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Abstract
In this thesis, we propose a new method for removing all the redundant inequalities gener-

ated by Fourier-Motzkin elimination. This method is based on Kohler’s work and an improved
version of Balas’ work. Moreover, this method only uses arithmetic operations on matrices.
Algebraic complexity estimates and experimental results show that our method outperforms
alternative approaches based on linear programming.

Keywords: polyhedron, projection, Fourier-Motzkin elimination, linear algebra, polyhe-
dral cone, parametric linear programming
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Chapter 1

Introduction

Computations with polyhedral sets play an important role in the analysis, transformation and
scheduling of for-loops of computer programs. We refer to the following articles as entry points
to this subject [2, 3, 4, 9, 10, 15, 33]. Of prime importance are the following operations on
polyhedral sets: (i) representation conversion of polyhedral sets, between H-representation and
V-representation, (ii) projection of polyhedral sets, namely Fourier-Motzkin elimination and
block elimination, (iii) redundancy removal, for which most works use linear programming.

Fourier-Motzkin elimination is an algorithmic tool for projecting a polyhedral set on a lin-
ear subspace. It was proposed independently by Joseph Fourier and Theodore Motzkin, in
1827 and in 1936. The naive version of this algorithm produces large amounts of redundant
inequalities and has a double exponential algebraic complexity. Removing all these redun-
dancies is equivalent to give a minimal representation of the projected polyhedron. Leonid
Khachiyan explained in [24] how linear programming (LP) could be used to remove all redun-
dant inequalities, then reducing the cost of Fourier-Motzkin elimination to singly exponential
time; however, Khachiyan does not give any running time estimate.

Instead of using linear programming, we are hoping to use matrix arithmetic operations
in order to increase theoretical and practical efficiency of Fourier-Motzkin elimination while
maintaining the requirement of an irredundant representation of the projected polyhedron.

As we have mentioned above, the so-called block elimination method is another algorith-
mic tool to project a polyhedral set. This method needs to enumerate the extreme rays of a
cone. Many authors have been working on this topic, see Nataĺja V. Chernikova [7], Hervé
Le Verge [26] and Komei Fududa [13]. Other algorithms aiming at projecting polyhedral sets
remove some (but not all) redundant inequalities with the help of extreme rays: see the work
of David A. Kohler [25]. As observed by Jean-Louis Imbert in [18], the method he proposed
in this paper and that of Sergei N. Chernikov in [6] are equivalent. These methods are very
effective in practice, but none of them can remove all redundant inequalities generated by
Fourier-Motzkin Elimination. Egon Balas in [1] proposed a method to overcome that latter
limitation. However, we found flaws in both his construction and its proof.

In this thesis, we show how to remove all the redundant inequalities generated by Fourier-
Motzkin Elimination combining Kohler’s work and an improved version of Balas’ work. More-
over, our method has a better algebraic complexity estimate than the approaches using linear
programming.

Our main contributions are:

1



2 Chapter 1. Introduction

1. Based on Kohler’s and Balas’ works, we propose an efficient method for removing all
redundancies in Fourier-Motzkin elimination;

2. We use simple matrix operations and avoid computing all the extreme rays of the so-
called test cone, this latter task being time-consuming.

3. We give a single exponential complexity time for our method.
4. We propose a method for removing the redundant inequalities of the input system as

well.
5. We implemented our method in the C language, within the BPAS library, and our exper-

imental results show that our method outperforms competitive implementations.
This thesis is organized as follows. Chapter 2 provides background materials. Chapter 3

explains our algorithm. To be more specific, Sections 3.1.3 and 3.3 presents Kohler’s and
improved Balas’ works respectively. We will see that Kohler’s method is effective but can
not guarantee to remove all the redundant inequalities. Meanwhile, Balas’s method consumes
more computing resources but can remove all the redundant inequalities. The main algorithm
and its complexity are presented in Section 3.4. Experimental results are reported in Chapter 4.
In Chapter 5, we discuss related work together with the flaws of the construction and the proof
in the original work of Balas. Chapter 6 shows an application of Fourier-Motzkin elimination:
solving parametric linear programming (PLP) problems, which is a core routine in the analysis,
transformation and scheduling of for-loops of computer programs.

This thesis is a joint work with Rui-Juan and Marc Moreno Maza, see the preprint [21].

www.bpaslib.org


Chapter 2

Background

In this chapter, we review the basics of polyhedral geometry. Section 2.1 is dedicated to the no-
tions of polyhedral sets and polyhedral cones Section 2.2 states the double description method
and Fourier-Motzkin elimination, which are the two of the most important algorithms operat-
ing on polyhedral sets. Finally, we conclude this background chapter with the cost model that
we shall use for complexity analysis, see Section 2.3. We omit most proofs in this chapter. For
more details please refer to [13, 30, 32].

2.1 Polyhedral cones and polyhedral sets
Notation 1 We use bold letters, e.g. v, to denote vectors and we use capital letters, e.g. A,
to denote matrices. Also, we assume vectors are column vectors. For row vectors, we use the
transpose notation, that is, At for the transposition of matrix A. For a matrix A and an integer
k, Ak is the row of index k in A. Also, if K is a set of integers, AK denotes the sub-matrix of A
with indices in K.

We begin this section with the fundamental theorem of linear inequalities.

Theorem 2.1 Let a1, · · · , am be a set of linearly independent vectors in Rn. Also, let and b be
a vector in Rn. Then, exactly one of the following holds:

(i) the vector b is a non-negative linear combination of a1, . . . , am. In other words, there
exist positive numbers y1, . . . , ym such that we have b =

∑m
i=1 yiai, or,

(ii) there exists a vector d ∈ Rn, such that both dtb < 0 and dtai > 0 hold for all 1 ≤ i ≤ m.

Definition 2.1 (Convex cone) A subset of points C ⊆ Rn is called a cone if for each x ∈ C and
each real number λ ≥ 0 we have λx ∈ C. A cone C ⊆ Rn is said convex if for all x, y ∈ C, we
have x + y ∈ C. If C ⊆ Rn is a convex cone, then its elements are called the rays of C. For two
rays r and r′ of C, we write r′ ' r whenever there exists λ ≥ 0 such that we have r′ = λr.

Definition 2.2 (Hyperplane) Let H be a subset of Rn. It is called a hyperplane if H = {x ∈
Rn | atx = 0} for some non-zero vector a ∈ Rn.

3



4 Chapter 2. Background

Definition 2.3 (Half-space) A half-space is a set of the form {x ∈ Rn | atx ≤ 0} for a some
vector a ∈ Rn.

Definition 2.4 (Polyhedral cone) A cone C ⊆ Rn is a polyhedral cone if it is the intersection
of finitely many half-spaces, that is, C = {x ∈ Rn | Ax ≤ 0} for some matrix A ∈ Rm×n.

Example 2.1 The set C = {−2 x + y + 11 z ≤ 0, x − 5 y + 7 z ≤ 0, x + y + z ≤ 0, x + 2 y + 3 z ≤ 0}
defines a polyhedral cone and Figure 2.1 is the illustration of this cone. As it can be seen in
the Figure 2.1 all hyperplanes defining the cone, are intersecting at the origin.

Figure 2.1: Example of a polyhedral cone

Definition 2.5 (Finitely generated cone) Let {x1, . . . , xm} be a set of vectors in Rn. The cone
generated by this set, denoted by Cone(x1, · · · , xm), is the smallest convex cone containing
those vectors. In other words, we have Cone(x1, . . . , xm) = {λ1x1 + · · ·+λmxm | λ1 ≥ 0, . . . , λm ≥

0}. A cone obtained in this way is called a finitely generated cone.

Example 2.2 The cone in Figure 2.1 can be generated by:

G = {[1,
−1
2
,
−1
2

], [−1,−
25
62
,−

9
62

], [
−1
2
, 1,
−1
2

], [−1,
17
19
,−

5
19

]}

With the following lemma, which is a consequence of the fundamental Theorem of linear
inequalities, we can say that the two concepts of polyhedral cones and finitely generated cones
are equivalent, see [30]

Theorem 2.2 (Minkowski-Weyl theorem) A convex cone is polyhedral if and only if it is
finitely generated.



2.1. Polyhedral cones and polyhedral sets 5

Definition 2.6 (Convex polyhedron) A set of vectors P ⊂ Rn is called a convex polyhedron if
P = {x | Ax ≤ b}, for a matrix A ∈ Rm×n and a vector b ∈ Rm. Moreover, the polyhedron P is
called a polytope if P is bounded,

Example 2.3 The set

P = {−10 x + y − 2 z ≤ 6, x + 2 y + z ≤ 5, 3 x − 5 y + z ≤ 15, 6 x + 15 y − 9 z ≤ 14, 21 x − 17 y + 7 z ≤ 84}

defines a convex polyhedron and Figure 2.2 illustrates it.

Figure 2.2: Example of a convex polyhedron

Definition 2.7 (Representation of a polyhedron) Given a polyhedron P = {x ∈ Rn | Ax ≤ c},
the system of linear inequalities {Ax ≤ c} is the representation of P.

Definition 2.8 (Minkowski sum) For two subsets P and Q of Rn, their Minkowski sum, de-
noted by P + Q, is the subset of Rn defined as {p + q | (p, q) ∈ P × Q}.

The following lemma, which is another consequence of the fundamental theorem of linear
inequalities, helps us to determine the relation between polytopes and polyhedrons. The proof
can be found in [30]

Lemma 2.1 (Decomposition theorem for convex polyhedra) A subset P of Rn is a convex
polyhedron if and only if it can be written as the Minkowski sum of a finitely generated cone
and a polytope.

Another consequence of the fundamental theorem of inequalities, is the famous Farkas
lemma. This lemma has different variants. Here we only mention a variant from [30], which is
applicable in the next chapters and algorithms.



6 Chapter 2. Background

Lemma 2.2 (Farkas’ lemma) Let A ∈ Rm×n be a matrix and b ∈ Rm be a vector. Then, there
exists a vector t ∈ Rn, t ≥ 0 satisfying At = b if and if ytb ≥ 0 holds for each vector y ∈ Rm

such that we have ytA ≥ 0.

An important consequence of Farkas’ lemma is the following lemma which gives a criterion
to test whether an inequality bx ≤ b0 is redundant w.r.t. a polyhedron representation Ax ≤ c,
that is, whether bx ≤ b0 is implied by Ax ≤ c.

Lemma 2.3 (Redundancy test criterion) Let b ∈ Rn, b0 ∈ R, A ∈ Rm×n and c ∈ Rm. Then,
the inequality bx ≤ b0 is redundant w.r.t. the system of linear inequalities Ax ≤ c if and only if
there exists a vector t ≥ 0 and a number λ ≥ 0 satisfying bt = ttA and b0 = ttc + λ.

From now on, we assume that P = {x | Ax ≤ b} is a polyhedron in Rn, with A ∈ Rm×n.

Definition 2.9 (Implicit equation) An inequality atx ≤ b (with a ∈ Rn and b ∈ R) is an
implicit equation of the inequality system Ax ≤ b if atx = b holds for all x ∈ P.

Example 2.4 On Figure 2.3, the brown polyhedron is entirely on one side of the blue plane.
This means that the blue plane defines two half-spaces, one of which is redundant for the
inequality system defining the brown polyhedron.

Figure 2.3: Redundant inequality illustration

Definition 2.10 (Minimal representation) A representation of a polyhedron is minimal if there
is no redundant inequality in it, that is, if no inequality of that representation is implied by the
other inequalities of that representation.

Definition 2.11 (Characteristic (recession) cone of a polyhedron) The characteristic cone of
P, denoted by CharCone(P), is the polyhedral cone defined by

CharCone(P) = {y ∈ Rn | x + y ∈ P, ∀x ∈ P} = {y | Ay ≤ 0}.

Definition 2.12 (Lineality space and pointed polyhedron) The lineality space of the polyhe-
dron P is denoted by LinearSpace(P) and is the linear space
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CharCone(P) ∩ −CharCone(P) = {y | Ay = 0},

where −CharCone(P) is the negation of points in CharCone(P).
The polyhedron P is pointed if its lineality space is zero.

Lemma 2.4 (Pointed polyhedron criterion) The polyhedron P is pointed if and only if the
matrix A is full column rank.

Remark 2.1 When the cone C = {x | Ax ≤ 0} has implicit equations, it can be written as
C = {x ∈ Rn |A1x = 0, A2x ≤ 0}, where A1 ∈ R

m1×n and A2 ∈ R
m2×n and {A2x ≤ 0} has no

implicit equations. In this case, the cone C is pointed if and only if we have rank(
[

A1

A2

]
) = n.

Definition 2.13 (Dimension of a polyhedron) The dimension of the polyhedron P, denoted by
dim(P), is n− r, where n is dimension1 of the ambient space (that is, Rn) and r is the maximum
number of implicit equations defined by linearly independent vectors. We say that P is full-
dimensional whenever dim(P) = n holds. In another words, P is full-dimensional if and only if
it does not have any implicit equations.

Definition 2.14 (Face of a polyhedron) A subset F of the polyhedron P is called a face of P
if and only if F equals {x ∈ P | Atx = bt} for a sub-matrix At of A and a sub-vector bt of b.

Remark 2.2 It is obvious that every face of a polyhedron is also polyhedron. Moreover, the
intersection of two faces F1 and F2 of P is another face F, which is either F1, or F2, or a face
with a dimension less than min(dim(F1), dim(F2)). Note that P and the empty set are faces of
P.

Definition 2.15 (Facet of a polyhedron) A face of P, distinct from P and of maximal dimen-
sion is called a facet of P.

Remark 2.3 It follows from the previous remark that P has at least one facet and that the
dimension of any facet of P is equal to dim(P) − 1. When P is full-dimensional, there is a
one to one correspondence between the inequalities in a minimal representation of P and the
facets of P. From this latter observation, we deduce that the minimal representation of a full
dimensional polyhedron is unique up to multiplying each of the defining inequality by a positive
constant.

Definition 2.16 (Minimal face) A non-empty face that does not contain any other face of a
polyhedron is called a minimal face of that polyhedron. Specifically, if the polyhedron P is
pointed each minimal face is just a point and is called a extreme point or vertex of the polyhe-
dron.

1Of course, this notion of dimension coincides with the topological one, that is, the maximum dimension of a
ball contained in P.
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Definition 2.17 (Extreme rays) Let C be a cone such that dim(LinearSpace(C)) = t. Then,
a face of C of dimension t + 1 is called a minimal proper face of C. In the special case of a
pointed cone, that is, whenever t = 0 holds, the dimension of a minimal proper faces is 1 and
such a face is called an extreme ray .

We call extreme ray of the polyhedron P any extreme ray of its characteristic cone CharCone(P).
We say that two extreme rays r and r′ of the polyhedron P are equivalent, and denote it

by r ' r′, if one is a positive multiple of the other. When we consider the set of all extreme
rays of the polyhedron P (or the polyhedral cone C) we will only consider one ray from each
equivalence class.

Lemma 2.5 (Generating a cone from its extreme rays) A pointed cone C can be generated
by its extreme rays, that is:

C = {x ∈ Rn | (∃c ≥ 0) x = Rc},

where the columns of R are the extreme rays of C.

Remark 2.4 From the previous definitions and lemmas, we derive the following observations:
1. the number of extreme rays of each cone is finite,
2. the set of all extreme rays is unique up to multiplication by a scalar, and,
3. all members of a cone are positive linear combination of extreme rays.

We denote by ExtremeRays(C) the set of extreme rays of the cone C. Recall that all cones
considered here are polyhedral.

The following lemma is helpful in the analysis of algorithms manipulating extreme rays of
cones and polyhedra.

Lemma 2.6 (Maximum number of extreme rays [27] and [32]) Let E(C) be the number of
extreme rays of a polyhedral cone C ∈ Rn with m facets. Then, we have:

E(C) ≤
(

m−b n+1
2 c

m−1

)
+

(
m−b n+2

2 c

m−n

)
≤ mb

n
2 c.

From Remark 2.4, it appears that extreme rays are important characteristics of polyhedral
cones. Therefore, two algorithms have been developed in [13] to check whether a member
of a cone is an extreme ray or not. For explaining these algorithms, we need the following
definition.

Definition 2.18 (Zero set of a cone) For a cone C = {x ∈ Rn | Ax ≤ 0} and t ∈ C, we define
the zero set ζA(t) as the set of row indices i such that Ait = 0, where Ai is the i-th row of A. For
simplicity, we use ζ(t) instead of ζA(t) when there is no ambiguity.

Consider a cone C = {x ∈ Rn | A′x = 0, A′′x ≤ 0} where A′ and A′′ are two matrices such
that the system A′′x ≤ 0 has no implicit equations. The proofs of the following lemmas are
straightforward and can be found in [13] and [32].

Lemma 2.7 (Algebraic test for extreme rays) Let r ∈ C. Then, the ray r is an extreme ray of

C if and only if we have rank(
 A′

A′′ζ(r)

) = n − 1.
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Lemma 2.8 (Combinatorial test for extreme rays) Let r ∈ C. Then, the ray r is an extreme
ray of C if and only if for any ray r′ of C such that ζ(r) ⊆ ζ(r′) holds we have r′ ' r.

Definition 2.19 (Polar cone) For the given polyhedral cone C ⊆ Rn, the polar cone induced
by C is denoted C∗ and given by:

C∗ = {y ∈ Rn | ytx ≤ 0,∀x ∈ C}.

The following lemma shows an important property of the polar cone of a polyhedral cone.
The proof can be found in [30].

Lemma 2.9 (Polarity property) For a give cone C ∈ Rn, there is a one to one correspondence
between the faces of C of dimension k and the faces of C∗ of dimension n − k. In particular,
there is a one to one correspondence between facets of C and extreme rays of C∗ and vice versa.

Each polyhedron P can be embedded in a higher-dimensional cone, called the homogenized
cone associated with P.

Definition 2.20 (Homogenized cone of a polyhedron) The homogenized cone of the polyhe-
dron P = {x ∈ Rn | Ax ≤ d}, denoted by hom(P), is defined by:

hom(P) = {(x, xlast) ∈ Rn+1 | C[x, xlast] ≤ 0},

where

C =

[
A −d
0t 1

]
is an (m + 1) × (n + 1)-matrix, if A is an (m × n)-matrix.

Theorem 2.3 (Extreme rays of the homogenized cone) Every extreme ray of the homoge-
nized cone hom(P) associated with the polyhedron P is either of the form (x, 0) where x is
an extreme ray of P, or (x, 1) where x is an extreme point of P.

Lemma 2.10 (H-representation correspondence) An inequality Aix ≤ d0 is redundant in P
if and only if the corresponding inequality Aix − bixlast ≤ 0 is redundant in hom(P).

Corollary 2.1 The minimal representation of hom(P) has one more facet than the minimal
representation of P and that facet is xlast ≤ 0.

2.2 Polyhedral computations
In this section, we review two of the most important algorithms for polyhedral computations:
the double description algorithm (DD for short) and the Fourier-Motzkin elimination algorithm
(FME for short).

A polyhedral cone C can be represented either as an intersection of finitely many half-
spaces (thus using the so-called H-representation of C) or as by its extreme rays (thus using the
so-called V-representation of C); the DD algorithm produces one representation from the other.
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We shall explain the version of the DD algorithm which takes as input the H-representation of
C and returns as output the V-representation of C.

The FME algorithm performs a standard projection of a polyhedral set to lower dimension
subspace. In algebraic terms, this algorithm takes as input a polyhedron P given by a system
of linear inequalities (thus an H-representation of P) in n variables x1 < x2 < · · · < xn and
computes the H-representation of the projection of P on x1 < · · · < xk for some 1 ≤ k < n.

2.2.1 The Double description method
We know from Theorem 2.2 that any polyhedral cone C = {x ∈ Rn |Ax ≤ 0} can be generated
by finitely many vectors, say {x1, . . . , xq} ∈ R

n. Moreover, from Lemma 2.5 we know that
if C is pointed, then it can be generated by its extreme rays, that is, C = Cone(R) where
R = [x1, . . . , xq]. Therefore, we have two possible representations for the pointed polyhedral
cone C:

H-representation: as the intersection of finitely many half-spaces, or equivalently, with a
system of linear inequalities Ax ≤ 0;

V-representation: as a linear combination of finitely many vectors, namely Cone(R), where
R is a matrix, the columns of which are the extreme rays of the cone C.

We say that the pair (A,R) is Double Description Pair or simply a DD pair. We call A a
representation matrix of C and R a generating matrix of C. We call R (resp. A) a minimal
generating (resp. representing) matrix when no proper sub-matrix of R (resp. A) is generating
(resp. representing) C.

It is important to notice that, for some queries in polyhedral computations, the output can
be calculated in polynomial time using one representation (either a representation matrix or a
generating matrix) while it would require exponential time using the other representation.

For example, we can compute in polynomial time the intersection of two cones when they
are in H-representation but the same problem would be harder to solve when the same cones
are in V-representation. Therefore, it is important to have a procedure to convert between these
two representations, which is the focus of the articles [7] and [32].

We will explain this procedure, which is known as the double description method as well as
Chernikova’s algorithm. This algorithm takes a cone in H-representation as input and returns
a V-representation of the same cone as output. In other words, this procedure finds the extreme
rays of a polyhedral cone, given by its representation matrix. It has been proven that this
procedure runs in single exponential time. To the best of our knowledge, the most practically
efficient variant of this procedure has been proposed by Fukuda in [13] and is implemented
in the CDD library. We shall explain his approach here and analyze its algebraic complexity.
Before presenting Fukuda’s algorithm, we need a few more definitions and results. In this
section, we assume that the input cone C is pointed.

The double description method works in an incremental manner. Denoting by H1, . . . ,Hm

the half-spaces corresponding to the inequalities of the H-representation of C, we have C =

H1 ∩ · · · ∩ Hm. Let 1 < i ≤ m and assume that we have computed the extreme rays of the cone
Ci−1 := H1 ∩ · · · ∩ Hi−1. Then the i-th iteration of the DD method deduces the extreme rays
of Ci from those of Ci−1 and Hi.
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Assume that the half-spaces H1, . . . ,Hm are numbered such that Hi is given by Aix ≤ 0,
where Ai is the i-th row of the representing matrix A. We consider the following partition of
Rn:

H+
i = {x ∈ Rn | Aix > 0}

H0
i = {x ∈ Rn | Aix = 0}

H−i = {x ∈ Rn | Aix < 0}

Assume that we have found the DD-pair (Ai−1,Ri−1) of Ci−1. Let J be the set of the column
indices of Ri−1. We use the above partition {H+

i ,H
0
i ,H

−
i } to partition J as follows:

J+
i = { j ∈ J | r j ∈ H+}

J0
i = { j ∈ J | r j ∈ H0}

J−i = { j ∈ J | r j ∈ H−}

where {r j | j ∈ J} is the set of the columns of Ri−1, thus the set of the extreme rays of Ci−1.
For future reference, let us denote by partition(J,Ai) the function which returns J+, J0, J− as
defined above. The following lemma explains how to obtain (Ai,Ri) from (Ai−1,Ri−1), where
Ai−1 (resp. Ai) is the sub-matrix of A consisting of its first i − 1 (resp. i) rows. The proof can
be found in [13].

Lemma 2.11 (Double description method) Let J′ := J+ ∪ J0 ∪ (J+ × J−). Let Ri be the
(n × |J′|)-matrix consisting of
• the columns of Ri−1 with index in J+ ∪ J0, followed by
• the vectors r′( j, j′) for ( j, j′) ∈ (J+ × J−), where

r′( j, j′) = (Air j)r j′ − (Air j′)r j,
Then, the pair (Ai,Ri) is a DD pair of Ci.

The most efficient way to start the incremental process is to choose the largest sub-matrix
of A with linearly independent rows; we call this matrix A0. Indeed, denoting by C0 the cone
with A0 as representation matrix, the matrix A0 is invertible and its inverse gives the extreme
rays of C0, that is:

ExtremeRays(C0) = (A0)−1.

Therefore, the first DD-pair that the above incremental step should take as input is (A0, (A0)−1).
The next key point towards a practically efficient DD method is to observe that most of

the vectors r′( j, j′) in Lemma 2.11 are redundant. Indeed, Lemma 2.11 leads to a construction
of a generating matrix of C (in fact, this would be Algorithm 2 where Lines 13 and 16 are
suppressed) producing a double exponential number of rays (w.r.t. the ambient dimension n)
whereas Lemma 2.6 guarantees that the number of extreme rays of a polyhedral cone is singly
exponential in its ambient dimension. To deal with this issue of redundancy, we need the notion
of adjacent extreme rays.

Definition 2.21 (Adjacent extreme rays) Two distinct extreme rays r and r′ of the polyhedral
cone C are called adjacent if they span a two dimensional face of C. 2

2We do not use the minimal face, as it used in the main reference because it makes confusion.
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The following lemma shows how we can test whether two extreme rays are adjacent or not.
The proof can be found in [13].

Proposition 2.1 (Adjacency test) Let r and r′ be two distinct rays of C. Then, the following
statements are equivalent:

1. r and r′ are adjacent extreme rays,
2. r and r′ are extreme rays and rank(Aζ(r)∩ζ(r′)) = n − 2,
3. if r′′ is a ray of C with ζ(r)∩ ζ(r′) ⊆ ζ(r′′), then r′′ is a positive multiple of either r or r′.

It should be noted that the second statement is related to algebraic test for extreme rays while
the third one is related to the combinatorial test.

Based on Proposition 2.1, we have Algorithm 1 for testing whether two extreme rays are
adjacent or not.

Algorithm 1 adjacencyTest

1: Input: (A, r, r′), where A ∈ Qm×n is the representation matrix of cone C, r and r′ are two
extreme rays of C

2: Output: true if r and r′ are adjacent, false otherwise
3: s := Ar, s′ := Ar′
4: let ζ(r) and ζ(r′) be set of indices of zeros in s and s′ respectively
5: ζ := ζ(r) ∩ ζ(r′)
6: if rank(Aζ) = n − 2 then
7: return(true)
8: else
9: return(false)

10: end if

Lemma 2.12 (Strengthened lemma for the DD method) As above, let (Ai−1,Ri−1) be a DD-
pair and denote by J be the set of indices of the columns of Ri−1. Assume that rank(Ai−1) = n
holds. Let J′ := J+ ∪ J0 ∪ Adj, where Adj is the set of the pairs ( j, j′) ∈ J+ × J− such that r j,
and r j′ are adjacent as extreme rays of Ci−1, the cone with Ai−1 as representing matrix. Let Ri

be the (n × |J′|)-matrix consisting of
• the columns of Ri−1 with index in J+ ∪ J0, followed by
• by the vectors r′( j, j′) for ( j, j′) ∈ (J+ × J−), where

r′( j, j′) = (Air j)r j′ − (Air′j)r j,

Then, the pair (Ai,Ri) is a DD pair of Ci. Furthermore, if Ri−1 is a minimal generating ma-
trix for the representation matrix Ai−1, then Ri is also a minimal generating matrix for the
representation matrix Ai.

Using Proposition 2.1 and Lemma 2.12 we can obtain Algorithm 2 3 for computing the
extreme rays of a cone.

3In this algorithm, Ai shows the representation matrix in step i
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Algorithm 2 DDmethod

1: Input: a matrix A ∈ Qm×n, a representation matrix of a pointed cone C
2: Output: R, the minimal generating matrix of C
3: let K be the set of indices of A’s independent rows
4: A0 := AK

5: R0 := (A0)−1

6: let J be set of column indices of R0

7: while K , {1, · · · ,m} do
8: select a A-row index i < K
9: J+, J0, J− := partition(J, Ai)

10: add vectors with indices in J+ and J0 as columns to Ri

11: for rp ∈ J+ do
12: for rn ∈ J− do
13: if ad jacencyTest(Ai−1, rp, rn) = true then
14: rnew := (Airn)rp − (Airp)rn

15: add rnew as columns to Ri

16: end if
17: end for
18: end for
19: let J be set of indices in Ri

20: end while

2.2.2 Fourier-Motzkin elimination
Definition 2.22 (Projection of a polyhedron) Let A ∈ Rm×p and B ∈ Rm×q be matrices. Let
c ∈ Rm be a vector. Consider the polyhedron P ⊆ Rp+q defined by P = {(u, x) ∈ Rp+q | Au+Bx ≤
c}. We denote by projx(P) the projection of P on x, that is, the subset of Rq defined by

projx(P) = {x ∈ Rq | ∃ u ∈ Rp, (u, x) ∈ P}.

Example 2.5 Consider the polyhedron defined by {x + 2 y − z ≤ 2, 2 x − 3 y + 6 z ≤ 2,−2 x +

3 y + 4 z ≤ 20}. Its projection on [y, z] is the polyhedron represented by {z ≤ 11
5 , y + 2

7z ≤ 24
7 }.

Figure 2.4 shows this polyhedron and its projection.

Fourier-Motzkin elimination (FME for short) is an algorithm computing the projection of a
polyhedron in the sense of Definition 2.22. The key point of that algorithm is that projecting a
polyhedron to lower dimension is equivalent to eliminating variables from its H-representation.
Hence, FME works by successively eliminating the u-variables (following the notations intro-
duced in Definition 2.22 from the inequality system Au + Bx ≤ c to finally get the desired
projection. This process shows that projx(P) is also a polyhedron. Before explaining the main
theorem and the algorithm, we need some definitions.

Definition 2.23 (Inequality combination) Let `1 and `2 be two inequalities a1x1 + · · ·+anxn ≤

d1 and b1x1 + · · ·+ bnxn ≤ d2. Let 1 ≤ i ≤ n such that the coefficients ai and bi of xi in `1 and `2

are respectively positive and negative. We define the (positive) combination of `1 and `2 with
respect to xi as:
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Figure 2.4: Illustration of a polyhedron and its projection

Combine(`1, `2, xi) = −bi(a1x1 + · · · + anxn) + ai(b1x1 + · · · + bnxn) ≤ −bid1 + aid2.

In order to explain the algorithms in the next chapter, we need to assign a so-called history
set to each inequality occurring during the execution of the FME algorithm. We denote the
history set of the inequality ` by η(`). Initially, that is, before the FME algorithm starts, the
history set of an inequality is equal to its corresponding row index in the representing matrix
of the input polyhedron. Now, let ` be the inequality resulting from the combination of the
inequalities `1 and `2 in the sense of Definition 2.23. Then we define η(`) = η(`1) ∪ η(`2).

Theorem 2.4 (Fourier-Motzkin theorem [25]) Let A ∈ Rm×n be a matrix and let c ∈ Rm be a
vector. Consider the polyhedron P = {x ∈ Rn | Ax ≤ c}. Let S be the set of inequalities defined
by Ax ≤ c. Also, let 1 ≤ i ≤ n. We partition S according to the sign of the coefficient of xi:

S + = {` ∈ S | coe f f (`, xi) > 0}
S − = {` ∈ S | coe f f (`, xi) < 0}

S 0 = {` ∈ S | coe f f (`, xi) = 0}.

We construct the following system of linear inequalities:

S ′ = {Combine(sp, sn, xi) | (sp, sn) ∈ S + × S −} ∪ S 0.

Then, S ′ is a representation of projxi
(P).

Proof of this theorem is straightforward and can be found in[25].
Using Theorem 2.4, we can develop algorithm Algorithm 3 for projecting polyhedron.
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Algorithm 3 Original FME
1: Input: (S 0,u), where S 0 is the representation of P = {(u, x) | Au + Bx ≤ c} and u is the

vector of p elements of variables to be eliminated
2: Output: S p, a representation of projx(P);
3: for k from 1 to p do
4: (Partition) make S +

k−1, S −k−1, S 0
k−1, subsets of S k−1 consisting of inequalities with posi-

tive, negative and zero coefficient w.r.t. uk, respectively.
5: for `p ∈ S + do
6: for `n ∈ S − do
7: ` := Combine(`p, `n, uk)
8: add ` to S ′k
9: end for

10: end for
11: S k := S ′k ∪ S 0

k−1
12: end for
13: return (S p).

Example 2.6 Consider the system S 0 to be

2x1 + 2x2 − 2x3 + 2x4 − 2x5 + x6 − x8 + x10 ≤ −2
− 2x1 − x2 − 2x3 + x4 − 2x6 − 2x8 + x9 + 2x10 ≤ 0
− x2 − x3 − 2x4 + 2x6 + 2x7 + x8 − x10 ≤ −2

Eliminating x1 partitions S 0 to:

S +
1 = {2x1 + 2x2 − 2x3 + 2x4 − 2x5 + x6 − x8 + x10 ≤ −2}

S −1 = {−2x1 − x2 − 2x3 + x4 − 2x6 − 2x8 + x9 + 2x10 ≤ 0}

S 0
1 = {−x2 − x3 − 2x4 + 2x6 + 2x7 + x8 − x10 ≤ −2}

Combining inequalities in S +
1 and S −1 we obtain:

S 1 = {x2 − 4x3 + 3x4 − 2x5 − x6 − 3x8 + x9 + 3x10 ≤ −2,−x2 − x3 − 2x4 + 2x6 + 2x7 + x8 − x10 ≤ −2}

From Algorithm 3, we know that, in the worst case, each of the positive and negative
sets contains half of the inequalities. That is, if the initial inequality set has m inequalities,
in the process of eliminating the first variable, each of the positive and negative sets counts
m
2 inequalities. Therefore, the representation of the projection is given by m + (m

2 )2 inequali-
ties. Continuing this process, after eliminating p variables, the projection would be given by
O((m

2 )2d) inequalities. Thus, the algorithm is double exponential in d. On the other hand, from
[28] and [20], we know that the maximum number of facets of the projection on Rn−p of a poly-
hedron in Rn with m facets is O(mbn/2c). Hence, it can be concluded that most of the generated
inequalities by Algorithm 3 are redundant. Eliminating these redundancies is the main subject
of the subsequent chapters.
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2.3 Cost Model
We will use the following notations and concepts for analyzing the algebraic complexity of
algorithms.

Let R be an Euclidean domain. In practice, the domain R is either the ring Z of integers or
the field Q of rational numbers. For all a, b ∈ R, we will need the following operations:
• Arith+,−,?,=(a, b) which returns a + b, a − b, a · b, true if a = 0 and false otherwise;
• Quo(a, b) which, for b , 0, returns q ∈ R such that 0 ≤ a − qb < |b|;
• Div(a, b) which, for b , 0 dividing a, returns v ∈ R such that bv = a holds (if a = 0

choose v = 0).
Consider the important special case R = Z. Let k be a non-negative integer. We denote

by M(k) an upper bound for the number of bit operations required for performing any of
the basic operations of type Arith and Quo on input a, b ∈ Z with |a|, |b| < 2k. Using the
multiplication algorithm of Arnold Schönhage and Volker Strassen [29] one can chooseM(k) ∈
O(k log k log log k).

We also need complexity estimates for some matrix operations. For positive integers a, b, c,
Let us denote byMM(a, b, c) an upper bound for the number of arithmetic operations (on the
coefficients) required for multiplying an (a×b) matrix by an (b×c) matrix. In the case of square
matrices of order n, we simply write MM(n) instead of MM(n, n, n). We denote by θ the
exponent of linear algebra, that is, the smallest real positive number such thatMM(n) ∈ O(nθ).

For any rational number a
b , with b , 0, we define the height of a

b , denoted as height(a
b ) as

height( a
b ) = max(|a|, |b|). In particularly, we define height(0) = height(0/1) = 1. For a given

matrix A ∈ Qm×n, we define the height of A, denoted by height(A), as the maximal height of a
coefficient in A.

In the following, we give complexity estimates in terms ofM(k) ∈ O(k log k log log k) and
B(k) =M(k) log k ∈ O(k(log k)2 log log k).

We replace every term of the form (log k)p(log log k)q(log log log k)r, (where p, q, r are pos-
itive real numbers) with O(kε) where ε is a (positive) infinitesimal.

Furthermore, in the complexity estimates of algorithms operating on matrices and vectors
over Z, we use a parameter β, which is a bound on the magnitude of the integers occurring
during the algorithm. Our complexity estimates are measures in terms of either word operations
or bit operations.

We conclude this chapter with some complexity estimates for which we refer to [31].

Lemma 2.13 (Matrix matrix multiplication complexity [31]) Let A ∈ Zm×n and B ∈ Zn×p.
Then, the product of A by B can be computed within O(MM(m, n, p)(log β) + (mn + np +

mp)B(log β)) word operations, where β = n ||A|| ||B|| and ||A|| (resp. ||B||) denotes the maximum
absolute value of a coefficient in A (resp. B). Neglecting log factors, this complexity estimate
becomes O(max(m, n, p)θ max(hA, hb)) where hA = height(A) and hB = height(B).

Lemma 2.14 (Gaussian elimination complexity [31]) For a matrix A ∈ Zm×n, an estimate of
Gauss-Jordan transform is O(nmrθ−2(log β) + nm(log r)B(log β)) word operations, where r is
the rank of the input matrix A and β = (

√
r||A||)r.

Corollary 2.2 (Matrix rank and inverse computation complexity) For a matrix A ∈ Zm×n,
with height h, an upper bound estimate of
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1. computing the rank of A is done within O(mnθ+εh1+ε) word operations,
2. computing the inverse of A (when this matrix is invertible over Q and m = n) is done

within O(mθ+1+εh1+ε) word operations.

Lemma 2.15 (matrix inverse height bound) Let A ∈ Zn×n be an integer matrix, which is in-
vertible overQ. Then, the absolute value of any coefficient in A−1 (inverse of A) can be bounded
over by (

√
n − 1||A||(n−1)).

Proof Because the matrix is over Z, a lower bound of its determinant is 1. On the other hand,
by Hadamard’s inequality, we know that an upper bound for the determinant of any minors of
A is (

√
n − 1||A||(n−1)). Therefore, with Cramer’s rule, every entry of A−1 can be bounded over

by (
√

n − 1||A||(n−1)).



Chapter 3

Minimal Representation for the Projection
of a Polyhedron

As it was explained in the previous chapter, the algebraic complexity of the original FME
algorithm is double exponential in the number of variables being eliminated The reason is
the large number of redundant inequalities generated by this algorithm. In this chapter, we
will develop a method which is capable of detecting these redundant inequalities yielding an
algorithm which is single exponential in the number of variables (or polynomial in the number
of inequalities when the dimension of the ambient space is regarded as constant).

With Section 3.1, we will begin by first explaining the projection theorem and then we will
review three methods, block elimination, Chernikov’s algorithm and Kohler’s algorithm, based
on this theorem. These three methods are able to detect some of the redundant inequalities
and they can reduce the whole process of FME to single exponential running time. Although
these methods are very effective in detecting and eliminating redundancies, their output is not
the minimal representation of the projection of the polyhedron. Therefore, after reviewing
them, we will discuss methods for computing a minimal representation of the projection of the
polyhedron, that is, methods producing an output with no redundant inequalities.

The first method, see Section 3.2, is based on linear programming (LP) and this is a popular
strategy implemented in various software, like the PolyhedralSets package in the computer
algebra system Maple. Although this LP-based method can obtain a minimal representation
of the projection of the polyhedron, both the theoretical efficiency and practical efficiency of
that method can be outperformed by an other alternative approach. Then, in Section 3.3, we
will discuss a corrected version of Balas’ algorithm. This algorithm is not based on LP and
it can detect all redundancies, but its complexity is double exponential in the number of input
inequalities. Finally, in Section 3.4, we will introduce the algorithm that we have developed,
based on the works of Balas and Kohler. This latter can generate a minimal representation and
run in singly exponential time in the number of variables.

We will also analyze the complexity of all algorithms. Although the methods that we
mention here are correct over the field R of real numbers, we shall assume, for simplicity of
complexity analysis, that our input polyhedrons are over the field Q of rational numbers.

Throughout this chapter, we assume that Q is a polyhedron in Qn, defined by m inequal-
ities and that we want to compute its standard projection on the x-variables. Without loss of
generality, we can write

18
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Q = {(u, x) ∈ Qp
× Qq

| Au + Bx ≤ c},

where A ∈ Qm×p and B ∈ Qm×q are matrices, c ∈ Qm is a vector and we have p + q = n. Then,
the projection of the polyhedron, denoted by projx(Q), is given by

projx(Q) = {x ∈ Qq
| (∃u ∈ Qp) (u, x) ∈ Q}.

3.1 Representations computable in single exponential time
We begin this section with a lemma known as the projection lemma.

Lemma 3.1 (Projection lemma [6]) The projection projx(Q) of the polyhedron Q can be rep-
resented by

S = {x ∈ Qq
| ytBx ≤ ytc (∀y ∈ extr(C))},

where C = {y ∈ Qm
| ytA = 0 and y ≥ 0} and extr(C) is the set of extreme rays of C. The cone

C defined in this lemma is called the projection cone.

Proof We should prove that projx(Q) = S holds.
First, we show that projx(Q) ⊆ S . Let x ∈ projx(Q). Therefore, there exists u ∈ Qp such

that (u, x) ∈ Q. Thus Au + Bx ≤ c. Because the members of the cone C are all positive,
we can multiply both sides of the inequalities in the representation of the polyhedron Q, by
their transpose (it is equivalent to multiplying both sides of inequalities by a positive number).
Therefore, for all y ∈ C (specifically extreme rays) we have ytAu + ytBx ≤ ytc. Thus, ytBx ≤
ytc, which implies that x ∈ S .

Then, we show S ⊆ projx(Q). We prove this by contradiction. Assume there exists x ∈ S
and x < projx(Q). This means that there exists x such that vtBx ≤ vtc for all v ∈ C and there is
no u ∈ Qp such that Au + Bx ≤ c. Equivalently, there exists no u such that Au ≤ c − Bx. By
Farkas’ lemma, there exists w ≥ 0 such that wtA = 0 and wt(c − Bx) < 0 both hold. Thus, we
have wtBx > wtc, which contradicts the assumption and the claim follows.

3.1.1 Block Elimination
In the block elimination algorithm below, see Algorithm 4, we first find the projection cone of
the input polyhedron and then, find its extreme rays. By Lemma 3.1, we know that multiplying
extreme rays by the representation matrix results in the desired projection of the polyhedron.

Lemma 3.2 (Block elimination algorithm correctness) Algorithm 4 is correct.

Proof This follows easily from the projection lemma, Lemma 3.1.

In order to analyze the complexity of block elimination, we need the following lemmas.

Lemma 3.3 (Height bound of extreme rays) Let S = {Ax ≤ 0} be a representation of a cone
C ∈ Qn, where A ∈ Qm×n. Then, the height of each extreme rays of the cone C is no more than
(n − 1)n||A||2(n−1).
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Algorithm 4 Block Elimination
1: Input: (S ,u), where S = {Au + Bx ≤ c} is the representation for input polyhedron Q and

u is set of variables to eliminate
2: Output: projection of Q on x, projx(Q)
3: PS := { }
4: extract the projection cone representation from S and call it S c

5: R := DDmethod(S c)
6: for column r j in R do
7: `new := rt

jB
8: add `new to PS
9: end for

10: return (PS )

Proof By Lemma 2.7, we know that when r is an extreme ray, there exists a sub-matrix A′ ∈
Q(n−1)×n of A, such that A′r = 0. This means that r is in the null-space of A′. Thus, the claim
follows by proposition 6.6 of [31].

Corollary 3.1 Algorithm 2 requires O(m(n+2)nθ+εh1+ε) bit operations, where h is the height of
A in the input system.

Proof Let hA = height(A). To analyze the complexity of the DD method after adding t in-
equalities, with n ≤ t ≤ m, the first step is to partition the extreme rays in step t − 1, with
respect to the new inequality being considered. This step consists of n multiplication of num-
bers of size at most (n − 1)n||A||2(n−1) (Lemma 3.3), for (t − 1)b

n
2 c vectors (Lemma 2.6). Hence,

this step needs at most C1 := (t − 1)b
n
2 c × n × M(log((n − 1)n||A||2(n−1))) ≤ O(tb

n
2 cn2+εh1+ε

A ) bit
operations. After partitioning the extreme rays, the adjacency check is run. The cost of this
step is equivalent to computing the rank of a sub-matrix A′ ∈ Q(t−1)×n of A. This should be done
for tn

4 pairs of vectors. This step needs at most C2 := tn
4 × O((t − 1)nθ+εh1+ε

A ) ≤ O(tn+1nθ+εh1+ε
A )

bit operations. By Lemma 2.6, we know there are at most tb
n
2 c pairs of adjacent extreme rays.

The next step is to combine every pair of adjacent vectors in order to obtain a new extreme ray.
This step consists of n multiplication of numbers of size at most (n − 1)n||A||2(n−1) (Lemma 3.3)
and it should be done for tb

n
2 c vectors. Therefore, the bit complexity of this step, is no more

than C3 := tb
n
2 c × n × M(log((n − 1)n||A||2(n−1))) ≤ O(tb

n
2 cn2+εh1+ε

A ). Finally, the complexity of
step t of the algorithm is C := C1 + C2 + C3. The claim follows after simplification.

The complexity of the DD method highly depends on the number of extreme rays of the
cones occurring in the intermediate steps. Those intermediate cones depend on the order in
which the inequalities are selected in the algorithm. There are some methods for choosing
the inequalities in order to decrease the number of extreme rays in the intermediate cones. In
Corollary 3.1 we have considered the basic DD algorithm.

Lemma 3.4 (Complexity of block elimination) Algorithm 4 needs at most O(mb
m
2 c+θ+ε+2hA)

bit operations, where hA = height(A).
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Proof The first step in block elimination is finding the extreme rays of the projection cone. For
the polyhedron Q defined in the beginning of this chapter, the projection cone for eliminating
p variables is a cone C ∈ Qm defined by p equations and m inequalities. We can use equations
to substitute p′ ≤ p variables and reduce the number of variables to m − p′, using Gaussian
elimination. We neglect the complexity of this step. After this, the cone can be defined by m
inequalities and m − p′ variables. Using Corollary 3.1, the complexity of the DD method for
this is O(m(m−p′+2)(m − p′)θ+εh1+ε

A ). Also, by Lemma 3.3, ||r|| ≤ (m − p′ − 1)m−p′ ||A||2(m−p′−1),
where r is an extreme ray.

After finding extreme rays, we should compute the product of their transpose with the input
representation matrix. By Lemma 2.6, the maximum number of extreme rays is O(mb

m−p′
2 c). The

complexity of this step can be shown to be O((mb
m−p′

2 c)MM(1,m, (n− p))) ≤ mb
m−p′

2 cmθ log((m−
p′ − 1)m−p′ ||A||2(m−p′−1)) and the claim follows by simplifying this expression.

As it is shown in Lemma 3.4, finding the extreme rays of a projection cone is an exponential
algorithm. Therefore, this method is not efficient in most cases. The reason is that usually the
number of inequalities is much more than the dimension of the space (number of variables).
We will explain how Chernikov and Kohler overcome the drawbacks of the block elimination
algorithm by not computing extreme rays explicitly.

In other words, given the polyhedron Q = {(u, x) ∈ Rp×Rq | Au+Bx ≤ c}, Lemma 3.1 shows
how to obtain a representation of the projection projx(Q) of the polyhedron Q by enumerating
the extreme rays of the projection cone C = {y ∈ Rm |yA = 0, y ≥ 0}. To be more specific, we
have projx(Q) = {x | ∀y ∈ ExtremeRays(C), ytBx ≤ ytc}. Instead of computing all the extreme
rays of the cone C, Kohler’s and Chernikov’s methods take advantage of the notion of history
set in order to check whether newly generated inequality belongs to the set {yBx ≤ yc | y ∈
ExtremeRays(C)} or not.

3.1.2 Chernikov’s Method
Chernikov proposes a method in [6] that generates all inequalities in the FME process and then
only keeps the ones that are extreme rays of the polyhedron’s projection cone. The algorithm
uses a combinatorial method to check whether the coefficient vector of an inequality is an
extreme ray of the projection cone or not. At the end of each elimination, the algorithm goes
thorough the history sets of inequalities and eliminates those ones which have a history set that
is a super-set of another inequality’s history set.

3.1.3 Kohler’s method
In contrast with Chernikov’s method that uses the combinatorial test, Kohler’s algorithm uses
the algebraic test for checking extreme rays of the projection cone. We found out that this
method is more efficient in terms of running time and memory usage.

Lemma 3.5 (Kohler’s theorem) After eliminating p variables, the coefficient vector of an in-
equality ` is an extreme ray of the projection cone if and only if we have:

rank(Aη(`)) = ‖η(`)‖ − 1.
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Algorithm 5 KohlerCheck
1: Input (S 0, p, `, η(`)), where S 0 is the representation of a polyhedron Q and S 0 = {Au +

Bx ≤ c} for a matrix A ∈ Rm×p and a matrix B ∈ Rm×q, p is the number of variables that
have been eliminated, ` is a newly generated inequality η(`) is the history set of `

2: Output true if the coefficient vector of ` is an extreme ray of the projection cone, false
otherwise

3: if the number of elements in η(`) is greater than p + 1 then
4: return false
5: end if
6: Let Aη(`) be the sub-matrix of A consisting of the rows with indices in η(`);
7: if the number of elements in η(`) is equal to rank(Aη(`)) + 1 then
8: return true
9: else

10: return false
11: end if

Corollary 3.2 After eliminating p variables, an extreme ray can not have more than p + 1
elements in its historical set.

Proposition 3.1 Algorithm 5 is correct.

Proof This proposition follows from Lemma 3.5 and Corollary 3.2.

Lemma 3.6 (Kohler check complexity) Algorithm 5 can be performed within O(p1+θ+εh1+ε)
bit operations.

Proof From Lines 3 to 5 of Algorithm 5, we know η(`) contains at most p + 1 elements, which
means that Aη(`) ∈ Q

dr×p holds for some non-negative integer dr ≤ p + 1. Let h = height(A).
By Corollary 2.2, computing the rank of Aη(`) needs at most O(pdθ+εr h1+ε

A ) ≤ O(p1+θ+εh1+ε) bit
operations.

Denote by S p the set of inequalities representing the projection of the polyhedron after
eliminating p variables. Denote by S (K)

p the set of inequalities in S p which pass Algorithm 5,
that is

S (K)
p = {` ∈ S p | KohlerCheck(S 0, p, `, η(`)) = true}.

Lemma 3.7 (Maximum number of inequalities and height bound) There are at most O(mp+1)
inequalities in S (K)

p . Moreover, the height for a coefficient of any inequality in S (K)
p can be

bounded above by (p + 1)h, where h is the height of A in the input system S 0.

Proof From Corollary 3.2, we know η(`) contains at most p + 1 elements. That is, S (K)
p has at

most
(

m
1

)
+ · · · +

(
m

p+1

)
≤ O(mp+1) inequalities. The second claim follows easily from Corollary

2 of [20].
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With these explanations, we develop Algorithm 6, which uses Kohler’s method to improve
the FME algorithm and yields a single exponential representation of the projection of the poly-
hedron.

Algorithm 6 ImprovedFMEWithKohler
1: Input: (S 0,u), where S 0 is the representation of Q and S 0 = {Au + Bx ≤ c} for a matrix

A ∈ Rm×p and a matrix B ∈ Rm×q, all inequalities are assigned a history set and u is the
vector of variables to be eliminated

2: Output: S p, a single exponential representation of projx(P);
3: for k from 1 to p do
4: (Partition) Make S +

k−1, S −k−1, S 0
k−1, subsets of S k−1 consisting of inequalities with posi-

tive, negative and zero coefficient w.r.t. uk, respectively.
5: for `p ∈ S + do
6: for `n ∈ S − do
7: η := η(`p) ∪ η(`n)
8: `new := Combine(`p, `n, uk)
9: if KohlerCheck(S0, k, `new, η) is true then

10: add ` to S ′k
11: η(`new) := η
12: end if
13: end for
14: end for
15: S k := S ′k ∪ S 0

k−1
16: end for
17: return(S p)

Since block elimination, FME with Chernikov’s method and FME with Kohler’s method
algorithms find extreme rays of the projection cone, their outputs are equivalent up to mul-
tiplication by a scalar. As we mentioned in the beginning of this section, block elimination,
Chernikov’s method and Kohler’s method are effective in eliminating redundancies. The im-
portant point is that they only can remove some of the redundancies, not all of them, and their
output is not the minimal representation. The reason for this is that, based on their structure,
they only can detect redundancies due to the coefficient matrices of variables that are being
eliminated and they do not consider redundancies due to the coefficient matrices of variables
that remain.

The current method for obtaining a minimal representation, is based on linear programming
(LP). We will explain it briefly in the next section.

3.2 Minimal representation via linear programming
The most common way for detecting redundant inequalities from a system is using Linear
Programming methods (e.g. simplex [30]). This method is based on the following lemma [12].
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Lemma 3.8 (Redundancy elimination with LP) Let A ∈ Rm×n, c ∈ Rm and S = {x ∈ Rn | Ax ≤
c}. An arbitrary inequality ptx ≤ a is redundant in S if and only if the solution to the LP system
S ∗ is less than or equal to a, where S ∗ is given by

maximize: ptx
subject to: Ax ≤ c,

ptx ≤ a + 1

According to Lemma 3.8, we can detect all redundancies from a linear inequality system by
considering each inequality (in turn) as an objective function and solve the corresponding LP
problem. Although this method is proved to detect all redundant inequalities, it neither has
a good theoretical complexity, nor is it effective in practice. The main reason for the low
performance of this method is its dependence on LP solvers. While LP solvers are highly
effective at solving even extremely large LP problems, making a large number of calls to a
LP solver cannot have a negligible cost in the process of FME. Since, apart from redundancy
testing, FME algorithms are essentially an adaptation of Gaussian elimination, it is desirable
to achieve the redundancy via linear algebra instead of using LP. In the following sections, we
will develop some methods that are able to detect all redundant inequalities and do not require
an LP solver.

3.3 A revised version of Balas’ algorithm
In this section, we will explain Balas’ idea [1] for developing an algorithm which can detect all
redundant inequalities from the projection of a pointed polyhedron. In contrast with currently
used methods, this method does not need any LP solving and it only uses basic linear algebra
operations. It should be noted that although we are using his idea, we have found some flaws
in his paper. In this chapter, we will explain the corrected form.

We use Q = {(u, x) ∈ Qp
× Qq

| Au + Bx ≤ c} as the input polyhedron. Here, we assume Q
is pointed, that is, rank([A, B]) = p + q.

Balas observed in [1] that if B is an invertible matrix, then, we can find a cone such that
its extreme rays are in one-to-one correspondence with the facets of the projection of the poly-
hedron (the proof is similar to the proof which will come later Theorem 3.1). Using this fact,
he developed an algorithm to find all redundant inequalities for all cases, including the cases
where B is singular.

The basic idea is to find another polyhedron, which has a projection similar to the original
one, and with an invertible matrix of coefficients for the x variables. To achieve this, we need
to lift the polyhedron Q to a space with higher dimension as follows:

• Construct B0:

Assume that the first q rows of B, denoted as B1, are independent. Denote the last m − q
rows of B as B2. Add m − q columns, eq+1, . . . , em, to B, where ei is the i-th canonical
basis in Qm with 1 in the i-th position and 0’s anywhere else. B0 has the following form:

B0 =

[
B1 0
B2 Im−q

]
.
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It also can be shown as:

• To keep the consistency of the symbols, let A0 = A, c0 = c.

• Construct Q0:

Q0 = {(u, x′) ∈ Qp
× Qm

| A0u + B0x′ ≤ c0 , xq+1 = · · · = xm = 0}.

Here and after, we use x′ to represent the vector x ∈ Qq, augmented with m − q variables
(xq+1, . . . , xm). Since the extra variables, (xq+1, . . . , xm), are zeros, projx(Q) and projx′(Q0)
are “isomorphic” with the bijection Φ:

Φ : projx(Q)→ projx′(Q
0)

(x1, . . . , xq) 7→ (x1, . . . , xq, 0, . . . , 0)

In the following, we will treat projx(Q) and projx′(Q0) as the same polyhedron when there
is no ambiguity.

For simplicity, we denote the above process as (A0, B0, c0) = ConstructQ0(Q).
Now, we use B0 to construct the cone W0 as

W0 = {(v,w, v0) ∈ Qq × Qm−q × Q | (v,w)tB−1
0 A0 = 0,−(v,w)tB−1

0 c0 + v0 ≥ 0, (v,w)tB−1
0 ≥ 0}.

This construction of W0 is slightly different from the one in Balas’ work [1]: we change
−(v,w)tB−1

0 c0 + v0 = 0 to −(v,w)tB−1
0 c0 + v0 ≥ 0. Similar to the discussion in Balas’ work,

the extreme rays of the projected cone proj(v,v0)(W0) are used to construct the minimal repre-
sentation of the projection of the polyhedron, projx(Q). To prove this relation, we need some
preparations first.

Lemma 3.9 For the polyhedron Q, the operations “computing the characteristic cone” and
“computing projections” commute. To be precise, we have:

CharCone(projx(Q)) = projx(CharCone(Q)).
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Proof By the definition of the characteristic cone, we have CharCone(Q) = {(u, x) | Au+Bx ≤
0}, whose representation has the same left-hand side as the one of Q. The lemma is valid if
we can show that the representation of projx(CharCone(Q)) has the same left-hand side as
projx(Q). This is obvious with the Fourier-Motzkin elimination procedure.

Theorem 3.1 The polar cone of hom(projx(Q)) is equal to

proj′(v,v0)(W
0) := {(v,−v0) | (v, v0) ∈ proj(v,v0)(W0)}.

Proof By the definition of the polar cone in Definition 2.19,

(hom(projx(Q))∗ = {(y, y0) | (y, y0)t(x, xlast) ≤ 0,∀ (x, xlast) ∈ hom(projx(Q))}.

First, we show proj′(v,v0)(W
0) ⊆ (hom(projx(Q))∗. For any (v,−v0) ∈ proj′(v,v0)(W

0), we have
(v, v0) ∈ proj(v,v0)(W0). There exists w such that

(v,w)tB−1
0 A0 = 0,−(v,w)tB−1

0 c0 + v0 ≥ 0, (v,w)tB−1
0 ≥ 0.

To show that (v,−v0) ∈ hom(projx(Q))∗, we need to show that all vectors (x, xlast) ∈
hom(projx(Q)) satisfy (v,−v0)t(x, xlast) ≤ 0. It is enough to prove the claim only for the ex-
treme rays of hom(projx(Q)). By Theorem 2.3 we know that extreme rays either have the form
(s, 1) or (s, 0).

For the form (s, 1), we know that s is an extreme point of projx(Q), therefore, we have
s ∈ projx(Q), that is, there exists u ∈ Qp, such that Au + Bs ≤ c. By the construction of
Q0, we have A0u + B0s′ ≤ c0, where s′ = [s, sq+1, . . . , sm] with sq+1 = · · · = sm = 0. Thus,
by construction of W0, we have (v,w)tB−1

0 A0u + (v,w)tB−1
0 B0s′ ≤ (v,w)tB−1

0 c0. Therefore, we
have vts = (v,w)ts′ ≤ (v,w)tB−1

0 c0 ≤ v0.
For the form (s, 0), we need to show vs ≤ 0. Since (s, 0) is an extreme ray of hom(projx(Q)),

we have s ∈ CharCone(projx(Q)). By Lemma 3.9, there exists u ∈ Qp such that A0u+B0s′ ≤ 0.
Again by construction of W0, we have (v,w)tB−1

0 A0u+(v,w)tB−1
0 B0s′ ≤ (v,w)tB−1

0 0. Therefore,
vs = (v,w)s′ ≤ (v,w)B−1

0 0 = 0. Obviously we have (v,−v0) ∈ hom(projx(Q))∗.
Next, we show the reversed inclusion, that is, (hom(projx(Q))∗ ⊆ proj′(v,v0)(W

0). We need to
show that for any (y, y0) ∈ hom(projx(Q))∗, we have (y, y0) ∈ proj′(v,v0)(W

0), or equivalently, we
have (y,−y0) ∈ proj(v,v0)(W0). From (y, y0) ∈ hom(projx(Q))∗, we conclude that for all (x, xlast) ∈
hom(projx(Q)), (y, y0)t(x, xlast) ≤ 0 holds. Specifically, this is true for (x, 1) ∈ hom(projx(Q)).
This implies that in this case, ytx ≤ −y0.

On the other hand, we know that in this case, x ∈ projx(Q). Therefore, ytx ≤ −y0, for all
x ∈ projx(Q), which makes the inequality ytx ≤ −y0 redundant in the system {Au + Bx ≤ c}. By
Farkas’ Lemma (Lemma 2.3), there exists p ≥ 0,p ∈ Qm and λ ≥ 0 such that ptA = 0, y = ptB,
1y0 = p · c + λ.

Remember that A0 = A, B0 = [B, B′], c0 = c. Here (B0)q is the first q columns of B0. Let B′

be the last m − q columns of B0 we augmented and let w = ptB′. We will then have

{ptA0 = 0, [y,w] = ptB0,−y0 ≥ ptc0,p ≥ 0},
1With the construction of W0 in his paper [1], Balas tried to prove “the inequality vx ≤ v0 defines a facet

of Px(Q) if and only if (v, v0) is an extreme ray of the cone Pv,v0 (W0)”. While we found this is not true by
experiments, we found the theoretical problem in his proof is he missed the non-negative number λ here.
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which is equivalent to

{p = [y,w]tB−1
0 , [y,w]tB−1

0 A0 = 0,−y0 ≥ [y,w]tB−1
0 c0, [y,w]tB−1

0 ≥ 0}.

Thus, (y,w,−y0) ∈ W0. Therefore, (y,−y0) ∈ projv,v0
(W0). From this, we deduce that (y, y0) ∈

proj′v,v0
(W0) holds.

Corollary 3.3 The following statements are equivalent:

1. (0, 1) is an extreme ray of cone projv,v0
(W0);

2. xlast ≥ 0 is non-redundant in the representation of hom(projx(Q)).

Proof By Lemma 2.9, the extreme rays of the polar cone of hom(projx(Q)) are in one-to-one
correspondence with the facets, that is, the minimal representation, of hom(projx(Q)). To be
more specific, hom(projx(Q)) = {(y, y0)t(x, xlast) ≤ 0}, where (y, y0) runs through the extreme
rays of (hom(projx(Q)))∗. Obviously, the ray (0, 1) is an extreme ray of cone projv,v0

(W0) if and
only if the ray (0,−1) is an extreme ray of cone proj′v,v0

(W0) = (hom(projx(Q)))∗. Note that the
ray (0,−1) is an extreme ray of the polar cone of hom(projx(Q)) corresponds to the fact that
xlast ≥ 0 in the defining system of hom(projx(Q)). The lemma is proved.

Remark 3.1 Corollary 3.3 tells us that, by our construction of W0, we may have at most one
extra extreme ray (0, 1) of the cone projv,v0

(W0) which does not correspond to some facet of
projx(Q). However, with the construction of W0 in Balas’ paper, this extra extreme ray of
projv,v0

(W0) can not be detected easily, which may lead to some redundant inequalities in the
final output.

Proposition 3.2 The extreme ray of projv,v0
(W0), except (0, 1), defines exactly the facets of

projx(Q). To be more specific,

projx(Q) = {vtx ≤ v0 | (v, v0) runs through the extreme ray of projv,v0
(W0), except (0, 1)}.

Proof This proposition follows from Theorem 3.1, Corollary 3.3 and Theorem 2.3.

From Proposition 3.2, finding the extreme rays of projv,v0
(W0) is enough for finding a mini-

mal representation of projx(Q). This only requires the (not necessarily minimal) representation
of projv,v0

(W0), which we will call as the redundancy test cone in what follows. Algorithm 7
shows how to find the redundancy test cone associated with a polyhedron, w.r.t. a variable set.
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Algorithm 7 ConstructRedundancyTestCone
1: Input: (S 0,u), where (i) S 0 is a representation of the polyhedron Q and S 0 = {Au + Bx ≤

c} (ii) u is the list of variables to be eliminated
2: Output: a representation of the redundancy test cone projv,v0

(W0)
3: Construct B0, A0 and c0 as shown at the beginning of this subsection:

(A0, B0, c0) := ConstructQ0(S )
4: Let v := (v1, . . . , vq), w := (w1, . . . ,wm−q) and v0 be a scalar variable

W0 := {(v,w, v0) : (v,w)B−1
0 A0 = 0, −(v,w)B−1

0 c0 + v0 ≥ 0, (v,w)B−1
0 ≥ 0}

5: Solve the equation system {(v,w)B−1
0 A0 = 0}. W.l.o.g., let w = [w′,w′′], where w′ ∈

Qm−q−p′ and w′′ ∈ Qp′ (for some positive integer p′ ≤ min(p,m − q)), are, respectively, the
unsolved and solved variables

6: Substitute the solved variables w′′ into W0, we obtain a new polyhedral cone W0
1

7: Compute the projection cone projv,v0
(W0

1 ), using block elimination
8: return the representation of projv,v0

(W0)

Lemma 3.10 (Complexity of constructing the redundancy test cone) Algorithm 7 requires
at most O(mb

p+q+1
2 c+2+ε(p + q)θ+εq2+εh1+ε) bit operations, where h is the maximal height of A, B

and c in the input system. Moreover, projv,v0
(W0) can be represented by at most O((p + q +

1)b
p+q+1

2 c) inequalities, each with height bound no more than O((p + q)1+ε(mεq1+ε + q2+εh)).

Proof Denote by h the maximal height of A, B and c in the input system. We analyze the
complexity step by step.

Step 1 The complexity for this step can be neglected. However, we should notice the special

structure of B0:
(

B1 0
B2 Im−q

)
, with B1 ∈ Q

q×q full rank and B2 ∈ Q
(m−q)×q.

Step 2 Note that B−1
0 =

 B−1
1 0

−B2B−1
1 Im−q

 and ‖B−1
1 ‖ ≤ (

√
q − 1‖B1‖)q−1 by Lemma 2.15. There-

fore,
‖B−1

0 ‖ ≤ q
q+1

2 ‖B‖q, ‖B−1
0 A0‖ ≤ q

q+3
2 ‖B‖q‖A‖ + (m − q)‖A‖,

‖B−1
0 c0‖ ≤ q

q+3
2 ‖B‖q‖c0‖ + (m − q)‖c0‖.

That is, height(B−1
0 ) ≤ O(q1+εh), height(B−1

0 A0), height(B−1
0 c0) ≤ O(mε + q1+εh).

To give the complexity for this step, we need the following consecutive steps:
– Computing B−1

1 requires O(qθ+1+εh1+ε) bit operations;
– Computing B−1

0 requires
O(qθ+1+εh1+ε) + O((m − q)q2M(max(height(B2), height(B−1

1 ))))

≤O(mqθ+1+εh1+ε) bit operations;
– Constructing W0 requires at most

C1 := O(m1+εqθ+1+εh1+ε) + O((m − q)qpM(max(height(A0), height(B−1
0 ), height(c0)))

+ O((m − q)h) ≤ O(m1+εqθ+ε+1 ph1+ε) bit operations.
Step 3 The solutions to the equation system (v,w)B−1

0 A0 = 0 can be obtained by computing the
Gaussian elimination of B−1

0 A0, which has rank at most p. Thus, the bit complexity for
this step is at most C2 := O(m1+ε pθ+εq1+εh)
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Moreover, the solved variables w′′ can be expressed as a linear combination of (w′, v),
denoted as w′′ = U1w′ + U2v for some U1 ∈ Q

p′×(m−q−p′) and U2 ∈ Q
p′×q, where p′ is

the number of variables in w′′. The absolute value of a coefficient in U1 and U2 can
be bounded above by max(‖U1‖, ‖U2‖) ≤ q(

√
q − 1‖B−1

0 A0‖)q−1‖B−1
0 A0‖ ≤ q

q+1
2 ‖B−1

0 A0‖
q.

That is, height([U1,U2]) ≤ O(mε p + q1+ε ph).
Step 4 Substituting w′′ into the following inequality system, we obtain the cone W1, which has

form

W1 = {(w′, v, v0) | (v,w′)
 B1

B2

 + v0 ≥ 0, (v,w′)
 B3 0

B4 Iq′

 ≥ 0},

where q′ = q + p′, B1 ∈ Q
q×1, B2 ∈ Q

q′×1, B3 ∈ Q
q×(m−q′), B4 ∈ Q

q′×(m−q′). This requires
C3 := O((m − p′)q2M(max(height(U1), height(U2), height(B−1

0 c0), height(B−1
0 ))))

≤O(m1+ε p2q2+εh1+ε) bit operations.
Moreover, the absolute value of a coefficient in Bi, i = 1, . . . , 4 can be bounded by
q max(‖B−1

0 c0‖, ‖B−1
0 ‖) max(‖U1‖, ‖U2‖), from which we deduce that:

height(B1, B2, B3, B4) ≤ O(mεq + q2+εh).
Step 5 We follow Lemma 3.1 to obtain the representation of Pv,v0(W

0
1 ), that is, we need to find

the extreme rays of the projection cone

C = {y ∈ Qm+1
| y


Iq′

(B4)t

(B2)t

 = 0, y ≥ 0}.

Note that y1, . . . , ym−q′ can be solved by the system of equations in the representation
of C. Therefore, finding the extreme rays of the cone C is equivalent to computing the
extreme rays of

C′ = {y′ ∈ Qq′+1
| y′B5 ≤ 0, y′ ≥ 0}, where B5 =

 (B4)t

(B2)t

 ∈ Q(q′+1)×m−q′ .

Applying Algorithm 2 to C′, we can obtain all the extreme rays of C′, and subsequently,
extreme rays of C. This operation requires at most C4 := O(mp′+q(p+q)θ+εheight(B5)1+ε ≤

O(mp+q+2+ε(p + q)θ+εq2+εh1+ε) bit operations.
Thus, the total bit complexity for Algorithm 7 will be

C1 + C2 + C3 + C4 ≤ O(mp+q+2+ε(p + q)θ+εq2+εh1+ε).

Moreover, by Lemma 3.3 and Lemma 2.6, cone C has at most O(mb
p+q

2 c) distinct extreme rays,
each with height no more than O((m)1+ε(mεq1+ε + q2+εh)). That is, projv,v0

(W0) can be repre-
sented by at most O(mb

p+q+1
2 c) inequalities, each with height bound no more than O(m1+εq2+εh).

From Lemma 3.10 we know that the redundancy test cone has exponential number of facets in
the worst case and finding its extreme rays is double exponential. In order to solve this problem,
instead of finding extreme rays, we generate all inequalities and then use the algebraic test for
extremes to check whether the coefficient vector of that inequality is an extreme ray of the
redundancy test cone or not. Algorithm 8 shows this algorithm.

Lemma 3.11 Algorithm 8 can be performed O(m
p+q

2 (p + q)θ+εh1+ε) bit operations.
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Algorithm 8 RedundancyTest

1: Input: (projv,v0
(W0), `), where (i) projv,v0

(W0) = {(v, v0) | M(v, v0) ≤ 0} is the redundancy
test cone, (ii) ` : tx ≤ t0 is an inequality

2: Output: true if ` is not redundant, false otherwise
3: Let M be the coefficient matrix of projv,v0

(W0)
4: Let s := M(t, t0)
5: Let ζ(s) be the index set of zero elements
6: if rank(Mζ(s)) = n − 1 then
7: return true
8: else
9: return false

10: end if

Proof The first step is to multiply the matrix M and the vector (t, t0). Let dM and cM be the
number of rows and columns of M, respectively, thus M ∈ QdM×cM . We know that M is the
coefficient matrix of proj(v,v0)(W0). Therefore, cM = q + 1 and dM ≤ m

p+q
2 . Also, height(M) ≤

O(m1+εq2+εh). With these specifications, the multiplication step and the rank computation step
need O(m

p+q
2 (p+q)2+εh1+ε) and O(m

p+q
2 (q+1)θ+εh1+ε) bit operations, respectively, and the claim

follows after simplification.

Using Algorithm 7 and Algorithm 8, we can find the minimal representation of projection
of the polyhedron in singly exponential time.

3.4 Efficient algorithm for minimal representation
In this section, we present our algorithm for removing all the redundant inequalities computed
during the process of Fourier-Motzkin elimination, where our goal is to eliminate all variables
one-by-one and get an equivalent representation of the input inequality system. For conve-
nience, we rewrite the input polyhedron as

Q = {y ∈ Qn
| Ay ≤ c}, (3.1)

where A = [A, B] ∈ Qm×n, n = p + q and y = [ut, xt]t ∈ Qn. Combining Kohler’s method (Al-
gorithm 5) and the revised and improved Balas’ method (as explained in the previous section,
using Algorithms 7 and 8), Algorithm 9 produces the minimal representation of projx(Q) from
the representation of proju,x(Q), by eliminating variable u from the system. It should be noted
that although we can obtain the minimal representation by using Algorithms 7 and 8 only, we
choose to use Algorithm 5 as well in order to make our proposed algorithm more efficient.

For the polyhedron Q, given a variable order y1 > · · · > yn, we want to obtain its projections
onto the coordinate space yi for any i : 1 ≤ i ≤ n, where yi = [yi, . . . , yn]. To achieve this, we
use the projected representation as defined in [19].

Definition 3.1 (Projected representation) Given the polyhedron Q represented above, and
the variable order y1 > · · · > yn, we denote by Q(y1) the inequalities in the representation of Q
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Algorithm 9 One-level Fourier-Motzkin elimination (FMinner)
1: Input: (S 0, u, x, S , η), where (i) S 0 = {Ay ≤ c} is the representation of the input polyhe-

dron, (ii) u is the variable to be eliminated, (iii) x is the coordinates for the space that we
want to project on, (iv) S is the representation of proju,x(Q), (v) η = {η(`) : for all ` ∈ S} is
the set of history sets corresponding to each inequality in S .

2: Output: (S ,0, S ′, η′), where (i) S ,0 is the subset of S consisting of inequalities with
nonzero coefficient w.r.t. u; (ii) S ′ is the minimal representation of projx(Q); (iii) η′ is
the set of history sets corresponding to all inequalities in S ′.

3: Let S +, S − and S 0 be the subsets of S consisting of inequalities with positive, negative and
zero coefficients w.r.t. u respectively

4: S ,0 := S + ∪ S −

5: S ′ := S 0

6: Let η′ be the set of history sets of the inequalities in S 0,
7: if S + or S − is empty then
8: return (S ,0, S ′, η′),
9: end if

10: Let u := y \ x
11: projv,v0

(W0) := ConstructRedundancyTestCone(S 0,u)
12: for `p in S + do
13: for `n in S − do
14: `new := −coeff(`n, u) × `p + coeff(`p, u) × `n

15: η(`new) := η(`p) ∪ η(`n)
16: if KohlerCheck(S 0, |y| − |x|, `new, η(`new)) = true then
17: if RedundancyTest(projv,v0

(W0), `new) = true then
18: Add `new to S ′

19: Add η(`new) to η′

20: end if
21: end if
22: end for
23: end for
24: return (S ,0, S ′, η′)
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whose largest variable is y1. We call this the projected representation of Q w.r.t. the variable
order y1 > · · · > yn and denote by ProjRep(Q; y1 > · · · > yn) the linear system given by Q(y1)

if n = 1 and by the conjunction of Q(y1) and ProjRep(projy2
(Q); y2 > · · · > yn) otherwise. To

be more specific, ProjRep(Q; y1 > · · · > yn) :=
⋃

1≤i≤n
projyi

(Q)(yi), where projy1
(Q) = Q and

projyi
(Q)(yi) consists of the set of inequalities in the representation of projyi

(Q) whose largest
variable is yi for i : 1 ≤ i ≤ n. We call

⋃
1≤i≤n

projyi
(Q)(yi) a minimal projected representation if

all the inequalities in projyk
(Q)(yk) are not redundant w.r.t.

⋃
k≤i≤n

projyi
(Q)(yi) for k : 1 ≤ k ≤ n.

Algorithm 10 Fourier-Motzkin elimination with removing all the redundant inequalities
1: Input: (S 0, y1 > · · · > yn) where (i) S 0 = {Ay ≤ c} is a representation of input polyhedron,

with m inequalities and n variables, (ii) y1 > · · · > yn is the variable order
2: Output: ProjRep(Q; y1 > · · · > yn): the minimal projected representation of Q
3: Let S := S 0, x = y, S out := { }
4: for i from 1 to m do
5: η(`i) := {i}, where `i is the i-th inequality in S 0

6: end for
7: η := {η(`i) | 1 ≤ i ≤ m};
8: for i from 1 to n do
9: x := x \ {yi}, u := yi

10: (S ,0, S , η) := FMinner(S 0, u, x, S , η)
11: S out := S out ∪ S ,0

12: end for
13: return S out

Proposition 3.3 Algorithm 10 is correct and terminates.

Proof We eliminate the variables one by one, using Fourier-Motzkin elimination. Since FME
algorithm terminates and we only have finitely many variables, termination of Algorithm 10 is
obvious.

Clearly, the output of Algorithm 10 has the form of the projected representation. Minimal-
ity, and hence the correctness, are guaranteed by Propositions 3.1 and 3.1.

Lemma 3.12 Algorithm 10 can be performed within O(mn+2+εnθ+εh1+ε) bit operations.

Proof By Lemma 3.7, when p variables are eliminated, we will have (mp+1

2 )2 pairs of inequal-
ities in S +

p and S −. At most mp+1 of them pass the first condition of Kohler check and we
need to compute ranks only for them. For each newly generated inequality, we need to apply
the KohlerCheck (Algorithm 5) and RedundancyCheck(Algorithm 8) while we only need to
compute the redundancy test cone once for each loop. By Lemmas 3.6, 3.10 and 3.11, the total
complexity for Algorithm 10 will be

n−1∑
p=0

(mp+1O(p1+θ+εh1+ε) + O(mn+2+εnθ+ε(n − p)2+εh1+ε)

+ mp(O(mb
p+q+1

2 c+1+εqθ+1+εh1+ε)) ≤ mn+2+εnθ+εh1+ε



Chapter 4

Implementation and Experimentation

This chapter focuses on our implementation in the C language. We will begin by describing
the libraries we have used, then we will explain the details of our implementation and, finally,
conclude by examining our experimental results.

4.1 Supporting libraries
For the implementation of this algorithm, we have used GMP [14] library for arithmetic oper-
ations, FLINT [16] for matrix computations and CDD [11] for polyhedron functions. In this
section, we will describe these libraries briefly.

4.1.1 GMP library
GNU Multi Precision (GMP for short) library, is a portable library written in the C language.
The main goal of this library is to provide fast arbitrary precision arithmetic on integers, ra-
tionals and floating point numbers. Based on the official manual [14], it provides the fastest
possible arithmetic for all applications that need higher precision than can be supported by the
basic C language.

The emphasis of GMP library is speed. The speed is achieved by using sophisticated algo-
rithms with highly optimized implementations, using assembly code for most of the parts.

We are using the GMP rational number type, mpq t, and related arithmetic for storing coef-
ficients of inequalities and for their arithmetic operations. The combine function significantly
depends on GMP for its implementation. In this function numbers grow quickly and go beyond
the the supported precision, as is described in Lemma 3.7.

4.1.2 FLINT library
The Fast LIbrary for Number Theory (FLINT for short), is a C functions library for doing
number theory operations. Not only it is highly optimized, it also provides support for multi-
core processors[17]. Also, FLINT supports the GMP library for multi precision arithmetic.

There are also linear algebra functions implemented in FLINT. These functions are opti-
mized by using number theory algorithms and modular arithmetic.

33
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As it was described in previous chapters, we need matrix operations in some functions.
We rely on FLINT for these operations. To be specific, we have used FLINT for the function
KohlerCheck in Algorithm 6, the function redundancyCheck for matrix-vector multiplication
and matrix rank computation, and for the function constructRedundancyTestCone for matrix-
matrix multiplication and to compute matrix inverses.

4.1.3 CDD library
The CDD library is an efficient implementation of the double description method in the C lan-
guage. It can efficiently transforms of polyhedrons in the H-representation to the V-representation.
It also has a GMPRATIONAL mode for using GMP arithmetic.

We need to find a projection cone’s extreme rays in order to find redundancy test cone
efficiently. For this function, we rely on CDD library. Specifically, we have used CDD library
to find the extreme rays to project the cone in constructRedundancyTestCone.

4.2 Basic data-structure
The most basic data structure that we use for our algorithm is the inequality data structure. We
assume that coefficients and constants of inequalities are over Q and we use the mpq t type in
GMP library for storing them.

Therefore, the inequality data structure consists of an mpq t array for saving inequality’s
coefficients and an mpq t element for saving the constant value. They are called coeff and
constant in the program, respectively. Also, there is an integer array to keep the historical set
of the inequality and it calls the history in the program. The size of coeff array is equal to the
dimension of the space and the size of history array is equal to the number of inequalities in
the representation of the input polyhedron. Listing 4.1 and Listing 4.2 show the C program for
defining this structure and the function to initialize it.

1 t y p e d e f s t r u c t {
2 mpq_t constant;

3 mpq_t* coef;

4 i n t * history;
5 } inequality;

Listing 4.1: Inequality data structure

1 void makeNewInequality(inequality* newIneq, i n t varNum, i n t ineqNum)
2 {

3 mpq_init(newIneq->constant);

4

5 newIneq->coef = (mpq_t *) malloc(varNum* s i z e o f (mpq_t));
6 f o r ( i n t i = 0; i < varNum; i++)
7 mpq_init(newIneq->coef[i]);

8

9 newIneq->history = ( i n t *) malloc(ineqNum* s i z e o f ( i n t ));
10 f o r ( i n t i = 0; i < ineqNum; i++)
11 newIneq->history[i] = 0;

12 }

Listing 4.2: Make new inequality function
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4.3 Finding extreme rays

As was explained in previous chapter, in order to find the redundancy test cone efficiently, we
need to compute the extreme rays of its lifted cone. Also, we explained that we have used the
CDD library for finding extreme rays. Listing 4.3 shows the C function for this purpose. It gets
the representation of a cone in form of a rational array and computes its extreme rays, using
CDD library.

1 # i n c l u d e "setoper.h"
2 # i n c l u d e "cdd.h"
3 # i n c l u d e "cddmp.h"
4 # i n c l u d e "linAlg.h"
5 # i n c l u d e <gmp.h>
6

7 mpq_t* extr(mpq_t * in, i n t row, i n t col, i n t * Grow, i n t * Gcol)
8 {

9 //CDD structures initialization

10 dd_MatrixPtr A, G;

11 dd_PolyhedraPtr poly;

12 dd_ErrorType err;

13

14 dd_set_global_constants();

15 A = dd_CreateMatrix(row, col);

16

17 //initialize CDD input matrix

18 f o r ( i n t i = 0; i < col; i++)
19 dd_set_d(A->matrix[i][i], 1);

20

21 i n t c = 0;
22 f o r ( i n t i = col; i < row; i++)
23 f o r ( i n t j = 0; j < col; j++)
24 dd_set(A->matrix[i][j], in[c++]);

25 A->representation = dd_Inequality;

26

27 //find extreme rays

28 poly = dd_DDMatrix2Poly(A, &err); //<<<---- Main function

29 G = dd_CopyGenerators(poly);

30

31 i n t grow = G->rowsize;
32 i n t gcol = G->colsize;
33

34 //make up mpq_t output

35 mpq_t * out = (mpq_t *) malloc(grow * grow * s i z e o f (mpq_t));
36

37 f o r ( i n t i = 0; i < grow * grow; i++)
38 mpq_init(out[i]);

39

40 c = 0;

41 f o r ( i n t i = 0; i < grow ; i++)

42 f o r ( i n t j = 0; j < gcol; j++)
43 mpq_set(out[c++], G->matrix[i][j]);

44 re turn(out);
45 }

Listing 4.3: Find extreme rays of a cone
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4.4 Implementation details
We went through two rounds of implementation using different ways of implementing systems
of inequalities:

1. the first one uses a dense, two dimensional array where each row encodes an inequality,
we call it the array representation,

2. the second one uses linked lists where each node stores a small two dimensional array
and each row encodes an inequality, we call it the unrolled linked list representation.

In this section, we will explain these two approaches in detail.

4.4.1 The array representation
In the array representation, we store an inequality in each element of a one dimensional array.
Each inequality consists of an array of coefficients and an array to store its historical set. There-
fore, this representation can be seen as storing the coefficient matrix of the inequality system
in a two dimensional array.

Example 4.1 Consider the inequality system: {x + 2y + 5z ≤ 2, x + z ≤ 0, y ≤ 5. In the array
representation, these inequalities can be represented as in Figure 4.1. In this figure, the first
three columns in each row shows the inequalities, the fourth is the constant term and last three
one are storing the historical set.

Figure 4.1: Example of the array representation

In this representation, to eliminate each variable we have the following steps:
1. partition input inequality system with respect to the variable, using the partition function,
2. for all inequalities in the positive array and all in the negative array, combine them using

the combine function,
3. check whether the newly generated inequality is redundant or not, using the kohlerCheck

function,
4. if it passes Kohler’s check, check it with the balasCheck function,
5. if it passes Balas’s check, add it to an array,
6. after considering all inequalities in the positive array with all in the negative array, form

the union with the zero set and go to the next variable.
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Listing 4.4 shows the implementation of this process. Detailed implementation of functions
KohlerCheck and balasCheck can be found in Chapter A.

1 # i n c l u d e "inequality.h"
2 # i n c l u d e "kohler.h"
3

4 inequality* FMEOneStepNoRedundant(inequality* data, inequality* elimSet, i n t varNum
, i n t ineqNum, i n t newIneqNum , i n t elimNum, i n t * finalSize ,

5 mpq_t* pw0, i n t sizepw0)
6 {

7 i n t size = newIneqNum;
8

9 inequality * newPos = (inequality *) malloc( s i z e o f (inequality));
10 inequality * newIneq = (inequality *) malloc( s i z e o f (inequality));
11 inequality * newIneqTmp = (inequality *) malloc( s i z e o f (inequality));
12

13 i n t e = elimNum - 1;
14

15 i n t * positives = ( i n t *) malloc(size * s i z e o f ( i n t ));
16 inequality * negatives = (inequality *) malloc(size * s i z e o f (inequality));
17

18 //allocate memory for the worst case

19 inequality * news = (inequality *) malloc((size / 2) * (size / 2) * s i z e o f (
inequality));

20

21 i n t sp = 0;
22 i n t sn = 0;
23 i n t sz = 0;
24

25 partition(elimSet, positives , negatives , news, &sp, &sn, &sz, e, varNum, ineqNum,

size);

26

27 i f (sp != 0 && sn != 0)
28 f o r ( i n t i = 0; i < sp; i++) //consider positive set
29 {

30 copyIneq(elimSet[positives[i]], newPos, varNum, ineqNum);

31 f o r ( i n t j = 0; j < sn; j++) //consider negative set
32 {

33 combine(*newPos, negatives[j], newIneq, e, varNum, ineqNum);

34 i f (kohlerCheck(*newIneq, data, elimNum, e, varNum, ineqNum))
35 i f (balasCheck(*newIneq, pw0, varNum, ineqNum, sizepw0,elimNum))
36 //add irredundant inequality to new set

37 copyIneq(*newIneq, &news[sz++], varNum, ineqNum);

38

39 }

40 }

41 size = sz;

42 (*finalSize) = sz;

43 free(positives);

44 free(negatives);

45 re turn (news);
46 }

Listing 4.4: Eliminate one variable

Using this function, Listing 4.5 shows the function to find the minimal projective representa-
tion. This function reads the input data from file, then, for each variable, finds its redundancy
test cone and calls FMEOneStepNoRedundant to get the minimal projection. The union of
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minimal representation with respect to each variable is the minimal projective representation.
1 inequality * project(char * fileName, i n t varNum, i n t ineqNum)
2 {

3 i n t * size = ( i n t *) malloc( s i z e o f ( i n t ));
4 inequality * data = (inequality *) malloc(ineqNum * s i z e o f (inequality));
5 inequality * inputData = (inequality *) malloc(ineqNum * s i z e o f (inequality));
6

7 //get input data from the input file

8 getFromFile(inputData , fileName , varNum, ineqNum);

9 copyListOfInequalities(inputData , data, varNum, ineqNum);

10

11 inequality * irredundantProject = (inequality *) malloc( s i z e o f (inequality));
12 inequality * currentSet = (inequality *) malloc( s i z e o f (inequality));
13

14 i n t * finalSize = ( i n t *) malloc( s i z e o f ( i n t ));
15

16 currentSet = data;

17 (*size) = ineqNum;

18

19 f o r ( i n t j = 1; j < varNum; j++) //iterate over variables
20 {

21 inequality * W0;

22

23 W0 = balasW0(data, j, varNum, ineqNum); //find cone W0 w.r.t. variable

24

25 //find redundancy test cone

26 mpq_t * mat = blockElimination(W0, j , varNum-j , ineqNum+1 , finalSize);

27

28 //get irredundant projection

29 irredundantProject = FMEOneStepNoRedundant(inputData , currentSet , varNum,

30 ineqNum, *size, j, size, mat, *finalSize);

31

32 currentSet = irredundantProject; //make the set for the next iteration

33 }

34 re turn(irredundantProject);
35 }

Listing 4.5: The minimal projective representation

Using arrays for storing inequality systems makes implementation simpler. Also, in com-
parison with linked lists, cache usage is more efficient because all inequalities are next to each
other in the memory. On the other hand, because we do not know the number of non redun-
dant inequalities in advance, we have to allocate memory for the worst case. Moreover, for
the same reason, we need to store all the newly generated inequalities in the same array and
call the partition function for each pass. We try to overcome these drawbacks in the second
implementation.

4.4.2 The Unrolled linked list representation
Linked lists, like arrays, are data structures for storing more than one instance of a data struc-
ture. Unlike arrays, different elements of linked lists are not in consecutive locations in mem-
ory. Therefore, each node needs to store a pointer to the next node.

An unrolled linked list is a kind of linked list such that each node contains an array of the
specified data structure rather than only one. Figure 4.2 shows an array, while Figure 4.3 shows
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the unrolled linked list corresponding to this array.

Figure 4.2: Illustration of an array

Figure 4.3: Illustration of the corresponding unrolled linked list

In our case of using unrolled linked lists, each node contains an array of the inequality data
structure. Listing 4.6 and Listing 4.7 show the programs of the unrolledlinkedlist data structure
and its basic functions for creating and adding new elements, respectively.

The main drawback of using linked lists is the high number of cache misses they have.
We can solve this problem by using unrolled linked lists and carefully selecting the number of
elements to be stored in each node. In our codes, the defined variable LL SIZE is the number
of inequalities we store in each node of the unrolled lined list. It should be selected such that
the whole node fits in the cache memory. Therefore, the exact number of this variable depends
on the specific hardware. Other than a data array and a pointer to the next node, we also need
another variable to shows how many elements have been stored in each node. The fill variable
shows this number. It is initialized to zero and it increases when we add a new inequality.
When it reaches LL SIZE, a new node is created.

1 t y p e d e f s t r u c t node
2 {

3 inequality data[LL_SIZE]; //data array in the node

4 i n t fill; //number of stored inequalities
5 s t r u c t node * next; // pointer to the next node
6 }node;

7

8 t y p e d e f s t r u c t linkedList
9 {

10 node * head; //the head node of list

11 i n t number; //number of nodes in list
12 }linkedList;

Listing 4.6: Data structure of a node and an unrolled linked list

1 # i n c l u d e "inequality.h"
2

3 node* makeNode( i n t varNum , i n t ineqNum)
4 {
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5 node * new = (node *) malloc( s i z e o f (node));
6

7 f o r ( i n t i = 0 ; i < LL_SIZE ; i++)
8 makeNewInequality(&(new->data[i]), varNum , ineqNum);

9

10 new->fill = 0;

11 new->next = NULL;

12

13 re turn(new);
14 }

15

16 linkedList makeList( i n t varNum , i n t ineqNum)
17 {

18 linkedList new;

19 node * s = makeNode(varNum , ineqNum);

20 new.head = s;

21 new.head->fill = LL_SIZE; //head node does not store inequality

22 new.number = 0;

23 re turn (new);
24 }

25

26 void addList(linkedList * l , inequality d , i n t varNum , i n t ineqNum)
27 {

28 node * current = l->head;

29

30 whi le (current->next != NULL)
31 current = current->next;

32

33 i f (current->fill < LL_SIZE) //current node is not full
34 {

35 f o r ( i n t k = 0 ; k < varNum ; k++) //copy coefficients
36 mpq_set(current->data[current->fill].coef[k] , d.coef[k]);

37

38 f o r ( i n t k = 0 ; k < ineqNum ; k++) //copy history set
39 current->data[current->fill].history[k] = d.history[k];

40

41 mpq_set(current->data[current->fill].constant , d.constant);

42

43 current->fill++; //increase number of stored inequalities in the node

44 }

45 e l s e //allocate new node to store new inequality
46 {

47 current->next = makeNode(varNum , ineqNum); //make new node

48

49 f o r ( i n t k = 0 ; k < varNum ; k++) //copy coefficients

50 mpq_set(current->next->data[0].coef[k], d.coef[k]);

51

52 f o r ( i n t k = 0 ; k < ineqNum ; k++) //copy history set
53 current->next->data[0].history[k] = d.history[k];

54

55 mpq_set(current->next->data[0].constant , d.constant);

56

57 current->next->fill++; //increase number of stored inequalities in the new node

58 l->number++; //increase number of nodes in the list

59 }

60 }

Listing 4.7: Functions for creating and adding elements
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In the implementation using unrolled linked list representation, to eliminate each variable
we have the following steps:

1. for all inequalities in the positive list and all in the negative list, combine them using the
combine function,

2. check whether the newly generated inequality is redundant or not, using the kohlerCheck
function,

3. if it passes Kohler’s check, check it with the balasCheck function,
4. if it passes Balas’s check, add it to a new positive, negative or zero list with respect to its

next variable’s coefficient
5. after considering all inequalities in the positive list with all in the negative list, add in-

equalities in the zero list to the new positive, negative or zero list with respect to its next
variable’s coefficient

Listing 4.8 shows the implementation of this process. Detailed implementation of functions
KohlerCheck and balashCheck can be found in Chapter B

1 void newFMEOneStepNoRedundant(linkedList positives , linkedList negatives ,

linkedList zeros, i n t v, i n t varNum, i n t ineqNum, linkedList * newpos,
2 linkedList * newneg, linkedList * newzer, linkedList * inputList , mpq_t * pw0,

i n t sizepw0)
3 {

4 node * currentPos = positives.head->next;

5 node * currentNeg = negatives.head->next;

6 node * currentZer = zeros.head->next;

7 inequality * newIneq = (inequality *) malloc ( s i z e o f (inequality));
8 makeNewInequality(newIneq, varNum, ineqNum);

9

10 f o r ( i n t i1 = 0; i1 < positives.number; i1++) //iterate over positive set nodes
11 {

12 //iterate over positive node inequalities

13 f o r ( i n t j1 = 0; j1 < currentPos ->fill; j1++)
14 {

15 currentNeg = negatives.head->next;

16 //iterate over negative set nodes

17 f o r ( i n t i2 = 0; i2 < negatives.number; i2++)
18 {

19 //iterate over negative node inequalities

20 f o r ( i n t j2 = 0; j2 < currentNeg ->fill; j2++)
21 {

22 combine(currentPos ->data[j1], currentNeg ->data[j2], newIneq, v, varNum,

ineqNum);

23 i f (kohlerCheck(*newIneq, inputList , v, varNum, ineqNum) == 1)
24 i f (balasCheck(*newIneq, pw0, varNum, ineqNum, sizepw0, v) == 1)
25 {

26 i f (mpq_sgn(newIneq->coef[v + 1]) > 0)
27 addList(newpos, *(newIneq), varNum, ineqNum);

28 e l s e i f (mpq_sgn(newIneq->coef[v + 1]) < 0)
29 addList(newneg, *(newIneq), varNum, ineqNum);

30 e l s e
31 addList(newzer, *(newIneq), varNum, ineqNum);

32 }

33 }

34 currentNeg = currentNeg ->next;

35 }

36 }

37 currentPos = currentPos ->next;
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38 }

39 //check inequalities with zero coefficient for redundancy

40 f o r ( i n t i3 = 0; i3 < zeros.number; i3++) //iterate over zero set nodes
41 {

42 //iterate over zero node inequalities

43 f o r ( i n t j3 = 0; j3 < currentZer ->fill; j3++)
44 i f (balasCheck(currentZer ->data[j3], pw0, varNum, ineqNum, sizepw0, v)== 1)
45 {

46 i f (mpq_sgn(currentZer ->data[j3].coef[v + 1]) > 0)
47 addList(newpos, currentZer ->data[j3], varNum, ineqNum);

48 e l s e i f (mpq_sgn(currentZer ->data[j3].coef[v + 1]) < 0)
49 addList(newneg, currentZer ->data[j3], varNum, ineqNum);

50 e l s e
51 addList(newzer, currentZer ->data[j3], varNum, ineqNum);

52 }

53 currentZer = currentZer ->next;

54 }

55 }

Listing 4.8: Eliminate one variable in list

Having this function, Listing 4.9 shows the function to find the minimal projective representa-
tion.

1 linkedList project(char * fileName, i n t varNum, i n t ineqNum)
2 {

3 i n t * size = ( i n t *) malloc( s i z e o f ( i n t ));
4 inequality * data = (inequality *) malloc(ineqNum * s i z e o f (inequality));
5 inequality * inputData = (inequality *) malloc(ineqNum * s i z e o f (inequality));
6

7 //read data from file

8 getFromFile(inputData , fileName , varNum, ineqNum);

9

10 linkedList inputll;

11 inputll = makeList(varNum , ineqNum);

12

13 f o r ( i n t i = 0 ; i < ineqNum ; i++)
14 addList(&inputll , inputData[i] , varNum , ineqNum);

15

16 linkedList datall = makeList(varNum , ineqNum);

17

18 f o r ( i n t i = 0; i < ineqNum; i++) //make list from input inequalities
19 addList(&datall, inputData[i], varNum, ineqNum);

20

21 linkedList outputll = makeList(varNum , ineqNum);

22

23 linkedList pos = makeList(varNum, ineqNum);

24 linkedList neg = makeList(varNum, ineqNum);

25 linkedList zer = makeList(varNum, ineqNum);

26

27 linkedList newPos = makeList(varNum, ineqNum);

28 linkedList newNeg = makeList(varNum, ineqNum);

29 linkedList newZer = makeList(varNum, ineqNum);

30

31 i n t * finalSize = ( i n t *) malloc( s i z e o f ( i n t ));
32

33 //parition the input system

34 partition(&(datall), &pos, &neg, &zer, 0, varNum, ineqNum);

35
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36 f o r ( i n t j = 0; j < varNum - 1; j++)
37 {

38 //find W0 cone w.r.t. the variable

39 linkedList w0ll = makeList(ineqNum + 1 , ineqNum + 1);

40 balasW0(datall, j+1, varNum, ineqNum , &w0ll);

41

42 //representation of redundancy test cone

43 mpq_t * mat = blockElimination(w0ll, j+1 , varNum - j - 1, ineqNum + 1,

finalSize);

44

45 newPos = makeList(varNum, ineqNum);

46 newNeg = makeList(varNum, ineqNum);

47 newZer = makeList(varNum, ineqNum);

48

49 //find minimal projection with fme

50 newFMEOneStepNoRedundant(pos, neg , zer , j, varNum,

51 ineqNum, &(newPos), &(newNeg), &(newZer), &(datall), mat,

52 *finalSize);

53

54 freeList(&pos, varNum, ineqNum);

55 freeList(&neg, varNum, ineqNum);

56 freeList(&zer, varNum, ineqNum);

57

58 pos.head->fill = newPos.head->fill;

59 pos.head->next = newPos.head->next;

60 pos.number = newPos.number;

61

62 neg.head->fill = newNeg.head->fill;

63 neg.head->next = newNeg.head->next;

64 neg.number = newNeg.number;

65

66 zer.head->fill = newZer.head->fill;

67 zer.head->next = newZer.head->next;

68 zer.number = newZer.number;

69

70 free(mat);

71

72 }

73

74 join(pos , neg , zer , &(outputll) , varNum , ineqNum);

75

76 freeList(&pos, varNum, ineqNum);

77 freeList(&neg, varNum, ineqNum);

78 freeList(&zer, varNum, ineqNum);

79 free(finalSize);

80 free(size);

81

82 re turn(outputll);
83 }

Listing 4.9: Minimal projective representation

Using unrolled linked lists we do not need to allocate more memory than we need and
also we can put a new inequality in its proper list for the next variable elimination. Although
adding an inequality to the list needs more time compared with adding it to an array, this
approach enables us to consider large inequality systems.
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4.5 Experimental results

In this section, we examine our experimental results. We test the running time of four im-
plementations we have, against each other and also against the PolyhedralSets : −Projection
command of Maple. Also, we show the effectiveness of different methods for eliminating re-
dundancy by comparing the maximum number of inequalities we reach in the process of FME.

Table 4.1 provides the specification of our test cases. All test cases are consistent linear
inequality systems and they are generated randomly. The specification of each test case is
shown based on the number of initial inequalities, dimension of space (number of variables)
and maximum absolute value of coefficients.

Tests t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13
#var 5 10 4 5 5 7 10 6 5 10 9 8 6
#ineq 10 12 8 10 8 10 12 8 11 20 19 19 18

max-val 99 10 20 20 98 99 90 97 100 1300 37345 999 99852

Table 4.1: Test cases specification

Table 4.2 shows the running time comparisons. The first column, (Imp1), shows the run-
ning time for the array representation and FME improved by Kohler’s method for finding re-
dundancy test cones. The second column, (Imp2), shows the running time for the array repre-
sentation and the CDD library function for finding redundancy test cones. The third, (Imp3),
and fourth (Imp4) columns are the respective results for the implementation of the same two
algorithms in the list representation. The Maple column shows the running time for Maple.
The last two columns show running time of Fourier elimination function in CDD library. The
CDD1 column is the running time using dd MatrixCanonicalize function, to eliminate re-
dundancies and CDD2 uses Clarkson’s algorithm, dd RedundantRowsViaShooting function
for redundancy elimination. Clarkson’s algorithm [8] is a method to minimize number of LP
solving needed for finding minimal representation. This method makes the algorithm more
efficient. 1

1Because the running time of the algorithm for eliminating all variables is too long, for some cases we only
remove some of the variables. The numbers in level parts shows this number.
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Case Imp1 Imp2 Imp3 Imp4 Maple CDD1 (level) CDD2

t1 0.044692 0.020723 0.045387 0.012935 7.974 0.139568 0.050889
t2 0.077096 0.132471 0.047491 0.081380 3321.217 123.724047 8.503278
t3 0.007723 0.007387 0.007302 0.004062 0.736 0.004216 0.002026
t4 0.028956 0.018163 0.027712 0.010712 2.579 0.048190 0.018195
t5 0.009344 0.010665 0.009263 0.007122 3.081 0.032876 0.013812
t6 0.037363 0.046401 0.034927 0.029198 117.021 core dump wrong result
t7 0.224652 0.274195 0.220846 0.158917 665.194 (2) 324.737169 (3) 59.388326
t8 0.009453 0.014710 0.009502 0.009344 4.950 0.125620 0.025555
t9 0.059641 0.026069 0.058178 0.014430 8.229 0.075116 0.039896

t10 core dump core dump 201.182032 3.791912 240.182 (1) 1037.671452 (2) 810.589480 (3)
t11 core dump core dump 587.921003 8.248047 192.898 (1) 2274.081326 (2) 66.623110(2)
t12 core dump core dump 210.538391 2.648560 188.408 (1) 839.965153 (2) 25.842749 (2)
t13 core dump core dump 14.644834 0.505207 911.354 (2) 78.954814 30.704574

Table 4.2: Running time comparison (second)

Table 4.3 shows the effectiveness of each redundancy elimination method by comparing
the maximum number of inequalities generated by the FME algorithm. The first column shows
this number when only using Kohler’s method, the second column is this number when using
Balas and Kohler, and the last one is this number when there is no check. In the original
column of this table, N/A in the level column means that the program terminates normally,
while the number in this column shows the level at which the program crashes because of the
high number of redundancies.

Test case Kohler Kohler-Balas original (level)
t1 36 18 4840 (3)
t2 88 66 9000 (3)
t3 20 11 56
t4 33 19 50736
t5 20 14 147679
t6 40 37 4773 (3)
t7 87 82 21384 (3)
t8 18 15 64386 (4)
t9 51 20 2048 (5)
t10 52 18 9039 (3)
t11 695 362 1920 (2)
t12 620 257 1932 (2)
t13 435 91 1292 (2)

Table 4.3: Number of inequalities after eliminating redundant inequalities
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Related work

During our study of the Fourier-Motzkin elimination, we found many related works. As dis-
cussed above, removing redundant inequalities during the execution of Fourier-Motzkin elim-
ination is the central issue towards efficiency. Up to our knowledge, all available implemen-
tation of Fourier-Motzkin elimination relies on linear programming for remove redundant in-
equalities, an idea suggested in [24]. However, and as mentioned before, alternative approaches
rely on linear algebra.

In [6], Chink proposed a redundancy test with little added work and which greatly improves
the practical efficiency of Fourier-Motzkin elimination. Kohler proposed a method [25] which
only use matrix arithmetic operations to test the redundancy of inequalities. As observed by
Imbert in his work [18], the method he proposed in this paper as well as those of Chernikov
and Kohler are essentially equivalent. Even though these works are very effective in practice,
none of them can remove all redundant inequalities generated by Fourier-Motzkin elimination.

Besides Fourier-Motzkin elimination, block elimination is another algorithmic tool to project
polyhedra on a lower dimensional subspace. This method relies on the extreme rays of the so-
called projection cone. Kohler’s work [25] is based on this latter concept. Although there
exists efficient methods to enumerate the extreme rays of this projection cone, like the double
description method [13] (also known as Chernikova’s algorithm [7, 26]), this method can not
remove all the redundant inequalities.

In [1], Balas shows that if certain invertibility conditions are satisfied, then the extreme rays
of the projection cone exactly defines the minimal representation of the projected polyhedron.
As Balas mentions in his paper, this method can be extended to any polytope. In our work, we
observe that this method can be extended to all the pointed polyhedra. Via experimentation,
we found the results and constructions in Balas’ paper had some flaws:

1. In Balas’ work, the projection cone is defined as W0 := {(v,w, v0) ∈ Qq
× Qm−q

×

Q | (v,w)B−1
0 A0 = 0,−(v,w)B−1

0 c0 + v0 = 0, (v,w)B−1
0 ≥ 0} and the author claims that

vx ≤ v0 defines a facet of the projected cone projx(Q) if and only if (v, v0) is an extreme
ray of the redundancy test cone projv,v0

(W0). However, we have a counter example for
this claim. Please refer to the page http://www.jingrj.com/worksheet.html. In
this example, when we eliminate two variables, the cone projv,v0

(W0) has 19 extreme
rays while projx(Q) has 18 facets. 18 of the 19 extreme rays of projv,v0

(W0) give out the
18 facets of projx(Q), while the remaining extreme ray gives out a redundant inequal-
ity w.r.t. the 18 facets. The main reason leading to this situation is due to the use of
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Fakars’ lemma in the proof of Balas’ paper. We improved this situation by changing
−(v,w)B−1

0 c0 + v0 = 0 to −(v,w)B−1
0 c0 + v0 ≥ 0 and carefully showed the relations be-

tween the extreme rays of projv,v0
(W0) and the facets of projx(Q), for the details please

refer to Theorem 3.1 and proposition 3.2 and Corollary 3.3.

2. In Balas’ paper, the author suggests to enumerate the extreme rays of the redundancy
test cone projv,v0

(W0) to produce the minimal representation of projx(Q), which is very
consuming. Like Kohler’s method, our technique tests the redundancy of the inequality
vx ≤ v0 in S (K)

p by testing whether (v, v0) is an extreme ray of the redundancy test cone
projv,v0

(W0).

Combining Kohler’s method and our improved version of Balas’ methods, we obtain an algo-
rithm to remove all the redundant inequalities produced by Fourier-Motzkin elimination. Even
though this algorithm still has exponential complexity, we found it is very effective in practice,
as what we have shown in Chapter 4.

The projection of polyhedra is a useful tool to solve problem instances in parametric linear
programming, which plays an important role in the analysis, transformation and scheduling of
for-loops of computer programs, see for instance [5, 22, 23].



Chapter 6

Solving parametric linear programming
problem with Fourier-Motzkin
elimination

In this chapter, we show how to use Fourier-Motzkin elimination for solving parametric linear
programming (PLP) problem instances.

Given a PLP problem instance:

z(Θ) = min cx
Ax ≤ BΘ + b

(6.1)

where A ∈ Zm×n, B ∈ Zm×p,b ∈ Zm, and x ∈ Qn are the variables, Θ ∈ Qp are the parameters.
To solve this problem, first we need the following preprocessing step. Let g > 0 be the

greatest common divisor of elements in c. Via Gaussian elimination, we can obtain a uni-
modular matrix U ∈ Qn×n satisfying [0, . . . , 0, g] = cU. Let t = U−1x, the above PLP problem
can be transformed to the following equivalent form:

z(Θ) = min gtn

AUt ≤ BΘ + b.
(6.2)

Applying Algorithm 10 to the constraints AUt ≤ BΘ+ b with the variable order t1 > · · · > tn >
Θ, we obtain ProjRep(Q; t1 > · · · > tn > Θ), where Q ⊆ Qn+p is the polyhedron represented
by AUt ≤ BΘ + b. We extract the representation of the projection projtn,Θ(Q), denoted by
Φ := Φ1 ∪ Φ2. Here we denote by Φ1 the set of inequalities which have a non-zero coefficient
in tn and Φ2 the set of inequalities which are free of tn. Since g > 0, we only need to consider
the lower bound of tn, which is very easy to deduce from Φ1.

Consider Example 3.3 in [5]:

min −2x1 − x2{
x1 + 3x2 ≤ 9 − 2θ1 + θ2, 2x1 + x2 ≤ 8 + θ1 − 2θ2

x1 ≤ 4 + θ1 + θ2, −x1 ≤ 0, −x2 ≤ 0

48
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We have (−2,−1)U = (0, 1), where U =

(
1 0
−2 − 1

)
. Let (t1, t2)T = U−1(x1, x2)T , the above

PLP problem is equivalent to

min t2{
− 5t1 − 3t2 ≤ 9 − 2θ1 + θ2,−t2 ≤ 8 + θ1 − 2θ2

t1 ≤ 4 + θ1 + θ2, −t1 ≤ 0, 2t1 + t2 ≤ 0

Let P denote the polyhedron represented by the above constraints. Applying Algorithm 10 to
P with variable order t1 > t2 > θ1 > θ2, we obtain the projected representation ProjRep(P; t1 >
t2 > θ1 > θ2), from which we can easily extract the representation of the projected polyhedron
projt2,θ1,θ2

(P):

projt2,θ1,θ2
(P) :=


−t2 − θ1 + 2θ2 ≤ 8, −3t2 − 3θ1 − 6θ2 ≤ 29,
−t2 + 4θ1 − 2θ2 ≤ 18, t2 ≤ 0,

−θ1 − θ2 ≤ 4, −θ1 + 2θ2 ≤ 8,
−3θ2 ≤ 17, 3θ2 ≤ 25.

t2 has three lower bounds: t2 = −8 − θ1 + 2θ2, t2 = −θ1 − 2θ2 − 29/3 and t2 = 4θ1 − 2θ2 − 18,
under the constraints − θ2 ≤ 5/12, −θ1 − θ2 ≤ 4,

θ1 + 2θ2 ≤ 8, θ1 − 4/5θ2 ≤ 2.
,

 θ2 ≤ −5/12, θ1 ≤ 5/3,

− θ1 − θ2 ≤ 4.
,

 − θ1 ≤ −5/3,−θ1 + 4/5θ2 ≤ −2,

θ1 − θ2/2 ≤ 9/2
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[26] Hervé Le Verge. A note on Chernikova’s algorithm. PhD thesis, INRIA, 1992.

[27] Peter McMullen. The maximum numbers of faces of a convex polytope. Mathematika,
17(2):179–184, 1970.

[28] David Monniaux. Quantifier elimination by lazy model enumeration. In International
Conference on Computer Aided Verification, pages 585–599. Springer, 2010.

[29] Arnold Schönhage and Volker Strassen. Schnelle multiplikation großer zahlen. Comput-
ing, 7(3-4):281–292, 1971.

[30] Alexander Schrijver. Theory of linear and integer programming. John Wiley & Sons,
Inc., New York, NY, USA, 1986.

[31] Arne Storjohann. Algorithms for matrix canonical forms. PhD thesis, Swiss Federal
Institute of Technology Zurich, 2000.

[32] Marco Terzer. Large scale methods to enumerate extreme rays and elementary modes.
PhD thesis, ETH Zurich, 2009.

[33] S. Verdoolaege, J. Carlos Juega, A. Cohen, J. Ignacio Gómez, C. Tenllado, and
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Appendix A

Array Representation Detailed Program

Kohler check function:
1 # i n c l u d e "inequality.h"
2 # i n c l u d e "linAlg.h"
3

4 i n t kohlerCheck(inequality a, inequality * d, i n t elim, i n t v , i n t varNum , i n t
ineqNum)

5 {

6

7 i n t k = 0;
8 i n t el = 0;
9 i n t col = 0;

10 i n t row = 0;
11 i n t rank;
12 mpq_t temp;

13 mpq_init(temp);

14

15 col = v + 1 ;

16 mpq_t * mat = (mpq_t *) malloc(ineqNum * varNum * s i z e o f (mpq_t));
17

18 f o r ( i n t i = 0; i < ineqNum * varNum; i++)
19 mpq_init(mat[i]);

20

21 f o r ( i n t i = 0; i < ineqNum; i++)
22 i f (a.history[i] == 1)
23 {

24 f o r (j = 0; j <= v; j++)
25 mpq_set(mat[k++], d[i].coef[j]);

26 row++;

27 }

28

29 rank = rankOfMatrix(mat, row, col);

30

31 free(mat);

32 i f (rank == row - 1)
33 re turn 1;

34 e l s e
35 re turn 0;

36 }

Listing A.1: Kohler check function in array representation

Balas check function and its related functions:

53
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1 i n t balasCheck(inequality a, mpq_t * pw0, i n t varNum, i n t ineqNum , i n t sizepw0 ,
i n t elimNum)

2 {

3 i n t r;
4 i n t vcheck = 0;
5 vcheck = varNum - elimNum + 1;

6 mpq_t * v = (mpq_t *) malloc((varNum - elimNum + 1) * s i z e o f (mpq_t));
7 f o r ( i n t i = 0 ; i < varNum - elimNum + 1 ; i++)
8 mpq_init(v[i]);

9

10 f o r ( i n t i = elimNum ; i < varNum ; i++)
11 mpq_set(v[i - elimNum] , a.coef[i]);

12 mpq_set(v[varNum - elimNum] , a.constant);

13 r = checkExtreme(pw0, v, varNum - elimNum + 1, sizepw0 , vcheck);

14 re turn (r);
15 }

Listing A.2: Balas check function in array representation

1 i n t checkExtreme(mpq_t * A, mpq_t * v, i n t varNum, i n t ineqNum, i n t vcheck)
2 {

3

4 mpq_t * d = (mpq_t *) malloc(ineqNum * s i z e o f (mpq_t));
5 matrixMatrixMult(A, v, d, ineqNum, varNum, 1);

6

7 i n t e = 0;
8 f o r (i = 0; i < ineqNum; i++)
9 i f (mpq_sgn(d[i]) == 0)

10 e++;

11

12 mpq_t * w = (mpq_t *) malloc(e * varNum * s i z e o f (mpq_t));
13 f o r (i = 0; i < e * varNum; i++)
14 mpq_init(w[i]);

15

16 i n t c = 0;
17 f o r (i = 0; i < ineqNum; i++)
18 i f (mpq_sgn(d[i]) == 0)
19 f o r (j = 0; j < varNum; j++)
20 mpq_set(w[c++], A[i * varNum + j]);

21 i n t r = rankOfMatrix(w, e, varNum);
22 i f (r == vcheck - 1)
23 re turn (1);

24 e l s e
25 re turn (0);

26 }

Listing A.3: Check extreme ray function in array representation

1 inequality * balasW0(inequality * data, i n t elimNumber , i n t varNum, i n t ineqNum)
2 {

3

4 //find matrix A

5 mpq_t * A1 = (mpq_t *) malloc(elimNumber * ineqNum * s i z e o f (mpq_t));
6 f o r ( i n t k = 0; k < elimNumber * ineqNum; k++)
7 mpq_init(A1[k]);

8

9 mpq_t * A = (mpq_t *) malloc(elimNumber * ineqNum * s i z e o f (mpq_t));
10 f o r ( i n t k = 0; k < elimNumber * ineqNum; k++)
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11 mpq_init(A[k]);

12

13 whatIsA(data, A, elimNumber , ineqNum);

14

15 //find matrix B

16 mpq_t * B1 = (mpq_t *) malloc(

17 (varNum - elimNumber) * ineqNum * s i z e o f (mpq_t));
18 f o r ( i n t k = 0; k < (varNum - elimNumber) * ineqNum; k++)
19 mpq_init(B1[k]);

20

21 mpq_t * B = (mpq_t *) malloc(

22 (varNum - elimNumber) * ineqNum * s i z e o f (mpq_t));
23 f o r ( i n t k = 0; k < (varNum - elimNumber) * ineqNum; k++)
24 mpq_init(B[k]);

25

26 whatIsB(data, B, elimNumber , ineqNum, varNum);

27

28 //find vector d

29 mpq_t * d1 = (mpq_t *) malloc(ineqNum * s i z e o f (mpq_t));
30 f o r ( i n t k = 0; k < ineqNum; k++)
31 mpq_init(d1[k]);

32

33 mpq_t * d = (mpq_t *) malloc(ineqNum * s i z e o f (mpq_t));
34 f o r ( i n t k = 0; k < ineqNum; k++)
35 mpq_init(d[k]);

36

37 whatIsd(data, d, ineqNum);

38

39 //put independent rows at first

40 orderMatrix(A, B, d, A1, B1, d1, ineqNum, (varNum - elimNumber),

41 elimNumber);

42

43 //fide B0 matrix

44 mpq_t * B0 = (mpq_t *) malloc(ineqNum * ineqNum * s i z e o f (mpq_t));
45 f o r ( i n t k = 0; k < ineqNum * ineqNum; k++)
46 mpq_init(B0[k]);

47

48 whatIsB0(B1, B0, ineqNum, varNum - elimNumber , elimNumber);

49

50 //find W0 cone

51 inequality *W0; //<----

52 W0 = whatIsW0(A1, B0, d1, ineqNum, varNum - elimNumber , elimNumber ,

53 varNum - elimNumber);

54 re turn (W0);
55 }

Listing A.4: Make up W0 function in array representation

1 mpq_t * blockElimination(inequality * w0, i n t p, i n t q, i n t m , i n t * size)
2 {

3 mpq_t * coefMat = (mpq_t *) malloc((m * m) * s i z e o f (mpq_t));
4

5 f o r ( i n t i = 0 ; i < (m * m) ; i++)
6 mpq_init(coefMat[i]);

7

8 coefMatrix(w0, coefMat , m, m);

9

10 i n t pprime = pPrime(coefMat, p, m);
11
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12 q = q + 1;

13 i n t qprime = q + pprime;
14 mpq_t * out1 = (mpq_t *) malloc(((m - qprime) * m) * s i z e o f (mpq_t));
15 mpq_t * out2 = (mpq_t *) malloc(((q) * m) * s i z e o f (mpq_t));
16

17 f o r ( i n t i = 0; i < ((m - qprime) * m); i++)
18 mpq_init(out1[i]);

19

20 f o r ( i n t i = 0; i < ((q) * m); i++)
21 mpq_init(out2[i]);

22

23 projectionCone(coefMat , out1 , out2, pprime , q , m);

24

25 mpq_t * extrIn = (mpq_t *) malloc((m - qprime) * qprime * s i z e o f (mpq_t));
26 f o r ( i n t i = 0 ; i < (m - qprime )* qprime ; i++)
27 mpq_init(extrIn[i]);

28 f o r ( i n t i = 0 ; i < (m-qprime) * qprime ; i++)
29 mpq_set_d(extrIn[i] , 0);

30

31 makeExtrInput(out1 , extrIn , m , qprime);

32

33 mpq_t * extrs;

34 i n t grow, gcol;
35 extrs = extr(extrIn, m, qprime, &grow , &gcol);

36

37 *size = grow;

38 mpq_t * mat = (mpq_t *) malloc(grow * q * s i z e o f (mpq_t));
39 f o r ( i n t i = 0 ; i < grow * q ; i++)
40 mpq_init(mat[i]);

41

42 mpq_t * extrVec = (mpq_t *) malloc(m * s i z e o f (mpq_t));
43 f o r ( i n t i = 0 ; i < m ; i++)
44 mpq_init(extrVec[i]);

45

46 mpq_t * rowResult = (mpq_t *) malloc(q * s i z e o f (mpq_t));
47 f o r ( i n t i = 0 ; i < q ; i++)
48 mpq_init(rowResult[i]);

49

50 i n t v = 0;
51 i n t c = 0;
52 i n t cmat = 0;
53

54 f o r ( i n t i = 0 ; i < grow ; i++)
55 {

56 f o r ( i n t j = 0 ; j < m ; j++)
57 mpq_set(extrVec[j] , extrs[c++]);

58

59 matrixMatrixMult(extrVec, out2 , rowResult , 1 , m , q);

60

61 f o r ( i n t j = 0 ; j < q ; j++)
62 mpq_set(mat[cmat++] , rowResult[j]);

63 }

64 re turn(mat);
65 }

Listing A.5: Block eliminate function in array representation



Appendix B

Unrolled Linked List Representation
Detailed Program

Kohler check function:
1 # i n c l u d e "inequality.h"
2 # i n c l u d e "linAlg.h"
3 # i n c l u d e "balas.h"
4 # i n c l u d e "unrolledll.h"
5

6 i n t kohlerCheck(inequality a, linkedList * d, i n t v , i n t varNum , i n t ineqNum)
7 {

8 i n t k = 0;
9 i n t el = 0;

10 i n t col = 0;
11 i n t row = 0;
12

13 mpq_t temp;

14 mpq_init(temp);

15

16 col = v + 1 ;

17 mpq_t * mat = (mpq_t *) malloc(ineqNum * varNum * s i z e o f (mpq_t));
18

19 f o r (i = 0; i < ineqNum * varNum; i++)
20 mpq_init(mat[i]);

21

22 node * current = d->head;

23

24 f o r ( i n t i = 0; i < ineqNum; i++)
25 i f (a.history[i] == 1)
26 {

27 i n t no = (i / LL_SIZE) + 1;
28 i n t da = i % LL_SIZE;
29

30 current = d->head;

31

32 f o r ( i n t i1 = 0 ; i1 < no ; i1++)
33 current = current->next;

34

35 f o r ( i n t j = 0; j <= v; j++)
36 mpq_set(mat[k++], current->data[da].coef[j]);

37

38 row++;

57
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39 }

40

41 i n t rank = rankOfMatrix(mat, row, col);
42 f o r (i = 0 ; i < ineqNum * varNum ; i++)
43 mpq_clear(mat[i]);

44 free(mat);

45

46 i f (rank == row - 1)
47 re turn 1;

48 e l s e
49 re turn 0;

50 }

Listing B.1: Kohler check function in unrolled linked list representation

Balas check function and its related functions:

1 i n t balasCheck(inequality a, mpq_t * pw0, i n t varNum, i n t ineqNum , i n t sizepw0 ,
i n t elimNum)

2 {

3 i n t vcheck = 0;
4 i n t vcheck = varNum - elimNum /* + 1*/;
5

6 mpq_t * v = (mpq_t *) malloc((varNum - elimNum) * s i z e o f (mpq_t));
7 f o r ( i n t i = 0 ; i < varNum - elimNum; i++)
8 mpq_init(v[i]);

9

10 i n t c = 0;
11 f o r ( i n t i = elimNum + 1 ; i < varNum ; i++)

12 mpq_set(v[c++] , a.coef[i]);

13

14 mpq_set(v[varNum - elimNum - 1] , a.constant);

15 i n t r = checkExtreme(pw0, v, varNum - elimNum , sizepw0 , vcheck);
16 re turn(r);
17 }

Listing B.2: Balas check function in unrolled linked list representation

1 i n t checkExtreme(mpq_t * A, mpq_t * v, i n t varNum, i n t ineqNum, i n t vcheck)
2 {

3

4 mpq_t * d = (mpq_t *) malloc(ineqNum * s i z e o f (mpq_t));
5 f o r ( i n t i = 0; i < ineqNum; i++)
6 {

7 mpq_init(d[i]);

8 mpq_set_d(d[i], 21);

9 }

10 matrixMatrixMult(A, v, d, ineqNum, varNum, 1);

11

12 i n t e = 0;
13 f o r ( i n t i = 0; i < ineqNum; i++)
14 i f (mpq_sgn(d[i]) == 0)
15 e++;

16

17 mpq_t * w = (mpq_t *) malloc(e * varNum * s i z e o f (mpq_t));
18 f o r ( i n t i = 0; i < e * varNum; i++)
19 mpq_init(w[i]);

20

21 i n t c = 0;
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22 f o r ( i n t i = 0; i < ineqNum; i++)
23 i f (mpq_sgn(d[i]) == 0)
24 f o r ( i n t j = 0; j < varNum; j++)
25 mpq_set(w[c++], A[i * varNum + j]);

26

27 c = 0;

28 i n t r = rankOfMatrix(w, e, varNum);
29

30 i f (r == vcheck - 1)
31 re turn (1);

32 e l s e
33 re turn (0);

34 }

Listing B.3: Check extreme ray function in unrolled linked list representation
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