Metabolic and Expression Changes Associated with a Mouse Model of Intrauterine Growth Restriction (IUGR)

Bethany N. Radford
*The University of Western Ontario*

Supervisor
Han, Victor VKM.
*The University of Western Ontario*

Graduate Program in Biochemistry
A thesis submitted in partial fulfillment of the requirements for the degree in Doctor of Philosophy
© Bethany N. Radford 2018

Follow this and additional works at: [https://ir.lib.uwo.ca/etd](https://ir.lib.uwo.ca/etd)

Part of the Disease Modeling Commons, Medical Molecular Biology Commons, and the Nutritional and Metabolic Diseases Commons

**Recommended Citation**
[https://ir.lib.uwo.ca/etd/6023](https://ir.lib.uwo.ca/etd/6023)

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.
Abstract

Intrauterine growth restriction (IUGR) is a pregnancy condition where fetal growth is suboptimal, resulting in an infant born small for gestational age (<10th percentile) and is associated with metabolic disorders such as type 2 diabetes in adulthood. This study aims to understand tissue-specific adaptations to fetal undernutrition which predispose the individual to metabolic disorders in adulthood. A model of growth restriction in mice was established using 70% of maternal ad libitum total food (g) (E6.5-birth). At weaning, male offspring received standard chow or a HFHS diet. Body weight and random blood glucose levels were measured at 6 months. To assess metabolism at 6 or 7 months, glucose tolerance, pyruvate challenge and hepatic portal vein insulin challenge tests were administered and serum peptide markers for obesity and diabetes were measured. Metabolic cages were also used at 2 and 7 months to measure activity, food intake and respiratory exchange ratios (RERs). Adult liver, adipose and skeletal muscle and fetal liver was collected for RNA sequencing. Maternal nutrient restricted (MNR) offspring were growth restricted with disproportionately smaller fetal livers. 19% of standard chow-fed MNR offspring became glucose intolerant. On an isocaloric high-fat high-sugar diet no differences in MNR growth or glucose metabolism were detected. However, RERs were reduced at all timepoints in MNR on a HFHS relative to MNR on standard chow. Differences in transcription of genes involved in hypoxia signalling were detected and HIF-2α and HIF-3α proteins were increased in fetal liver of MNR offspring. Genes differentially expressed in the fetus were not differentially expressed at 6 months. Gene expression of metabolically regulatory transcripts in liver, adipose and skeletal muscle did not differ in all MNR and glucose intolerant MNR relative to controls. This model results in a susceptible and non-susceptible population of maternal nutrient restricted offspring and supports the concept of hypoxia signalling contributing to fetal adaptations. Understanding adaptations in hepatic hypoxia signalling in response to fetal undernutrition and how they vary in susceptible and unsusceptible populations will provide insight into how fetal nutrition can influence adult metabolism.

Keywords

growth restriction, glucose tolerance, gene expression, hypoxia, HIF-2α, maternal nutrient restriction.
Co-Authorship Statement

All chapters in this thesis were written by me. Editing for chapter 2 was done by Dr. Victor Han. For chapter 3, Dr. Robert Gros and Dr. Victor Han provided revisions. Dr. Greg Gloor and Dr. Victor Han edited chapter 4, and Dr. Daniel Hardy and Dr. Victor Han revised chapter 5. I completed all revisions based on this feedback.

Chapter 3:

Metabolic cages were run by Dr. Robert Gros at Robarts Research Institute (London, Ontario). Additional animal work and data analysis included in this chapter were done by me.
Acknowledgments

First, I would like to thank my supervisor Dr. Victor Han for his guidance throughout my graduate career. His continued encouragement to participate in opportunities to develop professional skills beyond the laboratory has been greatly appreciated. I would also like thank my present and former advisory committee members: Dr. Daniel Hardy, Dr. Melissa Mann, Dr. Greg Gloor, and Dr. Nathalie Berube for their continued support and advice.

Technical and personal support throughout the project was provided by many. Advice on tissue-specific insulin challenge sensitivity tests was obtained from Dr. Edith Arany. Help with tissue collections was provided by Steve Dixon, Heather Tarnowski-Garner, Dr. Rashid Mehmood, and Katarina Albrechtsas. I would like to thank Karen Burrell for her friendship and problem-solving abilities. An additional thank you is extended to other former and present members of the Han Lab and Children Health Research Institute including graduate students and administrative staff.

Finally, I would like to thank all of my family and friends for their support and encouragement, and for tolerating me when I disappear into the laboratory for extended periods of time. A special thank you to Amanda and Seth Crook for their encouragement and moral support. Lastly, I would like to thank my parents, Roxanne Tivadar and Garry Radford. I truly could not have done it without their help and am very grateful.
Table of Contents

Abstract ........................................................................................................................................... i
Keywords .......................................................................................................................................... i
Acknowledgments ........................................................................................................................... iii
Table of Contents ............................................................................................................................. iv
List of Tables .................................................................................................................................... viii
List of Figures ................................................................................................................................... ix
List of Appendices ............................................................................................................................ xi
Abbreviations ................................................................................................................................... xii
Chapter 1 : Introduction .................................................................................................................. 1
  1.1 Intrauterine Growth Restriction .............................................................................................. 1
  1.2 Developmental Origins of Health and Disease ...................................................................... 1
  1.3 Models of Growth Restriction ............................................................................................... 2
    1.3.1 Fetal Adaptations to Growth Restriction ......................................................................... 3
    1.3.2 Changes in Adult offspring in Response to Fetal Growth Restriction ............................ 4
    1.3.3 Growth Restriction and Postnatal Diets ......................................................................... 6
  1.4 Hypoxia Signalling ................................................................................................................... 6
    1.4.1 Hypoxia Signalling in Animal Models ............................................................................. 7
    1.4.2 Hypoxia Signalling in Pregnancies Complicated with IUGR...................................... 8
  1.5 Thesis Rationale ....................................................................................................................... 8
  1.6 Hypothesis and Objectives ..................................................................................................... 10
  1.7 References .............................................................................................................................. 11

Chapter 2 : Offspring from Maternal Nutrient Restriction in Mice Show Variations in Adult Glucose Metabolism Similar to Human Fetal Growth Restriction ........................................ 18
  2.1 Introduction ............................................................................................................................. 19
  2.2 Methods ................................................................................................................................... 20
Chapter 3: High-Fat High-Sugar Diet Impairs Offspring Glucose Tolerance Independent of Poor Maternal Nutrition in Mice

3.1 Introduction ...................................................................................................................... 48

3.2 Methods ............................................................................................................................ 48

3.2.1 Animals .......................................................................................................................... 48

3.2.2 Metabolic caging ......................................................................................................... 49

3.2.3 Glucose Tolerance and Pyruvate Challenge Tests .................................................... 50

3.2.4 Statistical Analysis ...................................................................................................... 50

3.3 Results ............................................................................................................................. 53

3.4 Discussion ......................................................................................................................... 60

3.5 References ........................................................................................................................ 63

Chapter 4: Evidence of Increased Hypoxia Signalling in Fetal Liver from Maternal Nutrient Restriction in Mice .................................................................................. 67

4.1 Introduction ....................................................................................................................... 68

4.2 Methods ............................................................................................................................ 69
4.2.1 Animals ......................................................... 69
4.2.2 RNA isolation ................................................ 69
4.2.3 RNA sequencing ............................................ 69
4.2.4 Real time PCR .............................................. 70
4.2.5 Protein Isolations .......................................... 70
4.2.6 Western Blotting ........................................... 71
4.2.7 Statistical analysis .......................................... 71
4.3 Results .................................................................. 72
4.4 Discussion .......................................................... 82
4.5 References .......................................................... 85

Chapter 5 : Similar Gene Expression in Adult Liver, Adipose Tissue and Skeletal Muscle of Maternal Nutrient Restricted Offspring Susceptible or Resistant to Changes in Glucose Metabolism ........................................ 90

5.1 Introduction ........................................................ 91
5.2 Methods ............................................................ 92

5.2.1 Animals .......................................................... 92
5.2.2 RNA isolation ............................................... 92
5.2.3 RNA sequencing ........................................... 93
5.2.4 Differential Gene Expression and Pathway Enrichment .... 93
5.3 Results .............................................................. 94
5.4 Discussion ........................................................ 100
5.5 References ........................................................ 103

Chapter 6 : Discussion .................................................. 109

6.1 Summary and Prospective ....................................... 109
6.1.1 MNR as a Model for Metabolic Changes Associated with IUGR ....................................................... 109
6.1.2 Interaction between Maternal Nutrition and Postnatal Diet ...... 112
6.1.3 Gene Expression Changes in Offspring Associated with Maternal Nutrition and Adult Glucose Metabolism................................. 113

6.2 Limitations and Future Studies.................................................................................. 120

6.2.1 Further Characterization of Metabolic and Expression Outcomes in MNR Offspring.............................................................. 120

6.2.2 Influence of Reduced Nutrition in Gestation and Throughout Lactation of Skeletal Muscle and Adipose Tissue...................... 121

6.2.3 Mechanism of Fetal Hepatic Hypoxia in Adaptations to Growth Restriction........................................................................... 122

6.3 Overall Conclusions and Significance................................................................. 122

6.4 References........................................................................................................... 125

Appendix 1................................................................................................................. 134

Appendix 2................................................................................................................. 137

Appendix 3................................................................................................................. 146

Appendix 4................................................................................................................. 155

Appendix 5................................................................................................................. 156

Curriculum Vitae ....................................................................................................... 157
List of Tables

Table 3.2.1 Composition of Post-Weaning Diets. ............................................................... 49

Table 4.2.1 Antibodies used for western blotting................................................................. 72

Table 5.3.1 Pathway enrichment of differentially expressed genes (FDR < 0.1 in 2 > tools) in the liver of 6-month offspring................................................................................................. 98

Table 5.3.2 Pathway enrichment of differentially expressed genes (FDR < 0.1 in 2 > tools) in skeletal muscle of 6-month-old offspring. .......................................................................................... 99

Table 5.3.3 Pathway enrichment of differentially expressed genes (FDR < 0.1 in 2 > tools) in adipose tissue of 6-month-old offspring. .......................................................................................... 99

Table 6.1.1 Comparison of tools used for differential expression........................................... 118
List of Figures

Figure 1.4.1 Regulation of HIF Alpha Subunits in Hypoxic and Normoxic Conditions........ 7

Figure 2.2.1 Litter and Pup Sample Size for Postnatal Studies. ........................................ 25

Figure 2.3.1 Body weights of MNR and Control offspring from E18.5 until 6 months........ 28

Figure 2.3.2 Organ weights of male offspring at E18.5, 1 month and 6 months............... 29

Figure 2.3.3 IP-GTT of male offspring at 6 months. .................................................... 30

Figure 2.3.4 Random blood glucose in male MNR and control offspring from 1 to 6 months of age.......................................................... 31

Figure 2.3.5 Serum peptide markers for obesity and diabetes................................. 32

Figure 2.3.6 Serum and liver lipids in male MNR (N=36) and control (N=27) offspring at 6 months of age.......................................................... 33

Figure 2.3.7 Insulin signalling as determined by phosphorylation of AKT in response to an insulin bolus in male MNR and control offspring at 7 months of age............................. 35

Figure 2.3.8 Glucose tolerance tests for all MNR and control offspring at 6 months........ 36

Figure 2.3.9 Serum peptide markers for obesity and diabetes in male MNR and control offspring at 6 months old according to glucose tolerance................................................. 38

Figure 3.2.1 Litter and Sample Size Summary for MNR Offspring on a Post-Weaning Standard Chow or HFHS diet ................................................................. 52

Figure 3.3.1 Weight and blood glucose regulation in MNR and control offspring .......... 56

Figure 3.3.2 Metabolic caging data from 2 (A) and 7 (B) month-old offspring during the day (light cycle) and night (dark-cycle) ................................................................. 59

Figure 4.3.1 Biplots of E18.5 liver RNA sequencing data transformed with the centered-log ratio for controls (A) and MNR (B) ................................................................. 75
Figure 4.3.2 Distribution of genes in the center-log ratio transformed data. 76

Figure 4.3.3 PCA of the top 500 variable genes. 77

Figure 4.3.4 Top 10 gene ontologies (A), KEGG (B), and NCI:Nature (C) gene pathway enrichments with protein-coding genes differentially expressed between control and MNR. 78

Figure 4.3.5 Genes differentially expressed in the RNAseq data (FDR <0.1 in 2 or more differential expression tools) in hypoxic inducible factor signalling. 79

Figure 4.3.6. Relative fold change for genes involved in HIF signalling validated in an additional cohort with qPCR. 80

Figure 4.3.7 Western blots of proteins confirmed to be differentially expressed in the validation cohort. 81

Figure 5.3.1 PCA plots of liver (A), skeletal muscle (B), and adipose tissue (C) demonstrate similar overall expression between control (grey) and MNR (black), and between glucose tolerance groups (symbols). 96

Figure 5.3.2 Sample-to-sample plots of RNAseq centered-log ratio transformed data from the liver (A), skeletal muscle (B), and adipose tissue (C). 97

Figure 6.1.1 Genes differentially expressed up- and down-stream of transcription factors in fetal hepatic liver. 119

Figure 6.3.1 Metabolic and expression changes in the male fetal and adult offspring from maternal nutrient restriction. 124
### List of Appendices

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix 1: Chapter 2 Supplementary Figures</td>
<td>134</td>
</tr>
<tr>
<td>Appendix 2: Chapter 4 Supplementary Figures</td>
<td>137</td>
</tr>
<tr>
<td>Appendix 3: Chapter 5 Supplementary Figures</td>
<td>146</td>
</tr>
<tr>
<td>Appendix 4: Chapter 2 Copyrights</td>
<td>155</td>
</tr>
<tr>
<td>Appendix 5: Animal Ethics Approval</td>
<td>156</td>
</tr>
</tbody>
</table>
Abbreviations

\[\alpha\] Alpha
\[\beta\] Beta
AUC Area Under the Curve
Btg2 BTG Anti-Proliferation Factor 2
Ccng2 Cyclin G2
Cited2 Cbp/p300-Interacting Transactivator 2
CLAMS Comprehensive Lab Animal Monitoring System
DE Differentially Expressed
DNMT1 DNA Methyl Transferase 1
DOHaD Developmental Origins of Health and Disease
DTT Dithiothreitol
ELBW Extremely Low Birth Weight
FDR False Discovery Rate
FFA Free Fatty Acids
FGR Fetal Growth Restriction
FIH Factor Inhibitor of Hypoxia
Fkbp5 FK506 Binding Protein 51
GIP Glucose-Dependent Insulinotropic Peptide
GLP-1 Glucagon-Like Peptide-1
GSK-3\[\beta\] Glycogen Synthase Kinase 3\[\beta\]
HFD High-Fat Diet
HFHS High-Fat High-Sugar diet
HIF Hypoxia-Inducible Factor
HRE Hypoxic Response Elements
HSF Heath Shock Factor
HSP Heat Shock Protein
IFBG Impaired Fasting Blood Glucose
IP-GTT Intraperitoneal Glucose Tolerance Testing
IUGR Fetal Growth Restriction
KDM3a Lysine Methyl Transferase 3a
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPS</td>
<td>Lipopolysaccaride</td>
</tr>
<tr>
<td>MNR</td>
<td>Maternal Nutrient Restriction</td>
</tr>
<tr>
<td>ODD</td>
<td>Oxygen Degradation Domain</td>
</tr>
<tr>
<td>PAI-1</td>
<td>Plasminogen Activator Inhibitor-1</td>
</tr>
<tr>
<td>PCA</td>
<td>Principle Component Analysis</td>
</tr>
<tr>
<td>PFKFB3</td>
<td>6-Phosphofructo-2-Kinase/Fructose-2,6-Biphosphatase 3</td>
</tr>
<tr>
<td>PHD</td>
<td>Prolyl Pyroxylase</td>
</tr>
<tr>
<td>PVDF</td>
<td>Polyvinylidene</td>
</tr>
<tr>
<td>rAAV</td>
<td>Recombinant Adeno-Associated Virus</td>
</tr>
<tr>
<td>RER</td>
<td>Respiratory Exchange Ratio</td>
</tr>
<tr>
<td>RT</td>
<td>Room Temperature</td>
</tr>
<tr>
<td>SDS</td>
<td>Sodium Dodecyl Sulfate</td>
</tr>
<tr>
<td>SGA</td>
<td>Small for Gestational Age</td>
</tr>
<tr>
<td>TAD</td>
<td>Transactivation Domain</td>
</tr>
<tr>
<td>VHL</td>
<td>von Hippel-Lindau</td>
</tr>
</tbody>
</table>
Chapter 1: Introduction

1.1 Intrauterine Growth Restriction

Clinically, intrauterine growth restriction (IUGR) or fetal growth restriction (FGR) is a pregnancy condition where the fetal growth rate is reduced, and the infant is born small for gestational age (<10th percentile). Causes can be maternal, fetal or placental. Maternal causes include smoking, infections and malnutrition (1). Alternatively, restriction to fetal growth can be caused by chromosomal abnormalities in the fetus or insufficient development of the placenta (1). Maternal malnutrition and placental insufficiency are the most common causes in developing and developed nations, respectively (2). IUGR can also be classified into early and late onset. Early-onset IUGR often results in a reduction in all organs proportional to body weight and is termed symmetric growth restriction (1).

Conversely, late-onset IUGR can result in asymmetric growth restriction with preservation in brain and heart size at the expense of reductions of less essential organs such as the lungs, liver, and kidneys (1). Infants born from pregnancies complicated with IUGR are at increased risk for perinatal complications (3) and as adults are more likely to develop obesity, glucose intolerance and type II diabetes (4,5).

1.2 Developmental Origins of Health and Disease

Studies of populations that were exposed to the Dutch Famine in utero found increased occurrence of glucose intolerance and cardiovascular disease (6,7). Since these pivotal studies many other studies have demonstrated that pathological reduction in fetal growth can influence adult health. Such studies have led to the concept of ‘Developmental Origins of Health and Disease’ (DOHaD). In this concept, adversity during fetal development and early life can result in adaptations enhancing fetal survival. However, these adaptations may not be beneficial to the individual postnatally. For instance, fetal nutrient restriction may prime that individual to more efficiently store nutrients. If the infant is born into a nutrient-rich environment such as western society, fetal adaptations may increase their risk for metabolic disorders. This hypothesis is termed the ‘Thrifty Phenotype Hypothesis’ (8).
1.3 Models of Growth Restriction

Studies investigating the “Thrifty Phenotype Hypothesis” in human IUGR populations are complicated by many confounding variables and ethical limitations. Some of these variables can be controlled or adjusted for in the study design or analysis; including ethnicity, substance use and socioeconomic status. However, estimating length, extent and onset of fetal nutrient restriction can be more challenging. Additionally, adaptations are likely tissue-specific and obtaining fetal and adult samples of metabolically important tissues may not be feasible. Due to these challenges, animal models have been developed to understand mechanisms underlying IUGR and DOHaD.

To date, many animal models have been used with different species. Studies in larger mammals like pigs are informative due to similarities to humans in physiology, morphology and diet (9). However, relatively long lifespans limit outcomes studied to early life rather than adulthood. Additionally, these models are costly and will be challenging for genetic manipulation to prove the mechanistic importance of altered genes. Rodents such as mice are valuable in providing cost-efficient long-term studies, with similar genetics and metabolism to humans and the potential for downstream genetic manipulation.

IUGR models in rodents induce growth restriction by various strategies including intrauterine artery ligation, hypoxia, lipopolysaccharide (LPS) exposure and maternal nutrient restriction. Artery ligation results in decreased nutrient and oxygen delivery to the fetus and provides a model of placental insufficiency. However, it is limited to late-gestation surgeries and results in a higher fetal mortality than controls exposed to sham surgeries (10). Recently, a genetic knock out of a transcription factor important in trophoblast differentiation, AP-2y, has also been used to model placental insufficiency (11). Maternal exposure to low oxygen chambers results in reduced oxygen delivery to the pups similar to a pregnancy at high altitude and LPS-induced growth restriction can model IUGR from infections (12,13). Such models can be early to late onset and model a specific maternal condition. Maternal nutrient restriction (MNR) also allows a flexible onset with some models beginning nutrient restriction prior to conception and others in early to late gestation (14–16). Additionally, total calories, or specific micro or macro nutrients such as iron or protein can be restricted (15–17). Variations in maternal
nutrition can model maternal nutritional challenges experienced in humans such as iron
deficiencies, inadequate access to protein, or total calorie malnourishment. Additionally,
total calorie maternal nutrient restriction can be used to model the reduced nutrient
delivery to the fetus in placental insufficiency. Each type of model is applicable to
maternal conditions experienced in human pregnancies and are useful to understanding
how certain adversities affect fetal and long-term health.

1.3.1 Fetal Adaptations to Growth Restriction

Growth restriction models exhibit reduced fetal and birth weight. Reductions in growth
are symmetric or asymmetric depending on the type and time of insult (18–20). Growth
restriction has also been associated with hypoglycemia, hypoinsulinemia and increased
insulin sensitivity in the fetus or young offspring, suggesting an immediate impact on
fetal glucose metabolism (15,21,22).

In humans and animal models, reduction in liver size relative to body weight or fractional
growth rates suggests that the liver is sensitive to fetal nutrition (19,20,23). Reduced liver
size from maternal nutrient restriction or maternal hypoxia is associated with reduced
fetal glycogen deposits (24,25) and decreased hepatocyte numbers (26). Increased
expression of genes in fatty acid oxidation, gluconeogenesis and insulin signalling in
MNR fetal liver accompany phenotypic changes (27,28). Evidence of increased
glucocorticoid signalling has also been detected but appears to be specific to the male
fetus (29).

In addition to liver adaptations, mice born from nutrient restrictive pregnancies have
smaller fat mass at birth (30). In total calorie restriction models cultured adipocytes from
post-natal day 1 have increased hyperplasia, hypertrophy, and increased protein
expression of lipogenic transcription factors (31). Increased proteins involved in
glucocorticoid signalling that regulate the mobilization of energy stores are also increased
in female, but not male, MNR offspring (29). Such adaptations could promote energy
storage during postnatal development to accommodate for reduced fat stores.

Skeletal muscle is another metabolically important tissue that is developed into the
postnatal period, and adaptations in growth restricted offspring include reduced muscle
mass and fiber type switching. Often growth restricted fetus’ have reduced oxidative type
I fibers which are more insulin sensitive (22,32). Some muscle groups like the soleus muscle have decreased cross-sectional area of type II fibers relative to controls (32). Although myofiber surface area is decreased, the number of myoblasts (progenitor cells that can differentiate and fuse to form myotubes) were similar to controls (32). Despite maintenance of proliferative capacity when cultured in vitro, myoblasts have reduced expression of a proliferation marker (Ki-67) in vivo (32). Regulation of in vivo myoblast proliferation and changes in fiber types are influences by protein uptake, blood flow and oxygenation which are reduced in muscles, such as the biceps femoris of growth restricted fetuses (33). This maintenance of capacity to proliferate could allow the fetus to adjust muscle mass if nutrient or oxygen levels are restored during development.

These tissue-specific fetal adaptations can promote immediate survival. Additionally, they could function to predict the postnatal environment in order to enhance survival of that offspring to a reproductive age. In the latter case, as described by the “predictive adaptive response hypothesis”, these adaptations would be beneficial only if the postnatal environment is accurately predicted (34,35). For example, increased insulin sensitivity in peripheral tissues can accommodate for hypoinsulinemia due to nutritional scarcity. Similarly, reduction in energetically demanding skeletal muscle and an increased capacity for proliferation adipocyte proliferation, can promote energy conservation and storage. Conserving and storing energy are an advantage in a nutrient restrictive environment. However, if the environment proceeding the period of developmental placidity does not match that predicted, such as a nutrient abundant one, these changes can be maladaptive to long-term health.

### 1.3.2 Changes in Adult offspring in Response to Fetal Growth Restriction

Adaptations in animal models of growth restriction produce changes that influence adult metabolism. As adults, offspring are predisposed to glucose intolerance, insulin resistance, reduced energy requirement per body weight gain, reduced activity, increased appetite and/or increased preferences for fatty foods (16,30,36,37). Although model variations exist, male offspring tend to be more prone to changes in glucose metabolism and female offspring to adiposity (38,39).
Liver-specific changes are in both glucose and lipid metabolism. Increased transcription of genes involved in lipogenesis and decrease in proteins involved in cholesterol clearance are associated with steatosis in offspring from fetal undernutrition (20,40). Glycogen deposits are also increased in adult offspring from growth restricted pregnancies (41). In normal tissues, insulin receptor activation by binding of insulin results in increases IRS-2 and Akt phosphorylation, which increase glucose uptake and glycogen synthesis and prevent hepatic glucose output. However, in IUGR rats from placental insufficiency insulin stimulation does not result in increased phosphorylation of IRS-2 or AKT or suppression of hepatic glucose production (42). Although increased free fatty acids (FFAs) can contribute to hepatic insulin resistance, insulin resistance has been detected in the absence of dyslipidemia (42). These data suggest that fetal undernutrition results in offspring with insulin desensitization and an aberrant energy balance in the liver that favors storage of lipids and glycogen.

Adult offspring also have changes in adipocyte size, number and/or growth. Increased percent body fat has been observed with and without changes in body weight (20,43). Offspring from 50 % maternal nutrient restriction late in gestation have increased lipogenic gene expression and increased adipocyte size (44). Conversely, moderate maternal nutrient restriction throughout pregnancy is associated with an increased number but smaller adipocytes in female offspring (38). Decreased insulin sensitivity can also occur in adipose tissue when growth restriction extends into lactation, but impact males rather than females (39). Enhanced growth and inflammation in adipose tissue can also influence differences in body mass and insulin sensitivity (30). Such studies suggest that fetal adaptations to undernutrition can influence adult body mass composition, and glucose and lipid metabolism in a sex-specific and model-specific manner.

Changes in body composition are also associated with reduced lean mass. Similar to the growth restricted fetus, reduced muscle area and type I fiber number can persist into adulthood (45,46). Premature aging by telomere shortening and DNA damage has also been observed in the vastus lateralis muscle of aged prenatal protein restricted rats (47). Decreased p-AKT to AKT ratios in response to insulin have also been observed in adult male offspring from maternal protein restriction, suggesting impaired insulin sensitivity in skeletal muscle (39). Reduced mass, insulin sensitivity and aging in skeletal muscle
could contribute to aberrant glucose tolerance, reduced lean mass and insulin resistance in adult offspring, increasing risk metabolic disorders.

1.3.3 Growth Restriction and Postnatal Diets

Adaptations in growth restricted offspring can impact responses to stress. High caloric, high-fat (HFD) or high-fat high-sugar (HFHS) diets in animal models can mimic the ‘western diet’, a calorie dense diet that is high in saturated fat and refined sugars. Such diets, in combination with fetal changes to conserved energy due to fetal undernutrition, lead to further dysfunction in glucose and lipid metabolism and behavior. Growth restricted offspring are more susceptible to diet-induced obesity and adipose tissue inflammation (30). In part, due to increased lipogenesis in adipose tissue and decreased cholesterol clearance in the liver, which leads to ectopic lipid accumulation and increase serum lipids (31,48–50). Both ectopic lipids and serum FFAs are associated with decreased insulin sensitivity (51). Although sedentary behavior is observed in some models of IUGR, postnatal HFD diets can further reduce activity in offspring(16). These studies suggest that growth restricted offspring are maladapted to a nutrient abundant diet.

1.4 Hypoxia Signalling

One pathway activated in response to cellular stress such as low oxygen or nutrient over or under abundance, is hypoxia-inducible factor (HIF) signalling. In physiologically normal oxygen tension, oxygen is available for prolyl hydroxylases (PHDs) to hydroxylate the oxygen degradation domain (ODD) of the α subunit (HIF-1, 2 or 3 α) (52). Hydroxylation to the ODD of the α subunit allows recognition by the pVHL-containing ubiquitin ligase and degradation by the proteasome (53). In the absence of oxygen, the unhydroxylated α subunit can dimerize with HIF-1β. The HIF dimer can then translocate to the nucleus and transcriptionally regulate genes containing hypoxic response elements (HREs) (54) (Figure 1.4.1). In addition to PHD hydroxylation, HIFα stability and transcriptional activity can be modulated by phosphorylation, hydroxylation, and ribosylation in the ODD, C-terminal and N-terminal transactivation domains (C-TAD, T-TAD) which are regulated by oxygen and nutrient availability (17,53,55). HRE-
containing genes are involved in pathways important in stress response as well as normal development including metabolism, angiogenesis, proliferation and apoptosis (54).

**Figure 1.4.1 Regulation of HIF Alpha Subunits in Hypoxia and Normoxic Conditions.**

Under normoxic conditions, the alpha subunit is hydroxylated by PHDs in the oxygen degradation domain, resulting in recognition and degradation by the proteasome. In hypoxia, oxygen is not available for hydroxylation and the alpha subunits are stabilized. Stable alpha subunits can dimerize with the beta subunit, translocate to the nucleus, and regulate expression of genes containing hypoxia response elements (HRE).

### 1.4.1 Hypoxia Signalling in Animal Models

Maternal hypoxia has been well documented to cause fetal growth restriction but recent evidence suggests that other models of growth restriction can lead to hypoxic signalling in placental or fetal tissues (56-58). Maternal nutrients and maternal protein restriction result in placental adaptations that could decrease oxygen delivery to fetal tissues and directly cause fetal hypoxia. In mice, the placenta can be divided into two functional zones, the junctional and labyrinth zone. The junctional zone is involved in endocrine signalling and energy storage and the labyrinth zone is the site of oxygen and nutrient exchange. In growth restricted models, the zone most often impacted is the junctional zone (59). Additionally, the placental weight relative to fetal weight ratio is increased and oxygen tension was not different in growth restricted placentas (56). Availability of
nutrients is known to modulate hypoxia signalling *in vitro*. In addition to oxygen, iron is required for PHD hydroxylation of the HIFα subunits. Pathways in nutrient sensing, such as GSK-3β, have also been implicated in regulation of α subunit stability or activity (53,57). Together these data suggest that fetal nutrition may mediate hypoxic signalling through redistribution of fetal circulation and nutrient signalling pathways and could potentiate fetal adaptations to growth restriction.

### 1.4.2 Hypoxia Signalling in Pregnancies Complicated with IUGR

Evidence of increased hypoxia-inducible signalling is present in placentas from IUGR with preeclampsia, however, induction of this pathway in pregnancies with IUGR only are inconsistent across studies (55,60). Similar to animal models of growth restriction, some placentas from intrauterine growth restriction exhibit no changes in HIF proteins (62). Whether hypoxia signalling may be induced in developing fetal tissues in human IUGR pregnancies is currently unknown. It is possible that HIFs are differentially regulating development or organ function, influencing perinatal and adult health.

### 1.5 Thesis Rationale

In this study we aimed to identify transcriptional changes that are associated with fetal adaptations and/or changes in adult glucose metabolism in offspring from maternal nutrient restriction (MNR) (70% *ad libitum* food) in mice, and how the postnatal diet may modulate these changes. To isolate fetal undernutrition to pregnancy, without having an impact on litter size or postnatal nutrition, maternal food restriction was applied post-implantation (E6.5) until birth and all litters were cross-fostered to *ad libitum fed* mothers. Unpublished work from our lab has shown that male, but not female, offspring develop glucose intolerance at 6 months of age. Despite detection of glucose intolerance, there was no difference in serum insulin which suggests peripheral insulin desensitization rather than insulin deficiency. Additionally, other models have shown males are vulnerable to changes in insulin sensitivity of peripheral tissues (39). Subsequently, male offspring were the focus in this study. The liver, adipose tissue and skeletal muscle are metabolically important peripheral tissues that have been impacted in other models of growth restriction (39,42) and could mediate long-term changes in glucose tolerance. To
this end, fetal and adult liver, as well as skeletal muscle and visceral adipose tissue in adults were assessed for changes in gene expression. This study is also unique because adult organs collected for gene expression analysis are from mice that underwent metabolic testing. Knowledge of the metabolic status for each mouse could aid in identifying relevant transcription changes to the biological outcome. While other models exist to study these tissues in nutrient restricted animals, most are in rats, guinea pigs and larger mammals (22,37,63). A mouse model will allow further studies to genetically manipulate identified genes and determine the role in fetal survival or offspring glucose metabolism. Understanding the mechanism underlying associations between fetal nutrition, growth restriction and adult metabolism will assist in identifying and treating IUGR most at risk for adult metabolic disorders.
1.6  Hypothesis and Objectives

_Hypotheses:_ Changes in expression of genes regulating metabolism or tissue development in liver, adipose and/or skeletal muscle occur in response to fetal nutrient restriction and contribute to an altered adult glucose metabolism. We also hypothesized that a HFHS will amplify the changes in metabolism in maternal nutrient restricted (MNR) offspring.

**Objective 1:** Metabolically assess outcomes of maternal nutrient restriction in adult offspring.

_Aim one:_ Characterize the impact of MNR on offspring adult glucose metabolism when maintained on a standard diet chow post-weaning.

_Aim two:_ Determine the effects of fetal undernutrition with a post-weaning high-fat high-sugar (HFHS) diet in adult offspring.

**Objective 2:** Identify transcripts differentially expressed throughout the life of MNR offspring in metabolically important tissues.

_Aim one:_ Determine whether differential expression of genes regulating metabolism or tissue development occurred in E18.5 liver in response to MNR.

_Aim two:_ Assess differential expression of genes regulating glucose metabolism in adult liver, skeletal muscle and adipose tissue.

**Objective 3:** Evaluate protein levels of differentially expressed genes involved in hypoxia signalling in fetal liver.
1.7 References


Chapter 2: Offspring from Maternal Nutrient Restriction in Mice Show Variations in Adult Glucose Metabolism Similar to Human Fetal Growth Restriction

Portions of this chapter were published in the Journal of Developmental Origins of Health and Disease.

Radford, B. and Han, V. Offspring from Maternal Nutrient Restriction in Mice Show Variations in Adult Glucose Metabolism Similar to Human Fetal Growth Restriction. J Dev Orig Health Dis. 2018. DOI: 10.1017/S204017441800009
2.1 Introduction

Fetal growth restriction (FGR) or intrauterine growth restriction (IUGR) is a pregnancy condition where the fetus fails to achieve optimal growth expected for gestational age resulting in a small for gestational age (SGA) newborn with birth weight of <10th percentile. The most common causes include maternal malnutrition in developing countries and placental insufficiency in developed countries (1). Irrespective of the cause, poor macro- and micro-nutrient and substrate concentrations in the fetus are a common pathophysiological finding. Growth restricted infants are at increased risk for morbidity and mortality in the perinatal period (2). As adults IUGR populations are also at increased risk for chronic diseases including cardiovascular diseases (3), metabolic disorders such as type 2 diabetes and glucose intolerance (3), and obesity and abnormal lipid metabolism (4).

Associations between poor fetal growth and adult health and disease have led to the concept of Developmental Origins of Health and Disease (DOHaD). The theory of DOHaD proposes that environmental exposures, such as nutrient restriction, during development can result in metabolic adaptations that enhance the survival of the fetus but increase the risk for metabolic disorders as children and adults (5). The concept underlying the association between poor fetal nutrition and predisposition to adult diseases is termed the “thrifty phenotype hypothesis” (5).

Fetal growth restriction has been studied using maternal nutrient restriction in animals such as rats (6–8) and guinea pigs (9), or larger mammals like pigs (10,11). These models providing a short lifespan or similar morphology and diet to humans, respectively, and insight into long and short-term changes in IUGR offspring. Genetic manipulation in offspring to identify genes and epigenetic changes moderating impacts of fetal nutrition are limited. Such limitations can be addressed by using maternal nutrient restriction in mice.

Models of growth restriction in rodents by manipulating maternal nutrition provide insight into certain types of fetal undernutrition in humans, either due to the onset of placental insufficiency or food availability. For example, nutrient restriction prior to and
throughout pregnancy in rodents (9,12) model mothers that experience extended nutritional deficits. However, these models would not mimic fetal undernutrition due to placental insufficiency. Conversely, nutrient restriction beginning later in gestation may imitate insufficient placental development (6). Nutrient restriction just after implantation in the mouse at E6.5 has not been studied and would be more similar to early- to mid-gestation-onset placental insufficiency.

Evidence suggests that metabolic adaptations to fetal undernutrition are tissue-specific and serum peptides for obesity and diabetes can aid in identification of impacted tissues. Incretin hormones, glucagon-like peptide-1 (GLP-1) and glucose-dependent insulino-tropic peptide (GIP), are released by the gut upon ingestion of food and stimulate release of insulin (13,14). Insulin and glucagon are pancreatic hormones that regulate tissue glucose uptake and energy utilization. In addition to hormone release, c-peptide, the cleaved portion of proinsulin, can indicate changes in insulin maturation (15). Leptin, resistin (16) and plasminogen activator inhibitor (PAI-1) (17) are secreted primarily from adipose tissue in mice. Leptin and ghrelin, which is released from the gut, regulate appetite (18,19). Changes in these markers in addition to other metabolic tests can provide insight into tissues with metabolic adaptations.

The objective of this study was to establish a moderate total calorie nutrient restriction in mice to mimic human FGR populations and examine the long-term metabolic complications. We hypothesized that a 30% reduction in maternal food consumption by weight during early and late pregnancy would result in reduced fetal and newborn weight and tissue-specific alterations in adult glucose metabolism similar to humans.

2.2 Methods

2.2.1 Animals
The animal experiments were conducted as approved by the Council on Animal Care at the University of Western Ontario. All mice received free access to water in a standard 12 h light/dark cycle. Eight-week-old virgin female CD-1 mice, obtained from Charles River Laboratories (Montreal, PQ, Canada), were mated. The presence of mucous plugs indicated E0.5. After mating mice were housed individually. To avoid reduction in the
number of conceptuses of each litter, mated females received *ad libitum* food until after embryo implantation at about E5. At E6.5, the mice were randomly assigned into two groups, the control group was fed *ad libitum* and the maternal nutrient restriction (MNR) group was fed 70% average *ad libitum* total calorie intake (both groups receiving #F0173, Bio-Serv, Flemington, NJ). At E18.5, 3 control and 3 MNR pregnant females were euthanized by CO$_2$ narcosis. No differences between the number of males and females were observed between MNR and control litters (*Supplementary Table 2.2.1*). Litter size ranged from 6 to 22 pups. To control for variations in litter size only litters with 11-15 pups were analyzed in fetal (Control litters = 3, MNR litters = 3) and long-term studies (Control litters = 5, MNR litters =10). Because many studies suggest that male offspring are more sensitive to maternal undernutrition (20–22) and that post-reproductive changes complicate long term studies in females (23), only males were examines in this study. PCR of the SRY gene, which is located on the y chromosome and is important in sex determination in mice, (forward primer - TGGACTGGTGACAARGCTA, reverse primer - TGGAGTACAGGTGTGCACTCT) was used in fetal studies to include males only (Control N=21, MNR=15). Right liver lobes were snap frozen in liquid nitrogen.

For postnatal studies, pups’ paws were tattooed at birth to track weights for each pup with the Armis Microtatoo kit (Braintree Scientific, Inc., Braintree, MA). To assess impacts of reduced nutrition during fetal development without the influence of nutrition during lactation, all litters were cross-fostered to females that were fed *ad libitum* throughout pregnancy and the litters were culled or fostered to 13 pups each. Since MNR resulted in similar male-to-female ratios to control litters, the sex of pups was selected randomly (*Supplementary Table 2.2.1*). *Ad libitum* standard chow (Teklad LM-485 Mouse/Rat Serializable Diet, Mississauga, ON, Canada) was used for the remainder of the study in both MNR and control offspring.

At weaning (P21) only male offspring were kept for further study (Control litters N=5, MNR litters N=10) and were housed with 3 to 5 siblings per cage (*Figure 2.2.1*) Weight was measured once a month. With the exception of littermates used for the intrahepatic portal vein insulin challenge, offspring at 1 month (control N=12, MNR N=19, 1-2 pups
per litter) and 6 months (control N=30, MNR N=52, all remaining pups) were euthanized with CO₂ narcosis. Weight was measured and serum was collected via intracardiac puncture. Individual liver lobes, perigonadal adipose tissue, and quadriceps femoris were collected, snap frozen in liquid nitrogen, and stored at -80°C until analysis. Seven-month old animals used for the intrahepatic portal vein insulin challenge (N=8 per group) and were euthanized after tissue collections.

2.2.2 Glucose Tolerance and Hepatic Glucose Production
Glucose tolerance was assessed in 36 MNR (10 litters) and 25 controls (5 litters, 3-8 pups/litter) one week prior to tissue collections or pyruvate challenge test at 6 months by intraperitoneal glucose tolerance testing (IP-GTT). Briefly, fasted mice (4 h) (at 8 00 am) were injected with glucose 2 g/kg body weight and blood glucose was measured via tail vein every 30 minutes for 2 h using a Freestyle Lite Glucometer (Abbott, Alameda, CA). At 6 months, hepatic glucose output was measured with a pyruvate challenge test (5 pups per group, 1 pup/litter). Pyruvate was injected (IP) into mice fasted for 4 h (at 8 00 am) at 2 g/kg body weight and blood glucose was measured via tail vein every 30 min for 2 h.

2.2.3 Random Blood Glucose
From 1 to 6 months, monthly random blood glucose (non-fasted) was measured. Blood samples were collected at 10:30 am via tail vein prick and measured using a Freestyle Lite Glucometer (Abbott, Alameda, CA).

2.2.4 Intrahepatic Portal Vein Insulin Challenge Test
Seven months-old mice were fasted for 4 hours and anaesthetized with isoflurane. Insulin stock was diluted 100X into sterile saline (Humalin R, Eli Lilly Canada Inc., Toronto, ON Canada, 100U/mL). Using a mid-line incision, intestines were moved to expose the hepatic portal vein and 2 U/kg of insulin (Control and MNR N=5, 1 pup/litter) or saline (Control and MNR N=3, 1 pup/litter) was injected. After 1 minute and 15 seconds, a piece of right medial liver lobe, a quadriceps femoris muscle and perigonadal fat were frozen in liquid nitrogen. Samples were store in -80°C until western blot analysis (24).
2.2.5 Protein Isolation
Fifty mg of frozen liver and muscle and 100 mg of adipose tissue were pulverized (Medium Bessman Tissue Pulverizer, Spectrum Laboratories, Rancho Dominguez, CA) and then homogenized for 30 seconds with the Brinkmann Homogenizer Polytron® 3000 in 1x Cell Lysis Buffer (9803S, Cell Signaling Technology® Inc., Danvers, MA) and protease inhibitor cocktail 1, 2, and 3 (P1860, P5726, and P0044, Sigma-Aldrich, St. Louis, MO, USA). The homogenate was then sonicated (F550 Sonic Dismemberator, Fisher Scientific, Markham, ON Canada) and rocked for 40 minutes at 4°C. Samples were spun at 12,000 x g for 10 minutes at 4°C. Supernatants were collected, with care not to collect the lipid layer, and stored at -20°C until analysis. Protein quantification was done with the Bio-Rad Protein Assay according to the manufacturer’s protocol using BSA standards (Cat #500-0006, Bio-Rad Laboratories Inc., Des Plaines, IL).

2.2.6 Western Blotting
Protein samples were boiled in sodium dodecyl sulfate (SDS) sample loading buffer with 0.1M dithiothreitol (DTT) at 75 °C for 5 min then incubated on ice for 5 minutes. 10 μg of protein was loaded and run on a 10% SDS polyacrylamide gel. Proteins were transferred to a polyvinylidene difluoride (PVDF) membrane using the Trans-Blot® Turbo™ Transfer System and Trans-Blot® Turbo™ RTA Midi Transfer Kit (170-4273, Bio-Rad Laboratories Inc., Des Plaines, IL) according to the manufacturer’s protocol.

Once the transfer was completed, membranes were dipped in methanol and blocked with 5% milk in TBST (TBS + 1 % tween). Blocking buffer was rinsed from the membrane for 5 min (3x) with TBST at room temperature (RT). Primary antibody for p-AKT (#4000, rabbit mAB, Cell Signaling Technology® Inc.) was diluted 1:1000 into 5% BSA in TBST and incubated with blots shaking at overnight at 4°C. Membranes were rinsed with TBST 3 x (5 min.) at RT and then incubated with secondary rabbit IgG (#170-6515, Bio-Rad Laboratories Inc., Des Plaines, IL) diluted 1:10,000 in 5% milk in TBST for 1 hour at RT. After rinsing the secondary antibody, Clarity™ Western ECL Substrate (170-5061, Bio-Rad Laboratories Inc., Des Plaines, IL) and a VersaDoc Imaging System (Bio-Rad Laboratories Inc., Des Plaines, IL), was used to capture an image of the gel. Membranes were then rinsed and stripped with 0.5M NaOH, rinsed in TBS (3 x 5 min at
RT) and reprobed with AKT (#9272, Bio-Rad Laboratories Inc., Des Plaines, IL), according to the protocol above.

Quantification of blots was done using Imagelab software® version 5.1 BETA (Bio-Rad Laboratories Inc., Des Plaines, IL) and quantities were compared using p-AKT to total AKT ratios.

**2.2.7 Serum Peptide Markers for Obesity and Diabetes**

Blood samples collected by intracardiac puncture at 1 (Control N=7, MNR N=18, 4 control and 10 MNR litters, 1-2 pups/litter) and 6 months (5 control and 10 MNR litters, 3-7 pups/litter, MNR N=52, control N= 30) in non-fasted mice (8 30 - 9 30 h) were used in this multiplex assay. At the time of collection, protease inhibitors, 10mM DPP-IV (EMD Millipore, DPP4-010) and 1.3% aprotinin inhibitor (EMD Millipore, 616399) in 0.9% sterile saline, were added to the blood samples (10uL/mL). Samples were allowed to clot for 45 minutes and spun at twice at 12 000 x g for 10 minutes to obtain serum. All serum samples were stored at -80°C. Ghrelin, leptin, insulin, glucagon, PAI-1, GLP, GIP and resistin were assayed on the Bio-plex Multiplex at Lawson’s Multiplex Facility, London, ON, using the Bio-Plex Pro Mouse Diabetes Assay (171F7001M, Bio-Rad Laboratories Inc., Des Plaines, IL). Serum C-peptide was also quantified according to the manufacturer’s protocol (Mouse C-Peptide ELISA, 80-CPTMA-E1, Alpco, Salem, NH).

**2.2.8 Lipid Quantification in Serum and Liver**

An aliquot of non-fasted serum as described above was used to for cholesterol (Cholesterol Quantification Kit MAK043, Sigma-Aldrich®, St. Louis, MO) and triglyceride quantification (Triglyceride Quantification Assay Kit ab65336, Abcam®, Cambridge MA). Liver cholesterol was also isolated from non-fasted liver tissue and quantified according the manufacturer’s protocol. Measurements were taken from 5 control and 10 MNR litters, 3-6 pups/litter.

**2.2.9 Statistical Analysis**

Data are presented as mean ± SEM or as whisker plots (median and data range in quartiles). For glucose tolerance testing, pyruvate challenge tests and random blood glucose measurements a repeated measures ANOVA and Bonferroni post hoc correction
was used. For all other analyses, a Mann-Whitney test was used to compare means where samples sizes were > 8, and an unpaired t-test with ≤ 8 samples. Means are considered significantly different if \( p < 0.05 \). All statistics and graphs were produced in Prism software (Graphpad®, version 5.2), or the R console (version 3.3.2) with ggplot2 (version 2.2.1) and sciplot (version 1.1-0) software packages.

**Figure 2.2.1 Litter and Pup Sample Size for Postnatal Studies.**

### Results

Maternal total-calorie nutrient restriction (MNR) resulted in a 13% reduction \( (p = 0.001) \) in fetal weight at E18.5 in males (**Figure 2.3.1A**), and 14% reduction \( (p = 1.5 \times 10^{-8}) \) in birth weight of males (**Figure 2.3.1B**), relative to controls. E18.5 weight did not vary significantly with position relative to blood supply \( (p = 0.4) \) (**Supplementary Figure S2.3.1**). Body weights are not significantly different in MNR offspring between day 3 of life and 6 months (**Figure 2.3.1C**), except at 1 month \( (p = 0.006) \) when controls \( (23.5 \pm 0.4 \text{ g}) \) were heavier than MNR \( (22.3 \pm 0.3 \text{ g}) \). This protocol demonstrated a reproducible fetal growth restriction from moderate maternal nutrient restriction.
In addition to body weight, organ weights were measured at each dissection. Fetal liver-to-body weight ratio was 1.4-fold reduced in MNR offspring (0.05 ± 0.003) relative to controls (0.07 ± 0.002, $p < 0.0001$), indicating a disproportionate effect of maternal nutrition on the liver (Figure 2.3.2A). All other organs were proportionally reduced with body weight. At one-month liver weight relative to body weight was similar in MNR offspring (0.053 ± 0.005) ($p = 0.09$) (Figure 2.3.2B) but decreased again by 6 months (0.039 ± 0.004) ($p = 0.03$) compared to controls (0.057 ± 0.008 and 0.042 ± 0.006, at 1 and 6 months respectively). The disproportionate impact on the liver growth suggests the effects of fetal nutrition extend into adulthood (Figure 2.3.2C).

Whole body glucose metabolism and hepatic glucose output was assessed with IP-GTT and pyruvate challenge tests, respectively. Reduced AUC in 6-month-old MNR offspring (1553 +/- 57) relative to controls (1323 +/- 68, $p = 0.045$) demonstrated impaired glucose tolerance (Figure 2.3.3A and B). Fasting blood glucose at the time of GTT did not differ in MNR offspring ($p = 0.3$) (Figure 2.3.3A). Blood glucose at all time points and the AUC for pyruvate challenge testing (Supplementary Figure S2.3.2) indicated similar hepatic glucose output in MNR offspring relative to controls. Therefore, moderate differences in glucose metabolism were detected in the MNR offspring.

Random blood glucose was measured once a month until 6 months of age. MNR offspring had similar blood glucose to controls each month ($p = 0.4$) and the AUC did not differ ($p = 0.3$) (Figure 2.3.4).

Serum peptide markers for diabetes and obesity were also assayed at one and six months of age. At one month, PAI-1 was 1.9-fold higher in MNR offspring relative to controls ($p = 0.04$) (Figure 2.3.5A i). PAI-1 remained higher in six-month MNR offspring (1.5-fold) ($p = 0.04$) (Figure 2.3.5B i). Increased resistin was also detected at 6 months in MNR offspring (189.8 ± 9.8 ng/mL) relative to controls (171.2 ± 14.5 ng/mL, $p = 0.04$) (Figure 2.3.5B v). C-peptide, insulin-to-glucagon ratio, GIP, GLP, ghrelin and leptin did not differ based on maternal nutrition at one and six months (Figure 2.3.5).
In addition to peptide markers, lipids were measured in serum and the right lateral liver lobe at 6 months. No differences were observed between control and nutrient restricted offspring in serum triglycerides \( (p = 0.6) \) (Figure 2.3.6 Ai) or total cholesterol \( (p = 0.7) \) (Figure 2.3.6 Aii). Additionally, control and MNR offspring had a similar liver cholesterol \( (p = 0.07) \) (Figure 2.3.6 B).

A hepatic portal vein insulin challenge was used to examine tissue-specific insulin sensitivity. Relative to controls, the p-AKT to AKT ratio was increased 2.5-fold in the liver of MNR offspring in response to the insulin injection \( (p = 0.004) \) (Figure 2.3.7A). Although not significant, insulin stimulated phosphorylation of AKT in adipose tissue (Figure 2.3.7B) and skeletal muscle (Figure 2.3.7C) was not significantly different in the nutrient restricted offspring, respectively \( (p = 0.08 \text{ and } 0.05 \text{ respectively}) \).

While changes in glucose metabolism occurred to some extent in all MNR offspring, there was a variation in the degree of response to fetal nutrient restriction on adult glucose metabolism. At 6 months, 19% of the offspring were less tolerant to glucose (Figure 2.3.8A) and had a higher AUC than any controls (Figure 2.3.8B). The remaining MNR have AUCs that were similar to those of controls.

Serum peptide analysis in the less tolerant mice showed increased insulin \( (p = 0.006) \), leptin \( (p = 0.001) \) (Figure 2.3.9G), and resistin \( (p = 0.005) \) (Figure 2.3.9F) levels, with no changes in other assayed peptide markers (Figure 2.3.9).
Figure 2.3.1 Body weights of MNR and Control offspring from E18.5 until 6 months.

At E18.5, fetal weights of MNR (N=15) were 13% smaller than controls (N=20) \((p = 0.001)\) (3 Control and 3 MNR litters, 3-8 pups per litter) \((a)\). Birth weight of MNR offspring remained 14% smaller \((p = 1.5 \times 10^{-8})\) (Control N=39 from 5 litters, MNR N=58 from 10 litters, 4-9 pups/litter) \((b)\). Except at 1 month when controls were heavier than MNR \((p = 0.005)\), no differences were observed in weight from day 3 to 6 months.

From birth-1-month, Control N= 37 and MNR N= 52 from 5 control and 10 MNR litters (3-11 pups/litter). From 2 months-6 months, Control N= 27 and MNR N=36 from 5 control and 10 MNR litters (3-9 pups/litter) \((c)\). Growth curve data is plotted as the mean + SEM. Asterisk represents significance \((p < 0.05)\) with a Mann-Whitney test.
Figure 2.3.2 Organ weights of male offspring at E18.5, 1 month and 6 months.

(a) At E18.5, liver weight was reduced in MNR offspring relative to their body weight ($p < 0.0001$) (Control N=20 and MNR N=15, 3 litters/group, 3-8 pups/litter). (b) Relative to body weight the liver of MNR offspring was similar to controls at 1 month ($p = 0.09$) (control N=12 from 5 litters, MNR N=19, 9 litters, 1-3 pups/litter) and significantly lower at 6 months ($p = 0.03$) (control N= 24, MNR N=30, 5 control and 10 MNR Litters, 3-8 pups/litter). (c). Fetal data are mean ± SEM (a). Asterisk represents a $p < 0.05$ with a Mann-Whitney test.
Figure 2.3.3 IP-GTT of male offspring at 6 months.

Blood glucose at 90 and 120 minutes were significantly higher in MNR offspring (N=36, 10 litters) relative to controls (N= 25, 5 litters, 3-8 pups/litter) (a). The AUC was also significantly higher ($p = 0.045$) (b). Glucose tolerance data (a) are mean $\pm$ SEM. Asterisk represents a $p < 0.05$ with a Bonferroni post hoc (a) or Mann-Whitney test (b).
Figure 2.3.4 Random blood glucose in male MNR and control offspring from 1 to 6 months of age.

(A) Random blood glucose did not significantly differ at age. (B) AUC from random blood glucose was similar between MNR and control indicating normoglycemia in MNR offspring. At 1 month Control N= 33, MNR N= 51 (5 control and 10 MNR litters, 3-11 pups/litter); from 2 months-6 months Control N= 26, MNR N=36 (5 control and 10 MNR litters, 3-9 pups/litter). Data are mean + SEM (a) or whisker plots (b). Asterisk represents a $p < 0.05$ with a repeated measures ANOVA(a) or Mann-Whitney test(b).
Figure 2.3.5 Serum peptide markers for obesity and diabetes.

Peptides were measured at (a) 1 month (Control N=7, MNR N=18, 4 control and 10 MNR litters, 1-2 pups/litter), and (b) 6 months of age (5 control and 10 MNR litters, 3-7 pups/litter, MNR N=52, control N= 30). PAI-1 was increased in MNR offspring at 1 month ($p = 0.04$) and 6 months ($p = 0.04$), (i) and resistin at 6 months ($p = 0.04$) (v).

Ghrelin (ii), GLP-1 (iii), leptin (iv), GIP (vi), insulin to glucagon ratios (vii), and C-peptide (viii) levels were similar between control and MNR offspring. Data are presented as the median and quartiles in whisker plots. Asterisk indicates a $p < 0.05$ with a Mann-Whitney test.
Figure 2.3.6 Serum and liver lipids in male MNR (N=36) and control (N=27) offspring at 6 months of age.

A. Serum triglyceride ($p = 0.6$) (i) and total cholesterol (ii) ($p = 0.7$) were not significantly different between MNR and control offspring. B. Liver total cholesterol was also similar between MNR and control offspring ($p = 0.07$). 5 control and 10 MNR litters, 3-6 pups/litter. Data are mean $\pm$ SEM (a). Asterisk represents a $p < 0.05$ with a Mann-Whitney test.
Figure 2.3.7 Insulin signalling as determined by phosphorylation of AKT in response to an insulin bolus in male MNR and control offspring at 7 months of age. p-Akt relative to AKT after an insulin dose was increased in MNR offspring relative to controls in the right medial liver lobe \( (p = 0.004) \) (a). p-AKT to AKT ratios were relatively increased in MNR adipose tissue and (b) skeletal muscle of insulin injected mice, but this change was not significant \( (p = 0.08 \) and 0.05, respectively) \( (c) \). Saline injected N=3 and insulin injected N=5 for both maternal nutrition groups (5 control and 8 MNR litters, 1 pup/litter). Western blots were done in quadruplicates. A representative blot and quantification of the replicates are shown with whisker plots. Means with different letters are significantly different \( (p < 0.05, \) unpaired \( t \)-test).
Figure 2.3.8 Glucose tolerance tests for all MNR and control offspring at 6 months. (a) Individual glucose tolerance tests for controls demonstrate the range of responses. (b) 7 MNR (black) had an AUC under the curve greater than other MNR or controls (grey) (c) which are referred to as intolerant MNR (5 control and 10 MNR litters, 3-8 pups/litter).
Figure 2.3.9 Serum peptide markers for obesity and diabetes in male MNR and control offspring at 6 months old according to glucose tolerance.

Resistin \( (p = 0.005) \) (d) and leptin \( (p = 0.001) \) (e) were significantly increased in MNR offspring that are glucose intolerant. PAI-1 (a), Ghrelin (b), GLP-1(c), GIP(f), insulin:glucagon (g) and c-peptide (h) were not significantly different in intolerant MNR. Control N=30 (5 litters, 3-8 pups/litter), tolerant MNR N=43 (10 litters, 3-8 pups/litter) and intolerant MNR N=7 (5 litters, 1-2 pups/litter). Asterisk represents a \( p < 0.05 \) with a Mann-Whitney test.
2.4 Discussion

In humans, FGR can be symmetric or asymmetric. Symmetric FGR, meaning all organs are reduced proportionately to body weight, is often associated with an insult of early-onset (25). Conversely, asymmetric FGR is more common in late-onset growth restriction, and is where less essential organs are reduced but vital organs such as the brain and the heart are spared (25). Similar to humans, maternal undernutrition in mice resulted in an asymmetric growth restriction and had the most significant impact on the liver (26). The thymus and spleen are also smaller relative to body weight in SGA autopsies (26) but were not measured in this study. Although reduced again at 6 months, one-month relative liver weights were similar to controls which might indicate differences in growth rate of the liver in MNR offspring. MNR in guinea pigs do not result in reduced liver-to-fetal weight ratios but fractional growth rates are increased near term (9). These data suggest that liver growth may be more sensitive than other organs to fetal undernutrition.

The variation in response to fetal nutrient restriction in our model was similar to the variations observed in the human FGR populations. Some individuals with extremely low birth weights (ELBW) although having 3 times greater risk will not develop glucose intolerance and type 2 diabetes (3). In adults, genetic variation and differential expression contribute to obesity and metabolic disorder resistant and/or susceptible populations of non-human primate (27) and rodent models (28,29) in response to nutritional stress, such as a high fat diet. Offspring in models exposed to a maternal high fat diet or nutrient restriction have metabolic (7,30), gut microbe (31) and epigenomic changes (32), but to our knowledge none of these models focus on changes specific to susceptible and resistant populations in these offspring. Having glucose tolerant and intolerant offspring resulting from MNR allow future studies to examine adaptations in glucose metabolism within the MNR populations and in all offspring exposed to nutrient restriction in utero.

In this study, normal glucose tolerance observed in 81% of the offspring might have been due to increased insulin sensitivity as adults despite having smaller livers. Increased insulin sensitivity is present at birth and persists a few weeks postnatally in lambs exposed to hypoxia-induced placental insufficiency (33). To our knowledge, evidence of
insulin desensitization (6,7) has been observed rather than persistence of the increased sensitivity into adulthood. Intolerant MNR offspring, which had relatively higher insulin-to-glucagon ratios, could have insulin resistance that was not detectable during insulin sensitivity test due to the limited sample size. Studies comparing liver responses in intolerant and tolerant MNR mice may provide insight into why some offspring are able to adapt to the postnatal parameters assessed in this study.

Despite having similar body weight at 6 months, PAI-1 and resistin levels were increased in MNR offspring. Both are produced primarily in adipose tissue in mice (16,17) and are associated with obesity and low-grade chronic inflammation (16,17,34). Individuals born SGA with the highest body mass index (BMI) have reduced insulin sensitivity (35). However, total fat pads are increased in female adult rats that experienced 50% nutrient restriction throughout gestation with similar adult body weights to controls (36). ELBW babies have also have similar BMI with increased body fat mass (3). Subsequently, increased markers for obesity and meta-inflammation may indicate reduced lean mass in male offspring in response to fetal undernutrition even with similar adult body weights. MNR offspring with glucose intolerance had higher serum resistin, and it cannot be excluded that increased fat mass may contribute to the development of glucose intolerance.

Leptin was also increased in intolerant offspring. Serum leptin is correlated with body fat mass in humans (37) and mice(38), supporting the notion of differences in body composition. This marker could also indicate a decreased appetite in less tolerant MNR offspring. Alternatively, leptin resistance occurs in diet-induced obesity (39) and increased leptin in offspring with impaired glucose homeostasis may be a sign of leptin resistance. Leptin may also play a role in regulation of energy expenditure (39) and behavior changes, such as food preference and total activity. These behaviors are also altered in adulthood following IUGR or undernourishment during development (40,41). Increased serum leptin levels suggest that behaviors or body mass composition may be altered in susceptible MNR offspring and require further investigation.
Moderate nutrient restriction throughout gestation resulted in changes to the liver and adipose tissue including decreased fetal liver weight and increased adult insulin sensitivity in the liver. Serum markers for body mass composition and meta-inflammation were also increased. The liver is important in regulation of lipid and glucose metabolism and a key tissue in the development of type 2 diabetes. While it is possible that some adaptations occur in all offspring exposed to MNR, additional physiological and biochemical changes in the liver or other organs may be specific to those that develop glucose intolerance. This model provides an opportunity to investigate the tissue-specific molecular mechanism underlying changes between control and MNR as well as susceptible and resistance offspring. The variation in MNR offspring represents the diversity in human FGR populations and their susceptibilities towards type 2 diabetes (3,4).
2.5 References


Chapter 3 : High-Fat High-Sugar Diet Impairs Offspring Glucose Tolerance Independent of Poor Maternal Nutrition in Mice

This chapter was submitted for consideration as a brief report in the Journal of Developmental Origins of Health and Disease (ID: DOHaD-11-18-BR-1072).
3.1 Introduction

Intrauterine growth restriction (IUGR) is a pregnancy condition where fetal growth is suboptimal, resulting in an infant born small for gestation age (<10th percentile). These infants have increased risk for perinatal morbidity and mortality (1), and as adults are more likely to develop obesity and type II diabetes (2,3). Common causes of IUGR include maternal malnutrition and placental insufficiency, both resulting in fetal nutrient restriction (4). It is thought that the fetus may adapt metabolically to enhance survival in a nutrient restrictive environment, but these adaptations may persist to adulthood where nutrients are abundant and increase the risk for metabolic diseases. This concept is termed the “thrifty hypothesis” (5).

Modulation of the post-weaning diet may mediate these long-term effects. Studies have shown that ‘catch-up’ growth is associated maladaptive effects on glucose metabolism, and that dietary prevention of ‘catch-up’ growth is metabolically protective (6). A post-weaning nutrient-rich diet provides a larger mismatch between fetal and post-natal environments that will increase ‘catch-up’ growth, worsening glucose intolerance and obesity (7).

In humans and animals, a high caloric diet is associated with insulin resistance and type II diabetes (7,8). Different types of high caloric diets have been studied including high fat, fructose, sucrose, or to a lesser extent combination diets (9,10). While controversy exists on which type of diet is most harmful, excess calories seem to be important in metabolic disease promotion (8, 11). Regardless of the challenge, it is thought that fetal and adult diets can potentially interact and impact long term health. The data described in this report indicate a post-weaning high-fat high-sugar (HFHS) diet can disrupt adult glucose metabolism and overcome differences in offspring exposed to maternal undernutrition.

3.2 Methods

3.2.1 Animals

All animal handling was completed within the University of Western Animal Ethics Guidelines (2017-033). Maternal nutrient restriction was used as described by Radford and Han, 2018 (12). Briefly, virgin 8-week-old female CD-1 mice were mated and
vaginal plugs indicated E0.5. At E6.5 pregnant mice were randomly assigned to ad libitum-fed controls or maternal nutrient restriction (MNR) (70% of ad libitum total calories) (#F0173, Bio-Serv, Flemington, NJ) until E18.5. Litters with 11-15 pups were cross-fostered to ad libitum-fed mothers. Fostered litters were culled or fostered to 13 pups. At weaning, female offspring were euthanized and male offspring were randomly assigned to standard chow (Standard) or a high-fat high-sugar diet (HFHS) (Harlan TD.88137) (Table 3.2.1). The four groups studied were Control:Standard, Control:HFHS, MNR:Standard and MNR:HFHS (Figure 3.2.1).

Weights were measured once a month from 1 to 6 months. Monthly non-fasted blood glucose was also measured (1030 h) using a tail vein puncture and the Freestyle Lite Glucometer (Abbott Laboratories, USA) (Control:Standard N= 25, MNR:Standard N=36, Control:HFHS N=33 and MNR HFHS N=52) (Figure 3.2.1).

Table 3.2.1 Composition of Post-Weaning Diets.

<table>
<thead>
<tr>
<th>Diet</th>
<th>Protein (% calories)</th>
<th>Carbohydrates (% calories)</th>
<th>Fat (% calories)</th>
<th>Fat composition (% of diet)</th>
<th>Sucrose (% by weight)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Chow</td>
<td>25</td>
<td>17</td>
<td>58</td>
<td>0.8 saturated</td>
<td>30</td>
</tr>
<tr>
<td>(Teklad LM-485)</td>
<td></td>
<td></td>
<td></td>
<td>1.3 monounsaturated</td>
<td></td>
</tr>
<tr>
<td>HFHS-diet</td>
<td>15</td>
<td>43</td>
<td>42</td>
<td>2.9 polyunsaturated</td>
<td>12</td>
</tr>
<tr>
<td>(Harlan TD.88137)</td>
<td></td>
<td></td>
<td></td>
<td>- cholesterol</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13 saturated</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6 monounsaturated</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 polyunsaturated</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.2 cholesterol</td>
<td></td>
</tr>
</tbody>
</table>

3.2.2 Metabolic caging

At 2 (N=4 per group) and 7-months (N=5 per group), metabolic analysis was assessed using the Comprehensive Lab Animal Monitoring System (CLAMS) with the Oxymax software (Columbus Instruments, Columbus, OH, USA) at the Robarts Research Institute (Figure 3.2.1). Mice were individually caged and acclimated for 16 hours. During the acclimation and measurement periods, cages were maintained at 24 ± 1 °C and mice
received free access to food and water. Measurements of respiratory exchange ratio (RER), food consumption, heat, and total activity were obtained every 10 minutes for 24h (12-h light/12-h dark), as previously described (13). Briefly, VO₂ and VCO₂ measurements were normalized to body weight (mL/kg/h) and used to calculate RER (VCO₂/VO₂). The use of pure carbohydrates as a metabolic substrate would result in a RER of 1 and exclusive fat oxidation would be 0.7. Heat produced was also calculated with VO₂ and RER [VO₂ x (3.816 +1.232 x RER)]. To assess activity, infrared beam breaks were monitored. Total activity is the sum of ambulatory activity or consecutive breaks along the x and y axis, and stereotypy activity which is beam breaks that do not meet ambulatory threshold.

3.2.3 Glucose Tolerance and Pyruvate Challenge Tests
For 6-month intraperitoneal glucose tolerance tests (IP-GTT), mice fasted for 4h (starting at 8 00 h) were injected intraperitoneally with glucose (2 g/kg). Blood glucose was measured at 0, 30, 60, 90 and 120 minutes via tail vein (Control:Standard N= 25, MNR: Standard N=36, Control:HFHS N=39, Control:HFHS N=63) (Figure 3.2.1). After one week of recovery, pyruvate challenge was completed with the same protocol as IP-GTT but pyruvate was injected at a dose of 2 g/kg (N=5 per group) (Figure 3.2.1).

3.2.4 Statistical Analysis
All statistical and graphical analysis were completed in Graphpad Prism (version 5.2 and 8). Mean body weights between groups were compared with a Mann-Whitney test. A two-way repeated measures ANOVA with a Bonferroni post-hoc was used to compare means from random blood glucose, glucose tolerance and pyruvate challenge tests. All data collected from metabolic caging was analyzed with a two-way ANOVA and a Bonferroni post-hoc test.
A cohort of male offspring on a post-weaning high-fat high-sugar (HFHS) from 19 MNR and 10 control litters was assessed for body weight, random blood glucose and glucose tolerance (A). Five offspring from separate litters were placed on a standard chow diet at weaning and compared to a littermate on a HFHS diet in metabolic cages (2 and 7 months) and with a pyruvate challenge test (6 months) (B). A second cohort was produced with 5 control and 10 MNR litters to measure body weight, random blood glucose and glucose tolerance. Tissues from 1 and 6 months were also collected for studies not describes in this chapter. Note: the number of pups on the HFHS diet declined between 2 and 7 months due to mortality or ulcerative dermatitis.
3.3 Results

Birth and weaning weights of MNR offspring prior to exposure to a post-weaning HFHS diet were discussed in chapter 2. Weights of MNR and controls were similar from 1 to 6 months on a HFHS diet. Weight from 1 to 6 months was significantly higher in HFHS-fed offspring relative to those on standard chow (1 month Control:Standard and MNR:HFHS $p = 0.03$, and all other $p < 0.0001$) (Figure 3.3.1A).

Random blood glucose measurements from 1 to 6 months did not differ significantly between maternal nutrition groups in HFHS-fed offspring. However, blood glucose levels were significantly increased from 1 to 5 months in HFHS-fed mice compared to standard chow-fed offspring (Figure 3.3.1B). These findings suggest that post-weaning diet, but not maternal nutrition, had an impact on growth and random blood glucose in the offspring.

Glucose tolerance and hepatic glucose output were assessed with IP-GTT and pyruvate challenge tests, respectively. No differences in glucose tolerance were detected in between maternal nutrient groups within the same diet (Figure 3.3.1C). All HFHS-fed offspring had higher a blood glucose relative to those fed standard show in response to a glucose bolus at all time points (Figure 3.3.1C). AUCs for Control:HFHS (1001 ± 54.52) and MNR:HFHS (1126 ± 36.02) offspring during 6 month IP-GTT was higher than controls (538 ± 51.06) and MNR (692.2 ± 55.75) on standard chow fed offspring ($p < 0.0001$) (Figure 3.3.1D). Hepatic glucose output during a pyruvate challenge test did not differ significantly between maternal nutrition status with similar post-weaning diets from 0-120 minutes (Figure 3.3.1E). Similar AUCs were also measured for control (811 ± 208.6) and MNR (762.4 ± 227.9) on HFHS ($p = 0.88$) (Figure 3.3.1F). These data suggest that a HFHS diet decreased glucose tolerance and caused a relative increase in hepatic glucose output in response to pyruvate (Figure 3.3.1); regardless of prenatal condition.

Metabolic cages were used to compare post-weaning diets (HFHS and standard chow) or maternal nutrition (MNR and control). At 2 (Figure 3.2.2A) and 7 months (Figure
3.2.2B), a post-weaning HFHS diet significantly decreased RERs (2 month: light-cycle \( p = 0.01 \), dark-cycle \( p = 0.002 \); 7 month: light-cycle \( p = 0.0001 \), dark-cycle \( p = 0.0001 \)), and increased heat produced (2 month: light-cycle \( p = 0.0001 \), dark-cycle \( p = 0.003 \); 7 month: light-cycle \( p = 0.005 \)). Maternal nutrient restriction significantly decreased 2-month food intake during the day (\( p = 0.007 \)) and activity at night (\( p = 0.01 \)) (Figure 3.2.2A). Seven-month-old MNR offspring also had reduced RER during light-cycle (\( p = 0.04 \)). There was no significant interaction between post-weaning diets and maternal nutrition in any parameters measured.

Post hoc tests of metabolic parameters were used to compare MNR and control offspring on a HFHS diet. At 2 months, no differences in respiratory exchange ratios (RERs) or heat production were detected between Control:HFHS and MNR:HFHS(Figure 3.3.2A i and ii). Food consumption during the day was decreased in MNR:HFHS (6210 ± 572.5 kCal) relative to Control:HFHS (9866 ± 545.1) (\( p = 0.004 \)) (Figure 3.3.2A iii). No other parameters measured were significantly different between control and MNR on standard chow (Figure 3.3.2A) or on either diet at 7 months (Figure 3.3.2B).

In addition to changes from maternal diet, effects of post-weaning diets in offspring with similar maternal nutrition was assessed. At 2 months, MNR offspring RERs were significantly lower on a HFHS (day= 0.8525 ± 0.01702, night= 0.8975 ± 0.019) relative to standard chow (day= 0.94 ± 0.014, night = 0.9900 ± 0.0041) during the day (\( p < 0.05 \)) and night (\( p < 0.01 \)) (Figure 3.3.2A i) and maintained to 7 months (daytime HFHS= 0.8460 ± 0.018 and standard chow= 0.9500 ± 0.0084, nighttime HFHS= 0.8800 ± 0.018 and standard chow= 0.9840 ± 0.014) (\( p < 0.01 \) and 0.001, respectively) (Figure 3.3.2B i). Decreased RERs in Control:HFHS relative to Control:Standard were only evident at 7 months during both light and dark-cycles (\( p < 0.05 \) and 0.01 respectively). (Figure 3.3.2A i). In 2-month-old control:HFHS diet had increased heat production (daytime= 0.5925 ± 0.026, nighttime = 0.6240 ± 0.0433) relative to controls on a standard chow diet during the light and dark-cycle (daytime = 0.4800 ± 0.01080, nighttime = 0.5120 ± 0.01655, \( p < 0.01 \)) (Figure 3.3.2A ii), which was maintain at 7 months during the light-cycle (\( p <
0.05). Heat produced was increased in 2-month old MNR:HFHS (0.5550 ± 0.01848) compared to MNR:Standard (0.4700 ± 0.02449) during the day (p < 0.01), but was not maintained at night or 7 months. No other significant differences were detected between maternal nutrition on a similar post-weaning diet.
Figure 3.3.1 Weight and blood glucose regulation in MNR and control offspring.
A. Body weight was measured from 1 to 6 months. At one month, MNR were significantly smaller than controls on a standard chow diet ($p = 0.006$). No other differences were detected between maternal nutrition, but all offspring on a HFHS diet had significantly higher body weight relative to offspring fed standard chow ($p < 0.05$).

B. MNR had similar random blood glucose to control offspring on similar post-natal diets. HFHS-fed offspring had significantly higher random blood glucose from 2 to 4 months relative the same maternal diet group fed standard chow. MNR on a HFHS diet also had higher blood glucose at 5 months compared to MNR on standard chow.

C. Glucose tolerance did not differ between control and MNR on similar diets and normalized blood glucose at all timepoints were higher on the HFHS diet-fed offspring compared to standard chow fed offspring from similar maternal diets. (Control:Standard N=25, MNR:Standard N=36, Control:HFHS N=33, MNR:HFHS N=52).

D. Pyruvate challenge tests showed hepatic glucose output did not differ between control and MNR on similar diets, or between diets from the same maternal nutrition at all timepoints (N=5 per group, 1 pup/litter in each group). Data are expressed as mean ± SEM. Man Whitney tests (A, Cii and Dii) or a two-way repeated measures ANOVA with a Bonferroni post-hoc was used (B, Ci and Di). Different letters represent significant differences between maternal nutrition and asterisks represent significant differences between diets within the same maternal nutrient group.

Sample numbers per month are as followed for A:

<table>
<thead>
<tr>
<th>Month</th>
<th>Control:Standard</th>
<th>MNR:Standard</th>
<th>Control:HFHS</th>
<th>MNR:HFHS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>37</td>
<td>52</td>
<td>52</td>
<td>82</td>
</tr>
<tr>
<td>2</td>
<td>28</td>
<td>37</td>
<td>44</td>
<td>68</td>
</tr>
<tr>
<td>3</td>
<td>28</td>
<td>37</td>
<td>43</td>
<td>73</td>
</tr>
<tr>
<td>4</td>
<td>28</td>
<td>37</td>
<td>43</td>
<td>71</td>
</tr>
<tr>
<td>5</td>
<td>28</td>
<td>37</td>
<td>42</td>
<td>66</td>
</tr>
<tr>
<td>6</td>
<td>28</td>
<td>37</td>
<td>39</td>
<td>64</td>
</tr>
</tbody>
</table>
Figure 3.3.2 Metabolic caging data from 2 (A) and 7 (B) month-old offspring during the day (light cycle) and night (dark-cycle).

At two months, RER (A i) was significantly lower in MNR fed HFHS diets than MNR fed on standard chow at both light cycles ($p = 0.002$ and 0.03, respectively). Controls on a HFHS produced more heat than controls on standard chow during the day at 2 months ($p = 0.01$) (A ii). Control:HFHS consumed more food than MNR:HFHS ($p = 0.004$)(A iii) and total activity was decreased in MNR relative to controls on a HFHS diet ($p = 0.03$) (A iv). In 7-month-old offspring RERs were reduced in MNR fed HFHS diets compared to MNR fed on standard chow at both light cycles (B i, $p = 0.01$ and 0.02, respectively). No other differences were detected at 7 months. Data are presented as the mean ± SEM). A two-way ANOVA was used to compare post-weaning and maternal diet or interactions between these parameters and the $p$-values are shown in the chart beside each graph. Bonferroni multiple comparisons were used for any changes detected and significant differences ($p < 0.05$) are represented by an asterisk. 2 month N=4 and 7 month N= 5 per group (1 mouse per litter).
3.4 Discussion

The concept of a ‘second hit’ such as a dietary challenge or sedentary life style is essential to the “Thrifty Phenotype Hypothesis”, where the fetus is primed to conserved nutrients but experiences a nutrient abundant post-natal environment. A HFHS diet was used in this study to mimic the western diet and investigate the role of a ‘second hit’ in the adult males. The MNR males were expected to have reduced glucose tolerance and insulin sensitivity compared to controls. However, MNR offspring showed no differences in glucose tolerance, hepatic glucose output, random and fasting blood glucose, RER, food consumption or activity compared to controls on a HFHS diet.

Moderate nutrient restriction during pregnancy resulted in similar body weights in adulthood compared to controls on standard chow or HFD. Rat offspring from 50% maternal nutrient restriction late in gestation that were fed standard chow (14) or a HFD (14,15) after weaning have also resulted in similar adult body weights to offspring from control pregnancies on the same postnatal diet. Increased growth of fat mass and phenotypic switching of pro-inflammatory macrophages (16) have been observed without changes in body weight and could impact the tissue function in MNR offspring. Conversely, mice with low maternal protein or calorie restriction throughout pregnancy became more obese than offspring from control pregnancies (17,18). This variation might be due to timing of catch-up growth, with catch-up growth prior to day 3 which was previously observed in this model (12) or after weaning (19) having a protective effect against diet-induced obesity. Additionally, although diet composition varied, daily calorie consumption was similar in all experimental groups, except at 2 months when MNR:HFHS ate less than Control:HFHS. If higher calories were consumed differences between MNR and control might have been observed.

Maternal diet during pregnancy had no impact on non-fasting random blood glucose, glucose challenge or pyruvate challenge in our mouse offspring on a HFHS post-weaning diet. Rat offspring from low maternal protein throughout pregnancy and lactation or intrauterine artery ligation weaned into a HFD resulted in no significant differences in glucose tolerance (17,20), fasting and non-fasting blood glucose (20). Islet aging was
similar from a maternal HFD and maternal low protein, suggesting that both environmental exposures may converge on similar mechanisms (20). A similar mechanism underlying HFD exposure and reduced maternal nutrition could explain why there were no significant interactions in metabolic assessments and similar blood glucose regulation in MNR and control offspring fed a HFD. Conversely, evidence of maternal undernutrition with (15) and without (14) a high a caloric post- weaning diet causing decreased insulin sensitivity (14,15,21) or alterations in expression of hepatic genes important in gluconeogenesis (22) have been observed. The age of ‘catch-up’ growth and total calories consumed may have minimized differences between control and MNR offspring on HFHS.

MNR on a HFHS diet showed decreased RERs at all ages and time points relative to MNR on standard chow, but this decrease was only significant in controls at 7 months. Pure carbohydrates as an energy source would result in a RER of 1 and oxidation of only fats would be 0.7. Reduced RERs imply decreased carbohydrate and increased use of fat as a metabolic substrate. Some studies indicate that nutrition during weaning or gestation impact RER only when stimulated with metabolic regulatory peptides such as adiponectin or leptin (21,23), which have not been assessed in this study. Stimulation by adiponectin or leptin may have been required to detect significant differences between maternal nutrition on the same diet or at other ages and time points.

A calorie dense post-weaning diet did not significantly impact activity levels of offspring at 2 or 7-months old. Activity was also similar between control and MNR groups within the same post-weaning diet. Consistent with our results, no changes in energy expenditure from a calorie dense or standard chow diet were also observed in rat offspring from early gestation maternal nutrient restriction compared to controls (21).

Both suboptimal nutrition during early development and a high caloric adult diet have been associated with increased appetite, changes in food preference and sedentary behavior (14,18,21,23,24). Conversely, restriction of nutrients during lactation by increasing litter size (23), adjusting maternal diet (18) or preconception maternal diet (24)
could have a greater impact on such behaviours compared to maternal nutrition alone. In fact 50% maternal nutrient restriction minimized sedentary behaviour induced by a HFD (14). In addition to minimal impact from maternal nutrition, diet did not lead to significant changes in food intake or activity. Rat offspring from maternal nutrient restriction resulted in increased caloric intake and reduced activity (21), suggesting that total calories rather than dietary composition could influence total activity. While the amount of food consumed did not differ in MNR offspring, preference for dietary intake of high fat or high sugar diets was not measured and cannot be eliminated in this study. Because maternal nutrient restriction was limited to pregnancy and offspring did not consume excess calories on the HFHS diet, changes to activity and food consumption were not observed in MNR offspring relative to controls.

Moderate maternal nutrient restriction during gestation in mice did not result in differences in metabolic parameters measured in this study in response to a post-weaning isocaloric HFHS diet. The timing of the ‘second hit’ as well as the total calories consumed may have contributed to minimal interaction with maternal diet. However, MNR on standard chow started out with increased insulin sensitivity (12) and have similar abilities to regulate blood glucose on the high fat diet. A use of fat as a metabolic substrate was also more evident in MNR offspring at all time points, indicating that they may have been more impacted than controls. This study demonstrates differences due to maternal nutrition and the interaction with diet composition without excess calories and sedentary activity. Additionally, it underlines the importance of dietary composition in adult life.
3.5 References


12. Radford BN, Han VKM. Offspring from maternal nutrient restriction in mice show variations in adult glucose metabolism similar to human fetal growth 3 restriction. *J. Dev. Orig. Health Dis.* 2018; DOI: 10.1017/S2040174418000983.


Chapter 4: Evidence of Increased Hypoxia Signalling in Fetal Liver from Maternal Nutrient Restriction in Mice
4.1 Introduction

Intrauterine growth restriction (IUGR) is a pregnancy condition where fetal growth is suboptimal, resulting in an infant born with a birth weight <10th percentile (1). Individuals born from pregnancies complicated by IUGR are at increased risk for peri- and post-natal complications, and as adults are at increased risk for metabolic disorders (2,3). Adverse intrauterine conditions may lead to adaptations to enhance fetal survival but contribute to aberrant metabolism as adults (2).

Hypoxia inducible factor (HIF) pathway is a cellular response to enhance survival in adverse conditions such as hypoxia and nutritional stress. Under normal physiological conditions, the α subunit (HIF-1α, HIF-2α, HIF-3α) is post-translationally hydroxylated and/or phosphorylated in the cytosol by regulators such as von Hippel–Lindau (VHL)/U3 ligase complex, factor inhibitor of hypoxia (FIH) and glycogen synthase kinase 3β (GSK-3β) (4–6). These post-translational modifications promote proteasomal degradation (4–6). During cellular stress, reduced hydroxylation and/or phosphorylation at stabilization sites inhibit recognition by the proteasome. Stabilization in the cytosol results in increased dimerization with the HIF-1β subunit. HIF dimers then translocate to the nucleus and transcriptionally regulate genes containing hypoxia responsive elements (HREs)(7). HRE-containing genes are involved in metabolism, cell cycle regulation and angiogenesis (5,7).

Changes in HIF signalling in placentas from growth restricted pregnancies (8) or kidney and liver of maternal nutrient restricted IUGR animal models have been documented (8–11). However, others fail to find differences in HIF signalling in these tissues (9,12). Previously we have shown that maternal nutrient restriction results in male offspring with reduced fetal and adult liver size and increased hepatic insulin sensitivity in adulthood (13). Here we aimed to investigate whether HIF signalling has a role in fetal liver adaptations after exposed to moderate calorie restriction in utero.
4.2 Methods

4.2.1 Animals
All animal procedures were approved by the Animal Use Subcommittee of the University Council on Animal Care at the University of Western Ontario and were described by Radford and Han, 2018(13). Briefly, mice were housed in 12-hour light and dark cycles. Virgin 8-week-old CD-1 female mice were bred, and the presence of a vaginal plug indicated E0.5. At E6.5, pregnant females received *ad libitum* standard chow (control, N=5) or maternal nutrient restriction (MNR, N=5) (70% total calories) (both groups receiving #F0173, Bio-Serv, Flemington, NJ). At E18.5 dams were euthanized with CO₂ narcosis and pups with cervical dislocation. Right liver lobes were removed from each pup, snap frozen in liquid nitrogen and stored at -80°C. Only male fetuses were identified with SRY PCR (forward primer - TGGACTGGTGACAARGCTA, reverse primer - TGGAAGTACAGGTGTGCACTCT) and used for further analysis.

4.2.2 RNA isolation
RNA for sequencing was isolated from 10 control and 10 MNR livers (2 mice per litter). Additional RNA from 8 control and 8 MNR littermates (1 or 2 mice per litter) were used as a validation cohort for real time PCR. Briefly, the frozen right liver lobe (30-50 mg for sequencing and 10-15 mg for real time PCR) was pulverised with a Bessman Tissue Pulveriser (Spectrum Laboratories, Rancho Dominguez, CA) then homogenized with a Brinkman homogenizer Polytron® 3000 for 50 seconds in 1mL or 500uL of ice cold trizol, respectively. The PureLink Mini RNA kit (Invitrogen, USA) with the on-column DNAsel treatment protocol was used to collect RNA from homogenate, as described by the manufacturer.

4.2.3 RNA sequencing
RNA/library QC and RNA sequencing was run at McGill University and Genome Quebec Innovation Centre, Quebec, CA. Libraries were generated with the NEBNext® Ultra™ Directional RNA Library Prep Kit for Illumina® (E7420S, New England BioLabs, Massachusetts, United States). Quality of RNA was verified on the Agilent Bioanalyzer (RIN > 7). Single-read 50bp sequencing was obtained from a HiSeq 2500
with 17-31M reads per sample (average depth of 23M). Reads were aligned to the mm9 transcriptome (14) with Bowtie2 (15) (90% alignment rate).

4.2.4 Real time PCR
Complementary DNA was generated with the SuperScript™ IV First-Strand Synthesis System (Invitrogen, USA). Taqman assays that covered multiple exons were purchased for select target genes including: Cyclin G2 (Ccng2) (4448892, Mm00432394_m1), B-cell Translocator Gene 2 (Btg2) (4453320, Mm00476162_m1), Lysine Demethylase 3A (Kdm3a) (4448892, Mm01182127_m1), FK506 Binding Protein (Fkbp5) (4448892, Mm00487406_m1), 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-4 (Pfkbp3) (4448892, Mm00504650_m1), Hypoxia Inducible Factor 3α (Hif-3α) (Mm00469375_m1), von Hippel–Lindau (Vhl) (Mm00494137_m1), Hypoxia Inducible Factor 1α (Hif-1α) (Mm00468869_m1), and Hypoxia Inducible Factor 2α (Hif-2α) (Mm01236112_m1); and endogenous controls Glyceraldehyde-3-Phosphate Dehydrogenase (Gapdh) (4331182, Mm99999915_g1) and beta actin (4331182, Mm01205647_g1) (Invitrogen, USA). Reactions were run with TaqMan™ Fast Advanced Master Mix (Invitrogen, USA) on the ViiA™ 7 (Applied Biosystems, USA) according to the manufacturer’s protocol. Fold change was calculated using the delta delta CT method (ddCT).

4.2.5 Protein Isolations
Ten-Fifteen mg of tissue was homogenized with 1mL of ice cold 1x Cell Lysis buffer (9803S) from Cell Signaling (Danvers, MA, USA) with protease inhibitor cocktail 1, 2, and 3 (P1860, P5726, and P0044, Sigma-Aldrich, St. Louis, MO, USA) for 40 seconds with a Brinkman homogenizer Polytron® 3000. Lysates were sonicated (F550 Sonic Dismemberator, Fisher Scientific, Markham, ON Canada) and then shaken at 4°C for 2 hours. Cellular debris was removed from lysates by spinning at 12,000 x g for 10 minutes and the supernatant was collected for analysis. Protein concentrations were calculated with the Bio-Rad Protein Assay (Cat #500-0006, Bio-Rad Laboratories Inc., Des Plaines, IL) according to the manufacturer’s protocol.
4.2.6 Western Blotting

Fifty µg of protein for HIF-2α blots and 25µg for all other blots were loaded and run on an 8% polyacrylamide gel. Protein was transferred to a PVDF membrane with the Transblot Turbo™ (Bio-rad Laboratories Inc., USA). Membranes were dipped in methanol and then blocked for an hour at room temperature in 5% milk in TBST. After rinsing 3 times (5 minutes each) in TBST, primary antibodies were incubated in 5% BSA in TBST overnight (Table 4.2.1). Blots were rinsed 3 times (5 minutes each) and incubated with secondary antibodies in 5% milk in TBST for 1 hour at room temperature (Table 4.2.1). Blots were images with the Clarity™ Western ECL Substrate (1705061, Bio-Rad Laboratories Inc., Des Plaines, IL) and band intensities were quantified using Imagelab software® version 5.1 BETA (Bio-Rad Laboratories Inc., Des Plaines, IL). Kdm3a was not assessed via western blot because we were not able to find an effective antibody for the mouse fetal liver samples. All sample lysates were run on three western blots to generate technical replicates for statistical comparisons. Only one representative blot is shown.

4.2.7 Statistical analysis

Samples that contributed more variation than expected to the each group were removed as outliers as described by Gierliński et al. with the median plus 2 times the interquartile range as the threshold (16). Differential expression was detected with a false discovery rate (FDR) < 0.1 and detection in 2 or more tools (EdgeR(17), DESeq2(18) and ALDex2(19)) using the default settings in R (version 3.4.3). Optimal number of clusters were generated with the gap statistic with the Cluster library (version 2.0.6) and PCA plots were plotted with ggplot2 (version 2.2.1) and ggrepel (version 0.8.0) in the R console (version 3.3.2 and 3.4.3). Gene ontology (GO) pathway enrichment was done on the Gene Ontology Tool (Panther)(20,21); and KEGG and NCI pathway enrichments were run on enrichR (22,23). For quantitative PCR (qPCR) and western blots unpaired t-tests were used to compare delta CT values or band intensities respectively on Graphpad Prism (version 5.2).
### Table 4.2.1 Antibodies used for western blotting

<table>
<thead>
<tr>
<th>Target</th>
<th>Company</th>
<th>Cat. No</th>
<th>Dilution</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIF-2α</td>
<td>Santa Cruz Biotechnology Inc.</td>
<td>sc-13596</td>
<td>1:250</td>
</tr>
<tr>
<td>HIF-3α</td>
<td>Santa Cruz Biotechnology Inc.</td>
<td>sc-390933</td>
<td>1:200</td>
</tr>
<tr>
<td>FKBP5</td>
<td>Santa Cruz Biotechnology Inc.</td>
<td>sc-271547</td>
<td>1:200</td>
</tr>
<tr>
<td>PFKFB3</td>
<td>Cell Signaling</td>
<td>13123S</td>
<td>1:1000</td>
</tr>
<tr>
<td>Mouse IGG</td>
<td>Bio-Rad Laboratories Inc.</td>
<td>170-6515</td>
<td>1: 10000</td>
</tr>
</tbody>
</table>

## 4.3 Results

RNA sequencing data was assessed for sample outliers and gene distributions among remaining samples (16). One control and one MNR sample contributed more variance to their respective maternal nutrient groups than other samples within the group and were removed from further analysis (Figure 4.3.1). With remaining samples, two distributions of genes were formed along PC1 (Figure 4.3.2). The second distribution contained genes enriched in GO pathways in neural and epithelial cell development (Supplementary Table 4.3.1), since hepatocyte and hematopoietic populations are of primary interest in this study this second distribution of genes was removed from the analysis.

Overall gene expression was explored with PCA (principal component analysis) plots and cluster analysis. The optimal number of clusters with the gap statistic of the centered-log ratio and regularized-log ratio transformed data was 1. However, k-means clusters with k=2 resulted in clusters separating based on counts per sample (Figure 4.3.2A and Supplementary Table 4.3.2). The PCA plot of the top 500 variable genes from the centred-log ratio (Figure 4.3.3A) did not result in separation of samples based on maternal nutrition. Regularized-log ratio transformed data PCA of the top 500 variable genes indicates moderate separation of maternal nutrition along PC1. Although PC1 only explains 8% of the total variance in the samples (Figure 4.3.3B). These data suggest that overall gene expression was similar between control and MNR fetal livers.

Despite similar overall expression, 49 protein-coding genes were differentially expressed in MNR fetal livers relative to controls using a false discovery rate (FDR) cut-off of < 0.1 and consistency of two or more tools (Supplementary Table 4.3.3). GO enrichment
indicated negative regulation of transcription from RNA polymerase II promoter in response to hypoxia as the top pathway when ranked according to fold enrichment (Cited2 and Vhl) (Figure 4.3.4A). Hypoxia signalling was also the top pathway enrichment according to combined scores with KEGG (Figure 4.3.4B) and NCI (Figure 4.3.4C). Additional genes included in these enrichments are Pfkfb3 and Hif-3α.

Investigation into gene functions of differentially expressed genes indicate further involvement in cellular response to hypoxia (Figure 4.3.5 and Supplementary Table 4.3.4).

Genes involved in hypoxic regulation of metabolism, cell cycle regulation and chronic hypoxia were selected to be validated by qPCR in a separate validation cohort (Figure 4.3.6). Pfkfb3 transcript was increased 1.8-fold (p = 0.002) in MNR relative to controls, similar to the fold change in the RNAseq data of 1.5 (FDR = 1.2x10^-6). Fkbp5 and Kdm3a transcripts were also confirmed to be increased by 1.3 and 1.5-fold (p = 0.03 and 0.02) and similar to sequencing fold changes of 1.6 and 1.2, respectively (FDR = 0.006 and 0.04). Lastly, Hif-3α was significantly higher by 1.4-fold in the validation cohort (p = 0.01), similar to the 1.3-fold increased initial MNR cohort (FDR = 0.009). Although not significant, Ccng2, which was 1.5-fold higher in the RNAseq data (FDR = 0.0001), was relatively higher in the MNR fetal livers by 1.4-fold (p = 0.05). Btg2 and Vhl were not significantly different in the validation cohort (p = 0.1 and 0.7). Hif-1α and Hif-2α transcripts were not significantly different in the initial MNR cohort, but Hif-1α was 1.3-fold decreased in the validation MNR group used for qPCR relative to controls (p = 0.01).

Protein levels for genes differentially expressed in the validation cohort, as well as HIF-2α, were determined by western blots (Figure 4.3.7). HIF-1α was not detected in the fetal liver (Supplementary Figure S4.3.1) but HIF-2α was increased 2.2-fold in MNR fetuses (p = 0.002). HIF-3α was also increased by 1.3-fold (p = 0.03) in MNR relative to controls (Figure 4.3.7A and B). FKBP5 and PFKFB3 protein levels were not
significantly different between maternal nutrient groups (1.6 1.3-fold change, \( p = 0.09 \) and 0.5, respectively) (Figure 4.3.7C and D).
Figure 4.3.1 Biplots of E18.5 liver RNA sequencing data transformed with the centered-log ratio for controls (A) and MNR (B).

Group outliers are indicated by the red box. N=10 for both groups.
Figure 4.3.2 Distribution of genes in the center-log ratio transformed data.

Two overlapping distributions of genes contributing to PC1 are visible on the biplot, which are not separating based on maternal nutrition or litters (Group-Litter, Group= Control (C) or MNR (M) and Litters= A to J) (A). Two clusters are formed (k-means) (cluster 1 = grey, cluster 2 = black). Histograms of all rotation values (B i) with a black box indicating rotation values between -0.004 and 0.004. Distribution 1(left) and 2(right) are separated by the red line (B ii) in a histogram only showing rotation values between -0.004 and 0.004. Control N=9 and MNR N=9, 1-2 pups/litter.
Figure 4.3.3 PCA of the top 500 variable genes.

Data was transformed with the centered-log ratio (A) and regularized log ratio (B). Control N=9 and MNR N=9, 1-2 pups/litter.
### Table 4.3.4

<table>
<thead>
<tr>
<th>GO pathway</th>
<th>Fold Enrichment</th>
<th>FDR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative regulation of transcription from RNA polymerase II promoter in response to hypoxia (GO:0061428)</td>
<td>&gt; 100</td>
<td>3.78E-02</td>
</tr>
<tr>
<td>Negative regulation of transcription from RNA polymerase II promoter in response to stress (GO:0097201)</td>
<td>&gt; 100</td>
<td>1.73E-02</td>
</tr>
<tr>
<td>Regulation of DNA-templated transcription in response to stress (GO:0043620)</td>
<td>3.245</td>
<td>2.03E-02</td>
</tr>
<tr>
<td>Skeletal muscle cell differentiation (GO:0035914)</td>
<td>30.29</td>
<td>2.04E-02</td>
</tr>
<tr>
<td>Muscle tissue development (GO:0060537)</td>
<td>8.29</td>
<td>4.07E-02</td>
</tr>
<tr>
<td>Blood vessel morphogenesis (GO:0048514)</td>
<td>7.74</td>
<td>2.49E-02</td>
</tr>
<tr>
<td>Blood vessel development (GO:0001568)</td>
<td>6.2</td>
<td>5.01E-02</td>
</tr>
<tr>
<td>Response to hormone (GO:0097275)</td>
<td>6.11</td>
<td>2.87E-02</td>
</tr>
<tr>
<td>Cellular response to stress (GO:0033554)</td>
<td>4.03</td>
<td>2.52E-02</td>
</tr>
<tr>
<td>Positive regulation of RNA metabolic process (GO:0051254)</td>
<td>4.02</td>
<td>1.70E-02</td>
</tr>
</tbody>
</table>

### Figure 4.3.4

Top 10 gene ontologies (A), KEGG (B), and NCI:Nature (C) gene pathway enrichments with protein-coding genes differentially expressed between control and MNR.

For B and C, significant pathways are in red and the bar size represents the combined scores.
Figure 4.3.5 Genes differentially expressed in the RNAseq data (FDR <0.1 in 2 or more differential expression tools) in hypoxic inducible factor signalling.

Upregulated, down-regulated or no change. Boxes indicate genes selected for qPCR in a validation cohort, along with HIF-1α and HIF-2α.
Figure 4.3.6. Relative fold change for genes involved in HIF signalling validated in an additional cohort with qPCR.

Data are plotted as mean ± SEM and asterisks represent $p < 0.05$ with an unpaired $t$-test. Control N=8 and MNR N=8, 1 or 2 pups/litter.
Figure 4.3.7 Western blots of proteins confirmed to be differentially expressed in the validation cohort.

HIF-2α (A) and HIF-3α (B) were significantly increased in MNR offspring by 2.2 and 1.3-fold ($p = 0.002$ and 0.03, respectively). FKBP5 (C) and PFKFB3 (D) were not significantly different in MNR relative to controls ($p = 0.09$ and 0.5, respectively). All blots were run in triplicates and representative blots are shown. Data are plotted as mean ± SEM and asterisks represent $p < 0.05$ with an unpaired $t$-test. Control N=6 and MNR N=7, 1 or 2 pups/litter.
4.4 Discussion

HIF-2α protein was increased in MNR offspring, but HIF-1α was not detected. Normal development in cells, such as endothelial cells, involve a switch from HIF-1α to HIF-2α as the primary HRE transcriptional regulator, similar to the transition observed with chronic hypoxia in cancer cells (24,25). During the liver bud maturation the HIF-1α transcript decline is associated with a shift in hepatoblast differentiation from biliary cells to hepatocytes (26). Although not known, it is conceivable that the developing liver shifts from HIF-1α to HIF-2α as well. In other tissues this switch is thought to occur in part because oxygen tension increases as organ perfusion during development becomes more efficient. FIH and PHDs less efficiently hydroxylate HIF-2α allowing it to stabilize and accumulate longer than HIF-1α (27,28). Additionally, differential expression of miRNAs can lead to decreased Hif-1α mRNA stability but not Hif-2α (29). HIF-1α and HIF-2α have both redundant and non-redundant gene targets that depend on cellular context and cell type (24,30). The presence of HIF-2α but not HIF-1α is likely due to the late-gestational sampling in this study and duration of hypoxia signalling.

Hif-3α mRNA and protein were higher in MNR compared to controls. Hif-3α mRNA is induced by HIF-1α during chronic hypoxia and transcriptionally down-regulates Hif-1α as a negative feedback mechanism (31,32). In mice Hif-3α has three isoforms, a full-length transcript and two variants, IPAS and NPAS. All three isoforms can inhibit the transcriptional activity of HIFs by binding with HIF-1β or HIF-1/2α, preventing dimerization and nuclear translocation (33). Some HIF-3α splice variants can also weakly induce canonical HIF-1α target genes (34). Consequently, increased HIF-3α protein could contribute to moderate differences between control and MNR HIF-induced transcription.

Fkbp5 was also increased at the transcript level and, although not significant, relatively increased at the protein level. FK506 Binding Protein (FKBP5) functions as co-chaperon
to HSP90 and as a scaffold protein. Subsequently, FKBP5 has diverse functions including reducing the affinity of glucocorticoid to the glucocorticoid receptor and promotion of adipocyte differentiation (35,36). As a chaperone FKBP5 also promotes the folding of PHLPP (a key phosphatase for AKT) resulting in reduced AKT phosphorylation (37). In adipose tissue chronic hypoxia results in increased FKBP5 (36) and in hepatocellular carcinoma cell lines sorafenib treatment resulted in HIF-2α-dependant induction of Fkbp5 transcription (38). FKBP5 has also been shown to regulate CDK5 interaction with DNMT1 and reduce DNA methylation activity (39). Most studies have been in neural cells or adipocytes, but this study suggests that FKBP5 may play a role cellular stress in the developing liver. An increase in FKBP5 could be induced by HIF-2α in MNR offspring, influencing metabolism, cell growth and/or DNA methylation.

Changes to hypoxia signalling in the liver could be indirect through placental adaptations. Decreased placental size could reduce oxygen and nutrient delivery, although the junctional zone is more impacted than the labyrinth zone (40). In guinea pigs, MNR results in increased hypoxyprobe-1 staining in both male and female liver and kidneys (10). However, no differences were detected in the placentas (10). Alternatively, MNR could increase HIF signalling in the developing liver through nutritional signalling and/or changes to fetal circulation. Further studies into the mechanism of HIF signalling need to be elucidated. However, increased HIF-induced transcripts support the concept that MNR results in increased hypoxia signalling in the fetal liver.

Maternal nutrient restriction resulted in fetal expression changes in hypoxia-inducible signalling pathways of E18.5 liver. Although expression changes were detected, the protein levels of genes induced by HIF transcription factors were not significantly different. Since tissue hypoxia declines during development (24, 26) it is possible that downstream changes were more evident earlier in liver development. Still, due to their importance in regulating multipotency, cell differentiation, and proliferation, HIF-induced transcription could result in differences in liver maturity and cell populations. Additionally, differential expression of epigenetic regulators such as Kdm3a and Fkbp5 may prime HRE-containing genes to respond differentially to aging or nutritional
abundance. Evidence of aberrant hypoxia signalling was evident in growth restricted mice, but the impact was moderate which may relate to the duration of nutrient restriction and the timing of analysis. Differentially expressed transcripts support the concept that hypoxia signaling may play a role in growth restriction in response to fetal undernutrition.
4.5 References


13. Radford BN, Han VKM. Offspring from maternal nutrient restriction in mice show variations in adult glucose metabolism similar to human fetal growth restriction. *J Dev Orig Health Dis.* 2018; DOI: 10.1017/S2040174418000983.


Chapter 5: Similar Gene Expression in Adult Liver, Adipose Tissue and Skeletal Muscle of Maternal Nutrient Restricted Offspring Susceptible or Resistant to Changes in Glucose Metabolism

The following chapter contains a manuscript prepared for submission in PLOSone
5.1 Introduction

Intrauterine Growth Restriction (IUGR) is a pregnancy condition where fetal growth is suboptimal, resulting in an infant born with a birthweight <10th percentile. The most common cause in developed countries is poor placental development (placental insufficiency) and in under-developed countries is maternal malnutrition (1). In both placental insufficiency and maternal malnutrition, the fetus is undernourished during development and the gestation at which it is impacted depends on the timing and type of pathology. In the short term, infants from IUGR pregnancies have higher morbidity and mortality rates in the perinatal and neonatal periods (2). As adults, offspring from IUGR pregnancies are also at increased risk for adult diseases such as cardiovascular disease, glucose intolerance and type 2 diabetes (3).

Initial studies demonstrating convincing evidence between pathologically small birth weights and long-term metabolic outcomes were in cohorts of the Dutch famine. Ravelli et al (1998), described an increased occurrence of glucose intolerance in these adults whose mothers experienced the Dutch famine during pregnancy (4). Further studies of this population, other IUGR populations and animal models have also demonstrated an influence of fetal environment on adult health (5–8). Such studies have led to the concept of ‘Developmental Origins of Health and Disease’ (DOHaD). In this concept, adversity during fetal and early life can lead to adaptations that may temporarily improve survival. However, these adaptations may not be beneficial to those individuals as an adult (9). One mechanism of fetal adaptation is through epigenetic changes such as DNA methylation, histone modifications, and differential miRNA expression, which result in altered gene expression that influence organ development or cell function in metabolically important tissues. The epigenetic marks can persist until later in life (adulthood) and may lead to altered gene expression and pathology.

The adaptations can be tissue-specific making animal models useful when studying long-term metabolic impacts of fetal undernutrition. Previous work in our laboratory has established a mouse model of IUGR using maternal nutrient restriction (MNR) (10). MNR male offspring from this model experienced growth restriction and had smaller liver-to-body weight ratios (10). At 6 months, 19% of the MNR offspring were glucose
intolerant and the remaining were not susceptible to glucose tolerance changes (10). Despite the variation in glucose tolerance, most MNR had increased hepatic insulin sensitivity (10). The aim of this study was to identify tissue-specific expression changes that occur in response to fetal undernutrition in all MNR and/or in susceptible MNR offspring. Liver, adipose tissue and skeletal muscle were the tissues of focus because insulin sensitivity in these tissues precedes the development of type 2 diabetes (11). Although at increased risk, not all individuals born from IUGR pregnancies will develop metabolic disorders. Understanding the expression changes associated with susceptible and resistant growth restricted populations to changes in glucose tolerance could help identify IUGR populations in humans that will develop an altered glucose metabolism as adults.

5.2 Methods

5.2.1 Animals

All animal care and procedures were approved by the Council on Animal Care at the University of Western Ontario and as previously described (10). Briefly, pregnant CD-1 mice received ad libitum food or maternal nutrient restriction (MNR) (70% of ad libitum) from E6.5 until birth. Only litters with 11-15 pups were studied and male to female ratios did not vary between control and MNR litters (10). All pups were cross-fostered to an ad libitum-fed mother at birth with litters culled or fostered to 13 pups per litter. Male offspring were weaned onto a standard chow diet (Teklad LM-485 Mouse/Rat Sterilizable Diet, Harlan Laboratories, USA). At 6 months, offspring were euthanized by CO2 necrosis (8 30 to 10 00 h) and right medial liver lobes, perigonadal fat pads, and quadriceps femoris were snap frozen in liquid nitrogen. Frozen tissues were stored at -80°C until further analysis.

5.2.2 RNA isolation

Fifty mg of liver (control N=8, intolerant MNR N=7, tolerant MNR N=8) and skeletal muscle (control N=8, intolerant MNR N=9, tolerant MNR N=8) and 100 mg of adipose tissue (control N=8, intolerant MNR N=9, tolerant MNR N=8) was pulverized and then homogenized for 50 seconds in 1 mL of ice cold TRIzol (Invitrogen™, Carlsbad, CA, USA). RNA was extracted from homogenate with RNA PureLink™ mini kit
(Invitrogen™, USA) according to the manufacturer’s TRIzol and on-column DNaseI treatment protocol. RNA quality was verified (RIN ≥ 7) with an Agilent Bioanalyzer 2100 at McGill University and Génome Québec Innovation Centre (Montreal, QC, Canada) and the National Research Council Canada (NRC) (Saskatoon, SK, Canada).

5.2.3 RNA sequencing
Library preparation and quality control for the liver and skeletal muscle were done at the McGill University and Génome Québec Innovation Centre (Montreal, QC, Canada) with the Illumina TruSeq™ mRNA Stranded library kit (Illumina). Single-reads sequencing was run on a HiSeq 2500 and the average read depth was 13 million per sample. Adipose RNA libraries and QC were prepared by the National Research Council Canada (NRC) (Saskatoon, SK, Canada) using the NEBNext® Ultra™ II Directional RNA Library Prep Kit for Illumina®. An average of 8 million paired reads per sample were obtained. Reads from all tissues were aligned to the mm9 transcriptome with Bowtie2 (12). Quality control of reads and removal of adapters or primer sequences were done with the Trim Galore (version 0.4.4) library.

5.2.4 Differential Gene Expression and Pathway Enrichment
Genes with no counts per samples were removed from count tables. Outlier detection, PCA plots and differential expression were done in the R console (version 3.3.2) (13) with Z Compositions (version 1.1.1) (14), CoDaSeq (version 0.99.1) (15,16) and ggplots2 (version 2.2.1) (17) libraries. Sample outliers in glucose tolerance groups with variation greater than the median plus 2 times the interquartile ratio were removed, as described by Gierliński et al. (Supplementary Figure S5.2.1-5.2.3) (18). The impaired fasting blood glucose (IFBG) group, which exhibited higher blood glucose than any controls (Supplementary figure S5.2.4), had a small sample size (N=4) and were not assessed for outliers. EdgeR (19), DESeq2 (20), and Aldex2 (21) tools were used in differential expression analysis and protein-coding genes were considered differentially expressed if there was consistency in two or more tools (FDR < 0.1, > 2-fold change). Gene ontology enrichment was done on the panther online tool (22,23), and NCI:Nature and KEGG enrichment was done on the EnrichR online tool (24,25).
5.3 Results
Gene expression of control and MNR offspring, as well as tolerant and intolerant MNR, were assessed in the right medial liver lobe, quadriceps femoris muscle and perigonadal adipose tissue at 6 months. PCA plots of expression data within each tissue suggest that samples do not cluster based on maternal nutrition or glucose tolerance in all three tissues (Figure 5.3.1 and Supplementary Figure S5.3.1). Sample-to-sample plots also demonstrate that samples do not separate based on maternal nutrition or glucose tolerance (Figure 5.3.2).

Although tissues showed similar overall gene expression, we examined pathway enrichment of genes differentially expressed between maternal nutrition and glucose tolerance groups (Table 5.3.1-5.3.3 and Supplementary Table 5.3.1). In the liver, 6 genes were differentially expressed in MNR offspring relative to controls (Table 5.3.1 and Supplementary Table 5.3.1). These genes include three heat shock protein chaperons (Hspab1, Hspa11) as well as FGF11 which are involved in MAPK signalling. Both heat shock proteins and Alas1 are also involved in the immune response to Epstein-Barr virus infections. Twenty four genes are differentially expressed in intolerant MNR relative to controls (Table 5.3.1 and Supplementary Table 5.3.1) including three heat shock proteins (Hspa1a, Hspa11, and Hsp1b) that are involved in cellular response to heat, unfolded proteins, immune response, MAPK pathway (Ntrk2, Fgf11), and longevity and estrogen signalling pathways (Adcy1). Pathway enrichment also shows differences in intolerant MNR in tyrosine receptor signalling (Dnaic1, Pdk4, Gdf15, Hspb1, and Ntrk2) and p53 effectors (Hspa1a, Fdf15). Although not indicated by pathways enrichment, differentially expressed genes associated with obesity, lipid metabolism and adipogenesis were increased (Vldlr, Adcy1, Ntrk2) or decreased (Cyp26b1) in intolerant MNR relative to controls (26,27). Despite differential expression of 7 genes in MNR with impaired fasting blood glucose, no pathways were enriched (Table 5.3.1 and Supplementary Table 5.3.1). Similar to intolerant MNR, genes involved in lipid and cholesterol metabolism were decreased (Cyp26b1, Mfsd2a, Cyp2b10)(28) in the impaired fasting blood glucose cohort. Only metallothionein 1 was differentially expressed between tolerant and intolerant MNR, and subsequently no pathways were enriched.
Minimal transcriptome changes were evident in 6-month quadriceps femoris muscle (*Table 5.3.2 and Supplementary Table 5.3.1*). Furthermore, no genes were differentially expressed between all MNR and controls. Only 3 genes in intolerant MNR and 4 genes in MNR exhibiting a higher fasting blood glucose and were differentially expressed compared to controls. Potassium voltage-gated channel, shaker-related, subfamily, member 6 (Kcna6) was differentially expressed between tolerant and intolerant MNR. No pathway enrichment was found in differentially expressed genes (*Table 5.3.2*).

In the adipose tissue differential gene expression analysis also revealed minimal differences between control and MNR offspring (*Table 5.3.3 and Supplementary Table 5.3.1*). Napsin A aspartic peptidase (Napsa) was differentially expressed between all MNR and controls. In the intolerant and impaired fasting blood glucose groups, 6 and 2 were differentially expressed between relative to controls, respectively. No genes were differentially expressed between tolerant and intolerant MNR. None of the genes differentially expressed in adipose tissue between maternal nutrition or glucose tolerance groups were significantly enriched in pathways (*Table 5.3.3*).
Figure 5.3.1 PCA plots of liver (A), skeletal muscle (B), and adipose tissue (C) demonstrate similar overall expression between control (grey) and MNR (black), and between glucose tolerance groups (symbols).

Plotted data was transformed with the centered log ratio and filtered for the top 500 variable genes.
Figure 5.3.2 Sample-to-sample plots of RNAseq centered-log ratio transformed data from the liver (A), skeletal muscle (B), and adipose tissue (C).

Samples did not cluster based on maternal nutrition (Y-axis) or glucose tolerance (X-axis).
Table 5.3.1 Pathway enrichment of differentially expressed genes (FDR <0.1 in 2 tools) in the liver of 6-month offspring.

<table>
<thead>
<tr>
<th>Reference Group</th>
<th>Comparison Group</th>
<th># Genes</th>
<th>GO Enrichment</th>
<th>KEGG Enrichment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>All MNR</td>
<td>6</td>
<td>NA</td>
<td>MAPK signalling pathway (20.24) (Hspb1, Hspa1l, Fgf11)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Epstein-Barr virus infection (12.53) (Hspb1, Hspa1l, Alas1)</td>
</tr>
<tr>
<td></td>
<td>Intolerant MNR</td>
<td>24</td>
<td>Protein refolding (4.49E-03), Chaperone cofactor-dependent protein refolding (1.04E-02), Cellular response to unfolded protein (4.14E-02), Cellular response to heat (4.07E-02) (Hspa1a, Hspa1l, Hspa1b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Transmembrane receptor protein tyrosine kinase signalling pathway (2.56E-02) (Dnaic1, Pdk4, Gdf15, Hspb1, Ntrk2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MAPK signalling pathway (29.20) (Hspa1a, Hspa1l, Hspa1b, Ntrk2, Fgf11, Hspb1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Longevity regulating pathway (27.42), Estrogen signalling pathway (22.60) (Hspa1a, Hspa1l, Hspa1b, Adcy1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Antigen processing and presentation (14.94), Toxoplasmosis (13.94), Measles (12.40), Spliceosome (12.23), Influenza A (11.56), Legionellosis (18.25) (Hspa1a, Hspa1l, Hspa1b)</td>
</tr>
<tr>
<td></td>
<td>MNR with Higher Fasting Blood Glucose</td>
<td>7</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Tolerant MNR</td>
<td>Intolerant MNR</td>
<td>1</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

Note: Combined scores (KEGG and NCI:Nature) or FDR (GO) per pathway are indicated in brackets, followed by the genes included in the pathway.
Table 5.3.2 Pathway enrichment of differentially expressed genes (FDR < 0.1 in 2 > tools) in skeletal muscle of 6-month-old offspring.

<table>
<thead>
<tr>
<th>Reference Group</th>
<th>Comparison Group</th>
<th># Genes</th>
<th>GO Enrichment</th>
<th>KEGG Enrichment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>All MNR</td>
<td>0</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>Intolerant MNR</td>
<td>3</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>MNR with Higher Fasting Blood Glucose</td>
<td>4</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Tolerant MNR</td>
<td>Intolerant MNR</td>
<td>1</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

Note: Combined scores (KEGG and NCI:Nature) or FDR (GO) per pathway are indicated in brackets, followed by the genes included in the pathway.

Table 5.3.3 Pathway enrichment of differentially expressed genes (FDR < 0.1 in 2 > tools) in adipose tissue of 6-month-old offspring.

<table>
<thead>
<tr>
<th>Reference Group</th>
<th>Comparison Group</th>
<th># Genes</th>
<th>GO Enrichment</th>
<th>KEGG Enrichment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>All MNR</td>
<td>1</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>Intolerant MNR</td>
<td>6</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>MNR with Higher Fasting Blood Glucose</td>
<td>3</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Tolerant MNR</td>
<td>Intolerant MNR</td>
<td>0</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

Note: Combined scores (KEGG and NCI:Nature) or FDR (GO) per pathway are indicated in brackets, followed by the genes included in the pathway.
5.4 Discussion

In our mouse model of fetal growth restriction, the overall gene expression in 6-month-old liver, adipose and skeletal muscle was similar for offspring of maternal nutrition restriction and control pregnancies, and glucose tolerant and intolerant groups. Increased p-AKT to AKT ratios in response to insulin occurred in the liver of most MNR, but a cohort of MNR offspring were susceptible to impaired glucose tolerance with a higher under the curve (AUCs) during the glucose tolerance test than any controls (10). However, these changes are moderate and most evident after an insulin or glucose bolus (10). Subsequently, the gene expression changes may be detectable after during metabolic stress. Alternatively, impacts on transcription could be proportional to the extent of maternal nutrient restriction. For example, transcription of genes involved in regulation of epigenetics, circadian rhythms and lipid or glucose metabolism are altered at weaning in offspring from 50% MNR throughout or late gestation to weaning (29,30). These IUGR models are also in rats which have lower metabolic rates than mice (31). In humans, basal metabolic rate is negatively correlated to insulin resistance (32) and could suggest rats are more sensitive to disruptions in glucose homeostasis. Gene expression changes in tissues could also decrease with age. Even with 50% MNR in rats, a low number of genes and magnitude of effect are present in offspring at postnatal day 450 (30). It is also possible that gene expression changes occurred in tissues not assayed in this study. One study showed that transcriptional responses to maternal protein restriction was specific to each organ in the fetus (33).

Although transcription changes were limited in MNR offspring, liver had the most differentially expressed genes. Two heat shock proteins (HSPs) were decreased in all MNR and three in intolerant MNR. Small (Hspb2) and large (Hspa1a, Hsp11, and Hspa1b) HSPs act as chaperons and are induced during cellular stress. Reduced HSP expression could indicate decreased cellular stress or a reduced response to similar stress in MNR compared to controls. For example, increased ER stress occurs in rat offspring from maternal protein restriction (34). Apart from the unfolded protein response, HSPs mediate protein-protein interactions and function in prevention of apoptosis in mitophagy.
Increased intracellular Hspa1a is associated with increased insulin sensitivity in skeletal muscle but extracellular Hspa1a may decrease insulin sensitivity (36–38). Depending on the cellular location, reduced Hspa1a expression in intolerant MNR could have anti-inflammatory or proinflammatory effects, reducing or promoting insulin sensitivity, respectively (36-38). HSPs also regulate cellular localization of transcription factors such as the androgen receptor (39) and this pathway was not enriched in the differentially expressed genes. Heat shock transcription factors (HSFs) regulate HSP transcription but also are not differentially expressed (40,41). HSF activity can be modulated via nuclear localization and post-translational modifications and were not examined in this study (40,41). While it cannot be excluded that stress response deviates in MNR and intolerant MNR through protein interaction with heat shock proteins, the underlying cause of cellular stress was not implicated with the gene expression data.

Despite changes in genes regulating lipid metabolism, no differences were observed in hepatic cholesterol or serum cholesterol and triglycerides in these adult MNR offspring on standard chow (10). Offspring of maternal protein restriction in rats are more sensitive to dietary-induced obesity and insulin resistance and have altered transcription of cytochrome p450 gene family members (42). Altered expression of lipid metabolism-related genes could indicate that MNR offspring are more sensitive to a high-caloric diet in adulthood. However, the absence of dyslipidemia in standard chow-fed offspring suggests genes regulating lipid metabolism are not likely the mechanism of glucose intolerance in this study.

Few genes were differentially expressed in muscle and adipose tissue between maternal nutrition or glucose tolerance groups. Differential gene expression in response to maternal nutrition or growth restriction in fat pads and skeletal muscles have been previously documented (43,44). It is possible that quadriceps femoris and perigonadal fat pads are less sensitive to maternal nutrition than subcutaneous fat and biceps femoris muscle that were used in previous studies (43,44). Maternal nutrient restriction may have also had a greater impact on the tissues if it was reduced more than 30%. Although in rats, even 50% MNR resulted in transcriptional changes in the fetal liver but not adipose
tissue and skeletal muscle, suggesting the muscle and adipose tissue could be more resistant to maternal diet (29). The absence of short and long-term impacts on gene expression in adipose and skeletal muscle may relate to developmental timing. In rodents and humans both of these tissues continue to develop into the postnatal period (45,46).

MNR offspring that had impaired glucose tolerance or higher fasting blood glucose levels also have similar gene expression in the liver, fat and muscle compared to controls. Similar expression suggests that fetal adaptations do not result transcriptome changes in metabolic genes that persist into adulthood, at least in liver, skeletal muscle and adipose tissue. Therefore, persistent gene expression changes are not likely the mechanism behind the altered adult metabolism in this model of IUGR. Maternal diet or fetal growth restriction can influence genomic stability, body mass composition, gut microbiome, and transcription in other tissues such as the pancreas in offspring which could mediate long term metabolism (47–50). Future studies are needed to identify alternate mechanisms mediating effects of reduced maternal nutrition on susceptibility to aberrant glucose metabolism in this model of growth restriction.
5.5 References


Chapter 6 : Discussion

6.1 Summary and Prospective

6.1.1 MNR as a Model for Metabolic Changes Associated with IUGR

We demonstrated in this study that moderate maternal nutrient restriction during gestation in CD-1 mice resulted in fetal growth restriction and was associated with changes in glucose metabolism of adult male offspring. Reduced fetal and liver size was associated with increased hepatic transcription of genes in chronic hypoxia signalling. At 6-months, most male MNR offspring have increased hepatic insulin sensitivity and about 20% develop glucose intolerance. However, no changes in metabolically regulatory transcripts were detected in 6-month adipose tissue, skeletal muscle and right medial liver lobe. This suggested that in this model, fetal liver adaptations could be mediated by transcription changes, but long-term alterations in glucose metabolism are not induced by differential expression of metabolically regulatory genes in the liver, skeletal muscle and adipose tissue.

The model can be used to study adaptations in response to pathological IUGR resulting from fetal undernutrition in humans. Reduced nutrition is one adversity which is common in placental insufficiency and maternal malnutrition (1). Clinically, IUGR is defined as a pregnancy condition in which the estimated weight of the fetus is less than 10th percentile expected for gestational age and an infant born from these pregnancies is termed small for gestational age (SGA). However, infants can experience reduced nutrition, growth restriction and metabolic adaptations, and have a birth weight greater than 10th percentile. Clinically, these infants will not be identified as SGA, however, they are impacted similarly to those who are SGA from IUGR pregnancies. Since long-term human studies are challenging to conduct, we developed this model in mice to follow the offspring within a feasible time frame (6 months) to conduct tissue-specific gene expression and epigenetic studies. It was our expectation that the model of maternal nutrient restriction in mice would allow investigations into molecular mechanisms that underlie long-term morbidity in a number of tissues. In nutrient restriction models of IUGR, all offspring
experience reduced nutrition during fetal life. Therefore, the model provides an opportunity to investigate offspring that result in low birth weight as well as those who do not. Immediate and long-term adaptations in response to fetal undernutrition would be applicable to health outcomes of the newborns as well as in later life and include infants encompassed and missed by the current clinical definition of IUGR.

Individuals born low birth weight, often used as a proxy for fetal growth restriction (FGR) or intrauterine growth restriction (IUGR), are 1.4 times more likely to develop type 2 diabetes as adults (2). Although at greater risk, not all of these infants will develop type 2 diabetes. Results from this model indicate that maternal nutrient restricted offspring with similar genetic backgrounds, maternal nutrition, and postnatal diet develop variable glucose metabolism as adults. This model provides susceptible and non-susceptible IUGR populations, which can be used to understand fetal adaptations that may increase or decrease risk for adult glucose intolerance.

‘Catch-up’ growth, especially high growth rates in the first week of life in rodents (3,4) or infancy/early childhood in humans (5), is associated with a more aberrant adult metabolism; and prevention of early post-natal ‘catch-up’ is suggested to be metabolically protective (4). Due to the rapid period of ‘catch-up’ growth in mice, it is difficult to calculate growth rates between birth and day 3. While it is possible that variations in catch-up growth could contribute to differences in susceptibility, it is unlikely due to the short period of time in which it occurs.

Fetal implantation site may also contribute to degree of growth restriction in MNR offspring. The main blood supply to the uterus is located at the periphery and at the uterine horn (6). Fetuses implanted further away from the blood supply would have experienced greater fetal undernutrition than pups closer to the blood supply. In our study, no correlations between fetal weight at E18.5 and the site of implantation were found. Subsequently, birth weight could not be used to estimate distance from the blood supply but could contribute to variations within litters.
CD-1 mice used in this model are an outbred strain and contain more genetic variability relative to inbred strains. In humans, genetic polymorphisms such as a glycine to arginine transition at codon 972 of IRS-1 are associated with insulin resistance and type II diabetes (7). In mice, wild-type C57BL/6 develop diet-induced fatty liver but CD-1 do not (8). However, strains produced from inbreeding CD-1 are susceptible to glucose intolerance and obesity, indicating genes mediating adult metabolism exist in this population (9). Such genetic variation likely contributes adult glucose metabolism in response to fetal nutrition.

In both the fetal and the adult tissues studied, the liver was the most vulnerable to alterations in maternal nutrition. When protein is reduced in maternal diet, fetal liver weight is decreased relative to body weight (10). Small for gestational age infants also have reduced liver weight compared to appropriate for gestational age infants (11). In this model, both fetal and adult livers were reduced relative to body mass. Although not measured in fetal livers, adult MNR offspring had increased insulin sensitivity. Insulin signalling regulates pathways such as hepatic glucose output, glycogen synthesis and mitogenesis, influencing glucose metabolism and hepatic growth. Additionally, transcriptomic changes were most evident in the liver of adults relative to adipose tissue and skeletal muscle, especially among the MNR that were glucose intolerant. Maternal nutrient restriction in rats also resulted in hepatic transcriptional changes to epigenetic machinery with minimal changes in skeletal muscle and adipose tissue (12). In agreement with previous work, liver was sensitive to alterations in maternal nutrition, impacting liver size, gene expression and metabolism.

Increased insulin sensitivity developed in response to fetal hypoinsulinemia in SGA infants and growth restricted models and contribute to hypoglycemia early in life (13–15). Increased insulin sensitivity promotes tissues such as the skeletal muscle to take up and store glucose (14). This energy storage can cause rapid catch-up growth (13) which is associated visceral adiposity in humans (16). Both ectopic lipid accumulation and adiposity are risk factors for cardiometabolic disease (17). Unpublished work in our lab measured serum insulin during GTT and serum blood glucose in E18.5 fetuses, and have
demonstrated reduced insulin secretion and hypoglycemia also occur in the MNR fetus. While increased sensitivity continues at 6 months in most MNR, relatively higher serum insulin-to-glucagon ratios in intolerant MNR suggests that insulin resistance may have developed in the susceptible population.

6.1.2 Interaction between Maternal Nutrition and Postnatal Diet
It is well known that overnutrition and poor dietary quality can result in obesity, insulin resistance and glucose intolerance. Dietary and exercise intervention can be used to prevent glucose intolerant populations from becoming type II diabetics (18). The timing of obesity also influences risk for metabolic disorders. Obesity in children at puberty or later had a positive association with type II diabetes (19). However, children that were obese at age 7, but achieved and maintained a healthy body weight by puberty, had a similar risk as the population that was not obese (19). Postnatal diets can enhance or impair detrimental effects in offspring from maternal nutritional insults. Specifically, continued calorie restriction after birth can prevent aberrant metabolic outcomes, and overnutrition or poor dietary quality can exaggerate the maladaptive impacts of fetal undernutrition on adult metabolism (20). This is thought to occur because the fetus adapts to a nutrient restrictive environment, and when postnatal food is abundant adaptations promoting energy conservation rather than expenditure are no longer an advantage.

Contrary to other models of growth restriction demonstrating increased susceptibility to diet-induced obesity and metabolic disorders, a HFHS post-weaning diet did not result in a difference between control and MNR offspring in the metabolic parameters measured. Often these diets are high-fat rather than high-fat high-sugar (3). HFD and growth restriction in rats impaired beta cell survival independently (21). When HFD and growth restriction were combined, islet damage was not cumulatively worse, suggesting that growth restriction and calorie dense diets could converge on similar mechanisms (21). Additionally, although some controversy exists on whether high-sugar or high-fat diets are more detrimental, most studies agree that excess calories is one of the main factors contributing to metabolic health. In this study, mice on the HFHS diet ate less food (in grams) and resulted in a similar calorie intake as standard chow-fed offspring. Similar to
In our study, male, but not female, rat offspring from maternal protein restriction on a HFD ate less (in grams), resulting in an isocaloric diet (22). While this dietary challenge did not vary based on maternal nutrition, all offspring developed and a reduced glucose tolerance and increased body weights. These data indicate an importance in dietary quality in determining adult metabolism. It is possible that a high-fat diet or high caloric diet would have different impacts on control and MNR adult glucose metabolism. However, isocaloric high-fat high-sugar post-weaning diet did not increase MNR susceptibility to metabolic disorders relative to controls.

### 6.1.3 Gene Expression Changes in Offspring Associated with Maternal Nutrition and Adult Glucose Metabolism

In this study, gene expression was analyzed by three common differential expression tools, DESeq2, EdgeR and Aldex2, that perform well in synthetic and real RNAseq data sets (23,24). Genes were considered differentially expressed if they were detected by two or more tools. This approach was taken because no ‘gold standard’ for differential gene expression exists. In all three tools, counts are normalized or transformed to control for differences in library size and composition. Following normalization or transformation, the counts were fitted to a model and statistical comparisons between groups and multiple testing corrections were done. However, each program uses different approaches for these steps (Table 6.1.1). Quin et al. (2018), recently compared the precision (minimizing false positives) and recall (true positives) between all three software (24). The authors found Aldex2 had high precision but low recall for studies with < 10 samples, and that EdgeR and DESeq2 have more sensitivity for this range of replicates (24). Although their study used the Wilcox Rank test in Aldex2 which would have lower power than the Welch’s test used in this study for few replicates (25). Still, with 7-9 replicates per group few differentially expressed genes were detected by Aldex2 likely due to the limited statistical power of the non-parametric test. Focusing on genes that were differentially expressed in multiple tools may address the reproducibility issues found with RNA sequencing studies, and was the approach taken in this study.

To identify genes associated with fetal adaptations and adult metabolism, the transcriptome of liver, skeletal muscle and adipose tissue in adult mice and fetal liver
were analyzed. Genes that were differentially expressed, particularly those changed in both the fetus and the adult, could be mediate fetal adaptations and maladaptive changes that influence adult glucose metabolism. Because changes in glucose metabolism were only detected in standard chow-fed adult offspring, adult expression was only examined on this diet.

In the liver of MNR fetuses, differentially expressed genes were involved in overlapping regulation of various transcription factors (Figure 6.1.1). However, hypoxia-induced signalling was the primary pathway with changes up- and down-stream of the transcription factors. Additionally, with moderate fold change in transcription and significant enrichment with multiple pathway enrichment tools, we focused on the cumulative change in HIF signalling.

Growth restriction caused by reduced maternal nutrition and maternal hypoxia result in similar fetal and placental adaptations. Increased placental size, more efficient vasculature, and no changes in placental hypoxia, suggest that both hypoxic and nutrient restricted placentas are able to compensate (29–31). Despite placental adaptations, hypoxia and MNR cause fetal circulation to redistribute oxygenated blood from the umbilical cord away from the liver and to the brain (32,33). In growth restricted humans, blood flow from the umbilical cord is reduced to both liver lobes, but the reduction is greater to the right and is the portion of the liver examined in this study (34).

Additionally, glucose deprivation in colon cancer cell lines can induce hypoxia signalling (35,36), suggesting fetal nutrient availability may also be modulating HIF signalling in MNR offspring. Increased HIF-2α and HIF-3α transcripts and protein, and increased transcription of HRE-containing genes in this study support evidence of hypoxia signalling in MNR fetal liver. Further studies need to be done to understand whether redistribution of fetal circulation and/or nutritional regulation cause the induction of hypoxia-inducible signaling in response to maternal nutrition. Regardless of the mechanism, maternal hypoxia and MNR could induced the HIF pathway in the right lobes of the liver and contribute to similar adaptations in offspring.
Hypoxia signalling is involved in the regulation of metabolism, pluripotency and differentiation of progenitor cell populations and angiogenesis (37,38), which are important pathways tightly regulated in tissue development. Increased HIF-2α and HIF-3α are associated with chronic hypoxia and the switch from HIF-1α to HIF-2α occurs in developing tissue when vascularity and oxygen tension increase (39,40). Tissue sampling late in gestation, when the HIF-1α to HIF-2α switch may have occurred, likely contribute to the detection of HIF-2α but not HIF-1α. Additionally, the prolonged exposure of the fetus to nutrient restriction in this model could result in chronic hypoxia signalling and mediate an increase in HIF-2α and HIF-3α protein.

HIF-1α transcriptional targets were initially thought to be involved in promoting glycolytic metabolism and HIF-2α targets in fatty acid oxidation and matrix remodeling (41,42). Both HIF-1α and HIF-2α regulate angiogenesis(42). Gene expression in neuroblastoma cells exposed to acute hypoxia and to chronic or moderate hypoxia were similar suggesting that the number of HIF redundant targets may be less than initially cited, and that conflicting evidence might be confounded by the temporal regulation of HIF-1α or HIF-2α (39). Additionally, Kdm3a, Ccng2, Hif3α and Pfkfb3 were induced with both HIF-2α and HIF-1α overexpression in human umbilical vein endothelial cells (42). Subsequently, hypoxia inducible genes were not sorted based on HIF-1α or HIF-2α targets in the literature.

HIF-dependent hypoxia inducible transcripts increased in MNR were involved in metabolic (PFKFB3, FKB5) and direct (KDM3a) or indirect (FKBP5) epigenetic responses. Enhanced expression of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) promotes glycolysis and could influence hepatic glycogen (43). FKBP5 is associated with insulin resistance through inhibition of glucocorticoid signalling and as a co-chaperone to the Akt phosphatse, PHLPP(44,45). Both glucocorticoids and insulin promote glycogen deposition in the liver (46). While transcript levels were increased, protein changes were not significant suggesting these adaptations were not sufficient in preventing glycogen depletion during MNR fetal hypoglycemia. Near birth fetal metabolism in the liver shifts from glycolytic to gluconeogenic which may also indicate a
delay in this shift in MNR male offspring (47). Reduced liver size, increased hypoxia signaling, as well as an increased marker of proliferation and reduced glycogen identified in this model, suggests that MNR have immature livers at E18.5.

Differential expression of genes involved in the regulation of epigenetic machinery provide a mechanism for long-term impacts of fetal undernutrition. In neural cells, FKFBP5 increase is negatively associated with global methylation by competitively inhibiting FKBP52 recruitment and reducing DNTM1 efficiency (48). KDM3a is a histone methyl transferase which removes mono and di-methylation at histone 3 lysine 9, typically associated with heterochromatin, especially at HRE-containing genes(49). Increased transcription of both modifiers could suggest epigenetic changes are influencing fetal transcription at HRE and non-HRE-containing genes and require further studies.

Although increased transcription of genes induced by HIFs were detected, the increase was moderate and not significantly reflected at the protein level. HIF-3α has been shown to weakly induce some HRE-containing genes, but most functional evidence suggests a role in repression of HIF-1/2α-dependent transcription (50,51). Increased HIF-3α might be repressing the transcriptional activity of HIF-2α and the magnitude of hypoxia response in MNR offspring. In MNR in guinea pigs, increased hepatic EPO protein were only significantly different in females suggesting that female fetuses may adapt with increased erythropoiesis (30). Although females were not examined in this study, it is possible that the hypoxic response in males is more moderate and could be mediated through HIF-3α.

Hypoxic gene expression changes were not detectable in MNR adult livers. In fact, few transcriptional changes were detected in liver, skeletal muscle and adipose tissue. Maternal nutrient restriction in rats resulted in alterations in fetal epigenetic machinery but histone acetylation changes did not persist to 4 weeks (12). Additionally, the number of genes impacted was reduced over time, despite metabolic changes becoming more evident with age (52). However, if fetal undernutrition during pregnancy established differences in cell populations and/or differences in how the cells are functioning,
changes in gene expression would be expected. Consequently, although these adaptations may occur, they do not persist and are not likely the mechanism underlying changes in glucose metabolism in this model.

It should be noted most changes in glucose metabolism were only detected in stress conditions, such as glucose tolerance and insulin challenge tests. Fetal hepatic changes were detected when the stress of nutrient restriction was still evident and altered HIF signaling might be evident in MNR offspring during a glucose or insulin challenge. In chronic myeloid leukemia patients, VHL loss-of-function mutations result in changes to methylation at HRE-promoters but do not result in increased HIF signaling until a ‘second hit’ occurs (53). The differential priming of HRE-genes in these individuals increase anti-apoptotic and angiogenic responses in the tumor (53). While differences in VHL were not confirmed in the validation cohort, KDM3a and FKBP5 were increased. It cannot be excluded that the transcription during stressed conditions could vary in HIF or other stress response pathways in tissues of MNR adult offspring.

Intrauterine fetal adaptations to moderate nutrition restriction could also be independent of changes in cell populations or persistent epigenetic changes. Evidence of altered gut microbiome and reduced genomic stability have been observed in response to different maternal diets (54,55). Protein function and stability can also be regulated by genetic polymorphisms and miRNAs. Lastly, tissues not yet examined in this model could have influenced fetal adaptations and modulated susceptibility in the MNR population.
Table 6.1.1 Comparison of tools used for differential expression

<table>
<thead>
<tr>
<th>Tool</th>
<th>Normalization/Transformation</th>
<th>Statistical analysis</th>
<th>Model of Count Means</th>
<th>Multiple comparisons adjustments</th>
<th>Outlier Detection</th>
<th>Reference</th>
</tr>
</thead>
</table>
| DESeq2 | • Normalize with a scaling factor  
• Median of ratios to the geometric mean | Empirical Bayes estimation of dispersion and log fold change for the Wald test (parametric) | Negative binomial | Benjamini-Hochberg correction | Cooks Distance (>99th percentile) for ≥ 7 samples | (26) |
| EdgeR | • Normalized with a scaling factor  
• Weighted mean of ratios in a pairwise comparison of each sample and a reference sample | Empirical Bayes estimation of dispersion and an adapted Fisher’s exact test (parametric) | Negative binomial | Benjamini-Hochberg correction | None | (27) |
| Aldex2 | • Transformed by the centered log ratio (clr) | Empirical Bayes to estimate Monte Carlo Dirichlet instances and Welch’s test (non-parametric) | Poisson distribution | Benjamini-Hochberg correction | None | (25,28) |
Figure 6.1.1 Genes differentially expressed up- and down-stream of transcription factors in fetal hepatic liver.

Differential expression was detected upstream from many transcription factors (indicated by the grey bar) important in tissue development and metabolism. However, genes involved in hypoxia-inducible factor signalling were differentially regulated up- and downstream from HIF transcription factors.
6.2 Limitations and Future Studies

This is the first in-depth use of maternal nutrient restriction post-implantation to birth in CD-1 mice to study the association between reduced fetal nutrition and long-term metabolic outcomes. While metabolic and expression changes identified in this study provide insight for understanding the relationship between maternal nutrition and fetal adaptations, there are also associated limitations that can be addressed with further studies.

6.2.1 Further Characterization of Metabolic and Expression Outcomes in MNR Offspring

Increased PAI-1 and resistin in MNR serum could indicate increased fat mass or meta-inflammation. However, mRNA of PAI-1 and resistin were not different in MNR adipose tissue compared to controls. Transcripts in inflammatory pathways were also similar in control and MNR adipose tissue, suggesting increased fat mass rather than adipocyte meta-inflammation in MNR offspring. Reduced lean mass been associated with other models of MNR and can contribute to decreased glucose tolerance (56). In animal studies, the ‘gold method’ is via chemical carcass analysis which is terminal and requires the entire carcass (57). Micro-CT imaging is accessible to our lab, can be done on live specimens, distinguishes between subcutaneous and visceral adipose tissue, and provide accurate estimate of body mass composition in mice (58,59). Utilizing this technology in adult offspring would determine whether body mass composition is different in MNR offspring and allow metabolic and expression analysis in the same mouse.

Insulin sensitivity was only measured in a portion of the cohort due to technical limitations in the hepatic portal vein insulin challenge. The most accurate and sensitive method for tissue-specific and whole-body insulin sensitivity is hyperinsulinemic euglycemic clamp studies. While this method can be performed on a large sample number, it is technically challenging, requires expensive equipment, and is difficult to analyze. If the equipment or expertise were available, this technique could be used. Alternatively, injection of insulin or saline and collecting tissues could be done in all animal of a cohort after 6-month glucose tolerance testing. Similar to the gene expression analysis in this study, tolerant, intolerant and average controls could be used to detect pAKT to AKT ratios. While the sample size per group would not increase with this
design, tissue-specific insulin sensitivity could be quantified for intolerant MNR relative to control and tolerant MNR populations.

During the insulin challenge test or hyperinsulinemic euglycemic clamp study, liver, adipose tissue and skeletal muscle could also be collected for gene expression analysis. Studies in humans show that hyperglycemia and hyperinsulinemia initiate gene expression changes in many tissues (60,61). Additionally, insulin-induced gene expression in the skeletal muscle and adipose tissues during hyperinsulinemic clamp studies were blunted in type 2 diabetics compared to controls, despite having similar basal expression (60). To our knowledge, gene expression in adult offspring from growth restricted models have not been examined after a glucose or insulin bolus. This would assess whether adaptations are present in MNR offspring in metabolic ‘stress’ conditions.

### 6.2.2 Influence of Reduced Nutrition in Gestation and Throughout Lactation of Skeletal Muscle and Adipose Tissue

In addition to examining changes in gene expression during hyperinsulinemia, extending nutrient restriction until weaning could also influence long term impacts. With the current model, skeletal muscle and adipose tissue had few differentially expressed genes. In mice the number of muscle fibers is determined around day 7 and the number of myonuclei by day 21 (62). Establishment of white adipose tissue occurs in two phases, the first from birth to two weeks of life and the second in puberty (around weaning) (63). Although hyperplasia and hypertrophy of white adipose tissue continue throughout life, the rate of increase is steady through adulthood (63). The offspring in this study were fostered to ad libitum-fed mothers, receiving ad libitum for the postnatal developmental periods. Extension of nutrient restriction throughout lactation would provide further insight into the effects of reduced nutrition on development of these tissues. However, it may also modify ‘catch-up’ growth and adult metabolism (64). Extending nutrient restriction to weaning would assess the interaction between MNR and nutrition during lactation and could increase impacts on skeletal muscle and adipose tissue.
6.2.3 Mechanism of Fetal Hepatic Hypoxia in Adaptations to Growth Restriction

The concept of hypoxia signalling in growth restricted infants is relatively new. Dynamic changes to hypoxic signalling suggest that the impact at different developmental stages could vary (37,65). Temporal analysis of hepatic HIF-1α, HIF-2α, and HIF-3α mRNA and protein during liver development in control and MNR offspring is needed. This study would determine if a switch from HIF-1α to HIF-2α occurs in the liver and whether the peak expression or stabilization vary between control and MNR. RNAseq at peak expression could provide insight into the changes mediated by altered HIF signalling in the MNR offspring.

In addition to understanding the timing of HIF signalling, further experiments need to determine how increased hepatic hypoxia influences fetal adaptations to nutrient restriction. Knocking down and overexpressing fetal hepatic HIF-2α and HIF-3α, and HIF-1α if MNR influences protein levels earlier in gestation, during MNR would clarify whether increased HIF signalling is an advantage for fetal survival. Recombinant adeno-associated virus (rAAV) injected into the amniotic sac with miRNA or expression vectors under the control of the alpha fetoprotein promoter would allow for such liver-specific fetal gene manipulation (66,67). Since differentially expressed genes in the fetus did not persist into adult life, temporal knock down or overexpression is preferable. These studies would gain insight into the role of HIFs in liver development and fetal survival during undernutrition. It would also determine whether these adaptations mediate long term metabolic outcomes of the MNR offspring.

6.3 Overall Conclusions and Significance

This study investigated fetal and adult adaptations in liver, adipose tissue and skeletal muscle of maternal nutrient restricted male offspring in mice on a post-weaning standard chow or a HFHS diet (Figure 6.3.2). Offspring from MNR pregnancies experienced fetal growth restriction and changes to adult glucose tolerance or insulin signalling. In the fetus, reductions in maternal calories disproportionately impacted the liver and might be mediated through increased hypoxia signalling. Differences in hypoxia-inducible transcripts did not persist to 6 months. As adults, minimal changes in gene expression in
all three tissues were detected. However, the liver of MNR offspring was smaller with increased insulin sensitivity. As adults, MNR was associated with increased serum peptide markers that suggest changes to body mass composition. Despite the changes in standard chow-fed offspring, no differences between MNR and controls on an isocaloric post-weaning HFHS diet were detected. While liver weight, insulin sensitivity and potentially body mass composition are influenced by MNR, post-weaning diet overcame maternal nutrient effects.

To our knowledge this is the first study of growth restriction where susceptible and non-susceptible populations are examined in addition to changes occurring in all offspring. Despite having susceptible and non-susceptible adult populations in standard chow-fed offspring, metabolic and gene expression changes were only moderately impacted. Gene expression during metabolic stress could provide insight into variability in the MNR offspring. Additionally, serum peptide markers suggest body mass composition and appetite could be influencing susceptibility. Despite fetal liver adaptations and adult metabolic changes gene expression changes in metabolically regulatory genes were not differentially expressed.

Understanding tissue-specific adaptations from reduced fetal nutrition and how they mediate adult glucose intolerance will provide insight into the increased risk for type 2 diabetes in human growth restricted populations. Type 2 diabetes has significant complications and causes a substantial financial burden on the medical system (68). Early identification and prevention can reduce cost and improve patient quality of life. Identifying such adaptations will aid in recognizing, preventing and/or treating aberrant glucose metabolism in these individuals. Additionally, this study supports the notion that fetal nutrition is important in establishing adult liver metabolism which could impact chronic diseases beyond metabolic disorders.
Figure 6.3.1 Metabolic and expression changes in the male fetal and adult offspring from maternal nutrient restriction.

In the fetus, body and liver weight is reduced (chapter 2) and transcripts in HIF signalling were induced (chapter 4). On standard chow, MNR offspring had increased hepatic insulin sensitivity, reduced liver weight and increased serum markers for adiposity relative to controls (chapter 2). 20% of the MNR offspring were susceptible to glucose intolerance (chapter 2) and had increased differentially expressed (DE) genes (chapter 5). Post-weaning HFHS diet did not differentially impact MNR and control offspring in the parameters measured in this study (chapter 3).
6.4 References


Supplementary Figure S2.3.1. Fetal weight relative to distance from the uterine blood supply. Pups at position 1 are closest to the ovaries or cervix in the uterine horn. Control (green) and MNR (red) litters are represented by different shades. Weight did not significantly differ between according to position ($p = 0.4$).
Supplementary Figure S2.3.2 Pyruvate challenge tests in male MNR and control offspring at 6 month of age. (a) There were no significant differences in blood glucose from 0 to 120 min ($p = 0.4$). (b) Similar total AUC between control and MNR indicate no differences in hepatic glucose output ($p = 0.3$). Control N=5, MNR N=5 (1 pup/litter). Data are mean ± SEM (a). Asterisk represents a $p < 0.05$ with a repeated measures ANOVA (a) or unpaired $t$-test (b).
Supplementary Table 2.2.1. Litter sizes and sex ratios for litters included in pre- and postnatal studies.

<table>
<thead>
<tr>
<th>Study Type</th>
<th>Maternal Nutrition</th>
<th>Fraction of Males</th>
<th>Litter Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fetal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td>0.42</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td>0.57</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td>0.62</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td>0.54 +/- 0.06</td>
<td>13.7 +/- 0.3</td>
</tr>
<tr>
<td></td>
<td>MNR</td>
<td>0.57</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>MNR</td>
<td>0.5</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>MNR</td>
<td>0.27</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td>0.45 +/- 0.09</td>
<td>12.33 +/- 0.8</td>
</tr>
<tr>
<td>Postnatal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td>0.46</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td>0.67</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td>0.79</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td>0.54</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td>0.54</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td>0.6 +/- 0.06</td>
<td>13.4 +/- 0.5</td>
</tr>
<tr>
<td></td>
<td>MNR</td>
<td>0.55</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>MNR</td>
<td>0.45</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>MNR</td>
<td>0.38</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>MNR</td>
<td>0.46</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>MNR</td>
<td>0.69</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>MNR</td>
<td>0.62</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>MNR</td>
<td>0.5</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>MNR</td>
<td>0.3</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>MNR</td>
<td>0.38</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>MNR</td>
<td>0.75</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td>0.51 +/- 0.46</td>
<td>12.4 +/- 0.3</td>
</tr>
</tbody>
</table>

Note: No significant differences between control and MNR were observed with an unpaired t-test. Mean is expressed as +/- SEM.
Supplementary Figure S4.3.3 HIF-1α protein in mouse fetal (E18.5) liver and placenta, and normoxic and hypoxic HeLa cells.

HIF-1α was detected in the placenta and HeLa cells but was not detected in the liver.
Supplementary Table 4.3.1 Top 50 pathways arranged by fold change (FC) of genes in distribution 2 on principle component 1 enriched in GO pathways (FDR < 0.05).

<table>
<thead>
<tr>
<th>GO pathway</th>
<th>FC</th>
<th>FDR</th>
</tr>
</thead>
<tbody>
<tr>
<td>regulation of response to nutrient levels (GO:0032107)</td>
<td>3.59</td>
<td>1.93E-02</td>
</tr>
<tr>
<td>regulation of response to extracellular stimulus (GO:0032104)</td>
<td>3.59</td>
<td>1.92E-02</td>
</tr>
<tr>
<td>zymogen activation (GO:0031638)</td>
<td>2.59</td>
<td>2.77E-02</td>
</tr>
<tr>
<td>hippocampus development (GO:0021766)</td>
<td>2.29</td>
<td>3.29E-02</td>
</tr>
<tr>
<td>limbic system development (GO:0021761)</td>
<td>2.22</td>
<td>1.28E-02</td>
</tr>
<tr>
<td>homophilic cell adhesion via plasma membrane adhesion molecules (GO:0007156)</td>
<td>2.14</td>
<td>1.43E-02</td>
</tr>
<tr>
<td>cell-cell adhesion via plasma-membrane adhesion molecules (GO:0098742)</td>
<td>1.94</td>
<td>6.25E-03</td>
</tr>
<tr>
<td>potassium ion transmembrane transport (GO:0071805)</td>
<td>1.93</td>
<td>2.45E-02</td>
</tr>
<tr>
<td>cellular potassium ion transport (GO:0071804)</td>
<td>1.93</td>
<td>2.44E-02</td>
</tr>
<tr>
<td>positive regulation of epithelial cell proliferation (GO:0050679)</td>
<td>1.88</td>
<td>4.85E-03</td>
</tr>
<tr>
<td>visual perception (GO:0007601)</td>
<td>1.88</td>
<td>3.13E-02</td>
</tr>
<tr>
<td>sensory perception of light stimulus (GO:0050953)</td>
<td>1.87</td>
<td>3.41E-02</td>
</tr>
<tr>
<td>regulation of blood pressure (GO:0008217)</td>
<td>1.73</td>
<td>3.39E-02</td>
</tr>
<tr>
<td>second-messenger-mediated signaling (GO:0019932)</td>
<td>1.63</td>
<td>1.70E-02</td>
</tr>
<tr>
<td>regulation of epithelial cell proliferation (GO:0050678)</td>
<td>1.62</td>
<td>6.38E-03</td>
</tr>
<tr>
<td>regulation of neuronal cell biogenesis (GO:0044089)</td>
<td>1.56</td>
<td>1.40E-03</td>
</tr>
<tr>
<td>inorganic cation transmembrane transport (GO:0098662)</td>
<td>1.55</td>
<td>1.24E-02</td>
</tr>
<tr>
<td>response to growth factor (GO:0070848)</td>
<td>1.55</td>
<td>1.21E-02</td>
</tr>
<tr>
<td>cellular response to growth factor stimulus (GO:0071363)</td>
<td>1.53</td>
<td>2.13E-02</td>
</tr>
<tr>
<td>cell-cell adhesion (GO:0098609)</td>
<td>1.53</td>
<td>2.83E-02</td>
</tr>
<tr>
<td>cation transmembrane transport (GO:0098655)</td>
<td>1.53</td>
<td>1.22E-02</td>
</tr>
<tr>
<td>axon development (GO:0061564)</td>
<td>1.53</td>
<td>3.97E-02</td>
</tr>
<tr>
<td>regulation of cellular component size (GO:0032535)</td>
<td>1.53</td>
<td>1.97E-02</td>
</tr>
<tr>
<td>inorganic ion transmembrane transport (GO:0098660)</td>
<td>1.53</td>
<td>1.20E-02</td>
</tr>
<tr>
<td>forebrain development (GO:0030900)</td>
<td>1.52</td>
<td>3.26E-02</td>
</tr>
<tr>
<td>metal ion transport (GO:0030001)</td>
<td>1.52</td>
<td>3.57E-03</td>
</tr>
<tr>
<td>negative regulation of cell development (GO:0010721)</td>
<td>1.51</td>
<td>3.95E-02</td>
</tr>
<tr>
<td>regulation of ion transmembrane transport (GO:0034765)</td>
<td>1.5</td>
<td>1.33E-02</td>
</tr>
<tr>
<td>positive regulation of nervous system development (GO:0051962)</td>
<td>1.5</td>
<td>1.79E-03</td>
</tr>
<tr>
<td>regulation of ion transport (GO:0043269)</td>
<td>1.49</td>
<td>5.61E-04</td>
</tr>
<tr>
<td>positive regulation of neuron differentiation (GO:0045666)</td>
<td>1.49</td>
<td>2.09E-02</td>
</tr>
<tr>
<td>regulation of metal ion transport (GO:0010959)</td>
<td>1.48</td>
<td>4.88E-02</td>
</tr>
<tr>
<td>regulation of neuron differentiation (GO:0045664)</td>
<td>1.46</td>
<td>9.11E-04</td>
</tr>
<tr>
<td>positive regulation of cell proliferation (GO:0008284)</td>
<td>1.46</td>
<td>6.76E-05</td>
</tr>
<tr>
<td>muscle structure development (GO:0061061)</td>
<td>1.46</td>
<td>2.83E-02</td>
</tr>
<tr>
<td>positive regulation of MAPK cascade (GO:0043410)</td>
<td>1.46</td>
<td>1.49E-02</td>
</tr>
<tr>
<td>regulation of nervous system development (GO:0051960)</td>
<td>1.46</td>
<td>4.91E-05</td>
</tr>
<tr>
<td>calcium ion homeostasis (GO:0055074)</td>
<td>1.45</td>
<td>4.34E-02</td>
</tr>
<tr>
<td>negative regulation of cell proliferation (GO:0068285)</td>
<td>1.44</td>
<td>4.43E-03</td>
</tr>
<tr>
<td>regulation of cellular component biogenesis (GO:0044087)</td>
<td>1.44</td>
<td>3.31E-04</td>
</tr>
<tr>
<td>negative regulation of cell differentiation (GO:0045596)</td>
<td>1.44</td>
<td>2.67E-03</td>
</tr>
<tr>
<td>divalent inorganic cation homeostasis (GO:0072507)</td>
<td>1.44</td>
<td>4.91E-02</td>
</tr>
<tr>
<td>regulation of cell cycle process (GO:0010564)</td>
<td>1.44</td>
<td>1.46E-02</td>
</tr>
<tr>
<td>regulation of cell cycle (GO:0051726)</td>
<td>1.43</td>
<td>3.07E-04</td>
</tr>
<tr>
<td>cell proliferation (GO:0008283)</td>
<td>1.43</td>
<td>1.65E-02</td>
</tr>
<tr>
<td>regulation of MAPK cascade (GO:0043408)</td>
<td>1.43</td>
<td>3.32E-03</td>
</tr>
<tr>
<td>regulation of cell proliferation (GO:0042127)</td>
<td>1.43</td>
<td>1.39E-07</td>
</tr>
<tr>
<td>positive regulation of secretion (GO:0051047)</td>
<td>1.43</td>
<td>3.87E-02</td>
</tr>
</tbody>
</table>
Supplementary Table 4.3.2 Counts and cluster membership per sample (k-means clustering, K=2)

<table>
<thead>
<tr>
<th>Condition</th>
<th>Cluster</th>
<th>Counts</th>
</tr>
</thead>
<tbody>
<tr>
<td>MNR</td>
<td>2</td>
<td>74305030</td>
</tr>
<tr>
<td>Control</td>
<td>2</td>
<td>75865086</td>
</tr>
<tr>
<td>Control</td>
<td>2</td>
<td>80360976</td>
</tr>
<tr>
<td>MNR</td>
<td>2</td>
<td>80920037</td>
</tr>
<tr>
<td>Control</td>
<td>2</td>
<td>81553460</td>
</tr>
<tr>
<td>MNR</td>
<td>2</td>
<td>83508564</td>
</tr>
<tr>
<td>Control</td>
<td>2</td>
<td>83775128</td>
</tr>
<tr>
<td>MNR</td>
<td>2</td>
<td>84106928</td>
</tr>
<tr>
<td>MNR</td>
<td>2</td>
<td>84462329</td>
</tr>
<tr>
<td>MNR</td>
<td>2</td>
<td>85525474</td>
</tr>
<tr>
<td>Control</td>
<td>2</td>
<td>86281726</td>
</tr>
<tr>
<td>MNR</td>
<td>2</td>
<td>87068555</td>
</tr>
<tr>
<td>Control</td>
<td>1</td>
<td>92585570</td>
</tr>
<tr>
<td>MNR</td>
<td>1</td>
<td>98375605</td>
</tr>
<tr>
<td>Control</td>
<td>1</td>
<td>99626219</td>
</tr>
<tr>
<td>Control</td>
<td>1</td>
<td>105476459</td>
</tr>
<tr>
<td>MNR</td>
<td>1</td>
<td>105755590</td>
</tr>
</tbody>
</table>
Supplementary Table 4.3.3 49 protein-coding genes differentially expressed in MNR E18.5 liver relative to controls (FDR < 0.1 in 2 or more tools).

<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Gene Name</th>
<th>DESeq2</th>
<th></th>
<th></th>
<th></th>
<th>EdgeR</th>
<th></th>
<th></th>
<th></th>
<th>Aldex2</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Lin28a</td>
<td>-1.92</td>
<td>0.00</td>
<td>-6.03</td>
<td>0.00</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Rnf169</td>
<td>-1.78</td>
<td>0.00</td>
<td>-9.51</td>
<td>0.00</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Chrm4</td>
<td>-1.61</td>
<td>0.00</td>
<td>-2.28</td>
<td>0.01</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Angpt4</td>
<td>-1.59</td>
<td>0.00</td>
<td>-2.49</td>
<td>0.01</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Cited2</td>
<td>-1.52</td>
<td>0.00</td>
<td>-1.74</td>
<td>0.03</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Pparc1b</td>
<td>-1.50</td>
<td>0.02</td>
<td>-2.47</td>
<td>0.07</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Echdc1</td>
<td>-1.46</td>
<td>0.00</td>
<td>-1.49</td>
<td>0.00</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Kbtbd8</td>
<td>-1.37</td>
<td>0.01</td>
<td>-1.45</td>
<td>0.07</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Atp2b2</td>
<td>-1.31</td>
<td>0.00</td>
<td>-1.36</td>
<td>0.01</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Cars</td>
<td>-1.29</td>
<td>0.03</td>
<td>-1.34</td>
<td>0.08</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Wisp2</td>
<td>-1.28</td>
<td>0.03</td>
<td>-1353.64</td>
<td>0.00</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Mll1</td>
<td>1.15</td>
<td>0.00</td>
<td>1.15</td>
<td>0.10</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Ppp1r15a</td>
<td>1.17</td>
<td>0.06</td>
<td>1.18</td>
<td>0.09</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Capn10</td>
<td>1.19</td>
<td>0.00</td>
<td>1.19</td>
<td>0.08</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Man2b2</td>
<td>1.19</td>
<td>0.00</td>
<td>1.19</td>
<td>0.08</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Syne1</td>
<td>1.19</td>
<td>0.00</td>
<td>1.20</td>
<td>0.00</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Rassf1</td>
<td>1.22</td>
<td>0.01</td>
<td>1.23</td>
<td>0.05</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Coro7</td>
<td>1.22</td>
<td>0.00</td>
<td>1.22</td>
<td>0.08</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Kdm3a</td>
<td>1.22</td>
<td>0.00</td>
<td>1.23</td>
<td>0.08</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Chd7</td>
<td>1.23</td>
<td>0.01</td>
<td>1.24</td>
<td>0.03</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Mycbp2</td>
<td>1.23</td>
<td>0.00</td>
<td>1.23</td>
<td>0.00</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Crls1</td>
<td>1.23</td>
<td>0.00</td>
<td>1.24</td>
<td>0.08</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Cep170</td>
<td>1.26</td>
<td>0.00</td>
<td>1.27</td>
<td>0.06</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>v-maf</td>
<td>musculoaponeurotic fibrosarcoma oncogene family, protein F (avian)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.26</td>
<td>0.02</td>
<td>1.28</td>
<td>0.10</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>24</td>
<td>Maff</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.26</td>
<td>0.02</td>
<td>1.28</td>
<td>0.10</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>25</td>
<td>Stard5</td>
<td></td>
<td>StAR-related lipid transfer (START) domain containing 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.28</td>
<td>0.00</td>
<td>1.29</td>
<td>0.02</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>26</td>
<td>Rabgef1</td>
<td></td>
<td>RAB guanine nucleotide exchange factor (GEF) 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.28</td>
<td>0.00</td>
<td>1.29</td>
<td>0.00</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>27</td>
<td>Hif3a</td>
<td></td>
<td>hypoxia inducible factor 3, alpha subunit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.29</td>
<td>0.01</td>
<td>1.32</td>
<td>0.03</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>28</td>
<td>Pex26</td>
<td></td>
<td>peroxisomal biogenesis factor 26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.31</td>
<td>0.01</td>
<td>1.35</td>
<td>0.10</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>29</td>
<td>Vhl</td>
<td></td>
<td>von Hippel-Lindau tumor suppressor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.32</td>
<td>0.03</td>
<td>1.39</td>
<td>0.10</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>30</td>
<td>Inpp4a</td>
<td></td>
<td>inositol polyphosphate-4-phosphatase, type I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.33</td>
<td>0.00</td>
<td>1.36</td>
<td>0.00</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>31</td>
<td>Lpin1</td>
<td></td>
<td>lipin 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.35</td>
<td>0.02</td>
<td>1.44</td>
<td>0.09</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>32</td>
<td>Kif21a</td>
<td></td>
<td>kinesin family member 21A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.36</td>
<td>0.00</td>
<td>1.40</td>
<td>0.02</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>33</td>
<td>Hpcal</td>
<td></td>
<td>hippocalcin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.37</td>
<td>0.01</td>
<td>1.44</td>
<td>0.03</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>34</td>
<td>Fam126b</td>
<td></td>
<td>family with sequence similarity 126, member B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.37</td>
<td>0.01</td>
<td>1.46</td>
<td>0.04</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>35</td>
<td>Nlrp12</td>
<td></td>
<td>NLR family, pyrin domain containing 12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.40</td>
<td>0.00</td>
<td>1.50</td>
<td>0.03</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>36</td>
<td>Sra1</td>
<td></td>
<td>steroid receptor RNA activator 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.42</td>
<td>0.00</td>
<td>1.52</td>
<td>0.02</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>37</td>
<td>Cd80</td>
<td></td>
<td>CD80 antigen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.45</td>
<td>0.02</td>
<td>1.69</td>
<td>0.08</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>38</td>
<td>Gata4</td>
<td></td>
<td>GATA binding protein 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.45</td>
<td>0.01</td>
<td>1.63</td>
<td>0.03</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>39</td>
<td>Jmy</td>
<td></td>
<td>junction-mediating and regulatory protein</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.47</td>
<td>0.00</td>
<td>1.52</td>
<td>0.00</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>40</td>
<td>Trpv4</td>
<td></td>
<td>transient receptor potential cation channel, subfamily V, member 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.48</td>
<td>0.01</td>
<td>1.70</td>
<td>0.03</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>41</td>
<td>Ccn2</td>
<td></td>
<td>cyclin G2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.50</td>
<td>0.00</td>
<td>1.62</td>
<td>0.00</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>42</td>
<td>Cobl1</td>
<td></td>
<td>Cobl-like 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.51</td>
<td>0.00</td>
<td>1.57</td>
<td>0.00</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>43</td>
<td>Pfkfb3</td>
<td></td>
<td>6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.53</td>
<td>0.00</td>
<td>1.61</td>
<td>0.00</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>44</td>
<td>Tiparp</td>
<td></td>
<td>TCDD-inducible poly(ADP-ribose) polymerase</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.53</td>
<td>0.00</td>
<td>1.71</td>
<td>0.01</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>45</td>
<td>Fkbp5</td>
<td></td>
<td>FK506 binding protein 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.56</td>
<td>0.00</td>
<td>1.82</td>
<td>0.01</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>46</td>
<td>Josd1</td>
<td></td>
<td>Josephin domain containing 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.64</td>
<td>0.00</td>
<td>NA</td>
<td>2.03</td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>Btg2</td>
<td></td>
<td>B cell translocation gene 2, anti-proliferative</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.64</td>
<td>0.00</td>
<td>NA</td>
<td>2.16</td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>Tubb2a</td>
<td></td>
<td>tubulin, beta 2A class IIA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.69</td>
<td>0.00</td>
<td>2.35</td>
<td>0.01</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>49</td>
<td>Fbxo31</td>
<td></td>
<td>F-box protein 31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.75</td>
<td>0.00</td>
<td>NA</td>
<td>1.98</td>
<td>0.08</td>
<td></td>
</tr>
</tbody>
</table>
Note: Fold change (FC) discussed was taken from the DESeq2 analysis which was the most conservative. False discovery rate (FDR) was calculated with a Benjamini-Hochberg correction.
Supplementary Table 4.3.4 Function of hypoxia-inducible genes differentially expressed in MNR offspring.

<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Role in HIF signalling</th>
<th>Functions</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vhl</td>
<td>Negative regulator of Hif-1a and Hif-2a</td>
<td>U3 ubiquitin ligase complex</td>
<td>(1)</td>
</tr>
<tr>
<td>Mll1</td>
<td>Transcriptional co-activator at HRE-containing genes</td>
<td>H3K4 Histone demethyltransferase</td>
<td>(2)</td>
</tr>
<tr>
<td>Chrna4</td>
<td>Neuronal acetylcholine receptors promote accumulation and stability of Hif-1a</td>
<td>Nicotine receptor</td>
<td>(3)</td>
</tr>
<tr>
<td>Rassf1</td>
<td>Upregulated with hypoxia and HIF1/2a expression</td>
<td>Tumor suppressor</td>
<td>(4,5)</td>
</tr>
<tr>
<td>Jmy</td>
<td>Hypoxia-induced HRE-containing gene</td>
<td>Actin polymerization</td>
<td>(6)</td>
</tr>
<tr>
<td>Nrp12</td>
<td>Transcriptionally downregulated by HIF-1a</td>
<td>Receptor, ligands include VEGF</td>
<td>(7)</td>
</tr>
<tr>
<td>CD80</td>
<td>Reduction on myeloid cells in response to hypoxia</td>
<td>Stimulates T-cell innate immunity</td>
<td>(8)</td>
</tr>
<tr>
<td>Ccng2</td>
<td>Hypoxia-induced HRE-containing gene</td>
<td>Negative cell cycle regulation/regulation of the cytoskeleton</td>
<td>(9,10)</td>
</tr>
<tr>
<td>Maff</td>
<td>Hypoxia-induced HRE-containing gene</td>
<td>Transcriptional regulator</td>
<td>(5,11)</td>
</tr>
<tr>
<td>Angptl4</td>
<td>Hypoxia-induced HRE-containing gene</td>
<td>Secreted protein involved in angiogenesis and is a negative regulator of lipoprotein lipase</td>
<td>(12–14)</td>
</tr>
<tr>
<td>Btg2</td>
<td>Hypoxia-induced Hif-1a dependent transcription</td>
<td>Negative cell cycle regulation</td>
<td>(15)</td>
</tr>
<tr>
<td>Fkbp5</td>
<td>Hypoxia-induced gene potentially via HIF-2a inhibition of AR, and as a KDM3a target</td>
<td>Co-chaperon and scaffold protein</td>
<td>(5,16,17)</td>
</tr>
<tr>
<td>Pfkfb3</td>
<td>Hypoxia-induced HRE-containing gene</td>
<td>Phosphatase and diphosphatase to fructose-2,6-bisphosphotate</td>
<td>(5,18)</td>
</tr>
<tr>
<td>Kdm3a</td>
<td>Hypoxia-induced HRE-containing gene and is recruited to promoters of HRE-containing genes</td>
<td>H3K9 histone demethylase</td>
<td>(5,14)</td>
</tr>
<tr>
<td>Hif-3a</td>
<td>Induced by HIF-1a and a negative regulator of HIF-induced transcription</td>
<td>Transcriptional regulator</td>
<td>(19,20)</td>
</tr>
<tr>
<td>Ppp1r15a</td>
<td>Hypoxia-induced HRE-containing gene</td>
<td>Unfolded protein response reducing protein synthesis</td>
<td>(5,21)</td>
</tr>
<tr>
<td>Cited2</td>
<td>Prevents CBP/P300 binding inhibiting HIF-1a transactivation</td>
<td>Transcriptional regulator</td>
<td>(22)</td>
</tr>
</tbody>
</table>
Appendix 2 References


Appendix 3
Chapter 5 Supplementary Figures

Supplementary Figure S5.2.1 Biplots of controls (A), intolerant MNR (B) and tolerant MNR (C) in liver RNAseq data.

One sample in the tolerant MNR (red box) contributed more variation to the group than any other samples and was removed from further analysis.
Supplementary Figure S5.2.2 Biplots of controls (A), intolerant MNR (B) and tolerant MNR (C) muscle RNA sequencing data.

One control and one intolerant MNR (red box) contributed more variation to the group than any other samples with the group. Outliers were removed from further analysis.
Supplementary Figure S5.2.3 Biplots of sequenced RNA from adipose tissue of controls (A), intolerant MNR (B) and tolerant MNR (C).

One sample from each group (red box) contributed more variation to the group than any other samples with the group and were removed from further analysis.
Supplementary Figure S5.2.4 Fasting blood glucose of 6-month-old control and MNR offspring.

Fasting blood glucose was similar for control (6.5 ± 0.3 mmol/L) and MNR (7.3 ± 0.3 mmol/L) offspring ($p = 0.2$), however, 4 MNR had a higher fasting blood glucose than any controls (as indicated by the box). Data are expressed as mean ± SEM and compared with a Mann-Whitney test.
Supplementary Figure S5.3.1 PCA of top 500 variable genes in RNAseq data of the liver, adipose tissue, and skeletal muscle of 6-month-old MNR offspring. Samples clustered based on tissue (colour) but not maternal nutrition (symbol).
Supplementary Table 5.3.1 Differentially expressed genes (0.1 > FDR, Fold change [FC] ≥ 2, 2 or more tools) in liver, skeletal muscle and adipose tissue of 6-month-old offspring.

<table>
<thead>
<tr>
<th>Tissue</th>
<th>Reference</th>
<th>Comparison Group</th>
<th>Gene ID</th>
<th>Gene Name</th>
<th>Ave. FC</th>
<th>Ave. FDR</th>
<th>Tools</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liver</td>
<td>Control</td>
<td>MNR</td>
<td>Alas1</td>
<td>aminolevulinic acid synthase 1 [Source:MGI Symbol;Acc:MGI:87989]</td>
<td>-2.69</td>
<td>0.045</td>
<td>DESeq2. EdgeR. Aldex2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hspa1l</td>
<td>heat shock protein 1-like [Source:MGI Symbol;Acc:MGI:96231]</td>
<td>-2.43</td>
<td>0.027</td>
<td>DESeq2. EdgeR. Aldex2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hspb1</td>
<td>heat shock protein 1 [Source:MGI Symbol;Acc:MGI:96240]</td>
<td>-2.14</td>
<td>0.085</td>
<td>DESeq2. EdgeR. Aldex2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fgf11</td>
<td>fibroblast growth factor 11 [Source:MGI Symbol;Acc:MGI:109167]</td>
<td>-2.06</td>
<td>0.062</td>
<td>DESeq2. EdgeR. Aldex2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Rfx4</td>
<td>regulatory factor X, 4 (influences HLA class II expression) [Source:MGI Symbol;Acc:MGI:1918387]</td>
<td>2.21</td>
<td>0.049</td>
<td>DESeq2. EdgeR.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Trem2</td>
<td>triggering receptor expressed on myeloid cells 2 [Source:MGI Symbol;Acc:MGI:1913150]</td>
<td>2.22</td>
<td>0.004</td>
<td>DESeq2. EdgeR.</td>
</tr>
<tr>
<td>Control</td>
<td>Intolerant</td>
<td>MNR</td>
<td>Hspa1a</td>
<td>heat shock protein 1A [Source:MGI Symbol;Acc:MGI:96244]</td>
<td>-3.54</td>
<td>0.002</td>
<td>DESeq2. EdgeR.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hspa1l</td>
<td>heat shock protein 1-like [Source:MGI Symbol;Acc:MGI:96231]</td>
<td>-3.36</td>
<td>0.001</td>
<td>DESeq2. EdgeR.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Alas1</td>
<td>aminolevulic acid synthase 1 [Source:MGI Symbol;Acc:MGI:87989]</td>
<td>-3.25</td>
<td>0.011</td>
<td>DESeq2. EdgeR.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hspa1b</td>
<td>heat shock protein 1B [Source:MGI Symbol;Acc:MGI:99517]</td>
<td>-3.14</td>
<td>0.004</td>
<td>DESeq2. EdgeR.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dnaic1</td>
<td>dynein, axonemal, intermediate chain 1 [Source:MGI Symbol;Acc:MGI:1916172]</td>
<td>-2.94</td>
<td>0.059</td>
<td>DESeq2. EdgeR.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hspb1</td>
<td>heat shock protein 1 [Source:MGI Symbol;Acc:MGI:96240]</td>
<td>-2.63</td>
<td>0.022</td>
<td>DESeq2. EdgeR.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Eif4ebp3</td>
<td>eukaryotic translation initiation factor 4E binding protein 3 [Source:MGI Symbol;Acc:MGI:1270847]</td>
<td>-2.45</td>
<td>0.006</td>
<td>DESeq2. EdgeR.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Saa1</td>
<td>serum amyloid A 1 [Source:MGI Symbol;Acc:MGI:98221]</td>
<td>-2.44</td>
<td>0.047</td>
<td>DESeq2. EdgeR.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Greml2</td>
<td>gremlin 2 homolog, cysteine knot superfamily (Xenopus laevis) [Source:MGI Symbol;Acc:MGI:1344367]</td>
<td>-2.37</td>
<td>0.047</td>
<td>DESeq2. EdgeR.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pcp4l1</td>
<td>Purkinje cell protein 4-like 1 [Source:MGI]</td>
<td>-2.19</td>
<td>0.000</td>
<td>DESeq2. EdgeR.</td>
</tr>
<tr>
<td>Symbol;Acc;MGI:1913675</td>
<td>Tbc1d30</td>
<td>TBC1 domain family, member 30 [Source:MGI Symbol;Acc:MGI:1921944]</td>
<td>-2.09</td>
<td>0.001</td>
<td>DESeq2. EdgeR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symbol;Acc;MGI:1921944</td>
<td>Cyp26b1</td>
<td>cytochrome P450, family 26, subfamily b, polypeptide 1 [Source:MGI Symbol;Acc:MGI:2176159]</td>
<td>-2.07</td>
<td>0.056</td>
<td>DESeq2. EdgeR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symbol;Acc;MGI:109167</td>
<td>Fgf11</td>
<td>fibroblast growth factor 11 [Source:MGI Symbol;Acc:MGI:109167]</td>
<td>-2.04</td>
<td>0.089</td>
<td>DESeq2. EdgeR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symbol;Acc;MGI:88026</td>
<td>Ank3</td>
<td>ankyrin 3, epithelial [Source:MGI Symbol;Acc:MGI:88026]</td>
<td>2.03</td>
<td>0.001</td>
<td>DESeq2. EdgeR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symbol;Acc;MGI:1346047</td>
<td>Gdf15</td>
<td>growth differentiation factor 15 [Source:MGI Symbol;Acc:MGI:1346047]</td>
<td>2.03</td>
<td>0.065</td>
<td>DESeq2. EdgeR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symbol;Acc;MGI:2176159</td>
<td>Trem2</td>
<td>triggering receptor expressed on myeloid cells 2 [Source:MGI Symbol;Acc:MGI:1913150]</td>
<td>2.04</td>
<td>0.008</td>
<td>DESeq2. EdgeR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symbol;Acc;MGI:109165</td>
<td>Gngt1</td>
<td>guanine nucleotide binding protein (G protein), gamma transducing activity polypeptide 1 [Source:MGI Symbol;Acc:MGI:109165]</td>
<td>2.06</td>
<td>0.062</td>
<td>DESeq2. EdgeR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symbol;Acc;MGI:98935</td>
<td>Vldr</td>
<td>very low density lipoprotein receptor [Source:MGI Symbol;Acc:MGI:98935]</td>
<td>2.13</td>
<td>0.056</td>
<td>DESeq2. EdgeR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symbol;Acc;MGI:1918387</td>
<td>Rfx4</td>
<td>regulatory factor X, 4 (influences HLA class II expression) [Source:MGI Symbol;Acc:MGI:1918387]</td>
<td>2.20</td>
<td>0.012</td>
<td>DESeq2. EdgeR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symbol;Acc;MGI:1861032</td>
<td>Raet1d</td>
<td>retinoic acid early transcript delta [Source:MGI Symbol;Acc:MGI:1861032]</td>
<td>2.38</td>
<td>0.050</td>
<td>DESeq2. EdgeR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symbol;Acc;MGI:1351481</td>
<td>Pdk4</td>
<td>pyruvate dehydrogenase kinase, isoenzyme 4 [Source:MGI Symbol;Acc:MGI:1351481]</td>
<td>2.65</td>
<td>0.001</td>
<td>DESeq2. EdgeR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symbol;Acc;MGI:99677</td>
<td>Adcy1</td>
<td>adenylate cyclase 1 [Source:MGI Symbol;Acc:MGI:99677]</td>
<td>4.10</td>
<td>0.039</td>
<td>DESeq2. EdgeR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symbol;Acc;MGI:97384</td>
<td>Ntrk2</td>
<td>neurotrophic tyrosine kinase, receptor, type 2 [Source:MGI Symbol;Acc:MGI:97384]</td>
<td>4.90</td>
<td>0.000</td>
<td>DESeq2. EdgeR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symbol;Acc;MGI:88600</td>
<td>Cyp2b9</td>
<td>cytochrome P450, family 2, subfamily b, polypeptide 9 [Source:MGI Symbol;Acc:MGI:88600]</td>
<td>7.03</td>
<td>0.063</td>
<td>DESeq2. EdgeR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symbol;Acc;MGI:1923824</td>
<td>Mfsd2a</td>
<td>major facilitator superfamily domain containing 2A [Source:MGI Symbol;Acc:MGI:1923824]</td>
<td>-4.74</td>
<td>0.004</td>
<td>DESeq2. EdgeR</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Control**

**Impaired fasting blood glucose**

<p>| Symbol;Acc;UniProtKB/SwissProt:AP86793 | Ccl21c | C-C motif chemokine 21c [Source:UniProtKB/SwissProt:AP86793] | -6.32 | 0.022 | DESeq2. EdgeR |
| Symbol;Acc;MGI:2176159 | Cyp26b1 | cytochrome P450, family 26, subfamily b, polypeptide 1 [Source:MGI Symbol;Acc:MGI:2176159] | -5.16 | 0.000 | DESeq2. EdgeR |
| Symbol;Acc;MGI:1921944 | Mfsd2a | major facilitator superfamily domain containing 2A [Source:MGI Symbol;Acc:MGI:1921924] | -4.74 | 0.004 | DESeq2. EdgeR |</p>
<table>
<thead>
<tr>
<th>Tolerant MNR</th>
<th>Intolerant MNR</th>
<th>mt1</th>
<th>metallothionein 1</th>
<th>-2.47</th>
<th>0.057</th>
<th>DESeq2. EdgeR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muscle</td>
<td>Control</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>Intolerant MNR</td>
<td>Gpd3</td>
<td>glycerophosphodiester phosphodiesterase domain containing 3 [Source:MGI Symbol;Acc:MGI:1915866]</td>
<td>-5.78</td>
<td>0.071</td>
<td>DESeq2. EdgeR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>II1f</td>
<td>interleukin 1 family, member 9 [Source:MGI Symbol;Acc:MGI:2449929]</td>
<td>-3.59</td>
<td>0.013</td>
<td>DESeq2. EdgeR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cyp1b1</td>
<td>cytochrome P450, family 1, subfamily b, polypeptide 1 [Source:MGI Symbol;Acc:MGI:88590]</td>
<td>-2.34</td>
<td>0.028</td>
<td>DESeq2. EdgeR</td>
</tr>
<tr>
<td>Control</td>
<td>Impaired fasting blood glucose</td>
<td>Nr4a3</td>
<td>nuclear receptor subfamily 4, group A, member 3 [Source:MGI Symbol;Acc:MGI:1352457]</td>
<td>-4.54</td>
<td>0.050</td>
<td>DESeq2. EdgeR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SLC25A25</td>
<td>solute carrier family 25 (mitochondrial carrier, phosphate carrier), member 25 [Source:MGI Symbol;Acc:MGI:1915913]</td>
<td>-2.81</td>
<td>0.040</td>
<td>DESeq2. EdgeR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Irs2</td>
<td>insulin receptor substrate 2 [Source:MGI Symbol;Acc:MGI:109334]</td>
<td>-2.80</td>
<td>0.025</td>
<td>DESeq2. EdgeR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Panx1</td>
<td>pannexin 1 [Source:MGI Symbol;Acc:MGI:1860055]</td>
<td>2.08</td>
<td>0.014</td>
<td>DESeq2. EdgeR</td>
</tr>
<tr>
<td>Tolerant MNR</td>
<td>Intolerant MNR</td>
<td>Kcna6</td>
<td>potassium voltage-gated channel, shaker-related, subfamily, member 6 [Source:MGI Symbol;Acc:MGI:96663]</td>
<td>2.31</td>
<td>0.061</td>
<td>DESeq2. EdgeR</td>
</tr>
<tr>
<td>Adipose tissue</td>
<td>Control</td>
<td>Napsa</td>
<td>napsin A aspartic peptidase [Source:MGI Symbol;Acc:MGI:109365]</td>
<td>-172.97</td>
<td>0.012</td>
<td>DESeq2. EdgeR</td>
</tr>
<tr>
<td></td>
<td>Intolerant MNR</td>
<td>Cox8a</td>
<td>cytochrome c oxidase, subunit VIIIa [Source:MGI Symbol;Acc:MGI:105959]</td>
<td>2.30</td>
<td>0.038</td>
<td>DESeq2. EdgeR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zcchc24</td>
<td>zinc finger, CCHC domain containing 24 [Source:MGI Symbol;Acc:MGI:1919168]</td>
<td>2.35</td>
<td>0.067</td>
<td>DESeq2. EdgeR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Inpp5d</td>
<td>inositol polyphosphate-5-phosphatase D [Source:MGI Symbol;Acc:MGI:107357]</td>
<td>2.70</td>
<td>0.032</td>
<td>DESeq2. EdgeR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vwa1</td>
<td>von Willebrand factor A</td>
<td>2.84</td>
<td>0.079</td>
<td>DESeq2.</td>
</tr>
<tr>
<td>Gene</td>
<td>Description</td>
<td>Fold Change</td>
<td>FDR</td>
<td>Tool(s)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>------------------------------------------------------------------------------</td>
<td>-------------</td>
<td>------</td>
<td>---------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Timp4</td>
<td>Tissue inhibitor of metalloproteinase 4</td>
<td>3.43</td>
<td>0.020</td>
<td>DESeq2, EdgeR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gcnt1</td>
<td>Glucosaminyl (N-acetyl) transferase 1, core 2</td>
<td>3.56</td>
<td>0.052</td>
<td>DESeq2, EdgeR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xlr3b</td>
<td>X-linked lymphocyte-regulated 3B</td>
<td>-2.09</td>
<td>0.019</td>
<td>DESeq2, EdgeR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lrriq3</td>
<td>Leucine-rich repeats and IQ motif containing 3</td>
<td>-2.02</td>
<td>0.032</td>
<td>DESeq2, EdgeR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Napsa</td>
<td>Napsin A aspartic peptidase</td>
<td>1.96</td>
<td>0.001</td>
<td>DESeq2, EdgeR</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Fold change (FC) and false discovery rate (FDR) are expressed as an average between the differential expression tools.
Dear Bethany Radford,


Thank you for your request to reproduce the above material in your forthcoming thesis, for non-commercial publication. Cambridge University Press are pleased to grant non-exclusive permission, free of charge, for this specific one time use, on the understanding you have checked that we do not acknowledge any other source for the material. This permission does not include the use of copyright material owned by any party other than the authors. Consent to use any such material must be sought by you from the copyright owner concerned.

Please ensure full acknowledgement appears in your work.

Should you wish to publish your work commercially in the future, please reapply to the appropriate Cambridge University Press office, depending on where your forthcoming work will be published. Further information can be found on our website at the following link:

http://www.cambridge.org/about-us/rights-permissions/permissions/

Kind regards,

Permissions Sales Team
Cambridge University Press
University Printing House
Shaftesbury Road
Cambridge CB2 8BS, UK

http://www.cambridge.org/about-us/rights-permissions/permissions/
Appendix 5
Animal Ethics Approval

**AUP Number:** 2017-033  
**PI Name:** Han, Victor  
**AUP Title:** Insulin-like Growth Factors And Igf Binding Proteins In The Fetus And Newborn From Dietary Restricted Mothers  
**Approval Date:** 05/23/2017

**Official Notice of Animal Use Subcommittee (AUS) Approval:** Your new Animal Use Protocol (AUP) entitled "Insulin-like Growth Factors And Igf Binding Proteins In The Fetus And Newborn From Dietary Restricted Mothers" has been APPROVED by the Animal Use Subcommittee of the University Council on Animal Care. This approval, although valid for four years, and is subject to annual Protocol Renewal.2017-033::1

1. This AUP number must be indicated when ordering animals for this project.  
2. Animals for other projects may not be ordered under this AUP number.  
3. Purchases of animals other than through this system must be cleared through the ACVS office. Health certificates will be required.

The holder of this Animal Use Protocol is responsible to ensure that all associated safety components (biosafety, radiation safety, general laboratory safety) comply with institutional safety standards and have received all necessary approvals. Please consult directly with your institutional safety officers.

Submitted by: Copeman, Laura  
on behalf of the Animal Use Subcommittee  
University Council on Animal Care
# Curriculum Vitae

<table>
<thead>
<tr>
<th>Name:</th>
<th>Bethany Radord</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Post-secondary</strong></td>
<td>University of Western Ontario</td>
</tr>
<tr>
<td><strong>Education and</strong></td>
<td>London, Ontario, Canada</td>
</tr>
<tr>
<td><strong>Degrees:</strong></td>
<td>2006-2011 HBsc in Biochemistry</td>
</tr>
<tr>
<td></td>
<td>The University of Western Ontario</td>
</tr>
<tr>
<td></td>
<td>London, Ontario, Canada</td>
</tr>
<tr>
<td></td>
<td>2013-2019 Ph.D. in Biochemistry</td>
</tr>
<tr>
<td><strong>Honours and</strong></td>
<td>Western Research Scholarship</td>
</tr>
<tr>
<td><strong>Awards:</strong></td>
<td>2014-2018</td>
</tr>
<tr>
<td></td>
<td>Schulich Graduate scholarship</td>
</tr>
<tr>
<td></td>
<td>2014-2018</td>
</tr>
<tr>
<td></td>
<td>1st Place, Poster Presentation</td>
</tr>
<tr>
<td></td>
<td>Canadian Nation Perinatal Research Meeting</td>
</tr>
<tr>
<td></td>
<td>2018</td>
</tr>
<tr>
<td></td>
<td>Epigenetics Program Travel Award</td>
</tr>
<tr>
<td></td>
<td>London Health Sciences Center</td>
</tr>
<tr>
<td></td>
<td>2018</td>
</tr>
<tr>
<td></td>
<td>Children’s Health Research Institute Travel Award</td>
</tr>
<tr>
<td></td>
<td>London Health Sciences Center</td>
</tr>
<tr>
<td></td>
<td>2017</td>
</tr>
<tr>
<td></td>
<td>1st Place, Poster Presentation</td>
</tr>
<tr>
<td></td>
<td>Pediatrics Research Day</td>
</tr>
<tr>
<td></td>
<td>2016</td>
</tr>
<tr>
<td><strong>Related Work</strong></td>
<td>Clinical Research Associate</td>
</tr>
<tr>
<td><strong>Experience</strong></td>
<td>London Health Sciences Center</td>
</tr>
<tr>
<td></td>
<td>2016-2017</td>
</tr>
<tr>
<td></td>
<td>Exam Proctor</td>
</tr>
<tr>
<td></td>
<td>The University of Western Ontario</td>
</tr>
<tr>
<td></td>
<td>2013-2015</td>
</tr>
<tr>
<td></td>
<td>Research Associate</td>
</tr>
<tr>
<td></td>
<td>London Health Sciences Center</td>
</tr>
<tr>
<td></td>
<td>February 2013-August 2013</td>
</tr>
</tbody>
</table>
Laboratory Technician
Advanced Mineral Mining Technologies
2011-2012

Research Internship
Agri-Foods and Agriculture Canada
2009-2010

Publications:

Radford, B. and Han, V. Offspring from Maternal Nutrient Restriction in Mice Show Variations in Adult Glucose Metabolism Similar to Human Fetal Growth Restriction. J Dev Orig Health Dis. 2018. DOI: 10.1017/S2040174418000983.

Radford, B., Gros, R. and Han, V. High-fat high-sugar diet impairs glucose tolerance independent of fetal growth restriction caused by poor maternal nutrition in mice. Submitted for consideration in J Dev Orig Health Dis.

Radford B., and Han, V. Evidence of Increased Hypoxia Signalling in Fetal Liver from Maternal Nutrient Restriction in Mice. Manuscript in preparation.

Radford B., and Han V. Similar gene expression in liver, adipose tissue and skeletal muscle in maternal nutrient restricted offspring susceptible and resistant to changes in glucose metabolism. Manuscript in preparation.