averaging 94 mm, and lowest in February averaging 12 mm, and most 

precipitation falls from June to August. The average annual temperature is 

approximately 3°C, with extreme temperatures ranging from -43 °C to +34 °C. 

The annual water balance is typically negative, where potential 

evapotranspiration exceeds precipitation in most years. In 2017, mean annual 

temperature and cumulative precipitation for the water year (Oct 2016 through 

Sept 2017) was 3.5 °C and 455 mm, respectively.  

Study wetlands include most wetlands assessed as part of Chapter 2, 

however additional sites were included for functional trait analysis (Table B1). All 

wetlands were selected from a database of restored wetlands provided by Ducks 

Unlimited Canada (DUC) and the Canadian Wetland Inventory (Ducks Unlimited 

Canada 2016). Wetlands were restored by DUC by constructing an earthen berm 

across drainage ditches that previously drained each wetland. Twenty-eight 

restored wetlands were selected that ranged in age from newly restored to 24 

years since restoration. In addition to restored wetlands, the experimental design 

included five drained wetlands to represent pre-restoration conditions, and four 

natural wetlands, representative of undisturbed, natural reference conditions. The 

drained and natural wetlands were located proximal to restored wetlands, within a 
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similar agricultural (cropping and pasture) landscape, and were expected to have 

been subjected to the same influences and environmental conditions as restored 

wetlands. Combined, all wetlands form a chronosequence of wetland restoration, 

defined as a series of spatially distinct sites that vary in age, to represent a 

temporal sequence of wetland recovery following restoration. Chronosequences 

are often used to study trajectories of succession and rely on the assumption that 

all sites are influenced by the same abiotic and/or biotic conditions (Foster & 

Tilman 2000). 

Wetlands sampled as part of this research project were limited to temporary, 

seasonal, and semi-permanent marsh wetlands. Marsh wetlands, typical of the 

prairie landscape, have mineral soil, naturally fluctuating water levels, and 

receive water inputs from groundwater, surface flows, and/or precipitation. Marsh 

wetlands are classified into permanence classes (e.g., temporary, seasonal, and 

semi-permanent) based on hydroperiod and vegetation occupying the deepest or 

central part of a wetland. Marsh wetland vegetation naturally separates into a 

zonation pattern, where concentric rings of vegetation adapted to varying levels 

of soil moisture exist around a central, deepest point (Stewart & Kantrud 1971). 

Given the natural variability of wetland systems, it can be difficult to distinguish 

among these wetland classes. Seasonal wetlands, in particular, depending on 

yearly precipitation can be easily mistaken for temporary or semi-permanent in 

dry and wet years, respectively. Wetland class was included in regression models 

to understand if effect of restoration age varied by class, and it was determined 

that wetland class was not a significant factor in the community weighted mean 

(CWM) models, and as such, all wetlands were combined for subsequent 

analysis.  

3.2.2 Wetland sampling and vegetation dominance 

Wetlands were visited twice during the summer of 2017. The first visit 

focused on inventorying and assessing community composition, occurred 

between June 21 and Aug 11, and followed the sampling procedures outlined in 

Chapter 2. This time period was chosen to capture peak standing biomass as the 

majority of species were sufficiently mature and flowering, which helped facilitate 
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the identification and differentiation of species. Vegetation was systematically 

sampled within quadrats located along transects. Four evenly spaced transects 

(situated at 90° from each other) were established within each wetland from the 

centre of the wetland to the upland. Two quadrats per vegetation zone, per 

transect were randomly selected and assessed. Given that wetlands support 

different vegetation zones dependent on their classification, quadrat sampling 

varied from 8 (wetlands with only a wet meadow zone) to 32 (large semi-

permanent wetlands with three vegetation zones). All vegetation within a quadrat 

was identified to the species level and a percent cover class was assigned to 

each species (i.e., <1%, 1-5%, 6-10%, 11-25%, 26-33%, 34-50%, 51-75%, >75% 

cover as per Mueller-Dombois & Ellenberg 1974). Cover classes were used in an 

effort to minimize observer bias and increase repeatability across years (Little 

2013). For analysis, each species was assigned a value equal to the median of 

the cover class determined in the field. Species data collected at the quadrat 

level were combined and averaged across the wetland resulting in an average 

cover per species per wetland. These data were used to determine the dominant 

species in each wetland, which informed the second field visit. The second field 

visit occurred between Aug 15 and Aug 31 and was focused on measuring and 

collecting plant functional traits of the dominant species. Dominant species were 

defined as all vascular plant species that together make up at least 70% cover. 

The mass ratio hypothesis, supported by theory and empirical evidence (Diaz et 

al. 2007a; Bílá et al. 2014), suggests that the dominant species in a community 

exert the most influence on ecological function of a system (Grime 1998). While 

Grime developed the theory in reference to plant productivity, the theory can be 

(and has been) expanded to state that ecosystem functioning is mainly 

determined by the trait values of the dominant contributors to plant biomass (i.e., 

the dominant species) (Diaz et al. 2007a) 

3.2.3 Sample handling and processing 
Plant functional traits (PFTs) of the dominant species were sampled 

following standardized protocols outlined in (Perez-Harguindeguy et al. 2013) in 

late August to ensure species were at or near maximum growth. These protocols 
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were compiled by a group of researchers to provide step-by-step methods and 

procedures for sampling many different traits to ensure consistency in information 

collected by researchers (Perez-Harguindeguy et al. 2013). PFTs selected for 

this study included: maximum plant height, leaf area (LA), specific leaf area 

(SLA), leaf dry matter content (LDMC), and leaf nitrogen content (LNC). These 

traits are among the most commonly assessed in the literature, are fundamentally 

important to the success and survival of a species, are representative of 

morphological, physiological and biochemical traits, and provide a good spread of 

associated ecosystem functions (Perez-Harguindeguy et al. 2013; Weiher et al. 

1999; Diaz et al. 2007b; Lavorel and Garnier 2002). Height is an important 

determinant of competitive ability for light and is an important component for heat 

exchange (Perez-Harguindeguy 2013; Diaz et al 2016). Leaf area is implicated in 

leaf energy and water balance (Cornelissen et al. 2003), and relates to 

environmental stress (Ackerly & Reich 1999). SLA, defined as leaf area over dry 

weight, captures the trade-offs between growth rate, stress tolerance, and 

resource acquisition (Garnier et al. 2004; Wright 2004). Species with high SLA 

values are faster growing, less stress tolerant, and less competitive in nutrient 

and resource poor environments (Reich et al. 2003). LDMC, defined as leaf dry 

weight over leaf wet weight, provides an indication of leaf tissue density, which 

relates to nutrient and water retention in a plant (Ryser & Urbas 2000), as well as 

resistance to physical stress (Perez-Harguindeguy et al. 2013). Finally, LNC 

provides information on photosynthetic assimilation and nutrient content, since 

leaf nitrogen is integral in the mechanisms of photosynthesis (Westoby et al. 

2002).  

Plant height was determined as the distance from the base of the stem to 

the tallest point of the main photosynthetic organ (excluding inflorescence) of a 

species. Ten, fully-grown, healthy, shade-free individuals of each dominant 

species were randomly selected from within each wetland and measured for 

height in situ. To get adequate representation, an additional ten individuals per 

dominant species per wetland were collected for further processing of LA, SLA, 

LDMC, and LNC. Once collected, whole fresh plant samples were rolled in damp 
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paper towel, sealed in Ziploc® plastic bags, and kept at 4° C until later 

processing. This method aims to minimize transpirational water loss from 

sampled plants and leaves, which may influence leaf area and weight of 

measured leaves (Garnier et al. 2001). All samples were processed within three 

weeks of sampling. In total, traits of 2006 individuals were measured. 

LA was measured using a LI-3100C area meter (LI-COR, Lincoln, NE, 

USA). When possible, fresh leaves were passed directly through the leaf area 

meter. When equipment was unavailable (for approximately half the samples due 

to equipment access constraints while in the field), leaves were traced on paper, 

cut out, and then passed through the leaf area meter once equipment became 

available. A correction factor was applied to the traced LA values after observing 

that traced LA values were larger than the same fresh LA measured. Correction 

factors were derived by dividing LA (traced leaves) by LA (fresh leaves) of all 

individuals sampled. Corrections factors were standardized to a species when 

available (i.e., both traced LA and fresh LA were measured), but when both 

traced and fresh LA values were not available for a species (approximately 11 of 

41 species), instead, the correction factor used was standardized to thin (i.e., 

grasses and thin leaved forbs) or large leaved species. Next, individual leaves 

were dried at 60° C for 48 - 72 hours until dry weight was constant. Of the ten 

individuals per dominant species dried, three were randomly selected for further 

processing for leaf nitrogen content. Dried samples were ground into a fine 

powder using a Wiley mill grinder (Wiley® Mini-Mill, Thomas Scientific, 

Swedesboro, NJ, USA) followed by ball and mill grinding using a Spex CertiPrep 

2000 Geno/Grinder (SPEX CertiPrep, Metuchen, NJ, USA). Dried leaf samples 

were processed for total nitrogen using the dry combustion method (AOAC 

International 2000), where a Thermal Conductivity Detector (Costech 

International Strumatzione, Florence, Italy) quantitatively detected combusted 

nitrogen elements.  

3.2.4 Statistical Analyses 
To explore general patterns in the functional recovery of wetlands following 

restoration, study sites were grouped into seven restoration age classes. Classes 
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included newly restored sites (Age 1 to 5, n=7), young sites (Age 6 to 10, n=7), 

moderately aged sites (Age 11 to 15, n=6), moderately old sites (Age 16 to 20, 

n=2), and old restorations (Age 20 to 25, n=6). Drained (n=5) and natural 

wetlands (n=4) comprised their own classes. These classes were used to draw 

ecological distinctions between the successional stages of vegetation 

development in wetlands (Noon 1996). They assume a similar recovery within an 

age class and are reflective of age class groupings typical of wetland 

chronosequence analyses (e.g., DeBerry & Perry 2012; Brown & Norris 2018; Yu 

et al. 2017).  

Functional trait data from ten individuals of each dominant species per 

wetland were averaged to get an average trait value per species per wetland. 

First, trait data were analyzed within species by one-way analysis of variance 

(ANOVA) to assess intraspecific trait variation across the chronosequence for 

each PFT. Next, species trait values were combined to characterize the wetland 

community by obtaining a community-weighted mean (CWM). CWMs were 

calculated per trait by wetland as the sum of mean trait values weighted by 

relative abundance of each dominant species. Differences in CWMs of traits 

across age classes were assessed by one-way ANOVA. Homoscedasticity was 

assessed with Bartlett’s test, and normality was determined by Shapiro-Wilk 

normality test. When variances were not homogeneous or did not approximate a 

normal distribution, data were transformed (as in LA for C. rostrata, height in T. 

latifolia, LDMC in C. rostrata and T. latifolia, SLA in P. palustris, C. atherodes, T. 

latifolia, all species for LNC, and CWM Height). After an evaluation of Cooks 

distance and careful consideration, one outlier (D2) was removed from CWM SLA 

dataset to ensure homoscedasticity and a normal distribution of variances.  

In order to quantify the relationship between community trait values and 

restoration age, simple linear regressions were conducted by dummy coding 

wetland age classes. Non-linear regressions were considered for analysis, but 

did not improve the model fit. Statistical analysis (ANOVA and regressions) on 

individual species and CWMs were conducted in R using the ‘car’, ‘multcomp’, 



 

 
 

62 

and ‘faraway’ packages (R Core Team 2018). Statistical significance was 

determined when p < 0.05. 

Functional diversity of each wetland was assessed using multiple functional 

diversity indices. These indices capture different aspects of functional diversity 

and are multi-trait metrics, where some indices are weighted by species 

abundance (Table 3.2). The software package, FDiversity (Casanoves et al. 

2010) was used to determine functional diversity, which allows the calculation of 

a comprehensive list of functional diversity indices and statistical analysis tools 

(Casanoves et al. 2010). FDiversity runs on an R platform, and requires 

packages ‘proxy’, ‘mvtnorm’, ‘geometry’, ‘vegan’, ‘FD’, ‘ade4’, ‘ape’, ‘gee’, ‘lattice’, 

‘nlme’, and ‘rscproxy’ for analysis of functional diversity indices.
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Table 3.2. Metrics used to assess functional diversity in a chronosequence of 
restored wetlands. Analyses were performed using the FDiversity software 
(Casanoves et al. 2010). 
Functional Diversity 
metric Code Abundance 

Weighted? Description Source 

Functional Attribute 
Diversity FAD No Number of different combinations of trait 

values that occur in a community. 
Walker, Kinzig, & 
Langridge 1999 

Community-based 
functional diversity FDc No 

Constructs a dendrogram of the species that 
make up a regional community of species, 
functional diversity is the sum of all branches 
in the dendrogram that correspond to the 
subset of species that make up a wetland. 

Petchey & Gaston 
2002; Petchey & 
Gaston 2006; Petchey 
& Gaston 2007 

Plot-based 
functional diversity FDp No 

Constructs a dendrogram of species at the 
plot scale (wetland), sums the branches, and 
compares among wetland 

Petchey & Gaston 
2002; Podani & 
Schmera 2006 

Convex hull 
hypervolume Chull No 

Using the volume of the 'convex hull' defined 
by the relative position of species in the trait 
space to summarize the dispersion of 
species in the space. 

Cornwell, Schwilk, & 
Ackerly 2006 

Rao's quadratic 
entropy Rao Yes 

Sum of all species distances based on a 
dissimilarity matrix, weighted by the product 
of the species relative abundances 

Rao 1982; Pavoine, 
Ollier, & Pontier 2005 

Weighted FDc wFDc Yes 

Calculated based on the community scale 
dendrogram approach, but incorporates 
relative abundance of each species in the 
calculation 

Pla et al. 2008 

Weighted FDp wFDp Yes 
Calculated based on the plot scale 
dendrogram approach, but incorporates 
relative abundance of each species. 

Pla et al. 2008 

Functional 
Richness FRic No Represents the trait space filled by the 

community 
Villeger, Mason, & 
Mouillot 2008 

Functional 
Evenness FEve Yes 

Measures the regularity of spacing between 
species in trait space and evenness of the 
distribution of relative abundances 

Villeger, Mason, & 
Mouillot 2008 

Functional 
Divergence FDiv Yes 

Quantifies how trait values are spread along 
a range of trait space, sum of the Euclidean 
distance of each species to a central point.  

Villeger, Mason, & 
Mouillot 2008 

Functional 
Dispersion FDis Yes 

Average distance of individual species to a 
weighted centroid of all species in the 
community trait space, which takes into 
account species relative abundances 

Laliberte & Legendre 
2010 
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3.3 Results 

3.3.1 Trait response by species 
In total, 41 dominant species were observed across the chronosequence; 

an average of 5.4 species dominated a wetland. Wetlands in this study had one 

to ten dominant species. 

While traits of all species were assessed, only results from four species 

(Poa palustris, Carex atherodes, Carex rostrata, and Typha latifolia) are included 

for inter and intra-specific comparisons (Figure 3.1). These species are 

characteristic of natural wetlands in the area, were considered dominant species 

in enough wetlands to be represented in most of the age classes that make up 

the chronosequence and exhibited trends in trait response across the 

chronosequence. Poa palustris was the only species that dominated wetlands in 

each age class and is therefore the only species whose traits could be tracked 

across the whole chronosequence. Carex atherodes and C. rostrata were 

dominant in at least one wetland within each age class, with the exception of 

drained wetlands. Typha latifolia was a dominant species in at least one wetland 

in classes: Age 1-5, 6-10, 11-15, 16-20, and natural wetlands. Tables A1 and A2 

provide an overview of all dominant species observed within the wetlands. 

For P. palustris, significant differences were observed across the 

chronosequence in leaf area (F(6,153) = 5.5022, p< 0.001), height (F(6,153) = 21.743, 

p< 0.001), specific leaf area (F(6,151) = 6.9618, p< 0.001), and leaf nitrogen 

content (F(6,38) = 7.3825, p< 0.001) (Figure 3.1A). No differences were observed 

in LDMC across the chronosequence. Height was the only trait that showed a 

positive linear trend with increasing time since restoration. Height of P. palustris 

in drained wetlands was significantly lower (29 cm +/- 4.66 SE) than Age 1-5 

(62.89 cm +/- 2.69), Age 6-10 (64.98 cm +/- 2.69), Age 11-15 (62.09 cm +/- 2.33), 

Age 16-20 (67.30 cm +/- 4.66), Age >20 (79.77 cm +/- 2.69), and natural 

wetlands (94.65 cm +/ 4.65). LA, SLA, and LNC had variable trends across the 

chronosequence. For LA and SLA, generally, low values were observed in 

drained wetlands (45.00 +/- 12.38 cm2  and 10.56 +/- 1.21 cm2/mg for LA and 

SLA respectively), followed by high values and high variability observed in newly 
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restored and young wetlands (104.03 +/- 7.15 cm2 and 14.76 +/- 1.12 cm2/mg for 

LA and SLA in wetlands Age 1-5 respectively, and 90.83 +/- 7.15 cm2 and 29.47 

+/- 1.12 cm2/mg for and SLA in wetlands Age 6-10 respectively). LA and SLA 

values tended to stabilize or increase as time since restoration increased (77.21 

+/- 7.15 cm2 and 15.31 +/- 1.12 cm2/mg, respectively, for Age >20). Mean LA of 

natural wetlands was low (65.5 +/- 12.38 cm2) compared to most restoration age 

classes but was highly variable (ranged from 23 to 153 cm2). In contrast, SLA of 

P. palustris was significantly higher in natural wetlands than in most of the other 

restoration age classes. When considering leaf nitrogen content, values were 

highest (1.53 +/- 0.04 %) and significantly different in Age 6-10 wetlands 

compared to the other age classes. Otherwise, all other age classes averaged 

approximately 1.2 % (range from 1.04 % in Age 16-20 to 1.38 % in natural 

wetlands). 

Trait responses of the other species were variable (Figure 3.1 B. – D.). 

Generally, species were tallest in natural wetlands when compared across the 

chronosequence. C. atherodes and T. latifolia were significantly taller in natural 

wetlands than many of the restoration age classes. Height of C. rostrata showed 

minimal differences across the chronosequence (ranged from an average of 

105.93 cm in Age 11-15 to 121.18 cm in Age 1-5 wetlands). Minimal differences 

or no differences were observed across the chronosequence for SLA, LDMC, or 

LNC of C. atherodes (Figure 3.1B), C. rostrata (Figure 3.1C), and T. latifolia 

(Figure 3.1D). 
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Figure 3.1. Mean (+/- SE) plant functional trait values as a function of time since restoration. Figure allows for comparison of 
trait values within a species (viewed vertically), within a trait (viewed horizontally), and response by trait within a species 
(viewed individually). The species selected represent the most common dominant species present within the chronosequence. 
A) Poa palustris, B) Carex atherodes, C) Carex rostrata, D) Typha latifolia. Letters distinguish significant differences  
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3.3.2 Community level trait response 
When considering Community Weighted Means, the response of PFTs were 

variable (Figure 3.2). CWM leaf area (CWM LA) was low in drained wetlands 

(1057 +/- 660 cm2), was significantly higher (albeit with high variability) in newly 

restored wetlands (Age 1-5: 4822 +/- 558 cm2), and was followed by a drop in 

leaf area size, which stayed consistently low across the older age classes of the 

chronosequence (2991 +/- 558 cm2, 2051 +/- 660 cm2, 3139 +/- 603 cm2, and 

2589 +/- 603 cm2 for Age 6-10, Age 11-15, Age 16-20, and Age >20, 

respectively). CWM LA in natural wetlands was highest but was highly variable 

(5035 +/- 738 cm2). Significant differences in CWM LA were observed between 

drained and natural wetlands as well as newly restored wetlands (Age 1-5) and 

Age 11-15 wetlands only (Figure 3.2A).  

A similar trend was observed with CWM Height. Height in drained wetlands 

(62.9 +/-38.6 cm) was significantly lower than newly restored wetlands (Age 1-5: 

107.7 +/- 35.5 cm). Height in the subsequent age classes was low (Age 6-10: 

96.4 +/- 35.5 cm, Age 11-15: 93.9 +/- 38.6 cm, and Age 16-20: 105 +/- 48.6 cm), 

prior to increasing in Age >20 (114.6 +/- 36.9 cm) and natural wetlands (122.3 +/- 

40.8 cm) (Figure 3.2E). 

CWM of leaf nitrogen content (CWM LNC) was highest (2.83 +/- 0.24 %), 

but highly variable (ranged from 1.67 to 4.53%) in drained wetlands, when 

compared to newly restored (1.89 +/- 0.2 %), Age 6-10 (2.03 +/- 0.2 %), Age 11-

15 (1.56 +/- 0.24 %), Age 16-20 (1.86 +/- 0.38 %), Age >20 (2.08 +/- 0.22 %), and 

natural wetlands (2.06 +/- 0.27 %). Significant differences were only observed 

between drained wetlands and Age 11-15 wetlands (Figure 3.2B). 

No significant differences were observed across the chronosequence for 

CWM of SLA, and CWM LDMC. However, drained wetlands were observed to 

have higher SLA and lower LDMC than the rest of the chronosequence (Figure 

3.2D an Figure 3.2C, respectively). 

By further qualifying the relationships of CWMs across the chronosequence 

using linear regressions, significant positive linear relationships were observed in 

CWM LA (F(6,29) = 4.87, R2 = 0.50 p< 0.01) and CWM Height (F(6,29) = 6.774, R2 
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= 0.58, p< 0.001). No linear relationships were observed when examining CWM 

SLA (F(6,28) = 1.364, R2 = 0.23 p= 0.2635), CWM LDMC (F(6,29) = 1.258, R2 = 

0.21, p= 0.3069), and CWM LNC (F(6,28) = 1.792, R2 = 0.28, p= 0.1371) (data not 

shown). 

 
Figure 3.2. Community weighted mean (CWM) trait values (+ SE) in restored wetlands as 
a function of time since restoration. A) CWM leaf area, B) CWM leaf nitrogen content, C) 
CWM leaf dry matter content, D) CWM specific leaf area, and E) CWM height. Different 
letters represent significant differences in trait values across age classes
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3.3.3 Functional diversity 
No significant differences were observed across the chronosequence in any 

functional diversity (FD) metric assessed. However, when focusing on four 

metrics (FRichness, FEvenness, FDivergence, and FDispersion), these indices 

identify important potential trends across the chronosequence, and provide a 

multi-dimensional look at functional diversity (Figure 3.3). FRichness appears to 

be highest in drained, newly restored (Age 1-5), and natural wetlands. 

FDispersion follows a similar trend and is highest in newly restored (Age 1-5), but 

is also high in drained, natural, and Age 11-15 wetlands. FEveness and 

FDivergence were consistent across the chronosequence. Table 3.3 provides an 

overview of scores for all FD metrics assessed. 
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Figure 3.3. Functional diversity as presented by four different Functional Diversity metrics 
(+ SE) as a function of time since restoration. No significant differences were observed 
across the age classes for any of the FD metrics, however each metric provides insight 
into different properties of an ecosystem, and by comparing among metrics, patterns can 
be observed that may identify nuanced differences across the chronosequence.  
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Table 3.3. Functional diversity (FD) metric values (raw) by wetland. See Table 3.2 for a description of each metric. 
No significant differences were observed across age classes for any FD metrics. Blank values reflect an insufficient 
number of dominant species to calculate an FD, and zero values represent low functional diversity. 
Age Class Wetland FAD2   FDp   FDc   wFDp  wFDc  rRao  CHull   FRic   FEve FDiv FDis 
Drained   D1  -  -  -  -  -  -  -   -  - 0.84  - 
Drained   D2 5.12 10.24 12.81 10.23 12.79 1.00         5.12      0.78 2.55 
Drained   D3 48.00 16.40 15.16 14.62 13.60 0.58 0.08 0.08 0.71 0.69 1.78 
Drained   D4 3.35 6.70 6.91 6.52 6.72 0.95         3.35      0.53 1.59 
Drained   D5 6.82 6.82 8.97 6.60 8.51 0.86         2.06 0.90 0.00 1.25 
Age 1-5   R1a 30.24 14.11 14.40 9.49 9.62 0.31         0.28 0.66 0.52 1.15 
Age 1-5   R1b 24.68 11.58 14.40 10.32 12.90 0.65         0.17 0.73 0.70 1.40 
Age 1-5   R3 12.97 12.97 11.60 12.98 11.63 0.73         4.45 0.82 0.73 2.45 
Age 1-5   R4a 23.95 15.43 15.54 13.45 13.12 0.74         3.08 0.53 0.70 2.25 
Age 1-5   R4b 12.47 12.47 12.09 10.38 9.73 0.64         5.28 0.39 0.90 1.92 
Age 1-5   R5a 128.50 27.43 24.46 24.52 22.17 0.53 1.38 1.38 0.76 0.78 2.24 
Age 1-5   R5b 98.49 24.56 26.48 24.66 26.67 0.45 0.05 0.05 0.72 0.67 2.30 

Age 6-10  R6 1.43 2.86 2.53 2.84 2.52 0.98         1.43      0.00 0.70 
Age 6-10  R7 27.60 13.14 13.93 12.53 13.48 0.65         0.21 0.72 0.67 1.69 
Age 6-10  R8a 32.26 11.83 11.44 11.97 11.48 0.69 0.01 0.01 0.78 0.70 1.49 
Age 6-10  R8b 100.50 22.20 22.22 18.50 18.72 0.37 0.96 0.96 0.67 0.67 1.58 
Age 6-10  R9 2.48 4.97 4.06 4.95 4.05 0.99         2.48      0.92 1.23 
Age 6-10  R10a 27.79 10.27 13.60 10.60 13.56 0.76 0.00 0.00 0.84 0.78 1.34 
Age 6-10  R10b 3.09 3.09 6.15 2.27 4.51 0.51         0.38 0.37 0.70 0.38 

Age 11-15 R11 21.71 14.08 14.15 13.41 13.74 0.71         3.16 0.93 0.72 2.18 
Age 11-15 R12a 16.08 7.83 10.59 7.36 9.38 0.67         0.06 0.85 0.84 1.09 
Age 11-15 R12b 24.11 11.37 10.12 9.91 8.46 0.54         0.12 0.76 0.86 1.46 
Age 11-15 R15a 79.15 17.33 19.67 15.45 17.36 0.41 0.16 0.16 0.66 0.64 1.25 
Age 11-15 R15b 64.30 16.06 18.72 15.70 17.79 0.46 0.03 0.03 0.68 0.66 1.55 
Age 11-15 R15c 92.31 16.81 19.47 14.93 16.94 0.53 0.23 0.23 0.70 0.70 1.15 
Age 16-20 R17a 21.02 7.59 10.10 6.07 8.46 0.54 0.00 0.00 0.70 0.73 0.73 
Age 16-20 R17b 39.08 14.33 17.99 14.07 17.43 0.57 0.00 0.00 0.85 0.72 1.69 
Age >20   R22 5.39 5.39 5.52 4.29 4.33 0.70         1.26 0.60 0.95 0.78 
Age >20   R23a 28.88 9.24 12.57 8.54 11.09 0.72 0.00 0.00 0.87 0.84 1.34 
Age >20   R23b 102.09 18.83 18.55 16.23 16.71 0.54 0.47 0.47 0.77 0.79 1.39 
Age >20   R23c 113.32 30.30 31.77 24.38 25.50 0.31 1.18 1.18 0.67 0.59 2.03 
Age >20   R24a  -  -  -  -  -  -  -  -  -  -  - 
Age >20   R24b 5.39 5.39 5.65 4.57 5.03 0.51         0.93 0.77 0.61 0.73 
NatAg     N1 1.35 2.69 3.18 2.67 3.15 0.99         1.35      0.61 0.66 
NatAg     N2 14.18 14.18 12.72 14.10 12.44 0.77         5.25 0.88 0.84 2.88 
NatAg     N3 33.75 12.32 13.25 10.83 11.94 0.62 0.01 0.01 0.53 0.79 1.36 
NatAg     N4 35.80 17.20 15.69 10.64 10.87 0.22         0.59 0.45 0.59 1.13 
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3.4 Discussion 
This study was conducted to evaluate wetland functional recovery following 

restoration. It has long been assumed that, given enough time, the recovery of 

wetlands progresses reliably through time following restoration and eventually 

converges towards a stable climax community, which resembles a natural 

wetland (Matthews & Spyreas 2010). However, research has shown that 

structural metrics of vegetation (e.g., species richness, plant cover, diversity) and 

ecosystem functional processes (e.g., plant productivity or biomass) may not 

recover to reference/natural site conditions (Aronson & Galatowitsch 2008). 

Instead, vegetation communities tend to converge towards a more degraded 

state as a result of invasion by exotics or diverge over time towards a plant 

community composition that differs from the reference state (Matthews & Spyreas 

2010). While monitoring and evaluating vegetation species recovery is useful for 

understanding succession and managing resources, ultimately, the return to 

function of wetland ecosystem processes is an important goal to ensure 

provisioning of ecosystem services and multi-functional landscapes. 

Understanding how wetlands return function to the landscape following 

restoration can help plan for and manage against mono-functional landscapes. 

When considering the composition of dominant species for functional trait 

assessment, only one species, Poa palustris, was present in all age classes of 

the chronosequence. Further, of the three additional species for which 

comprehensive trait analysis were conducted, none were dominant in drained 

wetlands resulting in a lack of trait values for this ‘age’ class. These results 

suggest a marked change in species composition between drained wetlands and 

the restoration chronosequence, likely resulting from agricultural activity within 

drained wetlands (i.e., drained wetlands were cultivated and cropped through at 

the time of assessment). While no formal community composition analysis was 

conducted given that trait assessment was limited to dominant species in a 

community, it is important to keep in mind that species ultimately underpin trait 

values.  
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An analysis of trait values of the common dominant species found across 

the restoration chronosequence suggests high intra- and interspecific variation. 

Generally, all species had high variability across the chronosequence as 

evidenced by high standard error surrounding mean trait values. In particular, P. 

palustris, which had a mean leaf area of 79 mm2 (ranged from 8 mm2 to 193 

mm2) and mean height of 66 cm (ranged from 18 cm to 162 cm), which reflects 

the small size and plasticity of the species. Further, traits of each species 

responded differently across the chronosequence. Generally, height of a species 

increased as restoration age increased and was tallest in natural wetlands. 

Similarly, leaf area of a species was largest in natural wetlands when compared 

to restored wetlands. SLA and LDMC had variable responses across the 

chronosequence, but generally, no differences between trait means by species 

were observed. Finally, leaf nitrogen content in P. palustris and C. atherodes was 

highest and lowest in wetlands Age 6-10 and Age 11-15, respectively, but 

otherwise no differences were observed across the chronosequence.  

While all attempts were made to select representative individuals in a 

wetland (i.e., mature, unshaded, and healthy individuals), trait values may vary 

depending on environmental gradients, microclimatic factors, and genetic 

adaptations (Shipley et al. 2016). The contribution of intraspecific variation in 

functional trait analysis is poorly understood, especially since most studies use a 

single, fixed trait value (often acquired from plant trait databases like TRY Plant 

Trait Database (Kattge et al. 2011) or LEDA-traitbase (Kleyer et al. 2008; Siefert 

et al. 2014). The common thought is that interspecific variation in traits is much 

greater than intraspecific variation in traits and that any intraspecific differences 

would not obscure broader trends observed when comparing among species 

(Grime 1979; Shipley et al. 2016). This assumption has some empirical support in 

certain [trait × environment] relationships (Meziane & Shipley 1999 a and b; 

Garnier et al. 2001) and as such, intraspecific variation was not used for further 

analysis in this study as the goal was to compare functional traits across 

communities. However, intraspecific variation could be an important factor to 

consider in future studies if the intent is to identify trait predictors of performance 
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(for restoration projects or other habitats) as in Pywell et al. (2003). Further, 

variation within a trait could be considered a plant functional trait in and of itself, 

especially in this era of rapid global change (Violle et al. 2012; Shipley 2016). 

While species-specific trait responses have previously been used to select 

high performing species and predict restoration success (Pywell et al. 2003; 

Martinez-Garza et al. 2013), often the composition of a community is assessed to 

determine ecosystem functionality. An accumulation of evidence suggests that 

changes in trait composition of communities are a determinant of change in 

ecosystem process (Larsen et al. 2005; Barnes et al. 2014; de Bello et al. 2010). 

My results show that there are changes in CWM LA, CWM Height, and CWM 

LNC, but no changes in CWM SLA, or CWM LDMC over the wetland 

chronosequence. CWM Height showed the most obvious linear trajectory of 

recovery following restoration. A significant positive correlation has been shown 

between CWM Height and primary productivity (Li et al. 2016). Further, height 

has been shown to have significant effects on the nitrogen use efficiency of a 

community (Zuo et al. 2016).  

Leaf area on the other hand, had a more variable recovery where values 

were low in drained wetlands, increased significantly in newly restored wetlands, 

which was followed by a drop and then stabilization at mid-range CWM LA values 

in older restoration age classes. In comparison, natural wetlands had high CWM 

LA values. This trend, where values peak in newly restored wetlands before 

decreasing in moderate to moderately old restorations, was not only observed in 

the response of CWM Height to restoration age, but also in many species-specific 

traits (e.g., SLA of P. palustris and C. atherodes, as well as LA of P. palustris, 

and T. latifolia). While this pattern could be explained by the length of the 

chronosequence, (e.g., perhaps 24 years is too short a time frame for recovery of 

leaf area), this ‘overshoot’ pattern has frequently been observed in the recovery 

of species diversity and richness in restored freshwater systems (Meyer et al. 

2010) and is likely due to an initial colonization of annuals and perennials. Once 

colonial perennials establish and expand in restoration systems, species richness 

tends to decline (Baldwin 2004). This same idea likely explains the patterns 
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observed in plant functional traits, whereby the initial colonization of species 

results in a wide range of functional trait values (i.e., height and LA) after which 

the trait values decline and settle to a lower value and/or become representative 

of natural systems. 

Functional trait diversity metrics are increasingly being used as an approach 

to community ecology, including to understand how functional trait diversity 

relates to abiotic limitations, to understand species interactions, and more 

recently to predict community diversity in the face of environmental change 

(Laughlin 2014). Generally, functional diversity relates to diversity of traits in a 

community but serves to represent the diversity of species niches or functions 

(Cadotte et al. 2011). No significant differences were observed among age 

classes when functional diversity across a chronosequence of restored wetlands 

was assessed. The FD metrics assessed considered dendrogram distances, 

metrics weighted and not weighted by species abundance, dissimilarity matrices, 

as well as total space, evenness, and spread of trait values in a wetland. Each 

functional diversity metric describes different aspects of functional diversity, but 

when combined, can provide complementary information to better understand 

functional composition and response (Mouchet et al. 2010).  

Though not significantly different, functional diversity can change across the 

chronosequence. For example, Functional Richness (FRichness) refers to 

volume of functional space occupied by a community. High FRichness indicates 

high resource utilization since a large functional space is occupied (Villéger et al. 

2008). FRichness values were highly variable across the chronosequence, but 

were highest in drained, newly restored, and natural wetlands. In drained 

wetlands, this may suggest that despite being cultivated with agronomic species, 

additional species with various trait combinations are growing in drained wetland 

basins resulting in a high resource use efficiency. A similar trend in newly 

restored wetlands was also observed, likely as a result of the influx of annuals 

prior to the stabilization of the restored wetland community. When FRichness of 

restored wetlands is compared to natural wetlands, all age classes, save newly 

restored, have lower values suggesting that resources are more efficiently being 
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used in natural wetlands given a larger functional space occupied by species 

within the communities. Functional Evenness (FEveness) refers to the distribution 

and abundance of traits, whereas Function Divergence (FDivergence) provides 

insight into the level of differentiation of niches in a community (Villéger et al. 

2008; Qin et al. 2016; Mason et al. 2005). FEveness and FDivergence were 

mostly consistent and highest across the chronosequence, possibly indicating 

that resource use is high as a result of low competition for resources. Finally, 

Functional Dispersion (FDispersion), represents the average spread of traits to a 

community centroid by considering evenness and abundance (Laliberte & 

Legendre 2010), and can provide an indication of the functional redundancy of a 

community. High evenness of species traits located at larger distances from a 

centroid provide increased resilience and stability to a system in the face of a 

disturbance. Contrarily, small values of FDispersion may provide indication of a 

community with similar traits and higher competition for specific resources 

(Laliberte et al. 2010). FDispersion values were highest in newly restored and 

natural wetlands but were relatively consistent throughout. 

Environmental filtering and/or niche stabilization likely explain the lack of 

variation observed across the age classes. First, generally only species adapted 

to wet conditions and soils will regenerate within a wetland following restoration, 

second, wetlands are typically highly productive environments, and species with 

high resource acquisition related traits can be associated with resource-rich 

environments (Asefa et al. 2017). While this research project was not focused on 

testing the processes underlying community assembly, niche-based assembly 

processes have been shown to structure wetland plant communities and 

influence functional diversity metrics (Fu et al. 2014). Further, trade-offs in the 

trait responses of species to restoration may be creating equal functional 

performance among communities. For example, the data show that drained 

wetlands are dominated by short species with high SLA values whereas natural 

wetlands tend to be dominated by tall species with low SLA values. When these 

trait combinations are combined into a functional diversity metric, FD values 

equilibrate to present similar functional diversity across the chronosequence. 
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Results from other studies provide support for the idea of trade-offs in trait 

variation resulting in stable FD values. Spasojevic and Suding (2012) found no 

difference in multi-variate functional diversity (FDispersion) along a strong stress 

and resource gradient in the alpine tundra owing to opposite plant strategies 

driven by plant stature and leaf and resource acquisition traits. Further, Li et al. 

(2017) show that despite a change in community composition and soil properties 

in response to wetland drying, no change in functional diversity metrics 

(FRichness, FEvenness, and FDivergence) were observed in their sites. These 

authors suggest that community level traits, rather than functional diversity are a 

stronger influence on ecosystem processes following successional changes to 

wetland systems. 

Functional diversity has been shown to be one of the best predictors of 

ecosystem function available (Cadotte et al. 2011). Greater functional diversity 

results in ecosystem stability provided by multiple functional traits and helps to 

buffer ecosystems against abiotic variation (Walker et al. 1999). However, 

negative relationships between functional diversity and ecosystem process are 

also observed, though are often not reported (Fu et al. 2014). The results 

obtained in this study are inconsistent with my hypothesis that suggests that 

functional diversity would be lower in drained and restored wetlands due to 

cultivation and modification of wetland basins, which would reduce the ecological 

functioning of these sites. With that said, community level trait means can and do 

provide important insights into ecosystem function. Community level SLA, LDMC, 

and LNC have been shown to positively correlate with photosynthesis and 

transpiration rates (Reich et al. 1999; Westoby et al. 2002). Further, leaf area and 

plant height can affect a number of processes including heat exchange, carbon 

dynamics and storage, and decomposition rates (Diaz et al. 2004; DeBello et al. 

2016; Zirbel et al. 2017; Funk et al. 2016). In one study, when considering traits 

related to the leaf economic spectrum, including SLA, LDMC, and height, within 

five years of floodplain meadow restoration, restored sites resembled reference 

sites (Engst et al. 2016). In contrast, this same study reported that traits related to 

pollination or plant strategy types were not fully restored, reflecting the complexity 
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of restoring plant communities and multi-trophic interactions (Engst et al. 2016). 

In addition, considering plant functional traits that act simultaneously on 

ecosystem processes further complicates the understanding of community 

composition and ecosystem process. The idea of considering trait - service 

clusters, defined as combinations of traits that are simultaneously involved in the 

control of multiple ecosystem processes, further illustrate the usefulness and 

applicability of trait-based research and may help manage ecosystems (de Bello 

et al. 2010).  

Overall, these results emphasize the importance of selecting relevant traits 

for functional analysis. Undoubtedly, the traits selected for analysis strongly 

influence the outcomes and conclusions derived from the results. This is 

supported by a large body of literature, which identifies, instructs, and discusses 

the importance of selecting and standardizing the collection of functional traits 

(Violle et al. 2007; Petchey & Gaston 2006; Cornelissen et al. 2003; Perez-

Harguindeguy et al. 2013). For example, plant functional traits that align along the 

leaf economic spectrum, known to predict nutrient cycling and productivity 

(Shipley et al. 2006) can covary with one another, therefore selecting several of 

these traits in an analysis may bias results and associated inferences. Further, 

the number of traits used to determine functional diversity can also influence 

results. A higher number of (uncorrelated) traits used to determine functional 

diversity can increase the ability to detect functional differences among species 

or communities while decreasing the chance for functional redundancies given 

that a larger ‘trait space’ emerges from more traits (Petchey & Gaston 2002).  

Finally, inferring ecosystem recovery from functional traits and functional 

diversity has its limitations. The mechanisms behind community assembly, 

functional diversity, trait interactions, and ecosystem function are complex and 

multifaceted (Cadotte et al. 2011). Further, the strength, magnitude, and direction 

of correlations observed among traits and ecosystem processes can vary by 

ecosystem studied. As it relates to wetland ecosystems, limited work has been 

done, especially in prairie pothole wetlands. As such, functional traits specific to 

wetland plants, wetland specific processes, and the [trait × ecosystem] process 
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associations observed in wetlands are understudied (Moor et al. 2017). With that 

said, the field of restoration ecology is increasingly using functional traits as a 

promising approach to predicting restoration success (Martinez-Garza et al. 

2013), resisting invasion of exotic species (Funk et al. 2008), and defining targets 

to achieve restoration goals (Laughlin 2014), all of which will help advance the 

understanding and utility of using plant functional traits to understand ecosystem 

processes and functional recovery in wetland ecosystems. 

3.5 Conclusion 
Trait-based ecology is a relatively new field of research often used to 

describe community assembly and ecosystem function. This observational study 

aimed to analyze the functional traits and diversity within a chronosequence of 

restored wetlands to track the trajectory of ecosystem process recovery. While 

functional diversity did not vary across the chronosequence, community level 

traits and species-specific analysis did identify differences among age classes. 

Specifically, height and leaf area were two traits that showed variability among 

age classes, suggesting that these restored wetlands are not equivalent to 

nearby natural wetland systems. These results may indicate that ecosystem 

processes related to productivity, nutrient mobilization, and carbon dynamics are 

not fully recovered even 24 years post restoration. Trait-based analysis should be 

considered as a method to assess ecosystem functional recovery; however, 

selection of traits should be carefully considered in combination with desired 

outcomes.   
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4 Chapter 4. Conclusions 

4.1 Research Findings 
Historically, wetland losses have been widespread and wetlands remain 

under the threat of loss and degradation worldwide due to land development, 

agricultural production, and industrial expansion. As a result, impacts to the 

landscape where wetlands have been lost have been high. However, over the 

last 20 years, great efforts have gone into implementing policy to conserve and 

protect remaining wetlands, as well as into wetland restoration initiatives to 

mitigate the impacts of wetland loss. This study aimed to provide a 

comprehensive analysis of vegetation recovery in restored wetlands that were 

created with the expectation that they function like the natural systems they 

replace. This study asked two questions: (1) do restored wetland plant 

communities resemble natural wetlands? and (2) are restored wetlands 

functioning like natural wetlands?  

The answers to these questions were obtained by comparing vegetation 

structure (i.e. species richness, as well as cover hydrophytes, native species, and 

non-native species) and plant functional traits from a chronosequence of up to 37 

wetlands, which included drained, restored, and natural wetlands. This project 

provided a unique opportunity to critically evaluate restorations intended to 

restore wetland area and function. This research is timely and is directly 

applicable to policy development in Alberta given the recent implementation of 

the Alberta Wetland Policy (Government of Alberta 2013). This policy is among a 

wave of updates and new developments with respect to wetland policies that aim 

to take a functional approach at wetland management (valuing wetlands for the 

different functions they provide). Commonly, wetland policies take an area-based 

approach to compensating for wetland impacts, where impacts to one hectare of 

wetland are replaced by the same area of restored wetland habitat. However, 

replacement of wetland habitat does not guarantee replacement of wetland 

function and ecological processes. The implementation and management of 

function-based policies are in their infancy and are labour-intensive, expensive to 

administer, and difficult to assess. The Government of Alberta has recently 
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released a restoration directive that provides guidance to wetland restoration 

practitioners, but this guide lacks direction on how to assess and evaluate return 

to function or ecological lift following restoration (Government of Alberta 2016). 

Now, more than ever, there is a need for functional, resilient wetland ecosystems 

and multi-functional landscapes as these systems are increasingly faced with 

changing climate regimes (Renton et al. 2015). 

In general, the results of this research suggest little differentiation in 

vegetation structure or plant functional traits between restored and natural 

wetlands. Vegetation cover, species richness, and community composition 

recover quickly and are comparable to nearby natural wetlands within five years 

of restoration. It is only when comparing results to wetlands located within natural 

reserves, where differences in species richness and community composition can 

be observed. In this respect, structural metrics proved to be more sensitive 

indicators of vegetation recovery following restoration than when compared with 

functional traits. With plant functional traits, I observed several species that had 

no differences in plant functional trait values across the wetland chronosequence, 

I observed only minor differences in community level trait values among wetland 

age classes, and I observed consistent functional diversity across all wetlands. 

However, plant functional traits did identify a trend that is supported by structural 

metrics that suggests a rapid increase in condition (whether species richness, 

trait values, or cover estimates) similar to natural wetlands, followed by decline 

within 10-15 years of restoration, after which values incrementally increase as a 

wetland gets older and condition values approach natural wetland levels. Plant 

height and leaf area proved to be the traits with the most potential to provide 

insight into ecosystem functional recovery given the trends observed at both the 

species and community levels. 

These results suggest that management actions prior to and following 

restoration, as well as of the surrounding landscape may determine wetland 

restoration success. In Chapter 2, I identified morphometrics of wetlands that 

may improve restoration success, and start to approximate conditions in natural 

wetlands. These included prioritizing restoration sites with large (larger than one 
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hectare) basins, ensuring gradual slopes when grading restoration sites, and 

managing for the establishment of hydrophytes and native species, while 

controlling the spread of invasive species. Further, in Chapter 3, I identified 

minimal differences in functional traits and functional diversity among drained, 

restored, and natural wetlands, might also be explained by the surrounding. In 

Chapter 3, analysis were limited to wetlands situated within a landscape driven 

by a history of disturbance and agricultural pressure, including the natural 

wetlands (Nat(Ag)). This is in contrast to wetlands located in natural reserves as 

assessed in Chapter 2, where differences in species richness and community 

composition were observed when compared to restored and Nat(Ag) wetlands. 

While management actions may influence recovery following restoration, these 

results also suggest that condition of reference sites must be considered and is 

an important component when evaluating restoration success. 

Finally, an important contribution of this research was in understanding the 

natural range of variation of wetlands. Wetlands are highly variable systems that 

are sensitive to changes in temperature and precipitation (Renton et al. 2015). 

Even the two-year duration of this research project presented differences in cover 

estimates, species richness, and community composition among field seasons. 

Further, high variability was observed across metrics, both structural and 

functional, as well as across age classes, which contributed to a lack of 

significant differences across the chronosequence. Variability in a system, 

particularly wetlands, may be associated with stability and resilience of an 

ecosystem (Colloff & Baldwin 2010). Species with a wide range of plant functional 

trait values may be considered more adaptable to a range of environmental 

conditions, and therefore able to withstand fluctuations in precipitation and 

climate. Natural ranges in wetland condition, whether from a species, community, 

or functional perspective, are difficult to determine; however, understanding the 

natural range of variation found within natural and restored wetlands may help 

predict restoration success and better manage wetlandscapes. 
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4.2 Research Significance 
Ecological theories and concepts underlie and should help to explain and 

predict the recovery of and processes occurring in wetlands following restoration. 

However, the practice of wetland restoration (and other forms of restoration 

activity) is often carried out in isolation from the science of restoration (Cabin et 

al. 2010). While restoration practitioners are likely intuitively familiar with 

principles of community assembly, disturbance, and/or competition, many 

restoration projects rely on logistical, cultural, or experiential knowledge rather 

than testing or incorporating scientific concepts (Wainwright et al. 2017). 

Research shows that restoration programs developed in concert with scientific 

principles are more successful than restorations carried out following a more trial 

and error approach (Giardina et al. 2007). In this final section, I aim to situate the 

results of my research into the general ecological context of community 

development and ecosystem function.  

The patterns observed in structural and functional recovery can be 

explained by classic community ecological concepts. Following a disturbance 

(plugging of a drainage ditch) the wetland communities were inundated with new 

species (mostly annual species) with a wide variety of trait values as expected 

under a typical successional trajectory (Suding et al. 2004). Within the first five 

years following restoration, I saw peak species richness and high variability in 

traits resulting from a plant community comprised of annuals, perennials, and 

woody species. This influx in species also provides evidence of a transition 

towards an alternative stable state, where hydrologic restoration provided a 

significant perturbation enough to surmount the ecological threshold 

distinguishing drained and natural sites (Suding 2004). The stable state identified 

following restoration is characterized by high hydrophyte and native species 

cover, where competition for resources and/or life history strategies may explain 

the consistency and similarity in structural and functional metrics across restored 

wetlands. Interestingly, wetlands located within agricultural landscapes exhibit 

similar conditions (i.e., species richness, percent covers, and trait values) to 

restored sites. As Bedford (1999) suggests, cumulative effects from widespread 
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historical wetland loss have implications on the remaining wetlands on a 

landscape. The disparity observed between the natural wetland classes (Nat(Ag) 

and Nat(Res)) provide strong evidence that landscape context was a significant 

factor limiting the recovery following restoration and suggest there exists a 

second ecological threshold to overcome when considering wetland recovery. 

Although natural wetlands retained within a landscape otherwise devoid of 

wetlands (agricultural) are critical elements of habitat mosaics, these isolated 

systems experience reduced dispersal vectors, decrease in average area over 

time, and increasing loading of suspended solids (Cohen et al. 2016; Johnston 

1994). Restored wetlands and natural wetlands located within agricultural areas 

are limited in their recovery potential given the barriers presented by landscape 

isolation. Management actions or additional restoration efforts (i.e., seeding and 

plantings) will likely help a restored wetland to overcome some of the limitations 

of existing within an isolated landscape. 

Finally, while tracking structural recovery and understanding community 

assembly and development following restoration is important for management of 

these systems, ultimately return to function or functional recovery should be the 

goal. Ecological theory as proposed by the biodiversity - ecosystem function 

(BEF) relationship predicts higher functioning with increased diversity (e.g., 

species, genetic, functional diversity (FD)). The results of this research were 

deficient with regards to functional recovery as evaluated through functional 

traits. My results suggest no functional differences exist among drained, restored, 

or natural systems. While the results found in this study can be explained by a 

number of factors, the BEF does have support in the restoration literature (Mayer 

2001; Doherty et al. 2011; Cadotte et al. 2011). Trait based approaches offer an 

emerging method for assessing ecological function through plant functional trait 

values and functional diversity (Reiss et al. 2009). These applications are in their 

infancy and should continue to be incorporated into restoration assessment and 

management in an effort to reconstruct healthy, functioning ecosystems.  
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4.3 Recommendations for Future Research 
There exist many opportunities for research that explores wetland 

restoration, studies rates of recovery, and manages for the provisioning of 

ecosystem functions and services. To begin at a local scale, small changes to the 

way wetland restorations are currently conducted and/or managed in Alberta 

could greatly improve ecosystem recovery and landscape function. For example, 

one approach could be to follow modelling conducted by White and Fennessy 

(2005), which identified locations on a landscape where high likelihood of 

restoration success was predicted based on criteria including long-term 

sustainability, hydric soils, land use, and topography. Further, the importance of a 

strong initial restoration effort (i.e., plantings, soil transport, contouring, etc.) for 

healthier wetland ecosystems has been stressed (Gutrich et al. 2008). By 

combining site suitability modelling with increased on-the-ground effort, the 

success of wetland restorations could be greatly improved, not just in comparison 

to a reference condition but also at the landscape level.  

Next, a comparison of restoration methods (e.g., passive versus active 

restoration) and the influence on vegetation recovery would be a directly 

applicable and valuable contribution towards policy development in Alberta and 

internationally. Additionally, evaluating or directing restoration approaches 

towards specific functional outcomes (e.g., increased biodiversity or improve 

habitat connectivity) could help sustain multi-functional landscapes. The 

feasibility of these approaches and their implications should be studied further. 

 Finally, additional work is required to identify reliable indicators of wetland 

condition following restoration. Given the variability found in wetland systems, the 

similarity among wetlands on the prairie landscape, and the predicted shifts in 

climate, it is increasingly important to be able to identify and predict change and 

effects to wetlands and other natural features. A functional approach to 

monitoring and evaluating wetland condition is a promising approach towards 

maintaining landscape functionality, but additional research should be invested to 

better understand variability in plant functional traits, to explore the trait - 
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ecosystem function relationship, and identify meaningful traits indicative of 

healthy wetland systems.
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5 Appendices 
 
 

Appendix A. Complete lists of species observed within wetlands  



 

* Identifies a dominant species used to collect, process, and analyze plant functional traits and functional diversity 
1 Wetland was only assessed in 2016 
2 Wetland was only assessed in 2017 
3 Wetland only used in functional trait analysis 
4 Wetland not used in functional trait analysis 
 

97 

Table A4. Species observed in Drained (D), Nat(Ag) (N), and Nat(Res) P wetlands. ‘A’ represents a species that was observed only in 
2016, ‘B’ represents a species only observed in 2017, and ‘C’ represents a species that was observed in both 2016 and 2017. 

Species D1 D2 D3 D42,3 D52 N1 N2 N3 N42 P14 P24 P34 P44 P54 
Achillea millefolium        A  A   A A C A A 
Achillea sibirica        A A C B C  A B   
Actaea rubra          A           
Agoseris glauca                     
Agrimonia striata                B A C   
Agropyron dasystachyum    C    C  C B C    C 
Agropyron repens                     
Agrostis scabra                A     
Alisma plantago-aquatica                     
Alopecurus aequalis A      A A    A C A A A 
Alopecurus pratensis              B  B B B 
Anemone canadensis          A       A    
Antennaria sp. B B  B B              
Aralia nudicaulis          A  B        
Arctium minus                     
Artemisia absinthium                     
Artemisia sp.                A  A   
Aster borealis    A    A A A     A     
Aster ciliolatus                     
Aster puniceus        B B C B C A B C A 
Beckmannia syzigachne B  B* B B A A B   C C A A C 
Bidens cernua           B     C     
Brassica napus C C C B B*       A      
Bromus ciliatus              A   A   
Bromus inermis        C A A B* C C C C C 
Bromus sp.                     
Bromus tectorum              B      
Calamagrostis canadensis            B B B B B B 
Calamagrostis stricta        B C B B C B C B   
Callitriche verna          B      B     
Capsella bursa-pastoris    C B B              
Cardamine pensylvanica                  A A 
Carex aquatilis           B     B C    
Carex atherodes        C* C* C* B* C C C C C 

Continued….  



 

* Identifies a dominant species used to collect, process, and analyze plant functional traits and functional diversity 
1 Wetland was only assessed in 2016 
2 Wetland was only assessed in 2017 
3 Wetland only used in functional trait analysis 
4 Wetland not used in functional trait analysis 
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Table A4. Species observed in Drained (D), Nat(Ag) (N), and Nat(Res) P wetlands. ‘A’ represents a species that was observed only in 
2016, ‘B’ represents a species only observed in 2017, and ‘C’ represents a species that was observed in both 2016 and 2017. 
Species D1 D2 D3 D42,3 D52 N1 N2 N3 N42 P1 P2 P3 P4 P5 
Carex aurea            B        
Carex bebbii                  A A 
Carex crawfordii           B      B    
Carex diandra                  A A 
Carex disperma                   A 
Carex lanuginosa           B     B   B 
Carex rostrata           C* B C C C A C 
Carex sartwellii                  B B 
Carex sp.          A C      A  B 
Carex sychnocephala    C* B   A A    A      
Castilleja miniata                 A    
Cerastium nutans                     
Ceratophyllum demersum        B        A    
Chenopodium album C A C  B            A 
Christmas weed   A B B B              
Cicuta maculata        B C B B   C     
Cirsium arvense A A C  B C C* C B C C C C C 
Cornus canadensis          A       B    
Cornus stolonifera           A          
Corylus cornuta                 A    
Crepis tectorum                     
Dactylis glomerata              A C  C C 
Deschampsia cespitosa    B                 
Descurainia sophia                A     
Eleocharis acicularis                     
Eleocharis palustris    C*    C B B   C B A  A 
Epilobium angustifolium          A    A      
Epilobium glandulosum    B B B   B B B   B B B   
Epilobium latifolium      B A C    B A A    
Equisetum palustre          A A          
Equisetum pratense   A   B   A B B A C C B B 
Equisetum sylvaticum                  A   
Erigeron acris        A            
Erigeron philadelphicus          A B   C B C A   

Continued…



 

* Identifies a dominant species used to collect, process, and analyze plant functional traits and functional diversity 
1 Wetland was only assessed in 2016 
2 Wetland was only assessed in 2017 
3 Wetland only used in functional trait analysis 
4 Wetland not used in functional trait analysis 
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Table A4. Species observed in Drained (D), Nat(Ag) (N), and Nat(Res) P wetlands. ‘A’ represents a species that was observed only in 
2016, ‘B’ represents a species only observed in 2017, and ‘C’ represents a species that was observed in both 2016 and 2017. 
Species D1 D2 D3 D42,3 D52 N1 N2 N3 N42 P1 P2 P3 P4 P5 
Erigeron sp.                     
Erucastrum gallicum B C C B B* A A    A A  A A 
Erysimum cheiranthoides          C        A   
Fallopia convolvulus C C A  B              
Festuca elatior                     
Festuca pratense                     
Festuca saximontana                B   B 
Fragaria virginiana           A   A C C C A 
Galeopsis tetrahit A      A C C B C   B   
Galium aparine C A                  
Galium boreale            B   B A A A 
Galium labradoricum              A A   A 
Galium sp.                     
Galium trifidum    B       B B   B   B 
Galium triflorum          A           
Geranium sp                 A    
Geum aleppicum        B A C B B B C  B 
Geum macrophyllum              A A  A A 
Geum rivale              A      
Geum sp.          B           
Glyceria grandis    B      B B   C B  A C 
Potamogeton sp.          B       A    
Heracleum maximum          C        A   
Hieracium umbellatum    B                 
Hippuris vulgaris        B C*    A  C    
Hordeum jubatum B  B* B B*       C A  A A 
Hordeum vulgare B* B*  B*                
Juncus balticus      B B  C B   C     
Juncus bufonius        B       C     
Lathyrus ochroleucus           A       C   
Lathyrus venosus           B B   B B B   
Lemna minor        B B C B C B C  C 
Lemna trisulca          B    C B C    
Linaria vulgaris        A            
Juncus sp.           B          

Continued…



 

* Identifies a dominant species used to collect, process, and analyze plant functional traits and functional diversity 
1 Wetland was only assessed in 2016 
2 Wetland was only assessed in 2017 
3 Wetland only used in functional trait analysis 
4 Wetland not used in functional trait analysis 
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Table A4. Species observed in Drained (D), Nat(Ag) (N), and Nat(Res) P wetlands. ‘A’ represents a species that was observed only in 
2016, ‘B’ represents a species only observed in 2017, and ‘C’ represents a species that was observed in both 2016 and 2017.  
Species D1 D2 D3 D42,3 D52 N1 N2 N3 N42 P1 P2 P3 P4 P5 
Lycopus asper          B    B      
Lysimachia ciliata                   A 
Lysimachia thyrsiflora          A         B 
Matricaria discoidea                     
Matricaria perforata           B          
Medicago sativa    A       A     A     
Melilotus officinalis                A     
Mentha arvensis    C  B C C* C* B C C C C C 
Mertensia paniculata          A      A     
Osmorhiza depauperata          A           
Penstemon procerus                     
Petasites sagittatus          C* C* B* A C A A   
Phalaris arundinacea        C* C C B A  C    
Phleum pratense            B C C A C C 
Plantago major B B C* B B B     C C     
Poa palustris B  C B*   C C B B* C C C C C 
Poa pratensis B B     C A C* B C C C C C 
Poa sp.                     
Polygonum amphibium           B B        
Polygonum aviculare B  B B           C     
Polygonum lapathifolium B B C B B B  A      B B   
Polygonum sp.   A A          A  A A A 
Populus balsamifera        A C  B    C    
Populus tremuloides          C A B    A A   
Potentilla anserina        C A C B        
Potentilla gracilis                     
Potentilla norvegica        C C    C A C A A 
Potentilla palustris                A     
Prunus virginiana                  A   
Ranunculus gmelinii           A          
Ranunculus macounii           B     C  C A 
Ranunculus sceleratus        C C    C C C  C 
Ribes glandulosum          B      B A    
Ribes hudsonianum                  A   
Ribes oxyacanthoides          A    A A     

Continued…



 

* Identifies a dominant species used to collect, process, and analyze plant functional traits and functional diversity 
1 Wetland was only assessed in 2016 
2 Wetland was only assessed in 2017 
3 Wetland only used in functional trait analysis 
4 Wetland not used in functional trait analysis 
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Table A4. Species observed in Drained (D), Nat(Ag) (N), and Nat(Res) P wetlands. ‘A’ represents a species that was observed only in 
2016, ‘B’ represents a species only observed in 2017, and ‘C’ represents a species that was observed in both 2016 and 2017. 
Species D1 D2 D3 D42,3 D52 N1 N2 N3 N42 P1 P2 P3 P4 P5 
Ribes sp.        A  A          
Ricciocarpos natans          B           
Rosa acicularis          A A B   C A A   
Rubus idaeus          C  B   A A    
Rumex maritimus   B B B B C A    A B C A A 
Rumex occidentalis      B A A C B   C  C A 
Rumex sp.                     
Salix bebbiana            B   B  B   
Salix exigua                     
Salix maccalliana                     
Salix petiolaris        C  C B C C C C C 
Salix sp.        A A A B A C C A A 
Schoenoplectus tabernaemontani    C*  B C C    C  A    
Scirpus microcarpus          A           
Scirpus paludosus                     
Scirpus pungens    B                 
Scolochloa festucacea        B B B* B* B  B    
Scutellaria galericulata        C C C B C C A C C 
Senecio congestus                 A    
Silene campestris      B              
Sisyrinchium montanum           A          
Sium suave        C A B B C C B A C 
Smilacina stellata          A           
Solidago canadensis        C A  B C  C    
Sonchus arvensis B  C B B C C* C B C C C C C 
Sparganium eurycarpum          B    A    B 
Sphenopholis intermedia              A      
Stachys palustris        B  B B C A B A A 
Stellaria crassifolia              A A A A A 
Stellaria longifolia                     
Stellaria longipes                  B B 
Stellaria media C C* C B*                
Symphoricarpos albus           A      A    
Tanacetum vulgare    C  B A     A   A   
Taraxacum officinale B C C B   C A A   C C C C C 

Continued…



 

* Identifies a dominant species used to collect, process, and analyze plant functional traits and functional diversity 
1 Wetland was only assessed in 2016 
2 Wetland was only assessed in 2017 
3 Wetland only used in functional trait analysis 
4 Wetland not used in functional trait analysis 
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Table A4. Species observed in Drained (D), Nat(Ag) (N), and Nat(Res) P wetlands. ‘A’ represents a species that was observed only in 
2016, ‘B’ represents a species only observed in 2017, and ‘C’ represents a species that was observed in both 2016 and 2017. 
Species D1 D2 D3 D42,3 D52 N1 N2 N3 N42 P1 P2 P3 P4 P5 
Thalictrum venulosum                 A    
Thlaspi arvense    B    B  A          
Trifolium hybridum              A A  A A 
Trifolium pratense                     
Trifolium repens    B    B  B B C C C C A 
Triglochin palustris                A     
Triticum sp. A A C B                
Typha latifolia B  B B B C C* C     B C    
Urtica dioica        A C  B C A C C   
Utricularia vulgaris                     
Veronica peregrina                  A   
Viburnum edule          A           
Vicia americana        A A A     A A A A 
Viola canadensis          A           
Viola renifolia                A     
Unknown Graminoid 1                     
Unknown Graminoid 2        A A    A A A  A 
Unknown Graminoid 3                     
Unknown Graminoid 4                     
Unknown Graminoid 5                 A    
Unknown Graminoid 6                     
Unknown Graminoid 8                 A    
Unknown Graminoid 9                     
Unknown Graminoid 10                     
Unknown Graminoid 11                     
Unknown Graminoid 12                     
Unknown Graminoid 13        A            
Unknown Graminoid 14                     
Unknown Graminoid 15          A           
Unknown Graminoid 16           A          
Unknown Graminoid 17                     
Unknown Forb 1                     
Unknown Forb 2                 A    
Unknown Forb 3          B           
Unknown Forb 4                     

Continued…



 

* Identifies a dominant species used to collect, process, and analyze plant functional traits and functional diversity 
1 Wetland was only assessed in 2016 
2 Wetland was only assessed in 2017 
3 Wetland only used in functional trait analysis 
4 Wetland not used in functional trait analysis 
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Table A4. Species observed in Drained (D), Nat(Ag) (N), and Nat(Res) P wetlands. ‘A’ represents a species that was observed only in 
2016, ‘B’ represents a species only observed in 2017, and ‘C’ represents a species that was observed in both 2016 and 2017. 
Species D1 D2 D3 D42,3 D52 N1 N2 N3 N42 P1 P2 P3 P4 P5 
Unknown Forb 5 B B                  
Unknown Forb 6                     
Unknown Forb 7                     
Unknown Forb 8                     
Unknown Forb 9                B     
Unknown Forb 10                     
Unknown Forb 11                     
Unknown Forb 12           A          
Unknown Forb 13                     
Unknown Forb 14          B      B   B 
Unknown Forb 15                     
Unknown Forb 16          B  B     B   
Unknown Forb 17                     
Unknown Forb 18          A           
Unknown Forb 19          A           
Unknown Forb 20          A           
Unknown Forb 21              A      
Unknown Forb 22                 B           

 



 

* Identifies a dominant species used to collect, process, and analyze plant functional traits and functional diversity 
1 Wetland was only assessed in 2016 
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4 Wetland not used in functional trait analysis 
 

104 

Table A2. Species observed in restored wetlands. Wetlands are identified by type (‘R’ = restored), followed by years since restoration, and 
where wetlands were restored in the same year, these are further distinguishes by a lower case letter (a – d). ‘A’ represents a species that 
was observed only in 2016, ‘B’ represents a species only observed in 2017, and ‘C’ represents a species that was observed in both 2016 
and 2017. 
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Achillea 
millefolium      A    A A    A A A A B A A B       A C A B    

Achillea sibirica B B  A     C               C     C C C B    
Actaea rubra                                        
Agoseris glauca                                  B      
Agrimonia striata                                     B   
Agropyron 
dasystachyum B B C C C C C C C C C C C C C C C C A B C C C C C C B C B 

Agropyron 
repens                       B  B               

Agrostis scabra B             B                    B B    
Alisma plantago-
aquatica B     A C                   C           

Alopecurus 
aequalis B B A C C B C   A B  C C A A  B B   C C C   C  B A B 

Alopecurus 
pratensis      A       C        A C                  

Anemone 
canadensis          A                             

Antennaria sp.       B B     B B A B        B   B A     B 
Aralia nudicaulis                                        
Arctium minus          A   A                          
Artemisia 
absinthium                          A             

Artemisia sp.                         B               
Aster borealis     A A  A A A  A  A     A A A A  A     A A A  A   
Aster ciliolatus                                   A     
Aster puniceus   B B  B    B B     B    B   B B   B C  B B  B 
Beckmannia 
syzigachne B B C C C C

* 
C
*   C C C C C C A  

B
* 

B
*  B C

* C C   C B B A B 

Bidens cernua      B       B         B    B        B B    
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Table A2. Species observed in restored wetlands. Wetlands are identified by type (‘R’ = restored), followed by years since restoration, and 
where wetlands were restored in the same year, these are further distinguishes by a lower case letter (a – d). ‘A’ represents a species that 
was observed only in 2016, ‘B’ represents a species only observed in 2017, and ‘C’ represents a species that was observed in both 2016 
and 2017.  
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Brassica napus     C                 A                  
Bromus ciliatus     A A A     A   A A       A A      A    A     

Bromus inermis   B A A A A C C A B C A  C A C A A  B C C B C
* B C B C   

Bromus sp.     B                                   
Bromus 
tectorum    B B B B       B B               B       B 

Calamagrostis 
canadensis          B   A           B               

Calamagrostis 
stricta 

B
* B     

B
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B
* 

B
*     C C B B  B 

Callitriche verna B B       B B A    B    B      A        B B 
Capsella bursa-
pastoris        A                B               
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pensylvanica                                        
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Carex aurea                                        
Carex bebbii      A A      A   A        A           A     
Carex crawfordii      B B     B              B   B     B    
Carex diandra                                        
Carex disperma                                        
Carex 
lanuginosa   B     B   C  B B B
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B
*   B

* B B  
B
*     A C       

Carex rostrata B   B B B
* 

B
* B B C

* 
B
* B B

* 
C
* B  

B
* 

C
* A B

* 
C
*   C

*   C
* 

C
* 

B
*  B 

Carex sartwellii      B B B    B   B B B     B          B B  B 
Carex sp.    A  A    C   A A B C B A   A B A     C B A     
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Table A2. Species observed in restored wetlands. Wetlands are identified by type (‘R’ = restored), followed by years since restoration, and 
where wetlands were restored in the same year, these are further distinguishes by a lower case letter (a – d). ‘A’ represents a species that 
was observed only in 2016, ‘B’ represents a species only observed in 2017, and ‘C’ represents a species that was observed in both 2016 
and 2017. 
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3  

R
1b
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3  

R
33  

R
4a

 

R
4b

 

R
5a

 

R
5b

 

R
6 

R
7 

R
8a

3  

R
8b

 

R
9 

R
10

a 

R
10

b 

R
11

3  

R
12

a 

R
12

b 

R
15

a 

R
15

b1  

R
15

c2  

R
15

d 

R
17

a3  

R
17

b3  

R
22

 

R
23

a3  

R
23

b 

R
23

c2  

R
24

a 

R
24

b2  

Carex 
sychnocephala    

C
* 

C
* C C C    B B A  A A A     C   B B B A B A   

Castilleja 
miniata                                        

Cerastium 
nutans     A                   A        A       

Ceratophyllum 
demersum B  C         C      C          C         

                              
Chenopodium 
album    A    A     C     A  A    A     A    A   

Christmas weed                                        
Cicuta maculata                                  B B B  B 

Cirsium arvense B B
* C C C C C C C

* C C
* C A C   C C A A B C C

* C C C C
* 

B
* A B

* 
Cornus 
canadensis                                        

Cornus 
stolonifera                                        

Corylus cornuta                                        
Crepis tectorum      A                                  
Dactylis 
glomerata                                        

Deschampsia 
cespitosa        B       A   B    A B               

Descurainia 
sophia                                        

Eleocharis 
acicularis        B       B                        

Eleocharis 
palustris B B C C C

* C C
* C C C C

* C C
* A C

* 
B
* B C A B C

* C C A C C  C B 

Epilobium 
angustifolium                                        
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Table A2. Species observed in restored wetlands. Wetlands are identified by type (‘R’ = restored), followed by years since restoration, and 
where wetlands were restored in the same year, these are further distinguishes by a lower case letter (a – d). ‘A’ represents a species that 
was observed only in 2016, ‘B’ represents a species only observed in 2017, and ‘C’ represents a species that was observed in both 2016 
and 2017. 
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R
1a
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1b
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3  

R
33  

R
4a

 

R
4b

 

R
5a

 

R
5b

 

R
6 

R
7 

R
8a

3  

R
8b

 

R
9 

R
10

a 

R
10

b 

R
11

3  

R
12

a 

R
12

b 

R
15

a 

R
15

b1  

R
15

c2  

R
15

d 

R
17

a3  

R
17

b3  

R
22

 

R
23

a3  

R
23

b 

R
23

c2  

R
24

a 

R
24

b2  

Epilobium 
glandulosum   B B   B B   B B B        B    

B
* B B     B  B 

Epilobium 
latifolium    A C   A                 A A A         

Equisetum 
palustre      A A A A   A       A         A A  A     

Equisetum 
pratense B B  C B B C C   B  A C   B C      C B   B B B A   

Equisetum 
sylvaticum                                        

Erigeron acris                                        
Erigeron 
philadelphicus    C A   B                 B     C     B 

Erigeron sp.                          A             
Erucastrum 
gallicum B  B C A C C   C C B C A C        C A A   B   B   

                              
Erysimum 
cheiranthoides        A        A A     B A     C       

Fallopia 
convolvulus    A A   A   A A A B  B        A             

Festuca elatior    
C
* B B B

* B   B
*  

B
* B    B                    

Festuca 
pratense       A                                 

Festuca 
saximontana                              B    

B
* B    

Fragaria 
virginiana          A      A                      

Galeopsis 
tetrahit   B B  B C

*   A   C          A B A B     B C B C B 

Galium aparine    B A  B                                 
Galium boreale          A                             
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Table A2. Species observed in restored wetlands. Wetlands are identified by type (‘R’ = restored), followed by years since restoration, and 
where wetlands were restored in the same year, these are further distinguishes by a lower case letter (a – d). ‘A’ represents a species that 
was observed only in 2016, ‘B’ represents a species only observed in 2017, and ‘C’ represents a species that was observed in both 2016 
and 2017. 

Sp
ec

ie
s 

R
1a

2,
3  

R
1b

2,
3  

R
33  

R
4a

 

R
4b

 

R
5a

 

R
5b

 

R
6 

R
7 

R
8a

3  

R
8b

 

R
9 

R
10

a 

R
10

b 

R
11

3  

R
12

a 

R
12

b 

R
15

a 

R
15

b1  

R
15

c2  

R
15

d 

R
17

a3  

R
17

b3  

R
22

 

R
23

a3  

R
23

b 

R
23

c2  

R
24

a 

R
24

b2  

Galium 
labradoricum     A A A A A A    A          A A           

Galium sp.          A                             
Galium trifidum B     B B B B B    B    B    B B     B B B  B 
Galium triflorum                                        
Geranium sp                                        
Geum 
aleppicum B B   B    A               A   B   C C B    

Geum 
macrophyllum                                        

Geum rivale                                        
Geum sp.                                        

Glyceria grandis 
B
* B C B C

* 
C
* C C C

* 
C
* C B B B   B B B A B C

* 
C
* 

C
* B C

* 
B
* 

B
*  B 

Potamogeton 
sp. B B C         C      C        C C         

Heracleum 
maximum                                        

Hieracium 
umbellatum    C C A B C      C A          A             

Hippuris vulgaris                                        
Hordeum 
jubatum   B B C  B C    B B B B   C  B B A B C     B  B     

Hordeum 
vulgare                                        

Juncus balticus   B B C   A C C  C A B   B   
C
* A B C     C

* C C B    

Juncus bufonius    C                                    
Lathyrus 
ochroleucus                                A       
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Table A2. Species observed in restored wetlands. Wetlands are identified by type (‘R’ = restored), followed by years since restoration, and 
where wetlands were restored in the same year, these are further distinguishes by a lower case letter (a – d). ‘A’ represents a species that 
was observed only in 2016, ‘B’ represents a species only observed in 2017, and ‘C’ represents a species that was observed in both 2016 
and 2017. 
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2,
3  

R
1b
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R
33  

R
4a

 

R
4b

 

R
5a

 

R
5b

 

R
6 

R
7 

R
8a

3  

R
8b

 

R
9 

R
10

a 

R
10

b 

R
11

3  

R
12

a 

R
12

b 

R
15

a 

R
15

b1  

R
15

c2  

R
15

d 

R
17

a3  

R
17

b3  

R
22

 

R
23

a3  

R
23

b 

R
23

c2  

R
24

a 

R
24

b2  

Lathyrus 
venosus    B B   B B          B    B   B B B  B   B 

Lemna minor B B C  C B C B B C  B B B C  B B  B B C C C C B B B   
Lemna trisulca   B C         C      B            B       
Linaria vulgaris     A         C   A        A           B 
Juncus sp.     B A  C      B B B                B B B    
Lycopus asper                                        
Lysimachia 
ciliata                                        

Lysimachia 
thyrsiflora          C                     A       

Matricaria 
discoidea        B                               

Matricaria 
perforata       A      C  C    A   A A                

Medicago sativa    C A A C     C  A C A   A   A   A     A  A  A   
Melilotus 
officinalis                                        

Mentha arvensis B  C C A C C
* C C  C  C C    B A   C C C C   B C B 

Mertensia 
paniculata                                        

Osmorhiza 
depauperata                                        

Penstemon 
procerus                 A    A A A                

Petasites 
sagittatus          B              B         C C B

*    

Phalaris 
arundinacea     B  C C   C C

* C  C   C     B A       C
* 

C
* 

B
* C B

* 
Phleum 
pratense    B C B B A    C  B C

*     B   A B C B C         
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Table A2. Species observed in restored wetlands. Wetlands are identified by type (‘R’ = restored), followed by years since restoration, and 
where wetlands were restored in the same year, these are further distinguishes by a lower case letter (a – d). ‘A’ represents a species that 
was observed only in 2016, ‘B’ represents a species only observed in 2017, and ‘C’ represents a species that was observed in both 2016 
and 2017. 

Sp
ec

ie
s 

R
1a

2,
3  

R
1b

2,
3  

R
33  

R
4a

 

R
4b

 

R
5a

 

R
5b

 

R
6 

R
7 

R
8a

3  

R
8b

 

R
9 

R
10

a 

R
10

b 

R
11

3  

R
12

a 

R
12

b 

R
15

a 

R
15

b1  

R
15

c2  

R
15

d 

R
17

a3  

R
17

b3  

R
22

 

R
23

a3  

R
23

b 

R
23

c2  

R
24

a 

R
24

b2  

Plantago major    C C A A A   C B B   C A  B A  B A   B         

Poa palustris B B C C
* 

C
* 

C
* C C C C

* 
C
* C C

* C C
* C C C

* A B
* 

C
* C C

* C C
* 

C
* 

B
* C B 

Poa pratensis B B B B C B A C  B B B C C C C C A A B C   C C C
* 

C
* 

B
* C B 

Poa sp.     B                                   
Polygonum 
amphibium        B B   B  B B    B    B        B     

Polygonum 
aviculare      B  A    B B B  B        A B B         

Polygonum 
lapathifolium    C B B B C     C  C C   C

* A   B C   C    C     

Polygonum sp.     A   A A  A             A             
Populus 
balsamifera B  A      A          A A                  

Populus 
tremuloides B   C   A A A   A         A        A   B    

Potentilla 
anserina          A   A            C     C    A   

Potentilla gracilis       A                         A       
Potentilla 
norvegica B  C A A B A   A C C C  A       B C C     B C B A B 

Potentilla 
palustris                                        

Prunus 
virginiana                                        

Ranunculus 
gmelinii        A    A                   A       

Ranunculus 
macounii      C A   A    A C A     C   C   A    A B    

Ranunculus 
sceleratus B B C   B     A C             C A C B    B B 
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Table A2. Species observed in restored wetlands. Wetlands are identified by type (‘R’ = restored), followed by years since restoration, and 
where wetlands were restored in the same year, these are further distinguishes by a lower case letter (a – d). ‘A’ represents a species that 
was observed only in 2016, ‘B’ represents a species only observed in 2017, and ‘C’ represents a species that was observed in both 2016 
and 2017. 

Sp
ec
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s 

R
1a
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R
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R
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R
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R
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R
5b

 

R
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R
7 

R
8a

3  

R
8b

 

R
9 

R
10

a 

R
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b 

R
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3  

R
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a 

R
12

b 

R
15

a 

R
15

b1  

R
15

c2  

R
15

d 

R
17

a3  

R
17

b3  

R
22

 

R
23

a3  

R
23

b 

R
23

c2  

R
24

a 

R
24

b2  

Ribes 
glandulosum          B                             

Ribes 
hudsonianum                                        

Ribes 
oxyacanthoides          A                             

Ribes sp.                                        
Ricciocarpos 
natans      B       B   B         B     B         

                              
Rosa acicularis          C      B    A   B       A       
Rubus idaeus          A                             
Rumex 
maritimus B B C A   A   A C   C   C B    B C C           

Rumex 
occidentalis B    A  C C C C C C C C C C C

* A A  C     A C C B A B 

Rumex sp.                   A A                   
Salix bebbiana       B B     B                     B B    
Salix exigua                       B                 
Salix 
maccalliana                          B             

Salix petiolaris B  B C  
C
* 

C
* C C  C C C C   C C

* 
A
* 

A
* B C   B C C C B A   

Salix sp.    B C  C C C C  C C      C A C   A   B   C A     
Schoenoplectus 
tabernaemontani B B

* C C C B C   C C C     C   C A B C C   A       

Scirpus 
microcarpus                                        

Scirpus 
paludosus        A          A                    

Scirpus pungens   B B B   B                               
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Table A2. Species observed in restored wetlands. Wetlands are identified by type (‘R’ = restored), followed by years since restoration, and 
where wetlands were restored in the same year, these are further distinguishes by a lower case letter (a – d). ‘A’ represents a species that 
was observed only in 2016, ‘B’ represents a species only observed in 2017, and ‘C’ represents a species that was observed in both 2016 
and 2017. 
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R
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R
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R
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R
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d 

R
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R
17

b3  

R
22

 

R
23

a3  

R
23

b 

R
23

c2  

R
24

a 

R
24

b2  

Scolochloa 
festucacea 

B
* 

B
*       B

*              B B
* 

B
*   B     B 

Scutellaria 
galericulata B   A  B A A  A        A A   B B A   A    A   

Senecio 
congestus            A              A             

Silene 
campestris                                        

Sisyrinchium 
montanum     A A    A             A           A     

Sium suave B  B A C A C C  B   C C    B C  B C C
* C   C B B B B 

Smilacina 
stellata          A                             

Solidago 
canadensis   B  A     A                     A B   A   

Sonchus 
arvensis B B C C  C C C C  

C
*  C C A C C A A B C B C C A C B C B 

Sparganium 
eurycarpum    B                        B           

Sphenopholis 
intermedia                                        

Stachys 
palustris B B  B  B B B   C       B B   B B B   B    B B 

Stellaria 
crassifolia          A      A        A       A A     

Stellaria 
longifolia                                  B      

Stellaria 
longipes B     B                         B  B     

Stellaria media    B        B  B B             B           
Symphoricarpos 
albus          A                     A       
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Table A2. Species observed in restored wetlands. Wetlands are identified by type (‘R’ = restored), followed by years since restoration, and 
where wetlands were restored in the same year, these are further distinguishes by a lower case letter (a – d). ‘A’ represents a species that 
was observed only in 2016, ‘B’ represents a species only observed in 2017, and ‘C’ represents a species that was observed in both 2016 
and 2017. 

Sp
ec

ie
s 

R
1a

2,
3  

R
1b

2,
3  

R
33  

R
4a

 

R
4b

 

R
5a

 

R
5b

 

R
6 

R
7 

R
8a

3  
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R
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R
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R
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b3  

R
22

 

R
23

a3  

R
23

b 

R
23

c2  

R
24

a 

R
24

b2  

Tanacetum 
vulgare        A B A C C B  A        C     A    A B 

Taraxacum 
officinale   B C C

* C C C   C C C C C A A  B C A  C B C A C A B A B 

Thalictrum 
venulosum                                        

Thlaspi arvense    B A  C A A A A C        A  A B A C C A  A  C B 
Trifolium 
hybridum      A A A   A A   A A   A  A   A     A A A  A   

Trifolium 
pratense                       B                 

Trifolium repens    B B
* B B

* B    B B  B B     B  B     B   B B B  B 

Triglochin 
palustris                                        

Triticum sp.                                        

Typha latifolia 
B
* 

B
* 

C
* 

C
* 

C
* 

C
* 

C
*   C

* C C
* C B   C

*  B C
* A B C B C

* C C C B  B 

Urtica dioica B B    C   A   C        A    A     A    A B 
Utricularia 
vulgaris   B                C                    

Veronica 
peregrina        A                               

Viburnum edule                                        
Vicia americana     A  A     C   A  A   A     A   A A  A  A   
Viola 
canadensis                                        

Viola renifolia                                        
Unknown 
Graminoid 1       A                     A           

Unknown 
Graminoid 2       A A A      A        A     A       
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Table A2. Species observed in restored wetlands. Wetlands are identified by type (‘R’ = restored), followed by years since restoration, and 
where wetlands were restored in the same year, these are further distinguishes by a lower case letter (a – d). ‘A’ represents a species that 
was observed only in 2016, ‘B’ represents a species only observed in 2017, and ‘C’ represents a species that was observed in both 2016 
and 2017. 
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R
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R
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R
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R
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R
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b2  

Unknown 
Graminoid 3                       B                 

Unknown 
Graminoid 4                B                        

Unknown 
Graminoid 5                                        

Unknown 
Graminoid 6     A                                   

Unknown 
Graminoid 8                                        

Unknown 
Graminoid 9              A                          

Unknown 
Graminoid 10   B                                     

Unknown 
Graminoid 11       A                                 

Unknown 
Graminoid 12                       A            A     

Unknown 
Graminoid 13      A                          A       

Unknown 
Graminoid 14            B                            

Unknown 
Graminoid 15                                        

Unknown 
Graminoid 16       A     A   A        A   A        A     

Unknown 
Graminiod 17       A                                 

Unknown Forb 1              A                          
Unknown Forb 2                                        
Unknown Forb 3   B                                     
Unknown Forb 4                        A                
Unknown Forb 5                                        
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Table A2. Species observed in restored wetlands. Wetlands are identified by type (‘R’ = restored), followed by years since restoration, and 
where wetlands were restored in the same year, these are further distinguishes by a lower case letter (a – d). ‘A’ represents a species that 
was observed only in 2016, ‘B’ represents a species only observed in 2017, and ‘C’ represents a species that was observed in both 2016 
and 2017. 
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R
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R
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R
15
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R
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c2  

R
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R
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a3  

R
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b3  

R
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R
23

a3  

R
23

b 

R
23

c2  

R
24

a 

R
24

b2  

Unknown Forb 6                            B           
Unknown Forb 7                 B                      
Unknown Forb 8                 A                      
Unknown Forb 9                                        
Unknown Forb 
10                          B             

Unknown Forb 
11                 B                      

Unknown Forb 
12                                        

Unknown Forb 
13             B                           

Unknown Forb 
14   B                      B          B     

Unknown Forb 
15                B                        
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Appendix B. Study sites used to assess structural and functional 
recovery of restored wetlands  

Table B1. Name and description of study sites in this project that were used to 
assess recovery of wetlands following restoration. 

Wetland 
Name ID Area (ha) Wetland Age 

Age 
Class 

Wetland 
Class 

Incl. in Str. 
Analysis  

(Ch 2) 
(Y/N) 

Incl. in 
Func. 

Analysis  
(Ch 3) 
(Y/N) 

CUR1 D1 0.02 Drained Drained Drained Y Y 
CUR2 D2 0.01 Drained Drained Drained Y Y 
CUR3 D3 0.22 Drained Drained Drained Y Y 
CUR4 D4 0.06 Drained Drained Drained N Y 
CUR5 D5 0.28 Drained Drained Drained N Y 
DEN1 R1a 0.35 1 Age 1-5 Seasonal N Y 
DEN5 R1b 0.21 1 Age 1-5 Seasonal N Y 
FOR2 R3 1.59 3 Age 1-5 Semi-perm N Y 
FOR1 R4a 0.30 4 Age 1-5 Seasonal Y Y 
ROP1 R4b 0.23 4 Age 1-5 Seasonal Y Y 
ABB1 R5a 0.29 5 Age 1-5 Seasonal Y Y 
BOW1 R5b 0.40 5 Age 1-5 Seasonal Y Y 
OZM1 R6 0.12 6 Age 6-10 Seasonal Y Y 
LAB1 R7 0.25 7 Age 6-10 Seasonal Y Y 
BER1 R8a 1.73 8 Age 6-10 Semi-perm N Y 
BUS1 R8b 0.14 8 Age 6-10 Seasonal Y Y 
NAS1 R9 0.10 9 Age 6-10 Seasonal Y Y 
HEN1 R10a 0.30 10 Age 6-10 Seasonal Y Y 
REU1 R10b 0.07 10 Age 6-10 Seasonal Y Y 
CHR1 R11 0.87 11 Age 11-15 Semi-perm N Y 
BOW2 R12a 0.12 12 Age 11-15 Seasonal Y Y 
BOW3 R12b 0.19 12 Age 11-15 Seasonal Y Y 
FER1 R15a 0.05 15 Age 11-15 Seasonal Y Y 
FER2 R15b 0.53 15 Age 11-15 Seasonal Y N 
FER3 R15c 0.67 15 Age 11-15 Seasonal N Y 
MCN1 R15d 1.01 15 Age 11-15 Seasonal Y Y 
KEM1 R17a 0.15 17 Age 16-20 Semi-perm N Y 
KEM2 R17b 0.21 17 Age 16-20 Semi-perm N Y 
RAU1 R22 0.68 22 Age >20 Seasonal Y Y 
 MAR1 R23a 0.13 23 Age >20 Semi-perm N Y 
MIT1 R23b 0.13 23 Age >20 Seasonal Y Y 
MIT3 R23c 0.14 23 Age >20 Seasonal N Y 
AMB1 R24a 0.19 24 Age >20 Seasonal Y Y 
AMB2 R24b 0.14 24 Age >20 Seasonal N Y 
INT1 N1 0.96 Natural - Ag Nat(Ag) Seasonal Y Y 
INT2 N2 0.80 Natural - Ag Nat(Ag) Seasonal Y Y 
INT3 N3 0.72 Natural - Ag Nat(Ag) Seasonal Y Y 

NewNat1 N4 0.35 Natural - Ag Nat(Ag) Seasonal N Y 
CLBCD1 P1 0.46 Natural - Reserve Nat(Res) Seasonal Y N 
CLBID8 P2 0.88 Natural - Reserve Nat(Res) Seasonal Y N 
CLBIM1 P3 0.97 Natural - Reserve Nat(Res) Seasonal Y N 
CLBRD2 P4 0.53 Natural - Reserve Nat(Res) Temporary Y N 
CLBRD3 P5 0.10 Natural - Reserve Nat(Res) Seasonal Y N 
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