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Abstract 

Introduction:  Ultrasound (US) is a safe, non-invasive diagnostic method that has been 

used in various capacities in medicine and dentistry.  Periodontal bone loss, bony 

dehiscence, and gingival recession have been reported as potential risks of orthodontic 

treatment in patients who have decreased buccal/labial bone thickness. US has the 

potential to aid in the diagnosis of patients at risk for these possible complications of 

orthodontic treatment.   

Purpose:  To validate the use of a novel US device in the measurement of buccal cortical 

bone (BCB) thickness over roots in porcine mandibles.   

Materials and Methods:  Jaw and cortical bone models were constructed and used for 

software and protocol refinement.  Three porcine hemi-mandibles were scanned with 

Micro-CT (μ-CT).  BCB thickness was measured with imaging software at 12 locations 

per specimen (n=36).  BCB thickness at these locations was then assessed using a 

19MHz pulse-echo US transducer.  Bone thickness was determined by assessing US 

wave time of flight using a calibrated speed of sound (SOS) through porcine cortical 

bone.  Statistical analysis was done with paired t-test, Pearson correlation, and Bland-

Altman plots.  

Results:  SOS was calibrated to 3235m/s.  Mean bone thickness (+/- SD) from μ-CT was 

2.06 +/- 0.76mm and 1.61 +/- 0.46mm from US.  μ-CT and US thickness measurements 

were significantly different.   

Conclusion: A handheld US device showed promise in measuring BCB thickness, but 

some variability exists especially when measuring thicker bone.  Further improvements 

in the device and the algorithms used are warranted to increase the accuracy and 

reliability of measuring cortical bone thickness overlying roots of teeth.   
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Chapter 1: Review of the Literature 

 

1.1 Ultrasound as a Diagnostic Tool 

 Audible sound waves are detected by the human ear within the range of 

20Hz – 20 KHz.1  Anything beyond the upper limit is referred to as ultrasound (US).  

The idea for diagnostic US was born out of a radar technique developed for World 

War II when an internal medicine resident at Lund University, Inge Edler, was 

driven to improve the pre-surgical diagnostics for cardiac surgery.2  Edler elicited 

the help of physicist Hellmuth Hertz in the early 1950s.  Hertz gained access to 

ultrasound equipment at a shipbuilding yard being used to test for imperfections in 

welded seams.2  They both placed the device on their own hearts and realized that 

they could see echoes from within.  The device needed to be modified and supplied 

with a film camera to be able to record images of the area being investigated.  After 

modifications were made to the equipment with the help of the Siemens Company, 

on October 29, 1953, the first moving images of the human heart were captured.2  

This technique has since been developed into modern echocardiography. 

 Lund University was also where US was first used in obstetrics and 

gynecology.  Before its widespread use in the investigation of potentially vulnerable 

tissues like developing fetuses and ovaries, it needed to be deemed safe.  In-vitro 

experiments on pregnant and non-pregnant rats were conducted.  Normal ovarian 

function and fertility were found in the rats exposed to US.2  There was also no 

increase in intrauterine death, pre-term birth, neo-natal mortality or deformities for 

the exposed rats or for the second generation after exposure.  Having been satisfied 

with its safety, Bertil Sunden and the rest of the Department of Obstetrics and 

Gynecology, began using US to assess fetal development in humans.  US gained 

popularity in this field and it is now a routinely used diagnostic method for the 

monitoring of pregnancies worldwide.  Besides its use in cardiology and 
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obstetrics/gynecology, US is routinely used in other fields like trauma, 

ophthalmology, and otorhinolaryngology.2 

1.1.1 Principles of US 

 Sound can be thought of as travelling variations in pressure through a 

medium.1  As for audible sound, the medium is usually air, but sound can travel 

through different mediums like metal, water, and human tissues.  Sound travels 

through different tissues at different speeds depending on acoustic properties of the 

material like density and particle vibration. The less compressible a material is, the 

higher the speed of sound (SOS) is through that material.  When a sound wave 

passes from one material to another, the wave can be transmitted (continuing to 

propagate), it can be reflected back to the source, or a combination of transmission 

and reflection can happen.  Acoustic impedance is the material property that 

determines what will happen to the incident wave.  It is determined by density 

multiplied by SOS in that material.  If the impedance of two materials are the same 

or very close to one another, the incident wave will continue propagating and none 

to very little reflection in the form of an echo will be produced.  If the impedance 

varies, a greater proportion of the incident wave will be reflected as an echo.  If the 

impedance are greatly different, as in air and tissue, there is no transmission, only 

an echo.  This is the reason behind the need for a coupling medium like US gel.  The 

echoes that are produced when sound travels through different materials makes 

diagnostic US possible.  Knowing the speed of sound in a material and the time 

between echoes produced as the wave enters and exits the material, a.k.a. time of 

flight (TOF), will allow you to measure the thickness of the material. 

 As a wave propagates through a material it weakens or attenuates.  

Although traveling through different materials gives off echoes that weaken the 

incident wave, most attenuation is due to the conversion of the sound to heat, or 

absorption.  The degree to which a wave propagates is also influenced by scattering 

and the incidence angle.  Scattering is the redirection of a sound wave into many 

directions due to a rough surface or tissue boundary.  This occurs regardless of the 
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Figure 1.  Incident US wave perpendicular to the material boundary.  
Resultant echo and transmitted wave propagating through new material. 

Figure 2.  Incident US wave oblique to the material boundary.  Reflection 
angle and transmission angle are the same as the incident angle if 
impedance between the two materials is similar. 

incidence angle, or the angle at which the incident wave approaches the tissue 

boundary.  An incident wave that is perpendicular to the tissue boundary will result 

in transmission of the wave and an echo that travels back to the transducer (Fig. 1).  

An incident wave that is oblique to the tissue boundary will result in the 

transmission and reflection of the wave at an angle that is equal to the incidence 

angle (Fig. 2).  If the two materials have impedance that are different, the  

 

transmitted wave is refracted and propagates at an angle that is different than the  

incidence angle (Fig. 3).  Oblique incidence of a sound wave makes the detection of 

echoes by the transducer much more difficult because of reflection and refraction.  
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US devices are composed of transducers, pulsers, and receivers connected to 

computers and monitors that produce images interpreted by technicians or health-

care professionals.  Pulsers generate electrical impulses that are converted to US 

waves by transducers.  These same transducers convert echoes that are given off by 

tissues into electrical impulses that go through a receiver to get converted into 

digital imagery in the form of A-scans, B-scans, and C-scans (Fig. 4)3.  

Figure 4.  Ultrasound imaging. (A) Diagram of the orientation of the image in relation to the 
direction of sound propagation.  (B) Sample A-scan showing strength of reflected echoes. (C) Sample 
B-scan showing echo causing objects/interfaces in cross-section. (D) Sample C-scan showing echo 
causing objects perpendicular to the direction of wave propagation.  Reprinted by permission from 
Springer Nature Customer Service Centre GmbH: Springer Nature Annals of Biomedical Engineering, 
Quantitave Ultrasound for Nondestructive Characterization of Engineered Tissues and Biomaterials, 
Dalecki et al. 2015. 

 

Figure 3.  Incident US wave oblique to material boundary. High difference of 
impedance between materials results in incident and transmission angles 
being different resulting in wave refraction. 
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A-scans, or amplitude scans, are graphical representations of the strength of 

echoes detected with amplitude on the y-axis and time on the x-axis.  B-scans, or 

brightness scans, are cross-sectional representations of tissues being investigated 

by US with echo causing objects and boundaries causing distinct changes in the 

brightness of the pixels in the image.  The lighter the pixel, the stronger the echo 

detected.  This is the most common US imagery seen in obstetrics and gynecology to 

investigate the developing fetus.  C-scans are the least common form of imagery 

seen in medical US.  They are derived from mechanical US where a given area is 

scanned with a fixed transducer that records data in the form of pixels and 

brightness, like a b-scan. Unlike a b-scan, the c-scan provides a two-dimensional 

image that maps out where the echoes were produced in that area depending on the 

coordinates of the transducer.   

Two main types of transducers are single (focused and non-focused), and 

linear array which is essentially multiple transducers arranged side by side.  US 

devices usually operate as either pulse-echo, where the same transducer emits and 

detects echoes, or through transmission, where one transducer emits while another 

transducer detects. 

 

 Diagnostic Ultrasound of Hard Tissues 

 By far, US in medicine has been used primarily for the diagnosis and 

investigation of soft tissues.  However, several studies have investigated its potential 

use in hard tissues with promising results.  Some of the more interesting and 

potentially beneficial hard tissue applications of US include intraoperative 

measurement of cranial bone thickness, US assisted pedicle screw placement in 

spinal fusion surgery, and the diagnosis of osteoporosis. 
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1.2.1  US in the Assessment of Cranial Bone Thickness 

 Calvarial bone has become popular amongst surgeons as a bone graft donor 

site in various procedures involved in reconstruction and rehabilitation of the 

craniomaxillofacial region.4  Knowing the dimensions of the area of interest at the 

donor site is critical especially when dealing with cranial bone.  Inadvertent 

penetration of the cranial cavity can cause cerebrospinal fluid leaks, mechanical 

brain injuries and intracranial hematomas.4  Although computed tomography (CT) 

scans are used in these surgeries, difficulty in extrapolating information from the 

scans to real time surgical situations has been reported.5 

 Elahi et al. 4,5 demonstrated the potential effectiveness of using US devices 

to measure cranial bone thickness in two separate studies.  The first was done on 

human cadaveric skull specimens with a spherically focused 6.2MHz pulse-echo 

transducer while the second study was conducted on live porcine skulls with a 

1MHz non-focused pulse-echo transducer.  In both studies, TOF of the incident US 

wave and its corresponding echoes from A-scans were used to determine cranial 

bone thickness in specified locations.  These were compared to gold standard digital 

caliper measurements.  The conclusion from both studies was that skull thickness 

measurements obtained with US were reliable and accurate enough to be useful in 

preoperative and intraoperative situations for bone harvesting procedures.4,5 

 Tretbar et al.6 also investigated the use of US in cranial bone thickness.  

They used 3 different US techniques, one of them involving the novel SonoPointer™ 

US device with a 2.25MHz transducer to investigate thickness of human cadaver 

skulls.  They also compared US measurements to those obtained by digital calipers 

and found good agreement between the methods.  Although they acknowledge 

further testing is needed, they suggest that the SonoPointer™ shows promise to be 

used as a stand-alone device in cranial surgery.6 
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1.2.2 US in Spinal Surgical Procedures 

 Spinal surgery is a very delicate and complex procedure with potentially 

dire risks.  Spinal fusion is a common procedure done to immobilize segments of the 

vertebral column with rigid fixation as treatment for fractures, curvature 

deformities, excessive back pain, and degenerative diseases.7  The surgery involves 

prepping of a pilot hole with blunt tipped cannulation which relies on tactile 

feedback by the operator.  This feedback often results in multiple path corrections 

which increases the displacement of cancellous and possibly cortical bone resulting 

in increased surgical trauma and decreased post-surgical stability.  The proximity to 

vital neurovascular structures and the limited intraoperative visibility increases the 

risk of devastating post-surgical consequences.  Due to these irreversible and life-

altering risks, research into improving the safety of spinal surgery is warranted. 

 Various methods of US have been investigated in vitro with respect to 

assisting in spinal surgery including using pulse-echo and through transmission 

transducers ranging from 1-10MHz with A-scan and B-scan imagery.7–9  Like the 

research conducted for cranial surgery applications, A-scan imagery with pulse-

echo transducers appears to be the most clinically practical and promising. 

1.2.3  US in the Diagnosis of Osteoporosis 

 Osteoporosis is a disease most commonly found in elderly women that 

results in reduced bone mass, volume and density increasing the likelihood of 

fractures.  It often goes underdiagnosed and undertreated by primary care 

physicians.10  The diagnosis of the disease is done by measuring bone mineral 

density in the hip and spine by dual-energy X-ray absorptiometry (DXA).11  Because 

of the bulky instrumentation, radiation, and cost,  DXA is not a practical screening 

tool for primary care physicians.12 

 Decreased cortical bone thickness of the radius as measured with 

peripheral quantitative CT scans has been associated with fractures in patients 

undergoing hemodialysis.13  Karjalainen et al. 11,12,14,15 have endeavored to use US to 
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measure cortical bone thickness in the distal radius, distal and proximal tibia and 

femur in order to estimate bone mineral density and potentially screen for 

osteoporosis and risk of related fractures.  In an earlier study, they showed that 

cortical thickness measurement with a focused 2.25MHz US transducer correlated 

well with measurements obtained by CT scans both in-vitro and in-vivo.11  

Subsequent studies demonstrated that US measurements with a focused 3.0MHz 

transducer had the potential to be a safe, practical, and effective first-line screening 

tool for osteoporosis in at risk populations by estimating bone mineral 

density.12,14,15   

 

 Diagnostic Ultrasound in Dentistry 

 US has been investigated in the context of dentistry with the primary areas 

of focus being periodontology and implantology.  The draw of being able to image 

and assess periodontal structures in a non-invasive, non-radiative manner has 

driven research in the area.  As for implantology, US has been investigated as a 

possible means to conveniently and effectively assess both the quality of bone in 

prospective dental implant sites as well as identify vital structures to be avoided 

during implant surgery.  Of the few studies regarding orthodontics, most have dealt 

with therapeutic US, an exciting potential adjunct therapy but beyond the scope of 

this dissertation.  The few studies that have looked at diagnostic US have attempted 

to use it to identify proper locations for placement of temporary anchorage devices 

(TADs) by measuring soft tissue thickness. 

1.3.1 US in Periodontology 

 US had been commonly used in the field of medicine for decades before 

research into its potential applications for dentistry began in the mid-1980s.  Some 

of the earliest investigations into US in dentistry were conducted in the field of 

periodontics.   A German group out of the University of Stuttgart led by Lost and 

Nussle investigated the use of US in the imaging of periodontal structures.16  They 
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made 12 parallel-cut bone samples ranging in thickness from 0.1-2.0mm and were 

interested in finding out which prepared thicknesses of bone were penetrated by 

different frequency US pulses.  They also investigated what width of space, 

representing the periodontal ligament (PDL), is distinguished by US scanning with 

the three transducers used (5MHz, 10MHz, 20MHz).  Their experiments were 

conducted in a water bath with fixed transducers and a digital US measuring and 

analysis system that generated A-scans analyzed for echo peaks.  All three 

transducers were able to detect a minimum mock PDL width of 0.16mm and 

penetrate bone 1.5mm thick but only the 5MHz transducer was shown to penetrate 

the bone 2.0mm thick.16  They conducted further studies with the 10MHz and 

20MHz transducers on porcine periodontium in an attempt to detect the height of 

the alveolar crest with both A-scans and B-scans.17,18  They were successful in 

identifying the PDL space with both frequency transducers but the identification of 

the location of the alveolar crest was more accurately determined by the 20MHz US 

probe.18  In both studies, they compared their measurements and US findings by 

histological assessment.  Because of the relatively small sample size, they did not do 

any statistical analysis but concluded that with further technological innovation and 

research, pulse echo US is a promising non-invasive method for determining the 

height of the alveolar crest in humans.18 

 Tsiolis et al.19 also attempted to use US in periodontal tissue assessment and 

were particularly interested in dimensional assessments of these structures.  They 

used a 20MHz US device that was designed to have the transducer move across the 

intended target over a 15mm by 6.25mm section with the gathering of US data 

taking less than a second.  They used porcine jaw specimens and measured the 

distance between a prepared notch on a tooth to the alveolar crest.  Measurements 

from US, gingival probing, and from direct histological assessment were compared.  

Their results showed that measurements derived from US and direct histological 

assessment had the narrowest limits of agreement and US was the most 

repeatable.19 
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 Research has also been done on the effectiveness of US measurement of 

gingival thickness to establish a non-invasive, quantitative method of diagnosing 

gingival biotypes.  Eger et al.20 used a 5MHz pulse-echo US device on porcine gingiva 

to measure gingival thickness and compare it to the gold standard of measurement 

with an endodontic file and rubber stopper.  Both types of measurements were 

highly correlated (r2=0.906) and the US measurements showed a high degree of 

reproducibility and consistency.20  Comparable results indicating a high level of 

accuracy of US gingival thickness measurements were found in various other studies 

using 25MHz, 40MHz, and 50MHz transducers.21–23 

 The imaging of hard tissues with US is far more technically difficult than 

that of soft tissues.  Advances in US technology and software have made the US 

assessment of periodontal hard tissues a possibility; recent studies have 

investigated this potential.  A 20MHz pulse echo transducer was used by Radu et 

al.24 to assess the lingual periodontium of 20 teeth in four porcine mandibles.  They 

assessed B-scan images obtained by the US device and measured the PDL space, 

thickness of attached gingiva, and thickness of lingual cortical bone.  The authors 

stated that their findings were statistically similar to the measurements of pig 

periodontium in veterinary literature but did not elaborate on statistical methods 

used.24  

 Because of the margin of error associated with periodontal probing as well 

as the lack of information obtained from radiographs regarding the buccal/lingual 

aspects of alveolar bone, Nguyen et al.25 also studied the use of an US device to 

image porcine periodontal structures.  They used a multi-element phased array 

20MHz US device to assess the anterior portion of a pig mandible and compared 

their findings with dental cone beam computed tomography (CBCT).  The 

measurements they used were the distance from the gingival margin to the 

cemento-enamel junction, gingival margin to the alveolar crest, and the thickness of 

the alveolar crest.  They reported relatively good agreement between the methods 

with a tendency of US to slightly underestimate the measurements relative to CBCT.  



 

 

11 

The biggest discrepancy was between the gingival margin to the alveolar crest 

measurements but they were still within a percentage difference of 10%.25 

 Degen et al.26 analyzed the accuracy of measuring cortical bone thickness 

with US compared to CBCT with stereomicroscopy measurement as a reference on 

bovine rib models.  The authors used both low frequency (5MHz) and high 

frequency (50MHz) transducers and B-scan imagery to determine thickness in 10 

bovine ribs simulating a section of a jaw bone, with dental implants placed into 

them.  Measurements were done directly over the implant as well as 4mm on either 

side of it.  They found that US measurements deviated from the stereomicroscopy 

standard by a mean of 10.3% while CBCT deviated by a mean of 9.2%.  They also 

reported that US measurements directly over the implant were more accurate than 

those from CBCT.  

1.3.2 US in Implantology 

 For an excellent outcome, dental implants require sufficient amounts of 

good quality bone to ensure primary and secondary stability.  In regions like the 

maxillary anterior, an understanding of soft tissue thickness is necessary to be able 

to predict how the tissues will respond to an implant and to plan for success in these 

esthetically sensitive areas.   Furthermore, vital structures like neurovascular 

bundles must be avoided when placing dental implants.  Research has been done to 

assess the use of US technology in these and other areas. 

 Culjat et al.27 were interested in assessing the effectiveness of locating 

submerged dental implants in porcine models with a novel US device.  They did so in 

the hopes that US could be useful in detecting precise implant locations in two-step 

implant surgeries leading to a less traumatic and invasive second step.  The 

transducer had a range frequency of 5MHz-16.1MHz and used the pulse-echo 

method.  The models were made of porcine ribs and designed to mimic implants 

submerged in a bony edentulous ridge of alveolar bone.  Pig muscle was tightly 

layered over the implant/rib model with a final soft-tissue thickness of 5mm 
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mimicking gingiva.  Detection of the implant was done by assessing the reflected 

echoes with the implants expected to reflect more sound waves than cancellous 

bone.  The device was able to locate submerged dental implants to within 0.2mm of 

their center and accurately measure the amount of soft tissue over the implant and 

bony surfaces.27 

 The need for a non-invasive diagnostic tool to evaluate the quality of bone in 

possible implant placement locations has driven further studies regarding US in 

implantology.  A commonly used bone quality classification system was described 

by Lekholm and Zarb in 1985.28  It classifies cancellous bone as D4, with a feeling of 

drilling into Styrofoam and cortical bone as D1, with a feeling like drilling into oak 

wood.  This is an intra-operative assessment and is dependent on tactile feedback at 

the time of surgery.  Although dental CBCT is now used fairly routinely during 

implant surgeries, it may not be reliably used to assess bone quality with 

Houndsfield unit thresholds, especially in areas with thick cortical bone.29  The 

Houndsfield scale is a method for assessing radiodensities from CT images.  More 

dense and radiopaque materials have higher Houndsfield unit measurements.   

 Klein el al.29 used a through transmission caliper-style US device with 2 

transducers, a sender at 1.2MHz and receiver, to measure intraoral ultrasound 

transmission velocity (UTV) in various edentulous regions of 108 patients.  Areas 

with typically poor alveolar bone quality like the maxillary posterior had 

significantly lower UTV than areas of high bone quality like the posterior 

mandible29.   

 Kammerer et al.30 investigated UTV in assessing bone quality in an ex-vivo 

study.  Cortical, cancellous and mixed bone models were assessed with US, two-

dimensional histomorphometry, CBCT, and micro computed tomography (µ-CT).  A 

high correlation was found between all methods in their ability to differentiate 

different bone types/density and thus bone quality for implant placement.  Follow 

up studies showed that UTV is also highly correlated with other methods of 

assessing primary implant stability such as  radiofrequency analysis and the push-

out test in cortical, cancellous, and mixed bone models.31 
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 US has further been investigated as a potential intraoperative tool during 

implant surgeries.  A group led by Machtei and Zigdon-Giladi used a novel handheld 

US device in vivo to attempt to measure the distance from the bottom of the implant 

osteotomy to various anatomical landmarks.32  In the first of their studies, they 

recruited 14 patients that were to receive implants in the posterior maxilla and 

mandible.  After pilot hole preparation, they measured the distance from the bottom 

of the osteotomy to the maxillary sinus and inferior alveolar nerve canal (IANC) 

with the US device and by direct measurement on a panoramic radiograph.  They 

found strong correlation between the methods of measurement when considering 

the IANC but not for the maxillary sinus.32   

 This led to a follow up study where the authors focused only on the IANC.33  

Ten patients needing posterior mandibular implants were recruited for this study.  

Osteotomy depth and residual distance from the osteotomy to the IANC were made 

with the US device, from a panoramic radiograph, and from a combination of 

preoperative CBCT and direct clinical probe measurements.  US measurements 

showed good agreement with the other methods of assessment with the highest 

correlation being with the gold standard of pre-operative CBCT + direct clinical 

measurement.33  Unfortunately, the authors didn’t elaborate on the specifics of the 

US device (frequency or method used) but nevertheless, their results demonstrate 

the potential for US to be used as an intra-operative tool during implant surgeries. 

 The ability of US to detect vital structures like neurovascular bundles, such 

as those that are to be avoided during implant surgery, has led to US research in the 

field of anaesthesia.  Nerve blocks can be technique sensitive and US guided 

anaesthesia can potentially result in improved nerve block quality, shorter 

procedure times, and lower rates of complications like paresthesia after the 

procedure.34  US was successfully used in-vitro to locate the greater palatine 

foramen in cadavers and in-vivo to assist in the administration of a greater palatine 

nerve block in patients undergoing dental procedures.35 

 Using dental implants as orthodontic anchorage was first reported by 

Linkow in the early-1970s.36  This led to the idea of using temporary implants in 
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orthodontics and TADs are now commonly used in complex cases.  Much of the 

research surrounding diagnostic US in orthodontics has been focused on 

determining soft tissue thickness prior to placing TADs to ensure better stability.  

The thickness of both soft tissue and cortical bone are factors in TAD stability.37  

Thin gingival tissue and thick cortical bone in areas where TADs will be placed is 

ideal.37  Cha et al.38 used a 5MHz US device to measure gingival thickness in areas 

where TAD placement is common.  The authors stated that the device was 

previously validated, so no controls or other methods of measurement were used.  

They compared their gingival thickness measurements to those in previously 

reported literature and ultimately ended up concluding that US devices may help 

orthodontists decide where to place TADs to ensure better stability.38   

  

 Periodontal Complications of Orthodontic Treatment 

 Although a previous history of periodontal disease is not a contraindication 

for orthodontic treatment, active disease must be treated and deemed stable prior 

to commencement.  Patients must also show an ability and desire to keep 

meticulous oral hygiene habits.  Even with adequate oral hygiene and no previous 

periodontal disease, orthodontic treatment can result in periodontal complications 

if the alveolar housing isn’t considered during diagnosis and treatment planning by 

the orthodontist.39  The most common sequelae of inadvertently moving teeth out of 

the alveolar housing is bony fenestration, dehiscence, and gingival recession.40  

Orthodontic movements that are most often responsible for these complications are 

excessive expansion in the maxillary posterior segments, proclination of the upper 

and lower incisors, and retroclination and retraction of the lower incisors.  This is 

particularly a concern when dealing with skeletal discrepancies that are being 

treated with non-surgical dental compensation.40 



 

 

15 

1.4.1 Periodontal Complications of Maxillary Expansion 

 Maxillary expansion, used in the treatment of transverse maxillary 

deficiency and crowding, can be achieved with a variety of devices.  Successful 

expansion is more predictably accomplished prior to adolescence as the mid-palatal 

suture becomes more and more interdigitated and tortuous with age.41  Once 

skeletal expansion is no longer possible, dental expansion by labial crown tipping 

becomes the primary mechanism of action.  This has been thought to increase the 

likelihood of periodontal complications in at risk patients.   

 Greenbaum and Zachrisson retrospectively studied the effects of rapid and 

slow expansion with different types of appliances (Modified Haas and Quad Helix) 

on the periodontal structures compared to a non-expansion control group.42  They 

measured levels of marginal alveolar bone, attachment levels from the CEJ, probing 

depths, and width of keratinized gingiva directly.  Although there were minimal 

significant differences in the parameters studied, they did find that of the patients 

that had bony dehiscence, most were in the rapid expansion group.42   

 A similar, more recent prospective study was conducted using spiral CT to 

assess the periodontal effects of maxillary expansion with Haas and Hyrax 

expanders.43  Pre and post-expansion CT scans were conducted to measure buccal 

and lingual bone thickness at both time points.  Both types of expanders resulted in 

decreased buccal bone plate thickness and increased lingual bone plate thickness.  

The expansion also caused bone dehiscence on the anchor teeth with it being worse 

in the Hyrax group.  The likelihood of dehiscence was higher if the patient had thin 

buccal cortical bone initially.43  This finding was consistent with that of a study by 

Rungcharassaeng et al.44  Besides finding a correlation between initially thin buccal 

bone and a further decrease in buccal bone thickness due to expansion, patient age 

and amount of expansion were also found to be factors.44   
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1.4.2 Periodontal Complications of Excessive Proclination or Retraction of 

Incisors 

 Increasing arch length for the purposes of treating crowding can also be 

accomplished by proclination of the upper and lower incisors.  This is an intended, 

and often unintended, consequence of antero-posterior discrepancy correction.  

Artun et al.45 cephalometrically identified patients that underwent a minimum of 

2mm labial movement of the lower incisors and patients who had no lower incisor 

movement as part of their orthodontic treatment.  Thirty patients in the labial 

movement group and 21 patients in the no movement group were available to 

attend a follow up examination at 7.83 years and 9.38 years respectively post-

treatment.  All patients selected had treatment with an activator and extra-oral 

traction as well as a period of fixed appliances initiated in the mixed dentition.  

Amount of recession, width of keratinized tissue, and probing depths were 

evaluated by measurements on study models, clinical photos, and clinical exams.  

Interproximally, distance to the alveolar bone was measured clinically by bone 

sounding under local anesthesia.  At follow up, recession was present on 12 teeth in 

8 of the 30 subjects in the labial movement group while only present on 2 teeth in 2 

of the 21 no movement group.45  Their findings however, weren’t statistically 

significant for any of the measured outcomes.  They hypothesized that the young age 

at the time of treatment allowed for adaptation and probable repair of bony 

dehiscence.   

 The authors conducted a similar study that focused on investigating 

periodontal issues in class III patients who underwent lower incisor 

decompensation/proclination prior to surgical treatment of their mandibular 

prognathism.46  These patients, in contrast to the previously mentioned study, were 

all adults with an age range of 19-41 years.  Two groups were selected based on 

amount of proclination of the lower incisors in the pre-surgical orthodontic phase.  

Group 1 included patients whose incisor to mandibular plane angle (IMPA) changed 

by greater than 10 degrees while Group 2, the control, included patients whose 



 

 

17 

IMPA changed by less than 2 degrees.  The same periodontal parameters as in the 

previously mentioned study were assessed.  Group 1 had significantly more teeth 

develop dehiscence and recession during both active treatment (P<0.001) and 

during the 3-year recall period (P<0.01).46 

 Periodontal complications can also be seen with excessive retraction of 

mandibular anterior teeth.  Sarikaya et al.47 assessed the buccal and lingual cortical 

plates in 19 bimaxillary protrusive patients treated with first bicuspid extractions 

and maximum anchorage retraction of anterior teeth.  They used lateral 

cephalograms and CT scans taken pretreatment and 3 months post-retraction to 

assess bone thickness at the crestal, mid-root, and apical level.  Bone levels buccal to 

the maxillary teeth showed no significant differences but lingual bone thickness 

decreased significantly both at the mid-root and crestal levels.  For mandibular 

teeth, labial bone thickness decreased significantly at the crestal level.  Lingual 

cortical plates decreased significantly at the crestal level, mid-root level and for 

some teeth, apical level.  Of the 19 patients studied, 11 had at least one mandibular 

incisor that developed a significant lingual bony dehiscence.  These periodontal 

issues were not evident during clinical examination or in the lateral cephalogram 

but were clearly present in the CT scan.47  Their findings are supported by various 

animal studies showing similar detrimental effects to the periodontium when 

orthodontic tooth movement pushes the limits of the bony alveolar housing.48–50   

 Jager et al.51 assessed periodontal bone defects in 43 patients who 

underwent previous orthodontic treatment using dental CBCT.  Their results were 

consistent with previous studies and showed a significant decrease in both alveolar 

bone height and thickness during orthodontic treatment with it being more 

prevalent in patients over 30 years old.  Although they acknowledge the 

multifactorial nature of bone loss, they recommend pre-treatment CBCT to assess 

periodontal bone in patients over 30 years.51  



 

 

18 

1.4.3 Dental CBCT in the Assessment of Bony Defects in Orthodontics 

 Because of the limitations and geometry of two-dimensional radiography, it 

is not a reliable method for detecting buccal and lingual periodontal bone loss.52  

CBCT on the other hand, does not have the same limitation of anatomical 

superimposition.  Some studies have shown CBCT to be fairly accurate in assessing 

periodontal defects in three dimensions.39,51,52  Other studies have shown that CBCT 

has other limiting factors like voxel size and scatter radiation that could question its 

reliability.53,54   

 Leung et al.54 evaluated the accuracy and reliability of CBCT for measuring 

alveolar bone height and bony dehiscences and fenestrations.  In their study on 13 

dry human cadaver skulls examining 334 teeth, they concluded that CBCT with a 

voxel size of 0.38mm at 2 mA can be used to accurately measure alveolar bone 

height within 0.6mm.  They also found that CBCT was more accurate at detecting 

bone fenestrations than dehiscence.54   

 Patcas et al.55 also evaluated the accuracy of CBCT in the linear 

measurement of bone.  They used 2 resolutions of CBCT (0.125mm and 0.4mm 

voxels) to conduct vertical and horizontal bone measurements of the mandibular 

anterior area in 8 intact cadaver heads.  Thickness of buccal cortical bone was used 

as the horizontal measurement.  CBCT measurements at both resolutions were then 

compared to direct anatomical measurements done after the removal of the soft 

tissues.  Both resolutions of CBCT proved accurate and were in agreement with 

direct measurements as shown with Bland-Altman plots.55  The authors also noted 

that there is a risk of overestimating both fenestrations and dehiscences on CBCT 

and that bone thickness of less than 1mm is more difficult to accurately measure, 

even with a high-resolution image.55  A recent systematic review however,  

concluded that CBCT may be useful in assessing periodontal risk prior to initiating 

orthodontic therapy and can allow clinicians to conduct preventative or interceptive 

periodontal therapy like soft tissue or bone grafting.56   
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 The use of CBCT in orthodontic diagnosis and treatment planning has 

become more and more popular.  Indications for its use include the management of 

impacted canines, cleft lip and palate, and in the assessment of skeletal 

discrepancies requiring surgical procedures.57  More uses are being elucidated like 

craniofacial morphometric analyses/superimpositions, airway evaluation, and 

assessing alveolar housing/boundaries prior to tooth movement.57  Although more 

uses in orthodontics are being discovered, CBCT should only be indicated when 

conventional radiography and a thorough clinical examination would not give 

adequate information.58  A drawback of routine CBCT use is its significantly higher 

effective dose of radiation than conventional radiography.  A range of 20-599 µSv 

has been reported, depending on the machine and settings, compared to 9-26 µSv 

for a panoramic radiograph.59 
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Chapter 2: Objectives and Hypothesis 

 

 Rationale for the Investigation 

 Potential periodontal complications of orthodontic treatment are a concern 

that should be kept in mind by the orthodontist when diagnosing and treatment 

planning a case.  Screening for the likelihood of these issues developing in a patient 

is primarily done by visual assessment of gingival biotype and amount of attached 

gingiva present.56  Assessing the soft tissues provides only minimal, if any, 

information on the status of the bony periodontal structures.  Several studies have 

shown an increased likelihood of developing periodontal complications when a thin 

buccal cortical plate is present initially.39,43,44,60–62 

 CBCT is a diagnostic method that can be used to evaluate underlying bone 

for dehiscence, fenestration, and thickness.  Because of its ionizing radiation and the 

average age of orthodontic patients, it would not be without significant risk to 

suggest routine use of CBCT as part of a diagnostic workup, especially if an 

alternative was available.  Hence, there exists a need for a non-radiative, cost-

effective, and reliable method to assess cortical bone thickness prior to starting 

orthodontic treatment. 

 µ-CT is an accurate and reliable method to assess bone structure and 

architecture but it is not practical for use in a clinical setting due to the size of 

machinery and radiation exposure.63  Because of its ease of use however, it has 

mostly replaced traditional histomorphometry, a destructive laboratory method, for 

the evaluation of bone microarchitecture in the research setting and is seen as a 

gold standard in the field.63  For bone thickness measurements, µ-CT has also been 

shown to be as accurate as histomorphometric and direct histological analysis on 

bone specimens.64,65   
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 Purpose of the Study 

 The objective of this investigation was to validate the use of a novel US 

device in the measurement of cortical bone thickness overlying roots of teeth in 

porcine mandibular specimens. 

 

 Hypothesis 

 Cortical bone thickness measurements in porcine mandibular specimens 

obtained with a novel US device will be statistically similar to measurements 

obtained with the gold standard µ-CT. 

 

 

 

 

 

 

 

 

 

 

 



 

 

22 

Figure 5.  Constructed jaw model with embedded teeth. 

Chapter 3: Materials and Methods 

 

 Proof of Concept: Jaw and Cortical Bone Models 

 A jaw model was constructed for proof of concept validation and software 

algorithm development and refinement.  It was made with 14 previously extracted 

and desiccated human teeth embedded in epoxy resin and alumina powder 

composite materials simulating cortical and cancellous bone (Fig. 5) (True Phantom 

Solutions, Windsor, CAN).  The model jaw measured 2cm x 2.5cm x 14.5cm.  The 

materials were previously designed and validated to mimic the acoustic properties 

of human cortical and cancellous bone.66  The model was scanned in an acoustic 

microscope with different frequency focused and non-focused transducers (1MHz, 

2.25MHz, 25MHz) with both through transmission and pulse echo methods.  

Through transmission with 2.25MHz transducers, one on either side of the model 

produced promising C-scan imagery (Fig. 6).  The cancellous bone made it difficult 

to obtain reliable A-scan or B-scan imagery and accurately detect roots with either 

method so a smaller model with only cortical bone over root structure was 
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Figure 6.  US C-scan image obtained from scanning with 2.25MHz transducers and 
through transmission method in acoustic microscope.   

constructed for further software and algorithm testing.  The model consisted of a 

human mandibular central incisor embedded in the epoxy resin and alumina 

powder composite cortical bone material.  It measured 2cm x 2.5cm x 0.6- 0.8mm.   

 

3.1.1 µ-CT Assessment  

 The cortical bone model was µ-CT scanned at 154µm sections with 120kV 

and 20mA with an eXplore Locus Ultra CT scan system (General Electric, Boston, 

USA).  Images were reconstructed at 308µm resolutions.  Microview imaging 

software (Parallax Innovations, Ilderton, CAN) was used to view and qualitatively 

assess cortical bone material thickness and embedded root structure form.  
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Figure 7. Bone model being US scanned in a water bath with an acoustic microscope using a 
25MHz transducer. 

3.1.2 US Assessment  

 The cortical bone model was mechanically scanned in a water bath with an 

ultrasonic acoustic microscope (Tessonics, Windsor, CAN) using a 25MHz single, 

focused transducer (Fig. 7).  The scan was conducted over an area of 20mm x 20mm.  

Custom software developed in Matlab (Mathworks, Boston, USA) by our 

collaborators at the Institute for Diagnostic Imaging Research was used to gather 

and assess US data.   A-scan, B-scan, and C-scan imagery was used to qualitatively 

assess cortical bone and root form.  The C-scan was used to landmark over the 

middle of the root and draw comparisons with the x-plane from the µ-CT scan.  The 

B-scan was used to draw comparison with the z plane from the µ-CT scan.  A-scans 

were obtained from points over the middle of the root to assess TOF of US waves 

between the surface of the cortical bone and the root.  TOF with a known SOS in a 

given material is used to give the distance travelled by the echoes with the formula: 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
𝑆𝑂𝑆 𝑥 𝑇𝑂𝐹

2
 

 The SOS in the cortical bone model material used was previously reported 

as 3100m/s.66  Trials on the cortical bone model allowed for experimenting with 
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algorithms and optimizing the software’s ability to detect A-scan peaks associated 

with cortical bone and root interfaces. 

 

 Porcine Samples 

 Four hemi-mandibles were obtained from pigs slaughtered for human 

consumption.  The mandibles were sectioned at the midline and were from two pigs 

with no indication of their age given by the abattoir.   Each specimen was 

individually packaged, labelled and stored at 0 degrees Celsius until micro-CT scans 

and US scans could be completed.  One specimen was used for testing and 

calibration of the US device while the other three were used for measurements and 

data collection. 

3.2.1  µ-CT Measurement of Cortical Bone Thickness 

 Specimens were µ-CT scanned at 154µm sections with 120kV and 20mA 

with an eXplore Locus Ultra CT scan system (General Electric, Boston, USA).  Images 

were reconstructed at 308µm resolutions.  Microview imaging software (Parallax 

Innovations, Ilderton, CAN) was used to view, analyze, and measure specimens.   

 Locations where cortical bone thickness was to be measured were selected 

over the roots of the first and second premolar based on porcine dental anatomy.67  

12 points were identified per specimen by using a maximum intensity projection 

image constructed from the µ-CT scan (Fig. 8).  A baseline was constructed between 

the cusp tips of the first and third premolars.  Parallel lines were made at 12mm, 

14mm, and 16mm.  Each of these lines had 4 points of interest, directly over the 

roots of the teeth.  Lines perpendicular to baseline were drawn through the first and 

second premolar cusp tips to provide a landmark to measure distance from the 

points of interest and record exactly where cortical bone thickness measurement 

was done.   
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Figure 8.  Points where bone thickness is to be measured identified on a µ-CT maximum 
intensity projection for correlation with physical samples.  Baseline and 12, 14, 16mm lines 
(yellow), and baseline perpendicular premolar cusp tip lines (blue) identified.  

Figure 9. Section of the 12mm plane with cortical bone measurement line (red) over root 
corresponding to point #2. 
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Figure 10. First premolar cusp tip line (blue) with distance measurement (green) from 
point where bone thickness was assessed. 

 µ-CT image planes were reoriented to make the x-plane parallel with the 

baseline.  The y-plane and z-plane were reoriented to ensure that thickness 

measurements were done perpendicular to the surface of the root/PDL.  Microview 

measuring tool was used to measure the thickness of the cortical bone at the 

selected points in the z-plane (Fig. 9).   

 An additional measurement in the x-plane was obtained from each point 

away from the baseline perpendicular cusp tip line to be able to transfer the point 

directly onto the specimen and reproduce the cortical bone thickness measurement 

with the US device (Fig. 10). 

 

 

 

 

 

 

 

 

 



 

 

28 

Figure 11. Intra-oral US device with ruler for size comparison. 

 

3.2.2  US Measurement of Cortical Bone Thickness 

 A handheld and compact US device prototype, designed for intraoral use, 

with a 19MHz pulse-echo transducer (Tessonics, Windsor, CAN) was used for the 

experiment (Fig. 11).  The device had a spherically focused transducer with a probe 

tip diameter of 1.5mm.  It was connected to a computer running custom software 

developed in Matlab (Mathworks, Boston, USA) by our collaborators.   

The software was designed to detect three distant peaks in A-scan imagery 

which would theoretically correlate with tissue boundaries of probe tip and gingiva, 

gingiva and cortical bone, and cortical bone and PDL space/root (Fig. 12).  The 

custom software and algorithms use the TOF between echoes and a calibrated SOS 

through cortical bone to give a distance reading interpreted as bone thickness.   
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Figure 12.  Concept and data extraction of measuring buccal cortical bone thickness with an US device.  
Pulses from the transducer are reflected as echoes from different tissue interfaces. ①= probe/gingiva 
interface, ②= gingiva/bone interface, ③= bone/PDL interface. Time of flight (TOF) is the time 
difference between echoes from gingiva/bone and bone/PDL interfaces. 

 A sample of cortical bone was removed from a specimen for SOS calibration.  

The sample was trimmed and polished to be square shaped, flat and 1mm thick.  

Digital calipers were used to measure the sample 10 times at random points for 

thickness giving the distance the US waves and echoes would travel.  US 

measurements of the time of flight through the sample were conducted 10 times at 

random points.  Mean thickness and mean time of flight were used to calculate the 

SOS with the formula:    

𝑆𝑂𝑆 =
2 𝑥 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑡𝑖𝑚𝑒
 

 

 Specimens were prepared by removing muscular and dermal tissue in 

proximity to the points of interest without damaging the overlying gingiva.  The soft 

tissues were patted dry and 12mm, 14mm, and 16mm lines from baseline (line 
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Figure 13.  US device assessing cortical bone thickness on point #4 of a marked right mandibular 
specimen. 

connecting first and third premolar cusp tips) were drawn with an indelible surgical 

skin marker on the gingiva.  Perpendicular lines were drawn through the first and 

second premolar cusp tips.  The distance from these lines, where bone thickness 

was measured, was obtained from µ-CT imaging and the points were marked on the 

specimen. 

 The probe tip of the US device was held on the marked points during data 

collection with ultrasonic gel being used as a coupling medium (Fig. 13).  The 

algorithms were constructed to collect 20 successful A-scan readings and average 

them to give the thickness measurement.  The probe tip was held perpendicular to 

the surface of the specimen.  Slight correction to the tip angulation was necessary at 

times to facilitate successful A-scan reading.  Data was first collected from the 12mm 

line (points 1-4), then 14mm line (points 5-8), and lastly the 16mm line (points 9-

12). 
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 Data Analysis 

 IBM SPSS Statistics 24.0 (IBM Corporation, Endicott, USA) was used to 

conduct the analysis.  Paired t-test, Pearson correlation coefficient and the Bland 

Altman Plot were used to assess the agreement between cortical bone 

measurements obtained with µ-CT and US.  Intra-rater reliability was assessed for µ-

CT measurements by repeating the assessment on a scan of a specimen at a second 

time point and using an intra-class correlation coefficient test.  The P-value was 

significant if ≤ 0.05. 
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Figure 14.  µ-CT scan x-plane slice (left) and US C-scan image (right) with pulp canal and 
root surface outline labeled. 

Figure 15.  µ-CT scan z-plane slice (left) and US B-scan image (right).  Interpretations of bone 
surface, root surface and pulp canal labeled on the US image. 

Chapter 4: Results 

 

 Bone Model 

 Imagery obtained from both µ-CT and US scanning of the bone model were 

qualitatively compared.  Striking similarities were found when comparing the x-

plane from µ-CT with the C-scan from US (Fig. 14) and when comparing the z-plane 

from µ-CT with the B-scan from US (Fig. 15).  The pulp canal is clearly defined in the 

US C-scan and correlates well with that of the µ-CT image in the x-plane.  The US B-

scan was able to delineate the bone model surface and root contour which also 

correlate well with µ-CT imagery when examining the model in the z-plane. 
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  A-scan imagery was also useful in the detection of the root as well as in the 

assessment of model cortical bone thickness over the embedded tooth root (Fig. 16).  

The formula for distance was used with the time between echoes from the bone 

surface and root obtained from A-scan imagery to determine model bone thickness.  

Thickness obtained from A-scan 1 is 1.31mm and A-scan 2 is 0.52mm. 

   

  

 

 

 

 

 

 

Figure 16. (A) US B-scan with points where A-Scan 1 and A-Scan 2 were taken from. (B)  US A-Scan 1 image with 
bone surface and root surface peaks labelled corresponding to bone thickness of 1.31mm. (C) US A-Scan 2 image 
with bone surface and root surface peaks labelled corresponding to bone thickness of 0.52mm. 
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 SOS Calibration: Porcine Specimen 

 The prepared bone sample was measured 10 times with a digital caliper for 

thickness and scanned with the US device 10 times to measure the TOF (Fig. 17).  

The mean thickness measurement was 1.01mm and the mean TOF for the sample 

was 0.62µS.  These means were used with the previously mentioned formula to 

determine the SOS in our porcine cortical bone to be 3235m/s. 

 

 Comparison of µ-CT and US measurements 

 Cortical bone thickness measurements were first conducted from µ-CT 

scans of the specimens while at the same time recording the distance of the point 

away from the first or second premolar cusp tip line.  36 points were assessed from 

the 3 specimens. The mean cortical bone thickness (+/-SD) from µ-CT was 2.06+/- 

0.76mm with a range of 1.14-4.22mm.  After labeling the appropriate landmarks 

and points on the specimens, US scans were conducted with the device.  The 

software analyzed A-scans for three distinct peaks during scanning (Fig. 18).  Once 

20 successful scans were obtained, the algorithm averaged the TOFs and output a 

thickness measurement value based on our calibrated SOS.  The mean cortical bone 

thickness from US was 1.61+/- 0.46mm with a range of 1.09-2.91mm. 

Figure 17.  Cortical bone sample having thickness measured with digital calipers (left).  TOF 
assessment with US device (right). 
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Figure 18.  A-scan derived from US with peaks corresponding to echoes of waves from different 
tissue interfaces.  Ideally, the first peak would correspond to probe/gingiva interface, second peak 
to gingiva/bone interface and third peak to bone/PDL interface. 8 nanoseconds per unit sample. 
Time of flight (TOF) is time difference between echoes from gingiva/bone and bone/PDL 
interfaces. 

 

 

 

 

 

 

 

 

 

  Table 1.  Cortical bone thickness measurements obtained with µ -CT and US scans. 

Method n  Mean (mm) SD 

Micro-CT 36 2.06 0.76 

Ultrasound 36 1.61 0.46 

 

4.3.1 Analysis of Complete Data Set 

 Cortical bone measurements obtained by µ-CT and US were significantly 

different when analyzing the full data set (P=0.001).  A scatterplot of the results 

shows a weak positive correlation with r= 0.369 (P=0.027) (Fig. 19).   
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Figure 19. Scatterplot of the correlation between cortical bone thickness measurements 
obtained by µ-CT and US scanning in the complete data set (r=0.369). 

 

A Bland-Altman plot was constructed to be able to further assess the 

agreement between the two methods.  Each individual point of measurement is 

assessed for the difference between the two methods of measurement and plotted 

against the mean of the measurements for that same point (Fig. 20).  The mean 

difference, or bias, was 0.45mm with a 95% confidence interval (CI) of 0.20-

0.69mm.  Because the line of equality, 0mm bias, did not fall within the 95% CI, the 

two methods of measurement can be said to not be in agreement. 
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4.3.2 Analysis Excluding µ-CT Points > 2.5mm Cortical Bone Thickness 

 Points in the data set with µ-CT cortical bone measurements of greater than 

2.5mm were removed leaving a total of 28 points.  The decision was made to 

exclude these points as human buccal cortical bone is rarely thicker than 2.5mm 

with the exception of the posterior mandible.68  Mean cortical bone thickness from 

µ-CT was 1.72 +/- 0.39mm with a range of 1.14-2.48mm.  The mean cortical bone 

thickness measurement from US was 1.56 +/- 0.39mm with a range of 1.09-2.24mm.  

Measurements obtained by µ-CT and US with the adjusted data set were 

significantly different (P=0.019).  A scatterplot of the results shows a strong positive 

correlation with r= 0.613 (P=0.001) (Fig. 21).   

Figure 20.  Bland Altman Plot with bias of 0.45mm (red line) and 95% CI of the bias 
(dotted lines).  The line of equality, difference of 0mm, is outside the 95% CI of the bias. 
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Table 2.  Cortical bone thickness measurements for adjusted data set (µ-CT <2.5mm). 

Method n  Mean (mm) SD 

Micro-CT 28 1.72 0.39 

Ultrasound 28 1.56 0.39 

 

 A new Bland-Altman plot was constructed from the adjusted data set (Fig. 

22).  The new bias was 0.16mm with a 95% CI of 0.03-0.29mm.  The line of equality 

is much closer to the 95% CI of the bias but still falls outside of it.  As such, the 

methods of measurement can still be said to not be in agreement. 

Figure 21.  Scatterplot of the correlation between cortical bone thickness measurements 
obtained by µ-CT and US scanning without µ-CT >2.5mm (Adjusted Data Set) (r =0.613). 
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 Intra-rater Reliability  

 An online digital number randomizer (True Random Number Service) was 

used to determine which of the 3 specimen would be selected for the intra-rater 

reliability assessment.69   µ-CT bone thickness measurements were obtained a 

second time, 60 days after the original measurement.  Intraclass correlation 

coefficient analysis showed an excellent correlation of 0.964 between the two sets of 

measurement (P < 0.001). 

 

Figure 22.  Bland Altman Plot without µ-CT >2.5mm (Adjusted Data Set) with bias of 
0.16mm (red line) and 95% CI of the bias (dotted lines).  The line of equality, difference 
of 0mm, is outside the 95% CI of the bias. 
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Chapter 5: Discussion 

 

 Periodontal complications such as gingival recession, bony dehiscence, and 

fenestration, are considerable adverse effects of orthodontic treatment when the 

orthodontist fails to recognize patients who might be susceptible to these issues.  

Initially thin cortical bone as well as excessive expansion and proclination or 

retraction out of the bony alveolar housing are significant risk factors for these 

problems.  Dental CBCT can potentially be used to evaluate the periodontal hard 

tissues prior to treatment but the radiation exposure to the patient dictates that it 

should be used in limited situations.  There exists a need for a non-radiative, cost-

effective, and reliable method to assess cortical bone thickness prior to starting 

orthodontic treatment.  The purpose of this investigation was to validate the use of a 

novel US device in the measurement of cortical bone thickness over roots in porcine 

mandibular specimens. 

 

 Jaw and Cortical Bone Models 

 Both jaw and cortical bone models were necessary for refinement of the US 

software, algorithms, and protocols.  Upon US scanning of the larger jaw model, it 

became apparent that the cancellous bone layer that was placed between the tooth 

roots and the cortical bone layer made detection of the roots very difficult and 

unpredictable.  The multi-locular, spongy structure of this layer possibly scattered 

both incident waves and echoes to the point that they could no longer be detected in 

A-scan or B-scan images.  Focused transducers performed better than non-focused 

transducers because of the higher concentration of US energy in the areas of 

investigation.  The decision was made to make a smaller cortical bone model 

embedded with a single tooth and US scan it with a focused 25MHz transducer in 
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the acoustic microscope to further refine the algorithms and software.  This model 

was µ-CT scanned for qualitative comparison with our US scans. 

 Images from the US and µ-CT scans were analyzed and showed promising 

similarities when qualitatively assessing model bone thickness and root contour.  

The pulp canal of the tooth was clearly visible in both US B-scan and C-scan images.  

This is because of the drastic contrast and difference in impedance between the 

canal and the surrounding dentin/root.  The canal was open to the environment and 

filled with air which has a much lower impedance (400 Rayl)70 than that of dentin 

(7.8 MRayl)71.  Impedance between root structure and overlying model bone 

(6.3MRayl)66 are more similar, hence, the subtler delineation in US images.  The 

tooth was directly embedded into the model material and did not have a mock PDL 

space.  Incorporating a PDL space would have possibly made the junction between 

the tooth and model bone more visible on US scans.  The proof of concept model 

bone experiments allowed our collaborators to improve and refine the software and 

algorithms to be used for the porcine specimen experiment. 

 

 SOS in Cortical Bone 

 The SOS through cortical bone has been reported as being highly variable.  It 

is dependent on the elastic properties of the bone which readily change, especially 

in aging, as bone is a dynamic structure.11,72,73  Different regions of human cortical 

bone have shown different SOS values.  Cranial cortical bone has SOS values ranging 

from 2500-2960 m/s while femoral and tibial bone have shown a SOS from 3565-

3800 m/s.6,11,74  

 Cortical bone in animal models also shows great variability.  Porcine cortical 

bone mean SOS values from a study by Rose et al.75 range from 2186– 3951m/s 

depending on the direction of wave propagation and physical maturity of the 

specimen.  The vast range of reported values as well as the uncertainty of the exact 

age of our specimens due to pigs being slaughtered based on weight rather than age, 

drove us to calibrate the speed of sound for cortical bone in our porcine mandibles.  
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Our value of 3235m/s is within the range of SOS values reported in previous 

literature.  Temperature is another factor that can potentially impact SOS through 

bone.76  Our specimens were all stored at 0 degrees Celsius but were slowly brought 

to room temperature before conducting US measurements.   

 

 Agreement between Methods 

 Mean cortical bone thickness measurement with US was lower than that 

obtained with µ-CT.  This is similar to results found by Nguyen et al.25 in their study 

using a 20MHz US transducer on anterior porcine specimens.  A possible 

explanation is the presence of vascular channels in cortical bone (Fig. 23). The 

software was designed to detect three distinct peaks and base the distance echoes 

travelled calculation on the time of flight between the second and third peak.  This 

theoretically corresponds to the distance travelled between the gingiva/cortical 

bone interface and the cortical bone/PDL interface giving the thickness of cortical 

bone.  During µ-CT analysis, vascular channels were sometimes present in proximity 

to points where thickness measurements were done.  These vascular channels could 

Figure 23.  µ-CT scans of a specimen with several vascular channels outline (red 
circles) between the roots and the buccal cortical bone surface. 
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be responsible for producing a peak in the A-scan which would falsely be identified 

as the PDL/root and hence underestimating the thickness of cortical bone.  This 

would not be expected to be an issue in humans, especially in younger and fully 

dentate subjects (the majority of orthodontic patients)who would have lower 

alveolar cortical bone porosity.77 

 The variability and discord between the two methods of measurement was 

greater if the µ-CT measurement was more than 2.5mm.  Alveolar cortical bone 

thickness greater than this is rarely found in humans with the exception of the 

posterior mandible.68  The increased variability in thicker bone may be explained by 

the larger distance that echoes would have to travel decreasing the probability of 

useful echoes from a conical root/PDL being detected by the transducer.  For 

example, if echoes reflecting from a conical root only travel 1.5mm back to the 

transducer, a greater proportion of them will be detected as opposed to echoes from 

the same conical root having to travel 3.0mm back to the transducer.   

 The variability with thicker bone can also be explained by penetrance of the 

frequency of transducer used.  The intra-oral device used a single focused 

transducer with a frequency of 19MHz.  Lost et al.16 showed a consistent penetrance 

of up to 1.5mm with a 20MHz on in-vitro bone sample models while a 5 MHz 

transducer penetrated up to 2mm consistently.  The tradeoff with the lower 

frequency transducer was resolution and accuracy.  The 19MHz transducer may 

have been too high frequency to reliably penetrate the bone and detect roots or PDL 

space in some of the thicker areas measured.  Comparison of the data removing 

points with µ-CT measurements greater than 2.5mm, supports both of these 

explanations. 

 Although a variety of statistical tests were used to assess the agreement 

between the two measures, it can be argued that results from the Bland Altman plot 

are most appropriate.  This statistical test assesses the average of the differences 

between paired methods of measurement which is more representative of 

agreement than how the measurements themselves are correlated.78 One test can be 
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highly correlated to a gold standard but can still be inaccurate if it is off by the same 

amount each time.  This is why the Bland Altman plot is the most popular statistical 

method to assess agreement between two medical instruments measuring 

continuous variables.79 

 

 µ-CT Measurements 

 Measurement of cortical bone thickness by means of µ-CT was used as the 

reference method for comparison.  It is an extremely accurate, non-destructive 

method for bone structure assessment and has thus largely eclipsed 

histomorphometry and direct histological assessment as the gold standard method 

of analysis in the field.63–65 The reorientation of the planes allowed for a thickness 

measurement that was perpendicular to the surface of the bone while 

simultaneously ensuring the measurement was done at the thinnest part over the 

root.   The intra-rater reliability assessment showed that µ-CT measurements were 

highly repeatable (ICC=0.964) further showing the validity of using it as a reference. 

 

 US Device and Measurements 

 The novel US device was practical and straightforward to use for bone 

thickness measurements on the porcine samples.  Although it wasn’t used intra-

orally, its compact size and ease of use lends itself to intra-oral use in the dental and 

orthodontic setting.  The gathering of US data while scanning proved to be 

somewhat technique sensitive as the probe tip needed to be steadily held over the 

desired point until the software processed the required 20 successful A-scans to 

give a bone thickness measurement.  The orientation of the probe tip was generally 

held flat against the surface of specimen allowing for perpendicular transmission of 

the US waves.  Slight corrections to the orientation were sometimes needed to allow 

for successful A-scan readings. 
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Figure 24.  Cross-section of porcine tooth and mandible with the buccal surface to the 
right.  The divergence of root/PDL and the surface of the cortical bone becomes more 
prominent further apically. 

 Diagnostic US is dependent on the angulation and geometry of wave 

propagation and tissue boundaries.  Detection of echoes from tissue boundaries and 

objects, what makes diagnostic US useful, is complicated by oblique incidence of US 

waves causing reflection away from the transducer and refraction of propagating 

waves as previously discussed (Fig.2 and Fig.3).  One of the challenges of measuring 

cortical bone thickness with US is that the surfaces of the cortical bone and 

root/PDL space are rarely perfectly parallel especially apically (Fig. 24), as was also 

noted by Lost et al.17  This results in only a portion of the useful echoes being 

detected by the transducer if at all in very divergent root/bone surface situations.  

This geometric dependence is not only seen in the buccal-lingual direction, it is also  

noted in the mesio-distal direction.  Roots and PDLs are conical structures that have 

the potential to reflect US echoes away from the transducer. 
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 Although there was a protocol in place for extrapolating the points where 

measurements were done on the µ-CT and transferring them to the specimen for US 

assessment, this proved to be somewhat technically challenging.  The mobility of the 

soft tissues made it difficult to precisely mark them with the surgical marker. 

Radiopaque metal markers could have possibly been placed in the samples prior to 

µ-CT but they would have had to have been placed a certain distance away from the 

points of interest because of their potential beam hardening effects.  This would also 

not make it any less difficult to extrapolate and precisely locate points to be marked 

on the specimens.  Once marked, the 1.5mm probe tip diameter of the US device was 

slightly larger than desirable to ensure accurate placement over the identified point 

for US measurement.  A 1.0mm probe tip could have potentially ensured more 

accurate placement of the device. 

 

 Strengths of the Study 

 There were various strengths of our experiment.  Firstly, the use of the 

larger jaw bone model and smaller cortical bone model allowed our collaborators to 

improve and refine software algorithms.  It also allowed us to select the US method 

(pulse-echo) and type of transducer (single-focused) that would allow for best 

results in our porcine experiments. 

 The US device that was used to assess the porcine mandibles was 

specifically designed for intra-oral use.  It is lightweight, compact, and easy to 

use/tolerate in the oral cavity.  This is in contrast to studies that focused on table-

top in-vitro experiments with fixed transducers in water baths16–18,26, or those that 

used US devices designed for dermal use24,25.   

 We used porcine specimens for our study which has proven to be an ideal 

model because of similarities to human jaw anatomy and function.80  Although the 

cortical bone in certain parts of the porcine jaw is thicker and more vascular, and 
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the dental anatomy differs from humans, the porcine model does replicate how US 

waves would behave in human jaws with similar periodontal structures. 

 The SOS was calibrated for our porcine cortical bone samples.  Because of 

the varying reports of SOS values in porcine bone in the literature, and the effect 

that age and maturity can have, measurement of SOS was conducted.  This allowed 

us to calibrate our software and allow for more accurate bone thickness 

measurements with the US device. 

 Lastly, intra-rater reliability was assessed for µ-CT measurements by 

measuring cortical bone thickness for a specimen, 2 months after it was originally 

measured.  Good repeatability and consistency were seen with measurements done 

from the gold standard µ-CT scans.  Although intra-rater reliability was not possible 

to do for US measurements because of the time sensitive nature of the specimens, 

the software compensated by using mean TOF from 20 A-scans for thickness 

determination.  

 

 Limitations of the Study 

 The study has some limitations with the most notable one being the 

frequency of transducer used.  As previously mentioned, the 19MHz transducer 

used may not have the bone penetrance to be able to detect and reflect echoes from 

roots in thicker areas of bone.  The device could potentially be modified to use a 

5MHz or 10MHz single focused transducer which would increase the depth of 

penetrance while likely still maintaining the resolution required for accurate bone 

thickness measurements.   

 The protocol for transferring points measured on µ-CT onto the specimens 

for US measurement was logical and straightforward.  The act of labelling the points 

directly on the specimen was more difficult than originally thought which can be 

seen as a limitation due to possible inaccuracy.  The size of the tip diameter on the 

US device, 1.5mm, could possibly contribute to inaccuracy of placement and a 

smaller tip diameter could increase placement accuracy. 
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 The sample size of n=36 is adequate, but the fact that the points came from 

three hemi-mandibles from two pigs, could be seen as a limitation.  This study 

should be viewed as a pilot study for future research to be conducted with a larger 

and possibly more varied sample size with the caveat that small SOS deviations 

could be expected amongst cortical bone from different pigs based on age and 

maturity.  The variation in SOS values could also be a limitation in US measurement 

of cortical bone in human subjects as orthodontic patients vary greatly in maturity 

and bone mineral density.  This issue could potentially be resolved by the 

establishment of normative SOS values for variables such as gender and age. 

 

 Clinical Relevance 

 Because of the periodontal complications that can arise during orthodontic 

treatment in patients with risk factors such as thin buccal cortical bone, a reliable 

and practical method to assess cortical bone thickness prior to starting orthodontic 

treatment is warranted.   

 Cortical bone measurements would be greatly beneficial in diagnosing and 

treatment planning an orthodontic case.  Thin cortical bone measurements would 

warn the orthodontist about the risk of negative periodontal sequelae like gingival 

recession and bone dehiscence.  This would potentially improve treatment planning, 

especially in moderately to severely crowded cases in which both 

expansion/proclination to increase arch length or extraction of permanent teeth are 

feasible treatment options.  Thin cortical bone in these cases would indicate that 

extraction of permanent teeth would potentially allow the rest of the dentition to 

remain well within the bony alveolar housing as opposed to non-extraction 

treatment. 

 The only current method of assessing cortical bone thickness in the 

orthodontic setting is by using dental CBCT.  As previously discussed, the accuracy 

of assessing and measuring bone thickness with CBCT is still not completely known, 
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especially in areas with cortical bone less than 1mm thick.  The additional exposure 

to radiation with CBCT is also a concern which makes its only indications for routine 

use in orthodontics potentially very specific, such as in impacted teeth and skeletal 

asymmetries.   

 US has the potential to be useful in this regard as it is non-invasive, safe, and 

easy to use.  With further improvements to the device used in this study, accurate 

and rapid cortical bone measurements appear to be possible. 

 

 Suggestions for Future Research 

 Pulse-echo US with a handheld device shows promise in measuring cortical 

bone thickness.  Modifications to the device used in our study, such as a lower 

frequency transducer and a smaller diameter tip, as well as improvements and 

refinements in software and algorithms may allow it to be a clinically useful 

diagnostic tool.   

 Future research should be dedicated to experimenting with different 

frequency transducers and software/algorithm modifications to further compare US 

to the gold standard µ-CT.  CBCT, used in the orthodontic setting, should also be 

used as a method for comparison with US.   

 Because of the difficulties encountered with porcine jaw and tooth anatomy 

and the non-invasive nature of US, human studies could also be conducted with 

essentially no risk.  Orthodontic patients scheduled to undergo a CBCT for other 

diagnosis and treatment planning purposes (i.e. permanent tooth impactions or 

other pathology) could be recruited to be part of the study in the measurement of 

buccal cortical bone.  Measurements obtained with the US device close to the CBCT 

scan date could then be compared to those obtained from CBCT imagery in these 

patients. 
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Chapter 6: Conclusion 

 

 A novel handheld ultrasound device showed promise in measuring cortical 

bone thickness over the roots of teeth in porcine mandibular specimens, but some 

degree of variability existed, especially when measuring thicker areas of bone.  

Further improvements to the device and algorithms used are warranted to increase 

the accuracy and reliability of this diagnostic tool.  
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Appendices  

Appendix A: Porcine Speed of Sound Calibration Raw Data 

time (uS)   thickness(mm) 

0.705  0.99 

0.585  1.06 

0.54  0.98 

0.6074  1 

0.5775  1.02 

0.52  0.99 

0.66  1 

0.6825  1.04 

0.6625  0.99 

 0.6725   0.98 
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Appendix B: Buccal Cortical Bone Thickness Measurements Raw Data  

 

 

Sample point 
µ-CT measurement 

(mm) 
US measurement 

(mm) 
Difference 

(mm) 
Mean 
(mm) 

1R1 2.07 2.01 0.06 2.04 
1R2 2.16 1.99 0.17 2.08 
1R3 2.27 1.99 0.28 2.13 
1R4 4.22 2.19 2.03 3.21 
1R5 2.59 2.91 -0.32 2.75 
1R6 2.03 2.09 -0.06 2.06 
1R7 2.28 2.09 0.19 2.19 
1R8 2.48 2.24 0.24 2.36 
1R9 2.85 2.24 0.61 2.55 

1R10 2.27 2.16 0.11 2.22 
1R11 1.96 2.09 -0.13 2.03 
1R12 3.80 2.11 1.69 2.96 
2L1 1.31 1.44 -0.13 1.38 
2L2 1.27 1.22 0.05 1.25 
2L3 1.52 1.54 -0.02 1.53 
2L4 1.79 1.69 0.10 1.74 
2L5 1.39 1.96 -0.57 1.68 
2L6 1.43 1.27 0.16 1.35 
2L7 1.63 1.17 0.46 1.40 
2L8 1.64 1.29 0.35 1.47 
2L9 1.45 1.42 0.03 1.44 

2L10 1.61 1.54 0.07 1.58 
2L11 3.33 1.19 2.14 2.26 
2L12 3.42 1.24 2.18 2.33 
2R1 1.19 1.64 -0.45 1.42 
2R2 1.14 1.14 0.00 1.14 
2R3 1.35 1.09 0.26 1.22 
2R4 2.14 1.12 1.02 1.63 
2R5 1.29 1.32 -0.03 1.31 
2R6 1.46 1.32 0.14 1.39 
2R7 1.70 1.22 0.48 1.46 
2R8 2.63 1.19 1.44 1.91 
2R9 1.55 1.44 0.11 1.50 

2R10 1.85 1.22 0.63 1.54 
2R11 2.04 1.09 0.95 1.57 
2R12 2.98 1.19 1.79 2.09 
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Appendix C: Intra-rater Reliability Raw Data 

  
Micro CT 
measurements (mm) 

Specimen 2R (for ICC) T1 T2 

2R1 1.19 1.14 

2R2 1.14 1.11 

2R3 1.35 1.47 

2R4 2.14 2.05 

2R5 1.29 1.16 

2R6 1.46 1.49 

2R7 1.70 1.79 

2R8 2.63 2.64 

2R9 1.55 1.51 

2R10 1.85 1.71 

2R11 2.04 1.97 

2R12 2.98 2.86 
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Appendix D: License to Reproduce Journal Figure 
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