
Western University Western University

Scholarship@Western Scholarship@Western

Electronic Thesis and Dissertation Repository

12-13-2018 12:00 PM

Virtual Reality Simulation of Glenoid Reaming Procedure Virtual Reality Simulation of Glenoid Reaming Procedure

Mohammadreza Faieghi, The University of Western Ontario

Supervisor: Tutunea-Fatan, Ovidiu-Remus, The University of Western Ontario

Co-Supervisor: Eagleson, Roy, The University of Western Ontario

A thesis submitted in partial fulfillment of the requirements for the Doctor of Philosophy degree

in Biomedical Engineering

© Mohammadreza Faieghi 2018

Follow this and additional works at: https://ir.lib.uwo.ca/etd

 Part of the Biomechanical Engineering Commons, Biomedical Engineering and Bioengineering

Commons, Computer-Aided Engineering and Design Commons, Medical Education Commons, and the

Robotics Commons

Recommended Citation Recommended Citation
Faieghi, Mohammadreza, "Virtual Reality Simulation of Glenoid Reaming Procedure" (2018). Electronic
Thesis and Dissertation Repository. 5928.
https://ir.lib.uwo.ca/etd/5928

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F5928&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/296?utm_source=ir.lib.uwo.ca%2Fetd%2F5928&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/229?utm_source=ir.lib.uwo.ca%2Fetd%2F5928&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/229?utm_source=ir.lib.uwo.ca%2Fetd%2F5928&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/297?utm_source=ir.lib.uwo.ca%2Fetd%2F5928&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1125?utm_source=ir.lib.uwo.ca%2Fetd%2F5928&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/264?utm_source=ir.lib.uwo.ca%2Fetd%2F5928&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/5928?utm_source=ir.lib.uwo.ca%2Fetd%2F5928&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

Abstract
Glenoid reaming is a bone machining operation in Total Shoulder Arthroplasty (TSA) in which
the glenoid bone is resurfaced to make intimate contact with implant undersurface. While this
step is crucial for the longevity of TSA, many surgeons find it technically challenging. With
the recent advances in Virtual Reality (VR) simulations, it has become possible to realistically
replicate complicated operations without any need for patients or cadavers, and at the same
time, provide quantitative feedback to improve surgeons’ psycho-motor skills. In light of these
advantages, the current thesis intends to develop tools and methods required for construction of
a VR simulator for glenoid reaming, in an attempt to construct a reliable tool for preoperative
training and planning for surgeons involved with TSA.

Towards the end, this thesis presents computational algorithms to appropriately represent
surgery tool and bone in the VR environment, determine their intersection and compute real-
istic haptic feedback based on the intersections. The core of the computations is constituted
by sampled geometrical representations of both objects. In particular, point cloud model of the
tool and voxelized model of bone - that is derived from Computed Tomography (CT) images
- are employed. The thesis shows how to efficiently construct these models and adequately
represent them in memory. It also elucidates how to effectively use these models to rapidly
determine tool-bone collisions and account for bone removal momentarily. Furthermore, the
thesis applies cadaveric experimental data to study the mechanics of glenoid reaming and pro-
poses a realistic model for haptic computations. The proposed model integrates well with the
developed computational tools, enabling real-time haptic and graphic simulation of glenoid
reaming.

Throughout the thesis, a particular emphasis is placed upon computational efficiency, es-
pecially on the use of parallel computing using Graphics Processing Units (GPUs). Extensive
implementation results are also presented to verify the effectiveness of the developments. Not
only do the results of this thesis advance the knowledge in the simulation of glenoid reaming,
but they also rigorously contribute to the broader area of surgery simulation, and can serve as
a step forward to the wider implementation of VR technology in surgeon training programs.

Keywords: Surgery Simulation, Total Shoulder Arthroplasty, Glenoid Reaming, Com-
puter Assisted Orthopaedic Surgery, Voxelization, Collision Detection, Haptics, Finite Element
Model, Parallel Computing

i

Co-Authorship Statement

Chapter 1: M Faieghi - sole author

Chapter 2: M Faieghi - study design, algorithm development, computer programming,
data collection, manuscript writing
NK Knowles - study design, algorithm development, data collection,
manuscript review
LM Ferreira - study design, manuscript review
OR Tutunea-Fatan - study design, manuscript review

Chapter 3: M Faieghi - study design, algorithm development, computer programming,
data collection, manuscript writing
R Eagleson - study design, manuscript review
OR Tutunea-Fatan - study design, manuscript review

Chapter 4: M Faieghi - study design, algorithm development, computer programming,
data collection, manuscript writing
R Eagleson - study design, manuscript review
OR Tutunea-Fatan - study design, manuscript review

Chapter 5: M Faieghi - study design, statistical analysis, algorithm development,
computer programming, data collection, manuscript writing
M Sharma - study desing, experimental data collection, statistical analysis
V Popa - computer programming
R Eagleson - study design, manuscript review
OR Tutunea-Fatan - study design, manuscript review

Chapter 6: M Faieghi - sole author

Appendix A: M Faieghi - sole author

ii

Acknowledgements

I would like to express my deepest appreciation to my supervisors, Dr. Ovidiu-Remus
Tutunea-Fatan and Dr. Roy Eagleson. I am extremely grateful for their inexhaustible encour-
agement, unwavering guidance, and the liberty that they granted me to explore my ideas during
my endeavour.

I would like to extend my deepest gratitude to the members of my advisory committee,
Dr. Louis Ferreira and Dr. Ilia Polushin, for their constructive feedback during our committee
meetings, and their ingenious suggestions that greatly enriched my research.

Special thanks to Dr. Xi, Dr. Johnson and Dr. Langohr for taking the effort reviewing my
thesis and providing valuable comments that improved the quality of my work.

I wish to express my warmest thanks to my friends and colleagues, especially the amazing
people of Digitally Enabled Manufacturing Technologies Laboratory and Hand and Upper-
Limb Center, who extended a great amount of assistance to my research and made the graduate
school life a magnificent experience for me. In my heart, I always remember them and their
camaraderie.

I am deeply indebted to my parents, Rostam and Mahboubeh, and my sisters, Lida and
Mina, who have supported and nurtured me with unconditional love throughout my academic
pursuits.

I express my sincerest thanks to my wife, Sanaz, who made the difficult times of the PhD
journey easy with her endless love, patience and sacrifices. Without her support, this thesis
would have not been finished anytime soon.

iii

To my beloved wife, Sanaz,
my parents, Rostam and Mahboubeh,

and my sisters, Lida and Mina

Contents

Abstract i

Co-Authorship Statement ii

Acknowledgements iii

Dedication iv

List of Figures viii

List of Tables x

List of Algorithms xi

List of Appendices xii

List of Abbreviations, Symbols, and Nomenclature xiii

1 Introduction 1
1.1 Current Trends in Surgeon Residency Programs 1
1.2 Virtual Reality Surgery Simulators . 2
1.3 Virtual Reality Surgery Simulators in Orthopaedics 4
1.4 Glenoid Reaming as a Target for Surgery Simulation 5
1.5 Research Objective and Challenges . 7
1.6 Review of Techniques Used in Surgery Simulation 8

1.6.1 Mechanics of Bone Machining . 8
1.6.2 Simulator Software . 13
1.6.3 Collision Detection . 17
1.6.4 Point Cloud Construction . 21
1.6.5 Processing Computed Tomography Data 23
1.6.6 Graphic Rendering Techniques . 24

1.7 Specific Aims and Thesis Outline . 26

2 Processing CT Data 28
2.1 Algorithm Overview . 28
2.2 Voxel Grid Construction . 30
2.3 Generation of Geometry and Topology . 32

v

2.4 Material Model . 34
2.5 Implementation Results and Discussion . 35

2.5.1 Running Time Breakdown - Fixed Voxel Size 35
2.5.2 Running Time Break Down - Voxel Upsampling 36
2.5.3 Time Complexity Analysis . 37

2.6 Summary . 39

3 Surface Voxelization 40
3.1 Algorithm Overview . 40
3.2 Mesh Data Preparation . 41
3.3 Voxel Data Representation . 42
3.4 Triangle-Box Overlap Test . 42
3.5 Algorithm Parallelization . 44
3.6 Implementation Results and Discussion . 46

3.6.1 Overall Structure of the OpenCL Program 48
3.6.2 GPU-Based Parallelization . 50
3.6.3 CPU-Based Parallelization . 52

3.7 Summary . 54

4 Collision Detection 55
4.1 Algorithm Overview . 55
4.2 Voxmap Data Structure . 56
4.3 PointShell Data Structure . 58
4.4 Broad-Phase Collision Detection . 58
4.5 Narrow-Phase Collision Detection . 59
4.6 Implementation Results and Discussion . 61

4.6.1 Performance in Different Sampling Resolutions 61
4.6.2 Running Time Break-Down . 62
4.6.3 Comparison with Zheng et al.’s Method 63
4.6.4 Comparison with Yau et al.’s Method 65

4.7 Summary . 66

5 Modeling and Simulation of Gleonid Reaming 68
5.1 Calibration Experiments . 68
5.2 Thrust-Feedrate Relation . 70
5.3 Vibration . 76
5.4 Simulation of Glenoid Reaming . 79

5.4.1 Integration of all Simulator Components 79
5.4.2 Simulation with a Haptic Device . 81

5.5 Summary . 83

6 Thesis Closure 85
6.1 Summary . 85
6.2 Strengths and Limitations . 88
6.3 Recommendations for Future Research . 90

vi

6.4 Significance . 92

A Oblique Cutting Model for Glenoid Reaming 94
A.1 Reamer Geometry . 94

A.1.1 Web Angle . 95
A.1.2 Point Angle . 96
A.1.3 Inclination Angle . 98

A.2 Coordinates Transformations in Oblique Cutting 98
A.3 Thrust and Torque in Glenoid Reaming . 100

Bibliography 102

Curriculum Vitae 117

vii

List of Figures

1.1 Joint replacement process in TSA . 5
1.2 Glenoid reaming process . 6
1.3 Main components of the intended VR surgery simulator 8
1.4 Mechanics of oblique cutting . 10
1.5 Generic structure of OpenCL program . 16
1.6 Generic structure of OpenCL device . 16
1.7 Collision detection using Voxmap and PointShell 18
1.8 Flowchart of the VPS collision detection algorithm developed by Zheng et al. . 21
1.9 Main phases of voxelization . 22

2.1 Flowchart of CT Data processing algorithm 30
2.2 Topology of the hexahedral element in Cartesian mesh 33
2.3 Generated FEMs from sample CT data . 37
2.4 Log-log relation between model size and running time for the proposed algorithm 38

3.1 Data flow in our voxelization algorithm . 41
3.2 Mesh data preparation prior to main voxelization computations 42
3.3 Benchmarked models . 48
3.4 Core structure of the OpenCL program used to implement voxelization 49
3.5 Comparison between OpenCL device-host data transfer methods 50
3.6 Normalized voxelization running time obtained by GPUs 51
3.7 Voxelized representation of reamer in different resolutions 52
3.8 Normalized voxelization running time using CPUs 53

4.1 Data-flow in our collision detection algorithm 56
4.2 Construction of point cloud for reamer . 58
4.3 A 2D representation of VOI computed in broad-phase 59
4.4 Comparative assessment of VOI on collision detection performance 63

5.1 Calibration experiments set-up . 69
5.2 Average thrust-displacement characteristics of glenoid reaming in cortical bone 71
5.3 Average thrust-displacement characteristics of glenoid reaming in cancellous

bone . 72
5.4 Prediction of feedrate as a function of density in cortical bone 75
5.5 Prediction of feedrate as a function of density in cancellous bone 75
5.6 Periodogram of vibrations during reaming cortical bone in five different speci-

mens . 77

viii

5.7 Periodogram of vibrations during reaming cancellous bone in five different
specimens . 77

5.8 Sample vibration signal prepared for haptic simulation of reaming cortical bone 78
5.9 Sample vibration signal prepared for haptic simulation of reaming cancellous

bone . 78
5.10 Data-flow in our simulator software . 80
5.11 Computing time measured for haptic rendering frames 82
5.12 Computing time measured for graphic rendering frames 83
5.13 Graphic representation of glenoid reaming . 83

A.1 A sample point on reamer cutting lip and its radial distance 95
A.2 Definition of web angle for reamer . 96
A.3 Definition of point angle for reamer . 97
A.4 Coordinates system defined for elementary forces in oblique cutting 99

ix

List of Tables

2.1 Comparative assessment of hash mapping efficiency 34
2.2 Specifications of the models used for testing 35
2.3 Breakdown of the running time for different phases of the proposed algorithm . 36
2.4 Peak memory usage for the tested models . 36
2.5 Breakdown of the algorithm running time for cancellous core with voxel up-

sampling . 38

3.1 Comparison between triangle- and voxel-based parallelization schemes 45
3.2 Specifications of processors used in voxelization tests 47
3.3 Specifications of benchmarked models . 48
3.4 Voxelization running time obtained for different models and resolutions using

GPUs . 51
3.5 Voxelization running time obtained for different models and resolutions using

CPUs . 53

4.1 Running time (ms) of our collision detection algorithm obtained for various
sampling resolutions . 61

4.2 Running time break-down of our collision detection algorithm in the presence
of 103K contact points between PointShell and Voxmap of size 10243 62

4.3 Running time (ms) for Zheng et al.’s collision detection algorithm obtained for
various sampling resolutions . 64

4.4 Required memory for PointShell and Voxmap in our method compared with
Zheng et al.’s method . 65

4.5 Running time for Voxmap-based parallelization algorithm obtained for various
resolutions . 66

5.1 Bone density, reamer feedrate and appearant machining stiffness observed in
calibration experiments . 73

5.2 Time-domain metrics measured for vibrations during reaming different specimens 76

x

List of Algorithms

3.1 Voxelization kernel pseudocode . 46

4.1 Narrow-phase kernel pseudocode . 60

5.1 Pseudocode for scheduling haptics and graphics computations 81

xi

List of Appendices

Appendix A : Oblique Cutting Model for Glenoid Reaming 94

xii

List of Abbreviations, Symbols, and Nomenclature

a Half-length of major axis of ellipse that describes reamer cutting
lip

AABB Axis-Aligned Bounding Box

API Application Programming Interface

b Half-length of minor axis of ellipse that describes reamer cutting
lip

CNC Computer Numerical Control

CPU Central Processing Unit

CT Computed Tomography

D Density

D Density array to describe spatial occupancy of voxel grid

d Voxel grid dimension

d fn Normal elemental force

d ft Tangential element force

DICOM Digital Imaging and Communications in Medicine

dm Torque generated by an element

f Feedrate

FEA Finite Element Analysis

FEM Finite Element Model

FPS Frames per Second

gpk−pk Peak-to-peak amplitude of vibration signal

grms Root mean square of vibration signal

G Voxel grid

GPGPU General-Purpose Graphics Processing Unit

GPU Graphics Processing Unit

k Apparent machining stiffness

kc Specific cutting coefficient

k f Friction coefficient

l Depth of cut

M Global torque

M Triangular mesh

nmax Total number of cells in voxel grid

OBB Oriented Bounding Box

OpenCL Open Computing Library

xiii

OpenGL Open Graphics Library

p Probability value

P PointShell data structure

p0 Voxel grid minimum corner

r Radial distance for an element on reamer cutting lip

R Rotation matrix

R2 Coefficient of determination

RAM Random Access Memory

RMS Root Mean Square

SAT Separating Axis Theorem

T Global thrust

T Triangle

T Transformation matrix from tool to bone coordinate systems

TSA Total Shoulder Arthroplasty

(u, v,w) Integer coordinates of voxel in voxel grid

V Tool velocity

V Voxel

v0, v1, v2 Three vertices of triangle

VOI Volume of Interest

VPS Voxmap-PointShell

VR Virtual Reality

w Width of cut

α Angle between cutting edge and radius of reamer circle

β Web angle

γn Normal rake angle

∆p Voxel diagonal

ε Point angle

λ Inclination angle

µ Cutting angle

µCT Micro Computed Tomography

µFEM Micro Finite Element Model

ρ Linear correlation coefficient

τ Second Euler angle

xiv

Chapter 1

Introduction

1.1 Current Trends in Surgeon Residency Programs

The relation between the volume of practice and the outcome in surgery is a long-standing

concern of surgeon training programs. It is widely reported that the more often a surgical

procedure is performed, the lower its morbidity, and the better the outcome [1]–[10]. For

example, in a systematic review of 135 volume-outcome studies spanning over 27 surgical

procedures, it has been revealed that 71% of all studies of hospital volume and 69% of studies

of physician volume reported statistically significant correlation between higher volume and

better outcome while no study documented a statistically significant association between higher

volume and worse outcomes [1]. Therefore, considering medical errors which are essentially

caused by the lack of surgeon skills continue to remain one of the leading reasons of death

[9], it is easy to infer that an increased emphasis on the practice of surgeons will translate into

decreasing risks of surgeries. By the same token, it can be expected that the time and cost

of surgeries can be diminished. However, it is important to realize that practice should not be

confused with repetition; performance does not improve simply because a task is repeated. The

key to consistent improvement is to engage surgeons in deliberate practice [10].

In clinical training, deliberate practice is interpreted as sustained practice with the intention

1

2 Chapter 1. Introduction

of addressing the weaknesses that are identified by assessments and stimulated by feedback

[11]. Deliberate practice plays a key role in improvement of psychomotor skills of surgeons

[12]. Although skill acquisition rate varies significantly in practice of different surgeries, the

well-known rule of 10,000 hours of practice to master a skill has become an ideal target in

surgeon training programs [13]. However, a focus on patient safety, work hour restrictions,

limited availability of cadavers and animals as well as their high cost and safety risks are

evident enough that this amount of time cannot be attained during routine clinical programs.

This brings about an interesting question: how can it be ensured that the current medical

programs provide enough practice options to enhance the overall competency of the trained

surgeons? Presently, it is believed that the answer that might be able to address this concern is

constituted by a wider implementation of virtual surgical simulators, to be primarily used for

training purposes.

1.2 Virtual Reality Surgery Simulators

A Virtual Reality (VR) surgical simulator can be regarded as nothing but a computer-based

system developed to resemble surgical procedures for the purpose of training of medical pro-

fessionals. As such, the latest generations of simulators are employing a combination of haptic

technology and computer graphics to replicate surgical environments. On one hand, the haptic

system is capable to enhance the surgical simulator with sense of touch otherwise known as

haptic feedback. On the other hand, the computer graphics add-on provides visual guidance

to the surgeon. Beyond eliminating the stringent need of a patient or cadaver, these simula-

tors are best suited to provide structured feedback on the surgeons performance because they

can effectively construct quantitative assessments of the performed operations. Consequently,

simulation-based training is known to be an exceptional candidate in elevating the efficiency

of residency programs. As a matter of fact, of fourteen studies reviewed in a meta-analysis,

simulation-based training was found overall to be a superior method compared to the tradi-

1.2. Virtual Reality Surgery Simulators 3

tional apprenticeship model [14]. Many simulators have been designed for various surgeries.

The Karlsruhe Endoscopic Surgery Trainer is an example of VR simulators in laparoscopy. It

consists of a “phantom box” which provides a rough imitation of outward human abdomen by

means of electromechanical systems as well as a “central unit” which is a high-performance

graphics workstation. The system has been successfully installed at the minimally invasive

surgery training center of University Hospital of Tuebingen since 1996 and also is commer-

cially available [15]. As another paradigm of simulators in laparoscopy, Neyret et al. have

developed a real-time rendering scheme towards high-end simulation of liver surgery [16]. In

Rhinoplasty, Lee et al. have integrated image processing and computer graphics techniques

to come up with a simulator that enables surgeons to better understand the segmentation of

nose and face structures and in turn find the best way to perform the surgery [17]. Kusumoto

et al. have investigated the application of simulation in oral implant surgery and have shown

applicability of the simulator to train surgeons in basic tasks such as tooth drilling [18]. With

a focus on stability and fidelity, Wu et al. developed a VR simulator for dental grinding pro-

cess. A force model is adopted from machining theory to realistically replicate the grinding

process during tool-tooth interaction in VR environment [19]. Among more recent work, Ho

et al. have created a VR simulator for myringotomy and implemented metrics for measuring

tangible indicators of skill, such as efficiency of blade movements and length and straightness

of incisions. In addition, a group of otolaryngologists and otolaryngology residents had evalu-

ated the simulator and the evaluations are further utilized to modify the simualator and improve

its practicality [20]. Wang et al. have constructed a simulator for mandibular angle reduction

procedure. It has been shown that the force feedback generated by the haptic device of the

simulator is qualitatively identical to the cutting forces present in the actual procedure [21]. A

phacoemulsification simulator has been designed by Lam et al. and a set of objective-based

performance parameters are introduced to quantitatively assess the performance of surgeons

[22].

Up to the present time, laparoscopic surgery is a leader in the field of surgery simulation.

4 Chapter 1. Introduction

Perhaps, the most compelling evidence is that as of 2008, Fundamentals of Laparoscopy Pro-

gram - which mainly includes working with simulators - is a prerequisite for General Surgery

Certification of the American Board of Surgeons [23]. However, other surgery fields - or-

thopaedics being among them - has not been able to adopt similar practices in their training

programs.

1.3 Virtual Reality Surgery Simulators in Orthopaedics

Many orthopaedics training programs still rely on traditional apprenticeship model that has

been largely unchanged for nearly 100 years. The fundamental barrier is particularly lack of

validated surgical simulation training and assessment approaches [10]. Compared with other

surgical specialties, orthopaedists are late in integration of virtual simulation in their training

curriculum. In a 2010 review, only 23 articles found that dealt with specific simulators in

orthopaedics, compared with 246 citations for laparoscopic simulators [24]. Indeed, there

are several review papers that argue orthopaedics lags behind other fields in terms of surgery

simulators [10], [24], [25]. The main reason is the limitations in realism and simulation of hard

tissue (i.e. bone) interaction, whereas the recent growth of computational power in computers

and theoretical developments of haptic rendering have created a great potential for VR to deal

with the above obstacle.

Early work in orthopaedics simulation has mostly targeted minimal invasive procedures

such as arthroscopy since their replications are generally simpler than open surgery procedures

[26]–[28]. As fidelity of VR technology has grown in recent years, there has been more focus

on simulation of complicated surgeries. In this regard, a number of simulators have been

developed recently to replicate different bone machining operations, including drilling [29],

[30], sawing [31], and burring [32]–[34]. One orthopaedic procedure that is currently lacking

a VR simulator and can be a good target for future developments in the context of surgery

simulation is glenoid reaming, which is known as one of the challenging tasks in Total Shoulder

1.4. Glenoid Reaming as a Target for Surgery Simulation 5

Arthroplasty (TSA).

1.4 Glenoid Reaming as a Target for Surgery Simulation

TSA is a surgical procedure in which all or part of the glenohumeral joint is replaced by a

prosthetic implant. As shown by Fig. 1.1, the main implantation steps in this surgery include

placement of glenoid component on glenoid cavity, inserting a metal stem into humerus and

installing the humeral head. Prior to positioning the glenoid component, the glenoid bone

is often resurfaced through a machining process, otherwise known as glenoid reaming. This

process is preformed manually by a surgeon using a power drill and a spherical cutting tool

called reamer (Fig. 1.2). A standard glenoid reaming task involves removing the cartilage

layer and gently reaming subchondral plate without violating the cancelluos bone to provide a

convex bony surface that conforms with the glenoid implant undersurface [35].

ScapulaHumerus

Prepared Glenoid Surface

Glenoid Component

Stem

Humeral

Head

Figure 1.1: Joint replacement process in TSA

6 Chapter 1. Introduction

Surgical Drill

Shaft

Reamer

Cutting

Edges

Guiding

Feature

(a) Surgical tool

Spindle

Speed
Bone

Removal

Scapula
Feed

Force

(b) Bone removal

Figure 1.2: Glenoid reaming process

TSA can be associated by several complications, the most common of which is the glenoid

component loosening [36]–[39]. Many factors may contribute to glenoid component loosening

some of which can be directly related to excessive and inaccurate glenoid reaming [40], [41].

For instance, excessive reaming of subchondral bone reduces the glenoid bone strength and

decrease the support for the prosthesis [42]. In addition, failure to restore the correct glenoid

version will result in glenohumeral instability that eventually leads to implant loosening [43]–

[46].

While glenoid reaming is crucial for extending TSA longevity, adequate completion of

this task is challenging for surgeons due to the complex three-dimensional anatomy of glenoid

surface [47] as well as scapula mobility which moves on the chest wall when reaming forces

are applied. Furthermore, the sight to the reaming site is occluded by the reamer itself, leaving

surgeons without any visual feedback during the operation. As a result, surgeons have to rely

on other feedback mechanisms such as force, vibration or sound to perform glenoid reaming

[48].

Learning to interpret subtle cues from the above information requires a high volume of

practice, yet most surgeons perform a low number of TSA operations. In fact, while TSA is one

of the most important orthopaedic surgeries in upper torso; it has lower incidence compared to

hip and knee arthroplasties. About 53,000 people in the U.S. go through shoulder replacement

1.5. Research Objective and Challenges 7

surgery each year, compared to 600,000 and 300,000 of people a year who have knee and hip

replacement surgeries, respectively [49]. This relatively low occurrence of TSA makes the

majority of surgeons - irrespective of their overall level of surgical experience - less prepared

for this type of surgery. A Virtual Reality (VR) simulator for glenoid reaming can provide

sufficient volume of practice, without any need for patients or cadavers, and improve the overall

level of competency of surgeons in performing not only TSA, but also other surgeries with

similar operations, such as Reverse Total Shoulder Arthroplasty that is currently receiving a

growing attention [50].

1.5 Research Objective and Challenges

Given the need for a VR simulator in TSA, this study intends to develop a simulator for glenoid

reaming to help surgeons practice one of the most challenging tasks of TSA. Since force and

vibration are important information that surgeons rely on during glenoid reaming, a suitable

VR simulator for this procedure must provide haptic simulation. Moreover, despite the fact

that the actual glenoid reaming is attributed by poor visibility, a graphical replication of the

procedure can help trainees to become familiar with the characteristics of reamer progression

and bone resurfacing.

The key to realistic simulation of glenoid reaming is to generate axial thrust, vibration and

visual replication similar to the real procedure. This can be accomplished using a model of the

mechanics of the process that is embedded in a computer program. The process can be simu-

lated graphically at the same time using a material removal routine that eliminates a portion of

bone and renders updated bone geometry. As a result, the knowledge of the intersection volume

between reamer and bone is quintessential throughout the operation which can be determined

using a collision detection algorithm. It is important to note that the collision detection run-

ning time must be less than 1 ms in order to fulfill the stringent 1 KHz refresh rate required for

real-time haptic rendering. Many state-of-the-art orthopaedic simulators have partially allevi-

8 Chapter 1. Introduction

ated this issue by using sampled geometrical representations, e.g. point clouds and voxelized

models, to represent the virtual objects [29]–[33]. This simplification can, however, negatively

affect the fidelity of simulation if the sampling resolution is too coarse. Consequently, the com-

putational efficiency of collision detection becomes critically important since a more efficient

algorithm can afford higher sampling resolutions and maintain the simulation realism. In light

of the above points, the architecture of the intended VR simulator for glenoid reaming takes

the block-diagram representation of Fig. 1.3.

Collision

Detection

Update Bone

Geometry

Graphics

Rendering

Bone Machining

Characteristics

T
o
o
l P

o
in

t

C
lo

u
d

B
o
n
e C

T

D
ata

Haptic Device

Display Unit

User Input

Tool-Bone Intersection Data

Haptic

Feedback

Visual

Feedback

Virtual

Objects

V
o
x

m
ap

P
o
in

tS
h
ell

Figure 1.3: Main components of the intended VR surgery simulator

1.6 Review of Techniques Used in Surgery Simulation

The architecture of the intended simulator shown in Fig. 1.3 shares many similarities with nu-

merous simulators that have been already developed in the literature. This section reviews the

state-of-the-art methods for main components of an orthopaedic simulator, with the intention

to seek the gaps in construction of a glenoid reaming simulator.

1.6.1 Mechanics of Bone Machining

High-fidelity haptic simulation of a bone machining process requires knowledge of mechanical

characteristics of the process. This knowledge is additionally advantageous in designing ap-

1.6. Review of Techniques Used in Surgery Simulation 9

propriate cutting tools and selecting favorable surgical conditions to prevent problems such as

tool breakage, bone temperature rise or damages to surrounding tissues [51]–[56]. For this rea-

son, since the late 1950s, long before the present advent of surgical simulators, bone machining

studies have been conducted [57]–[59]. It is notably accepted that the overall characteristics of

bone cutting resemble - to a certain extent, of course - that of metal machining [60]. As such,

the methods and theories that were specifically developed in metal machining domain can have

at least a partial validity in the context of bone removal.

In metal machining, material removal can be modeled by plastic deformation due to shear-

ing strain occurred at the intersection between cutting edge and workpiece [61]. As shown in

Fig. 1.4, the force generated during the contact can be modeled by two vectors that are tan-

gential d f t and normal d f n to the rake face and their amplitude can be related to the area of

material sheared away as follows

d f n = kclw, d f t = k f kclw, (1.1)

where w is the width of cut, l denotes the depth of cut, kc is known as specific cutting coefficient

and k f is referred to as friction coefficient. The force acting on the relief face is insignificant

and can be ignored.

The above principle is used to describe elementary machining forces for any infinitesimal

element that lies on cutting edges of an arbitrary tool. The sum of all elementary forces can be

used to predict axial thrust and torque in different machining operations. The key to accurate

prediction of thrust and torque is to properly describe the coefficients kc and k f as functions of

workpiece material properties, machine dynamics e.g. spindle speed, feed rate and tool geom-

etry that is reflected by parameters such as inclination angle λ and normal rake angle γn [62].

The homogeneity of metal material simplifies modeling of kc and k f . As a result, analytic mod-

els can be derived for various metal machining operations such as drilling, reaming, milling

and turning which can be found in [63]–[65].

10 Chapter 1. Introduction

Workpiece

Rake Face

Relief Face
V

λ

γn

dfn dft

lw

Figure 1.4: Mechanics of oblique cutting

The above methodology becomes complicated when the workpiece has non-uniform mate-

rial properties. For example, in case of machining a fiber-reinforced composite, the chips are

powder-like [66] and their formation mechanism is due to fractures rather than plastic defor-

mation [67]. However, as outlined in [68], there is currently no theoretical model to describe

fracture-based cutting process. Consequently, the existing studies on composite machining

have developed mechanistic models which use the same formulation as metal machining mod-

els but require several calibration experiments to account for factors that have not been theo-

retically incorporated [69]–[74].

Given the complex structure of bone and its anisotropic material properties [75], it is dif-

ficult to relate axial thrust and torque to particular mechanical properties and machining pa-

rameters. For this reason, several studies have attempted to derive empirical relations between

machining force and various factors without solid theoretical justifications. For example, Yan-

ping et al. have modeled machining forces as a function of feedrate, spindle speed and bone

density using regression analysis [76]. While the obtained empirical model fits the experimen-

tal data well, no additional experiments is reported to evaluate how the obtained model predicts

1.6. Review of Techniques Used in Surgery Simulation 11

forces for new specimens. Nevertheless, in a validation study [77], the simulator established

on this model has shown the ability to differentiate between novices and expert surgeons and

the potential to train surgeons through repetitive practice. In another study, Pourkand et al.

have modeled bone drilling thrust as a function of cutting depth and feedrate using polyno-

mial fitting techniques [78]. Although this study reports low modeling errors, it only considers

synthetic bone throughout experimentation which has limited applicability to model drilling

of a real bone [79]. Similar regression analyses have been also reported for oral implant [18],

mandibular angle reduction [21] and temporal bone [80] surgeries.

More theoretically profound bone machining models have been developed using the mech-

anistic approach employed for composite machining. Examples include several bone machin-

ing simulators in the context of orthopaedics [30]–[34], tooth drilling [81]–[84] and temporal

bone surgery [85]. While all the above-mentioned studies have mentioned specific cutting co-

efficients must be determined throughout experiments, most of them do not report how the

experiments have been carried out and what values are obtained for the coefficients. The only

work that actually elaborates on the experimentation is the bone burring simulator developed

by Arbabtafti et al. [33] in which constant cutting coefficients are assumed for every element

on the cutting edges. A more sophisticated model is introduced by [60], [86] for bone drilling

where the cutting coefficients are described as a function of cutting depth w, velocity of each

element V and its normal rake angle γn, using a power-low equation as follows

 ln kc

ln k f

 =

 α1 α2 α3 α4

β1 β2 β3 β4

1

ln w

ln V

ln (1 − sin γn)

, (1.2)

where αi and βi are coefficients that can be determined via regression analysis using axial thrust

and torque measured in real experiments. Once the model is calibrated, a set of new experi-

ments have been conducted and compared with the model predictions. In both studies [60],

12 Chapter 1. Introduction

[86], significant inaccuracies in predicting dynamic axial thrust and torque are evident and the

models can only describe the qualitative behaviour. The inaccuracies are primarily due to the

complex structure of bone and the fact that bone properties vary from one specimen to the

other. This observation raises a question about realisticity of haptic simulation using mech-

anistic models especially when there is no validation study found for the above-mentioned

simulators. As mechanistic models can, however, predict qualitative behavior of a bone ma-

chining process, it appears that they can successfully simulate certain phases of an operation,

such as transition from cortical bone to cancellous bone which is attributed by a change in the

force and torque amplitudes [87].

It is worth noting that Finite Element Analysis (FEA) has been also utilized to model bone

machining forces [88]–[92]. In this context, bone material behavior over the yield point is

usually modeled using the Johnson-Cook model, similar to metal machining studies [93]–[95].

However, there are significant variations among the damage criteria and progression settings

in these studies which has led to inconsistent results in the existing literature [96]. This is

probably one of the reasons that has made FEA methods less appealing in the field of VR

simulation.

The addition of vibration to the force feedback has proved extremely effective in promot-

ing simulation realism [97]. Vibration in metal machining has been analyzed and modeled

for different operations [98]–[102]. However, there is currently little work on understanding

vibrations in bone machining. The common approach to generate vibration in haptic feedback

is to collect vibration in real experiments using an accelerometer, filter the recorded data and

add the outcome to the force feedback as a background signal [34], [80], [103]. In [104], a

relation has been found to determine bone drilling vibration peak as a function of applied feed

force and bone density. This relation is utilized to reconstruct a vibratory signal by identifying

the dominant frequencies observed in the experiments. It is shown that the simulated vibration

resembles the experimental signal and is useful to improve fidelity of simulation. Vibration

in glenoid reaming is recently studied to develop an augmented reality simulator that features

1.6. Review of Techniques Used in Surgery Simulation 13

vibration feedback [105]. In this simulator, a haptic transducer is used to play a vibration sig-

nal measured during reaming porcine glenoids. Region-specific equations corresponding to

cartilage layer, cortical and cancellous bone are developed to adjust the vibration peaks as a

function of feed-force when machining different regions of bone. While the generated vibration

feedback has proved effective to help surgeons identify the region of bone being resurfaced, it

is expected that the fidelity of simulator can be improved using human cadaveric data.

The above points indicate that presently there is no theoretical method that can accurately

model bone machining characteristics. All the existing studies have employed empirical or

mechanistic approaches, both of which require model calibration against real experiments and

can only predict qualitative behavior of an operation. While mechanistic models are theoreti-

cally more profound, there is no evidence that they provide superior accuracy compared to the

empirical methods. Mechanistic models are also structurally more complicated and computa-

tionally expensive. There is currently no model developed to predict axial thrust and torque

on glenoid reaming. The only relevant work found in the literature is the robot-driven glenoid

reaming study [106] whose experimental data will be used in this thesis.

1.6.2 Simulator Software

An efficient computational platform is an integral part of any haptic-augmented VR surgery

simulator. Although the use of game engines such as Unity [107] and Unreal Engine [108]

is becoming more popular in developing VR applications, their use in haptic-augmented sim-

ulators remains minimal [109]. This is primarily due to the stringent timing requirement of

haptics that mandates using a dedicated computational framework which is carefully crafted

to perform haptic loop computations in less than 1 ms. This timing constraint is necessary to

maintain stable haptic rendering especially when interfacing with a hard tissue [110]. In ad-

dition to the haptics, the graphic rendering loop must also update quickly in order to ensure a

realistic simulation experience. The generally accepted baseline frame rate for smooth graphic

rendering is 30 Frames per Second (FPS) which implies all graphics-related computations must

14 Chapter 1. Introduction

be completed in less than 33.33 ms.

To reliably maintain the above timings, usually a multi-thread computer program is utilized

where a separate high-priority thread, otherwise known as servo thread, is dedicated to han-

dle haptic rendering computations. As haptic and graphic rendering loops require access to

the same data concurrently, proper memory management and thread synchronization becomes

another important aspect of the computational platform [111].

To address the above challenges, many studies have developed custom computational frame-

works using C++ programming language. The two common Application Program Interfaces

(APIs) that have been utilized to handle haptic interactions are OpenHaptics [112] and CHAI

3D [113]. Graphic rendering is usually handled using Open Graphics Library (OpenGL) [114]

while a few studies [33], [84] have reported using Visualization Toolkit (VTK) [115], which is

basically a set of classes built upon OpenGL.

In the recent years, the emergence of General-Purpose Graphics Processing Unit (GPGPU)

technology have allowed massive parallelization of computing tasks and tremendous reduc-

tion of time and power required to solve complex scientific problems. Parallel computing

using Graphics Processing Units (GPUs) has now become standard in different disciplines of

biomedical engineering [116]. While development of GPU-based computing platforms is gen-

erally considered a relatively difficult programming task, its advantages are significant. For

example, as reported in [82], a GPU-based surgery simulator program is more than 10 times

faster than its conventional counterpart than runs on Central Processing Unit (CPU). Other ex-

amples of surgery simulators with GPU-based computing framework include [83], [84], [117]–

[121].

In light of the above discussion, it appears that the use of a custom GPU-based framework

is a promising approach in development of the glenoid reaming simulator. Presently, the two

common APIs to develop a GPU-accelerated computing platforms are CUDA [122] and Open

Computing Library (OpenCL) [123]. Contrasting with the vendor-specific nature of CUDA,

OpenCL-based developments are compatible with a wide-range of graphics hardware from all

1.6. Review of Techniques Used in Surgery Simulation 15

major vendors. However, unlike CUDA, OpenCL tends to be more verbose in a sense that more

low-level code is required to establish the parallel computing infrastructure. While previous

works [82]–[84], [117]–[121] have mostly utilized CUDA, in this thesis, the portability of

OpenCL is favored. Given the popularity of OpenHaptics and OpenGL, this study will use

these APIs in connection with OpenCL. The remainder of this section is a brief review of

OpenCL programming model and terminology. An in-depth explanation can be found in [124].

The OpenCL standard defines a set of data types, data structures, and functions that aug-

ment C and C++ to enable the use of both CPUs and GPUs with a single program. The major

components of a typical OpenCL program are depicted in Fig. 1.5. Kernels are functions to

perform parallel computing tasks and they are programmed in OpenCL C, a language estab-

lished on C99 specifications [125], but further enriched to accommodate parallel programming.

Kernels are executed by OpenCL devices that can be either multi-core CPUs or GPUs. It is

possible that a computer contain several OpenCL devices in its architecture. The OpenCL con-

text allows to choose from these devices and manage them for a specific computational task.

Control of the kernels and devices in a context are initiated by a segment of regular C/C++

code, termed host application.

According to OpenCL terminology, control instructions are called command queues, while

the CPU running the host application is called OpenCL host. In a typical computing task, the

input data for kernels is prepared on the host side and is stored within the host memory (i.e.,

general computer Random Access Memory (RAM)). Following this, OpenCL buffers transfer

the prepared data to the device memory and if the device is a GPU, the device memory becomes

the memory of graphics card. Once the kernel is executed, the output can be either fetched by

the host memory or stored in the device memory for subsequent computations.

The generic OpenCL device model is presented in Fig. 1.6. According to this model,

the processing cores of a CPU or GPU are called compute units. After the kernel is invoked,

the computing task is divided into several subtasks, called work-groups, each of them being

executed by a compute unit. Furthermore, several processors are available inside of every

16 Chapter 1. Introduction

Host Memory

Host Application

baz()foo() bar() qux()

Device 2

Memory

Device 2

Device 0

Memory

Device 0

Device 1

Memory

Device 1

Device 3

Memory

Device 3

Command Queue
Kernel

Context

Host

Figure 1.5: Generic structure of OpenCL program

Global Memory

Compute unit

Private Memory

Local Memory

Processor

Figure 1.6: Generic structure of OpenCL device

compute unit, each of them being tasked to complete a certain work-item, i.e., a certain portion

of the work-group.

To accommodate this complex type of hierarchical computing pattern, different layers of

memory are embedded into the device. Every processor from the compute unit has a set of

dedicated registers called private memory, while all processors belonging to the same compute

unit share a segment of memory called local memory. All compute units can also access the

1.6. Review of Techniques Used in Surgery Simulation 17

global memory (i.e., device memory). A brief comparative analysis of all different types of

memory available suggests that private memory remains the fastest, but also the most limited

one. By contrast, global memory is the largest, but also the slowest option. Because of this,

efficient OpenCL programming needs to limit the number of times of access to global memory

to a maximum of two: one for reading kernel inputs and another one for writing kernel outputs.

It is also important to optimally parallelize a compute task by partitioning it into several

work-groups. The number of work-items in a work-group is called local size and the total num-

ber of work-items is denoted by the term global size. While the best practice recommends the

maximization of the local size, local memory tends to be limited such that the global memory

has to be used in most cases and its extensive access will inevitably compromise the perfor-

mance of the programming. As such, data partitioning often comes down to a challenging

trade-off between the maximum use of the local size and the minimal access to the global

memory.

1.6.3 Collision Detection

Collision detection computes the tool-tissue intersection and serves as the starting point for

both haptic and graphic rendering loops. Therefore, it plays a critical role in performance of a

surgery simulator.

In general context of computer graphics, collision detection is known as a performance-

critical and integral part of many real-time applications. For this reason, numerous approaches

have been proposed to accomplish this task in various applications [126]–[129]. In haptic

applications, collision detection becomes a challenging task because its running time must be

less than 1 ms. This becomes more challenging when an object undergoes material removal,

since its geometry has to be updated in real-time.

To address the above challenge, one approach that has been widely used in bone machining

simulation is the well-known Voxmap-PointShell (VPS) method. This method has been intro-

duced by the pioneering work of McNeely et al. in 1999 [130] and has been the basis of many

18 Chapter 1. Introduction

haptic applications ever since [131]–[134]. As depicted by Fig. 1.7, this method relies on sam-

pled geometries of objects, namely a point cloud of surgery tool (PointShell) and a voxelized

model of bone (Voxmap) that is originally derived from Computed Tomography (CT). The

main advantage of VPS is that its performance is independent from geometrical complexities

of objects.

Tool

Bone

PointShell

Voxmap

Objects Boundary

Figure 1.7: Collision detection using Voxmap and PointShell

The sampling resolution plays a determining role in quality of haptic feedback. In coarse

resolutions, any changes in the intersection volume results in abrupt changes of force feed-

back and deteriorates haptic stability [83]. Moreover, bone consists of heterogeneous materials

whose stiffness varies spatially [75]. Coarse voxels may miss modelling these variations and

fail to incorporate them in force computations. Furthermore, low resolutions cannot capture

sharp geometrical features of objects which leads to the so-called deep penetration issue. Given

the above points, it is desirable to use finer resolutions to achieve high fidelity haptic simula-

tion.

In practice, however, the maximum attainable sampling resolution is limited by the 1 KHz

refresh rate required for haptics. Increasing the sampling resolution results in a drastically

higher number of point-voxel collision queries, making collision detection a major bottleneck

in the haptic rendering loop. Therefore, there is an imminent need to develop more efficient

1.6. Review of Techniques Used in Surgery Simulation 19

collision detection algorithms that can handle larger data sets in shorter periods of time.

In orthopedic surgery simulators, the common approach to implement VPS is to transform

tool points to Voxmap coordinates and find voxels that enclose the transformed point [30]–[33].

To implement the mechanistic force model, the elemental forces are computed for intersecting

point-voxel pairs which will be then aggregated to generate the resultant force feedback. Be-

cause seeking intersected voxels is performed in a serial manner, the collision detection perfor-

mance is poor and sampling resolutions are limited. To address this, Vankipuram et al. [29] has

utilized Bounding Volume Hierarchy to represent Voxmap. While this can reduce the number

of collision checks, in high resolutions, the prolonged traverses over deep hierarchies become

problematic.

In the broader field of haptics, the use of pre-computed distance fields for Voxmap has been

proven extremely useful to increase the computational efficiency of VPS [135]–[137]. Further

improvements have been achieved by integrating distance field with octree [138]. Nevertheless,

such approaches are not suitable for bone machining simulation because the distance field must

be reconstructed every time bone undergoes material removal. This constitutes an overhead in

collision detection making it difficult to maintain the target 1 KHz frame rate, especially in

case of severe intersections.

To address the collision detection between deformable objects, Heidelberger et al. [29, 30]

have developed an algorithm similar to VPS but with the use of Layered Depth Image tech-

niques [139], [140]. In this method, the portion of each object within the intersection volume

are voxelized and the exact collision detection is queried by Boolean operations between the

constructed voxels. To account for deformations, the voxelization step is required in every

frame. However, its computing time is affected by the complexity of objects. As a result, the

geometrical complexity of objects also affects the performance of this algorithm, as opposed

to VPS which only depends on objects sampling resolutions.

Related works can be found in the area of Computed Numerical Control (CNC) simulation,

as well [141]. In this regard, Hong et al. [142] have approximated tool geometry by implicit

20 Chapter 1. Introduction

shapes and used analytic equations to describe tool surface. Then, collision detection has been

attained by querying bone voxel coordinates against the tool surface. A serial implementation

of this algorithm is sluggish and is only suitable for offline computations. However, it can be

easily accelerated by checking the collision of voxels concurrently.

In the context of parallel processing, Zheng et al. have developed a GPU-based variant of

VPS for a tooth drilling simulator [83]. In this method, each GPU thread queries collision of

one point on tool against Voxmap. A 3D grid is utilized for implicit description of Voxmap.

Access to the grid cells are performed using a look-up table. An octree-inspired top-down di-

vision is utilized to traverse the 3D grid and find intersecting voxels. Once elemental forces

acting on each tool point are calculated, the resultant force feedback is computed using a par-

allel reduction algorithm. The flowchart of this algorithm is shown in Fig. 1.8. Although this

method is shown useful to accelerate collision detection by up to 12 times compared to its

CPU-based counterpart; the grid traversal makes it sensitive to Voxmap data size. As a result,

the algorithm performance will degrade when applied for bone machining simulation, because

the size of bone CT data are much larger than a tooth which will result in a much larger Voxmap

that is beyond the capabilities of the algorithm.

The above literature review shows that the current works in orthopedic surgery simulation

have only used basic variants of VPS which suffers from poor computational performance. This

limits the sampling resolutions and in turn leads to low quality haptic feedback. In addition,

the previous developments on VPS cannot be extended to bone machining domain effortlessly.

Therefore, the need for a new VPS suitable for bone machining continues to remain valid.

The use of GPU grid-based approaches appears to be promising as it has been successfully

applied in tooth surgery recently [82]. However, bone machining requires a more efficient

algorithm because it must be capable to handle much larger Voxmaps. In addition, in operations

such as glenoid reaming, surgery tool is large and poses complex geometry, therefore it is

necessary to sample tool geometry in high resolutions to capture its fine features. Consequently,

the algorithm must respond well to increased resolutions of PointShell. Moreover, since the

1.6. Review of Techniques Used in Surgery Simulation 21

Collision Detection between a Tool Point

and top volume (Voxmap)

Collision

detected?

Set k = 0

k < 8

Subdivide Voxmap equally into 8 sub-

volumes

Final voxel-by-voxel collision check

within sub-volume k

Return collision result

Collision

detected?

Sub-volume size

> voxel size

Return

false

Check the

collision for sub-

volume k

k = k + 1

Return

error

Set sub-volume i

as the top

volume

Figure 1.8: Flowchart of the VPS collision detection algorithm developed by Zheng et al.

capacity of GPU memory is limited, low memory consumption becomes critical in order to

store large data sets.

1.6.4 Point Cloud Construction

In order to implement the VPS method, the tool geometry must be represented in the form

of a point cloud. One common way to construct point cloud representation of an object is to

22 Chapter 1. Introduction

compute a voxelized model of the object surface and then extract the centroid of the voxels

[130]. Since most surface representations are in triangular mesh format, the problem of point

cloud construction boils down to voxelizing triangular meshes.

As implied by Fig. 1.9, the core of voxelization is represented by the computation of the in-

tersection between triangular facets of a mesh and the voxel grid used to discretize the bounding

box of the same mesh. To calculate the required intersections, conventional approaches relies

on iterative serial algorithms that loop over all voxels of the grid by repeatedly testing for in-

tersections with each of the mesh facets. In many cases, robust and reliable overlapping test

techniques - such as the Separating Axis Theorem (SAT) [143] - can be used to identify and

process the required voxel-facet intersections. However, the efficiency of these techniques is

somewhat limited in case of fine meshes or dense voxel grids.

Input Mesh

Calculate

Bounding Box

Create

Voxel Grid

Identify Triangles

Voxelized

Geometry

Intersection

Figure 1.9: Main phases of voxelization

To accelerate voxelization, a number of recent studies have parallelized this task using the

built-in graphics pipeline of GPUs [144]–[148]. However, the point sampling method used by

the conventional rasterizers of the pipeline leads to inaccurate results for thin structures. To

address this, Zhang et al. proposed a conservative voxelization technique [149] that in turn

introduced redundant voxels, an issue that was later rectified in [150] by means of hardware-

based tessellation and point-based rendering. Even though the latter technique is faster by two

orders of magnitude compared to [149], the use of fixed-functions of the pipeline has limited

1.6. Review of Techniques Used in Surgery Simulation 23

flexibility and leads to inaccuracies for some models. The use of GPGPUs for voxleization is

investigated in [151]. In this work, a GPU-based parallelization of the triangle-box overlapping

test is presented which is faster than the techniques in [149] by one order of magnitude without

comprising the accuracy.

As has been noted, voxelization is a computationally intensive task and can lead to a major

overhead in initialization of the simulator software. Therefore, a fast and accurate voxeliza-

tion technique can be advantageous for the overall performance of the simulator. Toward this

end, the method presented in [151] appears to be promising; however, it is only developed in

CUDA platform. As the present literature is currently lacking an OpenCL-based voxelization

toolkit, it appears that an OpenCL implementation of voxelization algorithm can be valuable

for development of glenoid reaming simulator.

1.6.5 Processing Computed Tomography Data

Voxelized models obtained from Computed Tomography (CT) are the standard for character-

ization of bone geometry and some of its material properties [152], [153]. While the existing

orthopaedic simulators have unanimously relied upon clinical CT images, the use of high-

resolution imaging techniques such as Micro Computed Tomography (µCT) can be useful to

represent bone in higher details and improve simulation realism [154]. This option is, however,

limited to cadavers and animals and cannot be used for patient-specific simulation. One way

to achieve voxel resolutions beyond clinical CT images, is to upsample the native CT voxels

to near micron resolutions. Implementation of this step in the initialization phase of the sim-

ulator software will reduce the number of manual steps in processing CT data and facilitate

the simulation experience. Towards this end, efficient computing techniques are quintessential

since upsampling voxels will generate a large number of voxels that can result in considerable

computing time and memory overhead.

The voxelized model of bone can be viewed as a special type of hexahedral volume mesh

that is solely constituted by equally shaped and sized eight-node brick elements [155]. This

24 Chapter 1. Introduction

type of mesh is known as Cartesian mesh and has been widely utilized in Micro Finite Element

Analysis (µFEA) of the internal porous structure of bone. Cartesian mesh provides the advan-

tage of reduced time for both mesh generation phase and solving the finite element problem,

but at the cost of jagged representation of the bone surface [156]. At the micron resolution lev-

els, however, this type of discretizations represent a viable option, particularly since the small

size of the elements tends to diminish the - otherwise prominent - surface appearance artifacts.

To date, several studies have proved that Cartesian mesh can accurately predict the mechanical

properties of the cancellous bone as measured through physical experiments [157]–[164].

Given the analogy between Cartesian mesh and the voxelized model of bone required for

the simulator, it can be inferred that the CT processing routine in the initialization phase of the

simulator software can be utilized to generate Cartesian meshes for µFEA purposes. This lends

well to the research on micro-level structural analysis of bone because many of the available

tools have limited capabilties in dealing with the sheer number of voxels in µCT data and are

subject to extensive computing time as well as random crashes caused by excessive memory

usage.

1.6.6 Graphic Rendering Techniques

Visual replication of glenoid reaming plays an important role to comprehend the characteristics

of bone resurfacing since the actual operation is attributed by poor visualization of the reaming

site. This entails computing the Boolean subtraction of reamer geometry from bone model in

every graphic rendering frame. Faster completion of this task can result in higher graphic ren-

dering frame rates which in turn leads to a smoother and more realistic simulation experience.

However, a minimum frame rate of 30 FPS is generally accepted as the standard for smooth

graphical replications. This implies that the bone model must be updated and rendered within

33.33 ms intervals.

Although triangle mesh models are considerably efficient in graphic rendering of complex

objects, they are unsuitable for real-time Boolean operations. Most of the existing works in

1.6. Review of Techniques Used in Surgery Simulation 25

this regard report computing times of tens of seconds to perform simple Boolean operations

between two surface meshes [115], [165]–[167]. A compelling evidence is the computing

time reported for one of the latest algorithms developed in this regard that requires 32.04 s to

compute union of two surface meshes with total of 1.5 M triangles even by using a high-end

workstation with an Intel Xeon E5540 CPU and 70 GB RAM [168]. While it is expected that

the above timing will reduce for coarse meshes, the above performance is by no means close

to the requirements of real-time graphic rendering.

To accelerate Boolean operations between two objects, voxelized models serve as ex-

tremely effective alternatives. Since voxelized models are constructed using uniform grids,

Boolean operations can be efficiently handled using grid-based operations. As a result, vox-

elized models have been commonly utilized by the existing simulators to deal with graphical

representation of bone resurfacing. The methods that are presently developed to render vox-

elized models can be categorized into two groups. The first category refers to various vol-

ume rendering techniques that construct a 2D projection of the geometry that is constituted

by 3D voxels. Examples of such techniques include voxel ray tracing [169]–[171], splatting

[172]–[174] and texture-based volume rendering [175]–[177]. The second category includes

the methods that extract the outer surface of an object using its voxel representation. Examples

of these methods include marching cubes [178], surface nets [179] and dual contouring [180].

While all the above-mentioned methods have been commonly implemented in the existing

literature, the marching cubes algorithm is the most common technique utilized in orthopaedic

simulators. Although the serial implementation of this algorithm is sluggish, it can be effec-

tively parallelized and can be successfully implemented for real-time isosurface computation

[181], [182]. An OpenCL-based implementation of this algorithm is also freely available [183].

Therefore, considering the popularity of this algorithm and its satisfactory results, the code

available in [183] will be directly integrated in our simulator software.

26 Chapter 1. Introduction

1.7 Specific Aims and Thesis Outline

The above literature review indicates several gaps in the knowledge and lack of efficient com-

putational tools toward VR simulation of glenoid reaming operation. In particular, it reveals

that:

• There is little known about mechanics of glenoid reaming and there is presently a need

for a model derived from cadaveric experiments to quantify characteristics of this opera-

tion.

• Realistic simulation of glenoid reaming - and bone machining operations, in general - is a

computationally demanding task and require development of custom computer programs

that supports GPU computing.

• Sampled geometrical representations of tool and bone i.e. point cloud or voxelized mod-

els are quintessential to complete haptic and graphic rendering computations in real-time.

However, construction of these models is currently challenging due to lack of effective

software as well as complicated computations that require high computing power and

memory.

• While the use of VPS collision detection algorithm appears to be well-suited for haptic

simulation of bone machining operations, the currently available VPS algorithms cannot

handle the large intersection volume between reamer and glenoid bone.

• Visual replication of surgical operations are well-addressed in the literature and there

exists various methods such as the marching cubes algorithm that can be employed to

effectively render updated bone geometry after material removal.

Consequently, it can be inferred that glenoid reaming is a unique bone machining operation

with its own characteristics and many currently available techniques utilized in orthopaedic

surgery simulation are unsuitable to realistically replicate this operation. Therefore, attaining

the objective of this thesis requires

1.7. Specific Aims and Thesis Outline 27

1. To construct a computationally efficient tool for processing CT data - This will be ad-

dressed in Chapter 2.

2. To implement an OpenCL-based voxelization engine - This will be completed in Chapter

3.

3. To develop a fast VPS collision detection algorithm - This will be attained in Chapter 4.

4. To devise an effective material removal routine for updating bone geometry - This will

be also outlined in Chapter 4.

5. To model mechanics of glenoid reaming - This will be discussed in Chapter 5.

6. To effectively consolidate all simulator components such that the target 1 KHz and 30 Hz

frame rates for haptic and graphic rendering loops are attained - This will be also tack-

led in Chapter 5.

Chapter 2

Processing CT Data

CT imaging of bone is the key to model geometry and material properties of bone. This chapter

presents an algorithm to efficiently process CT data and construct the bone model. One of the

main features of the algorithm is that it allows upsampling clinical CT voxels to micro-level res-

olutions. This can directly contribute to obtaining high realism in patient-specific simulations,

as discussed in Section 1.6.5. In addition, as the algorithm is capable to effectively handle

micro-level CT data, it can be utilized to construct Micro Finite Element Models (µFEMs).

Therefore, the primary focus of the subsequent developments is placed upon finite element

modeling, and the differences of the model utilized for the simulator is explained wherever

necessary.

In order to test the viability of the algorithm, the developed approach has been intention-

ally tailored to the needs of a specific commercial package (Abaqus, Simulia, Rhode Island,

USA) that is commonly used in FEA of biomechanical structures. Nevertheless, this does not

significantly restrict the generality of the method.

2.1 Algorithm Overview

According to the specific format of Abaqus input files, the algorithm must generate four distinct

blocks of data:

28

2.1. Algorithm Overview 29

1. 3D coordinates of mesh nodes,

2. Indices of the nodes which are required for elements formation,

3. Element-sets; each set is represented by a group of elements characterized by identical

material properties, and

4. Indices of the element-sets which are used to assign material properties to each of the

element-sets

The first item refers to the geometry of the model, the second item corresponds to the topology

of the model and the last two items describe the material characteristics of the model.

The major steps to construct these blocks of data are outlined in Fig. 2.1. First, CT (or µCT)

images are exported as 16-bit Digital Imaging and Communications in Medicine (DICOM)

files which are then loaded into the commercial Mimics (Materiallize, Leuven, Belgium) soft-

ware. The high-frequency noise of the raw images is removed by means of a discrete Gaussian

filter. As recommended in [154], a specimen-specific gray-value threshold is used for cancel-

lous bone in order to best preserve its architecture. The image segmentation is performed using

region growing with embedded 6-connectivity. This approach ensures the face connectivity of

hexahedral elements and avoids generation of nonmanifold geometries. Micro-scale finite ele-

ment studies for bones are often performed within the elastic regime with Poisson’s ratio equal

to 0.3 and Young’s modulus derived from gray-values [184]. Therefore, the gray-value of each

voxel must be passed to the mesh generation algorithm, along with its spatial data. Mimics

allows exporting this information into a text file in which every row contains the centroid co-

ordinates (xi, yi, zi) ∈ R3 and the gray-value ri ∈ R of i-th voxel, where 1 ≤ i ≤ n and n is the

number of post-processed CT voxels.

The choice of Mimics for data preparation is merely determined by its availability. Al-

ternatively, it is also possible to read the voxel data directly from DICOM files and then feed

it into the algorithm. However, since CT images often require manual segmentation in order

30 Chapter 2. Processing CT Data

Mimics Environment

Filtering Thresholding Segmentation

DICOM files

Export
text file

1 1 1 1

2 2 2 2

3 3 3 3

, , ,

, , ,

, , ,

, , ,
n n n n

x y z r

x y z r

x y z r

x y z r

Create
HexahedronsIndex Nodes

Calculate
MaterialsBin MaterialsCreate

Element Sets

Read from Disk

Create Grid

Resize Voxels
Grid parameters

Density array

1. Geometry
2. Topology
3. Element-sets
4. Materials

Grid ConstructionGeometry and Topology Formation

Materials Modeling

Output μFEM

r

threshold

Figure 2.1: Flowchart of CT Data processing algorithm

to extract the region of interest, the need for a powerful image processing tool remains valid

[185].

Once the input text file is created, the algorithm constructs a structured 3D grid that embeds

all CT voxels. This allows implicit identification of each voxel using efficient integer operations

and plays a key role in computational efficiency of the algorithm. The grid is then passed to

the Geometry and Topology Formation block, in which an explicit representation of the mesh

is generated. Then, the Material Processing block constructs distinct element-sets and assigns

each element-set with a material property that is inferred from gray-values of each voxel. This

completes the mesh generation process such that the resulting information can be transferred

to Abaqus for the remainder of the FEA steps.

2.2 Voxel Grid Construction

A voxel grid G is a uniform 3D grid which embodies all voxels obtained from a CT image.

The domain of G spans from the minimum coordinates to maximum coordinates of CT voxels

2.2. Voxel Grid Construction 31

observed during importing the text file. Generally, G can be uniquely identified using three

parameters:

1. The minimum corner of the grid p0 ∈ R
3,

2. Voxel diagonal ∆p ∈ R3, and

3. Grid dimension i.e., the number of voxels in each direction d ∈ N3.

The total number of cells in G is then determined as nmax = dxdydz.

One effective way to represent G in memory is to map the grid to a 1D array of length nmax,

hereafter referred to as the density array D. Each element in D stores the gray-value of an

individual voxel and the index to that element encodes the coordinates. As a result, each voxel

can be easily identified by means of a few elementary integer operations. Specifically, a voxel

V with integer grid coordinates o3 ≤ (u, v,w) < d, maps to the i-th element ofD using

i = u + v dx + w dx dy. (2.1)

Conversely, for a given index i, the voxel coordinates is calculated by

w =

⌊
i

dxdy

⌋
, v =

⌊
i − wdxdy

dx

⌋
, and u = i − w dx dy − v dx (2.2)

Therefore, the center coordinates of a voxel can be readily computed by

c = p0 + ∆p � (u, v,w) + 0.5∆p, (2.3)

where c ∈ R3 represents center coordinates of a voxel and � denotes the component-wise

product. As the above equations only involve integers, the use of the density array minimizes

the need for floating-point operations. This results in higher numerical robustness because

floating-point operations of data with micron-level resolutions are error-prone primarily due to

the large number of decimal places associated with this data.

32 Chapter 2. Processing CT Data

One important advantage of using voxel grids is the added flexibility in resizing voxels

when upsampling them to arbitrary finer resolutions. In this regard, the new voxel size must be

a divisor of the native CT voxel size to ensure preserving the model volume. In other words,

if ∆pnew is the new voxel diagonal, then ∆pnew = α−1∆p and α ∈ N. To upsample voxels, a

new voxel grid Gnew is constructed with a domain identical to that of G. Subsequently, a new

density array Dnew is allocated with a length of α3nmax. Iterating over the elements of Dnew,

the gray-value of new voxels are computed using linear interpolation of gray-values associated

with the adjacent native CT voxels.

It is noteworthy thatD along with p0, ∆p and d are sufficient to model bone geometry and

its material characteristics required for surgery simulation purposes. As it will be shown in

Chapter 4, this representation is advantageous to collision detection performance because vox-

els can be implicitly identified via Eqs. (2.1) and (2.2), without any need for time-consuming

grid traversals.

2.3 Generation of Geometry and Topology

As a general rule, Cartesian mesh is comprised of eight-node hexahedral elements. Node

coordinates can be computed by means of the centroid coordinates of the corresponding CT

voxels. For this purpose, the algorithm loops over D, calculates the centroid coordinates of

occupied voxels via Eq. (2.3), and generates eight nodes in an order shown by Fig. 2.2. The

resulting nodes are stored in an array with a length of 8n where n is the number of hexahedral

elements. The elements spanning from 8i to 8i + 7 correspond to the i-th hexahedral element;

therefore, the array describes both the geometry and topology of the mesh. The main advantage

of this approach resides in that the knowledge of adjacent nodes is not required since nodes are

constructed independently for each elements. This is potentially beneficial for out-of-core as

well as parallel extensions of the algorithm which are valuable tools in dealing with very large

models. However, this approach will inevitably lead to duplicate nodes that are unacceptable

2.3. Generation of Geometry and Topology 33

for many FEA solvers. This can be solved by taking a node indexing step, where the uniqueness

of each node is ensured while preserving their connectivity.

n1 n2

n3
n4

n5 n6

n7
n8

()

()

()

()

1

2

3

4

0.5 1, 1, 1

0.5 1, 1, 1

0.5 1, 1, 1

0.5 1, 1, 1

= + − − +

= + + − +

= + + − −

= + − − −

n c p

n c p

n c p

n c p

()

()

()

()

5

6

7

8

0.5 1, 1, 1

0.5 1, 1, 1

0.5 1, 1, 1

0.5 1, 1, 1

= + − + +

= + + + +

= + + + −

= + − + −

n c p

n c p

n c p

n c p

y
x

z

Figure 2.2: Topology of the hexahedral element in Cartesian mesh

Evidently, one of the simplest ways to remove duplicate nodes would rely on nested loops

that continuously iterate over an array in order to identify the identical elements. However,

since the average time complexity for searching an array is linear, the worst-case time com-

plexity of this method is quadratic which results in poor performance in case of large datasets.

To accelerate this particular phase, our algorithm incorporates a more efficient technique using

hash mapping.

In brief, a hash map is a data container that stores every node coordinate while pairing it

with a key value. These key values are computed by a hash function assigned to the hash map.

While a linear array will inevitably store its elements in a sequence, the hash map places the

elements based on their keys. As a result, searching an element is a constant time complexity

operation in a hash map. Once a hash map of all nodes is constructed, the algorithm iterates

over each entry of the hash map, identifies all duplicates of the entry and removes them from

the hash map. This removes the need for a nested loop set-up and leads to an overall linear

time complexity that in turn translates into significant reduction of computing time compared

to the conventional nested-loop approach (Tab. 2.1). The resulting nodes and indices will form

the explicit representation of the final µFEM.

34 Chapter 2. Processing CT Data

Table 2.1: Comparative assessment of hash mapping efficiency

Number of

CT Voxels

Total Number

of Nodes

Number of

Duplicate Nodes

Running Time (ms)

Nested Loops Hash Map

500 4,000 3,147 2.70 0.21

1,000 8,000 7,167 10.48 0.44

5,000 40,000 33,735 162.17 1.80

15,000 120,000 101.123 1,592.70 6.18

40,000 320,000 270,113 10,986.82 15.42

2.4 Material Model

Although gray-values can provide precise information about the density of an object, additional

processing is required in order to convert them into meaningful material properties. While

presently there is no generally accepted mapping between gray-values and bone elasticity, most

conversion methods advocate for the need of an user-defined function that maps the gray-values

into a particular material property [186]. For cancellous structures, this function might be

defined as a linear mapping [187]. This function is implemented in the Calculate Material

block and essentially converts the CT gray-value into a corresponding Young’s modulus.

Next, in the optional Material Binning step, the computed moduli are categorized into bins

of user-defined widths. Subsequently, materials belonging to the same bin are substituted by the

center of their bin. This process decimates the number of materials derived from CT in order to

reduce the complexity of the resulting FEM in an attempt to speed up the FEA computations.

Once the material models are finalized, they must be linked to the mesh elements. To this

end, another hash map is utilized to identify all elements characterized by identical material

properties. These elements are grouped as distinct element sets and their elasticity values are

assigned by indexing to the finalized moduli described above. This completes the material

information of µFEM required by Abaqus.

2.5. Implementation Results and Discussion 35

2.5 Implementation Results and Discussion

Several sample CT images are used to test the performance of the proposed algorithm. C++

language was used as the programming platform and computing time was measured by means

of the chrono timer that is available in the C++ standard library [188]. The hardware used

for the tests included a standard Core-i7 6700K CPU equipped with 16 GB RAM. The models

used for the tests include three CT datasets as well as a clinical CT image of scapula bone.

Table 2.2 presents the details of these models.

2.5.1 Running Time Breakdown - Fixed Voxel Size

Initially, the resolution of the hexahedral mesh is set to match the native CT scan resolution.

The material properties of the larger samples (e.g., cellular foam and cadaveric glenoid) are

binned with a bucket size of 10. Table 2.3 shows the breakdown of the running time for dif-

ferent steps of the algorithm. To eliminate confounding errors, I/O times are not considered.

Given the comparison results in Tab. 2.1 and the number of CT voxels in the studied samples,

it is easy to infer that the use of hash tables is significantly advantageous for the overall perfor-

mance of the algorithm, even though indexing operations continue to remain one of the major

bottlenecks.

Peak memory usage for each model is reported in Tab. 2.4. While the algorithm does

not run out of memory in none of the analyzed cases, it is expected that larger models will

require excessive computing memory. Nevertheless, since the construction of each hexahedral

Table 2.2: Specifications of the models used for testing

Model Voxel Size (µm)
Voxel Grid Dimension

dx × dy × dz

Number of

Occupied Voxels

Text File Size

on Disk (MB)

Cancellous Core 32 × 32 × 32 281 × 372 × 353 1.7 M 84.8

Cellular Foam 32 × 32 × 32 422 × 629 × 652 12.4 M 746

Glenoid 64 × 64 × 64 1021 × 548 × 742 36.2 M 1680

Scapula 472 × 472 × 1000 311 × 284 × 169 558 K 33.5

36 Chapter 2. Processing CT Data

Table 2.3: Breakdown of the running time for different phases of the proposed algorithm

Phase Running Time (ms)

Cancellous core Cellular foam Glenoid Scapula

Create Voxel Grid 25.06 189.14 641.88 17.36

Create Hexahedral 196.09 1,383.37 4631.19 69.36

Nodes Indexing 1,354.80 12,888.20 37,013.26 343.33

Calculate Material 15.74 147.41 500.39 9.34

Material Binning N/A 35.41 97.42 N/A

Material Indexing 387.31 3,301.62 12,279.43 109.24

Sum 1,979.00 17,945.14 55,163.56 548.79

Table 2.4: Peak memory usage for the tested models

Model Peak Memory Usage (MB)

Cancellous Core 359

Cellular Foam 3,650

Glenoid 10,830

Scapula 213

element is independent from the rest of the elements, it is practically possible to use out-of-core

implementations in order to accommodate larger models. However, it is reasonable to expect

that the slower access to disk will negatively impact the overall computing time. Figure 2.3

depicts the FEMs generated from the sample CT images.

2.5.2 Running Time Break Down - Voxel Upsampling

To investigate the effect of voxel resizing on the algorithm running time, a new µFEM is gen-

erated for the cancellous core by fragmenting each CT voxel into eight smaller voxels. This

results in an isotropic voxel resolution of 16 µm. The gray-values of the new voxels were ob-

tained through linear interpolation of the CT voxels. As shown in Tab. 2.5, the voxel resizing

step - tested on the cancellous core - needs only an additional 4.54 s in order to upsample

more than 1.7 M voxels. However, the overall computing time of the algorithm has experi-

enced a significant increase due to the considerably finer resolution of mesh generated at this

2.5. Implementation Results and Discussion 37

(a) Cancellous core (b) Cellular Foam

(c) Glenoid (d) Scapula

Figure 2.3: Generated FEMs from sample CT data

time. Nevertheless, the total running time of 20.74 s remains remarkable, particularly when

considering that the total size of the mesh is in excess of 13.6 M hexahedrons. In addition, the

results suggest that the number of CT voxels present in an image has a significant impact on

the algorithm running time.

2.5.3 Time Complexity Analysis

To further investigate the functional relationship between the number of CT voxels n and the

algorithm running time t, various decimations of the glenoid model is tested and the results are

38 Chapter 2. Processing CT Data

Table 2.5: Breakdown of the algorithm running time for cancellous core with voxel upsampling

Phase Running Time (ms)

Create Voxel Grid 23.16

Resizing Voxels 4,542.85

Create Hexahedrals 1,470.70

Nodes Indexing 11,330.33

Calculate Material 122.16

Material Indexing 3,255.17

Sum 20,744.37

depicted on a log-log plot. Figure 2.4 reveals that for large datasets, the slope of the plot is

approximately one, which implies that

log
(
t2

t1

)
= log

(
n2

n1

)
→

t2

t1
=

n2

n1
. (2.4)

This indicates that the algorithm running time increases linearly with the number of CT

voxels which confirms the linear time complexity that was inferred previously. Furthermore,

Fig. 2.4 seems to suggest that the algorithm is characterized by constant time complexity for

small datasets. However, this is due to the initialization overhead of the algorithm that becomes

dominant portion of the running time when the number of CT voxels are low.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

log(n)

4

5

6

7

8

lo
g

(t
)

Figure 2.4: Log-log relation between model size and running time for the proposed algorithm

2.6. Summary 39

2.6 Summary

This chapter showed that the use of grid-based approaches can provide an effective implicit

description of CT voxels. One of the main advantages of using a grid is that every voxel can

be accessed by integer grid coordinates, and most voxel-related computations can be handled

by fast and robust integer operations. This chapter also presented an efficient voxel storage

method using a linear array. While the index to the elements of the array can be utilized

to quickly derive spatial information of a voxel, the elements themselves store gray-values

associated with each voxel. For CT voxels, a 32-bit float variable is often sufficient to store

the gray-values; however, in case of binary voxels that will be described in the next chapter,

only one bit of information is required per voxel just to determine whether a voxel is present

in a particular grid cell or not. Furthermore, this chapter outlined how grid-based techniques

can be utilized to conveniently change voxel resolutions without modifying the bone volume.

The method presented in this chapter can be also employed to generate µFEMs. The use of

grid-based approach combined with hashing techniques provided a fast and numerically robust

algorithm with linear time complexity to generate Cartesian meshes. One important application

of such algorithm is micro-level finite element studies of Cancellous bone.

Chapter 3

Surface Voxelization

Point cloud representation of the tool is important to speed up collision detection and sim-

plify haptic rendering computations. As discussed in Section 1.6.4, one convenient way for

constructing point cloud is to compute a voxelized model of the tool surface and extract the

centroid of the generated voxels. Considering the fact that triangle meshes are widely utilized

in computer-aided design and modeling of surgical tools, this chapter develops an algorithm

to convert triangle meshes to voxelized representations, in an attempt to develop an effective

toolkit for constructing voxelized - and ultimately, point cloud - representations of the reamer,

or generally, any object that is modeled by a triangle mesh.

3.1 Algorithm Overview

Figure 3.1 illustrates the general block-diagram of the intended voxelization toolkit. The al-

gorithm starts by importing the mesh data and configuring them in a format that is suitable

for accelerating the main voxelization computations. During the mesh import, the algorithm

determines the boundaries of the mesh domain and constructs an Axis-Aligned Bounding Box

(AABB) for the mesh. This AABB is utilized to construct a voxel grid that will embody all the

output voxels. Next, the mesh data as well as the voxel grid are passed to an OpenCL kernel

where an exact triangle-box overlap test is invoked for numerous pairs of mesh facets and grid

40

3.2. Mesh Data Preparation 41

File Import

Mesh Data

Preparation

Compute Mesh

AABB

Construct

Voxel Grid

Voxelization

Kernel

GPU Global

Memory

Triangle-Box

Overlap Test

GPU

Figure 3.1: Data flow in our voxelization algorithm

cells. Completion of this step generates all the data necessary to construct a voxelized model

of the input mesh. This data can be kept in GPU memory for further computations or can be

transferred to RAM for exporting to a file.

3.2 Mesh Data Preparation

The vast majority of common triangular mesh formats store mesh data in two different arrays:

a float array used for vertex coordinates (i.e., mesh geometry) and an integer array used to

describe how the vertices are connected to form the triangles in the mesh (i.e., mesh topology).

This particular type of data storage saves memory space but results in a cluttered memory

access during kernel execution that in turns slows down the entire voxelization process. To

address the issue, the Mesh Data Preparation step uses the above two arrays to construct a new

float array in which vertex coordinates are sorted per triangle. Specifically, ifM is a mesh with

n triangles, then a float array of length 9n is generated to hold vertex coordinates such that the

elements 9i to 9i + 8 correspond to the vertices of i-th triangle. Therefore, the entire vertex

information for each of the mesh triangles is orderly sorted in one locality as shown by Fig.

3.2. This will enable coalesced memory access for the voxelization kernel and can improve the

algorithm running time.

42 Chapter 3. Surface Voxelization

0.5 0.5 0.0 0.8 1.0 0.0 0.3 1.2 0.0 1.5 1.1 0.0

1 2 0 1 3 2 0 3 1

1.51.00.5 2.0

0.5

1.0

1.5

Vertex Array:

Index Array:

0.8 1.0 0.0 0.3 1.2 0.0 0.5 0.5 0.0 0.8 1.0 0.0

Triangle #0 Triangle #1 Triangle #2

v0 v1 v2 v3

...

v0

v1

v2 v3

x

y

Figure 3.2: Mesh data preparation prior to main voxelization computations

3.3 Voxel Data Representation

The algorithm utilizes a voxel grid G similar to the one presented in Section 2.2 to represent

the output voxelized model. The AABB of the mesh is utilized to construct G. In particular,

once the AABB is identified, it is divided into identical cubes whose size is specified by the

user. In this manner, all resulting voxels will be aligned with the axes of the coordinate system;

therefore, the calculation of normal vectors for all voxels becomes trivial. The voxel grid data

is stored in a 1D array as described in Section 2.2 and access to each voxel is attained using

Eqs. (2.1) and (2.2). The only information required to store in the density array of the grid is

whether a voxel is occupied by a mesh triangle or not. This can be fulfilled by allocating only

one bit for each voxel, unlike CT voxels that contain material properties and require larger data

types to accommodate storing gray-values.

3.4 Triangle-Box Overlap Test

The algorithm implements the mathematical technique introduced in [151] which is essentially

an enhanced version of the SAT method presented in [143] and requires a lower number of

operations without comprising the accuracy. According to this method, the evaluation of inter-

section between a triangular mesh facet and a voxel is a four-step process centered on querying

the intersection between the triangle’s plane and the voxel.

Toward this end, let T with vertices v0, v1, v2 be a triangular mesh facet andV be a voxel

3.4. Triangle-Box Overlap Test 43

characterized by the extreme corners p and p + ∆p, respectively. Under these conditions, the

facet-voxel overlap test comes down to the calculation of T ’s normal n and T ’s critical point

c =

∆px, nx > 0

0, nx ≤ 0

 ,

∆py, ny > 0

0, ny ≤ 0

 ,

∆pz, nz > 0

0, nz ≤ 0

 , (3.1)

followed by the evaluation of

(〈n,p〉 + a1) (〈n,p〉 + a2) ≤ 0, (3.2)

where a1 = 〈n, c − v0〉, a2 = 〈n, ∆p − c − v0〉 and 〈·, ·〉 denotes the dot product. The rest of the

intersection test boils down to the assessment of the projections of T andV onto the principal

planes of the coordinate system. For instance, the following expressions must be evaluated

with respect to the xy plane:

nxy
ei =

(
−ei,y, ei,x

)T
·

1, nz ≥ 0

−1, nz < 0

 , (3.3)

axy
ei = −〈nxy

ei , vi,xy〉 + max
{
0, ∆pxnxy

ei,x

}
+ max

{
0, ∆pynxy

ei,y

}
, (3.4)

for all three edges ei = vi+1 mod 3 − vi. If the expression

〈nxy
ei
, pxy〉 + axy

ei
≥ 0, (3.5)

hold true ∀i ∈ {0, 1, 2}, then the projections of T andV on xy plane are intersecting.

One of the important advantages of this method is that if only one of the statements in Eqs.

(3.2) or (3.5) are false, then it can be immediately concluded that T andV are separated. This

can result in early termination of many unnecessary computations and significantly contributes

to reducing the running time.

The above intersection test generates a 26-separating voxelized representation of the mesh.

44 Chapter 3. Surface Voxelization

26-separability is a topological property that means there is no path of 26 adjacent voxels that

connects a voxel on one side of the surface and a voxel on the other side. This leads to a

conservative voxelized representation of the mesh surface in that the output voxels constitute

a supercover of the input mesh [189]. Alternatively, a thinner voxelized model can be con-

structed using 6-separability property. While 26-separability voxels share a common vertex,

edge or face, 6-separability voxels have only faces in common. To compute a 6-separability

voxelized representation of the input mesh, the above test must be slightly modified. To this

end, the offsets in the plane test become

a1 = 〈n,
1
2

∆p − v0〉 +
1
2

∆p♦ |n♦| , (3.6)

a2 = 〈n,
1
2

∆p − v0〉 −
1
2

∆p♦ |n♦| , (3.7)

where ♦ = arg max
∣∣∣n�∣∣∣

�=x,y,z
. Similarly, Eq. (3.4) becomes

axy
ei = 〈nxy

ei ,
1
2

∆pxy − vi,xy〉 +
1
2

∆p♦
∣∣∣nxy

ei,♦

∣∣∣ , (3.8)

where ♦ = arg max
∣∣∣nxy

ei,�

∣∣∣
�=x,y

.

3.5 Algorithm Parallelization

Construction of a voxelized model of a mesh entails invoking the above triangle-box overlap

test for every pair of mesh facets and voxels. This leads to tedious computations especially

in the presence of high number of triangles or voxels. One effective method to circumvent

this issue is to parallelize launching the overlap test for different triangle-voxel pairs. This

parallelization can be accomplished by either dedicating a thread per voxel, or per triangle.

In the Voxel-Based (VB) parallelization, the number of threads required to accomplish

voxelization is essentially equal to the total number of voxels present in G. Each voxel is

3.5. Algorithm Parallelization 45

assigned to a thread where the relative position of the voxel is queried against all mesh facets,

iteratively. As soon as an intersection is detected, the iterations terminate and the voxel acquires

a boundary status. One of the disadvantages of this approach is that all threads require access

to whole mesh data. Since mesh data are often large and cannot fit in GPU local memory,

the threads require repetitive access to global memory. This can negatively affect the kernel

execution time.

Alternatively, in the Triangle-Based (TB) parallelization, the vertices of each triangular

facet T are assigned to an individual thread. Since voxels outside of T ’s AABB are definitely

non-intersecting with T itself, the voxelization problem reduces to querying intersection of T

against only the voxels that lie within T ’s AABB. This allows significant reduction of the num-

ber of triangle-box overlap tests required in the TB method, compared to its VB counterpart.

For example, in voxelizing a sample mesh at different resolutions, the TB approach turns out

to be more than four orders of magnitude more efficient than the VB method, as presented in

Tab. 3.1.

Furthermore, each thread in the TB approach requires the knowledge of vertex coordinates

for only a single triangle (nine floats) which can be transferred to local memory at the beginning

phase of kernel execution. As a result, the threads do not require repetitive access to global

memory. Instead, they only read input data once at the start of the computations and return

the final results at the end. As such, the TB approach is our method of choice for the intended

Table 3.1: Comparison between triangle- and voxel-based parallelization schemes

Voxel Size (mm) Number of Intersection Tests Order of Magnitude

Ratio (VB/TB)

VB Approach TB Approach

3 1,767,431 93 4.2789

2 4,615,507 224 4.3140

1 44,406,021 1,107 4.6033

0.5 368,832,950 5,874 4.7979

46 Chapter 3. Surface Voxelization

voxelization toolkit. The pseudocode of the voxelization kernel using this approach is given by

Alg. 3.1.

Input: Mesh Vertices Array, n, p0, d, ∆p
Output: Voxel Array

1 i← work − item number
2 if i < n then
3 T ← Read v0, v1, v2 of i − th triangle from Mesh Vertices Array
4 Copy T , d, ∆p to local memory
5 B ← Calculate AABB of T
6 for every voxel V ∈ B do
7 if T ′s plane overlaps V then
8 if T and V pro jections on xy − plane overlaps then
9 if T and V pro jections on xz − plane overlaps then

10 if T and V pro jections on yz − plane overlaps then
11 Write proper material value to V′s location in Voxel Array
12 else
13 Continue to next iteration
14 end
15 else
16 Continue to next iteration
17 end
18 else
19 Continue to next iteration
20 end
21 else
22 Continue to next iteration
23 end
24 end
25 end

Algorithm 3.1: Voxelization kernel pseudocode

3.6 Implementation Results and Discussion

This section presents several implementation results to assess the performance of the devel-

oped voxelization toolkit. Given the cross-platform feature of OpenCL, the performance of

the algorithm is evaluated on various processors. In particular, the hardware used for the tests

include high- and mid-range desktop video cards (NVIDIA GeForce 970 GTX, AMD Radeon

3.6. Implementation Results and Discussion 47

R7 240), a high-end video card for laptops (Nvidia GeForce 960 GTXM) as well as an inte-

grated desktop video card (Intel HD Graphics 530). Since OpenCL also allows CPU-based

parallelizations, additional tests are also conducted on desktop Intel Core i7 6700K and AMD

FX 770K processors, as well as the mobile Intel Core i7 6700HQ. Table 3.2 summarizes the

specifications of all the aforementioned processors. In this table, the number of compute units

indicates the number of work-groups that can be concurrently executed in a device, the maxi-

mum local size represents the limit of the work-groups, while the local memory size constitutes

the amount of dedicated memory that is available for each of the work-groups within a certain

processing unit. As it can be inferred from the discussion above, these three parameters play

a critical role on the parallelization capabilities of a certain hardware. The last two columns

of the table, namely maximum clock frequency and global memory, denote the speed of the

processor along with its associated video memory size (for GPU) or RAM (for CPU), respec-

tively. As expected, the size of the global memory limits the maximum resolution of the voxel

grid since at some point during the execution of the code the entire voxel data has to be stored

in it.

Five different triangle mesh models are utilized for the tests. These models include teapot,

bunny and dragon meshes since they are widely utilized as benchmark models in the literature.

A reverse engineered triangle mesh model of the reamer used in glenoid reaming as well as a

Table 3.2: Specifications of processors used in voxelization tests

Hardware
Processor

Type

Compute

Unit

Counts

Local

Size

(KB)

Local

Memory

(KB)

Clock

Frequency

(MHz)

Global

Memory

(GB)

NVIDIA GeForce 970 GTX GPU 13 1,024 48 1,177 4

NVIDIA GeForce 960 GTXM GPU 5 1,024 48 1,176 4

AMD Radeon R7 240 GPU 6 256 32 780 2

Intel HD Graphics 530 GPU 24 256 64 1,050 1

Intel Core i7 6700K CPU 8 8,192 32 4,000 16

Intel Core i7 6700HQ CPU 8 8,192 32 2,600 12

AMD FX 770K CPU 4 1,024 32 3,493 8

48 Chapter 3. Surface Voxelization

scapula model obtained through iso-surface extraction of a patient-specific CT image are also

included in the test models. These models are depicted in Fig. 3.3 and some of their principal

characteristics are presented in Tab. 3.3.

(a) Teapot (b) Bunny (c) Dragon (d) Reamer (e) Scapula

Figure 3.3: Benchmarked models

Table 3.3: Specifications of benchmarked models

Model
Triangle

Counts

AABB Size

(X,Y,Z)

Voxel Grid Size

∆p = 0.5 ∆p = 0.5 ∆p = 0.1

Teapot 894 (63.17, 39.31, 29.48) 127 × 79 × 59 253 × 158 × 118 632 × 394 × 295

Bunny 16,301 (15.55, 15.33, 12.06) 32 × 31 × 25 63 × 62 × 49 156 × 154 × 121

Dragon 100,000 (56.37, 25.21, 39.76) 113 × 51 × 80 226 × 101 × 160 564 × 253 × 398

Reamer 4,006 (21, 36.47, 36.50) 42 × 73 × 73 84 × 146 × 146 211 × 365 × 366

Scapula 470,340 (144.76, 137.24, 73.28) 290 × 275 × 147 580 × 549 × 294 1488 × 1373 × 733

The main metric used to evaluate the algorithm performance is the voxelization time, i.e.

the time required to generate voxels at a preset size/resolution for each of the sample geome-

tries. These timings are measured by means of the built-in profiling tools available in OpenCL

[124]. The comparison baseline used for all the tests is generated by a serial C++ implemen-

tation of the algorithm using the Core-i7 6700K processor which is the fastest CPU among our

test hardware.

3.6.1 Overall Structure of the OpenCL Program

An overview of the OpenCL code used to implement parallel voxelization is shown in Fig.

3.4. In brief, the program starts with the identification of the OpenCL platform that is available

through the hardware followed by the selection of a device to perform the required compu-

tations. Next, the kernel code is compiled and brought to an executable form to run on the

3.6. Implementation Results and Discussion 49

Select a device
clGetDeviceIDs

Create a context
clCreateContext

Identify a platform
clGetPlatformIDs

Build the device executable
clBuildProgram

Create command queue
clCreateCommandQueue

Find the device local size
clGetDeviceInfo

Set global and local size for

kernel execution

buffers and pointers

Create kernel

clCreateKernel
Set kernel arguments
clSetKernelArg

Launch kernel
clEnqueueNDRangeKernel

Device-host memory map
clEnqueueMapBuffer

Device-host memory map
clEnqueueMapBuffer

OpenCL entry point

OpenCL exit point

p
0

∆
p d n

M
esh

 v
ertices

V
o

x
el

array

Figure 3.4: Core structure of the OpenCL program used to implement voxelization

selected device. As discussed above, the total number of threads (or global-size in OpenCL

terminology) required to complete voxelization is equal to the number of mesh triangles n.

However, according to OpenCL standard, the global size must be a multiple of local size.

Therefore, the program first determines the maximum local size offered by the device and then

sets the global size as a multiple of n. Evidently, OpenCL buffers and pointers pass all the

variables and arrays required by the kernel. Once the entire data is passed to the device mem-

ory and kernel threads (or work-items in OpenCL terminology) are configured, the command

queue launches the kernel. A write-only buffer is used to transfer the output voxel data from

GPU global memory to RAM.

OpenCL allows two primary modes of device to host memory transfers: (1) reading from

the buffer using clEnqueueReadBuffer command and (2) mapping device memory to

host memory via clEnqueueMapBuffer. The direct comparison of the two options illus-

trated in Fig. 3.5 implies that memory mapping consistently outperforms the former approach.

Interestingly, the advantage of using memory mapping becomes more prominent as the amount

of transfer data increases. Given this clear superiority, memory mapping is our method of

50 Chapter 3. Surface Voxelization

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Data Size (GB)

0

50

100

150

200

D
a
ta

 T
ra

n
s
fe

r
T

im
e
 (

m
s
)

Memory Mapping

Read Buffer

Figure 3.5: Comparison between OpenCL device-host data transfer methods

choice to transfer the output voxel data.

3.6.2 GPU-Based Parallelization

The timings for voxelization of the sample models in different voxel resolutions are measured

on different GPUs and reported in Tab. 3.4. These timings are also charted in a normalized form

in Fig. 3.6. As it can be noticed from the table, although the teapot geometry has the lowest

number of facets, its larger domain has led longer timings compared to the bunny model. Inter-

estingly, although the reamer mesh poses almost 25 times lower number of triangles compared

to the dragon model, the running times for the reamer are sometimes more than six times higher

than than those obtained for the dragon. This is probably due to topological complexities of the

reamer that requires invoking higher number of triangle-box overlap test which significantly

prolongs the voxelization time. Overall, while no definite conclusion can be drawn with respect

to GPU performances, the data shown in Fig. 3.6 implies that GPU-based parallelization can

speed up voxelization anywhere between 73.5% or 3.8 times (reamer on Radeon R7 240) and

99.6% or 260 times (bunny on GeForce 970 GTX) when compared to single-thread CPU-based

voxelization. A sample of final voxelized geometry obtained in different voxel resolutions is

presented in Fig. 3.7.

It is worth mentioning that the above results also provide a comparison between the perfor-

3.6. Implementation Results and Discussion 51

Table 3.4: Voxelization running time obtained for different models and resolutions using GPUs

Model Voxel
Size

Voxelization Time (ms)

GeForce
970 GTX

GeForce
960 GTXM

Radeon
R7 240

Intel HD
Graphics 530 Single

Thread
OpenCL CUDA OpenCL CUDA OpenCL OpenCL

Teapot
0.5 2.12 1.39 2.07 1.28 2.4 6.49 21
0.25 13.57 8.41 13.1 7.78 14.66 25.9 108
0.1 166.52 102.61 164.68 93.53 151.95 315.31 1081

Bunny
0.5 0.05 0.11 0.09 0.12 0.11 0.21 13
0.25 0.08 0.14 0.16 0.15 0.19 0.22 18
0.1 0.32 0.30 0.66 0.44 0.86 1.81 65

Dragon
0.5 0.31 0.30 0.72 0.53 0.76 1.77 85
0.25 1.09 0.76 2.75 1.70 2.42 4.04 159
0.1 10.17 5.57 25.55 12.96 19.44 34.52 757

Reamer
0.5 0.77 0.50 0.75 0.48 0.82 2.46 25
0.25 5.32 3.45 5.13 2.88 5.56 8.51 61
0.1 71.89 41.54 68.84 36.54 69.42 109.23 412

Scapula
0.5 2.31 1.34 5.44 2.72 3.8 5.47 420
0.25 11.00 4.87 25.79 10.06 13.30 24.14 868
0.1 112.66 43.68 283.97 88.80 82.10 256.34 4913

Tea
po

t

B
un

ny

D
ra

go
n

R
ea

m
er

Sca
pu

la
0

10

20

30

100

GeForce 970 GTX
GeForce 960 GTXM
Intel Graphics HD 530

Radeon R7 240Single Thread
CUDA on GeForce 970 GTX

CUDA on GeForce 960 GTXM

C
o

m
p
u

ti
n

g
T

im
e

(%
)

Figure 3.6: Normalized voxelization running time obtained by GPUs

52 Chapter 3. Surface Voxelization

(a) voxel size = 0.5 mm (b) voxel size = 0.25 mm (c) voxel size = 0.1 mm

Figure 3.7: Voxelized representation of reamer in different resolutions

mance of OpenCL and CUDA in the context of voxelization. As it is expected, CUDA appears

to perform better for Nvidia GPUs; however, its major drawback remains its incompatibility

with other processors produced by other vendors. However, the use of OpenCL still allows

remarkable running time reductions compared to the single-thread implementation and its rel-

atively weaker performance compared to CUDA can be neglected in favor of its cross-platform

feature.

3.6.3 CPU-Based Parallelization

As OpenCL allows parallelization of a computing task using CPUs, the subsequent results are

concerned with evaluating the algorithm performance when using CPU-based parallelization.

Table 3.5 compares the running time of our algorithm on difference CPUs with the baseline

single-thread results. A normalized representation of these results are also plotted in Fig. 3.8.

As expected, the parallel algorithm results in much lower running times compared to the

single-thread implementations. The improvements in the performance are somewhere between

62.7% or 2.7 times (teapot on AMD FX 77K) and 97.5% or 40.1 times (dragon on Core-i7

6700K). It is worth noting that the worst parallel computing results are obtained for voxelizing

the teapot using AMD FX 77K. However, this is still more than 60% faster than the running

time obtained with the single-thread algorithm running on a relatively much faster CPU. This

3.6. Implementation Results and Discussion 53

Table 3.5: Voxelization running time obtained for different models and resolutions using CPUs

Model Voxel
Size

Voxelization Time (ms)

Intel Core-i7
6700K

Intel Core-i7
6700HQ

AMD
FX 77K

Single
Thread

Teapot
0.5 3.82 4.85 6.54 21

0.25 20.84 27.5 36.5 108
0.1 244.84 290.92 403.63 1081

Bunny
0.5 0.66 0.71 0.91 13

0.25 1.24 1.91 1.9 18
0.1 5.39 7.66 6.75 65

Dragon
0.5 2.12 3.94 6.17 85

0.25 6.8 7.91 18.53 159
0.1 48.64 55.81 106.87 757

Reamer
0.5 2.09 2.72 2.39 25

0.25 9.18 11.79 7.37 61
0.1 94.31 11.79 75.65 412

Scapula
0.5 7.59 9.13 32.5 420

0.25 26.94 35.33 82.56 868
0.1 244.71 292.21 610.57 4913

Tea
po

t

B
un

ny

D
ra

go
n

R
ea

m
er

Sca
pu

la
0

10

20

30

40

100

Intel 6700K
Intel 6700HQ
AMD FX 77K

Single Thread

C
o

m
p
u

ti
n

g
T

im
e

(%
)

Figure 3.8: Normalized voxelization running time using CPUs

54 Chapter 3. Surface Voxelization

clearly indicate how parallel computing techniques can lead to better performances despite

using much cheaper hardware.

Furthermore, a brief comparison of the results shown in Tabs. 3.4 and 3.5 shows that

our algorithm runs faster on GPUs compared to CPUs. This confirms with the fact that the

architecture of GPUs is generally more suitable for parallel computing compared to that of

CPUs, and they result in faster running times for tasks that can be appropriately parallelized.

3.7 Summary

This chapter showed that concurrent execution of an accurate triangle-box overlap test results

in fast construction of either 26-separability or 6-separability voxelized models. It also showed

that the use of OpenCL-based GPU computing is extremely effective to speed up voxelization

by up to 99.6% for some test models, compared to conventional serial implementations. The

use of OpenCL also resulted promising results for parallelization on CPUs. Furthermore, this

chapter presented results for various models that were voxelized at different resolutions using

numerous CPUs and GPUs from all major vendors. These results proved that the developed

algorithm is a fast and versatile toolkit that can be utilized to reliably construct voxelized

representations from any soups of triangles.

Chapter 4

Collision Detection

Collision detection determines if surgery tool and tissue have come into contact in the virtual

environment, and serves as a performance-critical and integral part of every surgery simulator.

This chapter presents a new collision detection algorithm that employs the voxelized geometry

of bone and tool outlined in Chapters 2 and 3 to rapidly determine the tool-bone intersection,

and subsequently update bone geometry to account for bone resurfacing. The algorithm can

be regarded as a new variant of the well-known VPS technique that is commonly utilized in

the context of bone machining simulators. However, it features a set of new refinements in an

attempt to provide higher performance that is capable to handle the large tool-bone intersection

volume in glenoid reaming.

4.1 Algorithm Overview

Figure 4.1 illustrates the data-flow in our collision detection algorithm. Using the methods

explained in Chapters 2 and 3, a voxelized model of bone (Voxmap) and a point cloud repre-

sentation of tool (PointShell) are constructed and transferred to GPU global memory during an

initialization step. Oriented Bounding Boxes (OBBs) of tool and bone are also computed in

this step and will be utilized in the early phase of collision detection.

The running time of our collision detection algorithm involves two primary phases:

55

56 Chapter 4. Collision Detection

Haptic Device

Tool 3D Model
Point Cloud

Construction
Morton Encoding

OBB

Construction

Bone CT Scan
Grid

Construction

Transfer to

GPU Global

Memory

Update Tool Position

and Orientation

OBB-OBB

Intersection Test
Compute VOI

Retrieve Results

Project Tool

Points to Bone

Coordinates

Determine

Intersecting

Voxels

Update Voxmap

Spatial

Occupancy

Compute

Resultant Force

Data Preparation

CPU Computations

GPU Computations

VOI

Figure 4.1: Data-flow in our collision detection algorithm

1. The broad-phase which performs a quick intersection test between the OBBs to verify

whether objects are about to contact. It also determines a Volume of Interest (VOI) that

identifies the possible intersection region between the objects. The advantage of using

VOI is that any points and voxels outside of VOI will be culled from the rest of the com-

putations because they are definitely non-intersecting. The broad-phase computations

are performed in a single-thread manner using CPU.

2. The narrow-phase which completes an exact intersection test between all the elements

lying inside the VOI, determines all intersecting points and voxels, and computes the

resultant force feedback. It also updates Voxmap geometry in order to account for bone

removal. The narrow-phase relies on GPU parallelization where each thread remains

focused on collision of one PointShell element against Voxmap.

4.2 Voxmap Data Structure

The Voxmap data structure refers to the 1D density array D that is introduced in Chapter 2

to describe the spatial occupancy of the voxel grid G which is used to implicitly define post-

4.2. Voxmap Data Structure 57

processed CT voxels. Recalling Section 2.2, if the dimension of G is dx × dy × dz, the voxel

V(u, v,w) is mapped to the i-th element ofD, where

i = u + v dx + w dx dy. (4.1)

Conversely, given a particular i, the grid coordinates ofV can be computed as

w =

⌊
i

dxdy

⌋
, v =

⌊
i − wdxdy

dx

⌋
, and u = i − w dx dy − v dx. (4.2)

Since the coordinates of each V can be inferred from the index of its corresponding element

in D, it is sufficient to allocate only a 32-bit float variable for each D’s element in order to

store V’s gray-value. In practice, however, the distribution of gray-values is usually much

wider than the requirements of force computations. As a result, additional memory savings

can be obtained by mapping the gray-values to the range 0-255, where 0 indicates void and

255 represents the highest gray-value present in the CT data. In this manner, only an 8-bit

integer is required for each element which can further reduce the amount of memory required

for Voxmap. In this set-up, as the gray-value of zero corresponds to void in bone structure,

material removal can be replicated by decaying the values stored inD elements. In addition, the

rate of material removal can be also controlled by the slope of the decay function. Therefore,

material removal can be readily handled by simple write operations into the memory without

any need for data reconstructions. Since arrays guarantee fast random access to their elements,

access to the voxel data can be done quickly without any need for expensive grid traversals.

Therefore, this way of data representation facilitates accessing to voxels and modifying them

efficiently.

58 Chapter 4. Collision Detection

4.3 PointShell Data Structure

The voxelization toolkit developed in Chapter 3 is utilized to construct the PointShell. Figure

4.2 exemplifies a point cloud representation of the reamer that is obtained by extracting the

centroids of all voxels that are present in its 6-separability voxelized model. While the density

array presented in Section 2.2 can be utilized to implicitly describe the points, our algorithm

employs bit interleaving techniques to construct a more compact representation. In particular,

Morton encoding [190] is utilized to encode the three grid coordinates u, v,w of each voxel into

a 32-bit integer. Using the method described in [191], 10 bits are required for each dimension

of grid. Therefore, PointShells with resolutions as high as 10243 can be stored using 32 bits

per point, resulting in 66% memory savings compared to storing all the floats. It is noteworthy

that decoding Morton codes requires only a few bit operations; therefore, the added cost of

deriving points coordinates from a Morton code is negligible.

Figure 4.2: Construction of point cloud for reamer

4.4 Broad-Phase Collision Detection

The broad phase serves as an optimization step whose job is to determine a VOI that estimates

the intersection volume between two objects and culls all the elements outside of this volume.

To achieve this, the broad phase updates the position and orientation of the objects’ OBBs

4.5. Narrow-Phase Collision Detection 59

based on user interactions. Then, it performs an exact Boolean intersection test using the SAT

method presented in [192]. One effective optimization in implementing this test is to express

bone OBB in tool coordinates [193]. In this manner, once an intersection occurs, computing the

VOI boils down to comparing the boundaries of two boxes that are described in tool coordinates

and extracting the overlapping region. As illustrated by Fig. 4.3, the minimum and maximum

corners of the VOI are sufficient to describe its boundary in tool coordinates frame. This

method is fast and always results in an overestimation of the intersection volume so that no

intersecting element is missed.

T

VOImax

B

VOImin

Figure 4.3: A 2D representation of VOI computed in broad-phase

4.5 Narrow-Phase Collision Detection

The narrow-phase queries the exact collision of points and voxels using a GPU kernel whose

pseudocode is given by Alg. 4.1. Inputs to the kernel include the PointShell and Voxmap

data structures which are denoted by P and D, respectively and are transferred to GPU global

memory once during initialization. The other inputs are the transformation matrix from tool

to bone coordinate frames represented by T and also the VOI boundary. These parameters are

required to be updated in runtime and delivered to GPU before every kernel launch.

60 Chapter 4. Collision Detection

The kernel launches one thread per PointShell element. Each thread takes one element

from the PointShell array, uses Morton decoding to derive the coordinates of a tool point, and

checks the obtained coordinates against the VOI boundary. If the point lies outside the VOI, the

thread terminates immediately. Otherwise, it continuous by transferring the tool point to bone

coordinates system and computing its location within the Voxmap array. If the array returns a

non-zero value, then the sample point has penetrated the bone. Therefore, the thread reduces

the element’s value to account for material removal. Moreover, the thread assigns an elemental

force to the intersecting tool point. The resultant force can then be computed by aggregating

these forces using atomic operations. Since atomic operations work with integers only, the

elemental forces are multiplied by a large number N and casted to the integer type prior to the

operation.

Input: P,D, T, VOImin, VOImax

Output: F
1 i← thread number
2 if i < n then
3 e← P (i)
4 (x, y, z)← MortonDecoding(e)
5 if (x, y, z) ≥ VOImin & (x, y, z) ≤ VOImax then
6 (x′, y′, z′) = T × (x, y, z)
7 j← x′ + dxy′ + dxdyz′

8 v← D(j)
9 if v! = 0 then

10 D(j)←Decay(v)
11 f ←ComputeElementalForce()
12 f ′ ←CastToInteger(f)
13 F ←AtomicAdd(f ′)
14 end
15 end
16 end

Algorithm 4.1: Narrow-phase kernel pseudocode

4.6. Implementation Results and Discussion 61

4.6 Implementation Results and Discussion

This section evaluates the performance of the proposed algorithm in checking the intersection

between the reamer and a patient-specific glenoid bone. The algorithm is implemented using

OpenCL and tested on GeForce GTX 970 GPU with 4GB video memory and an Intel Core i7

6700K CPU with 16 GB RAM. The main metric to evaluate the algorithm is its running time

which is measured in nanoseconds using the chrono clock in C++ standard library [188]. The

running time is averaged over multiple runs to reduce the noise arising from the randomness of

executing system instructions.

4.6.1 Performance in Different Sampling Resolutions

Since the fidelity of VPS-based methods depends upon the sampling resolution, it is neces-

sary to examine the algorithm in different resolutions and find the maximum resolution that

guarantees reaching the target 1 KHz refresh rate.

Table 4.1 presents the algorithm running time in different sampling resolutions. The pre-

sented timings are the average computing time measured in numerous positions and orien-

tations of the reamer which mostly include severe collisions that may take longer running

times. The results indicate that our algorithm manages to maintain < 1 ms running time for

PointShells and Voxmaps with resolutions as fine as 10243. The running time of the algorithm

increases as the PointShell resolution grows due to the added number of GPU threads that the

Table 4.1: Running time (ms) of our collision detection algorithm obtained for various sam-
pling resolutions

Voxmap Resolution PointShell Resolution

643 1283 2563 5123 10243

1283 0.19 0.20 0.23 0.34 0.76

2563 0.19 0.21 0.24 0.34 0.79

5123 0.20 0.21 0.24 0.34 0.79

10243 0.20 0.21 0.27 0.36 0.81

62 Chapter 4. Collision Detection

kernel must launch. Interestingly, the change in the Voxmap resolution has a little effect on the

computing time. This is because the rise in the number of voxels only results in a slight increase

of potential read/write operations that each thread must perform on the Voxmap array. These

operations are inexpensive and are usually accelerated by coalesced memory access and the

use of cache line; thus, their added overhead is insignificant. As a result, it is possible to reach

significantly higher resolutions for bone representation as long as there is enough computing

memory to store voxels.

4.6.2 Running Time Break-Down

It is important to break-down the running time of the algorithm and learn about the elapsed

time in each step of the algorithm. For this purpose, the running time for different steps of

the algorithm is measured for a severe collision scenario and are presented in Tab. 4.2. As

expected, a significant portion of the algorithm running time is devoted to kernel execution.

This step is the only step whose computing time is subject to change as the sampling resolutions

vary. The remaining steps are insensitive to data size and their running time must remain about

the same for other resolutions. The table also indicates that our implementation has managed to

perform CPU-GPU data transfers in about 24% of the allowable 1 ms interval. This is achieved

by wrapping the exchange data into one structure and passing them through a single buffer

which is faster than passing the data through separate buffers. Interestingly, the broad-phase

Table 4.2: Running time break-down of our collision detection algorithm in the presence of
103K contact points between PointShell and Voxmap of size 10243

Step Time (µs)

OBB-OBB Intersection Test 0.77

Computing VOI 0.26

Data Transfer from CPU to GPU 169.9

Kernel Execution 568.72

Data Transfer from GPU to CPU 71.03

Total 810.67

4.6. Implementation Results and Discussion 63

computations take only 1 µs which is negligible in the 1 ms time scale.

To assess the effect of the board-phase, especially the VOI, the algorithm running time

is measured once by using the VOI and once without it. The results are plotted against the

intersection volume in Fig. 4.4 which shows the effectiveness of the VOI in improving the col-

lision detection performance especially when there is a small intersection volume between the

objects. In practical machining scenarios, the tool-workpiece intersection often occurs at the

boundary of the objects which implies the intersection volume remains small. Consequently,

it can be inferred that the use of VOI can accelerate collision detection in glenoid reaming by

almost 50% which further adds to the efficacy of our method.

10 20 30 40 50 60 70 80 90 100

VOI Volume / Tool OBB Volume (%)

0

0.2

0.4

0.6

0.8

1

R
u
n
n
in

g
 T

im
e
 (

m
s
)

With VOI

Without VOI

Figure 4.4: Comparative assessment of VOI on collision detection performance

4.6.3 Comparison with Zheng et al.’s Method

The most relevant method to our algorithm is perhaps the GPU-based VPS method developed

by Zheng et al. for a tooth drilling simulator [82]. This section compares this method with

our algorithm by presenting its implementation results for glenoid reaming simulation. Since

the original implementation of this method is not available, it was not possible to reproduce all

the details of the method; however, its main features such as the octree-inspired grid traversal,

force computation using a reduction algorithm and data structures are well-explained in the

paper [82] which helped us to implement them properly on our OpenCL platform.

64 Chapter 4. Collision Detection

Table 4.3 reveals the running time of Zheng et al.’s method for identical glenoid reaming

scenarios that are used in Tab. 4.1. According to these results, this method is considerably

slower than our algorithm and fails to reach <1 ms computing time for high resolutions. One

reason for this difference is that, as was shown by Fig. 1.8, the method relies on an octree-

like recursive subdivision of the grid to find intersecting voxels. As a result, the workload

of each thread is sensitive to the grid resolution which leads to poor performance in case of

fine grids. On the contrary, our algorithm directly computes the location of tool points in the

Voxmap array. Seeking intersecting voxels in this way is faster and presents constant compu-

tational complexity which guarantees a better performance when dealing with large data sets.

In addition, Zheng et al.’s method uses a reduction algorithm to compute resultant force. This

entails launching unnecessary threads for points that have not immersed into bone, whereas our

method relies on atomic operations that are invoked only for intersecting points and thereby

requires lower number of operations.

Memory usage is also important in evaluating GPU-based algorithms given the relatively

limited capacity of memory even in the state-of-the-art video cards. For this reason, Tab. 4.4

compares the amount of memory the two algorithms use to store PointShell and Voxmap. It is

clear that our algorithm offers much lower memory usage compared to Zheng et al.’s method.

In particular, as pointed out in section 4.2, our algorithm requires only an 8-bit integer for a

voxel and a 32-bit integer for each tool point. By contrast, Zheng et al.’s method stores each

voxel data in a structure constituted by a 32-bit float for its gray-value and a Boolean variable

Table 4.3: Running time (ms) for Zheng et al.’s collision detection algorithm obtained for
various sampling resolutions

Voxmap Resolution PointShell Resolution

643 1283 2563 5123 10243

1283 0.33 0.34 0.40 0.68 1.70

2563 0.86 0.89 1.03 1.22 1.86

5123 5.20 5.14 5.29 5.52 6.70

4.6. Implementation Results and Discussion 65

Table 4.4: Required memory for PointShell and Voxmap in our method compared with Zheng
et al.’s method

Resolution PointShell Required Memory (MB) Voxmap Required Memory (MB)

Our Method
Zheng et al.’s
Method

Our Method
Zheng et al.’s
Method

643 0.02 0.05 0.26 1.31
1283 0.07 0.22 2.10 10.49
2563 0.30 0.89 16.78 83.89
5123 1.19 3.56 134.22 671.09
10243 4.75 14.26 1073.74 5368.71

to flag whether it is collided or not. This method also requires three 32-bit floats for the 3D

coordinates of each tool point. As a result, it is not possible to run Zheng et al.’s method

for Voxmap at 10243 resolution because this method requires more than 5.3 GB computing

memory which exceeds the amount of memory available in our test hardware.

Overall, it is clear that while Zheng et al.’s method has been successfully applied in the

filed of tooth surgery, the complexity of glenoid reaming procedure and its need to reach fine

resolutions reveals the limitations of this method. Our method outperforms this method by

offering faster running time and lower memory usage, making it possible to reach resolutions

that Zheng et al.’s method cannot handle.

4.6.4 Comparison with Yau et al.’s Method

Another method relevant to our algorithm is the method developed by Yau et al. in the context

of CNC simulation [142]. As discussed in section 1.6.3, the original implementation of this

method is sluggish and is only suitable for offline computations. This section develops a GPU-

based variant of this method which can be comparable to our algorithm. Toward this end,

the Voxmap structure and the material removal logic remains as the same as our algorithm.

For a rotating reamer, the area swept by the cutting lips shape a spherical cap which can be

described by an implicit equation. This equation replaces the PointShell in our algorithm and

can be readily updated in every computing frame according to the position and orientation

of the reamer. The GPU kernel dedicates one thread per Voxmap element where each thread

66 Chapter 4. Collision Detection

queries the collision of a voxel against the reamer equation and modifies gray-values in case of

collisions. A VOI is also constructed in Voxmap coordinates to cull threads that correspond to

voxels out of the intersection volume of the objects’ OBBs.

Table 4.5 presents the average running time of this method in scenarios similar to the ones

used in Tab. 4.1. While the method exhibits acceptable performance in low resolutions, its

running time grows significantly for higher resolutions due to the increased number of threads

the kernel must launch. As a result, this method is also slower than our algorithm. Nevertheless,

its memory usage is slightly better because it does not require storing a PointShell.

Table 4.5: Running time for Voxmap-based parallelization algorithm obtained for various res-
olutions

Voxmap Resolution Average Running Time (ms)

1283 0.23

2563 0.50

5123 2.19

10243 13.67

4.7 Summary

This chapter established that concurrent projection of PointShell elements to the coordinates

of Voxmap grid leads to a fast tool-bone collision detection algorithm. It showed that par-

allelization of the projection tasks results in low sensitivity of the algorithm running time to

Voxmap resolutions. As a result, the algorithm can easily deal with extremely fine bone voxel

resolutions, as long as they can fit to the computing memory. The use of broad-phase com-

putations was also shown to be notably useful. While these computations do not take more

than a few microseconds, they allow to effectively cull unnecessary threads and improve the

algorithm running time by up to 50%. Regarding the data structures that were used to de-

scribe the virtual objects, this chapter proved that not only did the implicit definition of voxels

lend well to fast collision queries, but also it facilitated modifying voxel gray-values and repli-

4.7. Summary 67

cate material removal in real-time. The chapter also showed that the use of Morton encoding

can result in significant memory savings for PointShell representation, without compromising

the algorithm performance. The developed algorithm was compared with some of the recent

GPU-based variants of the VPS method where it was demonstrated that our algorithm presents

exceptional performance and memory management advantages compared to the existing simi-

lar approaches. Overall, the proposed algorithm is presently one of the most efficient variants

of the VPS method with the ability to update bone geometry in real-time.

Chapter 5

Modeling and Simulation of Gleonid

Reaming

The knowledge of the mechanics of glenoid reaming is quintessential to compute realistic

haptic and graphic feedback for simulating this procedure. As discussed in Section 1.6.1, the

existing literature lacks an in-depth study regarding modeling of this unique bone machining

operation. For this reason, this chapter outlines a statistical analysis of the experimental results

obtained in a robot-driven glenoid reaming study [106] that was conducted in conjunction

with the present thesis. This analysis provides a model to describe thrust-feedrate relation and

vibrations observed during glenoid reaming experiments. Derivation of the model completes

all the tools required to perform simulation of glenoid reaming. As a result, this chapter also

outlines how to effectively integrate all the simulator components and perform simulations.

5.1 Calibration Experiments

Robot-driven glenoid reaming was used to perform calibration experiments since it allows to

accurately repeat a procedure on different specimens. As shown in Fig. 5.1, the experiment

set-up included a Kuka Light-Weight Robot (LWR) IV to move the reamer, a load cell (Nano

25E, ATI Industrial Automation, North Carolina, USA) mounted between the specimen pot

68

5.1. Calibration Experiments 69

Optical Tracker

Kuka LWR IV Robot

Reamer

Specimen

Testing

Tower

Figure 5.1: Calibration experiments set-up

and testing tower to measure reaming forces, optical trackers (Optotrak Certus, Northern Dig-

ital Inc., Ontario, Canada) to track the reamer motion, and also an accelerometer (Endevco

42A16, Meggitt Sensing Systems, Fribourg, Switzerland) to record vibrations. The reamer

employed throughout the experiments was a nipple-guided spherical reamer (Zimmer Biomet,

Indiana, USA) connected to a orthopaedic surgical drill (Synthes Small Battery Drive, DePuy

Synthes, Massachusetts, USA) with 156 rpm spindle speed. Six freshly frozen human cadav-

eric scapulae with mean age of 66.2± 12.6 years were used. The specimens were kept at room

temperature for 12 hours and soaked in saline for 2 hours prior to reaming to ensure their me-

chanical properties are well-maintained. Clinical CT images of the specimens were obtained

before the experiments. In addition, 3D model of the post-reamed scapulae were acquired

using a laser scanner (Space Spider, Artec 3D, Luxembourg).

To properly mimic the real glenoid reaming operation performed by surgeons, the robot was

programmed in force-control mode. The command force trajectory was set to linearly increase

from zero to a desired value and maintain at this value until the reamer reaches a predetermined

reaming depth. The desired final force was set to 52 N which is the average feed-force applied

by surgeons measured during porcine glenoid reaming in [105]. The prescribed force trajectory

70 Chapter 5. Modeling and Simulation of Gleonid Reaming

was kept identical for all the experiments; therefore, the reamer displacements and vibrations

can be used to describe the characteristics of glenoid reaming.

The experiments were performed in two phases. In the first phase, only a potion of cortical

layer was reamed without violating the cancellous bone. The reaming depth is determined by a

surgeon through analyzing the cortical layer thickness of each specimen. Also, the position and

orientation of the reamer was determined by the surgeon to ensure robot-driven glenoid ream-

ing matches the clinical practice. It is worth mentioning that the cartilage layer on glenoid face

was removed by the surgeon beforehand to ensure that only cortical bone is encountered during

the experiment. Upon completion of the first phase, the rest of cortical layer was removed to

perform the second phase which involved reaming the cancellous bone by a fixed depth of 2

mm. The above experimental scenario was inferred after several trials using artificial bones. A

detailed explanation in this regard can be found in [106].

5.2 Thrust-Feedrate Relation

Figures. 5.2 and 5.3 illustrate the average and standard deviation of thrust and reamer displace-

ment measured from reaming cortical and cancellous bone for all the specimens. The plots

reveal low variation of force and displacement trajectories in both cortical and cancellous bone

regions, especially when the command force of the robot is stabilized at 52 N. In particular, at

this stage, the average value of thrust is 53.17±4.26 N for cortical bone and 51.87±4.45 N for

cancellous bone. In addition, the average feedrate in these bone regions are 0.033±0.007 mm/s

and 0.24 ± 0.04 mm/s, respectively. These values clearly indicate a high level of repeatability

in the experiments.

One way to employ the above data in modeling of glenoid reaming is to take a mechanistic

approach similar to the one described for bone drilling [60], [86]. As discussed in section 1.6.1,

although mechanistic models can theoretically predict instantaneous thrust as a function of dis-

placement, in practice, the predictions are inaccurate and limited to qualitative behaviour. This

5.2. Thrust-Feedrate Relation 71

0 1 2 3 4 5 6 7 8 9

Time (s)

0

20

40

60

T
h
ru

s
t
(N

)

Average

Std. Dev.

0 1 2 3 4 5 6 7 8 9

Time (s)

0

0.2

0.4

0.6

0.8

D
is

p
la

c
e
m

e
n
t
(m

m
)

Average

Std. Dev.

Figure 5.2: Average thrust-displacement characteristics of glenoid reaming in cortical bone

is because of the anisotropic material properties of bone and lack of well-founded theoretical

methods in modeling of bone removal. This can become even more challenging in the case

of glenoid reaming because the reamer spindle speed (156 rpm) is much lower than drilling

and bone removal can be a result of material scraping. Therefore, theoretical methods in metal

cutting may not be valid in this case.

Another approach is to assess the statistical relations between various factors monitored

during the experiments and develop an empirical model to relate these factors to thrust-feedrate

characteristics of glenoid reaming. As shown in the existing studies [76]–[78], it is expected

that such approach will provide a fair prediction of the qualitative behaviour of glenoid reaming

within the observation range accounted in the calibration experiments. Empirical approaches

72 Chapter 5. Modeling and Simulation of Gleonid Reaming

0 1 2 3 4 5 6 7 8

Time (s)

0

20

40

60

T
h
ru

s
t
(N

)

Average

Std. Dev.

0 1 2 3 4 5 6 7 8

Time (s)

0

0.5

1

1.5

2

2.5

D
is

p
la

c
e
m

e
n
t
(m

m
)

Average

Std. Dev.

Figure 5.3: Average thrust-displacement characteristics of glenoid reaming in cancellous bone

can also result in computationally simpler models which is important for real-time haptic ap-

plications. In addition, considering the limitations of mechanistic modeling, there is no strong

evidence that empirical approaches can lead to inferior results compared to their mechanistic

counterparts. Based on these observations, an empirical approach is chosen as the method of

choice for modeling of glenoid reaming. However, the mathematical derivations required for

mechanistic modeling of glenoid reaming are additionally derived in Appendix A.

One factor that plays an important role in the modeling of bone machining operations is

the tool-bone contact volume. In operations such as drilling, the contact area is small and can

be estimated using the drill bit position and a piece-wise linear approximation of bone surface

[60], [86]. However, this becomes a formidable challenge in glenoid reaming due to the irregu-

5.2. Thrust-Feedrate Relation 73

lar 3D shape of glenoid surface and large contact volume between reamer and bone. Moreover,

the rate of reamer progression is very low especially in cortical bone (0.033 ± 0.007 mm/s)

which needs ultra-precise measurements to capture the contact area variations in short time

intervals. As a result, this information is not available in our calibration experiments. Since

understanding the instantaneous thrust-feedrate characteristics of glenoid reaming is unfeasible

without the knowledge of the contact volume, the above experimental results can only be used

to model the average behaviour of the operation.

Although bone machining characteristics cannot be fully related to a single mechanical

property, some studies have reported close relations between machining forces and bone den-

sity [194]–[196]. For this reason, 3D models of post-reamed scapulae were acquired using a

laser scan and compared to the previously obtained CT scans of the specimens to measure the

density of bone removed in each experiment.

Table 5.1 presents the density D information for each scapula as well as the average feedrate

f and apparent machining stiffness k that are observed in each experiment. Although statistical

analysis of this data shows no linear relation between the density and the apparent machining

stiffness, it reveals a linear correlation between the density and the feedrate, both in cortical

bone (ρ = −0.7852, p = 0.0642) and in cancellous bone (ρ = −0.9384, p = 0.0056). A related

point to consider is that cortical bone is associated with a weaker linear correlation compared to

the cancellous bone. This observation can be partially due to the robot compliance that causes

Table 5.1: Bone density, reamer feedrate and appearant machining stiffness observed in cali-
bration experiments

Specimen No. Cortical Bone Cancellous Bone

D (g/cc) f (mm/s) k (N/mm) D (g/cc) f (mm/s) k (N/mm)

1 1.52 0.037 58.24 0.55 0.25 44.06

2 1.54 0.035 83.28 0.41 0.28 40.70

3 1.61 0.021 84.34 0.72 0.16 50.42

4 1.40 0.038 81.06 0.45 0.26 48.42

5 1.58 0.026 53.66 0.62 0.23 27.28

6 1.30 0.039 83.10 0.48 0.25 39.45

74 Chapter 5. Modeling and Simulation of Gleonid Reaming

larger retrogressions when interfacing with the stiffer tissue i.e. cortical bone.

Using linear regression analysis, the relation between feedrate and density in cortical bone

takes the following form

f = −0.05D + 0.11, (5.1)

where the sum of squared residuals (R2) is 0.62 (Fig. 5.4). Similar equation can be derived for

cancellous bone as follows

f = −0.34D + 0.42, (5.2)

with R2 = 0.88, as illustrated by Fig. 5.5. It is important to note that the above equations are

derived based on experimental data that are collected using 52 N feed-force. Consequently, the

above equations must be appropriately scaled to predict feedrate when a different feed-force

is applied. Considering the reamer displacement trajectories in Figs. 5.2 and 5.3, it appears

that there is an approximately linear trend between thrust and feedrate. Therefore, a linear

scale should provide a fair modeling accuracy. However, better results can be obtained from

additional experimental results performed with different feed-forces.

Overall, given the level of complexity and challenges in modeling of glenoid reaming, the

above analyses appear to adequately describe the qualitative traits of this bone machining op-

eration. Comparing the Eqs. (5.1) and (5.2), an interesting trend is observed that the reamer

velocity in cancellous bone is on average 6.2 ± 0.08 times faster than that in cortical bone.

This can be effectively replicated with a haptic device and can help trainees learn the different

characteristics of reaming cortical and cancellous regions. In addition, the obtained equations

are computationally simple and can be easily integrated with the collision detection algorithm

developed in Chapter 4 without introducing any noticeable overhead in haptic rendering com-

putations. Moreover, since bone density can be estimated from clinical CT images [152],

[153], the need for high-resolution CT data is alleviated which in turn facilitates performing

patient-specific simulations.

Since the Eqs. (5.1) and (5.2) predict feedrate as a function of feed-force, they can be

5.2. Thrust-Feedrate Relation 75

1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6 1.65 1.7

Density (g/cc)

0

0.02

0.04

0.06

F
e
e
d
ra

te
 (

m
m

/s
)

Experimental Data

Estimation

Figure 5.4: Prediction of feedrate as a function of density in cortical bone

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8

Density (g/cc)

0

0.1

0.2

0.3

0.4

F
e
e
d
ra

te
 (

m
m

/s
)

Experimental Data

Estimation

Figure 5.5: Prediction of feedrate as a function of density in cancellous bone

directly utilized for admittance display haptic devices. This type of haptic devices sense the

force applied by the operator and constrain the operator’s position to match the appropriate

deflection of a simulated object or surface in a virtual world, whereas the impedance display

devices sense the operator’s position and generate a proper force feedback [110]. Therefore, a

proper haptic rendering algorithm for an impedance display device must predict the feed-force

as a function of feedrate. This can be addressed easily by interpreting the Eqs. (5.1) and (5.2)

in the form of a damper where the damping coefficient varies by bone density.

76 Chapter 5. Modeling and Simulation of Gleonid Reaming

5.3 Vibration

Vibration data was recorded for five specimens at 22050 Hz. A high-pass fourth-order Butter-

worth filter with a cut-off frequency of 0.2 Hz is employed to remove the gravity acceleration

included within the data, as suggested in [197]. Since human haptic perception is limited to

frequencies below 400 Hz [198], a low-pass filter with a cut-off frequency of 500 Hz is further

utilized to eliminate imperceptible high-frequency vibrations.

In order to analyze time-domain characteristics of the vibrations, the Root Mean Square

(grms) and Peak-to-Peak (gpk−pk) values of the filtered signals are computed. These values are

presented in Tab. 5.2 alongside the density of specimens that are repeated from Tab. 5.1. The

results indicate a large variation of grms and gpk−pk from one specimen to the other. Considering

the average values, it can be concluded that the average grms and gpk−pk for cortical bone are

0.3 ± 0.09 g and 4.93 ± 1.06 g, respectively, whereas the same values for cancellous bone

are actually higher with grms = 0.4 ± 0.07 g and gpk−pk = 5.28 ± 0.95 g. This unexpected

observation can be a result of the discontinuty in material properties of bone while reaming

cancellous bone because there is a layer of cortical bone remaining at the periphery of the

glenoid face which can escalate the vibrations even though the material close to the reamer

axis pose lower stiffness. Concerning with the effect of bone density on vibrations, no linear

correlation is found between density with neither grms nor gpk−pk.

Concerning with frequency-domain analysis of vibrations, Figs. 5.6 and 5.7 illustrate the

Table 5.2: Time-domain metrics measured for vibrations during reaming different specimens

Specimen No. Cortical Bone Cancellous Bone

D (g/cc) grms gpk−pk D (g/cc) grms gpk−pk

1 1.52 0.45 6.27 0.55 0.45 5.92

2 1.54 0.25 3.98 0.41 0.34 4.72

3 1.61 0.31 5.98 0.72 0.37 5.09

4 1.40 0.17 3.57 0.45 0.51 3.96

5 1.58 0.34 4.83 0.62 0.35 6.70

5.3. Vibration 77

0 200 400

Frequency (Hz)

-120

-110

-100

-90

-80

-70

-60

-50

P
o
w

e
r/

F
re

q
u
e
n
c
y
 (

d
B

/H
z
)

0 200 400

Frequency (Hz)

-130

-120

-110

-100

-90

-80

-70

-60

-50

P
o
w

e
r/

F
re

q
u
e
n
c
y
 (

d
B

/H
z
)

0 200 400

Frequency (Hz)

-120

-110

-100

-90

-80

-70

-60

P
o
w

e
r/

F
re

q
u
e
n
c
y
 (

d
B

/H
z
)

0 200 400

Frequency (Hz)

-120

-110

-100

-90

-80

-70

-60

-50

P
o
w

e
r/

F
re

q
u
e
n
c
y
 (

d
B

/H
z
)

0 200 400

Frequency (Hz)

-90

-85

-80

-75

-70

-65

-60

-55

-50

P
o
w

e
r/

F
re

q
u
e
n
c
y
 (

d
B

/H
z
)

Figure 5.6: Periodogram of vibrations during reaming cortical bone in five different specimens

0 200 400

Frequency (Hz)

-150

-140

-130

-120

-110

-100

-90

-80

-70

-60

-50

P
o
w

e
r/

F
re

q
u
e
n
c
y
 (

d
B

/H
z
)

0 200 400

Frequency (Hz)

-120

-110

-100

-90

-80

-70

-60

-50

P
o
w

e
r/

F
re

q
u
e
n
c
y
 (

d
B

/H
z
)

0 200 400

Frequency (Hz)

-180

-160

-140

-120

-100

-80

-60

-40

P
o
w

e
r/

F
re

q
u
e
n
c
y
 (

d
B

/H
z
)

0 200 400

Frequency (Hz)

-140

-130

-120

-110

-100

-90

-80

-70

-60

P
o
w

e
r/

F
re

q
u
e
n
c
y
 (

d
B

/H
z
)

0 200 400

Frequency (Hz)

-130

-120

-110

-100

-90

-80

-70

-60

-50

P
o
w

e
r/

F
re

q
u
e
n
c
y
 (

d
B

/H
z
)

Figure 5.7: Periodogram of vibrations during reaming cancellous bone in five different speci-
mens

periodogram of the filtered signals. Although these plots indicate different power spectrum

from one specimen to the other, they unanimously indicate that the highest power of vibrations

78 Chapter 5. Modeling and Simulation of Gleonid Reaming

has occurred at the high spectrum of frequencies. Nevertheless, no distinct dominant frequency

can be observed which conforms with the frequency-domain analysis presented for reaming

porcine glenoid in [105].

Since there is no distinct peaks in frequency spectrum of the data, analytic replication of

a realistic vibration feedback is unfeasible. Therefore, for the purpose of adding vibrations to

haptic feedback, a portion of recorded vibration signals for both cortical and cancellous bone

are selected and downsampled to 1 KHz to match the target haptic device refresh rate. The

signals should be also scaled to represent the average grms in each region and can be played

during haptic simulation. Figures 5.8 and 5.9 illustrate two sample vibration signals that can

be applied in simulation of glenoid reaming for cortical and cancellous regions, respectively.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time (s)

-1

-0.5

0

0.5

1

A
m

p
lit

u
d
e
 (

g
)

Figure 5.8: Sample vibration signal prepared for haptic simulation of reaming cortical bone

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time (s)

-1

-0.5

0

0.5

1

A
m

p
lit

u
d
e
 (

g
)

Figure 5.9: Sample vibration signal prepared for haptic simulation of reaming cancellous bone

5.4. Simulation of Glenoid Reaming 79

5.4 Simulation of Glenoid Reaming

The results presented in Sections 5.2 and 5.3 can be combined with the computational tools

developed in Chapters 2 – 4 to simulate glenoid reaming. As discussed in Section 1.6.2, the

simulator software employs OpenCL, OpenGL and OpenHaptics APIs to manage GPU-based

computations, graphics rendering and haptic interactions, respectively. The latter serves as

merely an example haptic API and can be easily replaced by different APIs such as CHAI 3D.

As the devices that are presently supported by OpenHaptics are limited to impedance displays,

the subsequent developments is focused on this type of haptic devices. However, they can be

readily extended to admittance displays, as well.

5.4.1 Integration of all Simulator Components

As shown by Fig. 5.10, the software starts by importing a previously segmented CT image of

bone as well as a 3D mesh model of reamer to construct the Voxmap and PointShell data struc-

tures in user-specified resolutions. These data structures are then transferred to GPU global

memory and will be used in every computing frames. Once the data initialization is completed,

the user can start the simulation by interacting with the haptic device. The haptic rendering

frames consist of updating the reamer positions based on the displacements of the haptic de-

vice end-effector and running collision detection followed by computing the force feedback.

The graphic rendering frames contain running marching cubes for the bone Voxmap that is

updated during collision detection, data exchange between OpenCL and OpenGL buffers and

drawing the reamer and bone surface meshes. As pointed out in Section 1.6.6, the marching

cubes algorithm is adopted from the online code available in [183].

The software has the duty to manage the above operations in a way that the target frame

rates for haptic and graphic rendering loops are reliably maintained. Since time-consuming

operations such as collision detection and marching cubes are accelerated using GPU comput-

ing, there is no major bottleneck to attain the target frame rates. However, the software must

80 Chapter 5. Modeling and Simulation of Gleonid Reaming

OpenGL Draw

Calls

OpenCL-OpenGL

Data Exchange
Marching Cubes

Send Force Add Vibration Compute Force

Read Position and

Orientation
Update Tool Pose

Collision

Detection

CT Data

Processing

Voxelization

Display Unit

Haptic Device

Voxmap PointShell

GPU Global Memory

Import Tool Mesh

Import CT Image

Initialization Functions

Graphic Rendering Functions

Haptic Rendering Functions

Figure 5.10: Data-flow in our simulator software

schedule these tasks appropriately such that collision detection and marching cubes are com-

pleted at least once within 1 ms and 33.3 ms time intervals, respectively. To address this, the

OpenCL option CL QUEUE OUT OF ORDER EXEC MODE ENABLE is utilized to allow GPU

to enqueue kernels without waiting for their completion. In this manner, several kernels can

be launched concurrently and the timings of the haptic and graphic rendering loops can be

controlled by the OpenCL host application. This scheduling can be easily handled in Open-

Haptics because this API generates at least two threads in host application: one high-priority

thread dedicated for haptic rendering that can enqueue the collision detection kernel, and an-

other thread to handle the rest of the computations including launching the marching cubes

kernel. This can also be addressed using a single-thread host application and a timer using the

algorithm given by Alg. 5.1.

It is worth mentioning that the OpenCL-OpenGL interoperability is also utilized in this

software. This feature allows OpenCL to pass the ownership of marching cubes output to

OpenGL without a need for neither CPU-GPU data transfers nor copying data within GPU

which can save significant computing time for the graphic rendering loop.

5.4. Simulation of Glenoid Reaming 81

1 Fhaptics ← 1000 , Fgraphics ← 30
2 Thaptics ←

1000
Fhaptics

, Tgraphics ←
1000

Fgraphics

3 while Simulator engaged do
4 tcurrent ← GetCurrentTime()
5 ∆thaptics ← tcurrent − tprevious

haptics

6 if ∆thaptics > Thaptics then
7 PerfromHapticsComputations()
8 tprevious

haptics ← tprevious
haptics + Thaptics

9 end
10 ∆tgraphics ← tcurrent − tprevious

graphics

11 if ∆tgraphics > Tgraphics then
12 PerfromGraphicsComputations()
13 tprevious

graphics ← tprevious
graphics + Tgraphics

14 end
15 end

Algorithm 5.1: Pseudocode for scheduling haptics and graphics computations

5.4.2 Simulation with a Haptic Device

In order to evaluate the effectiveness of the simulator software, experiments are performed

using a haptic device. Generally, the use of admittance display devices is preferable for a

glenoid reaming simulator due to relatively higher range of force and stiffness supported by

this type of haptic devices. However, our experiments use the PHANToM OMNI haptic device

which is known as a simple and cost-effective impedance display [199]. This device can exert

only 3.3 N force feedback in its nominal position and its maximum stiffness is limited to 2.31

N/mm. Therefore, considering the level of force and stiffness in glenoid reaming, this device

is not suitable to provide a realistic haptic feedback for this operation. Nevertheless, it is still a

viable option to evaluate the computational efficiency of our methods.

Towards the end, the Voxmap is constructed using clinical CT image of one of the spec-

imens that was utilized in the calibration experiments. The size of CT image voxels were

0.668 × 0.668 × 0.625 mm3; however, each voxel is subdivided by a factor of eight in each di-

rection in order to construct a fine Voxmap. As a result, the Voxmap grid size is 600×384×464

with more than 12.7 M filled cells. The average feedrate measured in cortical and cancellous

82 Chapter 5. Modeling and Simulation of Gleonid Reaming

layers of this specimen are 0.026 mm/s and 0.23 mm/s, respectively. Therefore, the damping

coefficient for these layers are set to 2000 Ns/mm for cortical bone and 267 Ns/mm for can-

cellous bone. The vibration signals depicted in Figs. 5.8 and 5.9 are also applied; however, the

amplitude of force feedback is scaled down by a factor of 1/25 to ensure the force feedback

amplitude does not exceed the limits of the device. Furthermore, a PointShell with almost 213

K sample points is constructed using a 6-separability voxelized model of the reamer obtained

with 0.1 mm voxel size. The hardware utilized for the test include a GeForce 970 GTX GPU

with 4 GB video memory and Core-i7 6700K CPU and 16 GB RAM. The computing time is

measured in microseconds using the high-resolution chrono clock available in C++ standard

library. The operating system used for the tests is Windows 10.

Figure 5.11 shows the computing time recorded for each haptic rendering frame during five

seconds of glenoid reaming simulation. It is evident that for majority of the simulation time, the

computing time is below 1 ms, with an average of 314.89 ± 158.61 µs. It should be noted that

the computing time exceeds the 1 ms threshold on a few occasions. This can be partially due

to the randomness of executing system instructions in Windows which can be fixed by using

precise timers such as Windows Multimedia Timers [200]. Furthermore, the average comput-

ing time recorded for graphic rendering loop is 21.74 ± 0.46 ms which is considerably lower

than the target 33.33 ms. Figure 5.12 depicts the computing time for each frame throughout

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Simulation Time (s)

0

0.2

0.4

0.6

0.8

1

1.2

C
o
m

p
u
ti
n
g
 T

im
e
 (

m
s
)

Figure 5.11: Computing time measured for haptic rendering frames

5.5. Summary 83

the simulation which clearly indicates the software is capable to consistently maintain 30 FPS

frame rate. While the haptic feedback realism is negatively affected by the PHANToM OMNI

limitations, the simulator software allows smooth graphical simulation of glenoid reaming and

provides high-fidelity visual feedback of the operation. Figure 5.13 illustrates snapshots of the

graphical environment and glenoid which has gone through a reaming operation.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Simulation Time (s)

20

21

22

23

C
o
m

p
u
ti
n
g
 T

im
e
 (

m
s
)

Figure 5.12: Computing time measured for graphic rendering frames

(a) Sample glenoid bone (b) Glenoid reaming (c) Resurfaced bone

Figure 5.13: Graphic representation of glenoid reaming

5.5 Summary

This chapter presented an empirical approach to model mechanics of glenoid reaming. It estab-

lished linear equations to predict reamer displacement as a function of bone density and feed-

84 Chapter 5. Modeling and Simulation of Gleonid Reaming

force in cortical and cancellous regions, which can be further utilized to effectively compute

haptic feedback during surgery simulation. The chapter also analyzed vibrations in glenoid

reaming and presented a method to replicate vibrations during haptic simulations. The de-

veloped methods can appropriately demonstrate the differences in characteristics of reaming

cortical and cancellous bone and are suitable for patient-specific simulations. This chapter also

explained how to consolidate all simulator components that were developed throughout this

thesis in one unified framework and how integrate this framework with a haptic device to per-

form simulations. The implementation results verified that the developed methods are capable

to reliably maintain target frame rates for realistic haptic and graphic simulations.

Chapter 6

Thesis Closure

This chapter reviews the thesis objectives, summarizes the work that has been undertaken to

address these objectives, discusses the strengths and limitations of this research, and outlines

current and future research projects that emanate from this research.

6.1 Summary

While TSA is a well-established surgery in the upper torso, many surgeons find this surgery

technically challenging primarily due to low practice volume. One of the most challenging

tasks in TSA is glenoid reaming which plays a determining role on the long-term outcome of

this surgery. The primary objective of this thesis was to develop a VR surgery simulator for this

task in order to provide surgeons with a high-volume of practice for this procedure without the

need for patients or cadavers. The development of VR surgery simulator for glenoid reaming

was, however, a complicated problem. As revealed by the literature review in Section 1.6, there

were gaps in the knowledge of the mechanics of glenoid reaming as well as paucity of effective

computational tools to effectively replicate this unique bone machining process. As a result,

various steps had to be undertaken to advance the methods in VR surgery simulation and also

gain an understanding of the mechanical aspects of glenoid reaming to realistically replicate

this procedure. Toward this end, throughout Chapters 2 – 5, several concrete contributions

85

86 Chapter 6. Thesis Closure

are introduced for different problems regarding processing CT data, voxelization, collision

detection, modeling of glenoid reaming and simulator software development.

In particular, Chapter 2 developed an algorithm to efficiently process CT data and describe

the geometry and material properties of bone for either simulation or FEA purposes. It showed

that the use of grid-based approaches and hashing techniques leads to a number of desirable

characteristics such as memory efficiency, robust numerical computations, implicit definitions

of CT voxels and facile voxel upsampling. As a result, it is possible to generate Cartesian

µFEMs with more than 36 M voxels within less than a minute using a commodity hardware.

Importantly, the algorithm demonstrated linear time complexity which ensures reasonable in-

crements in the computing time when dealing with larger data-sets.

Next, Chapter 3 developed a fast and flexible voxelization toolkit to convert triangle mesh

models into their voxelized counterparts. The developed toolkit features parallel execution of

an exact triangle-box overlap test which allows to rapidly convert any soup of triangle to an

accurate voxelized model, with either 26-separability or 6-separability topological properties.

As the toolkit is written in OpenCL, it is compatible with a wide-range of hardware from all

major vendors, making it possible to promptly yet reliably construct voxelized - and ultimately,

point cloud - representations of arbitrary objects that are modeled modeled by a triangle mesh.

Another important contribution of this thesis is a new VPS collision detection algorithm

that was developed in Chapter 4. This algorithm leverages several simple yet effective data

structures and methods, primarily in the form of GPU acceleration, VOI calculation, atomic

operations and grid computations to quickly identify tool-bone intersection and modify bone

geometry. The algorithm was proved to be superior, in terms of running time as well as memory

efficiency, compared to the latest variants of the VPS method. Interestingly, it’s running time

exhibits remarkably low sensitivity to the number of bone voxels which enables fast collision

detection in the presence of massively large data-sets. Such feature is not offered by any of

other variants of the VPS method, making our algorithm an exceptional candidate for high-

fidelity simulation of glenoid reaming and further, in a broad range of VR applications that

6.1. Summary 87

involve collision detection of complex geometries.

It is worth mentioning that the geometry altering mechanism in our collision detection

algorithm was shown to integrate effectively with the marching cubes algorithm to provide vi-

sual feedback of bone resurfacing. In particular, the implementation results in Section 5.4.2

showed that it is possible to reliably maintain 30 FPS frame rate and replicate material removal

on micro-level voxel data without a need for a top-of-the-line GPU. The results can be fur-

ther improved using faster implementations of marching cubes or other rendering algorithms.

Beyond the context of surgery simulation, this lends well to the computationally demanding

problem of computing Boolean operation between triangular meshes that is often required in

many computer-aided design and modeling applications.

In addition, this thesis presented one of the first attempts in modeling the mechanics of

glenoid reaming and its haptic simulation. In this regard, Chapter 5 utilized experimental data

obtained by robot-driven glenoid reaming and derived simple equations that predicts reamer

displacement as a function of bone density and feed-force. This chapter also studied vibrations

in glenoid reaming and inferred that there is no dominant vibration frequency within the range

of frequencies that is perceptible to humans. Interestingly, the findings of this chapter allowed

to successfully distinguish the characteristics of reaming cortical bone from cancellous bone.

Specifically, it became clear that reaming cancellous bone is attributed by 6.2±0.08 times faster

reamer feedrate and 1.52 ± 0.75 times higher vibration energy, compared to reaming cortical

bone with the same feed-force.

Chapter 5 also elucidated how to implement the above results to replicate glenoid reaming

using a haptic device. It established that the derived thrust-feedrate equations can be directly

implemented in an admittance display haptic device and discussed why this type of haptic de-

vices are more suitable to simulate glenoid reaming. It also outlined how to reinterpret the

equations for implementation in an impedance display haptic device, primarily by inferring

damping coefficients for cortical and cancellous bone and using them to predict thrust ampli-

tude as a function of reamer velocity. Besides, the chapter showed how to properly prepare

88 Chapter 6. Thesis Closure

vibrations and add them to the haptic feedback which plays an important role in increasing

simulation realism. The derived haptic rendering method was shown to integrate effectively

with the rest of computational tools developed for the simulator. As a result, the simulator was

able to reliably maintain the target 1000 Hz refresh rate for haptic rendering throughout the

simulation tests.

6.2 Strengths and Limitations

Most of the computational problems that were addressed in this thesis, such as CT data process-

ing, micro-level finite element modeling, voxelization, collision detection or haptic rendering,

have been widely studied previously in various engineering problems. These problems are

often characterized as computationally demanding due to presence of large size of process-

ing data, severe timing constraints and the need for high computational power. Taking this

into account, this thesis placed a particular emphasis on computational efficiency of methods

throughout the development of simulator components. As a result, the algorithms and com-

puter programs that were developed in this thesis offer high-level of performance compared to

the existing methods.

Another strength of the work presented in this thesis is that it widely employed OpenCL-

based GPU computing as the basis of many computational tasks. Presently, GPUs offer higher

number-crunching performance and power efficiency compared to CPUs and are more cost-

effective options for high-performance computing. In addition, there is no programming lan-

guage that can target as wide range of devices as OpenCL [124]. Therefore, the developments

in this thesis conform with the state-of-the-art trends in super-computing and the resulting com-

putational tools deliver an exceptional level of performance and versatility. As an evidence, the

running times reported for various computing tasks throughout this thesis were impressive

while they were obtained using a mid-range gaming desktop computer.

Although there is no generic rule to set the resolution for Voxmap and PointShell, it is

6.2. Strengths and Limitations 89

widely accepted that the higher the sampling resolutions, the better the simulation experience.

While this matter has been overlooked by the majority of previous works on orthopaedic sim-

ulators, the focus on computational efficiency of the algorithms have enabled this thesis to

extend the maximum attainable resolutions and potentially open the way for improving the

level of realism in virtually every hard-tissue interaction simulator. In this regard, the devel-

oped CT processing algorithm allows to conveniently upsample clinical CT voxels to desired

resolutions which serves as a step forward toward high-fidelity patient-specific simulations.

It is also important to note that this thesis utilized force-controlled glenoid reaming experi-

ments to model the mechanics of the operation in contrast with the previous studies on different

bone machining operations that have unanimously employed position-controlled experiments.

While it is true that mechanics of bone and metal machining are basically similar, one key

difference between them is that bone machining is operated by a surgeon who relies on force

feedback whereas metal machining is often performed by a machine that uses a predetermined

tool path without considering the cutting forces. Therefore, it appears that using a robot that is

programmed in force-control mode is a more effective way to mimic the real bone machining

operation and is more suitable for modeling purposes, rather than a CNC machine. Therefore,

it is believed that this new experimentation approach can lead to better understanding of various

bone machining operations in near future.

Despite the above strengths, the work presented in this thesis contains a number shortcom-

ings, especially regarding modeling of glenoid reaming. In particular, the thrust-feedrate equa-

tions derived in Chapter 5 were based on experimental data obtained with identical feed-force

trajectories. Linear scaling was suggested to predict the feedrate in case a different feed-force

is applied. However, the linear scaling is inferred merely through observation of the trend in

instantaneous thrust-displacements curves and is not strongly supported by experiments. In

addition, the instantaneous reamer-bone intersection volume was not measured during the ex-

periments and did not play a role in model derivation. Moreover, the vibration analysis did

not determine the effect of tool rotation and tool-bone intersection distinctly which could be

90 Chapter 6. Thesis Closure

especially useful in simulation of the time of contact between reamer and bone. It is important

to note that the experiments were performed using a serial robot manipulator with high compli-

ance. This resulted in undesirable reamer retrogression throughout the experiments, especially

during reaming cortical bone. Besides, this thesis did not discuss the torques which could be a

valuable feedback mode to increase the level of realism in simulation.

It should also be pointed out that the methods developed in this thesis depend heavily on

voxels. One of the disadvantages of voxels is the jagged representation of an object geometry

which leads to loss of accuracy in different computational tasks. In addition, the VPS collision

detection method suffers from the tunneling effect which refers to missing thin structures when

the tool movement is larger than the voxel size. This thesis also did not present any results

using a haptic device with a range of force and stiffness similar to the ones observed in glenoid

reaming.

6.3 Recommendations for Future Research

The results presented in this thesis open new doors to future research on surgery simulation

and biomechanics research in various directions. In the context of modeling of bone machin-

ing operations, this thesis suggests performing calibration experiments using robots with low

compliance and high stiffness. As bone machining operations are performed manually by sur-

geons, the use of robots for experiments appear to be a more effective approach to replicate

these operations, compared to CNC machines. It is worth mentioning that the robot should be

programmed in force-control mode and different levels of force should be applied during the

experiments. Besides, acquiring µCT image of specimens prior to experiments can be useful

for accurate measurement of bone material properties and also measurement of instantaneous

tool-bone intersection volume. It should be pointed out that the latter also requires precise

measurement of tool and bone position and orientation throughout the experiments.

Concerning with analytic modeling of glenoid reaming, this thesis suggests considering

6.3. Recommendations for Future Research 91

theoretical approaches in material scraping as the reamer spindle speed is significantly low and

material removal can be the result of rubbing bone surface instead of shearing. In addition, a

valuable extension of the current work is to model scapula mobility during glenoid reaming

and replicate its effects during haptic simulations. For haptic simulations of this operation, the

use of an admittance display device is recommended even though these devices are generally

more expensive than impedance displays. However, a future research to construct a custom and

affordable admittance display that is capable to handle the range of force and stiffness observed

in glenoid reaming will be extremely advantageous to replicate this operation realistically. Such

haptic device can generally beneficial for simulation of any stiff objects, as well.

In terms of the computational tools for the simulator software, the collision detection al-

gorithm can be improved in different ways. For example, although the proposed method for

VOI calculation is fast, it is conservative in a sense that it overestimates the intersection vol-

ume and results in culling only a portion of unnecessary threads. Therefore, a more accurate

VOI calculation method can further reduce the algorithm running time. In addition, the algo-

rithm does not update bone OBB as bone undergoes material removal. A method to rapidly

reconstruct bone OBB can lead to a tighter fit and can subsequently improve the accuracy of

broad-phase computations. Furthermore, the algorithm can be integrated with continuous col-

lision detection techniques such as internal bisection [193] in order to determine the exact time

of tool-bone contact and eliminate the unwanted tunneling effect.

It is difficult to expect that a VR simulator - irrespective of the level of fidelity it pro-

vides - become employed in a surgeon training program without validation studies. In fact,

as discussed in Chapter 1, one fundamental barrier for the use of simulation-based training in

orthopaedics is the lack of validated simulators [10]. Therefore, internal and face validity of

the developments of this thesis can be the focus an important future work. In addition, the use

of feedback from surgeons during using the simulator can be valuable to modify the simulator

design and enhance its practicality, as previously performed in [20], [29].

Regarding finite element modeling, the algorithm presented in Chapter 2 can be enhanced

92 Chapter 6. Thesis Closure

in several ways. Since the algorithm constructs hexahedral elements per CT voxels indepen-

dently, it can benefit from out-of-core methods for more efficient memory management. This

can be effectively combined by GPU parallelization to achieve higher computing performance.

Moreover, although automatic segmentation of CT images continues to remain a formidable

challenge, the algorithm can be integrated with image processing techniques to reduce man-

ual steps in converting CT data to FEMs. It is also noteworthy that the algorithm generates

equally shaped and sized elements which can lead to loss of accuracy in geometrical modeling.

Therefore, another possible extension of the current work can be focused on the generation of

adaptively-sized hexahedral elements that are possibly dimensioned through curvature track-

ing algorithms. However, this task is not trivial due to the occurrence of hanging nodes in the

generated mesh [201]. Evidently, all these future extensions would lead to the generation of

true hexahedral meshes as opposed to their present Cartesian aspect.

6.4 Significance

This thesis presented one of the first attempts to construct a VR surgery simulator for glenoid

reaming to be primarily used as a convenient tool for practicing one of the most challenging

tasks of TSA. While TSA continues to remain as a challenging orthopaedic surgery, the need

for this surgery is continuously growing [50]. Given the overall aging of the American pop-

ulation, the demand for TSA is predicted to increase by 333.3% in patients younger than 55

years and by 755.4% in older patients, from 2011 to 2030 [202]. Even though such projections

have not been reported for Canadians, it can be safely assumed that similar trends exist. It is

presently believed that using a VR surgery simulator can effectively increase surgeons’ vol-

ume of practice for this surgery and will ultimately translate into reduced procedure time and

revision rates of TSA. The work presented in this thesis also contributes advances in methods

and knowledge in the general area of surgery simulation and can be regarded as a step forward

toward wider implementation of this technology in surgeon training programs.

6.4. Significance 93

Beyond the context of surgery simulation, the algorithms developed in this thesis are ad-

vantageous to various engineering problems. With the continuous grow in computing power,

micro-level structural analysis of bone is becoming more popular. The Cartesian mesh gen-

erator presented in Chapter 2 serves as a fast and robust computational tool for construction

of hexahedral µFEMs and has been successfully applied in several micro-level finite element

studies of cancellous bone thus far [203]–[205]. This algorithm is also presented in [206]–

[208] and is made available online for public use [209].

The use of voxels in geometrical modeling is currently receiving a surge of interest. Over

the past few years, voxels have been utilized in many problems including skeleton extraction

from mesh [210], composite model representations of functionally gradient materials [211], 3D

printing [212], generation of porous surfaces [213], mesh repair [214], thickness analysis [215],

etc. The voxelization toolkit presented in Chapter 3 is one of the fastest and most versatile tools

that is currently available and can be effectively utilized to construct voxelized models. This

toolkit is also presented in [216], [217] and is made available online for public use [218].

Appendix A

Oblique Cutting Model for Glenoid

Reaming

The oblique cutting model introduced in Section 1.6.1 serves as the basis for many mechanistic

models that have been developed for various bone machining operations. This approach uses

infinitesimal elements on tool cutting lips and computes elementary cutting forces which are

then aggregated to compute thrust and torque. The resulting model is constituted by a set of

equations that are specific to geometry of the tool. Since these equations have not been derived

for glenoid reaming in the present literature, this appendix focuses on geometrical treatments

and mathematical derivations required for mechanistic modeling of this bone machining op-

eration. While mechanistic modeling is not utilized for modeling of glenoid reaming in this

thesis, the developments of this appendix can be used for future research toward theoretically

more profound modeling of this operation.

A.1 Reamer Geometry

The spherical glenoid reamer considered in this thesis contains five cutting lips. For an arbitrary

point A on a cutting lip, the radius r is defined as the distance from A to reamer axis, as shown

in Fig. A.1. For this reamer, the normal rake angle γn that was introduced in Fig. 1.4 is zero

94

A.1. Reamer Geometry 95

r

cutting lip

reamer axis

Figure A.1: A sample point on reamer cutting lip and its radial distance

for all points on the cutting lips. However, the clearance angle, which is defined between the

relief face and workpeice, is varying as a function of r. The clearance angle has an insignificant

effect on cutting forces and can be neglected in subsequent developments [60], [86]. There are

three other angles that play important roles in mechanics of oblique cutting and are described in

the remainder of this section. The subsequent developments are only presented for the curved

section of the cutting lips and can be easily extended to the flat sections, as well.

A.1.1 Web Angle

Web angle β is defined as the angle between radial direction and cutting lip, measured in xy

plane, as shown in Fig. A.2. Considering the triangle ABC and applying the law of sines, it

follows that
sin (π − β)

a
=

sinα
r

. (A.1)

Therefore, the web angle for this reamer can be expressed as

β = sin−1
(a

r
sinα

)
. (A.2)

96 Chapter A. Oblique CuttingModel for Glenoid Reaming

β

A

B

C

r

a

α

x

y

Figure A.2: Definition of web angle for reamer

It is noteworthy that α is specific to the reamer geometry and is equal to 9.46◦ for the reamer

considered in this thesis.

A.1.2 Point Angle

The point angle ε for an arbitrary point A on a reamer cutting lip is defined as the tangent to

the point, on yz plane. As it can be implied by Fig. A.3, this angle varies along the cutting

lip and can be calculated as a function of r. Each reamer cutting lip can be regarded as an arc

of an ellipse whose major and minor axes lengths are 2a and 2b, respectively. Therefore, the

following expression defines a cutting lip on yz plane

z2

b2 +
y2

a2 = 1, 0 ≤ z ≤ b, −a ≤ y ≤ a. (A.3)

A.1. Reamer Geometry 97

(a,0)

ε

z

y

(0,b)

A

Figure A.3: Definition of point angle for reamer

It is worth mentioning that for the reamer under consideration, a = 18.25 mm and b = 9mm.

Moving forward, the point A can be identified by
(
−b

a

√
a2 − r2, r

)
on the yz plane. In addition,

the tangent to the point A takes the form y = mz + c which must fulfill

z2

b2 +
(mz + c)2

a2 = 1, −b ≤ z ≤ 0, a ≤ y ≤ 0, (A.4)

whose roots are given by

z =
−b2mc ±

√
b2m2 + a2 − c2

a2m2 + b2 . (A.5)

According to the tangency condition, the expression b2m2 + a2 − c2 = 0 must hold true. As a

result, the intersection point can be found as
(
−b2m

c ,
a2

c

)
, which yields

yA

zA
= −

a2

b2m
→ m = −

a2zA

b2yA
. (A.6)

From the ellipse equation (A.3), it can be found zA = −b
a

√
a2 − r2 and yA = r. Therefore, the

slope of the tangent at A is given by m = a
r

√
a2 − r2, which ultimately concludes the following

expression for the point angle

ε = tan−1
(a

r

√
a2 − r2

)
. (A.7)

98 Chapter A. Oblique CuttingModel for Glenoid Reaming

A.1.3 Inclination Angle

Since the cutting lips do not intersect the reamer axis, there exists a non-zero inclination angle

on the rake face. Using ε and β, this angle can be defined as follows

λ = sin−1 (sin β cos µ sin ε + sin µ cos ε) , (A.8)

where µ is called cutting angle and will be defined later. The derivation of the above expression

can be found in [68], [219].

A.2 Coordinates Transformations in Oblique Cutting

In oblique cutting, there exists an acute angle λ between cutting edge and normal to tool ve-

locity vector V in a plane containing both V and cutting edge. This angle is the angle between

the cutting edge and x′ in Fig. A.4. To study forces at an arbitrary point A on cutting edge, a

Cartesian coordinate system x′y′z′ is considered at this point. In this coordinate system, y′ is

aligned with V and x′ is perpendicular to y′ in a plane defined by y′ and cutting edge i.e. the

plane on which λ is defined. Finally, z′ is made perpendicular to x′y′ plane. According to [61],

when the rake face comes into contact with the workpiece, two elementary forces, one tangen-

tial to the rake face d ft and one normal d fn to the face, are generated as a result of shearing

strain. These elementary forces can be described in x′y′z′ coordinate system as follows

d fx′

d fy′

d fz′

 =

− cos γn sin λ sin ηc cos λ − cos ηc sin γn sin λ

− cos γn cos λ cos ηc sin γn cos i + sin ηc sin λ

− sin γn cos ηc cos γn

 d fn

d ft

 , (A.9)

where ηc denotes the chip flow direction which is approximately equal to λ, according to the

chip flow law of Stabler [220]. The forces obtained in x′y′z′ coordinates must be transformed

to the machining coordinates system and aggregated to compute global thrust and torque.

A.2. Coordinates Transformations in Oblique Cutting 99

Workpiece

Rake Face

Relief Face
V

λ

γn

dfn dft

y´

z´

x´

Figure A.4: Coordinates system defined for elementary forces in oblique cutting

The machining coordinates system xyz is shown in Figs. A.2 and A.3 where x is along radial

direction and z is aligned with tool axis and global thrust. The axis y is made perpendicular

to the xz plane. When there is no feed-force applied, V is aligned with y which results in

coincidence of y′ and y. However, in presence of a feed-force, V is inclined downward and

can be decomposed into two components: Vn which is aligned with the z-axis and Vt which

corresponds to the tangential velocity and is aligned with y.

The angle between V and Vt or y and y′ measured in a plane perpendicular to the radial

direction and passing through the point A is called cutting angle µ which can be calculated as

follows

µ = tan−1
(

f
2πr

)
, (A.10)

where f denotes feed rate. One of the advantages of introducing this angle is facilitating finding

the rotation matrix between xyz and x′y′z′ coordinate systems which is denoted by R. Another

angle that helps finding such transformation matrix is the second Euler angle τ that is used to

100 Chapter A. Oblique CuttingModel for Glenoid Reaming

align x′ with y′. This angle can be calculated using the following expression

τ = cos−1
(
sin ε cos β

cos λ

)
. (A.11)

Using these angles, R becomes

R =

cos τ 0 − sin τ

sin τ sin µ cos µ cos τ sin µ

sin τ cos µ − sin µ cos τ cos µ

 , (A.12)

which can utilized to transform the elementary forces from oblique cutting coordinates to the

machining coordinates system.

A.3 Thrust and Torque in Glenoid Reaming

Once the elementary forces are transformed to the xyz coordinates systems, it is straightforward

to compute global thrust T and torque M as follows

T =

n∑
k=1

Nd fz,k, (A.13)

M =

n∑
k=1

Ndmk, (A.14)

where dmk = rkd fy,k represents the torque generated by an element, N = 5 indicates the number

of cutting lips, n is the number of elements imposed on each cutting lip, and the subscript k de-

notes one element. Considering rotation matrix described by (A.12), the following expression

A.3. Thrust and Torque in Glenoid Reaming 101

can be written for each element

 d fZ

dm

 =

 sin τ cos µ − sin µ cos τ cos µ

0 r 0

d fx′

d fy′

d fz′

 . (A.15)

Next, using (A.9) and substituting γn = 0, ηc = λ, it follows that

d fz = (− sin τ cos µ sin λ + sin µ cos λ)d fn

+(sin τ cos µ sin λ cos λ − sin µsin2λ + cos τ cos µ cos λ)d ft,
(A.16)

and

dm = (−r cos λ)d fn + (rsin2λ)d ft. (A.17)

The above expressions combined with (1.1) are sufficient to determine thrust and torque in

glenoid reaming.

Bibliography

[1] E. A. Halm, C. Lee, and M. R. Chassin, “Is volume related to outcome in health care?
A systematic review and methodologic critique of the literature,” Annals of internal
medicine, vol. 137, no. 6, pp. 511–520, 2002.

[2] A. B. Flood, W. R. Scott, and W. Ewy, “Does practice make perfect? Part I: The relation
between hospital volume and outcomes for selected diagnostic categories,” Medical
care, pp. 98–114, 1984.

[3] ——, “Does practice make perfect? Part II: The relation between volume and and out-
comes and other hospital characteristics,” Medical care, pp. 115–125, 1984.

[4] H. S. Luft, “The relation between surgical volume and mortality: an exploration of
causal factors and alternative models,” Medical care, pp. 940–959, 1980.

[5] H. S. Luft, J. P. Bunker, and A. C. Enthoven, “Should operations be regionalized? The
empirical relation between surgical volume and mortality,” New England Journal of
Medicine, vol. 301, no. 25, pp. 1364–1369, 1979.

[6] H. S. Luft, S. S. Hunt, and S. C. Maerki, “The volume-outcome relationship: practice-
makes-perfect or selective-referral patterns?” Health services research, vol. 22, no. 2,
p. 157, 1987.

[7] H. D. Taylor, D. A. Dennis, and H. S. Crane, “Relationship between mortality rates and
hospital patient volume for Medicare patients undergoing major orthopaedic surgery of
the hip, knee, spine, and femur,” The Journal of arthroplasty, vol. 12, no. 3, pp. 235–
242, 1997.

[8] J. D. Birkmeyer, A. E. Siewers, E. V. Finlayson, T. A. Stukel, F. L. Lucas, I. Batista,
H. G. Welch, and D. E. Wennberg, “Hospital volume and surgical mortality in the
United States,” New England Journal of Medicine, vol. 346, no. 15, pp. 1128–1137,
2002.

[9] Deaths and Mortality, https://www.cdc.gov/nchs/fastats/deaths.
htm, Accessed: 2018-11-07.

[10] G. W. Thomas, B. D. Johns, J. L. Marsh, and D. D. Anderson, “A review of the role
of simulation in developing and assessing orthopaedic surgical skills,” The Iowa Or-
thopaedic Journal, vol. 34, p. 181, 2014.

[11] R. J. Duvivier, J. van Dalen, A. M. Muijtjens, V. R. Moulaert, C. P. van der Vleuten, and
A. J. Scherpbier, “The role of deliberate practice in the acquisition of clinical skills,”
BMC Medical Education, vol. 11, no. 1, p. 101, 2011.

102

https://www.cdc.gov/nchs/fastats/deaths.htm
https://www.cdc.gov/nchs/fastats/deaths.htm

BIBLIOGRAPHY 103

[12] K. A. Ericsson, “Deliberate practice and the acquisition and maintenance of expert
performance in medicine and related domains,” Academic Medicine, vol. 79, no. 10,
S70–S81, 2004.

[13] ——, “Deliberate practice and acquisition of expert performance: a general overview,”
Academic Emergency Medicine, vol. 15, no. 11, pp. 988–994, 2008.

[14] W. C. McGaghie, S. B. Issenberg, M. E. R. Cohen, J. H. Barsuk, and D. B. Wayne,
“Does simulation-based medical education with deliberate practice yield better re-
sults than traditional clinical education? A meta-analytic comparative review of the
evidence,” Academic Medicine, vol. 86, no. 6, p. 706, 2011.

[15] U. Kühnapfel, H. K. Cakmak, and H. Maaß, “Endoscopic surgery training using vir-
tual reality and deformable tissue simulation,” Computers & Graphics, vol. 24, no. 5,
pp. 671–682, 2000.

[16] F. Neyret, R. Heiss, and F. Sénégas, “Realistic rendering of an organ surface in
real-time for laparoscopic surgery simulation,” The Visual Computer, vol. 18, no. 3,
pp. 135–149, 2002.

[17] T.-Y. Lee, C.-H. Lin, and H.-Y. Lin, “Computer-aided prototype system for nose
surgery,” IEEE Transactions on Information Technology in Biomedicine, vol. 5, no. 4,
pp. 271–278, 2001.

[18] N. Kusumoto, T. Sohmura, S. Yamada, K. Wakabayashi, T. Nakamura, and H. Yatani,
“Application of virtual reality force feedback haptic device for oral implant surgery,”
Clinical Oral Implants Research, vol. 17, no. 6, pp. 708–713, 2006.

[19] J. Wu, D. Wang, C. C. Wang, and Y. Zhang, “Toward stable and realistic haptic interac-
tion for tooth preparation simulation,” Journal of Computing and Information Science
in Engineering, vol. 10, no. 2, p. 021 007, 2010.

[20] A. K. Ho, H. Alsaffar, P. C. Doyle, H. M. Ladak, and S. K. Agrawal, “Virtual reality
myringotomy simulation with real-time deformation: Development and validity test-
ing,” The Laryngoscope, vol. 122, no. 8, pp. 1844–1851, 2012.

[21] Q. Wang, H. Chen, W. Wu, H.-Y. Jin, and P.-A. Heng, “Real-time mandibular angle re-
duction surgical simulation with haptic rendering,” IEEE Transactions on Information
Technology in Biomedicine, vol. 16, no. 6, pp. 1105–1114, 2012.

[22] C. K. Lam, K. Sundaraj, and M. N. Sulaiman, “Computer-based virtual reality simu-
lator for phacoemulsification cataract surgery training,” Virtual Reality, vol. 18, no. 4,
pp. 281–293, 2014.

[23] ABS to Require ACLS, ATLS and FLS for General Surgery Certification, https:
//www.cdc.gov/nchs/fastats/deaths.htm, Accessed: 2018-11-07.

[24] J. D. Mabrey, K. D. Reinig, and W. D. Cannon, “Virtual reality in orthopaedics: is it
a reality?” Clinical Orthopaedics and Related Research®, vol. 468, no. 10, pp. 2586–
2591, 2010.

[25] J. A. S. Shantz, J. R. Leiter, T. Gottschalk, and P. B. MacDonald, “The internal valid-
ity of arthroscopic simulators and their effectiveness in arthroscopic education,” Knee
Surgery, Sports Traumatology, Arthroscopy, vol. 22, no. 1, pp. 33–40, 2014.

https://www.cdc.gov/nchs/fastats/deaths.htm
https://www.cdc.gov/nchs/fastats/deaths.htm

104 BIBLIOGRAPHY

[26] J. D. Mabrey, S. D. Gillogly, J. R. Kasser, H. J. Sweeney, B. Zarins, H. Mevis, W. E.
Garrett Jr, R. Poss, and W. D. Cannon, “Virtual reality simulation of arthroscopy of the
knee,” Arthroscopy, vol. 18, no. 6, pp. 1–7, 2002.

[27] G. Megali, O. Tonet, M. Mazzoni, P. Dario, A. Vascellari, and M. Marcacci, “A new
tool for surgical training in knee arthroscopy,” in International Conference on Medical
Image Computing and Computer-Assisted Intervention, Springer, 2002, pp. 170–177.

[28] P.-A. Heng, C.-Y. Cheng, T.-T. Wong, W. Wu, Y. Xu, Y. Xie, Y.-P. Chui, K.-M. Chan,
and K.-S. Leung, “Application to anatomic visualization and orthopaedics training,”
Clinical Orthopaedics and Related Research®, vol. 442, pp. 5–12, 2006.

[29] M. Vankipuram, K. Kahol, A. McLaren, and S. Panchanathan, “A virtual reality simu-
lator for orthopedic basic skills: a design and validation study,” Journal of Biomedical
Informatics, vol. 43, no. 5, pp. 661–668, 2010.

[30] M.-D. Tsai, M.-S. Hsieh, and C.-H. Tsai, “Bone drilling haptic interaction for orthope-
dic surgical simulator,” Computers in Biology and Medicine, vol. 37, no. 12, pp. 1709–
1718, 2007.

[31] M.-S. Hsieh, M.-D. Tsai, and Y.-D. Yeh, “An amputation simulator with bone saw-
ing haptic interaction,” Biomedical Engineering: Applications, Basis and Communica-
tions, vol. 18, no. 05, pp. 229–236, 2006.

[32] M.-D. Tsai and M.-S. Hsieh, “Accurate visual and haptic burring surgery simulation
based on a volumetric model,” Journal of X-ray Science and Technology, vol. 18, no. 1,
pp. 69–85, 2010.

[33] M. Arbabtafti, M. Moghaddam, A. Nahvi, M. Mahvash, B. Richardson, and B. Shir-
inzadeh, “Physics-based haptic simulation of bone machining,” IEEE Transactions on
Haptics, vol. 4, no. 1, pp. 39–50, 2011.

[34] A. Danda, M. A. Kuttolamadom, and B. L. Tai, “A mechanistic force model for simu-
lating haptics of hand-held bone burring operations,” Medical Engineering & Physics,
vol. 49, pp. 7–13, 2017.

[35] A. Karelse, S. Leuridan, A. Van Tongel, I. M. Piepers, P. Debeer, and L. F. De Wilde,
“A glenoid reaming study: how accurate are current reaming techniques?” Journal of
Shoulder and Elbow Surgery, vol. 23, no. 8, pp. 1120–1127, 2014.

[36] M. E. Torchia, R. H. Cofield, and C. R. Settergren, “Total shoulder arthroplasty with
the Neer prosthesis: long-term results,” Journal of Shoulder and Elbow Surgery, vol. 6,
no. 6, pp. 495–505, 1997.

[37] M. A. Wirth and C. A. Rockwood Jr, “Complications of total shoulder-replacement
arthroplasty,” The Journal of Bone and Joint Surgery, vol. 78, no. 4, pp. 603–616,
1996.

[38] P. Y. Chin, J. W. Sperling, R. H. Cofield, and C. Schleck, “Complications of total shoul-
der arthroplasty: are they fewer or different?” Journal of Shoulder and Elbow Surgery,
vol. 15, no. 1, pp. 19–22, 2006.

BIBLIOGRAPHY 105

[39] K. I. Bohsali, M. A. Wirth, and C. A. Rockwood Jr, “Complications of total shoulder
arthroplasty,” The Journal of Bone and Joint Surgery, vol. 88, no. 10, pp. 2279–2292,
2006.

[40] I. Szabo, G. Walch, et al., “Factors affecting cemented glenoid component loosening
in total shoulder arthroplasty,” International Journal of Shoulder Surgery, vol. 1, no. 1,
p. 23, 2007.

[41] F. A. Matsen III, J. Clinton, J. Lynch, A. Bertelsen, and M. L. Richardson, “Glenoid
component failure in total shoulder arthroplasty,” The Journal of Bone and Joint
Surgery, vol. 90, no. 4, pp. 885–896, 2008.

[42] G. Walch, A. A. Young, P. Boileau, M. Loew, D. Gazielly, and D. Molé, “Patterns
of loosening of polyethylene keeled glenoid components after shoulder arthroplasty
for primary osteoarthritis: results of a multicenter study with more than five years of
follow-up,” The Journal of Bone and Joint Surgery, vol. 94, no. 2, pp. 145–150, 2012.

[43] B. J. Brewer, R. Wubben, and G. Carrera, “Excessive retroversion of the glenoid cavity.
A cause of non-traumatic posterior instability of the shoulder.,” The Journal of Bone
and Joint Surgery, vol. 68, no. 5, pp. 724–731, 1986.

[44] D. Weishaupt, M. Zanetti, R. W. Nyffeler, C. Gerber, and J. Hodler, “Posterior glenoid
rim deficiency in recurrent (atraumatic) posterior shoulder instability,” Skeletal Radiol-
ogy, vol. 29, no. 4, pp. 204–210, 2000.

[45] G. R. Williams Jr, K. L. Wong, M. D. Pepe, V. Tan, D. Silverberg, M. L. Ramsey,
A. Karduna, and J. P. Iannotti, “The effect of articular malposition after total shoulder
arthroplasty on glenohumeral translations, range of motion, and subacromial impinge-
ment,” Journal of Shoulder and Elbow Surgery, vol. 10, no. 5, pp. 399–409, 2001.

[46] C. S. Radnay, K. J. Setter, L. Chambers, W. N. Levine, L. U. Bigliani, and C. S. Ahmad,
“Total shoulder replacement compared with humeral head replacement for the treat-
ment of primary glenohumeral osteoarthritis: a systematic review,” Journal of Shoulder
and Elbow Surgery, vol. 16, no. 4, pp. 396–402, 2007.

[47] G. S. Lewis and A. D. Armstrong, “Glenoid spherical orientation and version,” Journal
of Shoulder and Elbow Surgery, vol. 20, no. 1, pp. 3–11, 2011.

[48] D. Nguyen, L. M. Ferreira, J. R. Brownhill, G. J. King, D. S. Drosdowech, K. J. Faber,
and J. A. Johnson, “Improved accuracy of computer assisted glenoid implantation in to-
tal shoulder arthroplasty: an in-vitro randomized controlled trial,” Journal of Shoulder
and Elbow Surgery, vol. 18, no. 6, pp. 907–914, 2009.

[49] Shoulder Joint Replacement, https : / / orthoinfo . aaos . org / en /
treatment/shoulder-joint-replacement, Accessed: 2018-11-07.

[50] S. H. Kim, B. L. Wise, Y. Zhang, and R. M. Szabo, “Increasing incidence of shoulder
arthroplasty in the United States,” The Journal of Bone and Joint Surgery, vol. 93,
no. 24, pp. 2249–2254, 2011.

[51] P. Brett, C. Fraser, M. Hennigan, M. Griffiths, and Y. Kamel, “Automatic surgical tools
for penetrating flexible tissues,” IEEE Engineering in Medicine and Biology Magazine,
vol. 14, no. 3, pp. 264–270, 1995.

https://orthoinfo.aaos.org/en/treatment/shoulder-joint-replacement
https://orthoinfo.aaos.org/en/treatment/shoulder-joint-replacement

106 BIBLIOGRAPHY

[52] F. Ong and K. Bouazza-Marouf, “The detection of drill bit break-through for the
enhancement of safety in mechatronic assisted orthopaedic drilling,” Mechatronics,
vol. 9, no. 6, pp. 565–588, 1999.

[53] E. Jantunen, “A summary of methods applied to tool condition monitoring in drilling,”
International Journal of Machine Tools and Manufacture, vol. 42, no. 9, pp. 997–1010,
2002.

[54] G. Augustin, S. Davila, K. Mihoci, T. Udiljak, D. S. Vedrina, and A. Antabak, “Thermal
osteonecrosis and bone drilling parameters revisited,” Archives of Orthopaedic and
Trauma Surgery, vol. 128, no. 1, pp. 71–77, 2008.

[55] S. Kasiri, G. Reilly, and D. Taylor, “Wedge indentation fracture of cortical bone: exper-
imental data and predictions,” Journal of Biomechanical Engineering, vol. 132, no. 8,
p. 081 009, 2010.

[56] D. Kendoff, M. Citak, M. J. Gardner, T. Stübig, C. Krettek, and T. Hüfner, “Improved
accuracy of navigated drilling using a drill alignment device,” Journal of Orthopaedic
Research, vol. 25, no. 7, pp. 951–957, 2007.

[57] H. Thompson, “Effect of drilling into bone.,” Journal of Oral Surgery, vol. 16, no. 1,
pp. 22–30, 1958.

[58] C. Jacob, J. Berry, M. Pope, and F. Hoaglund, “A study of the bone machining process-
drilling,” Journal of Biomechanics, vol. 9, no. 5, pp. 345–349, 1976.

[59] M. B. Abouzgia and D. F. James, “Temperature rise during drilling through bone.,”
International Journal of Oral & Maxillofacial Implants, vol. 12, no. 3, 1997.

[60] J. Lee, B. A. Gozen, and O. B. Ozdoganlar, “Modeling and experimentation of bone
drilling forces,” Journal of Biomechanics, vol. 45, no. 6, pp. 1076–1083, 2012.

[61] M. E. Merchant, “Mechanics of the metal cutting process. I. Orthogonal cutting and a
type 2 chip,” Journal of Applied Physics, vol. 16, no. 5, pp. 267–275, 1945.

[62] M.-B. Lazar and P. Xirouchakis, “Mechanical load distribution along the main cut-
ting edges in drilling,” Journal of Materials Processing Technology, vol. 213, no. 2,
pp. 245–260, 2013.

[63] T. Childs, K. Maekawa, T. Obikawa, and Y. Yamane, Metal machining: theory and
applications. Butterworth-Heinemann, 2000.

[64] V. P. Astakhov, Geometry of single-point turning tools and drills: fundamentals and
practical applications. Springer Science & Business Media, 2010.

[65] Y. Altintas, Manufacturing automation: metal cutting mechanics, machine tool vibra-
tions, and CNC design. Cambridge University Press, 2012.

[66] M. Ucar and Y. Wang, “End-milling machinability of a carbon fiber reinforced lami-
nated composite,” Journal of Advanced Materials, vol. 37, no. 4, pp. 46–52, 2005.

[67] R. Zitoune, F. Collombet, F. Lachaud, R. Piquet, and P. Pasquet, “Experiment-
calculation comparison of the cutting conditions representative of the long fiber com-
posite drilling phase,” Composites Science and Technology, vol. 65, no. 3-4, pp. 455–
466, 2005.

BIBLIOGRAPHY 107

[68] M.-B. Lazar, “Cutting force modelling for drilling of fiber-reinforced composites,” PhD
thesis, École Polytechnique Fédérale de Lausanne, 2012.

[69] V. Chandrasekharan, S. Kapoor, and R. DeVor, “A mechanistic approach to predicting
the cutting forces in drilling: with application to fiber-reinforced composite materials,”
Journal of Engineering for Industry, vol. 117, no. 4, pp. 559–570, 1995.

[70] G. Caprino and L. Nele, “Cutting forces in orthogonal cutting of unidirectional GFRP
composites,” Journal of Engineering Materials and Technology, vol. 118, no. 3,
pp. 419–425, 1996.

[71] V. Chandrasekharan, S. Kapoor, and R. DeVor, “A mechanistic model to predict the
cutting force system for arbitrary drill point geometry,” Journal of Manufacturing Sci-
ence and Engineering, vol. 120, no. 3, pp. 563–570, 1998.

[72] A. Langella, L. Nele, and A. Maio, “A torque and thrust prediction model for drilling of
composite materials,” Composites Part A: Applied Science and Manufacturing, vol. 36,
no. 1, pp. 83–93, 2005.

[73] M.-B. Lazar and P. Xirouchakis, “Experimental analysis of drilling fiber reinforced
composites,” International Journal of Machine Tools and Manufacture, vol. 51, no. 12,
pp. 937–946, 2011.

[74] D. Liu, Y. Tang, and W. Cong, “A review of mechanical drilling for composite lami-
nates,” Composite Structures, vol. 94, no. 4, pp. 1265–1279, 2012.

[75] M. Marco, M. Rodrı́guez-Millán, C. Santiuste, E. Giner, and M. H. Miguélez, “A re-
view on recent advances in numerical modelling of bone cutting,” Journal of the Me-
chanical Behavior of Biomedical Materials, vol. 44, pp. 179–201, 2015.

[76] L. Yanping, Y. Dedong, C. Xiaojun, W. Xudong, S. Guofang, and W. Chengtao, “Sim-
ulation and evaluation of a bone sawing procedure for orthognathic surgery based on
an experimental force model,” Journal of Biomechanical Engineering, vol. 136, no. 3,
p. 034 501, 2014.

[77] ——, “Development and validation of a surgical training simulator with haptic feed-
back for learning bone-sawing skill,” Journal of Biomedical Informatics, vol. 48,
pp. 122–129, 2014.

[78] A. Pourkand, N. Zamani, and D. Grow, “Mechanical model of orthopaedic drilling for
augmented-haptics-based training,” Computers in Biology and Medicine, 2017.

[79] T. MacAvelia, M. Salahi, M. Olsen, M. Crookshank, E. H. Schemitsch, A. Ghasempoor,
F. Janabi-Sharifi, and R. Zdero, “Biomechanical measurements of surgical drilling
force and torque in human versus artificial femurs,” Journal of Biomechanical Engi-
neering, vol. 134, no. 12, p. 124 503, 2012.

[80] D. Morris, C. Sewell, F. Barbagli, K. Salisbury, N. H. Blevins, and S. Girod, “Visuohap-
tic simulation of bone surgery for training and evaluation,” IEEE Computer Graphics
and Applications, vol. 26, no. 6, 2006.

108 BIBLIOGRAPHY

[81] J. Wu, G. Yu, D. Wang, Y. Zhang, and C. C. Wang, “Voxel-based interactive haptic sim-
ulation of dental drilling,” in ASME 2009 International Design Engineering Technical
Conferences and Computers and Information in Engineering Conference, American
Society of Mechanical Engineers, 2009, pp. 39–48.

[82] F. Zheng, W. F. Lu, Y. San Wong, and K. W. C. Foong, “An analytical drilling force
model and GPU-accelerated haptics-based simulation framework of the pilot drilling
procedure for micro-implants surgery training,” Computer Methods and Programs in
Biomedicine, vol. 108, no. 3, pp. 1170–1184, 2012.

[83] ——, “Graphic processing units (GPUs)-based haptic simulator for dental implant
surgery,” Journal of Computing and Information Science in Engineering, vol. 13, no. 4,
p. 041 005, 2013.

[84] M. Razavi, H. Talebi, M. Zareinejad, and M. Dehghan, “A GPU-implemented physics-
based haptic simulator of tooth drilling,” The International Journal of Medical Robotics
and Computer Assisted Surgery, vol. 11, no. 4, pp. 476–485, 2015.

[85] S. Chan, P. Li, G. Locketz, K. Salisbury, and N. H. Blevins, “High-fidelity haptic and
visual rendering for patient-specific simulation of temporal bone surgery,” Computer
Assisted Surgery, vol. 21, no. 1, pp. 85–101, 2016.

[86] J. Sui, N. Sugita, K. Ishii, K. Harada, and M. Mitsuishi, “Mechanistic modeling of
bone-drilling process with experimental validation,” Journal of Materials Processing
Technology, vol. 214, no. 4, pp. 1018–1026, 2014.

[87] N. P. Dillon, L. B. Kratchman, M. S. Dietrich, R. F. Labadie, R. J. Webster III, and
T. J. Withrow, “An experimental evaluation of the force requirements for robotic mas-
toidectomy,” Otology & Neurotology, vol. 34, no. 7, e93, 2013.

[88] K. Alam, A. Mitrofanov, and V. V. Silberschmidt, “Finite element analysis of forces
of plane cutting of cortical bone,” Computational Materials Science, vol. 46, no. 3,
pp. 738–743, 2009.

[89] T. Childs and D. Arola, “Machining of cortical bone: Simulations of chip formation me-
chanics using metal machining models,” Machining Science and Technology, vol. 15,
no. 2, pp. 206–230, 2011.

[90] W. A. Lughmani, K. Bouazza-Marouf, and I. Ashcroft, “Finite element modeling and
experimentation of bone drilling forces,” in Journal of Physics: Conference Series, IOP
Publishing, vol. 451, 2013, p. 012 034.

[91] C. Santiuste, M. Rodriguez-Millan, E. Giner, and H. Miguelez, “The influence of
anisotropy in numerical modeling of orthogonal cutting of cortical bone,” Composite
Structures, vol. 116, pp. 423–431, 2014.

[92] S. Li, A. Abdel-Wahab, E. Demirci, and V. V. Silberschmidt, “Penetration of cutting
tool into cortical bone: experimental and numerical investigation of anisotropic me-
chanical behaviour,” Journal of Biomechanics, vol. 47, no. 5, pp. 1117–1126, 2014.

[93] D. Umbrello, R. M’Saoubi, and J. Outeiro, “The influence of Johnson–Cook material
constants on finite element simulation of machining of AISI 316L steel,” International
Journal of Machine Tools and Manufacture, vol. 47, no. 3-4, pp. 462–470, 2007.

BIBLIOGRAPHY 109

[94] C. Duan, T. Dou, Y. Cai, and Y. Li, “Finite element simulation and experiment of
chip formation process during high speed machining of AISI 1045 hardened steel,”
International Journal on Production and Industrial Engineering, vol. 2, no. 1, p. 28,
2011.

[95] A. Molinari, R. Cheriguene, and H. Miguelez, “Contact variables and thermal effects
at the tool–chip interface in orthogonal cutting,” International Journal of Solids and
Structures, vol. 49, no. 26, pp. 3774–3796, 2012.

[96] B. Takabi and B. L. Tai, “A review of cutting mechanics and modeling techniques for
biological materials,” Medical Engineering & Physics, vol. 45, pp. 1–14, 2017.

[97] W. McMahan and K. J. Kuchenbecker, “Haptic Displayof Realistic Tool Contact via
Dynamically Compensated Control of a Dedicated Actuator,” in IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, 2009, pp. 3170–3177.

[98] M. Elbestawi, F. Ismail, R. Du, and B. Ullagaddi, “Modelling machining dynamics in-
cluding damping in the tool-workpiece interface,” Journal of Engineering for Industry,
vol. 116, no. 4, pp. 435–439, 1994.

[99] J. A. Yang, V. Jaganathan, and R. Du, “A new dynamic model for drilling and reaming
processes,” International Journal of Machine Tools and Manufacture, vol. 42, no. 2,
pp. 299–311, 2002.

[100] H. Paris, S. Tichkiewitch, and G. Peigne, “Modelling the vibratory drilling process to
foresee cutting parameters,” CIRP Annals-Manufacturing Technology, vol. 54, no. 1,
pp. 367–370, 2005.

[101] N. Guibert, H. Paris, and J. Rech, “A numerical simulator to predict the dynamical
behavior of the self-vibratory drilling head,” International Journal of Machine Tools
and Manufacture, vol. 48, no. 6, pp. 644–655, 2008.

[102] A. Jiménez, M. Arizmendi, and W. E. Cumbicus, “Model for the prediction of low-
frequency lateral vibrations in drilling process with pilot hole,” The International Jour-
nal of Advanced Manufacturing Technology, vol. 96, no. 5-8, pp. 1971–1990, 2018.

[103] A. Ghasemloonia, S. Baxandall, K. Zareinia, J. T. Lui, J. C. Dort, G. R. Sutherland,
and S. Chan, “Evaluation of haptic interfaces for simulation of drill vibration in virtual
temporal bone surgery,” Computers in Biology and Medicine, vol. 78, pp. 9–17, 2016.

[104] K. Yu, S. Iwata, K. Ohnishi, S. Usuda, T. Nakagawa, and H. Kawana, “Modeling and
experimentation of drilling vibration for implant cutting force presenting system,” in
Advanced Motion Control (AMC), 2014 IEEE 13th International Workshop on, IEEE,
2014, pp. 711–716.

[105] J. R. Kusins, J. A. Strelzow, M.-E. LeBel, and L. M. Ferreira, “Development of a vi-
bration haptic simulator for shoulder arthroplasty,” International Journal of Computer
Assisted Radiology and Surgery, pp. 1–14, 2018.

[106] M. Sharma, “Experimental Determination of Motion Paramters and Path Forces of
Robot-Driven Glenoid Reaming,” Master’s thesis, The University of Western Ontario,
2018.

110 BIBLIOGRAPHY

[107] Unity, https://unity3d.com/, Accessed: 2018-11-07.

[108] What is Unreal Engine 4, https://www.unrealengine.com/en-US/what-
is-unreal-engine-4, Accessed: 2018-11-07.

[109] N. Ghrairi, S. Kpodjedo, A. Barrak, F. Petrillo, and F. Khomh, “The State of Prac-
tice on Virtual Reality (VR) Applications: An Exploratory Study on Github and Stack
Overflow,” in 2018 IEEE International Conference on Software Quality, Reliability and
Security (QRS), IEEE, 2018, pp. 356–366.

[110] B. Siciliano and O. Khatib, Handbook of robotics. Springer, 2016.

[111] A. Williams, C++ concurrency in action. Manning, 2012.

[112] Open Haptics Developer Software, https://www.3dsystems.com/haptics-
devices/openhaptics, Accessed: 2018-11-07.

[113] CHAI3D, http://www.chai3d.org/, Accessed: 2018-11-07.

[114] OpenGL - The Industry Standard for High Performance Graphics, https://www.
opengl.org/, Accessed: 2018-11-07.

[115] VTK - The Visualization Toolkit, https://www.vtk.org/, Accessed: 2018-11-07.

[116] G. Pratx and L. Xing, “GPU computing in medical physics: A review,” Medical
Physics, vol. 38, no. 5, pp. 2685–2697, 2011.

[117] H. Courtecuisse, H. Jung, J. Allard, C. Duriez, D. Y. Lee, and S. Cotin, “GPU-based
real-time soft tissue deformation with cutting and haptic feedback,” Progress in Bio-
physics and Molecular Biology, vol. 103, no. 2-3, pp. 159–168, 2010.

[118] Z. A. Taylor, M. Cheng, and S. Ourselin, “High-speed nonlinear finite element analysis
for surgical simulation using graphics processing units,” IEEE Transactions on Medical
Imaging, vol. 27, no. 5, pp. 650–663, 2008.

[119] O. Comas, Z. A. Taylor, J. Allard, S. Ourselin, S. Cotin, and J. Passenger, “Effi-
cient nonlinear FEM for soft tissue modelling and its GPU implementation within the
open source framework SOFA,” in International Symposium on Biomedical Simulation,
Springer, 2008, pp. 28–39.

[120] C. Dick, J. Georgii, and R. Westermann, “A real-time multigrid finite hexahedra
method for elasticity simulation using CUDA,” Simulation Modelling Practice and
Theory, vol. 19, no. 2, pp. 801–816, 2011.

[121] G. Echegaray, I. Herrera, I. Aguinaga, C. Buchart, and D. Borro, “A brain surgery
simulator,” IEEE computer Graphics and Applications, vol. 34, no. 3, pp. 12–18, 2014.

[122] CUDA Toolkit Documentation, https://docs.nvidia.com/cuda/, Accessed:
2018-11-07.

[123] The open standard for parallel programming of heterogeneous systems, https://
www.khronos.org/opencl/, Accessed: 2018-11-07.

[124] M. Scarpino, OpenCL in action. Manning, 2011.

[125] The OpenCL C Specification, https : / / www . khronos . org / registry /
OpenCL/specs/opencl-1.2.pdf, Accessed: 2018-11-07.

https://unity3d.com/
https://www.unrealengine.com/en-US/what-is-unreal-engine-4
https://www.unrealengine.com/en-US/what-is-unreal-engine-4
https://www.3dsystems.com/haptics-devices/openhaptics
https://www.3dsystems.com/haptics-devices/openhaptics
http://www.chai3d.org/
https://www.opengl.org/
https://www.opengl.org/
https://www.vtk.org/
https://docs.nvidia.com/cuda/
https://www.khronos.org/opencl/
https://www.khronos.org/opencl/
https://www.khronos.org/registry/OpenCL/specs/opencl-1.2.pdf
https://www.khronos.org/registry/OpenCL/specs/opencl-1.2.pdf

BIBLIOGRAPHY 111

[126] M. Lin and S. Gottschalk, “Collision detection between geometric models: A survey,”
in Proc. of IMA Conference on Mathematics of Surfaces, vol. 1, 1998, pp. 602–608.

[127] P. Jiménez, F. Thomas, and C. Torras, “3D collision detection: a survey,” Computers &

Graphics, vol. 25, no. 2, pp. 269–285, 2001.

[128] M. Teschner, S. Kimmerle, B. Heidelberger, G. Zachmann, L. Raghupathi, A.
Fuhrmann, M.-P. Cani, F. Faure, N. Magnenat-Thalmann, W. Strasser, et al., “Colli-
sion detection for deformable objects,” in Computer Graphics Forum, Wiley Online
Library, vol. 24, 2005, pp. 61–81.

[129] S. Kockara, T. Halic, K. Iqbal, C. Bayrak, and R. Rowe, “Collision detection: A sur-
vey,” in International Conference on Systems, Man and Cybernetics, IEEE, 2007,
pp. 4046–4051.

[130] W. A. McNeely, K. D. Puterbaugh, and J. J. Troy, “Six degree-of-freedom haptic ren-
dering using voxel sampling,” in Proceedings of the 26th Annual Conference on Com-
puter Graphics and Interactive Techniques, ACM Press/Addison-Wesley Publishing
Co., 1999, pp. 401–408.

[131] M. Renz, C. Preusche, M. Pötke, H.-P. Kriegel, and G. Hirzinger, “Stable haptic inter-
action with virtual environments using an adapted voxmap-pointshell algorithm,” in In
Proc. Eurohaptics, 2001.

[132] W. A. McNeely, K. D. Puterbaugh, and J. J. Troy, “Voxel-based 6-DOF haptic render-
ing improvements,” Haptics-e, 2006.

[133] M. Sagardia, T. Hulin, C. Preusche, and G. Hirzinger, “Improvements of the
voxmap-pointshell algorithm-fast generation of haptic data-structures,” in 53rd IWK-
Internationales Wissenschaftliches Kolloquium, Ilmenau, Germany, 2008.

[134] H. Xu and J. Barbic, “Adaptive 6-DOF haptic contact stiffness using the gauss map,”
IEEE Transactions on Haptics, no. 3, pp. 323–332, 2016.

[135] J. Barbič and D. L. James, “Six-DOF haptic rendering of contact between geomet-
rically complex reduced deformable models,” IEEE Transactions on Haptics, vol. 1,
no. 1, 2008.

[136] K. Moustakas, “6DOF haptic rendering using distance maps over implicit representa-
tions,” Multimedia Tools and Applications, vol. 75, no. 8, pp. 4543–4557, 2016.

[137] H. Xu, Y. Zhao, and J. Barbic, “Implicit multibody penalty-baseddistributed contact,”
IEEE Transactions on Visualization & Computer Graphics, no. 9, pp. 1266–1279,
2014.

[138] H. Xu and J. Barbič, “6-DOF Haptic Rendering Using Continuous Collision Detection
between Points and Signed Distance Fields,” IEEE Transactions on Haptics, vol. 10,
no. 2, pp. 151–161, 2017.

[139] B. H. M. T. M. Gross, “Real-time volumetric intersections of deforming objects,” in
Vision, Modeling, and Visualization: Proceedings, 2003, p. 461.

[140] B. Heidelberger, M. Teschner, and M. Gross, “Detection of collisions and self-
collisions using image-space techniques,” Journal of WSCG, vol. 12, no. 3, pp. 145–
152, 2004.

112 BIBLIOGRAPHY

[141] T. D. Tang, “Algorithms for collision detection and avoidance for five-axis NC machin-
ing: a state of the art review,” Computer-Aided Design, vol. 51, pp. 1–17, 2014.

[142] H. T. Yau, L. S. Tsou, and Y. C. Tong, “Adaptive NC simulation for multi-axis solid
machining,” Computer-Aided Design and Applications, vol. 2, no. 1-4, pp. 95–104,
2005.

[143] T. Akenine-Möllser, “Fast 3D triangle-box overlap testing,” Journal of Graphics Tools,
vol. 6, no. 1, pp. 29–33, 2001.

[144] Z. Dong, W. Chen, H. Bao, H. Zhang, and Q. Peng, “Real-time voxelization for com-
plex polygonal models,” in 12th Pacific Conference on Computer Graphics and Appli-
cations, IEEE, 2004, pp. 43–50.

[145] E. Eisemann and X. Décoret, “Fast scene voxelization and applications,” in Proceed-
ings of the 2006 symposium on Interactive 3D graphics and games, ACM, 2006,
pp. 71–78.

[146] ——, “Single-pass GPU solid voxelization for real-time applications,” in Proceedings
of graphics interface 2008, Canadian Information Processing Society, 2008, pp. 73–80.

[147] S. Fang and H. Chen, “Hardware accelerated voxelisation,” in Volume Graphics,
Springer, 2000, pp. 301–315.

[148] W. Li, Z. Fan, X. Wei, and A. Kaufman, “GPU-Based flow simulation with complex
boundaries,” in GPU Gems 2, Addison Wesley, 2003, pp. 747–764.

[149] L. Zhang, W. Chen, D. S. Ebert, and Q. Peng, “Conservative voxelization,” The Visual
Computer, vol. 23, no. 9-11, pp. 783–792, 2007.

[150] Y. Fei, B. Wang, and J. Chen, “Point-tessellated voxelization,” in Proceedings of
Graphics Interface 2012, Canadian Information Processing Society, 2012, pp. 9–18.

[151] M. Schwarz and H.-P. Seidel, “Fast parallel surface and solid voxelization on GPUs,”
ACM Transactions on Graphics (TOG), vol. 29, no. 6, p. 179, 2010.

[152] J.-Y. Rho, M. Hobatho, and R. Ashman, “Relations of mechanical properties to den-
sity and CT numbers in human bone,” Medical Engineering & Physics, vol. 17, no. 5,
pp. 347–355, 1995.

[153] N. K. Knowles, J. M. Reeves, and L. M. Ferreira, “Quantitative Computed Tomography
(QCT) derived Bone Mineral Density (BMD) in finite element studies: a review of the
literature,” Journal of Experimental Orthopaedics, vol. 3, no. 1, p. 36, 2016.

[154] M. L. Bouxsein, S. K. Boyd, B. A. Christiansen, R. E. Guldberg, K. J. Jepsen,
and R. Müller, “Guidelines for assessment of bone microstructure in rodents using
micro–computed tomography,” Journal of Bone and Mineral Research, vol. 25, no. 7,
pp. 1468–1486, 2010.

[155] B. van Rietbergen, “Micro-FE analyses of bone: state of the art,” in Noninvasive as-
sessment of trabecular bone architecture and the competence of bone, Springer, 2001,
pp. 21–30.

[156] T. J. Baker, “Mesh generation: Art or science?” Progress in Aerospace Sciences,
vol. 41, no. 1, pp. 29–63, 2005.

BIBLIOGRAPHY 113

[157] Y. N. Yeni and D. P. Fyhrie, “Finite element calculated uniaxial apparent stiffness is a
consistent predictor of uniaxial apparent strength in human vertebral cancellous bone
tested with different boundary conditions,” Journal of Biomechanics, vol. 34, no. 12,
pp. 1649–1654, 2001.

[158] W. Pistoia, B. Van Rietbergen, E.-M. Lochmüller, C. Lill, F. Eckstein, and P.
Rüegsegger, “Estimation of distal radius failure load with micro-finite element anal-
ysis models based on three-dimensional peripheral quantitative computed tomography
images,” Bone, vol. 30, no. 6, pp. 842–848, 2002.

[159] S. J. Shefelbine, U. Simon, L. Claes, A. Gold, Y. Gabet, I. Bab, R. Müller, and P. Augat,
“Prediction of fracture callus mechanical properties using micro-CT images and voxel-
based finite element analysis,” Bone, vol. 36, no. 3, pp. 480–488, 2005.

[160] U. Wolfram, H.-J. Wilke, and P. K. Zysset, “Valid µ finite element models of vertebral
trabecular bone can be obtained using tissue properties measured with nanoindentation
under wet conditions,” Journal of Biomechanics, vol. 43, no. 9, pp. 1731–1737, 2010.

[161] A. Torcasio, X. Zhang, H. Van Oosterwyck, J. Duyck, and G. H. van Lenthe, “Use
of micro-CT-based finite element analysis to accurately quantify peri-implant bone
strains: a validation in rat tibiae,” Biomechanics and Modeling in Mechanobiology,
vol. 11, no. 5, pp. 743–750, 2012.

[162] D. Christen, L. J. Melton III, A. Zwahlen, S. Amin, S. Khosla, and R. Müller, “Im-
proved Fracture Risk Assessment Based on Nonlinear Micro-Finite Element Simu-
lations From HRpQCT Images at the Distal Radius,” Journal of Bone and Mineral
Research, vol. 28, no. 12, pp. 2601–2608, 2013.

[163] M. Ramezanzadehkoldeh and B. H. Skallerud, “MicroCT-based finite element models
as a tool for virtual testing of cortical bone,” Medical Engineering & Physics, vol. 46,
pp. 12–20, 2017.

[164] M. C. Costa, G. Tozzi, L. Cristofolini, V. Danesi, M. Viceconti, and E. Dall’Ara, “Micro
Finite Element models of the vertebral body: Validation of local displacement predic-
tions,” PloS one, vol. 12, no. 7, e0180151, 2017.

[165] C. C. Wang, “Approximate Boolean operations on large polyhedral solids with partial
mesh reconstruction,” IEEE Transactions on Visualization and Computer Graphics,
vol. 17, no. 6, pp. 836–849, 2011.

[166] S. Landier, “Boolean operations on arbitrary polyhedral meshes,” Procedia Engineer-
ing, vol. 124, pp. 200–212, 2015.

[167] The Computational Geometry Algorithms Library, https://www.cgal.org/,
Accessed: 2018-11-07.

[168] ——, “Boolean operations on arbitrary polygonal and polyhedral meshes,” Computer-
Aided Design, vol. 85, pp. 138–153, 2017.

[169] J. Amanatides, A. Woo, et al., “A fast voxel traversal algorithm for ray tracing,” in
Eurographics, vol. 87, 1987, pp. 3–10.

[170] M. Levoy, “Efficient ray tracing of volume data,” ACM Transactions on Graphics
(TOG), vol. 9, no. 3, pp. 245–261, 1990.

https://www.cgal.org/

114 BIBLIOGRAPHY

[171] T. J. Purcell, I. Buck, W. R. Mark, and P. Hanrahan, “Ray tracing on programmable
graphics hardware,” in ACM SIGGRAPH 2005 Courses, ACM, 2005, p. 268.

[172] D. Laur and P. Hanrahan, “Hierarchical splatting: A progressive refinement algorithm
for volume rendering,” in ACM SIGGRAPH Computer Graphics, ACM, vol. 25, 1991,
pp. 285–288.

[173] K. Mueller and R. Yagel, “Fast perspective volume rendering with splatting by utilizing
a ray-driven approach,” in Proceedings of the 7th conference on Visualization’96, IEEE
Computer Society Press, 1996, 65–ff.

[174] P. P. Li, S. Whitman, R. Mendoza, and J. Tsiao, “ParVox-a parallel splatting volume
rendering system for distributed visualization,” in Parallel Rendering, 1997. PRS 97.
Proceedings. IEEE Symposium on, IEEE, 1997, pp. 7–14.

[175] W. Li, K. Mueller, and A. Kaufman, “Empty space skipping and occlusion clipping for
texture-based volume rendering,” in Proceedings of the 14th IEEE Visualization 2003
(VIS’03), IEEE Computer Society, 2003, p. 42.

[176] J. Kniss, P. McCormick, A. McPherson, J. Ahrens, J. Painter, A. Keahey, and C.
Hansen, “Interactive texture-based volume rendering for large data sets,” IEEE Com-
puter Graphics and Applications, no. 4, pp. 52–61, 2001.

[177] I. Boada, I. Navazo, and R. Scopigno, “Multiresolution volume visualization with a
texture-based octree,” The Visual Computer, vol. 17, no. 3, pp. 185–197, 2001.

[178] W. E. Lorensen and H. E. Cline, “Marching cubes: A high resolution 3D surface con-
struction algorithm,” in ACM SIGGRAPH Computer Graphics, ACM, vol. 21, 1987,
pp. 163–169.

[179] S. F. Gibson, “Constrained elastic surface nets: Generating smooth surfaces from bi-
nary segmented data,” in International Conference on Medical Image Computing and
Computer-Assisted Intervention, Springer, 1998, pp. 888–898.

[180] T. Ju, F. Losasso, S. Schaefer, and J. Warren, “Dual contouring of hermite data,” in
ACM Transactions on Graphics (TOG), ACM, vol. 21, 2002, pp. 339–346.

[181] F. Goetz, T. Junklewitz, and G. Domik, “Real-Time Marching Cubes on the Vertex
Shader.,” in Eurographics (Short Presentations), 2005, pp. 5–8.

[182] E. Smistad, A. C. Elster, and F. Lindseth, “Real-time surface extraction and visual-
ization of medical images using OpenCL and GPUs,” Norsk informatikkonferanse,
pp. 141–152, 2012.

[183] NVIDIA OpenCL SDK Code Samples, https://developer.nvidia.com/
opencl, Accessed: 2018-11-07.

[184] Y. Chevalier, D. Pahr, H. Allmer, M. Charlebois, and P. Zysset, “Validation of a voxel-
based FE method for prediction of the uniaxial apparent modulus of human trabecular
bone using macroscopic mechanical tests and nanoindentation,” Journal of Biomechan-
ics, vol. 40, no. 15, pp. 3333–3340, 2007.

[185] N. M. Zaitoun and M. J. Aqel, “Survey on image segmentation techniques,” Procedia
Computer Science, vol. 65, pp. 797–806, 2015.

https://developer.nvidia.com/opencl
https://developer.nvidia.com/opencl

BIBLIOGRAPHY 115

[186] D. W. Wagner, D. P. Lindsey, and G. S. Beaupre, “Deriving tissue density and elastic
modulus from microCT bone scans,” Bone, vol. 49, no. 5, pp. 931–938, 2011.

[187] B. C. Bourne and M. C. van der Meulen, “Finite element models predict cancellous ap-
parent modulus when tissue modulus is scaled from specimen CT-attenuation,” Journal
of Biomechanics, vol. 37, no. 5, pp. 613–621, 2004.

[188] N. M. Josuttis, The C++ standard library: a tutorial and reference. Addison-Wesley
Professional, 2012.

[189] D. Cohen-Or and A. Kaufman, “Fundamentals of surface voxelization,” Graphical
Models and Image Processing, vol. 57, no. 6, pp. 453–461, 1995.

[190] G. M. Morton, “A computer oriented geodetic data base and a new technique in file
sequencing,” IBM Ltd., Tech. Rep., 1966.

[191] J. Baert, A. Lagae, and P. Dutré, “Out-of-core construction of sparse voxel octrees,” in
Proceedings of the 5th High-Performance Graphics Conference, ACM, 2013, pp. 27–
32.

[192] S. Gottschalk, M. C. Lin, and D. Manocha, “OBBTree: A hierarchical structure for
rapid interference detection,” in Proceedings of the 23rd Annual Conference on Com-
puter Graphics and Interactive Techniques, ACM, 1996, pp. 171–180.

[193] C. Ericson, Real-time collision detection. CRC Press, 2004.

[194] C. Jacobs, M. Pope, J. Berry, and F. Hoaglund, “A study of the bone machining process
- orthogonal cutting,” Journal of Biomechanics, vol. 7, no. 2, pp. 131–136, 1974.

[195] C. Plaskos, A. J. Hodgson, and P. Cinquin, “Modelling and optimization of bone-
cutting forces in orthopaedic surgery,” in International Conference on Medical Image
Computing and Computer-Assisted Intervention, Springer, 2003, pp. 254–261.

[196] M. Mitsuishi, S. Warisawa, N. Sugita, M. Suzuki, H. Moriya, H. Hashizume, K. Fu-
jiwara, N. Abe, H. Inoue, K. Kuramoto, et al., “A study of bone micro-cutting char-
acteristics using a newly developed advanced bone cutting machine tool for total knee
arthroplasty,” CIRP Annals-Manufacturing Technology, vol. 54, no. 1, pp. 41–46, 2005.

[197] V. T. Van Hees, L. Gorzelniak, E. C. D. Leon, M. Eder, M. Pias, S. Taherian, U.
Ekelund, F. Renström, P. W. Franks, A. Horsch, et al., “Separating movement and grav-
ity components in an acceleration signal and implications for the assessment of human
daily physical activity,” PloS one, vol. 8, no. 4, e61691, 2013.

[198] A. M. Okamura, J. T. Dennerlein, and R. D. Howe, “Vibration feedback models for
virtual environments,” in Robotics and Automation, 1998. Proceedings. 1998 IEEE
International Conference on, IEEE, vol. 1, 1998, pp. 674–679.

[199] A. J. Silva, O. A. D. Ramirez, V. P. Vega, and J. P. O. Oliver, “PHANToM OMNI
haptic device: Kinematic and manipulability,” in Electronics, Robotics and Automotive
Mechanics Conference, 2009. CERMA’09., IEEE, 2009, pp. 193–198.

[200] Multimedia Timers, https://docs.microsoft.com/en-ca/windows/
desktop/Multimedia/multimedia-timers, Accessed: 2018-11-07.

https://docs.microsoft.com/en-ca/windows/desktop/Multimedia/multimedia-timers
https://docs.microsoft.com/en-ca/windows/desktop/Multimedia/multimedia-timers

116 BIBLIOGRAPHY

[201] Z. Wang, “A Quadtree-based adaptive Cartesian/Quad grid flow solver for Navier-
Stokes equations,” Computers & Fluids, vol. 27, no. 4, pp. 529–549, 1998.

[202] E. M. Padegimas, M. Maltenfort, M. D. Lazarus, M. L. Ramsey, G. R. Williams, and
S. Namdari, “Future patient demand for shoulder arthroplasty by younger patients:
national projections,” Clinical Orthopaedics and Related Research®, vol. 473, no. 6,
pp. 1860–1867, 2015.

[203] N. K. Knowles, G. D. G. Langohr, M. Faieghi, A. Nelson, and L. M. Ferreira, “De-
velopment and Cross-Validation of a CT-Compatible Loading Device for Mechanical
Testing of Trabecular Bone Specimens,” in Annual Meeting of the Orthopaedic Re-
search Society, 2018.

[204] J. R. Kusins, N. K. Knowles, M. Faieghi, N. K. Knowles, A. Nelson, and L. M. Ferreira,
“Accuracy of Density-Modulus Relationships Used in Finite Element Modeling of the
Shoulder,” in World Congress on Biomechanics, 2018.

[205] N. K. Knowles, G. D. G. Langohr, M. Faieghi, A. Nelson, and L. M. Ferreira, “Devel-
opment of a validated glenoid trabecular density-modulus relationship,” Journal of the
mechanical behavior of biomedical materials, vol. 90, pp. 140–145, 2019.

[206] M. Faieghi, N. K. Knowles, O. R. Tutunea-Fatan, and L. M. Ferreira, “Efficient
Voxelization-Based Construction of Finite Element Meshes,” in Computer Aided De-
sign, 2018.

[207] ——, “An efficient hexahedral mesh generation algorithm for micro-level trabecular
bone modeling,” in World Congress on Biomechanics, 2018.

[208] ——, “Fast Generation of Cartesian Meshes from Micro-Computed Tomography
Data,” Computer Aided Design and Application, vol. 16, no. 1, pp. 161–171, 2019.

[209] Cartesian Mesh Generator, https : / / github . com / mfaieghi /
HexahedralFiniteElementModelGenerator, Accessed: 2018-11-07.

[210] C. Song, Z. Pang, X. Jing, and C. Xiao, “Distance field guided L1-median skeleton
extraction,” The Visual Computer, vol. 34, no. 2, pp. 243–255, 2018.

[211] F. Wang, “Composite model representation for computer aided design of functionally
gradient materials,” PhD thesis, Missouri University of Science and Technology, 2016.

[212] K. Vidimče, S.-P. Wang, J. Ragan-Kelley, and W. Matusik, “OpenFab: a programmable
pipeline for multi-material fabrication,” ACM Transactions on Graphics (TOG),
vol. 32, no. 4, p. 136, 2013.

[213] J. C. Dinis, T. F. Moraes, P. H. Amorim, M. R. Moreno, A. A. Nunes, and J. V.
Silva, “POMES: An Open-Source Software Tool to Generate Porous/Roughness on
Surfaces,” Procedia CIRP, vol. 49, pp. 178–182, 2016.

[214] F. S. Nooruddin and G. Turk, “Simplification and repair of polygonal models using
volumetric techniques,” IEEE Transactions on Visualization and Computer Graphics,
vol. 9, no. 2, pp. 191–205, 2003.

[215] S. Patil and B. Ravi, “Voxel-based representation, display and thickness analysis of
intricate shapes,” in Computer Aided Design and Computer Graphics, 2005. Ninth In-
ternational Conference on, IEEE, 2005, 6–pp.

https://github.com/mfaieghi/HexahedralFiniteElementModelGenerator
https://github.com/mfaieghi/HexahedralFiniteElementModelGenerator

[216] M. Faieghi, O. R. Tutunea-Fatan, and R. Eagleson, “Fast and Cross-vendor OpenCL-
based Implementation for Voxelization of Triangular Mesh Models,” in Computer
Aided Design, 2017.

[217] ——, “Fast and cross-vendor OpenCL-based implementation for voxelization of trian-
gular mesh models,” Computer-Aided Design and Applications, vol. 15, no. 6, pp. 852–
862, 2018.

[218] OpenCL Voxelizer, https://github.com/mfaieghi/OpenCLVoxelizer,
Accessed: 2018-11-07.

[219] M. Shaw and C. Oxford, “On the drilling of metals 1: basic mechanics of the process,”
Trans. ASME, vol. 77, no. 2, pp. 103–111, 1955.

[220] G. Stabler, “The chip flow law and its consequences,” Advances in Machine Tool De-
sign and Research, vol. 5, pp. 243–251, 1964.

117

https://github.com/mfaieghi/OpenCLVoxelizer

Curriculum Vitae

Name: Mohammadreza Faieghi

Post-Secondary Hamedan University of Technology
Education and Hamedan, Iran
Degrees: 2006 – 2011 B.Sc. in Electrical Engineering

Iran University of Science and Technology
Tehran, Iran
2011 – 2013 M.Sc. in Electrical Engineering

Honours and PSAC 610 Academic Scholarship
Awards: The University of Western Ontario

2017

Ontario Graduate Scholarship
The University of Western Ontario
2016 – 2017

Ontario Graduate Scholarship
The University of Western Ontario
2015 – 2016

Outstanding Student Award
Iran University of Science and Technology
2011 – 2012

Best Poster Award
5th Symposium on Fractional Differentiation and its Applications,
Hohai University, China
2012

Related Teaching Assistant
Experience: The University of Western Ontario

2014 – 2018

118

Journal Papers:
1. N. K. Knowles, G. D. G. Langohr, M. Faieghi, A. Nelson and L. M. Ferreira, “Develop-

ment of a Validated Glenoid Trabecular Density-Modulus Relationship”, Journal of the
Mechanical Behavior of Biomedical Materials, vol. 90, pp. 140–145, 2019.

2. M. Faieghi, N. K. Knowles, O. R. Tutunea-Fatan and L. M. Ferreira, “Fast Generation
of Cartesian Meshes from Micro-Computed Tomography Data”, Computer Aided Design
and Application, vol. 16, no. 1, pp. 161–171, 2019.

3. M. Faieghi, O. R. Tutunea-Fatan and R. Eagleson, “OpenCL-Based Voxelization of Tri-
angle Mesh Models”, Computer Aided Design and Applications, vol. 15, no. 9, pp.
852–862, 2018.

4. M. Faieghi, A. A. Jalali, S. K. Mousavi Mashhadi and D. Baleanu, “Passivity-Based
Cruise Control of High Speed Trains”, Journal of Vibration and Control, vol. 24, no. 13,
pp. 492-504, 2018.

5. M. Faieghi, S. K. Mousavi Mashhadi and D. Baleanu, “Sampled-Data Nonlinear Ob-
server Design for Chaos Synchronization: A Lyapunov-Based Approach”, Communica-
tions in Nonlinear Science and Numerical Simulations, vol. 19, no. 7, pp. 2444–2453,
2014.

6. M. Faieghi, S. Kuntanapreeda, H. Delavari and D. Baleanu, “Robust Stabilization of
Fractional Order Chaotic Systems with Linear Controllers: LMI-Based Sufficient Con-
ditions”, Journal of Vibration and Control, vol. 20, no. 7, pp. 1042–1052, 2014.

7. M. Faieghi, A. A. Jalali, S. K. Mousavi Mashhadi, “Robust Adaptive Cruise Control of
High Speed Trains”, ISA Transactions, vol. 53, no. 2, pp. 533–541, 2014.

8. M. Faieghi, H. Delavari and D. Baleanu, “A note on stability of sliding mode dynamics
in suppression of fractional-order chaotic systems”, Computers and Mathematics with
Application, vol. 66, no. 5, pp. 832–837, 2013.

9. M. Faieghi, A. A. Jalali, S. K. Mousavi Mashhadi and S. A. Zahiripour, “Adaptive Slid-
ing Mode Controller Design for Cruise Control of High Speed Trains”, Journal of Con-
trol, vol. 7, no. 1, pp. 1–12, 2013.

10. M. Faieghi, S. Kuntanapreeda, H. Delavari and D. Baleanu, “LMI-based Stabilization
of a Class of Fractional-Order Chaotic Systems”, Nonlinear Dynamics, vol. 72, no. 1–2,
pp. 301–309, 2013.

11. M. Naderi and M. Faieghi, “Comments on “Second-order sliding mode control with
experimental application””, ISA Transactions, vol. 51, no. 6, pp. 861–862, 2012.

12. M. Faieghi, H. Delavari and D. Baleanu, “Control of an Uncertain Fractional-Order Liu
System via Fuzzy Fractional-Order Sliding Mode Control”, Journal of Vibration and
Control, vol. 18, no. 9, pp. 1366–1374, 2012.

119

13. M. Faieghi, H. Delavari and D. Baleanu, “A novel adaptive controller for two-degree of
freedom polar robot with unknown perturbations”, Communications in Nonlinear Sci-
ence and Numerical Simulation, vol. 17, no. 2, pp. 1021–1030, 2012.

14. M. Faieghi and H. Delavari, “Chaos in fractional-order Genesio-Tesi system and its
synchronization”, Communications in Nonlinear Science and Numerical Simulation, vol.
17, no. 2, pp. 731–741, 2012.

Book Chapters:
1. D. M. Senejohnny, M. Faieghi and H. Delavari, “Adaptive Second-Order Fractional Slid-

ing Mode Control with Application to Water Tanks Level Control”, in Fractional calcu-
lus: History, Theory and Application, Nova Publisher, 2015, pp. 149–164,

2. A. Nemati and M. Faieghi, “The Performance Comparison of ANFIS and Hammerstein-
Wiener Models for BLDC Motors”, in Electronics and Signal Processing, Springer,
2011, pp. 29–37.

3. M. Faieghi and A. Nemati, “On Fractional-Order PID Design”, in Applications of MAT-
LAB in Science and Engineering, InTech, 2011, pp. 273–292.

Conference Papers and Abstracts:
1. M. Faieghi, N. K. Knowles, O. R. Tutunea-Fatan and L. M. Ferreira, “An efficient hexa-

hedral mesh generation algorithm for micro-level trabecular bone modeling”, presented
at the World Congress on Biomechanics, Dublin, Ireland, 2018.

2. N. K. Knowles, G. D.G. Langohr, M. Faieghi, A. Nelson and L. M. Ferreira, “Accuracy
of Density-Modulus Relationships Used in Finite Element Modeling of the Shoulder”,
presented at the World Congress on Biomechanics, Dublin, Ireland, 2018.

3. M. Faieghi, N. K. Knowles, O. R. Tutunea-Fatan and L. M. Ferreira, “Voxelization-
based Fast Construction of Finite Element Models from Micro-Computed Tomography”,
in Proceedings of CAD18, Paris, France, 2018, pp. 21–25.

4. J. R. Kusins, N. K. Knowles, M. Faieghi, A. Nelson and L. M. Ferreira, “Development
and Cross-Validation of a CT-Compatible Loading Device for Mechanical Testing of
Trabecular Bone Specimens”, presented at the 2018 Annual Meeting of the Orthopaedic
Research Society, New Orleans, LA, US, 2018.

5. N. K. Knowles, G. D.G. Langohr, M. Faieghi, A. Nelson and L. M. Ferreira, “Devel-
opment of a Validated Glenoid Trabecular Density-Modulus Relationship”, presented at
the Annual Meeting of the Orthopaedic Research Society, New Orleans, LA, USA, 2018.

6. M. Faieghi, O. R. Tutunea-Fatan and R. Eagleson, “Fast and Cross-Vendor OpenCL-
Based Implementation for Voxelization of Triangular Mesh Models”, in Proceedings of
CAD17, Okayama, Japan, 2017, pp. 410–414.

120

7. Y. Jalalabadi, M. Naderi and M. Faieghi, “Improvement of Hard Disk Drive Positioning
Using Fractional-Order Controller”, in proceedings of the 1st National Symposium on
Electrical and Computer Engineering of South of Iran, Khormoj, Iran, 2013.

8. M. Faieghi and A. Jalali, “Robust Velocity Tracking of High Speed Train via Sliding
Mode Control”, in Proceedings of the 3rd International Conference on Recent Advances
in Railway Engineering, Tehran, Iran, 2013.

9. M. Faieghi, S. Kuntanapreeda, H. Delavari and D. Baleanu, “Stabilization of a Class
Fractional Chaotic System with a Simple Controller”, in Proceedings of 5th IFAC Sym-
posium on Fractional Differentiation and its Applications, Nanjing, China, 2012.

10. M. Faieghi, H. Delavari and D. Baleanu, “A Note on Stability of Sliding Mode Dynam-
ics in Suppression of Fractional-Order Chaotic Systems”, in proceedings of 5th IFAC
Symposium on Fractional Differentiation and its Applications, Nanjing, China, 2012.

11. D. M. Senejohnny, M. Faieghi and H. Delavari, “Adaptive Synchronization of Fractional
Order Chaotic Systems with Unknown Perturbation”, in proceedings of 5th IFAC Sym-
posium on Fractional Differentiation and its Applications, Nanjing, China, 2012.

12. M. Faieghi, H. Delavari and A. Jalali, “Control of Lorenz System with a Fractional
Controller: A Caputos Differintegration Based Approach”, in proceedings of 2nd Inter-
national Conference on Control, Instrumentation, and Automation, Shiraz, Iran, 2011,
pp. 616–620.

13. M. Faieghi, M. Naderi and A. A. Jalali, “Design of Fractional-Order PID for Ship Roll
Motion Control using Chaos Embedded PSO Algorithm”, in proceedings of 2nd Inter-
national Conference on Control, Instrumentation, and Automation, Shiraz, Iran, 2011,
pp. 606–610.

14. H. Delavari, M. Faieghi and A. Ranjbar, “Fractional-Order Sliding Mode Controller for
Inverted Pendulum”, in proceedings of 4th IFAC Workshop Fractional Differentiation
and its Applications, Badajoz, Spain, 2010.

15. M. Faieghi, H. Delavari and D. Baleanu, “Adaptive Active Sliding Mode Control for
Two-Degree of Freedom Polar Robot”, in proceedings of 3rd Conference on Nonlinear
Science and Complexity, Ankara, Turkey, 2010.

16. M. Faieghi and H. Delavari, “Control of an Uncertain Fractional-Order Chaotic Sys-
tem via Fuzzy Fractional-Order Sliding Mode Control”, in proceedings of 13th Iranian
Student Conference on Electrical Engineering, Tehran, Iran, 2010.

17. M. Faieghi and S. M. Azimi, “Design an Optimized PID Controller for Brushless
DC Motor by Using PSO and Based on NARMAX Identified Model with ANFIS”, in
proceedings of 12th International Conference on Computer Modelling and Simulation,
Cambridge, UK, 2010, pp. 16–21.

121

	Virtual Reality Simulation of Glenoid Reaming Procedure
	Recommended Citation

	Abstract
	Co-Authorship Statement
	Acknowledgements
	Dedication
	List of Figures
	List of Tables
	List of Algorithms
	List of Appendices
	List of Abbreviations, Symbols, and Nomenclature
	Introduction
	Current Trends in Surgeon Residency Programs
	Virtual Reality Surgery Simulators
	Virtual Reality Surgery Simulators in Orthopaedics
	Glenoid Reaming as a Target for Surgery Simulation
	Research Objective and Challenges
	Review of Techniques Used in Surgery Simulation
	Mechanics of Bone Machining
	Simulator Software
	Collision Detection
	Point Cloud Construction
	Processing Computed Tomography Data
	Graphic Rendering Techniques

	Specific Aims and Thesis Outline

	Processing CT Data
	Algorithm Overview
	Voxel Grid Construction
	Generation of Geometry and Topology
	Material Model
	Implementation Results and Discussion
	Running Time Breakdown - Fixed Voxel Size
	Running Time Break Down - Voxel Upsampling
	Time Complexity Analysis

	Summary

	Surface Voxelization
	Algorithm Overview
	Mesh Data Preparation
	Voxel Data Representation
	Triangle-Box Overlap Test
	Algorithm Parallelization
	Implementation Results and Discussion
	Overall Structure of the OpenCL Program
	GPU-Based Parallelization
	CPU-Based Parallelization

	Summary

	Collision Detection
	Algorithm Overview
	Voxmap Data Structure
	PointShell Data Structure
	Broad-Phase Collision Detection
	Narrow-Phase Collision Detection
	Implementation Results and Discussion
	Performance in Different Sampling Resolutions
	Running Time Break-Down
	Comparison with Zheng et al.'s Method
	Comparison with Yau et al.'s Method

	Summary

	Modeling and Simulation of Gleonid Reaming
	Calibration Experiments
	Thrust-Feedrate Relation
	Vibration
	Simulation of Glenoid Reaming
	Integration of all Simulator Components
	Simulation with a Haptic Device

	Summary

	Thesis Closure
	Summary
	Strengths and Limitations
	Recommendations for Future Research
	Significance

	Oblique Cutting Model for Glenoid Reaming
	Reamer Geometry
	Web Angle
	Point Angle
	Inclination Angle

	Coordinates Transformations in Oblique Cutting
	Thrust and Torque in Glenoid Reaming

	Bibliography
	Curriculum Vitae

