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Abstract 

Arsenic poisoning in water is a global concern for many years due to its high carcinogenic and 

toxic effect on the human body. Adsorption is one of the promising technology to treat arsenic-

contaminant water. Recently, natural adsorbent modified with metal oxide/hydroxide is being 

studied widely, because of its great removal efficiency, inexpensive and eco-friendly 

properties. 

In the present study, two low-cost adsorbents namely Aerocrete and Vermiculite (modified 

with iron oxy-hydroxide) were assessed for arsenic (both As(III) and As(V)) removal. The 

maximum removal of As(V) was ~99% at pH 6 for both adsorbents (3g/L). Optimum removal 

of As(III) was observed at a pH range of 6 to 8. Both Langmuir and Freundlich isotherms 

described the adsorption equilibrium data. A pseudo-second-order kinetic model fitted well 

with the experimentally obtained kinetic data. No significant effect on the adsorption of As(III) 

was observed in the presence of ions (i.e., Ca2+, Mg2+, Na+, HCO3
-, SO4

2-, or Cl-). Results 

showed that the proposed adsorbents (Aerocrete and Vermiculite) are promising in removing 

As(III) from the water.  
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Chapter 1  

1 Introduction 

The present research describes the performances of two modified adsorbents (Aerocrete 

and Vermiculite) in terms of Arsenic (As) removal. The research results show that both of 

these materials are very effective in As (As(III) and As(V)) removal from aqueous solution 

and low cost to produce. Response surface methodology (RSM) is used in this study for 

experimental design and process optimization. Especially RSM is used to measure the 

effect of the independent variables and their interaction with the response function.  Also, 

a fixed bed column is developed to study the practical applicability of the adsorbents 

(Aerocrete and Vermiculite) in continuous flow mode.  

This particular section discusses motivation and scope of the present research followed by 

objectives of the present research and its contribution towards the state of the art of As 

removal using adsorbents are presented. A general outline of the larger thesis is given at 

the end of this section. 

1.1 Background and Motivation  

Arsenic in drinking water is a serious health concern in many countries around the world.  

Approximately 226 million people from 105 countries and territories are exposed to As 

contamination [1]. Continuous exposure to As contaminated water can cause various health 

problems including cancer and birth complications. Long-term exposure to As causes lung, 

skin, kidney and bladder cancer, as well as skin pigmentation changes, skin thickening, 

neurological disorders (hyperkeratosis), nausea and loss of appetite [2,3] wherein short-

term exposure, people, could suffer abdominal pain, vomiting, and diarrhea [2]. There is 
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no effective treatment for diseases due to As contamination, and it is always recommended 

“prevention is better than cure” policy in As poising. The best solution to get rid of arsenic 

poisoning related problems is to provide arsenic free safe drinking water. However finding 

an arsenic free water source in As-contaminated areas is very difficult because it has been 

observed that arsenic safe groundwater sources get arsenic contamination after a few years 

(Michael and Voss, 2008). Therefore, the supply of centrally treated arsenic-free drinking 

water is always preferable but due to high installation cost, lack of infrastructure and 

maintenance, on-site treatment technologies are popular.  Many physicochemical 

techniques have been developed to remove As from water and wastewater. Conventional 

As removal technologies are oxidation[3,4], coagulation and flocculation [5,6], 

adsorption[7–9], ion-exchange[10,11], membrane filtration[12,13] etc. However, these 

methods have several disadvantages including slow or insufficient As removal, complex 

system, use of chemicals, pH adjustment, disposal of the residual As sludge and high 

operational and capital cost.        

WHO and US-EPA follow 10 ppb (0.01 mg/L) standard for As in drinking water, however 

many countries (e.g., China, Bangladesh, Mexico, Nepal) around the world still retained in 

the previous WHO guideline (0.05 mg/L)[9]. Most of the conventional As removal 

methods are highly effective with higher initial As concentration (> 100 mg/L) in water, 

but residual As concentration less than 0.05 mg/L is water quality standard for many 

counties. Therefore, a simple treatment method is required to remove As efficiently with 

low operational and capital cost. In addition, an effective As removal method should 

produce minimum sludge and simple design with low environmental impacts.   
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1.2 Scope of Research  

In groundwater, As concentrations have uncertain horizontal spatial distribution but 

provide a certain consistent vertical pattern, i.e. high As concertation (>50 ppb) rarely 

found near at deeper groundwater (>150 m below earth surface) [14,15]. Initially deep 

wells produce low As contaminated groundwater[16] but in long-term As 

leached/transported through soil with percolated water which eventually increases the As 

concentration in the deeper water sources [17,18].  Also, there is no effective treatment of 

As contamination except consumption of As free water, advancement of As removal 

technologies are necessary. The best solution to arsenic contamination problem is the use 

of treated surface water. Developing and maintain arsenic free surface water treatment 

system is expensive, time-consuming and investment intensive. Hence a sustainable, cost-

effective and less maintenance required method is essential for As removal from surface 

water. 

Among all conventional As removal techniques, adsorption is an effective and popular 

water treatment process due to its high removal capacity, low cost, simple in design and no 

chemical sludge [8,9,19]. Activated carbon[20], metal oxide/hydroxides (e.g., ferric-oxide-

hydroxide, aluminum oxides, titanium oxides, magnesium oxides, silicon oxides) [21] and 

ion exchange resins are mostly used adsorbents in water and wastewater treatment. 

Nowadays studies are more focused on developing low-cost adsorbents with high 

effectiveness (i.e., modified activated carbon, clay minerals, other synthetic and natural 

oxides, sand, agriculture, industrial waste and concrete materials) for As removal to 

establish a cost-effective treatment process, especially in developing countries [22]. The 

cement-based low-cost adsorbent obtained from concrete wastes have been noticed as an 
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effective adsorbent to remove arsenate, phosphate and borate anions lately [23]. Recently, 

the two newly developed concrete based adsorbent Aerocrete and Vermiculite have been 

showed effective removal of cadmium, copper and lead [24]. In this study, the effectiveness 

of two low-cost adsorbents (Aerocrate and Vermiculite modified with iron oxyhydroxide) 

in terms of As(V) and As (III) removal are examied. The primary objectives of the present 

work are presented in the following subsection. 

1.3 Research Objectives  

The main objective of this work is to develop a simple and effective treatment process to 

remove arsenic from aqueous solution using the low-cost adsorbent Vermiculite and 

Aerocrete. The following objectives are investigated: 

I. Optimize the response and experimental conditions in adsorption of As(V) using 

the central composite design (CCD) under response surface methodology.  

II. Analyze adsorption behavior of As(V) using two isotherm models: Langmuir and 

Freundlich adsorption isotherm. 

III. Investigate the removal efficiency of Arsenic As(III) varying pH, initial 

concentration of As(III), amount of adsorbent, contact time using two adsorbents: 

Aerocrate and Vermiculite. 

IV. Determine the adsorption isotherm parameters and kinetic parameters for As(III) 

adsorption. 

V. Develop a fixed bed filter column to assess the practical applicability of adsorbents 

regarding As removal.  
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1.4 Outline of the Thesis  

Chapter 2 provides a review of the literature related to As removal techniques with their 

advantages and disadvantages. As contamination and toxicity were also discussed in this 

chapter. The efficiency of two adsorbents namely Aerocrete and Vermiculite (modified 

with iron oxyhydroxide) in terms of As(V) removal from aqueous solution is discussed in 

chapter 3. Also the advantage of response surface method (RSM) and its applicability in 

adsorption study are shown in chapter 3. Removal of As(III) from aqueous solution using 

concrete-based adsorbents, i.e. Aerocrete and Vermiculite are discussed in chapter 4. 

Design details of a packed bed adsorption column also discussed in chapter 4. Conclusions 

and future works are given in chapter 5.  
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Chapter 2  

2 Literature Review 

As contamination and As removal technologies developed in the past are reviewed in this 

present chapter. The following section describes As contamination, and its toxic nature. 

Literature regarding As removal using adsorption technologies is reviewed subsequently. 

2.1 Arsenic Contamination and Its Toxicity  

Arsenic contamination in natural water is a worldwide concern due to its toxic and 

carcinogenic effect on human health. Many countries around the world namely USA, 

China, Chile, Bangladesh, Taiwan, Mexico, India are affected by arsenic poising [25]. 

Long-term exposure of arsenic contaminated water may cause skin lesions, cancer of the 

skin, liver lungs and kidney. The US-EPA (the United States Environmental Protection 

Agency) guideline for As in drinking water is 10 ppb from January 2001[9]. However, 

many developing countries follow the previous limit 50 ppb set by US-EPA because of 

unavailability of testing facilities for lower concentrations. 

Arsenic is the 20th most abundant element in earth crust reaches into the environment 

through natural process (weathering reactions, volcanic emission) and also by the 

anthropogenic activities (e.g., mining, combustion of fossil fuels, wood preservatives)[26]. 

Normally inorganic forms of As species are more toxic than organic forms to a living 

organism. The LD50 (oral) for inorganic As ranges from 15–293 mg (As) kg−1 bodyweight 

in rat[27].  Inorganic trivalent arsenite As(III) and pentavalent arsenate As(V), are the 

predominant forms of arsenic, mostly found in water [28]. 

As(V)  predominates in oxygen-rich surface water where As(III) is present in reducing 
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environments such as groundwater [7]. As(V) species are   AsO3-
4, HAsO2-

4, H2AsO-
4 while 

H3AsO3, H2AsO-
3, HAsO2-

3, and AsO3
3-  are the As(III)  species [9]. pH and redox potential 

are the important factors to determine the state of arsenic in water. In the pH range 4 to 10, 

As(V) is negatively charged where As(III) is neutral [29]. AsO3-
4, HAsO2-

4, H2AsO-
4. Some 

commonly found As compounds are given in Figure 2.1. Toxicity of Arsenite (trivalent 

oxidation state of As) is the highest among all arsenic compound. The quantity of As 

absorbed by a human body depends upon the form of As and exposure pathway.      

 

Figure 2.1 Few commonly found As compounds structure 

The gastrointestinal tract can absorb inorganic As if it is in food or water. However, 

absorption is easier if As is already dissolved. Therefore, As contamination in water is 

more detrimental than contamination in food [30]. Presence of Fe (III) with As has less 

toxic effects compared to Fe(II) with As [31].  The following section discusses the chemical 

properties of arsenic. Arsenic distribution around the world is discussed the following 

subsection.  
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2.2 Arsenic Distribution 

Arsenic is a ubiquitous metalloid, ranks 14th in seawater, 20th in natural abundance and 12th 

in the human body[27]. As was isolated in 1250 A.D., it has been using in different fields, 

i.e. metal enrichment, medical, agriculture, and electronics, etc. As concertation in 

seawater is less than 2 μg L-1 where As level varies in between 1-10 μg L-1 in contaminated 

surface and groundwater[27]. Also As concentration varies from 0.15- 0.45 μg L-1 in 

freshwater and the maximum concentration found in thermal water are 8.5 mg L-1 in 

Japan[27]. Table 2.1 summarized information regarding countries affected by As 

contamination around the world and maximum acceptable limits respectively.  In 1993, the 

World Health Organization (WHO) revised guidelines for As in drinking water from 50 μg 

L-1 to 10 μg L-1. As a result, most of the developed countries (i.e., Germany, Australia, 

France, USA, etc.) lowered As permissible limits, however, developed countries like 

Bangladesh and China have retained the previous WHO guideline of 50 μg L-1. The 

following section discussed the chemical properties of arsenic.  
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Table 2.1 Spatial distribution of Arsenic in different parts of the world and maximum 

permissible limits*  

Continent Location Arsenic Source 
Concentration 

(μg L-1) 

Maximum 

Permissible 

Limits (μg L-1) 

America 

Pampa, Cordoba, 

Argentina 
Groundwater  100-3810 50 

Chile Groundwater 470-770 50 

Lagunera, Mexico Well waters 8-624 50 

Peru Drinking water 500 50 

Northeastern Ohio, 

USA 
Natural Origin <1-100 10 

Western USA Drinking Water 1-48,000 10 

Europe 

Hungary Deep groundwater  1-174 10 

Romania 
Drinking water 

bores 
1-176 10 

South-West Finland 
Well water; Natural 

Origins  
17-980 10 

Asia 

Bangladesh Well Waters <10-1000> 50 

West Bengal, India 
Groundwater; soil 

sediments 
3-3700 10 

Nepal Drinking water 8-2660 50 

Hanoi, Vietnam 
Groundwater, soil 

sediments   
1-3050 10 

Xinjiang, PR China Well Water 0.05-850 50 

Inner Mongolia, 

China 

Drinking water; 

bores 
1-2400 50 

Ronpibool, Thailand 

Water 

contaminated by tin 

mining waste  

1-5000 10 

Fukuoka, Japan Natural origin 0.001-0.293 10 

Mekong river 

floodplain, 

Cambodia 

Groundwater 1-1340 10 

* Most of the information of this table obtained from V. Sharma and M. Sohn (2012)[32] 
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2.3 Chemistry of Arsenic  

Arsenic is a metalloid, commonly found as a compound with an atomic mass of 74.9 g/mol. 

In inorganic form, As exists in four oxidation states, i.e., arsenate (+V), arsenite (+III), 

arsenic (0) and arsine (-III).  As(III) and As(V) are the dominant forms of arsenic present 

in groundwater which is most commonly used for drinking purpose in developed 

countries[33].  pH and Redox potential (Eh) are significant factors control speciation of 

As(III) and As(V). The dissociation reactions and corresponding equilibrium constants of 

  

Figure 2.2 Dissociation of As(III) and As(V) 

As(III) and As(V) at various pH are shown in Figure 2.2. The dissociation constants of 

As(III) are pKa1= 9.22; pKa2=12.13; pKa3= 13.40 which means at pH 9.22 As(III) will be 

50% dissociated. Figure 2.3 describes the distribution of As(III) and As(V) as a function 

of pH[34]. Mostly As(III) exists as a neutral molecule at neutral and slightly acidic 

conditions where at pH>8 significant amount of anionic species can be found (Figure 2.3). 

In contrary As(V) is almost completely dissociated at a pH 6.96 and present in the form of 

50% monovalent and 50% divalent anion (Figure 2.3). 



11 

 

 

Figure 2.3 Distribution of arsenate (As (V)) and arsenite (As(III)) as a function of pH 

where α is a fraction of total concentration 

 

Figure 2.4 Eh-pH diagram of aqueous Arsenic speciation 

The combined effects of Redox potential (Eh) and pH on aqueous arsenic speciation and 

oxidation state shown in Figure 2.4. The amount of protonation is a significant factor in 
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governing the mobility of these chemical species of both As(V) and As(III). Generally, pH 

range of groundwater within 6 – 8 and Eh -0.05V to + 0.05 V. Under these conditions, 

As(III) is uncharged and in more reducing environments where As(V) under oxidizing 

conditions and negatively charged. The movement of As(V) is slow by electrostatic 

attraction to positively charged particles, such as iron hydroxides[35]. As a result, As(III) 

is more mobile than As(V) in groundwater. The difference in charge has significant effects 

on the removal of both the arsenic species (As(III) & As(V)) from aqueous solution, 

because neutral, uncharged molecules cannot be or are less effectively removed by most 

treatment methods[36]. As(III) can be oxidized to As(V) at low Eh-potential of 0.1-0.2 mV 

by using dissolved oxygen as an oxidant, but the oxidation of As(III) by oxygen is a very 

slow process and may convert only a small fraction. Hence, groundwater with high oxygen 

concentration may also contain some As(III) [36], and it is often found in stable association 

with the dissolved iron and manganese[37]. Presently available As removal technologies 

are discussed in the following section.          

2.4 Arsenic Removal Technologies 

There are many methods viz. adsorption, oxidation with precipitation, coagulation, ion-

exchange and membrane separation conventionally used for As removal from water.  

Advantages and disadvantages of the technologies developed for arsenic removal are 

discussed in Table 2.2.  

2.4.1 Coagulation and Flocculation 

One of the highly documented arsenic removal technique involved coagulation and 

flocculation using lime softening or metal salt. Coagulation is a separation process for 
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Table 2.2 Comparisons of Arsenic removal technologies [9] 

Process Advantages Disadvantages 

Oxidation and precipitation 

Air oxidation 

 

Relatively simple, slow process but cost-

effective; In-situ As removal is possible;  

Oxidized other organic and inorganic 

components present in the water  

Mostly effective for As(V) removal 

and stimulate the oxidation process 

 

 

Chemical 

oxidation 

Relatively faster and simple; produce less 

residual 

Kills microbes and oxidized other 

impurities    

pH needs to be controlled efficiently, 

and an oxidation step is needed    

Coagulation/electrocoagulation/co-precipitation 

Alum coagulation  

 

Relatively simple in operation and low 

capital cost 

Durable chemicals are available and 

effective for a wide range of pH 

Produces toxic residuals and As 

removal efficiency is relatively low 

Pre-oxidation is required some cases  

Iron coagulation 
Chemicals are available and efficient 

than alum coagulation  

Sedimentation and filtration are 

required 

Average As(III) removal efficiency   

Adsorption and ion-exchange methodology   

Activated carbon  

 

Relatively simple in operation with less 

operation and maintenance cost 

Commercially available and in-situ 

operation is possible 

Effectively remove As 

Replacement required after four or 

five regenerations  

Iron coated sand 
Cost effective; efficiently remove As(III) 

and As(V); regeneration does not require   
Produce toxic solid waste 

Ion-exchange resin 

Well defined medium and capacity; 

pH-independent and exclusively ion 

specific resin to remove As  

High-tech operation and 

maintenance and high-cost medium 

Reaeration creates toxic sludge; less 

removal of As(III)   

Membrane technologies 

Nanofiltration Removal efficiency is high 

High capital and maintaining cost, 

pre-conditioning; a larger amount of 

water  rejection 

Reverse osmosis  No toxic solid  
Very high operation and 

maintenance cost 
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removal of colloids by neutralizing the forces that keep them apart. Rapid mixing is 

required in this process. Flocculation is a physical process which promotes contact between 
destabilized particles and bind the particles into larger clumps. An anionic flocculant will 

react with a positively charged suspension, adsorbing on the particles and destabilized 

either by charge neutralization or bridging. Arsenic removal efficiency using this method 

significantly depends upon coagulant dosage, pH, initial As concentration and the valence 

of the arsenic species. Ferric salts are generally used as a coagulant. Karcher et al., 

(1999)[38] used ferric chloride and lime-poly ferric sulphate as the coagulants where Han 

et al., (2002)[39] applied ferric chloride and ferric sulphate as flocculants for removal of 

arsenic. Results showed that these coagulants were effective in As removal in the presence 

of ferric complexes. However, this method is not effective to reduce the As concertation 

below the acceptable limits. Also, safe separation, filtration, and disposal of As-

contaminated sludge are some drawbacks of this method.          

2.4.2 Membrane Filtration 

The principle of membrane filtration is to remove macromolecules in the size range 500-

500,000 nm using a pressure gradient across a selectively permeable membrane. Membrane 

filtration process can be divided into four categories: microfiltration(MF), 

ultrafiltration(UF), nanofiltration(NF) and reserves osmosis(RO). Among these four, RO 

and NF were mostly used for arsenic removal[40]. RO and NF can remove As(V) with 

rejection percentage over 95%, but they were not equally effective in removing As(III)[40]. 

However, it has been found that RO or NF method was equally effective regarding As(III) 

and As(V) removal if aromatic polyamide thin composite membranes are used and its 

solution pH independent[41]. But membrane separation process has a few drawbacks, i.e. 
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due to small pores of the membranes which make them more likely to foul.  Also, it has 

higher operational cost and needs experienced personnel to conduct the overall process.     

2.4.3 Ion Exchange   

In the ion exchange process, electrostatically held ions on the surface of solid are 

exchanged with similar charged ionic species in an aqueous solution. This is a reversible 

non-destructive process where the structure of the solid does not change permanently. This 

method generally used for potable water treatment, i.e., softening, iron, nitrate, and fluoride 

removal as well as ammonia, phosphate, nitrate and heavy metals removal from municipal 

waste water[42]. For arsenic removal, ion exchange resins were used with either chloride 

or hydroxide ions at exchange sites, is placed in one or more packed columns. The arsenic-

contaminated water is passed through the column and the arsenic “exchanges” for 

hydroxide or chloride ions. After some time the resin becomes saturated which means 

exchange sites that were loaded with chloride or hydroxide ions replaced by As. This event 

requires regeneration of ion exchange material which increases the operation and 

maintenance cost of the treatment facility.         

The efficiency of ion exchange process depends upon multiple factors, i.e., solution pH, 

total dissolved solids (TDS), the concentration of competing ions, redox potential, sulfate 

and nitrate concentration in the solution, and influent arsenic concentration[43]. Ion 

exchange for arsenic removal is only applicable for low sulfate (<120 mg/l) and low TDS 

source water[9]. Disposal of As rich brine (mixed of ion exchange resin and regenerate) is 

a major issue of this method.  
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2.4.4 Adsorption 

In arsenic removal, adsorption is used as a “front line of defense.” In this process, ions or 

molecules are removed by accumulating at the liquid or solid phase due to the participation 

of residual or unbalanced force. Adsorption can be categorized into two types: physical 

and chemical. Physical adsorption is driven by Vander Waal forces of attraction and 

electrostatic forces between adsorbate and adsorbent where chemical adsorption is caused 

by chemical attraction or chemical bond[42]. As adsorption is an exothermic process, 

therefore adsorption capacity depends upon temperature, pH, surface area of adsorbent and 

chemical properties of adsorbate[42]. The relationship between adsorption capacity of an 

adsorbent and amount of adsorbate adsorbed is studied by adsorption isotherms. Details 

about adsorption isotherms are discussed in the following sub-section.                 

2.4.4.1 Adsorption Isotherms 

The adsorption process generally expressed in a mathematical relationship between the 

amount of solute adsorbed onto the adsorbent and the equilibrium concentration of the 

adsorbate in a solution at a given temperature. Several mathematical models have been 

used for adsorption isotherms. However, the following four models were most commonly 

used in the past. 

2.4.4.1.1 Linear Isotherm Model 

Liner isotherm model is a single parameter model, conceptually represents a simple 

partitioning or adsorption process. The model is expressed as follows: 

e eq KC=             (2.1) 
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where qe is the amount of adsorbate adsorbed per unit weight of solid at equilibrium; K is 

the distribution coefficient, and Ce is equilibrium concentration of adsorbate remaining in 

the solution at equilibrium. This model is not effective over large adsorbate concentration 

range.  

2.4.4.1.2 Langmuir Model 

Langmuir is a two-parameter model. This model assumes there is no interaction 

between adsorbing solutes and adsorption energy is constant for all surface sites, 

independent of surface coverage. Also, it assumes that each adsorb site can hold one 

molecule of adsorbate (monolayer coverage). The mathematical representation of the 

Langmuir model is given below: 

1

e m
e

e

bc q
q

bc
=

+
        (2.2)  

where qe is amount of adsorbate adsorbed per unit weight of solid at equilibrium; ce is 

equilibrium concentration of adsorbate remaining in the solution at equilibrium, and qm is 

the maximum adsorption capacity per unit mass of adsorbent and b is the affinity of the 

active site 

2.4.4.1.3 Freundlich Isotherm  

This is an empirical and two-parameter model, widely used in isotherm study. This model 

allows for heterogeneous surface energies, i.e. different adsorption energy for different 

adsorption sites. Also, it assumes the frequency of sites associated with the higher free 

energy of adsorption decreases exponentially with an increase in the free energy. 

Freundlich isotherm can be expressed as follows: 
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1

n
e f eq k c=         (2.3) 

where qe is amount of adsorbate adsorbed per unit weight of solid; kf is a constant and 

indicator of adsorption capacity; ce is equilibrium concentration of adsorbate remaining in 

the solution at equilibrium and 1/n is a measure of the intensity of adsorption. Lower n 

value is more favorable for adsorption.  

2.4.4.1.4 Brunauer, Emmet, and Teller (BET) Isotherm  

BET isotherm model is similar like Langmuir model but more generalized multi-layer 

model. This model assumes that essentially condensation occurs in all layers except the 

first layer and these layers have equal energies. It also assumes that there is no 

transmigration in between layers and layers of different thickness can coexist. The BET 

model can be expressed as follows: 

     

( ) 1 ( 1)

m e
e

e
s e

s

q Bc
q

c
c c B

c

=
 

− + − 
 

        (2.4) 

where qe is amount of adsorbate adsorbed per unit weight of solid; ce is equilibrium 

concentration of adsorbate remaining in the solution at equilibrium; qm is the maximum 

adsorption capacity of a layer; B is dimensionless constant, relates to difference in free 

energy between adsorbate on first and successive layers and cs is saturation concentration 

of adsorbate in solution. When ce << cs and B>>1 BET isotherms approaches Langmuir 

isotherm. Graphical representations of linear, Langmuir, BET and Freundlich are given in 

Figure 2.5.      
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Figure 2.5 Commonly used adsorption isotherms 

 

2.5 Arsenic Removal Using Adsorption       

Adsorption of dissolved arsenic by adsorbents have been actively studied. Larger surface 

area, improved porosity, high adsorption capacity, and least waste generation make 

adsorption is an important remediation tool for arsenic removal. The appropriateness of 

adsorption based treatment for low skilled communities and developing countries arises 

due to its sludge free operation, cost-effectiveness and technical simplicity[44]. Generally, 

metal oxides/hydroxide, activated carbon, polymer resins or biological materials have been 

used as adsorbents. Iron has a high affinity for arsenic. Therefore arsenic removal using 

iron oxides is very popular[9].  Iron can remove As from aqueous solution either acting as 

a co-precipitant, adsorbent, contaminant-immobilizing agent or behaving as a 
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reductant[26]. Iron-based oxide, hydroxides, and oxyhydroxides including amorphous 

hydrous ferric oxide (FeO-OH), goethite (α-FeO-OH) and hematite (α-Fe2O3), are 

prominent adsorbents for removing both As(V) and As(III) from aqueous solution[9].  As 

adsorption depends upon system concertation, pH and surface area of adsorbents. 

Amorphous hydrous ferric oxide (FeO-OH) has the highest adsorption capacity because it 

has maximum surface area[9]. On the other side at low pH, As(V) can easily remove 

whereas for As(III), maximum adsorption can be obtained between pH 4 and 9[45]. 

However, iron-based treatment methods are more effective in removing arsenate, rather 

than the more toxic arsenite, and so it requires oxidation as a pre-treatment[4]. Raven et al. 

(1998) [46] studied the adsorption behavior of As(III) and As(V) using ferrihydrite 

[(Fe3+O3·0.5(H2O)]. As relatively high As concertation, As(III) reacted quickly compare 

to As(V) and adsorption was almost accomplished in few hours. The high As(III) 

adsorption happened because of ferrihydrite was transformed to a ferric arsenite phase and 

not easily adsorbed at the surface. Roberts et al. [47] conducted a study for As removal by 

oxidizing naturally present Fe(II) to Fe(III) using aeration.  Application of Fe(II) has an 

advantages over Fe(III) because it can partially be oxidized As(III). Also Fe(III) generated 

in this way have more adsorption capacity.      

Pena et al. (2005) [48] studied removal of As(III) and As(V) using nanocrystalline titanium 

dioxide (TiO2). TiO2 was very effective in terms of As(V) removal at pH<8 and highest 

amount of As(III) removal done at pH~7.5. The capacity of nanocrystalline TiO2 was 

higher for As(III) and As(V) removal compared to fumed TiO2 and granular ferric oxide. 

The main challenge was the presence of competing anion e.g. phosphate, silicate and 

carbonate in water. Removal of As(III) and As(V) was investigated using commercially 
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available TiO2 varying pH and initial adsorbate concentration[7].  The adsorption capacity 

of As(V) was higher compared to As(III) onto TiO2 at pH 4 while the adsorption capacity 

of As(III) increased at pH 9. The Langmuir and Freundlich isotherm equations interpreted 

the adsorption of arsenic using TiO2 suspensions. Apart from iron and TiO2, activated 

carbon is a good As adsorbent. Using activated carbon, adsorption capacity depends on 

adsorbate chemical properties, activated carbon properties, pH, temperature, ionic strength, 

etc. Eguez and Cho (1987) [49] examined adsorption of As(V) and As(III) using activated 

charcoal as an adsorbent. The capacity of As(III) adsorption on activated carbon was 

constant at pH 0.16–3.5. However, for As(V), maximum adsorption was established at pH 

2.35 over the pH range of 0.86–6.33.  
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Chapter 3  

3 As(V) Removal using Aerocrete and Vermiculite  

Based on: Mrinmoyee Mondal, Pankaj Chowdhury, Ajay K Ray, Binay K. Dutta “Removal 

of As(V) using two different low-cost adsorbents Aerocrete and Vermiculite modified with 

iron oxy-hydroxide: a central composite design approach” (manuscript under 

preparation).  

This chapter discusses the effectiveness of two low-cost adsorbents (Aerocrate and 

Vermiculite modified with iron oxyhydroxide) in terms of As(V) removal. These 

adsorbents were provided by the National Research Tomsk Polytechnic University, Tomsk, 

Russia. Aerocrete and Vermiculite have the high removal capacity of copper, lead, and 

cadmium with the advantages such as lower cost, producing no sludge and disposable in a 

landfill [24]. Therefore, we would like to investigate the performance of these two 

adsorbents in As(V) removal. Central composite design under response surface 

methodology is applied to optimize the experimental parameters (i.e., pH, adsorbent dose, 

initial As(V) concentration). The details of these adsorbents are given in the materials and 

methods section.  

Response surface methodology (RSM) is a convenient statistical tool broadly used for 

experimental design and process optimization to build an empirical model[50]. The 

influence of operating conditions on response function can be determined by RSM. The 

first step of RSM is to select an experimental design which will determine the required 

experiments, need to be performed in a  certain experimental region. Generally, factorial 

design is used when the data set represents linear response function, and three-level 
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factorial, central composite design or Box-Behnken are applied for quadratic response 

function in the presence of curvature.  Central composite design (CCD) under RSM is the 

most common approach which fits the quadratic model to define the relationship between 

the response and factors and optimize the response using a minimum number of 

experiments [50,51]. It is a useful method to determine the individual and interactive effect 

of the variables on the response function.   

In this study, the face-centered central composite design has been used to build a regression 

model of As(V) adsorption by varying three independent variables, i.e. adsorbent dosage 

(g/L), initial pH, the initial concentration of metal ion (mg/L) in a certain range. The 

following section provides details about materials and methods followed in this study 

followed by result and discussions.  

3.1 Materials and Methods: 

3.1.1 Chemicals and Solutions:  

As(V) stock solution of 1000 mg/L concentration was prepared by dissolving 4.16 g of 

Sodium salt of arsenic acid, Sodium arsenate dibasic heptahydrate ( 98% purity, Sigma 

Aldrich, Canada) in 1L of ultra-pure water ( 18.2 M ) obtained with a Milli-Q water 

purification system (Thermo Scientific, BarnsteadTM EasypureTM RODi). Working 

standard solutions were prepared from stock solution by further dilution. Analytical grade 

reagents were used without further purification. Nitric acid (HNO3; 68%) were obtained 

from VWR International (Mississauga, Ontario, Canada).  
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3.1.2 Preparation of Adsorbent  

The adsorbent, Aerocrete and Vermiculite (>99% purity) were provided by the National 

Research Tomsk Polytechnic University, Tomsk, Russia. The molecular composition is 

given by Table 3.1 [24]. Cellular concrete materials were crushed in an agate mortar and 

screened at sieves with 1.5 - and 2.5 mm openings. The fraction from 1.5 to 2.5 mm was 

used in the supported adsorbent preparation by soaking in the ferric chloride (RusKhlor 

Association, Russia) aqueous solution with the subsequent addition of the 0.5-M aqueous 

solution of sodium hydroxide (JSC KhimProm, Russia) at 50 °C. The adsorbents were 

rinsed with distilled water until pH 6.5 to 7.2 and dried at 140 °C. 

Table 3.1 Chemical properties of Aerocrete and Vermiculite  

The adsorbents are farther crashed with a mortar pestle, and the average particle size are 

31 nm for Aerocrete and 36 nm for Vermiculite. 

3.2 Batch Adsorption Experiments  

The batch experiments were carried out with a series of 50 ml Erlenmeyer flasks containing 

Aerocrete Vermiculite 

Component Weight percentage (%) Component Weight percentage (%) 

3СаО·Al2O3 3-6 K2O 5-8 

3CaO·SiO2 22-30 Fe2O3 5-9 

2CaO·SiO2 8-2 Al2O3 12-18 

Al3O3 2-3 MgO 20-24 

SiO2 60-65 SiO2 38-49 

Al, TiO2, MgO, 

K2O, NaOH, CO2 

and H2O 

----- 

TiO2 1-2 

CaO 0.7-1.5 

MnO, FeO, 

Na2O, 

Cr2O3, CO2 

and H2O 

----- 
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As(V) solution and a required amount of adsorbent and were agitated at 220 rpm with a 

mechanical shaker at room temperature 24 ±1º C for 4 hours.  At the end of the equilibrium 

period, 10 ml of the samples were filtered through 0.45 µm filter, and concentration of 

As(V) was measured by inductively coupled plasma-optical emission spectrometer (Varian 

Vista Pro ICP-OES, Model- AXIAL, ID-14531). The Initial pH was adjusted to the desired 

value by adding 0.1M of HNO3 and/or 0.1 M NaOH solutions.  

The amount of As(V) adsorbed ( eq in mg/g), and the percentage removal (%) were 

calculated by the expression: 

( )0 e

e

c c V
q

m

−
=         (3.1) 

 Removal 
0

(%) (1 ) 100ec

c
= −                     (3.2)  

where c0 and ce  are the initial and equilibrium concentrations of As(V) in solution (mg/L), 

V is the volume of solution (L), and m is mass of the adsorbent (g).  

3.3 Experimental design and statistical analysis 

A 23 central composite face-centered design was employed to determine the effect of major 

operating factors on arsenic removal and to find the combined effect of factors in maximum 

arsenic removal efficiency. Usually, adsorption of As(V) is dependent on various factors 

such as metal the initial As (V) concentration, pH of the solution, amount of adsorbent, 

temperature and time, etc [52]. In this study adsorbent dosage (x1), initial pH (x2) and initial 

concentration of arsenic (x3) are selected to find the optimum condition for maximum 

removal of arsenic. The adsorption equilibrium time (4 hours) is fixed by some initial 
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experiments and temperature (24 ±1º C) is used as room temperature. The three 

independent factors were studied at three different levels, coded -1, 0, +1 for low, middle 

and high respectively as presented in Table 3.2. Since different variables are expressed in 

different units and different range, so the independent variables need to be coded to 

compare the significance of their effect on response. 

Table 3.2 Independent factors and their coded levels for the experimental design 

Coded 
1X  2X  3X  

level Adsorbent dosage (g/L)  

(x1) 

pH  

(x2) 

Initial As concentration (mg/L) 

(x3) 

1−  0.5  6  12  

0  2  7  22  

1+  3.5  8  32  

The experiment for center point was carried out six times to estimate the errors. The 

relation between real values ix and coded values iX  is given by the equation: 

0i
i

i

x x
X

x

−
=


        (3.3) 

where ix  is the real value of the ith independent variable, 0x  is the real value of the same 

independent variable at the center point and ix  is the step change. The mathematical 

relationship between the response Y (percentage removal of As(V) ) and the variables 1X ,

2X and 3X  can be explained by the empirical second order polynomial equation:  
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2 2 2

0 1 1 2 2 3 3 11 1 22 2 33 3 12 1 2 13 1 3 23 2 3 Y b b X b X b X b X b X b X b X X b X X b X X= + + + + + + + + +   (3.4) 

where, b0 is the model constant coefficient, the linear effects of the factor, bii is the 

quadratic effects and bij is the two-way interaction effects for i=1,2,3. The software Minitab 

17 was used to determine the coefficients for fitting the mathematical model. The optimum 

values of the factors were obtained by solving the regression equations and analyzing the 

response plot. The validity of the model was analyzed by student’s t-test, p-value, F-value, 

correlation coefficient ( 2R ). 

3.4 Results and Discussion 

3.4.1 Textural Properties 

Surface area and pore size of adsorbent are important information to understand the 

adsorption mechanism. The Brunauer-Emmett-Teller (BET) method of nitrogen thermal 

adsorption-desorption was used to determine the value of adsorbent surface properties 

using Tristar II 3020, Micromeritics Instrument Corporation (V1.03). The physicochemical 

properties including BET surface area, pore volume, pore size is given by Table 3.3 for 

Aerocrete and Vermiculite modified by iron oxyhydroxide. Type IV isotherm and a type-

H2 hysteresis loop were observed from the N2 adsorption-desorption isotherm of the sample 

Aerocrete (Figure 3.1). BET surface area and pore volumes are 193 m2/g and 0.3 cm3/g for 

Aerocrete and 16 m2/g ,0.3 cm3/g for Vermiculite respectively.  
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Table 3.3 Textural properties of Aerocrete and Vermiculite 

 

Figure 3.1 N2 adsorption-desorption isotherm for (a) Aerocrete and (b) Vermiculite 

Adsorbent  BET surface area 

(m²/g) 

BJH pore volume 

(cm³/g) 

BJH Pore size 

(nm) 

Average Particle 

Size (nm) 

Aerocrete 193  0.28  4.9  31.1 

Vermiculite 168 0.28 5.5 35.7 
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3.4.2 Regression Model and Statistical Analysis 

A quadratic model was used, to determine the relationship between the response variable 

and the independent factors. Using the experimental data, the final model of As(V) 

adsorption over Aerocrete and Vermiculite modified with iron-hydroxide was described 

by:  

2 2 2

1 2 3 1 2 3 1 2 1 3 2 379.23 30.46 2.40 9.77 17.32 0.88 1.94 0.53 4.23 1.01AerocreteY X X X X X X X X X X X X= + − − − + + + + −

               (3.5) 

and 

2 2 2

1 2 3 1 2 3 1 2 1 3 2 375.86 37.26 2.38 12.18 19.68 0.37 1.70 0.48 3.66 0.13VermiculiteY X X X X X X X X X X X X= + − − − + + + + −  

    (3.6) 

where Y is the response (percentage removal of As(V)), X1, X2, and X3 are coded values 

of adsorbent dosage, pH, initial As(V) concentration respectively. The significance of the 

quadratic model and each coefficient in the model were tested by the value of F, p and R2, 

and Table 3.4 (for Aerocrete) and Table 3.5 (for Vermiculite) showed the ANOVA for the 

model equation. The model F-value (99.18 for Aerocrete, 80.35 for Vermiculite) and very 

low p-value (0.000<0.05) indicate that the model is statistically significant at 95% 

confidence level. In both cases, the lack of fit is insignificant, which implied that the 

quadratic model is valid. The coefficient of determinations (R2) are 0.9890 and 0.9864 

indicates the model is reliable on the removal of As(V) onto the two adsorbent. All the p-

values of X1, X3, X1X3, X1
2 are less than 0.05, which indicates that these variables are 

statistically significant. Hence, neglecting the higher order statistically insignificant term 

the model for Aerocrete and Vermiculite can be described as  

2

1 2 3 1 1 379.23 30.46 2.40 9.77 17.32 4.23AerocreteY X X X X X X= + − − − +     (5a) 

2

1 2 3 1 1 375.86 37.26 2.38 12.18 19.68 3.66VermiculiteY X X X X X X= + − − − +       (6a) 
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Table 3.6 showed that experimental and model predicted values of As(V) removal were is 

reasonable agreement. The correlation coefficients (R2) between the experimental and 

model predicted values were obtained as 0.989 and 0.986 as shown in Figure 3.2.  

It is clear from the model coefficient that adsorbent dosage has highest first order as well 

as second-order effect on the removal of As(V) for both the adsorbent. The first order main 

effects of initial concentration are highly significant as compared to its quadratic effect 

(Table 3.4 & Table 3.5). 

Table 3.4 Analysis of variance (ANOVA) of As(V) removal efficiency (%) using 

Aerocrete 

Source Sum of 

squares 

Degrees 

of 

freedom 

Mean 

square 

F-value p-value 

Model 11690.5 9 1298.95 99.18 0.000 

1X  9277.1 1 9277.1 708.38 0.000 

2X  57.4 1 57.4 4.38 0.063 

3X  953.7 1 953.7 72.82 0.000 

1 2X X  2.3 1 2.3 0.17 0.687 

1 3X X  143.2 1 143.2 10.93 0.008 

2 3X X  8.2 1 8.2 0.63 0.447 

2

1X  827.6 1 827.6 63.2 0.000 

2

2X  2 1 2 0.15 0.705 

2

3X  10.1 1 10.1 0.77 0.401 

Residual    131.0 10 13.10   

Lack of fit 103.8 5 20.76 3.82 0.084 

Pure error 27.2 5 5.44   

Total 11821.5 19    

R2= 0.98 Adjusted R2= 0.97 Predicted R2= 0.97 



31 

 

Table 3.5 Analysis of variance (ANOVA) of As(V) removal efficiency (%) using 

vermiculite 

Source Sum of 

squares 

Degrees 

of 

freedom 

Mean 

square 

F-value p-value 

Model 17730.8 9 1970.1 80.35 0.000 

1X  13882.4 1 13882.4 

 

566.20 0.000 

2X  56.4 1 56.4 

 

2.30 0.160 

3X  1483.3 1 1483.3 60.50 0.000 

1 2X X  1.9 1 1.9 0.08 0.788 

1 3X X  106.9 1 106.9 4.36 0.049 

2 3X X  0.1 1 0.1 0.01 0.940 

2

1X  1065.3 1 1065.3 43.45 0.000 

2

2X  0.4 1 0.4 0.02 0.905 

2

3X  8 1 8 0.32 0.582 

Residual 245.2 10 24   

Lack of fit 179.9 5 36 2.76 0.145 

Pure error 65.3 5 13.1   

Total 17976 19    

R2= 0.98 Adjusted R2= 0.97 Predicted R2= 0.90 
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Table 3.6 Design matrix for the central composite design: experimental conditions in terms 

of coded units and responses. 

No. of 

Experiment 

Run 

 

Adsorbent 

dosage 

(g/L) 

pH Initial As 

concentration 

(mg/L) 

Removal of As (V) (%) 

Aerocrete Vermiculite 

Observed Predicted Observed Predicted 

1 2 -1 -1 -1 50.62 50.18 34.65 34.45 

2 7 1 -1 -1 99.00 101.5 98.25 102.6 

3 12 -1 1 -1 45.10 46.35 30.11 30.93 

4 17 1 1 -1 98.43 99.86 97.94 97.17 

5 8 -1 -1 1 25.99 24.21 2.97 3.04 

6 3 1 -1 1 93.58 92.53 87.35 85.84 

7 9 -1 1 1 19.26 16.33 4.06 -1.01 

8 5 1 1 1 86.68 86.77 80.34 79.86 

9 16 -1 0 0 27.06 31.50 14.55 18.92 

10 10 1 0 0 95.48 92.42 95.05 93.44 

11 18 0 -1 0 81.86 82.56 80.61 77.87 

12 15 0 1 0 77.08 77.77 67.62 73.12 

13 1 0 0 -1 95.26 90.99 90.56 86.34 

14 11 0 0 1 65.80 71.46 55.00 61.98 

15 14 0 0 0 76.26 79.31 75.75 75.86 

16 6 0 0 0 79.36 79.31 84.09 75.86 

17 13 0 0 0 78.26 79.31 74.93 75.86 

18 4 0 0 0 79.80 79.31 74.56 75.86 

19 19 0 0 0 82.69 79.31 75.62 75.86 

20 20 0 0 0 81.62 79.31 75.75 75.86 
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Figure 3.2 Predicted values vs. experimentally observed values of As(V) removal using 

(a) Aerocrete and (b) Vermiculite 

3.4.3 Verification of Optimum Prediction by the Model 

Triplicate experiment was performed under the optimal conditions, predicted by the model 

to verify the response surface prediction. The maximum percent removals of As(V) from 

the experiment were found to be 99.96% (Aerocrete)and 98.95% (Vermiculite) for two 

different adsorbents which were comparable with the values obtained by the model (Table 
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3.7). 3.1g/L of Aerocrete and 3.3 g/L of Vermiculite, the initial concentration of 12 mg/L 

at solution pH 6 were found as optimum conditions to get the maximum removal of As(V). 

Four experiments within the range but different from the face-centered response design 

point were carried out to test the reliability of the response model. Table 3.8 shows a good 

agreement between the response function prediction and experimental results. 

Table 3.7 Verification of the model predicted optimum conditions 

Optimum 

pH 

Initial As(V) 

concentration (mg/L) 

Adsorbent  Adsorbent 

dosage 

(g/L) 

Removal of As(V) (%) 

Model 

predicted value 

Experimental 

value 

 

6 

 

12 

Aerocrete 3.1 102.7 99.96 

Vermiculite 3.3 102.9 98.95 

Table 3.8 Comparison of model predicted values and experimental values of As (V) 

removal in different experimental conditions 

Adsorbent Initial As(V) 

concentration (mg/L) 

pH Adsorbent 

dosage 

(g/L) 

Removal of As(V) (%) 

Model 

predicted value 

Experimental 

value 

 

Aerocrete 

17 7 0.5 38.91 35.25 

12 6 3 102.91 99.85 

Vermiculite 
17 7 0.5 26.41 29.35 

12 6 3 102.12 98.65 

3.4.4 Effect of Independent Factors on As(v) Removal (%)   

The contour plots (Figure 3.3) describe the combined effect of independent variables on 

As(V) removal onto two different adsorbents. The figure are reprasented as a function of 

two factors holding the other factor at the center level.  
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3.4.4.1 Effect of Adsorbent Dosage  

In this study, the effect of adsorbent dosage is found to be highest on the removal of As(V) 

as shown in ANOVA results (Table 3.4 and Table 3.5). It shows the linear and quadratic 

effect on the removal of As(V) which are highly significant (p<0.0001). The removal of 

As(V) increased from 40% to 80% when the adsorbent dosage increased from 0.5 to 2g/L 

(Aerocrete) and 0.5 to 2.75g/L (Vermiculite) for all initial concentration of As(V) and pH 

within the range. The maximum As(V) removal (99% and 95%) are obtained at adsorbent 

dosage 3.5g/L when the initial As(V) concentration and pH are at a low level for both 

adsorbent Aerocrete and Vermiculite (Figure 3.3 a, b, d and e). The combined effects of 

adsorbent dosage and initial concentration were highly significant (p<0.0001).  Availability 

of higher surface area at the higher mass of adsorbent might be the reason for the increase 

of percentage removal of the metal ion with an increase in adsorbent dosage.      

3.4.4.2 Effect of Initial pH 

From the ANOVA table, the main effects of pH and the combined effects of pH with two 

other factors are not statistically significant for two adsorbents. It might be due to the small 

range of pH (6 to 8). From the Figure 3.3(b) and Figure 3.3(e), the As(V) removal at any 

pH using Aerocrete and Vermiculite, almost same for all fixed adsorbent dosage when 

initial As(V) concentration is 22 mg/L, although the lower pH shows better removal (95%) 

of As(V). Figure 3.3c and Figure 3.3f shows that the removal of As(V) decreased with 

increasing pH. It can be concluded that the natural pH range does not influence the removal 

of As(V) significantly when adsorbent dosage and metal ion concentration are fixed for 

both the adsorbent. In the pH range 6 to 8, H2AsO-
4 and HAsO2-

4 are the predominant 

species of As(V), the electrostatic forces between negatively charged As(V) species and 
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the usually positively charged adsorbent surface might be the reason for better removal of 

As(V) in natural pH range. 

 

Figure 3.3 (a-c): Contour plot for combine effect Adsorbent dosage and initial As(V) 

concentration (b) pH and adsorbent dosage (c) initial As(V) concentration and pH for 

As(V) removal on Aerocrete. (d-f): Same for Vermiculite   

3.4.4.3 Effect of Initial As(V) Concentration 

The main effect of initial As(V) concentration and combined effect with adsorbent dosage 

were highly significant on As(V) removal for both the adsorbent according to the ANOVA 
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table (Table 3.4 and Table 3.5). It is obvious that the percentage removal of As(V) 

decreases gradually with the increase in initial As(V) concentration (Figure 3.3 a, d, c, f). 

The maximum removal was obtained at the minimum initial As(V) concentration. As(V) 

removal decreases for a fixed adsorbent dosage at high initial metal ion concentration due 

to the decreased number of available active sites on the adsorbent surface[50]. 

3.4.5 Adsorption Isotherm  

Adsorption isotherm is an equilibrium relation between the amount of adsorbed per unit 

mass of adsorbent and the concentration of adsorbate at a constant temperature (Fig 3.4). 

In this study, the Langmuir and Freundlich isotherm model is used to describe the 

adsorption mechanism. The As(V) concentration is 12 mg/L, and the adsorbent dosage 

varies from 0.5-3.5 g/L at pH 6 when the temperature (24 ±1º C) and contact time remained 

constant.  

The Langmuir isotherm based on the assumptions of monolayer adsorption with the 

uniform active site on the surface can be expressed by the linearized form as: 

1 1 1 1

e m m eq q bq c

 
= +  

 
               (3.7) 

And the Freundlich isotherm involves heterogeneous adsorbent surface with multilayer 

distribution of adsorbate were described as: 

( )
1

ln ln lne f eq k c
n

= +                    (3.8) 

where eq  is the amount of As(V) adsorbed per unit mass of adsorbent (mg/g), ec  is the 

equilibrium concentration of As(V) (mg/L), mq  is the maximum adsorption capacity and 

b  is the affinity of the active site (L/mg) for Langmuir adsorption whereas fk  (mg/g) and 
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n is the Freundlich constant represented as the adsorption capacity and adsorption 

intensity. Plot 
1

eq
 vs. 

0

1

c
 for Langmuir and ln eq vs.  ln ec for Freundlich are drawn to 

evaluate the isotherm parameters and regression coefficient ( 2R )  respectively (Figure 3.5 

and Figure 3.6). 

 

Figure 3.4 Adsorption Isotherm of As(V) on Aerocrete and Vermiculite  
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Figure 3.5 Langmuir adsorption isotherm for two different adsorbents (a) Aerocrete (b) 

Vermiculite 

 

Figure 3.6 Freundlich adsorption isotherm for two different adsorbents (a) Aerocrete (b) 

Vermiculite 
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Results from the Table 3.9 indicates the adsorption data fitted the Langmuir model 

reasonably well (R2 =0.95 and R2 =0.91), but Freundlich isotherm model shows better 

adsorption for both the adsorbent Aerocrete (R2 =0.99) and Vermiculite (R2 =0.99). The 

higher value of n  for both adsorbents suggests Freundlich adsorption is favorable. 

Furthermore, the maximum adsorption capacity of As(V) was 10 mg/g and 9.1 mg/g by 

Aerocrete and Vermiculite respectively. The dimensionless equilibrium parameter LR is 

determined to explain whether the Langmuir adsorption is favored or not. The expression 

for is given by: 

( )0

1

1
LR

bc
=

+
         (3.9)  

Where 0c is the initial arsenic concentration (mg/L), and b is the Langmuir constant (Table 

3.8). Adsorption is favorable when 1LR  , unfavorable when 1LR  , liner for 1LR =  and 

irreversible if 0LR = [53].  

In this study for initial As(V) concentration 12 mg/L the value of LR was 0.01 and 0.02 

indicating that adsorption is favorable but the values were close to zero implies adsorption 

was irreversible.  

Table 3.9 Isotherm parameters of As(V) adsorption using Aerocrete and Vermiculite at pH 

6 

 Langmuir Freundlich 

Adsorbent 
mq  b  2R  fk  n  2R  

Aerocrete 10 5 0.95 6.42 3.3 0.99 

Vermiculite 9.1 3.7 0.91 7.1 3.1 0.99 
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3.5 Conclusions 

As(V) adsorption on modified Aerocrete and Vermiculite is measured successfully. Both 

the adsorbent have higher adsorption capacity. The main effects of adsorbent dosage and 

initial As(V) are highly significant where pH effect is not statistically significant within 

their range (at 95% confidence level) for both adsorbents. Maximum removal 99.96% 

(Aerocrete) and 98.95% (Vermiculite) and the optimum conditions are presented below: 

adsorbent dosage 3.1g/L (Aerocrete) and 3.3 g/L (Vermiculite), pH 6, initial As(V) 

concentration 12 mg/L. Langmuir and Freundlich isotherm model is fitted well with the 

adsorption data for both adsorbents which states the existence of different active site of the 

adsorbents.  
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Chapter 4  

4 Removal of As(III) Using Concrete-Based Adsorbents 

Based on: Mrinmoyee Mondal, Kyriakos Manoli, Ajay K Ray, Binay K. Dutta “Removal 

of arsenic(III) from aqueous solution by concrete-based adsorbents” (manuscript 

submitted).  

This chapter discusses the adsorption efficiency of As(III) onto two concrete-based 

low-cost materials, i.e., Aerocrete and Vermiculite impregnated by ferric oxyhydroxide. 

The presence of heavy metals, which are the main group of inorganic pollutants, in the 

aquatic environment, is a global environmental concern due to their toxicity and abundance 

[54]. Arsenic is a ubiquitous heavy metal (e.g., more than 245 minerals contain As) that 

occurs naturally in Earth’s crust [27]. Arsenic pollution in natural waters has become a 

serious global concern due to the toxic and carcinogenic effect on the human body. Long-

term exposure to arsenic-contaminated water causes keratosis, hyperpigmentation, anemia, 

liver fibrosis, lung cancer, skin cancer, and neurological disorder [55,56]. Millions of 

people around the world in both developed and developing countries are at risk of arsenic 

poisoning [9]. Not only natural but also anthropogenic activities are responsible for 

introducing arsenic to the environment. For example, soil erosion, volcanic activity, and 

mineral leaching are some of the natural processes introduce arsenic to water [57]. Mining, 

fossil fuel combustion, industrial activities, agriculture applications, smelting and 

landfilling are some examples of anthropogenic activities which release arsenic to the 

environment [58]. Arsenic concentrations in groundwater, surface waters, and thermal 

water vary from µg/L to mg/L [25,27]. 
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Several oxidation states (-3, 0, +3, and +5) of arsenic can be found in nature. Two 

inorganic forms of arsenic, i.e., arsenite (As(III)) and arsenate (As(V)), are more common 

in natural waters [59]. Both As(III) and As(V) are hazardous, but As(III) is 60 times more 

toxic than As(V) [60]. Due to its high toxicity, the United States Environmental Protection 

Agency (USEPA) and European Union reduced the standard for arsenic concentration in 

drinking water from 50 µg/L to 10 µg/L [35,61]. As(III) is found as H3AsO3, H2AsO-
3, 

HAsO2-
3, and AsO3

3- in the groundwater. Uncharged H3AsO3 is the predominant species 

under reducing condition at pH less than 9.2 [35]. Therefore, removal of As(III) is difficult 

compared to As(V) at natural pH range. As(III) is more toxic, mobile and soluble in water 

[62], thus it is necessary and important to develop a technology to remove As(III) from 

water. This study deals with the removal of As(III) from water by adsorption.  

Various technologies such as coagulation, precipitation, ion exchange, oxidation, 

adsorption, and membrane separation have been applied to remove arsenic from water and 

wastewater [21,32,56,58]. Among those, adsorption is one of the most popular water-

treatment processes due to its simple design, high removal capacity, low operational cost 

and low environmental impacts [63]. Various adsorbents such as activated alumina [64], 

activated carbon [65], metal oxides/hydroxides including ferric oxide-hydroxide, 

aluminum oxides, titanium oxides, magnesium oxides, and silicon oxides have been 

studied for the removal of arsenic from water [66]. Some of these materials have 

unsatisfactory removal capacity for As(III) or high cost for unising in developing countries. 

Hence, the development and use of low-cost natural adsorbents with high effectiveness are 

getting more attention. Many materials have been tested as a low-cost adsorbent such as 

agriculture products [67], industrial wastes, concrete wastes [23], red mud [57], clay 
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minerals [68], fly ash [69], and  Portland cement [70]. Ferric oxides and hydroxides exhibit 

high affinity towards both As(III) and As(V) species [71]. Several studies showed that 

ferric impregnated materials like activated carbon, sand, alumina, polymeric materials, and 

concrete could effectively remove arsenic from aqueous solution [58,71]. Most of the 

studies above focused on the development of the adsorbent and the adsorption isotherms 

and kinetics, and limited work has been done so far on the effect of ions usually present in 

drinking water, surface waters, groundwater and wastewater on the removal of heavy 

metals by adsorption.  

The present study investigates the adsorption of As(III) in the water on two ferric 

infused materials, i.e. Aerocrete and Vermiculite. Aerocrete is an aerated autoclaved light 

concrete belongs to the group of cellular concrete, which is widely used in construction 

work. Cellular concrete contains a porous structure with a large surface area. [72]. 

Vermiculite is another cheap and readily available concrete-based adsorbent found in North 

America, Russia, India, and South Africa [73]. This material exhibited satisfactory 

adsorption properties in the removal of heavy metals such as Ba, Cd, Co, Cr, Mn, Ni, Pb, 

Zn and As [74]. Recently, two iron-based adsorbents were synthesized, i.e. aerated 

autoclaved light concrete modified with ferric oxyhydroxide, and Vermiculite concrete 

modified with ferric oxyhydroxide [24]. These materials showed effective adsorption 

capacity for  Cd, Cu, Pb and As(V) [24]. 

In this study, the removal of As(III) in aqueous solution by adsorption on aerated 

autoclaved light concrete modified with ferric oxyhydroxide (Aerocrete hereafter), and 

Vermiculite concrete modified with ferric oxyhydroxide (Vermiculite hereafter) was 

investigated, and compared with common adsorbents such as titanium dioxide (TiO2) and 
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silicon dioxide (SiO2). The objectives of the present work are to: (i) assess the effect of pH 

on the adsorption of As(III), (ii) determine adsorption isotherm parameters, (iii) evaluate 

the effect of initial concentration of As(III) and contact time, (iv) determine adsorption 

kinetic parameters, and (v) investigate the effect of anions (Cl–, SO4
2–

 and HCO3
–), 

monovalent cation (Na+), and divalent cations (Ca2+ and Mg2+) on the removal of As(III) 

by adsorption on Aerocrete and Vermiculite.  

4.1 Materials and Methods 

4.1.1 Chemicals 

ReagentPlus grade arsenite salt sodium arsenite (≥98.0% purity), sodium chloride 

(≥99.5% purity), magnesium chloride hexahydrate (≥99.0% purity) and TiO2 (Aeroxide 

P25) were purchased from Sigma Aldrich, Canada. Reagent grade sodium sulfate, calcium 

chloride, sodium bicarbonate were bought from Caledon Laboratory Chemicals 

(Georgetown, Ontario Canada). 12 ml (16×100 mm) polypropylene test tube and 0.45 µm 

polypropylene filters and 68% concentrated pure nitric acid obtained from VWR 

International (Mississauga, Ontario, Canada). As(III) solutions were prepared by 

dissolving Sodium arsenite in doubly distilled water passed through 18.2 MΩ water 

purification system (Thermo Scientific, BarnsteadTM EasypureTM RODi) (Milli-Q 

water).  Cacl3, Mgcl2, Na2SO4, NaHCO3, and NaCl were used to prepare aqueous solutions 

of Ca2+, Mg2+, SO4
2-, HCO3−, Na+, and Cl- in Milli-Q water, respectively. Analytical grade 

reagents were used without further purification. 

The adsorbents, Aerocrete and Vermiculite (≥99.0% purity)  were provided by the 

National Research Tomsk Polytechnic University, Tomsk, Russia. The adsorbents were 
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further crashed with a mortar pestle. The characteristics (i.e. surface area and particle size) 

of the adsorbents (i.e. Aerocrete, Vermiculite, TiO2 and SiO2) used in the study are 

presented in Table 4.1. 

Table 4.1 Characteristics of Adsorbents 

Adsorbent Surface area 

(m2/g) 

Particle size (nm) Pore volume 

(cm3/g) 

Aerocrete 193 31 0.28 

Vermiculite 168 36 0.28 

TiO2 35-65 21 - 

SiO2 480 250000-500000 0.75 

 

4.1.2 Batch Adsorption Experiments  

The batch experiments were performed in Erlenmeyer flasks containing 50 ml 

As(III) solution and a desired amount of adsorbent (in Milli-Q water), agitated at 220 rpm 

using a mechanical shaker (MaxQ 4000, the Barnstead|Lab-line) at room temperature (i.e. 

24±1º C). Samples (10 ml) taken at different contact times were filtered through 0.45 µm 

to remove the adsorbent and then analyzed for As(III). The initial pH of the solution was 

adjusted to the desired value by adding 0.1 M of HNO3 and/or 0.1 M NaOH solutions. To 

assess the impact of ions (i.e. Ca2+, Mg2+, Na+, Cl-, SO4
2-, and HCO3

-) on the adsorption of 

As(III) by Aerocrete and Vermiculite, the ions were individually added to the As(III) 

solution prior to the addition of the adsorbent.  
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The amount of As(III) adsorbed ( eq in mg/g), and percentage of removal (%) of 

As(III) were calculated by Eq. 4.1 and Eq. 4.2 respectively: 

( )0 e

e

c c V
q

m

−
=                     (4.1) 

0

Removal(%) (1 ) 100= − ec

c
            (4.2)          

where c0 and ce (mg/L) are the initial and equilibrium concentrations of As(III) in solution 

respectively, V (L) is the volume of solution, and m (g) is the mass of the adsorbent. 

4.1.3 Adsorption Isotherm and Kinetic Models 

4.1.3.1 Isotherm Models 

The Langmuir and Freundlich isotherm model were used to determine the isotherm 

parameters. The Langmuir isotherm based on the assumption of monolayer adsorption on 

homogeneous active site with no interaction among the adsorbed molecules defined by Eq. 

4.3 [75]  

1

e m
e

e

bc q
q

bc
=

+
              (4.3) 

The linear form of the Langmuir isotherm model is given by:  

1 1 1 1

e m m eq q bq c

 
= +  

 
              (4.4) 

where qe (mg/g) is the amount of As(III) adsorbed per unit mass of adsorbent, ce (mg/L) is 

the equilibrium concentration of As(III), qm (mg/g) is the maximum adsorption capacity 

and b (L/mg) is the affinity of the active site. 
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Freundlich isotherm model describes multilayer adsorbent on the heterogeneous 

adsorbent surface with the nonhomogeneous active site. The Freundlich model is described 

by Eq. 4.5 [76]: 

1

n
e f eq k c=                     (4.5) 

The linear form of Freundlich isotherm equation is followed by,  

( )
1

ln ln lne f eq k c
n

= +             (4.6) 

where, qe (mg/g) is the amount of adsorbate adsorbed per unit mass of adsorbent, ce (mg/L) 

is the equilibrium concentration of adsorbate, kf ((mg/g).(L/mg)1/n) and n  are the 

Freundlich constants represented as the adsorption capacity and adsorption intensity 

respectively. 

4.1.3.2 Kinetic Models 

Two kinetic models, i.e. pseudo-first order and pseudo-second order, based on solid 

capacity were used to determine the kinetic parameters. The pseudo-first order model is 

described by Eq. 4.7:  

1( )t
e t

dq
k q q

dt
= −                    (4.7) 

The linearized form after integration can be expressed by Eq. 4.8: 

1ln( ) lne t eq q q k t− = −              (4.8) 

The pseudo-second order model based on the adsorption equilibrium capacity is expressed 

by Eq. 4.9:  
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2

2 ( )t
e t

dq
k q q

dt
= −                    (4.9) 

Its linearized form after integration is given by Eq.4.10: 

2

2

1

t e e

t t

q k q q
= +                  (4.10) 

where qt (mg/g) is the amount of As(III) adsorbed at time t (min), qe (mg/g) is the amount 

of adsorbed As(III) at equilibrium time, k1 (min-1) is the rate constant of the pseudo-first 

order kinetic model, and k2 (g/mg min) is the rate constant of the pseudo-second order 

kinetic model. 

4.1.4 Analytical Methods 

The total concentration of arsenic in solution was measured by an inductively 

coupled plasma-optical emission spectrometer (Varian Vista Pro ICP-OES, Model- 

AXIAL). ICP standards of 0.01 mg/L, 0.1 mg/l, 1 mg/L, 10 mg/L of As(III) were used for 

the calibration curve. A solution of 0.1 mg/L of As(III) was used as a quality assurance 

standard. The samples with a concentration greater than 10 mg/L were diluted using 2% 

nitric acid solution. The wavelengths used for sample analysis were 188.980 nm, 193.696 

nm, and 197.198 nm.   

4.2 Results and Discussion 

Figure 4.1 shows the As(III) removal efficiencies by Aeroctere and Vermiculite at 

different pH values, at a constant amount of adsorbent (1 g/L) and initial concentration of 

As(III) (11.5 mg/L).  
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4.2.1 Effect of pH 

 

Figure 4.1 Effect of initial pH on the adsorption of As(III) by Aerocrete and Vermiculite. 

(Experimental conditions: [As(III)]=11.5 mg/L; [Adsorbent]=1 g/L; Time=4 h; T=24±1 

 ̊C). 

The percentage of removal of As(III) was constant (~85%) at the pH range of  4-8 

for both adsorbents used. In both cases, i.e. Aeroctere and Vermiculite, the removal of 

As(III) decreased from ~85% to ~70% at pH 10 (Figure 4.1). As(III) removal using 

Aerocrete and Vermiculite did not show a significant dependence on initial pH at the pH 

range of 4-8. Particularly, the high removal efficiency of As(III) at initial pH range of 6-8 

is important for water-treatment applications because it is consistent with regulatory 

criteria (e.g. standards for secondary effluent wastewater discharged to surface waters), 

hence no pH adjustment is required. Thus, further experiments were performed at pH 7.  

The pH has a great influence on the speciation of As(III) in water. Uncharged H3AsO3 is 

the predominating species at pH less than 9.2, H2AsO-
3  at pH 9-12, HAsO3

2-
 at pH from 

12-13, and AsO3
3-  for a pH higher than 13 [27]. The pH also affects the surface charge of 
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adsorbent, i.e. positively charged bellow point of zero charge, and negatively charged 

above the point of zero charge. As(III) is negatively charged at a pH higher than 9.2. The 

electrostatic attraction between neutral As(III) species and the positively charged iron-

based adsorbent surface is probably the adsorption mechanism for a pH up to 8. The low 

removal at higher pH can be explained by the electrostatic repulsion force between negative 

As(III) species and negative adsorbent surface sites [77]. 

4.2.2 Adsorption Isotherms 

The equilibrium adsorption of As(III) was measured at different amounts of adsorbent (i.e. 

0.5 g/L, 1 g/L, 1.5 g/L, 2 g/L, 2.5 g/L and 3 g/L) for Aerocrete, Vermiculite, SiO2, and 

TiO2, at 10 mg/L initial As(III) concentration, 24 ±1º C and pH 7. Interestingly, no 

adsorption of As(III) in water by SiO2 was observed at the studied experimental conditions 

hence the isotherm parameters could not be determined for SiO2. The experimental data 

were fitted using the linearized equation of Langmuir and Freundlich, i.e. Eq. 4.4 and Eq. 

4.6 respectively isotherm model.  

 Figure 4.2 and Figure 4.3 show the Langmuir and Freundlich isotherms respectively. 

The isotherm parameters are presented in Table 4.2. Both Langmuir and Freundlich 

isotherm models fit well the experimental data for As(III) adsorption onto Aerocrete and 

Vermiculite (R2≥0.94) (Figures. 4.2 a-b, 4.3a-b and Table 4.2). The maximum adsorption 

capacity (qm) was determined as 15.15 mg/g and 13.51 mg/g for Aerocrete and Vermiculite 

respectively. 
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Table 4.2 Langmuir and Freundlich isotherm parameters for As(III) adsorption on 

Aerocrete, Vermiculite, and TiO2 at pH 7 and 24±1 ̊C. 

 Langmuir Freundlich 

Adsorbent qm 

(mg/g) 

b
 

(L/mg) 

R2 kf 

((mg/g).(L/mg)1/n) 

n R2 

Aerocrete 15.15 1.46 0.94 8.42 1.96 0.95 

Vermiculite 13.51 1.17 0.97 6.61 2.08 0.99 

TiO2 3.52 0.69 0.85 1.82 4.13 0.88 

 

 

Figure 4.2 Langmuir adsorption isotherm for (a) Aerocrete, (b) Vermiculite, and (c) TiO2, 

at pH 7 and 24±1 ̊C. 
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Figure 4.3 Freundlich adsorption isotherm for adsorbent (a) Aerocrete (b) Vermiculite and 

(c)TiO2, at pH 7 and 24±1 ̊C. 

The dimensionless Langmuir parameter RL (separation factor) represents the ratio 

of the unused adsorption capacity to maximum adsorption capacity (Eq. 4.11) [78]: 

( )0

1

1
LR

bc
=

+
             (4.11)        

where 0c  is the initial As(III) concentration (mg/L), and b is the Langmuir constant (Table 

4.2). Langmuir adsorption is favorable for 0 <RL<1, unfavorable for RL>1, linear for  RL=1, 

and irreversible for RL=0 [64]. For an initial As(III) concentration of 11.5 mg/L, the value 

of RLis 0.06 and 0.07 for Aerocrete and Vermiculite respectively indicating that adsorption 
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is favorable. The fact that the determined Freundlich parameter n is higher than 1 (Table 

4.2) suggests nonhomogeneous multilayer adsorption of As(III) on the studied 

adsorbents[79]. The higher value of Freundlich parameter n (i.e. 1.96 for Aerocrete and 

2.08 for Vermiculite) indicates high intensity and favorable adsorption of As(III) implying 

that As(III) is easily adsorbed by Aerocrete and Vermiculite. As(III) adsorption onto 

Aerocrete and Vermiculite follows both Langmuir and Freundlich isotherm models which 

demonstrate that adsorption of As(III) is not restricted to a monolayer coverage only (ions 

are also adsorbed onto the heterogeneous surface of the iron-based adsorbent with various 

kind of active site).  

The isotherm study with TiO2 was conducted to compare the adsorption efficiency 

of As(III) by TiO2 with Aerocrete and Vermiculite at the same experimental conditions.  

The correlation coefficient (R2) is 0.85 for Langmuir and 0.88 for Freundlich isotherm. The 

maximum adsorption of As(III) on TiO2 was determined as 3.52 mg/g which is lower than 

ones determined for Aerocrete and Vermiculite (Table 4.2). A similar result of As(III) 

adsorption on TiO2 at pH 9 was reported [7]. The results show clearly that Aerocrete and 

Vermiculite are more efficient in removing As(III) from water at pH 7. For this reason, the 

kinetics of As(III) adsorption were investigated for Aerocrete and Vermiculite only. The 

surface area is 35 to 65 m2/g for TiO2, 193 m2/g for Aerocrete and 168 m2/g for Vermiculite. 

High surface area and great affinity towards iron-based adsorbent might be the reason for 

high removal of As(III) onto Aerocrete and Vermiculite compared to TiO2. 

4.2.3 Effect of Initial Concentration of As(III) and Contact Time 

The effect of different initial As(III) concentration is presented in Figure 4.4. It is 

clearly shown that an increase of the initial concentration of As(III) increases the 
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adsorption capacity of Aerocrete and Vermiculite (Figure 4.4). The increased driving force 

due to higher initial As(III) concentration allows overcoming mass transfer resistance 

between the adsorbent and its medium, resulting in higher adsorption capacity[80]. The 

equilibrium time increased with increasing As(III) concentration (Figure 4.4). Importantly, 

the adsorption reaches equilibrium within 60 min regardless of the As(III) concentration 

used (i.e. 1 mg/L, 5.5 mg/L or 11.5 mg/L). The adsorption behavior remains unchanged at 

higher contact times. As(III) at an initial concentration of 1 mg/L could be removed almost 

completely by both adsorbents (1 g/L) within 10 min of contact time (Figure 4.4). Initially, 

the adsorption of As(III) was fast, indicating the availability of unused active sites on the 

adsorbent surface, then site saturation occurs gradually with increasing time and plateau is 

reached (Figure 4.4).  

 

Figure 4.4 Effect of initial concentration of A(III) adsorption onto (a) Aeroctere, and (b) 

Vermiculite. (Experimental conditions: [Adsorbent]=1 g/L; pH=7; T=24±1 ̊C). 
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4.2.4 Adsorption Kinetics 

Three different initial concentrations (1 mg/L, 5.5 mg/L, 11.5 mg/L) are used to 

study the adsorption kinetics. The linearized form of pseudo-first and pseudo-second order 

kinetic models were applied to fit the kinetic data (Figure 4.5 and Figure 4.6). The 

adsorption rate constants are presented in Table 4.3. Based on R2 values, the pseudo-second 

order model fits experimental data better than the pseudo-first order model for both 

adsorbents (Figure 4.5, Figure 4.6, and Table 4.3) which indicates that chemisorption most 

probably controls the adsorption of As(III) on Aeroctere and Vermiculite[81][79]. Previous 

studies also reported that adsorption of As(III) follows pseudo-second kinetics for iron 

oxide coated cement [59], water treatment residuals containing iron and manganese [82], 

and hydrous iron oxide impregnated alginate beads [71]. The second-order rate constant 

(k2), decreased with increased As(III) initial concentration, indicates the slower adsorption 

by Aerocrete and Vermiculite at a high solute concentration (Table 4.3). The qe values 

obtained from pseudo-second order model are in good agreement with the qe values 

obtained experimentally.    
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Figure 4.5 Pseudo first-order kinetic model for A(III) adsorption onto (a) Aeroctere and 

(b) Vermiculite, at pH 7 and 24±1 ̊C. 
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Figure 4.6 Pseudo second-order kinetic model for As(III) adsorption onto (a) Aeroctere 

and (b) Vermiculite, at pH 7 and 24±1 ̊C. 
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Table 4.3 Pseudo-first and pseudo-second order kinetic model parameters for As(III) adsorption onto Aerocrete and Vermiculite at pH 

7 and 24±1 ̊C. 

 

  Pseudo-first order Pseudo-second order 

Adsorbent 

Initial As(III) 

concentration 

mg/L 

qe,exp Equation R2 

k1 

(min-1) 
qe1,cal Equation R2 

k2 

(g/mg∙min) 
qe2,cal 

Aerocrete 

1.0 0.97 ln(qe-qt)=-1.03-(-0.07)t 0.71 
0.07 

 

0.36 

 
t/qt=1.55+1.01t 0.99 

0.660 

 

0.99 

 

5.5 5.18 ln(qe-qt)=1.178-(-0.07)t 0.93 0.07 3.25 t/qt=0.73+0.18t 0.99 0.044 5.55 

11.5 9.81 ln(qe-qt)=2.21-(-0.06)t 0.99 0.06 9.12 t/qt=0.99+0.09t 0.99 0.008 11.11 

Vermiculite 

1.0 0.94 ln(qe-qt)=-0.67-(-0.06)t 0.89 
0.06 

 
0.51 t/qt=3.1+1.04t 0.99 

0.350 

 

0.96 

 

5.5 5.08 ln(qe-qt)=1.16 -(-0.06)t 0.93 0.06 3.19 t/qt=0.83+0.19t 0.99 0.043 5.26 

11.5 9.54 ln(qe-qt)=1.98-(-0.05)t 0.97 0.05 7.24 t/qt=0.69+0.1t 0.99 0.014 10.00 
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4.2.5 Effect of Ions on the Adsorption of As(III) 

Drinking water, groundwater, surface waters, and wastewater contain ions 

which may have a positive or negative effect on adsorption of As(III). The impact of 

common ions(Ca2+, Mg2+, Na+, SO42-, HCO3- and Cl-)  on the efficiency of As(III) 

adsorption onto Aerocrete and Vermiculite was investigated. The concentrations of the 

individually added ions were selected to be consistent with their concentrations usually 

found in wastewater[83][84]. No significant effect of Ca2+, Mg2+, Na+, HCO3
-, or Cl- on 

As(III) adsorption onto Aerocrete and Vermiculite was observed (Figure 4.7). This can be 

explained by the As(III) strong binding ability to the iron oxyhydroxide surface compared 

to other ions. Sulfate had no effect when Aerocrete was used. In the case of Vermiculite, 

the As(III) removal slightly decreased from 59% to 49% in the presence of sulfate (Figure 

4.7). It has been reported that sulfate has weak affinity towards iron oxyhydroxide surface 

due to the similar chemical structure to arsenic, so that it may hinder As(III) adsorption 

onto the adsorbent [85]. Overall, the effect of ions on the removal of As(III) in water by 

adsorption on Aerocrete and Vermiculite was minimal justifying the applicability of the 

studied adsorbents to remove As(III) in more realistic conditions. 
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Figure 4.7 Effect of calcium (Ca2+; CaCl2), magnesium (Mg2+; MgCl2.6H2O), sulfate 

(SO4
2-; Na2SO4), bicarbonate (HCO3

-; NaHCO3), sodium (Na+, NaCl), chloride (Cl-, NaCl) 

on removal of As(III) by Aerocrete and Vermiculite.(Experimental conditions: 

[As(III)]=11.5 mg/L; [Adsorbent]=0.5 g/L; pH=7; T=24±1  ̊C, [ Mg2+]=[HCO3
-]=1 mM, 

[SO4
2-]=[Ca2+]=2 mM, [Na+]=[ Cl-]=4 mM). 

4.3 Column Design and Results  

Batch adsorption process may not be suitable for large-scale water treatment, so a fixed 

bed column is often used in large-scale treatment process to remove the contaminant from 

waste/drinking water. The objective of the column test is to quantify the parameters which 

are required to design industrial scale fixed bed adsorption columns. Various low-cost 

adsorbents have been studied for their applicability in the treatment of different types of 

effluents. In this study, the potential of two concrete-based low-cost materials, i.e. 
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Aerocrete and Vermiculite impregnated by ferric oxyhydroxide were studied for the 

removal of As(III) in a fixed column.  

4.3.1 Fixed Bed Column 

Fixed-bed column experiments were conducted in a stainless-steel column (1 cm in 

diameter and 12 cm in length) packed with 1.5 g of the adsorbent with bed height 2 cm. 

Design details of the fixed bed column are given in Figure 4.8a, and the schematic diagram 

of continuous column experiment using packed bed column filter is given in Figure 4.8b. 

As(III) solution of 1mg/L, 5 mg/L and 10 mg/L concentration were fed in the up-flow 

mode, and the flow rate was 9 ml/min, controlled by a peristaltic pump (Masterflex L/S 

Digital Economy Drive, model 7518-60). The effluent was collected after a certain time 

interval from the same beaker. A magnetic stirrer was used to mix the influent and effluent 

properly. Laboratory experimental setup is shown in Figure 4.9. The results of preliminary 

experiment are given in Appendix-A. 
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Figure 4.8 (a) Design details of packed bed adsorption column; (b) Schematic diagram of 

continuous column experiment using packed bed column filter    
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Figure 4.9 Laboratory experimental setup using packed bed column filter 

4.4 Conclusions 

In this study, the adsorption efficiency of As(III) in water using two new low-cost 

adsorbents (i.e. Aerocrete and Vermiculite impregnated by iron oxyhydroxide) was 

investigated, and the results were compared with two commercially available adsorbents, 

i.e. TiO2, and SiO2. Initially, the effect of the pH was studied resulting in the use of pH 7 

as the optimum pH.  Aerocrete and Vermiculite had high removal efficiency towards 

As(III) compare to TiO2, where SiO2 could not remove As(III) from water (Figure 4.10 

and 4.11 ). The maximum adsorption capacities of As(III), derived from Langmuir model, 

were determined as 15.15 mg/g, 13.51 mg/g, and 3.52 mg/g, for Aerocrete, Vermiculite, 

and TiO2 respectively. 
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Figure 4.10 As(III) adsorption on different adsorbent (Aerocrete, Vermiculite, TiO2, 

SiO2) (Experimental conditions: [As(III)]=1 mg/L; pH=7; T=24±1  ̊C) 

 

Figure 4.11 As(III) adsorption on different adsorbent (Aerocrete, Vermiculite, TiO2, 

SiO2) (Experimental conditions: [As(III)]=11.5 mg/L; pH=7; T=24±1  ̊C) 

The equilibrium adsorption data had a satisfactory agreement with both Langmuir and 

Freundlich isotherm models indicating the existence of different energy sites of the 

adsorbent surface.  
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As(III) adsorption follows pseudo-second order kinetics. This suggests that the 

adsorption process may be controlled by the chemical mechanism. Importantly, at a 

concentration of adsorbents of 1 g/L, As(III) could be removed almost completely within 

10 mins, for both Aerocrete and Vermiculite, at As(III) initial concentration of 1 mg/L at 

pH 7 (Figure 4.11). A similar trend can be found for initial As concentration of 11.5 

mg/L(Figure 4.12). 

Significantly, the concentration of As(III) in the treated water was below the 

drinking water regulatory limit of 0.01 mg/L. The effect of the studied monovalent cation 

(Na+), divalent cations (Mg2+ and Ca2+), and anions (HCO3
-, SO4

2-, and Cl-) on the 

adsorption of As(III) by Aerocrete and Vermiculite was not significant. This is important 

for the application of the proposed adsorbents to remove As(III) from water under more 

realistic conditions. 

In column adsorption experiment of As(III), both adsorbents can remove almost 

100 % of As(III) for all initial concentration (1 mg/L, 5.5 mg/L, 11.5 mg/L). However, 

adsorption time for maximum removal is 0.25 min at a lower initial concentration (1 mg/L) 

and 0.75 min for higher concentration (11.5 mg/L).  

5 Summary and Future Work 

In the present work discussed the performance of two adsorbents namely Aerocrete and 

Vermiculite for As(III) and As(V) removal. A face-centered central composite design of 

response surface methodology (RSM) was employed in this study to optimize effectiveness 

of three experimental variables i.e. adsorbent dosage (g/L), pH and initial As(V) 

concentration (mg/L) and also study the interactive effects of these variables on As(V) 
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adsorption process.  The analysis of variance (ANOVA) of the quadratic model shows that 

the predicted values are in good agreement with experimental data. Also, it shows that the 

main effect of adsorbent dosage and initial As(V) concentration, and interactive effect of 

adsorbent dosage and initial As(V) concentration on As(V) removal efficiency are highly 

significant.  Maximum As(V) removal (≈ 99.96) is obtained at pH of 6, adsorbent dose of 

3.1 g/L and initial As(V) concentration of 12 mg/L for Aerocrerte. At pH 6, adsorbent dose 

of 3.1 g/L and initial As(V) concentration 12mg/L are optimum conditions for maximum 

As(V) removal (≈ 98.95) for Vermiculite.  The adsorption data are well fitted with the 

Langmuir and Freundlich isotherm model. 

As(III), Adsorption experiments were performed to study the effect of initial pH, the initial 

concentration of As(III), contact time, and ions. Optimum removal of As(III) was observed 

at a pH range of 6-8. Both Langmuir and Freundlich isotherms described the adsorption 

equilibrium data. Langmuir isotherm showed that the maximum As(III) adsorption 

capacity of Aerocrete and Vermiculite is 15.15 mg/g and 13.51 mg/g respectively, which 

is much higher than the one observed using titanium dioxide (TiO2), i.e. 3.52 mg/g. A 

pseudo-second order kinetic model fitted well with the experimentally obtained kinetic 

data. The pseudo-second order rate constants (k2) were determined as 0.660 g/mg min, 

0.044 g/mg min, 0.008 g/mg min and 0.35 g/mg min, 0.043 g/mg min, 0.014 g/mg min for 

Aerocrete and Vermiculite respectively. Importantly, As(III) could be removed almost 

completely by both adsorbents, at a contact time of 10 min, 1 g/L of adsorbent, 1 mg/L of 

initial As(III) concentration, pH 7, and 24±1 ̊C. No significant effect on the adsorption of 

As(III) was observed in the presence of ions (i.e. Ca2+, Mg2+, Na+, HCO3
-, SO4

2-, or Cl-). 

Results showed that the proposed adsorbents (Aerocrete and Vermiculite) are promising in 
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removing As(III) from the water. Also, we developed a fixed bed column for test the 

aplicability of these low cost adsorbents in industrial scale. Results show that Aerocrete 

and Vermiculite can remove As(III) satisfactorily in semi continuous batch mode. However 

the extensive test is required with different conditions e.g. varying pH, initial adsorbents 

concertation, with multiple ions etc.    

5.1 The scope of Future Work 

Aerocrete and Vermiculite are low-cost adsorbents with high removal capacities of As. But 

using in the small-scale, individual household or industrial scale both adsorbents need to 

satisfy many conditions which could be considered as future works of the present work.  

• For example, effects of other ions existent were tested in batch experiments and 

with As(III), but for practical application, it needs to be tested under continuous 

flow with different conditions and with As(V).  

• For the present study purpose, we used Milli-Q water for mixing As. However in 

actual field condition As contaminated water is mixed with other minerals and 

metals which could effect adsorbents removal capacity. Therefore testing of these 

adsorbents with actual As contaminated water could be another potential future 

work.  

• The fixed bed column was tested under semi-continuous flow, but testing under 

continuous flow with different flow rate is required for the industrial application.   

• The detail characterization of the adsorbents needs to be studied for a better 

understanding of the adsorption mechanisms. 
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Appendix-A 

Results of Column Experiment  

Column adsorption experiment of As(III) was performed in semi-continuous batch mode 

with three different initial concentration: 1 mg/L, 5.5 mg/L, 11.5 mg/L using the adsorbents 

(1.5 g) Aerocrete and Vermiculite. Figure A.1 a and b describe that both adsorbents can 

remove almost 100 % of As(III) for all initial concentration. However, adsorption time for 

maximum removal is 0.25 min at a lower initial concentration (1 mg/L) and 0.75 min for 

higher concentration (11.5 mg/L). The rate of adsorption using Aerocrete is slightly higher 

than Vermiculite as shown in Table A.1. 

 

Figure A.1 Degradation of As(III) with respect to adsorption time in the column 

experiment 
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Table A.1 Average Rate of As(III) Adsorption obtained from batch and column 

experiment 

Adsorbent 

Initial 

concentration 

of As(III) (mg/L) 

Average Rate of As(III) 

Adsorption 

 (
1 1. .minmg g− −

) 

Batch Experiment 

(Adsorbent dosage 

1g/L) 

Column Experiment 

(Adsorbent dosage 

6g/L) 

Aerocrete 

1 0.016 0.257 

5.5 0.085 1.201 

11.5 0.16 2.487 

Vermiculite 

1 0.015 0.248 

5.5 0.081 1.185 

11.5 0.154 2.414 
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