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Abstract

An improved understanding of temperature variations in Earth’s middle atmosphere is im-

portant for the improvement of our understanding of climate and weather on the surface. The

optimal estimation method (OEM) is an inversion modeling approach, which uses regularized

nonlinear regression to retrieve, in this case, the temperature of Earth’s middle atmosphere

using Rayleigh-scatter lidar measurements. The OEM regularization term is the a priori

knowledge of the atmospheric temperature profile. In this thesis I use lidar temperatures in

the altitude range 30–110 km to construct a temperature climatology using over 500 nights of

measurements obtained by the Purple Crow Lidar in London, Ontario. The OEM produces

several diagnostic tools, such as averaging kernels and an uncertainty budget which includes

both systematic and statistical uncertainties important for atmospheric applications. Using

OEM allows for the quantitative calculation of the maximum valid altitude of the retrieval

by determining at which altitude the a priori temperature profile influences the retrieval by

more than 10%. This new knowledge extends the temperature retrievals 5 to 10 km higher

in altitude than traditional methods. The OEM retrievals are validated by comparison of

the PCL temperature climatology with other measurements. Excellent agreement is found

between the PCL and sodium lidar climatologies in the upper mesosphere and lower ther-

mosphere, where the temperature variability is highest. Thus validated, the OEM can now

be applied to other similar lidar systems. Lidar retrievals of atmospheric temperature pro-

files using the OEM typically use a retrieval grid whose number of points is larger than the

number of pieces of independent information obtainable from the measurements. Conse-

quently, retrieved geophysical quantities contain some information from the a priori values,

which can affect the temperatures at higher altitudes. I present a method for removing the

a priori information from the retrieved profiles. The OEM provides averaging kernels, or

weighting functions, at each level. I applied the OEM to measurements obtained from two

lidars during a coincident measurement campaign between the Deutscher Wetterdienst and
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National Aeronautics and Space Administration. The OEM averaging kernels are then used

to improve lidar and satellite intercomparison.

Keywords: lidar, middle atmosphere, temperature climatology, Rayleigh scattering, inverse

modelling, Optimal Estimation Method, stratosphere, mesosphere
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iv



vapour daytime and nighttime measurements, as well as helped with manuscript prepara-

tion. Robert J. Sica was responsible for supervising the doctoral theses and contributed

to manuscript preparation. Alexander Haefele contributed to manuscript preparation and

scientific discussions. Thomas Von Clarmann also contributed to the scientific discussions

which resulted in this paper, helped develop the method based on his original work, and

contributed to manuscript preparation. The results of this chapter are submitted to the

Atmospheric Measurement techniques journal (Jalali et al., 2018a).

In Chapter 4, I applied the OEM to the DWD (German weather service) and NASA

lidar measurements were taken during a campaign in 2005 to improve the intercomparison.

Ali Jalali was responsible for all data analyses and paper preparation. R. J. Sica suggested

and supervised the project and Alexander Haefele helped with OEM theory and averaging

kernel comparisons. Wolfgang Steinbrecht (DWD) and Thomas McGee (NASA) provided

the measurements for this project. Wolfgang also hosted me at DWD and provided useful

conversion regarding analysis of the DWD measurements. John Sullivan (NASA) partici-

pated in the NASA lidar data discussions and helped provide insight into the NASA lidar

operating procedures.

Bibliography

Jalali, A., S. Hicks-Jalali, R. J. Sica, A. Haefele, and T. Clarmannvon . A practical method to

remove a priori information from lidar optimal estimation method retrievals. Atmospheric

Measurement Techniques Discussions, 2018:1–23, 2018a. doi: 10.5194/amt-2018-347.

Jalali, A., R. J. Sica, and A. Haefele. A middle latitude rayleigh-scatter lidar temperature

climatology determined using an optimal estimation method. Atmospheric Measurement

Techniques Discussions, 2018:6043–6058, 2018b. doi: 10.5194/amt-11-6043-2018.

Von Clarmann, T. and U. Grabowski. Elimination of hidden a priori information from

remotely sensed profile data. Atmos. Chem. Phys., 7:397–408, 2007.

v



Acknowledgements

First, I would like to thank my supervisor Prof. R. J. Sica for his support and guidance

throughout my PhD. Being a part of his research group has provided me with many unique

opportunities.

I would also like to thank Prof. Wayne Hocking and and Prof. Margaret Campbell-Brown

for serving on my Advisory Committee during these years and sharing their experiences with

me. I would also like to thank Prof. Wayne Hocking for many offline useful discussions about

research and life.

I would also thank Dr. Alexander Haefele and MeteoSwiss group, for providing me with

the opportunity to travel to Switzerland and other conferences. Also, I learned a lot about

the OEM from Alexander.

I would also like to thank Patricia Sica for spending large amounts of time reading this

thesis and for her attention to detail.

I am definitely grateful to my family, my Mom, Mahin Pourani, and my Dad, Mostafa

Jalali, and my sisters Fatemeh and Fereshte, and my brother Hossein. They provided me

with the chance to gain a lot of experience far from home. They have always supported my

education and considered it a priority. Without their emotional support these last few years

would have been much more difficult.

Finally, I owe more than a thank you to my best friend and wife, Shannon. This job could

not have been accomplished without her help, scientifically and emotionally. I appreciate all

the precious time she has spent for me as an editor and helping me through all the scientific

problems patiently. Thanks for her true love and friendship.

vi



Dedication

To my parents and my wife for their endless support and love

vii



Contents

Abstract ii

Co-Authorship iv

Acknowledgements vi

Dedication vii

List of Figures viii

List of Symbols xx

1 Introduction 1

1.1 Overview of the Atmosphere . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 The Middle Atmosphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Chemistry and Physics of the Middle Atmosphere . . . . . . . . . . . 4

1.2.2 Importance of the Middle Atmosphere . . . . . . . . . . . . . . . . . 6

1.2.3 Measuring Temperature in the Middle Atmosphere . . . . . . . . . . 10

1.3 Lidar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3.1 Lidar Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3.2 The Lidar Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.3.3 Rayleigh Lidar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.3.4 Raman Lidar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.3.5 Resonance Fluorescence Lidar . . . . . . . . . . . . . . . . . . . . . . 25

1.4 Measuring Temperature with Lidar . . . . . . . . . . . . . . . . . . . . . . . 26

viii



1.4.1 The Traditional Method . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.4.2 The Optimal Estimation Method . . . . . . . . . . . . . . . . . . . . 30

1.5 Overview of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2 Calculation and Validation of Optimal Estimation Method Temperature

Retrievals Using Purple Crow Lidar Rayleigh-scatter Measurements 47

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.2 Procedure for Generating the Climatology . . . . . . . . . . . . . . . . . . . 49

2.2.1 Methodology to Calculate Temperature Climatology . . . . . . . . . . 49

2.2.2 Effect of a priori on the retrieval temperature profiles in the OEM . 53

2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.3.1 Uncertainty budget and vertical resolution . . . . . . . . . . . . . . . 56

2.4 Comparison of the OEM climatology with other climatologies . . . . . . . . 64

2.4.1 Comparison between the PCL climatology using the OEM and HC

methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.4.2 Comparison with sodium lidar climatologies . . . . . . . . . . . . . . 67

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3 Removing a priori Information from Lidar Optimal Estimation Method

Retrievals 80

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.2 Description of the Raman Lidar for Meteorological Observation . . . . . . . 83

3.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.4.1 Daytime RALMO water vapor a priori removal . . . . . . . . . . . . 87

3.4.2 Nighttime RALMO water vapour a priori removal . . . . . . . . . . 91

3.4.3 Purple Crow Lidar Rayleigh temperature a priori removal . . . . . . 97

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

ix



4 Intercomparison of Temperature Retrievals from Two Coincidentally Lo-

cated Lidars Using Averaging Kernels 108

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.2 Description of measurements used in this study . . . . . . . . . . . . . . . . 109

4.2.1 Lidar description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.2.2 Comparison methodology . . . . . . . . . . . . . . . . . . . . . . . . 112

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.3.1 The NASA and DWD OEM temperature retrievals . . . . . . . . . . 113

4.3.2 Comparison of the average temperature differences between instruments118

4.3.3 Comments on the differences in temperature measured by NASA and

DWD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.3.4 Comparing lidar and satellite temperature profiles . . . . . . . . . . . 122

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5 Conclusions and Future Plans 135

VITA 139

x



List of Figures

1.1 Typical summer and winter atmospheric temperature profiles at the middle

latitudes (≈ 45◦N). Temperature profiles are taken from the CIRA-86 model.

The layers of the atmosphere: the troposphere, mesosphere, and thermosphere

are also shown. The operational range of some atmospheric lidars is shown

by arrows, as well as radiosondes (weather balloons). . . . . . . . . . . . . . 4

1.2 The temperature structure of Earth during Northern summer calculated from

the MSIS model for 15 July 2012. The red, blue, and black arrows show

the Brewer-Dobson circulation. The purple and white arrows represents the

gravity waves and planetary waves, respectively in the middle atmosphere.

The long wavelengths of gravity waves filter out by the lower atmosphere and

shorter wavelengths reach to the MLT region. Due to the low pressure in

the MLT, gravity waves break and release their energy and momentum in

the MLT, resulting in meridional flow toward the winter pole. Adapted from

Meriwether and Gerrard (2004). . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 A schematic of the Purple Crow Lidar. The green dashed lines represent the

backscattered photon path. The channels inside the detector box are: two

Rayleigh channels (HLR and LLR) at 532 nm, a Raman nitrogen channel at

607 nm, and a Raman water vapour channel at 660 nm. The diameter of the

telescope is 2.56m with a focal length of 5.17m. . . . . . . . . . . . . . . . . 22

1.4 a) HLR and b) LLR PCL rawcount measurements (cts/bin/s) for 24 March

2002, c) HLR and d) LLR corrected counts (cts/bin/s), e) HLR and f) LLR

coadded corrected profiles (MHz). The color-bar values are corresponding

corrected count rates of e1, e2, e3 and so on. . . . . . . . . . . . . . . . . . . . 23

xi



1.5 The temperature percent difference between the CIRA-86 model and the PCL

temperature climatology using the PCL and CIRA-86 temperature climatologies. 30

1.6 The average of the percent differences in temperature between 100 and 110 km

shows the annual variation of the difference between the CIRA-86 and PCL

temperature climatology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.7 a) PCL temperature retrieval using the HC method on 20020324. Each profile

corresponds to a seed pressure while the black temperature profile used the

original seed pressure and other colors show ± 2, 4, 8 and 10% of the original

seed pressure. b) The temperature difference between the temperature profiles

using the original seed pressure versus the varying seed pressure. This figure

is adapted from Gross et al. (1997) and Khanna et al. (2012). . . . . . . . . 32

1.8 a) The PCL temperature averaging kernels for 24 May 2012 adapted from

Sica and Haefele (2015). b) The MLS temperature averaging kernels at 70◦

latitude adapted from Schwartz et al. (2008). The red lines represent the

measurement response. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

1.9 An overview of the OEM’s iterative process. . . . . . . . . . . . . . . . . . . 37

2.1 Histogram distribution of number of nights of PCL measurements for HLR

channel (left) and LLR channel (right). . . . . . . . . . . . . . . . . . . . . . 52

2.2 a) Temperature difference between the a priori temperature profiles, US Stan-

dard Atmosphere and CIRA-86 (blue line). b) Temperature difference between

the OEM retrieved temperature profiles using the a priori profile used in Fig

2.2a, for 24 May 2012 (red line) and the calculated OEM statistical uncer-

tainty (blue line). The solid black and solid-dashed black lines are the height

below which the temperature profile is more than 90% (0.9) and 80% (0.8)

due to the measurements, respectively. . . . . . . . . . . . . . . . . . . . . . 54

2.3 The percentage of number of nights at each altitude for the HC method and

OEM for 0.9 and 0.8 cutoff height. . . . . . . . . . . . . . . . . . . . . . . . 55

xii



2.4 Composite PCL Rayleigh temperature climatology using the OEM. The white

lines are the height below which the temperature climatology is more than 90%

(0.9) and 80% (0.8) due to the measurements. . . . . . . . . . . . . . . . . . 56

2.5 Temperature difference between the calculated climatology from monthly CIRA-

86 temperature profiles and the OEM PCL temperature climatology. The

black lines are the height below which the temperature climatology is more

than 90% (0.9) and 80% (0.8) due to the measurements. . . . . . . . . . . . 57

2.6 Geophysical variability in temperature for the OEM PCL climatology. . . . 58

2.7 A typical night’s systematic and random uncertainties for the OEM temper-

ature retrieval. Here the uncertainty due to the pressure is coming from the

seed pressure uncertainty. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.8 Statistical temperature uncertainty of the temperature climatology. The white

lines are the height below which the temperature climatology is more than 90%

(0.9) and 80% (0.8) due to the measurements. . . . . . . . . . . . . . . . . . 60

2.9 PCL temperature systematic uncertainty due to the (a) saturation function

(1994 to 1998 only), (b) Rayleigh extinction cross section, (c) Rayleigh cross

section variation with height, (d) air density affect on Rayleigh extinction, (e)

ozone absorption cross section (f) ozone concentration, (g) seed (tie-on) pres-

sure, (h) gravity model, and (i) mean molecular mass variation with height.

In each figure, red, blue, and black lines are the minimum, maximum, and

median between all months, respectively. . . . . . . . . . . . . . . . . . . . 61

2.10 The OEM vertical resolution. The vertical resolution below 80 km is 1056m;

that is, it is equal to the retrieval grid spacing (not shown). The white lines

are the height below which the temperature climatology is more than 90%

(0.9) and 80% (0.8) due to the measurements. . . . . . . . . . . . . . . . . . 62

2.11 Comparison of the PCL statistical and systematic uncertainties with scaled

uncertainties from Leblanc et al. (2016b) as described in the text. The solid

lines are the uncertainties due to the PCL and the dashed lines are uncertain-

ties due to NDACC2016. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

xiii



2.12 PCL temperature climatology difference between the OEM and HC method

(OEM-HC) using seed pressure. The blue lines show the height below which

the OEM temperature climatology is more than 90% (0.9) and 80% (0.8) due

to the measurements. The red lines are the 10 and 15 km cutoff height for the

HC method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

2.13 PCL temperature climatology difference using the OEM and HC method

(OEM-HC) using seed temperature. The blue lines show the height below

which the OEM temperature climatology is more than 90% (0.9) and 80%

(0.8) due to the measurements. The black lines are the 10 and 15 km cutoff

height for the HC method. . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

2.14 PCL temperature climatology difference from the URB sodium lidar clima-

tology (PCL-URB). The horizontal black lines are the height below which the

temperature climatology is more than 90% (0.9) and 80% (0.8) due to the

measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

2.15 PCL temperature climatology difference from the CSU (1990-1999) sodium

lidar climatology (PCL-CSU). The horizontal black lines are the height below

which the temperature climatology is more than 90% (0.9) and 80% (0.8) due

to the measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

2.16 PCL temperature climatology difference from the upgraded CSU (2002-2006)

sodium lidar climatology (PCL-upgraded CSU). The horizontal black lines are

the height below which the temperature climatology is more than 90% (0.9)

and 80% (0.8) due to the measurements. . . . . . . . . . . . . . . . . . . . . 73

3.1 Distribution of the differences in temperatures retrieved at the altitudes where

the sum of the averaging kernels (Au) is 0.99 (a) and 0.9 (b) using two a priori

temperature profiles - the US Standard Model and CIRA-86 for over 500 nights

as detailed in Jalali et al. (2018). The red dashed line shows the mean. For

each case, the difference in temperatures is always smaller than the statistical

uncertainty at the same altitude. . . . . . . . . . . . . . . . . . . . . . . . . 82

xiv



3.2 The coarse grid levels are shown for the example case as a function of the

cumulative trace of the averaging kernel matrix. The total degrees of freedom

for the retrieval is 8.2, which is spread over the entire retrieval grid such that

each point has roughly one degree of freedom. As the SNR of the measure-

ments decreases, more fine grid points are used in the coarse grid, therefore

the distance between points generally increases with altitude. . . . . . . . . . 86

3.3 The clear daytime water vapour averaging kernel matrix for 22 January 2013 at

1200UT (a) on the fine grid and (b) on the coarse grid. Every other averaging

kernel has been plotted for clarity. a)The measurement response Au, or the

sum of the averaging kernel rows, is the red solid line. The horizontal dashed

line is the height at which the measurement response is equal to 0.9 and is

the line above which we would consider there to be large influence from the

a priori. b) The coarse grid averaging kernels all equal 1 and reach up to the

last retrieval altitude at 10 km. . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.4 The vertical resolution profile on 22 January 2013 1200UT. The vertical res-

olution will decrease on the coarse grid as the points are used to reach one

degree of freedom. The last two points have vertical resolutions of several

hundred meters and are not used in the retrieval. . . . . . . . . . . . . . . . 89

xv



3.5 a) The retrieved daytime water vapour profile for 22 January 2013 1200UT.

The fine grid retrieval is in black and includes the a priori information. The

coarse grid retrieval is in red and the a priori(grey) has been removed. The

radiosonde is shown in green. The points which we do not consider meaningful

because their uncertainties are larger than 80% in the retrieval are shown

in dashed red lines. The coarse grid retrieval increases the last valid point

by 2 km (red dashed line) and now more closely resembles the radiosonde

above the original cutoff altitude of 2.7 km ( black dashed line). b) The three

primary contributors to the uncertainty budget on January 22 2013 1200UT

are shown for comparison: the statistical uncertainty, the uncertainty due to

the calibration constant, and the uncertainty due to air density. The solid

lines are the uncertainties from the fine grid retrieval, and the dashed lines

are from the coarse grid retrieval. The a priori begins influencing the profile

above 2 km where the uncertainty increases. . . . . . . . . . . . . . . . . . . 90

3.6 The percent difference between the radiosonde and the fine and coarse grid

retrievals on 22 January 2013 1200UT. The two retrievals are the same below

2 km, where the fine grid retrieval has less than 10% of a priori contribution.

However, the coarse grid retrieval is closer to the radiosonde above 2 km and

decreases the percent difference between the fine grid and the radiosonde by

up to 50% in regions where the a priori contributes to more than 10% to the

fine grid retrieval. Above 4.5 km the statistical uncertainties are too large to

consider the retrieval meaningful. . . . . . . . . . . . . . . . . . . . . . . . . 92

3.7 The averaging kernel matrix for the nighttime water vapour retrieval on 24

April 2013 0000UT. a)The fine grid retrieval with a maximum altitude of

9.1 km (black dashed line). The measurement response is shown in red. b)

The coarse grid retrieval, where each averaging kernel is 1 for all altitudes. . 93

xvi



3.8 The vertical resolution for April 24 2013 0000UT. The vertical resolution on

the coarse grid retrieval decreases as more points are added to ensure that

each bin has one degree of freedom. The coarse grid resolution is shown in

red and each point is marked. The fine grid has points every 50m therefore

they are not shown individually. . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.9 a)The water vapour retrieval for 24 April 2013 0000UT. The fine grid retrieval

is in black, the coarse grid retrieval is in red. In general, both OEM retrievals

on the coarse and fine grid, and the radiosonde agree until the original cutoff

altitude at 9.1 km (dashed black line). The dashed red lines above 9.7 km

show the points we do not consider meaningful due to their large uncertain-

ties. Therefore, the a priori removal technique increases the last altitude bin

by 600m. The method is limited by the lack of water vapour in the upper

troposphere which causes a large and rapid drop in signal. b)The three largest

uncertainty components are compared here on the fine and coarse grid. The

drawback of the a priori removal technique is that while you gain in altitude,

you increase the uncertainty. At 9.7 km the statistical uncertainty is 52%,

which is where we no longer consider the rest of the retrieval to be viable. . . 95

3.10 The percent difference from the radiosonde for both the fine and coarse grid

retrievals. Both show similar differences with the radiosonde and the last valid

height is 9.7 km. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

3.11 The PCL averaging kernels for the temperature retrieval on 12 May 2012 on

the fine grid (a) and on the coarse grid (b). The Au = 0.9 cutoff height on

the fine grid is shown by the black horizontal dashed line at 97 km. The red

lines on the edges of the averaging kernels are the measurement response. The

coarse grid extends the temperature upwards by 4 km. . . . . . . . . . . . . . 98

3.12 The PCL vertical resolution for 12 May 2012 on the fine and coarse grid. The

vertical resolution is similar up to 85 km on both grids. Above this height

the vertical resolution decreases until it is 10 km in resolution above 100 km

altitude (dotted red line). We consider 100 km to be the highest meaningful

point on the coarse grid due to large uncertainties above that height. . . . . 99

xvii



3.13 (a) PCL temperature retrieval for the fine and coarse grids on 12 May 2012.

The temperature and its uncertainty for the last coarse grid point has a large

value and it is not shown. (b) The statistical and systematic uncertainties

due to the tie-on pressure and ozone cross section for the PCL temperature

retrieval. The other systematic uncertainty terms included in our retrieval are

not shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

3.14 PCL temperature difference between the OEM retrieved temperature profiles

using values from the US Standard Atmosphere and CIRA-86 as the a priori. 101

4.1 Temperature retrieval using the OEM on 29 October 2005 from a) NASA lidar

measurements and b) DWD lidar measurements. The blue and red shaded

area is the statistical uncertainty of the HC method and OEM, respectively. 114

4.2 The OEM temperature cutoff heights for the NASA and DWD lidars for the

entire HOPE campaign. The average 0.9 cutoff height for NASA is at 87 km,

while the average 0.9 cutoff height for DWD is at 70 km. . . . . . . . . . . . 115

4.3 Temperature averaging kernels for the OEM temperature retrieval on 29 Oc-

tober 2005 for a) NASA lidar measurements and b) DWD lidar measurements.

The NASA averaging kernels are larger and do not decrease as rapidly as the

DWD averaging kernels due to the NASA lidar’s higher energy per pulse and

larger telescope diameter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.4 The vertical resolutions for the NASA and DWD lidar temperature retrievals

using the OEM and HC method, as well as the SABER and MLS satellites. . 117

4.5 Temperature uncertainties due to the parameters inside the forward model

greater than 0.001K on 29 October 2005 for a) NASA lidar measurements b)

DWD lidar measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.6 The average temperature difference between the DWD and NASA tempera-

ture profiles using the HC method, OEM and degraded OEM. The standard

deviation of the average differences using the non-degraded OEM is in dashed

black lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

xviii



4.7 The temperature difference between the average radiosonde temperature pro-

files and the average (a) NASA and (b) DWD lidar temperatures. . . . . . . 121

4.8 The average temperature difference between the NCEP temperature profiles

and a) NASA lidar temperature profiles and b) DWD lidar temperature profiles.122

4.9 The MLS averaging kernels at 70◦N. The red line represents the measurement

response. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.10 The average degraded HC temperature profile (red) for the NASA (a) and

DWD (b) lidars and the MLS temperature profile (black) with corresponding

temperature standard deviations (dotted lines). . . . . . . . . . . . . . . . . 125

4.11 The temperature difference between the MLS temperature profile and the

NASA temperature profile calculated by the degraded HC (red profiles) and

the HC method (blue profile) for a) 20050527 b) 20050526. . . . . . . . . . . 126

4.12 The average temperature difference between the average MLS temperature

profiles and the lidar average temperature profiles calculated by the degrade

HC (red profiles) and the HC method (blue profiles). The average temperature

difference between the average MLS temperature profiles and a) the NASA

degraded HC (red) and HC (blue) temperature profiles and b) the DWD

degraded HC (red) and HC (blue) temperature profiles. . . . . . . . . . . . . 127

4.13 The average temperature difference between the SABER temperature profiles

and a) NASA lidar OEM and HC temperature profiles b) DWD lidar OEM

and HC temperature profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

xix



List of Symbols

csound The speed of sound

γ′ The ratio of specific heat of air

R The ideal gas constant

k Boltzmann’s constant

M The mean molecular mass of air

T Temperature

No Lidar observed photocounts

Nt Lidar true photocount rate

N Number of returned photons

γ Dead time

z Altitude

ξsys Receiver efficiency

Γemitted Transmittance of the photons from the ground

Γreturn Transmittance of the photons returning to the telescope

τ Optical depth

O Overlap function

λ Wavelength

σ Scattering cross section

σext Extinction cross section

xx



n Number density

A Area

∆t Time

∆z Altitude Bin Size

B Background photon counts

h Planck constant

C Lidar normalization constant

P Pressure

ρ Density

g Acceleration due to the gravity

ν Frequency

∆ν Frequency shift

β Molecular rotational constant

J Rotational quantum number

y Measurement vector

F Forward model

b Forward model parameters

ε Measurement noise

Sε Measurement covariance matrix

Sa Measurement covariance matrix

x̂ Retrieved parameter

xxi



xa a priori profile

G Gain matrix

K Jacobian matrix

A Averaging kernel matrix

Tr Trace of a matrix

dgf Degree of freedom

NA Avogadro’s number

xxii



Chapter 1

Introduction

1.1 Overview of the Atmosphere

Earth’s atmosphere is comprised of several different molecules with varying concentrations

depending on the altitude or season. On average below 48 km (1mb), the major atmospheric

constituents are as follows: nitrogen (N2) at 78%, oxygen (O2) with 21%, and argon (Ar)

with 0.93% concentration. There are a variety of trace gases including: carbon dioxide

(CO2) with 0.04%, methane (CH4), ozone (O3), and many other trace gases with less than

0.01% like N2O, water vapour, chlorofluorocarbons and CO. Despite their small concentra-

tions, these trace gases have important physical and chemical properties such that when they

interact with solar radiation they can affect the energy balance and consequently the tem-

perature of Earth’s atmosphere. The distribution of these gases in the atmosphere depends

on the dynamics of each atmospheric region. The lower atmosphere, which starts from the

ground up to the tropopause, is mostly heated through energy transfer from Earth’s surface

and convective activities, which together cause rapid vertical exchange of energy and mass.

The distribution of the gases in the middle atmosphere (25-110 km) is highly dependent

on dynamical and chemical processes as well as the energy and momentum budget. The

gravitational force causes atmospheric gases to separate by their weight, and thus stratifies

density in the atmosphere, which ultimately constrains the air’s vertical displacements. The

air’s motion, and consequently the transport of chemical species in the atmosphere, depends

on density stratification.
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The atmosphere has been classified into four layers based on their thermal characteristics

such that the change of temperature as a function of altitude has a constant sign in each layer

(Brasseur and Solomon, 2005). From the ground up, the layers are: the troposphere, strato-

sphere, mesosphere and thermosphere. These layers are separated by isothermal regions at

the edge of each “sphere" called the tropopause, stratopause, and mesopause. The altitudes

of these regions vary based on latitude and season. Each region of Earth’s atmosphere is

characterized by its change in temperature with altitude. Typical summer and winter atmo-

spheric temperature profiles are shown in Fig. 1.1. The COSPAR International Reference

Atmosphere (CIRA) is an empirical model based on data taken from various instruments

at different altitudes and latitudes. The CIRA-86 provides the monthly temperature from

the surface up to 120 km. The CIRA-86 is an empirical models of atmospheric temperature

and densities from surface to 2000 km. Before the CIRA-86 sixties different editions of the

CIRA have been published. In altitudes above 100 km the CIRA-86 is identical with the

MSIS-86 (Hedin, 1991) model. The temperature measurements used to make the CIRA-86

model were taken from several global data compilations including ground-based and satellite

(Nimbus 5, 6, 7) measurements. Then at 120 km the CIRA-86 is merged with MSIS-86.

The temperature profiles in Fig. 1.1 are from the CIRA-86 model (Fleming et al., 1988).

The troposphere contains 85% of the mass of the atmosphere (Marshall and Plumb, 2007)

and the temperature decreases significantly (10K per kilometer) from the surface up to the

tropopause at 8 to 16 km altitude - depending on the season and latitude. In the strato-

sphere, solar UV radiation is absorbed by ozone, causing the temperature to increase with

altitude. The maximum temperature in the stratosphere occurs around 45 to 50 km at the

stratopause. Then, the temperature decreases through the mesosphere to reach a minimum

at roughly 85 km in the summer or at 100 km in the winter. This variation in the mesopause

height is due to seasonal temperature differentials with altitude in the upper mesosphere

(Gerding et al., 2008). Pressure decreases through the atmosphere exponentially (baromet-

ric law) such that 99.9% of the total mass of the atmosphere is below 1mb ( 48 km). The

barometeric formula (Eq. 1.1) shows that for an isothermal atmosphere the pressure of the

air decreases with altitude in a way that the pressure drops by factor of e at each scale height
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(H).

P (z) = P0e
(− z−z0

H
), (1.1)

which

H =
kT

mg
. (1.2)

In Eq. 1.1, P (z) is the pressure of an isothermal, m is the molecular mass, z and z0 are

height and surface height respectively and P0 is pressure at the surface. Above 100 km is

a warm layer, called the thermosphere, where the Sun’s short wavelength UV radiation is

absorbed by mainly O and then N2 and O2.

Atmospheric physicists often label the regions of the atmosphere as the lower, middle, and

upper atmosphere. The lower atmosphere (surface–25 km) refers to the troposphere and the

lower stratosphere. Collecting data in the troposphere is more frequent and easier relative to

other layers due to accessibility, specifically near the surface where most of the measurements

from different instruments are collected to measure temperature, pressure, humidity, wind

speed, and wind direction. The middle atmosphere includes the stratosphere and mesosphere

and lower thermosphere from 25 km – 110 km. The upper atmosphere typically refers to the

thermosphere layer which extends from about 100 km to 400 km. This thesis will mainly

focus on the middle atmosphere.

1.2 The Middle Atmosphere

The middle atmosphere is the region extending from the tropopause to the turbopause

(around 110 km). The turbopause is a layer which transition from turbulence-dominated

mixing to molecular diffusion occurs. The middle atmosphere is comprised of several unique

regions which play a key role in middle atmospheric dynamics and chemistry. Below the

turbopause, turbulence is the key process of mixing. Above the turbopause, atmospheric

gases separate according to their molecular mass. Heavier molecules like N2, O2, and Ar

stay in the lower thermosphere and lighter atoms (H, O, N and He) are concentrated at

higher altitudes (above 500 km; Quiroz (1968); Plane et al. (2015)). Above the turbopause,

turbulent motion decreases and molecular diffusion becomes the main motion.
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Figure 1.1: Typical summer and winter atmospheric temperature profiles at the middle

latitudes (≈ 45◦N). Temperature profiles are taken from the CIRA-86 model. The layers

of the atmosphere: the troposphere, mesosphere, and thermosphere are also shown. The

operational range of some atmospheric lidars is shown by arrows, as well as radiosondes

(weather balloons).

1.2.1 Chemistry and Physics of the Middle Atmosphere

The sources of energy in the Mesosphere and Lower Thermosphere (MLT) region include:

high-energy downward solar electromagnetic radiation, upward propagating gravity waves,

and chemical radiative processes in the upper mesosphere. The long-wave heating radiation

from below is not important because the density is very low in the MLT and their energies

do not transfer to the molecules.

The main source of energy in the MLT is solar energy. The solar energy is absorbed by

the ozone in the stratosphere and mesosphere, and by oxygen molecules in the MLT region.

Atomic oxygen plays the main role of all the chemistry in the MLT via recombination with

other atoms and molecules through exothermic chemical reactions. Photolysis of O2 by solar

radiation produces large amount of atomic oxygen and chemical potential energy in the MLT.

Atomic oxygen releases heat through the exothermic chemical reactions and through these
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processes solar and chemical energy release heat.

The main energy sinks are thermal infrared cooling by CO2, ozone and water vapour.

The cooling by CO2 emission is larger than all the heating processes in the MLT. The

emission of CO2 in the MLT is much larger than its absorption and therefore, the net effect

of CO2 is cooling. In the MLT, the molecular kinetic energy excites the vibrational states

of a molecule’s energy level and then energy is emitted by infrared emission. Through this

thermal infrared emission, the atmosphere cools.

Considering only the local radiative equilibrium between the mentioned source and sinks

of energy results in very large and unrealistic vertical temperature gradients in temperature

models (Manabe and Moller, 1961). Therefore, it is important to consider vertical transport

as a source of non-radiative energy. Gravity waves are the primary transporters of non-

radiative energy into the MLT. Planetary waves and atmospheric tides are most important in

the stratosphere however, atmospheric tides have a large impact up to the lower thermosphere

(Kopp et al., 2015). The source of planetary waves are large-scale variations in pressure,

temperature, and wind in the troposphere, which propagate vertically upward.

Consider an air parcel in a stable atmospheric layer. If the air parcel is forced to displace

to higher altitudes like uplifting over a mountain, Earth’s gravity acts as a restoring force

that pushes the air parcel back to its initial level. The lifting force is buoyancy. The

oscillation caused by the displacement generates what is called a gravity wave. Gravity

waves are generated in the troposphere between stable layers of the atmosphere with different

densities. Gravity waves cannot be generated if the atmosphere is unstable. Because in an

unstable condition, a parcel of air which is displaced vertically will not oscillate and will

continue to rise. Gravity waves are produced by different processes in the troposphere,

such as convection, cyclonic fronts, topography, cumulonimbus cloud formation, and wind

shearing. Gravity waves then transport the momentum and energy gained in the troposphere

to the middle atmosphere and they are the main source of dynamical variability in the

mesosphere. The propagation of gravity waves depends on the temperature and wind in

the atmosphere. As gravity waves propagate upward, their amplitude grows exponentially

as the atmospheric density decreases. At a critical level, where the gravity phase speed is

equal to the background speed, the gravity waves become unstable and break and release
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their energy into the atmosphere (Brasseur and Solomon, 2005). Planetary waves and solar

tides (Chapman and Malin, 1970) are also two important waves that are components of the

general atmospheric circulation. The source of atmospheric tides is from the daily absorption

of solar energy in the atmosphere and the restoring force is gravity. Tides also grow in

amplitude with altitude as they propagate vertically. The tidal amplitudes are small in the

stratosphere, and their amplitude grow as they propagate into the mesosphere. Planetary

waves are large-scale oscillations due to the conservation of absolute vorticity, which is an

atmospheric parameter combined from Earth’s rotation and temperature gradient between

the poles and equator. Planetary wave amplitudes and frequencies are stronger during winter

due to larger temperature gradients between the poles and the equator. Planetary waves

and tides are important especially in the stratosphere and stratopause for transportation of

species including trace gases produced in the lower atmosphere. Planetary waves can reach

very large amplitudes and also interact with gravity waves and tides in the MLT region.

A middle atmosphere temperature climatology helps to determine future climate expec-

tations and understanding of the energy budget of the middle atmosphere. A temperature

climatology is a mean temperature over a period of time at different altitudes at the different

times of the year. The mean temperature is taken from the measurements on the same day

over the entire data set time period. Temperature climatologies may be made over varying

time lengths; although, the results from a longer measurements record would present the

average temperature more accurately.

1.2.2 Importance of the Middle Atmosphere

Improving middle atmosphere temperature climatologies is a priority focus of programs

such as the Stratosphere Reference Climatology Group, part of the World Climate Research

Programme (WCRP) Stratospheric Processes and their Role in Climate (SPARC) project

(https://www.sparc-climate.org). Climatologies are important for trend analyses because

they are the average temperatures which must be removed from the measurements in order

to create accurate trends. Defining middle atmosphere temperature trends, including those

in the stratosphere, mesosphere, and lower thermosphere, is important for understanding

the connection between temperature variations in the middle atmosphere and corresponding
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changes in the lower atmosphere. Ramaswamy et al. (2001a) and Randel et al. (2004, 2009,

2016) discussed the effects of the middle atmosphere temperature trends over time using

different instruments. They found that cooling trends increase with height from the lower

stratosphere with a cooling rate of 0.1–0.2K/decade to the middle and upper stratosphere

with) a 0.6K/decade cooling rate over the period of 1979 to 2015. One of the important

role of the middle atmosphere is detecting the global temperature change. During the last

few decades atmospheric concentrations of greenhouse gases (especially CH4 and CO2) have

increased dramatically and are affecting the global climate. Variations and trends in the

middle atmosphere are representative of climate change and accurate upper atmosphere

measurements are essential to detect changes. Among the different atmospheric parameters,

temperature is the most affected by changing concentrations of greenhouse gases. The extent

of climate change can be evaluated by considering the dramatic increase in the amount of

trace gases over the last few decades. The increase in trace gases has disrupted the energy

exchange balance between Earth and the atmosphere and magnified the greenhouse effect,

a process that traps thermal radiation in the troposphere. In the troposphere, temperature

decreases with altitude, therefore active atmospheric gases absorb more energy than they

emit (Dickinson and Cicerone, 1986). The increase in trace gases has increased their energy

absorption, resulting in a global rise in tropospheric temperatures. However, the greenhouse

effect also causes cooling in the middle and the upper atmosphere. This cooling effect is

detectable in the middle and upper atmosphere, specifically in the stratosphere (Lastovicka

et al., 2006). The cooling is predominantly caused by CO2 and its infrared emission. The

CO2 cooling effect has been modelled in global upper atmosphere models which show that by

doubling CO2 and halving CH4 concentrations, the mesospheric and thermospheric tempera-

tures cool by 10K and 50K respectively (Roble and Dickinson, 1989). Currently, researchers

have focused on middle atmosphere temperature trends, especially the stratospheric temper-

ature trends, because it is a key component in the detection of climate change.

Rayleigh lidars can be used to detect the cooling rate in the middle atmosphere. A cooling

of 4K/decade in the mesosphere was detected by Hauchecorne et al. (1991) using the Haute

Provence Observatory (OHP) Rayleigh between 1978 and 1989 in southern France. Then this

trend analyses was updated in 1995 by Keckhut et al. (1995) who showed the same 0.4K/year
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cooling in the mesosphere. Ramaswamy et al. (2001b) also conducted a comprehensive study

using several instruments to investigate the cooling rate in the stratosphere. The study also

included OHP lidar measurements from 1979 to 2001 and they found that there was a

considerable cooling in the stratosphere during the mid 1960s to mid 1990s. All data sets

agreed on the general cooling but at different rate. Studies like Dickinson and Cicerone

(1986) and Roble and Dickinson (1989) have indicated that there is a coupling between the

different layers of the atmosphere, including the lower and upper regions, and have shown that

understanding the lower atmosphere and the global circulation of the atmosphere requires an

understanding of the middle atmosphere. The atmospheric circulation above the tropopause

includes two main regimes, pole to pole circulation above 45-50 km and equator to pole

below 30 km (Dunkerton, 1978) (Brewer-Dobson circulation). Air rises in the summer polar

mesosphere and adiabatic cooling processes cause the air to reach to a minimum temperature.

The temperature at the summer polar mesosphere is the coldest temperature in Earth’s

atmosphere (see Figure 1.2). Figure. 1.2 shows the global average temperature calculated

using the MSIS (Hedin, 1991) model. It can be seen that the temperature at the mesopause

in the summer pole is −150 ◦C which is 100 degrees colder than the winter troposphere. Also,

the summer mesopause in middle latitude (≈ 45◦N) is around −120 ◦C and is above −90 ◦C

during the winter (Fig. 1.1). The MLT is an active area. For example, gravity waves are

produced in the lower atmosphere and then propagate toward the upper atmosphere where

they start dissipating and breaking down (grey lines in Figure 1.2). Gravity waves cause

short-term variations in temperature, density and wind in the upper mesosphere and lower

thermosphere.

Another example of coupling between layers has been seen in global climate studies.

Wave-driven general circulation in the middle atmosphere (specifically the stratosphere) can

affect climate in the troposphere (Hartley et al., 1998; Perlwitz and Harnik, 2003; Colucci,

2010). Baldwin and Dunkerton (2001) showed that zonal wind anomalies in the upper

stratosphere propagate downward to the surface. Polvani and Waugh (2004) presented the

argument that the stratospheric circulation anomalies are because of an anomaly in the wave

activity from the troposphere. Another way that the stratosphere can influence the tropo-

spheric weather system is through a process called tropopause folding, where stratospheric
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Figure 1.2: The temperature structure of Earth during Northern summer calculated from

the MSIS model for 15 July 2012. The red, blue, and black arrows show the Brewer-Dobson

circulation. The purple and white arrows represents the gravity waves and planetary waves,

respectively in the middle atmosphere. The long wavelengths of gravity waves filter out by

the lower atmosphere and shorter wavelengths reach to the MLT region. Due to the low

pressure in the MLT, gravity waves break and release their energy and momentum in the

MLT, resulting in meridional flow toward the winter pole. Adapted from Meriwether and

Gerrard (2004).

pressure anomalies can grow through the troposphere and affect the cyclones and anticy-

clones (Holton, 2004). Because of this coupling, numerical weather prediction models try to

increase their maximum altitudes in order to improve tropospheric forecasts over longer peri-

ods. For instance, Boville and Cheng (1988) used two versions of a general circulation model

to investigate the effect of changing the upper boundary height. Each model had identical

conditions, with the exception of the number of their vertical levels. The upper boundaries

were set to the middle of the stratosphere and the middle of the mesosphere, respectively.

The results showed that the model with the lower boundary height weakly predicted the

troposphere parameters because of waves reflecting off the upper boundary model to the

lower levels. However, the model with a higher upper boundary presented more accurate
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forecasts. Therefore, it is necessary for models to consider the effect of gravity waves on the

general circulation. However, not many high resolution observations which are continuous

in time are available for this purpose to validate the representation of atmospheric waves in

forecast models. Rayleigh lidars are excellent instruments to fill this measurement gap. For

example, Sica and Russell (1999) used Rayleigh lidar measurements to find the number of

waves in the gravity waves spectrum. They found that only two-three waves, with vertical

wavelengths between 2 to 10 km and growth rates on the order of 1/(14 km) or less carry

most of the energy.

1.2.3 Measuring Temperature in the Middle Atmosphere

Many different instruments have been used to measure atmospheric properties in the mid-

dle atmosphere including satellite instruments, rocketsondes, lidars and radars. Rocketson-

des were one of the first instruments used to study the middle atmosphere but their high

cost and discontinuous measurements were problematic for continuous use. Radars have

contributed to middle atmosphere measurements very effectively, specifically meteor radars

(MR), Mesospheric-Stratospheric-Tropospheric (MST) radars (which cover from surface up

to 100 km) and incoherent scatter radars (100 to 500 km). Meteor radars use meteor trail

decay times to estimate the temperature in the MLT region. The decay rate of the meteor

backscatter provides the ambipolar diffusion coefficient, which depends on the temperature

of the atmosphere (Hocking, 1999). Various ground- and air-based remote sensing instru-

ments like satellites and lidar were the solution to covering the entire MLT region with as

high vertical resolution as possible. The advantage of lidars over the satellites are their

high temporal and spatial resolution. However, satellite instruments provide better global

coverage of measurements, which lidars are not capable of.

Satellites

Satellite temperature measurements are valuable data sets for obtaining a global view of

atmospheric temperature, as their speed is high and they measure Earth’s temperature at

different latitude and longitude in relatively short periods of time. Nadir and limb are two
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types of satellite viewing orientations. A nadir view is the direction pointing directly below

the satellite. Satellites in limb view are tilted at an angle to look through the edge of the

atmosphere. This view has a much longer path in the atmosphere and therefore a larger air

mass. The long ray-path through the atmosphere provides higher signal-to-noise ratio and

the observation angle variation provides vertical scanning of different layers of the atmo-

sphere. Satellites usually use the limb view for studying the mesosphere and stratosphere.

Usually, there are multiple instruments installed in each satellite to collect the data from

Earth’s atmosphere. These instruments use several techniques to collect measurements at

specific wavelengths and altitude ranges, such as passive microwave limb emission and ther-

mal infrared limb emission. Satellites instruments like infrared limb sounders are capable

of measuring the spectrum of emitted radiation of various gaseous constituents in the at-

mosphere. Each molecule at a certain temperature and pressure has a specific spectrum,

therefore, satellites use the atmosphere’s spectrum to calculate the temperature and pres-

sure as a function of altitude. In order to compare the retrieved temperature from lidar with

another instrument, satellites are a good option because they cover the entire MLT region

globally.

There are three types of satellite orbits: high Earth orbit (weather and some communi-

cations satellites around 35000 km), medium Earth orbit (navigation and specialty satellites

focused on specific regions, between 2000 and 35000 km), and low Earth orbit (most of the

scientific satellites, below 2000 km). The height of the orbit determines the speed of a satel-

lite where the closer to Earth it is, the faster it must move to overcome Earth’s gravity. A

sun-synchronous orbit is a low Earth orbit that passes over each location at the same local

time on each orbit. A satellite’s orbit determines the frequency with which it can collect

measurements and the size of its global measurement coverage.

In Chapter 4 of this thesis, the lidar measurements are compared to measurements from

two satellites: Aura/MLS and TIMED/SABER. Aura and TIMED are the name of the

satellites and MLS and SABER are the names of the instruments. The basic operation

principles of these satellites are discussed below.
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Aura/MLS

The Earth Observing System (EOS) Aura spacecraft was launched in 2004 in a sun-synchronous

orbit at 705 km with a sixteen-day repeat cycle and 233 revolutions per cycle. The Microwave

Limb Sounder (MLS) on the Aura satellite observes the thermal microwave limb emission

of atmospheric molecules and scans Earth limb 240 times per orbit creating 3500 vertical

profiles per day from the surface to 90 km every 24.7 s, from 82◦S to 82◦N latitudes. The

atmospheric temperature determined by the MLS is based on the measurement of thermal

microwave emission lines of O2 at 118GHz (Schwartz et al., 2008).

TIMED SABER

The Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) is a satellite

that was launched in 2001 in a sun-synchronous orbit at 625 km with an orbital period

of 97 minutes with one revolution per 60 days. The focus of TIMED is on the processes

governing the chemistry and dynamics of the mesosphere and lower thermosphere. SABER

(Sounding of the Atmosphere using Broadband Emission Radiometry) is a multi-channel

infrared radiometer installed on TIMED. SABER measures atmospheric infrared radiances

in 10 broadband channels by scanning the limb of Earth’s atmosphere. Each scan takes

about 110 s with a vertical sampling of 0.37 km and a 2 km field of view (Russell et al.,

1999). SABER calculates the kinetic atmospheric temperature and CO2 volume mixing

ratio by measuring the emission of CO2 at 15 and 4.3 µm.

Rocketsondes

The temperature and wind in the middle atmosphere have been studied since late 1950s by

using rocketsondes. There are several techniques that are used by rocketsondes to measure

the temperature, but we will only discuss two of them here: the grenade and the falling

sphere. In the grenade technique, a rocket is launched up to 100 km altitude and several

grenades ejected from the rocket as it ascends and explode every few kilometers. One can

then measure the position in space, sound travel times to the ground and the angle of the

arriving sound waves. The measurements of sound delay times from exploded grenades are
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recorded by a network of ground stations, and temperature profiles can be derived by these

times in the mesosphere (Stroud et al., 1960). The temperature is derived from

csound =

√
γ′RT

M
, (1.3)

where csound is the velocity of sound in each layer, γ is the ratio of specific heat of air, R

is the ideal gas constant, M is the mean molecular mass of air and T is temperature. The

temperature error in the grenade technique increases from 0.5K at 30 km to 10K at 90 km.

However, the main source of error is the time of arrival measurement of the sound waves and

is less than ±3K at altitudes below 75 km (Stroud et al., 1960).

The second technique is the falling sphere method. This method was developed by

the Department of Aeronautical Engineering of the University of Michigan and is based on

measurements of atmospheric drag acceleration on falling spheres ejected from the rockets.

This method can measure the atmospheric pressure, density and temperature up to 100 km

(Bartman et al., 1956). A metalized mylar sphere (1m diameter) is ejected from a rocket

at the peak of its trajectory and it floats in the atmosphere. Then, the trajectory of the

sphere is tracked by a high precision radar. The air density can be determined using the

sphere’s trajectory and the atmospheric drag acceleration of the falling sphere. Then, the

temperature can be calculated from density. The main source of error in this technique is due

to the uncertainty of the drag coefficient which is considered 2% up to 75 km and increases

to 5% above 75 km. Lübken et al. (1994) made an intercomparison using the Rayleigh lidar

and falling sphere with maximum time difference of 1 hour, from the ground to the lower

thermosphere. They found good agreement between the two techniques. The mean of the

deviations was less than 3K between 35 and 65 km, and between 65 and 80 km the Rayleigh

lidar temperatures were around 5K colder than the measurements using falling spheres.

LIDARs

Lidars (originally from “light” and “radar”, later from LIght Detection and Ranging) are

one of the few instruments that can measure atmospheric properties from the surface up to

the lower thermosphere. A lidar is an active remote sensing system which uses the same

principles as radar, but with a laser as the emission source. One of the advantages of lidar
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is its well-collimated short laser pulses provide higher spatial and temporal resolution when

compared to other remote sensing instruments. Unlike satellite instruments, lidars are stable

and can operate for long periods of time. These characteristics make lidars useful for studying

atmospheric properties and their variability. In the next section (Section 1.3), different kinds

of lidars and their techniques to measure temperature will be discussed.

1.3 Lidar

An atmospheric lidar emits laser pulses toward the sky and then measures the backscattered

photons from molecules and aerosols in the atmosphere. The wavelength of the backscattered

photons and the number of backscattered photons received by the lidar are used to determine

atmospheric properties like atmospheric density and temperature, molecular concentration,

as well as wind speed and direction (Leblanc et al., 2013). There are different kinds of at-

mospheric lidars, and each use different kinds of scattering mechanisms to measure different

characteristics of the atmosphere. The scattering processes in the atmosphere are divided into

three categories: Raman, Rayleigh, and Mie scattering. Raman lidars measure temperatures

below 30 km and molecular concentrations of water vapour, ozone, and nitrogen. Tempera-

ture and molecular density above 25 km is usually measured by Rayleigh lidars. DIfferential

Absorption Lidar (DIAL) can also measure temperature by using temperature-dependent

absorption of O2 lines in the near infrared. Resonance lidars measure temperature, density,

and wind velocity between 80 and 105 km by using scattering off of various metal layers

made of sodium, potassium, iron, lithium, and calcium located at those altitudes (Measures,

1992). Figure. 1.1 shows the ranges of operation for the lidars mentioned above.

1.3.1 Lidar Basics

An atmospheric lidar is comprised of three main parts: the transmitter, receiver, and de-

tection system. The transmitter is a laser that acts as a source of energy, the receiver is a

telescope that collects the backscattered photons, and the detection system is a transient

recorder system which converts the collected photons into a digital or analog signal (Kovalev

and Eichinger, 2004).
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Transmitter

Most of the modern Rayleigh and Raman lidars use Yttrium-Aluminium-Garnet (YAG) solid

state crystals with another element to produce a stable beam. Rayleigh lidars typically use

Neodymium to make Nd:YAG lasers. These Nd:YAG lasers produce a beam wavelength of

1064 nm and the frequency of the beam is then doubled, tripled or quadrupled by another

crystal to generate the desired wavelength. The Rayleigh scattering coefficient increases with

decreasing wavelength as is proportional to λ−4 (Kovalev and Eichinger, 2004). Hence, going

to shorter wavelength increases the signal for a given laser power. The choice of laser depends

on the ease of use and power provided by the laser. Using a doubled Nd:YAG crystal at

532 nm or, for DIAL ozone-Rayleigh lidars using XeCl excimer lasers, 353 nm, are common

choices.

Receiver

Two parameters determine the design of a telescope as a receiver: the field-of-view of the

telescope should be larger than the divergence of the laser beam, and the diameter of the

telescope limits the amount of signal detected. Either a lens or a mirror can be used as a

receiver but most lidars use mirrors as they can have larger areas and are more cost-efficient.

The backscattered photons are collected and focused onto a photo multiplier tube (PMT)

at the mirror focal point. Then the electric signal produced by the PMT is recorded by the

transient recorder system.

Detection System and Dead Time

Generally, a lidar signal detection system has two components: the lidar signal detectors,

or PMTs, and the signal processing system. The signal processing system is a multichannel

scalar counter which records the number of collected backscattered photons as a function of

altitude. Signal processing modes for detecting the backscattered signal can be separated

into analog and digital.

Analog recorders transform the PMT signal to a current and they can record the backscat-

tered signal from lower altitudes as they will not saturate. Digital recorders use a photon
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counting system and record the individual photons hitting the PMT. The digital mode is

more suitable for high altitudes observations where the signal is weak. Therefore, the digital

recorders are required for low-level light from high altitudes where returning photons are

recorded over long periods of time (Kovalev and Eichinger, 2004) and they can provide a

higher signal-to-noise ratios at those altitudes compared to the analog system.

The PMT for the lidar needs a specific amount of time to record and process a single

photon counting event. If a second photon arrives during that interval of time the PMT will

not process it and it may be lost or cause a pile-up effect within the PMT. This waiting

time for a detector to discriminate and process two separate events is called “dead time”and

is typically on the order of nanoseconds. Dead time may be due to counting electronics or

limitations of the processing parts of the detector. The dead time effect mostly happens

at high count rates and the resulting signal becomes lower than the true signal. A dead

time correction should be used to calculate the true count rate in a region with high count

rates. In the data analyses of atmospheric profiles, this correction is more important at lower

altitudes where the rate of photon counting events is high compared to the greater heights

where the signal is lower. There are two models to find a correction for the true number of

photons due to the dead time effect: paralyzable and nonparalyzable models. Paralyzable

dead time occurs when the arrival of a second photon during the dead time period extends

the dead time from the time of the second event’s arrival by another dead time period,

preventing any subsequent photons from being “counted”. Hence, the system is effectively

“paralyzed”. In a paralyzable system, the sampling time is longer than γ and the true count

rates obey Poisson counting statistics as expected. The following equation shows the relation

between the observed photocount (No) and the true photocount rate (Nt) in a paralyzable

system (Donovan et al., 1993).

No = Nt exp(−Ntγ). (1.4)

Non-paralyzable dead times (Mielke, 2005) occur when an event happens after the γ

interval, but the detection is not recorded due to having energy less than the discriminator

level set by the system. In this scenario, several photons may “pile up” to create one photon
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count in the system. The observed photocounts and true counts are related with

No =
Nt

1 +Ntγ
. (1.5)

The lidar used in this thesis, Western’s Purple Crow Lidar (PCL) has a counting system

which is non-paralyzable. The above relation between the observed and true counts is valid

when the denominator is less than about 1.25; above this point correction is not advised for

the PCL lidar.

1.3.2 The Lidar Equation

The measurements of a lidar system are a time series of counts which can be converted to

height (photocount profiles) and vary with height and time. The photocount profiles are

proportional to the atmospheric density and are described by the “lidar equation” (Eq. 1.6).

The lidar equation relates the number of backscattered photons detected by a lidar to the

physical characteristics of the lidar and atmospheric properties such as molecular density

and cross-section. Eq. 1.6 is the general form of the lidar equation used for all scattering

types (Measures, 1992):

N(z) = ξsys ·Γemitted(z, λe)Γreturn(z, λr)·O(z)
plaser

(hc/λlaser)
·σbackscattern(z)· A

4πz2
·∆t·∆z+B(z).

(1.6)

Transmission is the opacity of the atmosphere to electromagnetic radiation where the trans-

missions in Eq. 1.6 are given by

Γemitted(z, λe) = exp−τemitted , τemitted(z, λe) =

∫ z

0

σext(λe)n(z)dz′, (1.7)

Γreturn(z, λr) = exp−τreturn , τreturn(z, λr) =

∫ z

0

σext(λr)n(z)dz′. (1.8)

The other variables in the lidar equation are as follows, with all quantities in SI units.

N = number of returned photons which are detected by lidar (unit-less)

z = altitude above the detector (m)

ξsys = system specific receiver efficiency (unit-less)
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Γ = transmittance of the photons through the atmosphere (unit-less, the value of

transmittance is between zero and one)

τ = optical depth (unit-less)

O(z) = overlap function of the receiver field of view (unit-less)

plaser = Laser power at wavelength λ (W), plaser∆t
hc/λlaser

gives the number of emitted photons.

σbackscatter = scattering cross section of the molecules at the returning wavelength (m2)

σext(λe) = extinction cross section at the emitted wavelength (λe) (m2)

σext(λr) = extinction cross section at the returning wavelength (λr)(m2)

n(z) = number density of scatterers in the atmosphere (m−3)

A = area of telescope where A/(4πz2) presenting the effective area of the primary

telescope (m2)

∆t = time over which measurements are collected (s)

∆z = spatial range over which photons in a bin are integrated (m)

B(z) = background counts (unit-less)

We can rewrite Eq. 1.6 as:

Nt(z) = Cψ(z)
n(z)

z2
+B(z), (1.9)

which

C = ξsys
plaser

(hc/λlaser)

A

4πz2
∆t∆z, (1.10)

and

ψ(z) = Γemitted(z, λe)Γreturn(z, λr)O(z)σbackscatter. (1.11)

Where C is a constant that depends on the properties of the lidar and is explained below.

The function ψ(z) includes the height-dependent parameters of atmospheric transmission,

the Rayleigh scatter cross section, detector nonlinearities and geometric overlap.The lidar

equation (Eq. 1.6) is derived assuming that there is a single scattering event for each photon,

the density of the atmosphere in a layer of thickness ∆z is constant, and the laser pulse is

shorter than the recording time of an altitude bin. The lidar equation can be modified based

18



on the type of scattering event. For example, in Rayleigh scattering, the emitted transmis-

sion is equal to the return transmission because the wavelength does not change. Also, the

cross section is summation of Rayleigh-scatter and ozone cross section. However, for a Ra-

man scattering event, the transmittance differs because the wavelength of the backscattered

photon is not the same as the wavelength of the emitted photon and one must also consider

the aerosol cross section. It is not practical to calculate absolute measurements of density

(n(z)) due to several factors like the fluctuating laser power with time, changing laser beam

alignment, effect of ozone on the backscatter cross section, and the effect of aerosols and

clouds on the atmospheric transmission. But it is possible to calculate relative density using

Eq. 1.12 because the receiver efficiency, overlap, laser power, A and scattering cross section

cancel out. Also, above 25 km the effect of ozone and aerosols are small enough that we can

assume τ(z) = τ(z0), thus:

n(z) = n(z0)
N(z)

N(z0)

τ(z0)2

τ(z)2

z2

z2
0

(1.12)

Various lidar system parameters and physical constants affect the total number of received

photocounts and are independent of altitude. The combination of these parameters is called

the lidar constant (C) and in our definition includes: the number of photons emitted by each

laser pulse, the optical efficiency, the detection efficiency of the photomultipliers, atmospheric

Rayleigh scatter cross section and speed of light. All quantities are system dependent except

the speed of light, and can in fact change for a specific instrument as hardware changes, such

as changing the laser transmitter.

When the pressure gradient of an air parcel in the atmosphere is in balance with its

gravitational force, the atmosphere is in hydrostatic equilibrium, and is dynamically and

thermally stable. The hydrostatic equilibrium equation is:

dP

dz
= −ρ(z)g(z), (1.13)

where P (z) is the atmospheric pressure, ρ(z) is the density and g(z) is the acceleration

due to gravity. The mean molecular mass of air is considered to be constant within the 30

to 80 km altitude range. However, the mean molecular mass can vary with altitude above

80 km due to an increase in the relative amount of atomic oxygen, and this variation affects
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the temperature retrieval, both through the change in mean molecular mass and the effect

of composition changes on the Rayleigh-scatter cross section. In the traditional analysis

technique, the lidar equation is combined with the assumption of hydrostatic equilibrium to

calculate the temperature.

1.3.3 Rayleigh Lidar

Rayleigh scattering is an elastic scattering that occurs when the size of a particle is much

smaller than the emitted photon’s wavelength. The Rayleigh scattering intensity is pro-

portional to λ−4. In Rayleigh scattering, the incident photon excites the electron to an

unstable energy level and decays to the same initial level energy quickly, thereby emitting

a photon with the same wavelength of the incident photon. Rayleigh lidars utilize Rayleigh

scattering to probe the atmosphere between 25 and 110 km. Radiosondes are able to mea-

sure atmospheric parameters from surface to 35 km, resonance lidars between 80 and 105 km,

incoherent scatter radars from 100 to 500 km, and MST radars cover the range from surface

up to 100 km except the range between 30 and 60 km. Rayleigh lidars in particular are well

suited for measuring the middle atmosphere temperature. Rayleigh lidars are capable of

measuring atmospheric relative density continuously with high spatial resolution, however,

they are limited to measuring only during clear nights. These properties make Rayleigh li-

dars a good option for researchers to study the middle atmosphere temperature and density.

Satellites also cover the range of the middle atmosphere and lower upper atmosphere but

they only collect measurements for short periods of time in each location and they are not

ideal for temporal studies; however, they provide good measurements along the direction of

satellite track. The Purple Crow Lidar, used in this thesis, is one example of a Rayleigh

lidar.

The Purple Crow Lidar

The PCL is a Rayleigh-Raman lidar which is located since 2012 at the Environmental Science

Western Field Station (43.07 ◦N, 81.33 ◦W, 275 m altitude) near The University of Western

Ontario in London, Canada. The PCL was previously located at the Delaware Observatory
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(42.52 ◦N , 81.23 ◦W), from 1992 to 2010 (Sica et al., 1995, 2000; Argall et al., 2000). At

present, the PCL is comprised of 6 channels: the Raman channel with 532 nm beam to

measure the temperature of the upper troposphere and lower stratosphere and the digital

and analog Rayleigh channels to measure temperature in the upper mesosphere and lower

thermosphere. A summary of the PCL’s properties is listed in Table 1.1 and Fig. 1.3 shows

diagram of the PCL. The PCL’s receiver is a liquid mercury mirror with a diameter of 2.65m.

From 1994 to 1998, the PCL used a single detection channel (the High Level Rayleigh (HLR)

channel) over the range of 30 to 110 km (Sica et al., 1995). In 1999, a Low Level Rayleigh

(LLR) channel was added, which is nearly linear above 25 km (Sica et al., 2000).

Table 1.1: The PCL system parameters.

Delaware Observatory Echo Base Observatory

Operation period 1992-2010 2012-now

Location 42.52 N , 81.23 W 43.07 N, 81.33 W

Height above sea level (m) 225 275

laser wavelength (nm) 532 532

Energy (mJ/pulse) 600 1000

Repetition rate (Hz) 20 30

Power (W) 12 30

Aperture diameter (m) 2.65 2.65

Rayleigh bin size (m) 24 7.5

Raman bin size (m) 250 24

Water vapour bin size (m) 250 24

Mirror diameter (m) 2.56 2.56

Mirror focal length (m) 5.17 5.17

At the bottom (24-40 km) of the Rayleigh measurement profiles the count rate is very

high and saturation occurs. The saturation prevents accurate measurements at the bottom,

and thus, a neutral density filter is used in front of the Rayleigh PMT to extend the range

of photon counting to keep the count rate linear. The Low Level Rayleigh channel is used

to record measurements from 25 to 50 km to increase the accuracy of the measured Rayleigh
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Figure 1.3: A schematic of the Purple Crow Lidar. The green dashed lines represent the

backscattered photon path. The channels inside the detector box are: two Rayleigh channels

(HLR and LLR) at 532 nm, a Raman nitrogen channel at 607 nm, and a Raman water vapour

channel at 660 nm. The diameter of the telescope is 2.56m with a focal length of 5.17m.

temperatures at the lower altitudes while the High Level Rayleigh channel is operated to

measure from 30 to 120 km. Figure 1.4a and b show the HLR and LLR PCL photocount

measurements for a typical night (24 March 2002). The lidar system operates during the

night when the background light is minimal (background light due to the moon is negligible).

The average operating time is around 5.5 hours per night. Over the course of the night,

clouds may pass over the PCL which can reduce the count rate and ultimately can affect the

precision of the signal. During these conditions, the PCL continues recording the signal, but

these parts of the data that heavily affect the signals are not useful and they are eliminated

during analysis. Fig. 1.4 shows measurements collected for a total of 456 minutes on the

night of 24 March 2002. It can be seen in this figure that clouds are passing over the

lidar around minute 370 of operations and the signal is weakened. These bad scans are

removed from the measurements shown in Figures 1.4c and d. The useful number of scans

(corrected counts) are 350 minutes. The sum of all these scans is shown in Figures 1.4e and
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Figure 1.4: a) HLR and b) LLR PCL rawcount measurements (cts/bin/s) for 24 March 2002,

c) HLR and d) LLR corrected counts (cts/bin/s), e) HLR and f) LLR coadded corrected

profiles (MHz). The color-bar values are corresponding corrected count rates of e1, e2, e3 and

so on.

f for the LLR and HLR channel. At the bottom of the Rayleigh range in Fig. 1.4 (around

25 km) the maximum count rate in the LLR channel is linear, therefore the LLR can be

used to correct the nonlinearity in the HLR signal due to the dead time. At the higher

altitudes of the measurement profiles, the signal-to-noise ratio is small. This is because the

backscattered signal is proportional to density which exponentially decreases with height,

therefore causing the signal-to-noise ratio to decrease at the top of the photocount profile.

Averaging the pulses or integrating them is often used to increase the measurement altitude

range of the system by increasing the signal-to-noise ratios. The integration or averaging can

be done over time and/or by altitude bin; however, while integration increases the signal-

to-noise ratio, it decreases the resolution (Kovalev and Eichinger, 2004). The lidar scans

are usually integrated over time and height in order to accurately calculate the temperature

in higher altitudes. A typical PCL temperature profile for the climatology is calculated up

to 100 km, using signal integrated in time over an entire night (5.5 hours on average) and

integrating in height by 1 km. For higher temporal-spatial studies of atmospheric variations

this time can be as short as a few minutes and a few hundred meters.
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1.3.4 Raman Lidar

Raman scattering is a type of inelastic scattering where the backscattered photon is at a

different wavelength than the emitted photon. In Raman scattering, the laser photons excite

the electrons of a molecule to an upper stable energy level. Then the excited photon decays

to a lower energy level spontaneously and emits a photon with a wavelength proportional to

the energy differences of the excited and final state. Electronic, vibrational, and rotational

states are three types of energy levels that can emit a photon when a transition between

energy states occurs. The electronic energy transition happens between the orbital levels

of a molecule and requires several eV to move an electron between electronic states. The

vibrational transition corresponds to vibrations of the nuclei and has energy states on the

order of 0.1 eV. Rotational transitions are associated with the rotation of a nuclei around its

center of mass with levels of energy on the order of 0.001 eV (Bransden et al., 2000). The

energy of a Raman-scattered photon is much smaller than the energy of a Rayleigh-scattered

photon.

Vibrational Raman lidar

Above 30 km, where the scattering mostly is Rayleigh, the atmospheric transmission in the

lidar equation (Eq. 1.6) is constant with height. However, below 30 km, this assumption is

not valid as the atmospheric transmission depends on Rayleigh, Mie and ozone scattering

(Keckhut et al., 1990). Almost 78% percent of the atmosphere below 80 km is comprised of

nitrogen molecules. Therefore, it is possible to measure the temperature below 30 km using

theN2 density and vibrational Raman scattering from theN2 molecule (Keckhut et al., 1990).

The PCL Raman-shifted wavelength for N2 molecule due to vibrational transition is 607 nm.

Iserhienrhien et al. (2013) and Jalali (2014) used the PCL nitrogen channel measurements

to calculate the PCL temperature climatology between 10 km and 30 km.

Rotational Raman lidar

There are two branches or energy states (Stokes and anti-Stokes) which are symmetrically

located on both sides of the Rayleigh line. These branches are due to the Raman rotational
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spectrum. Stokes scattering occurs when a photon is absorbed by a molecule and then the

photon is red-shifted to a longer wavelength. The anti-Stokes scattering is the opposite of the

Stokes scattering and the wavelength of the re-emitted photon is decreased. The frequencies

of Stokes and anti-Stokes scattering are given in Eq. 1.14, where the frequency shift between

the exciting and scattering line (∆ν) is presented in Eq. 1.15 (Cooney, 1972).

νs = ν1− | ∆ν |,

νas = ν1+ | ∆ν |
(1.14)

∆ν = 4β(J ′ +
3

2
). (1.15)

Here β is the molecular rotational constant and J ′ is the rotational quantum number of

the lower state. The intensity of each individual rotational Raman line depends on the

temperature of the molecule. Therefore, the atmospheric temperature can be calculated

by using the pure rotational Raman scattering of N2 and O2 molecules (Arshinov et al.,

1983). The atmospheric temperature can be calculated by measuring the intensity of two

rotational Raman lines with opposite temperature dependency, as the ratio of these two

lines is a function of the temperature. Rotational Raman lidar can measure temperature

up to around 30 km. Above about 25 km altitude, Rayleigh scattering is large and the the

contribution to the scattering from aerosols becomes negligible, while the Raman and Mie

scattering is orders of magnitude smaller. Thus, above about 25-30 km Rayleigh-scatter

measurements are better suited for temperature retrievals.

1.3.5 Resonance Fluorescence Lidar

Rayleigh lidars measure molecular scattering from air in the mesosphere and lower ther-

mosphere to calculate temperature, but resonance lidars use scattering from metals (Na,

P, Fe, Li, and Ca) released by meteors between 80 to 110 km altitude. Metals like Na, K,

Fe, Ca and Ca+ are deposited in the MLT region by meteors when they burn up in the

atmosphere (Plane, 1991). These metals do not exist below 85 km as the air density is high.

However, when metallic atoms react with other molecules they form compounds and they

act as condensation nuclei for clouds in the middle atmosphere. Eventually, after roughly

4 years, they reach the ground (Plane et al., 2015). Resonance fluorescence is a process
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for ions or molecules where the energy of an incident photon coincides with the transitional

energy of the atom which causes a photon at the same or longer wavelength to be re-emitted.

When implemented for lidars, only re-emission at the same wavelength is considered (Abo,

2005). Resonance fluorescence lidars can also derive kinetic temperature and wind velocity

from the thermal broadening and Doppler shift of measured spectra (Arnold and She, 2003).

Sodium lidars are a type of resonance fluorescence lidar which use the resonant scattering

of the sodium layer. Na atoms in the MLT region absorb the photons and they are excited

to higher energy level, then they re-emit a photon as they return to the ground energy

level. The temperature accuracy is limited by our knowledge of the received photon noise,

transmitted wavelength, and line width (Bills et al., 1991; Krueger et al., 2015).

Typically, Rayleigh lidars don’t measure as high in altitude as sodium lidars. Several

Rayleigh lidar temperature climatologies have been calculated e.g. Leblanc et al. (1998),

Argall and Sica (2007) and have been compared with sodium temperature climatologies such

as those in She et al. (2000), States and Gardner (2000) and Yuan et al. (2008). However,

the PCL can reach into the sodium layer. We have compared our temperature climatologies

with sodium lidars in Chapter 2.

1.4 Measuring Temperature with Lidar

In this section, we briefly review the temperature retrieval methods that are used in the

following chapters: the traditional method and the Optimal Estimation Method (OEM).

Each method has its own benefits and deficiencies. Both of these methods start with a lidar

return which is proportional to density and then find temperature using the lidar equation,

the assumption of hydrostatic equilibrium, and the Ideal Gas Law.

1.4.1 The Traditional Method

In 1980, Hauchecorne and Chanin (HC) presented a robust method to retrieve temperature

from Rayleigh lidar measurements (Hauchecorne and Chanin, 1980). The HC method uses

the assumption of hydrostatic equilibrium, the Ideal Gas Law, and the lidar equation to

define a relationship between the measured lidar signal and temperature at each altitude in
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the lidar’s range. The hydrostatic equilibrium is given by Eq. 1.16:

dp

p
= −M

R

g(z)

T (z)
dz. (1.16)

This equation can be integrated over layers with a thickness 4z that is bounded by z − 4z
2

and z + 4z
2

as follows:

log

(
P (zi + 4z

2
)

P (zi − 4z2 )

)
= −

∫ zi+
4z
2

zi−4z
2

M

R

g(z)

T (z)
dz. (1.17)

Equation 1.17 is not a linear relation in terms of temperature. In order to find a linear

relation between the temperature and lidar observations (density), we assume an isothermal

atmosphere and constant gravity within each layer. Then Eq. 1.17 can be simplified at each

altitude (zi), i = 1 to N :

P (zi + 4z
2

)

P (zi − 4z2 )
= exp

(
− Mg(zi)

RT (zi)
∆z
)
. (1.18)

The derived temperature expression is then (Hauchecorne and Chanin, 1980):

T (zi) =
Mg(zi)4z

R log(
P (zi−4z

2
)

P (zi+
4z
2

)
)
. (1.19)

In Eq. 1.19, T (zi) is temperature (in Kelvins), zi is the ith altitude levels, M is mean

molecular mass of air (in kilograms/mole), g(zi) is the acceleration of Earth’s gravity, P is

atmospheric pressure and R is the ideal gas constant. The HC method assumes that T (zi)

and consequently P are constant within each layer. The pressure values at the top and

bottom of a defined layer can be calculated using the hydrostatic equilibrium equation upon

downward integration as:

P (zi +
4z
2

) = P (zn +
4z
2

) +
n∑

j=i+1

ρ(zj)g(zj)4z, (1.20)

and

P (zi −
4z
2

) = P (zi +
4z
2

) + ρ(zj)g(zj)4z, (1.21)

where the term P (zn + 4z
2

) is the pressure at the N th layer (the highest layer). In Eq. 1.20

and 1.21, ρ(zj) is the atmospheric density profile

ρ(zj) =
n(z)

NA

, (1.22)
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where NA is Avogadro’s number and n(z) is atmospheric number density (particles/m3)

calculated from the lidar equation (Eq. 1.9). We can rearrange and rewrite Eq. 1.9 using

these assumptions and merging ψ(z) in C since ψ is constant with height:

ρ(zi) = C(N(zi)−B(zi))(zi)
2. (1.23)

Equation 1.23 shows that the Rayleigh lidar signal is proportional to the atmospheric mass

density. In Eq. 1.23, the lidar constant (C) cannot be determined precisely due to the

uncertainties in the parameters that comprise the lidar constant, and N(zi)z
2
i is the relative

density profile. Using the relative density profile, the relative temperature profile can be

calculated. It is necessary to have the lidar constant in Eq. 1.23, in order to find atmospheric

density profile at all altitudes from lidar measurements. The lidar constant in Eq. 1.23 can

be calculated by scaling the lidar photocounts between an altitude range where the lidar

photocount is linear with high signal-to-noise ratio and (45-65 km) to the corresponding

density values usually taken from an atmospheric model like the CIRA-86. The relative

pressure profiles can be calculated using the density profile through Eq. 1.20 and 1.21. In

order to initiate the pressure relation from top to bottom, the pressure at the highest altitude

of the mass density profile is required. This pressure is usually obtained from a model and

is called “seed” or “tie-on” pressure. A “seed temperature” could also be used in the above

temperature retrieval algorithm instead of a “seed pressure”. The ratio of the calculated

relative pressure profile to actual pressure profile is the same as the relative mass density

profile to the actual atmosphere mass density profile (Eq. 1.24):

P (zi)

Patmos(zi)
=

ρ(zi)

ρatmos(zi)
= K. (1.24)

Finally, the temperature profile can be calculated using eq. 1.19 by applying ideal gas

law to the relative mass density and pressure profile (Eq. 1.25).

T (zi) =
P (zi)

Rρ(zi)
=

KPatmos(zi)

RKρatmos(zi)
=

Patmos(zi)

Rρatmos(zi)
. (1.25)

Both, the mass density and pressure profiles are relative in Eq. 1.25 but the calculated

temperature is absolute. Using the seed value in Eq. 1.20 most likely cause an offset in

the top of the calculated relative pressure profiles which depends how far the seed value
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is from the actual atmospheric pressure. Atmospheric density increases as the downward

integration proceeds in Eq. 1.20 and the second term becomes larger and dominates the first

term, therefore, the seeding value uncertainty decreases.

The uncertainties due to seed temperature or pressure in the first term in Eq. 1.20 create

uncertainties in the retrieved temperature profile. In the case of the PCL, the seed value is

usually taken from the CIRA-86 (Fleming et al., 1988) model between 100 to 110 km. At

these altitudes the density is very small and consequently the pressure is very low, therefore,

the uncertainty in the seed value is high and can have very large variations over time.

Leblanc et al. (2016) used the Monte Carlo technique to calculate the temperature un-

certainty due to the seed pressure and they presented their result based on the temperature

uncertainty due to 1% uncertainty in the seed pressure. It is necessary to know the variation

of atmospheric pressure (which is directly proportional to temperature) in the region that

seed pressure is chosen and the effect of the seed pressure on the temperature retrieval. To

investigate the amount of temperature variation due to variation of seed pressure, the percent

difference of CIRA-86 temperature profiles from the PCL temperature climatology (Jalali

et al., 2018) was calculated (Fig. 1.5) for each month at all altitudes of the climatology. The

details of the methodology to calculate these figures will be discussed in Section 1.4.2 and

Chapter 2.

The annual variation in the percent difference between CIRA-86 and the PCL tempera-

ture climatology was calculated by taking the average of the percent differences between 100

and 110 km (Fig. 1.6). The differences in temperature between CIRA-86 and PCL were used

to study how the consequent variations in the seed pressure would effect the temperature

retrieval for a typical PCL temperature profiles (March 24 2002). The PCL temperature

profiles are calculated using ±2, 4, 8 and 10% variation in the seed pressure (Fig. 1.7 A) and

the difference between the temperatures using the perturbed seed pressure with the original

temperature profile is calculated in Fig. 1.7b. The seed pressure altitude for this night is

close to 104 km. The temperature difference due to the ±2% up to ±10% is between 4.5 and

22.5K.

Due to the high uncertainties caused by estimating the pressure or temperature from

a model, the top 10 to 15 km (on the order of two scale heights) are typically eliminated
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Figure 1.5: The temperature percent difference between the CIRA-86 model and the PCL

temperature climatology using the PCL and CIRA-86 temperature climatologies.

from each temperature profile to achieve accurate results. Hauchecorne and Chanin (1980)

presented that the seed pressure uncertainty is proportional to the density at the highest

altitude which is proportional to each height below. Therefore, the seed pressure uncertainty

decreases with increasing the density.

1.4.2 The Optimal Estimation Method

The Optimal Estimation Method (OEM) is an inverse method which was developed by

Rodgers (2011) for remote atmospheric measurements. It is now well-known in the atmo-

spheric science field, especially in data assimilation and satellite (Marks and Rodgers, 1993;

Palmer and Barnett, 2001; Watts et al., 2011) retrieval measurements as well as radiometer

observations (Güldner and Spänkuch, 2001; Haefele et al., 2099). The method has only re-

cently been applied to active sounding measurements. Povey et al. (2014) used the OEM to

retrieve aerosol backscatter and extinction from lidar measurements. Then, Sica and Haefele

(2015) presented the method as a solution to some of the shortcomings of the previously

mentioned Rayleigh temperature retrieval techniques. Sica and Haefele (2015) used a first-
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Figure 1.6: The average of the percent differences in temperature between 100 and 110 km

shows the annual variation of the difference between the CIRA-86 and PCL temperature

climatology.

principle OEM to retrieve temperature from Rayleigh-scatter lidar measurements. Here, first

principle means that the OEM analysis is done from uncorrected (level 0) measurements to

avoid introducing artifacts due to instrument corrections.

The OEM consists of two primary components: measurements and determined model

parameters (Rodgers, 2011). The relationship between these components can be modeled in

a function known as the forward model (F(x)).

The linear OEM relationship can be written as:

y = F(x,b) + ε, (1.26)

where y is the measurement vector, x is the state vector, b is the model parameter vec-

tor, and ε is the measurement noise. The state vector contains the retrieved quantities;

henceforth I will call this the retrieval vector. The noise in lidar measurements implies that

the measurements have uncertainties that have a distribution of possible values. The state

vector is retrieved and contains the temperature profile and some instrument parameters

like detector dead time and background. The model parameter vector contains all other

parameters needed to represent the measurements. The forward model is the lidar equation

(Eq. 1.9), which is dependent on both the system hardware configuration and atmospheric
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Figure 1.7: a) PCL temperature retrieval using the HC method on 20020324. Each profile

corresponds to a seed pressure while the black temperature profile used the original seed

pressure and other colors show ± 2, 4, 8 and 10% of the original seed pressure. b) The

temperature difference between the temperature profiles using the original seed pressure

versus the varying seed pressure. This figure is adapted from Gross et al. (1997) and Khanna

et al. (2012).

properties. The measurement noise in lidar measurements implies that the measurements

have uncertainties that have a Gaussian distribution of possible values represented by ε. It

is necessary to mention that lidar photocounts follow Poisson statistics and the Poisson dis-

tributions with high enough photocounts approximates a normal distribution. Sufficiently

high (i.e. > 10 cts/bin/s) exist for the entire range of lidar photocounts below the lower

thermosphere.

The theory of the optimal estimation method is formulated in terms of Bayesian inference

with Gaussian statistics. Bayes’ theorem (Bayes et al., 1964) is given as:

P (x|y)︸ ︷︷ ︸
Posteriori

=

Likelihood︷ ︸︸ ︷
P (y|x)

Priori︷ ︸︸ ︷
P (x)

P (y)︸︷︷︸
Normalizing constant

. (1.27)
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In equation 1.27, P (x|y) is known as the a posteriori term and is the probability of a random

variable x (or hypothesis x) given an observation y. This term gives our complete state of

knowledge of the wanted parameters given all of the available data. P (y) is the probability

of collecting the data under all possible hypotheses and normalizes the total probability of

P (x|y). The normalizing constant in following relations has been neglected. P (x) is the

background context or any available underlying information and knowledge about x prior to

the arrival of data y, otherwise known as a priori information. P (y|x) is the probability of

getting y if the state were x or if the hypothesis x were true. The purpose of Bayes’ theorem

is to find a way to update our current state of knowledge of x, after the arrival of some data

measurements y. The Bayesian approach is applicable when modeling time varying systems

and one of the advantages of the Bayesian approach is that least squares maximum likelihood

results can be achieved as special cases of the Bayesian results. Using Bayes’ theorem, the

most likely state can be found based on measurements and their uncertainties, as well as a

priori information.

By using Bayes’ theorem and approximating all parameters with a Gaussian probability

density function (PDF), the retrieved states can be found by using the backscattered photons

detected by the lidar. OEM solves the inverse problem, that is, a problem which uses

the desired retrieval parameters to reproduce the measurements via a forward model which

contains all the important physics and instrument effects. Here we retrieve temperature using

photon counts measurements, with the forward model based on the lidar equation (Eq. 1.9).

However, in order to solve the inverse problem using Bayes theorem we also need a priori

profile, or a “first guess", for the retrieval parameters. We can find a priori information

from different sources, for example: other instruments’ measurements, climatologies, and

meteorological models.

The solution of the retrieval inverse problem is constrained by a priori information. The

optimum estimate for the probability state x̂ is found by minimizing equation 1.28, otherwise

known as the “Cost" function.

cost = [y − F(x̂,b)]TSε
−1[y − F(x̂,b)] + [x̂− xa]TSa

−1[x̂− xa]. (1.28)

where Sε is the covariance of the measurements, xa is the a priori vector, and Sa is the a
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priori covariance. Minimizing the cost function produces the retrieval solution (x̂), where

the solution is then the maximum a posteriori solution based on the PDFs and is given by

x̂ = xa + (KTSε
−1K + Sa

−1)−1KTSε
−1(y − F(xa)) = xa + G(y − F(xa)), (1.29)

where K refers to the Jacobian matrix, and G is the gain matrix. The gain matrix describes

the sensitivity of the retrieval to the observations:

G =
∂x̂

∂y
= (KTSε

−1K + Sa
−1)−1KTSε

−1. (1.30)

The two terms in Eq. 1.30 show the sensitivity to the measurement and a priori, re-

spectively. One of the advantages of the OEM is that in addition to obtaining a retrieval

vector, the method also provides diagnostic tools and a full uncertainty budget. The pri-

mary diagnostic tool is the averaging kernel matrix (A) which represents the sensitivity of

the retrieved state to the true state. At each retrieval grid point (level or altitude), the

averaging kernel shows the sensitivity of the retrieval to the measurement. The full width

at half-maximum (FWHM) of the averaging kernel at each altitude represents the vertical

resolution. Equation 1.29 can be rewritten based on the averaging kernel as:

x̂ = A(x− xa) + Gε. (1.31)

Equation 1.31 shows that if the A is unity at each altitude, the retrieval is sensitive only

to the measurements, with no contribution from the a priori considering the gain matrix

is the sensitivity of the retrieval to the observations. Wherever A is less than unity, the a

priori is contributing to the retrieval and the extent of its contribution can be estimated

using the measurement response. The averaging kernel also provides a means of calculating

the number of degrees of freedom (dgf) in the retrieval by evaluating the trace of A:

dgf = Tr(A). (1.32)

Ideally, the contribution of the a priori is zero at all levels, and dgf equals the number of

levels of the retrieved temperature profiles. If u is a vector with unit elements, Au is the sum

along the rows of the averaging kernel and it can be used as a representation of the amount of
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information coming from the lidar measurements and how much is as a result of the a priori.

For example, an averaging kernel value of in the OEM retrieval represents no contribution

of a priori information in the OEM retrieval and an averaging kernel with a value of 0

shows that all the OEM retrieval information comes from a priori knowledge. Figure. 1.8

represents an example of OEM temperature averaging kernel profiles calculated by the PCL

(Fig. 1.8a) and MLS (Fig. 1.8b). In Fig. 1.8 the red lines are the measurement responses for

each instrument which they are calculated from the sum over the raw of averaging kernel

matrices. in Fig. 1.8a, every third averaging kernel is plotted to be clearer. The PCL is an

active remote sensing instrument and the most of the averaging kernels from 25 km up to

around 85 km are 1, which means all the temperature retrieval information comes from the

PCL measurements at each level and clearly the measurement response is 1 as well. Above

85 km the averaging kernels decrease in magnitude and their width increases, meaning the

vertical resolution of the retrieval decreases.

The MLS on the Aura satellite is a passive instrument and its typical averaging kernels

are presented in (Fig. 1.8b). All of MLS averaging kernels are less than 1 at each level and

they vary from 0.3 to maximum 0.7. The FWHM of the MLS averaging kernels are larger

than those of the lidar and they vary with altitude. In Fig. 1.8, the vertical resolution for

the PCL is 1 km up to 85 km and increases above it up to 3 km, however, the MLS vertical

resolution is between 3.5 km and 10 km. The measurement response in Fig. 1.8b is almost

1 up to 0.005mb, which means the retrieval comes from the MLS measurements but from a

much wider altitude range than for the PCL. Therefore, Au was used as the cutoff height

reference in the OEM instead of removing 1 or 2 scale heights from the top of each profile as

in the traditional method. Values of Au equal to 0.9 and 0.8 are considered as a cutoff height.

These values represent the fractional contribution of the measurements as compared to the

a priori in the temperature retrieval and are generally recognized in the OEM community

as levels above which the effect of the a priori is minimal.

In order to calculate the systematic uncertainties in the HC method, it is necessary to

use a Monte Carlo method to propagate the uncertainties through the temperature retrieval

(Leblanc et al., 2016). The OEM produces a complete uncertainty budget for all param-

eters in the temperature retrieval process on a profile by profile basis. The uncertainty
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Figure 1.8: a) The PCL temperature averaging kernels for 24 May 2012 adapted from Sica

and Haefele (2015). b) The MLS temperature averaging kernels at 70◦ latitude adapted from

Schwartz et al. (2008). The red lines represent the measurement response.

budget includes the uncertainty due to the seed pressure and the other model parameters

and measurement noise. The retrieval uncertainty due to measurement noise is:

Sy = GSεG
T (1.33)

where Sε is the covariance of the measurements and GT is the transpose of the gain matrix

G. The OEM calculates the uncertainty due to the parameters inside the forward model by

eq. 1.34:

Sb = GKbSbKb
TGT (1.34)

In Eq. 1.34, Sb is the covariance of each forward model parameters and Kb is the jacobian of

those parameters (
∂F̂

∂b
). The lidar equation (Eq. 1.9) using the hydrostatic equilibrium plus

non-paralyzable deadtime correction (Eq.1.5) can be used as a forward model to calculate

the temperature. For Rayleigh-scatter lidar temperature retrievals, Sica and Haefele (2015)

proposed the following form of the lidar equation as the forward model:

Nt(z) = C
ψ(z)

z2

Phseq(z)

kT (z)
+B(z) (1.35)

where

Phseq(z) = P0 exp

(
1

R

∫ ztop

z

M(z′)g(z′)

T (z′)
dz′
)
. (1.36)
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Figure 1.9: An overview of the OEM’s iterative process.

Note the change of sign in the exponential term, which corrects a typo in Sica and Haefele

(2015).

Practically, the OEM is often an iterative process since most forward models are some-

what non-linear. A linear solution would not require iterations and can be solved directly

using Eq. 1.29. The basics of the process are shown in Fig. 1.9. First, all forward model

input parameters are defined and calculated. These include parameters such as the ideal

gas constant, mean molecular mass profiles, gravity profiles, and the choice of seed pressure.

At this stage, the a priori temperature profiles are also calculated, as well as the a priori

background and deadtime values. The uncertainties of all parameters (retrieved and forward

model) are also defined or calculate and used to create the covariance matrices. The input

values and a priori are then fed into the forward model to create the model photocount

profile (Nmodel) which are compared to the measurement profile (Nmeasurements) using the

cost function (Eq. 1.28). On the first iteration, the cost is typically very high, at which point

the retrieval parameters are adjusted and the OEM iterates again. The iterations continue

until the solution converges and the cost stabilizes - usually around a value of 1. The number

of iterations varies depending on how far the initial guess is from the solution, but is usu-

ally less than 10. The final iteration produces the final retrieval values of the temperature,

background, and deadtime as well as the averaging kernels and the uncertainty budget.
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1.5 Overview of Thesis

In Chapter 2, we use the PCL temperature measurements from 1994 to 2013 to calculate

a temperature climatology using the HC method and the OEM. These climatologies are

compared to each other in order to validate the OEM. Also, the uncertainty budget for the

PCL temperature climatology is calculated and is compared to the Monte Carlo uncertainty

budget presented in Leblanc et al. (2016). Finally, the PCL temperature climatologies using

OEM and HC are compared to available sodium lidar climatologies.

In Chapter 3, we will present a method that removes the effect of the a priori information

from the final OEM lidar measurements. To validate the a priori removal method, we will

use a typical PCL OEM temperature profile as well as OEM water vapour profiles from the

RALMO lidar (located in Switzerland). The results for the water vapour will be compared

with radiosonde measurements as well.

In Chapter 4, we will investigate the value in the calculation of averaging kernel matrices

in the OEM . We use measurements taken from NASA and DWD (German Weather service)

lidars during a campaign which was held in 2005. The averaged retrieved temperature from

these two lidars will be compared with each other using the HC and OEM results. For the

OEM comparison section, we also consider the averaging kernels of each lidar. Finally, the

results will be compared to the MLS and SABER satellite temperature data.
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Chapter 2

Calculation and Validation of Optimal

Estimation Method Temperature

Retrievals Using Purple Crow Lidar

Rayleigh-scatter Measurements1

2.1 Introduction

Ramaswamy et al. (2001) and Randel et al. (2004, 2009, 2016) discussed the effects of the

middle atmosphere temperature trend over time using different instruments. The MLT region

is too high for weather balloons to measure the temperature and the resolution of satellite

measurements is on the order of 2 km or greater in this region. One of the best instruments for

high-spatial and time-resolution temperature measurements is lidar. Rayleigh-scatter lidars

are the best choice for temperature measurements in the stratosphere and lower mesosphere,

while resonance lidars are best in the upper mesosphere and lower thermosphere. In order to

retrieve temperature, it is necessary to have a seed, or tie-on, pressure at the highest point

of the measurement profiles, which is usually taken from a model. This assumption causes a

systematic uncertainty in the retrieved temperature profiles. Rayleigh lidars measure relative
1Jalali, A., & Sica, R. J., & Haefele, A., Atmospheric Measurement Technique, 2018, 11, 11, 10.5194/amt-

11-6043-2018.
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density; by assuming hydrostatic equilibrium between layers and applying the ideal gas law,

a temperature profile can be calculated from the relative density measurement. Resonance

lidars measure the height-dependent kinetic temperature in the upper mesosphere and lower

thermosphere. Sodium lidars use the resonant scattering of the transmitted laser pulse from

the sodium layer (83 to 105 km); here temperature accuracy is limited by our knowledge

of the received photon noise and transmitted wavelength and line width (Bills et al., 1991;

Krueger et al., 2015).

Randel et al. (2004) used several sets of measurements including lidars to calculate a

temperature climatology between 10 and 80 km primarily using lidar measurements taken in

the 1990s. They did a comprehensive comparison between various data sources and found

good agreement between the lidar and satellites up to 64 km (0.1mb). They also found that

there is an underestimation of temperature variability in the tropical upper stratosphere in

analysis data and large variability in the stratopause temperature for the different datasets.

In the upper mesosphere and lower thermosphere, Rayleigh lidar temperature climatologies

have been blended with sodium lidar temperature measurements to extend these climatolo-

gies in altitude (Leblanc et al., 1998), and compared against sodium lidar temperatures such

as those given by She et al. (2000), States and Gardner (2000a) and Yuan et al. (2008).

Hauchecorne et al. (1991), Leblanc et al. (1998), She et al. (2000), States and Gardner

(2000a), Argall and Sica (2007) and Yuan et al. (2008) found significant temperature differ-

ences between the climatologies and atmospheric models, in particular between 80 km and

above. The lidar measurements showed that the mesopause altitude was lower in the sum-

mer than in the winter while the empirical models did not predict the observed seasonal

behavior, showing little difference in altitude.

Diurnal and nighttime temperature climatologies were published by States and Gardner

(2000a) from Urbana, Illinois (40 ◦N, 88 ◦W) (URB) using measurements between 1996 and

1998. She et al. (2000) used 8 years of nighttime measurements from Colorado State Uni-

versity (CSU) sodium lidar (41 ◦N, 105.1 ◦W) from 1990 to 1999 to calculate a temperature

climatology. The CSU lidar was upgraded in 1999 from a one-beam to a two-beam lidar

to be able to probe the mesopause during daytime and nighttime (Arnold and She, 2003).

Yuan et al. (2008) published the results of the upgraded CSU lidar, giving climatologies for
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nighttime and daytime between 2002 and 2006. The URB and CSU climatologies are among

the best datasets for the validation of upper-mesosphere and lower-thermosphere tempera-

tures, plus they allow for a direct comparison between our new climatology and Argall and

Sica (2007). Yuan et al. (2008) provide additional years of overlap with our new climatology

for the validation of our OEM-derived temperatures.

We have created a new climatology with measurements from The University of Western

Ontario’s Purple Crow Lidar (PCL) using the optimal estimation method (OEM) with a full

uncertainty budget that goes higher in altitude than the climatology using the method of

Hauchecorne and Chanin (henceforth the HC climatology), in addition to including system-

atic and random uncertainties. We then compare the OEM-derived climatology with sodium

lidar climatologies to validate the Rayleigh-scatter temperatures. Section 2 summarizes the

Rayleigh temperature retrieval methods, including the HC method and the OEM, as well

as the procedure for generating the climatology. Section 3 compares the OEM results with

the HC results. Section 4 presents the comparison between the PCL temperature OEM

climatology with other sodium lidar climatologies. Section 5 is a summary and Section 6 is

the conclusion.

2.2 Procedure for Generating the Climatology

This study uses 519 nightly averaged temperature profiles from 1994 to 2013 distributed in

time as shown in Tables 2.1 and 2.2. The distribution histogram of number of nights are

brought in Fig. 2.1.

2.2.1 Methodology to Calculate Temperature Climatology

OEM methodology

The OEM uses the forward model and non-paralyzable dead time correction equation (Sica

and Haefele, 2015) (henceforth SH2015) to retrieve the nightly average temperature profiles

from the LLR and HLR channels simultaneously. In SH2015 the dead time, background,

and temperature were retrieved. They considered the lidar constant as a forward model
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Table 2.1: Number of nightly mean profiles used to calculate the PCL temperature clima-

tology by month between 1994 and 2013.

Month Number of profiles

January 9

February 14

March 17

April 19

May 63

June 72

July 109

August 99

September 39

October 37

November 26

December 15

Total 519

parameter, but in this study, the lidar constants for LLR and HLR channels were retrieved

rather than specified . The OEM uses an estimation of the covariances of the measurements,

retrieval, and forward model parameters. The model parameter covariance matrices used in

this study are based on SH2015, in which the summary of the values and related uncertain-

ties of the measurements and the retrieval and forward model parameters are presented in

Table 2.3. The data grid is 264m, and the retrieval grid is 1056m. Due to the PCL mea-

surements between 1994 and 1998 having only the HLR channel measurements, temperature

and background were retrieved but not dead time. Instead, the systematic uncertainty due

to the saturation was calculated. The PCL measurements from 1999 to 2011 used the LLR

digital channel to get more temperature information and the dead time of the HLR channel

was retrieved using an a priori value of 10 ns (Table 2.3). The LLR dead time was treated

as a model parameter and a standard deviation of 5.7% was considered.The CIRA-86 model

atmosphere was chosen as the temperature a priori with a variance of (35K)2 at all altitudes
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Table 2.2: Number of profiles used to calculate the PCL temperature climatology per year

between 1994 and 2013.
Year Number of profiles

1994 36

1995 40

1996 22

1997 17

1998 78

1999 57

2000 43

2001 2

2002 57

2003 34

2004 5

2005 37

2006 32

2007 34

2012 20

2013 5

Total 519

(Fleming et al., 1988).

HC methodology

The climatology was formed using the methodology of Argall and Sica (2007) (henceforth

AS2007), who used the HC method as follows. First, the quality of each 1 min scan profile

of measurements was checked. Then, nightly averaged temperature profiles were calculated.

The quality of the nightly averaged measurements was assessed based on the measurement

signal-to-noise ratio. Measurements were accepted if the signal-to-noise ratio was greater

than 2 at the highest altitude for the initialization of downward integration. AS2007 used
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Figure 2.1: Histogram distribution of number of nights of PCL measurements for HLR

channel (left) and LLR channel (right).

Table 2.3: Values and associated uncertainties of the measurements and the a priori, retrieval

and forward model parameters
Parameter Value Standard deviation

Measurement

HLR (1994-2013) Measured Poisson statistics

LLR (1999-2013) Measured Poisson statistics

Retrieval parameters (a priori)

Temperature profile taken from CIRA-86 35K

Background for LLR Average of photocounts above 90 km SD above 90 km

Background for HLR Average of photocounts above 115 km SD above 115 km

Dead time for LLR and HLR (1999-2011) 10 ns 5.7 and 11.19%, respectively

Dead time for HLR (2012-2013) 4 ns 0.5%

Lidar constant for HLR Estimated using forward model (55-60 km) 10%

Lidar constant for LLR Estimated using forward model (45-50 km) 10%

Forward model parameters

Pressure profile Fleming et al. (1988) 5%

Ozone density McPeters et al. (2007) 4%

Ozone cross section Griggs (1968) 2%

Acceleration due to gravity Mulaire (2000) 0.001%

Rayleigh-scattering cross section Nicolet (1984) 0.2%

Air number density CIRA-86 5%

the nightly averaged measurements with a minimum signal-to-noise ratio of 2 at the initial

height of integration of 95 km; however, this height was reduced to 90 km in this study

because the decrease in the initial height of integration led to having more nights, which

allowed for a better comparison with the OEM climatology. The raw photon count profiles
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have been co-added to produce height bins of 1008m and a “3’s and 5’s” filter (Hamming,

1989) was applied to the calculated temperature profiles to smooth them in the climatology.

A 3’s and 5’s filter is a filter made by convolution of 3 point and 5 point running means,

resulting in a filter with coefficients given by

1

15
[1 2 3 3 3 2 1]

and side lobes 20 dB lower than either a 3 or 5 point filter (Hamming, 1989). The co-added

height value of 240m was chosen as a data grid for the OEM to be consistent with the

vertical resolution of the HC. The vertical resolution definition and calculation are based on

Leblanc et al. (2016a).

The following steps were taken to make a composite year temperature climatology after

calculating all lidar temperature profiles. Only the profiles were used that, after removing

the top 10 km, extended up to 80 km. Each temperature profile was then interpolated to an

altitude grid with 1 km intervals between 35 and 110 km. For dates with multiple measure-

ments over the years (e.g. 25 July 1994, 2003, and 2003), a weighted-average profile was

calculated using each profile’s statistical uncertainty as weights. Then, linear interpolation

was used to fill the gaps where no measurements existed and a 33-day triangular filter was

applied to smooth the composite temperature climatology.

2.2.2 Effect of a priori on the retrieval temperature profiles in the

OEM

A retrieved temperature profile using the CIRA and the US Standard Atmosphere as the

a priori for a sample PCL night (24 May 2012) was plotted in order to demonstrate the

contribution of the a priori temperature profiles in the retrieval results and the temperature

difference between the a priori temperature profiles (Fig. 2.2). The temperature difference

between the a priori profiles is shown in Fig. 2.2a. The temperature difference around 94 km,

which is below the OEM cutoff heights, is about 20K. In Fig. 2.2b, the red profile is the

temperature difference due to the a priori and the blue profile is the statistical uncertainty

calculated by the OEM. The 0.9 and 0.8 value lines in the Au are the cut-off heights for the

OEM and are shown with solid and dashed lines, respectively. It can be seen that the choice
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Figure 2.2: a) Temperature difference between the a priori temperature profiles, US Standard

Atmosphere and CIRA-86 (blue line). b) Temperature difference between the OEM retrieved

temperature profiles using the a priori profile used in Fig 2.2a, for 24 May 2012 (red line)

and the calculated OEM statistical uncertainty (blue line). The solid black and solid-dashed

black lines are the height below which the temperature profile is more than 90% (0.9) and

80% (0.8) due to the measurements, respectively.

of a priori has little effect (1.5K below the 0.9 line and less than 2K below the 0.8 line) on

the retrieved temperature and that the difference between the retrieved temperatures from

each choice is much less than the statistical uncertainty (10K below the 0.9 line and 12K

below the 0.8 line) at the top of the profiles.

2.3 Results

The percentage of nights at each altitude for the HC method and OEM for 0.9 and 0.8 cutoff

height are given in Fig. 2.3. It can be seen that the OEM cutoff height is much higher than

the HC method cutoff height for all 519 nights.

To create the temperature climatology, we used the nightly OEM temperature profiles

to calculate an average temperature profile for each day of the year (Fig. 2.4). The 0.9 and
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Figure 2.3: The percentage of number of nights at each altitude for the HC method and

OEM for 0.9 and 0.8 cutoff height.

0.8 values of Au are superimposed in Fig. 2.4 with white lines. To estimate the annual

temperature variability, the temperature difference between PCL temperature climatology

using the OEM and the calculated climatology from monthly CIRA-86 temperature profiles

is plotted in Fig. 2.5 for each month. There is a temperature difference on the order of

5K below 52 km. There is a bias smaller than 3K between the CIRA profiles and the PCL

monthly mean temperatures between 55 and 65 km except in the winter. Above 65 km the

CIRA is warmer, on average around 8K, than the PCL up to 90 km, but much colder (on the

order of 20K) above 90 km. CIRA temperature profiles have a smaller difference (less than

10K) compared to the PCL in summertime rather than wintertime up to around 90 km.

The geophysical variability for the OEM PCL temperature climatology (Fig. 2.6) was cal-

culated based on the difference between the 33-day temperature standard deviation and the

variability of the PCL measurements. The geophysical variability shows the wave activity

in the time range of 2 to 33 days, encompassing the scale range of planetary waves. We fol-

lowed the procedure from AS2007 based on Leblanc et al. (1998) to calculate the geophysical

variability. Figure 2.6 shows the temperature variability related to waves from 2 to 33 days.
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Figure 2.4: Composite PCL Rayleigh temperature climatology using the OEM. The white

lines are the height below which the temperature climatology is more than 90% (0.9) and

80% (0.8) due to the measurements.

The temperature variability from mid-April to the end of September below 70 km is less

than 4K. However, in the same period of time the highest temperature change is between 80

and 90 km due to the wave activity in the mesosphere. There is a peak at 41 km in January

which may be related to sudden stratospheric warmings during winter. However, the lower

number of measurements in January will also contribute to the variability, and determining

the extent of each contribution is not possible (AS2007). The temperature variability due

to mesospheric inversion layers reaches a maximum between 62 and 72 km during December

and January. These results are in good agreement with the results presented in Figure 6 of

AS2007.

2.3.1 Uncertainty budget and vertical resolution

The lidar measurements include both systematic and random uncertainty. Systematic un-

certainties originate in the forward model from uncertainties due to model parameters. One

of the advantages of the OEM is that it provides systematic uncertainties for all retrieved
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Figure 2.5: Temperature difference between the calculated climatology from monthly CIRA-

86 temperature profiles and the OEM PCL temperature climatology. The black lines are the

height below which the temperature climatology is more than 90% (0.9) and 80% (0.8) due

to the measurements.

parameters, as well as the random uncertainties. The systematic uncertainties calculated in

the PCL OEM technique (Table 2.3) are based on the following model parameters:

1. knowledge of the HLR dead time (1994-1998 only);

2. determination of the Rayleigh-scatter cross section for air;

3. Rayleigh cross section variation with composition in the mesosphere and thermosphere;

4. air number density influence effect on Rayleigh extinction;

5. ozone absorption cross section;

6. ozone concentration effect on transmission;

7. seed (tie-on) pressure;

8. acceleration due to gravity; and
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Figure 2.6: Geophysical variability in temperature for the OEM PCL climatology.

9. mean molecular mass variations with height above 80 km.

Uncertainty budget for the PCL climatology

A typical case for the temperature statistical and systematic uncertainties for a nightly

average retrieval is shown in Fig. 2.7. The temperature uncertainty due to the seed pressure

has the highest contribution among all of the systematic uncertainties at the altitudes above

the mesopause. However, temperature uncertainties related to ozone, including the ozone

absorption cross section, have the largest effect below 40 km. The uncertainty contribution

for the gravity model is almost constant with height and is on the order of 0.002K.

The nightly OEM statistical uncertainty profiles were used to form the statistical tem-

perature uncertainty of the PCL temperature climatology (Fig. 2.8) using the procedure

described in AS2007. The statistical uncertainty below 75 km is less than 1K and gradually

increases with height until it reaches 0.9 Au where it is less than 10K. The monthly aver-

age minimum, maximum and median of temperature uncertainties related to the systematic

58



10
-4

10
-3

10
-2

10
-1

10
0

10
1

Temperature uncertainty (K) 

40

50

60

70

80

90

100

110

A
lt
it
u

d
e

 (
k
m

) 

Pressure

Gravity

MMM

O3 density

O3 

Ray Exct 
Ray

Ray
(z)

Saturation fun.

Statistical

Ray Exct 

Figure 2.7: A typical night’s systematic and random uncertainties for the OEM tempera-

ture retrieval. Here the uncertainty due to the pressure is coming from the seed pressure

uncertainty.

uncertainties for all months are plotted in Fig. 2.9.

The OEM directly gives the vertical resolution of the retrieval at each height from the

averaging kernels (Fig. 2.10) and does not employ an digital filtering of the measurements

or retreived quantities. The vertical resolution is 1056m below 95 km and is equal to the

retrieval grid. It is 3000m below the 0.9 cutoff height; however, it increases rapidly to 5000m

around the 0.8 cutoff line. Leblanc et al. (2016b) recommended two standardized definitions

for a temperature profile vertical resolution. In order to compare the retrieved temperature

profiles using the OEM and the HC method, the two vertical resolution definitions given by

Leblanc et al. (2016b) were used to find the best bin size for the HC method so it would have

an identical vertical resolution to the OEM retrieval. We found that 264m co-added bins

and a “3’s and 5’s” filter gave a vertical resolution of 1008m, close to the OEM temperature

retrieval grid (1056m).

Comparison with uncertainty budget of the traditional method

Leblanc et al. (2016b), hereafter NDACC2016, used a Monte Carlo method to calculate the

59



2

2
2

2

4

4
4 4

6

6
68

8
8 8

888

10

1010
1010

10
10 0.80.8

0.8
0.90.9

0.9

        Jan                   Mar                   May                   Jul                   Sep                   Nov           

Temperature uncertainty (K)

40

50

60

70

80

90

100

110

A
lt
it
u
d
e
 (

k
m

) 

0 2 4 6 8 10

Figure 2.8: Statistical temperature uncertainty of the temperature climatology. The white

lines are the height below which the temperature climatology is more than 90% (0.9) and

80% (0.8) due to the measurements.

statistical and systematic uncertainties for the temperature retrieval. We have compared our

results with his ND:YAG 532 nm lidar results. NDACC2016 and our climatology give the

temperature uncertainties for several of the same parameters (Table 2.3), including the sta-

tistical uncertainty (detection noise), the Rayleigh cross section, air number density, ozone

absorption cross section, ozone number density, and the gravity model. NDACC2016 cal-

culated the temperature uncertainty due to each parameter per 1% uncertainty. In order

to compare NDACC2016 results with the PCL uncertainties using the OEM, we need to

scale NDACC2016 simulations to the PCL as recommended by Leblanc et al. (2016b). For

example, if the temperature uncertainty due to air number density is per 1% uncertainty in

NDACC2016, then we must multiply NDACC2016 uncertainties by a factor of 5 because we

assume an air number density uncertainty of 5% (recommended by NDACC2016) in the PCL

forward model (Table 2.3). We have compared our results with the statistical and systematic

uncertainties presented in Figures 1 to 9 in NDACC2016 for the case of a 532 nm laser beam

with a 1MHz count rate at 45 km, a height resolution of 300m, and an integration time of
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Figure 2.9: PCL temperature systematic uncertainty due to the (a) saturation function (1994

to 1998 only), (b) Rayleigh extinction cross section, (c) Rayleigh cross section variation with

height, (d) air density affect on Rayleigh extinction, (e) ozone absorption cross section (f)

ozone concentration, (g) seed (tie-on) pressure, (h) gravity model, and (i) mean molecular

mass variation with height. In each figure, red, blue, and black lines are the minimum,

maximum, and median between all months, respectively.

2 hours (Fig. 2.11).

The statistical uncertainty comparison between the PCL and NDACC2016 is shown in

dark blue in Fig. 2.11. It can be seen that the NDACC2016 statistical uncertainty almost

equals the scaled PCL statistical uncertainty above the stratopause. However, there is a dif-

ference at altitudes below 50 km. The statistical uncertainty difference in the lower altitudes

is due to using the two Rayleigh channel measurements (HLR and LLR) to calculate the tem-

perature in the lower altitudes. The uncertainties at these altitudes are then a combination

of the LLR and HLR uncertainties.

The temperature uncertainty due to the uncertainty in the Rayleigh cross section in

NDACC2016 for each 1% at two sample altitudes, 30 and 38 km, is on the order of 0.001K
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Figure 2.10: The OEM vertical resolution. The vertical resolution below 80 km is 1056m;

that is, it is equal to the retrieval grid spacing (not shown). The white lines are the height

below which the temperature climatology is more than 90% (0.9) and 80% (0.8) due to the

measurements.

(NDACC2016, Figure 4). The temperature uncertainty due to the Rayleigh cross sec-

tion in the OEM is presented per 0.2%; therefore, the scaled cross section uncertainty for

NDACC2016 is 1 order of magnitude smaller than the PCL Rayleigh cross section uncer-

tainty. However, this temperature uncertainty is very small.

The uncertainty due to air number density as an input quantity per 1% is shown in

NDACC2016 (their Figure 5 left panel). The NDACC2016 scaled temperature uncertainty

due to air number density is of the same order of magnitude as the OEM-derived uncertainty

for the PCL (Fig. 2.11).

The standard deviation for the ozone cross section in the OEM forward model is 2%.

Therefore, the NDACC2016 ozone cross section temperature uncertainties should be doubled

to compare them with the PCL. The temperature uncertainty due to the ozone cross section

uncertainty in NDACC2016 (their Figure 6 left) after scaling is about 4 times smaller. The

other temperature uncertainty due to ozone is the ozone number density. The temperature

uncertainty due to ozone number density uncertainty for the NDACC (their Figure 7 left),
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Figure 2.11: Comparison of the PCL statistical and systematic uncertainties with scaled

uncertainties from Leblanc et al. (2016b) as described in the text. The solid lines are the

uncertainties due to the PCL and the dashed lines are uncertainties due to NDACC2016.

after scaling by a factor of 0.25 (as the PCL a priori assumes 4% uncertainty), is almost

twice that of the PCL’s. The uncertainties due to ozone number density are so small above

45 km that they have not been listed in the total uncertainty budget in NDACC2016’s final

results.

The temperature uncertainty due to the choice of pressure at the highest altitude (seed

pressure) is called the tie-on uncertainty in NDACC2016. The tie-on uncertainties are in

the same range and the small differences between the PCL and NDACC2016 (their Figure

8) are related to the fact that the seed pressure altitude is at 99 km for NDACC2016 and at

110 km for the PCL.

The gravity temperature uncertainties for both NDACC2016 and the scaled PCL are

consistent and are roughly 0.002K. NDACC2016 states that the temperature uncertainty

due to the molecular mass is negligible below 85 km and is on the order of 0.05K and

above 85 km can increase up to 1K (NDACC2016, Table 3). The OEM shows that the

PCL molecular mass temperature uncertainty at 85 km is 0.06K. The PCL molecular mass

temperature uncertainties from 90 to 100 km are between 0.1 and 0.6K. However, the semi-

empirical mean molecular mass variation of the US Standard model is considerably different

from the variation assumed by NDACC2016, accounting for the differences in the calculated
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uncertainties.

2.4 Comparison of the OEM climatology with other cli-

matologies

In order to evaluate the OEM results, the new OEM PCL temperature climatology was

compared with the existing PCL temperature climatology using the HC method, as well as

other climatologies including sodium lidar climatologies.

2.4.1 Comparison between the PCL climatology using the OEM

and HC methods

AS2007 used PCL measurements between 1994 and 2004 to calculate a PCL temperature

climatology (henceforth, 2004 PCL climatology) using the HC method. The top 10 km of

all temperature profiles was removed from the 2004 PCL climatology in order to reduce the

effect of seed pressure and the same procedure was followed in the HC calculations for the

updated PCL climatology (between 1994 and 2013). The temperature differences between

the OEM and updated HC PCL temperature climatologies are shown in Fig. 2.12. The white

space in the upper part of Fig. 2.12 is due to removing 10 km from the top of each profile

for the updated HC PCL climatology. In addition, the lines corresponding to the 10 and

15 km cutoff for the HC method and the 0.9 cutoff line for the OEM are superimposed onto

Fig. 2.12.

The OEM temperature climatology is 0.55± 0.23K warmer than the updated HC clima-

tology average from 40 to 60 km. Although the difference is within the statistical uncertainty

of the measurements (Fig. 2.7), there is a warm bias. The bias due to differences in ozone

profile between the two climatologies is only +0.05 K. The OEM used measurements from

two Rayleigh channels (HLR and LLR) after 1999 to calculate the OEM climatology while

only the HLR channel measurements were used for the HC method and the OEM before

1999. The effective LLR signal is up to about 60 km of altitude. The temperature differ-

ence in the bottom range (between 40 and 60 km) of measurements is because of using a
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two-channel retrieval in the OEM and comparing it with a one-channel (HLR) retrieval in

the HC method. The two channel OEM method retrieves the dead time for each profile,

while the dead time in the HC method was an empirically determined constant based on

count measurements using a pulsed LED source. In order to compare the OEM with HC

temperature climatology, we could have merged the calculated LLR and HLR temperature

profiles in the HC method. However, the temperature uncertainty induced by the merging

will be more than the ±0.05K temperature difference between the OEM and HC climatology

(Jalali, 2014).

The OEM temperature above 80 km up to the 10 and 15 km cutoffs is colder than the

temperatures obtained using the HC method. The temperature differences above 80 km are

mostly due to the sensitivity of the model seed pressure in the HC method. Figure 2.12

shows that the OEM temperature climatology reaches 5 to 10 km higher in altitude than the

HC temperature climatology. The differences between the OEM and HLR are not calculated

below 40 km due to the lack of HLR data in some time periods.

Finally, in order to evaluate the effect of the a priori on the temperature differences,

the same temperature climatologies were calculated using the OEM with the US Standard

model as the a priori temperature profile and the same differences as discussed above were

obtained, again demonstrating that the results show little sensitivity to the choice of any

reasonable a priori profile.

The HC method usually uses a seed pressure value at the highest point of the profile.

However, the seed pressure can be substituted by temperature and density and is called the

seed temperature (Gardner et al. (1989), equation 86). When a seed temperature is used, the

temperature is obtained from the CIRA-86 model, and the measured relative density profile

is normalized (typically by a model) to obtain a seed pressure to use in the HC retrieval.

The temperature differences between the OEM climatology and the updated HC climatology

using the seed temperature (instead of seed pressure) are shown in Fig. 2.13. Comparing

Figs. 2.12 and 2.13 reveals that the temperature difference above 80 km between the OEM

and the updated HC using seed temperatures is larger than the differences between the

OEM and the updated HC using seed pressures. However, the differences below 80 km are

identical and the small temperature differences between the OEM and HC method are due
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Figure 2.12: PCL temperature climatology difference between the OEM and HC method

(OEM-HC) using seed pressure. The blue lines show the height below which the OEM

temperature climatology is more than 90% (0.9) and 80% (0.8) due to the measurements.

The red lines are the 10 and 15 km cutoff height for the HC method.

to the tie-on temperature or pressure value. The difference between the HC climatologies

calculated by these two methods highlights the sensitivity to seed pressure at the greatest

heights in this method.

Gerding et al. (2008) used coincident Rayleigh and sodium resonance lidar temperature

measurements to minimize the seed pressure. For altitudes below the sodium layer, Rayleigh

lidar measurements are used to determine the temperature. While having this combination

of a Rayleigh and resonance temperature lidar is ideal, most Rayleigh temperature lidar

systems are not colocated with a resonance temperature lidar, and hence the effect of seed

pressure is the largest systematic uncertainty at the upper range of the temperature profile

determined.
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Figure 2.13: PCL temperature climatology difference using the OEM and HC method (OEM-

HC) using seed temperature. The blue lines show the height below which the OEM tem-

perature climatology is more than 90% (0.9) and 80% (0.8) due to the measurements. The

black lines are the 10 and 15 km cutoff height for the HC method.

2.4.2 Comparison with sodium lidar climatologies

The comparison between the PCL Rayleigh temperature climatology using the HC method

with sodium lidars was done by AS2007. Their results showed that the average temperature

between 83 and 95 km measured by the PCL was between 7 and 7.4K colder than CSU and

URB climatologies, respectively. Using the OEM to extend the PCL Rayleigh lidar tem-

perature climatology to above 100 km provides the opportunity to validate the PCL results

against sodium lidar climatologies, which have their highest signal-to-noise ratio in a few

kilometer-wide regions between about 90 and 95 km of altitude, and obtain sufficient high-

quality measurements to calculate climatologies from 85 to 105 km. Sodium lidars directly

measure the kinetic temperature without assuming hydrostatic equilibrium or requiring the

knowledge of mean molecular mass and molecular cross section variations with height and
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can be configured to obtain temperatures during both the day and night. She et al. (2000),

Yuan et al. (2008), and States and Gardner (2000a) have published sodium temperature

lidar climatologies in the same latitude range as PCL. Both sites are west of the PCL, but in

the case of URB the separation in longitude is less than 8◦. The URB and CSU climatolo-

gies are among the best datasets for validation of upper-mesosphere and lower-thermosphere

temperatures, plus they allow for a direct comparison between our new climatology and

AS2007. The upgraded CSU (Yuan et al., 2008) provides additional years of overlap with

our new climatology for validation of our OEM-derived temperatures. The nighttime URB

and upgraded CSU temperature climatologies were compared with the PCL temperature

climatology.

The PCL temperature climatology differences using the OEM compared with the sodium

lidars are presented in Figures 2.14, 2.15 and 2.16. The absolute value of the average differ-

ences in 5 km height bins between the sodium lidar temperature climatologies and the PCL

climatology using the OEM and the HC method are given in Table 2.4. The absolute value

is used to avoid differences canceling each other. The bottom part of the table is important,

as it gives the differences between the sodium lidars themselves. The differences between the

sodium lidars are taken as the level of difference defining the agreement between the PCL

lidar and the sodium systems. The PCL HC climatology in general does not agree with the

sodium lidar climatologies to the same extent to which they agree with each other, while the

PCL OEM climatology typically does agree with the sodium lidar climatologies to the level

at which they agree with each other. The temperature differences between the PCL OEM

and sodium lidar climatologies for the entire range of altitudes (80 to 105 km) are smaller

than the temperature difference between the PCL HC climatology and the sodium lidar cli-

matologies in the range of 80 to 95 km for which PCL HC temperatures are available. There

is a temperature difference at the winter mesopause between the PCL climatology and CSU

climatology, but this difference has decreased in the upgraded nighttime CSU climatology

compared to that determined by AS2007. The large temperature differences between the

PCL (OEM) and URB temperature climatology during summertime below 85 km existed in

AS2007 and may be in part due to the signal-to-noise ratio of the sodium lidar measurements

rapidly decreasing below 85 km.
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Table 2.4: Absolute value of the average PCL temperature differences with sodium lidars

and the temperature difference between sodium lidars. The HC method does not provide

the temperature above 95 km; therefore, the columns with an altitude range greater than

95 km are shown as ’-’.
Lidars Difference (K) Au = 0.9 Au = 0.8

80-85 km 85-90 km 90-95 km 95-100 km 100-105 km

PCL(OEM) - URB 11.3 6.0 4.4 3.9 8.3

PCL(HC) - URB 12.8 8.1 6.7 - -

PCL(OEM) - CSU - 6.9 5.1 6.6 14.2

PCL(HC) - CSU - 8.4 6.2 - -

PCL(OEM) - upgraded CSU 5.6 4.1 3.8 7.8 13.5

PCL(HC) - upgraded CSU 6.7 4.7 3.4 - -

CSU - URB - 4.5 3.8 5.1 6.7

CSU - upgraded CSU - 4.4 4.0 3.2 3.2

URB - upgraded CSU 7.3 4.6 5.7 7.1 5.6

Overall comparisons between the PCL climatologies and sodium lidar climatologies (Ta-

ble 2.4) show that in the 85-90 and 90-95 km height ranges, where both the Rayleigh and

Na methods have good measurement signal-to-noise ratio, the OEM-calculated temperatures

show 20% better agreement with the sodium lidars than the HC method temperatures: that

is, 5.0K versus 6.3K in average. The variability of the temperature difference between the

sodium lidars themselves is around 4.5K. The difference among the sodium lidars is ap-

proximately the same as the differences with the OEM-derived temperatures, meaning the

temperatures derived using the OEM retrieval are approximately the same as those from the

sodium lidars; this is contrary to the AS2007 comparison, which showed significant differ-

ences between the two techniques. Furthermore, the OEM temperature retrievals allow valid

retrievals to be obtained in the 95-100 km altitude region, where the systematic uncertainty

of the tie-on pressure of the HC-derived temperatures is too large for the temperatures to be

useful. Possible sources of these differences were addressed in AS2007, but they did not have

the uncertainty budget now available to assess systematic uncertainties. These differences
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could include the following factors.

1. The assumption of a seed pressure can introduce uncertainty in the PCL temperature

retrievals. Using an OEM allows us to calculate the effect of this assumption quanti-

tatively (Fig. 2.9). In the altitude range of 80 to 95 km, it is less than 1.5K, increasing

to a maximum of 3.5K at 100 km.

2. The effects of Rayleigh-scatter cross section, Rayleigh-scatter density, and mean molec-

ular mass were mentioned in AS2007 as possible reasons for discrepancies with the

sodium lidar temperatures. Figure 2.9 shows a quantitative determination of the mag-

nitude of these effects. The uncertainties for the Rayleigh-scatter cross section and

Rayleigh-scatter density are much less than the temperature differences between the

two measurement techniques. Mean molecular mass uncertainty is larger than the

other two parameters, but its maximum value is less than 0.7K at 105 km.

3. The other significant contribution to the temperature uncertainty budget at higher

altitudes is ozone cross section, whose uncertainty increases with altitude due to in-

creasing measurement uncertainty (as do many of the retrieval uncertainties due to

the model parameters). The uncertainty on the retrieved temperatures due to ozone

reaches a maximum of 1K at 100 km.

4. Geographic location could be another possible cause. The PCL is about 3 ◦ north of

the sodium lidars and, while relatively close to URB in longitude, the PCL is 24 ◦ east

of CSU. Hence, tides and planetary waves could be the primary cause of the temper-

ature differences between the PCL, URB and CSU lidars. Gravity waves could also

contribute, although the effect of gravity waves is minimized by averaging temperature

over several hours and using common days in different years to calculate the composite

climatology. Sica and Argall (2007) have shown that the seasonal gravity wave activity

over London, Canada, is large and highly variable, and is possibly related to London’s

proximity to both Lake Ontario to the west and Lake Erie to the east. The effect of

solar tides on the sodium lidar temperature is discussed in States and Gardner (2000b)

and Yuan et al. (2006). The upgraded CSU is capable of continuous observation dur-

ing day and night. Yuan et al. (2008) removed tidal signals from the mean values and
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Figure 2.14: PCL temperature climatology difference from the URB sodium lidar climatol-

ogy (PCL-URB). The horizontal black lines are the height below which the temperature

climatology is more than 90% (0.9) and 80% (0.8) due to the measurements.

calculated diurnal mean monthly temperatures. They show that the amplitude of the

diurnal tide is around 5K at night between 84 and 95 km, increasing to 8K at 100 km.

Hence, we conclude that large-scale waves cause many of the discrepancies between

locations.

The comparison with sodium lidars shows that the PCL Rayleigh temperature clima-

tology using the OEM in general agrees as well with the sodium lidar climatologies as the

sodium climatologies agree with one another, validating the PCL OEM height-extended

climatology.

2.5 Summary

Here we have confirmed the validity of using the OEM to retrieve Rayleigh-scatter lidar

temperatures on a long-term measurement set. The results of our investigation using the

OEM on 519 nights of measurements are summarized as follows.
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Figure 2.15: PCL temperature climatology difference from the CSU (1990-1999) sodium

lidar climatology (PCL-CSU). The horizontal black lines are the height below which the

temperature climatology is more than 90% (0.9) and 80% (0.8) due to the measurements.

1. Our OEM can estimate a valid cutoff height where the entire temperature profile below

that level depends less than a specified level on the choice of the a priori temperature

profile. Based on best practice in the OEM community, we suggest using measurements

whose summed averaging kernels at a retrieval altitude are greater than 0.9.

2. The effect of the temperature a priori on the OEM result was evaluated using the

CIRA-86 and US Standard model. It was shown that the effect of the a priori is much

smaller than the statistical uncertainty below the OEM cutoff heights for the PCL.

3. We presented a full uncertainty budget for our climatology, which includes both ran-

dom and systematic uncertainties, including the systematic uncertainty for nine model

parameters including mean molecular mass, Rayleigh cross section, Rayleigh cross sec-

tion variation with composition, seed pressure, air number density (for extinction),

ozone absorption cross section, ozone density, and acceleration due to gravity. This

uncertainty budget is available on a profile-by-profile basis.
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Figure 2.16: PCL temperature climatology difference from the upgraded CSU (2002-2006)

sodium lidar climatology (PCL-upgraded CSU). The horizontal black lines are the height

below which the temperature climatology is more than 90% (0.9) and 80% (0.8) due to the

measurements.

4. The PCL uncertainties were compared to the uncertainty budget simulations presented

by Leblanc et al. (2016b). The comparison shows in general similar orders of magni-

tude, except for the Rayleigh-scatter cross section, which has a larger difference but

makes a very small (0.001K) contribution to the uncertainty budget.

5. Our OEM computes the vertical resolution of each temperature profile. The vertical

resolution is equal to the retrieval grid (1056m) until about 75 km, where it starts to

increase and is about 3 km around the 0.9 cutoff height.

6. The PCL temperature climatology is calculated using both the OEM and the HC

method. By 15 km below the cutoff height, any differences in the temperature are

within the statistical uncertainty at those heights. Our OEM retrieval determines

temperature profiles, which reach 5 to 10 km higher than the temperature profiles

calculated by the HC method due to the OEM’s ability to evaluate the effect of seed
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pressure on the retrieved temperature.

7. The temperature difference between the OEM PCL temperature climatology with the

HC method PCL climatology using seed pressure was smaller than the temperature

difference between the OEM PCL temperature climatology with the HC method tem-

perature climatology using seed temperature. Hence, we recommend that when using

the HC method it is better to take the seed pressure from the model than a seed

temperature.

8. The PCL temperature climatology is compared with three other sodium lidar clima-

tologies. The temperature differences between the PCL climatology using the OEM

and the sodium lidar climatologies are smaller by 1K than the differences between

the PCL–OEM and the PCL–HC differences. The temperature differences between

the PCL–OEM and the sodium lidars are within the temperature differences between

the sodium lidars themselves (Table 2.4). The OEM provides the PCL temperature

profiles to higher altitudes and these profiles show smaller differences with the sodium

lidars than the HC method; thus, using the OEM improves the climatology between

80 and 100 km, as validated by the sodium lidar measurements.

9. The statistical uncertainty of the sodium lidar temperatures is lowest in the 95± 5 km

region of the peak of the sodium layer. Here the precision is about 1K to 2K (Papen

et al., 1995). The accuracy of the measurement in this region has been studied in

detail by Krueger et al. (2015), who obtain an accuracy of 1 to 2.5K. The statistical

uncertainty increases rapidly away from the sodium layer peak. The closest agreement

between the PCL temperature climatology and the sodium lidars’ climatology is in

the range of 85 to 100 km, with larger temperature differences below 85 km and above

100 km where the sodium density is lowest. The URB climatology, which was obtained

from a station much closer in longitude to the PCL, shows better agreement than

the CSU measurements, although all three sodium lidar climatologies have overall

good agreement with the PCL OEM climatology. Overall the OEM provides closer

temperature results to the sodium lidars than the HC method at all heights, and

allows the climatology to extend to a greater altitude.
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2.6 Conclusions

We have shown that using the OEM to retrieve temperature from Rayleigh-scatter lidar

measurements has significant advantages over the traditional method, and the advantages

shown in our initial study for a small number of nights is practical for a large dataset. These

advantages include the ability to calculate a full uncertainty budget on a profile-by-profile

basis, determination of the vertical resolution, and the availability of averaging kernels.

Applying the OEM will help in the standardization of the uncertainty budget and vertical

resolution calculations for comparisons between lidars, as well as comparisons among other

instruments with differing vertical resolutions.

We found that a cutoff height of Au = 0.9 is a good estimate for a cutoff height of the

retrieval based on the comparison with the sodium lidars. It would be recommended to

use the 0.9 height cutoff to minimize the effect of the a priori temperature profile on the

temperature retrieval while keeping the a priori effect on the temperature retrieval less than

the statistical uncertainty.

Sodium lidars are well characterized and make the best temperature measurements in

the mesosphere and lower thermosphere for validation of the PCL temperature climatology,

particularly as the URB and CSU systems are relatively near the PCL. The agreement

between the OEM-based PCL climatology and the sodium lidars has improved over the

traditional method, and the agreement between the PCL and the sodium lidars is typically

as good as the agreement between the sodium lidars themselves. Much of the variability

seen in the measurements made at the different locations is likely due to tides and planetary

waves.

We hope the results of this study encourage other Rayleigh lidar groups to process their

measurements using our OEM retrieval method.

Bibliography

Argall, P. S. and R. J. Sica. A comparison of Rayleigh and sodium lidar temperature

climatologies. Ann. Geophys., 25:27–35, 2007.

75



Arnold, Kam S. and C. Y. She. Metal fluorescence lidar (light detection and ranging) and

the middle atmosphere. Contemp. Phys., 44(1):35–49, 2003.

Bills, R. E., C. S. Gardner, and C. Y. She. Narrow band lidar technique for sodium temper-

ature and doppler wind observations of the upper atmosphere. Opt. Eng., 30, 1991.

Fleming, E. L., S. Chandra, M. R. Shoeberl, and J. J. Barnett. Monthly mean global

climatology of temperature, wind, geopotential height and pressure for 0-120 km. NASA

Tech. Memo., NASA TM100697:85 pp, 1988.

Gardner, C. S., D. C. Senft, T. J. Beatty, R. E. Bills, and C. A. Hostetler. Rayleigh and

sodium lidar techniques for measuring middle atmosphere density, temperature, and wind

perturbations and their spectra. In World Ionosphere/ Thermosphere Study Handbook, 2:

141–187, 1989.

Gerding, M., J. Höffner, J. Lautenbach, M. Rauthe, and F.-J. Lübken. Seasonal variation of

nocturnal temperatures between 1 and 105 km altitude at 54 n observed by lidar. Atmos.

Chem. Phys., 8(24):7465–7482, 2008.

Griggs, M. Absorption coefficients of ozone in the ultraviolet and visible regions. J. Chem.

Phys., 49:857–859, 1968.

Hamming, R. W. Digital Filters. Prentice Hall, Englewood Cliffs, New Jersey, third edition,

1989.

Hauchecorne, Alain, Marie-Lise Chanin, and P. Keckhut. Climatology and trends of the

middle atmospheric temperature (33-87 km) as seen by rayleigh lidar over the south of

france. Journal of Geophysical Research: Atmospheres, 96(D8):15297–15309, 1991.

Jalali, Ali. Extending and merging the purple crow lidar temperature rayleigh and vibrational

raman climatologies. Master’s thesis, The University of Western Ontario, 2490, 2014.

Krueger, David A., Chiao-Yao She, and Tao Yuan. Retrieving mesopause temperature and

line-of-sight wind from full-diurnal-cycle na lidar observations. Appl. Opt., 54:9469–9489,

2015.

76



Leblanc, T., R. J. Sica, J. A. E. Gijselvan , S. Godin-Beekman, A. Haefele, T. Trickl,

G. Payen, and F. Gabarrot. Proposed standardized definitions for vertical resolution and

uncertainty in the NDACC lidar ozone and temperature algorithms – Part 1: Vertical

resolution. Atmos. Meas. Tech., 9:4029–4049, 2016a.

Leblanc, T., R. J. Sica, J. A. E. Gijselvan , A. Haefele, G. Payen, and G. Liberti. Proposed

standardized definitions for vertical resolution and uncertainty in the NDACC lidar ozone

and temperature algorithms – part 3: Temperature uncertainty budget. Atmos. Meas.

Tech., 9(8):4079–4101, 2016b.

Leblanc, Thierry, I. Stuart McDermid, Philippe Keckhut, Alain Hauchecorne, C. Y. She,

and David A. Krueger. Temperature climatology of the middle atmosphere from long-

term lidar measurements at middle and low latitudes. J. Geophys. Res.-Atmos., 103(D14):

17191–17204, 1998.

McPeters, R D, G J Labow, and J A Logan. Ozone climatological profiles for satellite

retrieval algorithms. J. Geophys. Res. Atmos., 112(D05308), 2007.

Mulaire, W. Department of defense world geodetic system 1984. its definition and relation-

ship with local geodetic systems. NIMA TR8350.2, pages 1–175, 2000.

Nicolet, M. On the molecular scattering in the terrestrial atmosphere: an empirical formula

for its calculation in the homosphere. Planet. Space Sci., 32:1467–1468, 1984.

Papen, George C., William M. Pfenninger, and Dale M. Simonich. Sensitivity analysis of na

narrowband wind–temperature lidar systems. Appl. Opt., 34:480–498, 1995.

Ramaswamy, V., M.-L. Chanin, J. Angell, J. Barnett, D. Gaffen, M. Gelman, P. Keckhut,

Y. Koshelkov, K. Labitzke, J.-J. R. Lin, A. O’Neill, J. Nash, W. Randel, R. Rood, K. Shine,

M. Shiotani, and R. Swinbank. Stratospheric temperature trends: Observations and model

simulations. Rev. Geophys., 39(1):71–122, 2001. ISSN 1944-9208.

Randel, William, Petra Udelhofen, Eric Fleming, Marvin Geller, Mel Gelman, Kevin Hamil-

ton, David Karoly, Dave Ortland, Steve Pawson, Richard Swinbank, Fei Wu, Mark Bald-

77



win, Marie-Lise Chanin, Philippe Keckhut, Karin Labitzke, Ellis Remsberg, Adrian Sim-

mons, and Dong Wu. The sparc intercomparison of middle-atmosphere climatologies. J.

Climate, 17(5):986–1003, 2004.

Randel, William J., Keith P. Shine, John Austin, John Barnett, Chantal Claud, Nathan P.

Gillett, Philippe Keckhut, Ulrike Langematz, Roger Lin, Craig Long, Carl Mears, Alvin

Miller, John Nash, Dian J. Seidel, David W. J. Thompson, Fei Wu, and Shigeo Yoden. An

update of observed stratospheric temperature trends. J. Geophys. Res.-Atmos., 114(D2),

2009. ISSN 2156-2202. D02107.

Randel, William J., Anne K. Smith, Fei Wu, Cheng-Zhi Zou, and Haifeng Qian. Stratospheric

temperature trends over 1979-2015 derived from combined ssu, mls, and saber satellite

observations. J. Climate, 29(13):4843–4859, 2016.

She, C. Y., S. Chen, Z. Hu, J. Sherman, J. D. Vance, V. Vasoli, M. A. White, J. Yu, and

D. A. Krueger. Eight-year climatology of nocturnal temperature and sodium density in

the mesopause region (80 to 105 km) over Fort Collins (41N, 105W). J. Geophys. Res.,

27:3289–3292, 2000.

Sica, R. J. and P. S. Argall. Seasonal and nightly variations of gravity-wave energy density in

the middle atmosphere measured by the purple crow lidar. Ann. Geophys., 25:2139–2145,

2007.

Sica, R J and A Haefele. Retrieval of temperature from a multiple-channel Rayleigh-scatter

lidar using an optimal estimation method. Appl. Optics, 54(8):1872–1889, 2015.

States, R. J. and C. S Gardner. Thermal structure of the mesopause region (80–105km) at

40 degrees N latitude. Part I: Seasonal variations. J. Atmos. Sci., 57:66–77, 2000a.

States, Robert J. and Chester S. Gardner. Thermal structure of the mesopause region

(80âĂŞ105 km) at 40 n latitude. part ii: Diurnal variations. J. Atmos. Sci., 57(1):78–92,

2000b.

Yuan, T., C.-Y. She, D. A. Krueger, F. Sassi, R. Garcia, R. G. Roble, H.-L. Liu, and

H. Schmidt. Climatology of mesopause region temperature, zonal wind, and meridional

78



wind over Fort Collins, Colorado (41N, 105W), and comparison with model simulations.

J. Geophys. Res., 113, 2008.

Yuan, Tao, C. Y. She, Maura E. Hagan, B. P. Williams, Tao Li, Kam Arnold, Takuya D.

Kawahara, P. E. Acott, J. D. Vance, David Krueger, and Raymond G. Roble. Seasonal

variation of diurnal perturbations in mesopause region temperature, zonal, and meridional

winds above fort collins, colorado (40.6 n, 105 w). J. Geophys. Res.-Atmos., 111(D6), 2006.

ISSN 2156-2202. D06103.

79



Chapter 3

Removing a priori Information from

Lidar Optimal Estimation Method

Retrievals1

3.1 Introduction

Rodgers (2011) introduced an Optimal Estimation Method (OEM) based on information

theory to use for atmospheric remote sensing retrievals. The OEM has primarily been

used in passive remote sensing (Rodgers, 1976; Cunnold et al., 1989; Boersma et al., 2004)

and it was not until recently that the OEM was applied to lidar measurements to retrieve

atmospheric aerosol properties, temperature, and water vapor profiles (Povey et al., 2014;

Sica and Haefele, 2015, 2016). OEM is advantageous for lidar work not only because desired

geophysical quantities are retrieved (e.g. temperature, water vapour mixing ratio, etc.) but

also because it produces averaging kernels and a full uncertainty budget on a profile-by-profile

basis.

Lidars have high temporal and spatial resolution compared to passive remote sensing

instruments, coupled with high signal-to-noise (SNR) ratio measurements over much of their

dynamic range, and thus have averaging kernels close to unity for the majority of their re-
1Jalali, A., & Hicks-Jalali, S., & Sica, R. J., & Haefele, A., & von Clarmann, T. 2018, Atmospheric

Measurement Techniques, https://doi.org/10.5194/amt-2018-347.

80



trievals with a grid spacing much finer than passive instruments. At most retrieval altitudes,

the majority of the information comes from the lidar measurements. However, near the

top of the lidar retrieval range, and in other regions where the SNR is low, the a priori

contribution to the retrieval increases and consequently the amount of information from the

measurement decreases. The a priori influence at the top of the retrieval should be consid-

ered when comparing OEM lidar measurements, particularly if different a priori profiles are

used.

An example of the a priori ’s influence is shown in Fig. 1 of Jalali et al. (2018). Jalali

et al. (2018) used more than 500 nights of measurements from the Purple Crow Lidar in

London, Ontario between 1994 and 2013 to calculate the OEM temperature climatology. The

cutoff height used for the climatology was the altitude at which the measurement response

equaled 0.9, or where the retrieval is roughly comprised of 90% measurements and 10% a

priori information. In order to see the influence of the a priori on the temperature retrieval,

temperature profiles from two different models, CIRA 86 and the US Standard Model (NASA,

1976), were chosen to use as a priori temperatures. Temperatures were retrieved using both

a priori profiles, and the differences between the two were compared at the altitudes where

Au = 0.9 and Au = 0.99. The distribution of the influence of the a priori at these altitudes

for the entire climatology was also calculated (Fig. 3.1). However, the temperature a priori ’s

effect is always one or two degrees smaller than the random uncertainties at these altitudes.

The mean value of the histogram at the altitude where Au = 0.99 is 0.53 ± 1.29K and

the mean at Au = 0.9 increases to 0.96± 3.25K. There is a positive bias in both histograms

which is due to the fact that the monthly CIRA-86 temperature profiles are consistently

warmer than the yearly US Standard Model profile. The effect of the a priori increases as

the values of Au decrease. Also, all values in the histogram are within two sigma of the

statistical uncertainty of the PCL climatology.

As Rodgers (2011) suggested, it is important to pick the most accurate a priori for the

retrieval. We used the CIRA-86 and US Standard Model to investigate the influence of the

choice in a priori more clearly, as the differences between these two model temperatures

profiles is large. If a priori profile values from the CIRA-72 and CIRA-86 models had been

chosen for comparison, the mean values on the histogram would have been much smaller.
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Figure 3.1: Distribution of the differences in temperatures retrieved at the altitudes where

the sum of the averaging kernels (Au) is 0.99 (a) and 0.9 (b) using two a priori temperature

profiles - the US Standard Model and CIRA-86 for over 500 nights as detailed in Jalali et al.

(2018). The red dashed line shows the mean. For each case, the difference in temperatures

is always smaller than the statistical uncertainty at the same altitude.

Several solutions regarding reducing the a priori ’s influence on the retrieval have been

suggested by Vincent et al. (2015), Ceccherini et al. (2009), Von Clarmann and Grabowski

(2007) and Joiner and Silva (1998). Their method to minimize the effect of the a priori was

based on transforming a regularized to a maximum likelihood retrieval by moving from a fine

grid to a coarser grid. Our work applies the methodology of Von Clarmann and Grabowski

(2007) to a Rayleigh lidar OEM temperature retrieval and a Raman lidar OEM water vapour

retrieval. The method uses a grid transformation on the retrieved temperature and water

vapor lidar profiles to remove the a priori temperature and water vapour contribution. The

transformation is applied in such a way that each final grid point carries roughly one degree

of freedom. Then, the retrieved profiles are calculated on the coarse grid by re-running the

OEM in a way that the effect of the a priori constraint is minimized.

We have used two lidars in this study, whose specifications are discussed in more detail

in Section 2. Section 3 summarizes some basic foundation material of the OEM which will
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be referenced throughout the paper. Section 4 discusses the a priori removal methodology

with a simple example. The method is then applied in Section 5 for three cases: Raman

water vapour daytime, Raman water vapour nighttime, and Rayleigh nightly temperature

retrievals. Section 6 discusses the differences between our practical application and the

method in Von Clarmann and Grabowski (2007) and some of the method’s advantages.

Sections 7 and 8 are the Summary and Conclusions respectively.

3.2 Description of the Raman Lidar for Meteorological

Observation

Two lidars were used in this study, the RAman Lidar for Meteorological Observation (RALMO)

in Payerne, Switzerland and the Purple Crow Lidar in London, Ontario. A detailed descrip-

tion of the PCL is given in Chapter 2. RALMO was used for the water vapour daytime and

nighttime retrievals and the PCL was used for the Rayleigh temperature retrievals.

RALMO is located at the MeteoSwiss research station in Payerne, Switzerland (46.81◦ N,

6.94◦ E, 491m a.s.l.). RALMO was built at the École Polytechnique Fédérale de Lausanne

(EPFL) and was designed as an operational lidar for model validation and climatological

research. RALMO uses a 355 nm wavelength laser operating at 30Hz with a nominal power

of 300mJ. Measurements are made in one-minute intervals with an altitude resolution of

3.75m. A typical 30min water vapour profile will extend to 10 - 12 km at night and 4 to

5 km during the day. Detailed specifications for the RALMO can be found in Dinoev et al.

(2013) and Brocard et al. (2013). The water vapour retrieval for daytime and nighttime

followed the same procedure as described in Sica and Haefele (2016), with the exception

that we now retrieve the overlap, which is no longer a model parameter. Only raw (uncor-

rected) photocount measurements are used for the water vapour retrievals. The lidar input

measurements are 30min profiles beginning at the same time as the coincident radiosonde

launch from the Payerne station. The US Standard Model water vapour profile is used as

the water vapour a priori input for both daytime and nighttime retrievals.
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3.3 Methodology

Our objective in this study is to find a practical method to remove the a priori information

from the retrieval vector. We have based our work upon the methodology of Von Clarmann

and Grabowski (2007), and have developed a quick and straightforward method to remove

the a priori from the lidar retrieval. Von Clarmann and Grabowski (2007) proposed removing

the effect of the a priori by using an information-centered grid approach. Each level of the

retrieval on the information-centered grid contains one degree of freedom and therefore, the

number of degrees of freedom of the signal is the same as the number of the retrieval levels.

In this condition, the formal a priori information can be removed without de-stabilizing the

retrieval.

To create an information-centered grid that contains close to one degree of freedom per

level requires the averaging kernel of the fine grid retrieval. For a lidar, this is either the

raw measurement spacing or a grid found by integrating some number of raw measurements

into larger bins. Therefore, the first step is to run the OEM retrieval following the same

procedures as in Sica and Haefele (2015) or Sica and Haefele (2016). This produces a

temperature or water vapor retrieval along with their respective averaging kernel matrices

and uncertainty budgets on the “fine grid” or first retrieval grid. For RALMO water vapour

retrievals, the fine grid altitude resolution is 100m and 50m resolution for the daytime and

nighttime retrievals respectively, and 1024m for the PCL Rayleigh temperature retrieval.

The fine grid averaging kernel contains the information regarding the degrees of freedom

of the retrieval along the diagonal elements of the matrix. The cumulative trace of the

averaging kernel is the total degrees of freedom of the retrieval (Eq. 1.32).

To illustrate the method, we will give a simple example with the fine grid levels, diagonal

components of the averaging kernel matrix, and the cumulative trace of the averaging kernel,

as shown in Table 3.1.

We then use the triangular representation from Von Clarmann and Grabowski (2007) to

create the information-centered grid using the fine grid averaging kernel. First, the cumu-

lative trace of the averaging kernel matrix is used to determine the amount of information
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Fine Grid Levels
Diagonal elements

of A

Cumulative Trace

of A
1 1 1

2 1 2

3 1 3

4 1 4

5 0.9 4.9

6 0.8 5.7

7 0.7 6.4

8 0.6 7.0

9 0.5 7.5

10 0.4 7.9

11 0.2 8.1

12 0.1 8.2

Table 3.1: A simple example for demonstrating the averaging kernel matrix’s role in finding

the coarse grid which resembles the typical structure of a lidar temperature retrieval aver-

aging kernel. The first column is the retrieval level and for lidar OEM retrievals is typically

an altitude. The second column is the elements along the diagonal of the averaging kernel

matrix A. The third column is the cumulative trace of A, where the last value determines

the number of degrees of freedom per grid point for the coarse grid using Eq. 3.1.

needed for each grid point on the coarse grid using Eq. 3.1:

dgfc =
dgf

int(dgf)− 1
≈ 1, (3.1)

where dgfc refers to the degrees of freedom per level on the coarse grid, dgf is the cumulative

trace of the fine grid averaging kernel matrix (Eq. 1.32), and int(dgf) is the integer value of

dgf . The degrees of freedom per grid point is determined by dividing the total degrees of

freedom by one less than the integer value of the total. For example, if the total degrees of

freedom of the retrieval is 8.2, then the degrees of freedom per grid point is 8.2/(8-1) = 1.1

degrees of freedom per grid point. In the triangular representation the information is spread

over dgf − 1 grid points because the first and last points remain the same as those in the
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Figure 3.2: The coarse grid levels are shown for the example case as a function of the

cumulative trace of the averaging kernel matrix. The total degrees of freedom for the retrieval

is 8.2, which is spread over the entire retrieval grid such that each point has roughly one

degree of freedom. As the SNR of the measurements decreases, more fine grid points are used

in the coarse grid, therefore the distance between points generally increases with altitude.

fine grid. It is then necessary to interpolate the fine grid to the points where the diagonal

elements are equal to the appropriate degrees of freedom to create the coarse grid. As each

grid point contains equal amounts of degrees of freedom, the grid points are distributed

irregularly. The final levels which are used in the coarse grid are shown in Fig. 3.2. In this

case, we now have coarse grid points at 1, 2.2, 3.4, 4.6, 6.1, 8, and 12. As the sensitivity

of the averaging kernel decreases the number of points used in the coarse grid from the fine

grid increases due to decreasing lidar signal level with altitude.

The resulting coarse grid is then used as the retrieval grid for a second iteration of the

OEM calculation. However, before running the retrieval again it is necessary to remove the

regularization term, or equivalently, the inverse of the a priori covariance matrix (S−1a ) in
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Eq. 1.29. If S−1a is set to zero, the optimal estimation becomes the unconstrained weighted

least squares solution (Von Clarmann and Grabowski, 2007). We set S−1a to be close to zero

by choosing a large uncertainty for the a priori covariance matrix.The OEM is then run using

the new coarse retrieval grid, and the effect of the a priori is minimal due to minimizing the

regularization term. The coarse grid averaging kernel now equals one at all levels.

3.4 Results

We now apply our information-centered approach, using the triangular representation from

Von Clarmann and Grabowski (2007), to lidar OEM retrievals in order to minimize the

effect of the a priori. We will examine the method’s effectiveness with RALMO daytime

and nighttime water vapor retrievals, as well as with a PCL Rayleigh temperature retrieval.

This method is also applicable in general, and can be applied to other lidar retrievals. First,

we will discuss the results from the triangular representation and the creation of the “coarse

grid” and how it is used as the new retrieval grid. Then we will discuss its effect on the

retrieval, vertical resolution, uncertainty budgets, and averaging kernel.

3.4.1 Daytime RALMO water vapor a priori removal

RALMO water vapour mixing ratio retrievals typically extend up to 4 or 5 km due to the

large daytime background signal. This daytime water vapor retrieval on 22 January 2013 at

1200UT (Fig. 3.5) shows the large impact our method has on low signal-to-noise ratios, which

occur during the daytime due to the high solar background or in dry layers. The example

retrieval is a 30min integration obtained in conjunction with a Vaisala RS92 radiosonde

launch from the Payerne station. The input data grid for this case was binned to 50m to

remove numerical features in the retrieval due to the high background noise levels.

The daytime case fine grid averaging kernels (Fig. 3.3a ) quickly drop below 1 after 2 km

due to a dry layer. The measurement response is shown by the red line and drops below the

altitude at which Au = 0.9 at 2.7 km, or the last altitude at which we consider the retrieval

to have significant influence from the a priori. The coarse grid averaging kernels (Fig. 3.3b),

by design, are all equal to 1 as discussed in Sect. 3.3 and reach up to 10 km. While the coarse
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grid insures that each altitude has 1 degree of freedom, we do not necessarily consider the

entire retrieval valid, which will be discussed further below. The vertical resolution of each

Figure 3.3: The clear daytime water vapour averaging kernel matrix for 22 January 2013

at 1200UT (a) on the fine grid and (b) on the coarse grid. Every other averaging kernel

has been plotted for clarity. a)The measurement response Au, or the sum of the averaging

kernel rows, is the red solid line. The horizontal dashed line is the height at which the

measurement response is equal to 0.9 and is the line above which we would consider there

to be large influence from the a priori. b) The coarse grid averaging kernels all equal 1 and

reach up to the last retrieval altitude at 10 km.

point on the fine and coarse retrieval grids is shown in Fig. 3.4. In this case, the fine grid

averaging kernels are never exactly 1, therefore they have some a priori contribution which

is why the vertical resolution is generally lower in the coarse grid retrieval. The second to

last point in the coarse retrieval grid has a vertical resolution of over 600m. The coarse grid
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points which have incorporated more fine grid points have a lower vertical resolution than

others (between 2.8 and 10 km).

Figure 3.4: The vertical resolution profile on 22 January 2013 1200UT. The vertical resolu-

tion will decrease on the coarse grid as the points are used to reach one degree of freedom.

The last two points have vertical resolutions of several hundred meters and are not used in

the retrieval.

The daytime water vapor fine and coarse grid retrievals are shown in Fig. 3.5a and

Fig. 3.5b respectively. The fine and coarse grid retrievals are the same up to 2.5 km, at

which point the coarse grid retrieval (in red) begins to more closely follow the path of the

radiosonde and the traditional profile (dotted blue) and not the fine grid retrieval (black).

The coarse grid retrieval agrees with the radiosonde until 4.5 km. At 4.8 km the statistical

uncertainty is above 100%, and the last two points are above 80% statistical uncertainty;

therefore, the retrieval is no longer viable. All valid points are below the red dotted line.
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The large peaks in the fine grid retrieval above 5 km show features that are numerical and

not physical. If we consider the last valid point to be 4.5 km with a statistical uncertainty

of 27%, the a priori removal method extends the valid altitude range of the daytime OEM

retrievals by 2 km.

Figure 3.5: a) The retrieved daytime water vapour profile for 22 January 2013 1200UT. The

fine grid retrieval is in black and includes the a priori information. The coarse grid retrieval

is in red and the a priori(grey) has been removed. The radiosonde is shown in green. The

points which we do not consider meaningful because their uncertainties are larger than 80%

in the retrieval are shown in dashed red lines. The coarse grid retrieval increases the last valid

point by 2 km (red dashed line) and now more closely resembles the radiosonde above the

original cutoff altitude of 2.7 km ( black dashed line). b) The three primary contributors to

the uncertainty budget on January 22 2013 1200UT are shown for comparison: the statistical

uncertainty, the uncertainty due to the calibration constant, and the uncertainty due to air

density. The solid lines are the uncertainties from the fine grid retrieval, and the dashed

lines are from the coarse grid retrieval. The a priori begins influencing the profile above

2 km where the uncertainty increases.

The three main components of the uncertainty budget are shown in Fig. 3.5b. The fine

grid statistical and air density uncertainties increase with altitude due to decreasing SNR

of the return photocounts and then decrease as the retrieval falls back to the a priori as
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the signal goes to zero. The coarse grid statistical uncertainties and the uncertainty due to

air density continue to increase with altitude, instead of falling back to zero, on the coarse

grid because the a priori has been removed. The a priori covariance matrix is now zero in

Eq. 1.30. The a priori covariance also acts as a constraint on the uncertainty by minimizing

the gain, which acts as an scaling factor for the uncertainties (Rodgers, 2011). When the a

priori covariance is removed, the solution space is no longer constrained and the coarse grid

uncertainties increase compared to the fine grid uncertainties. The calibration uncertainty

also increases, but now remains constant at all altitudes with the exception of the last

point, as it is no longer influenced by the a priori constraint. The second-to-last point in

the statistical uncertainty has a mixing ratio uncertainty of 100% due to the lack of signal

above 4.5 km. Therefore, the meaningful section of the coarse grid retrieval is 4.5 km and

below. The maximum uncertainty is 46% statistical uncertainty at 3.8 km, where the water

vapour signal is very small due to the presence of a dry layer at that altitude. While the a

priori removal technique increases the maximum retrieval altitude, in addition to removing

the contribution from the a priori profile, it will increase the statistical uncertainty of the

retrieval as well.

Finally, we compare the fine and coarse grid retrievals with the radiosonde profile in

Fig. 3.6. Below 2.3 km, where the fine grid a priori influence is below 10%, both of the re-

trievals are equivalent and show the same difference with respect to the radiosonde. However,

between 2.3 and 4.8 km, where the fine grid retrieval has above 10% a priori information,

the coarse grid retrieval more closely matches the radiosonde, and reduces the difference by

10 to 50% depending on the altitude. Above 4.8 km the coarse grid and fine grid are no

longer valid due to the lack of signal at those altitudes. The coarse grid method improves

the retrieval in regions where the a priori has significant influence and performs as we would

expect.

3.4.2 Nighttime RALMO water vapour a priori removal

The nighttime retrieval uses a 30-minute integration on 24 April 2013 0000UT which coin-

cides with the time of the radiosonde launch. The fine retrieval grid for the RALMO water

vapor retrieval is 50m.
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Figure 3.6: The percent difference between the radiosonde and the fine and coarse grid

retrievals on 22 January 2013 1200UT. The two retrievals are the same below 2 km, where

the fine grid retrieval has less than 10% of a priori contribution. However, the coarse grid

retrieval is closer to the radiosonde above 2 km and decreases the percent difference between

the fine grid and the radiosonde by up to 50% in regions where the a priori contributes to

more than 10% to the fine grid retrieval. Above 4.5 km the statistical uncertainties are too

large to consider the retrieval meaningful.

92



Figure 3.7: The averaging kernel matrix for the nighttime water vapour retrieval on 24 April

2013 0000UT. a)The fine grid retrieval with a maximum altitude of 9.1 km (black dashed

line). The measurement response is shown in red. b) The coarse grid retrieval, where each

averaging kernel is 1 for all altitudes.

The averaging kernel matrix for the fine and coarse grid retrievals is shown in Fig. 3.7a

and Fig. 3.7b, respectively. The altitude where Au = 0.9 for the fine grid retrieval is at

9.1 km, which is typical for a 30min nighttime measurement. The coarse grid averaging

kernels all equal 1, with the second to last altitude at 11 km.

Unlike the daytime case, the nighttime vertical resolution between the fine and coarse

grid retrievals is very close up to 5 km where they begin to diverge (Fig. 3.8). This is because

the nighttime averaging kernels are very close to 1 until 5 km, therefore the fine and coarse

grid are the same or very close to each other. As the a priori enters the signal, more

points from the fine grid are used to create the coarse grid, resulting in larger coarse grid
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Figure 3.8: The vertical resolution for April 24 2013 0000UT. The vertical resolution on

the coarse grid retrieval decreases as more points are added to ensure that each bin has one

degree of freedom. The coarse grid resolution is shown in red and each point is marked. The

fine grid has points every 50m therefore they are not shown individually.

averaging kernels and decreasing the vertical resolution. Figure 3.9 shows the final water

vapor retrievals on the fine and coarse grid, as well as a GRUAN Vaisala RS92 radiosonde

profile and the traditional method results for comparison. Both fine and coarse grid profiles

agree past the 0.9 cutoff and up to 9 km at which point the coarse grid retrieval diverges

from both the fine grid retrieval and the radiosonde. We do see small differences in dry layers

where the signal level is lower, however, the differences are inside the total uncertainty. The

last four points in the retrieval are shown in dashed lines because we do not consider them

to be meaningful points as their total uncertainties are 70% or larger.

The uncertainties for the nighttime retrievals are shown in Fig. 3.9b. Similarly to the
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Figure 3.9: a)The water vapour retrieval for 24 April 2013 0000UT. The fine grid retrieval

is in black, the coarse grid retrieval is in red. In general, both OEM retrievals on the coarse

and fine grid, and the radiosonde agree until the original cutoff altitude at 9.1 km (dashed

black line). The dashed red lines above 9.7 km show the points we do not consider meaningful

due to their large uncertainties. Therefore, the a priori removal technique increases the last

altitude bin by 600m. The method is limited by the lack of water vapour in the upper

troposphere which causes a large and rapid drop in signal. b)The three largest uncertainty

components are compared here on the fine and coarse grid. The drawback of the a priori

removal technique is that while you gain in altitude, you increase the uncertainty. At 9.7 km

the statistical uncertainty is 52%, which is where we no longer consider the rest of the

retrieval to be viable.

daytime retrievals, we have shown the top three uncertainty contributors for comparison.

Below 5 km the uncertainties are the same, as there is no influence from the a priori. However,

above 5 km the uncertainties begin to increase due to the removal. The statistical uncertainty

increases to almost 100% uncertainty at the second-to-last point due to the lack of signal

above 11 km.The mixing ratio uncertainty due to the calibration uncertainty is now constant

with altitude, which we would intuitively expect and contributes roughly 5% uncertainty to

the mixing ratio measurements. The uncertainty due to air density increases by a maximum

of 0.2% at the second-to-last point. We would consider anything above 9.7 km to be invalid
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Figure 3.10: The percent difference from the radiosonde for both the fine and coarse grid

retrievals. Both show similar differences with the radiosonde and the last valid height is

9.7 km.

since points above that height have a total uncertainty of 60% or higher. The last valid

point has a total uncertainty of 52% at 9.7 km. Therefore, the a priori removal technique

increases the maximum valid altitude of the retrieval by 600m.

The fine and coarse grid retrievals do not change very much with respect to each other

until 9.1 km where the averaging kernels begin to drop off significantly. They both produce

similar differences with the radiosonde ( Fig. 3.10) until 9.7 km where the coarse grid retrieval

shows a larger difference with the radiosonde. However, above this altitude we would no

longer consider the coarse grid retrieval viable since its total uncertainties at that height are

above 70%.

Using the a priori removal technique for nighttime retrievals may be helpful when trying

to improve water vapour measurements of the Upper Troposphere and Lower Stratosphere

(UTLS) region. However, in this case, because the nighttime measurements have large SNRs
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and a rapid change from high to low signal values, we do not see as large of a difference

between the coarse and fine grid retrievals as we do in the daytime retrievals.

3.4.3 Purple Crow Lidar Rayleigh temperature a priori removal

We picked a sample night, 12 May 2012, from the Rayleigh temperature climatology in Jalali

et al. (2018) to illustrate the a priori removal procedure for a Rayleigh temperature retrieval.

The original OEM retrieval fine grid was 1024m, and the a priori temperatures were taken

from the CIRA-86 model. The details regarding the OEM retrieval are discussed in Sica and

Haefele (2015) and its applied result to the climatology is discussed in Jalali et al. (2018).

The averaging kernels for the fine grid and coarse grid retrievals are shown in Fig. 3.11a

and Fig. 3.11b. The red line is the measurement response or the estimate of the averaging

kernel’s sensitivity to the measurements. The height at which the measurement response

equals 0.9 was chosen as a “cutoff” height in Jalali et al. (2018), which is shown in Fig. 3.11a

with a dashed line. After applying the a priori removal, the averaging kernel on the coarse

grid is equal to 1 at each point. Fig. 3.11b shows that at the coarse grid points, the aver-

aging kernel is completely sensitive to the measurements and therefore there is no a priori

contribution.

The vertical resolution for both grids is similar up to 85 km altitude (Fig. 3.12). Above

this height the coarse grid incorporates more points from the fine grid, and thus, the vertical

resolution decreases. The values of the vertical resolution (Fig. 3.12) of the two highest points

for the coarse grid are 10 km at 100 km and 8 km at 110 km. However, the corresponding

total uncertainties at these altitudes is above 100% and 60%, therefore we do not consider

them to contribute to the retrieval.

Figure 3.13a shows the temperature retrieval calculated using the OEM, with and without

the a priori. The two retrievals are identical up to 88 km. After 88 km the coarse grid retrieval

differs from the fine grid retrieval and provides 4 more levels to the retrieval. The last 2 levels

are shown with dashed lines in Fig. 3.13a and are points that we would not consider in the

retrieval due to their large uncertainties. The last valid point shown in Figure 3.13a is around

100 km, where the corresponding statistical uncertainty and systematic uncertainties due to

the tie-on pressure and ozone cross section are 15, 9 and 2.3K, respectively (Fig. 3.13b).
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Figure 3.11: The PCL averaging kernels for the temperature retrieval on 12 May 2012 on

the fine grid (a) and on the coarse grid (b). The Au = 0.9 cutoff height on the fine grid

is shown by the black horizontal dashed line at 97 km. The red lines on the edges of the

averaging kernels are the measurement response. The coarse grid extends the temperature

upwards by 4 km.

Therefore, the last valid point of the retrieved temperature on the fine grid is within the

total uncertainty of the coarse grid and the final retrieval altitude increases by 4 km.

A consequence of applying this method is that the uncertainties in the retrieval increase

where the coarse grid is not equal to the fine grid. Figure 3.13b shows the statistical un-

certainty on the fine and coarse grid, as well as two of the largest systematic uncertainties,

including the uncertainty in the retrieved temperature due to the tie-on pressure and ozone

cross section. The most sensitive uncertainty parameter is the statistical uncertainty, which

changes from 13K to 20K at 98 km. The details of the systematic uncertainties on the fine

grid are discussed in Sica and Haefele (2015) and Jalali et al. (2018). The systematic uncer-

tainties increase after a priori removal due to the gain matrix (Eq. 1.30) increasing after the

regularization term is removed. In general, all uncertainties on the coarse grid (Fig. 3.13b)

increase at higher altitudes, where contribution from the a priori starts. The increasing of

the random uncertainties at the highest altitudes is due to decreasing photocounts from the
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Figure 3.12: The PCL vertical resolution for 12 May 2012 on the fine and coarse grid.

The vertical resolution is similar up to 85 km on both grids. Above this height the vertical

resolution decreases until it is 10 km in resolution above 100 km altitude (dotted red line).

We consider 100 km to be the highest meaningful point on the coarse grid due to large

uncertainties above that height.

exponential decrease in air density.

To illustrate that the a priori is in fact being removed, we compared the temperature

retrievals using two very different a priori temperature profiles, one calculated by CIRA-86

and one calculated by the US Standard Model (Fig. 3.14). The difference between the two

temperatures on the fine grid retrieval is shown by the black curve and is about 2K at the

0.9 cutoff line, within the statistical uncertainty. The difference increases rapidly above that

height. The same temperature difference after the a priori is removed is shown in red and

is on the order of zero at all altitudes.
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Figure 3.13: (a) PCL temperature retrieval for the fine and coarse grids on 12 May 2012.

The temperature and its uncertainty for the last coarse grid point has a large value and it is

not shown. (b) The statistical and systematic uncertainties due to the tie-on pressure and

ozone cross section for the PCL temperature retrieval. The other systematic uncertainty

terms included in our retrieval are not shown.

3.5 Discussion

We have developed a method to remove the influence of the a priori temperature and wa-

ter vapour profiles on the retrieval based on the method discussed in Von Clarmann and

Grabowski (2007). Von Clarmann and Grabowski (2007) presented a method to re-regularize

the retrieval on a coarser grid after performing the OEM retrieval on a fine grid, effectively

removing the a priori information from the retrieval. The method transformed the retrieved

data from the “fine grid”, or the initial retrieval grid, to a coarser grid in a way that the

averaging kernel matrix on the coarse grid equals unity (that is, no a priori effect) at each

vertical grid point.

Von Clarmann and Grabowski (2007) presented two approaches, a “staircase” representa-

tion, and a “triangular” representation, to transform the retrieval from the fine to the coarse

grid. The cumulative trace of A shows the total degrees of freedom of the retrieval. In

these representations, the cumulative trace of the averaging kernel matrix A as a function

of altitude is calculated and is then interpolated to the coarse grid based on the centered

information approach. As each space contains only one degree of freedom, the spaces are
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Figure 3.14: PCL temperature difference between the OEM retrieved temperature profiles

using values from the US Standard Atmosphere and CIRA-86 as the a priori.

distributed irregularly. The staircase representation is not a realistic representation of the

atmosphere (Von Clarmann and Grabowski, 2007), therefore we use the triangular represen-

tation here to create the coarse grid. In the triangular representation, the highest and lowest

level of the coarse grid are considered to be the same as the fine grid and the rest of the grid

points are distributed such that each element of A at each level is close to one.

Our method differs from Von Clarmann and Grabowski (2007) in that we do not re-

regularize the retrieval to remove the a priori. Instead, after the initial retrieval, we remove

the regularization term from the retrieval and re-run the retrieval using the triangular coarse

grid. Both methods are equally effective, however, this method is more of a brute-force

technique but easier to practically implement.

We have shown how the a priori removal method works for three sample retrievals: water

vapor during both daytime and nighttime, and a nighttime Rayleigh temperature. The a

priori removal technique is most useful when the SNR is low, particularly in dry layers. The

method increased the retrieval altitude by roughly 2 km which is highly beneficial for me-
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teorological studies that rely on accurate tropospheric measurements. The nighttime water

vapor retrieval was provided for contrast to illustrate how the a priori removal technique

does not provide significantly more information when the signal level falls off rapidly. How-

ever, the method did improve the difference between the radiosonde and the retrieval in the

dry layer regions. The signal in the upper troposphere is significantly weaker and as such

there is no measurement information left with which to increase the retrieval altitudes.

For Rayleigh temperature retrievals, we used measurements from the PCL in London,

Ontario. Jalali et al. (2018) suggested that the 0.9 level be used as the valid cut-off height.

In the case of the PCL, we see that the second to last point on the coarse grid has a vertical

resolution not much larger than the fine grid retrieval (Fig. 3.12) and is very close to the

same height; therefore, the 0.9 measurement response value seems to be a conservative choice

for a valid cutoff. We also showed that the effect of the a priori is removed completely

in the Rayleigh temperature retrieval when we compared the differences in the retrieved

temperature using the values from CIRA-86 and from the US Standard Model as the a

priori profiles (Fig. 3.14). The presented method provides us with higher altitudes for the

retrieved temperature profiles. Additionally, where the retrieved temperature profile in the

coarse grid is the same as it is for the fine grid, we can be confident the temperature retrieval

has a negligible contribution from the chosen a priori temperature profile.

An advantage of our method is that the entire coarse grid profile is valid, in the sense that

the regularization term does not contribute to the retrieval. In regions where the SNR is low

or the averaging kernel is significantly less than 1, the a priori removal method improves the

validity of the retrieval. However, the systematic and statistical uncertainties in the retrieval

increase due to the removal of the inverse of the a priori covariance matrix from the gain

equation (Eq. 1.30). The vertical resolution of the profile also increases as a consequence of

the method. While the a priori removal gives us more confidence in the retrieval, we may

not consider the entire profile meaningful due to high uncertainties. Hence, the last few

points with unity averaging kernel value on the coarse grid may not be recognized as valid

retrieval levels.
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3.6 Summary

We have developed a practical and robust method which removes the effect of a priori

information in lidar OEM retrievals. The method utilizes an information-centered coarse grid

which is derived using the averaging kernels from the initial “fine grid” retrieval. The resulting

coarse grid is then used, in addition with setting the inverse of the a priori covariance matrix

to zero, to create the final retrieval without any a priori information. The method has little

computational cost; the OEM retrieval is extremely fast even on a laptop computer, so

having to do the retrieval twice for each profile is not critical. We illustrated the method

using a simple example in Sect. 3.3 and demonstrated the removal method using the water

vapour signal from the RALMO and the Rayleigh temperature signal from the PCL. We

summarize the results from both of these examples as follows:

1. Figure 3.1b) shows that 90% of the nights in the temperature climatology from Jalali

et al. (2018) had less than a 5K influence from the a priori temperature profiles

at the Au = 0.9 cutoff height. Additionally, in all cases the a priori temperature

influence was less than the statistical uncertainty, as was illustrated in Fig. 6 in Jalali

et al. (2018). Although small, the a priori temperature profile does contribute to the

retrieved temperature in regions where the measurement response is smaller than 1.

2. The daytime water vapor a priori removal showed better agreement between the OEM

coarse grid retrieval and radiosonde by up to 50% in regions where the fine grid mea-

surement response was smaller than 0.9. Using this method helped to increase the

altitude range of the daytime and nighttime water vapor retrievals by up to 2 km and

600m, respectively. The nighttime water vapor a priori removal does not show large

differences with the fine grid retrieval, but does show differences in dry regions with low

signal. The difference in improvement between the daytime and nighttime retrievals is

due to the difference in SNR of the RALMO measurements.

3. Applying the method to the PCL temperature retrieval showed a gain in information

above the Au = 0.9 cutoff height by 2 km, validating the choice of Au = 0.9 for a cut-

off made in Jalali et al. (2018) to form their climatology up to an altitude where tie-on

103



pressure effects were minimal. The temperatures below the cutoff height were the same.

4. In all cases, the vertical resolution of the OEM retrieval decreases after a priori removal.

5. The systematic uncertainties after a priori removal increase roughly by a factor of 2,

but remain on the same order of magnitude as before the a priori removal. The values

of the systematic uncertainties also remain significantly smaller than the statistical

uncertainties.

6. The temperature difference between the PCL retrieved temperature profiles using two

different a priori profiles were used to show the efficiency of the a priori removal

method. The temperature difference before removal around the 0.9 cutoff height was

more than 2K, however, this value was zero for the entire range after a priori removal.

3.7 Conclusions

A question that often arises from our colleagues when introduced to the OEM is: what

is the effect of the a priori on the retrieval? This effect has been explored in detail for

satellite-based and passive ground-based instruments, but not for the new area of applying

OEM to active-sensing measurements such as lidar. Lidars are high resolution instruments

with significant amounts of information available from their measurements, as evidenced by

the retrieval averaging kernels. The OEM helps to illustrate the robustness of the lidar data

products with the advantage of providing diagnostic tools, such as the averaging kernel and

a full uncertainty budget.

Newcomers to the OEM may find this a priori removal technique helpful for checking

their a priori ’s influence on the retrieval and in determining the appropriate a priori. It

is most useful for lidar measurements with low signal to noise and a slow transition from

regions of high signal to low signal. The method is less effective when signal strength changes
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rapidly, such as when the nighttime water vapour measurements quickly enter the dry upper

troposphere or lower stratosphere.

Another advantage of this method is that the same coarse grid for a typical night can

be used for multiple lidar retrievals. In some cases, the coarse grid will not be optimal but

still reasonable. With this consistent grid choice, the altitude resolution of a multi-year

time series will be consistent. Varying information content of the individual measurements

will lead to error bars of different size. The coarse grid allows time series analysis or trend

analysis for single altitudes without problems caused by varying altitude resolution.

In the future, this method will be applied to the entire 10 years of RALMO measurements

to retrieve the water vapour day time and nighttime measurements and create a water vapour

climatology. We anticipate that this technique will increase the altitude of the daytime water

vapour retrievals by several kilometers. It is also our hope that this method may provide

statistically significant measurements in the UTLS region. Finally, the RALMOwater vapour

climatology will be used to find trends.
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Chapter 4

Intercomparison of Temperature

Retrievals from Two Coincidentally

Located Lidars Using Averaging Kernels

4.1 Introduction

Remote sensing instruments like lidars from the surface and satellites from the sky are used

to measure atmospheric states. Different methods have been used to derive temperatures

from remote sounder measurements, one of which is the inversion technique. An Optimal

Estimation Method (OEM) is a type of inversion technique which was recently applied to

lidar measurements (Sica and Haefele, 2016, 2015). OEM has also successfully been applied

to Rayleigh lidar temperature measurements to calculate the Purple Crow Lidar (PCL)

temperature climatology (Jalali et al., 2018b). The OEM calculates the best estimate of

atmospheric temperature using a combination of measurements and available prior knowledge

of the atmospheric states (a priori). A priori information is typically taken from a model,

and is used as a “first guess” approximation to the solution, but its effect can be completely

removed if desired (Jalali et al., 2018a). In order to validate remote sensing instruments, it

is necessary to compare their measurements to others sources. Many studies have been done

to compare temperatures measured by satellite instruments like the Aura Microwave Limb
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Sounder (MLS) and the Sounding of the Atmosphere using Broadband Emission Radiometry

(SABER) to lidar retrieved temperatures (Wu et al., 2003; Randel et al., 2004; Sica et al.,

2008; Wing et al., 2018).

Rayleigh lidar temperature statistical uncertainties typically increase with altitude due

to decreasing signal-to-noise ratios. Lidars co-add the signal in time (minutes to hours) and

altitude in order to retrieve the temperature to higher altitudes while satellites make near

instanenous measurements from a platform moving at 7000m/s over or near a lidar location.

These differences in atmospheric sampling mean comparisons between instruments often

must account for potentially large spatial-temporal ambiguities. However, direct comparisons

can be improved by using an OEM diagnostic tool called averaging kernels, also known

as weighting functions, which improve the ability to sample the measurement from one

instrument as “seen” by another instrument.

The goal of this paper is to show the advantages of the OEM in the Rayleigh lidar

temperature retrieval when comparing two lidars to each other and to other instruments such

as satellites, radiosondes, and the United State’s National Oceanographic and Atmospheric

Administration (NOAA) National Center for Environmental Prediction (NCEP) reanalysis

model. The NCEP reanalysis project is using a forecast system to perform data assimilation

using past data from 1948 to the present. In Section 2 the basic concepts of the OEM

retrieval and how to make comparisons using the OEM will be introduced. In Section 3 we

will describe the properties of the lidars and the input measurements used for this study.

Section 4 presents the results of the OEM retrieval for each individual lidar as well as the

comparisons with other instruments. Sections 5 and 6 are the summary and conclusions,

respectively.

4.2 Description of measurements used in this study

4.2.1 Lidar description

The NASA (National Aeronautics and Space Administration) Goddard Space Flight Center

(GSFC) lidar system (henceforth referred to as the NASA lidar) is a mobile trailer lidar
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which is designed primarily to measure stratospheric ozone. In addition, the NASA lidar is

capable of measuring temperatures in the middle atmosphere from 30 to 80 km using Rayleigh

scattering at 355 nm. The NASA lidar has 4 elastic channels (high and low gain at 308 and

355 nm) as well as N2 Raman-scattered channels. The NASA elastic channels at 355 nm

were used to retrieved the temperature. The NASA High Level Rayleigh (HLR) channel

is typically used between 35 km and 80 km, whereas the NASA Low Level Rayleigh (LLR)

channel is used below 35 km with a grey filter to reduce the photomultiplier nonlinearity. A

grey filter is a neutral-density filter which reduces the intensity of backscatter signal at all

wavelengths. Profiles are measured every minute with range bins of 150m. The NASA lidar

also receives the signals at 308 and 355 nm. The lidar signal at 308 nm is absorbed by ozone

significantly, and the return signal at 355 nm is less sensitive to ozone absorption. These

two channels signal can be used to retrieve ozone density (Leblanc et al., 2016). Detailed

specifications of the lidar and previous validations of the NASA lidar temperature profiles are

discussed in Ferrare et al. (1995), Singh et al. (1996) and Gross et al. (1997). After an upgrade

in 1992 (McGee et al., 1993, 1995), nitrogen and water vapour vibrational Raman channels

were added to the system at 332 nm and 387 nm, and 407 nm respectively. The Rayleigh

channels are used for the temperature retrieval above 30 km where the effect of aerosols is

typically negligible. Below 30 km, the Raman channel measures temperature down to 8 km.

The complete description of the NASA lidar is reported in McGee et al. (1995). The NASA

lidar is a portable lidar with he characteristics of measuring ozone and temperature profiles

in the lower and middle atmosphere makes it suitable for inter-comparison campaigns with

other lidars.

The German Weather Service lidar (henceforth, the DWD lidar) is located in Hohen-

peisenberg, Germany at 47.8◦ N, 11.0◦E and has been operated since 1987. The DWD lidar

is an ozone DIAL lidar which measures an absorption signal at 308 nm and Rayleigh signal

at 353 nm, similar to the NASA system. The DWD lidar has only one Rayleigh scatter

channel and uses a grey filter 30 minutes after the sunset and 30 minutes before sunrise to

reduce the photomultiplier saturation effect caused by high count rates. DWD temperature

profiles typically range from 30 km to 70 km with raw range bins of 300m below 80 km and

17 km above. The DWD lidar transmitted pulse energy at 353 nm is 10mJ, the NASA lidar’s
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pulse energy at 355 nm is 150mJ. Therefore, the return signal for the DWD lidar is several

orders of magnitudes weaker than the NASA lidar. The details of schematic and properties

of DWD lidar is described in Steinbrecht et al. (2009).

In the HC method procedure, the nonlinearity correction is applied to every profile and

then integrated in time and height. However, in the OEM it is impossible to follow the

same procedure as the HC method and the nonlinearity correction is applied to the nightly-

integrated measurement profile inside the forward model. In order to get the most accurate

results from the OEM, the nightly-integrated signal must be created from a set of profiles

which follow a normal distribution.

All HC method results for the DWD and NASA lidar temperatures in this paper are

identical to the results presented in Steinbrecht et al. (2009). The OEM uses the same raw

photocount profiles, with the exception of DWD where we omit the scans that were affected

by clouds or misalignment.Therefore, all signals for the DWD lidar were re-evaluated for the

OEM temperature retrieval and all scans that were significantly different from the average

profile were removed. These extraneous scans were likely caused by passing clouds over the

lidar site, a misaligned laser, or high background signal.

The NASA lidar was brought to the DWD lidar location for an intercomparison cam-

paign, called the Hohenpeisenberg Ozone Profiling Experiment (HOPE), in October 2005

for 13 nights. The temperature results were also compared with radiosondes and the NCEP

reanalysis model. The results of the temperature inter-comparison revealed that the DWD

temperature profiles have a 1 to 2K cold bias from 30 to 65 km in comparison to the NASA

temperature profiles and a 2-4K against radiosonde and NCEP model (Steinbrecht et al.,

2009). The campaign revealed a 290m range error in the DWD altitudes as well as incorrect

statistical uncertainty calculations which were off by a factor of 2.2 and the need for a better

gravity model. After applying these improvements, the temperature difference between the

DWD and NASA temperature profiles reached less than 1K between 27 and 55 km. The

other results relating to temperature reported in Steinbrecht et al. (2009) are:

1. Both lidars showed colder temperatures than the radiosonde temperature between 25

and 30 km as well as the NCEP temperature between 30 and 45 km.
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2. The NASA lidar showed 1K colder temperature than the radiosonde and NCEP anal-

yses.

3. The average temperature difference between the DWD and NASA lidar is less than

1K between 27 and 55 km.

4. The NASA lidar temperature precision is less than 1K between 20-50 km and less than

3K around 70 km.

5. The DWD lidar temperature precision is less than 2K between 30 to 50 km and 10K

around 70 km.

4.2.2 Comparison methodology

The NASA LLR and HLR channels and DWD Rayleigh channel were used to retrieve tem-

perature profiles from 25 km up to each lidar’s maximum nightly range. The details of the

OEM methodology is described in Sica and Haefele (2015). The DWD lidar used a vertical

resolution of 1.5 km in the original intercomparison using the HC method; therefore we chose

an OEM retrieval grid of 1.5 km for both lidars. The retrieval parameters for the NASA lidar

are the temperature profile, the lidar constant, background values for each channel, as well

as the dead time for the HLR channel. The dead time value used for the NASA HC result

was used as an a priori dead time value. The DWD lidar has only one Rayleigh channel,

therefore only the temperature profile, lidar constant and background were retrieved. The

DWD lidar uses an empirical function to correct the nonlinearity due to photomultiplier

saturation. Therefore, the empirical function was used as a model parameter and the sys-

tematic uncertainty due to the saturation was included in the final uncertainty budget. The

CIRA-86 model atmosphere was chosen as the temperature a priori profile for both lidars.

In order to compare the OEM retrieved temperature profiles with other instruments, e.g.

SABER and MLS, the averaging kernel matrix of the satellite measurements can be used to

improve the comparisons. Using the averaging kernels helps to consider the different height

resolutions as well. The temperature profile that the lidar would measure if it was looking

through the same atmosphere as MLS can be calculated with an independent measurement
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of an atmospheric temperature state (x̂) assuming the true temperature profile is in the

state given by x and the combination of the lidar averaging kernel (A) and the lidar a priori

temperature profile (xa) according to

x̂ = A(x− xa) + xa. (4.1)

When comparing two lidar temperature profiles or a lidar profile with a satellite profile us-

ing averaging kernels, we should decrease the temperature profile resolution of an instrument

with higher degrees of freedom (henceforth called the degraded profile). When comparing

DWD and NASA lidar temperatures, the NASA lidar temperature profile has the measure-

ment with higher degrees of freedom. When comparing lidar measurements with satellites,

the lidar measurements typically have higher degrees of freedom. The following relation is

the same as Eq. 4.1 but rewritten in the more details for the case of applying Eq. 4.1 to the

DWD and NASA lidar comparison.

TNASA−degraded = ADWD × (TNASA −TaDWD) + TaDWD. (4.2)

where ADWD is the averaging kernel matrix of the DWD lidar and TNASA−degraded is the

degraded NASA temperature profile which is what the NASA lidar would see if it was looking

through the same atmosphere with the same instrumentation as DWD.

The OEM has several advantages over the HC method. Unlike the HC method, which

included estimates of random uncertainty, the OEM produces a complete uncertainty budget

for all effective parameters in the retrieval procedure.

4.3 Results

4.3.1 The NASA and DWD OEM temperature retrievals

This section will discuss the results of the OEM temperature retrievals for both lidars. Figure

4.1 shows a typical OEM temperature profile for the NASA (Fig. 4.1a) and DWD (Fig. 4.1b)

lidars and compares it with the HC method. The example night used here is 29 October 2005.

For both lidars, the OEM and HC methods show very good agreement. The NASA OEM
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Figure 4.1: Temperature retrieval using the OEM on 29 October 2005 from a) NASA

lidar measurements and b) DWD lidar measurements. The blue and red shaded area is the

statistical uncertainty of the HC method and OEM, respectively.

temperature retrieval lies on the HC temperature completely up to 80 km, above 80 km there

is slightly difference between them but the difference is inside their statistical uncertainty.

The DWD OEM temperature profile agrees with HC up to 55 km, the HC temperature is

slightly colder than the OEM above 50 km up to 70 km however they are inside their each

others statistical uncertainty. The DWD HC temperature has a large fluctuations above

70 km.

Using the measurement response, we calculated the cutoff height for each lidar throughout

the campaign (Fig. 4.2). We compared the cutoff heights for both lidars at the altitudes where

Au was 0.9. We show the 0.8 cutoff line to highlight the differences in the retrieval when we

compare with other lidars or satellite instruments using the averaging kernel. The average

0.9 cutoff altitude for the DWD and NASA lidars is at 70 and 87 km, respectively. These

altitudes are roughly 10 km higher than the cutoff altitude of the HC retrieved temperature.

The 0.8 cutoff line is almost 7 km higher than the 0.9 cutoff. Figure 4.3 shows the averaging

kernels of the OEM temperature retrievals on 29 October 2005 for the NASA and DWD

lidars. The NASA lidar’s typical return signal is several orders of magnitude larger than the

DWD lidar and this difference is visible in the averaging kernels. The NASA averaging kernels

(Fig. 4.3a) are almost 1 up to 70 km and then they drop to 0.9 around 86 km. However, the
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Figure 4.2: The OEM temperature cutoff heights for the NASA and DWD lidars for the

entire HOPE campaign. The average 0.9 cutoff height for NASA is at 87 km, while the

average 0.9 cutoff height for DWD is at 70 km.

DWD averaging kernels are unity up to 50 km and 0.9 value is around 70 km.

Both DWD and NASA HC algorithms used a boxcar averaging function to decrease their

vertical resolutions and thereby increase their signal-to-noise ratios (SNR) and reduce the

photon count noise. The DWD lidar used a fixed 5 point boxcar for all altitudes to create

1.5 km vertical resolution. The NASA lidar also used a boxcar average but with a variable

width to make the vertical resolution less than 2 km for all altitudes below 60 km. After

60 km, the vertical resolution increases by 1 km for every 5 km in altitude. The NASA vertical

resolution reaches 6 km at 80 km and after 80 km is constant at 7 km vertical resolution.

The OEM provides the vertical resolution using the full width at half maximum of the

averaging kernels at each altitude. The OEM uses a 1.5 km retrieval grid for both lidars.

Figure. 4.4 shows the vertical resolution for NASA and DWD lidar using the HC method

and OEM, as well as the vertical resolutions for SABER and MLS temperature profiles. The

OEM vertical resolution for DWD lidar is 1.5 km up to 60 km and above that increases to

3 km at 80 km. The vertical resolution values for the NASA OEM temperature retrieval
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Figure 4.3: Temperature averaging kernels for the OEM temperature retrieval on 29 Octo-

ber 2005 for a) NASA lidar measurements and b) DWD lidar measurements. The NASA

averaging kernels are larger and do not decrease as rapidly as the DWD averaging kernels

due to the NASA lidar’s higher energy per pulse and larger telescope diameter.

are 1.5 km until 80 km altitude, where it increases up to 4 km at 100 km altitude. SABER’s

vertical resolution is 2 km for all altitudes. However, MLS’s resolution is much larger than

the others, with a maximum of 10 km at 55 km and at 98 km.

Figures 4.5a and 4.5b illustrate the statistical uncertainty and all systematic uncertainties

larger than 0.001K for the NASA and DWD temperature retrievals on 29 October 2005.

Table 4.1 summarizes the uncertainties from Fig. 4.5 for every 10 km in altitude between 30

and 80 km. To be consistent and compare with the NASA lidar’s uncertainties at 80 km,

we have also included the DWD lidar uncertainties. However, 80 km is several km above

the DWD 0.9 cutoff height. The statistical uncertainties for the DWD lidar are around

1K at 50 km but quickly increase to 2.9K at 60 km and finally 6K at 70 km. However,

Steinbrecht et al. (2009) mentioned that the statistical uncertainty for the DWD lidar at

70 km is around 10K. For the NASA lidar, the statistical uncertainty is less than 1K below

70 km and is around 2K at 80 km which is consistent with Steinbrecht et al. (2009).

The temperature uncertainty due to the tie-on pressure (p0) for the DWD lidar is around
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Figure 4.4: The vertical resolutions for the NASA and DWD lidar temperature retrievals

using the OEM and HC method, as well as the SABER and MLS satellites.

0.1 to 1.7K between 50 and 70 km and below 50 km is on the order of 0.01K. However, the

uncertainty due to the tie-on pressure for the NASA lidar is small for all heights and reaches

a maximum of 0.14K at 80 km.

The temperature uncertainty due to the uncertainty in the Rayleigh scatter cross section

for the DWD lidar is less than 0.1K below 50 km and its maximum is 1.1K at 70 km. The

values of the uncertainty due to the Rayleigh scatter cross section for the NASA lidar is

less than 0.1K below 60 km and is around 0.8K at 80 km. The interesting point is that

the temperature uncertainty due to the Rayleigh scatter cross section is more than the

uncertainty due to the tie-on pressure for NASA lidar. The reason is that the Rayleigh

scattering cross section is proportional to the quarter of wavelength inversely (Nicolet, 1984)

and also, the signal in the NASA lidar is several orders of magnitude stronger than the DWD

lidar and the tie-on pressure smaller. The temperature uncertainty due to gravity is identical

for both lidars. The temperature uncertainty due to the uncertainty in the air number density
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Figure 4.5: Temperature uncertainties due to the parameters inside the forward model

greater than 0.001K on 29 October 2005 for a) NASA lidar measurements b) DWD lidar

measurements.

is at least one order of magnitude smaller than the other systematic uncertainties shown in

Table 4.1 except the gravity.

The last systematic uncertainty, which only applies to the DWD lidar, is the uncertainty

due to the empirical saturation function. It has a maximum contribution of 0.04K at 25 km

and decreases with height to reach a minimum of 0.001 at 40 km.

4.3.2 Comparison of the average temperature differences between

instruments

In this section we will compare the average temperature profiles from the NASA and DWD

lidars. We will compare the results using three average temperature profiles which were

created using three measurement techniques: the HC method and the OEM method to

compare the measurements directly together, and using the averaging kernels from the OEM

retrievals to compare two profiles using Eq. 4.1. The average temperature differences between

the two lidars using all methods are plotted in Fig. 4.6. The average temperature differences
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Table 4.1: Statistical and systematic uncertainties greater than 0.001K of the OEM temper-

ature retrieval for the DWD and NASA lidars on the 29 October 2005. This is a summary

of Fig. 4.5.

Uncertainties 30 km 40 km 50 km 60 km 70 km 80 km

Stat. DWD 0.15 0.5 1.3 2.9 6.0 10.5

Stat. NASA 0.11 0.06 0.18 0.4 0.8 2.2

Press. DWD 0.007 0.03 0.14 0.45 1.7 5.4

Press. NASA < 0.001 < 0.001 0.003 0.01 0.03 0.14

Ray. ext.σ DWD 0.01 0.01 0.09 0.3 1.1 3.5

Ray. ext.σ NASA 0.09 0.01 0.01 0.06 0.2 0.8

Ray. ext.ρ DWD < 0.001 < 0.001 0.004 0.015 0.06 0.19

Ray. ext.ρ NASA 0.006 < 0.001 < 0.001 0.002 0.006 0.02

Gravity DWD 0.002 0.002 0.002 0.002 0.002 < 0.001

Gravity NASA 0.002 0.002 0.002 0.002 0.002 0.001

Saturation fun. DWD 0.014 0.001 < 0.001 < 0.001 < 0.001 < 0.001

between the DWD and NASA using the OEM is less than 1K between 25 and 63 km, then

increases up to 3.2K around 67 km and at 70 km is 2K. If we considered the altitude where

the measurement response is 0.8 as a valid cutoff height, the temperature differences between

the lidars using the OEM at 75 km is 8K. However, the conservative cutoff height where the

measurement response is 0.9 which shows a difference in OEM profiles of 2K at 70 km and

a difference of -1K at 70 km using the HC method. If we use the averaging kernel of the

DWD lidar to degrade the NASA temperature profiles, the average temperature difference

remains similar to the differences using the OEM where the averaging kernels of DWD are

close to 1 (below 58 km). Degrading the NASA profile improves the differences between

the NASA and DWD temperatures by up to 0.8K between 58 and 70 km. If we were to

consider the DWD temperature profiles valid up to 75 km, the degraded OEM improves the

temperature by 2K at 75 km. The only region that the degraded OEM does not provide

better results is between 58 and 62 km where the temperature differences increase by 0.2K

when using the degraded NASA OEM. The black dashed lines show one standard deviation
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Figure 4.6: The average temperature difference between the DWD and NASA temperature

profiles using the HC method, OEM and degraded OEM. The standard deviation of the

average differences using the non-degraded OEM is in dashed black lines.

of OEM temperature differences between the lidars. The temperature difference using the

HC method in Fig. 4.6 is less than 1K between 25 and 48 km, and it increases up to -3K at

65 km.

4.3.3 Comments on the differences in temperature measured by

NASA and DWD

The average temperature difference profiles between the lidars and the Munich radiosondes

are shown in Fig. 4.7. The temperature differences between the average NASA lidar HC

temperature profile is 0.2K closer to the average radiosonde profile between 25 km and 29 km.

However, above 29 km, the OEM improves the difference by almost 0.4K. The DWD average

OEM temperature profile is 0.7K closer to the radiosonde average profile compared to the

average HC temperature profile. At this altitude, the effects of ozone on the temperature is

less than 0.01K, therefore the differences between the lidar average temperature profiles and
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Figure 4.7: The temperature difference between the average radiosonde temperature profiles

and the average (a) NASA and (b) DWD lidar temperatures.

radiosonde must be due to the nonlinearity correction. The DWD lidar OEM temperature

retrievals are closer to the radiosonde profiles than the HC temperature profiles. The reason

could be due to this fact that the influence of empirical saturation function is dominant

between 25 to 30 km and the OEM applies the nonlinearity correction function to the average

photocount profile, however the HC method applies the correction to each scan.

Figures 4.8a and 4.8b are the average temperature difference profiles between the OEM

(red) and HC (blue) NASA and DWD lidars and the NCEP operational analyses. The NASA

OEM temperature retrieval shows 0.2K improvement between 25 and 32 km altitude. There

is almost no difference between the temperature profiles produced by the OEM and HC

techniques between 32 and 37 km. The OEM technique increases the difference between the

lidar and NCEP model temperatures between 42 and 52 km. However, above 52 km the OEM

improves the difference between the lidar and NCEP by an average of 0.5K. The comparison

between the NCEP temperature profiles and the DWD average temperature profiles revealed

that the OEM temperature profiles are consistently warmer than the HC method. The OEM

improves the differences between the lidar and the NCEP model below 42 km by an average

of 0.5K. However, above 42 km the absolute values of the differences between the lidar

measurements and the NCEP model are the same, but the OEM temperatures are warmer

than the DWD HC temperatures. The most likely cause of the temperature differences

between the OEM and HC method for the DWD lidar is due to the fact that different scans
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Figure 4.8: The average temperature difference between the NCEP temperature profiles

and a) NASA lidar temperature profiles and b) DWD lidar temperature profiles.

that were used for the OEM retrieval. Over the 13 nights about 15% of the DWD lidar scans

had significant variations from the nightly mean, principally due to clouds. We did not use

these scan in the OEM analysis. DWD will reprocess their HC method temperatures using

the same nights in the near future.

4.3.4 Comparing lidar and satellite temperature profiles

We now compare the OEM and HC retrieved temperature profiles from the DWD and NASA

lidars to the temperatures measured by the MLS instrument on board the Aura satellite and

SABER. The MLS uses OEM to retrieve temperature profiles therefore, it would be a good

option to use its averaging kernels for comparison with lidars temperature profiles. The MLS

temperature profiles were obtained from the version 4.2 retrievals. The MLS and SABER

temperature profiles were chosen to be inside the region of ±5◦ latitude (±460 km) and

±10◦ longitude (920 km) and coincident with the operating time of the lidars. The a pri-

ori temperature profiles for the MLS are the Goddard Earth Observing System (GEOS-5)

model up to 1mb and the CIRA-86 climatology above 1mb (Schwartz et al., 2008). The

averaging kernels of the MLS temperature profiles are only provided for the measurements

taken at the equator and 70◦N. The averaging kernels at latitudes close to these show very
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small differences and are therefore not reported (Nathaniel J. Livesey, 2018). The degree

of freedoms of MLS temperature profiles is 33 based on its averaging kernels. The NASA

and DWD degrees of freedom are in average 48 and 36, respectively. Therefore, the lidars

temperature profiles degraded using the MLS averaging kernels. In order to compare the

temperature profiles between MLS and the DWD and NASA lidars, the MLS averaging

kernels at 70◦N were chosen to degrade the lidar temperature profiles by Eq. 4.1. Fig-

ure 4.9 shows the MLS averaging kernels used to degrade the lidar temperature profiles.

The MLS averaging kernels for version 4.2 temperature retrieval are provided at the MLS

website: https://mls.jpl.nasa.gov/data/ak/. Unlike the lidar averaging kernels, they never

reach unity. Between 30mb and 0.2mb they are less than 0.4, however, between 0.2mb and

0.01mb they are between 0.6 and 0.8. The red line in Fig. 4.9 is the measurement response

and represents the amount of contribution of the measurements in the temperature retrieval.

The measurement response is calculated from summation of each row of the MLS averaging

kernel matrix. The MLS measurement response is close to 1 at all levels except between 2mb

and 0.2mb which there is a large fluctuation and changes from 0.9 to around 1.2 and this

variation repeats again. The MLS vertical resolution corresponding the maximum width at

half maximum of the MLS averaging kernels showed in Fig. 4.4. The MLS vertical resolution

starts around 4 km at 25 km (28mb) and increasing constantly to 10 km at 55 km (0.4mb),

then decreases again to 6 km at 65 km (0.09mb) and then increases constantly again up to

10 km at 90 km (0.002mb). At the lower pressure averaging kernels are larger, the vertical

resolution at these levels is between 6 and 10 km.

To more accurately compare the MLS temperature profile with the lidar measurements,

the average HC lidar temperature profile for 13 nights with the resolution decreased by ap-

plying the MLS averaging kernels (degraded profile) is calculated using the MLS averaging

kernels (Fig. 4.10). Figure 4.10a shows the average NASA degraded temperature profile plot-

ted up to 0.002mb and the same is shown for the DWD lidar up to 0.01mb in Fig. 4.10b.

The shape of the average temperature profile for both lidars is very similar. There is good

agreement between the lidars’ average temperature profile and MLS’s between 20mb and

0.02mb except between 4 and 1mb, which coincides with the minimum in the MLS av-

eraging kernels and where the measurement response changes rapidly. Also, NASA lidars’
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Figure 4.9: The MLS averaging kernels at 70◦N. The red line represents the measurement

response.

average temperature profiles in Fig. 4.10a shows a strong inversion layer between 0.03mb and

0.001mb that is not seen in the MLS average temperature profiles. However, this difference

in temperatures may be due to fact that the lidar temperature profiles are retrieved over

more than 6 hours of nightly measurements and the MLS temperature profiles are retrieved

in less than 1 minute.

The MLS averaging kernels are much less than 1 at each level at low altitudes, however,

the measurement response which is summation of each row of averaging kernels matrix is

around 1. In order to see the effect of the MLS averaging kernels in the retrieved tempera-

ture profiles, two sample nights are chosen for direct comparison between the HC and MLS

temperature profiles as well as using the degraded HC temperature profile by MLS averag-

ing kernels and the MLS temperature profile (Fig. 4.11). In Fig. 4.11 a, the temperature

difference between the lidar and MLS temperature profile is smaller than Fig. 4.11 b. There

is a large jump in temperature difference in Fig. 4.11 b around 0.1mb. The common feature

in both cases is that the MLS averaging kernel makes the differences smoother. The average

NASA degraded HC and HC temperatures between 12mb and 0.5mb (Fig. 4.12b) differ
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Figure 4.10: The average degraded HC temperature profile (red) for the NASA (a) and

DWD (b) lidars and the MLS temperature profile (black) with corresponding temperature

standard deviations (dotted lines).

from the MLS profile by less than 4K. Above the 0.2mb pressure level and up to 0.02mb,

where the MLS averaging kernels are larger, the degraded HC shows better agreement with

the MLS temperature than the HC temperature by an average of 3K.

Figure 4.12b presents the same results as Fig. 4.12a, but for the DWD lidar. The average

temperature difference between the MLS temperatures with the degraded OEM and HC

temperatures behaves similarly to those discussed for the NASA lidar but only up to the

0.04mb pressure level which is the maximum retrieval height for DWD.

The differences between the degraded OEM and satellite measurements were not shown

because there were very little difference between the OEM and HC results. Possible reasons

as to why the MLS and lidar average temperature profiles are not consistent with each other

between 0.7 and 0.2mb could be because of following reasons.

1. The lidars temperature profiles are averaged over 6 hours measurements, however, the

MLS measurements are taken in less than 1 minute.

2. Tidal variability is large around 40 and 50 km (Baumgarten et al., 2018), which corre-

sponds to the maximum temperature difference between the MLS and the lidar mea-

surements.
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Figure 4.11: The temperature difference between the MLS temperature profile and the

NASA temperature profile calculated by the degraded HC (red profiles) and the HC method

(blue profile) for a) 20050527 b) 20050526.

3. The vertical resolution of the lidars is higher than the MLS and therefore more sensitive

to geophysical variability than the MLS.

4. The averaging kernels of the MLS through the stratosphere and stratopause are very

weak and could be the source of the temperature differences at lower altitudes.

5. There is a sharp change in the structure of the MLS averaging kernels around 0.2mb

and this variation could induce an artificial damping gradient in the retrieved MLS

temperature profiles.

The Sounding of the Atmosphere using Broadband Radiometry (SABER; Mlynczak and

Russell (1995)) has been operating on the Thermosphere Ionosphere Mesosphere Energetics

and Dynamics (TIMED) satellite since 2001. The SABER temperature measurements are

based on the kinetic temperature of CO2 limb-emission radiance. The vertical resolution

of the SABER is 2 km (Fig. 4.4) and is comparable with the lidar retrieval grids at 1.5 km.

Therefore, it is useful to compare the retrieved lidar temperature profiles to the SABER mea-

surements even though SABER doesn’t use the OEM. The average temperature difference

between the SABER and each lidar is shown in Fig. 4.13. The temperature differences for

each lidar and the SABER average temperature profiles are within 3K between 25 and 65 km
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Figure 4.12: The average temperature difference between the average MLS temperature

profiles and the lidar average temperature profiles calculated by the degrade HC (red profiles)

and the HC method (blue profiles). The average temperature difference between the average

MLS temperature profiles and a) the NASA degraded HC (red) and HC (blue) temperature

profiles and b) the DWD degraded HC (red) and HC (blue) temperature profiles.

for both the OEM and HC method. Above 65 km up to 88 km the temperature differences

between the SABER and NASA temperature profiles are between -3 and -7K. The temper-

ature difference between the SABER and DWD reaches almost 6K at 70 km and above that

increase rapidly. However, the DWD temperature profiles are not valid above 70 km.

4.4 Summary

The HOPE campaign of 2005 found the differences between the NASA and DWD lidar

temperature algorithms and demonstrated they could be resolved. Here, we have used the

OEM temperature retrieval to re-evaluate the comparisons between the DWD and NASA

lidar temperature profiles after the corrections were made to the DWD HC retrievals. The

results of our investigation using OEM temperature retrievals are summarized as follows:

1. The OEM uses the averaging kernels as a diagnostic tool to evaluate the contribution

of the measurements on the temperature retrieval. The 0.9 and 0.8 cutoff heights were
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Figure 4.13: The average temperature difference between the SABER temperature pro-

files and a) NASA lidar OEM and HC temperature profiles b) DWD lidar OEM and HC

temperature profiles

calculated using the measurement response function. If we consider the altitude at

which the measurement response is 0.9 as the cutoff height, the OEM increases the

validity of the temperature profile for both lidars by almost 10 km.

2. The averaging kernels of the OEM temperature retrieval for a sample night were pre-

sented for both lidars. Based on the measurement response function, the last altitude

where the measurements are 100% of the retrieval for the NASA and DWD lidars is

70 km and 48 km, respectively. Above these altitudes, the contribution of the lidar

measurements decreases.

3. The vertical resolution for the OEM temperature retrieval was calculated using each

lidar’s averaging kernel matrix. The vertical resolution of both lidars using the OEM

are identical up to 65 km and above that are comparable.

4. The statistical uncertainty for the NASA lidar calculated by the OEM is same as the

HC method and is less than 1K below 78 km. The DWD OEM statistical uncertainty

is 4K smaller than the DWD HC method’s at 70 km, which was reported by the HC

method 10K at 70 km even with corrections.
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5. The uncertainty budgets of both lidars were calculated for all uncertainties that are

known to be on the order of 0.001K (Sica and Haefele, 2015). The tie-on pressure

uncertainty and Rayleigh cross section uncertainty on the Rayleigh extinction have the

largest systematic uncertainties. The DWD lidar tie-on pressure uncertainty is higher

than the Rayleigh cross section uncertainty, however, the NASA lidar’s uncertainty

budget shows the reverse due to the strong signal to noise ratio of the NASA lidar in

higher latitudes. Also, the uncertainty of the DWD empirical saturation function was

calculated to be 0.02K at 25 km.

6. The average temperature differences between the DWD and NASA temperature profiles

were calculated using the OEM and degraded OEM and compared with the result from

the HC method. The temperature difference between the lidars is less than 1K between

25 and 65 km using the OEM and above that, the maximum difference is 3.2K around

66 km. The result for the HC method is less than 1K between 25 and 47 km and it

reaches to 3.2K at 64 km. Using the OEM and degrading the NASA lidar using the

DWD averaging kernels improved the comparison above 60 km, where the averaging

kernels of the DWD start decreasing.

7. The temperature comparisons between the lidars’ nightly OEM temperature profiles,

the coincident radiosonde, and the NCEP model revealed that the OEM temperature

retrieval is closer to the radiosonde and the NCEP model at all altitudes in comparison

to the HC method.

8. The NASA and DWD average temperature profiles were compared to the MLS average

temperature profiles. The MLS averaging kernels were used to degrade the lidars’

temperature profiles. In the region where the averaging kernels were more than 0.7,

the degraded OEM temperature profiles provided closer results to the MLS results

around 3K.

9. The SABER temperature profiles were compared with the NASA and DWD temper-

ature profiles. Below 54 km both SABER and MLS average temperature differences

with lidars were within of 3K. Below 64 km (0.1mb) the SABER temperature pro-
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files were closer to the NASA and DWD temperature profiles by 3K, but above 64 km

the MLS averaging kernels improved the comparison and the temperature difference

between the MLS and NASA lidar was improved by 3K up to 0.02mb.

4.5 Conclusions

We have shown that using the OEM retrieval temperature for Rayleigh-scatter lidar mea-

surements can improve the intercomparison between lidars relative to traditional techniques.

The extra information for each individual lidar includes the systematic uncertainties in addi-

tion to the statistical uncertainties. The DWD Rayleigh-scatter signal is more than 2 orders

of magnitude smaller than the NASA lidar’s signal. Considering this point, using the aver-

aging kernel matrix revealed that the DWD temperature is valid up to 70 km and the NASA

temperature is valid up to 87 km which is significantly higher than the altitudes shown in

Steinbrecht et al. (2009). While these lidars were not designed primarily for temperature

measurements, using OEM they can still reliably monitor the mesosphere.

The DWD lidar original vertical resolution was calculated using a fixed 5 point (1.5 km)

boxcar average at all altitudes while NASA lidar used a variable width boxcar with widths

less than 3 km below 65 km, increasing to 6 km above 75 km (Figure 5 of Steinbrecht

et al. (2009)). The OEM provided the vertical resolution directly from the averaging kernel

matrix. The advantage of using the averaging kernels to calculate vertical resolution is

that the method is now identical for both lidars and it is possible to compare both lidars

on an identical scale. Also, OEM does not required any additional smoothing to retrieve

temperature.

The HOPE campaign found that the DWD uncertainty calculation was off by a factor

of
√

5, which reduced the uncertainty from 22K to 10K. One of the strengths of the OEM

is that it propagates the uncertainty parameters automatically and provides the complete

uncertainty budget. The maximum OEM-calculated statistical uncertainty for the DWD

lidar was 6K at 70 km. The NASA lidar has an OEM statistical uncertainty of 0.8K at

70 km and around 2K at 80 km.

Figure 4.6 shows that up to 70 km where both averaging kernels are roughly equal to each
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other, the OEM and degraded OEM produces similar results. Weighting with the averaging

kernel becomes useful when the averaging kernel is less than 1 (when both averaging kernels

are 1 we can compare directly). When the averaging kernel is less than 1, we can use it to

weight the NASA temperature and compare it to DWD. When we do this, we can see the

result between 70 and 80 km changes and shows smaller differences between the two lidars’

temperature measurements. Above 80 km the DWD temperature is essentially the a priori,

which is why the weighted OEM difference goes to zero.

When comparing two lidars together, or a lidar with a satellite instrument, the OEM

averaging kernels provide valuable information about the vertical resolution of the tempera-

ture retrieval, as well as a means to weight the measurements for more accurate comparisons.

The comparison between the lidar (DWD and NASA) and satellite instrument (MLS and

SABER) temperature profiles revealed that, using satellite averaging kernels (if is applicable)

can improve the comparison if they are large enough. The temperature comparison improved

significantly on the order of 3-4K in the region where the lidar temperature profiles are valid

(below 0.9 Au) and the MLS averaging kernels are greater than 0.6.
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Chapter 5

Conclusions and Future Plans

In Chapter 2, I used an Optimal Estimation Method (OEM) to retrieve temperatures from

more than 500 nights of PCL Rayleigh measurements from 1994 to 2013 and used to calcu-

late an OEM temperature climatology between 30 and 110 km altitude. The OEM provided

significant advantages over the traditional method in the form of increasing the altitude

range of the temperatures by providing the averaging kernels at each altitude as a diagnostic

tool. The uncertainty budget, including systematic and statistical uncertainties, and the

vertical resolution for the PCL temperature climatology were calculated using the OEM on

a profile-by-profile basis. I determined a quantitative cutoff height using the OEM tempera-

ture averaging kernels and validated them by comparing them to sodium lidar temperatures.

In the traditional method, it is necessary to merge profiles from different lidar channels to

create a single temperature profile. This issue was investigated in Jalali (2014). The process

involved combining various random uncertainties, choosing overlap ranges, and calculating

uncertainties due to merging raw photocount profiles, all of which contributed to the uncer-

tainties in a manner difficult to quantify. The OEM does not require merging to incorporate

data from multiple sources, and therefore removes the added uncertainty due to the merging

process in the HC method. We also validated the OEM by comparing the PCL temperature

climatology with sodium lidar climatologies and we found that the OEM-derived Rayleigh

temperature climatology improved agreement relative to our previous comparisons using the

traditional method, and the agreement of the OEM-derived temperatures is the same as the

agreement between existing sodium lidar temperature climatologies.
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In Chapter 3, I presented a method to remove the effect of the water vapour and tempera-

ture a priori information from the OEM water vapour and temperature lidar retrievals using

their averaging kernels. This method was validated by applying it to a few nights of measure-

ments of PCL temperature and RALMO water vapour retrievals. The main advantage of the

a priori removal method is that it removes the a priori information from the OEM retrieval

and improves the retrieval in the regions where the lidar signal-to-noise ratio is low. In water

vapour profiles, where the signal level is determined by the amount of water vapour present

in the atmosphere above the lidar, the a priori removal method improves the comparison to

the radiosonde in regions where there is little water vapour and thus low signal-to-noise ratio

measurements, particularly in the daytime. This improvement is useful for forecast models

which rely on accurate tropospheric measurements for precipitation forecasts where small

changes in water vapour can make large differences in the model predictions. An extension

of this project would be to apply the method to the RALMO water vapour climatology to

possibly gain more measurements in the upper troposphere and lower stratosphere (UTLS).

There are very few accurate measurements of the UTLS region, despite its importance in

understanding water vapor transport and the water cycle.

In Chapter 4, I used the OEM temperature retrieval averaging kernels to make an inter-

comparison between the NASA and DWD lidars, as well as between the lidars and SABER

and MLS satellite temperature profiles. A common vertical resolution was calculated from

the averaging kernel matrix, which improved the intercomparison by having both lidars on

an identical height scale. By using OEM, the averaging kernels of the satellite or another

lidar as a second instrument can be used to weight or “degrade” the lidar (first instrument)

temperature profiles. The degraded lidar temperature profiles showed better agreement

with the other lidar or satellite temperature profiles. This better agreement is due to using

the averaging kernels as weighting functions and assumes that the degraded instrument’s

measurements are looking through the same atmosphere as the non-degraded instrument’s.

Future work for this project could be to use the degraded lidar temperature profiles, in order

to improve the comparison of a lidar temperature climatology with satellite temperature

climatology.

An extension of this thesis would be to compare the OEM PCL climatology with the
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SABER climatology. This would require using coincident nights between the PCL measure-

ments and SABER. However, the temporal coverage of the climatology is limited by the

SABER launch date (2001) and a significant number of the PCL measurements were taken

before 2001. This would yield an incomplete climatology as the PCL lacks a sufficient num-

ber of measurements during the winter. The better option for a satellite-lidar temperature

measurement comparison would be to use the OEM on temperature measurements from

the Observatory de Haute-Provence (OHP) in France. The OHP lidar has more coincident

nights that could be used to compare with SABER or other recent satellites.

The PCL is a member of the International Network for the Detection of Atmospheric

Composition Change (NDACC). There are roughly 7 Rayleigh lidars, including the PCL,

with long-term temperature data sets. The primary focus of NDACC has been to investigate

the physics and chemistry of the upper troposphere, stratosphere and mesosphere. The

results of this thesis could improve the lidar community’s research quality as a whole. The

OEM increases the valid temperature measurements by 5 – 10 km for all three lidars used in

this thesis and also provides a detailed uncertainty budget on a profile-by-profile basis. Using

the OEM enables us to obtain useful information from the top 10 km of a lidar temperature

profile. Typically, gaining 10 km in height would require a higher power laser or expanding

the telescope diameter, both of which are expensive upgrades. Therefore, applying the OEM

is comparable to a significant hardware upgrade.

The OEM can be used to extend temperature profiles for any Rayleigh-scatter lidar

systems without extra cost. Extending the PCL temperature climatology up to 100 km

will enable more in-depth studies of the dynamics of the MLT, such as the variations in

height of the mesopause, which can rise to over 100 km altitude in the winter. This heights

is beyond the range of many current Rayleigh systems that must cut-off the top of their

measurements. Extending the PCL temperature measurements allows us to study the annual

and semi-annual cycle of the MLT up to 100 km.

Better understanding of the middle atmosphere and MLT region temperature has been

shown to improve surface forecast model accuracy. Therefore, increasing the maximum

range of lidar temperature retrievals into the upper atmosphere with a better assessment of

measurement uncertainties will be useful to the modeling and forecasting community.
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In the future, the OEM could be applied to all NDACC lidar measurements to have

an image of temperature trends in the middle atmosphere at different altitudes, especially

through the mesosphere and aid in the detection of global climate change. Using the OEM

for all of these lidars would provide standard uncertainty budgets as well as their averaging

kernels which would make comparison studies easier and more meaningful between them.

One of the main concerns of the atmospheric lidar scientists regarding the OEM is the

impact of the a priori on the OEM retrievals. The a priori removal technique presented in

this thesis could satisfy their concerns by removing the removing the effect of the a priori

from retrievals in addition to gaining extra information in low signal-to-noise ratio regions.
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