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Abstract

Tension is an emotional experience that can occur in different contexts. This phenomenon can
originate from a conflict of interest or uneasiness during an interview. In some contexts, such
experiences are associated with negative emotions such as fear or distress. People tend to adopt
different hedging strategies in such situations to avoid criticism or evade questions.

In this thesis, we analyze several survivor interview transcripts to determine different char-
acteristics that play crucial roles during tension situation. We discuss key components of
tension experiences and propose a natural language processing model which can effectively
combine these components to identify tension points in text-based oral history interviews. We
validate the efficacy of our model and its components with experimentation on some standard
datasets. The model provides a framework that can be used in future research on tension phe-
nomena in oral history interviews.

Keywords: emotion recognition, hedge detection, oral history, interview transcripts, social
discourse, reticence, tension
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Chapter 1

Introduction

Oral history is the systematic collection of living people’s testimony about their own expe-
riences [55]. It is a strategy for conducting historical research through recorded interviews
between a storyteller with individual experience of historically significant events and a well-
informed questioner, with the objective of adding to the historical record [70]. It plays a signif-
icant role for historians to understand the experience shared by the people from their past and
analyze it effectively. One of the crucial benefits of oral history interviews is that they can shed
light on important issues that might not have been present in previous historical narratives.

Oral history interviews can be free form where the interviewer allows the narrator to speak
freely with the recorder turned on. Narrators do not usually have to worry about being in-
terrupted with questions from the interviewer in such a form of interview [91]. On the other
hand, some interviews are well-structured. Such interviews have the interviewer asking a set
of questions to the narrator in order to get as much information as possible. Often in such
interviews, though the interviewers have a specific set of guidelines for asking questions, they
might need to improvise in order to capture certain information at certain times through out the
interview. Sometimes, the narrators don’t feel able to speak freely on certain matters causing
a conflict of interest, i.e., tension between the interviewer and the narrator [43]. Tension is the
feeling that is produced in a situation when people are anxious and do not trust each other, and
when there is a possibility of sudden violence or conflict [44]. It is a situation or condition of
hostility, suspense, or uneasiness. In psychology, tension is defined as an emotion of physical
and psychological strain joined by discomfort, unease, and pressure to look for alleviation via
talking or acting [61]. Tension is also defined as a state of latent hostility or opposition between
individuals or groups [4].

Oral history interviews involve complex social interactions and different factors highly in-
fluence the interview situation such as complexity of human lives, age, intelligence, personal
quality, etc. [11]. Both the interviewer and the interviewee contribute to these components

1



2 Chapter 1. Introduction

and often it generates a situation which can be difficult for both parties, causing unpredictable
emotional responses by the interviewee which changes the interview dynamics. Understanding
these factors and the turning points in an interview is important for the interviewers to under-
stand the process of interviewing and also for self-awareness [11]. Misztal [48] suggests that
emotions lead directly to the past and bring the past somatically and vividly into the present.
This motivates our interest in analyzing the emotional aspect of the interview, how it affects the
internal dynamics and it’s impact on causing tension between the narrator and the interviewer.

Layman (2009) [43] showed how reticence can also cause conversational shifts by inter-
viewees which often limits responses on certain issues. It is a common strategy adopted by
the narrators to avoid either outright refusal to respond or full disclosure. For example, the
use of discourse markers such as “not really”, “not that I remember” or “well, anyway” in
responses shows how reticence can be influential in an interview. This phenomenon indicates
tension points in an interview and gives interviewers an idea that the conversational flow has
somewhat been disrupted. Layman (2009) [43] also showed how certain topics can lead the
narrators to employ such strategies in order to avoid answering certain questions. More often
such responses are filled with reticence and are either short or dismissive. Subjects which ad-
dress individual trauma, regardless of whether torment or dread or humiliation, are probably
going to incite hesitant reactions from narrators. This leads to interviewers’ judgement whether
to press the interviewee when it becomes evident that the narrator is reluctant to speak on cer-
tain matters. Thus, it imposes the necessity of analyzing such phenomenon and building tools
that can automate the process of identifying tension points in interviews giving the interviewers
much more flexibility to understand and control the flow of the interview.

Ponterotto (2018) [66] showed how hedging is used in conversations to deal with controver-
sial issues. Hedging refers to the technique of adding fuzziness to the propositional content by
a speaker. It is a common hesitation strategy adopted by the narrators in oral history interviews.
It gives narrators a moment to think and organize their thoughts to plan a successful response.
For example, the usage of “I think ...”, “Well, ...” in interviews give narrators the authority to
shape their narratives. Thus, it is an important element to explore in order to identify tension
points in such interviews.

In this thesis, our final objective is to detect tension in oral history interviews such as
survivor interview transcripts. To achieve this, we identify lexical variations in narratives,
recognize emotions which may affect the interview dynamics, and analyze hedge strategies.
We apply computational approaches to automate this process of identifying the tension phe-
nomenon in survivor interviews.

The rest of the thesis is structured as follows: In addition to the discussion above, Chapter 2
reviews the related literature on detecting tension or similar phenomena in interview transcripts.
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Literature related to emotion detection and hedging is reviewed in the appropriate chapters.
Chapter 3 describes the overall architecture of our system. Chapter 3 also briefly describes
different modules that have been used in this study. Chapter 4 describes our proposed model
for emotion recognition and gives a comprehensive evaluation of the model on some standard
datasets. Chapter 5 describes in detail different hedging strategies and our proposed approach
for identifying hedging and discourse moves in survivor interviews. In Chapter 6, we provide
our experimental results on two survivor interviews and give a thorough analysis of our system.
We also discuss different aspects of our architecture, its advantages and its shortcomings in this
chapter. Lastly, in Chapter 7, we give a summary of the research work that has been done for
this thesis. We also give direction for further work that can be done in this field.



Chapter 2

Literature Review

This chapter reviews some of the studies that have been done in recent years to analyze inter-
view dynamics and how different factors affect the interview flow, causing tension between the
interviewer and the interviewee. We also discuss some of the computational approaches that
have been developed to identify such a phenomenon. We provide detailed analysis of past liter-
ature concerned with the various components of our architecture in the later chapters: emotion
detection in Chapter 4 and hedging and discourse markers in Chapter 5.

One of the important factors in interviews that shows signs of tension between the inter-
viewer and interviewee is hedging. Ponterotto (2018) [66] discussed different hedging strate-
gies that have been employed by Barack Obama, the former president of the United States, in
political interviews affecting interview dynamics by changing the flow of conversation. They
presented an in-depth analysis of the president’s responses by identifying hedging-related dis-
cursive strategies. In their work, they proposed four crucial discourse moves. “Reformulating
the interviewer’s question”; “Expanding the scope of the original question sequence”; “Switch-
ing the time frame of the question context” and “Recasting the question reference from specific
to general terms”. They also discussed hesitation strategies, such as, pauses and repairs (yes,

no), restarts (I won’t ... I won’t say) and discourse markers (anyhow, anyway, I mean).

Pedro Martín (2013) [14] discussed four common hedging strategies: Indetermination,
Camouflage, Subjectivization and Depersonalization. We provide brief details about these
strategies motivated by the description found in [5]. Strategy of Indetermination includes the
usage of various epistemic modality, for example, epistemic verbs (assume, suspect, think),
epistemic adverbs (presumably, probably, possibly), epistemic adjectives (apparent, unsure,

probably), modal verbs (might, could) and approximators (usually, generally). Usage of such
epistemic modality provides vagueness and uncertainty in the interviewee’s response. Strategy
of Camouflage includes the use of different adverbs, e.g., generally speaking, actually. This
method acts as a lexical device to avoid a negative reaction by the interviewer. Strategy of

4
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Subjectivization is activated by the usage of first person pronouns followed by verbs of cogni-
tion, for example, “I think”, “I feel”. These expressions have been given the term “Shield” in
[67]. This technique allows the interviewees to express their opinion freely in certain events
causing the interviewers to oblige and listen. Strategy of Depersonalization includes the use
of impersonal pronouns or constructs, for example, “we”, “you”, “people”. This allows the
interviewees to hide themselves behind a non-identified subject.

Though interview dynamics have been studied thoroughly in the past [11, 43, 48, 66, 91],
there are very little work that have been done to apply computational approaches to automate
the process of detecting tension in interviews. Burnap et al. (2015) [13] performed conversa-
tional analysis and used different text mining rules to identify spikes in tension in social media.
They showed how lexicons of abusive or expletive terms can identify high levels of tension
separated from low levels. Their proposed tension detection engine relies solely on the lexi-
cons and membership categorization analysis (MCA) [72]. They showed that their proposed
model consistently outperforms several machine learning approaches and sentiment analysis
tools.

Buechel et al. (2018) [12] provided the first publicly available dataset for text-based distress
and empathy prediction. Distress is a negative affective state that people feel when they are
upset about something. Distress is closely related to tension, the main focus of this thesis.
Buechel et al. (2018) [12] considered the problem of distress and empathy prediction as a
regression problem. They used a Feed-forward Neural Network with word embeddings from
Fast-Text as their inputs and a Convolutional Neural Network model with one convolutional
layer with three different filter sizes. They argue that CNN models are able to capture semantic
effects from the word order. They showed that CNN performs particularly well in detecting
distress compared with detecting empathy from text.

In this chapter, we discussed different factors that affect the interview dynamics. We also
gave brief details about the studies that have been done to identify tension-like phenomena in
text. We provide a detailed literature review of the different components of our architecture
in their respective chapters. There has been very little work done in detecting tension from
interview collections. In this thesis, we introduce a novel computational approach to detect
tension in survivor interviews.



Chapter 3

Overall Architecture

This chapter gives an overview of the architecture of our overall system. We briefly present
the components of our framework. We also discuss our proposed algorithms for tackling the
problem at hand. More detailed discussions of the main components are provided in Chapters
4 and 5.

3.1 Overview

The two core components of our proposed architecture for detecting tension in interview tran-
scripts are: the Emotion Recognition Module and the Hedge Detection Module. We give a
brief overview of these components in this chapter and we give a detailed analysis of these
components in their respective chapters. We also talk about other important features (booster
words, markers, etc.) which we found to be useful during our analysis in this chapter. We
provide pseudo-code for our tension detection algorithm combining all these components.

3.2 Emotion Recognition

The first component in our system is the emotion recognition module. As we discussed ear-
lier, emotion plays a vital role in determining tension situations in survivor interviews. The
following excerpt from an oral history interview1 shows how emotion can dominate a tension
situation.

Interviewer: Even if they do - but the Hutus can pray in their Hutu churches and
the Tutsis in the Tutsi churches.

1In all transcript excerpts, the questions by the interviewer will be indicated by “Interviewer”, and the intervie-
wee’s response by “Narrator”. The interview transcripts can be found at http://livingarchivesvivantes.
org/.

6
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3.3. Hedge Detection 7

Narrator: Exactly. You see, it’s odd, no, I’m not going to waste my time praying
in these circumstances because it’s completely - it’s hogwash.
Interviewer: Tell me -
Narrator: But what is even more serious is that there are Canadians, especially
Quebecers, who stand behind the factions and are even more extremist than we
are!
Interviewer: Indeed.
Narrator: It’s strange!

As we can see by the responses, the narrator felt anger at that moment of time, thus creating
a tension situation between the interviewer and narrator. Tension can also arise at the very be-
ginning of an interview but there might not be any visible indicators of it until some later point.
Sometimes the interviewers keep pushing which makes the interviewee really uncomfortable
changing the dynamics of the situation. As a result two opposing forces arise in such situation
which are sometimes so strong that we can detect it, which, we refer to as tension. Interviewees
usually show different emotions as discomfort in such scenarios. Jurek et al. (2015) [36] also
showed how negative sentiment or emotion can lead to tension.

In our studies, we have found negative emotions such as anger, fear, disgust, sadness to be
particularly important in tension situations, thus, we incorporate these emotional categories in
our algorithm. We provide pseudo-code for emotion recognition in Algorithm 1. We provide
a detailed analysis of this emotion recognition component in Chapter 4 where we discuss our
proposed model and do a comprehensive performance evaluation of the model.

3.3 Hedge Detection

The second component of our proposed architecture is the hedge detection module. We have
discussed previously how interviewees employ different hedging strategies in tension situations
to change the flow of conversation or to show their reluctance in responding to certain topics.
The following excerpt from an interview shows a scenario like this:

Interviewer: Do you think that one day you may want to meet them?
Narrator: It’s a good question. I don’t know. We think we’d meet them, but
meeting someone who says "No, I didn’t do that," yet we know they have, it’s also
- in any case, I am reluctant. I am not so sure.

In the above example, as we can see, the use of phrases like “I don’t know”, “We think” shows
how hedging contributes to the conversational dynamics, building a tension like environment
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among the interviewer and the interviewee. Hedging is presented in more detail in Chapter
5 where we also discuss our proposed approach for detecting hedges in interview transcripts,
along with a performance analysis of our approach.

3.4 Tension Detection

Our tension detection algorithm is composed of the Emotion Recognition Module and the
Hedge Detection Module. In addition, we have additional features which we have found to be
useful in our studies. We provide details about these features below.

3.4.1 Booster Words

Boosting, using terms such as absolutely, clearly and obviously, is a communicative strategy
for expressing a firm commitment to statements. Holmes (1984) [32] provides an early defini-
tion of boosting. According to him, “Boosting involves expressing degrees of commitment or
seriousness of intention”. It allows speakers to express their proposition with confidence and
shows their level of commitment to statements. It also restricts the negotiating space available
to the hearer.

Boosting plays a vital role in creating conversational solidarity [32] and in constructing an
authoritative persona in interviews [31]. The following example shows a use of “completely”

as a booster word during an interview.

Interviewer: Before returning to I don’t know where after that?
Narrator: Do you know what happened to me afterwards? Oblivion, amnesia.
I can’t tell you how long we stayed in Kabuga, I can’t tell you when we left for
Kabuga and on what date we left Kabuga - no. When I think about it, it’s like a
single day that is being drawn out. I completely lost the notion of time. That may
have helped me survive, but my capacity to remember was blocked.

In this thesis, we have compiled a lexicon of booster words from different online resources.
This lexicon can be found in Appendix A. Interestingly, if booster words are preceded by
negated words such as “not”, “without”, it can act as hedging. For example, “I’m still not
sure if I would go back, I don’t know what it would be like.” Here, “sure” is a booster word.
However, since it is preceded by a negation word “not”, it changes the meaning completely.
We handle this kind of situation in our proposed algorithm.
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3.4.2 Markers

The use of markers (e.g., laugh, silence, sigh) in such interviews is noteworthy. These have
various functions. Sometimes markers like “laughter” indicate invitations to the interviewer
to ask the next question. At other times it represents hesitation or nervous deflection. In our
thesis, we have compiled a lexicon (Appendix D) of such markers/cues and used them in our
tension detection algorithm. The example below shows a use of the marker “laugh”:

Interviewer: What would you like Canadians to know about you?
Narrator: I don’t know [laughs]. ... It’s a question of mutual acceptance. Some-
times we can be suspicious, thinking that Canadians haven’t lived through such
major events, but ... they also have things to share ... I think it’s a question of ...
opening up to the experience of others...

3.4.3 Asking a Question Back

When the interviewee poses a question back, asking for clarification, that is also a sign that
interviewee is trying to negotiate, a good marker for identifying tension points. In our tension
detection algorithm, we use this as a potential criterion. The example below demonstrates a
situation like this:

Interviewer: So going back now to the period of 1994, during the genocide - you
saw it coming, but how did you live through that time?
Narrator: How do you mean?

3.4.4 Outliers

Interview dynamics provide examples of a narrator giving unusually long or short answers for
a specific question type. During our lab discussions we felt that this type of dynamic could be
a sign of tension, so we added this as one of the criteria in our tension detection algorithm. We
find statistics (mean and standard deviation) based on question type over the whole interview
transcript which allows us to determine if a response by the interviewer is unusually long or
short in comparison with their other responses for the same question type. We consider wh-

question, how, yes-no and mixed (mix of other question types) as the prime question types. We
find the mean (Equation 3.1) and standard deviation (Equation 3.2) for each type.

µqt ←
1

N(qt)

N(qt)∑
i=1

{wi(qt)} (3.1)
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σqt ←

√∑N(qt)
i=1 (wi(qt) − µ(qt))2

N(qt) − 1
(3.2)

Here, µqt indicates the mean for the question type qt, σqt indicates the standard deviation for
the question type qt, wi(qt) indicates the total number of words in excerpt ei belonging to qt and
N(qt) indicates the total number of excerpts belonging to each qt. We consider a response to be
an outlier, thus a possible point for tension, if it falls below 3σqt or is above 3σqt .

3.4.5 Proposed Algorithm

Here, we provide the pseudo-code for tension detection and its components:

Algorithm 1 Emotion Detection algorithm
1: function isNegativeEmotion(s)
2: Predict emotion using MC-CNN model
3: if Predicted Emotion ∈ {anger, fear, disgust, sadness} then
4: return True
5: else
6: return False
7: end if
8: end function

Algorithm 2 Tension Detection algorithm
1: function TensionDetection()
2: Excerpts(E)← List of narrator’s responses
3:
4: Markers (M)← List of evasions markers and cues
5: Single Excerpt(e)← List of sentences in each response
6:
7: qt ← Question type (wh-question/how/yes-no/mixed)
8:
9: wi(qt)← Total number of words in excerpt ei belonging to qt

10:
11: N(qt)← Total number of excerpts belonging to each qt

12:
13: Mean, µqt ←

1
N(qt)

∑N(qt)
i=1 {wi(qt)}

14:

15: Standard Deviation, σqt ←

√∑N(qt )
i=1 (wi(qt)−µ(qt))2

N(qt)−1

16:
17: for each excerpt e in E do
18: w← Total number of words in excerpt e
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19: q← Question asked by the Interviewer
20: nSentences← First n sentences in e
21: isNegativeEmotion, eneg = False
22: isHedgedSentence, hs = False
23: isBoosting, bs = False
24: markerPresent,mp = False
25: isQuestion, qs = False
26: isOutlier, or = False
27: for each sentence s in nSentences do
28: if isNegativeEmotion(s) is True then
29: eneg = True
30: end if
31: if isHedgedSentence(s) is True then
32: hs = True
33: end if
34: if isBoosting(s) is True then
35: bs = True
36: end if
37: end for
38: for A in M do
39: if A in e then
40: mp = True
41: end if
42: end for
43: if nSentences[0] is a Question then
44: qs = True
45: end if
46: if w > µqt + 3 ∗ σqt or w < µqt − 3 ∗ σqt then
47: or = True
48: end if
49: if (eneg and hs) or (hs and bs) or (hs and mp) or qs or or then
50: mark excerpt as Tension
51: else
52: mark excerpt as No Tension
53: end if
54: end for
55: end function
56: function isBoosting(s)
57: Boosters(B)← List of booster words
58: for b in B do
59: if b in B and b is not preceded by not or without then
60: return True
61: end if
62: end for
63: return False
64: end function
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3.5 Summary

In this chapter, we have provided an overview of our tension detection architecture. We have
also briefly discussed some of its core components. Emotion plays a significant part in the ten-
sion situation in an interview. Hedging or reticence largely contributes to it, as well. Hedges
and boosters draw attention to the fact that statements don’t just communicate ideas, but also
the speaker’s attitude to them [30]. Lastly, we have provided our tension detection algorithm
along with pseudo-code for the core components of our architecture. Details of these compo-
nents is provided in the next chapters.



Chapter 4

Multi-channel CNN Model for Emotion
and Sentiment Recognition

This chapter discusses about one of the core components of our tension detection architecture,
namely emotion recognition. We provide brief details of the recent works that have been done
in this field of research. We also discuss in details about our proposed model for recognizing
emotion from text. We give an in-depth analysis of our model by evaluating performance on
some standard datasets.

4.1 Introduction

Emotion plays a significant role in oral history interviews. Misztal [48] suggests that emotions
lead directly to the past and bring the past somatically and vividly into the present causing a
shift in interview dynamics. Jurek et al. (2015) [36] also showed how negative sentiment or
emotion can lead to tension. Emotion recognition in computational linguistics is the process of
identifying discrete emotion expressed by humans in text. In the past decade, emotion detec-
tion in text has become widely popular due to its vast applications in marketing, psychology,
political science, etc. The evolution of different social media sites and blogs has paved the way
for researchers to analyze huge volume of opinionated text. As a result, it has caught attention
of lot of researchers of related fields. Emotion analysis can be viewed as a natural evolution
of sentiment analysis. While sentiment analysis deals with polarity of texts (positive, negative
or neutral) and the intensity of it, emotion mining deals with identifying human emotion ex-
pressed via text. However, this field still has a long way to go before matching the success and
ubiquity of sentiment analysis. Identifying discrete human emotions can be useful in lots of
applications such as analyzing interview dynamics, political campaigns, etc.

13
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There is often a misconception about sentiments and emotions as these subjectivity terms
have been used interchangeably [56]. Munezero et al. (2014) [56] differentiate these two terms
along with other subjectivity terms and provide the computational linguistics community with
clear concepts for effective analysis of text. While sentiment classification tasks deal with
the polarity of a given text (whether a piece of text expresses positive, negative or neutral
sentiment) and the intensity of the sentiment expressed, emotion mining tasks naturally deal
with human emotions which in some end purposes are more desirable [69][19][54].

There are four approaches that have been widely used in emotion detection studies. They
are keyword based, learning based, hybrid based and rule-based approaches. Keyword based
approach usually depends on some sort of emotion lexicons. This approach is fairly easy to
implement as it depends on identifying emotion keywords in text mostly. But this approach
has some major limitations because of its complete reliance on emotion lexicons. For exam-
ple, “I passed the test” and “Hooray! I passed the test”, both should imply the same emotion
“happiness”, but keyword based approaches might fail to predict the emotion for the first sen-
tence as it lacks emotion keyword in it. Moreover, keywords can be multiple and vague and
they can possess different meaning according to its usage and context. Learning based ap-
proaches make use of trained model on large annotated datasets. Such models, in general,
use emotion keywords as features. These approaches include traditional machine learning and
deep learning based techniques. One of the main advantages of such techniques is that they
can adapt to domain changes very easily by learning new features from the given training set.
Although learning-based approach can automatically determine the probabilities between fea-
tures and emotions, it still has limitations as it also depends on keywords as features to certain
extent. Hybrid approaches consist of a combination of keyword-based implementation and
learning-based implementation. It is relatively more popular than keyword-based approach or
learning-based approach alone as it can achieve higher accuracy from training a combination
of classifiers and adding knowledge-rich linguistic information from dictionaries and thesauri
[6][7]. Rule based approaches consist of a predefined set of rules or ontologies for the purpose
of detecting emotion. However, success of this approach can be highly domain dependent and
requirement of rules or ontologies can be expensive.

There are a number of emotion theories available which suggest different sets of basic
emotions. Interestingly, joy, sadness, anger, fear and surprise are common to all of the models.
To the best of our knowledge, the model suggested by Ekman (1999) [22] is the most broadly
used emotion model. In this study, we use Ekman’s basic emotions together with other sets of
emotions [65][78].

Deep learning models have been very successful in recent years when applied on text-
related tasks. However, such models require large amount of data on which it can be trained
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on. But in emotion detection related studies, the datasets that are available are very small. As
a result, we focused on social media because of the fact that it generates huge volume of text
data every moment and the data collection process is also very simple and straight-forward.
The huge number of collected text can be very beneficial for deep learning models. In this
thesis, we put our efforts on building such a model which can be effectively used in identifying
emotions in interview transcripts.

4.2 Related Work

The advent of micro-blogging sites has paved the way for researchers to collect and analyze
huge volumes of data in recent years. Twitter, being one of the leading social networking sites
worldwide [57], allows its users to express their states of mind via short messages which are
called tweets. Detecting emotion and sentiment from noisy twitter data is really challenging
due to its nature. Tweets tend to be short in length and have a diverse vocabulary making them
harder to analyze due to the limited contextual information they contain. We are interested in
tackling these two tasks with a novel use of a single neural network architecture.

In early textual emotion mining and sentiment analysis research, the usefulness of using
external lexicons along with predefined rules has been demonstrated. Aman and Szpakowicz
(2007) [6] introduced a task for annotating sentences with different emotion categories and its
intensities. They showed the usefulness of using lexical resources to identify emotion-related
words using two machine learning algorithms - Naive Bayes and Support Vector Machine
(SVM). However, lexical coverage of these resources may be limited, given the informal na-
ture of online discourse. A sentence may not have any emotion-bearing word at all. They [7]
also used Roget’s Thesaurus along with WordNet-Affect for fine-grained emotion prediction
from blog data. They utilized two different types of features - corpus based features and fea-
tures derived from two emotion lexicons. They have reported superior performance with their
experiments when combining both of the lexicons with corpus-based unigram features on data
collected from blogs. Agrawal and An (2012) [3] proposed a novel unsupervised context-based
approach for detecting emotion from text. Their proposed method computes an emotion vector
for each potential affect-bearing word based on the semantic relatedness between words and
various emotion concepts. The results of evaluations show that their technique yields more
accurate results than other recent unsupervised approaches and comparable results to those
of some supervised methods. One of the weaknesses of their approach is that the semantic
relatedness scores depend on the text corpus from which they are derived. Neviarouskaya
et al. (2007) [59] proposed a rule-based system called “Affect Analysis Model” which can
handle informal texts in particular. They built a database of abbreviations, emoticons, affect
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words, etc., in which each entry is labeled with an emotion and its intensity. Bandhakavi et
al. (2017) [9] proposed a unigram mixture model (UMM) to create a domain-specific lexicon
which performs better in extracting features than Point-wise Mutual Information and super-
vised Latent Dirichlet Allocation methods. Thelwall et al. (2010) [90] proposed an algorithm,
SentiStrength, which utilizes a dictionary of sentiment words associated with strength measures
to deal with short informal texts from social media. Gilbert and Eric (2014) [27] proposed
VADER, a rule-based model for sentiment analysis. They built a lexicon which is specially
attuned to microblog-like contexts and their model outperforms individual human raters.

More recently, deep learning models have proven to be very successful when applied on
various text-related tasks. Kim (2014) [38] showed the effectiveness of a simple CNN model
that leverages pre-trained word vectors for a sentence classification task. Kalchbrenner et al.
(2014) [37] proposed a dynamic CNN model which utilizes a dynamic k-max pooling mech-
anism. Their model is able to generate a feature graph which captures a variety of word re-
lations. They showed the efficacy of their model by achieving high performances on binary
and multi-class sentiment classification tasks without any feature engineering. dos Santos et
al. (2014) [20] proposed a deep CNN model that utilizes both character and word-level infor-
mation allowing them to achieve state-of-the-art performance on both binary and fine-grained
multi-class sentiment classification for one of the twitter datasets. Tai et al. (2015) [84] pro-
posed a Tree-LSTM model which can capture syntactic properties in text. Their model per-
forms particularly well on the sentiment classification task. Wang et al. (2016) [95] proposed a
regional CNN-LSTM model for dimensional sentiment analysis. Their proposed model com-
putes valence-arousal ratings from texts and outperforms several regression-based methods.
Felbo et al. (2017) [24] proposed a bi-directional LSTM model with attention and show that
their model can learn better representations when distant supervision is expanded to a set of
noisy labels. Abdul-Mageed and Ungar (2017) [1] also used distant supervision to build a
large twitter dataset and proposed a Gated Recurrent Neural Network model for fine-grained
emotion detection.

4.3 Proposed Model

We represent the architecture of our model in Fig. 4.1. In this thesis, we discuss a novel use of a
multi-channel Convolutional Neural Network model. A Convolutional Neural Network (CNN)
is a type of artificial neural network used primarily in image recognition and processing, but
in the last few years it has been widely used in natural language processing (NLP) tasks as
well. Due to its huge success in related NLP tasks, we also make use of a CNN model in our
study. Our proposed model consists of an embedding layer with two channels, a convolution
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Figure 4.1: Overview of the MC-CNN model

layer with different kernel sizes and multiple filters, a dropout layer for regularization, a max
pooling layer, multiple hidden layers and a softmax layer. In the following subsections, we
describe each of these layers in detail.

4.3.1 Embedding Layer

In this layer, we have two embedding matrices, called the Tweet Matrix and the Hash-Emo Ma-
trix, passed through two different channels of our convolutional neural network. The first ma-
trix represents a particular tweet. Each tweet ti consists of a sequence of tokens w1,w2, . . . ,wni .
A full description of what tokens are is given in Section 4.4.2.1. L1 is the maximum tweet
length. The height of the Tweet Matrix is L1. Short tweets are padded using zero padding.

In the Tweet Matrix, every word is represented as a d-dimensional word vector. Since
tweets are usually noisy, short in length, and have different kinds of features other than text, it’s
useful to have a word embedding specially trained on a large amount of Tweet data [87]. Pre-
vious research [16][80] has shown the usefulness of using pre-trained word vectors to improve
the performance of various models. As a result, in our experiments, we have used the publicly
available pre-trained GloVe1 word vectors for Twitter by Pennington et al. [63]. GloVe is an

1https://nlp.stanford.edu/projects/glove/
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unsupervised learning algorithm for obtaining vector representations for words, which is called
a word embedding. The word vectors are trained on 27 billion word tokens in an unsupervised
manner. A word embedding such as this is capable of capturing the context of a word in a
sentence, semantic and syntactic similarity, relationships with other words, etc.

In this layer, we also pass another matrix called the Hash-Emo Matrix through a different
channel in our network. This matrix is composed of three different sets of features: hashtags,
emoticons and emojis. These are considered as distinguishable traits to showcase one’s mood
[102]. People like to use hashtags to express their emotional state through various micro-
blogging sites (e.g., Twitter) [68]. Also graphical emoticons or emojis can convey strong emo-
tion or sentiment. So for each tweet ti, we extract hashtags h1, h2, . . . , hki and emoticons/emojis
e1, e2, . . . , epi . We concatenate the hashtags and emoticons/emojis vectors for each tweet ti to
get the Hash-Emo Matrix. We introduce a hyper-parameter L2 as a threshold on the height of
the Hash-Emo Matrix. Tweets with the number of hash-emo features less than L2 are padded
with zero while tweets with more hash-emo features than L2 are truncated. We use word vec-
tors from GloVe with dimension d for hashtags words. In the case that no word vector is found
for a particular word we randomly initialize it. We also do random initialization of word vec-
tors for emoticons. For emojis, we first map it to something descriptive (to be discussed in
more detail in Section 4.4.2) and then generate random word vectors. These word vectors are
tuned during the training phase.

4.3.2 Convolutional Layer

In this layer, we apply m filters of varying window sizes (k) over the Tweet Matrix from the
embedding layer as seen in Fig. 4.1. Here, window size (k) refers to the number of adjacent
word vectors in the Tweet Matrix that are filtered together (when k > 1). Then we slide our
filter down and do the same for the rest of the word vectors. Let wi ∈ IRd be the d-dimensional
word vector corresponding to the i-th word in a tweet. Also let wi:i+ j denote the concatenation
of word vectors wi,wi+1, . . . ,wi+ j and F ∈ IRk×d denote the filter matrix. Thus a feature fi is
generated by:

fi = F ⊗ wi:i+k−1 + b (4.1)

where b is a bias term and ⊗ represents the convolution action (a sum over element-wise mul-
tiplications). At this stage, we apply a nonlinear activation function such as ReLU [58] before
passing it through the dropout layer. We use multiple filters with the same window size in order
to learn complementary features from the same window. Different window sizes (k) allow us
to extract active local k-gram features.
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For the Hash-Emo Matrix, we apply m filters to each hash-emo vector to generate local
unigram features in different scales before passing it to the next layer.

4.3.3 Pooling Layer

In this layer, we employ a max-over pooling operation [16] on the output from the previous
layer for each channel in order to extract the most salient features. In this way, for each filter,
we get the maximum value. So we get features equal to the number of filters in this stage. We
chose max pooling instead of other pooling schemes because [101] showed that max pooling
consistently performs better than other pooling strategies for various sentence classification
tasks.

4.3.4 Hidden Layers

We concatenate all the feature vectors from the previous layer. In addition, we concatenate
additional sentiment and affect feature vectors (which are described in detail in Section 4.4.2)
as well which forms a large feature vector. This is then passed through a number of hidden
layers. A non-linear activation function (i.e., ReLU [58]) is applied in each layer before the
vector is finally passed through the output layer. We tried a different activation function (tanh)
as well, but ReLU worked the best for us.

4.3.5 Output Layer

This is a fully connected layer which maps the inputs to a number of outputs corresponding
to the number of classes we have. For multi-class classification task, we use softmax as the
activation function and categorical cross-entropy as the loss function. The output of the softmax
function is equivalent to a categorical probability distribution which generally indicates the
probability that any of the classes are true. Mathematically, the softmax function is shown
below:

P(y = j|z) =
ezT w j∑K

k=1 ezT wk
(4.2)

where z is a vector of the inputs to the output layer and K represents the number of classes. For
binary classification task, we use sigmoid as the activation function and binary cross-entropy
as our loss function. Finally, the classification result can be obtained by:

ŷ = arg max
j

P(y = j|z) (4.3)
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Emotion Dataset
BTD TEC CBET SE

joy 409, 983 8, 240 10, 691 3, 011
sadness 351, 963 3, 830 8, 623 2, 905
anger 311, 851 1, 555 9, 023 3, 091
love 175, 077 − 9, 398 −

thankfulness 80, 291 − 8, 544 −

fear 76, 580 2, 816 9, 021 3, 627
surprise 14, 141 3, 849 8, 552 −

guilt − − 8, 540 −

disgust − 761 8, 545 −

Total 1, 419, 886 21, 051 80, 937 12, 634

Table 4.1: Basic statistics of the emotion datasets.

Dataset #Tweets #Positive #Negative #Neutral
STS-Gold 2, 034 632 1, 402 −

STS-Test 498 182 177 139
SS-Twitter 4, 242 1, 252 1, 037 1, 953

Table 4.2: Basic statistics of the sentiment datasets.

4.4 Experiments

In this section, we describe in detail the datasets and experimental procedures used in our study.

4.4.1 Datasets

We used a number of emotion and sentiment datasets for our experiments. A description of
each dataset is given below:

BTD. Big Twitter Data is an emotion-labeled Twitter dataset provided by Wang et al.
(2012) [96]. The dataset had been automatically annotated based on the seven emotion cate-
gory seed words [78] being a hashtag and the quality of the data was verified by two annotators
as described in [96]. We were only able to retrieve a portion of the original dataset as many
tweets were either removed or not available at the time we fetched the data using the Twitter
API. We applied the heuristics from [96] to remove any hashtags from the tweets which belong
to the list of emotion seed words.

TEC. Twitter Emotion Corpus has been published by Saif (2012) [51] for research pur-
poses. About 21,000 tweets were collected based on hashtags corresponding to Ekman’s [22]
six basic emotions. The dataset has been used in related research works [8][52][77].
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CBET. The Cleaned Balanced Emotional Tweet dataset is provided by Shahraki et al.
(2017) [77]. To the best of our knowledge, this is one of the largest publically available bal-
anced datasets for twitter emotion detection research. The dataset contains 80,937 tweets with
nine emotion categories including Ekman’s six basic emotions.

SE. The SemEval-2018 Task 1 - Affect dataset was provided by Mohammad et al. (2018)
[50]. The SemEval task was to estimate the intensity of a given tweet and its corresponding
emotion. However, in this study, we utilize the labeled dataset only to classify the tweets into
four emotion categories. We have used the training, development and test sets provided in this
dataset in our experiments.

STS-Gold. This dataset was constructed by Saif et al. (2013) [73] for Twitter senti-
ment analysis. The dataset contains a total of 2,034 tweets labeled (positive/negative) by
three annotators. This dataset has been extensively used in several works for model evalua-
tion [40][74][75].

STS. The Stanford Twitter Sentiment dataset was introduced by Go et al. (2009) [28]. It
consists of a training set and a test set. The training set contains around 1.6 million tweets,
whereas the test set contains 498 tweets. The training set was built automatically based on
several emoticons as potential identifiers of sentiment. However, the test set was manually
annotated and heavily used for model evaluation in related research [34, 20, 28]. We per-
form two experiments on the dataset. One with all three labels (positive/negative/neutral) to
compare the performance of different variants of our model and the other one with two labels
(positive/negative) to make comparison with related works [34][20][28].

SS-Twitter. The Sentiment Strength Twitter dataset has been constructed by Thelwall et al.
(2012) [89] to evaluate SentiStrength. The tweets were manually labeled by multiple persons.
Each tweet is assigned a number between 1 and 5 for both positive and negative sentiments.
Here, 1 represents weak sentiment strength and 5 represents strong sentiment strength. We
followed the heuristics used by [73] to obtain a single sentiment label for each tweet, giving us
a total of 4, 242 positive, negative and neutral tweets. The transformed dataset has been used
in existing literature [73][100][28].

We provide basic statistics of the emotion labeled and sentiment labeled datasets used in
our experiments in Table 4.1 and Table 4.2.

4.4.2 Experimental Setup

4.4.2.1 Data Cleaning

Twitter data is unstructured and highly informal [99] and thus it requires a great deal of effort
to make it suitable for any model. NLTK [10] provides a regular-expression based tokenizer for
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Twitter, TweetTokenizer, which preserves user mentions, hashtags, urls, emoticons and emojis
in particular. Tokenization is the process of splitting a sequence of strings into elements such
as words, keywords, punctuation marks, symbols and other elements called tokens. TweetTo-
kenizer also reduces the length of repeated characters to three (i.e. “Haaaaaapy” will become
“Haaapy”). In our experiments with Twitter data, we utilized the TweetTokenizer to tokenize
tweets.

To accommodate the pretrained word vectors from [64], we pre-processed each tweet in a
number of ways. We lowercased all the letters in the tweet. User mentions have been replaced
with <user> token (i.e. @username1 will become <user>). In addition, we also removed urls
from the tweets as urls do not provide any emotional value. We also normalized certain negative
words (e.g., “won’t” will become “will not”). Using slang words is a very common practice
in social media. We compiled a list of the most common slang words2 and replaced all of the
occurrences with their full form (e.g., “nvm” will become “never mind”). Usage of certain
punctuation is often crucial in social media posts as it helps the user to emphasize certain
things. We found that two punctuation symbols (! and ?) are common among social media
users to express certain emotional states. We kept these symbols in our text and normalized the
repetitions (e.g., “!!!” will become “! <repeat>”)

The use of emojis and emoticons has increased significantly with the advent of various
social media sites. Emoticons (e.g., :-D) are essentially a combination of punctuation marks,
letters and numbers used to create pictorial icons which generally display an emotion or sen-
timent. On the other hand, emojis are pictographs of faces, objects and symbols. The primary
purpose of using emojis and emoticons is to convey certain emotions and sentiments [21].
One advantage of using the TweetTokenizer is that it gives us emoticons and emojis as tokens.
Though we use the emoticons as is in our experiment, we utilize a python library called “emoji”
to get descriptive details about the pictorial image.

In our experiments, we removed stop-words from the tweets and replaced numbers occur-
ring in the tweets with the token <number>. We also stripped off “#” symbols from all the
hashtags within the tweets (e.g., “#depressed” will become “depressed”). We only kept tokens
with more than one character.

4.4.2.2 Input Features

Along with word embeddings, we used additional affect and sentiment features in our network.
In our experiments, we used a feature vector V f where each value in the vector corresponds to
a particular lexical feature ranging between [0, 1]. We utilized a number of publicly available

2https://slangit.com/terms/social_media



4.4. Experiments 23

lexicons which are described briefly below to construct the vector.

Warriner et al. (2013) [97] provides a lexicon consisting of 14 thousand English lemmas
with valence, arousal and dominance scores. Three components of emotion are scored for each
word between 1 and 9 in this lexicon. We calculate the average score for each component
across all tokens in a tweet and normalize them in the range [0, 1]. Gibert (2014) [27] provides
a list of lexical features along with their associated sentiment intensity measures. We utilize
this lexicon to calculate the average of positive, negative, and neutral scores over all the tokens
in a tweet.

In addition, we used the NRC Emotion Lexicon provided by Mohammad and Turney (2013)
[53] which consists of a list of unigrams and their association with one of the emotion cate-
gories (anger, anticipation, disgust, fear, joy, sadness, surprise, trust). We use the percentage of
tokens belonging to each emotion category as features. We also used the NRC Affect Intensity

Lexicon provided by Mohammad and Bravo-Marquez (2017) [49] and NRC Hashtag Emo-

tion Lexicon provided by Mohammad and Kiritchenko (2015) [52] which contain real-valued
fine-grained word-emotion association scores for words and hashtag words respectively.

We combined two lexicons MPQA and BingLiu provided by Wilson et al. (2005) [98] and
Hu and Liu (2004) [33], respectively, and used them to calculate the percentage of positive and
negative tokens belonging to each tweet.

We also used AFINN [60] which contains a list of English words rated for valence with
an integer between −5 (negative) to +5 (positive). We first normalized the scores in the range
[0,1] and then calculated the average of this score over all the tokens in a tweet. Lastly, we
detect the presence of consecutive exclamation (!) and question marks (?) in a tweet and use
them as boolean features.

Hyper-parameter Ranges Selected
Embedding dimension 50/100/200 100
Number of filters 64/128/256 128
Kernel sizes 1/2/3/4/5 1/2/3
Batch size 16/30/50 16
Epochs 10/20 10
Dropout rate 0.1/0.2/0.5 0.5
Learning rate 0.015/0.001/0.01 0.001

Table 4.3: Ranges of different hyper-parameters searched during tuning and the final configu-
rations selected for our experiments
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4.4.2.3 Network Parameters and Training

Zhang and Wallace (2017) [101] performed a sensitivity analysis on various parameters of a
one-layer CNN model and showed how tuning the parameters can affect the performance of
a model. Inspired by the work done by [101], we also searched for the optimal parameter
configurations in our network. Table 4.3 shows different hyper-parameter configurations that
we tried and the final configuration that was used in our model. The final configuration was
based on both performance and training time. The embedding dimension has been set to 100
for both of the channels of our network as it worked best for us among other dimensions.
We also experimented with a different number of filters and varying kernel sizes during our
experiments. The combination of kernel sizes, (k = 1, 2, 3) in the first channel and k = 1 in
the second channel worked the best for us. We also experimented with various batch sizes
and the performance of the model remained reasonably constant, though the training time
varied significantly. We used the Adam optimizer [39] and the back-propagation [71] algorithm
for training our model. Keras 2.2.0 was used for implementing our model under the Linux
environment.

4.4.2.4 Regularization

In order to reduce overfitting, it is a common practice to employ regularization strategies in
CNNs. In our experiments, we used dropout regularization [81] for both of the channels after
the convolutional layer as seen in Fig 4.1. We experimented with three different dropout rates
as seen in Table 4.3 and also with no dropout at all. The model works better when we apply
dropouts after the convolutional layer.

4.5 Performance

In this section, we describe the results obtained through our experimentation. We use precision,
recall, F1-score and accuracy as our evaluation metrics. These metrics are defined as:

precision =
tp

tp + fp
(4.4)

recall =
tp

tp + fn
(4.5)

F1-score =
2 ∗ precision ∗ recall

precision + recall
(4.6)
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Emotion
Dataset

BTD TEC CBET SemEval
P R F1 P R F1 P R F1 P R F1

joy 68.4 77.4 72.6 67.4 77.1 71.8 58.1 56.1 57.1 78.5 70.1 74.1
sadness 72.7 74.5 73.6 48.8 53.7 50.9 38.0 43.3 40.5 62.6 41.0 49.6
anger 74.7 79.1 76.8 34.5 23.8 27.7 49.3 52.1 50.7 59.7 63.6 61.6
love 57.0 46.4 51.1 − − − 65.4 53.3 58.7 − − −

thankfulness 63.2 55.3 59.0 − − − 66.1 68.0 67.0 − − −

fear 57.6 38.3 46.0 61.5 57.2 58.6 70.3 69.6 70.0 51.6 71.9 60.1
surprise 88.1 16.1 27.1 55.9 50.2 52.5 51.0 55.3 53.0 − − −

guilt − − − − − − 53.8 49.6 51.6 − − −

disgust − − − 67.4 77.1 71.8 59.3 61.0 60.2 − − −

Avg. 68.9 55.3 58.0 55.9 56.5 55.6 56.8 56.5 56.5 63.1 61.7 61.3

Table 4.4: Results (in %) of our model (MC-CNN) for four emotion-labeled datasets.

Accuracy =
tp + tn

tp + tn + fp + fn
(4.7)

Here, tp represents true positive, fp represents false positive, tn represents true negative and
fn represents false negative. We evaluated our model on four emotion labeled datasets. Table
4.4 shows the results for each emotion category for all of the datasets. For the BTD dataset,
we trained our model with 1, 136, 305 tweets, while we used 140, 979 and 142, 602 tweets as
development and test data respectively. We used the same training, development and test sets
as [96] except that our retrieved dataset contains fewer samples. We achieved relatively high
F1-scores of 72.6%, 73.6% and 76.8% for joy, sadness and anger, respectively, whereas for
surprise we get a low F1-score of 27.1%. This is probably due to the imbalanced nature of
the dataset as can be seen in Table 4.1. The number of samples for joy, sadness and anger

is much higher than for surprise. Our model achieves an accuracy of 69.2%, whereas Wang
et al. (2012) [96] reported an accuracy of 65.6% when trained on a much larger dataset. We
can not make direct comparison with [96] since we were not able to retrieve the full test set
due to the unavailability of some tweets at the time of fetching data from Twitter. For the
TEC dataset, we evaluated our model with 10-fold cross validation. Mohammad (2012) [51]
reported an F1-score of 49.9% with SVM, whereas our model achieves an F1-score of 55.6%.
For the CBET dataset, we used 80% of the data as the training set and the remaining 20% as
the test set. We get an average F1-score of 56.5%. We also used 10-fold cross-validation for
the SemEval dataset and achieved an F1-score of 61.3%.

Table 4.5 shows the performance of our model with 10-fold cross-validation on different
sentiment datasets with two classes (positive and negative). For the STS-Gold dataset, our
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Datasets Methods Positive Negative Average Accuracy
P R F1 P R F1 P R F1

STS-Gold

A 70.5 74.1 72.2 88.0 86.0 87.0 79.3 88.0 79.6 82.3
B − − − − − − 79.5 77.9 78.6 82.1
C − − − − − − − − 77.5 80.3
D 75.4 74.9 75.1 90.2 90.3 90.2 82.8 82.6 82.7 86.0

Ours 87.9 82.0 84.5 92.1 94.6 93.3 90.0 88.3 88.9 90.7

STS-Test

D 88.0 89.5 88.7 87.2 85.4 86.3 87.6 87.4 87.5 87.6
E − − − − − − − − − 86.4
F − − − − − − − − − 83.0

Ours 90.2 91.2 90.5 91.3 89.3 89.9 90.8 90.3 90.2 90.3

SS-Twitter
G − − − − − − 67.8 52.7 59.3 61.9
F − − 76.6 − − 69.2 − − 72.9 73.4

Ours 81.3 84.7 82.0 72.5 72.7 72.2 76.9 78.7 77.1 79.3

Table 4.5: Results (in %) of our model (MC-CNN) from 10-fold cross-validation compared
against other methods for sentiment labeled datasets (2-class). Bold text indicates the best per-
formance in a column. A: Thelwall-Lexicon (Updated + Expanded) [75]. B: SentiStrength
[40]. C: SentiCircle with Pivot [74]. D: Deep Convolutional Neural Network [34]. E: Char-
acter to Sentence Convolutional Neural Network (CharSCNN) [20]. F: Maximum Entropy
[73]. G: Globally Convergence based Quantum Language Model + Quantum Relative En-
tropy [100].

model achieves an accuracy of 90.7% whereas the previous best accuracy (86.0%) was re-
ported by Jianqiang et al. (2018) [34] with a deep CNN model. Our model achieves the
best accuracy (90.3%) for the STS-Test dataset as well, while the previous best (87.6%) was
reported in [34]. Dos Santos et al. (2014) [20] also experimented with the same dataset with
their Character to Sentence CNN model (CharSCNN) and they reported an accuracy of 86.4%.
Lastly, for the SS-Twitter dataset, our model achieves an accuracy of 79.3% whereas Zhang
et al. (2018) [100] and Saif et al. (2013) [73] reported an accuracy of 61.9% and 73.4%,
respectively.

Tables 4.6, 4.7 and 4.8 show the performance of three variants of our model on the emotion
labeled datasets with all available emotion categories for each of the emotion datasets and
the sentiment labeled datasets with all the available sentiment labels for each of the sentiment
datasets. The first variant is a basic CNN model without hash-emo embedding or any additional
features. The second variant includes the hash-emo embedding, while the last variant combines
additional lexical features as well. It can be observed that when we introduce the second
channel with hash-emo embedding, we get a significant increase in accuracy for most of the
datasets. We can see in Table 4.6 that, for STS-Test and SS-Twitter datasets, we get better
F1-scores for all three sentiment labels when we include the hash-emo embedding along with
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Datasets Methods Positive Negative Neutral
P R F1 P R F1 P R F1

STS-Test
CNN 73.6 84.1 76.8 73.5 74.2 72.8 74.2 64.3 65.8

MC-CNN† 63.1 83.4 70.3 76.5 70.4 72.8 71.6 53.9 60.8
MC-CNN†‡ 80.3 83.8 81.4 87.5 81.2 83.5 79.2 77.9 77.7

SS-Twitter
CNN 48.9 51.7 49.3 43.9 53.7 47.4 67.8 66.8 64.3

MC-CNN† 61.6 62.0 61.4 55.3 65.5 59.7 71.6 62.7 66.4
MC-CNN†‡ 65.1 65.4 64.0 56.2 65.7 60.0 72.2 62.7 66.7

Table 4.6: Results (in %) of three variants of our model from 10-fold cross-validation for
sentiment labeled datasets (3-class). Bold text indicates the best performance in a column.†
represents the inclusion of Hash-Emo embedding into the network. ‡ represents the inclusion
of external features into the network.

Models Dataset
BTD TEC CBET SE

CNN 66.1 54.3 53.8 56.3
MC-CNN† 68.5 57.6 56.1 59.8
MC-CNN†‡ 69.2 58.9 56.4 62.0

Table 4.7: Comparison of results (accuracy in %) of three variants of our model. † represents
the inclusion of Hash-Emo embedding into the network. ‡ represents the inclusion of external
features into the network.

external lexical features. In Table 4.8, for SS-Twitter, we get a 4.1 percentage point increase
in accuracy over the base model. Also for STS-Gold, we get a 2.3 percentage point increase.
When we include the hash-emo embedding along with additional features in the network, we
get an increase of 4.5, 6.4 and 5.5 percentage points for STS-Gold, STS-Test and SS-Twitter,
respectively, over the base model. In the case of the emotion labeled datasets in Table 4.7,
inclusion of hash-emo embedding in the network gives us 2.4, 3.3, 2.3 and 3.5 percentage points
increase in accuracy and the inclusion of additional features as well gives us 3.1, 4.6, 2.6 and
5.7 percentage points increase in accuracy for BTD, TEC, CBET and SE datasets, respectively,
over the base models.

Table 4.9 and Table 4.10 show the cross-corpus results on the emotion and sentiment la-
beled datasets used in our experiments. We trained our model with one dataset and evaluated its
performance on the other datasets. For cross-corpus evaluation on the emotion labeled datasets,
we only consider four basic emotions anger, fear, joy and sadness, as these four are common
to all of them. (It should be noted that in tension situation negative emotions such as anger,

fear and sadness can play a vital role.) For each emotion labeled dataset, we randomly chose
8, 000 tweets as training samples and 2, 000 tweets as testing samples while making sure that
the classes remain balanced. As we can see in Table 4.9, our model gives comparatively better
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Models Dataset
STS-Gold STS-Test SS-Twitter

CNN 86.2 75.1 59.1
MC-CNN† 88.5 70.6 63.2
MC-CNN†‡ 90.7 81.5 64.6

Table 4.8: Comparison of results (accuracy in %) of three variants of our model. † represents
the inclusion of Hash-Emo embedding into the network. ‡ represents the inclusion of external
features into the network.

BTD TEC CBET SE
BTD − 42.4 46.7 48.9
TEC 53.2 − 44.2 36.4

CBET 63.2 42.8 − 41.2
SE 68.8 40.1 43.3 −

Table 4.9: Cross-corpus results (Accuracy in %). Rows correspond to the training corpora and
columns to the testing.

results when trained on CBET and SE datasets. In Table 4.10, we can observe that, STS-Gold
and STS-Test perform comparatively better than the SS-Twitter dataset. Our model achieves
an accuracy of 81.1% and 78.4% on the STS-Test and SS-Twitter datasets, respectively, when
trained on the STS-Gold dataset which has two sentiment classes (positive/negative). Though
the STS-Test dataset has relatively fewer positive and negative samples, our model still gener-
alizes well when trained on this dataset. As discussed earlier, this is probably due to the fact
that both STS-Gold and STS-Test were labeled with positive-negative sentiment in compari-
son with the SS-Twitter dataset which was originally labeled with numerical numbers for the
sentiment.

It should be noted that our interview datasets do not have hashtags, emoticons or emojis
which are found in Twitter data. Hence, during training a model with Twitter data for detecting
emotion in our interview transcripts, we only use the first channel in our proposed model for
emotion recognition along with the external feature vector.

STS-Gold STS-Test SS-Twitter
STS-Gold − 81.1 78.4
STS-Test 76.9 − 72.6

SS-Twitter 31.1 50.7 −

Table 4.10: Cross-corpus results (Accuracy in %). Rows correspond to the training corpora
and columns to the testing.
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4.6 Summary

In this chapter, we have discussed our emotion recognition model and its effectiveness on
predicting emotion from text. To the best of our knowledge, our model achieves the best
accuracies on the three sentiment datasets, and has significant improvement in performance
on the four emotion labeled datasets over the basic CNN model. The model performs even
better when additional lexical features are introduced into the network. The trained model can
be incorporated with our tension detection architecture to identify emotion in interviewee’s
responses.



Chapter 5

A Lexicon-based Approach for Identifying
Hedges

This chapter discusses in detail hedging in conversation management and recent computational
approaches which have been undertaken for detecting such a phenomenon. We propose a new
algorithm for detecting sentence-level hedges utilizing two manually constructed lexicons of
hedge words and discourse markers. We also describe the data that we used along with the
annotation procedure. We conclude the chapter by comparing our proposed algorithm with
some standard machine learning algorithms and show the effectiveness of our approach.

5.1 Introduction

The concept of hedging was first introduced by Lakoff [41]. He defined “hedges” as words
which a speaker uses to add fuzziness or uncertainty in the propositional content of a sentence.
According to Silva et al. (2001) [18], hedging can be viewed as a speaker’s attitude towards
a claim and towards their audience and thus can have a huge influence on conversational dy-
namics. Hedging can be as simple as saying “maybe”, “almost”, or “somewhat” in ordinary
discourse. This phenomenon is widely used in conversations where speakers show their lack
of commitment to what they communicate. For example, the sentence “I assume he was in-

volved in it.” shows how the usage of the hedge word “assume” can weaken the propositional
content “he was involved in it”. Prince et al. [67] categorized hedges into two distinguishable
categories: propositional hedges and relational hedges. Propositional hedges exhibit fuzzi-
ness within the propositional content, whereas, relational hedges exhibit fuzziness between
the proposition and the speaker. In Example 1, the hedge term “think” is used as a relational
hedge, while in Example 2, the hedge term “sort of” is used as a propositional hedge.

30
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(1) I think it came naturally to me, I was learning quickly.

(2) There was a sort of madness to it too.

The concept of hedging is particularly important in oral history interviews where it can be
treated as a crucial element of discourse function. This phenomenon is adopted by the intervie-
wees when they try to avoid criticism or evade questions [17]. This can affect the conversational
dynamics to such an extent that sometimes two opposite forces come into play causing tension
between the interviewer and the interviewee. An example of such a question/answer pattern in
a survivor interview is given below:

Interviewer: You came to Canada to study, you finished your master’s degree, you
are now a doctoral student. What is your message to - I was going to say to the
survivors, but I’m thinking especially of the young survivors who’ve been through
almost the same situations or worse - what is your message to the young survivors?

Narrator: I don’t know if I would address the young survivors specifically, since
everyone is dealing with this experience in their own way, so I don’t want to as-
sume the role of a counselor. But from my personal experience, some of which
is shared by others, it is more important to convey a message ... to the young
survivors’ circle of friends and family. And of course the survivors ... I think
that every survivor’s story must be heard in the singularity of experience that it
recounts.

The above example shows hedging in the narrator’s response. The use of hedge terms “would”

and “think” demonstrates the instability in their narrative. This is frequent when there is a dis-
juncture between the interviewer and the narrator. Often interviewees insist on individualizing
their narrative, because they either don’t feel authorized to speak for the group, or a realization
that their story is theirs.

Hedge words that are composed of multiple words are simply called multi-word hedges. In
some cases, some words alone might not demonstrate the effect of hedging unless used with
certain other words. For example, the sentence “In my view, this attitude produced through

social discourse can also change things within families.” shows how the multi-word hedge
can be used during conversations. The phrase “in my view” acts as an important indicator of
hedging here. The speaker didn’t want to take responsibility and talk on behalf of a larger group
when giving his/her proposition. Rather he/she individualized his/her opinion with the use of a
multi-word hedge. The words “in”, “my” and “view” though can not show any hedging when
used independently.

Often, as a substitute for hedge words, discourse markers are used during oral history in-
terviews. A discourse marker can be an utterance or a word or a phrase (such as oh, like, well,
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and you know) that either direct or redirect the flow of conversation without adding any sig-
nificant meaning to the discourse [76]. The example below shows an example of the discourse
marker “well”. Jucker et al. (1993) [35] showed how it has a profound effect on conversational
dynamics.

Interviewer: I’d like to hear your thoughts about that first, your point of view on
these different ways of approaching reconciliation, and if there really should be a
reconciliation - how do you see that? We will talk about forgiveness after.

Narrator: Well, for me, reconciliation necessarily involves all the actors: the
victims as well as the perpetrators of evil. Each actor has a role to play...

In conversation, discourse markers such as “well” have various functions [66]. We can use
“well” to show a slight change in topic or when what we want to say is not quite what is
expected or as a pause filler in the face of an interactive difficulty. For example, “I think...,

well, I’ve never compared them, it’s a bit of a difficult question, but I think it’s different." We
can also use “well” when we want to change what we have just said, or say something in a
different way. Such an example is given below:

Interviewer: And in those moments of panic when you were at the convent, was
everyone concerned by what was going on? Is it..., was there... Was there solidarity
between all of you who were staying with the nuns? You were all in this together,
how did it...

Narrator: No, life continued. Well, I can’t know everything that was going on
in the communes, but we knew that the Tutsis were targeted, that it was about the
Tutsis...

Discourse markers are more common in informal speech compared with writing. Simon (2005)
[79] showed various functions of discourse markers. Discourse markers can be used to shift a
topic either completely or partially. It can also be used as a filler or delaying tactic or to preface
a reaction or response. The following example shows how the discourse marker “you know”

affects the dynamics of the ongoing conversation.

Interviewer: ... Can we say - has there been - could there be harmony between the
Tutsis, harmony between the Hutus? Do Tutsis and Hutus manage to communicate
in an authentic, deep and sincere way?

Narrator: It’s very difficult because, you know, the problem - an identity problem
is very difficult to delineate. And I can’t say either that complete harmony reigns
between the different groups, the different identities that we have, Hutus and Tutsis,
etc. It’s not 100 percent harmony either.
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5.2 Related Work

In this section, we describe different computational approaches that have been undertaken in
recent years to identify hedging in text.

Though the term hedging was first introduced by Lakoff (1975) [41] in the 1970s, it gained
popularity among the NLP community about two decades ago. One of the earliest works was
by Light et al. (2004) [45]. They constructed a dictionary of hedge cues to identify speculative
(hedged) sentences in MEDLINE abstracts. They also used a Support Vector Machine (SVM)
as a classifier to determine speculative sentences in the abstracts. However, their constructed
list of hedge terms is biased towards the bio-medical domain and needs to be refined for it to
work well in other domains, as well.

Medlock and Briscoe (2007) [47] treated the problem of determining speculative sentences
as a classification task. They used single words as features to build their classifier using a set
of semi-automatically collected training examples. Szarvas (2008) [82] used the same dataset
as [47], but in their experiments, they used bigrams and trigrams as features. They trained
a maximum entropy model classifier by providing binary data about whether single features
occurred in the given context or not.

Ganter and Strube (2009) [25] proposed a hedge detection system based on word frequency
measures and syntactic patterns by using weasel word information in the readily available
Wikipedia corpus. Their proposed approach can be easily extended to other languages as well
which makes it more robust. Özgür and Radev (2009) [62] built a supervised machine learning
model using a diverse set of features. They used keyword based features, positional information
of the keywords as well as contextual information surrounding the keywords. They also used
syntactic structures of the sentence to determine the scope of the hedge cues. Agarwal and Yu
(2010) [2] used a conditional random field (CRF) algorithm to train models in order to identify
hedge cue phrases and their scopes in the bio-medical domain. They worked on the BioScope
corpus [83] and their proposed model performed very well on biological literature and clinical
notes.

The problem of detecting hedges in natural language texts was addressed in the CoNLL
2010 shared task [23] and it allowed the computational linguistics community to dig deeper
into the task of detecting hedges in sentences. The shared task was divided into two sub-tasks.
The goal of one of the sub-tasks was to identify sentences containing uncertainty, while the
other sub-task focused on identifying the scope of hedge cues. Several teams participated
in the shared task and proposed different techniques to tackle the problems [26][86][93][94].
Georgescul (2010) [26] used a Support Vector Machine (SVM) classifier based on a Gaussian
Radial Basis Kernel Function (RBF) for the same task and tuned the hyper-parameters accord-
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ing to the domain and achieved the best F1-score for one of the datasets. Tang et al. (2010) [86]
used a combination of a Conditional Random Field (CRF) model and a Large Margin-based
model to identify hedged sentences. Velldal et al. (2010) [93] used a maximum entropy (Max-
Ent) classifier using syntactic and surface-oriented features to identify hedge cues. Vlachos
and Craven (2010) [94] used syntactic dependencies and proposed a logistic regression model
to identify speculative sentences.

More recently, Uliski et al. (2018) [92] proposed a set of manually constructed rules which
allowed them to identify hedged sentences in forum posts in an unsupervised manner. Theil et
al. (2018) [88] expanded a lexicon of uncertainty trigger words utilizing domain specific word-
embedding models. They used term frequency (TF) and term frequency-inverse document
frequency (TF-IDF) for feature representation and experimented with several machine learning
models. Their expanded lexicon significantly boosts the performance of detecting uncertain
sentences in the financial domain.

This section describes the approaches that have been undertaken for the purpose of hedging
detection. Most of the approaches either are keyword based or keywords have been used as fea-
tures in different machine learning models. The problem of identifying hedged or speculative
sentences has been highly studied in the CoNLL 2010 shared tasks. Though most of the partic-
ipants have used different traditional machine learning classifiers for this binary classification
task, the lexicons that have been used, are highly domain dependent and further studies need
to be done in other domains.

5.3 Lexicons

In this section, we describe two manually constructed lexicons that have been used in this study.
One for hedge words and the other one for discourse markers. We have compiled our lexicons
using various online resources. We have also included a number of discourse markers and
hedge words in our lexicons from [85]. We provide the lexicons in Appendix B and Appendix
C.

We compiled 76 potential hedge words. Since epistemic words highly contribute to hedg-
ing, we included different epistemic verbs (assume, think, suspect), adverbs (arguably, presum-

ably, allegedly), adjectives (probable, unsure, unclear) and modal verbs (might, maybe) in our
lexicon for hedge words. With epistemic modality, a speaker’s level of confidence on his/her
proposition can be determined. We also included various approximators such as (generally,

usually) in the lexicon.

As discussed earlier, discourse markers can also be very useful in detecting possible tension
points in interviews. These markers have a variety of functions. We give a few examples of
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such markers with their probable functions during conversations:

• Making an unexpected contrast: even though; despite the fact that

• Making a contrast between two separate things, people, ideas, etc.: anyway; however;

rather

• Clarifying and re-stating: in other words; in a sense; I mean

• Dismissal of previous discourse: anyhow

• Showing the attitude of what you are saying: I think; I feel; in my understanding

• Preparing for something unwelcome: I’m afraid; honestly

• To change topic or return to the topic: well, anyway

• Indicating a difference of opinion: yes, but

• Conversation management: I mean; you know; so to speak; more or less

• Indicating agreement with a negative idea: Yes, no, I know

5.4 Rules for Disambiguating Hedge Terms

In this section, we discuss several hedge terms which are commonly used in interviews but
which have other non-hedge senses. We give rules that we employed to disambiguate the most
frequent ambiguous hedge terms in our corpus. In order to identify the terms in the corpus we
make use of lemmatization. It is to be noted that we did not cover all the hedge terms from
our hedge lexicon and the set of rules can be expanded in the future to cover other ambiguous
hedge terms as well. Our rules are an extension and modification of the set of rules proposed
by [92]. What follows is a detailed analysis of the rules used in our study with examples
derived from our survivor interview datasets. We used Stanford CoreNLP (version 3.9.1) [46]
for dependency parsing in our study.

• Feel/Suggest/Believe/Consider/Doubt/Guess/Presume/Hope
Rule: If token t is (i) a root word, (ii) has the part-of-speech VB* and (iii) has an nsubj

(nominal subject) dependency with the dependent token being a first person pronoun (i,

we), t is a hedge, otherwise, it is a non-hedge.

Hedge: I hope to, someday, but no, I haven’t reached it yet. (Fig. 5.1)
Non-hedge: A message of hope and daring to shed light on everything we see. (Fig. 5.2)
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Figure 5.1: Dependency tree for the example “I hope to, someday, but no, I haven’t reached it
yet.”

Figure 5.2: Dependency tree for the example “A message of hope and daring to shed light on
everything we see.”

• Think
Rule: If token t is followed by a token with part-of-speech IN, t is a non-hedge, otherwise,
it is a hedge.

Hedge: I think it’s a little odd. (Fig. 5.3)
Non-hedge: I think about this all the time. (Fig. 5.4)

Figure 5.3: Dependency tree for the example “I think it’s a little odd.”

Figure 5.4: Dependency tree for the example “I think about this all the time.”

• Assume:
Rule: If token t has a ccomp (clausal complement) dependent, t is a hedge, otherwise, it
is a non-hedge.
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Hedge: I assume he was involved in it. (Fig. 5.5)
Non-hedge: He wants to assume the role of a counselor. (Fig. 5.6)

Figure 5.5: Dependency tree for the example “I assume he was involved in it.”

Figure 5.6: Dependency tree for the example “He wants to assume the role of a counselor.”

• Appear:
Rule: If token t has a ccomp (clausal complement) or xcomp (open clausal complement)
dependent, t is a hedge, otherwise, it is a non-hedge.

Hedge: The problem appeared to be more serious than we thought. (Fig. 5.7)
Non-hedge: A man suddenly appeared in the doorway. (Fig. 5.8)

Figure 5.7: Dependency tree for the example “The problem appeared to be more serious than
we thought.”

Figure 5.8: Dependency tree for the example “A man suddenly appeared in the doorway.”

• Suppose:
Rule: If token t has an xcomp (open clausal complement) dependent d and d has a mark
dependent to, t is a non-hedge, otherwise, it is a hedge.
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Hedge: I suppose they were present here during the genocide. (Fig. 5.9)
Non-hedge: I’m not supposed to go back there again. (Fig. 5.10)

Figure 5.9: Dependency tree for the example “I suppose they were present here during the
genocide.”

Figure 5.10: Dependency tree for the example “I’m not supposed to go back there again.”

• Tend:
Rule: If token t has an xcomp (open clausal complement) dependent, t is a hedge, other-
wise, it is a non-hedge.

Hedge: We tend to never forget. (Fig. 5.11)
Non-hedge: All political institutions tended toward despotism. (Fig. 5.12)

Figure 5.11: Dependency tree for the example “We tend to never forget”

Figure 5.12: Dependency tree for the example “All political institutions tended toward despo-
tism.”

• Should:
Rule: If token t has relation aux with its head h and h has dependent have, t is a non-
hedge, otherwise, it is a hedge.
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Hedge: Perhaps I should be asking how we should all consider each other. (Fig. 5.13)
Non-hedge: He should have been more careful. (Fig. 5.14)

Figure 5.13: Dependency tree for the example “Perhaps I should be asking how we should all
consider each other.”

Figure 5.14: Dependency tree for the example “He should have been more careful.”

• Likely:
Rule: If token t has relation amid with its head h and h has part of speech N*, t is a
non-hedge, otherwise, it is a hedge.

Hedge: We will likely visit there once again. (Fig. 5.15)
Non-hedge: He is a fine, likely young man. (Fig. 5.16)

Figure 5.15: Dependency tree for the example “We will likely visit there once again.”

Figure 5.16: Dependency tree for the example “He is a fine, likely young man.”

• Rather:
Rule: If token t is followed by token than, t is a non-hedge, otherwise, it is a hedge.

Hedge: She’s been behaving rather strangely.
Non-hedge: She seemed in-different rather than angry.
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5.5 Experiments

In this section, we briefly discuss about our data source and annotation procedure. We also dis-
cuss our proposed algorithm for hedge detection and it’s performance on the annotated dataset
in comparison with other methods.

5.5.1 Data

We collected our data from the living archives of Rwandan exiles and genocide survivors in
Canada1. This digital repository contains life stories of Rwandan genocide survivors. In this
thesis, we worked with the transcribed interviews which are translated into English. We provide
statistics of our interview corpora in Table 5.1. For each corpus, we report the number of
question-answer pairs, along with the total number of sentences and words in the narrator’s
responses. We also report the number of times hedge words, discourse markers and booster
words are used in the corpus.

Interview #Ques-Ans #Sentences #Words #Hedges #Discourse-Markers #Boosters
1 135 718 17, 289 162(0.94%) 92(0.53%) 118(0.68%)
2 74 335 7, 430 84(1.13%) 18(0.24%) 40(0.54%)
3 113 470 11, 162 112(1.00%) 37(0.33%) 85(0.76%)
4 94 454 11, 652 119(1.02%) 29(0.25%) 68(0.53%)
5 127 1, 032 19, 959 158(0.79%) 31(0.16%) 89(0.45%)
6 65 959 24, 208 184(0.76%) 55(0.23%) 174(0.72%)

Total 608 3, 968 91, 700 819(0.89%) 262(0.29%) 574(0.63%)

Table 5.1: Statistics of our interview datasets

5.5.2 The Annotation Procedure

The task of distinguishing hedged sentences from non-hedged ones is not straightforward. In
order to get an understanding of the concept of hedging and also the specifics that need to be
kept in mind while annotating, the annotators for this study followed the gold standard set by
Farkas et al. (2010) [23] in the CoNLL 2010 shared task. The two human annotators in this
study have been given 50 random samples from the CoNLL 2010 shared task dataset which
have been annotated as certain or uncertain. One of the advantages of this dataset is that it
specifies hedge cues or phrases and their scope in the uncertain sentences, allowing one to get
an understanding of the hedging concept and its usage.

1http://livingarchivesvivantes.org/
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Annotator 2

A
nn

ot
at

or
1 yes no

yes 60 13
no 8 119

Table 5.2: Summary of annotations by two human annotators. Rows correspond to annotator
1’s response and columns correspond to annotator 2’s response. “yes” represents that annotator
thinks there is hedging and “no” represents otherwise.

One of the human annotators for this study, the author of this thesis, annotated 3000 sen-
tences from complete interviewee responses from the interview corpora. Due to time and
resource constraints, the other annotator has been given only 200 sentences from the 3000
sentences annotated by the first annotator. The second annotator was not given the labels
determined by the first annotator. The second annotator, who is an Engineer by profession,
annotated these 200 sentences. We provide the summary of the annotation results in Table 5.2.

It is important to measure the agreement level between the human annotators to have reli-
able annotations. As a result, we used Cohen’s kappa shown in Equation 5.1 to evaluate the
degree of agreement between the choices made by the two annotators. Cohen’s kappa [15]
is a statistical coefficient that represents the degree of accuracy and reliability in a statistical
classification.

k =
po − pe

1 − pe
(5.1)

where po is the relative observed agreement among annotators and pe is the hypothetical prob-
ability of chance agreement. The kappa value we obtained for this study is 0.77, which falls in
the “substantial agreement” range according to the interpretation of kappa values provided by
Landis and Koch (1977) [42]. Thus, the measurement proves that the 200 sentence annotated
corpus is reliable and can be used for performance evaluation. The 179 sentences that the two
annotators agreed on were used in the evaluation of the following algorithm.

5.5.3 Proposed Algorithm

We give pseudo-code for our proposed approach in Algorithm 3. In order to find similarity
of discourse markers in our lexicon with phrases from sentences, we make use of the Jaccard
index shown in Equation 5.2. It measures similarity between finite sample sets.

J(X,Y) =
|X ∩ Y |

|X| + |Y | − |X ∪ Y |
(5.2)
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Here, J(X,Y) represents Jaccard index for X and Y , where X and Y are sets of words. On the
other hand, Jaccard distance measures dissimilarity between sample sets and is complementary
to the Jaccard index. We used this measure, shown in Equation 5.3, in our hedge detection
algorithm.

dJ(X,Y) = 1 − J(X,Y) =
|X ∪ Y | − |X ∩ Y |

|X ∪ Y |
(5.3)

Here, dJ(X,Y) represents Jaccard distance between X and Y , where X and Y are sets of words.

Algorithm 3 Hedge Detection Algorithm
1: function isTrueHedgeTerm(t)
2: Predefined rules to disambiguate hedge terms
3: if t is true hedge term then
4: return True
5: else
6: return False
7: end if
8: end function
9: function isHedgedSentence(s)

10: Discourse Markers (DM)← List of discourse markers
11: Hedged Words (HG)← List of Epistemic words
12: Phrases (P)← List of n-grams from s
13: status = False
14: for A in DM do
15: for B in P do
16: if 1 - jaccard_distance(A,B) ≥ threshold then
17: status = True
18: end if
19: end for
20: end for
21: for hedge in HG do
22: if hedge in s AND isTrueHedgeTerm(hedge) then
23: status = True
24: end if
25: end for
26: if status is True then
27: Mark s as Hedged sentence
28: return True
29: else
30: Mark s as NonHedged sentence
31: return False
32: end if
33: end function
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Hedge Non-hedge Avg
Acc

P R F1 P R F1 P R F1
SVM 48.7 28.4 32.0 72.0 89.0 78.9 60.3 58.7 55.4 68.8
LR 49.9 38.3 40.3 73.9 83.9 77.9 61.9 61.1 59.1 68.7
HD 70.2 98.3 81.9 98.9 78.9 87.8 84.5 88.6 84.8 85.4

Table 5.3: Comparison of results (in %) (2 annotators) of our model against other methods.
Bold text indicates the best performance in a column. HD refers to our hedge detection algo-
rithm.

5.5.4 Performance

To measure the effectiveness of our hedge detection algorithm, we utilized the 200 annotated
samples mentioned earlier in this chapter. Firstly, we took only those samples from the anno-
tated dataset, where both the annotators agreed on the label, giving us a total of 179 samples
(84 hedged and 95 non-hedged sentences). We compared our results against two standard
machine learning algorithms: Support Vector Machine (SVM) and Logistic Regression (LR).
We performed a 10-fold cross-validation (Stratified) on both classifiers using a bag of n-grams
model where we chose unigram, bigram and trigrams as our features. The comparison results
are shown in Table 5.3.

From Table 5.3, we can observe that our hedge detection algorithm performs comparatively
better than both machine learning classifiers, achieving an accuracy of 85.4%, whereas SVM
and LR with bag-of-words model achieved 68.8% and 68.7% respectively. Although SVM
achieved a better recall score for the Non-hedge label, our hedge detection algorithm achieved
a better F1-score for that label.

Secondly, we took the samples annotated by only the first annotator and used them as the
ground truth. This way, we had 200 annotated sentences. We performed the same experiments
as above and results can be seen in Table 5.4. It can be observed that, our algorithm still

Hedge Non-hedge Avg
Acc

P R F1 P R F1 P R F1
SVM 68.9 46.7 52.1 73.9 84.2 78.1 71.4 65.5 65.1 70.5
LR 55.2 38.5 43.7 70.5 81.9 75.4 62.9 60.2 59.5 66.1
HD 69.0 94.5 79.7 96.0 75.6 84.6 82.5 85.0 82.1 82.5

Table 5.4: Comparison of results (in %) (1 annotator) of our model against other methods.
Bold text indicates the best performance in a column. HD refers to our hedge detection algo-
rithm.
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Hedge Non-hedge Avg
P R F1 P R F1 P R F1

SVM 86.2 60.3 70.9 70.2 81.1 75.2 78.2 70.2 73.0
LR 91.1 57.1 70.2 73.2 84.1 78.3 82.1 70.6 74.2
HD 66.1 91.3 76.7 93.7 70.8 80.6 79.9 81.0 78.6

Table 5.5: Comparison of results (in %) (1 annotator) of our model against other methods.
Bold text indicates the best performance in a column. HD refers to our hedge detection algo-
rithm.

performs better than the machine learning classifiers, achieving an accuracy of 82.5% in com-
parison with the accuracies achieved by SVM and LR with a bag of n-grams model. Finally,
we compare the performance of our proposed hedge detection algorithm on the 3000 sentences
annotated by annotator 1 against the machine learning algorithms in Table 5.5.

5.6 Summary

Hedging plays an important part in conversational management, thus making it a crucial com-
ponent for our tension detection architecture. In this chapter, we have discussed our approach
for identifying hedges at the sentence-level.

We constructed two lexicons: one for hedge words and one for discourse markers. We
also discussed rules to handle ambiguous hedge terms. To measure the effectiveness of our
proposed approach, we got two annotators to annotate a portion of our interview corpora. We
also discussed the annotation procedure where we have seen that the kappa value is 0.77, which
is an acceptable inter-rater agreement measure according to Landis and Koch (1977) [42].
We also compared the performance of our proposed approach against two standard machine
learning algorithms and showed the effectiveness of our approach.
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Performance Analysis

In this chapter, we discuss the overall performance of our tension detection architecture. We
provide experimental results on the two annotated interview transcripts that are available to us.
We also discuss briefly the results that we obtained during our experimentation. Finally, we
discuss some shortcomings of our proposed approach and provide ideas for improvement.

The data used for our experiments consists of two annotated interview transcripts. It should
be understood that although this is not a lot of data, the data is not readily available. The audio
of the interview must first be transcribed, and since it is either in the Rwandan language or
French, it must then be translated into English. Then it must be analyzed to find the points
of tension. This last step has been performed by a group of oral history interview experts
discussing the interviews and coming to a collective agreement on what constitutes a point of
tension. We accept this decision making as providing us with a rigorous gold standard that is
different than the normal individual annotations done by individual annotators. The downside
of this process is that it is time consuming and so this explains the small amount of data that
we have for the following experiment.

6.1 Experimental Results

We experimented on the two available transcribed interview transcripts which have been an-
notated for tension by a group people having expertise in the oral history interview domain.
Table 6.1 shows the results obtained on the two transcripts with our approach described in the
previous three chapters. We refer the readers to Chapter 3 for the pseudocode of our proposed
algorithm.

We observe high recall scores of 85.7% and 75.0% for the two transcripts, respectively.
However, the precision scores are very low. We can see from Table 6.1 that we have a high
number of false positives, which means our approach identifies such tension points in the tran-
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TP FP TN FN Prec. Rec.
Berthe Interview

Tension 6 76 46 1 7.3% 85.7%
Yvette Interview

Tension 3 56 34 1 5.1% 75.0%

Table 6.1: Results of our tension detection algorithm.

scripts which were not marked previously by the human judges. It will be interesting to evalu-
ate the findings of our model with the human judges, which might reduce the number of false
positives, increasing the overall precision scores. So, our proposed approach can be used as a
filtering tool as well for the human experts.

Gratch et al. (2014) [29] provides a corpus that can be used to build models for identifying
psychological distress in interviews. We used this dataset as a surrogate for tension detection.
We collected 40 such interviews (20 interviews with distress and 20 without distress). We
evaluated our proposed approach with this collection of interviews. An interview is deemed to
be one that displays distress if it contains at least a certain number of points of tension. We
achieved a precision score of 46.7% and a recall of 74.2% for identifying distress when using a
threshold of 5 (which means we identify a particular interview transcript as distress if there are
at least 5 tension points in that transcript). We experimented with different thresholds between
1 to 10 and the above mentioned threshold gave us the best precision and recall scores.

6.2 Discussion

Our proposed approach achieves a good recall score overall. To achieve the first purpose, the
algorithm needs some improvement as the number of false positives is high. We have analyzed
a few examples from our dataset which were mislabelled. We discuss them here.

One of the problems that must be tackled by any description of discourse markers is their
poly-functionality which means it is very important to distinguish the usage of different mark-
ers. Although we tried to disambiguate a number of hedge terms in this thesis, we still need
a better understanding of some discourse markers. One of the issues with our approach is its
inability to differentiate different discourse functions of the marker “well”. “well” has various
functions. It has been well studied over the years by many researchers [66],[35]. It appears in
seemingly different contexts. According to Jucker (1993), “well” can be used as a marker of
insufficiency, as a face-threat mitigator, as a frame, or as a delay device. The discourse marker
“well” has several homonyms, for instance a manner adverb (He sings well), a degree word
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(He knows the concept perfectly well), a noun (Everyone digs their own well), and a verb (Tears

well in her eyes). So it is very important to understand its functions and make decisions upon
that. For example, these responses by narrators were marked incorrectly as containing tension
by our proposed approach:

(1) “I remember really well my maternal grandparents.”

(2) “Uh, not at all. Some received job offers even before they left here, and they
are feeling well there, they are doing well”

(3) “Well, for sure Sam was someone who - in terms of sports, he was very
athletic and I wanted to be better than him.”

So it is necessary to have rules that can disambiguate different markers as well. Moreover, we
trained our model for recognizing emotion from text using Twitter data. We would achieve
better results if we could train our emotion recognition model using training data from the oral
history interview domain. To accomplish this we would need a sufficient amount of annotated
data to serve that purpose and this data will not be available in the foreseeable future.

We had two purposes when setting out to determine points of tension in oral history in-
terviews: 1) to locate points of tension, 2) to filter the interview to reduce the number of
transcribed text that human experts would need to look at when looking for points of tension
in the interviews. We have been reasonable successful in the second purpose. It should be
understood that the first purpose is difficult, even for human experts.

6.3 Summary

In this chapter, we have discussed our experimental findings on two of our interview transcripts.
Our proposed approach achieves a high recall score, allowing it to be used as a filtering tool
for the human experts. We also discussed the results obtained on a distress corpus.

Lastly, we discussed some of the shortcomings of our approach with examples. We also
provided ideas for improvement. We expect a boost in performance once these issues are
tackled.
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Conclusion and Future Work

This chapter gives concluding remarks for the research work that has been done for this thesis.
It also discusses possible future improvements in this research field.

7.1 Conclusion

In this thesis, we first discussed in detail the interview dynamics and how different factors affect
this phenomenon. We also talked about survivor interviews and why it is important to analyze
a narrator’s responses in order to identify tension situations.

We provided in-depth analysis of emotion which plays a significant part in conversational
management. Emotions can be observed in survivor interviews and most of the time, negative
emotion tends to be the cause of a tension situation. We showed with our experiments that
the CNN models can be very effective in determining emotion from text. We showed how
external features can be incorporated in a CNN network and how a separate channel in a CNN
model can be effective in classification. We also provided cross-corpus comparisons to show
the effectiveness of our model.

Next, we presented a discussion about hedging and boosting in speakers’ narratives. These
two phenomena are crucial in tension detection studies and show a speaker’s attitude during a
conversation. We proposed a simple lexicon-based approach for hedge detection and showed
its effectiveness when compared with other machine learning algorithms. We discussed our
annotation studies and our obtained kappa value which verified the reliability of the two-person
annotation.

We showed how to integrate these components into our tension detection architecture by
providing pseudo-code for each component. Our proposed algorithm gives a very good recall
score for the oral history interview dataset that has been used in this thesis. However, the
precision score can be improved. It also shows decent performance when applied to a distress
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interview corpus. Our proposed architecture can be used as a filtering tool because of its high
recall score which can help researchers in this field of work. Since, there has been very little
work done in this research field, we believe our research findings can be helpful in the future
continuation of this research.

7.2 Future Work

It is important to have gold standard datasets in order to evaluate a model and to train machine
learning models. Plans to annotate more interview datasets by people with domain expertise are
underway. It is crucial to have a good understanding of tension phenomenon in order to better
analyze such data. The domain experts at the Centre for Oral History and Digital Storytelling
at Concordia University will be performing this annotation.

We plan to train our proposed neural network model for emotion detection using data from
our interview corpus. To achieve this, we plan to get our interview datasets annotated with
different emotion categories. We also plan to get more data annotated for hedging so that we
can do a better evaluation of our hedge detection algorithm. Better methods for determining
when a poly-functional word is a discourse marker can be incorporated. Finally, we would like
to analyze our interview dataset more closely to find semantic patterns in narrators’ responses
when a tension situation arises.
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Appendix A

Booster Words

BOOSTER WORDS
clearly obviously certainly fact that show
actually must of course absolutely always

apparently assuredly categorically compelling completely
comprehensively conclude that conclusively confirmed confirmation

considerabley consistently conspicuously constantly convincingly
corroboratetion crediblely crucially decisively definitely

definitively demonstrate deservedly distinctively doubtlessly
enhanced entirely especially essentially establish
evidently exceptionally exhaustively extensively extraordinary
extremely the fact that find that found that firmly
forcefully fully strikingly successfully fundamentally
genuinely great highlight highly impossible

impressively incontrovertible indispensablely inevitabley in fact
manifestly markedly meaningfully necessarily never
notabley noteworthy noticeabley outstanding particularly
perfectly persuasively plainly powerful precisely

profoundly prominently proof proved quite
radically really reliably remarkablely rigorously

safely securely self-evident sizablely superior
surely thoroughly totally truly unambiguously

unarguably unavoidabley undeniabley undoubtedly unequivocally
uniquely unlimited unmistakablely unprecedented unquestionably
uphold upheld vastly vitally we know

well-known indeed no doubt prove honestly
mostly largely sure like i said

nonetheless mainly nevertheless as i say
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Appendix B

Hedge Words

HEDGE WORDS
suggest believe appear indicate assume
seem consider doubt estimate expect
feel guess imagine speculate suppose

think understand imply presume suspect
postulate reckon infer hope rather
slightly barely strictly presumably fairly

theoretically basically relatively possibly preferably
slenderly scantily decidedly arguably seemingly

occasionally partially partly practically roughly
virtually allegedly presumable possible probably

likely apparent probable improbable unlikely
rarely improbably unclearly unsure sure
chance unclear may might
shall should can could
ought usually approximately maybe

normally generally frequently would
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Appendix C

Discourse Markers

DISCOURSE MARKERS
however on the one hand on the other hand

nonetheless though all the same
at the same time perhaps although

in spite of the fact that regardless of the fact that as a result
therefore hence thus

in other words in a sense i mean
i think i believe i feel

i suppose i presume it is my firm belief
to my mind in my experience in my understanding

in our opinion in our view in our judgement
in my perspective from my perspective we think

we believe i hope we hope
i suspect we suspect i postulate

we speculate i am afraid i’m afraid
honestly actually anyway

you know you see sort of
more or less not really no real instance

well by the way well , anyway
the thing is what i mean is yes , but

i don’t want to i am not going to i ain’t going to
i will not say i won’t say i will not mention
i don’t know i really do not know i really don’t know

i can not find the word i can’t find the word a bit
a few a little a whole bunch

and all that and so forth and so on
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DISCOURSE MARKERS
for the most part in a way in part

partial possible pretty
seldom something or other to a certain

70looks like sound like sounds like
pretty good chance high probability very high probability

highly unlikely little support indicating
very improbable seems likely somewhat likely

indicates that hopefully appear to
is not known isn’t known was not known

remains to be investigated cannot exclude can’t exclude
can’t be excluded can not be excluded rather probably

nearly certain very low chance tends to
somewhat unlikely lends strong support fair chance

non-negligible chance may well occur doubtful
very possible very possibly highly supportive

can not exclude the possibility can’t exclude the possibility slight evidence
cannot rule out can not rule out can’t rule out

almost impossible not probable extremely unlikely
implicates thirty percent chance some possibility

may represent fairly unlikely if not
moderate chance may be associated according to chance

must be considered small doubt not very probable
implying not likely somewhat doubtful

slim chance fifty percent chance negligible chance
not fully understood fighting chance some chance

chances are plausible very probable
very probably small chances compelling evidence
close to certain little chance presumable

looks as almost certain highly likely
rather doubtful no support for preferentially

most likely some doubt must be left open
highly suggestive probably not raise the hypothesis

poor chance not much chance quite possible
indication barely possible highly suspicious

small probability moderate probability most possibly
there is a chance chances are not great some indication

conceivable faintly possible not clear
very low percent certain hope reasonable hope

quite unlikely low probability small possibility
small chance no evidence inconclusive

certain amount accordingly even if



Appendix D

Cues

CUES/HESITATION FILLERS
push laughs silence
smile smiles smiling
tears tear pause
sigh sighs ah

mmm so ... but ...
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