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Abstract

In a world of aging infrastructure, sustainability initiatives require additional investment in

the assessment of existing reinforced concrete structures. Reliability-based assessment should

minimize costs by reducing conservatism, while ensuring levels of safety equivalent to those for

new designs. Current Canadian and US provisions assign target reliability levels for structural

assessment based on criteria including occupancy type, expected failure behaviour, and the

effect of element failure on the overall structural integrity. These criteria are defined using

discrete and qualitative parameter values. It is shown that the true structural conditions can

be better represented by verifying the applicability and completeness of these parameters and

associating them with quantifiable structural attributes. Structural risk can be quantified by

determining the number of people at risk due to an element failure, and by using the magnitude

of deflection at incipient failure as an indicator of the warning of failure. Flexural capacities

for assessment can be increased by up to 60% of values used for design using reduction factors

calibrated to these parameters.

Keywords: Reinforced concrete, reliability, assessment, ductility, deflection, plasticity
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Chapter 1

Introduction

1.1 Introduction

Concrete buildings can require structural assessment for a number of reasons including in-

creased loading due to change of use or reduced capacity due to deterioration. These circum-

stances present a wide range of needs that may not all be adequately addressed by a single

methodology. The concepts of reliability and risk are inherent in all methods and so can be

used to provide consistent results and lead to a uniform acceptance of risk for all buildings.

The current state of assessment guidelines in Canada and the USA is generally not unified and

not based on consistent standards of reliability. Improvements can therefore be made to the

current methods of assessment, specifically, the ways in which design provisions determine the

target probabilities of failure for the structural element being assessed.

In the United States, practitioners interested in assessing the capacity of a concrete struc-

ture can consult several sources including ACI 562-16 (2016) and ASCE/SEI 7-15 (2015). In

Canada, Commentary L to the National Building Code of Canada (NBCC) (2015c) can be

used as a basis for building assessment while Chapter 14 of CAN/CSA S6-14 (2014) provides

guidance for assessment of bridges.
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Load and strength reduction factors, which form the basis for design of structural elements,

are calibrated in parallel. Reliability-based methods tie load and strength reduction factors, α

and φ, respectively, together through the use of a target reliability index, βT , as shown in Figure

1.1. To have load and strength reduction factors that accurately and consistently represent

the state of the structure, the definition of target probabilities of failure must capture the true

characteristics of the structure and its behaviour at failure. Various sources (e.g. American

Society of Civil Engineers, 2017; Canadian Standards Association, 2014b; National Research

Council of Canada, 2015c) state the need to consider the type of failure expected, and the

consequences of failure as assessed in a life-safety context. Established codes typically require

structural elements to achieve a reliability index ranging from approximately 2 to 4.5 over a

50-year lifespan (American Society of Civil Engineers, 2017; Canadian Standards Association,

2011). The specific load and resistance factor format can also vary. For example, American

codes use strength reduction factors that apply to the overall capacity of a particular cross

section (ACI Committee 318, 2014), while Canadian codes define partial resistance factors

for specific materials (Canadian Standards Association, 2014a, 2014b). The formulation of

a more unified basis for assessment of reinforced concrete structures can build from these

commonalities to create a simple, usable, and effective assessment procedure.

Figure 1.1 shows the relationship between the structural parameters used for assessment,

and the outcomes of that assessment. Structural parameters that are indicative of failure be-

haviour and occupancy can be used to set appropriate target probabilities of failure, which in

turn imply target reliability indices and load and resistance factors. In this way, the assessment

outcomes can be made more representative of the observed structural conditions and failure

consequences.

Figure 1.1: Relationship of probability of failure to load and strength reduction factors

2



1.1.1 Risk and Structural Failure

Risk is often represented as the product of the probability and consequences of a failure event,

P f and C f , respectively, so that,

risk = P f ×C f (1.1)

or,

P f =
risk
C f

(1.2)

Using this definition, failures can be categorized according to their consequences. Increasing

either the probability of failure or the associated consequences increases the overall perceived

risk. Consequences of failure can be further broken down by the completeness or extent of

failures, and the rate or suddenness of failure (Aggarwal, 1993). Failures that cause widespread

damage or failures that occur without prior warning are not preferred.

Many structural codes use a formulation for risk assessment that echoes this general or-

ganization. They use a variety of language to express a relatively consistent understanding of

structural concepts. The warning factor, W, is widely used (e.g. Canadian Standards Associa-

tion, 1981, 2014b) to describe the type of failure both in terms of suddenness, or ductility, and

extent of failure, or redundancy. The number of people at risk, n, is also used as a contributor

to the consequences of failure (e.g. Canadian Standards Association, 1981, 2014b). The fol-

lowing discussion of failures will connect existing design and assessment codes in ways that

will highlight the strengths of current considerations of structural reliability and failures, while

also indicating areas where further study is needed to enhance the accuracy and applicability

of structural assessment provisions.

3



1.2 Background

1.2.1 General Probability of Failure

Reliability-based methods have become the basis for ensuring acceptable levels of structural

safety in most current structural codes. Ditlevsen and Madsen (1996) identify benefits of this

approach, including the second-moment representation of random variables, and a formulation

that is not strongly tied to a specific distribution type. A limit state function, g, expressed in

terms of random variables, xi, is

g(x1, ..., xi) = R − S = 0 (1.3)

where a structural failure occurs when the resistance, R, is less than the demand, S , or

g(x1, ..., xi) ≤ 0.

For a given limit state function, g, the reliability index, β, can be obtained using the inverse

of the standard normal distribution, Φ. The acceptable probability of failure, P f , can be used

to define the target reliability index, βT , as

βT = −Φ−1(P f ) (1.4)

Table 1.1 shows target reliability indices and corresponding probabilities of failure over the

range appropriate for structures.

1.2.2 Notional Probability of Failure

The notional probability of failure is the component of the total probability of failure that

can be attributed to structural safety parameters that are readily quantified, such as applied

loads or material strengths. Total probability of failure includes other contributors, including

human error, that are much more difficult to quantify statistically (CIRIA, 1977; CAN/CSA

4



Table 1.1: Probability of failure and reliability index

βT P f

2.0 0.023
2.5 0.0062
3.0 0.0013
3.5 0.00023
4.0 0.000032
4.5 0.0000034
5.0 0.00000029

S6-14, 2014b). These are outside the domain of conventional structural design and assessment

provisions, and are therefore not considered in the notional probability of failure used in the

remainder of this thesis.

1.2.3 Probability of Failure in Structures

Several formulations to quantify target probabilities of failure are reported in the literature.

The exact formulations may vary but the underlying variables are reasonably consistent. CSA

S408-81 (1981), for example, provides the following expression for P f :

P f =
T Ak

W
√

n
(1.5)

where T is the structural lifespan in years, A is an activity factor determined considering the

type of structure (1.0 for buildings), k is a calibration factor (10−4), W is a warning factor, and n

is the number of people exposed to risk due to failure of an element. W and n vary across codes

and based on the type of element being considered, and the designated use of the structure.

In CSA S408-81 (1981), values of n are not explicitly defined, but should “account for

public concern” related to the scale of structural failures. Meanwhile W may take on one of

four discrete values, selected according to the type of failure expected. An issue with these

definitions is that they require a great deal of “engineering judgment” and are not derived from

assessed properties of the structure.
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CAN/CSA S6-14 (2014) assigns values of n for bridges ranging from n = 10 for regular

bridge traffic, to n = 1 for controlled vehicles because it is anticipated that only one person,

the driver of the vehicle, will be at risk during a controlled vehicle passage. Meanwhile, W

= 1.0 is selected where no warning of failure is expected and failure is likely to cause total

collapse, and W = 0.005 where the failure is gradual and leads to an isolated, or local, failure

only. Similar formats are used in subsequent documents regarding the assessment of bridges

(Allen, 1992; Canadian Standards Association, 2014b), and buildings (Allen, 1991; National

Research Council of Canada, 2015c).

Qualitative definitions of ductility and redundancy can be problematic for several reasons.

First, by creating discrete categories, the designer must decide on the appropriate interpretation

of the code language. For example, a decision must be made whether the failure is strictly local,

or if it may spread but not lead to collapse, or whether it is local but is likely to impact people

(National Research Council of Canada, 2015c). Second, the inclusion of two distinct concepts,

ductility and redundancy, in one parameter can be misleading, eliminating the nuances of the

interactions of ductility and redundancy on each other. The likelihood of impact on people,

and the likelihood of collapse are distinct ideas, and should be treated as such. Similar overlap,

and the associated implications for parameter definition, can be observed in ASCE/SEI 7-15

(2015). An example of more ideal parameter definition is in CAN/CSA S6-14 (2014), where

element behaviour and system behaviour have separate, though still discrete and qualitative,

parameters.

1.3 Impact on Structural Assessment Outcomes

Allen (1991) notes that the reliability level selection for structural assessment should include

all available information, where for new design, a more generic set of provisions is appropriate.

The following investigation of structural reliability, though useful for general consideration, is

particularly helpful when assessing existing structures.
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Calibration of load and resistance factors for design or assessment requires the ability to

accurately account for the conditions that affect the behaviour of the structure. In the case

of aversion factors, the number of people contained within the tributary area of a structural

element is a major contributor to the perceived acceptable risk of failure. An increase in this

number would necessitate a stricter design, i.e. a lower target probability of failure. Sufficient

warning of failure allows more relaxed target probabilities of failure because structural failure

will occur after the evacuation of the building and surrounding area, greatly reducing the human

impact of the eventual collapse.

1.3.1 Economic and Environmental Impact

When structures no longer meet target levels of reliability, they need either to be taken out

of service, or upgraded. This makes the accurate quantification of the probability of failure

very important not just for life-safety reasons, but in terms of financial cost and environmental

effects. The decisions made to carry out repair work to achieve a target structural reliability are

sensitive to the system and parameters used to determine the target probability of failure.

The economic costs associated with increasing reliability for an existing structure are much

greater than those for an equivalent increase in new structures. The decommissioning of a struc-

ture also has large associated costs. Many are far removed from the actual assessment, design,

and construction costs, including costs associated with operational disruptions, relocation, and

other business concerns.

As sustainability concerns continue to increasingly dominate corporate decision making

processes, the environmental costs of the demolition, disposal, and replacement of the struc-

ture become increasingly important. In terms of embodied energy and materials, considerable

losses are associated with the total decommissioning of a building. The benefits of continuing

to use a structure then become quite substantial, made possible either by a more accurate sys-

tem for decision-making, or by the rehabilitation of deficient components of the structure to
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acceptable reliability levels. In either case, the economy of the entire process can be improved

by using assessment measures that truly reflect the particular structure being assessed.

1.4 Objectives

When the maximum acceptable probability of failure is defined by attributes of the structure,

it is important that those attributes are quantified simply and accurately. The connection be-

tween these attributes and the associated effects on the reliability targets should be rational

and objective. Current methods involve mainly qualitative categorization of the consequences

of failure, but it is preferable to numerically quantify these factors. The objective of the re-

search reported in this thesis is therefore to refine the metrics that practitioners use to quantify

societal risk aversion, cross-sectional ductility, and structural redundancy, and provide contin-

uously defined values for these parameters in a range of structural elements. The betterment of

these measures has the potential to change assessment outcomes by better representing the real

structural conditions and more appropriately selecting the necessary levels of safety.

The following objectives will direct the research outlined in this thesis:

1. Review current assessment and design codes for reinforced concrete structures to outline

the state of reliability-based assessment and design in Canada and the United States.

2. Identify commonly accepted concepts behind the formulation of reliability targets for

assessment and design.

3. Propose additional indicators, if necessary, to determine appropriate reliability targets

that accurately represent structural behaviour.

4. Analyze the identified parameters to observe their effects on the reliability targets and

the outcomes for assessment.

5. Propose a procedure by which the findings can be practically incorporated into assess-

ment provisions.
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1.5 Scope

For new design, a lifetime reliability index or acceptable target probability of failure for a struc-

ture may be prescribed, or selected using criteria in the design code. For existing structures,

various methods can be used to assess the in-situ properties of structures and then assign a cor-

responding reliability index. This can include load or material testing, as-built measurements,

and other forms of non-destructive testing. The work that follows will not address the means

of quantifying assessed reliability by testing or other methods of determining the load carrying

capacity of a structural element. Improvements to these methods are possible and necessary,

but outside the scope of this thesis.

The target reliability index, βT , is tied to the level of risk deemed acceptable for a given

structure based on both structural and non-structural attributes, and will be the sole focus of

this thesis. The level of acceptable risk is dependent of the consequences of a structural failure.

Consequences are element-specific and can vary widely within a structure.

The scope of this work is inclusive of singly reinforced concrete beams, and one-way slabs.

Extension to columns with low axial loads is discussed in van Weerdhuizen and Bartlett (2018);

this can be applied also to doubly reinforced beams. Further study will required to extend the

findings of this research to a wider range of structural elements.

1.6 Organization

This thesis is presented as four main chapters, comprised of a thorough review of current

literature, a review of several disparities in, and potential improvements to, current assessment

frameworks, and an illustration of the effects of such changes on assessment procedures and

outcomes.
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In Chapter 2, a review of existing literature and code provisions for assessment will be

presented. Review of commonalities and divergences will assist in the development and appli-

cation of improved methods.

Chapter 3 covers the quantification of life-safety-related consequences of failure. This will

include a study of the various aspect of quantifying structural occupancy and the application of

tributary-area-based live load reduction concepts to the number of people affected by a failure.

These will be combined into one aversion factor to account for societal aversion to risk in

reliability analysis.

Chapter 4 presents a study of the deflections expected at incipient failure and their use

as a metric for defining a warning factor. This will include an analysis of the effects of the

reinforcement ratio, indeterminacy, and applied loading configuration for reinforced concrete

elements in flexure.

Chapter 5 presents a brief exploration of the impacts that the findings of Chapters 3 and 4

can have on assessment outcomes, focusing on the calibration of strength reduction factors. A

proposed outline of improved assessment procedures is also provided.

Chapter 6 provides general conclusions of this research, along with suggestions for future

work.
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Chapter 2

Literature Review

2.1 Introduction

Many methods for quantifying the target probability of failure for structural assessment are

documented. There are clear commonalities in their organization and criteria. This chapter

will provide an overview of some of these documents, focusing on those published in Canada

and the US. Each gives a framework for the selection of target levels of reliability for structures.

The approaches taken in each vary, but all typically address the achievement of desired reli-

ability levels by the application of suitable load factors and strength reduction factors. These

factors modify the nominal loads and resistances in accordance with the certainty and severity

of structural conditions.

The calibration of load- and strength-reduction factors is critical to assessment, evaluation

and design procedures. Increased accuracy in understanding and representing the behaviour

of structures ensures that designs have consistent levels of reliability and are cost effective.

Accurate assessment is beneficial because structural strengthening is costly, and so unnecessary

conservatism can have negative effects on the economy of building maintenance and repair.
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The following discussion of design and assessment documentation will focus on the key

parameters used to determine reliability targets. It seeks to identify areas of overlap, points of

conflict, and gaps in the range of concepts used to quantify structural risk.

2.2 Literature Overview

In both design and assessment, most documents relate the desired reliability level to some

combination of the following factors: the social perception of risk due to structural failure,

the type of failure expected, and a calibration factor. The perception of risk, or risk aversion,

relates to the inherent danger in the activity for which the structure is used. The type of failure

is often discussed in terms of the warning of imminent failure provided and the effect that

element failure has on the integrity of the remaining structure. The calibration factor accounts

for the time period that the reliability level refers to, as well as some notion of an acceptable

probability of failure for the type of structure being considered. Additional considerations

include specific factors such as structural inspection, but will not be discussed in detail here.

Table 2.1 summarizes the ways that the reviewed documents incorporate concepts of aver-

sion factors and warning factors. Warning factor has been sub-divided into two categories,

ductility and redundancy, although not all sources provide explicit definition of these distinct

concepts.

12



DOCUMENT RISK/AVERSION/N DUCTILITY REDUNDANCY TARGET RELIABILITY 
INDEX/PROBABILITY 
OF FAILURE 

OTHER BASIS 

CIRIA 63 
(CIRIA, 1972) 

Social criterion factor, Ks: 
 0.005: public assembly, dams 
 0.05: domestic, office, trade, 

industry 
 0.5: bridges 
 5.0: towers, offshore structures 

Number of people at risk due to 
structural failure, nr, assess based on: 

 Usage 
 Type of structure 
 Loading  
 Type of failure 
 Environment  

Usage: 
 Number of people supported 

by element 
Environment: 

 Effects of structure on 
surroundings 

 

Type of failure: 
 Ductile: clearly 

visible, visible on 
inspection, 
concealed 

 Brittle 

Type of structure:  
 Influence of element 

failure on structure 
 

Pft=10-4 Ks nd/nr 
Loading, correlation with 
number of people 
affected: 

 Positive: more 
load, more 
people 

 Uncorrelated: 
use average 
number of people 

 Negative: more 
load, less people 

Loading, time variation: 
 Quick load build-

up 
 Slow load build-

up 

Design life of structure, nd, 
in years 
 

-- 

CSA S408-81 
(Canadian 
Standards 
Association, 1981) 

Aversion factor, n: 
 Greater public concern for 

multi-casualty events than 
equivalent number occurring 
individually 

Activity Factor: 
 0.3: Post-disaster 
 1.0: Normal, buildings 
 3.0: Bridges 
 10.0: Construction, offshore 

Safety Class (based on life safety and 
economic consequences): 

 Not serious 
 Serious  
 Very serious 

Warning factor, W: 
 0.01: failsafe 
 0.1: gradual failure 
 0.3: some warning, or gradual but hidden 
 1.0: sudden without warning 

Pfs=T A 10-5/(W√n) 
 
Tabular: Assigned based 
on type of failure and 
safety class 

T: life span of structure, 
commonly 50 years 

-- 

CSA S408-11 
Annex B 
(Canadian 
Standards 
Association, 1981) 

Select from table: 
 Not serious 
 Serious (normal) 
 Very serious 

Select from table: 
 Gradual 
 Sudden 

Tabular: Assigned based 
on type of failure and 
safety class 

“might not be appropriate 
for seismic loads” 

CSA S408-
81 
 

NBCC 
(National Research 
Council, 2016) 

Importance Categories: 
 Low: low or indirect hazard to 

human life 
 Medium: other 
 High: post-disaster shelters 
 Post-Disaster: essential 

services 

Type of failure incorporated by the material resistance 
factor, ϕ 

-- -- -- 

Table 2.1: Comparison of structural risk concepts in structural design and assessment codes



DOCUMENT RISK/AVERSION/N DUCTILITY REDUNDANCY TARGET RELIABILITY 
INDEX/PROBABILITY 
OF FAILURE 

OTHER BASIS 

NBCC 
Commentary L 
(National Research 
Council, 2016) 

N = area*occupant density*duration 
Risk Category selected by value of N:  

 2: High 
 1: Medium 
 0: Low 

 

System Behaviour: 
 2: failure leads to collapse, likely to impact people 
 1: failure unlikely to lead to collapse, or unlikely to 

impact people 
 0: failure local only, very unlikely to impact people 

Target Reliability Level 
is the sum of indices for: 

 Risk category 
 System 

behaviour 
 Past 

performance 

Past Performance: 
 1: No record 
 0: satisfactory, or 

dead load measured 

Allen, 1991 
CSA S408-
81 
 

CAN/CSA S6-14 
(Canadian 
Standards 
Association, 2014) 
 

Target reliability index may be 
increased if structure is deemed 
important (ie. local economic 
significance, life safety, emergency 
routes) 

Element Behaviour: 
 E1: subject to 

sudden loss of 
capacity 

 E2: subject to 
sudden loss of 
capacity but retains 
post-failure capacity 

 E3: gradual failure 

System Behaviour: 
 S1: Element failure 

leads to total 
collapse 

 S2: Element failure 
probably will not 
lead to total collapse 

 S3: Element failure 
leads to local failure 
only 

Tabular: Assigned based 
on categories selected 
to describe element 

Inspection Level: 
 INSP1: component 

is not inspectable 
 INSP2: inspection 

results are 
satisfactory 

 INSP3: final 
evaluation 
calculations account 
for all inspection 
results 

CSA S408-
81 
Allen, 1992 
 

CSA S6-14 
Commentary 
(Canadian 
Standards 
Association, 2014) 
 

Activity factor, A: 
 10.0: for “Controlled vehicles” 
 3.0: for all other traffic 

Aversion factor n: 
 1.0 for “Controlled vehicles” 
 10: for all other traffic 

Warning of failure, W: 
 1.0 for no warning of failure expected 
 Can be improved by inspection, alternate load 

paths, ductility 

Pfs = A K /(W√n) 
*probabilities based on 1 
year return/service life 

-- CSA S408-
81 
 

ASCE 7-16  
Chapter C1 
(American Society 
of Civil Engineers, 
2016) 

Occupancy/Risk Categories:  
 I - unoccupied, negligible risk 

to public 
 III - large number of people, or 

limited mobility, or hazardous 
storage 

 IV - essential services, and 
supporting services 

 II – other 
(each may also be associated with an 
approximate range of the number of 
lives at risk due to a failure) 

Type of failure: 
 not sudden and does not lead to wide-spread 

progression of damage 
 sudden or leads to wide-spread progression of 

damage 
 sudden and wide-spread progression of damage 

 

Tabular: Assigned based 
on occupancy category 
and type of failure 
*probabilities based on 1 
year return/service life 

-- -- 

ACI 318-14 
(American 
Concrete Institute, 
2014) 

Implicit in resistance factor definition 
(see R.21.2.2) 
*also refers to ASCE 7 

Definition of resistance 
factor by failure type (via 
tensile strain): 

 compression-
controlled 

 transition 
 tension-controlled 

*also refers to ASCE 7 

* refers to ASCE 7 Commentary references 
ASCE 7-10 (Table 
C1.3.1a)  

-- Mast, 1992 

ACI 562-16 
(American 
Concrete Institute, 
2016) 
 

Strength reduction factors for:  
 design: as in ACI 318 
 assessment: higher values justified by increased knowledge 

-- Applicable for assessment, 
repair/rehabilitation design, 
remedial construction for 
existing concrete structures 

-- 

 

Table 2.1 Continued: Comparison of structural risk concepts in structural design and assessment codes



2.2.1 Early Application of Reliability Concepts

CIRIA (1972) introduced a framework where reliability concepts and structural parameters

could be tied together to give target probabilities of failure for buildings and other structures.

The target probability of failure is,

P f =
10−4Ksnd

nr
(2.1)

where Ks is a social criterion factor, nd is the design life of the structure, in years, and nr is the

number of people expected to be at risk during a failure.

Consideration of the social perceptions of risk for different types of structures using the Ks

factor is a key part of this definition. Higher risk activities allow for higher failure probabilities

in the design of the associated structures. As shown in Table 2.1, Ks varies from 0.003 for areas

of public assembly to 5.0 for offshore structures.

2.2.2 Canadian Building Codes

Canadian documentation for structural design began to include similar reliability concepts for

assessment beginning with CSA S408-81 (1981). Recall from Chapter 1, the target probability

of failure is,

P f =
T A10−5

W
√

n
(1.5)

Parameter values are determined by the designer or selected from the tables provided, which

are summarized in Table 2.1. Equation 1.5 implies incorrectly that the probability of failure for

a 50-year lifespan is 50 times the annual probability of failure.

CSA S408-11 (2011) presents a table showing recommended lifetime target reliability in-

dices based on the failure type and safety class of a structural element. The equation provided

in CSA S408-81 (1981), Equation 1.5, has been removed, but a table of recommended reliabil-

ity indices identical to the one provided in CSA S408-81 is presented.
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NBCC Commentary L, which evolved from Allen (1991), gives factored load combina-

tions based on computed target reliability levels. Reliability levels are determined from the

summation of a variety of factors accounting for system behaviour, risk category, and past per-

formance. The system behaviour categorization mirrors the warning factor in CSA S408-81

(1981), using terminology that describes the impact of failure on the whole structure and the

likelihood of impacting people. The risk category addresses risk to life, based on the density

of occupants expected, as well as the amount of time the area is expected to be occupied.

2.2.3 Canadian Bridge Codes

CAN/CSA S6-14 (2014) follows a probability of failure format similar to CSA S408-81 (1981).

Here, the annual target reliability is presented as,

P f =
Ak

W
√

n
(2.2)

where the warning factor, W, has a worst-case value of 1.0, and can be reduced due to the

frequency of inspection, the presence of alternate load paths, or cross-sectional ductility. The

calibration factor, k, is 10−4. The activity factors suggested are larger than those for buildings,

3.0 or 10.0, for normal traffic, or permit-controlled traffic, respectively. These increased risks

are appropriate because in using a highway bridge, an individual is willing to accept more risk

than when they are inside a building. The bridge evaluator classifies the element as belonging

to one of three categories of system behaviour, element behaviour, and inspection frequency

and then obtains the target reliability index and live- and dead-load factors from tables given in

Clause 14.

2.2.4 American Building Codes

ASCE/SEI 7-15 (2015) provides considerable guidance about risk and probability of failure

in a similar format to CSA S408-11 (2011) where lifetime target reliability indices, as well

16



as annual probabilities of failure, are suggested for various occupancy categories and types of

failure.

ACI 562, Code Requirements for Assessment, Repair, and Rehabilitation of Existing Con-

crete Structures (ACI Committee 562, 2016), provides criteria for assessment in the form of

prescribed strength reduction factors. It states that consideration must be given for existing

conditions, including as-built dimensions, material properties, and the sufficiency of structural

load paths. Physical alterations and changes in loading or occupancy from the original design

must also be included in the assessment. If all requirements are satisfied, strength reduction

factors larger than those conventionally used for design are allowed, giving an increase in the

assessed capacity.

Section R21.1.1 of ACI 318-14 (2014) provides strength reduction factors to reduce nom-

inal strengths for new design, which are intended to account for under-strength members, in-

accurate design equations, ductility and reliability, and the importance of the member. The re-

duction factors for compression-controlled failures, generally columns and heavily reinforced

beams, incorporate the effects of relatively low ductility and large tributary areas typically as-

sociated with these elements. This results in smaller strength reduction factors, and smaller

factored resistances for design of these elements.

ASCE/SEI 7-15 (2015) includes reliability-related criteria through the use of performance-

based procedures. The requirements here are that the probability of failure given for a particular

risk category should be met, but allow for alternate, equivalent means of achieving this.

2.3 Review of Common Parameters

The main parameters used for quantifying target probabilities of failure tend to fall under two

main categories: risk aversion, and warning of failure.
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2.3.1 Aversion

Any parameter that reduces the allowable probability of failure in response to a threat to life

safety, actual or perceived, should be included in any discussion of risk aversion. The docu-

ments discussed previously present such parameters in a variety of ways, including importance

factor, activity factor, aversion factor, and occupancy category. Some include more than one

factor, and they may be assessed mathematically in different ways. In the NBCC (National Re-

search Council of Canada, 2015a), for example, importance factors are applied when calculat-

ing load effects, and are selected based on the degree to which the occupants, and surrounding

community would be affected in the event of a failure.

In CSA S408-81 (1981), the aversion factor is defined as
√

n, where n is the maximum

number of people at risk due to a structural failure, to be determined by the designer. Activity

factor, A, also an aversion-related quantity, is defined as 1.0 for buildings, and increases to

10.0 for offshore structures, or structural failures during construction. Again, this associates

the relative inherent risk accepted by users of a structure with its target reliability.

In ASCE/SEI 7-15 (2015), societal risk aversion is addressed using specific risk categories.

Buildings are assigned to a category and then an acceptable target reliability index or probabil-

ity of failure is determined based on the occupancy type and the function the structure serves

during an emergency situation.

These aversion-related factors imply that the level of acceptable risk depends on many fac-

tors, including the type of activity performed within the structure and the importance of its

functioning in the event of a disaster (Canadian Standards Association, 1981). Aversion is

also affected by social factors, such as the increasingly negative public response that can be

anticipated as the number of casualties in a structural failure increases (Canadian Standards

Association, 1981). This number is either prescribed by the code, or determined by the practi-

tioner, allowing for relative freedom in the quantification of risk aversion.
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2.3.2 Ductility

Warning of failure is discussed on a number of different bases. Several of the documents

reviewed discuss such failure in terms of suddenness or visibility. ACI 318-14 (2014) classifies

failure as tension-controlled and compression-controlled based on strain conditions in the cross

section at failure. NBCC Commentary L (2015), focuses on the likelihood of a failure to injure

people, which can be interpreted as indirectly describing the suddenness of the failure and the

ability to evacuate the structure successfully. The essential quantity being discussed in each

instance is the ability for the structure to give users and assessors visible warning of imminent

failure.

Ductility can be discussed in terms of curvature, axial strain, or lateral deflection on an

element or structural scale. Curvature ductility is most helpful when considering beams in

flexure, or other structural elements that can exhibit considerable transverse deflections over

their lengths. Axial deformation is most useful for elements that do not exhibit large transverse

deformations before failure due to the presence of larger axial loads. The magnitudes of axial

deformations are typically small relative to the transverse flexural deflections, and are thus less

useful as visible indicators of warning. Storey drift is a metric used to identify lateral sway of

entire buildings, often in applications involving seismic or wind loading.

2.3.3 Redundancy

Redundancy is the second main contributor to warning of failure recognized in current litera-

ture. Redundancy in current codes is described in terms of single- versus multiple-load-path

structures, local failure, and susceptibility to progressive collapse. These concepts of redun-

dancy can be simplified to say that indeterminate, or redundant, elements provide warning of

failure by moment redistribution after the first yield occurs. In contrast, determinate structures,

with no redundancy, reach their ultimate capacity when the capacity of a single cross section is

reached, and so are deemed to give no warning of failure.
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The codes and standards reviewed are consistent in recognizing that more redundancy is

better. In structural systems where parallel elements provide alternate load paths or where

indeterminacy allows some local yielding without collapse, benefits are assumed but not often

well quantified. When a lack of redundancy is combined with a sudden brittle failure, the target

probabilities of failure must reflect the lack of warning and be reduced.

2.3.4 Other

Other factors are included in some assessment and structural reliability documents. The in-

spection factor in CAN/CSA S6-14 (2014), can essentially be considered as contributing to

warning of failure. This research will not address the effects of inspection on the selection of

target reliability indices.

The calibration factor, k, is used to calibrate the probabilities of failure to an acceptable

level of risk. For one critical combination of W and n, a specific probability of failure is

associated with a particular k value. For other combinations of W and n , this value of k yields

distinct target probabilities of failure. This aspect of the selection of a calibration factor will be

explored further in Chapter 5.

2.4 Summary and Conclusions

Common themes emerge among existing literature. The primary factors that determine appro-

priate reliability targets for structural assessment are: the risk to human life, and the warning

of failure as indicated by the ductility of the failure mode and the redundancy of the structural

element or system. These factors, while generally recognized, are often assigned qualitatively,

by the use of judgment on the part of the designer, rather than quantitatively, based on the

physical properties and configuration of the structure.

The aversion factor can include several features that are often assigned to different param-

eters but relate to the perception of risk in structural failures. Prescribing values of n based on

20



the occupancy type or use of the structure, or providing only limited guidance on the calcu-

lation of n are not sufficient provisions for a reliability-based assessment method. Similarly,

ductility and redundancy are defined without being quantitatively related to structural proper-

ties. Both the discrete categories and the vague language used to quantify warning factor leave

opportunity for improvement of this parameter.

The consistency of the concepts used across the literature reviewed indicates their perceived

importance when setting reliability targets for assessment. The principles of risk aversion and

warning of failure should be starting points from which a more quantitative assessment proce-

dure can be developed. Investigation of possible improvements to these assessment frameworks

should focus on determining the veracity and completeness of these widely recognized factors,

and should tie target reliability levels for assessment to measurable structural parameters.
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Chapter 3

Quantifying the Aversion Factor

3.1 Introduction

In Chapter 2, various forms of risk aversion were identified, including:

• Social criterion factor in CIRIA (1972);

• Activity factor in CSA S408-81 (1981) and CAN/CSA S6-14 (2014);

• Importance factor in NBCC (2015);

• Occupancy categories in ASCE/SEI 7-15 (2015); and

• Number of people at risk in CAN/CSA S6-14 (2014), NBCC Commentary L (2015),

CSA S408-81 (1981), and CIRIA (1972)

Risk aversion therefore encompasses a broad range of parameters that account for different

aspects of risk. The present investigation will focus on the component of risk aversion that is

directly related to the number of people at risk in a structure, here referred to as the aversion

factor, which in all cases depends on the occupancy type, duration, and density. While these

three factors are not entirely independent, each will be defined to have a unique scope. Oc-

cupancy type relates to the defined usage of the space supported by an element. Occupancy
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duration addresses the length of time that occupants are present, and is therefore specifically

relevant to structures that are unoccupied for large portions of time. For example, nighttime

occupancies in a school or office structure may be negligible. Occupant density addresses the

average space occupied by a single person, and can also be expressed as the number of people

occupying a unit area. This is dependent on the occupancy type, and can be constrained by

concerns of safe egress or air quality, and is implicitly included in the derivation of specified

live loads.

In Equation 2.2, the probability of failure is inversely related to
√

n, where n is the aver-

sion factor, essentially the number of people at risk due to structural failure. Larger values of

the aversion factor lead to more stringent reliability criteria. Current standards use the aver-

sion factor to define the target reliability by specifying predetermined numbers of occupants

at risk (Canadian Standards Association, 2014b), or developing methodologies to explicitly

calculate n (National Research Council of Canada, 2015a)). In CIRIA (1972), the designer is

free to determine the number of occupants, while the NBCC Commentary L (2015) guides the

calculation by providing parameters for both occupant density and occupancy duration.

Underestimating the number of individuals at risk will yield inappropriately high target

probabilities of failure, while overestimation leads to excessive strength requirements. The

objective of the research reported in this chapter is therefore to propose a simple, rational

method for determining the aversion factor, n.

3.2 Analysis

The specified live load and the number of people at risk due to the collapse of a building

component should by nature be positively correlated, but historically this positive correlation

has not been quantified. In occupancies such as assembly areas, the primary source of live

load is the occupants. In contrast, the live loads in storage and industrial occupancies have

relatively low occupant live loads. Some occupancies are time-dependent, and may be fully
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occupied only a fraction of the time. The total live load may therefore be modeled as the sum

of occupant and non-occupant components. The following analysis of live loads and number of

occupants will establish an appropriate range of n for the tributary areas and occupant densities

of the element under consideration.

3.2.1 Occupant Density

To determine the aversion factor, n, an occupant density for determining the probable number

of people in an area with a given occupancy is required. Two possible methods for quantifying

this value are as follows:

1. Derive the occupant density based on the use of the structure and appropriate non-

structural factors, such as the occupancy limits imposed by emergency egress, or the de-

sign of the building’s Heating, Ventilation and Air-Conditioning (HVAC) services. These

metrics are appropriate because the occupancy limit is directly related to these aspects

of safety or comfort. The occupancy limit associated with emergency egress, although

dependent on exit pathways and other factors, is primarily determined by the size and

use of the structure. The NBCC (2015) and the National Fire Code of Canada (NFCC)

(2015b) provide guidance on limiting occupant densities based on egress considerations.

Similarly, the American Society of Heating, Refrigerating and Air-Conditioning Engi-

neers (ASHRAE) (2016) provides occupant densities based on the type of occupancy,

and the HVAC requirements for the space.

2. Derive occupant density from the live loads specified for structural design. This is more

difficult because specified live loads account for human occupancy in addition to other

loads, and so can vary widely. For example, the design live loads in storage areas and

many assembly areas are both specified at 4.8 kPa in the NBCC (2015), although the

implication is obviously not that equivalent numbers of people will be present in each

occupancy type. In the storage occupancy, the live load will be primarily due to the
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material being stored, while in the assembly area, the live load will be primarily due to

occupants.

The densities indicated by these two approaches can vary widely. Table 3.1 provides a sum-

mary of occupant densities from the NBCC (2015), NBCC Commentary L (2015), ASHRAE

(2016), and the NFCC (2015b). The highest occupant density values are for assembly occu-

pancies where the entire live load is attributed to human weight. In Canada and the US, the

average adult mass is 80.7 kg (Walpole et al., 2012). For the specified live load for assembly

areas, 4.8 kPa, this corresponds to an occupant density of approximately 6 occupants/m2 or

0.17 m2/person. The global average adult mass is 62 kg (Walpole et al., 2012), corresponding

to approximately 8 occupants/m2, or 0.12 m2/person. This suggests that cultural and geograph-

ical variations should be considered when assessing the occupant density in a structure. These

densities may also be scaled for cases when the live load due to human weight is only a fraction

of the total live load.

Table 3.1: Occupant density comparison

Occupant Density Associated Occupancy Associated Live Load Basis Source
(Occupants/m2) (kPa)

6 Assembly 4.8 Average adult mass NBCC, 2015a; Walpole et al., 2012
2.5 Unspecified – Fire safety NFCC, 2015b
1.5 Spectator areas, 4.8 Ventilation rates ASHRAE, 2016
1 Assembly 4.8 – NBCC Commentary L, 2015c

0.01 Storage 4.8 – NBCC Commentary L, 2015c

ASHRAE (2010) provides occupant densities for design of mechanical building services

when the actual occupant density is unknown. The range given is from 0.04 occupants/m2, or

25 m2/person, in a computer area, to 1.5 occupants/m2, or 0.67 m2/person, in an auditorium

seating area. These are likely average, not upper bound, values and so may not be appropriate

in a life safety context. They should therefore not be used to estimate occupant density for

structural assessment.
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The NFCC (2015) allocates an area of 0.4 m2/person, which equates to an occupant density

of 2.5 occupants/m2. This can be considered an appropriate limit for spaces that have maximum

capacities limited by the NFCC (2015).

The Ontario Building Code (OBC) Part 3 (Fire Protection, Occupant Safety, and Accessibil-

ity) (2012) specifies occupant space allocations for occupancy types that generally correspond

with the NBCC Part 4 provisions for specified live loads. The space allocations range from

0.4 m2 per person for assembly areas with standing space, to 46 m2 per person for a storage

area. Within the category of assembly occupancies that have specified live loads of 4.8 kPa,

the allocated area per occupant can range from 0.4 m2/person for standing areas to 4.6 or

9.3 m2/person for school laboratories or shops, respectively. It is clear that among occupancy

types, the portion of live load attributed to human weight can vary widely.

3.2.2 Occupancy Duration

The number of people at risk due to a structural failure is reduced for structures that are not

continuously occupied. NBCC Commentary L (2015) provides a range of occupancy-based

densities, which are then combined with a duration factor to determine the number of people

at risk due to a structural failure. Duration factors are determined according to the NBCC

Commentary L (2015) guidelines by estimating the number of hours per week, out of of one

hundred, that the area will be occupied. For storage and assembly occupancies, the duration

factors suggested are 1.0 and 0.05-0.5 respectively.

Table 3.2 provides a summary of occupant densities and durations. The product of these

two can be referred to as a weighted density, ρw, and will be used to compute the aversion

factor, n, for use in assessment. The number of people at risk is therefore

n = ρw AT (3.1)

where AT is the tributary area of the element.
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Table 3.2: Occupant density and duration summary

Occupant Density Duration Factor Max. Weighted Occupancy, ρw

(occupants/m2) (hours per week/100) (occupants/m2)
NBCC (2015)

Assembly - 4.8 kPa 6 0.05 - 0.5 3.0
NBCC Commentary L (2015)

Assembly 1 0.05 - 0.5 0.5
Mercantile and personal services 0.2 0.5 - 0.8 0.16
Offices/care/detention/manufacturing 0.1 0.5 - 0.6 0.06
Residential 0.05 1.0 0.05
Storage 0.01 - 0.02 1.0 0.02

NFCC (2015)

Maximum Occupancy 2.5 0.5 1.25
Low density assembly 0.1 0.5 0.05

As shown in Table 3.2, the range of weighted occupant densities is large. The value based

entirely on human mass (6 occupants/m2) for a live load of 4.8 kPa exceeds the other occupant

density suggestions by a factor of at least 2.4. The assumed duration factor for the NFCC

(2015) densities is 0.5, the maximum value suggested by NBCC Commentary L (2015) for

assembly areas since the NFCC does not explicitly provide occupancy durations.

While it is possible that occupancies with weighted densities as high as those 3.0 occupants/m2

exist, it is unlikely, so 0.02 to 1.25 occupants/m2 will be taken as a practical range. An occupant

density of 1.0 occupants per square metre will be used for illustration throughout the remain-

der of this chapter unless noted otherwise. The resulting n values can be easily scaled for other

densities as required.

3.2.3 Live Load Reduction Factor

Live loads applied over large areas can be reduced according to the provisions in the NBCC

(2015) or ASCE/SEI 7-15 (2015). As the tributary area increases, it becomes increasingly

unlikely that the area will be fully loaded. The element can therefore be safely designed for

considerably smaller live load effects using the prescribed live load reduction factors (LLRF).
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Since the aversion factor, n, is defined by a weighted occupant density applied to the tribu-

tary area of an element, the same reduction can be applied to the tributary area used here. The

NBCC (2015) allows for the reduction of live load based on the following equations:

LLRF = 0.5 +
√

20/A (3.2)

LLRF = 0.3 +
√

9.8/B (3.3)

where A and B represent the tributary area in square metres supported by the the element.

Equation 3.2 applies for assembly areas with specified live loads greater than 4.8 kPa, or areas

designated for storage, manufacturing, retail, garage, or footbridge use. Equation 3.3 applies

for all other occupancy areas. No reduction is permitted for A less than 80 m2 in Equation 3.2,

or for B less than 20 m2 in Equation 3.3. Where assembly occupancies are designed for live

loads less than 4.8 kPa, no reduction in live load is allowed. Assembly occupancies, as defined

by the NBCC (2015), include classrooms, arenas and stadia, theatres and churches, as well as

entrance halls, gymnasia and others (National Research Council of Canada, 2015a).

Similarly, ASCE/SEI 7-15 (2015) allows a live load reduction based on:

LLRF = 0.25 +
4.57
√

kLLA
≥ 0.4 (3.4)

for an element with tributary area, A, and influence area, kLLA, in square metres (m2). The

live load element factor, kLL, serves to convert tributary area to influence area, and varies from

one to four with the type and location of the element being considered. Interior beams, for

example, have kLL=2, while interior columns have kLL=4. Tributary area is the area directly

supported by a structural element and in the NBCC is confined by the lines of zero shear in

members supported by the element (National Research Council of Canada, 2015a). Influence

area, meanwhile, is the area within which the failure of an adjacent element would cause an

increase in the demand for the element in question due to the redistribution of load. Reduction
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factors from Equation 3.4 are not be applied to specified live loads in areas used for assembly

(ASCE 7-16, 2017).

Figure 3.1(a) illustrates these three LLRF models over a range of tributary areas from zero

to 1000 m2. This upper bound could represent a column supporting a 10 by 10 m tributary

area over 10 storeys. The ASCE/SEI 7-15 (2015) provisions show similar reductions to the

NBCC (2015) provisions for non-assembly occupancies (Equation 3.3). Figure 3.1(b) shows

more clearly the reduction for tributary areas less than 200 m2 as kLL varies. Equation 3.2 gives

reductions of up to 35% from the full specified live loads for assembly occupancies. For non-

assembly occupancies, Equations 3.3 and 3.4 give similar results. Variation due to the use of

kLL factors is most notable for for tributary areas less than 200 m2. The maximum reduction

permitted by ASCE 7-16 is 60% of the original live load.

3.3 Results

3.3.1 Number of Occupants at Risk

The total number of occupants at risk, nT , can be quantified in general as a function of the

tributary area, AT using Equation 3.1. The effect of the live load reduction factor for large

tributary areas can then be included to determine a reduced number of people at risk, or aversion

factor, n:

n = ρw LLRF AT (3.5)

Figure 3.2 shows the variation of n with tributary area, for a weighted occupant density

of 1.0 occupant/m2. The assumed upper limit for occupant density is 1.25 occupants/m2, in

accordance with the NFCC (2015b) provisions and the lower limit is 0.02 occupants/m2, in

accordance with NBCC Commentary L (2015). Over the range of tributary areas from 0 to 200

m2, the effects of using a LLRF are considerable. For example, for a tributary area of 200 m2
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Figure 3.1: Live load reduction factor as a function of tributary area
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and a weighted occupant density of 1.0, the number of occupants is reduced from 200 to less

than 100 for all but the assembly areas governed by Equation 3.2.
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Figure 3.2: Number of people at risk due to structural failure using NBCC and ASCE 7 live
load reductions for ρw = 1.0

Figure 3.3 shows the variation of n using the live load reductions specified in the NBCC

(2015) for weighted occupant densities from 0.02 to 1.25 occupants/m2. The associated values

of aversion factor are quite sensitive to the density used. The selected occupant density and

duration factor can therefore have a notable impact on the target probability of failure selected

for assessment.

In practice, live load reduction factors can be used to determine the number of people at risk

if the weighted occupant density, tributary area, and applicable live load reduction equation are

known. The relationship between the number of people and the area supported by a structural

element allows the structural evaluation to be based on an upper bound occupancy condition

that is consistent with that used in conventional design provisions. It can be assumed for

structural assessment that occupant densities are in in the range shown above, from 0.02 to
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Figure 3.3: Number of people at risk due to structural failure for members carrying large
tributary areas using NBCC live load reductions for areas less than 200 m2

1.25 occupants/m2. The former represents a storage area, and the latter represents an assembly

or other tightly occupied space (National Research Council of Canada, 2015b, 2015c).

3.4 Summary and Conclusions

The number of people affected by a structural failure can be used to quantify the negative per-

ception society has of a particular failure event. The number of people within an area can

be conceptualized as an occupant density applied over the tributary area of the element under

consideration. The occupant density has been defined and quantified here using explicit and

implied densities from structural and non-structural codes. The variation across these sources

can be quite large. The occupant density was modified using a factor to account for the rela-

tive duration of occupancy. Spaces that spend a large portion of their service life unoccupied

are given a lower aversion factor. The tributary area of the element being assessed can be

determined with relative ease and used to calculate the number of people it contains.
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Application of LLRF to the computation of n can increase the continuity between design

and assessment codes. Since reaching the maximum occupancy in large areas is unlikely, the

concept of live load reduction can be applied to the tributary area and so used to calculate

aversion factor in the same way it is used to calculate the live loads applicable for design. This

allows considerable reduction of aversion factors in accordance with a well-defined and widely

accepted premise for structural design.

The aversion factor defined in this chapter presents a number of improvements for the

quantification of the number of people at risk due to a structural failure. These changes provide

a rational and consistent basis for a detailed reliability analysis for structural assessment.

The primary findings of this chapter are as follows:

1. The number of people affected by a structural failure should be quantified directly from

the occupancy type and the tributary area supported by the structural element rather than

prescribed by a code or determined freely by practitioners.

2. Quantification of the number of people in a tributary area should be based on occupancy

data defined by a code whether it is related to fire safety, specified live load, or other

limitation on occupancy. The variation of occupant densities across sources is large, due

in part to the uses for which they were published.

3. The application of a LLRF to the area supported by an element can provide considerable

decreases in the computed number of people at risk, or aversion factor. The use of this

reduction factor creates consistency between design and assessment provisions, for both

Canadian and American codes.
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Chapter 4

Quantifying the Warning of Failure

4.1 Introduction

This chapter will examine the bases that current codes use to determine values of warning

factor, and will propose improvements that can more accurately represent structural behaviour

as failure approaches. Current documents (e.g. National Research Council of Canada, 2015c;

Canadian Standards Association, 2014b; American Society of Civil Engineers, 2017) identify

ductility and redundancy as measures of the warning of failure provided. In this chapter, the

contributions of both ductility and redundancy to warning of failure will be analyzed. The effect

of factors not previously identified, including plastic hinge length, and the effect of loading

pattern, will also be considered.

Possible metrics for warning of failure will be compared to determine the most practical and

consistent measures for assessment. The effects of varying the reinforcement ratio, concrete

strength, configuration of applied loading, and end restraint conditions on the indicators of

warning will be studied and used as a basis for quantifying warning factor. The definition of

warning factor should include parameters that can be observed or measured from the structure,

which also directly relate to observable behaviours as a collapse mechanism is beginning to

form.
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4.1.1 Definition of Flexural Limit States

The following analysis will consider singly reinforced concrete beams in flexure only, and will

focus on behaviour at the yield (YLS) and ultimate (ULS) limit states. The applied moments

corresponding to the yield and ultimate limit states are defined simply by moment-curvature

analysis of the cross section. Yield corresponds to the reinforcing steel reaching its yield strain

in tension, equal to fy/Es, where fy is the yield strength and Es is the elastic modulus of steel.

The YLS of the entire member, then, corresponds to an initial point along the span reaching its

yield capacity. This is not a limit state in the traditional sense since yielding may not be directly

associated with unacceptable behaviour. The ultimate capacity of a cross section corresponds

to its maximum resisting moment and is conventionally assumed to coincide with the onset of

concrete crushing. The associated concrete strain in the extreme compression fibre is 0.0035,

as in CAN/CSA A23.3-14 (2014). The ULS for an entire element is reached when a collapse

mechanism has formed.

4.1.2 Metrics of Warning

The familiar concepts of ductility and redundancy are useful starting points for developing

quantifiable metrics for warning. Rather than classifying element failure as discrete degrees of

“ductile” or “gradual”, a continuous classification will be derived using physical parameters.

Instead of classifying a structure as single- or multiple-load path, the actual support conditions

can be idealized and the structural response can be determined analytically. For elements with

varying end restraint conditions and configurations of applied loading, there may be common,

identifiable behaviours that are independent of the magnitude of loading or the dimensions

of the structure. It is desirable to identify behaviour patterns using parameters that are easily

observable from a field assessment rather than analyzing every structure in detail to determine

the expected failure mode. Identification of such parameters will allow warning of failure to be

rationally quantified.
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Two possible metrics for characterizing failure behaviours are applied load and deflection.

The limits at which structures become unsafe may be quantified using either measure; both

load and deflection increase as failure is approached.

Warning by Additional Load Capacity after First Yield

Current codes (e.g. National Research Council of Canada, 2015c; Canadian Standards As-

sociation, 2014b) deem single load path structures, in which a single local failure initiates

overall collapse, to be undesirable. Multiple load path structures, in which the formation of

the first plastic hinge does not lead to collapse, are preferred. Additional load may be applied

to an indeterminate beam until a sufficient number of plastic hinges are created to form a col-

lapse mechanism. The load applied between the formation of the first and final plastic hinges

can therefore be considered to provide warning of failure. For example, consider a member

supporting a uniformly distributed load, wy, that causes the first plastic hinge to form, and

subsequently wu, that causes failure. The difference can be expressed by a load increment,

∆w = wu − wy, or a dimensionless load ratio, wu/wy.

Using loads as a metric to define the warning of failure, however, can be problematic.

First, loading is complex and the magnitudes and distributions adopted in conventional design

practice are always simplified. The representation of structural loading as concentrated or uni-

formly distributed may be sufficient for design purposes, but for assessment, where the conclu-

sions may be more sensitive to the assumptions made, these simplifications can be misleading.

Second, the magnitude of load is not typically visible to an average user. Ongoing monitoring

is necessary to track loading as it approaches critical levels. Additional load-carrying capacity

due to indeterminacy, while beneficial, does not necessarily provide evidence that the structure

is nearing collapse, and therefore is not a useful metric for warning of failure.
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Warning by Visible Deflection

Deflection is a more effective measure of warning because it provides visible indication that

the condition of the structure could soon become dangerous. Intuitively, the more deflection

a structure can sustain without reaching failure, the greater the benefit, or warning of failure.

Similarly to load-based measures, various deflection quantities can be defined using the yield

and ultimate deflections, ∆y and ∆u, respectively. Alternately, deflection can be presented as

two components; the linear-elastic deflection, ∆e, due to curvatures in the regions that have

not yielded, and the plastic deflection, ∆p, due to curvatures in regions where the reinforce-

ment has reached yield. Measures may include ratios between the components of the expected

deflection—i.e. elastic, plastic, total. For example, ∆u/∆y, or ∆p/∆e, are unitless ratios of

deflection components. The same deflections can also be presented with respect to the span

length or height of a particular cross section, as in ∆/L, or ∆/h.

One caution when using deflections to quantify warning of failure is that the deflection of

some elements, even at large magnitudes, may be hidden behind finishes, equipment, or other

obstructions. Deflection appears to be the superior metric for measuring warning of failure,

however, and will be used in the analyses presented in this chapter. As deflections increase

in magnitude, users of the structure are able to observe and react to the potentially imminent

failure. Additionally, deflections are readily computed, given the material and geometric prop-

erties of a structural element, and are therefore practical for structural assessment.

4.1.3 Plastic Behaviour of Reinforced Concrete in Flexure

The magnitudes of deflection considered will include both linear-elastic and plastic, or inelas-

tic, components. Cohn (1965) discusses the need for consideration of inelastic behaviour of

reinforced concrete. He emphasizes the rationality of representing the behaviour of structures

approaching collapse as accurately as possible, without allowing the uncertainties in material

models or structural loads to prevent the adoption of inelastic design concepts. Since reinforced
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concrete typically retains considerable capacity beyond the limit of linear-elastic behaviour, he

argues that design procedures should recognize and account for the collapse load capacity ex-

plicitly.

Cohn (1972) presents a comprehensive set of worked examples to quantify the inelastic

behaviour of structural steel and reinforced concrete. These include the calculation of ultimate

deflections and rotations, as well as the ratios of these quantities at collapse and at the formation

of the initial plastic hinge.

As in Cohn (1972), a plastic hinge will be defined as a region along a span where the applied

moment is greater than the yield capacity of the cross section, or where plastic behaviour

occurs. At a plastic hinge location, the plastic rotation capacity will be assumed sufficient to

develop a full collapse mechanism. In reality the rotation capacity may be limited, particularly

by the concrete reaching its ultimate strain in compression.

Deflection at Ultimate Limit States

The Moment-Area Method can be used to approximate the deflection of an element as it reaches

its collapse load (Cohn, 1972). This essentially allows the simplified double integration of

curvature to determine deflection. The Moment-Area Method is based on the assumption of

small deflections, where the arc length along the elastic curve is approximately equal to the

chord length along the undeformed element (Leet, Uang, & Gilbert, 2011). The integration

therefore underestimates the total deflections because the elastic curve is in fact longer than the

undeformed length. It is acceptable to use the Moment-Area Method to compute deflections at

incipient failure in the present study as the underestimation of the true deflection and associated

warning will be conservative. The consistent use of the Moment-Area Method will also allow

for appropriate comparisons of the relative deflections for a variety of structural conditions.

The curvature diagram of the element at ULS is used to compute the plastic deflections

occurring in the hinging regions of the span. Example calculations of deflections for a fixed

end beam under a uniformly distributed load (UDL) can be found in Appendix A. The total
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deflection at ULS is the sum of both the plastic and elastic deflections. Although material

behaviour at ULS can be beyond the linear-elastic limits, the elastic portion of deflection can

be well represented using elastic beam theory (Cohn, 1972).

4.1.4 Progression toward Failure

In a statically indeterminate element, collapse does not occur when the first plastic hinge forms

if the flexural and shear reinforcement are detailed to allow large plastic rotations. When a

sufficient number of hinges have formed to create a collapse mechanism, the element is no

longer stable and deflections increase rapidly. For a simply supported beam, the formation of a

mechanism requires a single plastic hinge, while in a fixed-ended beam, three hinges must be

formed before instability occurs.

Figure 4.1 shows the distributions of moment through the progression of a propped can-

tilever beam toward collapse. The first plastic hinge forms under negative moment at the sup-

port. The beam responds to additional load as a simply supported beam until the formation of

the second plastic hinge under positive moment at midspan. These two hinges create a failure

mechanism.
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Figure 4.1: Failure progression of a propped cantilever with concentrated load at midspan
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A structural element under increasing transverse loading will eventually form a plastic

hinge at each location where the moment reaches a local maximum value. These extreme

values fall into two categories: maximum positive moments, which occur at critical midspan

locations, and maximum negative moments, which occur at support locations where rotational

restraint is present.

All locations of local maximum moments are dependent on loading and boundary condi-

tions. As hinges begin to form, rotational restraints are eliminated and the moment distribution

is altered.

Figure 4.2 shows elastic deformed shapes and plastic collapse mechanisms for simply sup-

ported (SS), cantilever (CA), fixed-ended (FE), propped cantilever (PC), and two-span (TS,

TA) boundary conditions. Two-span beams may be loaded symmetrically (TS) or asymmetri-

cally (TA). It is possible to have several hinges form simultaneously at a given load level, for

example, at the fixed ends of a symmetrically loaded beam. Although three plastic hinges are

needed to create a failure mechanism, the two end hinges form simultaneously. Since warning

depends on the actual visibility of the impending failure, classifying warning based solely on

the level of redundancy or degrees of indeterminacy may not be sufficient.

Two-span Asymmetrical

SS

CA

FE

PC

TS

TA

LINEAR-ELASTIC FIRST PLASTIC HINGE FAILURE MECHANISM

Figure 4.2: Plastic hinges at collapse for one- and two-span beams with idealized boundary
conditions
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4.2 Analysis

4.2.1 Assumptions

The following assumptions, which are commonly adopted for simple reinforced concrete flex-

ural analysis, will be used in analyzing warning of failure in reinforced concrete beams:

1. Plane sections remain plane and perfect bond exists between concrete and reinforcing steel

Plane sections must remain plane to achieve linear strain profiles for cross sectional anal-

ysis. Perfect bond between the concrete and reinforcement ensures the compatibility of

strains across the cross section.

2. Linear-elastic, cracked response up to yield

All strain occurring before yielding of reinforcing steel is assumed recoverable. Concrete

in tension is ignored.

3. Rectangular stress block at ultimate flexural capacity

The behaviour of concrete at the ultimate moment capacity can be well represented by

assuming a uniform distribution of stress in the compression region. Strain hardening of

reinforcement is ignored.

4. No catenary action

Elements will be assumed to have reached their capacity when the flexural collapse

mechanism occurs. Possible additional capacity or deformation due to catenary action is

ignored.

5. Flexural failure

Failures due to shear or axial load effects exhibit fundamentally different behaviour pat-

terns and are ignored.
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4.2.2 Cross Section Analysis

Singly reinforced cross sections can be classified by reinforcement ratio, either geometric,

ρ = As/bd, or mechanical, ω = ρ fy/ f ′c , where As is the area of reinforcing steel, b is the cross

section width, d is the effective depth of the cross section, and f ′c is the concrete strength. The

mechanical reinforcement ratio allows for the direct inclusion of concrete strength variation in

the analysis output. The geometric reinforcement ratio has the benefit of being a more familiar

quantity that can be easily conceptualized, and so will be used to present results.

Table 4.1 includes the range of parameters used for cross-sectional analysis. A geometric

reinforcement ratio from 0.002 to 0.012 represents a range that may be expected for a typical

flexural element. The lower limit of 0.002 may be present in lightly reinforced two-way slabs,

whereas 0.012 represents an approximate limit where the linear-elastic assumption of concrete

stress-strain behaviour at YLS becomes doubtful.

Table 4.1: Analysis parameters

Parameter Symbol Range Units

Geometric reinforcement ratio ρ 0.001-0.012 -
Concrete Strength f ′c 25-50 MPa
Reinforcing Steel Strength fy 400 MPa

The strength of the reinforcing steel has been assumed constant at 400 MPa. Concrete

strengths have been selected across a common range, from 25 to 50 MPa.

Figure 4.3 shows a moment-curvature diagram generated by Response-2000 (Bentz &

Collins, 2001) for a cross section using 35 MPa concrete, 400 MPa reinforcing steel, with

a reinforcement ratio of 1% and a ratio of effective depth to height, d/h, of 0.9. The true

moment-curvature response, shown by the dotted line, has been simplified as two linear seg-

ments for the analyses presented in this chapter. This idealized bilinear moment-curvature

relationship provides a clear distinction between linear-elastic and plastic behaviour. Tension

stiffening between cracks will be ignored, so the fully cracked moment of inertia, Icr, will be

adopted to calculate linear-elastic deformations. The slight overestimation of curvature caused
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by this assumption has little effect on the resulting deformations at the yield limit state. It will

also be assumed that the distribution of curvature between the yield and ultimate moments,

shown as the rigidity EIp, is linear.
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Figure 4.3: Moment-curvature relationship of a reinforced concrete cross section

For the simple beam cross section shown in Figure 4.4, a set of equations can be derived

to compute the curvature and moment in a cross section. The elements considered will be

rectangular cross sections under flexural load with only tension reinforcement. At the yield

limit state, the distribution of concrete compression stress is linear. At ultimate, it is represented

as a rectangular stress block defined in CAN/CSA A23.3-14 (2014) by parameters α1 and β1

where,

α1 = 0.85 − 0.0015 f ′c (4.1)

β1 = 0.97 − 0.0025 f ′c (4.2)
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Equilibrium requires that the tension force in the reinforcing steel at yield must be equal to

the compression force in the concrete. Figure 4.4 shows the stress and strain states in a beam at

YLS and ULS. At both limit states, the curvature depends on the depth of the neutral axis and,

at yield, the steel yield strain, εy, or at ultimate, the concrete crushing strain, εcu. High concrete

compressive strengths mean that smaller stress block depths are required to resist compression

forces. If the section width remains constant, greater compressive strengths are associated with

smaller compression block depths, a, and therefore larger ultimate curvatures, ϕu = β1εcu/a.

YLS ULS

kd
Ecεc

c

β 1
c

α1f'c

εy

εcu

dh

b

fy fsεs

kd

A

s

εc

ϕy
ϕu

Figure 4.4: Beam cross-section dimensions, stress and strain diagrams at YLS and ULS

The effective depth, defined as kd at YLS, and c at ULS, defines the strain profile in the

cross section. At YLS,

k =
√

(ρn)2 + 2ρn − ρn (4.3)

where ρ is the reinforcement ratio, and n is the modular ratio, or the ratio of the elastic moduli

of reinforcing steel and concrete, Es/Ec. At ULS, the compression block depth is β1c. Each of

the strain conditions defined by these parameters has an associated cross-sectional curvature.

Curvature is defined according to these generic strain profiles. At yield and ultimate limit

states the curvatures, ϕy and ϕy, respectively, are:

ϕy =
εy

(1 − k)d
(4.4)

and

ϕu =
α1β1 f ′c εcu

ρ fyd
(4.5)
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Equation 4.5 can be written as ϕu =
α1β1εcu
ω

, showing that the ultimate curvature is inversely

proportional to the mechanical reinforcement ratio, ω.

Figure 4.5 shows the relationship between geometric reinforcement ratio, ρ, and curva-

ture normalized by cross-section depth, ϕd. Curvatures are associated with cross-sectional

properties alone and are independent of boundary conditions, loading, and other element-level

parameters. The ultimate curvature, ϕu, is quite sensitive to the quantity of reinforcing steel

present in the cross section, primarily because it is approximately proportional to 1/ρ, or 1/ω.

Low reinforcement ratios produce markedly greater ultimate curvatures than the same cross

section with more reinforcing. The yield curvature is relatively insensitive to the reinforcement

ratio.
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The flexural capacity at each limit state can also be determined using this basic set of

assumptions and parameters. At yield, the moment capacity is,

My

bd2 = ρ fy(1 −
1
3

k) (4.6)
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where the capacity is normalized by the cross-section dimensions. Similarly, the normalized

moment capacity at failure is
Mu

bd2 = ρ fy(1 −
ρ fy

2α1 f ′c
) (4.7)

These quantities can be used to define metrics for comparison of elements with varying

cross-sectional dimensions. The two unitless quantities that will be used to identify cross

sections are the curvature ductility ratio and shape factor.

Curvature Ductility Ratio

The curvature ductility ratio, ϕu/ϕy, from Equations 4.4 and 4.5, is simply,

ϕu

ϕy
=

(
α1β1 f ′c εcu

ρ fy

)(
1 − k
εy

)
(4.8)

Figure 4.6 shows the relationship between curvature ductility and concrete strength over a

range of reinforcement ratios. Ductility is large at low reinforcement ratios, and increases with

concrete strength. The changes due to increased concrete strength are relatively minimal for

higher reinforcement ratios, while for lightly reinforced cross sections, the concrete strength is

more influential.

Shape Factor

The shape factor, f , is the ratio of flexural capacities, Mu/My. For singly reinforced beams,

Equations 4.6 and 4.7 give,

f =
1 − ρ fy

2α1 f ′c

1 − 1
3k

(4.9)

Figure 4.7 shows the variation of shape factor with both the concrete strength and the

mechanical reinforcement ratio, ω. Over the parameter ranges studied, shape factors can reach

maximum values of approximately 1.054, increasing as concrete strength is increased.

For each concrete strength shown, there is a value of ρ that maximizes the value of f . After

this point f decreases until a critical stage where the assumption of linear-elastic behaviour

46



0

10

20

30

40

50

60

70

80

0.002 0.004 0.006 0.008 0.01 0.012

C
u

rv
a

tu
re

 D
u

ct
ili

ty
 R

a
tio

, φ
u/

φ
y

Reinforcing Ratio, ρ

50 MPa

45 MPa

40 MPa

35 MPa

30 MPa

25 MPa

Figure 4.6: Curvature ductility variation with ρ and f ′c

0.002
0.004

0.006

0.008

0.01

20

30

40

50

1.01

1.055

0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

1.05

1.06

0 0.05 0.1 0.15 0.2 0.25

S
h

a
p

e
 F

a
ct

o
r,

 f

Mechanical Reinforcement Ratio, ω

0.012

ρ

f'c

Figure 4.7: Shape factor, f , variation with reinforcement ratio and concrete strength

47



of concrete at YLS no longer holds. A maximum concrete stress of 0.7 f ′c will be considered

the limit of the validity of this assumption. For higher stresses, Equation 4.3 is no longer

representative of actual concrete material behaviour. Figure 4.7 shows in solid markers the

reinforcement ratios that are inadmissible by this constrained concrete stress. These will not

be strictly used to limit possible values for f , but were influential in selecting a lower bound of

1.01 for f .

Ratio of Moment Capacities

Statically indeterminate elements introduce the possibility of cross sections with different flex-

ural capacities existing in a single element. For the investigation presented in this chapter, all

cross-sections in an element, whether in positive or negative bending, will be taken to have

identical flexural capacities, or | M+ |=| M− |. In a fixed ended beam under a concentrated

load, the moments at midspan and the supports are identical, PL/8, so identical positive and

negative flexural capacities mean that all three hinges form simultaneously. In the same beam

under a uniformly distributed load, the support moments, wL2/12, are larger than the span mo-

ment, wL2/24, so the failure mechanism is formed in two stages. In the design of reinforced

concrete beams, this assumption is unlikely to be valid, and the negative moment capacity will

be larger than the positive moment capacity such that | M− |= α | M+ |, where α ≥ 1.

Based on the moment distributions for elastic beams, the capacity of cross sections at max-

imum moment locations can be assumed to be proportional to the factored moment and an

appropriate range of α is 1.0 to 2.0 for single spans. Applying this range of moment ratios to

the deflection results for indeterminate beams will cause the total deflections to decrease, due

increased end stiffness. This analysis is briefly outlined in Appendix A.

For the remainder of this analysis, | M−/M+ | will be assumed to be one. The results in

terms of warning of failure will therefore be upper bound values. Though the impacts of this

parameter will be ignored in this chapter, the impact on outcomes is relatively minimal. These
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effects can easily be incorporated in the future in the same way as other deflection-altering

parameters.

4.2.3 Beam Analysis

Deflections at failure can be obtained by the analysis of the entire flexural element. While the

cross section plays a role in the resulting deflection magnitudes, the configuration of loads, and

the boundary conditions are also significant factors.

The plastic hinge length, `p, for a given moment variation can be determined using simple

static analysis, setting the magnitude of the maximum applied moment to the ultimate moment

capacity, Mu. For example, Figure 4.8 shows a beam segment under a uniformly distributed

load. Applying the known force effects in the midspan plastic hinge region, as in Figure 4.8,

the hinge length, `p, can be determined. Appendix A includes an example of this calculation

procedure.

ℓp/2

w
MuMy

0

V

V =
w`p

2

Mu − My =
V`p

2
−

w`2
p

8
where for a simply supported beam,

Mu =
wL2

8

therefore,

`p =

√
1 −

My

Mu
L

Figure 4.8: Free body diagram used to compute plastic hinge lengths

Load Configuration

Figure 4.9 shows the three loading conditions that will be analyzed to derive warning factor

metrics. Beams with concentrated and uniformly distributed loads, Cases (a) and (b), will be
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studied. Case (c) with two equally spaced loads will further illustrate the effects of spans with

long zero-shear regions in beams with symmetrical boundary conditions. These cases represent

large variations in the magnitudes and distributions of shear and bending moments. Case (a)

gives the largest midspan shears and has a small plastic hinge length, while Case (b) has a

much longer plastic hinge length, with shears that increase from zero at the midspan. Case (c)

has the longest plastic hinge length, that extends slightly beyond the zero shear region between

the two concentrated loads.
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Figure 4.9: Force effects and curvatures for simply supported beams under three load configu-
rations

Figure 4.9 also shows the curvature diagrams necessary to determine the total deflections

by the Moment-Area Method. For curvatures under distributed loads, the true parabolic dis-

tribution of plastic curvature will be simplified to vary linearly between yield and ultimate

curvatures as shown in Figure 4.9(b).

Table 4.2 shows the resulting hinge lengths for simply supported beams with each load

configuration. All hinge lengths are reduced as the shape factor, f , decreases. Increasing the
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reinforcement ratio, ρ, therefore reduces the deflection at incipient failure because both the

ductility ratio and the plastic hinge length are reduced.

Figure 4.10 shows the variation of the normalized plastic hinge lengths, `p/L, with the

shape factor. The longest hinge lengths occur with two concentrated loads, and range from

34-36% of the span. Under a uniformly distributed load, the plastic hinge length can vary from

10-22% of the span length, and under a single concentrated load at midspan, the range is only

1-5% of the span length. Plastic hinge lengths increase with the shape factor, most dramatically

for beams under uniformly distributed loading.

Table 4.2: Simply supported beam configurations

Configuration Plastic Hinge Length
P

V
(1 − 1

f )L

V

ω √
(1 − 1

f )L
P P

V
(1 − 2

3 f )L

A similar procedure may be followed to determine plastic hinge lengths for beams with

additional equally spaced concentrated loads as shown in Figure 4.11. The number of loads

may be even or odd as shown.

Figure 4.12 shows the plastic hinge lengths for simply supported elements with increasing

numbers of equally spaced concentrated loads, normalized by `p for the UDL case. Increasing

the number of load points leads to longer hinge lengths for odd numbers of loads, while the

opposite is true with even numbers of loads. As the number of load points increases, whether

odd or even, the load effects become increasingly similar to those for a uniformly distributed

load and the normalized hinge lengths converge to 1.0. The least plastic hinge length is for the
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Figure 4.10: Plastic hinge length for simply supported beams

case with one concentrated load, and the largest plastic hinge length is for the case with two

concentrated loads.

Figure 4.11: Simply supported beams with multiple concentrated loads

Although the effects of load configuration on warning of failure are not necessarily intuitive,

and do not appear in current assessment documents, they appear to be important in determining

the length of plastic hinges, and therefore the deflection at imminent failure. The above patterns

should be considered when simplifying conditions to a conservative state. In general, long

hinge lengths may be expected where even numbers of concentrated load points cause zero-
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shear regions between the central load points. Increasing even numbers of load points create

shorter plastic hinges. With odd numbers of concentrated loads, the opposite trend can be

observed, where increases in the number of load points in odd numbers causes a flattening of

the moment-distribution diagram and therefore longer hinge lengths.

End Restraint Conditions

Beam deflections, being dependent on distribution of moment along the member, will also vary

with end restraint conditions, which can be assumed to have zero rotational restraint, as in a

pinned condition, or complete rotational restraint, as in a fully fixed end. Pinned ends cause

large linear-elastic deformations, while increased rotational restraint generally corresponds to

smaller linear-elastic deformations.

End conditions affect the total deflections of a beam both through the elastic component

of deflection, and the plastic component. Plastic hinge locations can be determined by the
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locations of local maximum moments, and their lengths depend on the applied shear and the

shape factor of the cross section at the hinge location.

Figure 4.13 shows the end conditions considered: simply supported, cantilever, propped

cantilever, and fixed ended. While the shear force distributions in the plastic hinge regions for

each are effectively the same, the moment distributions vary greatly. Each end restraint there-

fore impacts the general deflection response. The cantilever case, while relatively uncommon,

is associated with large free end deflections, while the propped cantilever represents an in-

termediate case between simply-supported and fixed-ended beams. A propped cantilever also

behaves identically to a two-span element with pin supports and symmetrical loading, Case TS

in Figure 4.2.
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Figure 4.13: Force effects for beams with a concentrated load at midspan

Each of these end restraint conditions may be studied under any configuration of loading

to observe patterns in the resulting deflections. Here, each will be studied under a single

concentrated load, as well as a uniformly distributed load over the whole span. The cantilever

beam will have a concentrated load applied at the free end, while for the other end conditions

it will be applied at midspan.
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Table 4.3 summarizes the expressions for plastic hinge lengths in in single span beams with

fixed boundary conditions. The plastic hinge length expressions for all boundary conditions

and load configurations are shown in Appendix A. Using these plastic hinge length expressions,

as well as those for cantilevers and propped cantilevers, the total deflections at incipient failure

can be calculated for all beam support conditions.

Table 4.3: Fixed-ended beam configurations

Configuration
Plastic Hinge Length

Support Span
P

V

1
4 (1 − 1

f )L 1
2 (1 − 1

f )L

V

ω

1
2

(
1 −

√
1
3 (2 − 1

f )
)
L

√
1
3 (1 − 1

f )L
P P

V

1
9 (2 − 1

f )L 1
9 (5 − 2

f )L

Figures 4.14a and 4.14b illustrate the differences in plastic hinge length as the shape factor

varies from 1.01 to 1.055 for hinges that form at supports and in the span, respectively. The

longest plastic hinges at the supports occur in cantilevers. The support hinges in general tend

to be shorter than the span hinges, since they form in regions of high shear. For span hinges,

beams with concentrated loads at third points produce plastic hinges that remain in excess of

33% of the span length. The length of plastic hinges in spans are more sensitive to the shape

factor, and thus to the reinforcement ratio.

Two-Span Beams

Two-span beams can be examined under similar variations to determine the effects of continuity

on the patterns observed above. The procedure, similar to that for single span beams, and the

results will be presented in Appendix B. The symmetrical load combination gives results equal
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Figure 4.14: Hinge length variation with shape factor, boundary condition, and load configu-
ration
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to those for propped cantilevers, so the discussion of two-span beams will focus on systems

where one span is more heavily loaded than the other.

4.3 Results

Using the Moment-Area Method and the plastic hinge length expressions derived above, the

deflections of beams at incipient collapse can be determined. Deflection magnitudes can then

be used to quantify warning of failure. Results will be presented first for determinate beams

to indicate the effect of loading configuration, reinforcement ratio, and end restraint conditions

on the ultimate deflection. Results will then be presented for indeterminate beams, to further

illustrate the effects of the end restraint conditions.

4.3.1 Determinate Beams

Consider first the simply supported beam and the cantilever beam. Each requires the formation

of a single plastic hinge to create a collapse mechanism.

Figure 4.15 shows the total normalized deflections at ULS for determinate beams under

a single concentrated load, and a uniformly distributed load. For each, the total deflection at

ULS is greatest for low reinforcement ratios and high concrete strengths. As concrete strength

decreases, or reinforcement ratio increases, the total deflection at incipient failure becomes less.

The magnitudes of deflection however, are quite different. The overall deflections in cantilevers

are less than in the simply supported beams and show less variation with reinforcement ratio.

The maximum deflection magnitude for cantilevers occurs under a concentrated load, rather

than a uniformly distributed load because the length of the plastic hinge at the support location

is longer. The length of the plastic hinge in the cantilever is always shorter than that in the

simply supported beam due to the larger shear forces at the support.

Figure 4.16 shows the deflections for the two concentrated load configuration alongside

those for a UDL and single concentrated load on a simply supported beam. The longer hinge
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Figure 4.15: Total normalized deflection of determinate beams at ULS

lengths for the beam subjected to two concentrated loads produce notably larger ultimate de-

flections. This illustrates the importance of considering the load idealization for assessment.

The case with two concentrated loads produces much larger deflections, indicating greater

warning of failure, and lower risk to occupants.

The most common loading configuration for beams in reinforced concrete buildings is uni-

formly distributed, so the subsequent comparisons will focus on this configuration. Figure 4.17

shows the differences in total deflections for determinate beams under a UDL. The differences
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Figure 4.16: Total normalized deflection for a simply supported beam

in deflections can be attributed to the differences in plastic hinge lengths as well as the shape of

the elastic curves. At low reinforcement ratios, the simply supported beams give much larger

total deflections, but as ρ increases, the cantilever case becomes much more comparable, or

even preferable. These observations indicate that indeterminacy on its own is not necessarily

a helpful indicator of failure. These two systems could both be classified as having a single

load path, or zero degrees of indeterminacy, but the deflections they exhibit, and therefore the

warning they can provide, is markedly different.
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Figure 4.17: Deflection ratios for determinate beams under uniformly distributed loading
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Figure 4.18 shows the ratios of total deflection to yield, or linear-elastic, deflection for de-

terminate elements as the reinforcement ratio is varied. The cantilever beam deflections are

comprised primarily of linear-elastic deflection over the entire range, while the simply sup-

ported beam experiences primarily plastic deflection at low reinforcement ratios but primarily

linear elastic deflections at high reinforcement ratios.

0

0.2

0.4

0.6

0.8

1

0.002 0.004 0.006 0.008 0.01 0.012

Δ
e
/Δ

T

ρ

CA
SS

Figure 4.18: Ratio of ultimate to yield deflections for statically determinate beams

4.3.2 Indeterminate Beams

Figure 4.19 shows normalized deflections for cases of simply supported, propped cantilever,

and fixed-ended beams subjected to single concentrated and uniformly distributed loads. Simi-

lar trends can be observed as in the previous section: total deflection decreases with decreasing

concrete strength and increasing reinforcement ratio.

Figure 4.20 shows the effects of expanding the fixed ended beam results to include the

two concentrated load case. Again, the deflections for this case are much larger, providing

considerable warning of failure. In assessment, the case with a single concentrated load is the

most severe, giving the least warning of failure, and requiring the most stringent assessment

criteria. The case with two concentrated loads provides ample warning of impending failure

due to large deflections.
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Figure 4.19: Total normalized deflection of indeterminate beams at ULS
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Figure 4.20: Total normalized deflection for a fixed ended beam

4.4 Definition of Warning Factor

In Chapter 3, a procedure to compute the aversion factor is presented. Practitioners can select

occupant density, occupancy duration, and tributary area to determine the number of people

that may be at risk if the element under consideration fails. Similarly, using information about

cross section geometry, load configuration, and end conditions, the total normalized deflection

at incipient failure, ∆T/ϕyL2, can be predicted. From this prediction, warning factors may be

determined using a known relationship between deflection and warning.

4.4.1 Deflection Coefficient

To move from ∆T/ϕyL2 to a warning factor, it is helpful to consider the deflections in terms

of the deflection-span ratio, ∆/L, which is conventionally used to specify acceptable deflection

limits for Serviceability Limit States. It can also be conveniently used for the definition of
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warning factor using deflection limits. A deflection coefficient, a, can be implemented, where

∆T

L
= a

∆T

ϕyL2 (4.10)

so a = ϕyL. This will be defined for a given beam using dimensionless ratios, L/h, and d/h,

and the normalized yield curvature, ϕyd, so that:

a = ϕy L =
ϕyd
d/h

(
L/h

)
(4.11)

Span to Depth Ratio, α = L/h

This ratio is easily determined, either by field survey or drawing review, for an exist-

ing structural element. Beams and one-way slabs generally satisfy the limits specified in

CAN/CSA A23.3-14 (2014) for deflection control shown in Table 4.4. These limits are es-

sentially identical to those in ACI 318-14 (2014) for the range of end conditions considered

and have remained unchanged since the 1970s (Cement Association of Canada, 2016).

Table 4.4: Minimum cross section depths, L/h, for deflection control from CAN/CSA A23.3-
14 (2014)

Boundary Conditions
L/h

One-way Slabs Beams

Simply Supported 20 16
Propped Cantilever 24 18
Fixed Ended 28 21
Cantilever 10 8

Yield Curvature, ϕy

Curvatures at yield, defined by Equation 4.4, can be determined for a beam given the effec-

tive depth, d, the reinforcement ratio, and the modular ratio. For the purposes of illustration,

the following discussion will use a range of effective depths from 0.65h to 0.95h.
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Deflection Coefficient, a

Figure 4.21 shows the variation of a for cross sections with d = 0.95h for reinforcement ra-

tios ranging from 0.002 to 0.012. The parameter a is most sensitive to α = L/h, and slightly

sensitive to ρ, while the effect of changing f ′c is relatively minimal. Higher concrete strengths

correspond to smaller values of a, and are therefore associated with the smallest deflections

that provide the least warning of failure. However, the presentation of deflection coefficients

using the slightly larger values for 25 MPa concrete will be adopted to remain consistent with

previous simplifications.
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Figure 4.21: Variation of deflection coefficient, a, with concrete strength for cross sections with
d = 0.95h

Figure 4.22 shows the range of a for slabs with α varying from 10 for cantilevers to 28 for

fixed-ended slabs in accordance with Table 4.4, and with d/h ratios of 0.95 and 0.65, where f ′c

is 25 MPa. The resulting multipliers are between 0.022 and 0.140 and can be applied to the

previously computed ∆T/ϕyL2 magnitudes to give ∆/L ratios at ULS.
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Figure 4.22: Deflection coefficient variation with reinforcement ratio, and length-to-depth ratio
for f ′c = 25 MPa

Figure 4.23 shows the variation of deflection, ∆/L, with ρ for one-way slabs that just meet

the L/h limit shown in Table 4.4. The largest deflections corresponds to the fixed-ended case,

reaching a maximum of approximately 7.5% of the span length at ρ = 0.002, where the cor-

responding maximum for the simply supported case is approximately 6.3% of the span length.

The commonly used SLS limit of L/240 is shown for reference, and all minimum deflections

in this range of reinforcement ratio are well above this level. Comparing the values of α for

each beam type, it is observed that the simply supported beam has a depth that is 40% greater

than the fixed-ended beam, giving an uncracked moment of inertia that is 2.74 times larger.

This creates a discrepancy between the values used for comparison.

Figure 4.24 shows the variation of ∆/L with ρ, using α=20 for all end conditions. The sim-

ply supported beam now gives the largest deflections, whereas in Figure 4.23, the largest de-

flections occur in fixed-ended beams. The maximum deflection for a simply supported beam is

still approximately 6.3% of the span length, while the corresponding value for the fixed-ended
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Figure 4.23: Deflection-length ratios
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Figure 4.24: Deflection-length ratios for elements with α = 20
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beam is approximately 5.4%. The previous results are skewed by the tendency for elements to

be designed with lower stiffness (smaller depth) where there is element-level stiffness provided

by end fixity.

4.4.2 Warning Factor

Figure 4.25 shows a possible linear relationship between deflection and warning that gives a

usable output for determining probability of failure. The exact form of this relationship may

be the subject of further study, but for the purposes of this chapter, this simple correlation is

sufficient. The key to this mapping is the identification of deflection limits that can provide

warning of failure.

A deflection of magnitude L/240 at incipient failure is clearly insufficient to provide mean-

ingful warning of failure because standards such as CAN/CSA A23.3-14 (2014) deem this

deflection to be acceptable at Serviceability Limit States (SLS). Larger deflections become

visible to occupants, and so provide warning. An arbitrary upper limit is L/20, or 5% of the

span length, which is quite large. When this mapping is applied to the deflections from Fig-

ure 4.24, a continuous range of warning factors for use in the assessment procedure can be

determined.

1/240 1/20
0

1

0 0.02 0.04 0.06

W
a

rn
in

g 
F

a
ct

o
r,

 W
 

Deflection Ratio, Δ/L

Figure 4.25: Definition of deflection limits for warning of failure
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Figure 4.26 shows how the resulting warning factors vary for beams with a range of rein-

forcement ratios, effective depths, and end conditions. The end conditions considered (SS, PC,

d=0.65h, average

d=0.95h, average
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Figure 4.26: Warning factor for all end conditions, α = 20

FE) cause relatively little change in the associated warning factor. The typical magnitude of

the difference in W between the fixed-ended case and the simply supported case is on the order

of 0.1 across the range of reinforcement ratios. The effective depth, ranging from 65 to 95% of

the cross section depth, gives changes in the warning factor of, on average, 0.17. This range of

effective depths is quite large, and in reality, most cross sections will tend to fall in the higher

end of this range, i.e. d/h ≥ 0.85.

Given the magnitudes of the effects of these two factors on the overall results and the

accuracy of the deflection-to-warning mapping, the simplification of these six curves to average

curves for each d/L ratio is appropriate. The average curves shown in Figure 4.26 represent an

aspect ratio, α or L/h, of 20. Since both d/h and α are linearly related to deflection magnitude

(Eq. 4.10, 4.11), and therefore W, a general equation can be formulated for all values of d/h
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and L/h so that,

W = 1.625 × 10−4ρ−0.9 L/h
d/h

= 1.625 × 10−4ρ−0.9 L
d
≤ 1.0 (4.12)

Using this equation, the warning factor, W, can be estimated if the reinforcement ratio and

dimensions are known.

4.5 Conclusions

In this chapter, the warning of failure provided by beams subjected to flexure has been studied

under the influence of several convenient structural parameters. It was determined that de-

flection at incipient failure is the most useful measure of warning of failure. Both plastic and

elastic deflections contribute to the total deflection at incipient failure.

The analysis considered variation of the reinforcement ratio, as well as the member length

and depth. The cross-section variables impact deflection through the curvature ductility ratio,

and shape factor. As the reinforcement ratio is increased, the deflection at incipient failure

decreases and warning is reduced.

The effects of variations in the load configuration and end restraint conditions were also

investigated. Three configurations of load– a UDL, a single concentrated load, or two concen-

trated loads– were investigated to determine their impact on ultimate deflections. The largest

deflections occur for beams subjected to two concentrated loads, and the smallest for beams

subjected to one concentrated load. Since most structural loads on reinforced concrete struc-

tures are idealized as uniformly distributed, the primary focus was on this configuration. Ex-

treme cases for end restraint conditions are simply supported, and fixed ended. Results for

elements with partial end fixity can be assumed to fall between these two.

The normalized ultimate deflections determined from these analyses were used to formulate

a translation from ∆/L to W. Using a simple linear mapping, an equation for warning factor

was developed, requiring the reinforcement ratio, span length and effective beam depth as
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input. This proposed equation may be used in place of previous categorizations for warning of

failure based on ductility and redundancy.

The major findings of this chapter are as follows:

1. The magnitudes of total deflections at incipient failure are a function of cross-section

geometry, loading configuration, and end conditions. The consideration of plastic hinge

formation is a key addition to the proposed procedure for determination of W.

2. Redundancy by itself is not necessarily an effective indicator of warning of failure. When

measuring redundancy using the degree of indeterminacy, the results are not only incon-

sistent, but can also be misleading. For example, the differences between the deflections

of simply supported beams and cantilevers are quite large.

3. Deflections at incipient failure challenge the conventional code assumption that increased

redundancy enhances the warning of element failure. It has been shown that total deflec-

tion, and therefore warning of failure, decreases when additional degrees of indetermi-

nacy are added to an element.

4. Plastic hinge length, which has previously not been identified as a factor in the deter-

mination of warning of failure, has been shown to contribute in a significant way to

ultimate deflection magnitudes. Plastic hinge length is a function of load configuration

and boundary conditions, as well as the shape factor associated with the cross section.

Large deflections can be attributed to a combination of long plastic hinge lengths, and

large shape factors due to low reinforcement ratios.

5. The warning factor, when linearly related to the magnitude of deflection at imminent

failure, can be well represented without consideration of the specific end conditions of

a flexural element. This does not negate the influence of end conditions altogether, but

means that at the level of refinement of the current assessment procedure, its impact is

minimal.
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Chapter 5

Calibration Procedure for Assessment

5.1 Introduction

This chapter will synthesize the conclusions of the previous chapters to develop a procedure

to quantify risk and calibrate strength reduction factors for improved structural assessment

procedures. In Chapter 2, literature relating to assessment procedures and reliability were

shown to have strong underlying bases, but are qualitative in nature. Chapters 3 and 4 outline

improvements to the means of quantifying both aversion and warning factor, respectively, and

therefore demonstrate that continuous, rationally derived factors are possible. Chapter 5 will

integrate the full range of these and other new concepts into improved assessment procedures.

The new definitions of n and W can be used to compute the target probabilities of failure and

associated target reliability indices to be used for structural assessment.

5.2 Design Basis for Calibration

Target probabilities of failure are determined primarily by the values assigned for n and W,

but are scaled using calibration factors. In CAN/CSA S6-14 (2014), the calibration factor,

k, is set to 10−4 per year, based on Allen (1992). Similar implied calibration factors may be

calculated using the annual probabilities of failure for a given set of conditions. In ASCE/SEI
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7-15 (2015), lifetime target reliability indices and annual probabilities of failure are given for

each of the occupancy classes and types of failure discussed, which are implicitly related to n

and W, respectively. With assumed values for n and W based on the description of failure for a

given reliability level, the associated k can be determined using Equation 5.1.

The following formulation for P f is slightly modified from Equation 2.2 because warning

factor in this thesis has been defined between zero (no warning) and 1.0 (considerable warning),

which is opposite to the definition used in CSA S408-81 (1981) and CAN/CSA S6-14 (2014).

Here, W is positively correlated to warning, so that higher values are associated with beneficial

behaviours as failure approaches.

P f =
AkW
√

n
(5.1)

or,

k =
P f
√

n
WA

Reliability targets from ASCE/SEI 7-15 (2015) will be used because they are clearly outlined

for various types of structures, and state associated failure behaviours. Canadian codes such

as CAN/CSA S6-14 (2014) discuss target reliability indices, but do not associate them with

specific behaviours, making calibration to these targets more arbitrary.

Using the most stringent reliability targets (βT,50 = 4.0) in ASCE/SEI 7-15 (2015) for

normal (Class II) occupancy, and an expected failure that is sudden and causes widespread

damage, a baseline will be determined to use in the illustrative examples to follow. A sudden

failure causing widespread damage indicates little warning, so let W = 0.01. Similarly, the

large scale of the failure indicates a large number of people at risk, so let n = 100. The

activity factor A is equal to 1.0 for buildings (Allen, 1992). These are equated with the target

annual probability of failure, equal to 7.0 × 10−7, giving a calibration factor, k, of 7.0 × 10−4.

This calibration factor can now be used to determine reliability indices and strength reduction

factors for other combinations of W and n.
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Selection of another design-basis from ASCE/SEI 7-15 (2015) may also be appropriate.

Varying any of the initial inputs will change the magnitude of the calibration factor, and thus

the resulting target probabilities of failure and strength reduction factors. For example, other

normal occupancy buildings with less critical failure types give lifetime βT values of 3.5, or

P f ,1 of 5 × 10−6, and 3.0, or P f ,1 of 3 × 10−5 (American Society of Civil Engineers, 2017).

If these are associated with n = 10 and 1 and W = 0.1 and 1.0, respectively, the associated

calibration factors are 1.58 × 10−4 and 3.00 × 10−5.

Figure 5.1 shows the variation of target annual probability of failure with the assessment-

stage W and n values, in the combined form, W/
√

n. The three curves illustrate the target

probabilities of failure obtained from the use of the three design bases in ASCE/SEI 7-15

(2015).

Figure 5.1: Target annual probability of failure variation with design basis and assessment
parameters

The inset table shows the parameters assumed for each case. The marked calibration points

indicate where the assessment-stage n and W are the same as those assumed for the design-basis

condition. Using one of these three calibration factors, annual target probabilities of failure,
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P f ,1, are easily determined. The following analysis will use k of 7.0 × 10−4 to calibrate target

reliability indices for assessment, corresponding to a design-basis P f ,1 of 7.0 × 10−7 and con-

ditions where failure is “sudden and results in wide spread progression of damage” (American

Society of Civil Engineers, 2017). Any reliability targets determined by the proposed assess-

ment procedure using this k will be more favourable, since the warning will be greater than or

equal to 0.01 and the aversion factor will generally be less than or equal to 100. These more

favourable conditions will give higher allowable target probabilities of failure and therefore

lifetime target reliability indices lower than the 50-year design-basis value, 4.0.

5.3 Application to Assessment Procedure

Given both a warning factor, W, an aversion factor, n, and a calibration factor, k, the target

probability of failure can be computed. From an annual probability of failure, the correspond-

ing annual target reliability index, βT,1, is also known, since

βT = −Φ−1(P f ) (5.2)

where Φ−1 is the inverse cumulative normal distribution function.

Figure 5.2 shows the annual target reliability indices associated with the probabilities of

failure in Figure 5.1 for the calibration factor k = 7 × 10−4. The lowest annual target reliability

index occurs when warning is high and aversion is low, or W/
√

n = 1.0. As warning and aver-

sion factor conditions become less favourable, or approach zero, βT,1 increases, approaching

5.0. The calibration point at W/
√

n = 0.01/
√

100 = 0.001 gives an annual target reliability

index of 4.8, which is consistent with a a lifetime value, βT,50, of 4.0.

Warning factor has been defined over a range from 0.01 to 1.0, representing elements with

deflections at incipient failure from L/240 to L/20, respectively. Depending on the reinforce-

ment ratio, span length, and effective depth, a flexural element can be assigned any value in
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Figure 5.2: Target annual target reliability index variation with design basis and assessment
parameters

this range. The values of W/
√

n therefore range from 0.01 to 1.0 for an aversion factor of 1.0,

and approach zero as the aversion factor increases.

Strength reduction factors for assessment may be derived from known target reliability

indices in accordance with Appendix B of CSA S408-11 (2011). Strength reduction factors,

applied to the flexural capacity of the entire cross section, are determined by the following

equation,

φ = δR

∑
i αiS i

S
ln

(
− βT

√
V2

S + V2
R

)
(5.3)

where δR, VR, and VS are the bias coefficient for the resistance, and the coefficients of variation

for the resistance and demand, respectively. The summation of factored load effects normal-

ized by the average load effect,
∑

i

(
αiS i

)
/S , gives an approximate load factor for the total load

effect. The target reliability index, βT , whether annual or lifetime, selected according to W and

n, sets the level of acceptable risk for the element. If an annual target probability is being con-
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sidered, the associated statistical parameters must be defined on an annual basis. In particular,

the live load parameters should be converted to represent a one-year return period.

Equation 5.3 accounts for the bias and variability of the demands and resistances, but does

not account for the underlying distribution of each random variable. Higher-order reliability

methods are available (i.e. Madsen, Krenk, and Lind, 1986) that do account for the underlying

distribution. For the present study, Equation 5.3 is recommended in CSA S408-11 (2011) and

so is suitable for this purpose.

Although in Canadian code documents, flexural resistance is a function of partial resistance

factors for both concrete and reinforcing steel, φc and φs, the steel behaviour governs in flexure

and modification of the single factor φs is appropriate. For other load effects such as axial or

shear force, calibration using both φc and φs is necessary.

Table 5.1 outlines the statistical data for this analysis. Bartlett, Hong, and Zhou (2003)

give the bias coefficients and coefficients of variation for both load effects and resistances to

be used for analysis. The live load is assumed to follow an Extreme Value (Type I) or Gumbel

distribution so its parameters can be transformed, using the log-shift principle, from a 50-year

lifetime value to an annual value (Bartlett, Hong, & Zhou, 2003). The resulting annual live

load distribution is Extreme Value (Type I) but this is ignored when using Equation 5.3. The

bias coefficient and coefficient of variation for the resistance have been modified by applying

a professional factor as suggested in Nowak and Szerszen (2003) to account for differences in

the actual section capacity and that obtained by analysis.

The coefficient of variation for the demand, VS , depends on the dead load fraction, γ, being

investigated. In general,

VS =
σS

D + L
=

√
V2

Dδ
2
Dγ

2 + V2
Lδ

2
L(1 − γ)2

δDγ + δL(1 − γ)
(5.4)

where the dead load fraction is γ = D/(D + L), and therefore L = D(1 − γ)/γ. The bias coeffi-

cients and coefficients of variation for live and dead loads are δL, δD, VL, and VD, respectively.
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Table 5.1: Statistical parameters for loads and resistances in Bartlett, Hong, and Zhou, 2003

Bias Coefficient, δR Coefficient of Variation, V Distribution
Load

Live Load (50 year) 0.9 0.17 Gumbel
Transform to load effect 1.0 0.206 Normal
Live Load (1 year, transformed) 0.433 0.409 ∼ Normal
Dead Load 1.05 0.1 Normal
Resistance

Professional Factor, P 1.02 0.06 Normal
Reinforcing Steel 1.17 0.108 Normal
Resistance (RnP) 1.19 0.124 Normal

The range of VS for one-year live loads is 0.097 to 0.409, and for 50-year live loads, 0.094 to

0.267. The coefficient of variation tends to decrease with increasing γ, but begins to increase

again when the critical load combination changes from 1.25D+1.5L to 1.4D at γ=0.91.

Figure 5.3 shows the strength reduction factor for assessment, φa, as a function of the dead

load fraction, γ, or the nominal dead load divided by the total load. After determining an

annual target reliability index, βT,1, an appropriate strength reduction factor can be selected for

the given dead load fraction.

Strength reduction factors can vary quite markedly with both βT,1 and γ. When the annual

target reliability index is less than or equal to three, the strength reduction factors are typically

greater than 1.0, and so increase the factored flexural resistance from its nominal value. This

may seem counterintuitive but, as shown in Table 5.1, the bias coefficient is 1.19, which implies

that the mean resistance is 19% greater that the nominal resistance. Further, the load factors,

αi, in Equation 5.3 are greater than 1.0 and do not vary with βT . The change in reliability

must therefore be achieved by varying the resistance factor only, which is why the variation

shown in Figure 5.3 is so large. Where βT,1 is greater than 3.0, φa can range from 0.5 to 1.15.

Generally, lower target reliabilities can be associated with large values of φ, and therefore have

factored flexural resistances larger than the nominal flexural strength. Conversely, high target

reliabilities are associated with small increases, and sometimes notable decreases in the design

78



2.0

3.0
4.0
5.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 0.2 0.4 0.6 0.8 1

ϕ
a

γ = D/(D+L)

βT,1 for 
Assessment:

Practical Limit of γ

L/D = 0.5; 
γ = 0.67

L/D = 1.5; 
γ = 0.4

ϕd = 0.85

Figure 5.3: Strength reduction factor variation with load fraction

resistance from the nominal value. This is particularly visible where the dead load fraction is

low, and the live load, which is more highly variable, contributes more to the overall variability

of the loading.

The large range in φa can be limited by the practical range of γ as shown in Figure 5.3. If

the range of live loads varies from 50% to 150% of the dead load, the corresponding γ range is

from 0.67 to 0.4. While the full range of φ is 0.5 to 2.7, a more practical range is from 0.82 to

1.61.

The effects of using these φa factors on the flexural capacity of the structure can be illus-

trated by comparing the suggested strength reduction factors for assessment, φa, with those

used for design, φd. In CAN/CSA A23.3-14 (2014), the strength reduction factor used for rein-

forcing steel in the design stage, φd, is 0.85. This will be used to normalize the φa values from

Figure 5.3. Figure 5.4 shows the ratio φa/φd over the full range of γ. Again considering the

practical range of dead load ratios, the resulting assessment capacities from the use of φa fall

between 0.97 to 1.9 of the design-stage capacities.
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Figure 5.4: Normalized strength reduction factor variation with load fraction

When reliability targets are low, for example βT,1 = 2.0, the flexural capacity can increase

by 60 to 90% of the factored value used for design. Meanwhile, for higher reliability targets,

where βT,1 = 5.0, the flexural capacity in the assessment stage will be 97 to 102% of the values

given by design provisions.

5.3.1 Effects of n and W on Target Reliability Indices

Applying the ranges of n and W from Figures 3.2 and Equation 4.12 to the computation of

P f and subsequently βT,1 yields a wide range of annual target reliability indices. The resulting

extreme values of these reliability targets are shown in Table 5.2. For a calibration factor equal

to 7.0 × 10−4, βT,1 can fall between 3.19 and 4.83. The variations associated with an order of

magnitude change in W are much larger than an equal change in n because P f is proportional

to W and inversely proportional to
√

n. Each parameter has a range that spans two orders of

magnitude. The changes in βT,1 associated with this W variation are 1.15 and 1.02, while the
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changes due to the n variation are approximately half as large, or 0.61 and 0.48.

Table 5.2: Extreme values of annual target reliability index for k = 7.0 × 10−4

βT,1
n

∆βT,1
1 100

W
1 3.19 3.81 0.61

0.01 4.34 4.83 0.48

∆βT,1 1.15 1.02

Table 5.3 shows annual target reliability indices that illustrate the less dramatic effects of

using a smaller calibration factor, k, on the reliability targets over the lifetime of a structure.

Table 5.3: Extreme values of annual target reliability index for k = 3.0 × 10−5

βT,1
n

∆βT,1
1 100

W
1 4.01 4.53 0.51

0.01 4.99 5.42 0.43

∆βT,1 0.98 0.89

5.3.2 Effects of Statistical Parameters on φa

The sensitivity of φa to the selection of statistical parameters can be observed in Figure 5.5.

For each parameter shown in Table 5.1, maximum and minimum values for sensitivity analysis

were set at a 25% greater than or 25% less than the value reported in literature, respectively.

The values shown are for βT,1 = 3.0.

Overall, changing the statistical parameters can have notable impacts on φa. Specifically,

increasing the bias coefficient for resistance causes an increase in φa, which results in larger

flexural resistances. The variations in φa are relatively uniform over the entire range of gamma.

This is expected, because in Equation 5.3, φ is proportional to δR. Similarly, the variation of

φa with changes in the coefficient of variation for resistance and is relatively uniform over the
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Figure 5.5: Variation of strength reduction factor using alternate statistical parameters
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range of γ. The overall impact of a 25% increase or decrease in VR is much less than that for a

25% change of the bias coefficient.

Increasing the bias coefficient for either dead or live load causes a reduction in the φa factor,

resulting in smaller factored flexural resistances. The effects of the respective bias coefficients

are most notable when the load associated with the varied bias coefficient constitutes most of

the total load. For example, the φa results are most sensitive to variations in live load bias

coefficient when γ is small, or the load is comprised largely of live load, and vice versa.

The coefficient of variation for live load can cause large variations in φa, but only in the

region where live loads are considerable, or γ is less than approximately 0.5. The coefficient

of variation for dead loads are similarly notable only in areas where dead loads are large, but

the scale of the changes is much smaller.

5.3.3 Lifetime Reliability Indices

Figure 5.6 shows the lifetime equivalent βT,50 values for the strength reduction factors in Figure

5.3. These lifetime reliability indices can be compared directly with the target reliability indices

used for design. For example, ASCE/SEI 7-15 (2015) uses βT,50 for design between 3.0 and 4.0

for a normal-occupancy structure, while the range may expand to include values from 2.5 to

4.5 for structures in other occupancy categories. Similarly, CSA S408-11 (2011) gives lifetime

target reliabilities of from 2.5 to 4.0 for gradual failures, and from 3.0 to 4.5 for sudden failures.

These cover structures in safety classes from “not serious” to “very serious”.

Higher lifetime target reliability indices are necessary when the loading is primarily dead,

which has a higher bias coefficient than live load, or primarily live, which is much more vari-

able than dead load. Dead loads are often assumed not to vary in time. This means that βT,50

and βT,1 are equal when only dead loads are present, γ=1.0. The smallest lifetime target relia-

bility indices occur in the range from γ=0.2 to 0.45 where both dead and live loads contribute

meaningfully to the total. The target lifetime reliability index begins to increase in the lower γ

region where the coefficient of variation for live loads becomes increasingly influential.
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Figure 5.6: Lifetime (50-year) target reliability indices

Converting the target reliability indices in Tables 5.2 and 5.3 to lifetime values using Fig-

ure 5.6 yields results in the general range of those used for design, approximately 2.5 to 4.5

(American Society of Civil Engineers, 2017, 2017). This means that the results achieved by the

proposed changes are in the range of lifetime reliability indices that are commonly accepted

for structural design.

5.4 Draft Code Procedure

A general procedure can be proposed for adoption in codes for the assessment of concrete

structures based on the previous illustration. The input parameters include:

• occupant density, occupancy type, duration factor, tributary area;

• reinforcing ratio, cross section geometry, concrete strength, load configuration, boundary

conditions

Aversion Factor, n:
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1. Obtain occupant density (occupants/m2) based on occupancy type, examples in Table

3.2.

2. Obtain duration factor from Table 3.2 or based on building study.

3. Compute weighted density, ρw = ρd, or select directly from Table 3.2.

4. Compute tributary area of element.

5. Compute appropriate LLRF based on AT and occupancy type from Equation 3.2 or 3.3.

6. Compute n from Equation 3.5.

Warning Factor, W:

1. Identify reinforcing ratio, ρ.

2. Identify span length, L, and effective depth, d, from field measurements, as-built draw-

ings, or non-destructive testing.

3. Compute applied (dead and live) loads as per NBCC (2015) and dead load ratio γ =

D/(D + L).

4. Compute warning factor, W, from Equation 4.12.

When n and W are known, the following steps can be taken to determine the appropriate

strength reduction factor for structural assessment of a flexural element:

1. Using n and W from above, compute W/
√

n.

2. Determine value of βT,1 corresponding to W/
√

n from Figure 5.2 or Equation 5.1.

3. Use βT,1 and γ (determined previously) to determine φa from Figure 5.3.

4. Compute the flexural capacity for assessment, Mr,a, of the cross section using φa:

Mr,a = φa fyAs

(
d −

φaAs fy

φcα1λ f ′c b

)
(5.5)
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where φc is the strength reduction factor for concrete from design provisions, or 0.65 as

per CAN/CSA A23.3-14 (2014).

5. Compute factored moment, M f , in accordance with NBCC (2015).

6. Compare Mr,a to M f to determine if action required.

Mr,a ≥ M f Acceptable
Mr,a < M f Unacceptable, action required

5.5 Conclusions

In this chapter, the basis of current design was used to calibrate the assessment procedure

to achieve reliability levels that are consistent with those in current design codes. Using a

calibration factor, k of 7.0 × 10−4, the effects of W and n on the target reliability indices for

design, as well as the resulting strength reduction factors for assessment, were observed.

Conversion of annual to lifetime target reliability indices was used as a means of comparing

the proposed assessment procedure to the reliability index range expected for structures.

The major findings of this chapter are as follows:

1. Warning factor, W, has the most direct impact on assessment outcomes, but aversion

factor, n, is important and can also contribute meaningfully. For an equivalent order

of magnitude change in W or n, the change in βT is approximately half as large when

changing n than when changing W.

2. Calibration of the assessment framework outlined here gives reliability targets that are in

line with accepted reliability-based codes. The possibility of increasing φ for assessment

has the potential to improve assessment outcomes, while maintaining appropriate relia-

bility levels. For a calibration factor of 7.0 × 10−4, the resulting lifetime target reliability

indices are between 3.2 and 4.8.
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3. In most cases, the proposed changes to the assessment procedures lead to increases in

the factored flexural capacity when comparing to the values used in design. The overall

range of φa within a practical range of dead load ratio (γ=0.4 to 0.67) is approximately

0.8 to 1.6, so generally greater than the value used for design, φs = 0.85.
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Chapter 6

Conclusions and Recommendations

6.1 Summary

The main goal of this thesis is to enhance reliability-based structural assessment provisions in

Canada and the United States by identifying parameters that accurately quantify the probabil-

ity of structural failure. Significant costs are associated with the repair or replacement of a

structure, so rational bases for connecting structural risk to measurable structural parameters

can have cost benefits in addition to safety benefits.

Current and historical structural risk assessment methods were compared to determine com-

mon metrics. The primary means of classifying structural risk, risk aversion and warning of

failure, are often defined qualitatively rather than quantitatively. Risk aversion includes a range

of factors, including the type of occupancy and the number of people expected to be impacted

by a structural failure. Warning of failure, defined further in terms of ductility and redundancy,

addresses the type of structural behaviour expected at failure and therefore the likelihood that

occupants could recognize and respond to an incipient failure. Risk aversion and warning of

failure can define a target probability of failure and overall level of acceptable risk using a

calibration factor.
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The analysis of risk aversion in Chapter 3 led to the formulation of an aversion factor, n,

which is essentially the number of people that would be harmed by the failure of an element.

The aversion factor is a function of the occupancy type of the area supported by the element,

as well as the tributary area. Existing data regarding occupant density and occupancy duration

were aggregated and used to suggest applicable weighted occupant densities for the determi-

nation of n. Reduction of the number of people at risk can be justified by the tributary area

reductions allowed for live loads in new design. Live load reductions decreased the number of

people at risk in some cases by up to 60%.

In Chapter 4 the analysis of warning of failure yielded a set of metrics to determine the

warning factor, W. Curvature ductility ratio provides the basis for quantifying ductility in cross

sections of flexural elements, where the curvature at first yield can be compared to that at incip-

ient failure. Curvature ductility is a property of the cross section determined primarily by the

reinforcement ratio. The total deflection at incipient failure includes plastic deflections due to

hinge formation, which contribute positively to the perceptible warning of failure and therefore

should be included in assessment provisions. The deflections at incipient failure are dependent

on the configuration of loading applied to the element, as well as the end restraint conditions.

These affect the location and length of plastic hinges as well as the elastic deflection profile,

neither of which are explicitly considered in current assessment provisions. The warning fac-

tor is then assumed to be proportional to the magnitude of total deflection and can be well

approximated as a simple function defined by reinforcement ratio, span length, and effective

depth.

The target probability of failure for assessment is determined from the computed values

of n and W, using a calibration factor, k, determined using reliability parameters from design

provisions. For each combination of n and W, a strength reduction factor, φa, for calculating

the assessment-stage moment capacity may be determined. This provides the basis upon which

repair or replacement decisions can be made for the structure.
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6.2 Conclusions

The following primary conclusions have been reached with regard to the quantification of the

target probability of failure and the corresponding assessment provisions:

1. In current assessment codes and standards, aversion and warning factors are often de-

scribed qualitatively and quantified using a set of discrete values. It would be preferred

that both be defined as continuous functions of measurable parameters.

2. Aversion and warning, two primary factors used to define target reliability levels, are

widely used in assessment codes, and are appropriate factors to define suitable reliability

targets.

3. The metrics currently used to identify target levels of reliability to assess existing struc-

tures can more accurately reflect structural conditions by applying readily available prin-

ciples, data, and structural parameters to the calculation procedure. This allows target

reliabilities to be defined using a continuous numerical scale rather than the existing

judgment-based classification of structural behaviour, and ensures greater consistency in

the application of reliability methods for assessment.

4. Social aversion to risk is directly related to the number of people affected by a structural

failure. Tributary-area-based live load reduction, allowed for new design based on the

notion that full occupation of large areas is unlikely at any given time, is a valid basis

for quantifying the number of people at risk. This number can be reduced according to

the live load reduction schemes in NBCC (2015) or ASCE/SEI 7-15 (2015), bringing

assessment procedures in line with the rationale used for structural design.

5. The number of people present in the tributary of a structural element can be computed

using occupant density. Data from literature regarding occupant density comes from a

range of intended uses, and should not be viewed as prescriptive or fully representative

of real structural occupancies.
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6. Warning factors in current code documents are assigned based on a description of the

expected failure mode and the extent of its effects on the structure as a whole.

7. Warning factor should quantitatively account for the visibility of an incipient failure. It

is dependent on the flexural reinforcement ratio in the cross section, the configuration of

applied loading, and the end restraint conditions of the element. The reinforcement ratio

is the primary influencing parameter for, and for a given concrete and steel strength is

inversely proportional to, the total deflection expected at incipient failure.

8. A simple formulation for W can be created using the reinforcement ratio, the span length,

and the section depth. Concrete strength, and end restraint conditions do affect the deflec-

tion at incipient failure, and so on the warning factor, but their influences are relatively

small and have therefore been removed from the proposed warning of failure definition.

9. Loading configuration is an important consideration when determining the magnitude

of plastic deflection. In previous formulations for warning factor, this has not been ac-

counted for, but can be critical, especially in high shear locations where concentrated

loads are applied to flexural elements. Only uniformly distributed loads have been used

for illustration in this thesis, with the understanding that this is not a valid assumption in

all cases.

10. Computing target probabilities of failure for structural assessment using n and W is de-

pendent on calibration factors that are consistent with those used for design. The calibra-

tion of assessment methods to the current reliability levels used for design are based on

interpretation of the code language and the application of newly defined W and n to the

structural conditions described. The definition of acceptable probabilities of failure and

the corresponding structural conditions are loosely implied in ASCE/SEI 7-15 (2015),

but are otherwise unclear.
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11. The φ factors associated with the new n and W values generally cause the flexural ca-

pacity for assessment to be greater than those used for design. In contrast to assessment

codes such as NBCC Commentary L (2015) where load factors for assessment are varied

in accordance with target reliability levels, these strength reduction factors are intended

to be used alongside the load factors for design.

6.3 Recommendations and Future Work

It is recommended that the above results be integrated into code provisions for the assessment

of reinforced concrete structures. In NBCC Commentary L (2015), this transition can be rel-

atively smooth, since its procedures for determining the target reliability levels for assessment

closely parallel those presented in this work. Changing the current procedure to align with

the provisions discussed in Section 5.4 will require that the assessment procedures no longer

achieve target reliability levels by changing the factored load combinations, but rather use de-

sign load combinations alongside a revised strength reduction factor.

In documents such as ACI 562-16 (2016), the transition to a reliability-based assessment

method of this form will require a more thorough change in the code provisions. The end result

will still be the computation of a strength reduction factor for determining the assessment

capacity of an element, but the steps used to obtain it will be more involved. Rather than

the current assignment of φ factors based on the type of element or critical failure mode, the

selection of φ will be based on the results of a basic structural investigation.

With these goals in mind, suggestions for future work emerge in two main areas: the ap-

plication of these concepts to a wider range of elements and load effects, and the refinement of

aversion and warning factor parameters.

To create widely applicable procedures for structural assessment, a wide array of element

types and load effects should be addressed. The following steps are suggested for future ex-

pansion in this area:
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1. Address failure types that are typically considered brittle, such as shear and axial load

dominated failures, the inclusion of warning of failure parameters may need to be for-

mulated using alternate metrics. The expansion of warning of failure concepts for col-

umn assessment has been partially addressed in van Weerdhuizen and Bartlett (2018) for

columns with low axial loads. Further research in column reliability assessment should

include the consideration of axial loads beyond the balanced failure point in the column.

In these cases, curvature ductility in a column will not be an effective or visible measure.

Brittle elements require the development of alternate visible means by which to observe

an approaching failure condition.

2. Calibrate material-specific strength reduction factors corresponding to load effects that

are sensitive to both concrete and steel material strengths.

3. Use higher-order reliability methods (e.g. Madsen et al., 1986) to more accurately rep-

resent the distributions of applied loads and material properties.

The parameters that are used as metrics to describe risk aversion and warning of failure have

been largely redefined, but refinement of the parameters through reliability-focused studies is

needed. The following are areas of improvement that would address some of the assumptions

made about available data in the proposed assessment procedures:

1. Study the occupant density and duration for the occupancy types outlined in structural

codes to provide a more consistent basis upon which aversion factors can be determined.

The values used should be the result of a focused investigation for structural reliability,

rather than be interpreted from provisions created for other purposes.

2. Define the influence of loading configuration on warning of failure more fully. Due to

scope limitations in this thesis, the most common configuration for reinforced concrete

structures was assumed to be uniformly distributed loading. The results presented do not

outline the effects of concentrated loading on warning of failure and the resulting assess-

ment provisions. The presence of concentrated loads, especially a single concentrated
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load, can greatly decrease the length of the plastic hinging region, and therefore the total

deflection expected at incipient failure and warning of failure.

3. Redefine the relationship between warning of failure and the deflections at incipient fail-

ure. Both the deflection limits that can provide warning and the form of the relationship

can be improved through further empirical study.
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Appendix A

Deflection Calculations

A.1 Summary of Deflections and Plastic Hinge Lengths

Table A.1: Elastic deflections and associated loading

1 Concentrated Load UDL 2 Concentrated Loads

SS ∆e = 1
12ϕyL2 ∆e = 5

48ϕyL2 ∆e = 23
216ϕyL2

P = 4M/L w = 8M/L2 P = 3M/L

FE ∆e = 1
24ϕyL2 ∆e = 1

16ϕyL2 ∆e = 5
144ϕyL2

P = 8M/l w = 24M/L2 P = 9M/2L

CA ∆e = 1
3ϕyL2 ∆e = 1

4ϕyL2 –

P = M/L w = 2M/L2

PC ∆e = 7
120ϕyL2 ∆e = 1

12ϕyL2 –

P = 32M/5L w = 16M/L2
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Table A.2: Plastic deflections

1 Concentrated Load & UDL 2 Concentrated Loads

SS ∆p

ϕyL2 =
(
ϕu
ϕy
− 1

)[
1
8

(
`p,2

L −
1
3

(
`p,2

L

)2)] ∆p

ϕyL2 =
(
ϕu
ϕy
− 1

)[
1
3

(
1
9 + 1

3
`p,2

L −
1
8

(
`p,2

L

)2)]
FE ∆p

ϕyL2 =
(
ϕu
ϕy
− 1

)[
1
6

(
`p,1

L

)2
+ 1

8

(
`p,2

L −
1
3

(
`p,2

L

)2)] ∆p

ϕyL2 =
(
ϕu
ϕy
− 1

)[
1
6

(
5
18 +

(
`p,1

L

)2
− 1

4

(
`p,2

L

)2
+ 1

2
`p,2

L

)]
CA ∆p

ϕyL2 =
(
ϕu
ϕy
− 1

)[
1
2

(
`p,1

L −
1
3

(
`p,1

L

)2)]
–

PC ∆p

ϕyL2 =
(
ϕu
ϕy
− 1

)[
1
24

(
`p,2

L

)2
+ 1

4
`p,1

L −
1
6

(
`p,1

L

)2]
–

Table A.3: Plastic hinge lengths; at support (`p,1), and in span (`p,2)

1 Concentrated Load UDL 2 Concentrated Loads

SS – – –

`p,2 = (1 − 1
f )L `p,2 =

√
1 − 1

f L `p,2 = (1 − 2
3 f )L

FE `p,1 = 1
4 (1 − 1

f )L `p,1 = 1
2

(
1 −

√
1
3

(
2 − 1

f

))
L `p,1 = 1

9

(
1 − 1

f

)
L

`p,2 = 1
2 (1 − 1

f )L `p,2 =
√

1
3 (1 − 1

f )L `p,2 = 1
9 (5 − 2

f )L

CA `p,1 = (1 − 1
f )L `p,1 = (1 −

√
1
f )L –

– – –

PC `p,1 = 5
22 (1 − 1

f )L `p,1 = 1
8 (5 −

√
17 + 8

f )L –

`p,2 = (1 − 1
f )L `p,2 = 1

4 (1 +
√

9 − 8
f )L –
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A.2 Example

• Plastic deflections and plastic hinge lengths for FE beam subjected to UDL

V

ω

V

ℓp,2

Mu My

ℓp,1 Mu

My

ϕu

ϕy

ϕu

ϕy

ϕu

ϕy

Mend = Mmax =
ωL2

12

Mmid = Mcollapse =
ωL2

24

Therefore the UDL that causes the upper limit

of plastic deflection is,

ωcollapse =
24M

L2

where M = M+
u = M−

u for the cross section.

A.2.1 Plastic Hinge Lengths

SUPPORT HINGE LENGTH, lp,1

ΣMR = 0 = Mu − My −
1
2
ωLlp,1 +

1
2
ω(lp,1)2

My = Mu −
1
2

24Mu

L2 Llp,1 +
1
2

24Mu

L2 (lp,1)2
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My

Mu
= 1 − 12

 lp,1

L
−

(
lp,1

L

)2
0 =

(
lp,1

L

)2

−
lp,1

L
−

1
12

(
1
f
− 1

)

lp,1 =
1
2

1 −
√

1
3

(
2 −

1
f

) L

SPAN HINGE LENGTH, lp,2

ΣML = 0 = Mu − My −
1
2
ω

(
lp,2

2

)2

My = Mu −
24Mu

L2

1
8

l2
p,2

My

Mu
= 1 − 3

(
lp,2

L

)2

lp,2 =

√
1
3

(
1 −

1
f

)
L

A.2.2 Plastic Deflections

ϕu

ϕy

ϕu

ϕy

ϕu

ϕy
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SUPPORT HINGE

∆i =
1
2

(
φu − φy f

) (
lp,1

) 2
3

lp,1

∆i =
1
3

(
φu

φy
− f

) (
lp,1

L

)2 [
φyL2

]
SPAN HINGE

∆ii =
1
2

(
φu − φy f

) ( lp,2

2

)
2
3

lp,2

2

∆ii =
1

12

(
φu

φy
− f

) (
lp,2

L

)2 [
φyL2

]

TOTAL PLASTIC DEFLECTION

∆T = ∆i + ∆ii

∆T =

1
3

(
lp,1

L

)2

+
1
12

(
lp,2

L

)2 (φu − φy f
) [
φyL2

]
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Appendix B

Warning of Failure Expansions

B.1 Ratio of Moment Capacities

The following example is intended to demonstrate the impacts of differing positive and negative

moment capacities on deflections at incipient failure. Key parameters that are affected by the

different positive and negative capacities are the curvature ductility ratios and shape factors.

All are roughly proportional to the ratio of the reinforcement ratios at each cross section, and

will be discussed with reference to the values representing the cross section in positive bending.

The deflections presented in Chapter 4 are computed assuming that the positive and neg-

ative flexural capacities are equal. In reality a range of capacity ratios from 1.0 to 2.0 can be

expected for single-span beams. The bounding configurations are fixed-ended beams subjected

to a single concentrated load, and a UDL, respectively.

For a flexural capacity ratio of 2.0, the ratio of curvature ductility ratios at the critical

location for negative bending is approximately 0.45, or φ−u /φ
−
y = 0.45φ+

u /φ
+
y . Similarly, the

yield curvature at the negative cross section, φ−y is 0.90φ+
y . Finally, the shape factor, f −, can

range from approximately 0.82 to 0.91 of f +. A value of 0.86 f + will be assumed.

Figure B.1 shows the comparison of normalized total deflections at incipient failure for an

element with ρ+ = 0.004 and ρ− = 0.008, giving a ratio of moments, M−/M+ of approximately
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2.0 and the cross section parameters above. Many simplifications have been made for to facil-

itate this illustration, but the scale of the resulting deflections is sufficiently representative. For

sections with the minimum reinforcement ratio of 0.002 at the critical positive cross section

and 0.004 at the critical negative cross section, the maximum deflection is approximately 70%

of that expected where the cross sections have equal capacities. The difference between the

two cases decreases at higher reinforcing ratios.

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.002 0.004 0.006 0.008 0.01 0.012

Δ
T
/φ

y+
L
2

ρ

1.0

2.0

M-/M+

Figure B.1: Comparison of deflections at incipient failure for M−/M+ from 1.0 to 2.0

B.2 Two Span Beam Analysis

The analysis results of a two-span beam that is continuous over the middle support and sub-

jected to symmetric loading yields the same response as a single-span propped cantilever.

Therefore, analysis of only the two-span case with differently loaded spans will be outlined

below.

Figure B.2 shows the load patterns for a two-span beam, Case (a) with symmetrical load-

ing, and Case (b) where one span is loaded more heavily than the other. This will produce
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several possible structural responses, from which designs are typically proportioned in line

with response envelopes. For a two-span system, two additive components of loading must be

considered: that applied to both spans, w2, and that applied to only one span, w1. Generally w2

will consist of dead loads (and live loads where symmetrically loaded) and w1 will consist of

live loads. The path to failure is dependent on the ratio α = w1/w2.

(a) Symmetrical loading (b) Asymmetrical loading

Figure B.2: Load patterns for two-span beams

In the analysis of two span beams, the consideration of the ductility ratio for the critical

cross sections in both positive and negative bending, ϕ+
u /ϕ

+
y , and ϕ−u /ϕ

−
y , is required, along with

the ratio of yield curvatures in positive and negative bending ϕ−y /ϕ
+
y . The moment area method

is used to calculate deflections at incipient failure, and the effect of varying curvature ductility

ratios and plastic hinges can be observed.

Depending on the ratio of the w1 and w2, the first plastic hinge to form may be the sup-

port hinge or the span hinge. If the support hinge forms first, the second stage of loading is

essentially applied to two separate simply supported beams, until the formation of span hinges.

If the span hinge forms first, the second stage of loading applies to single span beam with an

overhang.

The elastic deflection curves for these two cases are shown in Figure B.3. Case 2 has large

elastic deflections in the second stage of loading due to the large additional rotations after the

formation of the span hinge.

Figure B.4 shows the deflections of equivalent beams when calculated according to Case

1 and Case 2 procedures. The deflections at incipient failure for the asymmetrical case are

consistently markedly higher than for the symmetrically loaded case. The figure is derived for

105



(a) Case 1 (b) Case 2

Figure B.3: Elastic curves for two-span beams

the condition where w1 and w2 are equal, or α=1.0. The cross-section properties used assume

equal positive and negative reinforcement ratios.

0

0.5
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1.5

2

2.5

0.002 0.004 0.006 0.008 0.01 0.012

Δ
T
/φ

yL
2

ρ

CASE 1

CASE 2

Figure B.4: Comparison of deflections at imminent failure two span beams with asymmetrical
loading

Expansion of these concepts can provide further insight into the effects of load ratio, and

the flexural capacity ratio on the total deflections in two-span systems. This can eventually be

used to improve the accuracy with which the warning factor represents their failure behaviours.
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