
Western University Western University

Scholarship@Western Scholarship@Western

Electronic Thesis and Dissertation Repository

12-19-2018 2:30 PM

Predicting Software Fault Proneness Using Machine Learning Predicting Software Fault Proneness Using Machine Learning

Sanjay Ghanathey, The University of Western Ontario

Supervisor: Konstantinos Kontogiannis, The University of Western Ontario

A thesis submitted in partial fulfillment of the requirements for the Master of Science degree in

Computer Science

© Sanjay Ghanathey 2018

Follow this and additional works at: https://ir.lib.uwo.ca/etd

 Part of the Software Engineering Commons

Recommended Citation Recommended Citation
Ghanathey, Sanjay, "Predicting Software Fault Proneness Using Machine Learning" (2018). Electronic
Thesis and Dissertation Repository. 5936.
https://ir.lib.uwo.ca/etd/5936

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F5936&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ir.lib.uwo.ca%2Fetd%2F5936&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/5936?utm_source=ir.lib.uwo.ca%2Fetd%2F5936&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

Abstract
Context: Continuous Integration (CI) is a DevOps technique which is widely used in prac-
tice. Studies show that its adoption rates will increase even further [38]. At the same time, it
is argued that maintaining product quality requires extensive and time consuming, testing and
code reviews. In this context, if not done properly, shorter sprint cycles and agile practices
entail higher risk for the quality of the product. It has been reported in literature [68], that
lack of proper test strategies, poor test quality and team dependencies are some of the major
challenges encountered in continuous integration and deployment.

Objective: The objective of this thesis, is to bridge the process discontinuity that exists be-
tween development teams and testing teams, due to continuous deployments and shorter sprint
cycles, by providing a list of potentially buggy or high risk files, which can be used by testers to
prioritize code inspection and testing, reducing thus the time between development and release.

Approach: Out approach is based on a five step process. The first step is to select a set
of systems, a set of code metrics, a set of repository metrics, and a set of machine learning
techniques to consider for training and evaluation purposes. The second step is to devise ap-
propriate client programs to extract and denote information obtained from GitHub repositories
and source code analyzers. The third step is to use this information to train the models using
the selected machine learning techniques. This step allowed to identify the best performing
machine learning techniques out of the initially selected in the first step. The fourth step is
to apply the models with a voting classifier (with equal weights) and provide answers to five
research questions pertaining to the prediction capability and generality of the obtained fault
proneness prediction framework. The fifth step is to select the best performing predictors and
apply it to two systems written in a completely different language (C++) in order to evaluate
the performance of the predictors in a new environment.

Obtained Results: The obtained results indicate that a) The best models were the ones ap-
plied on the same system as the one trained on; b) The models trained using repository metrics
outperformed the ones trained using code metrics; c) The models trained using code metrics
were proven not adequate for predicting fault prone modules; d) The use of machine learning
as a tool for building fault-proneness prediction models is promising, but still there is work to
be done as the models show weak to moderate prediction capability.

Conclusion: This thesis provides insights into how machine learning can be used to predict
whether a source code file contains one or more faults that may contribute to a major system
failure. The proposed approach is utilizing information extracted both from the system’s source
code, such as code metrics, and from a series of DevOps tools, such as bug repositories, version
control systems and, testing automation frameworks. The study involved five Java and five
Python systems and indicated that machine learning techniques have potential towards building
models for alerting developers about failure prone code.

Keywords: Software analysis, code metrics, repository metrics, software metrics, Software
defect analysis

 i

Acknowledgements

First, I would like to express my profound gratitude to my advisor Dr. Kostas Kontogiannis,
for the continuous support of my master’s program and research, for his patience, motivation,
and immense knowledge. It was his supervision and guidance that helped me to decide my
research path and walk through it. I have been extremely lucky to have a supervisor who cared
so much, planned regular meetings, detailed explanation and discussions ensured that I was on
the right track. I will forever be thankful to Dr. Kostas Kontogiannis, without whom I would
have not been where I am today.

I am grateful to IBM (International Business Machines Corporation) for giving me the op-
portunity to do part of my research in their premises through my graduate program. My sincere
thanks to Chris Brealey and Alberto Giammaria at IBM who not only guided me throughout
the internship but also in my Master’s research. I would also like to thank my fellow lab mates,
Marios-Stavros Grigoriou, Hao Jiang, Darlan Arruda and Konstantinos Tsiounis for the amaz-
ing discussions during our group meetings, project work, presentations, and for all the fun we
have had in the lab. It was our lab environment that made the whole research smooth and
thought provoking. Last but not the least, I would like to thank my family for supporting me
spiritually throughout my master’s and life in general.

ii

i

ii

vi

viii

Contents

Abstract

Acknowledgements

List of Figures

List of Tables

1 Introduction 1
1.1 Introduction . 1

1.1.1 Problem Area and Motivation . 2
1.1.2 Contributions, Scope and limitations 2
1.1.3 Research questions . 3
1.1.4 Thesis outline . 4

2 Background and related work 5
2.1 Background . 5

2.1.1 Code Metrics . 5
2.1.2 Machine Learning . 6
2.1.3 Technical Debt . 9

Architecture Debt . 9
Build Debt . 9
Code Debt . 10
Defect Debt . 10
Design Debt . 10
Documentation Debt . 10
Test Debt . 11
Requirement Debt . 11
Infrastructure Debt . 11
People Debt . 11

2.1.4 GitHub . 12
2.2 Related Work . 13

2.2.1 Software Bug Prediction using Machine Learning 13
2.2.2 Software Metrics . 16

Object Oriented Metrics . 16
Repository Metrics . 17

iii

Test Metrics . 18
Dependency Metrics . 18
Hybrid metrics . 18
Technical Debt Metrics . 19

2.2.3 Results Comparison . 20

3 Fault-proneness Prediction 21
3.1 System Selection . 21

3.1.1 Criteria . 21
3.1.2 Method . 22
3.1.3 Selected Systems . 22

3.2 Metric Selection . 24
3.2.1 Repository metrics . 24
3.2.2 Code metrics . 25

3.3 Data Collection Process . 26
3.3.1 Identify files with errors . 29
3.3.2 Collection of repository information and metrics 30
3.3.3 Collection of static code metrics . 30
3.3.4 Experimentation Framework . 30

3.4 Building a model . 30
3.4.1 Model . 30
3.4.2 Re-sampling and highly skewed features 31
3.4.3 Model evaluation . 31

4 Analysis and Obtained Results 33
4.1 Research Questions RQ1a and RQ1b . 33
4.2 Research Question RQ2 . 34
4.3 Research Question RQ3 . 36
4.4 Research Question 4 . 37
4.5 Research Question 5 . 41

5 Additional Model Validation in C++ Systems 44
5.1 Model Validation Overview . 44
5.2 Results . 45

5.2.1 Using model from RQ3 . 45
5.2.2 Using models from RQ2: . 45

6 Discussion, Future Work and Conclusion 48
6.1 Discussion . 48

6.1.1 Thesis Findings . 50
6.1.2 Threats to validity . 50

6.2 Future Work . 51
6.2.1 Additional metrics and projects . 51
6.2.2 Advanced machine learning models 51
6.2.3 Technical Debt . 52

iv

6.3 Conclusion . 55

Bibliography 56

A Data Extraction Algorithms 63
A.1 Data Extraction Algorithms: . 64

A.1.1 Algorithm to extract Bug or Issue Data from GitHub: 64
A.1.2 Algorithm to combine Bug or Issue Data with metrics: 66
A.1.3 Algorithm - Machine Learning: . 69

B Machine Learning - Detailed Report 77
B.1 Cross Validation Scores: . 78
B.2 Detailed Report: . 78

B.2.1 RQ1: . 78
Repository metrics: . 78
Code metrics: . 84

B.2.2 RQ2: . 89
Repository metrics: . 89
Code metrics: . 90

B.2.3 RQ3: . 91
Repository metrics: . 91
Code metrics: . 92

B.2.4 RQ4: . 93
Repository metrics: . 93
Code metrics: . 94

B.2.5 Validation: . 95
RQ2: . 95

Curriculum Vitae 97

v

List of Figures

2.1 Overview of Github’s [1] API Data Model . 12

3.1 Overview of project selection, research questions, experiment and validation . . 23
3.2 Fractal visualization example [77] . 24
3.3 Sum of Coupling visualization example [77] 25
3.4 Data collection from [1] using metrics tools [4, 8]. 27
3.5 Sample data with repository metrics. 29
3.6 Sample data with code metrics. 29
3.7 Imbalanced classes for springboot project . 31

4.1 Advanced Code Metrics . 41

5.1 Kopete and K3b detailed reports . 46

6.1 Code Debt example [73] . 53
6.2 Code Debt example [73] . 54

B.1 Overview of project selection, research questions, experiment and validation . . 78
B.2 Springboot project . 79
B.3 Deeplearning4j project . 79
B.4 Elasticsearch project . 80
B.5 Eclipse-che project . 80
B.6 RxJava project . 81
B.7 Youtube-dl project . 81
B.8 Ipython project . 82
B.9 Scikit project . 82
B.10 Scrapy project . 83
B.11 Keras project . 83
B.12 Springboot project . 84
B.13 Deeplearning4j project . 84
B.14 Elasticsearch project . 85
B.15 Eclipse-che project . 85
B.16 RxJava project . 86
B.17 Youtube-dl project . 86
B.18 Ipython project . 87
B.19 Scikit project . 87
B.20 Scrapy project . 88
B.21 Keras project . 88

vi

B.22 Repository metrics on java projects only . 89
B.23 Repository metrics on python projects only 89
B.24 Code metrics on java projects only . 90
B.25 Code metrics on python projects only . 90
B.26 Repository metrics with java as test project . 91
B.27 Repository metrics with python as test project 91
B.28 Code metrics with java as test project . 92
B.29 Code metrics with python as test project . 92
B.30 Repository metrics with java as test project . 93
B.31 Repository metrics with python as test project 93
B.32 Code metrics with java as test project . 94
B.33 Code metrics with python as test project . 94
B.34 Kopete detailed report using Python projects 95
B.35 K3b detailed report using Python projects . 95
B.36 Kopete detailed report using Java projects . 96
B.37 K3b detailed report using Java projects . 96

vii

List of Tables

2.1 Confusion Matrix . 9

3.1 Systems used in the experiment. 23

4.1 Repository metrics Before re-sampling and After re-sampling. 34
4.2 Code Metrics Before re-sampling and After re-sampling. 35
4.3 Example for Aggregated method. 35
4.4 Superimposed (Repository and code metrics) - Before and After re-sampling. . 36
4.5 Predicting for Java project (springboot) and Python project (scikit) using repos-

itory metrics. 37
4.6 Predicting for Java project (springboot) and Python project (scikit) using code

metrics. 38
4.7 Predicting for Java project (springboot) and Python project (ipython) using

repository metrics. 38
4.8 Predicting for Java project (springboot) and Python project (ipython) using

code metrics. 39
4.9 Predicting bugs by partitioning each project of same language into train and

test data. 40
4.10 Advanced Code Metrics . 42
4.11 Predicting for Java project (springboot) and Python project (scikit) using ad-

vanced code metrics. 42
4.12 Predicting for Java project (springboot) and Python project (ipython) using ad-

vanced code metrics. 43
4.13 Predicting bugs by partitioning each project of same language into train and

test data. 43

5.1 Systems used in validating the experiment. 44
5.2 Comparing results of data validation on C++ projects with RQ3 repository

metrics results. 45
5.3 Comparing results of data validation on C++ projects with RQ2 repository

metrics results. 46
5.4 Comparing results of data validation on C++ projects with RQ2 repository

metrics results. 47

6.1 Summary of the discussion . 49

viii

Chapter 1

Introduction

1.1 Introduction

Before any software application is delivered to the clients, it has to be tested so that it is verified
that it meets its functional and non-functional requirements. Software testing is often paired
with software reliability prediction models, so that the overall testing time required for the
system to reach a specific failure intensity level can be estimated. However, for many non-
mission critical applications which nevertheless have strict time to market constraints or the
strict release deadlines, we often require the use of a triage method in order to prioritize testing
depending on the estimated risk of failure of each software module on the application being
tested. For many systems (e.g. mobile applications) short release cycles make the testing
of every possible execution path not feasible, while meeting at the same time strict release
deadlines. In this respect, we need to devise a technique by which we can alert both developers
and testers regarding the risk of failure of a software component. This will help to appropriately
schedule and prioritize the test cases to be applied. In this thesis, we conduct and report results
from a series of experiments in order a) to investigate whether machine learning can be a
feasible approach towards developing models for evaluating the fault proneness of a software
module and b) identify a number of source code and non-source code related features which
may be of use towards training the aforementioned models.

The main focus of this thesis is to devise fault prediction models, so that software develop-
ers and software testers can obtain an initial view on how to manage and prioritize testing in
large software systems. More specifically, given a software system S, a commit action Ci in-
volving a collection of revised files Ri = {F1,i, F2,i,. . . Fk,i}, and a trained modelM on a history
of revisions and system metrics H , we would like to be able to predict which of the files F j,i

are fault prone, so that a) developers can be alerted for possible impeding failures of the file(s)
they have revised; b) testers can prioritize and re-schedule their test plans so that fault prone
modules can be tested first, and; c) managers can be alerted for possible failure risks. The sys-
tem can serve as a first step on a larger pipeline that supports continuous software engineering
(integration, release, and deployment) by providing insights for automating DevOps processes.

More specifically, in this thesis we present a framework for training and applying machine
learning models for the purpose of evaluating the likelihood of a file being fault prone. In this
study we use source code metrics as well as non-source code information obtained from vari-

1

2 Chapter 1. Introduction

ous repositories (e.g. number and frequency of commits, past failures, refactoring operations),
in order to train the machine learning framework. In this thesis, and according to IEEE termi-
nology [63] we use the term fault to indicate an incorrect step, process, or data definition in
a computer program (i.e a bug). A fault may cause an error which is a difference between a
computed result and a correct result and it is internal to the state of the program. Consequently,
an error may cause a failure which is a deviation of the expected behavior of the program from
the observed one.

In this thesis, we have collected data from five Java and five Python open source systems
that are available on GitHub[1], as illustrated in Table 3.1. We have selected parts of these
systems to train a number of fault proneness prediction models, and we have consequently
applied these models on the rest of the aforementioned systems. As an additional validation and
in order to prove the generality of the prediction models, we have applied the best performing
prediction models on two large open source C++ systems obtained from the KDE repositories.

1.1.1 Problem Area and Motivation

Problem Area: Software Analytics for the identification and assessment of fault proneness
of a software system at the file level.

Motivation: Most of the software applications are almost certain to produce failures due to
faults (bugs) introduced during the development or maintenance phases. A good number of
these errors are discovered by the testing team and few of them are discovered over time in the
operational phase.

However, it has been reported that the cost of fixing a bug in later stages of the software
development cycle can be very expensive when compared to the development phase [70, 15].
Therefore, one must take this into account and try to find and fix bugs as early as possible.

The simplest way to find bugs is by testing. In [53] software testing is defined as ‘the
process of executing a program with the intent of finding errors‘. There are different types of
testing as described in [13] such as unit testing, function testing, system testing and integration
testing.

It has been observed that most of the time the testing activities consume anything between
45% to 75% of the total development time [25]. By providing predictions on whether a file
contains a fault or not, we may be able to reduce the amount of time consumed during the
testing phase by focusing first on the probable buggy files. With respect to bug prediction,
there have been many studies since 1970’s ranging from simple equations for measuring code
complexities [30] to machine learning algorithms [20, 35].

1.1.2 Contributions, Scope and limitations

Even though significant work has already been conducted in the area of using Machine Learn-
ing for software fault prediction, to-date there are no authoritative models that can be used
to predict fault proneness in large software systems. More specifically, software engineers and
computer scientists are still experimenting with different Machine Learning frameworks as well
as source code and repository features in a quest to identify the best frameworks to use along

1.1. Introduction 3

with a standardized set of features and a standardized set of pre-processed data so that these
can be used to train such Machine Learning frameworks in order to yield predictive models.
This thesis falls in the area of Experimental Software Engineering, and aims to shed light in
the problem of identifying such a collection of Machine Learning frameworks, repository fea-
tures, and software metrics that can be used for the generation of fault prediction models. The
objective is to provide experimental data points for software engineers and computer scientists
to use towards developing more and more accurate predictive models. The thesis focuses on
the analysis of ten large open source systems by considering a volume of more than 75,000
issue-bearing commit records. The thesis contributions can be summarized as follows:

• Investigate and report on the effectiveness of selected features and metrics to be used for
language agnostic software fault proneness prediction at the file level;

• Investigate different Machine Learning frameworks and their effectiveness on yielding
fault prediction models, and;

• Investigate five key research questions RQ1-RQ5 (please see section below) that can shed
light on the effectiveness of the predictive models under different operational scenarios.

The thesis is comprised of:

• A tool for extracting repository metrics [8] from GitHub.

• A tool for extracting source code metrics for Java and Python projects [4].

• Custom made Java application programs (Appendix A.1.1,A.1.2) for combining the met-
rics and bug reports into a desired format.

• Use of existing open source infrastructure provided by Kaggle [2] in conjunction with
the use of custom made programs to train and evaluate prediction models.

• The analysis, discussion, and explanation of the obtained results.

This thesis, however, does not address whether the models have similar performance to
different types of applications (e.g real-time systems, enterprise systems, systems that depend
on scripting languages). Furthermore, the thesis does not take into account lower level source
code dependencies or other low level source code related information (e.g. information ex-
tracted from the AST).

1.1.3 Research questions
In this work we aim to find and report on empirical evidence to answer the following research
questions, which constitute a typical set of research question found in the related literature.
RQ1a: Is it possible to train models that can be used to predict fault-proneness of individual
projects, by using repository and source code metrics?

RQ1b: With respect to results from RQ1a does the choice of the programming language
affect the results?

4 Chapter 1. Introduction

RQ2: Given a set of projects {P1, P2, P3...., Pn}, written in a language L, is it possible to train
the model on all projects {P1, P2, P3...., Pn−1} in order to predict fault proneness for project Pn?

RQ3: Given a set of projects {P1, P2, P3...., Pn}, written in languages L = {L1, L2, L3...., Lk}

is it possible to train the model on all projects {P1, P2, P3...., Pn−1} in order to predict bugs for
project Pn written in a language Li ∈ L?

RQ4: Given a set of projects P={P1, P2, P3...., Pn}, written in the same language L, is it pos-
sible to predict fault proneness of a project Pi ∈ P by partitioning the projects {P1, P2, P3...., Pn}

into two sets, one set (80%) for training the model and the other set (20%) for predicting fault
proneness?

RQ5: Using advanced code metrics, answer RQ1, RQ2, RQ3 and RQ4. Do advanced code
metrics improve the results?

1.1.4 Thesis outline
The remainder of this thesis is organized as follows. Chapter 2 provides background infor-
mation that is useful in placing this work in context. Chapter 2 also provides information on
related work describing different predictor models proposed in the literature, as well as eval-
uation metrics and strategies. In Chapter 3 we discuss in detail the repository metrics, code
metrics, machine learning framework, as well as the modeling and the infrastructure used for
our evaluation study. In Chapter 4 we report on the results obtained by using the trained mod-
els, while in Chapter 5, we validate our model (generated using GitHub projects - in the Java
and Python programming languages) on KDE projects (C++ programming language). Finally,
in Chapter 6 we provide an interpretation of the results, provide pointers for future research,
and we conclude the thesis.

Chapter 2

Background and related work

2.1 Background

2.1.1 Code Metrics
Static code metrics are metrics which can be extracted directly from the source code, such as
the total number of lines of code (LOC), Halstead metrics, Henry-Kafura metrics, and cyclo-
matic complexity metrics. One such static code metric is the Source Lines of Code (SLOC)
which represents a related family of metrics focusing on counting lines in a source code file.
Among others, the SLOC family includes, the total number of blank lines (BLOC), the total
number of lines in a file (LOC), the total number of commented lines of code (CLOC), and
the total number of the logical lines of source code (SLOC-L) which is the total number of
executable lines of code [57, 5, 6]. The Cyclomatic Complexity (CCN), also known as the
McCabe metric or the McCabe Cyclomatic Complexity, is a measure of the complexity of the
decision structure, in the control flow graph of the code of a module. The metric introduced by
Thomas McCabe [49] and is equal to the number of linearly independent paths in the control
flow graph [49].

SR Chidamber et al. in [23] and J Bansiya et al. in [12] discuss object oriented metrics
such as the:

1. Weighted Method per class (WMC), which is the number of methods in the class [23].

2. Depth of inheritance Tree(DIT) which measures the inheritance levels from the top of
the hierarchy of objects for each class. [23].

3. Number of Children (NOC) which measures the number of the class’s immediate descen-
dants [23].

4. Coupling between Objects (CBO) which is a metric that represents the number of classes
coupled to a class. The coupling can be achieved through method calls, field accesses,
inheritance, method arguments, return types and exceptions. [23].

5. Response for a class (RFC) which is the number of Distinct Methods and Constructors
invoked by a class [23].

5

6 Chapter 2. Background and related work

6. Lack of Cohesion of methods (LCOM): If ’m’ is the total number of methods in a class
and ’a’ is the total number of attributes in the class then LCOM is computed as follows:
1 – (sum(am)/a*m) where ’am’ is the number of methods accessing a particular attribute
and ’sum(am)’ is the total sum of ’am’ over all the instances in the class [23, 3].

7. Number of Public Methods (NPM) which is a metric that counts all the methods in a class
that are declared as public [12].

8. Data Access Metric (DAM) which is a metric that is the ratio of the number of private
attributes to the total number of attributes declared in the class [12].

9. Measure of Aggregation (MOA) which is a metric that measures the extent of the part-
whole relationship (aggregation, composition), realized by using attributes. The metric
is a count of the number of class fields whose types are user defined classes [12].

10. Measure of Functional Abstraction (MFA) which is the ratio of the number of methods
inherited by a class to the total number of methods accessible by the member methods of
the class [12].

11. Cohesion Among Methods of Class (CAM) which computes the relatedness among meth-
ods of a class based upon the parameter list of the methods. The metric is computed using
the summation of a number of different types of method parameters in every method, di-
vided by a multiplication of number of different method parameter types in whole class
and number of methods [12].

2.1.2 Machine Learning

Machine Learning is a branch of Artificial Intelligence concerning computer programs learning
from data. Machine Learning aims at imitating the human learning process with computers,
and is all about observing a phenomenon and learning from the observations [42]. Machine
Learning can be broadly divided into two categories: supervised and unsupervised learning.
Supervised learning concerns learning from examples with known outcome for each of the
training samples [82], while unsupervised learning tries to learn from data without known
outcome. Supervised learning is sometimes called classification, as it classifies instances into
two or more classes. It is the classification problem that this thesis focuses on, since based
on the features of the file, the machine learning algorithm predicts whether a file is buggy or
not. There is a variety of machine learning algorithms for classification (supervised learning).
These families includes adaboost, decision trees [44], support vector machines (SVM) [79, 33],
neural networks [91, 75] and deep learning, random forest[16], k-nearest neighbors (KNN),
extra trees, logistic regression and gradient boosting. Ayodele in [11] classifies supervised
learning which deals with classification as Linear Classifiers, Quadratic Classifiers, K-Means
Clustering, Boosting, Decision Tree, Neural networks and Bayesian Networks. Ayodele [11]
further classifies Linear Classifiers into four types - Logical Regression, Naı̈ve Bayes Classifier,
Perceptron and Support Vector Machine(SVM).

2.1. Background 7

Support vector machine for classification (SVC): Support vector machines (SVM) have
been proposed by Vapnik [79] along with other researchers, and they have been widely studied
and applied in many fields. The basic idea of SVM is to to identify a similarity distance
between two entities (classes) by considering a distance metric between them. The distance
between such entities (classes) is traditionally defined as a function of their feature vectors
[39]. Support Vector Machine could also be used to accommodate for unbalanced classes[61]

Decision tree: Decision tree classifiers use comparisons to divide different instances of a set
into appropriate classes. Classification is a type of supervised learning where initially, a set
of known instances, called the training set, is introduced to a system. The system classifies
each instance of the set, associates each class with the attributes of each instance and learns to
what class each instance belongs. Based on what the trained system has learned in the learning
phase, it is able to classify instances of a previously unseen set [74].

One application of using Decision trees is for pattern recognition algorithms [74]. Another
application of this type of Machine Learning is image analysis such as in cancer cell and brain
tumor detection [21].

AdaBoost: As described in [10], the AdaBoost algorithm is one of the most well-known al-
gorithms for building an ensemble classifier. Each instance in the training dataset is weighted.
The initial weight is set to: weight(xi) = 1/n, where xi is the ith training instance and n is the
number of training instances. The most common algorithm used with AdaBoost are decision
trees with one level. As these trees are short and contain only one decision for classification,
they are called as decision stumps. A weak classifier (decision stump) is prepared on the train-
ing data using the weighted samples. The AdaBoost algorithm generates a strong classifier by
adjusting weights through a repetition process[24].

Random forest: Breiman [16] suggested a new and promising classifier in (2001) called
random forest, which presents many advantages [32] such as its running efficiently on large
databases, being able to handle thousands of input variables, and providing estimates indicating
which variable is important in a classification session.

K Nearest Neighbors (KNN): As discussed in [41], among the various methods for super-
vised statistical pattern recognition, the Nearest Neighbor rule achieves consistently high per-
formance, without a-priori assumptions on the distributions from which the training instances
are drawn. It involves a training set of both positive and negative cases. A new instance is
classified by calculating the distance to the nearest training case. The KNN classifier extends
this idea by taking the k nearest points and assigning the sign of the majority. It is common to
select a value for k that is both a small and odd number in order to break ties (typically 1, 3
or 5). Larger k values help reduce the effects of noisy points in the training data set, and the
choice of k is often done by means of performing cross-validation. [41]

8 Chapter 2. Background and related work

Evaluating machine learning models

Accuracy: Accuracy (equation 2.1), measures the proportion of the files classified correctly,
to the total number of files. Accuracy, however omits a detailed analysis such as the number
of correct labels of different classes [72] and in this respect researchers in order to evaluate the
model also use the F1 Score as well as precision and recall which are described below.

Acc =
true positives + true negatives

true(positives + negatives) + f alse(positives + negatives)
(2.1)

Precision: Precision (equation 2.2) measures the proportion of files that were correctly clas-
sified as faulty over the total number of files classified as either faulty or non-faulty. In other
words, Precision or Confidence (as it is called in Data Mining) denotes the proportion of Pre-
dicted cases that are indeed real faulty files [62]. This is a measure of how good a prediction
model is at identifying actual faulty files.

Precision =
true positives

true positives + f alse positives
(2.2)

Recall: Recall (equation 2.3) measures the proportion of faulty files which are correctly iden-
tified as faulty over the total number of faulty files available. Recall or Sensitivity (as it is
called in Psychology) is the proportion of real faulty files that are correctly predicted as faulty
files[62].

Recall =
true positives

true positives + f alse negatives
(2.3)

F1Score: The F1Score is computed by taking the (weighted) harmonic average of precision
and recall as shown in equation (equation 2.4).

F1S core = 2 ∗
Precision ∗ Recall
Precision + Recall (2.4)

Confusion Matrix: Table 2.1 depicts a simple cross-tabulation of the mapped class labels
against those observed in the ground or reference data for a sample of cases at specified lo-
cations. The matrix provides a visual foundation for accuracy assessment (Campbell, 1996;
Canters, 1997), and provides the basis on which to both describe classification accuracy and
characterize errors, which may help refine the classification or estimates derived from it [31].

2.1. Background 9

ac
tu

al
va

lu
e

Prediction outcome

p n total

p′ True
Positive

False
Negative P′

n′ False
Positive

True
Negative N′

total P N

Table 2.1: Confusion Matrix

2.1.3 Technical Debt

The technical debt metaphor was first defined by Ward Cunningham in 1992, where most cited
words were ‘not quite right code’ [26]. The definition followed many extensions referring to
how the software development teams chose to delay certain maintenance tasks in favor of quick
and easy fixes while running the risk causing problems in the future. Therefore, the team opts
for an easy and quick way to implement a feature or a fix to a bug in the shortest possible time
but with greater chances of negative impact in the long run.
Technical debt refers to the debt incurred by any software item that is inappropriate or deviates
from standards and which is included in the system due to urgent fixes or lack of time to
properly design the system or lack of time to re-factor it. For example: missing or inadequate
documentation, not restructuring or re-factoring complex code, not executing the planned test
cases, known defects or bugs that are not yet fixed, etc. Below we provide a list of different
types of technical debt.

Architecture Debt

This type of debt refers to the type of issues related to the project architecture [46, 76].
Example: Lack of modular components that affect functional or non functional requirements
such as poor performance, robustness, etc.
Identification: The way to identify this type of technical debt is through structural analysis,
analysis of component dependencies at the architectural level, and identification of modularity
violations [9].

Build Debt

This type of debt refers to the build issues that consume more time and computational resources
for completing a build process. This type of debt can be amplified by the use of redundant
external libraries or files [51].

10 Chapter 2. Background and related work

Example: Use of too many external libraries could result in build debt.
Identification: The way to identify this type of technical debt is by performing a dependency
analysis between the different modules, and the use of dependencies due to libraries or the use
of externally linked modules [9].

Code Debt

This type of technical debt is found in the source code of projects that do not follow good
coding practices. This practice generally makes it difficult to maintain and in worst cases could
lead to rewrite of the entire project or module. Code debt could be handled using static code
analysis tools [76, 87].
Example: Using wrong naming conventions in variables or using code cloning.
Identification: The way to identify this type of technical debt is by searching for duplicated
code, slow or complex algorithms, code written in a way that violates standards, and by ana-
lyzing code metrics [9].

Defect Debt

This type of debt is incurred when a bug is logged in the bug tracking system of the project,
generally by the testing team but is deferred due to other high priorities or limited resources
available to fix the bug [71].
Example: Defer bug fixes to next cycle in order to meet the current project release deadline.
Identification: The way to identify this type of technical debt is by analyzing bug tracking
systems to locate uncorrected known defects [9].

Design Debt

This type of debt is incurred when a project ignores the principles of object oriented design
thereby resulting in either large classes (God Classes) or tightly coupled classes [76, 87].
Example: Frequently used code could be generalized using parameters instead this block of
code is duplicated across the entire project.

Identification:The way to identify this type of technical debt is by analyzing the system for
unusual code metrics patterns, code smells, dispersed coupling, duplicated code, god classes,
intensive coupling, and issues in the software design [9].

Documentation Debt

This type of debt is incurred in a project when there is missing, incomplete or inadequate doc-
umentation. [76, 66]

Example: A complex, large function with no reference to a functional or non-functional
requirement, or a function that does not document its API or functionality to an adequate level.

2.1. Background 11

Identification: The way to identify this type of technical debt is by analyzing system docu-
mentation, incomplete design specifications, insufficient comments in code and outdated doc-
umentation [9].

Test Debt

This type of debt is incurred in a project when certain planned test activities that affect the
testing quality are ignored [76, 66].

Example: Skipping certain planned test cases, unable to meet the planned test code cover-
age.

Identification: The way to identify this type of technical debt is to analyze the system for
incomplete tests and low test coverage [9].

Requirement Debt

This type of debt is incurred in a project when there is a trade-off as to what requirements the
development team needs to implement versus the time to release or versus the project’s budget
[46].

Example: Partially implemented requirements, incomplete requirements.

Identification: The way to identify this type of technical debt is by examining the require-
ments backlog list [9].

Infrastructure Debt

This type of debt is incurred when there is an infrastructure issue that could hinder the devel-
opment activities. [67]
Example: Infrastructure failure.

Identification:The way to identify this type of technical debt is to examine the underlying
infrastructure (e.g. the middleware) for suitability towards meeting the system’s functional or
non-functional requirements.

People Debt

It refers to people issues that could delay or hinder the software development activities. [76, 67]
Example: Few subject matter experts, delay in training.

To sum it all up, technical debt refers to the difficulty maintaining and evolving a soft-
ware component due to quick and not well-thought fixes, applied throughout a component’s
operational life. Examples of technical debt include missing or inadequate documentation,
non-critical errors left uncorrected, skipping re-factoring opportunities etc. As there are many
different types of technical debt including architectural debt[46, 76], build debt [51], code

12 Chapter 2. Background and related work

debt [76, 87], defect debt[71], design debt [76, 87], documentation debt [76, 66], and test debt
[76, 66], here we only focus on code debt and defect debt.

2.1.4 GitHub

Figure 2.1: Overview of Github’s [1] API Data Model

GitHub [1] is a web-based hosting service for version control using Git and it is the preferred
repository hosting service for many open source projects. Interestingly, GitHub provides an
extensive REST API (5000 calls/hour for authenticated users), thereby, making it attractive for
researchers.

Figure 2.1 depicts an overview of GitHub’s API Data Model. The entities are User, Repo,
Issue, Commit, PullRequest, PullRequestComment, IssueComment and Milestone. All of the
entities have one to many relationship. For example, a Repo may have zero or more number

2.2. RelatedWork 13

of Commit or Issue or PullRequest. The id is a common attribute for all the entities which is
a unique identifier except for Commit which has sha attribute as its unique attribute. When a
User commits a file, a unique ID which is known as ”sha” or ”hash” is created.

The User entity contains user information such as the login, name, email, count of public
repositories (public repos), etc. The Repo entity contains type attribute whose value could be
a ’file’, ’user’, ’symlink’ or ’submodule’ and the content is set respectively. For example, if
the value of type attribute is ’file’ then content attribute stores its respective data (usually by
base64 encoding). The Issue entity contains information related to all the issues encountered
with the project. It has a reference to PullRequest which is used to let User know about the
changes made to repository. PullRequest is associated with zero or more PullRequestComment
which contains the attribute commits.

2.2 Related Work

2.2.1 Software Bug Prediction using Machine Learning

There is a variety of machine learning methods that have been proposed for addressing the
software bug prediction problem. These methods include decision trees [44], neural networks
[91, 75], Naive Bayes [50, 78, 37], support vector machines [33], Bayesian networks [58] and
Random Forests [19].

R Malhotra in [48], conducted a systematic literature review of the software bug prediction
techniques in 64 primary studies and concluded that the most used machine learning techniques
are:

1. Decision trees (DT)

2. Bayesian learners (BL)

3. Ensemble learners (EL)

4. Neural networks (NN)

5. Support vector machines (SVM)

6. Rule based learning (RBL)

7. Evolutionary algorithms (EA)

8. Miscellaneous Approaches

Also, in [48], R Malhotra identifies that the most commonly used metrics for predicting fault
proneness are divided into four categories as follows:

1. Procedural metrics: These approaches use metrics that include static code metrics de-
fined by Halstead and McCabe, as well as the LOC related metrics.

14 Chapter 2. Background and related work

2. Object-oriented metrics: These approaches use metrics that measure various object ori-
ented software attributes such as cohesion, coupling and inheritance for an object- ori-
ented class. In addition to object oriented metrics, these approaches also use LOC type
of metrics adjusted for the object oriented nature of the code (e.g. taking into account
inheritance).

3. Hybrid metrics: These approaches use both object- oriented metrics and procedural met-
rics to predict fault proneness.

4. Miscellaneous metrics: Metrics such as requirement metrics, change metrics, network
metrics extracted from the dependency graph, churn metrics, defect slip through metrics,
process metrics, age of file, size, changes and defects in previous versions, elementary
design evolution metrics and other miscellaneous metrics that can not be grouped as ei-
ther procedural or object-oriented metrics, are tagged under Miscellaneous metrics [48].

The object-oriented metrics that are shown to be correlated to fault proneness are CBO (cou-
pling between objects), RFC (response for a class) and LOC [48]. The other metrics that are
correlated are WMC, NPM and LCOM. For procedural metrics, the studies do not yield a
conclusive result.The results obtained from the primary selected studies indicate that the NOC
(number of children) and DIT (depth of inheritance tree) as not useful metrics [48].

R Malhotra [48], identified also the most commonly used metrics to measure performance
of the models as well as, the mean performance of these models. More specifically, the study
identified that the most commonly used performance metric is Recall which is closely followed
by Accuracy, Precision, AUC measures, Specificity, Pf, and Fmeasures. Some less commonly
metrics are grouped in the miscellaneous category namely Hmeasure, Precision-recall curve
and error rate. The results are provided in the 64 primary studies had the mean values of
accuracy ranging from 0.75 to 0.85.

The work in [48] examined also the prediction capability of the machine learning tech-
niques for classifying a file as buggy or not buggy. The machine learning models for estimating
software fault proneness outperform the traditional probability models. Based on the results
obtained from the systematic review, they also conclude that the machine learning techniques
have the ability for predicting software defects and can be used by software practitioners and
researchers. However, the machine learning techniques in software bug prediction is still in its
initial stages and very limited, and more work should be carried out [48, 80].

HK Dam et al. in [27], performed software defect prediction on two datasets, one from
open source projects provided by Samsung and the other, from the public PROMISE repository
with a total of 10 Java projects. HK Dam discusses the implementation of a deep learning,
tree-structured Long Short Term Memory network which maps with the Abstract Syntax Tree
representation of the source code. The entire process is based on three steps.

The first step is to parse a source code file into an Abstract Syntax Tree(AST). The second
step is to map the AST nodes into continuous-valued vectors called embeddings and then input
these embeddings to a tree-based network of LSTMs to get a vector representation of the whole
AST. The third step is to input this vector into a traditional classifier (e.g. Logistic Regression
or Random Forests) to predict defect outcomes.

The results of the model reported in [27] for within-project prediction achieved a very
good recall of 0.86 (averaging across 16 cases). However, this approach has lower precision

2.2. RelatedWork 15

and average AUC of 0.6. For cross-project prediction, their approach did achieve a very high
recall, with an average of 0.8 across 22 cases. The average F-measure was reported 0.5 but the
approach suffered from low precision.

Xinli Yang et al. in [85], performed defect prediction experiments on 6 large-scale soft-
ware projects from different communities, i.e., Bugzilla, Columba, JDT, Platform, Mozilla,
and PostgreSQL. The authors present the overall framework of their proposed approach called
’Deeper’ which is summarized as follows. The procedure consists of two parts: a model build-
ing phase and a prediction phase. In the model building phase, the goal is to build a classifier by
using deep learning and machine learning techniques from historical code changes. In the pre-
diction phase, this classifier would be used to predict if an unknown change would be buggy or
clean. In [85], Xinli Yang et al. used 14 basic features such as the number of modified subsys-
tems, directories, files, the number of lines added, deleted, total lines of code and developer’s
experience to train their model. The results obtained using the ’Deeper’ model indicate that
the best the model could do in terms of precision, recall and accuracy are 0.55, 0.72 and 0.62
respectively.

Wójcicki et al. in [83], want to verify whether the type of approach used in former fault
prediction studies can be applied to Python and opted for using a Naı̈ve Bayes classifier for fault
prediction. The model used McCabe’s cyclomatic complexity measure, counters of operators
and operands (Halstead metrics) as features. The results achieved recall up to 0.64 with a false
positive rate of 0.23. The mean recall and mean false positive rate were reported as 0.53 and
0.24 respectively.

Venkata et al. in [22], compared different machine learning models for identifying faulty
software modules and they found that there is no particular learning technique that performs
the best for all the data sets. In that study, the metrics used were McCabe, Halstead, line count,
operator and branch count. The models used were Decision Trees, Naı̈ve-Bayes, Logistic
Regression, Nearest Neighbor, 1-Rule and Neural Networks. Venkata et al. in their results
show that the “size” related and “complexity” related metrics are not sufficient attributes for
accurate prediction, and they need to include dependencies between these metrics to improve
the prediction models.

Wang and Yao in [81], aimed to find bugs without decreasing the overall performance of
the model. In their study, the machine learning algorithms used were Naive Bayes (NB), and
Random Forest (RF). The dataset used for training the model is taken from public PROMISE
repository. In this process, they find that imbalanced distribution between classes in bug pre-
diction is the root cause of its learning difficulty. Likewise, in our thesis, we noted the issue
and used re-sampling as described in detail in the section 3.4.2.

Zimmermann et al. in [93], propose an approach to predict bugs on cross-language systems.
The work examined a large number of such systems and concluded that only 3.4% of the
systems had a precision and recall prediction levels above 75% . The authors also tested the
influence of several factors on the success of cross-language prediction and concluded there
was no single factor that led to such successful predictions. The authors used decision trees to
train the model and to estimate precision, recall, and accuracy before attempting a prediction
across systems.

16 Chapter 2. Background and related work

2.2.2 Software Metrics

Object Oriented Metrics

DL Gupta et al. in [34] investigate and assess the relationship between different object-oriented
metrics and defect prediction capability by computing the accuracy of their proposed model
on different datasets obtained from different repositories for a given project. A total of 12
experiments were carried out on different dataset sources, using 14 different classifiers for each
experiment. The metrics used to train the model are WMC, DIT, NOC, CBO, RFC, LCOM,
CA, CE, LOC and LCOM3, NPM, DAM, MOA, MFA and CAM. The classifiers used are Naive
Bayes, LivSVM (Support Vector Machine), Logistic Regression, Multi-Layer Perceptron, SGD
(Stochastic Gradient Descent), SMO (Sequential Minimal Optimization), Voted Perceptron,
Attribute Selected Classifier, Classification Via Regression, Logit Boost, Tree Decision Stamp,
Random forest, Random Tree and REP (Reduce Error Pruning) Tree. On an average, 76%
accuracy is achieved at testing (prediction) stage when training is done on all the datasets. It is
concluded from all the experiments, that some datasets have similar prediction accuracy result,
while some give different results for the same projects on other datasets. Similar conditions
occur when training and testing are both done on all the datasets and this type of variation in
the accuracy at prediction (testing) stage may be due to different softwares (datasets) used for
the experiments.

K El Emam et al. in [29], based on the previous work on predicting faulty modules using
object oriented design metrics, such as DIT, NOC and the Briand et al. coupling metrics (like
CBO and RFC). To perform validation of object-oriented design metrics, a commercial Java
system is used. The objective of the validation is to determine which of these metrics are asso-
ciated with fault-proneness. The metrics used in the validation are DIT, NOC, ancestor-based
coupling metrics and descendant-based coupling metrics. The results indicate that inheritance
depth and coupling metric were strongly associated with fault-proneness. The prediction model
with these two metrics has promising accuracy but only one system was considered for the ex-
periment.

M Cartwright et al. in [18], investigated an industrial object-oriented module using em-
pirical methods. The module has a size of 133 KLOC, is written in C++ and is part of a
larger real-time European telecommunication product which comprises several million lines of
code(LOC) and has been evolving over the past 10 years. The metrics used to experiment were
LOC, the number of all read accesses by a class, the number of all write accesses by a class,
depth of inheritance (DIT), number of child classes (NOC) and the number of defects of each
class. The experiment that used the Shlaer-Mellor method [69] concluded that object-oriented
constructs such as inheritance and polymorphism are not really useful to predict defects. Ac-
cording to the authors in [18], the classes involved in inheritance structures were three times
more defect prone than the classes that were not involved in inheritance structures. On the
other hand, these results may be a consequence of the development method used, or the fact
that the C++ language does not enforce an object-oriented approach, or the fact that this was
the project team’s first experience of object oriented development.

Nagappan in [55], aims to find the best code metric to predict bugs. The conclusion of this
work is that complexity metrics can successfully predict post-release defects, but there is no
single set of metrics that is applicable to all systems.

2.2. RelatedWork 17

Menzies et al. in [50] used static code metrics such as SLOC and CCN for defect prediction.
According to Menzies et al, they observed that the prediction performance was not affected by
the choice of static code metrics but by how the chosen metrics are used. Therefore, the choice
of selecting and training a machine learning algorithm plays more an important role than the
metrics used for training the machine learning algorithm. The authors, measure performance
by using Probability Detection (PD) and Probability of False alarms (PF). Using a Naı̈ve Bayes
algorithm with feature selection, they gained a PD score of 71% with PF at 25%.

Zhang et al. in [89] commented on them using PD and PF performance measures and pro-
posed the use of precision and recall instead. Zhang [88] investigated if is a co-relation between
LOC and defects on publicly available datasets. Zhang et al. argued that LOC when combined
with machine learning classification techniques, could be a useful indicator of software qual-
ity. The results are definitely interesting because LOC is one of the simplest and easy to collect
software metric.

Repository Metrics

Repository metrics are also known as change or process metrics. Repository metrics are metrics
that are based on historic changes made on source code over a period of time. These metrics
can be extracted from version control systems. A few examples of repository metrics are the
number of additions and deletions of lines from the the source code, total number of altered
lines of code, the number of authors of a file, the number of commits a file, etc.

AE Hassan in [36], discusses how frequent source code “commits” in the repository, neg-
atively affect the quality of the software system, meaning that the more changes incurred to a
file, the higher the chance that the file will contain critical errors. Furthermore, Hassan in [36]
presents a model which can be used to quantify the overall system complexity using historical
code-change data, instead of plain source code features.

B Caglayan et al. in [17] discuss about the merits of using repository metrics for bug
prediction and have concluded that repository metrics provide a better insight to the software
product and lower the probability of false alarms. Moreover, the authors in [17] concluded
that static code attributes provide limited information content. Software modules represented
in terms of static code attributes may overlook some important aspects of software, including
the type of application domain; the level of skills of the individual programmers involved in
system development; contractor development practices; variation in measurement practices;
and the validation of measurements and instruments used to collect the data [17]. There have
been a few approaches that use repository data to predict defects but they did not consider the
number of developers. They found that a high number of programmers coupled with commits
to the same file, as well as a high temporal concentration of commits, were associated with
class level quality problems, and in particular size and design guidelines violations [17].

Moser et al. in [52] compared the efficiency of using repository metrics for defect prediction
to static code metrics. Their conclusion was that process data contained more information on
the distribution of defects than the source code metrics. Their explanation is that the source
code metrics concern the human understanding of the code. For example, large files of source
code do not necessarily mean that the file is fault prone.

Nagappan et al. in [54] used repository metrics with respect to code churn, such as number
of commits of a file, number of additions or deletion of line of code code over a specified period

18 Chapter 2. Background and related work

of time. Nagappan et al. concluded that the use of relative code churn metrics better predict
the defect per source file than other metrics, and that code churn can be used to distinguish
between defective and non-defective files. By relative churn measures the author takes into
consideration the normalized values of the various measures obtained during the churn process.
For example, a few of the normalization parameters are total lines of code, file churn, file count
etc.

Ostrand et al. in [60] used repository metrics explaining whether a file was new and whether
it was modified or not. The authors used these metrics in addition to other metrics and found
that 20 percent of the files, identified by the prediction model as most fault prone, contained on
average 83 percent of the faults.

Test Metrics

Test code metrics may consist of the same set of code metrics as described earlier, but their
only difference is now that they are applied on the source code of the test classes. Adding to
this, Nagappan et al. in [56] introduced a test metric suite called Software Testing and Relia-
bility Early Warning metric suite (STREW) in order to find defects in software programs. In
STREW, Nagappan et al. considered nine metrics belonging to three different families namely
Test quantification metrics; Complexity and object-oriented metrics and; Size adjustment met-
ric. Nagappan et al. conclude that the metrics used in STREW provide at an early stage of de-
velopment an estimate of the quality of the software as well as the identification of fault-prone
modules [56]. Further studies conducted by the authors indicated that the STREW metrics
suite for Java systems (also know as ’STREWJ’) can effectively predict software quality.

Dependency Metrics

In the design phase of the software development life-cycle, the division of the workload of dif-
ferent components can be decided. However, this division of tasks can influence the quality of
the software. Therefore, tracking dependencies between source code files could be a possible
predictor of fault-prone components. Schröter et al. in [65] proposed a new approach for de-
tecting source files and packages for fault prone code. The authors collected import statements
for each source code file or package, and compared these imports to component failures. The
authors concluded that the dependent components, determines the likelihood of defects. The
results show that the collection of imports at package level results in a better prediction than at
file level. However, the results on the file level still work better than random assumptions.

Hybrid metrics

Previous studies [17, 52] combined metrics from several metric families to achieve better pre-
diction performance. Caglayan et al. in [17] compiled three different sets of metrics. In the
first set, the authors used only static code metrics. In the second set, they used only repository
metrics, while the third set, was a combination of the first two. The results of this study showed
that while the prediction accuracy was not improved, the false positive rate was decreased when
the combined set was used. Moser et al. [52] built a static code set, a repository metric set, and

2.2. RelatedWork 19

a static and repository set combined. They concluded that the combined set was carried out
just as well as the repository set, indicating that static code metrics are not worth collecting.

Technical Debt Metrics

N Zazworka et al. in [86] compared four approaches for technical debt identification. A number
of source code analysis techniques and tools have been proposed to potentially identify the
code debt accumulated in a system. N Zazworka et al. also investigated whether technical
debt, as identified by the source code analysis techniques, correlates with interest indicators in
the form of increased defect-proneness and change-proneness. The selected four techniques
for the analysis are identification of code smells, application of static analysis, identification of
grime buildup (non design pattern related code which is included in the code that implements
a design pattern), and modularity violations. The four techniques are applied to 13 versions of
the Apache Hadoop open source software project to calculate technical debt. The indicators
used in each of the techniques are: 1) Grime - Presence of Grime, Absence of Design Pattern;
2) Code smells - class level code smells such as God class and method level code smells such
as coupling; 3) Source code analysis techniques - Finding bugs by priority (High, Medium,
Low) and by category (Performance, Security, Experimental) and, 4) Modularity violations -
Is there any presence of modularity violation?

N Zazworka et al., in his study, had the following observations:

• The value of technical debt indicators (Modularity violations, Grime, Code Smells and
Source code analysis techniques) increases together with the size of the project.

• As for correlations between technical debt indicators and interest indicators (defect prone-
ness and change-proneness), dispersed coupling points to classes that are more defect
prone.

• Lastly, defect-prone classes also tend to be change-prone and vice versa.

J Xuan et al. in [84], proposes the concept of ’debt-prone bugs’ to model the technical
debt in software maintenance. Debt-prone bugs are considered to be the debt incurred by
maintenance operations, and produced by an incomplete or immature process of bug fixing and
can add risks to software quality. Three types of debt-prone bugs, namely tag bugs, reopened
bugs, and duplicate bugs were considered for examination. Three attributes were extracted
for each of the types of debt-prone bugs. These are the number of bugs, the frequency of
debt-proneness and the time of fixing bugs. To investigate the correlation between debt-prone
bugs and product quality, prediction models were constructed based on historical information
to predict the time related to fixing bugs.J Xuan’s et al. contributions can be summarized as
follows.

First, the authors propose the concept of debt-prone bugs that extends the existing technical
debt in software maintenance.Second, they identify three types of software debt-prone bugs,
namely tag bugs, reopened bugs, and duplicate bugs. Tag Bugs relate to TODO or FIXME tags
which are inserted by developers to prompt unfinished work. However, some of the TODO tags
may be forgotten or even become bugs because of the accumulation of TODO or FIXME tags
in the code. Reopened Bugs relate to the situation where a bug may be solved by developers in

20 Chapter 2. Background and related work

bug tracking systems, but reopened later by another developer who realized that the bug was
not fixed properly. The study showed that the time associated to fix reopened bugs is longer
than the time associated for other bugs. These bugs are labeled as second type of debt-prone
bugs. A Duplicate Bug is a new bug that has the same root cause in the bug tracking system
as an existing bug. Ideally, duplicate bugs can be avoided if a developer is familiar with all
existing and related bugs. However, in practice, developers can not check all existing bugs to
determine whether a new bug matches an existing one. Since duplicate bugs are caused by the
inadequate examination, these bugs are labeled as the third type of debt-prone bugs.

Finally, the authors in [84] conducted a case study to examine the correlation between debt-
prone bugs and software quality in the Mozilla project. Their results indicated that the time
related to fixing duplicate bugs can be seen as the strongest correlation factor to the average
time of bug fixing. One possible reason for this, is that the duplicate bug ratio is greater than
the other two types of debt-prone bugs. The Mozilla project experiment indicated also that the
debt-prone bugs can help monitor and improve the quality of the software system.

2.2.3 Results Comparison
The average F1 Score, Precision, Recall and Accuracy for RQ1 using code metrics are 0.61,
0.64, 0.59, 0.72 respectively and using repository metrics are 0.72, 0.77, 0.75 and 0.82 re-
spectively. For RQ2, the average F1 Score, Precision, Recall and Accuracy for Java projects
are 0.60, 0.59, 0.68, 0.84 and for Python projects are 0.73, 0.74, 0.73 and 0.73 respectively.
HK Dam et al. in [27], performed software defect prediction with a total of 10 Java projects
using AST as features. The results reported in [27] for within-project prediction achieved a
very good recall of 0.86 (averaging across 16 cases). However, their approach has lower pre-
cision and average AUC score of 0.6. For cross-project prediction, their approach did achieve
a recall, with an average of 0.8 across 22 cases. The average F-measure was reported 0.5 but
the approach suffered from low precision. Xinli Yang et al. in [85], performed defect predic-
tion experiments on 6 large-scale software projects from different communities, i.e., Bugzilla,
Columba, JDT, Platform, Mozilla, and PostgreSQL using 14 code and repository metrics. The
best their model could do in terms of precision, recall and accuracy are 0.55, 0.72 and 0.62
respectively. Wójcicki et al. in [83], applied to Python projects and used McCabe’s cyclomatic
complexity measure, counters of operators and operands (Halstead metrics) as features. Their
results achieved recall scores up to 0.64 with a false positive rate of 0.23. The mean recall and
mean false positive rate were reported as 0.53 and 0.24 respectively. Menzies et al. in [50]
used static code metrics such as SLOC and CCN for defect prediction and reported a Probabil-
ity Detection (PD) score of 71% with False alarms (PF) at 25%. Zimmermann et al. in [93],
predicts bugs on cross-language systems using combination of code and repository metrics and
reported a precision and recall prediction levels above 75% . R Malhotra in [48], identified
the results provided in the 64 primary studies had the mean values of accuracy ranging from
0.75 to 0.85. The above results indicate that this is still an open area in Experimental Software
Engineering and there is still work to be done for identifying the appropriate features as well as
the appropriate models to achieve highly accurate software fault proneness prediction models.
Furthermore, the results indicate that the approach presented in this thesis is able to perform
predictions of software fault-proneness by utilizing features that can be easily extracted from
source code and other DevOps repositories and at the same time being programming language
agnostic.

Chapter 3

Fault-proneness Prediction

In this chapter, we present a framework to utilize code and repository metrics in a machine
learning environment in order to predict fault-proneness at the file level. Our study was con-
ducted along three dimensions. The first dimension has to do with the selection of appropriate
systems and appropriate code and repository metrics to use. The second dimension relates to
the selection of the appropriate machine learning techniques. The third dimension deals with
the training and evaluations of the models in several open source systems.

3.1 System Selection

3.1.1 Criteria
In [43], the authors document the results of an empirical study aimed at understanding the char-
acteristics of the repositories and of users on GitHub. The empirical study talks in depth about
mining GitHub for research purposes and how one should take various potential perils into
consideration. The authors in their study listed 13 perils that were discovered. Our selection
of projects from GitHub was based upon these perils. More specifically, our project selection
was based on the following related criteria.

C1: A repository is not A project: The work in [43] concluded that a project is typically part
of a network of repositories: at least one of them will be designated as central, where
code is expected to flow to, and where the latest version of the code is to be found.
Keeping this into consideration, we carefully selected projects that were not a part of a
network of projects.

C2: Most projects have low activity or are inactive: Most of the projects have very low
activity or are inactive [43]. Taking this into consideration, we only selected projects
that had high activity in development, discussions and bug reports.

C3: Many repositories pertain to personal projects and do not relate to a major software
application: Most of the projects stored in repositories relate to toy projects undertaken
by developers [43]. Taking this into consideration, we selected project repositories that
relate to open source software applications which are widely used.

21

22 Chapter 3. Fault-proneness Prediction

C4: Many active projects do not use GitHub exclusively and few projects use pull requests:
Most of the projects do not use GitHub exclusively and only a few projects use pull
requests [43]. It is true that very few projects use pull requests and therefore, it was very
challenging to find large open-source projects that use pull requests. Of the projects we
used for our study, all of them indicate a very high GitHub activity. However, we are
unable to certify that GitHub was exclusively used in all of these projects.

C5: Only the user’s public activity is visible and GitHub’s API does not expose all data: The
user’s public activity is visible and the API does not expose all the data [43]. For our
experiment, we selected projects for which the data we needed were available.

3.1.2 Method

Figure 3.1 depicts the overall process of our framework. The first step relates to the selection
of systems to be considered. We have selected a total of ten projects comprising five Java
and five Python projects based on the criteria C1-C5 listed above. The second step relates
to applying custom made programs to retrieve information pertaining to these projects from
the corresponding GitHub repositories. The third step relates to modeling and reconciling the
extracted information into a form that can be used by a machine learning framework. The
fourth step relates to selecting ten different popular machine learning techniques (SVC, De-
cision Tree, AdaBoost, RandomForest, ExtraTrees, GradientBoosting, MLP, KNN, Logistic
Regression and LDA) so that models can be trained to answer question RQ1. Out of these
ten models, we selected the five (SVC, DecisionTree, AdaBoost, RandomForest and KNN)
top most performing models, based on their cross validation score (please see detailed report
in Section B.1), in order to use these five models for answering the research questions RQ2 -
RQ4. To answer the research question RQ5, this step was repeated but considering only ad-
vanced source code metrics instead of our standard selected set of metrics. The fifth step relates
to obtaining the best performing models from questions RQ2 and RQ3 and applying it to two
C++ projects obtained from KDE, in a quest to evaluate the applicability of our approach to
systems written in a different language than the one the models were trained on.

3.1.3 Selected Systems

To conduct our study, we considered metrics obtained from both the source code of the system,
and from GitHub repositories related to the DevOps tools. In order to obtain these metrics
and information, we have developed a Java client program to automatically connect to various
repositories, metrics collection tools, as well as programs to aggregate, reconcile, and model
all the obtained information into one data model, so that it can be used for training and testing
purposes.

3.1. System Selection 23

Figure 3.1: Overview of project selection, research questions, experiment and validation

Table 3.1: Systems used in the experiment.

Project Name Language Files Lines of Code

spring-boot Java 4225 249,226

deeplearning4j Java 1845 498,447

elasticsearch Java 8460 1,087,149

eclipse-che Java 9159 704,659

RxJava Java 1604 273,053

youtube-dl Python 824 115,037

ipython Python 215 46,626

sci-kit Python 233 158,207

scrapy Python 240 27,439

keras Python 82 47,253

24 Chapter 3. Fault-proneness Prediction

The selection criteria for the software applications to consider for our study were described
in detail in Section 3.1.1. In addition to the selection process in Section 3.1.1, we also looked
into the project size in terms of the number of files and lines of code. Larger systems were
preferred over smaller ones in order to make the results more accurate and generalizable. We
also looked at the availability of accurate information about software bugs and resolutions, so
that the training and testing phases can be adequately supported. Lastly, we considered the
overall complexity of the application as more complex applications entail a greater number of
dependencies and opportunities for training. The software applications we considered in our
study are listed in the Table 3.1 comprising of five Java and five Python systems, for which
there is source code and repository related information available on GitHub (github.com) [1].

3.2 Metric Selection

3.2.1 Repository metrics

Fractal: This feature represents the percentage of code written by the original author that
remains in the system after a series of commits over a period of time.

The fractal data provide another investigative tool to reveal files which undertook signifi-
cant change compared to the original code. The visualization of fractal figures provides a view
of how the programming effort was shared i.e. how fragmented the developer effort is for each
module in a system[77]. An example is shown in Figure 3.2 where in file car.cpp, the value is
1 (i.e. all the code is the code of the original developer), while in file ClassShip.java the value
is 0.25 indicating that only 25% of the original code remains.

Figure 3.2: Fractal visualization example [77]

3.2. Metric Selection 25

Sum of Coupling (SOC): Sum of coupling provides information on how many times in total
each module has been coupled to another one in a commit operation. For example, as depicted
in Figure 3.3 the module app.clj is modified together with both module core.clj and module
project.clj in commit #1, and module core.clj in commit #2. Therefore, its sum of coupling
value is three. The premise is that the module that changes most frequently together with
others, must be important and should a be good starting point for an investigation. There are
different reasons for modules to be coupled. Some couples, such as a unit and its unit test, are
valid. So modules with the highest degree of coupling may not be the most interesting to us.
Instead, we want modules that are architecturally significant. A sum of coupling analysis helps
locating those modules.

Figure 3.3: Sum of Coupling visualization example [77]

Age: This metric represents the age of the file in months.

Authors: This metric represents the total number of authors who have worked on the file.

3.2.2 Code metrics

Java code metrics: The code metrics used as features are described below.
McCabe‘s Cyclomatic Complexity (McCC): Complexity of a method expressed as the

number of independent control flow paths in it [5]. It represents a lower bound for the number
of possible execution paths in the source code and, at the same time, it acts as an upper bound
for the minimum number of test cases needed for achieving full branch test coverage.

26 Chapter 3. Fault-proneness Prediction

Based on McCabe‘s Cyclomatic Complexity, the complexity of the whole file is expressed
as the number of independent control flow paths in it. It is calculated as the sum of the McCabe
Cyclomatic Complexity values of the methods found in a file [5].

Comment Lines of Code (CLOC): It represents the number of comment and documentation
lines in a source file [5].

Public Documented API (PDA): It represents the number of documented public classes
and methods in a file [5].

Public Undocumented API (PUA): It represents the number of undocumented public classes
and methods in a file [5].

Logical Lines of Code (LLOC): It represents the number of non-empty and non-comment
code lines in a file [5].

Lines of Code (LOC): It represents the number of lines of code in a file [5].

Python code metrics: Similar to Java code metrics (excluding PDA and PUA), Python sys-
tems have McCC, CLOC, LLOC, LOC and Number of Statements (NOS) as the features used
to train the model.

Number of Statements (NOS): It represents the number of statements in the file [6].
These features were selected using Pearson’s correlation coefficient [14] and the tool that

was used to plot Pearson’s correlation matrix was pandas’ correlation function and pyplot [40].

3.3 Data Collection Process
In order to collect data from GitHub, for both repository related information (e.g. commits,
bugs, bug resolutions) and code metrics, a Java client program was developed and used in
order to query GitHub as shown in Figure 3.4. The Java client program fetches every bug
that was recorded for a file and keeps a count of the number of times it was found to contain
an error (bug) that produced a failure. Other information that is fetched includes the number
of source code commits, as well as the type of operation involved. The client program also
connects with tools that compute source code metrics, and automatically populates a data base
with all this information. Finally it performs data reconciliation, ensuring that the obtained data
pertain to the same system, module and version. The bug data is then individually combined
with the extracted repository metrics [8] and code metrics [4] to form two separate data files,
one for predicting failures using repository features and another for doing the same using code
metric features. The two individual results are then superimposed (intersected) to form one
final result.

Below is the pseudo code (please see complete Java program in Section A.1.1) that is used
to fetch all the bug reports from GitHub. The program is divided into three parts namely project
configuration, bug data extraction, and finally exporting the extracted data to a csv formatted
file.

In the first part i.e. project configuration, we connect using OAuth by providing the OAuth
token that is acquired by creating an account on GitHub. Then, we specify the project name to
connect and extract its details.

In the second part of the program, for every bug that is reported, we look at the resolution
and procure the list of files that were responsible for this bug. All of this data, that is, bug issue

3.3. Data Collection Process 27

id, issue description, issue title and issue state are stored in a wrapper object.
In the third part of the program, all the data that we store in the wrapper class are now

written into a csv file in order to combine these results with code and repository metrics. The
algorithm for bug extraction is in Section A.1.1 and below is the pseudo code for the same.

Figure 3.4: Data collection from [1] using metrics tools [4, 8].

Pseudo code for bug extraction from GitHub: The pseudo code for extracting bug infor-
mation from GitHub is shown in Algorithm 1. The complete Java code for bug extraction is in
Section A.1.1.

28 Chapter 3. Fault-proneness Prediction

Algorithm 1 Pseudo code for bug extraction from GitHub
1: procedure IssuesSummary . This class is used to fetch all bugs from GitHub
2: Initialize oauthToken,GitHubBuilder,Github

3: Initialize GHIssue

4: Initialize GHLabels

5: . Config: To connect to GitHub, Initialize oauthToken,GitHubBuilder,Github
6: Initialize GHRepository . Initialize the Github repository to get the details
7: for each in GHIssue do
8: for each in GHLabels do
9: GET IssueId, Body, Title, BugLabel, state

10: STORE IssueId, Body, Title, BugLabel, state in LIST

11: end for
12: end for
13: Write LIST to CSV .Write IssueId, Body, Title, BugLabel, State to csv file.
14: end procedure

Now that we have all the list of bug reports, the only way to link it with the files is to
fetch all the commits for that repository, look for the issue id (if it exists as it could be an
enhancement or a feature request) and map it with the files responsible for the issue. Below,
we provide the pseudo code for the algorithm that extracts the commits for the entire repository
and maps the issue id with the files responsible for the issue (please see the complete program
in Section A.1.2).

Pseudo code for combining extracted bug information with code and repository metrics:
The pseudo code for combining extracted bug information from GitHub with code and reposi-
tory metrics is shown in Algorithm 2,3. The complete Java code is in Section A.1.2.

Algorithm 2 Pseudo code for commit extraction from GitHub
1: procedure CommitsSummary . This class is used to fetch all commits from GitHub
2: Initialize oauthToken,GitHubBuilder,Github

3: Initialize GHCommits

4: Initialize GHFiles

5: . Config: To connect to GitHub, Initialize oauthToken,GitHubBuilder,Github
6: Initialize GHRepository . Initialize the Github repository to get the details
7: for each in GHCommits do
8: for each in GHFiles do
9: GET Date, Url, Message, Filename

10: STORE Date, Url, Message, Filename in LIST

11: end for
12: end for
13: Write LIST to CSV .Write Date,Filename,Url to csv file.
14: end procedure

3.3. Data Collection Process 29

Algorithm 3 Pseudo code for combining extracted bug information with code and repository
metrics

1: procedure ExtractIssueIdfromCommitsSummary. This class is used to map commits and
bug reports from GitHub

2: Load CommitSummary.csv

3: while csvReader.hasNext do
4: while commitHasBug do
5: STORE Date,Filename,issueId,Message,Url in LIST

6: end while
7: end while
8: Write LIST to CSV .Write Date,issueId,Filename,Message,Url to csv file.
9: ADD respective metrics . Add Code or Repository metrics - this step is manual

10: end procedure

The bug report for each project is integrated with the corresponding metrics report obtained
by the tools reported in [4, 8]. The integrated report was fed to Kaggle [2] in order to train and
evaluate the models. The integrated bug reports with repository metrics is shown in Figure 3.5
and with code metrics, it is shown in Figure 3.6.

Figure 3.5: Sample data with repository metrics.

Figure 3.6: Sample data with code metrics.

3.3.1 Identify files with errors

The information stored in GitHub [1] repositories is organized using predefined schemas. An
element important to our work, found in that schema, is the issues element, where all the
issues for that repository are logged. This schema element includes information about feature
enhancements, debugging, request to help, bug reports, etc. The major advantage of choosing
large systems is that they are very organized and the bug reports have specific labels, and
tracking numbers. The implemented Java client program runs through all the bug reports and
collects the data from files which either contain an error or are associated with a symptom.

30 Chapter 3. Fault-proneness Prediction

3.3.2 Collection of repository information and metrics
The entire project code from GitHub [1] is cloned on our local machine and an information
collection tool [8] is invoked by the client program in order to gather project related features
from the GitHub repository. This information includes bug reports, commits, sum of coupling,
fractal value, age of project in months, and the number of authors for each module [77]. The
files and repository entries that are associated with a bug report are marked by a ’1’ flag, while
the rest are marked by a ’0’ flag.

3.3.3 Collection of static code metrics
The entire source code from the system under analysis is also cloned on the local machine. A
tool that computes source code metrics [4] for Java and Python systems is invoked by the client
program in order to gather source code metrics such as lines of code, logical lines of code and,
the number of incoming calls (fan-in), etc. The complete list of features extracted from the tool
[4] are presented in [5, 6]. All the features used in the experiment are discussed in detailed in
sections 3.2.1, 3.2.2.

The repository related information (e.g. commits, bug reports) and the source code metrics
data obtained by the Java client program are then combined to form a reconciled and integrated
data base.

3.3.4 Experimentation Framework
The experimentation framework has two parts. The first parts deals with the acquisition of raw
data from the GitHub repositories. The second part deals with the training and the compilation
of the predictive models. With respect to raw data acquisition we have used a setting of three
virtual machines running at Western University Department of Computer Science Research
Lab, running using a custom made Java client program for issuing and managing requests to
GitHub repositories by. This setting was necessary as GitHub servers limit the number of
allowable requests to 5,000/hour. The configuration for each virtual machine was 32GB of
RAM, utilizing a 8-core processor running at 2.4 GHz). Upon reception, the data were pre-
processed by a) b)

3.4 Building a model

3.4.1 Model
Voting Classifier: From a technical point of view [90], ensemble learning is mainly imple-
mented in two steps: training weak base classifiers and selectively combining the member
classifiers into a stronger classifier. Usually, the members in ensemble learning are constructed
in two ways. One is to apply a single learning algorithm, and the other is to use different learn-
ing algorithms over a dataset [28]. The base classifiers are then combined to form a decision
classifier. Generally, to get a good ensemble, the base learners should be as accurate and as
diverse as possible. The process of choosing an ensemble of accurate and diverse base learners
is the focus of many researchers’ work [92].

3.4. Building a model 31

In our voting classifier, we used different learning algorithms such as SVC, Decision Tree,
AdaBoost, Random forest and KNN and these trained algorithms are put together to a voting
classifier in order to make the final prediction.

3.4.2 Re-sampling and highly skewed features
Re-sampling imbalanced data: Most of the systems we used for our evaluation study (see
Table 3.1) had imbalanced classes (majority of the samples being either positive or negative)
and needed re-sampling. In this respect we used the sklearn toolkit [47] to re-sample the train-
ing data in order to minimize the resulting bias of the model. The only systems we did not
need to re-sample were the ipython, sci-kit and RxJava systems as their classes were close to
balance on either side. In Figure 3.7 an example of such class imbalance is depicted that oc-
cured for the the springboot system. Such imbalances could lead to our models being biased to
that majority class and this is empirically observed in results both before and after re-sampling
using repository metrics in Table 4.1a, 4.1b and code metrics in Table 4.2a, 4.2b.

Figure 3.7: Imbalanced classes for springboot project

Box-Cox Transformation: In order to transform highly skewed features and to improve the
overall data transformation [59], we have implemented and applied the Box-Cox Transforma-
tion [64].

3.4.3 Model evaluation
To evaluate the model, for every obtained result, we calculated the F1 score, precision, recall,
accuracy and confusion matrix as shown below.

Accuracy: Accuracy (3.1), measures the proportion of the files classified correctly, to the
total number of files.

Acc =
true positives + true negatives

true(positives + negatives) + f alse(positives + negatives)
(3.1)

32 Chapter 3. Fault-proneness Prediction

Precision: Precision (3.2) measures the proportion of files that were correctly classified as
faulty over the total number of files classified as either faulty or non-faulty.

Precision =
true positives

true positives + f alse positives
(3.2)

Recall: Recall(3.3) measures the proportion of faulty files which are correctly identified as
faulty over the total number of faulty files available.

Recall =
true positives

true positives + f alse negatives
(3.3)

F1 Score: The F1-Score is computed by taking the (weighted) harmonic average of precision
and recall as shown in equation (3.4).

F1S core = 2 ∗
Precision ∗ Recall
Precision + Recall (3.4)

Pseudo code: Below in Algorithm 4, is the pseudo code for training and evaluating the model
using code and repository metrics. The complete program is in Section A.1.3.

Algorithm 4 Pseudo code to train and evaluate the model using code and repository metrics
1: procedure MachineLearningModel . This program is used to train and evaluate the

model using code and repository metrics
2: import libraries . Eg.pandas,numpy
3: import dataset . Eg.code and repository features to train and evaluate the model
4: Apply Box Cox Transformation . For skewed features
5: Draw Pearson Correlation of Features

6: Split Dataset into Training and Test sets

7: Re-sample Training Dataset . To resample imbalanced class by upsampling
minority class

8: for each classifier SVC,DecisionTree,AdaBoost,RandomForest,KNN do
9: Cross validate model with Kfold stratified CV

10: nsplits=10
11: end for
12: initialize votingClassifier . Using above five models
13: train votingClassifier
14: test votingClassifier
15: print F1Score,Precision,Recall,Accuracy
16: plot confusion matrix
17: end procedure

Chapter 4

Analysis and Obtained Results

In this chapter, we present the obtained results, and we discuss the answers to our research
questions RQ1 - RQ5.

4.1 Research Questions RQ1a and RQ1b

RQ1a: Is it possible to train models that can be used to predict fault-proneness of individual
projects, by using repository and source code metrics?
RQ1b: With respect to results from RQ1a does the choice of the programming language affect
the results?

Repository metrics: The results pertaining to fault proneness by using information ob-
tained solely from the repository metrics before and after re-sampling the training data is de-
picted in Tables 4.1a and 4.1b respectively. Considering all the systems as a whole, we obtained
an average F1 score of 0.75 with the least being 0.59 for the deeplearning4j system and the
highest being 1 for spring-boot and keras systems. Looking at individual systems, the Python
based ones yielded F1 scores greater than 0.7, except for the youtube-dl system which yielded
an F1 score of 0.68. All Java systems, with the exception of spring-boot, yielded F1 scores less
than 0.7.

Code metrics: The results pertaining to fault proneness by using information obtained
solely from the code metrics before and after re-sampling the training data is depicted in Tables
4.2a and 4.2b respectively.

For code metrics, considering all the systems as a whole, we obtained an average F1 score
of 0.61 with the least being 0.45 for the keras system and the highest being 0.76 for the ipython
system. Looking at individual systems, the Python based ones yielded F1 scores greater than
0.7 while the Java based yielded F1 scores less than 0.65.

Aggregated Method: As discussed previously, the two data sets (repository related met-
rics, and source code metrics) were used independently to train the machine learning system
and provide two different models for fault proneness. Each method produces a list of predic-
tions indicated by a flag with value 1 for files predicted to bear critical errors and a flag value 0
for files predicted as not bearing errors that can lead to critical failures. The aggregated method
intersects the two lists for the files that both have the same flag value (i.e. both have either a 0
or 1 flag value) as depicted in Table 4.3. We then examined the accuracy of the obtained aggre-

33

34 Chapter 4. Analysis and Obtained Results

Table 4.1: Repository metrics Before re-sampling and After re-sampling.

Project Name F1 Score Precision Recall Accuracy

springboot 1 1 1 1

deeplearning4j 0.47 0.44 0.5 0.88

elasticsearch 0.59 0.71 0.56 0.95

eclipse-che 0.66 0.73 0.65 0.80

RxJava 0.68 0.68 0.71 0.71

youtube-dl 0.44 0.49 0.41 0.81

ipython 0.77 0.77 0.76 0.84

scikit 0.76 0.77 0.75 0.79

scrapy 0.48 0.47 0.49 0.91

keras 1 1 1 1

(a) Repository metrics (Before
re-sampling)

Project Name F1 Score Precision Recall Accuracy

springboot 1 1 1 1

deeplearning4j 0.59 0.73 0.57 0.87

elasticsearch 0.69 0.75 0.66 0.86

eclipse-che 0.66 0.73 0.64 0.79

RxJava 0.68 0.68 0.71 0.71

youtube-dl 0.68 0.71 0.68 0.72

ipython 0.77 0.77 0.76 0.84

scikit 0.76 0.77 0.75 0.79

scrapy 0.71 0.7 0.73 0.80

keras 1 1 1 1

(b) Repository metrics (After
re-sampling)

gated results. These results using the aggregation method of combining results obtained using
source code metrics and repository information trained models, before and after re-sampling
the training data, are shown in Tables 4.4a and 4.4b respectively.

Considering all the systems combined we obtained an average F1 score of 0.75 with the
least being 0.52 deeplearning4j system and the highest being 1 for spring-boot and keras sys-
tems. Looking at the systems individually, the Python based ones yielded F1 scores greater
than 0.75, with the exception of the scrapy system which yielded a score of 0.61. In contrast
the Java based systems yielded F1 scores less than 0.65 with the exception of the spring-boot
and RxJava systems.

4.2 Research Question RQ2
RQ2: Given a set of projects {P1, P2, P3...., Pn}, written in a language L, is it possible to train
the model on all projects {P1, P2, P3...., Pn−1} in order to predict fault proneness for project Pn?

Repository metrics: The results of using a model trained in systems written in one lan-
guage (i.e. Java or Python) for predicting fault proneness of files in another system of the
same language using only repository metrics are depicted in Table 4.5a. For the results shown,
we predicted the fault proneness of the files in the spring-boot system by training the model
on the deeplearning4j, eclipse-che, RxJava and elasticsearch systems. The model achieved an
accuracy of 0.84 with precision 0.64, recall 0.80 and an F1 score of 0.67.

Similarly, the results on Python systems are shown in Table 4.5b. The model was used to
predict the fault proneness of the files in the sci-kit system by training the model on the scrapy,

4.2. Research Question RQ2 35

Table 4.2: Code Metrics Before re-sampling and After re-sampling.

Project Name F1 Score Precision Recall Accuracy

springboot 0.49 0.48 0.5 0.95

deeplearning4j 0.47 0.44 0.5 0.88

elasticsearch 0.49 0.48 0.5 0.95

eclipse-che 0.43 0.88 0.5 0.75

RxJava 0.63 0.63 0.63 0.70

youtube-dl 0.75 0.99 0.67 0.98

ipython 0.76 0.77 0.75 0.84

scikit 0.67 0.68 0.70 0.68

scrapy 0.48 0.47 0.5 0.93

keras 0.48 0.47 0.5 0.94

(a) Code metrics (Before re-
sampling)

Project Name F1 Score Precision Recall Accuracy

springboot 0.53 0.53 0.53 0.91

deeplearning4j 0.59 0.64 0.58 0.86

elasticsearch 0.56 0.66 0.55 0.83

eclipse-che 0.60 0.62 0.60 0.73

RxJava 0.64 0.64 0.64 0.70

youtube-dl 0.75 0.88 0.74 0.80

ipython 0.76 0.77 0.75 0.84

scikit 0.67 0.68 0.70 0.68

scrapy 0.53 0.53 0.53 0.73

keras 0.45 0.47 0.44 0.82

(b) Code metrics (After re-
sampling)

Table 4.3: Example for Aggregated method.

Filename Prediction(Code) Prediction(Rep.) Aggregated?

File1.java 0 0 Yes

File2.java 1 1 Yes

File3.java 1 0 No

File4.java 0 1 No

keras, youtube-dl and ipython systems. These results indicated a prediction accuracy of 0.78
with precision, recall and the F1 score values of 0.78.

Code metrics: The results of training models using only source-code metrics on systems
written in the same language (Java or Python), for predicting fault proneness at the file level
in another system of the same language are depicted in Table 4.6a. Here we predicted the
fault proneness of the files of spring-boot (Java system), by training the model using only code
metrics on the deeplearning4j, eclipse-che, RxJava and elasticsearch systems (Java systems).
The model achieved an accuracy of 0.54 with precision 0.54, recall 0.55 and an F1 score of
0.84.

Similarly, the results on Python projects are shown in Table 4.6b. The model was used to
predict the fault proneness of the files in the sci-kit system by training the model on the scrapy,
keras, youtube-dl and ipython systems. These results indicated a prediction accuracy of 0.69,

36 Chapter 4. Analysis and Obtained Results

Table 4.4: Superimposed (Repository and code metrics) - Before and After re-sampling.

Project Name F1 Score Precision Recall Accuracy

springboot 1 1 1 1

deeplearning4j 0.47 0.44 0.5 0.88

elasticsearch 0.50 0.49 0.5 0.96

eclipse-che 0.45 0.41 0.5 0.81

RxJava 0.74 0.73 0.75 0.80

youtube-dl 0.49 0.49 0.5 0.98

ipython 0.83 0.83 0.83 0.89

scikit 0.83 0.84 0.83 0.84

scrapy 0.48 0.47 0.5 0.93

keras 1 1 1 1

(a) Superimposed (Repository
and code metrics - Before re-
sampling)

Project Name F1 Score Precision Recall Accuracy

springboot 1 1 1 1

deeplearning4j 0.52 0.70 0.52 0.90

elasticsearch 0.56 0.77 0.55 0.89

eclipse-che 0.63 0.80 0.60 0.84

RxJava 0.74 0.73 0.75 0.80

youtube-dl 0.78 0.94 0.73 0.88

ipython 0.83 0.83 0.83 0.89

scikit 0.83 0.84 0.83 0.84

scrapy 0.61 0.61 0.61 0.82

keras 1 1 1 1

(b) Superimposed (Repository
and code metrics - After re-
sampling)

with precision 0.71, recall 0.70, and an F1 score value of 0.69.

4.3 Research Question RQ3
RQ3: Given a set of projects {P1, P2, P3...., Pn}, written in languages L = {L1, L2, L3...., Lk} is
it possible to train the model on all projects {P1, P2, P3...., Pn−1} in order to predict bugs for
project Pn written in a language Li ∈ L?

Repository information: Using Java and Python projects to train the model, the results for
predicting file fault proneness on spring-boot (Java based system) by training the model on the
deeplearning4j, eclipse-che, RxJava, youtube-dl, ipython, scikit, scrapy, keras and elasticsearch
systems are shown in Table 4.7a. The model achieved an F1 score of 0.72 with precision 0.68,
recall 0.79 and accuracy of 0.89. Similarly, using Java and Python projects to train the model,
the results for predicting file fault proneness on ipython (Python project) by training the model
on the deeplearning4j, eclipse-che, RxJava, youtube-dl, spring-boot, scikit, scrapy, keras and
elasticsearch systems are shown in Table 4.7b. The model achieved an F1 score of 0.66 with
precision 0.66, recall 0.67 and accuracy of 0.69.

Code metrics: Using Java and Python projects to train the model, the results for pre-
dicting file fault proneness on the spring-boot system (Java system) by training the model on
the deeplearning4j, eclipse-che, RxJava, youtube-dl, ipython, sci-kit, scrapy, keras and elastic-
search systems are shown in Table 4.8a. The model achieved an F1 score of 0.55 with precision
0.54, recall 0.55 and accuracy of 0.85. Similarly, using Java and Python projects to train the

4.4. Research Question 4 37

Table 4.5: Predicting for Java project (springboot) and Python project (scikit) using repository
metrics.

Training Projects deeplearning4j, eclipse-che,

RxJava, elasticsearch

Test Project springboot

F1 Score 0.67

Precision 0.64

Recall 0.80

Accuracy 0.84

(a) Predicting for Java project (spring-
boot) using repository metrics

Training Projects scrapy, keras,

youtube-dl, ipython

Test Project scikit

F1 Score 0.78

Precision 0.78

Recall 0.78

Accuracy 0.78

(b) Predicting for Python project (scikit)
using repository metrics

model, the results for predicting file fault proneness on the ipython system (Python system) by
training the model on the deeplearning4j, eclipse-che, RxJava, youtube-dl, spring-boot, sci-kit,
scrapy, keras and elasticsearch systems are shown in Table 4.8b. The model achieved an F1
score of 0.63 with precision 0.63, recall 0.63 and accuracy of 0.68.

4.4 Research Question 4
Given a set of projects P={P1, P2, P3...., Pn}, written in the same language L, is it possible to
predict fault proneness of a project Pi ∈ P by partitioning the projects {P1, P2, P3...., Pn} into
two sets, one set (80%) for training the model and the other set (20%) for predicting fault
proneness?

Repository information: Using all the Java projects and repository obtained information
alone as features, by randomly selecting the 80% from each project for training purposes, and
the remaining 20% for evaluation purposes, the prediction results are depicted in Table 4.9. The
model achieved an average F1 score of 0.72 with precision 0.83, recall 0.68 and accuracy of
0.88. Using all the Python projects, by randomly selecting the 80% of each project for training
purposes and the remaining 20% for evaluation purposes, the results are depicted in Table 4.9.
The model achieved an F1 score of 0.69 with precision 0.67, recall 0.73 and accuracy of 0.81.

Code metrics: Similar to the above, by using all the Java projects and code metrics alone
as features, and by randomly selecting the 80% of each project for training purposes and the
remaining 20% for evaluation purposes, the prediction results are shown in Table 4.9. The
model achieved an F1 score of 0.53 with precision 0.60, recall 0.53 and accuracy of 0.82.
Similarly, for the Python projects, by randomly selecting the 80% of each project for training
purposes and the remaining 20% for evaluation purposes, the results are shown in Table 4.9.
The model achieved an F1 score of 0.79 with precision 0.78, recall 0.81 and accuracy of 0.89.

38 Chapter 4. Analysis and Obtained Results

Table 4.6: Predicting for Java project (springboot) and Python project (scikit) using code met-
rics.

Training Projects deeplearning4j, eclipse-che,

RxJava, elasticsearch

Test Project springboot

F1 Score 0.54

Precision 0.54

Recall 0.55

Accuracy 0.84

(a) Predicting for Java project (spring-
boot) using code metrics

Training Projects scrapy, keras,

youtube-dl, ipython

Test Project scikit

F1 Score 0.69

Precision 0.71

Recall 0.70

Accuracy 0.69

(b) Predicting for Python project (scikit)
using code metrics

Table 4.7: Predicting for Java project (springboot) and Python project (ipython) using reposi-
tory metrics.

Training Projects deeplearning4j, eclipse-che,

RxJava, youtube-dl, ipython

scrapy, keras, scikit,

elasticsearch

Test Project springboot

F1 Score 0.72

Precision 0.68

Recall 0.79

Accuracy 0.89

(a) Predicting for Java project
(springboot) using repository
metrics

Training Projects deeplearning4j, eclipse-che,

RxJava, youtube-dl, springboot,

scrapy, keras, scikit,

elasticsearch

Test Project ipython

F1 Score 0.66

Precision 0.66

Recall 0.67

Accuracy 0.69

(b) Predicting for Python
project (ipython) using
repository metrics

4.4. Research Question 4 39

Table 4.8: Predicting for Java project (springboot) and Python project (ipython) using code
metrics.

Training Projects deeplearning4j, eclipse-che,

RxJava, youtube-dl, ipython,

scrapy, keras, scikit,

elasticsearch

Test Project springboot

F1 Score 0.55

Precision 0.54

Recall 0.55

Accuracy 0.85

(a) Predicting for Java
project (springboot) using
code metrics

Training Projects deeplearning4j, eclipse-che,

RxJava, youtube-dl, springboot,

scrapy, keras, scikit,

elasticsearch

Test Project ipython

F1 Score 0.63

Precision 0.63

Recall 0.63

Accuracy 0.68

(b) Predicting for Python
project (ipython) using code
metrics

40 Chapter 4. Analysis and Obtained Results

Ta
bl

e
4.

9:
Pr

ed
ic

tin
g

bu
gs

by
pa

rt
iti

on
in

g
ea

ch
pr

oj
ec

to
fs

am
e

la
ng

ua
ge

in
to

tr
ai

n
an

d
te

st
da

ta
.

R
ep

os
ito

ry
M

et
ri

cs

Pr
oj

ec
tN

am
e

L
an

gu
ag

e
Tr

ai
n

D
at

a(
%

)
Te

st
D

at
a(

%
)

F1
Sc

or
e

Pr
ec

is
io

n
R

ec
al

l
A

cc
ur

ac
y

sp
ri

ng
bo

ot

Ja
va

80
20

0.
72

0.
83

0.
68

0.
88

de
ep

le
ar

ni
ng

4j
80

20

el
as

tic
se

ar
ch

80
20

ec
lip

se
-c

he
80

20

R
xJ

av
a

80
20

yo
ut

ub
e-

dl

Py
th

on

80
20

0.
69

0.
67

0.
73

0.
81

ip
yt

ho
n

80
20

sc
ik

it
80

20

sc
ra

py
80

20

ke
ra

s
80

20

C
od

e
M

et
ri

cs

sp
ri

ng
bo

ot

Ja
va

80
20

0.
53

0.
60

0.
53

0.
82

de
ep

le
ar

ni
ng

4j
80

20

el
as

tic
se

ar
ch

80
20

ec
lip

se
-c

he
80

20

R
xJ

av
a

80
20

yo
ut

ub
e-

dl

Py
th

on

80
20

0.
79

0.
78

0.
81

0.
89

ip
yt

ho
n

80
20

sc
ik

it
80

20

sc
ra

py
80

20

ke
ra

s
80

20

4.5. Research Question 5 41

4.5 Research Question 5

RQ5: Using advanced code metrics, answer RQ1, RQ2, RQ3 and RQ4. Do advanced code
metrics improve the results?

In this experiment, we repeated RQ1, RQ2, RQ3 and RQ4 using advanced source code
metrics as shown in the Fig.4.1

Figure 4.1: Advanced Code Metrics

42 Chapter 4. Analysis and Obtained Results

RQ1 In Table 4.10, with the exception of keras, the results for all other projects are not
better than both the ones we acquired using basic code or repository metrics.

Table 4.10: Advanced Code Metrics

Project Name F1 Score Precision Recall Accuracy

springboot 0.52 0.53 0.53 0.67

deeplearning4j 0.53 0.64 0.54 0.82

elasticsearch 0.49 0.64 0.52 0.77

eclipse-che 0.50 0.54 0.51 0.87

RxJava 0.47 0.50 0.50 0.57

youtube-dl 0.55 0.59 0.60 0.55

ipython 0.35 0.40 0.45 0.39

scikit 0.41 0.62 0.52 0.58

scrapy 0.51 0.62 0.54 0.71

keras 0.88 0.97 0.83 0.95

RQ2 In Table 4.11a,4.11b the results for predicting both Python and Java projects were not
better than the results acquired by using both basic code or repository metrics.

Table 4.11: Predicting for Java project (springboot) and Python project (scikit) using advanced
code metrics.

Training Projects deeplearning4j, eclipse-che,

RxJava, elasticsearch

Test Project springboot

F1 Score 0.53

Precision 0.54

Recall 0.53

Accuracy 0.85

(a) Predicting for Java project (spring-
boot) using advanced code metrics

Training Projects scrapy, keras,

youtube-dl, ipython

Test Project scikit

F1 Score 0.59

Precision 0.59

Recall 0.60

Accuracy 0.60

(b) Predicting for Python project (scikit)
using advanced code metrics

RQ3 In Table 4.12a,4.12b, combining both Python and Java projects also did not result in
better performance compared to using basic code or repository metrics.

RQ4 In Table 4.13, the results again were not better than the ones acquired using basic
code or repository metrics.

4.5. Research Question 5 43

Table 4.12: Predicting for Java project (springboot) and Python project (ipython) using ad-
vanced code metrics.

Training Projects deeplearning4j, eclipse-che,

RxJava, youtube-dl, ipython,

scrapy, keras, scikit,

elasticsearch

Test Project springboot

F1 Score 0.55

Precision 0.55

Recall 0.55

Accuracy 0.85

(a) Predicting for Java
project (springboot) using
advanced code metrics.

Training Projects deeplearning4j, eclipse-che,

RxJava, youtube-dl, springboot,

scrapy, keras, scikit,

elasticsearch

Test Project ipython

F1 Score 0.59

Precision 0.66

Recall 0.60

Accuracy 0.65

(b) Predicting for Python
project (ipython) using
advanced code metrics.

Table 4.13: Predicting bugs by partitioning each project of same language into train and test
data.

Project Name Language Train Data(%) Test Data(%) F1 Score Precision Recall Accuracy

springboot

Java

80 20

0.57 0.74 0.56 0.87

deeplearning4j 80 20

elasticsearch 80 20

eclipse-che 80 20

RxJava 80 20

youtube-dl

Python

80 20

0.59 0.59 0.59 0.67

ipython 80 20

scikit 80 20

scrapy 80 20

keras 80 20

Chapter 5

Additional Model Validation in C++
Systems

In this chapter, we present results from an additional set of experiments we have conducted
for for the purpose of validating the use of the trained model in systems written in an another
language different than Java or Python, which were the languages of the systems the model
was trained on.

The objective of this validation is to assess whether the trained model has a more ’general’
applicability than on the specific systems and languages used for training it.

In order to conduct this validation, we considered two C++ systems as depicted in Table
5.1. The Kopete system is an industrial strength instant messenger framework that could inte-
grate with a number of systems such as AIM, ICQ, Windows Live Messenger, Yahoo, Jabber,
Gadu-Gadu and others.The K3b system is a CD and DVD authoring application by KDE for
Unix-like computer operating systems and it provides a graphical user interface to perform
most CD/DVD burning tasks.

Table 5.1: Systems used in validating the experiment.

Project Name Language Files Lines of Code Total Commits (until 2018-09)

kopete C++ 3851 327,281 16,291

k3b C++ 1060 98,933 6,347

5.1 Model Validation Overview

The data collection process was similar to the one used for training the models and as presented
in Section 3.3. However for being able to fetch bug reports, we used the official KDE bug
tracking system [7]. Figure 3.1 provides an overview of the model validation process. More
specifically, as discussed in the previous chapters 3 & 4, the model was generated using 5 Java
and 5 Python projects, and with data collected from the corresponding GitHub repositories.
The generated model was then used to predict fault proneness in the C++ projects and on data
obtained from the KDE repository.

44

5.2. Results 45

5.2 Results

5.2.1 Using model from RQ3
In this validation, we used the model (using repository metrics only) combining both 5 Java and
5 Python projects. In Table 5.2a, the results are obtained using the model generated from these
5 Java and 5 Python projects and consequently applying the model to the two C++ systems
namely, the Kopete and the K3b system. The accuracy, recall and precision for Kopete project
is 0.69, 0.78 and 0.61 respectively and for K3b project it is 0.63, 0.62 and 0.62 respectively.
For comparison, the results obtained using repository metrics in RQ3 is shown in Table 5.2b.

Table 5.2: Comparing results of data validation on C++ projects with RQ3 repository metrics
results.

Project F1 Accuracy Recall Precision

Kopete 0.58 0.69 0.78 0.61

K3b 0.59 0.63 0.62 0.62

(a) Results of the model (com-
bining 5 Java and 5 Python
projects using repository met-
rics) for the two C++ systems.

Project F1 Accuracy Recall Precision

springboot 0.72 0.89 0.79 0.68

ipython 0.66 0.69 0.67 0.66

(b) In RQ3, the results ob-
tained by the model using
repository metrics as shown in
Table 4.7a,4.7b.

The analysis indicates that the accuracy of the obtained results is much lower when the
models are applied to C++ projects. The same trend is also evident with respect to recall and
precision. These results may indicate that models trained in an environment of a given system
tend to perform better when they are applied to the context of the system they were trained in.

A sample detailed report (for remaining projects see Appendix B.2) for the projects Kopete
and K3b is depicted in Figure 5.1a, 5.1b respectively. These data pertain to the results depicted
in Table 5.2a.

5.2.2 Using models from RQ2:
In this validation study, we used a model trained in Python projects (using repository metrics
only), and a model trained in Java projects (using repository metrics only). Table 5.3a depicts
the results for data validation using the model generated from 5 Python projects. The accuracy,
recall and precision for the Kopete project is 0.91, 0.75 and 0.75 respectively and for the K3b
project it is 0.73, 0.60 and 0.64 respectively. For comparison, the results obtained using repos-
itory metrics in RQ2 are shown in Table 5.3b. Here we observe that the model performs quite
well compared to the results obtained in RQ2.

In Table 5.4a, the results are for data validation using the model generated from 5 Java
projects. The accuracy, recall and precision for Kopete project is 0.49, 0.71 and 0.58 respec-
tively and for k3b project it is 0.56, 0.61 and 0.59 respectively.For comparison, the results
obtained using repository metrics in RQ2 are shown in Table 5.4b. We observe that the perfor-
mance model in the C++ system is much lower than the performance obtained in RQ2.

46 Chapter 5. AdditionalModel Validation in C++ Systems

(a) Kopete detailed report (b) K3b detailed report

Figure 5.1: Kopete and K3b detailed reports

Table 5.3: Comparing results of data validation on C++ projects with RQ2 repository metrics
results.

Project Name F1 Accuracy Recall Precision

Kopete 0.75 0.91 0.75 0.75

K3b 0.60 0.73 0.60 0.64

(a) Results of the model (5 Python
projects using repository metrics)
for the two C++ systems.

Project F1 Accuracy Recall Precision

scikit 0.78 0.78 0.78 0.78

(b) In RQ2, the results ob-
tained by the model (4 Python
projects) using repository met-
rics as shown in Table 4.5b.

5.2. Results 47

Table 5.4: Comparing results of data validation on C++ projects with RQ2 repository metrics
results.

Project F1 Accuracy Recall Precision

Kopete 0.44 0.49 0.71 0.58

K3b 0.54 0.56 0.61 0.59

(a) Results of the model (5 Java
projects using repository met-
rics) for the two C++ systems.

Project F1 Accuracy Recall Precision

springboot 0.67 0.84 0.80 0.64

(b) In RQ2, the results ob-
tained by the model (4 Java
projects) using repository met-
rics as shown in Table 4.5a.

The analysis indicated that the accuracy of the obtained results was lower for the Java
trained models indicating that these models are not suitable for ’general use’ in systems written
in another language (in this case C++). For the model trained in Python system we noted a
slight increase in accuracy but we cannot conclude that these models are indeed suitable for
general use.

Chapter 6

Discussion, Future Work and Conclusion

6.1 Discussion
Based on the experiments we have conducted in this thesis, we are now in a position to provide
some answers to our research questions. We classify the result based on F1 Score bad, weak,
moderate, good and very good using the following conditions.

1) F1 Score < 0.50 then the prediction capability is bad 2) F1 Score ≥ 0.50 and < 0.60 then
the prediction capability is weak 3) F1 Score ≥ 0.60 and < 0.75 then the prediction capability
is moderate 4) F1 Score ≥ 0.75 and < 0.85 then the prediction capability is good 5) F1 Score
≥ 0.85 then the prediction capability is very good. The overall prediction capability of each
different model within the context of the different research questions, is depicted in Table
6.1. Please note, that results for RQ1b are not shown because RQ1b relates to the choice of
programming language used.

RQ1a: The analysis of the results depicted in Tables 4.1b, 4.2b and with respect to predicting
fault proneness at the file level, indicate that the models trained in individual systems (80%
training and 20% testing) using repository information yielded better results, compared to using
source code information, for individual system modules. We can conclude that the prediction
capability of the model is moderate to good for Python systems and weak to moderate for Java
systems.

RQ1b: The analysis of the result depicted in Table 4.1b indicate that repository models
trained in Python systems perform better when compared to the ones trained in Java systems.
On the other hand, the results of training the models using source code metrics alone in Ta-
ble 4.2b do not provide a conclusive answer on whether the model performs better for Python
or Java systems. Overall, we can say that the aggregated models in Table 4.4b on individual
Python projects perform the better as predictors when compared with all other models. Yet, the
levels of accuracy, precision, recall and F1 Score indicate that the overall prediction capability
is moderate to good for Python systems and weak to moderate for Java systems.

RQ2: With respect to Repository metrics, the analysis of the results depicted in Tables 4.5a
and 4.5b, indicate that the predictive capability of the models trained in the same language as

48

6.1. Discussion 49

the one that they are applied on, is moderate to good for Python systems and weak for Java
systems using code metrics.

With respect to Code metrics, the analysis of the results depicted in Tables 4.6a,4.6b indi-
cate that the prediction model is not fit for predicting error proneness on Java systems, having
an overall F1 Score, precision, recall and accuracy values below 0.55. The performance of the
model in Python systems was slightly better yielding an F1 Score, precision, recall and accu-
racy of 0.69, 0.71, 0.70 and 0.69 respectively. However, we can conclude that code metrics is
weak to moderate predictor of fault proneness.

RQ3: With respect to Repository information, the analysis of the results depicted in Tables
4.7a,4.7b indicate that models trained in systems written in either language (Java or Python)
can serve us moderate predictors for both Java and Python systems.

With respect to Code metrics, the results depicted in Tables 4.8a,4.8b, indicate that the
prediction capability of the model is weak to moderate for both Python and Java systems.
However, the models trained using repository information performed slightly better compared
to the models trained using source code metrics.

RQ4: With respect to Repository information, the results depicted in Table 4.9 indicate that
the model that is trained on 80% of randomly selected parts of the Java systems, and the model
trained on the 80% on the randomly selected parts of the Python systems serves as a moderate
predictor for both Java and Python systems.

With respect to Code metrics, the analysis of the results depicted in Table 4.9 indicate
that the model that is trained on 80% of randomly selected parts of the Java systems, and the
model trained on the 80% on the randomly selected parts of the Python systems, the prediction
capability of the model is good for Python systems, while it is weak for Java systems. Overall,
we can say that the code metrics are not a very stable predictor for fault proneness.

RQ5: In addition to the metrics selected, we also conducted a series of experiments using the
advanced code metrics shown in Figure 4.1. The results of these experiments are depicted in

Table 4.10 for RQ1; Table 4.11a 4.11b for RQ2; Table 4.12a 4.12b for RQ3 and; in Table
4.13 for RQ4.

These results do not provide any significant new information compared to the results ob-
tained by using the code metrics presented in Section 3.2.2.

Table 6.1: Summary of the discussion

Language RQ1a RQ2 RQ3 RQ4

Repository Metrics
Java moderate moderate moderate moderate

Python moderate to good good moderate moderate

Code Metrics
Java weak weak weak weak

Python weak to moderate moderate moderate good

50 Chapter 6. Discussion, FutureWork and Conclusion

6.1.1 Thesis Findings

The major findings from this thesis are summarized as follows:

• Repository metrics were better features to be used than source code metrics. The possible
explanations stemming from this finding are a) programmers often use static analyzers
to reduce the software metrics profile of the code they commit, so that they can by-pass
automated Quality and Assurance tests - this reduction on the software metrics due to
code restructuring will not impact the fault proneness of an already fault prone code;
b) for a complex system, often code with high metrics profiles (e.g. high cyclomatic
complexity) does not necessarily mean low quality code, as often complex code is used to
achieve specific non-functional requirements (e.g. performance) – in this respect metrics
alone may not be a good predictor of fault proneness and; c) repository metrics (e.g.
number of commits) and other information extracted from DevOps tools (e.g. issues
submitted by developers) may provide a better and more “amalgamated” view of the
system’s health.

• The predictive models yielded a relatively low F1 score. The possible explanations stem-
ming from this finding are a) there is noise in the data as we have not factored a weight-
ing scheme whereby more recent data have higher weight that older ones – bugs reported
more that two years ago and have been closed may not be relevant for training the system
as a whole; b) the tagging of a file as buggy in the training phase was very conservative,
as we have considered every issue a developer have flagged as a potential bug, being
tagged as a bug for training purposes – often an issue is not necessarily a bug and; c)
large systems tend to stabilize over time so in this respect older systems do not provide
information-rich data for training after a certain point.

• The prediction model performed better for Python systems than for the Java systems.
The possible explanations stemming from this finding are a) the Java systems were older
so their health profile has been stabilized over time; b) the Python systems have less
files which may result to less noise, and; c) the performance difference even though
is noticeable may be not statistically significant – experiments with more systems may
verify that.

6.1.2 Threats to validity

1. Even though we acknowledged all the perils as mentioned in [43], there is a possibility
that results could vary with other projects.

2. The repository metrics and code metrics that we used in our experiment are promising
but do not constitute a silver bullet when it comes to finding buggy files.

3. All the project’s snapshots in our experiment are taken in the month of February, 2018.
So the experiment does not include time related data as it would if we used several
snapshots of the same project across multiple releases in the given time period.

6.2. FutureWork 51

4. The machine learning algorithms were used with default parameters without any ad-
ditional fine-tuning, therefore, fine-tuning the default model could have influenced the
results.

6.2 Future Work

The work presented in this thesis can be extended in three major directions. The first direction
deals with expanding the training and the analysis by considering more projects and more
training features.

The second direction deals with considering more advanced machine learning techniques
such as LSTM [27] and by experimenting with fine-tuning the machine learning frameworks.

The third direction deals with assessing technical debt and its relationship to fault prone-
ness.

6.2.1 Additional metrics and projects

1. One possible extension is to experiment with a larger collection of source code met-
rics to evaluate whether these could outperform the results obtained by using repository
data. For example, adding abstract syntax tree extracted from source code of each file as
features alongside repository metrics and at the same time expand the analysis to more
systems especially the ones that are written in multiple programming and scripting lan-
guages. It is also possible to create embeddings as metrics which will be extracted from
bug reports. The metrics obtained from abstract syntax tree of the source code could be
used to create embeddings and used along with other metrics.

2. Another possible extension is to consider systems written in other programming and
scripting languages. The current system considers systems written in Java, Python and
C++ programming languages. One possible extension is to conduct similar study on
projects developed using JavaScript, PHP, Ruby, C#, Perl, etc.

6.2.2 Advanced machine learning models

1. Another possible extension in this category is to consider more advanced machine learn-
ing approaches and techniques to be used for training purposes. It would also be inter-
esting to see the performance of other machine learning algorithms that we did not use
in our experiment.

2. We have used out of the box, default settings for machine learning algorithm. One could
fine tune our models so that they can improve the overall performance.

3. T Hall et al. in their study concluded that good predictive performance studies hardly
ever optimize their machine learning algorithm settings [35]. Therefore, it would be very
interesting to adjust and tweak the algorithms used in this thesis.

52 Chapter 6. Discussion, FutureWork and Conclusion

6.2.3 Technical Debt
Based on the results, one could further investigate the use of the fault proneness model to
identify points where technical debt may be incurred. Some insights on how this can be done
are provided in Figures 6.1 and 6.2. In both figures, the x-axis represents time in months, while
the y-axis indicates lines of code. Each band represents lines of code added or deleted in a
given month. As depicted in Figure 6.1, there are points where a minor or a major refactoring
is observed. At this point we can run the prediction model and identify whether files classified
as error bearing are now classified as safe and vice versa. This will help assess whether a
refactoring operation was successful or not with respect to code debt. Similarly, as depicted in
Figure 6.2 a sudden spike may indicate the addition of new code. By applying the prediction
model at this point in time we can possibly assess whether the new code incurs defect debt.
For example, if 50 files were committed (and there is a spike in the code chart as in Figure 6.2)
then we can evaluate using the prediction model, the classification of each of the files as being
buggy or not and consequently assess whether these additions incurred a defect debt or not.

6.2. FutureWork 53

Fi
gu

re
6.

1:
C

od
e

D
eb

te
xa

m
pl

e
[7

3]

54 Chapter 6. Discussion, FutureWork and Conclusion

Fi
gu

re
6.

2:
C

od
e

D
eb

te
xa

m
pl

e
[7

3]

6.3. Conclusion 55

6.3 Conclusion
In this thesis we report results from an evaluation study as to whether information obtained
from software repositories and source code metrics can be used as training features in a ma-
chine learning framework, so that the trained model can classify a file as one containing a
fault (i.e. a bug) that can produce an error and ultimately a failure or not. The evaluation
study focused on ten large open source systems written in Java and Python. First, the results
indicated that information (Fractal, SOC, Age, and Authors) obtained from repositories and
used as training features performed equal to or better than source code metrics (McCC, CLOC,
PDA, PUA, LLOC, NOS) in all of the research questions. Second, in all of the scenarios, the
prediction capability of the model was weak for Java systems when using source code metrics
as a training feature, while it is better when using information extracted from the repository.
For Python systems the prediction capability of the model was moderate to good using either
source code metrics or repository data as a training feature. Third, the evaluation study indi-
cates that one could use generic training features irrespective of the programming language to
train the model, and still perform moderate to good predictions. Finally, by partitioning the
data (80% training, 20% test) the model performed very well in both Java and Python systems.
It is also noted that the larger the data set for training the model is, the better the prediction
capability of the model.

Results using Bugzilla data for K3b and Kopete were similar to the results obtained on
GitHub data. The aforementioned repository metrics and source code metrics are not adequate
to perform prediction of error proneness at the file level. We need to experiment with additional
features and data and possibly consider source code features such as call graphs, as well as uses
and sets of variables. Lastly, the study also indicates that this approach is language agnostic
because the model was built using Java or Python or a combination of both Java and Python
programming languages, but was validated on C++ projects.

Overall, the study indicates that there is potential for further investigation of the use of
machine learning for predicting fault prone files in large systems, and facilitating thus testing,
maintenance, and evolution activities. Using this study as a springboard, future work includes
the following steps. First, one could consider more features and data to be used for training
purposes. One could also experiment with a larger collection of source code metrics to evaluate
whether these could outperform the results obtained by using repository data, and at the same
time expand the analysis to more systems, especially the ones that are written in multiple
programming and scripting languages. Second, another possible path is to investigate whether
such machine learning techniques can be used to assess or quantify technical debt. More
specifically, it would be interesting to investigate whether we can quantify the technical debt
incurred by a source code change during maintenance by looking at the altered system features
and applying the prediction model to evaluate the error proneness of the components affected.

Finally, one could investigate how machine learning approaches can be combined with
static or dynamic code analysis in order to increase accuracy. For example, files which heavily
use (e.g. call) fault prone files can be flagged under certain conditions as fault prone them-
selves.

Bibliography

[1] Github, build software better, together - https://github.com.

[2] Kaggle: Your home for data science, https://www.kaggle.com.

[3] Ndepend: Documentation - https://www.ndepend.com/docs/code-metrics.

[4] Sourcemeter - free-to-use, advanced source code analysis suite, Dec 2016.

[5] Sourcemeter - free-to-use, advanced source code analysis suite, on-
line:https://www.sourcemeter.com/resources/java/, Dec 2016.

[6] Sourcemeter - free-to-use, advanced source code analysis suite, on-
line:https://www.sourcemeter.com/resources/python/, Dec 2016.

[7] Kde bugtracking system, bugs.kde.org, Oct 2018.

[8] Adamtornhill. adamtornhill/code-maat, online:https://github.com/adamtornhill/code-
maat, Dec 2017.

[9] Nicolli SR Alves, Leilane F Ribeiro, Vivyane Caires, Thiago S Mendes, and Rodrigo O
Spı́nola. Towards an ontology of terms on technical debt. In Managing Technical Debt
(MTD), 2014 Sixth International Workshop on, pages 1–7. IEEE, 2014.

[10] Tae-Ki An and Moon-Hyun Kim. A new diverse adaboost classifier. In Artificial Intel-
ligence and Computational Intelligence (AICI), 2010 International Conference on, vol-
ume 1, pages 359–363. IEEE, 2010.

[11] Taiwo Oladipupo Ayodele. Types of machine learning algorithms. In New advances in
machine learning. InTech, 2010.

[12] Jagdish Bansiya and Carl G Davis. A hierarchical model for object-oriented design qual-
ity assessment. IEEE Transactions on software engineering, 28(1):4–17, 2002.

[13] Boris Beizer. Software testing techniques. Dreamtech Press, 2003.

[14] Jacob Benesty, Jingdong Chen, Yiteng Huang, and Israel Cohen. Pearson correlation
coefficient. In Noise reduction in speech processing, pages 1–4. Springer, 2009.

[15] Barry W Boehm et al. Software engineering economics, volume 197. Prentice-hall En-
glewood Cliffs (NJ), 1981.

56

BIBLIOGRAPHY 57

[16] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[17] Bora Caglayan, Ayse Bener, and Stefan Koch. Merits of using repository metrics in
defect prediction for open source projects. In Proceedings of the 2009 ICSE Workshop on
Emerging Trends in Free/Libre/Open Source Software Research and Development, pages
31–36. IEEE Computer Society, 2009.

[18] Michelle Cartwright and Martin Shepperd. An empirical investigation of an object-
oriented software system. IEEE Transactions on software engineering, 26(8):786–796,
2000.

[19] Cagatay Catal and Banu Diri. Investigating the effect of dataset size, metrics sets, and
feature selection techniques on software fault prediction problem. Information Sciences,
179(8):1040–1058, 2009.

[20] Cagatay Catal and Banu Diri. A systematic review of software fault prediction studies.
Expert systems with applications, 36(4):7346–7354, 2009.

[21] Ahmad Chaddad, Pascal O Zinn, and Rivka R Colen. Brain tumor identification using
gaussian mixture model features and decision trees classifier. In Information Sciences
and Systems (CISS), 2014 48th Annual Conference on, pages 1–4. IEEE, 2014.

[22] Venkata Udaya B Challagulla, Farokh B Bastani, I-Ling Yen, and Raymond A Paul. Em-
pirical assessment of machine learning based software defect prediction techniques. In-
ternational Journal on Artificial Intelligence Tools, 17(02):389–400, 2008.

[23] Shyam R Chidamber and Chris F Kemerer. A metrics suite for object oriented design.
IEEE Transactions on software engineering, 20(6):476–493, 1994.

[24] Hassan Chouaib, O Ramos Terrades, Salvatore Tabbone, Florence Cloppet, and Nicole
Vincent. Feature selection combining genetic algorithm and adaboost classifiers. In Pat-
tern Recognition, 2008. ICPR 2008. 19th International Conference on, pages 1–4. IEEE,
2008.

[25] James S Collofello and Scott N Woodfield. Evaluating the effectiveness of reliability-
assurance techniques. Journal of systems and software, 9(3):191–195, 1989.

[26] Ward Cunningham. The wycash portfolio management system, addendum to the proceed-
ings on object-oriented programming systems, languages, and applications (addendum),
1992.

[27] Hoa Khanh Dam, Trang Pham, Shien Wee Ng, Truyen Tran, John Grundy, Aditya Ghose,
Taeksu Kim, and Chul-Joo Kim. A deep tree-based model for software defect prediction.
arXiv preprint arXiv:1802.00921, 2018.

[28] Asif Ekbal and Sriparna Saha. Weighted vote-based classifier ensemble for named entity
recognition: A genetic algorithm-based approach. ACM Transactions on Asian Language
Information Processing (TALIP), 10(2):9, 2011.

58 BIBLIOGRAPHY

[29] Khaled El Emam, Walcelio Melo, and Javam C Machado. The prediction of faulty classes
using object-oriented design metrics. Journal of Systems and Software, 56(1):63–75,
2001.

[30] Norman E Fenton, Martin Neil, and N Square. A critique of software defect prediction
models. SERIES ON SOFTWARE ENGINEERING AND KNOWLEDGE ENGINEERING,
16:72, 2005.

[31] Giles M Foody. Status of land cover classification accuracy assessment. Remote sensing
of environment, 80(1):185–201, 2002.

[32] Luay Fraiwan, Khaldon Lweesy, Natheer Khasawneh, Heinrich Wenz, and Hartmut Dick-
haus. Automated sleep stage identification system based on time–frequency analysis of
a single eeg channel and random forest classifier. Computer methods and programs in
biomedicine, 108(1):10–19, 2012.

[33] David Gray, David Bowes, Neil Davey, Yi Sun, and Bruce Christianson. Using the sup-
port vector machine as a classification method for software defect prediction with static
code metrics. In International Conference on Engineering Applications of Neural Net-
works, pages 223–234. Springer, 2009.

[34] Dharmendra Lal Gupta and Kavita Saxena. Software bug prediction using object-oriented
metrics. Sādhanā, 42(5):655–669, 2017.

[35] Tracy Hall, Sarah Beecham, David Bowes, David Gray, and Steve Counsell. A systematic
literature review on fault prediction performance in software engineering. IEEE Transac-
tions on Software Engineering, 38(6):1276–1304, 2012.

[36] Ahmed E Hassan. Predicting faults using the complexity of code changes. In Proceed-
ings of the 31st International Conference on Software Engineering, pages 78–88. IEEE
Computer Society, 2009.

[37] Peng He, Bing Li, Xiao Liu, Jun Chen, and Yutao Ma. An empirical study on software
defect prediction with a simplified metric set. Information and Software Technology,
59:170–190, 2015.

[38] Michael Hilton, Timothy Tunnell, Kai Huang, Darko Marinov, and Danny Dig. Usage,
costs, and benefits of continuous integration in open-source projects. In Proceedings of
the 31st IEEE/ACM International Conference on Automated Software Engineering, pages
426–437. ACM, 2016.

[39] Xiaolin Huang, Lei Shi, and Johan AK Suykens. Support vector machine classifier with
pinball loss. IEEE transactions on pattern analysis and machine intelligence, 36(5):984–
997, 2014.

[40] J. D. Hunter. Matplotlib: A 2d graphics environment. Computing In Science & Engineer-
ing, 9(3):90–95, 2007.

BIBLIOGRAPHY 59

[41] Mohammed J Islam, QM Jonathan Wu, Majid Ahmadi, and Maher A Sid-Ahmed. Inves-
tigating the performance of naive-bayes classifiers and k-nearest neighbor classifiers. In
Convergence Information Technology, 2007. International Conference on, pages 1541–
1546. IEEE, 2007.

[42] Nathalie Japkowicz and Mohak Shah. Evaluating learning algorithms: a classification
perspective. Cambridge University Press, 2011.

[43] Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer, Daniel M German,
and Daniela Damian. An in-depth study of the promises and perils of mining github.
Empirical Software Engineering, 21(5):2035–2071, 2016.

[44] Taghi M Khoshgoftaar and Naeem Seliya. Tree-based software quality estimation models
for fault prediction. In Software Metrics, 2002. Proceedings. Eighth IEEE Symposium on,
pages 203–214. IEEE, 2002.

[45] Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian E Granger, Matthias
Bussonnier, Jonathan Frederic, Kyle Kelley, Jessica B Hamrick, Jason Grout, Sylvain
Corlay, et al. Jupyter notebooks-a publishing format for reproducible computational
workflows. In ELPUB, pages 87–90, 2016.

[46] Philippe Kruchten, Robert L Nord, and Ipek Ozkaya. Technical debt: From metaphor to
theory and practice. Ieee software, 29(6):18–21, 2012.

[47] Guillaume Lemaı̂tre, Fernando Nogueira, and Christos K Aridas. Imbalanced-learn: A
python toolbox to tackle the curse of imbalanced datasets in machine learning. The Jour-
nal of Machine Learning Research, 18(1):559–563, 2017.

[48] Ruchika Malhotra. A systematic review of machine learning techniques for software fault
prediction. Applied Soft Computing, 27:504–518, 2015.

[49] Thomas J McCabe. A complexity measure. IEEE Transactions on software Engineering,
(4):308–320, 1976.

[50] Tim Menzies, Jeremy Greenwald, and Art Frank. Data mining static code attributes to
learn defect predictors. IEEE transactions on software engineering, (1):2–13, 2007.

[51] J David Morgenthaler, Misha Gridnev, Raluca Sauciuc, and Sanjay Bhansali. Searching
for build debt: Experiences managing technical debt at google. In Proceedings of the
Third International Workshop on Managing Technical Debt, pages 1–6. IEEE Press, 2012.

[52] Raimund Moser, Witold Pedrycz, and Giancarlo Succi. A comparative analysis of the
efficiency of change metrics and static code attributes for defect prediction. In Proceed-
ings of the 30th international conference on Software engineering, pages 181–190. ACM,
2008.

[53] Glenford J Myers, Corey Sandler, and Tom Badgett. The art of software testing. John
Wiley & Sons, 2011.

60 BIBLIOGRAPHY

[54] Nachiappan Nagappan and Thomas Ball. Use of relative code churn measures to predict
system defect density. In Proceedings of the 27th international conference on Software
engineering, pages 284–292. ACM, 2005.

[55] Nachiappan Nagappan, Thomas Ball, and Andreas Zeller. Mining metrics to predict
component failures. In Proceedings of the 28th international conference on Software
engineering, pages 452–461. ACM, 2006.

[56] Nachiappan Nagappan, Laurie Williams, Mladen Vouk, and Jason Osborne. Using in-
process testing metrics to estimate software reliability: A feasibility study. In Proceed-
ings of IEEE International Symposium on Software Reliability Engineering, FastAbstract,
Saint Malo, France, pages 21–22, 2004.

[57] Vu Nguyen, Sophia Deeds-Rubin, Thomas Tan, and Barry Boehm. A sloc counting stan-
dard. In Cocomo ii forum, volume 2007, pages 1–16, 2007.

[58] Ahmet Okutan and Olcay Taner Yıldız. Software defect prediction using bayesian net-
works. Empirical Software Engineering, 19(1):154–181, 2014.

[59] Jason W Osborne. Improving your data transformations: Applying the box-cox transfor-
mation. Practical Assessment, Research & Evaluation, 15(12):2, 2010.

[60] Thomas J Ostrand, Elaine J Weyuker, and Robert M Bell. Where the bugs are. In ACM
SIGSOFT Software Engineering Notes, volume 29, pages 86–96. ACM, 2004.

[61] Matt Parker and Colin Parker. A modified construction for a support vector classifier to
accommodate class imbalances. arXiv preprint arXiv:1702.02555, 2017.

[62] David Martin Powers. Evaluation: from precision, recall and f-measure to roc, informed-
ness, markedness and correlation. 2011.

[63] Jane Radatz, Anne Geraci, and Freny Katki. Ieee standard glossary of software engineer-
ing terminology. IEEE Std, 610121990(121990):3, 1990.

[64] RM Sakia. The box-cox transformation technique: a review. The statistician, pages
169–178, 1992.

[65] Adrian Schröter, Thomas Zimmermann, and Andreas Zeller. Predicting component fail-
ures at design time. In Proceedings of the 2006 ACM/IEEE international symposium on
Empirical software engineering, pages 18–27. ACM, 2006.

[66] Carolyn Seaman and Yuepu Guo. Measuring and monitoring technical debt. In Advances
in Computers, volume 82, pages 25–46. Elsevier, 2011.

[67] Carolyn Seaman and RO Spı́nola. Managing technical debt. In Short Course] XVII
Brazilian Symposium on Software Quality, Salvador, Brazil, 2013.

[68] Mojtaba Shahin, Muhammad Ali Babar, and Liming Zhu. Continuous integration, deliv-
ery and deployment: a systematic review on approaches, tools, challenges and practices.
IEEE Access, 5:3909–3943, 2017.

BIBLIOGRAPHY 61

[69] Sally Shlaer. The shlaer-mellor method. Project Technology white paper, 1996.

[70] Forrest Shull, Vic Basili, Barry Boehm, A Winsor Brown, Patricia Costa, Mikael Lind-
vall, Daniel Port, Ioana Rus, Roseanne Tesoriero, and Marvin Zelkowitz. What we have
learned about fighting defects. In Software Metrics, 2002. Proceedings. Eighth IEEE
Symposium on, pages 249–258. IEEE, 2002.

[71] Will Snipes, Brian Robinson, Yuepu Guo, and Carolyn Seaman. Defining the decision
factors for managing defects: a technical debt perspective. In Proceedings of the Third
International Workshop on Managing Technical Debt, pages 54–60. IEEE Press, 2012.

[72] Marina Sokolova, Nathalie Japkowicz, and Stan Szpakowicz. Beyond accuracy, f-score
and roc: a family of discriminant measures for performance evaluation. In Australasian
joint conference on artificial intelligence, pages 1015–1021. Springer, 2006.

[73] src d. src-d/hercules, Jun 2018.

[74] Ahmad Taherkhani. Using decision tree classifiers in source code analysis to recognize
algorithms: An experiment with sorting algorithms. The Computer Journal, 54(11):1845–
1860, 2011.

[75] Mie Mie Thet Thwin and Tong-Seng Quah. Application of neural networks for soft-
ware quality prediction using object-oriented metrics. Journal of systems and software,
76(2):147–156, 2005.

[76] Edith Tom, AybüKe Aurum, and Richard Vidgen. An exploration of technical debt. Jour-
nal of Systems and Software, 86(6):1498–1516, 2013.

[77] Adam Tornhill. Your code as a crime scene: use forensic techniques to arrest defects,
bottlenecks, and bad design in your programs. Pragmatic Bookshelf, 2015.

[78] Burak Turhan and Ayse Bener. Analysis of naive bayes’ assumptions on software fault
data: An empirical study. Data & Knowledge Engineering, 68(2):278–290, 2009.

[79] Vladimir N. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag, Berlin,
Heidelberg, 1995.

[80] Romi Satria Wahono. A systematic literature review of software defect prediction: re-
search trends, datasets, methods and frameworks. Journal of Software Engineering,
1(1):1–16, 2015.

[81] Shuo Wang and Xin Yao. Using class imbalance learning for software defect prediction.
IEEE Transactions on Reliability, 62(2):434–443, 2013.

[82] Ian H Witten, Eibe Frank, Mark A Hall, and Christopher J Pal. Data Mining: Practical
machine learning tools and techniques. Morgan Kaufmann, 2016.

[83] Bartłomiej Wójcicki and Robert Dabrowski. Applying machine learning to software fault
prediction. e-Informatica Software Engineering Journal, 12(1), 2018.

62 BIBLIOGRAPHY

[84] Jifeng Xuan, Yan Hu, and He Jiang. Debt-prone bugs: technical debt in software mainte-
nance. arXiv preprint arXiv:1704.04766, 2017.

[85] Xinli Yang, David Lo, Xin Xia, Yun Zhang, and Jianling Sun. Deep learning for just-in-
time defect prediction. In QRS, pages 17–26, 2015.

[86] Nico Zazworka, Clemente Izurieta, Sunny Wong, Yuanfang Cai, Carolyn Seaman, Forrest
Shull, et al. Comparing four approaches for technical debt identification. Software Quality
Journal, 22(3):403–426, 2014.

[87] Nico Zazworka, Rodrigo O Spı́nola, Antonio Vetro, Forrest Shull, and Carolyn Seaman.
A case study on effectively identifying technical debt. In Proceedings of the 17th Interna-
tional Conference on Evaluation and Assessment in Software Engineering, pages 42–47.
ACM, 2013.

[88] Hongyu Zhang. An investigation of the relationships between lines of code and defects.
In Software Maintenance, 2009. ICSM 2009. IEEE International Conference on, pages
274–283. IEEE, 2009.

[89] Hongyu Zhang and Xiuzhen Zhang. Comments on” data mining static code attributes to
learn defect predictors”. IEEE Transactions on Software Engineering, 33(9), 2007.

[90] Yong Zhang, Hongrui Zhang, Jing Cai, and Binbin Yang. A weighted voting classifier
based on differential evolution. In Abstract and Applied Analysis, volume 2014. Hindawi,
2014.

[91] Jun Zheng. Cost-sensitive boosting neural networks for software defect prediction. Expert
Systems with Applications, 37(6):4537–4543, 2010.

[92] Zhi-Hua Zhou, Jianxin Wu, and Wei Tang. Ensembling neural networks: many could be
better than all. Artificial intelligence, 137(1-2):239–263, 2002.

[93] Thomas Zimmermann, Nachiappan Nagappan, Harald Gall, Emanuel Giger, and Brendan
Murphy. Cross-project defect prediction: a large scale experiment on data vs. domain vs.
process. In Proceedings of the the 7th joint meeting of the European software engineering
conference and the ACM SIGSOFT symposium on The foundations of software engineer-
ing, pages 91–100. ACM, 2009.

Appendix A

Data Extraction Algorithms

63

64 Chapter A. Data Extraction Algorithms

A.1 Data Extraction Algorithms:

A.1.1 Algorithm to extract Bug or Issue Data from GitHub:

public class IssuesSummary {

public static void main(String[] args) throws IOException {

//Setting up github credentials and repository details

GitHubBuilder builder = new GitHubBuilder();

GitHub github;

String oauthToken = "a29e5df4beb31522cd671a92171fbacd6d09119b";

github = builder.withOAuthToken(oauthToken).build();

//checking if the connection to repository is successful

GHRepository ghRepository =

github.getRepository("spring-projects/spring-boot");

System.out.println("Connected successfully? -> " +

github.isCredentialValid() +

" Current Repo " + ghRepository.getFullName());

//Let’s try to get all the issues

List < IssuesWrapper > issuesWrappers =

new ArrayList < IssuesWrapper > ();

GHIssueState ghIssueState = GHIssueState.CLOSED;

PagedIterable < GHIssue > ghIssues =

ghRepository.listIssues(ghIssueState);

System.out.println("Size" + ghIssues.asList().size());

//Iterate over each issue and fetch the commit

//details of every file that was committed.

for (GHIssue ghIssue: ghIssues) {

Collection < GHLabel > ghLabels = ghIssue.getLabels();

//Most Imp is the Id or IssueNumber

for (GHLabel ghLabel: ghLabels) {

if (ghLabel.getName().contains("bug")) {

IssuesWrapper issuesWrapper = new IssuesWrapper();

issuesWrapper.issueId = ghIssue.getNumber();

issuesWrapper.body = ghIssue.getBody();

issuesWrapper.title = ghIssue.getTitle();

issuesWrapper.bugLabel = ghLabel.getName();

GHIssueState state = ghIssue.getState();

issuesWrapper.state = state.name();

System.out.println("Added " + issuesWrapper.title +

" size is " + issuesWrappers.size());

//add all the details to the wrapper to write

//it to csv later

A.1. Data Extraction Algorithms: 65

issuesWrappers.add(issuesWrapper);

//Trying Again

GHEventPayload.IssueComment issueeventPayload =

new GHEventPayload.IssueComment();

issueeventPayload.setRepository(ghRepository);

issueeventPayload.setIssue(ghIssue);

System.out.println(" Action: " +

issueeventPayload.getAction() + " Comment: " +

issueeventPayload.getComment());

}

}

}

System.out.println("Starting CSV Job for Issues");

CSVWriter csvWriter = null;

try {

csvWriter = new CSVWriter(new FileWriter("IssuesSummary.csv"));

for (IssuesWrapper issuewrapper: issuesWrappers) {

//Create CSVWriter for writing

//Date date= new SimpleDateFormat("dd/MM/yyyy").

//parse(df.format(wrapper.date));

String[] row = new String[] {

String.

valueOf(issuewrapper.issueId), issuewrapper.title,

issuewrapper.body, issuewrapper.state,

issuewrapper.bugLabel

};

csvWriter.writeNext(row);

}

} catch (Exception ee) {

ee.printStackTrace();

} finally {

try {

System.out.println("Completed!");

//closing the writer

csvWriter.close();

} catch (Exception ee) {

ee.printStackTrace();

}

}

}

}

66 Chapter A. Data Extraction Algorithms

A.1.2 Algorithm to combine Bug or Issue Data with metrics:

public class CommitsSummary {

public static void main(String[] args) {

DateFormat df = new SimpleDateFormat("dd/MM/yyyy");

try {

List < Wrapper > wrappers = new ArrayList < Wrapper > ();

GitHubBuilder builder = new GitHubBuilder();

GitHub github;

String oauthToken = "a29e5df4beb31522cd671a92171fbacd6d09119b";

github = builder.withOAuthToken(oauthToken).build();

GHRepository ghRepository =

github.getRepository("spring-projects/spring-boot");

System.out.println("Connected successfully? -> " +

github.isCredentialValid() +

" Current Repo " + ghRepository.getFullName());

PagedIterable < GHCommit > ghCommits = ghRepository.listCommits();

//System.out.println("Size"+ghCommits.asList().size());

for (GHCommit ghCommit: ghCommits) {

ghCommit.getCommitDate();

ghCommit.getCommitShortInfo().getMessage();

List < File > files = ghCommit.getFiles();

if (files != null) {

for (File file: files) {

//System.out.println(file.getFileName());

try {

Wrapper wr = new Wrapper();

wr.date = ghCommit.getCommitDate();

wr.url = ghCommit.getHtmlUrl();

wr.message = ghCommit.getCommitShortInfo().getMessage();

wr.filename = file.getFileName();

wrappers.add(wr);

System.out.println("Added " + wr.filename +

" size is " + wrappers.size() + " date is - " + df.format(wr.date));

} catch (Exception e) {

System.out.println("Exception occured for id");

}

}

}

}

System.out.println("Starting CSV Job for Commits Summary");

CSVWriter csvWriter = null;

A.1. Data Extraction Algorithms: 67

try {

csvWriter = new CSVWriter(new FileWriter("CommitSummary.csv"));

for (Wrapper wrapper: wrappers) {

//Create CSVWriter for writing

//Removed message use above line if you want with message

String[] row = new String[] {

df.format(wrapper.date), wrapper.filename, wrapper.url.toString()

};

csvWriter.writeNext(row);

}

} catch (Exception ee) {

ee.printStackTrace();

} finally {

try {

System.out.println("Completed!");

//closing the writer

csvWriter.close();

} catch (Exception ee) {

ee.printStackTrace();

}

}

} catch (IOException e) {

// TODO Auto-generated catch block

e.printStackTrace();

}

}

public static class Wrapper {

String filename;

String message;

URL url;

Date date;

}

public static class IssuesWrapper {

String filename;

Integer issueId;

String body;

String title;

String state;

String bugLabel;

}

public static class CommitIssueWrapper {

68 Chapter A. Data Extraction Algorithms

String filename;

String message;

String url;

String date;

String issueId;

}

}

public class ExtractIssueIdfromCommitsSummary {

public static void main(String[] args) throws IOException {

// TODO Auto-generated method stub

List < CommitIssueWrapper > wrappers =

new ArrayList < CommitIssueWrapper > ();

CSVReader reader =

new CSVReader(new FileReader("CommitSummary.csv"), ’,’);

// read line by line

String[] record = null;

while ((record = reader.readNext()) != null) {

String bugNumber = "";

if (record[2] != null && !record[2].isEmpty()) {

System.out.println("records - " + record[2]);

int bugIndex = record[2].indexOf("#");

if (bugIndex > 0) {

bugIndex++;

while (bugIndex < record[2].length() &&

Character.isDigit(record[2].charAt(bugIndex))) {

bugNumber = bugNumber + record[2].charAt(bugIndex);

bugIndex++;

}

CommitIssueWrapper ciWrapper = new CommitIssueWrapper();

ciWrapper.date = record[0];

ciWrapper.filename = record[1];

ciWrapper.issueId = bugNumber;

ciWrapper.message = record[2];

ciWrapper.url = record[3];

wrappers.add(ciWrapper);

System.out.println("bug# - " + bugNumber);

}

}

A.1. Data Extraction Algorithms: 69

}

System.out.println("Starting CSV Job for Commits Summary");

CSVWriter csvWriter = null;

try {

csvWriter = new CSVWriter(new FileWriter("CommitSummaryPerfect.csv"));

for (CommitIssueWrapper wrapper: wrappers) {

//Create CSVWriter for writing

//Date date= new

SimpleDateFormat("dd/MM/yyyy").parse(df.format(wrapper.date));

String[] row = new String[] {

wrapper.date,

wrapper.issueId, wrapper.filename,

wrapper.message, wrapper.url.toString()

};

csvWriter.writeNext(row);

}

} catch (Exception ee) {

ee.printStackTrace();

} finally {

try {

System.out.println("Completed!");

//closing the writer

csvWriter.close();

} catch (Exception ee) {

ee.printStackTrace();

}

}

}

}

A.1.3 Algorithm - Machine Learning:

import os

print(os.listdir("../input"))

Load in our libraries

import pandas as pd

import numpy as np

import re

import sklearn

import xgboost as xgb

import seaborn as sns

import matplotlib.pyplot as plt

70 Chapter A. Data Extraction Algorithms

%matplotlib inline

#import plotly.offline as py

#py.initnotebookmode(connected=True)

#import plotly.graphobjs as go

#import plotly.tools as tls

import warnings

warnings.filterwarnings(’ignore’)

Going to use these 5 base models for the stacking

from sklearn.ensemble import (RandomForestClassifier, AdaBoostClassifier,

GradientBoostingClassifier, ExtraTreesClassifier)

from sklearn.svm import SVC

from sklearn.crossvalidation import KFold

from scipy import stats

from scipy.stats import norm, skew

import seaborn as sns

%matplotlib inline

from collections import Counter

from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier,

GradientBoostingClassifier, ExtraTreesClassifier, VotingClassifier

from sklearn.discriminantanalysis import LinearDiscriminantAnalysis

from sklearn.linearmodel import LogisticRegression

from sklearn.neighbors import KNeighborsClassifier

from sklearn.tree import DecisionTreeClassifier

from sklearn.neuralnetwork import MLPClassifier

from sklearn.svm import SVC

from sklearn.modelselection import GridSearchCV,

crossvalscore, StratifiedKFold, learningcurve

from sklearn.metrics import accuracyscore, f1score,

precisionscore, recallscore,classificationreport,confusionmatrix,accuracyscore

#read csv files or projects

springboot = pd.readcsv("../input/springboot.csv")

#groupby path and look at data

maindata = maindataungrpd.groupby([’Path’]).sum()

maindata.head()

#Lets do Box Transformation

tempForBoxTransformation = pd.concat([tempToReloadProject,

A.1. Data Extraction Algorithms: 71

tempToReloadOtherProject])

#del tempForBoxTransformation["Path"]

numericfeats =

tempForBoxTransformation.dtypes[tempForBoxTransformation.dtypes !=

"object"].index

Check the skew of all numerical features

skewedfeats = tempForBoxTransformation[numericfeats].apply(lambda x:

skew(x.dropna())).sortvalues(ascending=False)

print("\nSkew in numerical features: \n")

skewness = pd.DataFrame({’Skew’ :skewedfeats})

print(skewness.head(10))

#Transform the skewed features :)

skewness = skewness[abs(skewness) > 0.75]

print("There are {} skewed numerical features to Box Cox

transform".format(skewness.shape[0]))

from scipy.special import boxcox1p

skewedfeatures = skewness.index

lam = 0.15

for feat in skewedfeatures:

#alldata[feat] += 1

tempForBoxTransformation[feat] = boxcox1p(tempForBoxTransformation[feat],

lam)

tempForBoxTransformation[skewedfeatures] =

np.log1p(tempForBoxTransformation[skewedfeatures])

#Set it back to repective variable to continue the process

maindata = tempForBoxTransformation[:tempToReloadProject.shape[0]]

del maindata["Path"]

tempToReloadProject = tempForBoxTransformation[:tempToReloadProject.shape[0]]

tempToReloadOtherProject =

tempForBoxTransformation[tempToReloadProject.shape[0]:]

#Create a column to predict

maindata[’predict’] = (maindata[’Bug’]!=0).astype(int)

maindata.head()

maindata[’predict’] = (maindata[’Bug’]!=0).astype(int)

#del maindata[’entity’]

maindata.head()

72 Chapter A. Data Extraction Algorithms

#Pearson Correlation of Features

colormap = plt.cm.RdBu

plt.figure(figsize=(14,12))

plt.title(’Pearson Correlation of Features ’, y=1.05, size=15)

sns.heatmap(maindata.astype(float).corr(),linewidths=0.1,vmax=1.0,

square=True, cmap=colormap, linecolor=’white’, annot=True)

#split for training and testing

def trainvalidatetestsplit(df, trainpart=.6, validatepart=.2, testpart=.2,

seed=None):

np.random.seed(seed)

totalsize = trainpart + validatepart + testpart

trainpercent = trainpart / totalsize

validatepercent = validatepart / totalsize

testpercent = testpart / totalsize

perm = np.random.permutation(df.index)

m = len(df)

trainend = int(trainpercent * m)

validateend = int(validatepercent * m) + trainend

train = perm[:trainend]

validate = perm[trainend:validateend]

test = perm[validateend:]

return train, validate, test

trainsize, validsize, testsize = (80, 0, 20)

train, valid, test = trainvalidatetestsplit(maindata,

trainpart=trainsize,

validatepart=validsize,

testpart=testsize,

seed=2017)

ntrain = train.shape[0]

nvalid = valid.shape[0]

ntest = test.shape[0]

print(ntrain,nvalid,ntest);

#Resampling

from sklearn.utils import resample

Separate majority and minority classes

df_majority = train[train.predict==0]

df_minority = train[train.predict==1]

Upsample minority class

df_minority_upsampled = resample(df_minority,

replace=True, # sample with replacement

n_samples=df_majority.shape[0], # to match

majority class

A.1. Data Extraction Algorithms: 73

random_state=123) # reproducible results

Combine majority class with upsampled minority class

df_upsampled = pd.concat([df_majority, df_minority_upsampled])

#assign to main data

train = df_upsampled

#Setting the output for train and test

y_train = train.predict.values

Display new class counts

df_upsampled.predict.value_counts()

print("Train and Test - Test is original data and not upscaled or included in

training")

print(train.shape[0])

#remove unnecessary column data

print("Train shapes")

print(train.shape[0])

print(ytrain.shape[0])

print("Test shapes")

print(test.shape[0])

print(ytest.shape[0])

del train["Bug"]

del train["predict"]

del test["Bug"]

del test["predict"]

Cross validate model with Kfold stratified cross val

kfold = StratifiedKFold(nsplits=10)

Modeling step Test differents algorithms and checking cross validation

scores

randomstate = 2

classifiers = []

classifiers.append(SVC(randomstate=randomstate))

classifiers.append(DecisionTreeClassifier(randomstate=randomstate))

classifiers.append(AdaBoostClassifier(DecisionTreeClassifier(randomstate=randomstate),

randomstate=randomstate,learningrate=0.1))

classifiers.append(RandomForestClassifier(randomstate=randomstate))

classifiers.append(ExtraTreesClassifier(randomstate=randomstate))

classifiers.append(GradientBoostingClassifier(randomstate=randomstate))

classifiers.append(MLPClassifier(randomstate=randomstate))

74 Chapter A. Data Extraction Algorithms

classifiers.append(KNeighborsClassifier())

classifiers.append(LogisticRegression(randomstate = randomstate))

classifiers.append(LinearDiscriminantAnalysis())

cvresults = []

for classifier in classifiers :

cvresults.append(crossvalscore(classifier, train,

y = ytrain, scoring = "accuracy", cv = kfold, njobs=4))

cvmeans = []

cvstd = []

for cvresult in cvresults:

cvmeans.append(cvresult.mean())

cvstd.append(cvresult.std())

cvres = pd.DataFrame({"CrossValMeans":cvmeans,

"CrossValerrors": cvstd,"Algorithm":

["SVC","DecisionTree","AdaBoost",

"RandomForest","ExtraTrees","GradientBoosting",

"MultipleLayerPerceptron","KNeighboors",

"LogisticRegression","LinearDiscriminantAnalysis"]})

g = sns.barplot("CrossValMeans","Algorithm",

data = cvres, palette="Set3",

orient = "h",**{’xerr’:cvstd})

g.setxlabel("Mean Accuracy")

g = g.settitle("Cross validation scores")

#Using voting classifier

votingC = VotingClassifier(estimators=[(’rfc’, RFCbest), (’extc’, ExtCbest),

(’svc’, SVMCbest), (’adac’,adabest),(’gbc’,GBCbest)], voting=’soft’, njobs=4)

votingC = votingC.fit(train, ytrain)

#testing the trained model

testfinal = pd.Series(votingC.predict(test), name="predict")

#results = pd.concat([IDtest,testfinal],axis=1)

#results = testfinal

#tempToReloadProject[’predict’] = (tempToReloadProject[’Bug’]!=0).astype(int)

#t = tempToReloadProject[ntrain:]

print("test shape",test.shape[0])

print("predict shape",ytest.shape[0])

sub = pd.DataFrame()

A.1. Data Extraction Algorithms: 75

#sub[’Path’] = t[’Path’]

#sub[’BugActual’] = t[’predict’]

sub[’BugActual’] = ytest#t[’predict’]

sub[’BugPredicted’] = votingC.predict(test)

#storing the results

sub.tocsv("resultsbugs.csv",index=False)

print("F1 Score:",f1score(ytest, sub[’BugPredicted’]))

print("Precision:",precisionscore(ytest, sub[’BugPredicted’]))

print("Recall:",recallscore(ytest, sub[’BugPredicted’]))

print("Accuracy:",accuracyscore(ytest, sub[’BugPredicted’]))

#confusion matrix

from sklearn.metrics import confusionmatrix

import itertools

def plotconfusionmatrix(cm, classes,

normalize=False,

title=’Confusion matrix’,

cmap=plt.cm.Blues):

if normalize:

cm = cm.astype(’float’) / cm.sum(axis=1)[:, np.newaxis]

print("Normalized confusion matrix")

else:

print(’Confusion matrix, without normalization’)

print(cm)

plt.imshow(cm, interpolation=’nearest’, cmap=cmap)

plt.title(title)

plt.colorbar()

tickmarks = np.arange(len(classes))

plt.xticks(tickmarks, classes, rotation=45)

plt.yticks(tickmarks, classes)

fmt = ’.2f’ if normalize else ’d’

thresh = cm.max() / 2.

for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):

plt.text(j, i, format(cm[i, j], fmt),

horizontalalignment="center",

color="white" if cm[i, j] > thresh else "black")

plt.tightlayout()

plt.ylabel(’True label’)

plt.xlabel(’Predicted label’)

76 Chapter A. Data Extraction Algorithms

Compute confusion matrix

cnfmatrix = confusionmatrix(ytest, votingC.predict(test))

np.setprintoptions(precision=2)

Plot non-normalized confusion matrix

plt.figure()

plotconfusionmatrix(cnfmatrix, classes=[0,1],

title=’Confusion matrix, without normalization’)

Appendix B

Machine Learning - Detailed Report

77

78 Chapter B. Machine Learning - Detailed Report

B.1 Cross Validation Scores:

Below is the Cross Validation Scores obtained for projects in RQ1 using repository and code
metrics.

Figure B.1: Overview of project selection, research questions, experiment and validation

B.2 Detailed Report:

B.2.1 RQ1:

Repository metrics:

Below is the detailed report for springboot project in Table 4.1b.

B.2. Detailed Report: 79

Figure B.2: Springboot project

Below is the detailed report for Deeplearning4j project in Table 4.1b.

Figure B.3: Deeplearning4j project

Below is the detailed report for Elasticsearch project in Table 4.1b.

80 Chapter B. Machine Learning - Detailed Report

Figure B.4: Elasticsearch project

Below is the detailed report for Eclipse-che project in Table 4.1b.

Figure B.5: Eclipse-che project

Below is the detailed report for RxJava project in Table 4.1b.

B.2. Detailed Report: 81

Figure B.6: RxJava project

Below is the detailed report for Youtube-dl project in Table 4.1b.

Figure B.7: Youtube-dl project

Below is the detailed report for Ipython project in Table 4.1b.

82 Chapter B. Machine Learning - Detailed Report

Figure B.8: Ipython project

Below is the detailed report for Scikit project in Table 4.1b.

Figure B.9: Scikit project

Below is the detailed report for Scrapy project in Table 4.1b.

B.2. Detailed Report: 83

Figure B.10: Scrapy project

Below is the detailed report for Keras project in Table 4.1b.

Figure B.11: Keras project

84 Chapter B. Machine Learning - Detailed Report

Code metrics:

Below is the detailed report for Springboot project in Table 4.2b.

Figure B.12: Springboot project

Below is the detailed report for Deeplearning4j project in Table 4.2b.

Figure B.13: Deeplearning4j project

Below is the detailed report for Elasticsearch project in Table 4.2b.

B.2. Detailed Report: 85

Figure B.14: Elasticsearch project

Below is the detailed report for Eclipse-che project in Table 4.2b.

Figure B.15: Eclipse-che project

Below is the detailed report for RxJava project in Table 4.2b.

86 Chapter B. Machine Learning - Detailed Report

Figure B.16: RxJava project

Below is the detailed report for Youtube-dl project in Table 4.2b.

Figure B.17: Youtube-dl project

Below is the detailed report for Ipython project in Table 4.2b.

B.2. Detailed Report: 87

Figure B.18: Ipython project

Below is the detailed report for Scikit project in Table 4.2b.

Figure B.19: Scikit project

Below is the detailed report for Scrapy project in Table 4.2b.

88 Chapter B. Machine Learning - Detailed Report

Figure B.20: Scrapy project

Below is the detailed report for Keras project in Table 4.2b.

Figure B.21: Keras project

B.2. Detailed Report: 89

B.2.2 RQ2:

Repository metrics:

Below is the detailed report for java projects using repository metrics in Table 4.5a.

Figure B.22: Repository metrics on java projects only

Below is the detailed report for python projects using repository metrics in Table 4.5b.

Figure B.23: Repository metrics on python projects only

90 Chapter B. Machine Learning - Detailed Report

Code metrics:

Below is the detailed report for java projects using code metrics in Table 4.6a.

Figure B.24: Code metrics on java projects only

Below is the detailed report for python projects using code metrics in Table 4.6b.

Figure B.25: Code metrics on python projects only

B.2. Detailed Report: 91

B.2.3 RQ3:
Below is the detailed report for java projects using repository metrics in Table 4.7a.

Repository metrics:

Figure B.26: Repository metrics with java as test project

Below is the detailed report for python projects using repository metrics in Table 4.7b.

Figure B.27: Repository metrics with python as test project

92 Chapter B. Machine Learning - Detailed Report

Code metrics:

Below is the detailed report for java projects using code metrics in Table 4.8a.

Figure B.28: Code metrics with java as test project

Below is the detailed report for python projects using code metrics in Table 4.8b.

Figure B.29: Code metrics with python as test project

B.2. Detailed Report: 93

B.2.4 RQ4:
Repository metrics:

Below is the detailed report for java projects using repository metrics in Table 4.9.

Figure B.30: Repository metrics with java as test project

Below is the detailed report for python projects using repository metrics in Table 4.9.

Figure B.31: Repository metrics with python as test project

94 Chapter B. Machine Learning - Detailed Report

Code metrics:

Below is the detailed report for java projects using code metrics in Table 4.9.

Figure B.32: Code metrics with java as test project

Below is the detailed report for python projects using code metrics in Table 4.9.

Figure B.33: Code metrics with python as test project

B.2. Detailed Report: 95

B.2.5 Validation:

RQ2:

Below is the detailed report using Python projects for Kopete and K3b in Figure B.34, B.35
respectively. The results for the same are in Table 5.3a.

Figure B.34: Kopete detailed report using Python projects

Figure B.35: K3b detailed report using Python projects

96 Chapter B. Machine Learning - Detailed Report

Below is the detailed report using Java projects for Kopete and K3b in Figure B.36, B.37
respectively. The results for the same are in Table 5.4a.

Figure B.36: Kopete detailed report using Java projects

Figure B.37: K3b detailed report using Java projects

Curriculum Vitae

Name: Sanjay Ghanathey

Post-Secondary Jawaharlal Nehru Technological University

Education and Hyderabad, Telangana, India

Degrees: 2007 - 2011 B.Tech.

University of Western Ontario

London, ON

2017-2018 M.Sc

Honours and Western Graduate Research Scholarship

Awards: 2017-2018

Related Work Teaching Assistant

Experience: The University of Western Ontario

2017 - 2018

Software Developer Intern

IBM Software Lab

2018

97

	Predicting Software Fault Proneness Using Machine Learning
	Recommended Citation

	tmp.1546895945.pdf.Ia6Oy

