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Abstract 

Farmland bird populations have experienced declines with increasing agricultural 

intensification for which the leading hypothesis is a reduction of prey insects. This may 

be especially relevant for aerial insectivores whose primary diet is flying insects. For this 

thesis, I examined nestling body condition and used stable isotopes (δ13C, δ15N) and fecal 

DNA barcoding to determine the diet of a farmland breeding aerial insectivore, the Barn 

Swallow (Hirundo rustica), within an agro-ecosystem in Southern Ontario, Canada. 

Nestling body condition was positively affected by agricultural intensification, but all 

benefits were lost by the pre-fledging stage and with no effect on productivity. Stable 

isotopes indicated that nestling diet was derived from within agro-ecosystems. While 

nestling diet breadth was negatively affected by agricultural intensification, I found 

evidence for a robust dipteran diet unaffected by landscape. My results provide little 

evidence of long-term negative repercussions to breeding within agriculturally intense 

landscapes for the Barn Swallow. 
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Chapter 1  

General introduction 

1.1. Agricultural intensification 

Agro-ecosystems are human-modified communities specialized for the cultivation of 

food, feed, fibre, and medicinal products. These ecosystems include all biotic (e.g., 

wildlife, plants, crops, livestock) and abiotic (e.g., agrochemicals, soil, irrigation) 

components, as well as their interactions, that occur within cultivated landscapes, but are 

not strictly constrained to cultivated fields as they also describe the surrounding areas that 

are affected by agricultural land use. Currently, there are 379 and 67 million hectares of 

agricultural land in the USA and Canada respectively (Stanton et al. 2018). Overall, the 

amount of land used for agriculture has remained relatively stable since the rapid 

conversion in the early 1900s (Stanton et al. 2018), but intensification has introduced a 

shift towards specialization and optimization of agricultural production away from small-

scale farming practices and towards large-scale, highly industrialized, homogenous 

farming systems (Matson et al. 1997). These systems are characterized by high yielding 

row crops, large quantities of inorganic fertilizer and pesticides, mechanization, early 

planting and harvest, and a lack of crop rotations (Robinson & Sutherland 2002). These 

landscapes are structurally and ecologically simplified through removing hedgerows, 

woodlots, and wetlands resulting in larger fields with a reduced number of crop types 

(Robinson & Sutherland 2002; Benton et al. 2003; Tscharntke et al. 2005).  

Agriculture is considered one of the greatest threats to biodiversity worldwide 

(Benton et al. 2003; Green et al. 2005; Tscharntke et al. 2005), but responses to 
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agricultural land use changes vary in intensity across taxa (Burel et al. 1998, 2004). For 

plants, single-crop monocultures represent a drastic reduction in diversity within fields, 

but studies examining field margins show functional diversity is not reduced compared to 

natural and semi-natural environments (Flynn et al. 2009). Similarly, carabid beetles 

show no reduction in species richness in areas of high agricultural intensification, but 

species composition changes to favour smaller and mobile species (Burel et al. 2004). 

This is not the case for all taxa, as some groups experience marked negative effects, such 

as birds and mammals, for which functional diversity is reduced with increasing 

agricultural intensification (Flynn et al. 2009). Investigating the effects of intensification 

on each organism, and understanding its ecology, is important when examining these 

complex ecological relationships, as specific mechanisms of intensification may affect 

certain taxa more than others. 

Insects, which range from beneficial pollinators to crop-damaging pests, provide a 

diverse group to examine these effects. For example, hedgerow density is positively 

correlated with flying insect availability, as dense hedgerows provide shelter from wind 

(Lewis 1969; Burel et al. 2004, Grüebler et al. 2008). Additionally, the presence of 

natural or semi-natural habitat patches surrounding agricultural fields has also been 

shown to positively affect species richness in wild bees, carabid beetles, hoverflies, true 

bugs, and spiders (Hendrickx et al. 2007). Agricultural intensification encompasses many 

land-use changes that may be implemented in tandem or independently; therefore, it is 

difficult to disentangle the effects of independent components of these landscapes. While 

landscape structure (e.g., connectivity, field size, semi-natural field margins) and 

agricultural practice (e.g., crop type, pesticide amount, harvest timing) are independent, 
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the effects on insects are closely tied and can be additive (Schweiger et al. 2005; 

Hendrickx et al. 2007). Overall, a metanalysis of 259 studies that presented data on 

arthropod sampling found that arthropod richness and abundance were lower in areas of 

agricultural land use compared to semi-natural areas (Attwood et al. 2008).  

Similar effects are seen in breeding birds. For example, the decline in Bobolinks 

(Dolichonyx oryzivorus) in northern Illinois has been correlated to the loss of grass crops 

(e.g., alfalfa, hay), where they nest, to the production of row crops (Herkert 1997). For 

Bobolinks, breeding success is also tied to the timing of harvest and increased 

mechanization, as harvest causes high mortality of nestlings and eggs (Bollinger et al. 

1990). While breeding birds still occupy agro-ecosystems, these habitats may be of lower 

quality as the conversion of natural habitats to agriculture has reduced global carrying 

capacity for avian populations has been by an estimated 20-25% (Gaston et al. 2003). 

Furthermore, these effects are not always direct, as many studies report indirect effects on 

the reproductive success of breeding birds, such as altered physiology, body condition, or 

parental care (reviewed in Stanton et al. 2018). Understanding how various components 

of agricultural intensification affect farmland birds is integral to the management and 

conservation of farmland bird populations. 

In North America, 57 species associated with farmland have declined since the 

1960s (Stanton et al. 2018). These negative population trends are mirrored in Great 

Britain, where 13 species have experienced average population declines of 30% 

(Siriwardena et al. 2002). These trends have been related in part to the intensification of 

agricultural practices (Donald et al. 2001, 2006). Insect populations are experiencing 

worldwide declines (Potts et al. 2010; Fox et al. 2014; Hallmann et al. 2017), and 
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agricultural intensification is proposed to be one of the primary drivers (Benton et al. 

2002; Ollerton et al. 2014). Parallel declines in both insect and bird populations with 

changes in agricultural intensification suggest that declines in insect abundance may be 

contributing to declines in farmland birds (Benton et al. 2002). This effect may be 

especially relevant for obligate insectivores, in which long-term dietary shifts have been 

observed (Nocera et al. 2012; English et al. 2018). 

1.2. Aerial insectivores 

Avian aerial insectivores are a polyphyletic guild which are highly specialized to catch 

and eat prey during flight. This guild, which includes swallows and martins (Hirundinea), 

swifts (Apodidae), and nightjars (Chordeilinae and Caprimulginae), is experiencing 

declines worldwide. In North America, this severity is species- and region-specific 

(Michel et al. 2016) but is generally the most negative in the northeastern region of North 

America (Nebel et al. 2010). Effects of climate (García-Pérez et al. 2014), land-use 

changes (Ghilain & Bélisle 2008), and pesticides (Hallmann et al. 2014) may be 

contributing, but to date no single driving force has been identified despite spatial and 

temporal synchrony in declines within this guild (Smith et al. 2015). Despite little 

empirical evidence, it is generally thought that the cause of these declines is a reduction 

in insect prey availability (Nebel et al. 2010; Nocera et al. 2012), although other studies 

suggest diet alone is not responsible (Imlay et al. 2017). It is possible that local 

environmental factors are contributing to a decline in prey insect abundance, through the 

mechanism of increased agricultural land-use intensity. 

Farmland breeding aerial insectivores in North America include the Barn Swallow 

(Hirundo rustica), Cliff Swallow (Petrochelidon pyrrhonota), Purple Martin (Progne 
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subis), and Tree Swallow (Tachycineta bicolor), all of which use human-made structures 

for nesting. Of these species, Barn Swallows have experienced the most severe 

population declines (Sauer et al. 2017) and are currently listed as Threatened in Canada 

by the Species at Risk Act and the Committee on the Status of Endangered Wildlife 

(COSEWIC 2011). Since 1970, Ontario populations have declined by an estimated 2.56% 

per year, cumulating in a total loss of 66% as of 2012 (Heagy et al. 2014). Historically, 

Barn Swallows built their cup-shaped mud nests on the walls of natural caves, but now 

almost exclusively use large open structures such as barns, bridges, and culverts as 

nesting locations (Brown & Brown 1999). Barn Swallows nest semi-colonially, and often 

in sympatry with other colonial aerial insectivorous species such as Cliff Swallows 

(Samuel 1971). 

Barn Swallows are widespread in North America and all other continents except 

for Antarctica (Brown & Brown 1999), with six recognized subspecies that fall into two 

well-supported clades; North American/Asia and Europe/Middle East (Dor et al. 2010). 

Despite its global distribution, the bulk of research on breeding biology and behaviour 

has been done on the European subspecies (H. r. rustica) and there is a need for 

additional research investigating populations in North America. The Nearctic-Neotropical 

subspecies Hirundo rustica erythrogaster breeds across North America and migrates to 

Central and South America to over-winter.  

1.3. Food availability  

Prey availability can directly affect reproductive output. For example, supplementing 

food to breeding Song Sparrows (Melospiza melodia) resulted in larger clutch sizes and 

subsequently more young fledging from the nest (Arcese & Smith 1988). In another 
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example, Pied Flycatchers’ (Ficedula hypoleuca) with increased access to food during the 

nesting period fledged more young (Siikamäki 1998). Finally, synchrony between the 

timing of breeding in Great Tits (Parus major) and the peak abundance of caterpillar 

populations resulted in more fledged young (Visser et al. 2006).  

Food availability has been shown to affect nestling body mass and condition both 

in the lab (Lacombe et al. 1994; Konarzewski et al. 1996; Searcy et al. 2004) and in the 

wild (Siikamäki 1998; Visser et al. 2006). This is important because condition at the time 

of fledging condition is a strong predictor of post-fledging and annual survival (Naef-

Daenzer et al. 2001; Mitchell et al. 2011; Jones et al. 2016). There are currently two 

hypotheses that link better condition to greater survival (reviewed in Maness & Anderson 

2013). The first is the ‘body-reserve advantage’ hypothesis, proposes that heavier 

juvenile birds would have a better probability of survival than lighter individuals, as 

larger fat stores would reduce the impact of low food availability for recently fledged and 

inexperienced young (Lack 1966). Young with greater fat stores furthermore have a 

lower risk of predation, due to a reduced need to forage and they beg less during the 

parental care period (Naef-Daenzer et al. 2001). The second, the ‘size advantage’ 

hypothesis, postulates that overall size confers an advantage during physical competition 

for resources (Garnett 2008). Regardless of the mechanism, pre-fledging condition relates 

directly to increased survival.  

1.4. Body condition 

Critical to describing relationships between nestling quality and direct and indirect 

measures of food availability is clearly defining nestling condition. While nestling body 

mass is an easily obtained measure of nestling condition, it is a simplistic measure as it 
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fails to account for differences in structural size between individuals. Body condition 

indices attempt to estimate fat content based on non-destructive morphometric 

measurements such as size, mass, and shape (e.g., wing chord, tarsus length, bill length, 

tail length, and body length in birds) all measures of structural size (Labocha & Hayes 

2012). Alternatively, condition can be measured directly by measuring fat stores via 

destructive sampling or the use of specialized equipment such as quantitative magnetic 

resonance instruments (QMR; Guglielmo et al. 2011). Despite known limitations of 

condition indices (see Green 2001; Peig & Green 2009, 2010), they are widely applied in 

the field and are one of the only methods to approximate the energy and nutrient stores of 

an individual without invasive sampling. Some studies of adult swallows have 

approximated body condition using only body mass (Møller et al. 2005), while others use 

the residuals from an ordinary least squares regression of body mass on a cube structural 

measurement (e.g., keel3; Galeotti et al. 1997). Research investigating nestling body 

condition uses similarly variable methods, as the ratio of cube root body mass to tarsus 

length (Saino et al. 1997) and body mass and length measurements analyzed separately 

have been used to approximate body condition in swallows (Saino et al. 1999). 

Alternatively, adult body condition, as a defined index, has been avoided altogether by 

using linear models and including a structural measurement as a covariate to account for 

the effect of structural size on mass (Saino et al. 2015). A similar technique has been 

applied to body condition in nestlings (de Ayala et al. 2006). By including structural size 

as a predictor in a body mass model, it allows the model to account for the variation in 

body size, without having to define a specific condition index.  
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1.5. Diet 

Diet studies in adult aerial insectivores are difficult because observing foraging bouts 

yields little quantitative taxonomic information. Early studies examined stomach contents 

to determine the diet of seven North American swallow species by quantifying different 

prey insect proportions in the diet (Beal 1918). Such studies have shown that adult aerial 

insectivores eat from a broad range of orders including Coleoptera, Diptera, 

Ephemeroptera, Hemiptera, Hymenoptera, Isoptera, Lepidoptera, Mecoptera, Odonata, 

and Orthoptera (Beal 1918; Johnston 1967). Very little is known about the diet of 

nestlings of aerial insectivores, and most studies are from Europe (e.g., Sand Martin 

Riparia; Waugh 1979; House Martin Delichon urbicum, Common Swift Apus, Barn 

Swallow Hirundo rustica rustica; Orłowski & Karg 2011, 2013). The few North 

American studies have primarily focused on Tree Swallows and have emphasized the 

importance of Diptera of aquatic-origin prey such as Nematocera (Quinney & Ankney 

1985; McCarty & Winkler 1999; Mengelkoch et al. 2004; Michelson et al. 2018).  

The fact that provisioned food is brought directly to the young is an advantage for 

measuring nestling diet. If delivery of food to nestlings is interrupted, prey items intended 

to be delivered to a nestling can be identified before digestion (e.g., McCarty & Winkler 

1999). Sampling methods include the use of a small ligature that is placed around a 

nestling’s neck to prevent swallowing (e.g., Turner 1982; Mengelkoch et al. 2004), or 

artificial nestling puppets (McCarty & Winkler 1991, 1999), but while methods like these 

allow for complete taxonomic identification and quantification, these methods can be 

invasive and provide information about a single feeding event only. Incorporating 
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multiple methods towards the identification of diets can allow for additional information 

that is inaccessible by examining diet using only one technique (Nielsen et al. 2017).  

1.5.1 Fecal analysis 

Feces can provide insights into ingested diet, by visually through inspecting remains of 

prey body parts (e.g., Bryant 1973; Orłowski & Karg 2011, 2013) or through DNA 

barcoding to identify prey DNA (reviewed in Valentini et al. 2009). The latter is a 

powerful tool that utilizes the mitochondrial gene cytochrome c oxidase I (COI) as a 

species-specific genomic profile (Hebert et al. 2003a, 2003b), that is compared to a 

comprehensive database of barcode profiles such as the Barcode of Life Databases, for 

taxonomic identification (Barcode of Life Databases, BOLD; Ratnasingham & Hebert 

2007). Within ornithology, DNA barcoding of diet has been largely restricted to seabirds 

(Deagle et al. 2007, 2010; Bowser et al. 2013; but see Joo & Park 2012), but has been 

used in songbirds to identify pest insects or to avian predators of a known pest species, 

rather than provide information about diet (Karp et al. 2014; King et al. 2015). More 

directly relevant to aerial insectivores, fecal DNA barcoding has been utilized in several 

studies on the diet of bats, which has allowed for the identification of prey insects (e.g., 

Clare et al. 2009; Zeale et al. 2011; Long et al. 2013). Despite the potential to add to 

current knowledge of nestling diet, there are only a handful of published studies, all 

within the last five years, using these methods to investigate nestling diet composition 

(Jedlicka et al. 2013, 2016; Trevelline et al. 2016, 2018a, 2018b) and none have been 

done on aerial insectivorous species.  
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1.5.2 Stable-isotopic analysis 

Stable-isotope measurements can be used effectively to assess course info about diet over 

various periods of temporal integration (Hobson & Clark 1992a). Ratios of heavy to light 

isotopes of common elements (e.g., 13C/12C, 15N/14N), stored within consumer tissues, can 

provide predictable information on the ultimate source of a consumer’s diet (reviewed in 

Peterson & Fry 1987 and Fry 2006). These ratios are typically expressed in delta (δ) 

notation, as parts per thousand (‰) deviation from the primary standards, atmospheric air 

(δ15N) and Vienna Pee Dee Belemnite (VPDB, δ13C):  

δHeavyX = [(Rsample / Rstandard) - 1] x 1000; where R = HeavyX / LightH 

Changes in stable-isotope ratios between prey and tissue, or isotopic discrimination, can 

be affected by numerous processes such as the type of diet, tissue, consumer species and 

nutritional condition and so predicting isotopic discrimination in any given situation often 

requires detailed experimentation (e.g., Hobson & Clark 1992a, 1992b; Bearhop et al. 

2002; Hobson & Bairlein 2003). For example, feathers are an inert tissue, meaning there 

is virtually no isotopic turnover or exchange with the body once grown; therefore, the 

stable-isotopic composition of feathers can be used to provide information on diet during 

feather growth (Hobson & Clark 1992a). In the case of nestlings, feathers are 

representative of the entire nestling growth period up until sampling.  

Carbon and nitrogen stable isotopes are most commonly used in dietary studies, 

as they change predictably between dietary sources and consumer tissues. The most 

common uses of carbon stable-isotope ratios (δ13C) have been to differentiate general diet 

source via plant photosynthetic pathway (i.e., C3, C4 or Crassulacean acid metabolism, 
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Tieszen & Boutton 1989). Differences in δ13C values in plants are due to different 

fractionation during C3 and C4 photosynthetic pathways, causing a bimodal distribution 

of δ13C values (Tieszen & Boutton 1989). Atmospheric values of δ13C in CO2 average 

around -7.7‰, while plant tissues are more depleted in 13C at average values of -27‰ in 

C3 plants and -12‰ in C4 plants (Tieszen & Boutton 1989). But even before 

fractionation during the photosynthetic pathway, relative differences in water-use 

efficiency can change δ13C values within plant tissues by affecting stomatal conductance 

of CO2, enriching δ13C values for CO2 within the leaf thus enriching products of 

photosynthesis (Marshall et al. 2007). Carbon has also been used to differentiate between 

carbon sources such as upland vs. aquatic sources, where differences between δ13C values 

in aquatic and terrestrial plants are driven by differences in carbon uptake during 

photosynthesis (France 1995), and marine vs. terrestrial sources, in which differences in 

δ13C values between phytoplankton and terrestrial plants are driven by carbon source 

(i.e., dissolved carbonate or CO2) (Hobson & Sealy 1991). Carbon fractionation due to 

plant photosynthetic pathways provides a unique opportunity within agricultural systems 

as most crops are C3 (e.g., soybeans, wheat) and corn is the only C4 crop that is widely 

grown in Southern Ontario. Furthermore, with agricultural intensification there is a trend 

towards large monocultures (e.g., corn, soybeans, wheat) allowing for potential 

determination of foraging preference within corn fields versus other crops or natural 

areas, based on these distinct δ13C values.  

Nitrogen stable-isotope ratios (δ15N) show a step-wise enrichment (more 15N) 

with increasing trophic level, making δ15N values a reliable measure of relative trophic 

position (Hobson & Welch 1992; Hobson et al. 1994; Boecklen et al. 2011). 
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Alternatively, δ15N values can also be used to differentiate between different 

environments with contrasting nitrogen cycling and inputs (e.g., Hobson 1999). Over the 

past century, production and agricultural use of nitrogen-based fertilizer has increased 

exponentially, culminating in over-reliance on anthropogenic fixation of nitrogen 

(Vitousek et al. 1997). A growing body of evidence suggests that anthropogenic nitrogen 

inputs, specifically in agriculture, are affecting consumer diets as several studies have 

shown correlations between increased δ15N values in agricultural or anthropogenically 

influenced landscapes (Hobson 1999; Girard et al. 2012). These correlations are not 

limited to direct agricultural land cover types, as these trends have also been found in 

non-target areas through runoff into ocean systems (Møller et al. 2018) and wetland 

systems (Hebert & Wassenaar 2001; Anderson & Cabana 2005, 2006). Synthetic 

fertilizers derived from atmospheric N2 have ratios close to 0‰ and fertilizer derived 

from animal sources ranges from 10-25‰ (Hebert & Wassenaar 2001) but yearly tilling 

of the soil leads to higher δ15N values in agricultural landscapes due to ammonification 

(Kendal 1998). In agricultural systems, it is difficult to identify the main source of 

anthropogenic nitrogen given multiple possible inputs (e.g., inorganic fertilizer, livestock, 

sewage; Anderson & Cabana 2006). Nevertheless, δ15N values are expected to be higher 

in more agriculturally intense landscapes that rely on anthropogenic sources of nitrogen. 

Observations of higher N inputs affecting δ15N values also speak to the possible 

challenge of identifying trophic foraging levels in agricultural systems and suggest the 

need to investigate isotope signatures in prey when possible.  



13 

 

1.6. Objectives 

The objectives of my thesis were to evaluate the effects of agricultural intensification on 

nestling Barn Swallows raised in agro-ecosystems, specifically focusing on nestling 

condition and diet. I tested the overall hypothesis that agriculturally intense landscapes 

are detrimental to Barn Swallow nestlings as they have reduced insect abundance and 

richness, leading to lower body condition. The study is presented in two chapters 

(Chapters 2 and 3), using data collected in the summers of 2016/2017 at 22 Barn Swallow 

breeding colonies surrounding Guelph, Ontario (43.55° N, 80.25° W). In Chapter 2, I 

investigated the landscape-level effects of agricultural intensity on nestling condition and 

success. My objectives were to determine the landscape-level effect of agricultural land 

use on (1) nestling condition during the growth period, (2) nestling condition pre-

fledging, (3) nestling growth, and (4) fledging success. I predicted that all condition, 

growth and success measures would be lower in nestlings raised in areas of high 

agricultural intensity compared to less intense landscapes because of lower food 

availability. In Chapter 3, I investigated the landscape-level effects of agricultural land 

use on Barn Swallow nestling diet. My objectives in this chapter were to use stable 

isotopes within nestling feathers to determine if nestlings were (1) being provisioned 

from agriculturally intense landscapes and to use DNA barcoding of nestling fecal matter 

to determine (2) whether diet composition was negatively affected by intensification. I 

predicted nestling feathers would have more positive δ13C values in landscapes with an 

increased proportion of corn and more positive δ15N values in landscapes with a greater 

proportion of row crop. Second, I predicted that diet breadth would be reduced due to 
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reduced prey insect availability given reduced insect habitat diversity, and prey items 

found within nestling diet would be representative of agricultural land use. 
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Chapter 2  

Landscape-level effects of agricultural intensification on the condition of nestling Barn 

Swallows (Hirundo rustica) 

2.1. Introduction 

Farmland bird populations in both North America and Europe have shown marked 

declines with shifts towards specialization of agricultural production away from small-

scale farming practices and towards highly industrialized agriculture (Murphy 2003; 

Donald et al. 2001, 2006). These changes involve the use of high yielding row crops 

(e.g., corn, soybeans), increasing agro-chemical inputs, mechanization, and increasing 

field sizes (Matson et al. 1997). Many grassland, shrubland and aerial insectivorous bird 

species occupy agro-ecosystems and to various degrees have adapted to historic 

agricultural practices (Murphy 2003). However, the more recent shift to intensive 

farming practices has resulted in simplified agro-ecosystems characterized by habitat 

homogeneity and reduced trophic complexity and there is renewed concern about the 

effects of agricultural intensification on farmland birds (Murphy 2003; Wilson et al. 

2017; Stanton et al. 2018).  

In North America, aerial insectivores, or birds which almost exclusively forage on 

the wing, are showing the steepest population declines of any group of birds (NABCI 

2016; Sauer et al. 2017; Stanton et al. 2018). The severity of these declines are species- 

and region-specific (Michel et al. 2016) but are generally the most negative in the 

northeastern region of North America (Nebel et al. 2010). A proposed mechanism for 

populations declines in aerial insectivores is the reduction of prey insect abundance 
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(Nebel et al. 2010; Nocera et al. 2012) as insect abundance and richness are both 

negatively affected by agricultural practices (Hendrickx et al. 2007; Grüebler et al. 2008). 

In a metanalysis, Attwood et al. (2008) found that arthropod richness and abundance 

were lower in areas of high-intensity agricultural land use. Parallel declines between both 

insect and bird populations with increasing agricultural intensification in Europe, are 

consistent with this theory (Benton et al. 2002). Furthermore, stable-isotopic evidence 

indicates long-term dietary shifts in insectivorous birds, possibly driven by changes in 

insect community composition, theorized to be attributable to pesticides (Nocera et al. 

2012; English et al. 2018).  

Food availability during the breeding period can directly affect both clutch size 

and the number of young successfully fledging (Arcese & Smith 1988; Siikamäki 1998; 

Reynolds et al. 2003; Visser et al. 2006), but these measures broadly fail to address 

individual nestling condition. During the post-fledging period, the period between 

fledging and autumn migration, nestlings in better condition at the time of fledging are 

more likely to survive (Naef-Daenzer et al. 2001; Vitz & Rodewald 2011; Mitchell et al. 

2011; Jones et al. 2016; Evans et al. unpub ms.). One hypothesis for this pattern is that 

young in better condition at fledging have greater fat reserves or possibly face reduced 

predation if individuals in better condition can afford to be more vigilant while foraging 

or can be more discriminating about foraging habitats (Lack 1966; Maness & Anderson 

2013).  

Nestling body mass has been related to food availability both in the wild 

(Siikamäki 1998; Visser et al. 2006) and in lab-raised young (Konarzewski et al. 1996; 

Searcy et al. 2004). In the Yellowhammer (Emberiza citronella), mean nestling condition 
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was positively correlated with insect abundance, which was depressed in areas of 

pesticide applications (Hart et al. 2006). Corn Buntings (Miliaria calandra) showed a 

similar response where insect abundance was negatively correlated with the amount of 

pesticides and positively correlated with nestling condition (Brickle et al. 2000). While 

this shows that agricultural practices can have indirect effects on nestlings, to date studies 

investigating these effects on aerial insectivores in North America have been limited to a 

single species where they found negative effects of agricultural land use on fledging 

success but did not examine individual nestling condition (Tree Swallows Tachycineta 

bicolor; Ghilain & Bélisle 2008).  

The Barn Swallow (Hirundo rustica) is a long-distance migratory aerial 

insectivore that commonly breeds within agricultural landscapes, typically using barn 

structures for nesting habitat (Brown & Brown 1999). This species has experienced 

severe population declines over the past several decades (Sauer et al. 2017) and is 

currently listed as Threatened in Canada, by the Committee on the Status of Endangered 

Wildlife (COSEWIC 2011) and the Species at Risk Act. Over the same period, Ontario 

populations have declined by more than 2% per year, cumulating to a total loss of 66% as 

of 2012 (Heagy et al. 2014). Barn Swallows breeding in Southern Ontario, along with the 

rest of northeastern North America, are showing steeper population declines compared 

with the rest of their breeding range (Nebel et al. 2010; Michel et al. 2016). My objective 

was to determine the landscape-level effects of agricultural intensification on the 

condition, growth, and fledging success of nestling Barn Swallows in this region. I 

applied a scale of effect analysis to determine the most appropriate scale or context (i.e., 

the buffer size or radius within which landscape is measured) for each measure of 
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condition, growth, and success (e.g., Ricketts et al. 2001; Steffan-Dewenter et al. 2002; 

Holland et al. 2004). To evaluate nestling condition, I focused on condition during the 

linear growth period (hereafter ‘nestling condition’), condition just before leaving the 

nest (hereafter ‘pre-fledging condition’), and the change in mass between these two 

periods (hereafter ‘nestling growth’). Nestling growth follows a non-linear trend, in terms 

of mass, where mass increases linearly from day 1 (~2.21 g) to 13 (~21.29 g) where mass 

peaks and subsequently drops slightly before fledging at day 19 - 20 (Fernaz et al. 2012). 

To assess overall reproductive output, I also measured the number of young that survived 

to leave the nest (hereafter ‘fledging success’). I hypothesized that nestlings raised within 

agriculturally intense landscapes would have lower performance due to reduced 

availability of aerial insects. I predicted (1) nestling condition, (2) pre-fledging condition, 

(3) nestling growth, and (4) fledging success would be lower in individuals raised in 

landscapes composed of greater proportions of row crop.  

2.2. Methods 

2.2.1 Study species and sites 

I conducted fieldwork at 22 breeding colonies in 2016 and 2017 near Guelph, within or 

near Wellington county in southwestern Ontario (43.55° N, 80.25° W; Figure 2.1). I 

worked at the same colonies in both years, except one colony (GL; see Appendix A. 

Summary tables Table A1, for a list of site codes and coordinates) that was lost after 

2016 and one colony (VV) which was added in 2017. This county represents a rural 

landscape characterized by a mixture of agricultural crops, pasture, and natural areas. In 

North America, Barn Swallows nest semi-colonially, using flat vertical surfaces as 

placement for their cup-shaped mud nests, making open barn structures ideal nesting  
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Figure 2.1. Location of Barn Swallow breeding colonies (points, n = 22) in Wellington 

and surrounding counties (a) within southern Ontario (b), Canada in 2016 and 2017. Sites 

labelled with a specific year were only included in the analyses for the labelled year. See 

Appendix A. Summary tables; Table A1. for specific latitudes and longitudes of sites. 
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habitat (Brown & Brown 1999). Barn Swallows exhibit bi-parental care and are 

predominantly double-brooded, with their first brood starting in May and the second 

broods fledging in late August (Brown & Brown 1999). Clutch sizes for Barn Swallows 

range from three to seven (Brown & Brown 1999).  

2.2.2 Monitoring and sampling 

Colonies were first visited in early May of each year followed by weekly visits, to 

establish nest locations and clutch initiation (mean initiation date in 2017 was 27 May 

brood one; 12 July brood two). Once clutch initiation was determined, nests were 

monitored at least once a week to record the timing of the penultimate egg laid as the 

onset of incubation, after which timing of hatch was predicted to be 13 days later (Brown 

& Brown 1999). Nests were revisited a few days earlier than the estimated hatch day and 

every few days afterwards to determine hatch day as accurately as possible. Hatch day 

was considered day zero. For any nests, particularly in 2016, when I was unable to 

reliably record actual hatch day, nestlings were aged based on feather tract development 

and feather shaft emergence, relying on expert opinion (M. Cadman pers. obs.; for 

detailed developmental ageing methods used see Fernaz et al. 2012). In 2017, I assigned 

hatch day by visiting nests at least once every second day. If a nest was found partially 

hatched, hatch day was assigned as that day, as an entire brood generally hatches within 

24 hours (Brown & Brown 1999). If the nest was found fully hatched, nestlings were 

examined for signs of recent hatch. These included eggshell remaining in the nest, 

nestling limbs still curled into the shape of the egg rather than relaxed, and wet feather 

tufts. If the nestlings did not appear to have hatched within the last few hours, the 

previous day was assigned as hatch day. Following this protocol, I determined hatch day 
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within 24 hours, for 309 of 385 clutches that hatched. If hatch day was missed, hatch day 

was retroactively determined based on the development of the nestlings, as in 2016. Late 

first broods and second broods were found by examining all empty nests at each site once 

a week to identify newly established clutches.  

All nests were visited between day six and ten after hatching, ideally targeting day 

eight, during which nestlings were banded with a uniquely numbered United States 

Geological Survey aluminum leg band. For each nestling, I documented mass, age and 

wing length (i.e., length from the wrist joint to the longest primary, while bent at rest, 

hereafter ‘wing’) to assess nestling condition during the exponential growth period. I 

banded 2558 nestling Barn Swallows across 22 sites in 2016 and 2017 (n = 1187 and n = 

1372, respectively). Two sites, each for only one year, were excluded from the analyses. 

The first site (OL 2016, n = 22 nestlings) was excluded due to high predation rates, 

leading to a whole colony failure, and the second (FL 2017, n = 96 nestlings) was 

excluded due to infrequent visits relating to landowner permission to access the site. Of 

the included sites, measurements were taken between day six and day 10 for 2452 

nestlings, and at day eight for 1833 nestlings (day eight nestlings: n = 547 in 2016, n = 

1286 in 2017). A subset of nests were revisited at day 15 to assess pre-fledging condition, 

where the above morphometric measurements were also taken. Day 15 was chosen for 

the final measure of a nestling’s quality as it is the last day that nestlings can be handled 

without high risk of premature fledging (M. Cadman, pers. obs.). Pre-fledging 

measurements were taken for 784 nestlings (n = 364 in 2016, n = 420 in 2017). To 

nestling assess growth, paired morphological measurements between nestlings at day 

eight and day 15 were available for 603 nestlings (n = 188 in 2016, n = 415). 
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After sampling at day 15, young were expected to fledge within 4 - 5 days, as 

average fledging age in Barn Swallows is 19 - 20 days (Brown & Brown 1999). Nests 

were ideally revisited within one week after the estimated fledging date (i.e., day 20) to 

determine fledging success, but not all nest could be revisited within this period. As 

nestling mortality is very low in other populations (< 5 % of total nestlings, reported in 

Ambrosini & Saino 2010; Saino et al. 2017), it is assumed that any nest that survives to 

day 10 is successful and the number of young fledged is the same number as the last 

check. I followed these criteria as a broad measure of fledging success but instead chose 

day eight as my lowest acceptable age for assumed fledging success. I monitored 847 

active Barn Swallow broods in 2016 and 2017 (excluding the dropped sites), of which 

687 survived until hatch. These nests were used for subsequent fledging success 

modelling. An additional five nests were dropped from all analyses due to missing data, 

and 30 nests were dropped from fledging success models because I was unable to revisit 

the nests. Of the retained nests, 435 were first broods (199 in 2016, 236 in 2017) and 217 

were second broods (109 in 2016, 108 in 2017).  

2.2.3 Landscape 

Landscapes surrounding my focal barns were classified by cover types known to provide 

potential foraging habitat for adult Barn Swallows (Evans et al. 2007), which generally 

forage below 10 meters over open habitat (Brown & Brown 1999). I used two land cover 

categories, the first being agricultural row crop and the second being natural grassland 

and pasture (hereafter ‘forage’). Land cover types were classified from annual crop 

inventory maps available from Agriculture and Agri-food Canada (AAFC 2017). Annual 

crop inventory maps are comprised of 30 m × 30 m raster cells, populated via remote 
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sensing imagery. Corn, soybeans, winter wheat, and summer wheat were combined into 

row crop while pasture, forage, and grassland were combined into forage. While Barn 

Swallows use anthropogenic structures for nesting (Brown & Brown 1999), urban 

habitats were not included in any analyses because they comprised such a low proportion 

of land cover across sites (0.045 ± 0.053 within 1000 m of all sites). Also, despite the 

potential biological significance of insects originating in wetlands and water to nestling 

Barn Swallows (e.g., Twining et al. 2016), both land cover variables were excluded from 

all analyses due to low proportion across sites (0.0055 ± 0.02 within 1000 m within of all 

sites). While row crop proportion is a measure of landscape structure, for the purposes of 

my analysis it is used as a proxy for agricultural intensity, where landscapes characterized 

by higher amounts of row cropping represent more intensively managed agricultural 

landscapes. Conversely, forage represents semi-natural land cover, which is associated 

with less intensively managed landscapes. All landscape data were visualized, processed, 

and exported using ESRI ArcMap 10 (ESRI 2011). Concentric buffers (n = 20) spanning 

from 100 m to 2000 m centred on each colony were used to measure the proportion of 

each land cover class of interest at each scale.  

2.2.4 Statistics  

All statistical analyses were performed using RStudio Version 1.0.136 and R version 

3.3.1 statistical software (RStudio Team 2015; R Core Team 2016). To determine the 

scale of effect for each response variable and each land cover variable, a single linear 

mixed effect model (LMM) or generalized linear mixed effect model (GLMM) was fit for 

each land cover type at each nested scale (radii 100 m to 2000 m, by 100 m) for each 

response of interest (nestling condition, pre-fledging condition, growth rate, fledging 
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success). Random effects were nest location and site, except in fledging success models 

where nest location was not relevant. All scale-of-effect models were fit using maximum 

likelihood. The best model was determined as the model with the lowest Akaike 

information criterion (AIC) value, even in the case of more than one competitive model 

(i.e., within 2.0 AIC of the strongest model; Burnham & Anderson 2002). Scale of effect 

analyses were performed for each year separately, and for the two years combined, where 

year was added as a fixed effect. 

To test whether nestlings were in worse condition in more agriculturally intense 

landscapes, I used separate LMMs with (1) nestling mass during the growth period and 

(2) pre-fledging mass as response variables (R package lme4; Bates et al. 2015). Mixed 

effect models were used due to the nested structure of my sampling design to account for 

the random effects of nest location and site (individual nested within nest location nested 

within site). As structurally larger birds were expected to have greater mass, unrelated to 

energy stores, wing and wing2 were added as fixed terms in all mass models to account 

for the effect of structural size on mass (e.g., nestlings: de Ayala et al. 2006; adults: Saino 

et al. 2015). The effect of landscape scale was first assessed, then measures of row crop 

and forage proportion were included at the most appropriate scale. Fixed effects of (i) 

date (day of the year), (ii) year, (iii) brood size (number of young at time of sampling), 

and (iv) colony size (maximum number of active nests in the first brood) were added to 

account for seasonal fluctuations in food availability and parental investment, differences 

in food availability between years likely owing to weather, intra-nest competition for 

food among siblings, and possible density-dependent effects on food availability (Lack 

1966), respectively. Two-way interactions between year and land cover were included to 
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account for the possibility of year-dependent effects of landscape on nestling condition, 

as agricultural crops can change between years. Based on preliminary data visualizations, 

curvilinear terms for date and brood size were also included.  

To test whether nestling growth was reduced in more agriculturally intense 

landscapes, I modelled the growth across the landscape using a LMM with the change in 

mass between day eight and 15 as the response. Nestlings were included in this model 

only if they were exactly eight days old in this model. Change in wing length, along with 

the curvilinear (Δ wing2) term, were added as fixed effects to control for the change in 

structural size. Other than this change, model structure was identical to the condition 

models. The effect of landscape scale was first assessed, then measures of row crop and 

forage proportion were included at the most appropriate scale, along with year interaction 

terms.  

To test whether fledging success was reduced in more agriculturally intense 

environments, I used a GLMM with a Poisson distribution. Model structure was identical 

to the nestling mass models but included the number of young fledged as the model 

response and did not include a measure of brood size. Fixed effects of (i) row crop 

amount, (ii) forage amount, (iii) date, (iv) year, and (v) colony size were included in the 

model for the same reasons described above. For GLMM models, measures of date and 

colony size were standardized. Interaction terms between each respective land cover type 

and year were included, along with a curvilinear term for date. 

For all models, interaction terms and curvilinear terms were removed if they were 

not significant because their inclusion could affect the interpretation of lower-order 
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terms. P-values for all mixed-effects models were estimated using parametric 

bootstrapping (R package pbkrtest; Halekoh & Højsgaard 2014). If interaction terms were 

found to be significant, p-value estimation for lower order terms via parametric 

bootstrapping was not possible. After assessment of interaction terms and higher order 

terms, effects from the best model were modelled using restricted maximum likelihood as 

this has been shown to produce less biased parameter estimates and standard errors 

(Pinhero & Bates 2000). 

2.3. Results 

2.3.1 Landscape 

General landscape composition within 100 m of sites was primarily row crop and forage. 

Row crop proportion averaged 0.20 ± 0.29 (0.18 ± 0.26 in 2016 and 0.21 ± 0.32 in 2017, 

n = 22) and forage 0.68 (0.70 ± 0.25 in 2016 and 0.67 ± 0.30 in 2017, n = 22). Some sites 

contained no row crop within 100 m while some were entirely row crop (see Appendix A. 

Summary tables; Table A1). The same was true for forage amount. Proportion of row 

crop within 100 m surrounding barns did not change across the two years of study (two-

tailed paired t-test; t = -1.17, n = 22, p-value = 0.26). There were also no differences in 

percent forage between the two years (two-tailed paired t-test; t = 1.24, n = 22, p-value = 

0.23). 

2.3.2 Landscape effects 

Nestling mass was significantly related to both wing and wing2, indicating that my 

measures of structural size adequately control for the effect of size on mass (Table 2.1; 

see Appendix C. Relationship between nestling mass and structural size; Figure C1).  
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Table 2.1. Linear mixed effect model results for Barn Swallow nestling (day 6 - 10) mass 

(n = 2452) measured at colonies near Guelph Ontario (nests = 475, sites = 22), in the 

breeding seasons of 2016 and 2017. The global model included fixed effects of 

proportion of row crop, proportion of forage, wing, wing2, brood size, colony size, date, 

and year, and random effects of nest location, and site. Dropped terms are noted by 

dashes (-). 

 
Nestling Mass 

  Coefficient SE t value p-value 

Intercept 2.84 0.83 3.43 - 

Wing 0.72 0.03 28.03 < 0.001 

Wing2 -0.0055 0.00035 -15.69 < 0.001 

Brood Size -0.70 0.18 -3.88 < 0.001 

Brood Size2 0.058 0.022 2.63 < 0.001 

Colony Size 0.0031 0.0069 0.45 0.78 

Date -0.017 0.0016 -10.36 < 0.001 

Date2 - - - - 

Year -0.61 0.25 -2.43  

Row crop (100 m) 1.54 0.46 3.35 < 0.01 

Year * Row crop - - - - 

Forage (100 m) 0.077 0.51 0.15  

Year * Forage 1.086 0.35 3.06 < 0.01 
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There was a positive linear relationship between row crop and nestling condition (LMM; 

sites = 22, nests = 475, n = 2452; Table 2.1 and Figure 2.2). The relationship between 

nestling condition and row crop as well as forage was strongest at a spatial extent of 100 

m (see Appendix B. Scale of effect figures for nestling condition; Figure B1). Mean 

nestling mass was 16.73 g ± 2.3 and mean wing length was 35.49 mm ± 5.6 (n = 1833; 

for year-specific statistics see Appendix A. Summary tables; Table A2). Nestling mass 

increased with forage amount, but the strength of the relationship was stronger in 2017 

compared to 2016 (Table 2.1). Nestling condition was negatively associated with the day 

of the year, where nestlings from later broods were in worse condition as the season 

progressed (Table 2.1). Finally, nestling condition decreased as brood size increased 

initially and then increased again as clutch size increased (Table 2.1). There was no 

detectable relationship between nestling condition and colony size (Table 2.1). 

Like nestling mass, pre-fledging mass increased was significantly related to wing 

and wing2 (Table 2.2; see Appendix C. Relationship between nestling mass and structural 

size; Figure C2). However, unlike nestling mass, pre-fledging condition was not related 

to either row crop or forage (LMM; sites = 20, nests = 179, n = 784; Table 2.2 and Figure 

2.3). Again, pre-fledging condition varied most strongly with row crop and forage 

proportion at the 100 m extent (see Appendix B. Scale of effect figures for nestling 

condition; Figure B2). Mean pre-fledging mass was 20.11 g ± 1.8 and wing length was 

73.53 mm ± 5.1 (n = 784; for year-specific statistics see Appendix A. Summary tables; 

Table A2). Pre-fledging condition increased with date, but the rate of increase slowed as 

the season progressed (Table 2.2). Pre-fledging condition was higher in 2017 compared 

to 2016 (Table 2.2). Pre-fledging condition decreased with increasing brood size  
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Figure 2.2. Scatterplot of Barn Swallow nestling (day 6–10) mass (n = 2452), measured 

at colonies near Guelph Ontario (nests = 475, sites = 22), in the breeding seasons of 2016 

and 2017, plotted against row crop proportion (a-b) and proportion of forage (c-d) within 

100 m of the site. Plots are separated by year (a,c – 2016, b,d – 2017). Line with shaded 

area indicates linear relationship and standard error. 
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Table 2.2. Linear mixed effect model results for Barn Swallow pre-fledging (day 15) 

mass (n = 784) measured at colonies near Guelph Ontario (nests = 179, sites = 20), in the 

breeding seasons of 2016 and 2017. The global model included fixed effects of 

proportion of row crop, proportion of forage, wing, wing2, brood size, colony size, date, 

and year, and random effects of nest location, and site. Dropped terms are noted by 

dashes (-). 

 
Pre-fledging Mass 

  Coefficient SE t value p-value 

Intercept -92.97 14.59 -6.37 - 

Wing 1.49 0.14 10.97 < 0.001 

Wing2 -0.0098 0.00096 -10.27 < 0.001 

Brood Size -0.23 0.10 -2.23 < 0.01 

Brood Size2 - - - - 

Colony Size 0.022 0.018 1.20 0.63 

Date 0.55 0.13 4.15 < 0.05 

Date2 -0.0013 0.00033 -4.09 < 0.05 

Year 0.56 0.21 2.66 < 0.05 

Row crop (100 m) 2.10 1.20 1.75 0.24 

Year * Row crop - - - - 

Forage (100 m) 1.09 1.24 0.88 0.82 

Year * Forage - - - - 
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Figure 2.3. Scatterplot of Barn Swallow pre-fledging (day 15) mass (n = 784) measured 

at colonies near Guelph Ontario (nests = 179, sites = 20), in the breeding seasons of 2016 

and 2017, plotted against row crop proportion (a-b) and proportion of forage (c-d) within 

100 m of the site. Plots are separated by year (a,c – 2016, b,d – 2017). Line with shaded 

area indicates linear relationship and standard error. 
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(Table 2.2), indicating that nestlings were in worse condition when they were in larger 

broods. No relationship was found between colony size and pre-fledging condition (Table 

2.2).  

Nestling growth showed no relationship with row crop or forage proportion 

(LMM; sites = 19, nests = 134, n = 603; Table 2.3 and Figure 2.4). Nestling growth 

varied most strongly with row crop and forage proportion at the 300 m extent, but there 

were many competitive models (see Appendix B. Scale of effect figures for nestling 

condition; Figure B3). Nestling growth increased with date and year, but there was no 

relationship with either clutch size or colony size (Table 2.3).  

Fledging success showed no relationship with row crop or forage proportion 

(GLMM; sites = 22, n = 552; Table 2.4 and Figure 2.5). There was no significant scale of 

effect with respect to both row crop and forage, as all models were competitive, but the 

strongest model used a buffer radius of 2000 m (see Appendix B. Scale of effect figures 

for nestling condition; Figure B4). Mean fledging success was 4.01 ± 1.3 young per nest 

(for brood specific and year specific statistics see Appendix A. Summary tables; Table 

A2). Fledging success decreased with date (Table 2.4). There was no effect of year or 

colony size on fledging success (Table 2.4).  

2.4. Discussion 

I predicted Barn Swallow nestlings raised in landscapes with more row crops would be in 

worse condition, have lower growth rates, and suffer reduced fledging success, because 

agricultural intensification can negatively affect insect availability (Attwood et al. 2008). 

Contrary to my predictions, and to previous studies on farmland birds (Brickle et al.  
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Table 2.3. Linear mixed effect model results for Barn Swallow nestling growth (change 

in mass between day 8 and 15) (n = 603) measured at colonies near Guelph Ontario (nest 

= 134, sites = 19), in the breeding seasons of 2016 and 2017. The global model included 

fixed effects of proportion of row crop, proportion of forage, Δ wing, brood size, colony 

size, date, and year, and random effects of nest location, and site. Dropped terms are 

noted by dashes (-). 

 
Nestling Growth (Δ Mass) 

  Coefficient SE t value p-value 

Intercept -13.89 2.29 -6.06 - 

Δ Wing 0.29 0.030 9.84 < 0.001 

Δ Wing2 - - - - 

Brood Size -0.012 0.16 -0.072 0.93 

Brood Size2 - - - - 

Colony Size -0.0024 0.015 -0.16 0.87 

Date 0.029 0.0060 4.90 < 0.001 

Date2 - - - - 

Year 0.87 0.27 3.29 < 0.01 

Row crop (300 m) 0.22 0.96 0.23 0.81 

Year * Row crop - - - - 

Forage (300 m) -0.59 1.14 -0.52 0.58 

Year * Forage - - - - 
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Figure 2.4. Scatterplot of Barn Swallow nestling growth (change in mass between day 8 

to 15) (n = 603) measured at colonies near Guelph Ontario (nest = 134, sites = 19), in the 

breeding seasons of 2016 and 2017, plotted against row crop proportion (a-b) and 

proportion of forage (c-d) within 300 m of the site. Plots are separated by year (a,c – 

2016, b,d – 2017). Line with shaded area indicates linear relationship and standard error. 
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Table 2.4. Generalized linear mixed effect model results for Barn Swallow fledging 

success (n = 552) measured at colonies near Guelph Ontario (sites = 22), in the breeding 

seasons of 2016 and 2017. The global model included fixed effects of proportion of row 

crop, proportion of forage, date, colony size, and year, and random effects of nest 

location, and site. Dropped terms are noted by dashes. 

 
Fledging Success 

  Coefficient SE z value p-value 

Intercept 1.24 0.18 6.80 < 0.001 

Colony Size -0.0087 0.023 -0.38 0.70 

Date  -0.10 0.022 -4.52 < 0.001 

Date2 - - - - 

Year -0.0026 0.044 -0.060 0.95 

Row crop (2000 m) 0.28 0.23 1.23 0.22 

Year * Row crop - - - - 

Forage (2000 m) 0.18 0.36 0.49 0.62 

Year * Forage - - - - 
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Figure 2.5. Scatterplot of Barn Swallow fledging success (n = 552) measured at colonies 

near Guelph Ontario (sites = 22), in the breeding seasons of 2016 and 2017, plotted 

against row crop proportion (a-b) and proportion of forage (c-d) within 2000 m of the 

site. Plots are separated by year (a,c – 2016, b,d – 2017). Line with shaded area indicates 

linear relationship and standard error. 
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2000; Morris et al. 2005; Hart et al. 2006), nestling condition was positively related to 

row crop proportion, after controlling for the effects of forage, year, date, and within 

brood competition. Despite an apparent positive relationship between row cropping and 

nestling condition, there was no effect of row crop proportion on pre-fledging condition, 

nestling growth rate, and fledging success. Overall, nestlings raised in landscapes with 

greater proportions of agriculturally intense land cover were in better condition earlier in 

the nestling stage but nestlings in worse condition compensated for any differences in 

condition by the pre-fledging stage and did not incur any negative effects on fledging 

success. This is the first study, to my knowledge, that found neutral to positive effects of 

agricultural intensification on an aerial insectivorous species, for which agricultural land-

use changes, and pesticide usage, have been heavily implicated in population declines 

(Nebel et al. 2010; Nocera et al. 2012; Stanton et al. 2018).  

I speculate that the positive relationship between increasing proportion of row 

crop and nestling condition is due to differences in nestling diet or provisioning rates in 

these environments, as the amount and quality of food can affect nestling condition 

(Konarzewski et al. 1996; Searcy et al. 2004; Twining et al. 2016). First, I propose that 

agriculturally intense land cover types may produce more abundant or larger insects, 

making them ideal foraging habitats for an aerial insectivore. Previous studies have 

focused on sampling insects within vegetation along field margins or more natural 

habitats, through sweep netting or similar methods, as researchers were largely focused 

on species that are not aerial insectivores, such as Corn Bunting, which primarily 

consumes Orthoptera and the larvae of Lepidoptera and Symphata (Brickle et al. 2000). 

Research on aerial insectivore diet has shown that swallows forage on arthropods from a 
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wide range of orders, some of which could be sampled within the vegetation (e.g., 

Coleoptera, Hemiptera, and Orthoptera; Beal 1918; Johnston 1967), but many of which 

may not be adequately sampled (e.g., Diptera). Second, I hypothesize that aerial insects 

may be largely independent of habitat composition. In a metanalysis by Attwood et al. 

(2008), insect abundances in agricultural ecosystems were lower relative to less 

intensively managed ecosystems (e.g., native grasslands), but this analysis excluded 

highly mobile taxa, such as Diptera (e.g., Froerer et al. 2010), which are a large 

component of aerial insectivore diet (McCarty & Winkler 1999a).  

Adult Barn Swallows may compensate for any negative aspects of reduced insect 

availability by increasing parental effort. Previous studies in aerial insectivores have 

shown that adults alter provisioning rates in response to foraging conditions, although 

these studies have shown the opposite effect, where adults increased provisioning under 

ideal conditions (Schifferli et al. 2014; Stanton et al. 2016). Alternatively, row crops may 

provide better foraging habitat, potentially increasing foraging efficiency by decreasing 

foraging time. The lack of effect for colony size suggests that competition for food is not 

limiting for this swallow population. High mobility in aerial insects combined with wind 

dispersal may facilitate a constantly mixing source of prey, providing a robust source of 

food within the aerial plankton. Future studies should investigate the relationships 

between nestling condition, parental quality, insect availability, and provisioning rates in 

these environments, as increased parental effort may supplement nestling diet at the 

expense of adult condition (e.g., Saino et al. 1999).  

Surprisingly the was no row crop effect on pre-fledging condition, despite a row 

crop effect on nestling condition. Regardless of positive effects during the growth phase, 
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nestlings were able to bridge the gap by the pre-fledging stage. Although pre-fledging 

condition has been directly related to survival in Barn Swallows (Evans et al. unpub ms.), 

nestlings may have an optimal fledging mass for wing loading which individuals reach 

via programmed anorexia (e.g., Wright et al. 2006). In swallows, nestling mass increases 

from birth until it peaks around day 13 and decreases slightly before levelling off (Zach 

& Mayoh 1982). While differences in effect of row crop on nestling and pre-fledging 

condition indicate some compensation in mass, without daily measurements it is 

impossible to say how much intermediate mass change occurred, as nestlings with lower 

mass may reach an ideal pre-fledging mass without programmed anorexia.  

Previous studies have shown negative effects of agricultural intensification on 

nest productivity (Brickle et al. 2000; Hart et al. 2006; Ghilain and Bélisle 2008). If 

nestling survival is high, which seems to be the case with Barn Swallows in other 

populations (Ambrosini & Saino 2010), these condition effects may play a more 

important role in later life stages, such as the post-fledging period (Evans et al. unpub 

ms.), rather than directly affecting fledging success. As there was no effect of row crop 

proportion on pre-fledging condition, I do not expect reduced post-fledging survival 

through the mechanism of reduced body condition (Evans et al. unpub ms.), although 

other mechanisms may contribute to reduced post-fledging survival (e.g., predation risk; 

Suedkamp Wells et al. 2007).  

Year-specific effects on nestling condition, pre-fledging condition, and growth 

could be due to environmental differences within each year of sampling. For example, 

2017 had colder mean monthly temperature from May to August and greater precipitation 

from May to July, compared to 2016 (ECCC 2018; Figure 2.6). Warmer environmental  
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Figure 2.6. Line plot of mean monthly temperature (oC) (a) and total monthly 

precipitation (mm) (b) in Guelph, southern Ontario, throughout the breeding seasons of 

2016 (solid line) and 2017 (dashed line). Weather information was gathered from 

ECCC’s historical data on monthly weather data (ECCC 2018), from the Fergus Shand 

Dam station in Fergus, Ontario.  
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temperatures in 2016 may have enabled parents to spend more time provisioning and less 

time brooding young, and young could dedicate more resources to growth and energy 

storage and less to thermoregulation (McCarty & Winkler 1999b; Pérez et al. 2008; 

Grüebler et al. 2010). Furthermore, flying insect availability is further reduced within 

agriculturally intense landscape during adverse weather conditions such as high wind and 

low temperatures, thus potentially proliferating the negative effects on foraging success 

and diet (Grüebler et al. 2008).  

I used two measures of landscape structure (i.e., proportion of row crop and 

proportion of forage) to capture a gradient of agricultural intensification and a measure of 

semi-natural habitats. Other studies have used the number of pesticide applications as the 

measure of intensity (Brickle et al. 2000; Morris et al. 2005; Hart et al. 2006), or 

combined landscape inputs (e.g., crop type, pesticide amounts) with landscape structure 

into a single index of agricultural intensity at the landscape-level (Herzog et al. 2006; 

Hendrickx et al. 2007). There was a positive relationship between forage proportion and 

nestling body condition, but the effect was not as strong as the correlation between body 

condition and row cropping. I expected that the proportion of forage would positively 

benefit nestling condition, as Barn Swallows have been reported to spend the most time 

foraging above forages (pasture in this case) compared to cropped land (Evans et al. 

2007), but the stronger positive effect of row cropping over forages suggests some added 

benefit of row crops to Barn Swallows. 

Examining landscape from the scale of a patch is often inadequate to link spatial 

patterns with ecological phenomena (Ricketts et al. 2001; Steffan-Dewenter et al. 2002; 

Holland et al. 2004). These results suggest condition is best linked to landscape 
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composition (row crops and forage) at a scale of 100 m (see Appendix B. Scale of effect 

figures for nestling condition; Figure B1-2). This scale is likely representative of typical 

adult Barn Swallow foraging distance during provisioning. This distance, while slightly 

shorter, is consistent with published data for provisioning Barn Swallows in Europe (188 

m in the first brood and 138 m in the second brood; Turner 1980), and for other aerial 

insectivorous species in North America (100-200 m in Tree Swallows; McCarty & 

Winkler 1999). 

2.5. Conclusion 

It has been shown that agriculture is one of the greatest threats to birds (Green et al. 

2005), and while this may be true in many cases, my work suggests that agricultural 

intensification may not affect all species equally. Currently, there is very little evidence 

that bird species benefit from agriculture, especially compared to the evidence 

implicating agriculture as having negative effects on breeding birds (e.g., Rands 1986; 

Herkert 1997; Brickle et al. 2000; Morris et al. 2005; Hart et al. 2006). My data suggests 

that Barn Swallows breeding in southern Ontario may be among the few who benefit 

from agriculture, at least in terms of nestling condition, but these benefits are likely lost 

by the pre-fledging stage. This finding highlights that careful consideration must be made 

when choosing age categories to sample, otherwise potential effects may be 

overestimated or hidden. Despite steep population declines in this region of the continent 

(Nebel et al. 2010; Michel et al. 2016), agriculture does not seem to be contributing to 

these declines. Furthermore, Barn Swallows utilize human-made structures, like barns, 

which constrains breeding site choice and demonstrates that agriculture provides nesting 

habitat. Although I found no negative effects on condition, growth rate, and fledging 
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success, increased land-use intensity may negatively influence another aspect of 

reproductive biology, thus contributing to a reduction in reproductive fitness. This study 

demonstrates that further investigation is required to understand the complex mechanisms 

that are driving the decline of Barn Swallows in Southern Ontario, along with the rest of 

northeastern North America. 
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Chapter 3  

Nestling diet of Barn Swallows (Hirundo rustica) in an agro-ecosystem: insights from 

fecal DNA barcoding and stable isotopes (δ13C, δ15N) 

3.1. Introduction 

Populations of grassland and farmland birds have experienced marked population 

declines as a result of habitat loss associated with increasing agricultural land-use 

intensity (Donald et al. 2001, 2006; Benton et al. 2002), including for example increases 

in field size and associated loss of field margins and hedgerows and reductions in fallow 

land (Robinson & Sutherland 2002; Tscharntke et al. 2005). For species breeding within 

agro-ecosystems, indirect effects of agricultural intensification such as reductions in prey 

insect availability due to habitat loss and pesticide and herbicide application have 

received comparatively little attention (reviewed in Stanton et al. 2018). Reduced insect 

availability in agriculturally intense landscapes is expected and has been documented 

(Hendrickx et al. 2007; Attwood et al. 2008; Grüebler et al. 2008). Higher pesticide usage 

and reduced prey availability can reduce nestling body condition (Brickle et al. 2000; 

Hart et al. 2006) with implications for survival (Naef-Daenzer et al. 2001; Mitchell et al. 

2011; Jones et al. 2016; Evans et al. unpub ms.). This may be especially relevant for 

aerial insectivorous birds who rely entirely on flying insects as their sole source of food. 

Across North America, aerial insectivorous birds have experienced the steepest 

population declines of any group of North American passerines (NABCI 2016; Sauer et 

al. 2017). A leading hypothesis for this guild-wide decline is a reduction in prey insect 

availability (Nebel et al. 2010; Nocera et al. 2012; Smith et al. 2015). Population declines 
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(Nebel et al. 2010; Michel et al. 2016) and migratory connectivity (Hobson et al. 2015) 

vary regionally within North America, suggesting local to regional environmental factors 

may be contributing to these declines. Several aerial insectivorous species, such as the 

Barn Swallow (Hirundo rustica), now primarily occupy human-associated structures, 

which highly restricts them to nest locations within modified landscapes, such as farms 

(Brown & Brown 1999). While long-term dietary shifts highlight the potential 

relationship between diets and agricultural land-use intensifications specifically pesticide 

usage (Nocera et al. 2012; English et al. 2018), and indirect evidence suggests a negative 

effect of row cropping on nestlings (e.g., Ghilain & Bélisle 2008), other studies suggest 

diet alone does not affect breeding success in aerial insectivores (Barn Swallows, Cliff 

Swallows Petrochelidon pyrrhonota, and Tree Swallows Tachycineta bicolor; Imlay et 

al. 2017). Therefore, there is an urgent need to investigate if there is a contemporary link 

between diet and agricultural land-use intensity for aerial insectivores to understand if 

reductions in food availability are contributing to observed declines. 

Nestling diet of swallows is poorly documented in North America and is restricted 

to well-studied species such as Tree Swallows (see Quinney & Ankney 1985; McCarty & 

Winkler 1999a; Mengelkoch et al. 2004). DNA barcoding of fecal matter provides a 

potential tool allowing taxonomic identification of prey DNA remaining post-digestion 

(reviewed in Valentini et al. 2009). Fecal DNA barcoding has been applied to very few 

terrestrial avian studies (e.g., Joo & Park 2012; Jedlicka et al. 2013, 2016; Trevelline et 

al. 2016, 2018), but has been utilized in bats, which has allowed for identification of prey 

insects (e.g., Clare et al. 2009; Zeale et al. 2011; Long et al. 2013; Aizpurua et al. 2017). 

For an insectivorous species, DNA barcoding allows for identification of soft-bodied 
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insects that are likely unidentifiable post-digestion, making visual fecal analysis difficult 

(but see Orłowski & Karg 2011). Despite the potential of DNA barcoding to add to 

current knowledge of nestling diet, to date there are other no published studies for aerial 

insectivorous species. 

The measurement of naturally occurring stable isotopes in food webs has been 

used effectively to assess both sources of nutrients to consumers and their relative trophic 

position (Peterson & Fry 1987; Fry 2006; Boecklen et al. 2011) over various periods of 

temporal integration (Hobson & Clark 1992). Specifically, nitrogen stable-isotope ratios 

(δ15N) typically show a step-wise increase with trophic level, making them useful 

indicators of trophic position (Hobson & Welch 1992; Hobson et al. 1994; Boecklen et al. 

2011). Stable-nitrogen isotope values in biota can be influenced by variation in nitrogen 

sources to plants, nitrogen fixation mechanisms, land-use practices and the use of 

chemical or organic fertilizer (Hobson 1999; Pardo & Nadelhoffer 2010). Furthermore, a 

growing body of evidence suggests that anthropogenic nitrogen inputs to terrestrial 

ecosystems everywhere are increasing and this is reflected in increased consumer δ15N 

values in agricultural or anthropogenically influenced landscapes (Vitousek et al. 1997; 

Hobson 1999; Girard et al. 2012). Inorganic fertilizers have low initial δ15N values (~0‰; 

Heaton 1986) but yearly tilling and ammonification of the soil leads to higher δ15N values 

in agricultural land cover types (Kendal 1998). In terrestrial systems, carbon stable-

isotope measurements (δ13C) have been used to differentiate photosynthetic pathway (i.e., 

C3, C4 or CAM; reviewed in Tieszen & Boutton 1989), aquatic vs. upland carbon inputs 

(France 1995) and plant water-use efficiency (Marshall et al. 2007). The strong utility in 

using δ13C values in consumers to trace C3 (δ
13C near -27‰) vs. C4 (δ

13C near -12‰) 
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primary inputs makes this approach particularly useful for tracing corn-based carbon (a 

C4 plant) in an otherwise C3 landscape (e.g., hay, soybeans, winter wheat in southern 

Ontario; Mailvaganam 2018). 

By integrating feather stable-isotope (δ13C and δ15N) measurements along with 

DNA barcoding of nestling fecal matter, I investigated the effects of agricultural 

intensification on barn swallow nestling diet. I hypothesized that nestlings raised and fed 

from within agriculturally intense landscapes would have reduced diet richness due to 

reduced insect availability. First, I assessed the landscape-level effects of agricultural 

land use on stable-isotope values within nestling feathers, to determine where insects fed 

to nestlings originated. I predicted if nestlings were being provisioned insects from 

agriculturally intense landscapes than nestling feathers would have (1) more positive δ13C 

values in landscapes with increased proportion of corn and (2) more positive δ15N values 

in landscapes with higher agricultural intensity due to increased anthropogenic nitrogen 

inputs (i.e., fertilizer use, ammonification), resulting in differences in baseline δ15N 

signature in these food webs. Second, I assessed the landscape-level effects of 

agricultural land use on nestling diet breadth and composition using fecal DNA 

barcoding. I predicted that if nestlings were being provisioned insects from landscapes 

comprised of high amounts of row crops that (3) diet breadth would be reduced due to 

reduced prey insect availability given reduced insect habitat diversity, and (4) prey items 

found within nestling diet would be representative of agricultural land use, such as the 

European Corn Borer Ostrinia nubilalis, and Fall Armyworm Spodoptera frugiperda.  
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3.2. Methods 

3.2.1. Sample collection and sites 

I conducted fieldwork at 22 Barn Swallow colonies in the breeding seasons of 2016 and 

2017 (see Appendix A. Summary tables; Table A1) within Wellington County in 

southwestern Ontario, near Guelph, Ontario (43.55° N, 80.25° W). Timing of nest and 

clutch initiation was determined for all nests. Nestlings were banded with a unique 

United States Geological Survey aluminum leg band. Feathers for stable-isotope analysis 

were collected at day 15 after hatch, from all but one nestling within the nest (n = 192, 

nests = 55, site = 18 in 2016 and n = 96, nest = 27, site = 9 in 2017). Nests for feather 

sampling were chosen randomly within each site, attempting to sample evenly across 

sites and across the nesting season, but not all sites could be sampled in each year. 

Emphasis in 2017 was placed on sites at the extreme ends of the spectrum for agricultural 

composition, defined by the proportion of row cropping. Fecal samples were collected 

opportunistically whenever nestlings were handled, as defecation of a fecal sac often 

occurs during handling (n = 93, site = 17 in 2016 and n = 197, site = 21 in 2017). Fecal 

samples were combined for each nest collecting as many samples as possible, but 

samples could not be collected from every site. The number of fecal sacs collected per 

sample was recorded as a measure of how many nestlings contributed to the sample.  

 To compare prey stable-isotope values with nestling feathers, insects were 

collected from habitats (forage, row crops, wetland) in the surrounding landscape, as well 

as samples collected at the barn. Collection was performed non-quantitatively using a 

sweep net, sampling the upper portion of the vegetation and lower air column (~5-6ft 

above ground). Insects were sorted to taxonomic order, and insects within the order 
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Diptera were sorted to the level of family. Dipterans are hypothesized to be an important 

component of aerial insectivore diet (McCarty & Winkler 1999), thus isotopic analysis 

was limited to Diptera. 

3.2.2. Stable-isotopic analyses 

Feather samples (n = 192 from 18 sites in 2016, n = 91 from 9 sites 2017) were cleaned 

of surface oils using a 2:1 chloroform:methanol solvent and prepared for stable-isotopic 

(δ13C and δ15N) analyses at the Stable-Isotope Laboratory (Environment Canada, 

Saskatoon, Canada). Insects (n = 91) were dried for 24 hours in the oven before 

weighing. For δ13C and δ15N, 1 (± 0.03) mg of feather or insect was weighed into tin 

cups, crushed, and combusted using a Eurovector 3000 (Milan, Italy – 

www.eurovector.it) elemental analyzer. The resulting gases were separated by gas 

chromatography and introduced into a Nu Horizon (Nu Instruments, Wrexham, UK – 

www.nu-ins.com) triple-collector isotope-ratio mass-spectrometer via an open split. 

Stable-isotope values are expressed in delta (δ) notation, as parts per thousand (‰) 

deviation from the primary standards, atmospheric air (δ15N) and Vienna Pee Dee 

Belemnite (VPDB, δ13C). Internal laboratory standards were BWB III keratin (δ13C: -

20‰, δ15N: 14.4‰) and PUGEL gelatin (δ13C: -13.6‰, δ15N: 4.73‰). Within-run (n = 

7), measurement precision for δ13C and δ15N measurements were ± 0.15‰.  

3.2.3. Fecal analyses 

Fecal samples (n = 93 nests from 17 sites in 2016, n = 197 nests from 21 sites in 2017) 

were processed at the Canadian Center for DNA Barcoding (Guelph, Canada). For 

detailed methods, please refer to Appendix D, DNA barcoding protocol. Samples were 
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amplified separately, using insect-specific primers targeting a 157 bp region of the COI 

gene (Zeale et al. 2011). Amplified samples were then pooled and sequenced using a 316 

v.2 chip on an Ion Torrent PGM high-throughput sequencer (Thermo Fisher Scientific) in 

2016 and a 530 chip on an Ion Torrent S5 high-throughput sequencer (Thermo Fisher 

Scientific) in 2017. Sequenced reads (i.e., number of individually sequenced PCR 

molecules) were grouped into operational taxonomic identifications (98% identity) and 

queried against the Barcode of Life Database (BOLD; www.boldsystems.org) reference 

library using a BLAST search to assign taxonomic identity. BLAST results were 

collapsed in unique taxonomic identifications per sample, filtered to remove low quality 

reads (minimum quality of QV20 and minimum length of 100 base pairs), and trimmed to 

remove primer and adapter sequences. Only identifications with 100 reads or more were 

accepted as genuine, as a conservative approach. DNA was successfully extracted and 

amplified from 290 fecal samples out of a total 336 samples across the years (93/95 

samples in 2016, and 197/241 samples in 2017). I used two measures to describe nestling 

diet and detected prey items: (a) diet breadth, namely the total number of unique taxa 

(i.e., order, family, genus, or species level richness) that were detected within fecal 

samples via barcoding and (b) frequency of detection, or the number of times that a taxon 

is detected across all sampling units.  

3.2.4. Landscape 

Land cover proportions were measured using ESRI ArcMap 10 software (ESRI 2011). 

Landscape was classified and measured (i.e., proportions captured from 20 concentric 

buffers, 100 m to 2000 m) using annual crop inventory maps, from Agriculture and Agri-

food Canada (AAFC 2017). I classified the landscape surrounding my sites as 
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agricultural row crops (i.e., corn, soybeans, and wheat; hereafter ‘row crops’), natural 

grassland and pasture (hereafter ‘forage’), and open waterbodies and unwooded wetland 

(hereafter ‘water)’. I also classified corn separately from row crop. Row crop proportion 

was treated as a proxy for agricultural intensification, and the proportion of forage as a 

measure of semi-natural landscapes (e.g., Hendrickx et al. 2007).  

3.2.5. Statistical analyses 

All statistical analyses were performed using RStudio Version 1.0.136 and R version 

3.3.1 statistical software (RStudio Team 2015; R Core Team 2016). To test whether δ13C 

values within nestling feathers were higher in landscapes composed of greater amounts of 

corn, I used a linear mixed effect model (LMM) with δ13C values as response variables 

(R package lme4; Bates et al. 2015). Mixed effects models were used due to the nested 

structure of sampling (random effects = nest location and site). The effect of landscape 

scale was first assessed separately for corn and water (for detailed methods on scale of 

effect analyses see Chapter 2). Proportion of corn and proportion of water were included 

as fixed effects at the most appropriate scale of effect, along with year interaction terms. 

Two-way interactions between year and land cover were included to account for the 

possibility of year-dependent effects of landscape on feather δ13C values. Amount of 

surface water was included as a fixed effect to account for the possibility that δ13C values 

may be affected by prey derived from aquatic vs. upland habitats (France 1995). Fixed 

effects for date (day of the year) and year were added to account for any seasonal changes 

in diet or agricultural practice that may affect stable-isotope ratios within nestling 

feathers. For example, water-use efficiency among C3 plants would be expected to 

increase δ13C values as temperatures increase later in summer (Marshall et al. 2007). To 
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test whether feather δ15N values were higher in more landscapes composed of a greater 

amount of row crops, I used a LMM with δ15N values as the response and row crop 

amount as a fixed effect. Effect of landscape scale was first assessed for row crop, then 

row crop amount at the most appropriate scale of effect was included as a fixed effect, 

along with year as interaction terms. Presence of livestock was included as a binary fixed 

effect, as livestock manure could influence δ15N values (Anderson & Cabana 2006). 

Again, date and year were added as fixed effects.  

To test whether nestling diet breadth was reduced in more agriculturally intense 

environments, I used separate generalized linear mixed effect models (GLMM) with 

Poisson distributions. For each model, diet breadth was included as the response variable. 

I analyzed diet breadth at the level of family, as studies have shown that there is a strong 

correlation between generic richness and species richness, with diminishing but 

significant strength in correlation at higher taxonomic levels (Balmford et al. 1996a, 

1996b). Furthermore, due to the short length of the molecular marker, I was less 

confident in lower taxonomic levels (i.e., species and genus) of prey identification. 

Because of the importance of dipterans to aerial insectivores, I analyzed diet breadth and 

composition within dipterans (hereafter ‘Diptera diet breadth’ and ‘Diptera family 

composition’) as well as across all other orders in the diet. The effect of landscape scale 

on diet breadth was first assessed, then row crop amount and forage amount were 

included as fixed effects at the most appropriate scale of effect, along with year 

interaction terms. Forage was included in this model, and no earlier models, as the 

purpose of this model was to assess the effect of agricultural intensification, which 

necessitates controlling for natural environments (e.g., Hendrickx et al. 2007). To account 
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for the number of nestlings contributing to a fecal sample, the number of fecal sacs 

collected per sample were included as a fixed effect. Date and year were also included as 

fixed effects, for the same reasons outlined above.  

Model selection for all LMMs and GLMMs was performed by assessing non-

significant terms in order of decreasing p-value. Only interaction terms were removed 

from the model if non-significant, because their inclusion could affect the interpretation 

of lower-order terms, each of which was chosen for biological relevance. P-values for all 

linear mixed-effects models were estimated using parametric bootstrapping (R package 

pbkrtest; Halekoh & Højsgaard 2014). After assessment of interaction terms, effects from 

the best model were modelled using restricted maximum likelihood as this has been 

shown to produce less biased parameter estimates and standard errors (Pinhero & Bates 

2000). 

To assess diet composition, I used a permutational multivariate analysis of 

variance (PERMANOVA; package: vegan, function: adonis, permutations = 999; 

Oksanen et al. 2018). Distance measures for the presence-absence family matrix were 

calculated using the Jaccard method and adjusted for stepdistance (function = vegdist and 

stepdist, method = jaccard; Oksanen et al. 2018). To assess the effects of row crop on 

diet, amount of row crop was included as a fixed effect (4 levels: 0-25%, 25-50%, 50-

75%, 75-100% row crop) measured using the most appropriate buffer distance found in 

the diet breadth scale of effect analysis. To account for variation in family composition 

due to site-specific or temporal effects, site id, date, and year were included as fixed 

effects in the model. Similarity between fecal samples, in terms of prey family 
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composition, was visualized using non-metric multidimensional scaling (i.e., NMDS, 

function = metaMDS, method = jaccard; Oksanen et al. 2018).  

3.3. Results 

3.3.1 Landscape  

Row crop (30.6% ± 22.7, mean ± SD; cover percentage within 1000 m) and forage 

(35.4% ± 16.2) were the predominant land cover types surrounding the sites. Corn 

covered a mean percentage of 11.3% ± 11.3 in 2016 and 5.7% ± 5.5 in 2017. Water was 

present in the landscapes surrounding sites but was not a major component overall (0.6% 

± 2.1 within 1000 m, and only present within 100 m of one site). Examining all sites, the 

amount of row crop did not change between years (Paired t-test; t = -0.16, p = 0.88), but 

the amount of corn decreased in 2017 (Paired t-test; mean difference = 0.056, t = 2.31, p 

= 0.03), likely from crop rotations.  

3.3.2. Stable isotopes 

Nestling Barn Swallows had feather δ13C and δ15N values ranging from -25.7 to -19.8‰, 

and  9.2 to 13.1 ‰ respectively. There were significant differences among mean δ13C 

values (ANOVA; F20,267 = 19.65, p < 0.001; Table 3.1) and mean δ15N values (ANOVA; 

F20,267 = 71.07, p < 0.001; Table 3.1) among sites. After applying trophic discrimination 

factors (+2.7‰ δ13C, +4‰ δ15N; Hobson & Bairlein 2003) to present them as feather 

equivalent values, insect stable-isotope values ranged from -26.3 to -7.3‰ for δ13C and 

4.6 to 26.2‰ for δ15N. No differences in Diptera isotope values were found for δ13C 

(ANOVA; F3,92 = 1.35, p = 0.26) and δ15N (ANOVA; F3,92 = 0.24, p = 0.87) among  

habitat (barn, forage, row crop, and water). The isotopic range of adjusted insect tissues 
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for both δ13C and δ15N values overlapped all recorded nestling feather values, showing 

considerable spread in isotopic space (Figure 3.1). 

There was an effect of scale on the relationship between feather δ13C values and 

both the amount of corn and the amount water in the surrounding landscape (see 

Appendix F. Scale of effect figures for nestling diet; Figure F1). The best-fitting model 

indicated that feather δ13C values were best predicted using a buffer radius of 1700 m or 

400 m to capture the amount of corn and water, respectively. There was a strong positive 

linear relationship between the amount of corn in the surrounding landscape and feather 

δ13C values, but no relationship with water (Table 3.2 and Figure 3.2). There were date 

and year effects, indicating that values were more positive later in the season and in 2017 

(Table 3.2).  

 Scale affected the relationship between feather δ15N values and the amount of 

cropped land in the surrounding landscape (see Appendix F. Scale of effect figures for 

nestling diet; Figure F2). The best-fitting model indicated that feather δ15N values vary 

most strongly with row crop amount at a radius of 2000 m. There was a strong positive 

linear relationship between the amount of row crop in the surrounding landscape and 

feather δ15N values, but no relationship with date or livestock presence (Table 3.3 and 

Figure 3.3). Feather δ15N values were more positive in 2017 (Table 3.3).  

3.3.3. Fecal DNA barcoding 

Fecal DNA barcoding detected 1644 prey items from 12 orders, 99 families, and 252 

genera (for the complete taxonomic list see Appendix E. Diet summary; Table E1). Only 

prey items within the phylum Arthropoda were considered viable prey items. Species- 



73 

 

 

Figure 3.1. Scatterplot of carbon (δ13C) and nitrogen (δ15N) stable-isotope values from 

nesting Barn Swallow feathers (black points, n = 192), collected near Guelph Ontario 

(nests = 79, sites = 21), in the breeding seasons of 2016 and 2017, and dipterans (plus 

symbols, n = 91) collected near Guelph Ontario (sites = 8) in 2017. Discrimination 

factors have been applied to insect isotope values to compare them to nestling feather 

values. Ellipses show normal distributions for feather isotope values and insect isotope 

values.  
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Table 3.2. Linear mixed effect model results for δ13C‰ values from Barn Swallow 

nestling feathers (n = 288) collected near Guelph Ontario (nests = 79, sites = 21), in the 

breeding seasons of 2016 and 2017. The global model included fixed effects of 

proportion of corn, proportion of water, date, and year, and random effects of nest 

location and site. Dropped terms are noted by dashes (-). 

 Carbon (δ13C‰) 

  Coefficient SE t value p-value 

Intercept -26.80 0.55 -48.42 - 

Date 0.016 0.0024 6.18 < 0.001 

Year 0.57 0.12 4.60 < 0.001 

Corn (1700 m) 5.48 1.30 4.23 < 0.01 

Year * Corn - - - - 

Water (400 m) -9.14 10.06 -0.91 0.38 

Year * Water - - - - 
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Figure 3.2. Scatterplot of nestling Barn Swallow feather δ13C values plotted against the 

proportion of corn within 1700 m of the breeding colony. Feather samples (n = 288) were 

collected near Guelph Ontario (nests = 79, sites = 21), in the breeding seasons of 2016 

and 2017.  Plots are separated by year (a – 2016, b - 2017). Line with shaded area 

indicates linear trend with standard error.  
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Table 3.3. Linear mixed effect model results for δ15N‰ values from Barn Swallow 

nestling feathers (n = 288) collected near Guelph Ontario (nests = 79, sites = 21), in the 

breeding seasons of 2016 and 2017. The global model included fixed effects of 

proportion of row crop, date, and year, and random effects of nest location and site. 

Dropped terms are noted by dashes (-). 

 Nitrogen (δ15N‰) 

  Coefficient SE t value p-value 

Intercept 10.83 0.46 23.61 - 

Livestock -0.31 0.23 -1.37 0.20 

Date -0.0022 0.0019 -1.18 0.25 

Year 0.22 0.065 3.45 < 0.01 

Row crop (2000 m) 3.13 0.61 5.10 < 0.001 

Year * Row crop  - - - - 

  



77 

 

 

Figure 3.3. Scatterplot of nestling Barn Swallow feather δ 15N values plotted against the 

proportion of row crop within 2000 m of the breeding colony. Feather samples (n = 288) 

were collected near Guelph Ontario (nests = 79, sites = 21), in the breeding seasons of 

2016 and 2017. Plot are separated by year (a – 2016, b - 2017). Line with shaded area 

indicates linear trend with standard error.  
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level identification could not always be reached, but a minimum of 389 unique taxonomic 

identifications were found. Diptera represented 80% of identified prey, followed by 

Coleoptera, Lepidoptera, Hymenoptera, and Hemiptera, which together made up only 

17% of the total prey items (Figure 3.4). Lastly, the other seven orders made up only 1% 

of prey items (Figure 3.4). Frequency of detection for the majority of families was low, as 

67 of 99 families were only detected in 5 or fewer samples (Figure 3.5), but some 

families were detected in up to 150 samples (families with the highest frequency of 

detection summarized in Table 3.4). Family richness showed high correlation with 

richness at lower taxonomic levels (species, r = 0.89; genus, r = 0.93), and to a lesser 

extent order richness (r = 0.65), supporting my choice to examine family.  

The relationship between diet breadth and the proportion of row crop in the 

surrounding landscape was affected by scale, but no detectable effect was found for 

forage (see Appendix F. Scale of effect figures for nestling diet; Figure F3). The best-

fitting model indicated that diet breadth was best predicted using a buffer radius of 200 m 

and 800 m to capture the effect of row crop and forage proportion, respectively. Row 

crop amount was negatively correlated with diet breadth in 2016 but less so in 2017 

(GLMM; sites = 21, n = 290; Table 3.5 and Figure 3.6). The proportion of forage and the 

number of fecal sacs collected had no effect on diet breadth, but there was a negative 

effect of both date and year on diet breadth (Table 3.5). No effect of scale on the 

relationship between Diptera diet breadth and the proportion of row crop or proportion 

forage in the surrounding landscape was found (see Appendix F. Scale of effect figures 

for nestling diet; Figure F4), so I used 100 m to capture the proportion of row crop and 

proportion of forage as it was the best model. There was no relationship between the  
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Figure 3.4. Pie chart showing nestling Barn Swallow diet, by prey order, detected using 

DNA barcoding of nestling feces (n = 290) collected near Guelph Ontario (sites = 21), in 

the breeding seasons of 2016 and 2017. Percentages show the number of prey items 

detected divided by the total number of unique detections (1644 prey items), across all 

samples (n = 290). 
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Figure 3.5. Frequency histogram showing frequency of detection for all families detected 

with DNA barcoding of nestling Barn Swallow feces (n = 290) collected near Guelph 

Ontario (sites = 21), in the breeding seasons of 2016 and 2017. Bars show the number of 

families at each frequency of detection. 
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Table 3.4. Summary table of the most common families (frequency of detections, Freq ≥ 

10) detected with DNA barcoding of nestling Barn Swallow feces (n = 290) collected 

near Guelph Ontario (sites = 21), in the breeding seasons of 2016 and 2017.  

Family Common Name Freq 

Tachinidae Tachinids flies 150 

Calliphoridae Blow flies 128 

Limoniidae Limoniid crane flies 79 

Sarcophagidae Flesh flies 66 

Tipulidae Large crane flies 63 

Curculionidae Weevils 60 

Tabanidae Deer flies 57 

Anthomyiidae Root-maggot flies 49 

Muscidae House flies 48 

Syrphidae Hover flies 47 

Asilidae Robber flies 36 

Hydrophilidae Water scavenger beetles 26 

Culicidae Mosquitoes 22 

Ichneumonidae Parasitoid wasps 22 

Sepsidae Black scavenger flies 18 

Carabidae Ground beetles 17 

Chrysomelidae Leaf beetles 16 

Miridae Plant bugs 14 

Dolichopodidae Long-legged flies 13 

Hesperiidae Skippers 13 

Scathophagidae Dung flies 12 

Stratiomyidae Soldier flies 12 

Geometridae Geometrid moths 10 

Pipunculidae Big-headed flies 10 

Staphylinidae Rove beetles 10 
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Table 3.5. Generalized linear mixed effect model results for nestling Barn Swallow diet 

breadth, as detected by DNA barcoding of nestling feces (n = 290) collected near Guelph 

Ontario (sites = 21), in the breeding seasons of 2016 and 2017. The global model 

included fixed effects of proportion of row crop, proportion of forage, date, year, and the 

number of fecal samples, and random effect of site. Dropped terms are noted by dashes (-

). 

 Diet Breadth 

  Coefficient SE z value p-value 

Intercept 2.13 0.14 14.72 < 0.001 

Samples -0.047 0.028 -1.68 0.092 

Date -0.065 0.032 -2.028 < 0.05 

Year -0.79 0.093 -8.41 < 0.001 

Row crop (200 m) -0.56 0.20 -2.75 < 0.01 

Year * Row crop 0.48 0.22 2.13 < 0.05 

Forage (800 m) -0.070 0.21 -0.34 0.73 

Year * Forage - - - - 
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Figure 3.6. Scatterplot of nestling Barn Swallow diet breadth (a-b) and Diptera diet 

breadth (c-d), at the family level, plotted against the proportion of row crop within 200 m 

and 100 m of the breeding colony respectively. Diet breadth was detected with DNA 

barcoding of nestling feces (n = 290) collected near Guelph Ontario (sites = 21), in the 

breeding seasons of 2016 and 2017. Plots are separated by year (a,c – 2016, b,d – 2017). 

Line with shaded area indicates linear trend with standard error. 
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proportion of row crop or proportion of forages and Diptera diet breadth (GLMM; sites = 

21, n = 290; Table 3.6 and Figure 3.6). Again, there were negative effects of both date 

and year on Diptera diet breadth (Table 3.6).  

 There were marginal differences in diet composition with the proportion of row 

crop (PERMANOVA; F3,287 = 1.63, R2 = 0.016, p = 0.052), but no differences in Diptera 

composition with the proportion of row crop (PERMANOVA; F3,283 = 0.71, R2 = 0.0071, 

p = 0.77). When visualized via ordination, no differences were seen for diet composition 

(NMDS; model stress was 0.17 in 2016, 0.12 in 2017; Figure 3.7a-b) or Diptera diet 

composition (NMDS; model stress, 0.14 in 2016, 0.10 in 2017; Figure 3.7c-d). There 

were significant site, date, and year effects on diet composition (site, F19,287 = 1.37, R2 = 

0.085, p = 0.009; date, F1,287 = 7.36, R2 = 0.024, p = 0.001; year, F1,287 = 1.84, R2 = 0.012, 

p = 0.002) and Diptera diet composition (site, F19,283 = 1.46, R2 = 0.093, p = 0.003; date, 

F1,283 = 6.22, R2 = 0.021, p = 0.001; year, F3,283 = 3.11, R2 = 0.010, p = 0.01).  

3.4. Discussion 

Using both fecal DNA and feather stable-isotope analysis, I identified landscape-level 

effects of agricultural intensification on diet of nestling swallows. I predicted that Barn 

Swallow nestlings raised in more agriculturally intense environments would be 

provisioned insects from within agro-ecosystems resulting in reduced diet breadth. 

Nestling feather isotope values were related to agricultural land use, indicating 

differences in diet, or diet source, along a gradient of agricultural intensification. 

Specifically, stable-nitrogen values varied with the proportion of row crop while stable-

carbon values varied with the proportion of corn in the surrounding landscape. These 

results suggest that nestling diet is derived, at least in part, from agricultural food webs.  
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Table 3.6. Generalized linear mixed effect model results for nestling Barn Swallow 

Diptera diet breadth, as detected by DNA barcoding of nestling feces (n = 290), collected 

near Guelph Ontario (sites = 21), in the breeding seasons of 2016 and 2017. The global 

model included fixed effects of proportion of row crop, proportion of forage, date, year, 

and the number of fecal samples, and random effect of site. Dropped terms are noted by 

dashes (-). 

 Diptera Diet Breadth 

  Coefficient SE z value p-value 

Intercept 1.66 0.19 8.58 < 0.001 

Samples -0.044 0.030 -1.44 0.15 

Date -0.096 0.037 -2.60 < 0.01 

Year -0.53 0.072 -7.32 < 0.001 

Row crop (100 m) 0.041 0.19 0.22 0.83 

Year * Row crop - - - - 

Forage (100 m) -0.10 0.20 -0.51 0.61 

Year * Forage - - - - 
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Figure 3.7. NMDS plot of nestling Barn Swallow diet composition (a-b) and Diptera diet 

composition (c-d) detected with DNA barcoding of nestling feces (n = 290) collected 

near Guelph Ontario (sites = 21), in the breeding seasons of 2016 and 2017. Plot are 

separated by year (a,c – 2016, b,d – 2017). Symbols represent the proportion of row crop 

surrounding each site, grouped into discrete factors (0-25%, 25-50%, 50-75%, 75-100%). 

Groups are also represented by shaded minimum convex polygons.  
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In contrast, DNA barcoding of fecal matter identified few crop pest species. As predicted, 

nestling diet breath was negatively associated with the proportion of row crop in both 

years, indicating negative effects of diet derived from these landscapes. Despite negative 

effects on overall diet, dipteran prey items, which were the most detected prey items, 

were unaffected by agricultural intensity, suggesting a robust diet base. Overall, I found 

that nestling Barn Swallows raised within agro-ecosystems are being provisioned insects 

from agricultural food webs for at least part of their diet, but there is little evidence to 

suggest negative effects of intensification on nestling diet.  

Both δ13C and δ15N values in nestling feathers were more strongly related to 

landscape at large-scales. Stable-carbon isotope values correlated most strongly to the 

proportion of corn within 1700 m, a result expected from the strong C4 isotopic signal of 

corn within an otherwise C3 landscape. Contrary to predictions, there was no evidence of 

a relationship between δ13C values and the proportion of surface water in the surrounding 

landscape, likely due to a general lack of water in the landscape. This large-scale 

relationship between corn and δ13C suggests movement in either provisioning Barn 

Swallows or prey insects, but this scale is much greater than previously reported foraging 

distances in swallows (Turner 1980; McCarty & Winkler 1999). To compensate for 

reduced insect availability, adult swallows may be making long-distance movements, 

spending more time away from the nest foraging (Stanton et al. 2016). Alternatively, 

aerial insects are making these movements or being dispersed via wind, as aerial insects 

are highly mobile (Froerer et al. 2010). 

Stable-nitrogen isotope values correlated most strongly to the proportion of row 

crop at a buffer radius of 2000 m. I interpreted this large-scale positive effect between 
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δ15N and row cropping as field-specific enrichment via nitrogenous fertilizers (Girard et 

al. 2012), but also agricultural run-off of fertilizer into surrounding non-agricultural 

habitats (e.g., Hebert & Wassenaar 2001; Anderson & Cabana 2005, 2006; Møller et al. 

2018). There were significant year effects on both δ13C and δ15N values, suggesting 

differences in land use between years, but there was no difference in row crop proportion 

and little difference in corn proportion between years. Ultimately teasing apart these 

effects into exact mechanisms of enrichment is impossible (Anderson & Cabana 2006) 

and I was unable to measure agro-chemical inputs such as fertilizer, but the strong 

correlation between row crop proportion and the lack of a relationship between livestock 

presence indicates that fertilizer inputs are a likely contributor.  

Consistent with previous reports on swallow nestlings (McCarty & Winkler 1999; 

Bellavance et al. 2018), dipteran prey items were the most detected order of insects 

within nestling diets (80% of detections). Very few families (67/99) were found in more 

than five samples, indicating little consistency in nestling diet, outside of select families. 

Furthermore, similarity in diet composition between samples showed no relationship with 

agricultural intensification, suggesting opportunistic prey selection. The only non-

dipteran families that were seen in more than 20 diet samples were weevils 

(Curculionidae, 21% of samples), water-scavenger beetles (Hydrophilidae, 9%) and 

parasitoid wasps (Ichneumonidae, 8%). Despite this, prevalence large-bodied prey (e.g., 

Winthemia rufopicta, +10 mm size, frequency of detection = 55), may support parental 

selectivity for larger prey (McCarty & Winkler 1999), but without information on dietary 

proportions, disentangling this effect is impossible. 
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Crop pest species were notably absent from nestling fecal samples, with Seed 

Corn Maggots Delia platura being the only exception, showing up in 19 of 290 of 

analyzed samples. As nestling δ13C values were higher in areas of more corn land cover, I 

expected higher prevalence of insect prey that forage directly on corn for at least one 

stage of their life cycle, such as lepidopterans (e.g., European Corn Borer Ostrinia 

nubilalis, and Fall Armyworm Spodoptera frugiperda; Pest Management Centre 2015). 

This disconnect is likely because Barn Swallows are diurnal foragers and these 

lepidopterans are predominantly nocturnal fliers. The most detected dipteran family in 

nestling diet was Tachinidae, which was seen in 150 of 290 samples. Tachinid flies are 

parasitoids of lepidopteran and symphatan larvae, several of which are pests of crops. As 

the larvae develop within their host’s body, relying on their tissues as a nutrient source, it 

is likely that this exchange of nutrients causes tachinid flies to be enriched in 13C. Rather 

than foraging directly on corn pests, the prevalence of tachinid flies provides a potential 

carbon pathway to nestling feathers. Unfortunately, few tachinid flies were captured 

during insect sampling, and I was unable to measure prey δ13C values. 

Nestling diet breadth was inversely related to agricultural intensity, which is 

consistent with previous studies on aerial insectivorous bats within agro-ecosystems (e.g., 

Aizpurua et al. 2017). The effect of landscape was most strong within 100 m, 

highlighting the importance of the landscape directly surrounding breeding colonies in 

determining diet. Reductions in diet breadth could indicate either higher selectivity for 

beneficial prey or reduced richness of insects surrounding the site. Previous studies 

reporting negative effects of intensification on insect availability and reproductive 

success have been focused on ground-dwelling foragers who primary prey items are 
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found within vegetation (e.g., Corn Bunting Miliaria calandra, Brickle et al. 2000; and 

Yellowhammer Emberiza citronella, Morris et al. 2005). Moreover, when only dipteran 

prey items were included in my models, nestling diet breadth and composition did not 

correlate with the proportion of row crop or forage at any scale. Therefore, smaller scale 

negative effects of agricultural intensity influencing less mobile insects may be driving 

this reduction in diet breadth. Although they have low overall detection, these less mobile 

and generally larger bodied prey items (e.g., Coleoptera) may supplement nestling diet.  

There were negative effects of date and year on diet breadth. Negative effects of 

date are consistent with previous reports on Diptera availability throughout the season 

(Rioux Paquette et al. 2013; Bellavance et al. 2018). Seasonal changes, such as pesticide 

use, influencing prey insect availability may be driving this difference. Both corn and 

soybeans are reliant on pesticide applications (Gallivan et al. 2001), and pesticides have 

been detected in insects provisioned to nestling swallows (Haroune et al. 2015). Further 

investigation is required, necessitating detailed aerial insect sampling to determine the 

effects of agricultural intensification on prey availability and nestling diet. Observed 

negative effects of year may be driven by climate, as 2016 was hotter overall and less 

precipitation than 2017 (see Chapter 2). But significant year effects may be due to 

methodological differences in DNA barcoding between years (i.e., Ion Torrent PGM 

high-throughput sequencer in 2016 and S5 high-throughput sequencer in 2017). Although 

this year effect may be real, I cannot confidently conclude that methods did not 

contribute. 

High proportions of hard-bodied insects, like coleopterans, in aerial insectivore 

diet have been attributed to selectivity for larger prey items (Orłowski & Karg 2011), but 
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this may be an overestimation of the true dietary proportion of hard-bodied diet items as 

they have a higher probability of remaining visually identifiable after digestion. Using 

DNA barcoding, soft-bodied flies were the most detected prey items (80% of detections). 

I was unable to quantify diet beyond presence/absence, possibly obscuring identification 

of preference for prey types. This was unavoidable, as DNA barcoding is limited to 

presence-absence detection rather than quantitative measures of dietary proportions 

because of biases in prey-specific DNA survival during digestion (Deagle & Tollit 2007) 

along with differential amplification among DNA species during PCR (Wintzingerode et 

al. 1997), both of which add uncertainty between the number of barcoding reads and the 

proportions of ingested diet. Despite this, there is continued effort towards the 

development of a method to quantify DNA reads as dietary proportions, but these studies 

require experimentation with empirically known diet (Deagle et al. 2018), which is not 

possible for a free-living aerial insectivore.  

3.5. Conclusion 

Here I report a comprehensive summary of Barn Swallow nestling diet that included at 

least 99 families and 389 species, more than any other published study on any nestling’s 

diet. Furthermore, I highlight potential predictors of agricultural land use using stable-

isotope values within nestling feathers. In line with previous reports, I found evidence of 

negative impacts of agricultural intensification on nestling diet composition. However, 

further work is needed to assess the effects of agricultural intensification on insect 

availability in the broader landscape. Future research efforts should also be made to 

investigate the direct effects of agricultural intensification, through pesticide exposure, as 

these results suggests that land-use types such as corn contribute to the food webs in 
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which Barn Swallows provision nestlings. Increased agricultural intensity may be 

contributing to a decline of Barn Swallows in southern Ontario through reductions in diet, 

but these results are not conclusive as they also suggest that a robust, highly mobile, 

source of aerial prey items may be buffering aerial insectivore diet to local land-use 

effects.   
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Chapter 4 

General Discussion 

Expansion and intensification of agriculture is one of the greatest threats to bird 

populations globally (Green et al. 2005) but, clearly, such processes affect different 

species differently. Although reduced food availability in agro-ecosystems is 

hypothesized to have driven the decline of farmland birds in general, for aerial 

insectivores, few studies have examined the effects of agricultural intensification on 

reproductive success (e.g., Ghilain & Bélisle 2008), nestling diet, and body condition 

(e.g., Michelson et al. 2018). Understanding the factors affecting nestling condition is 

important because condition at fledging is an important predictor of subsequent survival 

(Mitchell et al. 2011; Evans et al. unpub ms.). Here, I provide a preliminary investigation 

into landscape-level effects of agricultural intensification on a semi-colonial aerial 

insectivorous bird breeding in farmlands, focusing on how landscape composition affects 

nestling condition and diet.  

4.1. Key findings 

4.1.1. Effects of agricultural intensification 

My initial prediction was that negative effects of agricultural intensification on nestling 

diet would affect nestling condition and growth (e.g., Konarzewski et al. 1996; Searcy et 

al. 2004; Twining et al. 2016), but I found mixed evidence. Proportion of row crop was 

positively related to nestling condition, but was unrelated to nestling growth and pre-

fledgling condition. This relationship with nestling condition may reflect a benefit of row 

crops as open habitat beneficial for foraging for Barn Swallows or that row crops support 
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higher densities of prey species such as tachinid flies. Despite finding a positive 

relationship between row crop and nestling condition, I found a negative relationship 

between row crop and diet breadth. I speculate that reduced diet breadth may indicate a 

preference for beneficial prey types rather than reduced diet amount in these 

environments, given the relationship found with nestling body condition. Alternatively, 

increased richness of prey in diets of Barn Swallows occupying more natural landscapes 

may simply reflect opportunistic foraging by parents. Regardless, being born within 

landscapes composed of greater proportion of row crop did not translate to higher or 

lower pre-fledging condition or fledging success in this system. Although I found 

contrasting effects of agricultural intensification on nestling condition and diet, there 

were no differences in productivity with proportion of row crop. Taken together, these 

results provide evidence that agricultural intensification is not detrimental to the breeding 

success of Barn Swallows in this area. 

 4.1.2. Nestling diet source 

I found strong relationships between agricultural land use and nestling feather isotope 

values (δ13C and δ15N), indicating that nestling diet is at least partially derived from 

agricultural land cover types. Interestingly, this effect was strongest at large scales likely 

indicating large movements (~2km) of either consumer, prey, or both. Conversely, 

nestling condition and diet breadth both were affected by landscape at much smaller 

scales (100-200 m). These results support a realized foraging distance of ~200 m (Turner 

1980; McCarty & Winkler 1999; Ambrosini et al. 2002). As discussed above, I speculate 

that reduced dietary richness in high row crop landscapes may reflect preferential or 

opportunistic foraging patterns in barn swallows. Differences in scale of effect between 
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isotopes and diet composition suggest a possible filtering of invertebrate prey in 

landscapes with high amounts of row crop, where less mobile insects are negatively 

affected by agricultural intensification near the colony. For example, when only richness 

of dipteran prey was examined, all scale of effect was lost, and there were no detectable 

effects of agricultural intensification on diet breadth or composition. I interpret this 

evidence as supporting the idea that prey insects are making major movements, as 

Diptera are highly mobile (e.g., Froerer et al. 2010) and were the predominant component 

of nestling diet. I hypothesize that dipteran prey exists as a robust source of highly mobile 

aerial prey allowing aerial insectivores to mitigate any negative effects of local land use 

on diet. 

4.2. Conservation implications 

Populations of Barn Swallows in Canada are declining regionally (Nebel et al. 2010; 

Michel et al. 2016) and are recognized as being threatened federally in Canada. This 

research provides evidence that agricultural intensification has little effect on nestling 

Barn Swallows, from the standpoint of condition and productivity, but may negatively 

affect nestling diet and, ultimately, adult fitness if adults work harder to provision young 

in more intensively farmed landscapes. As there was no effect of agricultural 

intensification on pre-fledging condition, I do not expect any consequences for survival 

in agriculturally intense areas (Naef-Daenzer et al. 2001; Mitchell et al. 2011; Jones et al. 

2016). Consequently, variation in agricultural intensity is not likely contributing to 

reduced productivity of Barn Swallows breeding in Southern Ontario at contemporary 

population densities and levels of agricultural intensity (Michel et al. 2016). Despite this, 

there is still potential risk for agriculturally intense landscapes to be detrimental to 
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breeding aerial insectivores. Intensification of agricultural land use can be accompanied 

by a loss of open barns and subsequently the loss of entire colonies, which represents a 

huge loss of productivity to the population (e.g., 4-6 young per brood, 2 broods per 

breeding pair, and 3-20+ breeding pairs per colony). As Barn Swallows and other aerial 

insectivorous species provide insect control as an important ecosystem service (Kelly et 

al. 2013), conserving aerial insectivores within agricultural environments is in the best 

interest of private landowners and environmental sustainability. Contrary to initial 

predictions, my recommendation based on these results would be to prevent the loss of 

breeding sites regardless of agricultural intensity, as my results suggest that productivity 

is not affected by agricultural intensification, at least to the levels I observed. However, I 

caution that additional monitoring should take place, especially if population densities of 

breeding Barn Swallows increase given the possibility of negative density-dependent 

effects.  

4.3. Study assumptions 

Rather than comparing a subset of sites at either extreme on the agricultural intensity 

gradient, I attempted to assess the effect of row crop proportion on diet, condition, and 

productivity. This allowed us to use a scale of effect analyses to tease out exactly at what 

scale nestling Barn Swallow traits were predicted by agricultural land use. I assume that 

this context presents a more realistic landscape composition with a mix of agriculture, 

semi-natural forages, and small forest patches, although this limits comparison with more 

extremes of intensity, such as the Canadian prairies where regional trends in Barn 

Swallow populations are also negative (Michel et al. 2016). One aspect of my study sites 

in Ontario that might differ from other regions is a lack of wetlands. Wetlands and 
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waterbodies are hypothesized to be important to foraging swallows, especially in times of 

bad weather (M. Cadman pers. obs.), which may have buffered effects of agricultural 

intensification in those areas. In Tree Swallows, diet was composed of aquatic emergent 

prey items regardless of agricultural intensity (Michelson et al. 2018). Although this is 

peripheral to my hypotheses, it is an important component of swallow foraging ecology 

and would have been interesting to see how wetlands affected nestling diet in these agro-

ecosystems.  

Agricultural intensification represents several modern agricultural practices 

designed to maximize food productivity, including optimizing pesticide and fertilizer 

inputs as well as homogenizing cropped landscapes to maximize field size (Robinson & 

Sutherland 2002). For this thesis, I assumed that row crop amount, accounting for the 

proportion of forage (e.g., Hendrickx et al. 2007), was a suitable index of agricultural 

intensification. Other indexes have integrated fertilizer inputs, livestock densities, and 

pesticide amounts into a single index (Herzog et al. 2006). While simple to measure in 

practice, this approach has limitations, as it cannot account for processes such as 

pesticide and fertilizer amounts, crop type, connectivity, or field size. Surveying each 

landowner within 2km of each site (22 sites across two years) to gain information on a 

field by field basis was logistically not possible for this study system and landowners in 

this area varied in their willingness to provide such information. Another missing aspect 

of agricultural intensification from my analyses is extent of livestock. Although livestock 

presence at the focal barn was included as a predictor in the isotope models, I did not 

include livestock density in any other landscape model due to logistical difficulties of 

measuring livestock density at a landscape level. This may have influenced my results, as 
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studies show that livestock presence influences the site selection and reproductive 

success of breeding Barn Swallows (Ambrosini et al. 2002; Grüebler et al. 2010). 

Furthermore, livestock farming in Europe is correlated with reduced population declines 

(Ambrosini et al. 2012). Although, there are components of agricultural intensification 

that were not accounted for in my index, I am confident that that measure captures 

landscape-level changes in agricultural intensity.  

4.4. Future direction 

Future studies should attempt to approach the question of the effects of agricultural 

intensity on aerial insectivores on smaller, more focused, scales. First, studies should 

directly quantify aerial insect prey availability while simultaneously focusing on the 

effects on diet and nestling condition. Few studies have directly assessed agricultural 

effects on insect prey availability as a mechanism contributing to reduced condition in 

nestlings of birds (Brickle et al. 2000; Morris et al. 2005; Hart et al. 2006) and none have 

been conducted on aerial insectivores and aerial prey. A previous study showed no effects 

of insect availability on fledging success or mass in nestling swallows, but their sites 

were limited to semi-natural landscapes with little influence of agricultural intensification 

(Imlay et al. 2017). While my results support no effect of agricultural intensification on 

nestling condition and success, I did not consider other measures of agricultural intensity 

in my analyses. Pesticides have been shown to have indirect effects on nestling condition, 

growth, foraging behaviour, and prey insect availability in other farmland breeding 

species (Boatman et al. 2004). Furthermore, there is recent concern that neonicotinoid 

pesticides show strong correlations with aerial insectivore declines (Hallmann et al. 

2014). Therefore, pesticide type and amount, should be incorporated in an index of 
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agricultural intensification (see Herzog et al. 2006), as they likely differ among crop 

type/strain and farming practice.  

If nestling condition, success, and dipteran diet are truly independent of 

agricultural intensification, the relationship between agricultural intensification, parental 

effort, and condition of adults should be investigated. Unfortunately, I was unable to 

assign adult Barn Swallows to nests, preventing any measure of parental quality, or 

effort. Although I found very little evidence for an effect of agricultural intensification 

influencing nestling condition or fledging success, the cost of reduced prey availability 

may be to adult condition and survival. Previous studies have shown that adults can 

increase effort to feed young in habitats with lower prey availability (Schifferli et al. 

2014; Stanton et al. 2016), but this comes at a cost to themselves (Saino et al. 1999). In 

Tree Swallows, studies have shown an overall increase in provisioning rates in 

agricultural areas (Stanton et al. 2016), in addition to reduced adult body mass and 

condition (Michelson et al. 2018). In Barn Swallows, no studies have compared foraging 

and provisioning rates between areas of high and low agricultural intensity. Future 

studies should assign adults to nests to investigate the effects of agricultural 

intensification on parental provisioning (foraging distance, time spent foraging, or 

number of trips) and the consequences for parent condition and survival.  

4.5. Conclusions 

Ultimately the aim of this research was to inform conservation planning to mitigate 

agricultural effects on a species at risk living in a human-modified landscape. While 

continued concern for the long-term effects of agricultural intensification is relevant for 

many species (Stanton et al. 2018), I provide little evidence of long-term negative 
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repercussions to breeding within agriculturally intense landscapes for the Barn Swallow. 

Furthermore, I present the first study to find positive effects of agricultural intensification 

on an aerial insectivorous species. Although I found negative effects of agricultural 

intensification on nestling diet breadth and evidence that nestlings were provisioned from 

within agriculturally intense land cover types, it is unclear whether this directly ties to 

nestling condition or fledging success. Altogether, this research represents an important 

step towards understanding the complex relationship between agricultural intensification 

and breeding farmland birds.  
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Table A2. Summary statistics for mass, wing length, and breeding statistics, separated by 

age and brood number, for Barn Swallows breeding near Guelph Ontario in the 2016 and 

2017. Hatch dates (ordinal dates), clutch sizes, and fledged numbers are only reported for 

nests that survived until hatch.  

  2016 2017 Both 

  n Mean (SD) n Mean (SD) n Mean (SD) 

Day 

eight 

Mass (g) 547 17.22 (2.45) 1286 16.52 (2.21) 1833 16.73 (2.31) 

Wing (mm)  37.74 (6.36)  43.53 (4.89)  35.49 (5.57) 

Day 

15 

Mass (g) 364 19.85 (1.62) 420 20.34 (1.95) 784 20.11 (1.82) 

Wing (mm)  74.62 (4.94)   72.59 (5.00)  73.53 (5.07) 

Brood 

one 

Hatch date (ordinal) 140 167 (6) 217 166 (7) 357 166 (7) 

Clutch size  5.06 (0.83)  5.00 (0.77)  5.03 (0.79) 

Fledging number  4.31 (1.41)  4.28 (1.27)  4.29 (1.33) 

Brood 

two 

Hatch date (ordinal) 96 206 (9) 95 211 (6) 191 209 (8) 

Clutch size  4.33 (0.83)  4.15 (0.64)  4.24 (0.74) 

Fledging number  3.53 (1.09)  3.47 (1.18)  3.50 (1.13) 
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Appendix B. Scale of effect figures for nestling condition 

 

Figure B1. The effect of scale on the relationship between Barn Swallow nesting (day 6 - 

10)  mass and (a-c) row crop proportion or (d-f) forage amount, showing AIC values 

resulting from LMMs using landscape data captured using a specified buffer radius (x-

axis). Plots are separated by year (a,d – 2016, b,e – 2017, c,f – 2016/2017. Filled points 

indicate models that are competitive with the best model (i.e., AIC values within 2.0 AIC 

of the lowest AIC model). 
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Figure B2. The effect of scale on the relationship between Barn Swallow pre-fledging 

(day 15) mass and (a-c) row crop proportion or (d-f) forage amount, showing AIC values 

resulting from LMMs using landscape data captured using a specified buffer radius (x-

axis). Plots are separated by year (a,d – 2016, b,e – 2017, c,f – 2016/2017). Filled points 

indicate models that are competitive with the best model (i.e., AIC values within 2.0 AIC 

of the lowest AIC model). 

  



115 

 

 

Figure B3. The effect of scale on the relationship between Barn Swallow nestling growth 

(change in mass between day 8 and 15) and (a-c) row crop proportion or (d-f) forage 

amount, showing AIC values resulting from LMMs using landscape data captured using a 

specified buffer radius (x-axis). Plots are separated by year (a,d – 2016, b,e – 2017, c,f – 

2016/2017). Filled points indicate models that are competitive with the best model (i.e., 

AIC values within 2.0 AIC of the lowest AIC model). 
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Figure B4. The effect of scale on the relationship between Barn Swallow fledging success 

and (a-c) row crop proportion or (d-f) forage amount, showing AIC values resulting from 

GMLMs using landscape data captured using a specified buffer radius (x-axis). Plots are 

separated by year (a,d – 2016, b,e – 2017, c,f – 2016/2017). Filled points indicate models 

that are competitive with the best model (i.e., AIC values within 2.0 AIC of the lowest 

AIC model). 
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Appendix C. Relationship between nestling mass and structural size 

 

Figure C1. Scatterplot of nestling mass (g) plotted against nestling wing (mm). Line with 

shaded area indicates curvilinear equation (y = x + x2) with standard error. 
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Figure C2. Scatterplot of pre-fledging mass (g) plotted against pre-fledging wing (mm). 

Line with shaded area indicates curvilinear equation (y = x + x2) with standard error. 
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Appendix D. DNA barcoding protocol 

Detailed methods were provided by the Canadian Center for DNA Barcoding. Samples 

were vortexed in a 15 mL tube containing 2 ceramic beads, and DNA was extracted using 

5 mL ProK mixture and insect lysis buffer. The resulting mixture was incubated at 56°C 

overnight. A 50 μL subsample was mixed with 100 μL of binding mix and transferred to 

a glass fibre plate, washed with 180 μL of protein wash buffer followed by 750 μL of 

wash buffer and then eluted in 40 μL of elution buffer. Samples were amplified 

separately, using insect-specific primers targeting a 157 basepair region of the 

mitochondrial gene cytochrome c oxidase I (COI; Zeale et al. 2011). For each plate (96-

wells), the processed samples were tagged using 12 forward multiplex identifier (MID) 

tags and 8 reverse MID tags. Once tagged, the samples were amplified using PCR. The 

PCR mixture consisted of 2 µL of DNA, 2 µL of dH 2 O, 0.625 µL 50 nM MgCl 2, 6.25 

µL of 10% trehalose, 1.25 µL of 10X buffer, 0.125 µL of 10µM of each the forward and 

reverse primer, 0.0625 µL of 10 µM dNTP, and 0.06 µL of Platinum Taq (5U/µL). PCR 

was conducted at 94°C for 2 mins, followed by 60 cycles of 30s at 94°C, 30s at 53°C and 

30s at 72°C, followed by a final extension of 5 min at 72°C and then held at 10°C. 

Amplicons were visualized using 4 µL on an E-Gel (Thermo Fisher Scientific). PCR 

products for each plate were pooled and amplicons were purified using magnetic bead 

protocol outlined in (Prosser & Hebert 2017) using double-size selection to purify for the 

target amplicon length (~284 bp). After cleaning, the amplified product was quantified 

using a Qubit 2.0 fluorometer (Thermo Fisher Scientific) and adjusted to 1 ng µL -1. In 

2016, the sequencing library was prepared by templating and enriching with the Ion 

OneTouch 2 System (Thermo Fisher Scientific). In 2017, the sequencing library was 
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automatically prepared by templating using an Ion Chef platform (Thermo Fisher 

Scientific). The library was sequenced using a 316 v.2 chip on an Ion Torrent PGM 

(Thermo Fisher Scientific) in 2016, and a 530 chip on an Ion Torrent S5 high-throughput 

sequencer (Thermo Fisher Scientific) in 2017. 
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Appendix E. Diet summary 

Table E1. Comprehensive summary of all detected arthropod prey items, across all 

samples. Low-quality reads were removed along with identifications less than 100 reads 

per sample, as a conservative approach. Species names are reported precisely as output 

from the BLAST results. Freq is the frequency of detection and Reads is the total number 

of reads during sequencing, across all samples and years, that were grouped into the 

reported taxonomic identification. This table summarizes 389 species, 252 genera, 99 

families, and 12 orders. 

Class Order Family Species Freq Reads 
Arachnida Araneae Araneidae Eustala anastera 1 354 

   Neoscona arabesca 1 267 

  Salticidae Phidippus clarus 1 607 

  Theridiidae Parasteatoda tabulata 1 619 

Diplopoda Julida Julidae Julus scandinavius 2 593 

Insecta Coleoptera Anthribidae Anthribus nebulosus 1 1109 

  Carabidae Agonum bicolor 1 193 

   Amara eurynota 4 47923 

   Amara littoralis 2 1994 

   Amara sinuosa 9 82134 

   Bembidion versicolor 1 375 

   Bembidion mimus 1 283 

   Bembidion obtusum 1 1012 

   Bembidion quadrimaculatum 1 895 

   Dromius piceus 1 29301 

   Dyschirius erythrocerus 1 841 

   Dyschirius larochellei 2 360 

  Cerambycidae Callimoxys sanguinicollis 1 277 

   Lepturges confluens 1 178 

   Tetrops praeusta 1 9714 

  Chrysomelidae Dibolia borealis 2 1610 

   Oulema melanopus 14 72392 

   Systena frontalis 1 2146 

   Galerucinae sp.  1 116 

  Curculionidae Hylesinus aculeatus 1 227 

   Hypera postica 8 5718 

   Hypera meles 3 1569 

   Phyllobius oblongus 9 20906 

   Polydrusus formosus 7 41176 

   Rhinoncus bruchoides 1 257 

   Scolytus multistriatus 3 66033 

   Sitona hispidulus 34 408828 

   Tychius picirostris 2 16677 

   Curculionidae sp. 6 7204 

  Dermestidae Anthrenus scrophulariae 1 2675 

   Dermestes frischii 1 491 

  Dytiscidae Hydrocolus rubyae 1 1496 
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  Elateridae Dalopius pallidus 1 220 

  Histeridae Euspilotus assimilis 1 5151 

  Hydrophilidae Cercyon haemorrhoidalis 20 36869 

   Helophorus nitiduloides 1 209 

   Sphaeridium scarabaeoides 7 5117 

   Hydrophilidae sp. 1 106 

  Nitidulidae Fabogethes nigrescens 2 374 

  Ptinidae Hemicoelus carinatus 4 14340 

   Ptinidae sp.  2 542 

  Ripiphoridae Ripiphorus fasciatus 4 26361 

  Scarabaeidae Onthophagus nuchicornis 2 23714 

  Scirtidae Cyphon variabilis 2 3463 

  Staphylinidae Aleochara verna 2 18543 

   Carpelimus sp.  1 206 

   Lithocharodes longicollis 1 6972 

   Tachinus jacuticus jacuticus 1 239 

   Tachyporus sp.  4 16653 

   Xantholinus linearis 1 199 

   Staphylinidae sp. 1 116 

  Tetratomidae Tetratomidae sp. 2 308 

 Diptera Acroceridae Acroceridae sp.  1 130 

  Anthomyiidae Alliopsis fractiseta 1 631 

   Delia florilega 36 69581 

   Delia pilifemur 1 124 

   Delia platura 19 38652 

   Delia sp. 8 2131 

   Eustalomyia festiva 1 2243 

   Fucellia sp.  1 123 

   Hylemyza partita 1 204 

   Lasiomma sp. 2 1826 

   Lasiomma cuneicorne 1 144 

   Pegoplata infirma 1 263 

   Zaphne implicata 1 110 

   Anthomyiinae sp.  1 367 

   Anthomyiidae sp.  1 631 

  Asilidae Dioctria sp. 34 368138 

   Asilidae sp. 3 27993 

  Bibionidae Dilophus femoratus 1 3271 

  Bolitophilidae Bolitophila austriaca 1 101 

  Bombyliidae Systropus macer 1 135 

   Villa lateralis 1 251 

  Calliphoridae Calliphora coloradensis 1 608 

   Calliphora livida 1 897 

   Calliphora loewi 1 251 

   Calliphora vomitoria 5 1444 

   Calliphora montana 2 799 

   Lucilia illustris 9 2529 

   Lucilia sp. 2 470 

   Melanomya bicolor 2 1626 

   Phormia regina 17 14805 

   Pollenia griseotomentosa 16 47640 

   Pollenia pediculata 97 332948 

   Pollenia rudis 3 518 

   Pollenia labialis 1 4694 

  Cecidomyiidae Cecidomyiinae sp. 1 189 

   Cecidomyiidae sp. 9 3585 
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  Ceratopogonidae Forcipomyia sp. 1 1298 

   Ceratopogonidae sp. 1 127 

  Chironomidae Chironomus acidophilus 1 303 

   Chironomus sp. 1 234 

   Cryptochironomus sp. 1 334 

   Limnophyes minimus 1 143 

   Orthocladius sp. 1 293 

   Procladius sp. 2 651 

   Chironominae sp. 2 426 

   Tanypodinae sp. 1 285 

   Chironomidae sp. 1 272 

  Chloropidae Oscinella sp. 1 220 

   Thaumatomyia trifasciata 2 448 

   Trachysiphonella sp. 1 151 

   Chloropidae sp. 2 25303 

  Culicidae Aedes cinereus 2 2228 

   Aedes fitchii 3 7859 

   Aedes japonicus 1 118 

   Aedes provocans 7 5496 

   Aedes vexans 3 2938 

   Aedes tahoensis 1 230 

   Aedes sp. 4 1376 

   Anopheles quadrimaculatus 1 139 

   Coquillettidia perturbans 2 2457 

   Culex sp. 2 1303 

   Culicinae sp. 5 1284 

   Culicidae sp. 2 1296 

  Cylindrotomidae  Cylindrotomidae sp. 2 14504 

  Dolichopodidae Chrysotus sp. 1 210 

   Dolichopus plumipes 2 903 

   Hydrophorus chrysologus 1 133 

   Sympycnus lineatus 8 9636 

   Dolichopodidae sp. 2 1196 

   Diaphorinae sp. 1 109 

  Drosophilidae Drosophila affinis 3 10441 

   Drosophila funebris 1 160 

   Drosophila suzukii 1 1977 

   Drosophila subquinaria 1 141 

   Scaptomyza pallida 3 14775 

  Empididae Anthepiscopus sp. 1 132 

   Rhamphomyia longicauda 2 2035 

  Ephydridae Psilopa leucostoma 3 963 

   Ephydridae sp. 1 316 

  Fanniidae Fannia atra 1 193 

   Fannia americana 1 3430 

   Fannia sp. 3 2082 

  Hybotidae Ocydromia sp. 1 1278 

   Platypalpus sp. 1 208 

   Hybotidae sp. 1 113 

  Limoniidae Antocha saxicola 2 21938 

   Dicranomyia frontalis 1 1085 

   Dicranomyia sp. 29 35523 

   Dicranophragma sp. 1 162 

   Euphylidorea platyphallus 5 21955 

   Geranomyia sp. 2 8423 

   Helius flavipes 1 135 



124 

 

   Limnophila sp. 1 113 

   Metalimnobia solitaria 1 186 

   Ormosia affinis 2 2652 

   Pilaria tenuipes 1 47921 

   Pseudolimnophila inornata 2 64749 

   Pseudolimnophila luteipennis 4 16187 

   Limoniidae sp. 59 352945 

  Milichiidae Leptometopa latipes 2 1553 

  Muscidae Coenosia tigrina 1 282 

   Gymnodia humilis 2 446 

   Hebecnema nigra 1 580 

   Hebecnema umbratica 2 5593 

   Helina depuncta 11 6603 

   Helina troene 1 1022 

   Helina sp. 3 1143 

   Hydrotaea aenescens 3 3369 

   Hydrotaea pilitibia 2 460 

   Macrorchis ausoba 1 2032 

   Morellia podagrica 1 109 

   Musca autumnalis 4 837 

   Muscina flukei 2 598 

   Muscina levida 6 3727 

   Muscina pascuorum 2 321 

   Muscina sp. 1 AKR 1 840 

   Mydaea detrita 2 412 

   Myospila meditabunda 7 2811 

   Neodexiopsis rufitibia 1 389 

   Pentacricia aldrichii 1 196 

   Stomoxys calcitrans 15 19011 

  Mycetophilidae Mycetophila sp. 1 116 

  Mycetophilidae Mycetophilidae sp. 4 1000 

  Pediciidae Tricyphona sp. 1 433 

  Phoridae Diplonevra nitidula 1 191 

  Pipunculidae Elmohardyia sp. AZ3 1 800 

   Pipunculus sp. ON15 10 35071 

  Platystomatidae Rivellia steyskali 2 1916 

  Psychodidae PschodididGC sp. 1 1 1503 

  Psychodidae Psychoda sp. 1 157 

  Psychodidae Psychodidae sp. 1 318 

  Rhagionidae Rhagio tringarius 6 6072 

  Sarcophagidae Amobia sp. 1 163 

   Boettcheria latisterna 2 3434 

   Helicobia rapax 1 11434 

   Macronychia sp. 2 2832 

   Metopia sp. 1 207 

   Ravinia acerba 4 20091 

   Ravinia querula 10 82779 

   Ravinia stimulans 7 29973 

   Ravinia sp. 16 42692 

   Sarcophaga aldrichi 2 470 

   Sarcophaga caerulescens 12 39145 

   Sarcophaga crassipalpis 1 6373 

   Sarcophaga polistensis 2 2517 

   Sarcophaga subvicina 25 125225 

   Sarcotachinella sinuata 2 9531 

   Sarcophaginae sp. 1 4174 
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   Sarcophagidae sp. 6 3050 

  Scathophagidae Scathophaga stercoraria 12 15137 

  Sciaridae Bradysia pallipes 1 156 

   Mouffetina pulchricornis 1 368 

  Sepsidae Sepsis neocynipsea 1 1021 

   Sepsis punctum 15 12055 

   Themira minor 2 12652 

  Simuliidae Simulium decorum 2 1507 

   

Simulium verecundum 
complex 3 5475 

  Sphaeroceridae Copromyza equina 2 421 

   Lotophila atra 3 6662 

   Minilimosina parva 1 540 

   Sphaerocera curvipes 4 2065 

   Sphaeroceridae sp. 1 143 

  Stratiomyidae Allognosta fuscitarsis 5 6948 

   Beris fuscipes 1 204 

   Odontomyia cincta 1 278 

   Odontomyia virgo 2 1264 

   Stratiomys obesa 2 393 

   Stratiomyidae sp. 1 1722 

  Syrphidae Chrysogaster antitheus 1 19635 

   Eristalis transversa 1 3941 

   Eristalis sp. 1 2295 

   Eupeodes sp. 3 786 

   Melanostoma sp. 1 675 

   Orthonevra nitida 1 825 

   Parhelophilus laetus 1 202 

   Platycheirus unknown sp. 1 1 287 

   Platycheirus sp. 6 7648 

   Sericomyia chrysotoxoides 1 411 

   Sphaerophoria sp. 2 1445 

   Syritta pipiens 4 9452 

   Syrphus knabi 4 2015 

   Syrphus ribesii 5 3399 

   Syrphus torvus 3 2209 

   Syrphus sp. 13 10694 

   Temnostoma barberi 1 300 

   Toxomerus geminatus 5 4157 

   Xylota quadrimaculata 2 522 

  Tabanidae Hybomitra epistates 25 77691 

   Hybomitra illota 1 1694 

   Hybomitra lasiophthalma 27 29625 

   Hybomitra lurida 3 1267 

   Hybomitra minuscula 2 284 

   Hybomitra frosti 2 1203 

   Hybomitra sodalis 2 4632 

   Hybomitra sp. 6 5548 

   Tabanus similis 15 9607 

   Tabanus novaescotiae 2 4410 

   Tabanus sp. 3 497 

   Tabaninae sp. 3 386 

   Tabanidae sp. 2 211 

  Tachinidae Admontia sp. 1 4538 

   Archytas californiae 3 41429 

   Archytas apicifer 1 117 
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   Archytas instabilis 1 111 

   Archytas metallicus 1 2564 

   Belvosia Woodley17 59 963130 

   Blondelia hyphantriae 2 584 

   Chaetogaedia townsendi 1 222 

   Chaetogaedia sp. 7 1636 

   Cryptomeigenia sp. 1 349 

   Dinera grisescens 3 20022 

   Epalpus signifer 2 2759 

   Euexorista rebaptizata 2 738 

   Eumea sp. 4 3027 

   Exorista larvarum 1 1893 

   Exorista dydas 1 198 

   Gymnoclytia occidua 1 118 

   Houghia coccidella 1 555 

   Hubneria sp. 1 854 

   Leschenaultia nr. sp. Z 3 861 

   Leschenaultia fulvipes 8 7718 

   Lespesia datanarum 2 1595 

   Lespesia sp. 1 1786 

   Linnaemya sp. 6 1713 

   Loewia foeda 1 667 

   Myxexoristops bonsdorffi 10 3542 

   Oswaldia assimilis 1 1990 

   Oswaldia minor 1 115 

   Patelloa sp. 1 66006 

   Phorocera exigua 1 281 

   Platymya sp. 4 10671 

   Prooppia crassiseta 1 145 

   Pseudopachystylum debile 1 1154 

   Ptilodexia conjuncta 1 466 

   Strongygaster sp. 1 250 

   Tachinomyia nigricans 3 5148 

   Uramya pristis 1 2266 

   Winthemia illinoiensis 3 2465 

   Winthemia rufopicta 55 259206 

   Winthemia sinuata 12 12350 

   Winthemia sminthurae 4 33801 

   Winthemia sp. 26 12927 

   Exoristinae sp. 6 1478 

   Tachinidae sp. 71 886907 

  Tephritidae Rhagoletis suavis 1 107 

   Urophora quadrifasciata 2 299 

   Urophora cardui 1 4382 

  Therevidae Therevidae sp. 2 12143 

  Tipulidae Angarotipula illustris 23 213472 

   Ctenophora sp. 2 5665 

   Nephrotoma alterna 3 10056 

   Nephrotoma eucera 3 3537 

   Nephrotoma ferruginea 35 169998 

   Tipula bicolor 3 819 

   Tipula duplex 1 554 

   Tipula johnsoniana 2 6979 

   Tipula penobscot 1 5695 

   Tipula sayi 1 138 

   Tipula hermannia 3 10349 
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   Tipulinae sp. 1 706 

   Tipulidae sp. 4 7681 

  Ulidiidae Physiphora demandata 3 7525 

   Diptera sp. 26 24115 

 Ephemeroptera Ephemeridae Hexagenia atrocaudata 1 6115 

 Hemiptera Aphrophoridae Philaenus spumarius 5 6419 

  Clastopteridae Clastoptera obtusa 1 358 

  Corixidae Callicorixa audeni 1 708 

  Miridae Lygus lineolaris 13 29385 

  Miridae Neolygus tinctus 1 105 

  Pentatomidae Neottiglossa undata 1 209 

  Rhyparochromidae Megalonotus sabulicola 1 1325 

 Hymenoptera Braconidae Macrocentrus sp. 1 137 

  Braconidae Meteorus sp. 2 779 

  Cynipidae Cynipidae sp. 1 199 

  Diprionidae Diprion similis 2 851 

   Gilpinia hercyniae 1 697 

  Figitidae Figitinae sp. 1 185 

   Figitidae sp. 9 25685 

 Hymenoptera Ichneumonidae Bathyplectes curculionis 5 6045 

   Campoletis flavicincta 1 538 

   Diplazon laetatorius 2 4182 

   Enizemum cf. ornatum 1 161 

   Mesochorus americanus 1 5950 

   Mesochorus sp. 2 944 

   Ophion keala 1 582 

   Triclistus sp. 1 6573 

   Tromatobia ovivora 1 230 

   Tromatobia sp. 1 297 

   Tryphon seminiger 7 33973 

   Campopleginae sp. 1 180 

   Cryptinae sp. 1 209 

   Ctenopelmatinae sp. 1 17143 

   Ichneumoninae sp. 1 208 

  Perilampidae Perilampus chrysopae 1 483 

  Sierolomorphidae Sierolomorpha sp. 2 5753 

  Tenthredinidae Dolerus elderi elderi 2 489 

 Lepidoptera Argyresthiidae Argyresthia canadensis 1 382 

  Crambidae Chrysoteuchia topiarius 1 170 

   Neodactria luteolellus 1 18405 

   Parapediasia teterrellus 1 797 

   Sitochroa palealis 1 747 

  Erebidae Lymantria dispar dispar 1 153 

   Orgyia leucostigma 1 1169 

   Palthis angulalis 1 1142 

  Geometridae Chlorochlamys chloroleucaria 1 1160 

   Eupithecia miserulata 2 842 

   Pasiphila rectangulata 7 29784 

  Hepialidae Pharmacis lupulina 1 106 

  Hesperiidae Anatrytone logan 2 656 

   Ancyloxypha numitor 1 1631 

   Polites mystic 4 27113 

   Polites peckius 5 9237 

   Polites themistocles 1 651 

   Thymelicus lineola 2 8546 

  Lasiocampidae Tolype dayi 1 169 
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  Noctuidae Apamea sordens 1 106 

   Apamea devastator 2 3824 

   Neoligia exhausta 1 859 

   Tricholita signata 1 150 

  Nymphalidae Coenonympha tullia 2 440 

  Sesiidae Synanthedon pini 1 24244 

  Tineidae Tinea columbariella 1 12711 

  Tortricidae Cnephasia asseclana 2 746 

   Cochylis hoffmanana 1 110 

   Platynota semiustana PS2 1 107 

  Ypsolophidae Ochsenheimeria sp. 2 1089 

 Odonata Aeshnidae Rhionaeschna multicolor 1 3127 

  Coenagrionidae Enallagma sp. 1 2476 

 Siphonaptera Ceratophyllidae Ceratophyllidae sp. 1 431 

 Trichoptera Hydroptilidae Hydroptilidae sp. 1 557 

  Leptoceridae Triaenodes nox 1 255 

  Polycentropodidae Polycentropus confusus 1 140 
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Appendix F. Scale of effect figures for nestling diet 

 

Figure F1. The effect of scale on the relationship between δ13C values in Barn Swallow 

nestling feathers and the proportion of corn (a-c) and the proportion of water (d-f). Plots 

show AIC values resulting from linear mixed effects models using landscape data from 

different buffer radii (x-axis). Plots are separated by year (a and d – 2016, b and e – 2017, 

c and f – 2016/2017). Filled points indicate models that are competitive with the best 

model (i.e., AIC values within 2.0 AIC of the lowest AIC model). 
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Figure F2. The effect of scale on the relationship between δ15N values in Barn Swallow 

nestling feathers and the proportion of row crop (a-c). Plots show AIC values resulting 

from linear mixed effects models using landscape data from different buffer radii (x-

axis). Plots are separated by year (a – 2016, b – 2017, c – 2016/2017). Filled points 

indicate models that are competitive with the best model (i.e., AIC values within 2.0 AIC 

of the lowest AIC model). 
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Figure F3. The effect of scale on the relationship between Barn Swallow nestling diet 

breadth, as detected by DNA barcoding of nestling feces, and the proportion of row crop 

(a-c) and forage (d-f). Plots show AIC values resulting from linear mixed effects models 

using landscape data from different buffer radii (x-axis). Plots are separated by year (a,d 

– 2016, b,e – 2017, c,f – 2016/2017). Filled points indicate models that are competitive 

with the best model (i.e., AIC values within 2.0 AIC of the lowest AIC model). 
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Figure F4. The effect of scale on the relationship between Barn Swallow nestling Diptera 

diet breadth, as detected by DNA barcoding of nestling feces, and the proportion of row 

crop (a-c) and forage (d-f). Plots show AIC values resulting from linear mixed effect 

models using landscape data from different buffer radii (x-axis). Plots are separated by 

year (a,d – 2016, b,e – 2017, c,f – 2016/2017). Filled points indicate models that are 

competitive with the best model (i.e., AIC values within 2.0 AIC of the lowest AIC 

model). 
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Appendix G. Animal use protocol approval 
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Appendix H. Sub-banding permit 
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Appendix I. Scientific studies permit for Grand River Conservation Authority  
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