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Abstract  

There is a growing body of research evaluating head impacts in sport, but studies have not 

evaluated youth football in Canada. It is important to evaluate football in Canada as the rules 

and field size are different than American football, and this may influence the impact 

exposures. The purpose of this study was to quantify the head impact exposures in youth 

Canadian football and determine if a season’s worth of impacts could cause impairments in 

executive function. Players (n=50) had their head impacts recorded using an impact 

measuring device (GForceTracker) throughout all contact practices and games. A subset of 

players (n=28) completed a pre- and post-season antisaccade protocol to determine whether 

there were any changes in executive function. No statistically significant executive 

functioning deficits were detected in this study. It appears that the head impacts accumulated 

during one season of youth football do not lead to decrements in executive function. 

 

Keywords 

Subconcussive head impact, Canadian football, youth, antisaccades, electrooculography, 
concussion, executive function 
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1   Introduction  

1.1   Concussion  
The first reference to mild traumatic brain injury (mTBI) as “concussion” was in the 10th 

century [1]. While our understanding of concussion has evolved, this was the first time 

that concussion was referred to as being distinctly different than other head injuries. The 

current definition of concussion is a mTBI induced by biomechanical forces that can be 

transmitted to the brain by impacts to either the head or body [2]. Concussion can only be 

diagnosed by a health care professional and should be suspected if an individual presents 

with any of the associated physical signs or clinical symptoms  [2]. There is a wide 

variety of possible concussive symptoms, with the most common being headache, 

dizziness and difficulty concentrating [3]. It is important to note that symptoms vary 

between individuals and no symptom presents in every case of concussion [3]. 

 

The occurrence and management of head injuries are currently some of the most 

discussed topics in sports. Sports related concussions (SRC) are one of the largest 

problems for people in North America; particularly for adolescents and youths. Nearly 

40% of youth patients admitted to emergency rooms in Canada with sport related head 

trauma were diagnosed with concussions [4]. In the youth population, American football 

is the sport  responsible for the most SRC associated hospital visits [5].  Concussions 

account for roughly 8% of all injuries sustained by youth football players [6].  

 

Head injuries can have long term effects for anyone who suffers them, but may be most 

detrimental to youths. In fact, 16% of youth football players aged 5-14 with SRC took 

longer than 30 days to return to play compared to 7% of college athletes [3]. At these 

ages, the brain undergoes a period of development in which white matter increases and 

continues to develop into adulthood [7]. While the exact reasons for age related 

differences in recovery are not fully understood, it is possible that these neurological 

changes make youth athletes vulnerable [8]. A continuously growing body of evidence is 
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showing that long term detrimental effects on the brain may be present even when a 

concussive injury has not been diagnosed. A recent study evaluated executive function in 

retired National Football League (NFL) players that began their playing careers before 

the age of 12. They found that players who began playing before the age of 12 

demonstrated significantly greater impairments of their executive function compared to 

those that began playing after 12 [9]. This is despite there being no statistically 

significant difference in the number of concussions sustained throughout their career [9]. 

This indicates that long term neurological issues could be a result of exposure to head 

impacts, not necessarily SRC. 

 

1.2   Subconcussion  
Subconcussion refers to impacts to the head or body that cause an acceleration of the 

brain, but do not cause concussive symptoms [10, 11]. Accumulation of these 

subconcussive impacts has been linked to Chronic Traumatic Encephalopathy (CTE) [12, 

13] and various short term cognitive deficits [14-16]. One of the difficulties of 

researching subconcussive impacts in humans is the ethical implications of knowingly 

inducing head trauma in participants. For this reason, most of the research has come from 

observing head impacts in sports such as boxing, soccer and football.  

 

1.2.1    Subconcussive  Impacts  
Several studies have determined the characteristics of the impacts that athletes are 

exposed to by participating in sporting events. A common methodology involves 

conducting kinematic analyses of video to extract kinetic data from head impacts which 

are then recreated in a laboratory setting [17-19]. Collecting game video for analyses can 

work when analyzing a small number of impacts, but it is difficult in sports such as 

football when there can be hundreds of impacts per game. Proper analysis of video 

requires multiple camera angles and video that is clear enough to see precise details, yet 

zoomed out enough to have every player in the frame at all times. Additionally, the 

unknown relative angles between the camera and the impact site can lead to difficulty 

locating a precise impact point and can result in errors calculating the players velocity of 
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up to 11.3% [20]. An alternative to collecting impact data using video replication is the 

use of in-helmet instrumentation. 

 

Instrumentation has been used in football helmets to provide real time feedback on the 

characteristics of impacts since the 1970’s [21]. More recently, researchers have 

evaluated both the number and magnitudes of head impacts sustained by collegiate 

American football players during a season [22-26]. Peak linear and rotational 

accelerations were 200 g [22] and 9,922 rad/s2 [24] respectively. Mean linear 

accelerations were 20.9 g [23] and 32 g [22], and mean rotational accelerations were 

1,355 rad/s2 [24]. The maximum number of head impacts that collegiate level players 

were exposed to in a season ranged from 1,022 – 1,444 [26]. The impacts measured in 

American college football are different than those observed in the high school and youth 

levels of the game. 

 

In contrast to collegiate players, high school players experience a lower number of head 

impacts and reduced impact magnitudes. The peak linear and rotational accelerations 

experienced by high school athletes were 152.3 g and 7,701 rad/s2  respectively [27]. 

Mean linear accelerations were recorded at 25.9 g with mean rotational accelerations of 

1,694.9 rad/s2 [28]. Athletes were exposed to a maximum of 1,258 impacts [27] with a 

mean of 774 impacts per season [28]. These findings show that the number of impacts 

and the peak linear and rotational acceleration magnitudes in collegiate football are 

higher than high school football, despite having similar mean impact values. The peak 

values are likely larger due to the increased size, speed, and strength of the players in the 

collegiate level. Relatively few impacts occur in the highest acceleration range compared 

to the lower range, which could explain why the higher peak values in the collegiate 

game did not show a large increase in the mean acceleration magnitudes.  

 

There has been a recent shift of focus to explore the characteristics of head impacts that 

youth athletes (aged 5-14) are exposed to while playing American football [29-33]. The 

peak linear and rotational accelerations have been reported at 175.9 g [32] and 7,694 

rad/s2, respectively [31]. Peak linear values are comparable to those seen in both 
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collegiate and high school levels. Mean linear accelerations have been measured between 

19.8 and 22 g, and mean rotational accelerations have been measured between 1,099 and 

1,114.6 rad/s2 [33]. These values are less than those experienced by collegiate and high 

school athletes. Quantifying the impacts that youth athletes are exposed to throughout a 

season of football is important, but it offers little meaning if we do not understand the 

potential effects these impacts could have on their developing brains. 

 

1.2.2  Effects  of  Subconcussive  Impacts  in  Football  Players  
Studies into the effects of subconcussive impacts have yielded some concerning results. 

A study of high school football players with no concussive symptoms showed athletes 

had impaired visual and working memory abilities after one season of subconcussive 

head impacts [34]. Researchers have revealed similar findings in youth football. Youth 

football players had slower processing speeds and reaction times than non-contact 

athletes [35].  Other researchers have observed changes in brain function through medical 

imaging. For example, Bahrami and colleagues (2016) studied fractional anisotropy (FA) 

of white matter tracts in youth (aged 8-13) American football players [36]. Fractional 

anisotropy is a measure of permeability that is frequently used to describe the integrity of 

white matter tracts in the brain. Low FA values indicate that neuronal permeability is 

being disrupted, which is caused by a loss of structural integrity of the axon [37]. 

Bahrami et al. (2016) observed a negative linear relationship between head impact 

exposure and FA. These findings from American football indicate that exposure to 

subconcussive impacts may impair certain aspects of brain functioning in youth football 

players. However, there are a number of differences between American and Canadian 

football that may alter the head impact exposures. To date, no researchers have examined 

the head impact exposures or their consequences in youth level Canadian football. 

 

1.3   Canadian  vs  American  Football  
One of the most notable differences between Canadian and American football is that 

Canadian rules allow for three attempts (downs) to get a first down [38]. This is different 

than the four downs allowed in the American game [39]. Due to having fewer attempts to 
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get a first down, the likelihood of Canadian teams achieving a first down is lower. When a 

first down is not achieved, the offensive team often elects to kick the ball to the opposing 

team. Kicking plays are commonly referred to as special teams plays. These plays generally 

result in greater closing distances prior to colliding with the opposing team, which leads to 

higher linear and rotational head accelerations on impact [40].  

 

The rules regarding the number of players and the dimensions of the playing field may also 

contribute to differences in closing distances. The Canadian game has 24 players 

participating at a time, and the field is 150 yards long, and is 65 yards wide [38]. In 

comparison, the American game has 22 players on at a time, and the field is 120 yards long, 

and is roughly 53 yards wide [39]. The larger field provides Canadian players with 406.25 

yd2 of free space per player compared to the 289.09 yd2 on an American field. More free 

space gives players a greater opportunity to increase their velocities prior to contacting the 

opposing team, resulting in increased linear and rotational head accelerations on impact. The 

rules that govern American and Canadian football vary considerably, meaning impact 

exposures and their associated cognitive effects collected from American football should not 

be extrapolated to a Canadian population. 

 

1.4   Antisaccades  

1.4.1  Executive  Function  
The executive functions are a specific set of cognitive skills that most everyday tasks that 

humans perform heavily rely on. These functions include things like planning goal 

direction behaviours, initiating actions, inhibiting reflexive movements, and the ability to 

self-correct behaviours in response to changes in a planned task [41]. While impairments 

in executive function are often seen in cases of brain lesions following TBI [42, 43], 

some individuals with mTBI display impairments even without any additional cognitive 

symptoms [42, 43]. One of the commonly used methods of detecting executive 

functioning impairments is the antisaccade task. 
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1.4.2  Antisaccade  Task  
The antisaccade task is an oculomotor test of executive function [44]. Participants are 

instructed to focus on a fixation point (FP) centrally located in their field of view. When a 

target stimulus (TS) is flashed peripherally to either their left or right, individuals must 

suppress the natural reflex to look at the stimulus (a prosaccade) and instead generate a 

new saccade to the mirror symmetrical location of the stimulus [45]. While the 

antisaccade task is simple for participants to complete, it requires complex coordination 

of several regions of the brain. This includes the cerebral cortex, basal ganglia, thalamus, 

superior colliculus, brainstem, cerebellum and reticular formation [45]. For a complete 

neurophysiological review of the antisaccade task, refer to Munoz and Everling, 2004.  

 

A standardized antisaccade data collection protocol recommends that researchers 

evaluate performance using both the reaction time (RT) latencies and error rates of all 

trials [46]. Most antisaccade errors result in the generation of a reflexive prosaccade 

toward the stimulus, followed by a brief pause, then the correct antisaccade movement 

[47]. This indicates that the errors seen in individuals with impaired executive function 

are likely caused by an inability to suppress the prosaccade reflex [45]. In cases where the 

prosaccade reflex is successfully inhibited, impaired individuals will likely display 

greater latencies due to their compromised ability to plan and generate the mirror 

symmetrical saccade. Researchers can determine both RT and direction of a participant’s 

saccade using electrooculography (EOG,[[48-51]). 

 

1.4.3  Electrooculography  
Electrooculography (EOG) can be used to detect the onset and direction of eye 

movements. The eye has an electrical di-pole between the positively charged cornea at 

the front of the eye and the negatively charged retina at the back. This is known as the 

standing retinal potential (SRP) [52]. The SRP can be used to gain valuable information 

regarding the onset and direction of eye movement by placing an electrode on the outer 

(lateral) canthi of each eye. When the eyes are oriented straight ahead, the relative 
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voltage between the two electrodes is zero. As participants look left or right, the positive 

cornea rotates towards one electrode while the negative retina rotates toward the other. 

The electrode closest to the cornea will measure a positive charge while the electrode 

closest to the retina will measure a negative charge. This means that the saccade will 

always be in the direction of the positively charged electrode and the onset of movement 

occurs at the time when the voltage between electrodes changes from zero.  
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2   Purpose  Statement  and  Hypothesis  

2.1   Purpose  Statement  
This study has two purposes. First, to quantify the cumulative number of head impacts 

and the resulting linear accelerations and rotational velocities that Canadian youth 

football players are exposed to throughout a competition season. Second, to determine the 

effects that these subconcussive head impacts have on athletes executive functioning. 

2.2   Hypotheses  
1) A seasons worth of head impact exposures will cause impairments in players’ 

executive function. 

 

2) Players who sustain a higher number of impacts throughout the season will experience 

greater executive functioning deficits than those who sustain a lower number of impacts. 
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3   Methods  

3.1   Participants  
This study was approved by the Western University Health Sciences Research Ethics 

Board (protocol 11054). Players from a bantam level youth football program volunteered 

to participate in this study. Each player and their parent/guardian gave informed consent 

prior to participating in any aspect of this study. Participants completed a health history 

questionnaire to determine if any concussive symptoms or neurological disorders were 

present (Appendix A). Athletic trainers were present at all practices and games to monitor 

athletes for possible signs and symptoms of concussion. 

 

3.2   gForce  Tracker  
The gForce Tracker (GFT) is an inertial measurement unit that measures head impact 

kinematics that result from impacts to the head or body. These devices contain a tri-axial 

linear accelerometer and a tri-axial gyroscope and they measure linear accelerations, 

rotational velocities, and impact locations. The devices are triggered to record data when 

the accelerometers detect a linear acceleration above the user defined threshold in any 

axis. The threshold was set to 15 g to remain consistent with previous research [53-55]. 

The devices record 40 ms of data when the threshold is reached (8 ms before and 32 ms 

following the threshold trigger). Signals from the tri-axial accelerometer are sampled at 

3,000 Hz and low pass filtered with a cut-off frequency of 300 Hz. Signals from the tri-

axial gyroscope were recorded at 800 Hz and low pass filtered with a cut-off frequency of 

100 Hz. Impacts are time stamped and stored in an onboard memory system. Impact data 

are downloaded from the devices following each game or practice. 

 

Participant’s helmets were equipped with a GFT device for the duration of the season. 

The devices were fastened to the inside crown of the helmets shell using an industrial 

strength re-closeable fastener (3MTM Dual LockTM Re-closeable Fastener SJ3551 400 
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Black, 3M Global Headquarters, St. Paul, MN). The device was placed within the natural 

spaces between each helmet’s padding (Figure 3.1). Once fastened, according to 

manufacturer guidelines, an alignment procedure was performed to orient each device to 

its location relative to the rest of the helmet. This involved calibrating the devices with 

the helmet in three different positions, one in each cardinal plane. The devices remained 

in the same position for each collection period to ensure that all data remained accurate.  

 

 

Figure 3.1: Figure depicts a GFT, circled in red, fastened to the inside crown of the 

helmet. 

3.3   Impact  Collection  

3.3.1  Practices  
All of the devices were turned on prior to each practice. During practice, attendance was 

recorded and absent player’s devices were turned off. Players were instructed by the 

coaches to keep their helmets on their heads at all times while on the playing field. 

Athletes were monitored any time they were off the field (e.g. for injuries or water 

breaks) to ensure that any incidences when their helmets came off their head were 

recorded. Any impacts recorded during these times were excluded from the analysis. 

Devices were turned off at the conclusion of each practice session. Following each 

practice, the devices were charged and the impact data was downloaded from the helmets 
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onto a secure cloud server. Helmets remained in the possession of the research team 

while not in use to ensure that the devices remained uncompromised. 

 

3.3.2  Games  
All of the devices were turned on prior to each game. The team participated in only one 

game per week with no bye-weeks between games. During games, a custom game day 

LabVIEW program (LabVIEW 2010, National Instruments, Austin TX) enabled the 

researchers to record the exact time periods that players were on the field. This program 

was used to exclude all impacts recorded when a player was not on the field of play. 

Devices were turned off at the conclusion of each game. Following each session, the 

devices were charged and the impact data was downloaded from the helmets onto a 

secure cloud server. 

3.4   Antisaccade  Testing  Procedure  
Participants completed an antisaccade testing protocol at two time points throughout the 

study. The pre-season protocol took place immediately prior to the first contact practice 

and the post-season follow-up protocol was conducted between two and seven days 

following the final game.  Testing protocol’s ran approximately five minutes in duration. 

Participants were seated at a table with their heads placed on a chin rest for the duration 

of the collection protocol. A light board was constructed based on digitally controlled 

colour LEDs (WS2801, www.adafruit.com) connected using a USB to Multi-Protocol 

Synchronous Serial Engine (MPSSE) Cable (C232HM-EDHSL-0, Future Technology 

Devices International, Ltd., Glasgow, UK) and controlled using a custom LabVIEW 

program (LabVIEW 2010, National Instruments, Austin TX). The light board was 

oriented perpendicular to the participant’s gaze and located 55 cm in front of the chin 

rest. The saccadic FP and TS were displayed on the light-board. The FP was centered 

horizontally on the light board with TS located 15.5 ° to the left and right along the same 

horizontal axis. The FP was illuminated to indicate to each participant that the trials had 

begun. This light changed from green in prosaccade trials to red in antisaccade trials to 

remind the participant which was required. Each testing session was comprised of 20 

prosaccades followed by 20 antisaccades; each block consisted of 10 trials to the right 
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and 10 to the left in a randomized order. There was a randomly assigned 

1,000 to 2,000 ms latency period between trials. After which, the TS was illuminated for 

50 ms to trigger the response and indicate the desired direction of the saccade. The FP 

remained illuminated for the entire duration of the testing protocol (no-gap paradigm).  

 

Trials were deemed successful if the saccade was generated towards the TS in a 

prosaccade, and away from the TS in an antisaccade (Figure 3.2). Trials were considered 

to be errors if the initial eye movement was in the wrong direction, even if participants 

subsequently looked in the correct direction. The change in number of directional errors 

and RT latencies from pre- to post-season were used to measure executive functioning 

impairment.  

 

The timing of the stimulus was captured simultaneously with EOG signals. The voltage 

across a 100 kΩ resistor in parallel with the photodiode was used to quantify the level of 

light emitted by the LED. Illumination of the LED resulted in a 200mV signal that had a 

rise time of less than 10 µS. Photodiodes were placed beside the TS LEDs, oriented 

towards them, and covered to eliminate ambient light. The signals from the photodiodes 

were used to determine the timing and direction of the desired saccade. EOG was used to 

measure the latency and direction of participant’s saccades. 

 

 

Figure 3.2:  Correct performance of prosaccade and antisaccade trials. Colour of 

fixation light indicates upcoming trial (green = prosaccade, red = antisaccade). Blue 

dots represent participant’s eyes. Yellow dots represent target stimulus. 
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3.4.1  EOG  Recordings  
Participants were fitted with three disposable surface Ag-AgCl electrodes (AM-N00S/E, 

AMBU Blue Sensor Adhesive Snap Electrode, Ambu Inc, Glen Burnie, MD, USA); one 

located at the outer canthi of each eye and one ground electrode on the center of their 

forehead (Figure 3.3). The voltages from the electrodes were amplified 1000x and filtered 

from 0.5-100 Hz using an isolated electrophysiological amplifier (Model 2024F, Intronix 

Technologies Corporation, Bolton, Ontario, Canada) and sampled at 1000 Hz with a 

16 bit analog-to-digital converter (USB 6211, National Instruments, Austin TX) using a 

custom LabVIEW program (LabVIEW 2011, National Instruments, Austin TX). Signals 

were displayed in real time on the computer monitor so that investigators could evaluate 

the quality of the signals. 

 

 

Figure 3.3: Placement of the EOG electrodes; one on the outer canthi of each eye, 

and one ground electrode on the forehead. 

3.5   Data  Analysis  

3.5.1  Head  Impact  Analysis  

Head impacts were identified using the student investigators practice notes and the game 

day LabVIEW program to remove all impacts that did not occur while the player was 

participating in football activity. The GFT’s record data from the outer shell of helmets, 
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so a correction algorithm was used to determine the linear accelerations and rotational 

velocities of the center of mass of participants heads [56].  

 

3.5.2  Antisaccade  Analysis  

The raw saccadic voltages collected via EOG were post-processed using a custom 

LabVIEW program. As a start, the EOG voltages were band-pass filtered from 0.05 to 

20 Hz using a 2nd order Butterworth filter. The start of each trial was determined as the 

onset of the change in voltage from photodiodes measuring the TS illumination using an 

automated onset detection algorithm [57]. The onset of the saccade was determined as the 

onset of the change in voltage of the EOG signal using the same onset detection 

algorithm [57]. The latency was calculated as the difference in timing between the onsets 

of the TS and the EOG signal (Figure 3.4). The direction of the EOG signal voltage was 

used to determine saccade direction. For antisaccades, trials were recorded as correct if 

the TS signal from the photodiode and the saccadic signal from the EOG were in 

opposing directions (Figure 3.4). In some cases, the EOG signal was some value other 

than zero when the TS was illuminated, indicating the participant was either blinking or 

did not have their eyes focused on the FP. When this happened, trials were labelled as a 

“blink” and excluded from further analysis.  
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Figure 3.4: Depiction of a correct antisaccade trial. The downwards change in 

voltage at approximately 200 ms (pink line) is the voltage from the photodiode 

reflecting the TS. The onset of the TS, as determined using an onset detection 

algorithm, is depicted by the vertical black line at approximately 200 ms. The 

movement of the eyes is illustrated by the red waveform line on the right side of the 

graph. The onset of eye movement, as determined using an onset detection 

algorithm, is depicted by the vertical black line at approximately 700 ms. The RT is 

calculated as the difference between these lines, as depicted by the red arrow. 

   

3.6   Statistical  Analysis  

An alpha level of 0.05 was assigned for all statistical analyses. Mean ± SD were used to 

evaluate the distributions of the cumulative number of impacts, linear accelerations, and 

rotational velocities. Head impacts were divided into practices and games to determine 

the exposure characteristics for each type of event.  

 

All antisaccade latencies were summarized using the median for each participant at both 

pre- and post-season testing, as recommended by Antoniades (2013). The number of 

antisaccade errors that each participant committed were summed at both pre- and post-

season testing sessions. The total hit count that players accumulated throughout the 
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season was compared to the change (post-season - pre-season values) in median latencies, 

and also to the number of errors. A Shapiro-Wilks test was used to determine the 

normality of the distribution of cumulative head impact exposure. This showed that the 

distribution was non-normal (p=0.01). Due to the non-normal distribution of head impact 

data, Spearman’s rank order correlation analyses were performed. Spearman’s correlation 

coefficients (rs) were calculated for each relationship. Based on previously published 

guidelines, we defined the strength of each relationship based on rs of 0-0.3 as 

“negligible”, 0.3 – 0.5 as “low”, 0.5 – 0.7 as “moderate”, 0.7 – 0.9 as “high”, and 0.9 – 1 

as “very high” [58]. The strength of the linear relationship between the peak resultant 

linear acceleration and the peak resultant angular velocity was assessed using a Pearson 

Product-Moment correlation.  P-values were calculated to determine if the observed 

relationships were statistically significant, and p<0.05 was the threshold defining 

statistical significance.  
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4   Results  

In the follow section, data are displayed as mean ± standard deviation.  
 

4.1   Head  Impacts    

4.1.1  Participants  
Fifty-seven athletes (56 boys, 1 girl) between the ages of 12 and 14 years old (13, ±  0.61) 

volunteered to participate in this study.  All participants were members of the same 

bantam Ontario Provincial Football League (OPFL) team. None of the participants who 

had previously been diagnosed with a concussion reported having any concussive 

symptoms at the beginning of the study. Seven players quit the team prior to the first 

game, thus their data was excluded from the analysis. The head impacts recorded in all 

contact practices (n=27) and games (n=9) were recorded from the remaining 50 players 

during the 13 week season.  

 

4.1.2  Head  Impact  Characteristics  
Linear accelerations and rotational velocities were collected for all head impacts that 

participants received throughout the course of the season. In total, 10,063 head impacts 

were recorded for 50 players with instrumented helmets. The total number of 

accumulated head impacts per player ranged from 10 to 572.  The average number of 

head impacts per player was 6.5 ± 4.2 per contact event, and 201.3 ± 131.6 throughout 

the season. The number of head impacts was compared across practice and games. Of the 

10,063 total impacts, 5,701 (56.7%) occurred in practices and 4,362 (43.3%) occurred in 

games. Players were exposed to an average of 5 ± 3.4 impacts per practice and 9.7 ±  8.4 

impacts per game.   

 

Linear accelerations ranged from 13.1 to 106.6 g. The distribution of linear acceleration 

was right skewed with a mean of 23.1 ±  6.3 g, a median of 22.1 g, and a 95th percentile 
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value of 33.9 g. Rotational velocities ranged from 98.9	
  to 2,804°/s. The distribution of 

rotational velocities was right skewed with a mean of 585.5 ±  217.3 °/s, a median of 

545.7°/s and a 95th percentile value of 995.2 °/s. The distributions of head impact data are 

presented in Figure 4.1.  

 

 

Impact magnitudes were analyzed for practices and games. Linear accelerations in 

practices ranged from 13.2 to 94.2 g with a mean of 22.4 ± 5.5 g. The median and 95th 

percentile linear accelerations in practices were 21.7 and 31.2 g respectively. Rotational 

velocities in practices ranged from 98.9 to 2,804.2°/s with a mean of 561 ± 196.8°/s. The 

median and 95th percentile rotational velocities were 533 and 921.3°/s respectively. 

Linear accelerations in games ranged from 13.1 to 106.6 g with a mean of 24.1 ± 7.0 g. 

The median and 95th percentile linear accelerations in games were 22.7 and 36.6 g 

respectively. Rotational velocities in games ranged from 111.0 to 2,573.8°/s with a mean 

of 617.5 ± 237.7°/s. The median and 95th percentile rotational velocities were 567.2 and 

1,071.1°/s respectively. A summary of practice and game head impacts data is presented 

in Table 4.1.  

 

There was a strong linear relationship between the peak resultant linear acceleration and 

the peak resultant angular velocity (r=0.72; Figure 4.2). 
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Figure 4.1: Distributions for head impact parameters for linear acceleration, 

rotational velocity, and hit count. 

 

Table 4.1: Head impact magnitudes for practices and games. 

 

 

 

	
   Practices Games 
	
   Linear 

Acceleration (g) 
Rotational 

Velocity (°/s) 
Linear 

Acceleration (g) 
Rotational 

Velocity (°/s) 
Mean ± SD 22.4 ± 5.5 561.1 ± 196.8 24.1 ± 7.0 617.5 ± 237.7 
Median 21.7 533 22.7 567.2  
95th Percentile 31.2 921.3 36.6 1071.1 
Max 94.2 2804.2 106.6 2573.8 
Min 13.2 98.9 13.1 111.0 
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Figure 4.2: Relationship between the peak resultant linear acceleration and peak 

resultant rotational velocity for all recorded head impacts. 

 

 

4.2   Antisaccades    

4.2.1  Participants  

All 50 players participated in the baseline antisaccade testing. Unfortunately, we were 

unable to schedule six players for the post-season testing session. One participant was 

diagnosed with a concussion during the season. To avoid exacerbating concussive 

symptoms, this individual was excluded from the post-season antisaccade testing 

protocol. Only the saccade data collected from the 43 players who attended both pre- and 

post-season testing sessions were analyzed further. Preliminary analysis of the pre- and 

post-season data revealed that some players had longer prosaccade latencies than 

antisaccade latencies in one of the test sessions. This indicated that these participants did 

not perform the task correctly. Antisaccade latencies should be longer than prosaccade 

latencies as correct performance of the antisaccade task encompasses all of the cognitive 

elements of the prosaccade, plus the cognitive processes associated with supressing the 
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reflexive prosaccade response [59]. We excluded these participants from further analysis. 

The data from the remaining 28 players was analyzed to determine the relationship 

between cumulative head impacts and antisaccade performance. 

 

4.2.2  Latencies  and  Error  Rates  

Median pre-season antisaccade latencies ranged from 223.0 – 381.2 ms, with a mean of 

294.5 ± 33.2 ms. Pre-season errors ranged from 0 – 10 out of 20, with an average of 

3 ± 2.9 per participant. Median post-season antisaccade latencies ranged from 

215.4 – 376.9 ms, with a mean of 273.1 ± 41 ms per participant. Post-season errors 

ranged from 0 – 8 out of 20, with an average of 3.2 ± 2.3 per participant.  

 

4.2.3  Head  Impact  vs  Antisaccade  Relationship  

There was a statistically significant low negative correlation between the cumulative hit 

count and the change in median latency from pre- to post-season (rs = -0.39, p=0.042). 

Similarly, there was a statistically significant low positive correlation between hit count 

and the change in error from pre- to post-season (rs=0.43, p=0.021). 
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5   Discussion  

To our knowledge, this study reports the only collection of head impact data in youth 

Canadian football players to date. We sought to quantify the cumulative number of head 

impacts and the resulting linear accelerations and rotational velocities that Canadian 

youth football players are exposed to throughout a competition season. Additionally, we 

wanted to determine the effects that these subconcussive head impacts have on athletes 

executive functioning.  

 

5.1   Head  Impact  Exposures  in  Youth  Canadian  Football  

Previous research evaluating head impact exposures in Canadian football has been 

conducted with University aged players [54, 55]. One such study recorded 20,925 

impacts over 55 practices and 11 games. Of these, 10,528 (50.3%) impacts were in 

practice and 10,396 (49.7%) were in games [54]. This is a lower percentage of impacts 

recorded in practices than in our study. In contrast, Muise et al. (2106) report that 5,473 

hits occurred in 10 training camp sessions, 6,293 hits occurred in 32 practices and 9,184 

hits in 10 games. Considering the season as a whole, practice impacts reported by Muise 

et al. (2016) accounted for roughly 41% of impacts, while game impacts accounted for 

59%. This proportion of impacts in games and practices is opposite of our results. The 

fact that the distribution of impacts varied between Canadian varsity football teams likely 

indicates that coaching style influences the number of head impacts that players receive. 

This may also be relevant to youth players, and accordingly our findings may not reflect 

exposures on other youth teams.  

 

In terms of impact magnitude, Campbell (2014) reported that the median and 95th 

percentile linear accelerations for all exposures were 20.43 and 36.13 g respectively. 
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Median linear accelerations were 21.53 g in games and 19.94 g in practice. Interestingly, 

these median impact magnitudes are similar, but slightly lower than those reported across 

practices and games in our study. The trend of increased impact magnitudes in games 

than practices in consistent with our results. 

 

Given that our data stands alone as the only measures of head impact exposures in youth 

Canadian football players, it is not possible for our data to be compared to Canadian 

players of similar ages. However, certain metrics of head impact exposure are 

comparable to those observed in youth American football players. There are a few studies 

examining head impact exposures in youth American football. However, most of them 

are conducted in younger age groups, which would be considered a different division in 

the OPFL. There are two studies examining the head impact characteristics in similarly 

aged youth American football players.  

 

Munce et al. (2015) recorded head impacts in 22 youth football athletes (12.9 ± 0.6 

yearas of age) throughout 27 practices and 9 games [32]. The recording thresholds for 

their measurement devices were set to 10 g. They recorded 6,183 total head impacts, 

which equals roughly 281 total impacts per player. This is substantially more than the 

201.3 impacts per season that players in our study were exposed to, despite both teams 

participating in the same amount of practices and games. Setting the recording threshold 

to 10 g’s allowed Munce et al. to record impacts that would not have triggered the 

devices in our study. It is likely that the number of impacts they recorded between 

10 and 15 g’s was substantial. This is because using a threshold of 10 g can result in a 

45% increase in number of impacts collected compared to a 15 g threshold [60]. 

Accordingly, the number of impacts between our study and theirs may not have been as 

different as it seems. Munce et al. determined that 61% of impacts occurred in practice 

and 39% occurred in games or pre-game warmup. Linear accelerations ranged from 

10 to 175.9 g, with a mean of 25.5 g and a median of 20.2 g for all exposures. Linear 

accelerations recorded in practice averaged 25.5 g with a median of 19.9 g per head 
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impact. These values are lower than those recorded in games (26.8 g and a median of 

20.9 g per head impact). The overall 95th percentile linear acceleration was 57.3 g, with 

values of 55.0 g in practices and 63.0 g in games. These results are directly comparable to 

our study. Munce et al. reported substantially higher peak and 95th percentile linear 

accelerations than our study, indicating that head impacts on the higher end of the 

spectrum were larger for the American players. The mean linear accelerations in our 

study were slightly smaller in both practices and games compared to the American 

players. However, our median linear accelerations were greater in both conditions. These 

findings are not consistent with the difference in sensor trigger threshold (10 g threshold 

used by Munce et al.) as that would be expected to reduce the mean and median values of 

impacts relative to a 15 g threshold [60].  

 

Kelley et al. (2017) recorded head impact data in a 32 youth American football players 

aged 13 ± 0.5 years old. Athletes participated in approximately 43 ± 2 sessions (games 

and practices) per season. Recording thresholds for their measurement devices were set to 

10 g. Linear accelerations from all exposures had a mean, median and 95th percentile 

value of 25.6, 22 and 57.9 g respectively. The mean linear accelerations were larger in 

games than in practices at 27.4 and 24.9 g respectively. The trend of reporting greater 

linear accelerations in games than practices was consistent for all studies examining 

youth football (Kelley et al. (2017), Munce et al. (2015) and our study). The peak and 

95th percentile linear accelerations were larger in both practices and games compared to 

our results. This trend reinforces the idea that head impacts on the higher end of the 

spectrum are larger for American players.  

 

Regulation sized Canadian football fields are larger than those used in American football. 

This means there is more free space per player allowing them to obtain greater velocities 

prior to contacting the opposing team (406.25 in Canadian versus 289.09 yd2 in American). 

This idea of free space is thought to be responsible for the greater impact magnitudes in 

passing and special teams plays compared to running plays [40, 61]. Accordingly, we 
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expected that the Canadian players in our study would have greater linear accelerations 

compared to those in both Munce et al. and Kelley et al.’s studies. Our results did not 

support this assumption. It is also important to note that bantam OPFL games are played 

with four downs, like in the American game, rather than three downs like most Canadian 

football leagues. This would likely result in a similar number of passing and special 

teams plays between players in our study and those in Munce et al. and Kelley et al.’s 

studies.  

 

Comparisons between our sample of youth Canadian football players and their age-

matched American football counterparts reveal that linear accelerations experienced by 

the Canadian sample are lower in almost all measures. Interestingly, we observed a 

strong linear relationship between the peak linear acceleration and angular velocity for 

the head impacts. Accordingly, while there are thought to be distinct mechanisms of 

injury for these two kinematic variables [62] we observed that they were strongly related.  

 

Unfortunately, it is not possible to directly compare the rotational impact characteristics 

as these studies reported rotational acceleration while we reported rotational velocity. 

However, we were able to analyze the general trends of these values and how they differ 

between practices and games. Rotational acceleration results presented by both Munce et 

al. and Kelley et al. followed the same trend as the linear accelerations: both studies 

observed greater 95th percentile, mean and median magnitudes in games compared to 

practices. This is consistent with the trend of the rotational velocities observed in our 

study. 

 

Players in our study received an average of 5.0 ± 3.4 head impacts per practice and 

9.7 ± 8.4 head impacts per game. This mean number of impacts that the average player 

was exposed to is almost double the number of impacts in games than practices. 

Similarly, the mean and median linear accelerations and rotational velocities were both 
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larger in games than practices. The reduced impact exposures and magnitudes in 

practices are likely an intentional design feature implemented by leagues and coaches to 

protect athletes. In Ontario, a recently passed piece of legislation known as “Rowan’s 

Law” has drawn national attention to the management of concussions in adolescent [63]. 

The purpose of this law is to hold coaches and administrators accountable for the 

prevention and management of head injuries in adolescent athletes. All individuals 

associated with an athletic organization are required to review concussion awareness 

resources, and teams are required to create a concussion management plan. There is no 

direct requirement of coaches to reduce the number of head impacts that their athletes are 

exposed to. Instead, the law requires that all members of a sport organization become 

educated on the potential harms of unnecessary head impact exposures. This pressures all 

individuals involved with adolescent level sporting organizations to do whatever they can 

to ensure that brain health of players is managed appropriately. It is difficult to control 

the number and magnitudes of head impacts in games without fundamentally changing 

the sport. However, it may be possible to reduce the number of head impacts by teaching 

proper tackling technique. Some evidence suggests that a head-up tackling style 

decreases the magnitude of head impact accelerations [64]. Another possibility is 

reducing the head impact exposures in practice sessions. Previous research into the 

structure of practices has shown that full tackling drills result in the highest magnitude 

head impacts [65]. Limiting the number of times athletes participate in these drills or 

placing restrictions on the number of contact practices per week may be an effective way 

of reducing head impact exposures [28] .  

 

5.2   Changes  in  Executive  Function  

On average, participants’ pre-season latencies were 294.5 ± 33.2 ms and their post-season 

latencies were 273 ± 40 ms. These average latencies are consistent with aged matched 

participants in previous literature [66].  
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Participants were evaluated on the change in their performance on an antisaccade task 

from pre- to post-season to determine if their executive functioning had changed. 

Performance on the antisaccade task was scored based on participants RT latencies and 

the number of errors that they committed. Changes in their performance were compared 

to their cumulative hit count to determine if there was a relationship between 

subconcussive head impact exposure and executive functioning. 

 

The low negative correlation between the total number of head impacts and change in 

median saccadic latencies suggests that increasing players head impact exposure will 

decrease their RT’s, reflecting improved executive functioning. It is extremely unlikely 

that this is true, and it is important to note that the strength of the association is low – 

only 15.2% of the variance in the change in latency was explained by the total number of 

head impacts. It is unlikely that this changes in latencies was caused by low test-retest 

reliability since the correlation coefficient was 0.77 [67], which is considered moderately 

strong [68]. Alternatively, it is more plausible that confounding variables caused the 

decrease in RT. One possible confounder is physical fitness. Participating in practice 

sessions on a weekly basis meant that players were taking part in moderate to vigorous 

physical activity multiple times a week. Physical fitness has been shown to improve 

executive functioning [69-72]. 

 

As an illustration of the effect of physical activity on executive functioning, Davis et al. 

(2011) evaluated executive function in sedentary children that were assigned to either a 

high dose exercise, low dose exercise, or no exercise control condition. Participants 

assigned to the exercise program completed 13 ± 1.6 weeks of daily moderate to vigorous 

activity lasting 20 – 40 minutes in duration. At the end of the activity program, these 

children showed statistically significant improvements in executive functioning when 

compared to the control condition [70]. Similarly, Chaddock-Heyman et al. (2013) 

analyzed the effects of a nine-month physical activity program on event related cognitive 

control tasks. Participants that completed the exercise program showed statistically 
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significant improvements in RT and percent of correct trials from pre- to post-test. 

Control participants that did not participate in the exercise program did not show 

statistically significant improvements in any of the testing metrics [72]. These results 

show that exercise induced increases in executive function. Participants’ RT were 

improved along with their ability to correctly perform tasks [72]. Participants in our study 

completed two hours of moderate to vigorous physical activity two to three times per 

week during the 13-week season. This is roughly equal to the amount of time spent active 

per week and the number of weeks performing physical activity as participants in the 

study by Davis et al. [70]. Accordingly, improving physical fitness in a season’s worth of 

games and practices could have been enough to improve our participants executive 

function, thus improving saccadic RT. 

 

Analysis of the data revealed a statistically significant low positive correlation between 

hit count and the change in error rates between pre- and post-season testing. The number 

of errors indicates an impairment in participant’s executive functioning. The positive 

effects of physical activity that were seen in the latency results were not strong enough to 

completely reduce the change in error rates. However, they may have masked the 

detrimental effects of increased head impact exposures. While this may have occurred, it 

is impossible to evaluate using our data. 

 

Munce et al. (2015) examined the effects of subconcussive impacts in youth American 

football using participants of the same age as our study [32]. They used the change in 

participants scores on tests of executive function from pre- to post-season to evaluate 

possible neurological deficits. No statistically significant differences were found between 

pre- and post-season scores. This result occurred despite the fact that players in their 

study experiencing greater impact magnitudes, and a greater number of head impacts, 

than the participants in the present study. This finding is similar to our study and 

reinforces that the head impact exposure from one season of competitive football does 

not appear to lead to impairments in executive function. 
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5.3   Limitations  

Our study evaluated a limited representation of youth football as a whole as we only 

collected data from one team. Other teams may have different head impact exposures due 

to difference in practice structure or league rules that govern practices and games. 

Accordingly, it may not be possible to generalize our findings. Additionally, this study 

evaluated athletes between 12 and 14 years old. This is not representative of the entire 

population of youth football players as different leagues can include players from 5 to 14 

years old.  

 

It is difficult to directly compare our results with other studies due to a number of factors. 

The devices used in this study recorded rotational velocities, not rotational accelerations. 

This made it difficult to determine the relationships between rotational head impact 

characteristics to those previously reported.  

 

Each of the participants in this study played a variety of different positions in practices 

and games. Accordingly, it was not possible to evaluate differences between the various 

positional groups, as has been performed in other studies [54, 55]. 

 

This study did not utilize a control group of non-contact athletes of similar ages. This 

would have allowed us to differentiate between the effects of physical fitness and head 

impacts. Additionally, utilizing more frequent testing sessions could have allowed for a 

more accurate representation of the changes in executive functions.  

 



30 

 

This study only examined the relationship between antisaccade performance and hit 

count. While hit count has been an effective measure in previous research evaluating 

cognitive function in football [53],  it is possible that a more significant relationship 

could have existed between saccadic performance and another head impact variable, such 

as those explored by other researchers [16]. 

 

We used an automated onset detection algorithm to detect changes in EOG voltages. 

Other researchers have used specific voltage thresholds as large as 25% of the maximum 

EOG signal amplitude [73]. Accordingly, the latencies that we report may be different 

than other studies based on this onset detection approach. However, we believe the 

advantages of using a consistent and automated analysis were important. 

 

The correction algorithm used to determine the linear acceleration and rotational velocity 

at the heads COM were calculated using a Riddell Revolution Speed helmet over a 

Hybrid III head form of a 50th percentile adult male. The head continues to grow until the 

early 20’s [74], so the head sizes of our participants were likely smaller than those used 

create this algorithm. As well, the players in this study had a variety of helmets. This may 

have resulted in small calculation errors.  

 

We did not collect the players football participation history. It is possible that the level of 

previous football experience could have an effect on the athlete’s head impact exposures. 
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6   Conclusion  

To the best of our knowledge, this is the first study to report head impact data in youth 

Canadian football players. We observed that the number of hits ranged from 10 to 572 

per player, which is comparable to studies on American youth football players. We 

observed that the peak linear accelerations ranged from 13.1 to 106.6 g, which is also 

comparable to studies on American youth football players.  

 

We hypothesized that players who were exposed to a season’s worth of head impacts 

would experience impairments in their executive function. Our results did not support 

this hypothesis. Therefore, we conclude that a season’s worth of head impact exposures 

does not cause inhibitory executive functioning impairments in youth Canadian football 

players.  

 

We hope that this research will stimulate more studies exploring the field of 

subconcussive head impact exposures in Canadian football, specifically in the youth 

population. Creating a large database for this population will help researchers understand 

the potential harmful effects on neurological function in both the short and long term.  
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